
TR-106 – Data Model Template for
CWMP Endpoints and USP Agents
Issue: 1 Amendment 10

Issue Date: November 2020

1 Introduction

1.1 Terminology

1.2 Document Conventions

2 Architecture

2.1 Data Hierarchy

2.1.1 Data Hierarchy Requirements

2.1.2 The Supported Data Model and the Instantiated Data Model

2.2 Object Versioning

2.2.1 Requirements for Compatible Versions

2.2.2 Version Notation

2.3 Profiles

2.3.1 Scope of Profiles

2.3.2 Multiple Profile Support

2.3.3 Profile Versions

2.3.4 Baseline Profiles

2.3.5 Types of Requirements in a Profile

2.4 DEPRECATED and OBSOLETED Items

2.4.1 Requirements for DEPRECATED Items

2.4.2 Requirements for OBSOLETED Items

3 Object Definitions

3.1 General Notation

3.2 Data Types and Representation

3.2.1 Date and Time Rules

3.2.2 Comma-separated Lists

3.2.3 Parameters that Reference Parameters or Objects

3.2.4 Units Conventions

1/109

3.2.5 Default Maximum String Length

3.3 Vendor-Specific Elements

4 Normative References

Annex A: CWMP Data Model Definition XML Schema

A.1 Introduction

A.1.1 Character Encoding and Character Set

A.2 Normative Information

A.2.1 Importing DM Instances

A.2.2 Descriptions

A.2.3 Data Types

A.2.4 Glossary, Abbreviations, Bibliography and Templates

A.2.5 Components

A.2.6 Root and Service Objects

A.2.7 Parameters

A.2.8 Commands (USP Only)

A.2.9 Events (USP Only)

A.2.10 Objects

A.2.11 Profiles

A.2.12 Modifications

A.3 DM Schema

Annex B: CWMP Device Type XML Schema

B.1 Introduction

B.2 Normative Information

B.2.1 Importing DM Instances

B.2.2 Features

B.3 DT Schema

Annex C: Requirements for BBF Standard Data Models

C.1 Introduction

C.2 Character Encoding and Character Set

C.3 XML Usage

C.3.1 Data Model Item Names

C.3.2 DM and DMR Schema Versions

C.3.3 SchemaLocation Attribute

C.3.4 Spec Attribute

C.3.5 File Attribute

C.3.6 Import Element

C.3.7 Bibliography Reference Element

2/109

C.3.8 General Formatting

C.4 Initial XML Comment Formatting

C.4.1 One-line Summary

C.4.2 Summary Section

Appendix I: HTML Data Model Reports

I.1 Introduction

I.2 Report Types

I.3 Report Layout

I.4 Data Model Definition

List of Tables

1. XML Description Markup

2. XML Description Templates

3. XML Named Data Types

4. XML Data Type Facets

5. Path Name Scope Definition

6. PathRef Facet Definition

7. InstanceRef Facet Definition

8. EnumerationRef Facet Definition

9. XML Facet Inheritance Rules

10. XML Glossary Items

11. XML Abbreviation Items

12. XML Bibliographic References

13. XML Template Elements

14. XML Component Definition

15. XML Root and Service Objects

16. XML Parameter Definition

17. XML Parameter Syntax

18. XML Command Definition

19. XML Command Input / Output Arguments Definition

20. XML Object Definition

21. XML Table Definition

22. XML Profile Definition

23. XML Parameter Modification

24. XML Command Modification

25. XML Event Modification

26. XML Object Modification

3/109

27. XML Profile Modification

28. XML Description Modification

List of Figures

1. CWMP Positioning in the End-to-End Architecture

2. USP Architecture Overview

3. Specification Structure

4/109

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband

network system development and deployment. This Technical Report has been approved by

members of the Forum. This Technical Report is subject to change. This Technical Report is owned

and copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Technical

Report may be owned and/or copyrighted by Broadband Forum members.

Intellectual Property

Recipients of this Technical Report are requested to submit, with their comments, notification of any

relevant patent claims or other intellectual property rights of which they may be aware that might be

infringed by any implementation of this Technical Report, or use of any software code normatively

referenced in this Technical Report, and to provide supporting documentation.

Terms of Use

1. License

Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and

worldwide basis, to utilize the Technical Report for the purpose of developing, making, having made,

using, marketing, importing, offering to sell or license, and selling or licensing, and to otherwise

distribute, products complying with the Technical Report, in all cases subject to the conditions set forth

in this notice and any relevant patent and other intellectual property rights of third parties (which may

include members of Broadband Forum). This license grant does not include the right to sublicense,

modify or create derivative works based upon the Technical Report except to the extent this Technical

Report includes text implementable in computer code, in which case your right under this License to

create and modify derivative works is limited to modifying and creating derivative works of such code.

For the avoidance of doubt, except as qualified by the preceding sentence, products implementing

this Technical Report are not deemed to be derivative works of the Technical Report.

2. NO WARRANTIES

THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER,

AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT AND ANY IMPLIED

WARRANTIES ARE EXPRESSLY DISCLAIMED. ANY USE OF THIS TECHNICAL REPORT SHALL

BE MADE ENTIRELY AT THE USER’S OR IMPLEMENTER’S OWN RISK, AND NEITHER THE

BROADBAND FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY

LIABILITY WHATSOEVER TO ANY USER, IMPLEMENTER, OR THIRD PARTY FOR ANY

5/109

DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE

USE OF THIS TECHNICAL REPORT, INCLUDING BUT NOT LIMITED TO, ANY CONSEQUENTIAL,

SPECIAL, PUNITIVE, INCIDENTAL, AND INDIRECT DAMAGES.

3. THIRD PARTY RIGHTS

Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO

RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY

ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT NOW

OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE TECHNICAL REPORT IN

ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE

TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS TO THE VALIDITY OR

INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY

BE MADE ARE SO LISTED.

All copies of this Technical Report (or any portion hereof) must include the notices, legends, and other

provisions set forth on this page.

6/109

Issue History

Issue

Number

Approval

Date

Publication

Date

Issue

Editor
Changes

Issue 1 September

2005

Jeff

Bernstein,

2Wire

Christele

Bouchat,

Alcatel

Tim Spets,

Westell

Original

Issue 1

Amendment

1

November

2006

Jeff

Bernstein,

2Wire

John

Blackford,

2Wire

Mike

Digdon,

SupportSoft

Heather

Kirksey,

Motive

William

Lupton,

2Wire

Anton

Okmianski,

Cisco

Clarification of original

document

Issue 1

Amendment

2

November

2008

William

Lupton,

2Wire

Håkan

Westin,

Tilgin

Addition of data model

definition XML Schema and

normative XML common

object and component

definitions

7/109

Issue 1

Amendment

3

September

2009

William

Lupton,

2Wire

Håkan

Westin,

Tilgin

Addition of device type XML

Schema

Issue 1

Amendment

4

February

2010

William

Lupton,

2Wire

Paul

Sigurdson,

Broadband

Forum

Moved data model definitions

to TR-181 Issue 1

Issue 1

Amendment

5

November

2010

Paul

Sigurdson,

Broadband

Forum

Replaced definitions of

named data types such as

IPAddress with references to

normative XML.

Minor changes to DM

Schema (v1.3) and DT

Schema (v1.1).

Issue 1

Amendment

6

July 2011 Sarah

Banks,

Cisco

Andrea

Colmegna,

FASTWEB

Tim Spets,

Motorola

Mobility

Removed definition of

proxying, now defined in TR-

069.

Removed Common objects.

Alias Parameter

Requirements added.

Issue 1

Amendment

7

September

2013

7 October

2013

William

Lupton,

Cisco

Added descriptions of new

features in DM Schema (v1.4

& v1.5) and DT Schema (v1.2

& v1.3).

Added Annex defining

additional requirements for

BBF standard data models.

Issue

Number

Approval

Date

Publication

Date

Issue

Editor
Changes

8/109

Issue 1

Amendment

8

16 March

2018

10 May

2018

Jean-Didier

Ott, Orange

William

Lupton,

Broadband

Forum

Added support of USP

(mountable objects).

Removed references to

obsolete data models.

Moved device requirements

to TR-069.

Issue 1

Amendment

9

Schema updates; document

not updated.

Issue 1

Amendment

10

5

November

2020

5

November

2020

William

Lupton,

Broadband

Forum

Converted document to

markdown.

Various editorial

improvements.

Issue

Number

Approval

Date

Publication

Date

Issue

Editor
Changes

Comments or questions about this Broadband Forum Technical Report should be directed to

info@broadband-forum.org.

Editors

William Lupton, Broadband Forum

Broadband User Services Work Area Director(s)

Jason Walls, QA Cafe

John Blackford, CommScope

9/109

mailto:info@broadband-forum.org

Executive Summary
TR-106 specifies data model guidelines to be followed by all CWMP [1] Endpoints and USP [2]

Agents. These guidelines include structural requirements for the data hierarchy, requirements for

versioning of data models, and requirements for defining profiles.

In addition, TR-106 defines an XML Schema that as far as possible embodies these guidelines, and

which is used for defining all CWMP and USP data models. This makes data model definitions

rigorous, and helps to reduce the danger that different implementations will interpret data model

definitions in different ways.

TR-106 also defines an XML Schema that allows a device to describe its supported CWMP data

models. This description is both specific and detailed, allowing a Controller to know exactly what is

supported by the device, including any vendor-specific objects and parameters. Use of this Schema

enhances interoperability and significantly eases the integration of new devices with a Controller. USP

uses a different mechanism (GetSupportedDM message) for the same purpose. That mechanism is

specified in TR-369 [2].

Important warning

The InternetGatewayDevice:1 (TR-098) and Device:1 (TR-181 Issue 1) Root Data
Models are now DEPRECATED and any reference to elements specific to those
models have been removed from this document.

The last revision of TR-106 to be used with those models is TR-106 Amendment 7.

TR-157 data models Components have been incorporated into Device:2.12. TR-157
is therefore also DEPRECATED.

1 Introduction
CWMP

TR-069 [1] defines the generic requirements of the CPE WAN Management Protocol (CWMP)

methods which can be applied to any CWMP Endpoint. It is intended to support a variety of different

functionalities to manage a collection of CPE, including the following primary capabilities:

Auto-configuration and dynamic service provisioning

10/109

Software/firmware image management

Status and performance monitoring

Diagnostics

The ability to manage the home network remotely has a number of benefits including reducing the

costs associated with activation and support of broadband services, improving time-to-market for new

products and services, and improving the user experience.

The following figure places TR-069 in the end-to-end management architecture:

Figure 1: CWMP Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in the subscriber premises. It

uses the methods, or RPCs, defined in TR-069 to get and set the state of the device, initiate

diagnostic tests, download and upload files, and manage events. Some portions of this state are

common across managed devices and some are relevant only to certain device types or services.

USP

The User Services Platform is made of a network of USP Controllers and USP Agents to allow

applications to manipulate service elements (i.e. objects). It represents the evolution of CWMP into

the following use cases:

Improvements on TR-069 based on deployment experience

Multi-tenant management of a given endpoint (that is, manipulation by multiple controllers)

Application to additional market spaces, including consumer electronics and the Internet of

Things

An agent exposes service elements to one or more controllers, either directly or by proxy. An

application could use a Controller to manage a provider controlled system, as in a CWMP ACS, or to

act as a user portal in the cloud, on a gateway, or accessed through a smart phone. Agents and

11/109

http://usp.technology

controllers can also be used in tandem to create a peer-to-peer network of smart applications, such as

an automated smart home.

Figure 2: USP Architecture Overview

USP was designed in a modular manner, and can make use of the CWMP data model and data

model schema in order to represent an evolution of CWMP into the world of consumer electronics,

virtual services, and the Internet of Things. As such, this document describes how to use the data

model schema in both the context of CWMP and USP.

Specification Structure

Figure 3 shows the overall specification structure for the CWMP [1] and USP [2] family of standards

(as currently defined). Please note that this will gradually become out of date as new documents are

published.

12/109

Figure 3: Specification Structure

TR-069 [1] defines the generic requirements of the CWMP methods which can be applied to any

CWMP Endpoint. TR-369 [2] does the same for USP Agents. TR-106 (this document) specifies a

baseline object structure to be supported by any CWMP Endpoint or USP Agent (referred to

generically as an Agent). It specifies how to structure and define data models, which are collections of

objects and parameters on which the generic methods act to configure, diagnose, and monitor the

state of specific devices and services. The actual data models are defined in their own specifications.

For a particular type of device, it is expected that the baseline defined in a document such as TR-

181i2 [3] would be augmented with additional objects and parameters specific to the device type. The

data model used in any Agent MUST follow the guidelines described in this document. These

guidelines include the following aspects:

Structural requirements for the data hierarchy

Requirements for versioning of data models

Requirements for defining profiles

In addition, this document defines two XML Schemas:

An XML Schema that as far as possible embodies these guidelines, and which is used for

defining all CWMP and USP data models. This makes data model definitions rigorous, and helps

to reduce the danger that different implementations will interpret data model definitions in different

ways.

13/109

An XML Schema that allows a device to describe its supported CWMP data models. This

description is both specific and detailed, allowing an ACS to know exactly what is supported by

the CPE, including any vendor-specific objects and parameters. Use of this Schema enhances

interoperability and significantly eases the integration of new devices with an ACS.

Please note that USP uses a different mechanism (GetSupportedDM message) for the same

purpose. It is specified in TR-369 [2].

1.1 Terminology

The following terminology is used throughout this Technical Report.

ACS Auto-Configuration Server. This is a component in the broadband

network responsible for CWMP auto-configuration of the CPE for

advanced services.

Agent A generic term that refers (as appropriate) to either a CWMP Endpoint

or to a USP Agent.

BBF The Broadband Forum.

Base Supported

Data Model

The Data Model that is supported by all CPE of a given make, model

and firmware version. This refers to the Objects, Parameters,

Commands and/or Events that have code support in the current

firmware.

CPE Customer Premises Equipment; refers (as appropriate) to any CWMP-

enabled [1] or USP-enabled [2] device and therefore covers both Internet

Gateway devices and LAN-side end devices.

Command A named element allowing a USP Controller to execute an operation on

a USP Agent. This concept does not apply to CWMP, which uses

Objects and/or Parameters to simulate operations.

Component A named collection of Objects, Parameters, Commands, Events and/or

Profiles that can be included anywhere within a Data Model.

Controller A generic term that refers (as appropriate) to either a CWMP ACS or a

USP Controller.

14/109

Current

Supported Data

Model

The Data Model that is currently supported by an individual CPE, i.e. the

Base Supported Data Model plus any additional Objects, Parameters,

Commands and/or Events supported by extra modules that have been

installed on the CPE. This refers to the Objects, Parameters, Commands

and/or Events that have code support in the CPE.

CWMP CPE WAN Management Protocol. Defined in TR-069 [1], CWMP is a

communication protocol between an ACS and CWMP-enabled CPE that

defines a mechanism for secure auto-configuration of a CPE and other

CPE management functions in a common framework.

CWMP Endpoint A CWMP termination point used by a CWMP-enabled CPE for

communication with the ACS.

Data Model A hierarchical set of Objects, Parameters, Commands and/or Events that

define the managed Objects accessible via a particular Agent.

Device Used here as a synonym for CPE.

DM Instance Data Model Schema instance document. This is an XML document that

conforms to the DM Schema and to any additional rules specified in or

referenced by the DM Schema.

DM Schema Data Model Schema. This is the XML Schema [4] that is used for

defining data models for use with CWMP and USP.

DT Instance Device Type Schema instance document. This is an XML document that

conforms to the DT Schema and to any additional rules specified in or

referenced by the DT Schema. This concept is useful for both CWMP

and USP as an offline design tool, but only CWMP uses it at run-time

(via the SupportedDataModel Object; see Section 2.1.2).

DT Schema Device Type Schema. This is the XML Schema [4] that is used for

describing a Device’s Supported Data Model. This concept is useful for

both CWMP and USP as an offline design tool, but only CWMP uses it

at run-time (via the SupportedDataModel Object; see Section 2.1.2).

Event An indication that something of interest has happened that requires the

Agent to notify the Controller.

15/109

Instantiated Data

Model

The Data Model that currently exists on an individual CPE. This refers to

the Object instances, Parameters, Commands and/or Events that

currently exist within the data model. It can be thought of as the Current

Supported Data Model with all the “{i}” placeholders expanded to be the

actual Instance Numbers. For example, “Device.Services.ABCService.

{i}.” in the Current Supported Data Model might correspond to

“Device.Services.ABCService.1.” and “Device.Services.ABCService.2.”

in the Instantiated Data Model.

Instance Alias A writeable string that uniquely identifies an instance within a Multi-

Instance Object

Instance Identifier A value that uniquely identifies an instance within a Multi-Instance

Object. It is either an Instance Number or an Instance Alias.

Instance Number A read-only positive integer (>=1) that uniquely identifies an instance

within a Multi-Instance Object.

Mountable Object An Object that is defined in a DM Instance as a direct child of the Root

Object, but that can also exist as a child of a Mount Point in the

Instantiated Data Model of a USP Agent. This concept does not apply to

CWMP.

Mount Point An Object that is defined in a DM Instance as being able to have

Mountable Objects as children in the Instantiated Data Model of a USP

Agent. By extension, one of the instances of that object in the

Instantiated Data Model. This concept does not apply to CWMP.

Multi-Instance

Object

An Object that can have multiple instances, all of which are located at

the same level within the name hierarchy. Each instance is identified by

an Instance Identifier.

Object An internal node in the name hierarchy, i.e., a node that can have

Object, Parameter, Command and/or Event children. An Object name is

a Path Name.

Parameter A name-value pair that represents part of a CPE or USP Agent’s

configuration or status. A Parameter name is a Path Name.

Path Name A name that has a hierarchical structure similar to files in a directory,

with each level separated by a “.” (dot). References an Object,

Parameter, Command or Event.

Profile A named collection of requirements relating to a given Root Object,

Service Object or Component.

RPC Remote Procedure Call.

16/109

Root Object The top-level Object of a CPE’s Data Model that contains all of the

manageable Objects. The name of the Root Object is “Device.”.

Service Element A Service Element represents a piece of service functionality that is

exposed by an Agent, usually represented by one or more Objects.

Service Object The top-most Object associated with a specific service within which all

Objects, Parameters, Commands and Events associated with the

service are contained.

Supported Data

Model

Refers to either Base Supported Data Model or Current Supported Data

Model, depending on the context.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

USP Universal Service Platform. Defined in TR-369, USP is an evolution of

CWMP that allows applications to manipulate Service Elements in a

network of Controllers and Agents.

USP Agent A USP Agent is a USP Endpoint that exposes Service Elements to one

or more USP Controllers.

USP Controller A USP Controller is a USP Endpoint that manipulates Service Elements

through one or more USP Agents.

USP Endpoint A USP Endpoint is a termination point for a USP message.

1.2 Document Conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as

described in [5].

2 Architecture
All elements described hereunder apply to both CWMP and USP, unless specifically mentioned

otherwise.

17/109

2.1 Data Hierarchy

The data model for a Agent will follow a common set of structural requirements. The detailed structure

depends on the nature of the Agent.

An Agent’s data model will always have a single Root Object, which will be called “Device.”.

The Root Object contains three types of sub-elements: the Objects defined in TR-181i2 [3],

Components defined in TR-181i2 or other specifications such as TR-143 [6], and a single “Services”

object that contains all Service Objects associated with specific services.

A single Agent might include more than one Service Object. For example, a device that serves both

as a VoIP endpoint and a game device, might include both VoIP-specific and game-specific Service

Objects.

A single Agent might also include more than one instance of the same type of Service Object. An

example of when this might be appropriate is an Agent that provides an instance of the TR-140 [7]

StorageService for each of the device’s attached disks.

2.1.1 Data Hierarchy Requirements

A CWMP or USP data model MUST adhere to the following structural requirements:

1. A root data model definition MUST contain exactly one Root Object, called “Device.”.

2. A Root Object definition MUST contain exactly one “Services.” object.

3. A service data model definition MUST define an object hierarchy that starts just under the

“Device.Services.” object.

4. For each Multi-Instance Object defined, a data model MUST also define a corresponding

parameter indicating the number of instances of the Multi-Instance Object. The name of this

parameter MUST be the name of the object concatenated with “NumberOfEntries”. This

parameter MUST appear in the same object as the Multi-Instance Object it is related to.

Formally, the top level of the data hierarchy is defined as follows:

18/109

 Element = "Device"

 | "Device." TR-181DeviceObject

 | "Device.Services." ServiceObject "NumberOfEntries"

 | "Device.Services." ServiceObject ".{i}"

 TR-181DeviceObject = // As defined in TR-181i2, e.g. "UserInterface" or

"ManagementServer"

 ServiceObject = // As defined in other specs, e.g. TR-140

2.1.2 The Supported Data Model and the Instantiated Data Model

There is a distinction between an Agent’s Supported Data Model and its Instantiated Data Model.

The Supported Data Model is those Objects and/or Parameters that have code support in the

Agent.

The Instantiated Data Model is those Object instances and/or Parameters that currently exist.

TR-181i2 [3] defines a SupportedDataModel Object that allows an Agent to indicate its Supported

Data Model to a Controller, which assists the Controller in managing that device.

The SupportedDataModel object has the following properties:

1. It contains a list of URLs, each of which allows the Controller to determine details of part of the

Supported Data Model.

2. When the Supported Data Model changes, e.g. because software is loaded or unloaded, entries

are added to or removed from this list of URLs.

This object is not used with USP. TR-369 [2] defines the GetSupportedDM message to provide this

information.

2.2 Object Versioning

To allow the definition of a Service Object or Root Object to change over time, the definition of a

Service Object or Root Object MUST have an explicitly specified version.

19/109

Version numbering of Service Objects and Root Objects is defined to use a major/minor version

numbering convention. The object version is defined as a pair of integers, where one integer

represents the major version, and the second integer represents the minor version. The version

MUST be written with the two integers separated by a dot (Major.Minor).

The first version of a given object SHOULD be defined as version “1.0”.

For each subsequent version of the object, if the later version is compatible with the previous version,

then the major version SHOULD remain unchanged, and the minor version SHOULD be incremented

by one. For example, the next compatible version after “2.17” would be “2.18”. The requirements for a

version to be considered compatible with an earlier version are described in Section 2.2.1.

For each subsequent version of the object, if the later version is not compatible with the previous

version, then the major version MUST increment by one, and the minor version MAY reset back to

zero. For example, the next incompatible version after “2.17” might be “3.0”.

2.2.1 Requirements for Compatible Versions

For one version of an object to be considered compatible with another version, the later version

MUST be a strict superset of the earlier version. Using major/minor versioning, this requirement

applies only between minor versions that share the same major version.

More specifically, this requires the following of the later version with respect to all earlier versions to

which it is to be compatible:

The later version MAY add objects and parameters not previously in any earlier version, but

MUST NOT remove objects or parameters already defined in earlier versions.

The later version MUST NOT modify the definition of any parameter or object already defined in

an earlier version (unless the original definition was clearly in error and has to be modified as an

erratum or clarified through a corrigendum process).

The later version MUST NOT require any of the objects or parameters that have been added

since the earliest compatible version to be explicitly operated upon by the Controller to ensure

proper operation of the device (except those functions specifically associated with functionality

added in later versions). That is, the later version will accommodate a Controller that knows

nothing of elements added in later versions.

The goal of the above definition of compatibility is intended to ensure bi-directional compatibility

between a Controller and Agent. Specifically that:

20/109

If a Controller supports only an earlier version of an object as compared to the version supported

by the Agent, the Controller can successfully manage that object in the Agent as if it were the

earlier version.

If an Agent supports only an earlier version of an object as compared to the version supported by

a Controller, the Controller can successfully manage that object in the Agent as if it were the later

version (without support for new components defined only in later versions).

2.2.2 Version Notation

For objects, the following notation is defined to identify specific versions:

Notation Description Example

ObjectName:Major.Minor Refers to a specific version of the object. Device:2.0

ObjectName:Major Refers to any minor version of the object with

the specified major version.

Device:2

ObjectName Refers to any version of the object. Device

Note that the version notation defined here is only to be used for purposes of documentation. The

actual names of objects and parameters in the data model MUST NOT include version numbers.

2.3 Profiles

Note: Originally, profiles were seen as a means of limiting the variability that a Controller needs to

accommodate among various devices that it might manage. This feature is now provided:

For CWMP, by the TR-181i2 [3] SupportedDataModel object (see Section 2.1.2) and associated

Device Type XML documents (DT Instances).

For USP, by the TR-369 [2] GetSupportedDM message.

A profile is a named collection of requirements associated with a given object. An Agent can adhere to

zero or more profiles. Adherence to a profile means that the Agent supports all of the requirements

defined by that profile. The use of profiles gives Service Providers a shorthand means of specifying

data model support requirements.

The following sections define the conventions to be used when defining profiles associated with Data

Models.

21/109

2.3.1 Scope of Profiles

A given profile is defined only in the context of a specific Service Object or Root Object with a specific

major version. For each profile definition, the specific object name and major version to which the

profile is to apply MUST be explicitly identified.

A profile’s name MUST be unique among profiles defined for the same object and major version, but a

name MAY be reused to define a different profile for a distinct combination of object name and major

version. For example, if we define profile “A” associated with object “X:2” (major version 2 of object X),

the same name “A” might be used to define a different profile for object “Y:1” or for object “X:3”.

A given profile is defined in association with a minimum minor version of a given object. The minimum

REQUIRED version of an object is the minimum version that includes all of the REQUIRED elements

defined by the profile. For each profile definition, the specific minimum version MUST be explicitly

identified.

2.3.2 Multiple Profile Support

For a given type of Service Object or Root Object, multiple profiles MAY be defined. Profiles MAY be

defined that have either independent or overlapping requirements.

2.3.3 Profile Versions

To allow the definition of a profile to change over time, the definition of every profile MUST have an

associated version number.

Version numbering of profiles is defined to use a minor-only version numbering convention. That is, for

a given profile name, each successive version MUST be compatible with all earlier versions. Any

incompatible change to a profile MUST use a different profile name.

For one version of a profile to be considered compatible with another version, the later version MUST

be a strict superset of the earlier version. This requires the following of the later version with respect

to all earlier versions to which it is to be compatible:

The later version MAY add requirements that were not in earlier versions of the profile, but MUST

NOT remove requirements.

The later version MAY remove one or more conditions that had previously been placed on a

requirement. For example, if a previous profile REQUIRED X only if condition A was True, then

the later profile might require X unconditionally.

22/109

For profiles, the following notation is defined to identify specific versions:

Notation Description Example

ProfileName:Version Refers to a specific version of the profile. Baseline:1

ProfileName Refers to any version of the profile. Baseline

ProfileName MUST start with a letter or underscore, and subsequent characters MUST be letters,

digits, underscores or hyphens. The terms “letter” and “digit” are as defined in the XML specification

[Appendix B/8].

Hyphens can easily be confused with the discretionary hyphens that are sometimes inserted by

hyphenation algorithms. For this reason, ProfileName SHOULD NOT include any hyphens. In BBF

standards, ProfileName will always start with an upper-case letter (or an underscore for an internal

profile) and will never include any hyphens (see C.3.1 for the corresponding normative requirement).

2.3.4 Baseline Profiles

For every Service Object (and Root Object) there SHOULD be at least one profile defined. In many

cases it is desirable to define a Baseline profile that indicates the minimum requirements REQUIRED

for any device that supports that Object.

2.3.5 Types of Requirements in a Profile

Because a profile is defined within the context of a single Object (and major version), all of the

requirements associated with the profile MUST be specific to the data model associated with that

object.

Profile requirements can include any of the following types of requirements associated with an

Object’s data model:

A requirement for read support of a Parameter.

A requirement for write support of a Parameter.

A requirement for support of a Command.

A requirement for support of a sub-Object contained within the overall Object.

A requirement for the ability to add or remove instances of a sub-Object.

A requirement to support active notification for a Parameter.

23/109

A requirement to support access control for a given Parameter.

For each of the requirement categories listed above, a profile can define the requirement

unconditionally, or can place one or more conditions on the requirement. For example, a profile might

require that a Parameter be supported for reading only if the device supports some other Parameter

or Object (one that is not itself REQUIRED by the profile). Such conditions will be directly related to

the data model of the overall object associated with the profile.

Because a device has to be able to support multiple profiles, all profiles MUST be defined such that

they are non-contradictory. As a result, profiles MUST only define minimum requirements to be met,

and MUST NOT specify negative requirements. That is, profiles will not include requirements that

specify something that is not to be supported by the device, or requirements that exclude a range of

values.

2.4 DEPRECATED and OBSOLETED Items

The key word “DEPRECATED” in a data model definition is to be interpreted as follows: This term

refers to an object, parameter or parameter value that is defined in the current version of the standard

but is meaningless, inappropriate, or otherwise unnecessary. It is intended that such objects,

parameters or parameter values will be removed from the next major version of the data model.

Requirements on how to interpret or implement deprecated objects, parameters or parameter values

are given below. For more information on how to interpret or implement specific deprecated objects,

parameters or parameter values, refer to the definition of the object or parameter.

The key word “OBSOLETED” in a data model definition is to be interpreted as follows: This term

refers to an object, parameter or parameter value that meets the requirements for being deprecated,

and in addition is obsolete. Such objects, parameters or parameter values can be removed from a

later minor version of a data model, or from a later version of a profile, without this being regarded as

breaking backwards compatibility rules. Requirements on how to interpret or implement obsoleted

objects, parameters or parameter values are given below. For more information on how to interpret or

implement specific obsoleted objects, parameters or parameter values, refer to the definition of the

object or parameter.

2.4.1 Requirements for DEPRECATED Items

This section defines requirements that apply to all DEPRECATED objects, parameters and parameter

values unless specifically overridden by the object or parameter definition.

24/109

Data model requirements:

1. The definition of a DEPRECATED parameter, object or parameter value MUST include an

explanation of why the item is deprecated.

2. The definition of a DEPRECATED parameter, object or parameter value MAY specify further

requirements relating to the item; such requirements MAY override general Agent or Controller

requirements regarding DEPRECATED elements specified in TR-069 [1] or TR-369 [2].

Agent requirements:

1. A DEPRECATED parameter MUST have a value which is valid for its data type and fulfils any

range (for numeric parameters), length (for string, base64 or hexBinary parameters) and

enumerated value (for string parameters) requirements.

2. Detailed behavioral requirements for a DEPRECATED parameter, e.g. that its value is a unique

key, MAY be ignored by the Agent.

3. The Agent MUST, if such operations are permitted by the data model definition, permit creation of

DEPRECATED objects, modification of DEPRECATED parameters, and setting of

DEPRECATED parameter values. However, it MAY choose not to apply such changes to its

operational state.

4. Regardless of whether DEPRECATED changes are applied to the Agent’s operational state, a

read of a DEPRECATED writable parameter SHOULD return the value that was last written,

i.e. the Agent is expected to store the value even if it chooses not to apply it to its operational

state.

5. The Agent MAY reject an attempt by a Controller to set any parameter to a DEPRECATED value.

Controller requirements:

1. The Controller SHOULD NOT create DEPRECATED objects, modify DEPRECATED parameters,

or set DEPRECATED parameter values.

2. The Controller SHOULD ignore DEPRECATED objects, parameters and parameter values.

3. The Controller SHOULD NOT set a DEPRECATED parameter to a value that is invalid for its

data type or fails to fulfill any range (for numeric parameters), length (for string, base64 or

hexBinary parameters) or enumerated value (for string parameters) requirements.

4. The Controller SHOULD NOT set any parameter to a DEPRECATED value.

2.4.2 Requirements for OBSOLETED Items
25/109

This section defines requirements that apply to all OBSOLETED objects, parameters or parameter

values unless specifically overridden by the object or parameter definition.

An OBSOLETED object, parameter or parameter value MUST meet all the requirements of the

previous section. In addition, the following requirements apply.

1. An OBSOLETED object, parameter or parameter value MAY be removed from a later minor

version of a data model without this being regarded as breaking backwards compatibility rules.

2. An OBSOLETED object, parameter or parameter value MUST NOT be removed from the current

version of a profile, but MAY be removed from a later version of a profile without this being

regarded as breaking backwards compatibility rules.

3. A data model definition MUST include a list of those OBSOLETED objects, parameters or

parameter values that have been removed from the data model or from its profiles. This is to

prevent future namespace conflicts.

3 Object Definitions

3.1 General Notation

Parameter names use a hierarchical form similar to a directory tree. The name of a particular

Parameter is represented by the concatenation of each successive node in the hierarchy separated

with a “.” (dot), starting at the trunk of the hierarchy and leading to the leaves. When specifying a

partial path, indicating an intermediate node in the hierarchy, the trailing “.” (dot) is always used as the

last character.

Parameter names MUST be treated as case sensitive. The name of each node in the hierarchy MUST

start with a letter or underscore, and subsequent characters MUST be letters, digits, underscores or

hyphens. The terms “letter” and “digit” are as defined in the XML specification [Appendix B/8].

Hyphens can easily be confused with the discretionary hyphens that are sometimes inserted by

hyphenation algorithms. For this reason, the names of nodes in the hierarchy SHOULD NOT include

any hyphens. Additionally, the names of nodes in the hierarchy SHOULD NOT start with underscores.

In BBF standards, the names of nodes in the hierarchy always start with an upper-case letter and

never include any hyphens or underscores (see C.3.1 for the corresponding normative requirement).

Where multiple instances of an object can occur, the placeholder node name {i} is shown. In actual

26/109

use, this placeholder is to be replaced by an Instance Identifier.

3.2 Data Types and Representation

Parameters make use of a limited subset of the default SOAP data types. The supported data types

are defined by the DM Schema and are also listed in A.2.3.

The named data types that specify the representations of IP addresses, MAC addresses etc, are

defined in a DM Instance document (see Annex A). The XML file with those definitions and the

corresponding HTML file can be found in the data model resources page. Note that this DM Instance

defines named data types that are expected to be used in several data model definitions; it is possible

to define local named data types in any DM Instance document.

The following sub-sections specify additional rules governing parameter value representation within

XML documents.

3.2.1 Date and Time Rules

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise

in the definition of a parameter of this type.

If absolute time is not available to the Agent, it SHOULD instead indicate the relative time since boot,

where the boot time is assumed to be the beginning of the first day of January of year 1, or 0001 01

01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be

expressed as 0001 01 03T03:04:05. Relative time since boot MUST be expressed using an

untimezoned representation. Any untimezoned value with a year value less than 1000 MUST be

interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be

used: 0001-01-01T00:00:00Z. For an infinite timeline, the following value representing “Infinite

Time” MUST be used: 9999-12-31T23:59:59Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST

use UTC timezoned representation (that is, it MUST include a timezone suffix of “Z”, “-00:00” or

“+00:00”).

3.2.2 Comma-separated Lists

27/109

https://cwmp-data-models.broadband-forum.org/#Data%20Model%20Data%20Types

For strings that are defined to contain comma-separated lists, the format is defined as follows.

Between every pair of successive items in a comma-separated list there MUST be a separator. The

separator MUST include exactly one comma character, and MAY also include one or more

whitespace characters before or after the comma. The entire separator, including any whitespace

characters, MUST NOT be considered part of the list items it separates. The last item in a comma-

separated list MUST NOT be followed with a separator. Individual items in a comma-separated list

MUST NOT include a whitespace or comma character within them. Any whitespace or comma

characters within an item value MUST be escaped using percent-encoding as specified in RFC 3986

[Section 2.1/9].

It is possible to create a list of lists, although other solutions SHOULD be preferred when possible. If a

string contains a list of lists, the rules of the previous paragraph imply that the comma separators of

the inner list will be percent encoded. For example, a three element list with elements “a”, “b,c” (a two

element list) and “d” could be represented as “a,b%2Cc,d”. In order to avoid the need to percent

encode the inner separators, inner lists MAY be “protected” by placing them within square brackets,

e.g. the above list could be represented as “a,[b,c],d”. In order to avoid ambiguity (a Controller that

didn’t understand the new syntax would interpret “a,[b,c],d” as the four element list “a”, “[b", "c]”, “d”),

the data type and/or parameter definition MUST explicitly state that the new syntax is supported

(A.2.3.1, A.2.7.1).

3.2.3 Parameters that Reference Parameters or Objects

For string parameters that are defined to contain the hierarchical Path Name of an object (or for each

item in parameters that are defined to contain comma-separated lists of object Path Names), the

representation of the object name MUST NOT include a trailing “dot.” An example of a parameter of

this kind in the TR-181i2 [3] Device:2 data model is Device.InterfaceStack.{i}.LowerLayer. For this

parameter, the following is an example of a properly formed value:

Device.Ethernet.Interface.1

Path Names in parameter values MUST always be full Path Names. For CWMP there is an exception

such that a path that begins with a dot is relative to the Root or Service Object. For example, in the

Device Root Object, a parameter value of “.DeviceInfo” always means “Device.DeviceInfo”. NOTE:

This exception does NOT hold for USP.

In order to be able to use reference parameters as unique keys (A.2.10.1), their Path Names MUST

conceptually be converted to full Path Names before being compared. For example, in the Device

Root Object, “.DeviceInfo.” and “Device.DeviceInfo.” would compare as equal. If a reference

parameter is list-valued, i.e. it is a list of Path Names or Instance Numbers, the parameter value

28/109

MUST conceptually be regarded as a set when being compared, i.e. the comparison has to ignore the

item order and any repeated items. For example, “1,2,1” and “2,1” would compare as equal because

both reference instances 1 and 2.

References are defined as strong or weak in the data model. A strong reference always either

references an existing parameter or object, or else is a null reference. On the other hand, a weak

reference does not necessarily reference an existing parameter or object.

3.2.4 Units Conventions

For numeric parameters whose values are defined in terms of units, bit and byte-related units will

always refer to powers of 2. For example, a kilobyte will always be 1024 bytes, a megabyte always

1024 * 1024 bytes, etc.

3.2.5 Default Maximum String Length

For string-valued parameters, a maximum length is either explicitly indicated or implied by the size of

the elements composing the string. For strings in which the content is an enumeration, the longest

enumerated value determines the maximum length. Similarly, for strings in which the content is a

pattern, the longest possible matching value determines the maximum length. For strings in which the

content is a list, the maximum number of items and the individual item lengths can help to determine

the maximum string length.

3.3 Vendor-Specific Elements

A vendor MAY extend the standardized data model with vendor-specific elements (parameters,

objects, commands, events). Vendor-specific elements MAY be defined either in a separate naming

hierarchy or within the standardized naming hierarchy.

The name of a vendor-specific parameter, object, command, or event that is not contained within

another vendor-specific object MUST have the form:

X_<VENDOR>_VendorSpecificName

In this definition <VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain

name. The OUI or domain name used for a given vendor-specific parameter MUST be one that is

assigned to the organization that defined this parameter (which is not necessarily the same as the

29/109

vendor of the Agent). An OUI is an organizationally unique identifier as defined in [10], which MUST

be formatted as a six-hexadecimal-digit string using all upper-case letters and including any leading

zeros. A domain name MUST be upper case with each dot (“.”) replaced with a hyphen or underscore.

The VendorSpecificName MUST NOT contain a “.” (period) or a space character.

Note – the use of the string “X_” to indicate a vendor-specific parameter implies that no

standardized parameter can begin with “X_”.

The name of a vendor-specific element that is contained within another vendor-specific object which

itself begins with the prefix described above need not itself include the prefix.

The full Path Name of a vendor-specific element MUST NOT exceed 256 characters in length.

Below are some example vendor-specific element names:

A parameter:

Device.UserInterface.X_012345_AdBanner

A single-instance object:

Device.X_EXAMPLE-COM_MyConfig.Status

A command:

Device.X_EXAMPLE-COM_MyCommand()

An event:

Device.X_EXAMPLE-COM_MyEvent!

When appropriate, a vendor MAY also extend the set of values of an enumeration. If this is done, the

vendor-specified values MUST be in the form “X_<VENDOR>_VendorSpecificValue”. The total length

of such a string MUST NOT exceed 31 characters.

4 Normative References
A list of the currently valid Broadband Forum Technical Reports is published at

https://www.broadband-forum.org. The following documents are referenced by this specification.

[1] TR-069 Amendment 6, CPE WAN Management Protocol, Broadband Forum, 2018

30/109

https://www.broadband-forum.org
https://www.broadband-forum.org/technical/download/TR-069.pdf

[2] TR-369, User Services Platform, 2018

[3] TR-181 Issue 2 Amendment 12, Device Data Model for TR-069, Broadband Forum, 2018

[4] XML Schema Part 0: Primer Second Edition, W3C, 2004

[5] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, IETF, 1997

[6] TR-143 Amendment 1 Corrigendum 1, Enabling Network Throughput Performance Tests and

Statistical Monitoring, Broadband Forum, 2015

[7] TR-140 Amendment 3, TR-069 Data Model for Storage Service Enabled Devices, Broadband

Forum, 2017

[8] Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C, 2008

[9] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, IETF, 2005

[10] Organizationally Unique Identifiers (OUIs), IEEE

[11] RFC 2648, A URN Namespace for IETF Documents, IETF, 1999

[12] XML Schema Part 2: Datatypes Second Edition, W3C, 2004

[13] Simple Object Access Protocol (SOAP) 1.1, W3C, 2000

31/109

https://www.broadband-forum.org/technical/download/TR-369.pdf
https://www.broadband-forum.org/technical/download/TR-181_Issue-2.pdf
https://www.w3.org/TR/xmlschema-0
https://tools.ietf.org/html/rfc2119
https://www.broadband-forum.org/technical/download/TR-143.pdf
https://www.broadband-forum.org/technical/download/TR-140.pdf
https://www.w3.org/TR/REC-xml
https://tools.ietf.org/html/rfc3986
https://standards.ieee.org/faqs/OUI.html
https://tools.ietf.org/html/rfc2648
https://www.w3.org/TR/xmlschema-2
https://www.w3.org/TR/2000/NOTE-SOAP-20000508

Annex A: CWMP Data Model Definition
XML Schema

A.1 Introduction

The CWMP Data Model Definition XML Schema [4], or DM Schema, is used for defining CWMP [1]

and USP [2] data models, and is specified in A.2.12.6.

DM Schema instance documents can contain any or all of the following:

Data type definitions

Root Object definitions (including profiles)

Service Object definitions (including profiles)

Component definitions

Vendor extension definitions

Annex C contains some additional normative requirements that apply only to BBF standard DM

Schema instance documents.

Most of the data model elements are common to CWMP and USP. Those that are specific to either

protocol will be noted in the description.

A.1.1 Character Encoding and Character Set

BBF standard DM Schema instance documents use UTF-8 encoding and their character set is

restricted to printable ASCII characters. See C.2 for the corresponding normative requirements.

A.2 Normative Information

It is possible to create instance documents that conform to the DM Schema but nevertheless are not

valid data model definitions. This is because it is not possible to specify all the normative data model

definition requirements using the XML Schema language. Therefore, the schema contains additional

requirements written using the usual normative language. Instance documents that conform to the
32/109

DM Schema and meet these additional requirements are referred to as DM Instances.

For example, the definition of the parameter element includes the following additional requirements on

the name and base attributes:

 <xs:complexType name="ModelParameter">

 <xs:annotation>

 <xs:documentation>

 Parameter definition and

 reference.

 </xs:documentation>

 </xs:annotation>

 ...

 <xs:attribute name="name" type="tns:ParameterName">

 <xs:annotation>

 <xs:documentation>

 MUST be unique within the parent object

 (this is checked by schema validation).

 MUST be present if and only if defining a new

 parameter.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="base" type="tns:ParameterName">

 <xs:annotation>

 <xs:documentation>

 MUST be present if and only if modifying an existing

 parameter.

 </xs:documentation>

 </xs:annotation>

 </xs:attribute>

 ...

 </xs:complexType>

In some cases, a requirement that is in fact implied by the DM Schema is emphasized within the
33/109

schema via the xs:documentation element (the uniqueness requirement on the name is an example of

this).

In other cases, a schema-implied requirement is not highlighted. For example, the name and base

attributes are of type tns:ParameterName:

 <!DOCTYPE cwmp-datamodel [

 ...

 <!ENTITY name "([\i-[:]][\c-[:\.]]*)">

 ...

]>

 ...

 <xs:simpleType name="ParameterName">

 <xs:annotation>

 <xs:documentation>Parameter name (maximum length 256); the same as

xs:NCName except that periods are not permitted. This name MUST in addition

follow the vendor-specific parameter name requirements of Section 3.3.

</xs:documentation>

 </xs:annotation>

 <xs:restriction base="xs:token">

 <xs:maxLength value="256"/>

 <xs:pattern value="&name;"/>

 </xs:restriction>

 </xs:simpleType>

This states that the parameter name is a string that follows the following rules:

It is derived from xs:token, which has a whitespace facet of “collapse”, meaning that any leading

whitespace in the name will be ignored.

It has a maximum length of 256 characters.

Its first character matches the pattern “[\i-:]]”, which means “any character permitted as the

first character of an XML name, except for a colon”, and any subsequent characters match the

pattern “[\c-[:\.]]”, which means “any character permitted in an XML name, except for a

colon and a dot”.

It follows the vendor-specific parameter name requirements of Section 3.3.

The question of the location of the definitive normative information therefore arises. The answer is as

follows:

All the normative information in the main part of the document remains normative.

34/109

The DM Schema, and the additional requirements therein, are normative. Some of these

additional requirements are duplicated (for emphasis) in this Annex.

The DM Schema references additional material in this Annex. Such material is normative.

If the DM Schema conflicts with a normative requirement in the main part of the document, this is

an error in the DM Schema, and the requirement in the main part of the document takes

precedence.

A.2.1 Importing DM Instances

DM Instances are imported using the top-level import element. The DM Schema specifies that the DM

Instance is located via the file attribute.

The rules governing the file attribute’s value and its use for locating the DM Instance are as follows:

It MUST be a URL adhering to RFC 3986 [9].

If the URL includes a scheme, it MUST be http, https or ftp.

If the URL includes an authority, it MUST NOT include credentials.

For standard BBF DM Instances, the rules that apply to the filename part (final path segment) of

the A.2.1.1 BBFURL also apply to the filename part of this URL. This means that the corrigendum

number can be omitted in order to refer to the latest corrigendum. See C.3.6 for the

corresponding normative requirement.

If the URL is a relative reference, processing tools MUST apply their own logic, e.g. apply a

search path.

A.2.1.1 URI Conventions

The top-level spec attribute contains the URI of the associated specification document, e.g. the BBF

Technical Report.

This URI SHOULD uniquely identify the specification. More than one DM Schema instance document

MAY reference the same specification.

The top-level file attribute contains the name of the DM Schema instance document, e.g. the XML file

that defines a given version of a data model.

The following rules apply to the value of the top-level spec attribute:

35/109

For a BBF Technical Report, it will be of the form “urn:broadband-forum-org:tr-nnn-i-a-

c”, where nnn is the specification number (including leading zeros), i is the issue number, a is the

amendment number, and c is the corrigendum number. The issue, amendment and corrigendum

numbers do not include leading zeros. For example, “urn:broadband-forum-org:tr-106-

1-0” refers to TR-106 (Issue 1 Amendment 0), and “urn:broadband-forum-org:tr-106-1-

2” refers to TR-106 (Issue 1) Amendment 2. See C.3.4 for the corresponding normative

requirement.

For specifications issued by other standards organizations, or by vendors, it SHOULD be of a

standard form if one is defined. For example, RFC 2648 [11] specifies a syntax for referencing

RFCs.

Note that processing tools are likely to assume that all files that share a spec value are related to

each other. Therefore, use of meaningful spec values is RECOMMENDED.

The following rules apply to the value of the top-level file attribute.

For a BBF Technical Report, it will be of the form “tr-nnn-i-a-c.xml” or “tr-nnn-i-a-c-

label.xml”, where nnn, i, a and c are the same as in the spec attribute. The label, which MUST

NOT begin with a digit, is not needed if only one DM Schema instance document is associated

with the specification. See C.3.5 for the corresponding normative requirement.

It SHOULD be the same as the actual file name (omitting the directory name). Under some

circumstances this will not be possible, e.g. because the content is stored in a database and not

in a file system.

Formally, the values of the spec and file attributes are defined as follows:

36/109

 SpecAttr = SpecURI

 FileAttr = FileName

 SpecURI = BBFURI

 | OtherURI

 BBFURI = "urn:broadband-forum-org:" BBFDoc

 FileName = BBFDoc BBFSubDoc ".xml"

 BBFDoc = "tr-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

 BBFNumber = [DIGIT]{3,} // including leading zeros, e.g. 069

 BBFIssue = "-" NoLeadingZeroPositiveNumber

 BBFAmendment = "-" NoLeadingZeroNumber

 BBFCorrigendum = "-" NoLeadingZeroNumber

 BBFSubDoc = "-" LABEL // distinguishing label (not beginning with a

digit)

 | "" // not needed if only one DM Instance is

associated with spec

 NoLeadingZeroNumber = [DIGIT]

 | [NONZERODIGIT] [DIGIT]*

 NoLeadingZeroPositiveNumber = [NONZERODIGIT] [DIGIT]*

 OtherURI = <of a standard form if one is defined>

Standard BBF DM Instances can be accessed at the following URL:

 BBFURL = "http://www.broadband-forum.org/cwmp/" FileName

 FileName = <as before, except that BBFCorrigendum is modified as follows:>

 BBFCorrigendum = "-" NoLeadingZeroNumber

 | "" // if omitted, most recent corrigendum is

assumed

For example, the DM Instance associated with TR-181 Issue 2 Amendment 11 can be accessed at

https://www.broadband-forum.org/cwmp/tr-181-2-11-0.xml.

A.2.2 Descriptions

Many elements have descriptions, and the same rules apply to all description elements in the DM

Schema. A description is free text which can contain a limited amount of MediaWiki-like markup as

specified in A.2.2.3.

A.2.2.1 Character Set

Character set requirements apply to the entire DM Instance, so the contents of this section have been

37/109

https://www.broadband-forum.org/cwmp/tr-181-2-11-0.xml

moved to C.2, which contains the normative requirements that apply to standard BBF DM Instances.

A.2.2.2 Pre-processing

All DM Instance processing tools MUST conceptually perform the following pre-processing before

interpreting the markup:

1. Remove any leading whitespace up to and including the first line break. Note: It can be assumed

that all line breaks are represented by a single line feed, i.e. ASCII 10. See C.2.

2. Remove the longest common whitespace prefix (i.e. that occurs at the start of every line) from

each line. See the example below, where three lines start with four spaces and one line starts

with five spaces, so the longest whitespace prefix that occurs at start of each line is four spaces.

In this calculation, a tab character counts as a single character. To avoid confusion, the

description SHOULD NOT contain tab characters.

3. Remove all trailing whitespace, including line breaks.

This pre-processing is designed to permit a reasonable variety of layout styles while still retaining

predictable behavior. For example, both the following:

 <description>This is the first line.

 This is the second line.

 This is the indented third line.

 This is the fourth line.</description>

And:

 <description>

 This is the first line.

 This is the second line.

 This is the indented third line.

 This is the fourth line.

 </description>

…result in the following:

 This is the first line.

 This is the second line.

 This is the indented third line.

 This is the fourth line.

A.2.2.3 Markup
38/109

The pre-processed description can contain the following markup, which is inspired by, but is not

identical to, MediaWiki markup. All DM Instance processing tools SHOULD support this markup to the

best of their ability.

Table 1: XML Description Markup

Name Markup Example Description

Italics ''italic text'' Two apostrophes on each side of some text will

result in the contained text being emphasized in

italics.

Bold '''bold text''' Three apostrophes on each side of some text

will result in the contained text being

emphasized in bold.

Bold

italics

'''''b+i text''''' Five apostrophes on each side of some text will

result in the contained text being emphasized in

bold italics.

Paragraph This paragraph just ended. A line break is interpreted as a paragraph break.

Bulleted

lists

* level one

** level two

* level one again

** level two again

*** level three

*: level one

continued

outside of list

A line starting with one or more asterisks (*)

denotes a bulleted list entry, whose indent depth

is proportional to the number of asterisks

specified.

If the asterisks are followed by a colon (:), the

previous item at that level is continued, as

shown.

An empty line, or a line that starts with a

character other than an asterisk, indicates the

end of the list.

Numbered

lists

level one

level two

level one again

level two again

level three

#: level one

continued

outside of list

A line starting with one or more number signs (#)

denotes a numbered list entry.

All other conventions defined for bulleted lists

apply here (using # rather than *), except that

numbered list entries are prefixed with an integer

decoration rather than a bullet.

39/109

Indented

lists

: level one

:: level two

: level one again

:: level two again

::: level three

outside of list

A line starting with one or more colons (:)

denotes an indented list entry.

All other conventions defined for bulleted lists

apply here (using : rather than *), except that

indented list entries have no prefix decoration,

and item continuation is not needed.

Verbatim code example:

if (something)

{

/* do something */

} else {

/* do other */

}

A block of lines each of which starts with a

space is to be formatted exactly as typed,

preferably in a fixed width font.

This allows code fragments, simple tables etc. to

be included in descriptions.

Note that the pre-processing rules of A.2.2.2

imply that it is not possible to process an entire

description as verbatim text (because all the

leading whitespace would be removed). This is

not expected to be a problem in practice.

Hyperlinks http://www.broadband-

forum.org

URL links are specified as plain old text (no

special markup).

Templates {{bibref|1|section

2}}

{{section|table}}

{{param|Enable}}

{{enum|Error}}

Text enclosed in double curly braces ({}) is a

template reference, which is replaced by

template-dependent text.

A.2.2.4 specifies the standard templates.

Name Markup Example Description

A.2.2.4 Templates

The term “template” is used for both template elements (A.2.4.4) and for the
description templates described here.

A template invocation is encoded as two curly braces on either side of the template name and

arguments. Arguments can follow the template name, separated by vertical pipe (|) characters. All

whitespace is significant. For example:

{{someTemplate|arg1|arg2|...|argN}}

40/109

In some cases, one template can impact the behavior of another template, e.g. the definitions of both

the {{enum}} and the {{hidden}} templates state that the template expansion can be

automatically placed after the rest of the description, which raises the question of which template

expansion would come first. This ambiguity is resolved by stating that processing tools SHOULD

generate such automatic text in the same order that the templates are defined below. In the above

example, {{enum}} is defined before {{hidden}}, so an automatically-generated list of

enumeration values would be placed before an automatically-generated explanation that the

parameter value is hidden.

The following standard templates are defined. Any vendor-specific template names MUST obey the

rules of Section 3.3.

Table 2: XML Description Templates

Name Markup Definition Description

Glossary

reference

{{gloref|id}} Glossary reference. The id

argument MUST match the id

attribute of one of the current file’s

(or an imported file’s) top-level

glossary element’s item elements

(A.2.4.1).

Typically, processing tools will (a)

validate the id, and (b) replace the

template reference with something

like “id”.

Markup examples:

{{gloref|Parameter}}

Abbreviation

reference

{{abbref|id}} Abbreviation reference. The id

argument MUST match the id

attribute of one of the current file’s

(or an imported file’s) top-level

abbreviations element’s item

elements (A.2.4.2).

Typically, processing tools will (a)

validate the id, and (b) replace the

template reference with something

like “id”.

Markup examples:

{{abbref|CWMP}}

41/109

Approval date {{appdate|date}} The date on which this file was

approved.

The date argument SHOULD be of

the form “day month year” where

“day” is the OPTIONAL day number

(no leading zero), “month” is the full

(capitalized) month name, and

“year” is the year (including

century).

Markup examples:

{{appdate|5 November 2011}}

{{appdate|November 2012}}

Document

name

{{docname|name}} The DM Instance name or title.

The name argument MUST

distinguish this file from other

different files but not from other

versions of the same file or data

model.

Markup examples:

{{docname|Device Data

Model for TR-069}}

TR name {{trname|name}} The name and version of the

corresponding Word / PDF

document.

The name argument MUST identify

the Word / PDF document

corresponding to this DM Instance,

and be of the form “TR-nnnixaycz”

as defined in A.2.4.3.

Markup examples:

{{trname|TR-181i2a5}}

Name Markup Definition Description

42/109

XML

reference

{{xmlref|ref}}

{{xmlref|ref|label}}

A reference to this or another DM

Instance.

The ref argument MUST identify a

DM Instance and be the filename

part of the referenced DM Instance

(a) optionally omitting the

corrigendum number, and (b)

omitting the trailing “.xml”.

The OPTIONAL label argument

MAY be used by processing tools as

a user-visible label; if it is omitted,

processing tools will derive the label

from the value of the ref argument.

Typically, processing tools will (a)

validate the reference, and (b)

replace the template reference with

the label, possibly rendered in a

distinctive font, and (if referencing a

different file) a hyperlink.

Markup examples:

{{xmlref|tr-181-2-5}}

{{xmlref|tr-196-2-0-

1|Corrigendum 1}}

Name Markup Definition Description

43/109

Bibliographic

reference

{{bibref|id}}

{{bibref|id|section}}

A bibliographic reference.

The id argument MUST match the id

attribute of one of the current file’s

(or an imported file’s) top-level

bibliography element’s reference

elements (A.2.4.3).

The OPTIONAL section argument

specifies the section number,

including any leading “section”,

“annex” or “appendix” text.

Typically, processing tools will (a)

validate the id, and (b) replace the

template reference with something

like “[id] section”.

Markup examples:

{{bibref|RFC3986}}

{{bibref|RFC3986|Section

3}}

Template

reference

{{template|id}} A template element reference.

The id argument MUST match the id

attribute of one of the current file’s

(or an imported file’s) top-level

template elements (A.2.4.4).

Markup examples:

{{template|BULK-DATA-HTTP-

REF}}

Name Markup Definition Description

44/109

Section

separator

{{section|category}}

{{section}}

The beginning or end of a section or

category. This is a way of splitting

the description into sections.

If the category argument is present,

this marks the end of the previous

section (if any), and the beginning of

a section of the specified category.

The “table”, “row” and “examples”

categories are reserved for the

obvious purposes.

If the category argument is absent,

this marks the end of the previous

section (if any). Typically,

processing tools will (a) validate the

category, and (b) replace the

template reference with a section

marker.

Markup examples:

{{section|table}}

{{section|row}}

{{section|examples}}

Number of

entries

parameter

description

{{numentries}} A description of a

“NumberOfEntries” parameter.

This template SHOULD be used for

all such parameters. It will be

expanded to something like “The

number of entries in the <table>

table.”.

In most cases, the description will

consist only of {{numentries}}

but it MAY be followed by additional

text if desired.

Name Markup Definition Description

45/109

Parameter

and object

reference

{{param|ref}}

{{param|ref|scope}}

{{param}}

{{object|ref}}

{{object|ref|scope}}

{{object}}

A reference to the specified

parameter or object.

The OPTIONAL ref and scope

arguments reference a parameter or

object. Scope defaults to normal.

Parameter and object names

SHOULD adhere to the rules of

A.2.3.4.

Typically, processing tools will (a)

validate the reference, and (b)

replace the template reference with

the ref argument or, if it is omitted,

the current parameter or object

name, possibly rendered in a

distinctive font.

Processing tools can use the scope

to convert a relative path into an

absolute path in order, for example,

to generate a hyperlink.

Markup examples:

{{param|Enable}}

{{object|Stats.}}

Profile

reference

{{profile|ref}}

{{profile}}

A reference to the specified profile.

The OPTIONAL ref argument

references a profile.

Typically, processing tools will (a)

validate the reference, and (b)

replace the template reference with

the ref argument or, if it is omitted,

the current profile name, possibly

rendered in a distinctive font.

Markup examples:

{{profile|Baseline:1}}

{{profile}}

Name Markup Definition Description

46/109

List

description

{{list}}

{{list|arg}}

{{nolist}}

A description of the current

parameter’s list attributes.

This template SHOULD only be

used within the description of a list-

valued parameter (A.2.7.1).

This is a hint to processing tools to

replace the template reference with

a description of the parameter’s list

attributes. This overrides processing

tools’ expected default behavior

(unless suppressed by

{{nolist}}) of describing the list

attributes before the rest of the

description.

The OPTIONAL argument specifies

a fragment of text that describes the

list and SHOULD be incorporated

into the template expansion.

Typically processing tools will

generate text of the form “Comma-

separated list of <dataType>.” or

“Comma-separated list of

<dataType>, <arg>.”.

Reference

description

{{reference}}

{{reference|arg}}

{{reference|arg|opts}}

{{noreference}}

A description of the object or

parameter that is referenced by the

current parameter.

This template SHOULD only be

used within the description of a

reference parameter (A.2.3.7).

This is a hint to processing tools to

replace the template reference with

a description of the parameter’s

reference attributes. This overrides

processing tools’ expected default

behavior (unless suppressed by

{{noreference}}) of describing

the reference attributes after the list

attributes (for a list-valued

Name Markup Definition Description

47/109

parameter) or before the rest of the

description (otherwise).

The OPTIONAL arg argument is

relevant only for a pathRef; it

specifies a fragment of text that

describes the referenced item and

SHOULD be incorporated into the

template expansion.

The OPTIONAL opts argument is a

comma-separated list of keywords

that give additional information

about the reference and can affect

the generated text. The following

keywords are currently defined:

- ignore: ignore any non-existent

targetParents; this is useful when a

parameter references different

objects in different data models.

- delete: this object (the referencing

object) and the referenced object

have the same lifetime, so this

object will always be deleted when

the referenced object is deleted;

therefore the reference cannever be

null.

Typically processing tools will

generate text of the form “The value

MUST be the full path name of

<arg>…”, in which the generated

text can be expected to be sensitive

to whether or not the parameter is

list-valued.

Markup examples:

{{reference|a protocol

object}}

{{reference|all Host table

entries|ignore}}

Name Markup Definition Description

48/109

Named data

type

{{datatype}}

{{datatype|arg}}

{{nodatatype}}

A description of the current

parameter’s named data type.

This template SHOULD only be

used within the description of a

parameter of a named data type

(A.2.3.1).

This is a hint to processing tools to

replace the template reference with

an indication of the parameter’s

named data type, possibly including

additional details or a hyperlink to

such details. This overrides

processing tools’ expected default

behavior (unless suppressed by

{{nodatatype}}) of describing

the named data type before the rest

of the description.

The OPTIONAL argument affects

how the data type is described. If it

has the literal value “expand”,

processing tools SHOULD replace

the template reference with the

actual description of the named data

type (as opposed to referencing the

description of the named data type).

Name Markup Definition Description

49/109

Profile

description

{{profdesc}}

{{noprofdesc}}

An auto-generated description of a

profile.

This template SHOULD only be

used within the description of a

profile (A.2.11).

This is a hint to processing tools to

replace the template reference with

a description of the profile. This

overrides processing tools’ expected

default behavior (unless suppressed

by {{noprofdesc}}) of describing

the profile before the rest of the

description.

Typically processing tools will

generate text of the form “This table

defines the <profile:v> profile for the

<object:m> object. The minimum

REQUIRED version for this profile is

<object:m.n>.” (or more complex

text if the profile is based on or

extends other profiles).

Enumeration

reference

{{enum|value}}

{{enum|value|param}}

{{enum|value|param|scope}}

{{enum}}

{{noenum}}

A reference to the specified

enumeration value.

The OPTIONAL value argument

specifies one of the enumeration

values for the referenced parameter.

If present, it MUST be a valid

enumeration value for that

parameter.

The OPTIONAL param and scope

arguments identify the referenced

parameter. Scope defaults to

normal. If present, param SHOULD

adhere to the rules of A.2.3.4. If

omitted, the current parameter is

assumed.

If the arguments are omitted, this is

a hint to processing tools to replace

Name Markup Definition Description

50/109

the template reference with a list of

the parameter’s enumerations,

possibly preceded by text such as

“Enumeration of:”. This overrides

processing tools’ expected default

behavior (unless suppressed by

{{noenum}}) of listing the

parameter’s enumerations after the

rest of the description.

Otherwise, typically processing tools

will (a) validate that the enumeration

value is valid, and (b) replace the

template reference with the value

and/or param arguments,

appropriately formatted and with the

value possibly rendered in a

distinctive font. Processing tools can

use the scope to convert a relative

path into an absolute path in order,

for example, to generate a

hyperlink.

Markup examples:

{{enum|None}}

{{enum|None|OtherParam}}

Pattern

reference

{{pattern|value}}

{{pattern|value|param}}

{{pattern|value|param|scope}}

{{pattern}}

{{nopattern}}

A reference to the specified pattern

value.

The OPTIONAL value argument

specifies one of the pattern values

for the referenced parameter. If

present, it MUST be a valid pattern

value for that parameter. The

OPTIONAL param and scope

arguments identify the referenced

parameter. Scope defaults to

normal. If present, param SHOULD

adhere to the rules of A.2.3.4. If

omitted, the current parameter is

assumed.

If the arguments are omitted, this is

Name Markup Definition Description

51/109

a hint to processing tools to replace

the template reference with a list of

the parameter’s patterns, possibly

preceded by text such as “Possible

patterns:”. This overrides processing

tools’ expected default behavior

(unless suppressed by

{{nopattern}}) of listing the

parameter’s patterns after the rest of

the description.

Otherwise, typically processing tools

will (a) validate that the pattern

value is valid, and (b) replace the

template reference with the value

and/or param arguments,

appropriately formatted and with the

value possibly rendered in a

distinctive font. Processing tools can

use the scope to convert a relative

path into an absolute path in order,

for example, to generate a

hyperlink.

Markup examples:

{{pattern|None}}

{{pattern|None|OtherParam}}

Name Markup Definition Description

52/109

Hidden value {{hidden}}

{{hidden|value}}

{{nohidden}}

Text explaining that the value of the

current parameter is hidden and

cannot be read. This template

SHOULD only be used within the

description of a hidden parameter

(A.2.7.1).

This is a hint to processing tools to

replace the template reference with

text explaining that the value of the

current parameter is hidden and

cannot be read. This overrides

processing tools’ expected default

behavior (unless suppressed by

{{nohidden}}) of placing this text

after the rest of the description.

The OPTIONAL argument indicates

the value that is returned when the

current parameter is read. If omitted

this defaults to the expansion of the

{{null}} template.

Typically, processing tools will

generate text of the form “When

read, this parameter returns <arg>,

regardless of the actual value.”.

Name Markup Definition Description

53/109

Command

parameter

{{command}}

{{nocommand}}

Text explaining that the current

parameter is a command parameter

that triggers an Agent action. This

template SHOULD only be used

within the description of such a

command parameter (A.2.7.1).

This is a hint to processing tools to

replace the template reference with

text explaining that the current

parameter is a command parameter

that always reads back as

{{null}}. This overrides

processing tools’ expected default

behavior (unless suppressed by

{{nocommand}}) of placing this

text after the rest of the description.

Typically, processing tools will

generate text of the form “The value

is not part of the device

configuration and is always

{{null}} when read.”.

Factory

default value

{{factory}}

{{nofactory}}

Text listing the factory default for the

current parameter. This template

SHOULD only be used within the

description of a parameter that has a

factory default value.

This is a hint to processing tools to

replace the template reference with

text listing the factory default value.

This overrides processing tools’

expected default behavior (unless

suppressed by {{nofactory}}) of

placing this text after the rest of the

description. Typically, processing

tools will generate text of the form

“The factory default value MUST be

<value>.”.

Name Markup Definition Description

54/109

Unique keys

description

{{keys}}

{{nokeys}}

A description of the current object’s

unique keys.

This template SHOULD only be

used within the description of a

Multi-Instance Object (table) that

defines one or more unique keys

(A.2.10.1).

This is a hint to processing tools to

replace the template reference with

a description of the object’s unique

keys. This overrides processing

tools’ expected default behavior

(unless suppressed by

{{nokeys}}) of describing the

unique keys after the description.

Units

reference

{{units}} The parameter’s units string.

Typically, processing tools will (a)

check that the parameter has a units

string, and (b) substitute the value

of its units string.

Boolean

values

{{false}}

{{true}}

Boolean values.

Typically, processing tools will

substitute the value False or True,

possibly rendered in a distinctive

font.

Name Markup Definition Description

55/109

Discriminator

parameter

description

{{union}}

{{nounion}}

Text explaining the available options

and use for the sub-objects which

are part of the union.

This template SHOULD only be

used within the description of a

parameter declared as a

discriminatorParameter (A.2.10.1).

This is a hint to processing tools to

replace the template reference with

text explaining the union and

possible choices of sub-objects.

This overrides processing tools’

expected default behavior (unless

suppressed by `{{nounion}}) of

placing this text after the rest of the

description.

Typically, processing tools will

generate text of the form “This

parameter defines the name of the

currently active sub-object of a

union, members of the union are

<objects>.” but it MAY be followed

by additional text, explaining the use

of the available options, if desired.

Name Markup Definition Description

56/109

Miscellaneous {{issue|descr}}

{{issue|opts|descr}}

An open issue.

If only one argument is supplied, it is

descr, which describes the open

issue. If two arguments are

supplied, they are opts and descr.

The OPTIONAL opts argument is a

comma-separated list of options:

- The first list item is an issue

category that defaults to “XXX”.

- The second list item is an issue

status that defaults to an empty

string. Any non-empty status implies

that the issue has been resolved.

Typically, processing tools will

assign a unique ID, e.g. a separate

counter for each category of issue,

and replace the template reference

with the issue category, ID, status

and description, possibly rendered

in a distinctive font.

Markup examples:

{{issue|Will be labeled

XXX.}}

{{issue|IPsec|Will be

labeled IPsec.}}

{{issue|DNS,fixed|Resolved

DNS issue.}}

{{empty}} Represents an empty string.

Typically, processing tools will

render such values in a distinctive

font, possibly using standard

wording, such as <Empty> or “an

empty string”.

{{null}} Expands to the appropriate null

value for the current parameter’s

data type (A.2.3.5),

e.g. {{empty}}, {{false}} or 0.

Name Markup Definition Description

57/109

A.2.2.5 HTML Example

This includes examples of most of the markup and templates.

 <model name="Goo:1.1" base="Goo:1.0">

 <object name="GooTop." access="readOnly" minEntries="1" maxEntries="1">

 <parameter name="ExampleParam" access="readOnly">

 <description>

 {{section|Introduction}}This is an ''example'' parameter that

 illustrates many of the '''formatting''' templates. For

 '''''example''''', this references {{bibref|TR-106a1|section 3.2}}.

 {{section|Usage}}This parameter is called {{object}}{{param}}. One can

 also reference other parameters in the same object, such as

 {{param|OtherParameter}}, and indicate that the parameter value is

 measured in {{units}}.

 One can also include bulleted lists:

 * level one

 ** level two

 * level one again

 ** level two again

 *** level three

 *: level one continued

 and numbered lists:

 # level one

 ## level two

 # level one again

 ## level two again

 ### level three

 #: level one continued

 and indented lists

 : level one

 :: level two

 : level one again

 :: level two again

 ::: level three

58/109

 and hyperlinks such as http://www.google.com

 and code examples:

 if (something) {

 /* do something */

 } else {

 /* do other */

 }

 If the parameter was Boolean, one could refer to its values {{false}}

 and {{true}}.

 One can refer to its enumerations individually, e.g. {{enum|Disabled}},

 or to other parameters' enumerations, such as {{enum|Value|OtherParam}},

 or can list them all. {{enum}}

 Finally, if there were any patterns they could be listed too. {{pattern}}

 </description>

 <syntax>

 <string>

 <enumeration value="A"/>

 <enumeration value="B"/>

 <units value="packets"/>

 </string>

 </syntax>

 </parameter>

The resulting HTML would look something like this:

59/109

A.2.3 Data Types

CWMP [1] and USP [2] data models support only the primitive data types listed in the last row of

Table 3 “on the wire”. However, the DM Schema allows data types to be derived from the primitive

types or from other named data types. Such derived types can be named or anonymous.

60/109

A.2.3.1 Named Data Types

Named data types are defined using the top-level dataType element. A DM Instance can contain zero

or more top-level dataType elements.

When defining a new named data type, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 3: XML Named Data Types

Name Description

name The data type name.

base The base type name, i.e. name of the data type from which this data type is

derived. This is used only where the base type is itself a named data type,

not a primitive type.

status The data type’s {current, deprecated, obsoleted, deleted} status. This

defaults to current, and so is not likely to be specified for a new data type.

description The data type’s description (A.2.2).

list

minItems

maxItems

nestedBrackets

size

If the data type is list-valued, details of the list value. This allows

specification of the maximum and minimum number of items in the list, and

of nested list behavior, and also supports a size facet for the list (A.2.3.3).

Note that a list-valued data type is always a string as far as the protocol is

concerned. For a list, the rest of the data type specification refers to the

individual list items, not to the parameter value.

size

pathRef

instanceRef

range

enumeration

enumerationRef

pattern

units

default

Data type facets (A.2.3.3). These are permitted only when the base type is

a named data type, i.e. when the base attribute is specified.

61/109

base64

boolean

dateTime

hexBinary

int

long

string

unsignedInt

unsignedLong

Primitive data type definition. These are permitted only when the base type

is primitive. There is an element for each primitive data type, and each

element supports only the facets (A.2.3.3) that are appropriate to that data

type.

Name Description

For example:

 <dataType name="String255">

 <description>String of maximum length 255.</description>

 <string>

 <size maxLength="255"/>

 </string>

 </dataType>

 <dataType name="String127" base="String255">

 <description>String of maximum length 127.</description>

 <size maxLength="127"/>

 </dataType>

 <dataType name="String127List" base="String127">

 <description>List of up to 7 strings, each of maximum length 127. If a

 list item is itself a list, it will be "protected" by square

 brackets.</description>

 <list maxItems="7" nestedBrackets="required"/>

 </dataType>

A.2.3.2 Anonymous Data Types

Anonymous data types are defined within parameter syntax elements (A.2.7.1), and can apply only to

the parameters within which they are defined. For example:

62/109

 <parameter name="Example1" access="readOnly">

 <syntax>

 <string>

 <size maxLength="127"/>

 </string>

 </syntax>

 </parameter>

 <parameter name="Example2" access="readOnly">

 <syntax>

 <dataType base="String255">

 <size maxLength="127"/>

 </dataType>

 </syntax>

 </parameter>

If an anonymous data type is modified in a later version of a data model, the modified anonymous

data type is regarded as being derived from the original anonymous data type. Therefore the base

type restriction rules of A.2.3.8 MUST be obeyed.

A.2.3.3 Data Type Facets

A facet specifies some aspect of a data type, e.g. its size, range or units.

Note that XML Schema [4] also associates facets with data types. The XML Schema and DM Schema

concepts are the same, but the set of facets is not identical.

The DM Schema defines the following facets (normative requirements are specified in the schema):

Table 4: XML Data Type Facets

Name Description

63/109

size Size ranges for the data type (applies to string, base64, hexBinary and their

derived types). Note that the size facet always refers to the actual value, not

to the base64- or hexBinary-encoded value. Prior to the definition of the DM

Schema, the maximum sizes of base64 parameters referred to the base64-

encoded values.

Processing tools that generate reports from DM Instances SHOULD include

explicit clarification of whether the size ranges refer to the actual or encoded

values.

Note that the size facet is also used to specify the size range for list-valued

parameters, which are always strings (A.2.7.1).

pathRef Details of how to reference parameters and objects via their Path Names

(applies to string and its derived types; A.2.3.7).

instanceRef Details of how to reference object instances (table rows) via their Instance

Numbers (applies to int, unsignedInt and their derived types; A.2.3.7).

range Value ranges and step (default step is 1) for the data type (applies to

numeric data types and their derived types).

enumeration Enumerations for the data type (applies to string and its derived types).

enumerationRef Enumerations for the data type, obtained at run-time from the value of a

specified parameter (applies to string and its derived types; A.2.3.7).

pattern Patterns for the data type (applies to string and its derived types). Pattern

value syntax is the same as for XML Schema regular expressions. See

[Section F/12].

units Units for the data type (applies to numeric data types and their derived

types).

default Object, factory, implementation or parameter default.

- Object defaults apply only to parameters that can be created as a result of

an AddObject RPC.

- Factory defaults apply to all parameters (if a factory default is specified, it

also acts as object default for applicable parameters).

- Implementation defaults apply to all parameters (they are informational

defaults that are likely after a reset or if no other value is available).

- Parameter defaults apply only to command and event arguments.

Name Description

It is important to note that the enumeration facet does not necessarily define all the valid values for a

data type. This is for the following reasons:

64/109

As specified in Section 3.3, vendors are allowed to add additional enumeration values.

A future version of a data model may need to add additional enumeration values.

A.2.3.4 Reference Path Names

Some description templates (A.2.2.4), and all reference facets (A.2.3.7), need to specify parameter or

object names. It is always possible to specify a full Path Name, but it is frequently necessary or

convenient to specify a relative Path Name. For example, it might be necessary to reference another

parameter in the current object. Any Instance Numbers in the parameter’s full Path Name cannot be

known at data model definition time, so this can only be done using a relative Path Name.

The following rules apply to all Path Names that are used in data model definitions for referencing

parameters or objects:

Path Names MAY contain “{i}” placeholders, which MUST be interpreted as wild cards matching

all Instance Numbers, e.g. “Device.Ethernet.Interface.{i}.” references all Ethernet.Interface

instances.

Path Names MUST NOT contain Instance Numbers.

A Path Name is always associated with a path name scope, which defines the point in the naming

hierarchy relative to which the Path Name applies.

Table 5: Path Name Scope Definition

Name Description

normal This is a hybrid scope which usually gives the desired behavior:

- If the path begins with a “Device” component, it is relative to the top of the

naming hierarchy.

- If the path begins with a dot, it is relative to the Root or Service Object (c.f.

scope=model).

- Otherwise, the path is relative to the current object (c.f. scope=object).

model The path is relative to the Root or Service Object.

object The path is relative to the current object.

Formally, if the path name scope is normal:

If the path is empty, it MUST be regarded as referring to the top of the naming hierarchy.

Otherwise, if the path begins with a “Device” component, it MUST be regarded as a full Path

Name.

65/109

Otherwise, if the path begins with a dot (“.”), it MUST be regarded as a path relative to the Root

or Service Object. For example, in the Device Root Object “.DeviceInfo.” means

“Device.DeviceInfo.”, and in the Device.Services.ABCService.1 Service Object it means

“Device.Services.ABCService.1.DeviceInfo.”.

Otherwise, it MUST be regarded as a path relative to the current object. Any leading hash

characters (“#”) cause it to be relative to the parent of the current object (or the parent’s parent,

and so on) as described below. For example, if the current object is “Device.LAN.”, “IPAddress”

means “Device.LAN.IPAddress”, “Stats.” means “Device.LAN.Stats.” and “#.DeviceInfo.” means

“Device.DeviceInfo” (see below for more “#” examples).

If the path name scope is model:

If the path is empty, it MUST be regarded as referring to the Root or Service Object.

Otherwise, it MUST be regarded as a path relative to the Root or Service Object. Any leading dot

MUST be ignored. Leading hash characters are not permitted.

If the path name scope is object:

If the path is empty, it MUST be regarded as referring to the current object.

Otherwise, it MUST be regarded as a path relative to the current object. Any leading dot MUST

be ignored. Leading hash characters are not permitted.

As mentioned above, if the path name scope is normal, a leading hash character causes the path to

be relative to the parent of the current object. Additional hash characters reference the parent’s

parent, and so on, but they MUST NOT be used to reference beyond the Root or Service Object.

Also, for object instances, “#.” always means the Multi-Instance Object’s (table’s) parent rather than

the Multi-Instance Object (table).

In addition, within a component definition, items that are defined outside the component MUST NOT

be referenced via relative paths. This is because components can be included anywhere within the

data model tree.

For example, if the current object is “Device.LAN.DHCPOption.{i}.”:

“#.” means “Device.LAN.” (the table’s parent, not the table).

“#.DHCPOption.” means “Device.LAN.DHCPOption.” (the table).

“#.Stats.” means “Device.LAN.Stats.”.

“#.Stats.TotalBytesSent” means “Device.LAN.Stats.TotalBytesSent”.

The following examples would be invalid if LAN was defined within a component:
66/109

“##.” means “Device.”.

“##.DeviceInfo.” means “Device.DeviceInfo.”.

“##.DeviceInfo.Manufacturer” means “Device.DeviceInfo.Manufacturer”.

The final example can never be valid:

“###.” is not permitted (references beyond the Root Object).

Note that the term “Root or Service Object”, which is used several times above, means “if within a

Service Object instance, the Service Object instance; otherwise, the Root Object”.

For example, the pathRef and instanceRef facets (A.2.3.7) have a targetParent attribute which

specifies the possible parent(s) of the referenced parameter or object, and a targetParentScope

attribute (defaulted to normal) which specifies targetParent’s scope. If the current object is within a

Service Object instance, setting targetParentScope to model forces the referenced parameter or

object to be in the same Service Object instance. Similarly, setting targetParentScope to object forces

the referenced parameter or object to be in the same object or in a sub-object.

A.2.3.5 Null Values and References

Each primitive data type has an associated null value that is used, for example, as the expansion of

the {{null}} template (A.2.2.4). These null values are defined as follows:

base64, hexBinary, string: an empty string

unsignedInt, unsignedLong: 0

int, long: -1

boolean: false

dateTime: 0001-01-01T00:00:00Z (the Unknown Time; see Section 3.2.1)

A null reference indicates that a reference parameter is not currently referencing anything. The value

that indicates a null reference is the null value for the reference parameter’s base data type, i.e.:

string: an empty string

unsignedInt: 0

int: -1

67/109

A.2.3.6 Reference Types

A reference to another parameter or object can be weak or strong:

weak: it does not necessarily reference an existing parameter or object. For example, if the

referenced parameter or object is deleted, the value of the reference parameter might not get

updated. All weak reference parameters MUST be declared as writable.

strong: it always either references a valid parameter or object, or else is a null reference (A.2.3.5

). If the referenced parameter or object is deleted, the value of the reference parameter is always

set to a null reference.

See Section 3.2.3 for normative requirements relating to reference types and the associated Agent

behavior.

A.2.3.7 Reference Facets

A reference facet specifies how a parameter can reference another parameter or object. There are

three sorts of reference:

Path reference: references another parameter or object via its Path Name. Details are specified

via the pathRef facet, which applies to string and its derived types.

Instance reference: references an object instance (table row) via its Instance Number. Details

are specified via the instanceRef facet, which applies to int, unsignedInt and their derived types.

Enumeration reference: references a list-valued parameter via its Path Name. The current value

of the referenced parameter indicates the valid enumerations for this parameter. Details are

specified via the enumerationRef facet, which applies to string and its derived types.

When defining a path reference, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 6: PathRef Facet Definition

Name Description

targetParent An XML list of Path Names that can restrict the set of parameters and

objects that can be referenced. If the list is empty (the default), then

anything can be referenced. Otherwise, only the immediate children of

one of the specified objects can be referenced.

A “{i}” placeholder in a Path Name acts as a wild card,

e.g. “Device.DSL.BondingGroup.{i}.BondedChannel.{i}.Ethernet.”. Path

Names cannot contain explicit Instance Identifiers.

68/109

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent

applies (A.2.3.4): normal (default), model or object.

targetType Specifies what types of item can be referenced:

- any: any parameter or object can be referenced (default)

- parameter: any parameter can be referenced

- object: any object can be referenced

- single: any single-instance object can be referenced

- table: any Multi-Instance Object (table) can be referenced

- row: any Multi-Instance Object (table) instance (row) can be referenced

Name Description

69/109

targetDataType Specifies the valid data types for the referenced parameter. Is relevant

only when targetType is any or parameter.

Possible values are as follows:

- any: a parameter of any data type can be referenced (default)

- base64: only a base64 parameter can be referenced

- boolean: only a boolean parameter can be referenced

- dateTime: only a dateTime parameter can be referenced

- hexBinary: only a hexBinary parameter can be referenced

- integer: only an integer (int, long, unsignedInt or unsignedLong)

parameter can be referenced

- int: only an int parameter can be referenced

- long: only a long (or int) parameter can be referenced

- string: only a string parameter can be referenced

- unsignedInt: only an unsignedInt parameter can be referenced

- unsignedLong: only an unsignedLong (or unsignedInt) parameter can

be referenced

- <named data type>: only a parameter of the named data type can be

referenced

In addition, a parameter whose data type is derived from the specified

data type can be referenced. The built-in type hierarchy (a simplified

version of the XML Schema type hierarchy) is as follows:

any

 base64

 boolean

 dateTime

 hexBinary

 integer

 long

 int

 unsignedLong

 unsignedInt

 string

Note that any and integer are not valid parameter data types. They are

included in order to support “can reference any data type” and “can

reference any numeric data type”.

refType Specifies the reference type (A.2.3.6): weak or strong.

Name Description

70/109

When defining an instance reference, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 7: InstanceRef Facet Definition

Name Description

targetParent Specifies the Path Name of the Multi-Instance Object (table) of which an

instance (row) is being referenced.

“{i}” placeholders and explicit Instance Identifiers are not permitted in the

Path Name. targetParentScope can be used to specify Path Names

relative to the Root or Service Object or the current object.

targetParentScope Specifies the point in the naming hierarchy relative to which targetParent

applies (A.2.3.4): normal (default), model or object.

refType Specifies the reference type (A.2.3.6): weak or strong.

When defining an enumeration reference, the following attributes and elements are relevant

(normative requirements are specified in the schema).

Table 8: EnumerationRef Facet Definition

Name Description

targetParam Specifies the Path Name of the list-valued parameter whose current value

indicates the valid enumerations for this parameter.

targetParamScope Specifies the point in the naming hierarchy relative to which targetParam

applies (A.2.3.4): normal (default), model or object.

nullValue Specifies the parameter value that indicates that none of the values of

the referenced parameter currently apply (if not specified, no such value

is designated).

Note that if this parameter is list-valued then nullValue is not relevant,

because this condition will be indicated by an empty list.

The following examples illustrate the various possible types of reference.

71/109

 <object name="PeriodicStatistics.SampleSet.{i}.Parameter.{i}." ...>

 ...

 <parameter name="Reference" access="readWrite">

 <description>Reference to the parameter that is associated with this

 object instance. This MUST be the parameter's full path name.

</description>

 <syntax>

 <string>

 <size maxLength="256"/>

 <pathRef targetType="parameter" refType="weak"/>

 </string>

 <default type="object" value=""/>

 </syntax>

 </parameter>

 <object name="StorageService.{i}.StorageArray.{i}." ...>

 ...

 <parameter name="PhysicalMediumReference" access="readWrite">

 <description>A comma-separated list of Physical Medium references.

 Each Physical Medium referenced by this parameter MUST exist within

the

 same StorageService instance. A Physical Medium MUST only be

referenced

 by one Storage Array instance. Each reference can be either in the

form

 of ".PhysicalMedium.{i}" or a fully qualified object

 name...</description>

 <syntax>

 <list>

 <size maxLength="1024"/>

 </list>

 <string>

 <pathRef targetParent=".PhysicalMedium." targetParentScope="model"

 targetType="row" refType="strong"/>

 </string>

 </syntax>

 </parameter>

72/109

 <object name="STBService.{i}.Components.FrontEnd.{i}.IP.Inbound.{i}." ...>

 ...

 <parameter name="StreamingControlProtocol" access="readOnly">

 <description>Network protocol currently used for controlling streaming

 of the source content, or an empty string if the content is not being

 streamed or is being streamed but is not being controlled. If non-

empty,

 the string MUST be one of the

.Capabilities.FrontEnd.IP.StreamingControlProtocols

 values.</description>

 <syntax>

 <string>

 <enumerationRef

 targetParam=".Capabilities.FrontEnd.IP.StreamingControlProtocols"

 nullValue=""/>

 </string>

 </syntax>

 </parameter>

 <parameter name="StreamingTransportProtocol" access="readOnly">

 <description>Network protocol currently used for streaming the source

 content, or an empty string if the content is not being streamed.

 If non-empty, the string MUST be one of the

 .Capabilities.FrontEnd.IP.StreamingTransportProtocols

 values.</description>

 <syntax>

 <string>

 <enumerationRef

targetParam=".Capabilities.FrontEnd.IP.StreamingTransportProtocols"

 nullValue=""/>

 </string>

 </syntax>

 </parameter>

73/109

 <object name="Device.WiFi.AccessPoint.{i}.Security." ...>

 ...

 <parameter name="ModeEnabled" access="readWrite">

 <description>Indicates which security mode is enabled.</description>

 <syntax>

 <list/>

 <string>

 <enumerationRef targetParam="ModesSupported"/>

 </string>

 </syntax>

 </parameter>

A.2.3.8 Base Type Restriction

A new data type MUST always be a restriction of its base type, meaning that a valid value of the new

data type will always be a valid value for its base type. This is the case for the examples of A.2.3.1,

which involve three different data types:

string of unlimited length

string of maximum length 255

string of maximum length 127

Clearly a string of length 100 is valid for all three data types, but a string of length 200 is only valid for

the first two data types.

The examples of A.2.3.1 considered only the size facet, but in general all facets that are applicable to

the data type have to be considered. The base type restriction requirements for each facet are as

follows:

Table 9: XML Facet Inheritance Rules

Facet Requirements

size The derived data type can define sizes in any way, provided that the new

sizes do not permit any values that are not valid for the base type.

74/109

pathRef The derived data type can modify the data type in the following ways:

- By “promoting” status to a “higher” value, where the lowest to highest

ordering is: current, deprecated, obsoleted, deleted. For example, current

can be changed to deprecated, and obsoleted can be changed to deleted,

but deleted cannot be changed back to obsoleted. When promoting status,

the deprecation, obsoletion and deletion rules of Section 2.4 MUST be

obeyed.

- By changing targetParent to narrow the set of possible parent objects.

- By changing targetType to narrow the set of possible target types.

- By changing targetDataType to narrow the set of possible target data

types.

instanceRef The derived data type can modify the data type in the following ways:

- By “promoting” status to a “higher” value, as described for pathRef.

- By changing targetParent to narrow the set of possible parent objects.

range The derived data type can define ranges in any way, provided that the new

ranges do not permit any values that are not valid for the base type.

enumeration The derived data type can modify existing enumeration values in the

following ways:

- By “promoting” access from readOnly to readWrite or writeOnceReadOnly.

- By “promoting” status to a “higher” value, as described for pathRef.

- By “promoting” optional from False to True.

- By adding a code, if none was previously specified.

- By using the action attribute to prefix, extend or replace the description

(see below and A.2.12.6).

The derived

data type can

add new

enumeration

values.

enumerationRef The derived data type can modify the data type by “promoting” status to a

“higher” value, as described for pathRef.

Facet Requirements

75/109

pattern The derived data type can modify existing pattern values by changing

access, status, optional and description exactly as for enumerations.

The derived data type can add new patterns and/or replace existing patterns

with new patterns, provided that the new patterns do not permit any values

that are not valid for the base type. For example a single pattern “[AB]” could

be replaced with “A” and “B”, but “C” could not be added.

units The derived data type can add units if the base type did not specify any.

Facet Requirements

Most of the above requirements are non-normative, because it has to be possible to correct errors.

For example, if the base type supports a range of [-1:4095] but the values 0 and 4095 were included

in error, it would be permissible for a derived type to support ranges of [-1:-1] and [1:4094].

Processing tools SHOULD be able to detect and warn about such cases.

When defining a new data type, if a facet is omitted, the new data type will inherit that facet from its

base type. If a facet is present, it MUST be fully specified (except that special rules apply to

descriptions; see below and A.2.12.6). For example, this means that a derived type that adds

additional enumeration values has also to re-declare the enumeration values of the base type.

In the following example, the derived type inherits the units facet from its parent but it does not inherit

the range facet, so the DataBlockSize range is [0:65535] and the DataBlockSize2 range is [40:1460].

 <dataType name="DataBlockSize">

 <unsignedInt>

 <range maxInclusive="65535"/>

 <units value="bytes"/>

 </unsignedInt>

 </dataType>

 <dataType name="DataBlockSize2" base="DataBlockSize">

 <range minInclusive="40" maxInclusive="1460"/>

 </dataType>

Similarly, in the following, the enumeration values for ABCD are not A, B, C and D, but are just C and

D. This is an error (because the derived type cannot remove enumeration values), and processing

tools SHOULD detect and warn about such cases.

76/109

 <dataType name="AB">

 <string>

 <enumeration value="A"/>

 <enumeration value="B"/>

 </string>

 </dataType>

 <dataType name="ABCD" base="AB">

 <string>

 <enumeration value="C"/>

 <enumeration value="D"/>

 </string>

 </dataType>

A derived data type and any of its facets that support descriptions will inherit those descriptions from

the base type. Facet descriptions are inherited regardless of whether the facet is present in the

derived type. For any descriptions that are explicitly specified in the derived type, the action attribute

controls whether they will be prefixed, extended or replaced (A.2.12.6).

For example, in the following, the description of Z (which is not changed) does not have to be

repeated.

77/109

 <dataType name="XY">

 <description>This is XY.</description>

 <string>

 <enumeration value="X">

 <description>This is X.</description>

 </enumeration>

 <enumeration value="Y">

 <description>This is Y.</description>

 </enumeration>

 <enumeration value="Z">

 <description>This is Z.</description>

 </enumeration>

 </string>

 </dataType>

 <dataType name="XY2" base="XY">

 <description action="replace">This is all about XY.</description>

 <enumeration value="X">

 <description action="append">This is more about X, added at the

 end.</description>

 </enumeration>

 <enumeration value="Y">

 <description action="prefix">This is more about Y, inserted at the

 beginning.</description>

 </enumeration>

 <enumeration value="Z"/>

 </dataType>

A.2.4 Glossary, Abbreviations, Bibliography and Templates

A.2.4.1 Glossary

The glossary is defined using the top-level glossary element, which can contain zero or more item

elements.

When defining a new glossary item, the following attributes and elements are relevant (normative

requirements are specified in the schema).

78/109

Table 10: XML Glossary Items

Name Description

id The glossary item ID. This is the term that is being defined.

description The description of the glossary item. This can include appropriate markup and

template references, e.g. it can include {{bibref}} and {{gloref}} template

references.

A.2.4.2 Abbreviations

Abbreviations are defined using the top-level abbreviations element, which can contain zero or more

item elements.

When defining a new abbreviation, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 11: XML Abbreviation Items

Name Description

id The abbreviation item ID. This is the abbreviation that is being defined.

description The description of the abbreviation. This can include appropriate markup and

template references, e.g. it can include {{bibref}} and {{gloref}} template

references.

A.2.4.3 Bibliography

The bibliography is defined using the top-level bibliography element, which can contain zero or more

(bibliographic) reference elements.

When defining a new bibliographic reference, the following attributes and elements are relevant

(normative requirements are specified in the schema).

Table 12: XML Bibliographic References

Name Description

id The bibliographic reference ID.

name The name by which the referenced document is usually known.

title The document title.

organization The organization that published the referenced document, e.g. BBF, IEEE,

IETF.

79/109

category The document category, e.g. TR (BBF), RFC (IETF).

date The publication date.

hyperlink Hyperlink(s) to the document.

Name Description

For BBF standard DM Instances, the C.3.7 rules apply.

Processing tools SHOULD be lenient when comparing bibliographic reference IDs. Specifically, they

SHOULD ignore all whitespace, punctuation, leading zeros in numbers, and upper / lower case. So,

for example, “rfc 1234” and “RFC1234” would be regarded as the same ID, as would “TR-069” and

“TR69”.

Processing tools SHOULD detect and report inconsistent bibliographic references, e.g. a reference

with the same ID (i.e. an ID that compares as equal) as one that was encountered in a different file,

but with a different name or hyperlink.

A.2.4.4 Templates

The term “template” is used for both description templates (A.2.2.4) such as
{{bibref}} and (confusingly) {{template}}, and for the template elements
described here.

Template elements define named blocks of text that can be included (using {{template}}

description templates) in descriptions.

When defining a new template element, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 13: XML Template Elements

Name Description

id The template ID. This identifies the template that is being

defined.

<body> The template body.

When including a template body in a description, processing tools MUST pre-process the value as for

descriptions (A.2.2.2) and then replace the {{template}} description template with the resulting

text. The template body might contain markup, possibly including further {{template}} description

templates, so processing tools MUST then process the expanded text.
80/109

A.2.5 Components

A component is a way of defining a named set of parameters, objects and/or profiles to be used

wherever such a group is needed in more than one place (or just to structure the definitions). A DM

Instance can contain zero or more top-level component elements.

When defining a new component, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 14: XML Component Definition

Name Description

name The component name.

description The component’s description (A.2.2).

component The other components that are referenced (included) by this component.

parameter The component’s top-level parameter definitions (A.2.7).

object The component’s object definitions (A.2.10).

profile The component’s profile definitions (A.2.11).

Referencing (including) a component can be thought of as textual substitution. A component has no

version number and is not tied to a particular Root or Service Object.

The following is a simple example of component definition and reference.

 <component name="ByteStats">

 <parameter name="BytesSent" access="readOnly">

 <description>Number of bytes sent.</description>

 <syntax><unsignedInt/></syntax>

 </parameter>

 <parameter name="BytesReceived" access="readOnly">

 <description>Number of bytes received.</description>

 <syntax><unsignedInt/></syntax>

 </parameter>

 </component>

81/109

 <model name="Device:2.11">

 <object name="Device." access="readOnly" minEntries="1"

 maxEntries="1">

 ...

 <component ref="ByteStats"/>

 ...

 </object>

 ...

 </model>

Here the component is referenced from within an object definition. Components can be referenced

from within component, model, object, command and event definitions. Parameter, command, event,

object and profile definitions within components are relative to the point of inclusion unless overridden

using the path attribute.

A.2.6 Root and Service Objects

Root and Service Objects are defined using the model element and an associated top-level object

element. A DM Instance can contain zero or more top-level model elements.

When defining a new model, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 15: XML Root and Service Objects

Name Description

name The model name, including its major and minor version numbers.

base The name of the previous version of the model (for use when the model version

is greater than 1.0).

isService Whether it is a Service Object. This defaults to False and so can be omitted for

Root Objects.

description The model’s description (A.2.2).

component The components that are referenced (included) by the model (A.2.5).

parameter The model’s top-level parameter definitions (A.2.7).

object The model’s top-level and other object definitions (A.2.10).

profile The model’s profile definitions (A.2.11).

82/109

Once a given version has been defined, it cannot be modified; instead, a new version of the object has

to be defined. For example, the following example defines v1.0 and v1.1 of a notional Service Object.

 <model name="DemoService:1.0" isService="true">

 <parameter name="DemoServiceNumberOfEntries" access="readOnly"/>

 <object name="DemoService.{i}." access="readOnly" minEntries="0"

 maxEntries="unbounded" entriesParameter="DemoServiceNumberOfEntries"/>

 </model>

 <model name="DemoService:1.1" base="DemoService:1.0"

 isService="true">

 <object base="DemoService.{i}." access="readOnly" minEntries="0"

 maxEntries="unbounded"/>

 </model>

A.2.7 Parameters

Parameters are defined using the parameter element, which can occur within component, model and

object elements. When defining a new parameter, the following attributes and elements are relevant

(normative requirements are specified in the schema).

Table 16: XML Parameter Definition

Name Description

name The parameter name (Section 3.1).

access Whether the parameter is writable (readWrite), read-only (readOnly), or writable

once then read-only (writeOnceReadOnly).

status The parameter’s {current, deprecated, obsoleted, deleted} status. This defaults

to current, and so is not likely to be specified for a new parameter.

activeNotify The parameter’s {normal, forceEnabled, forceDefault, canDeny} Active

Notification status. This defaults to normal, and so is not often specified for a

new parameter.

Note that in USP, forceEnabled and forceDefault are equivalent to normal.

forcedInform For CWMP only, the parameter’s Forced Inform status. This defaults to False,

and so is not often specified for a new parameter.

description The parameter’s description (A.2.2).

syntax The parameter’s syntax (A.2.7.1).

83/109

A.2.7.1 Parameter Syntax

Parameter syntax is defined using the syntax element, which can occur only within parameter

elements. When defining a new parameter, the following attributes and elements are relevant

(normative requirements are specified in the schema).

Table 17: XML Parameter Syntax

Name Description

hidden Whether the value is hidden on readback. This defaults to False, and so is

not often specified for a new parameter.

command For CWMP only, whether setting the parameter triggers an Agent action as

opposed to changing the configuration. This defaults to False.

Note that this is an CWMP-only attribute (not an element) and is different

from the USP-only command element (A.2.8).

list

minItems

maxItems

nestedBrackets

size

If the parameter is list-valued, details of the list value. This allows

specification of the maximum and minimum number of items in the list, and

of nested list behavior, and also supports a size facet for the list (A.2.3.3).

Note that a list-valued parameter is always a string as far as the protocol is

concerned. For a list, the rest of the syntax specification refers to the

individual list items, not to the parameter value.

base64

boolean

dateTime

hexBinary

int

long

string

unsignedInt

unsignedLong

If the parameter is of a primitive data type, specifies a primitive data type

reference, e.g. <int>. If the parameter data type is derived from a primitive

data type, specifies an anonymous primitive data type definition (A.2.3.2),

e.g. <int><range maxInclusive=“255”/></int>. Each primitive data type

element supports only the facets (A.2.3.3) that are appropriate to that data

type.

dataType If the parameter is of a named data type, specifies a named data type

(A.2.3.1) reference, e.g. <dataType ref=“IPAddress”/>.

If the parameter data type is derived from a named data type, specifies an

anonymous named data type (A.2.3.2) definition, e.g. <dataType

base=“IPAddress”><size maxLength=“15”/></dataType>

A.2.8 Commands (USP Only)

Data Model Commands are defined using the command element, which can occur within component

84/109

and object elements. When defining a new Data Model Command, the following attributes and

elements are relevant (normative requirements are specified in the schema). This concept does not

apply to CWMP, which uses Objects and/or Parameters to simulate commands.

Table 18: XML Command Definition

Name Description

name The command name (Section 3.1).

async Whether this command is asynchronous or not. This defaults to false.

status The command’s {current, deprecated, obsoleted, deleted} status. This defaults to

current, and so is not likely to be specified for a new command.

description The command’s description (A.2.2).

input The command’s input arguments (can be omitted if there are none).

output The command’s output arguments (can be omitted if there are none).

The input / output elements define the command’s input / output arguments (respectively).

Table 19: XML Command Input / Output Arguments Definition

Name Description

component The arguments defined by components that are referenced (included) by the

command (A.2.5).

parameter The command’s parameter arguments (A.2.7).

object The command’s object arguments (A.2.10).

Command argument parameter / object elements are similar to the corresponding data model

parameter / object elements but support different attributes, e.g. they have no access or

numEntriesParameter attributes, and they have a Boolean mandatory attribute (to indicate a

mandatory argument).

When a command references a component, any attributes not supported in command arguments are

ignored. This allows a component that defines data model parameters / objects to be used for defining

command parameter / object arguments.

When a command argument is a table, its instance numbers MUST be 1, 2, 3… (assigned

sequentially without gaps).

A.2.9 Events (USP Only)

85/109

Data Model Events are defined using the event element, which can occur within component and

object elements. When defining a new Data Model Event, the following attributes and elements are

relevant (normative requirements are specified in the schema). This concept does not apply to

CWMP.

Name Description

name The event name (Section 3.1).

status The event’s {current, deprecated, obsoleted, deleted} status. This defaults to

current, and so is not likely to be specified for a new event.

description The event’s description (A.2.2).

component The arguments defined by components that are referenced (included) by the

event (A.2.5).

parameter The event’s parameter arguments (A.2.7).

object The event’s object arguments (A.2.10).

Event argument parameter / object elements are similar to the corresponding data model parameter /

object elements but support different attributes, e.g. they have no access or numEntriesParameter

attributes, and they have a Boolean mandatory attribute (to indicate a mandatory argument).

When an event references a component, any attributes not supported in event arguments are

ignored. This allows a component that defines data model parameters / objects to be used for defining

event parameter / object arguments.

When an event argument is a table, its instance numbers MUST be 1, 2, 3… (assigned sequentially

without gaps).

A.2.10 Objects

Objects are defined using the object element, which can occur within component and model

elements. When defining a new object, the following attributes and elements are relevant (normative

requirements are specified in the schema).

Table 20: XML Object Definition

Name Description

name The object name, specified as a partial path (Section 3.1).

86/109

access Whether object instances can be Added or Deleted (readWrite) or not (readOnly).

Adding or deleting instances is meaningful only for a Multi-Instance Object

(table).

minEntries The minimum number of instances of this object (always less than or equal to

maxEntries).

maxEntries The maximum number of instances of this object (can be “unbounded”).

minEntries and maxEntries allow the object to be placed into one of three

categories:

- minEntries=0, maxEntries=1: single-instance object which might not be

allowed to exist, e.g. because only one of it and another object can exist at the

same time. Note that this is not the same thing as an optional object (in a sense,

all objects are optional; requirements are specified via profiles). For an object

with minEntries=0, maxEntries=1, the description MUST explain why it might not

be allowed to exist, e.g. referencing the other objects that constrain it.

- minEntries=1, maxEntries=1: single-instance object that is always allowed to

exist.

- All other cases: Multi-Instance Object (table) (A.2.10.1).

mountType For USP only, denotes whether this object is a Mountable Object, a Mount Point,

or none. Possible values are:

- mountable: this object is a Mountable Object. Such an object appears only right

under the Root Object.

- mountPoint: this object is a Mount Point.

- none (default): this object is neither a Mountable Object nor a Mount Point.

status The object’s {current, deprecated, obsoleted, deleted} status. This defaults to

current, and so is not likely to be specified for a new object.

description The object’s description (A.2.2).

component The components that are referenced (included) by the object (A.2.5).

parameter The object’s parameter definitions (A.2.7).

command For USP only, the object’s command definitions (A.2.8).

event For USP only, the object’s event definitions (A.2.9).

Name Description

A.2.10.1 Tables

If an object is a table, several other attributes and elements are relevant (normative requirements are

specified in the schema).

87/109

Table 21: XML Table Definition

Name Description

name For a table, the last part of the name has to be “{i}.” (Section 3.1).

numEntriesParameter The name of the parameter (in the parent object) that contains the

number of entries in the table. Such a parameter is needed

whenever there is a variable number of entries, i.e. whenever

maxEntries is unbounded or is greater than minEntries.

enableParameter For CWMP only, the name of the parameter (in each table entry) that

enables and disables that table entry. Such a parameter is needed

whenever access is readWrite (so the Controller might be able to

create entries) and at least one uniqueKey element that defines a

functional key is present.

uniqueKey An element that specifies a unique key by referencing those

parameters that constitute the unique key (all of these parameters

are single-valued, i.e. not list-valued).

In CWMP only, for a non-functional key, or if the table has no

enableParameter, the uniqueness requirement always applies; for a

functional key, and if the table has an enableParameter, the

uniqueness requirement applies only to enabled table entries.

discriminatorParameter The name of the parameter (in the parent object) that selects which

of the available objects that are part of the same union to use. Such

a discrimination parameter is needed whenever there are multiple

alternative sub-objects, i.e. objects where minEntries=0 and

maxEntries=1.

Each unique key is either functional or non-functional:

A functional key references at least one parameter that is necessary for the correct operation of

the table, e.g., a DHCP option tag in a DHCP option table, or an external port number in a port

mapping table.

A non-functional key references only parameters that are not necessary for the correct operation

of the table, e.g., an Alias parameter or (sometimes) a Name parameter.

A unique key is assumed to be functional unless explicitly marked as non-functional by setting the

unique key’s functional attribute to false.

88/109

As can be seen from the description in Table 21, in CWMP, non-functional keys are always required to

be unique, regardless of whether the table has an enableParameter, or is enabled or disabled.

Therefore, at most one entry in a given parent object can exist with a given value for a non-functional

unique key. USP doesn’t require any different behavior for both functional and non-functional keys: all

keys are always required to be unique.

The uniqueness requirement means that the value of the unique key MUST be unique for all instances

of a given parent object regardless of how instances got created.

If a parameter (or group of parameters) is not defined as a unique key, an Agent MUST NOT expect

or require those parameters to contain a value that is unique within the table. Such parameters MAY

subsequently be defined as a vendor-specific data model composite unique key, but that composite

unique key definition MUST include at least one vendor-specific parameter.

A.2.11 Profiles

Profiles are defined using the profile element, which can occur within component and model

elements. When defining a new profile, the following attributes and elements are always relevant

(normative requirements are specified in the schema).

Table 22: XML Profile Definition

Name Description

name The profile name, including its version number (Section 2.3.3).

base The name of the previous version of the profile (for use when the profile version

is greater than 1).

extends A list of the names of the profiles that this profile extends.

minVersion A list of the model names that define the minimum versions for which this profile

can be defined. Note that it is only necessary to specify this if the profile is

defined within a component element.

description The profile’s description (A.2.2).

parameter The profile’s parameter requirements, which can include descriptions, references

to the parameters in question, and the parameter access requirement.

object The profile’s object requirements, which can include descriptions, references to

the objects in question, the object access requirements, and requirements for the

object’s parameters, commands and events, including requirements for

command and event arguments.

Note:
89/109

If a command or event specifies no argument requirements, this is the same as if all of its

mandatory arguments were listed.

If a command or event specifies argument requirements, it has to list (at least) all its mandatory

arguments.

A.2.12 Modifications

New data types, components, models and profiles can be created based on existing items. This does

not modify the existing item.

Parameters, commands, events, objects and profiles can be modified “in place”, i.e. without creating a

new item. This still uses the parameter, command, event, object and profile elements, and is indicated

by using the base, rather than the name, attribute. The base attribute specifies the name of the

existing item that is to be modified.

The syntax for modifying an item is the same as for creating an item, but there are rules. These rules

are not specified in the DM Schema.

A.2.12.1 Parameter Modifications

The following rules govern parameter modifications.

Table 23: XML Parameter Modification

Name Description

access Can be “promoted” from readOnly to readWrite or writeOnceReadOnly.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering

is: current, deprecated, obsoleted, deleted. For example, current can be

changed to deprecated, and obsoleted can be changed to deleted, but

deleted cannot be changed back to obsoleted. When promoting status, the

deprecation, obsoletion and deletion rules of Section 2.4 MUST be obeyed.

activeNotify Can be changed from forceEnabled to forceDefault. No other changes are

permitted.

forcedInform Cannot be changed.

description Can be prefixed, extended or replaced via use of the action attribute

(A.2.12.6). When changing the description, behavioral backwards

compatibility MUST be preserved.

90/109

syntax/hidden Cannot be changed.

syntax/list Can add or modify the list element in the following ways:

- Can convert a non-list string parameter to a list provided that an empty

string was already a valid value with the appropriate meaning.

- Can adjust limits on numbers of items, and on the list size, provided that

the new rules do not permit any values that were not valid for the previous

version of the parameter.

syntax/int etc.

syntax/dataType

Can make any change that follows the base type restriction rules of A.2.3.8,

e.g. can add enumerations.

syntax/default A default can be added if the parameter did not already have one.

Name Description

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

previous version of a parameter. Processing tools SHOULD be able to detect and warn when a

parameter is modified in a way that contravenes the above rules.

A.2.12.2 Command Modifications (USP Only)

The following rules govern command modifications.

Table 24: XML Command Modification

Name Description

async Can be changed.

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is:

current, deprecated, obsoleted, deleted. For example, current can be changed to

deprecated, and obsoleted can be changed to deleted, but deleted cannot be

changed back to obsoleted. When promoting status, the deprecation, obsoletion

and deletion rules of Section 2.4 MUST be obeyed.

description Can be prefixed, extended or replaced via use of the action attribute (A.2.12.6).

When changing the description, behavioral backwards compatibility MUST be

preserved.

input Can modify input arguments according to the rules for modifying data model

parameters and objects. Can add new input arguments, either directly or by

referencing (including) new components.

91/109

output Can modify output arguments according to the rules for modifying data model

parameters and objects. Can add new output arguments, either directly or by

referencing (including) new components.

Name Description

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

previous version of a parameter. Processing tools SHOULD be able to detect and warn when a

parameter is modified in a way that contravenes the above rules.

A.2.12.3 Event Modifications (USP Only)

The following rules govern command modifications.

Table 25: XML Event Modification

Name Description

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is:

current, deprecated, obsoleted, deleted. For example, current can be changed to

deprecated, and obsoleted can be changed to deleted, but deleted cannot be

changed back to obsoleted. When promoting status, the deprecation, obsoletion

and deletion rules of Section 2.4 MUST be obeyed.

description Can be prefixed, extended or replaced via use of the action attribute (A.2.12.6).

When changing the description, behavioral backwards compatibility MUST be

preserved.

component Can add new arguments by referencing (including) new components.

parameter Can modify parameter arguments according to the rules for modifying data model

parameters. Can add new parameter arguments.

object Can modify object arguments according to the rules for modifying data model

objects. Can add new object arguments.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

previous version of a parameter. Processing tools SHOULD be able to detect and warn when a

parameter is modified in a way that contravenes the above rules.

A.2.12.4 Object Modifications

The following rules govern object modifications.

92/109

Table 26: XML Object Modification

Name Description

access Can be “promoted” from readOnly to readWrite.

minEntries Cannot be changed.

maxEntries Cannot be changed.

numEntriesParameter Cannot be changed, unless was previously missing, in which case can

be added.

enableParameter For CWMP only, cannot be changed, unless was previously missing,

in which case can be added.

status Can be “promoted” to a “higher” value, where the lowest to highest

ordering is: current, deprecated, obsoleted, deleted. For example,

current can be changed to deprecated, and obsoleted can be changed

to deleted, but deleted cannot be changed back to obsoleted. When

promoting status, the deprecation, obsoletion and deletion rules of

Section 2.4 MUST be obeyed.

description Can be prefixed, extended or replaced via use of the action attribute

(A.2.12.6). When changing the description, behavioral backwards

compatibility MUST be preserved.

uniqueKey Cannot be changed, but new unique keys can be added.

component Can reference (include) new components.

parameter Can add new parameters.

command For USP only, can add new commands.

event For USP only, can add new events.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

previous version of an object. Processing tools SHOULD be able to detect and warn when an object is

modified in a way that contravenes the above rules.

A.2.12.5 Profile Modifications

The following rules govern profile modifications. They apply to the profile element, and to its nested

parameter, command, event and object elements.

93/109

Table 27: XML Profile Modification

Name Description

status Can be “promoted” to a “higher” value, where the lowest to highest ordering is:

current, deprecated, obsoleted, deleted. For example, current can be changed to

deprecated, and obsoleted can be changed to deleted, but deleted cannot be

changed back to obsoleted. When promoting status, the deprecation, obsoletion

and deletion rules of Section 2.4 MUST be obeyed.

description Can be prefixed, extended or replaced via use of the action attribute (A.2.12.6).

When changing the description, behavioral backwards compatibility MUST be

preserved.

Most of the above requirements are non-normative, because it has to be possible to correct errors in a

profile. Indeed, since profiles are immutable, the only valid reason for changing a profile is to correct

errors. Processing tools SHOULD be able to detect and warn when a profile is modified in a way that

contravenes the above rules.

A.2.12.6 Description Modifications

The following rules govern description modifications. They apply to all description elements.

Table 28: XML Description Modification

Name Description

action Determines how the description will be modified; allowed values are:

- create: create a new description (this is the default but is of course not permitted

when modifying a description).

- replace: replace the existing description with the new text.

- append: append the new text to the existing description.

- prefix: prefix the existing description with the new text.

In the case of prefix and append, processing tools SHOULD insert a line break between the existing

description and the new text.

A.3 DM Schema

94/109

The normative version of the DM Schema can be found at http://www.broadband-

forum.org/cwmp/cwmp-datamodel-1-6.xsd. Please be aware that a new version of the DM Schema

might be published at any time, in which case the version referenced in this document would become

out of date. Any conflict MUST be resolved in favor of the normative version on the web site.

95/109

http://www.broadband-forum.org/cwmp/cwmp-datamodel-1-6.xsd

Annex B: CWMP Device Type XML
Schema

B.1 Introduction

The CWMP Device Type XML Schema [4], or DT Schema, is used for describing a device’s supported

data model.

DT Schema instance documents can contain the following:

Imports (from DM Schema instance documents) of Root or Service Object definitions

Declarations of which features of imported Root or Service Objects are supported

DT Schema instance documents cannot contain definitions of Root or Service Objects. All such

definitions have to reside in DM Schema instance documents.

B.2 Normative Information

It is possible to create instance documents that conform to the DT Schema but nevertheless are not

valid device type specifications. This is because it is not possible to specify all the normative device

type specification requirements using the XML Schema language. Therefore, the schema contains

additional requirements written using the usual normative language. Instance documents that conform

to the DT Schema and meet these additional requirements are referred to as DT Instances.

The question of the location of the definitive normative information therefore arises. The answer is as

follows:

All the normative information in the main part of the document remains normative.

The DT Schema, and the additional requirements therein, are normative. Some of these

additional requirements are duplicated (for emphasis) in this Annex.

The DT Schema references additional material in this Annex. Such material is normative.

If the DT Schema conflicts with a normative requirement in the main part of the document, this is96/109

If the DT Schema conflicts with a normative requirement in the main part of the document, this is

an error in the DT Schema, and the requirement in the main part of the document takes

precedence.

B.2.1 Importing DM Instances

DM Instances are imported using the top-level import element, which differs from the DM Schema

import element in that only data types and models can be imported (components cannot be imported

because they are not used in DT Instances).

Note – the rules for importing DM Instances into DT Instances are consistent with those given in A.2.1

for importing DM Instances into other DM Instances. The only difference is an additional rule

governing the use, when available, of the DT Instance URL.

The DT Schema specifies that the DM Instance is located via the file attribute.

The rules governing the file attribute’s value and its use for locating the DM Instance are as follows:

It MUST be a URL adhering to RFC 3986 [9].

If the URL includes a scheme, it MUST be http, https or ftp.

If the URL includes an authority, it MUST NOT include credentials.

For standard BBF DM Instances, the rules that apply to the filename part (final path segment) of

the A.2.1.1 BBFURL MUST be applied to the filename part of this URL. This means that the

corrigendum number can be omitted in order to refer to the latest corrigendum.

If the URL is a relative reference, processing tools MUST apply their own logic, e.g. apply a

search path. If a DT Instance URL is available, the relative reference MUST be interpreted

relative to the DT Instance URL.

B.2.2 Features

The feature element provides a simple way for a DT Instance to indicate whether a given feature is

supported. The current set of standard features is as follows:

Feature Description

DNSClient Device contains a DNS client.

DNSServer Device contains a DNS server.

Firewall Device contains a firewall.

97/109

IPv6 Device supports IPv6.

NAT Device supports NAT.

Router Device is a router.

Feature Description

Vendor-specific features MAY be supported, and if so the feature name MUST begin with

X_<VENDOR>_, where <VENDOR> MUST be as defined in Section 3.3.

This example feature declaration illustrates the use of annotation:

 <feature name="DNSServer">

 <annotation>Supports a DNS Server and XYZ.</annotation>

 </feature>

B.2.2.1 DT Features Schema

In order to make it easy to add new features, standard feature names are defined in a separate DT

Features Schema that is imported by the DT Schema. The DT Features Schema is unversioned, so

the DT Schema need not be changed when new standard feature names are added. In order to

preserve backwards compatibility, standard feature names, once added, MUST NOT ever be deleted.

The normative version of the DT Features Schema can be found at http://www.broadband-

forum.org/cwmp/cwmp-devicetype-features.xsd. Please be aware that a new version of the DT

Features Schema might be published at any time, in which case the version referenced in this

document would become out of date. Any conflict MUST be resolved in favor of the normative version

on the web site.

B.3 DT Schema

The normative version of the DT Schema can be found at http://www.broadband-

forum.org/cwmp/cwmp-devicetype-1-3.xsd. Please be aware that a new version of the DT Schema

might be published at any time, in which case the version referenced in this document would become

out of date. Any conflict MUST be resolved in favor of the normative version on the web site.

98/109

http://www.broadband-forum.org/cwmp/cwmp-devicetype-features.xsd
http://www.broadband-forum.org/cwmp/cwmp-devicetype-1-3.xsd

Annex C: Requirements for BBF
Standard Data Models

C.1 Introduction

This Annex defines requirements that apply to all standard BBF DM Instances. These requirements

extend the normative requirements of the DM Schema (Annex A).

C.2 Character Encoding and Character Set

The file MUST use UTF-8 encoding, indicated by the following Initial line:

 <?xml version="1.0" encoding="UTF-8"?>

The file MUST use only a subset of the printable characters in the Basic Latin Unicode block, namely

characters whose decimal ASCII representation is 10 (#xA), 13 (#xD) or is in the (inclusive) range 32-

126.

Note – writing LF (LINE FEED) for #xA and CR (CARRIAGE RETURN) for #xD, the XML specification

[Section 2.11/8] states that XML processors have to behave as if all CR LF sequences, or any CR

characters not followed by LF, are translated to LF.

Note – TAB (#x9) is not permitted. This is because no standard indentation level is defined for TAB

characters, so the indentation is ambiguous when there is a mixture of SPACE (#x20) and TAB

characters.

Note – it is not permissible to include a non-printable ASCII character by using a character reference

such as “è”. Such a character reference will always be replaced with the referenced character

before being passed to the application, so use of the reference is no different from direct use of the

referenced character (in this case the letter “è”, an “e” with a grave accent).

C.3 XML Usage

99/109

C.3.1 Data Model Item Names

All data model item names, i.e. data type, component, data model, object, parameter and profile

names, MUST start with an upper-case letter (or an underscore for an internal data type, component,

model or profile) and MUST NOT contain hyphens or non-initial underscores.

C.3.2 DM and DMR Schema Versions

The file SHOULD use the most recent approved versions of the DM and DMR Schemas.

Note – the DMR Schema is a non-normative XML Schema that can be used to give hints to

processing tools that generate reports from DM Instances.

C.3.3 SchemaLocation Attribute

The top-level xsi:schemaLocation attribute defines the location of all of the referenced BBF-

published XML Schemas. All URLs MUST be absolute ones that reference the published XML

Schema on the BBF web site.

Example:

 xsi:schemaLocation="urn:broadband-forum-org:cwmp:datamodel-1-5

 http://www.broadband-forum.org/cwmp/cwmp-datamodel-

1-5.xsd

 urn:broadband-forum-org:cwmp:datamodel-report-0-1

 http://www.broadband-forum.org/cwmp/cwmp-datamodel-

report.xsd"

C.3.4 Spec Attribute

The top-level spec attribute (A.2.1.1) indicates the specification with which the file is associated. It

MUST be of the form “urn:broadband-forum-org:tr-nnn-i-a-c”, where nnn is the specification number

(including leading zeros), i is the issue number, a is the amendment number, and c is the corrigendum

number. The issue, amendment and corrigendum numbers do not include leading zeros. For example,

“urn:broadband-forum-org:tr-106-1-0-0” refers to TR-106 (Issue 1 Amendment 0), and

“urn:broadband-forum-org:tr-106-1-2-1” refers to TR-106 (Issue 1) Amendment 2 Corrigendum 1.

Example:

100/109

https://cwmp-data-models.broadband-forum.org

 spec="urn:broadband-forum-org:tr-181-2-5-0"

C.3.5 File Attribute

The top-level file attribute (A.2.1.1) indicates the file name. It MUST be of the form “tr-nnn-i-a-c.xml”

or “tr-nnn-i-a-c-label.xml”, where nnn, i, a and c are the same as in the spec attribute. The label, which

MUST NOT begin with a digit, is only needed if more than one DM Instance is associated with a given

specification.

Example:

 file="tr-181-2-5-0.xml"

C.3.6 Import Element

The import element’s spec and file attributes MUST NOT specify the corrigendum number. This

means that an import element always references the latest corrigendum (A.2.1.1).

C.3.7 Bibliography Reference Element

Bibliographic references in the tr-069-biblio.xml file MUST be grouped by
organization and MUST be sorted “naturally” (more-or-less alphabetically, but
avoiding surprises, e.g., “TR-181a9” would be listed before “TR-181a10”). The main
rule is “follow existing practice”.

The bibliography reference id attribute is intended to uniquely identify this reference across all

instance documents. Therefore, this attribute MUST obey the following rules:

For a BBF Technical Report, it MUST be of the form “TR-nnnixaycz”, where TR is the literal “TR”, nnn

is the Technical Report number (including leading zeros), i, a and c are literal letters, and x, y, and z

are the issue, amendment and corrigendum numbers (respectively). Omitted issue, amendment or

corrigendum numbers refer to the most recent issue, amendment or corrigendum, so “TR-nnn” is the

most recent corrigendum of the most recent amendment of the most recent issue, “TR-nnni2” is the

most recent corrigendum of the most recent amendment of issue 2, etc.. Literal i1, a0 and/or c0 can

be used, if needed, to refer specifically to the initial version.

101/109

When using the {{bibref}} template to refer to bibliographic references, the plain
“TR-nnn” form SHOULD be used by default; more specific forms can be used where
the reference is to a specific version.

For an IETF RFC, it MUST be of the form “RFCnnn”, where RFC is the literal “RFC” and nnn is the

RFC number (no leading zeros).

For an IEEE specification, it SHOULD be of the form “nnn.ml-dddd”, where nnn.m is the IEEE group, l

is the spec letter(s), and dddd is the publication year. For example, “802.1D-2004”.

For an ETSI specification (which includes DVB specifications), it SHOULD be of the form

“TTnnnnnnva.b.c” where TT is the specification type, usually “TS” (Technical Specification), nnnnnn is

the specification number, and a.b.c is the version number.

For specifications issued by other standards organizations, or by vendors, it SHOULD be of a

standard form if one is defined.

Formally, bibliographic reference IDs in instance documents that are published by the BBF and the

other organizations mentioned above are defined as follows:

 ReferenceID = BBFID

 | RFCID

 | IEEEID

 | ETSIID

 | OtherID

 BBFID = "TR-" BBFNumber BBFIssue BBFAmendment BBFCorrigendum

 BBFNumber = DIGIT{3,} // including leading zeros, e.g. 069

 BBFIssue = "i" <number greater than one>

 | "" // empty means the most recent Issue

 BBFAmendment = "a" <number greater than zero>

 | "" // empty means the most recent Amendment

 BBFCorrigendum = "c" <number greater than zero>

 | "" // empty means the most recent Corrigendum

 RFCID = "RFC" RFCNumber

102/109

 RFCNumber = NONZERODIGIT [DIGIT]*

 // no leading zeros, e.g. 123

 IEEEID = IEEEGroup IEEESpec IEEEDate

 | <for other IEEE specifications, of a standard form if one is

defined>

 IEEEGroup = <group number> "." <group sub-number>

 // e.g. 802.1

 IEEESpec = <spec letter(s)> // e.g. D

 IEEEDate = "-" <publication year>

 // e.g. -2004

 | "" // can be empty

 ETSIID = ETSISpecType ETSINumber ETSIVersion

 | <for other ETSI specifications, of a standard form if one is

defined>

 ETSISpecType = "TR" // Technical Report

 | "TS" // Technical Specification

 | "ES" // ETSI Specification

 | "EN" // European Standard

 ETSINumber = [DIGIT]{6} // e.g. 102034

 ETSIVersion = "v" <version number as specified by ETSI>

 | "" // can be empty

 OtherURI = <of a standard form if one is defined>

C.3.8 General Formatting

The file MUST use 2 SPACE characters for indentation.

The file MUST be consistently indented, including within XML comments.

XML comment lines SHOULD NOT be longer than 79 characters. This avoids line wrap in most text

103/109

editors.

All description elements MUST be formatted as follows:

Single-line descriptions MAY be indented and formatted on separate lines (as for multi-line

descriptions) or inline, as in:

<description>One line description.</description>

Multi-line descriptions MUST be indented relative to the description element and formatted on

separate lines, as in:

 <description>

 First line of multi-line description.

 Second line of multi-line description.

 </description>

C.4 Initial XML Comment Formatting

The Initial Line (the <?xml> line) MUST be immediately followed by an Initial XML comment that

consists of the following (separated by blank lines):

One-line summary.

Notice section.

Summary section.

Issue History section.

The three sections MUST be introduced by a line that consists of two SPACE characters followed by

the section name and a colon.

104/109

 <?xml version="1.0" encoding="UTF-8"?>

 <!--

 ...One-line summary...

 Notice:

 ...standard notice...

 Summary:

 ...multi-line summary...

 Issue History:

 ...summary of changes in each approved version...

 -->

C.4.1 One-line Summary

The One-line summary MUST contain a brief description of the reason for the creation of this version.

It SHOULD NOT be terminated with a period (it is not a sentence).

Example:

 <?xml version="1.0" encoding="UTF-8"?>

 <!-- Added support for IPsec -->

C.4.2 Summary Section

The Summary section MAY extend the information in the One-line summary.

105/109

Appendix I: HTML Data Model Reports

I.1 Introduction

TR-106 Amendment 2 published the first version of the DM Schema. Since then the normative

definitions of all CWMP data models have been published as DM Instances (XML documents that

conform to the DM Schema). Since these XML data models might not be easily read by a human,

corresponding non-normative HTML data model reports have also been published.

This appendix briefly discusses these HTML reports.

I.2 Report Types

There are two types of HTML reports published for a given version of a data model:

a full report, covering the given version and all preceding versions of the data model

a partial report, covering only the given version of the data model (i.e. excluding content specific

to earlier versions of the data model); i.e. last only changes

For example, TR-181 Issue 2 Amendment 11 defined the Device:2.11 data model revision, declared

in tr-181-2-11-0.xml. The full report is in tr-181-2-11-0.html, and includes the aggregate data model

definitions from Device:2.11 and earlier (back to Device:2.0 inclusive). The partial report is in tr-181-2-

11-0-diffs.html, and only includes the data model definitions added or changed by TR-181 Issue 2

Amendment 11.

I.3 Report Layout

Each HTML data model report contains the following sections:

Notice The legal notice, lifted from the top of the associated XML data model file.

Summary Describes the reason for this data model version. This is lifted from the

associated XML data model file’s document description.

106/109

Table of

Contents

Hyperlinks to the various sections within the report, as well as links to each

Object and Profile definition within the report.

Data Types Named data type definitions (i.e. not built-in types) that are used to define

Parameters within the report. Each data type definition consists of name, type,

and description.

References Hyperlinks to external bibliography references cited by Object, Parameter, and

Profile descriptions within the report.

Data model

definition

Object and Parameter definitions. Which Object and Parameter definitions are

included depends on whether it is a full or partial (last only) report.

Inform and

Notification

Requirements

Lists those Parameters within the report that are: forced inform parameters,

forced active notification parameters, and parameters for which active

notification can be denied.

Profile

Definitions

Profile definitions, showing Object and Parameter requirements. Which

Profiles are included depends on whether it is a full or partial (last only) report.

I.4 Data Model Definition

Parameters make use of a limited subset of the default SOAP data types [13]. The notation used to

represent these types within the report is listed in the following table.

Type Description

object A container for parameters and/or other objects. The full Path Name of a

parameter is given by the parameter name appended to the full Path Name of

the object it is contained within.

string For strings, a minimum and maximum allowed length can be indicated using

the form string(Min:Max), where Min and Max are the minimum and maximum

string length in characters. If either Min or Max are missing, this indicates no

limit, and if Min is missing the colon can also be omitted, as in string(Max).

Multiple comma-separated ranges can be specified, in which case the string

length will be in one of the ranges.

107/109

int Integer in the range -2147483648 to +2147483647, inclusive. For some int

types, a value range is given using the form int(Min:Max) or int(Min:Max step

Step) where the Min and Max values are inclusive. If either Min or Max are

missing, this indicates no limit. If Step is missing, this indicates a step of 1.

Multiple comma-separated ranges can be specified, in which case the value

will be in one of the ranges.

long Long integer in the range -9223372036854775808 to 9223372036854775807,

inclusive. For some long types, a value range is given using the form

long(Min:Max) or long(Min:Max step Step), where the Min and Max values are

inclusive. If either Min or Max are missing, this indicates no limit. If Step is

missing, this indicates a step of 1. Multiple comma-separated ranges can be

specified, in which case the value will be in one of the ranges.

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive. For some

unsignedInt types, a value range is given using the form unsignedInt(Min:Max)

or unsigned(Min:Max step Step), where the Min and Max values are inclusive.

If either Min or Max are missing, this indicates no limit. If Step is missing, this

indicates a step of 1. Multiple comma-separated ranges can be specified, in

which case the value will be in one of the ranges.

unsignedLong Unsigned long integer in the range 0 to 18446744073709551615, inclusive.

For some unsignedLong types, a value range is given using the form

unsignedLong(Min:Max) or unsignedLong(Min:Max step Step), where the Min

and Max values are inclusive. If either Min or Max are missing, this indicates

no limit. If Step is missing, this indicates a step of 1. Multiple comma-

separated ranges can be specified, in which case the value will be in one of

the ranges.

boolean Boolean, where the allowed values are “0” or “1” (or equivalently, “true” or

“false”).

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime

type [13].

base64 Base64 encoded binary (no line-length limitation). A minimum and maximum

allowed length can be indicated using the form base64(Min:Max), where Min

and Max are the minimum and maximum length in characters before Base64

encoding. If either Min or Max are missing, this indicates no limit, and if Min is

missing the colon can also be omitted, as in base64(Max). Multiple comma-

separate ranges can be specified, in which case the length MUST be in one of

the ranges.

Type Description

108/109

hexBinary Hex encoded binary. A minimum and maximum allowed length can be

indicated using the form hexBinary(Min:Max), where Min and Max are the

minimum and maximum length in characters before Hex Binary encoding. If

either Min or Max are missing, this indicates no limit, and if Min is missing the

colon can also be omitted, as in hexBinary(Max). Multiple comma-separated

ranges can be specified, in which case the length MUST be in one of the

ranges.

Type Description

Note: A Parameter that is defined to be one of the named data types, is reported as such at the

beginning of the Parameter’s description via a reference back to the associated data type definition

(e.g. [MacAddress]). However, such parameters still indicate their SOAP data type (as discussed in

the table above).

End of Broadband Forum Technical Report TR-106

109/109

	TR-106 – Data Model Template for CWMP Endpoints and USP Agents
	List of Tables
	List of Figures
	Notice
	Intellectual Property
	Terms of Use
	Issue History
	Editors
	Broadband User Services Work Area Director(s)

	Executive Summary
	1 Introduction
	1.1 Terminology
	1.2 Document Conventions

	2 Architecture
	2.1 Data Hierarchy
	2.1.1 Data Hierarchy Requirements
	2.1.2 The Supported Data Model and the Instantiated Data Model

	2.2 Object Versioning
	2.2.1 Requirements for Compatible Versions
	2.2.2 Version Notation

	2.3 Profiles
	2.3.1 Scope of Profiles
	2.3.2 Multiple Profile Support
	2.3.3 Profile Versions
	2.3.4 Baseline Profiles
	2.3.5 Types of Requirements in a Profile

	2.4 DEPRECATED and OBSOLETED Items
	2.4.1 Requirements for DEPRECATED Items
	2.4.2 Requirements for OBSOLETED Items

	3 Object Definitions
	3.1 General Notation
	3.2 Data Types and Representation
	3.2.1 Date and Time Rules
	3.2.2 Comma-separated Lists
	3.2.3 Parameters that Reference Parameters or Objects
	3.2.4 Units Conventions
	3.2.5 Default Maximum String Length

	3.3 Vendor-Specific Elements

	4 Normative References
	Annex A: CWMP Data Model Definition XML Schema
	A.1 Introduction
	A.1.1 Character Encoding and Character Set

	A.2 Normative Information
	A.2.1 Importing DM Instances
	A.2.1.1 URI Conventions

	A.2.2 Descriptions
	A.2.2.1 Character Set
	A.2.2.2 Pre-processing
	A.2.2.3 Markup
	A.2.2.4 Templates
	A.2.2.5 HTML Example

	A.2.3 Data Types
	A.2.3.1 Named Data Types
	A.2.3.2 Anonymous Data Types
	A.2.3.3 Data Type Facets
	A.2.3.4 Reference Path Names
	A.2.3.5 Null Values and References
	A.2.3.6 Reference Types
	A.2.3.7 Reference Facets
	A.2.3.8 Base Type Restriction

	A.2.4 Glossary, Abbreviations, Bibliography and Templates
	A.2.4.1 Glossary
	A.2.4.2 Abbreviations
	A.2.4.3 Bibliography
	A.2.4.4 Templates

	A.2.5 Components
	A.2.6 Root and Service Objects
	A.2.7 Parameters
	A.2.7.1 Parameter Syntax

	A.2.8 Commands (USP Only)
	A.2.9 Events (USP Only)
	A.2.10 Objects
	A.2.10.1 Tables

	A.2.11 Profiles
	A.2.12 Modifications
	A.2.12.1 Parameter Modifications
	A.2.12.2 Command Modifications (USP Only)
	A.2.12.3 Event Modifications (USP Only)
	A.2.12.4 Object Modifications
	A.2.12.5 Profile Modifications
	A.2.12.6 Description Modifications

	A.3 DM Schema

	Annex B: CWMP Device Type XML Schema
	B.1 Introduction
	B.2 Normative Information
	B.2.1 Importing DM Instances
	B.2.2 Features
	B.2.2.1 DT Features Schema

	B.3 DT Schema

	Annex C: Requirements for BBF Standard Data Models
	C.1 Introduction
	C.2 Character Encoding and Character Set
	C.3 XML Usage
	C.3.1 Data Model Item Names
	C.3.2 DM and DMR Schema Versions
	C.3.3 SchemaLocation Attribute
	C.3.4 Spec Attribute
	C.3.5 File Attribute
	C.3.6 Import Element
	C.3.7 Bibliography Reference Element
	C.3.8 General Formatting

	C.4 Initial XML Comment Formatting
	C.4.1 One-line Summary
	C.4.2 Summary Section

	Appendix I: HTML Data Model Reports
	I.1 Introduction
	I.2 Report Types
	I.3 Report Layout
	I.4 Data Model Definition

