
Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 1 of 37

TECHNICAL REPORT

DSL Forum
TR-106 Amendment 1

Data Model Template
for TR-069-Enabled Devices

November 2006

Produced by:
DSLHome-Technical Working Group

Editors:

Jeff Bernstein, 2Wire Mike Digdon, SupportSoft
Tim Spets, Westell Heather Kirksey, Motive

Christele Bouchat, Alcatel William Lupton, 2Wire
John Blackford, 2Wire Anton Okmianski, Cisco

Working Group Chair:

Greg Bathrick, PMC-Sierra
Heather Kirksey, Motive

Abstract:
This document specifies a generic data model applicable to all TR-069-enabled devices.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 2 of 37

Notice:
The DSL Forum is a non-profit corporation organized to create guidelines for DSL network system
development and deployment. This Technical Report has been approved by members of the Forum. This
document is not binding on the DSL Forum, any of its members, or any developer or service provider. The
document is subject to change, but only with approval of members of the Forum.

©2005, 2006 Digital Subscriber Line Forum. All Rights Reserved.

DSL Forum technical reports may be copied, downloaded, stored on a server or otherwise re-distributed in
their entirety only. The text of this notice must be included in all copies.

Notwithstanding anything to the contrary, the DSL Forum makes no representation or warranty, expressed
or implied, concerning this publication, its contents or the completeness, accuracy, or applicability of any
information contained in this publication. No liability of any kind shall be assumed by the DSL Forum as a
result of reliance upon any information contained in this publication. The DSL Forum does not assume any
responsibility to update or correct any information in this publication.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 3 of 37

Version History
Version
Number

Version Date Version Editor Changes

Issue 1 September 2005 Jeff Bernstein, 2Wire
Christele Bouchat, Alcatel
Tim Spets, Westell

Issue 1

Issue 1
Amendment 1

November 2006 Jeff Bernstein, 2Wire
John Blackford, 2Wire
Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire
Anton Okmianski, Cisco

Clarification of original document

Contents
1 Introduction ... 4

1.1 Terminology... 5
1.2 Document Conventions ... 5

2 Architecture... 5
2.1 Data Hierarchy .. 5

2.1.1 Data Hierarchy Requirements... 6
2.1.2 Data Hierarchy Examples ... 7

2.2 Object Versioning .. 9
2.2.1 Requirements for Compatible Versions... 9
2.2.2 Version Notation ..10

2.3 Profiles ...10
2.3.1 Scope of Profiles..10
2.3.2 Multiple Profile Support ..11
2.3.3 Profile Versions..11
2.3.4 Baseline Profiles ..11
2.3.5 Types of Requirements in a Profile ..11

2.4 DEPRECATED and OBSOLETED Items ...12
2.4.1 Requirements for DEPRECATED Items ..12
2.4.2 Requirements for OBSOLETED Items...13

3 Object Definitions...13
3.1 General Notation ..13
3.2 Data Types...14
3.3 Vendor-Specific Parameters ..15
3.4 Common Object Definitions..16
3.5 Inform Requirements..29
3.6 Notification Requirements ..30
3.7 DeviceSummary Definition ...31

3.7.1 DeviceSummary Examples ..32
4 Profile Definitions ...33

4.1 Notation..33
4.2 Baseline Profile ..33
4.3 GatewayInfo Profile ..34
4.4 Time Profile ..34
4.5 LAN Profile ...34
4.6 IPPing Profile..35
4.7 TraceRoute Profile ...35
4.8 UDPConnReq Profile ...35

Normative References ...37

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 4 of 37

1 Introduction
This document specifies a baseline object structure and set of TR-069-accessible parameters to be available
on any TR-069-enabled device [2]. TR-069 defines the generic requirements of the management protocol
methods which can be applied to any TR-069 CPE. It is intended to support a variety of different
functionalities to manage a collection of CPE, including the following primary capabilities:

• Auto-configuration and dynamic service provisioning

• Software/firmware image management

• Status and performance monitoring

• Diagnostics

If TR-069 defines the generic methods for any device, other documents (such as this one) specify the
managed objects, or data models, on which the generic methods act to configure, diagnose, and monitor the
state of specific devices and services.

The following figure places TR-069 in the end-to-end management architecture:

Figure 1 – Positioning in the End-to-End Architecture
OSS/BSS

Call
Center

Policy

Auto-Configuration
Server (ACS)

Managed Internet
Gateway Device

Managed LAN
Device

Managed LAN
Device

Managed LAN
Device

Scope of CPE WAN Management
Protocol (CWMP):

ACS Southbound Interface

ACS Northbound Interface

OSS/BSS

Call
Center

Policy

Auto-Configuration
Server (ACS)

Managed Internet
Gateway Device

Managed LAN
Device

Managed LAN
Device

Managed LAN
Device

Scope of CPE WAN Management
Protocol (CWMP):

ACS Southbound Interface

ACS Northbound Interface

The ACS is a server that resides in the network and manages devices in the subscriber premises. It uses the
methods, or RPCs, defined to TR-069 to get and set the state of the device, initiate diagnostic tests,
download and upload files, and manage events. Some portions of this state are common across managed
devices and some are relevant only to certain devices types or services.

For a particular type of device, it is expected that the baseline defined in this document would be
augmented with additional objects and parameters specific to the device type. The data-model used in any
TR-069-capable device must follow the guidelines described in this document. These guidelines include
the following aspects:

• Structural requirements for the data hierarchy

• Requirements for versioning of data models

• Requirements for defining profiles

• A set of common data objects

• A baseline profile for any device supporting these common data objects

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 5 of 37

1.1 Terminology
The following terminology is used throughout the series of documents defining the CPE WAN
Management Protocol.

ACS Auto-Configuration Server. This is a component in the broadband network responsible
for auto-configuration of the CPE for advanced services.

CPE Customer Premises Equipment.

Common
Object

An object defined in this specification that may be contained either directly within the
“Device” Root Object or within a Service Object contained within the “Services” object.

CWMP CPE WAN Management Protocol. Defined in [2], CWMP is a communication protocol
between an ACS and CPE that defines a mechanism for secure auto-configuration of a
CPE and other CPe management functions in a common framework.

Data Model A hierarchical set of Parameters that define the managed objects accessible via TR-069
for a particular device or service.

Device Used here as a synonym for CPE.

Event An indication that something of interest has happened that requires the CPE to notify the
ACS.

Internet
Gateway
Device

A CPE device that is either a B-NT (broadband network termination) or a broadband
router.

Object A named collection of Parameters and/or other Objects.

Parameter A name-value pair representing a manageable CPE parameter made accessible to an ACS
for reading and/or writing.

RPC Remote Procedure Call.

Profile A named collection of requirements relating to a given object.

Root Object The top-level object of a device’s data model that contains all of the manageable objects.
The name of the Root Object is either “Device” or “InternetGatewayDevice”—the
former is used for all types of devices except an Internet Gateway Device.

Service
Object

The top-most object associated with a specific service or application within which all
objects and parameters associated with the service are contained.

1.2 Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted
as described in [1].

2 Architecture

2.1 Data Hierarchy
The data-model for a TR-069-capable device will follow a common set of structural requirements. The
detailed structure depends on the nature of the device.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 6 of 37

A device will always have a single Root Object, which will be called either “Device” or “InternetGateway-
Device”. The latter is exclusively to accommodate the existing TR-098 specification and is only to be used
if the device is an Internet Gateway Device.

In most cases, the Root Object contains two types of sub-elements: the Common Objects defined in this
specification (applicable only to the “Device” Root Object), and a single “Services” object that contains all
Service Objects associated with specific services or applications.

To accommodate the existing TR-098 specification, if the device is an Internet Gateway Device, the Root
Object will also contain the application-specific objects associated with an Internet Gateway Device. In
this case, the InternetGatewayDevice object plays the role of both a Root Object and a Service Object.

A single device might include more than one Service Object. For example, a device that serves both as a
VoIP endpoint and a game device, might include both VoIP-specific and game-specific Service Objects.

A single device might also include more than one instance of the same type of Service Object. An example
of when this might be appropriate is a TR-069 capable device that proxies the management functions for
one or more other devices that are not TR-069 capable. In this case, the ACS would communicate directly
only with the TR-069 capable device, which would incorporate the data-models for all devices for which it
is serving as a management proxy. For example, a video device serving as a management proxy for three
VoIP phones would contain in its data model a video-specific Service Object plus three instances of a
VoIP-specific Service Object. Note that whether a device is serving as a management proxy for another
device or whether it has that functionality embedded in it is generally opaque to the ACS.

2.1.1 Data Hierarchy Requirements
The data model for a TR-069-capable device (other than an Internet Gateway Device) MUST adhere to the
following structural requirements:

1) The data model MUST contain exactly one Root Object, called “Device”.

2) The Root Object MUST contain a “DeviceSummary” parameter as specified in section 3.7.

3) The Root Object MAY contain any of the Common Objects defined in section 3.4.

4) The Root Object MUST contain exactly one “Services” object.

5) The “Services” object MUST contain all of the Service Objects supported by the device. Each Service
Object contains all of the objects and parameters for a particular service or application.

6) The “Services” object MAY contain more than one Service Object, each corresponding to a distinct
service or application type.

7) The “Services” object MAY contain more than one instance of a Service Object of the same type.

8) Each Service Object instance MUST be appended with an instance number (assigned by the CPE) to
allow for the possibility of multiple instances of each. For example, if the device supports the Service
Object ABCService, the first instance of this Service Object might be “ABCService.1”.

9) For each supported type of Service Object, a corresponding parameter in the “Services” object MUST
indicate the number of instances of that Service Object type. If a particular Service Object type is
supported by the device but there are currently no instances present, this parameter MUST still be
present with a value of zero. The name of this parameter MUST be the name of the Service Object
concatenated with “NumberOfEntries”. For example, for a device that contains instances of
ABCService, there MUST be a corresponding parameter in the “Services” object called
“ABCServiceNumberOfEntries”.

10) Each Service Object MAY contain secondary copies of some of the Common Objects defined in this
specification. The specific set of Common Objects that might be contained within a Service Object is
specified in section 3.4.

An Internet Gateway Device MUST adhere to the above requirements with the following exceptions:

1) The data model MUST contain exactly one Root Object, called “InternetGatewayDevice”.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 7 of 37

2) The Root Object MAY contain any of the objects specific to an Internet Gateway Device as defined in
[3].

3) The “InternetGatewayDevice” Root Object MUST NOT directly contain any of the Common Objects
defined in this specification. While [3] defines objects very similar to some of the Common Objects
defined here, they are not identical and MUST NOT be considered the same as the Common Objects.
(Service Objects within the “Services” object MAY contain Common Objects with the limitations
specified in section 3.4.)

4) The “Services” object MAY be absent if the device supports no Service Objects other than
InternetGatewayDevice.

5) The “DeviceSummary” parameter MAY be absent only in an Internet Gateway Device that supports
the InternetGatewayDevice version 1.0 data-model, as defined in section 2.4.2 of [3], and no other
Service Objects.1

Formally, the top level of the data hierarchy is defined as follows:

Element = Root
 | Root ".DeviceSummary"
 | Root ".Services." ServiceObject "." Instance
 | Root ".Services." ServiceObject "NumberOfEntries"
 | Root ".Services." ServiceObject "." Instance "." SecondaryCommonObject
 | DeviceRoot "." CommonObject
 | GatewayRoot "." GatewaySpecificObject ; As defined in [3]

Root = DeviceRoot
 | GatewayRoot

DeviceRoot = "Device"

GatewayRoot = "InternetGatewayDevice"

CommonObject = "DeviceInfo"
 | "Config"
 | "UserInterface"
 | "ManagementServer"
 | "GatewayInfo"
 | "Time"
 | "LAN"

SecondaryCommonObject = "DeviceInfo"
 | "Config"
 | "UserInterface"
 | "Time"
 | "LAN"

Instance = NONZERODIGIT [DIGIT]*

2.1.2 Data Hierarchy Examples
Below are some examples of data hierarchies for various types of devices. (Objects are shown in bold text,
parameters are shown in plain text.)

Simple device supporting the ABCService Service Object:

Device
DeviceSummary
DeviceInfo
ManagementServer
Services

1 The implication of this requirement is that if an Internet Gateway Device supports one or more Service

Objects (for example, the VoiceService object defined in TR-104), the Internet Gateway Device is
required to support version 1.1 or greater of the InternetGatewayDevice root object as defined in TR-098.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 8 of 37

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects

Device supporting both ABCService and XYZService Service Objects:

Device
DeviceSummary
DeviceInfo
ManagementServer
Time
UserInterface
LAN
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1

XYZServiceSpecificObjects

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:

InternetGatewayDevice
DeviceSummary
DeviceInfo
ManagementServer
Time
UserInterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 1
XYZService.1

XYZServiceSpecificObjects

Device supporting the ABCService Service Object and proxying for two devices supporting the
functionality of the XYZService Service Object:

Device
DeviceSummary
DeviceInfo
ManagementServer
Config
GatewayInfo
Time
UserInterface
LAN
Services

ABCServiceNumberOfEntries = 1
ABCService.1

ABCServiceSpecificObjects
XYZServiceNumberOfEntries = 2
XYZService.1

DeviceInfo
XYZServiceSpecificObjects

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 9 of 37

XYZService.2
DeviceInfo
XYZServiceSpecificObjects

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality
of the ABCService Service Object:

InternetGatewayDevice
DeviceSummary
DeviceInfo
ManagementServer
Time
UserInterface
Layer3Forwarding
LANDeviceNumberOfEntries = 1
LANDevice.1
WANDeviceNumberOfEntries = 1
WANDevice.1
Services

ABCServiceNumberOfEntries = 3
ABCService.1

DeviceInfo
ABCServiceSpecificObjects

ABCService.2
DeviceInfo
ABCServiceSpecificObjects

ABCService.3
DeviceInfo
ABCServiceSpecificObjects

2.2 Object Versioning
To allow the definition of a Service Object or Root Object to change over time, the definition of a Service
Object or Root Object MUST have an explicitly specified version.

Version numbering of Service Objects and Root Objects is defined to use a major/minor version numbering
convention. The object version is defined as a pair of integers, where one integer represents the major
version, and the second integer represents the minor version. The version MUST be written with the two
integers separated by a dot (Major.Minor).

The first version of a given object SHOULD be defined as version “1.0”.

For each subsequent version of the object, if the later version is compatible with the previous version, then
the major version SHOULD remain unchanged, and the minor version SHOULD be incremented by one.
For example, the next compatible version after “2.17” would be “2.18”. The requirements for a version to
be considered compatible with an earlier version are described in section 2.2.1.

For each subsequent version of the object, if the later version is not compatible with the previous version,
then the major version MUST increment by one, and the minor version MAY reset back to zero. For
example, the next incompatible version after “2.17” might be “3.0”.

2.2.1 Requirements for Compatible Versions
For one version of an object to be considered compatible with another version, the later version MUST be a
strict superset of the earlier version. Using major/minor versioning, this requirement applies only between
minor versions that share the same major version.

More specifically, this requires the following of the later version with respect to all earlier versions to
which it is to be compatible:

• The later version MAY add objects and parameters not previously in any earlier version, but MUST
NOT remove objects or parameters already defined in earlier versions.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 10 of 37

• The later version MUST NOT modify the definition of any parameter or object already defined in an
earlier version (unless the original definition was clearly in error and has to be modified as an erratum
or clarified through a corrigendum process).

• The later version MUST NOT require any of the objects or parameters that have been added since the
earliest compatible version to be explicitly operated upon by the ACS to ensure proper operation of the
device (except those functions specifically associated with functionality added in later versions). That
is, the later version will accommodate an ACS that knows nothing of elements added in later versions.

The goal of the above definition of compatibility is intended to ensure bi-directional compatibility between
an ACS and CPE. Specifically that:

• If an ACS supports only an earlier version of an object as compared to the version supported by the
CPE, the ACS can successfully manage that object in the CPE as if it were the earlier version.

• If a CPE supports only an earlier version of an object as compared to the version supported by an ACS,
the ACS can successfully manage that object in the CPE as if it were the later version (without support
for new components defined only in later versions).

2.2.2 Version Notation
For objects, the following notation is defined to identify specific versions:

Notation Description Example
ObjectName:Major.Minor Refers to a specific version of the object. Device:1.0

ObjectName:Major Refers to any minor version of the object with the specified major
version.

Device:1

ObjectName Refers to any version of the object. Device

Note that the version notation defined here is only to be used for purposes of documentation and in the
content of the DeviceSummary parameter defined in section 3.7. The actual names of objects and
parameters in the data model MUST NOT include version numbers.

2.3 Profiles
To limit the variability that an ACS needs to accommodate among various devices that it might manage, it
is useful to define “profiles” that express specific sets of requirements, support for which can be explicitly
indicated by a device.

A profile is a named collection of requirements associated with a given object. A device can indicate
support for one or more profiles. A device supporting a profile means that the device supports all of the
requirements defined by that profile. When a device supports all requirements defined by a profile, the
device MUST indicate support for that profile. The use of profiles allows the ACS a shorthand means of
discovering support for entire collections of capabilities in a device.

The following sections define the conventions to be used when defining profiles associated with TR-069
data models.

2.3.1 Scope of Profiles
A given profile is defined only in the context of a specific Service Object or Root Object with a specific
major version. For each profile definition, the specific object name and major version to which the profile
is to apply MUST be explicitly identified.

A profile’s name MUST be unique among profiles defined for the same object and major version, but a
name MAY be reused to define a different profile for a distinct combination of object name and major
version. For example, if we define profile “A” associated with object “X:2” (major version 2 of object X),
the same name “A” might be used to define a different profile for object “Y:1” or for object “X:3”.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 11 of 37

A given profile is defined in association with a minimum minor version of a given object. The minimum
required version of an object is the minimum version that includes all of the required elements defined by
the profile. For each profile definition, the specific minimum version MUST be explicitly identified.

2.3.2 Multiple Profile Support
For a given type of Service Object, multiple profiles MAY be defined. Profiles MAY be defined that have
either independent or overlapping requirements.

To maximize interoperability, a device MUST indicate all profiles that it supports. That is, it MUST
indicate all profiles whose definition is a subset of the support provided by that device. Doing so
maximizes the likelihood that an ACS will be aware of the definition of the indicated profiles. For
example, if profile “A” is a subset of profile “B”, and a device supports both, by indicating support for both
“A” and “B” an ACS that is unaware of profile “B” will at least recognize the device’s support for profile
“A”.

2.3.3 Profile Versions
To allow the definition of a profile to change over time, the definition of every profile MUST have an
associated version number.

Version numbering of profiles is defined to use a minor-only version numbering convention. That is, for a
given profile name, each successive version MUST be compatible with all earlier versions. Any
incompatible change to a profile MUST use a different profile name.

For one version of a profile to be considered compatible with another version, the later version MUST be a
strict superset of the earlier version. This requires the following of the later version with respect to all
earlier versions to which it is to be compatible:

• The later version MAY add requirements that were not in earlier versions of the profile, but MUST
NOT remove requirements.

• The later version MAY remove one or more conditions that had previously been placed on a
requirement. For example, if a previous profile required X only if condition A was true, then the later
profile might require X unconditionally.

For profiles, the following notation is defined to identify specific versions:

Notation Description Example
ProfileName:Version Refers to a specific version of the profile. Baseline:1

ProfileName Refers to any version of the profile. Baseline

2.3.4 Baseline Profiles
For every Service Object (and Root Object) there SHOULD be at least one profile defined. In many cases
it is desirable to define a Baseline profile that indicates the minimum requirements required for any device
that supports that object. Where a Baseline profile is defined, it would normally be expected that all
implementations of the corresponding object would indicate support for the Baseline profile in addition to
any other profiles supported.

2.3.5 Types of Requirements in a Profile
Because a profile is defined within the context of a single object (and major version), all of the
requirements associated with the profile MUST be specific to the data-model associated with that object.

Profile requirements can include any of the following types of requirements associated with an object’s
data model:

• A requirement for read support of a Parameter.

• A requirement for write support of a Parameter.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 12 of 37

• A requirement for support of a sub-object contained within the overall object.

• A requirement for the ability to add or remove instances of a sub-object.

• A requirement to support active and/or passive notification for a Parameter.

• A requirement to support access control for a given Parameter.

For each of the requirement categories listed above, a profile can define the requirement unconditionally, or
can place one or more conditions on the requirement. For example, a profile might require that a Parameter
be supported for reading only if the device supports some other parameter or object (one that is not itself
required by the profile). Such conditions will be directly related to the data model of the overall object
associated with the profile.

Because a device has to be able to support multiple profiles, all profiles MUST be defined such they are
non-contradictory. As a result, profiles MUST only define minimum requirements to be met, and MUST
NOT specify negative requirements. That is, profiles will not include requirements that specify something
that is not to be supported by the device, or requirements that exclude a range of values.

2.4 DEPRECATED and OBSOLETED Items
The key word “DEPRECATED” in the data-model definition for any TR-069-capable device is to be
interpreted as follows: This term refers to an object, parameter or parameter value that is defined in the
current version of the standard but is meaningless, inappropriate, or otherwise unnecessary. It is intended
that such objects, parameters or parameter values will be removed from the next major version of the data-
model. Requirements on how to interpret or implement deprecated objects, parameters or parameter values
are given below. For more information on how to interpret or implement specific deprecated objects,
parameters or parameter values, refer to the definition of the object or parameter.

The key word “OBSOLETED” in the data-model definition for any TR-069-capable device is to be
interpreted as follows: This term refers to an object, parameter or parameter value that meets the
requirements for being deprecated, and in addition is obsolete. Such objects, parameters or parameter
values can be removed from a later minor version of a data-model, or from a later version of a profile,
without this being regarded as breaking backwards compatibility rules. Requirements on how to interpret
or implement obsoleted objects, parameters or parameter values are given below. For more information on
how to interpret or implement specific obsoleted objects, parameters or parameter values, refer to the
definition of the object or parameter.

2.4.1 Requirements for DEPRECATED Items
This section defines requirements that apply to all DEPRECATED objects, parameters and parameter
values unless specifically overridden by the object or parameter definition.

Data-model requirements:

1) The definition of a DEPRECATED parameter, object or parameter value MUST include an
explanation of why the item is deprecated.

2) The definition of a DEPRECATED parameter, object or parameter value MAY specify further
requirements relating to the item; such requirements MAY override CPE or ACS requirements
specified in this section.

CPE requirements:

1) A DEPRECATED parameter MUST have a value which is valid for its data type and fulfils any
range (for numeric parameters), length (for string or base64 parameters) and enumerated value (for
string parameters) requirements.

2) Detailed behavioral requirements for a DEPRECATED parameter, e.g. that its value is a unique
key, MAY be ignored by the CPE.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 13 of 37

3) The CPE MUST, if such operations are permitted by the data model definition, permit creation of
DEPRECATED objects, modification of DEPRECATED parameters, and setting of
DEPRECATED parameter values. However, it MAY choose not to apply such changes to its
operational state.

4) Regardless of whether DEPRECATED changes are applied to the CPE operational state, a read of
a DEPRECATED writable parameter SHOULD return the value that was last written, i.e. the CPE
is expected to store the value even if it chooses not to apply it to its operational state.

5) When the ACS modifies the value of a DEPRECATED parameter, the CPE MAY choose not to
check whether the new parameter value is valid for its data type and fulfils any range (for numeric
parameters), length (for string or base64 parameters) and enumerated value (for string parameters)
requirements.

6) The CPE MAY reject an attempt by the ACS to set any parameter to a DEPRECATED value.

ACS requirements:

1) The ACS SHOULD NOT create DEPRECATED objects, modify DEPRECATED parameters, or
set DEPRECATED parameter values.

2) The ACS SHOULD ignore DEPRECATED objects, parameters and parameter values.

3) The ACS MUST NOT set a DEPRECATED parameter to a value that is invalid for its data type or
fails to fulfil any range (for numeric parameters), length (for string or base64 parameters) or
enumerated value (for string parameters) requirements.

4) The ACS MUST NOT set any parameter to a DEPRECATED value.

2.4.2 Requirements for OBSOLETED Items
This section defines requirements that apply to all OBSOLETED objects, parameters or parameter values
unless specifically overridden by the object or parameter definition.

An OBSOLETED object, parameter or parameter must meet all the requirements of the previous section.
In addition, the following data-model requirements apply.

1) An OBSOLETED object, parameter or parameter value MAY be removed from a later minor
version of a data-model without this being regarded as breaking backwards compatibility rules.

2) An OBSOLETED object, parameter or parameter value MUST NOT be removed from the current
version of a profile, but MAY be removed from a later version of a profile without this being
regarded as breaking backwards compatibility rules.

3) A data-model definition MUST include a list of those OBSOLETED objects, parameters or
parameter values that have been removed from the data-model or from its profiles. This is to
prevent future namespace conflicts.

3 Object Definitions

3.1 General Notation
Parameter names use a hierarchical form similar to a directory tree. The name of a particular Parameter is
represented by the concatenation of each successive node in the hierarchy separated with a “.” (dot),
starting at the trunk of the hierarchy and leading to the leaves. When specifying a partial path, indicating
an intermediate node in the hierarchy, the trailing “.” (dot) is always used as the last character.

Parameter names MUST be treated as case sensitive.

In some cases, where multiple instances of an object can occur, the placeholder node name “{i}” is shown.
In actual use, this placeholder is to be replaced by an instance number, which MUST be a positive integer

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 14 of 37

(≥ 1). Because in some cases object instances can be deleted, instance numbers will in general not be
contiguous.

3.2 Data Types
The parameters defined in this specification make use of a limited subset of the default SOAP data types
[5]. The complete set of data types along with the notation used to represent these types is listed in Table 1.

Table 1 – Data types

Type Description
object A container for parameters and/or other objects. The full path name of a parameter is given by the

parameter name appended to the full path name of the object it is contained within.

string For strings listed in this specification, a maximum allowed length can be listed using the form string(N),
where N is the maximum string length in characters.
For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated value
determines the maximum length. If a string does not have an explicitly indicated maximum length or is not
an enumeration, the default maximum is 16 characters.

int Integer in the range –2147483648 to +2147483647, inclusive.
For some int types listed, a value range is given using the form int[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit.

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.
For some unsignedInt types listed, a value range is given using the form unsignedInt[Min:Max], where the
Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are
considered interchangeable, where both equivalently represent the logical value true. Similarly, the values
“0” and “false” are considered interchangeable, where both equivalently represent the logical value false.

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.
All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise in
the definition of a parameter of this type.
If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot, where
the boot time is assumed to be the beginning of the first day of January of year 1, or 0001-01-01T00:00:00.
For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be expressed as
0001-01-03T03:04:05. Relative time since boot MUST be expressed using an untimezoned
representation. Any untimezoned value with a year value less than 1000 MUST be interpreted as a
relative time since boot.
If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be used:
0001-01-01T00:00:00Z.
Any dateTime value other than one expressing relative time since boot (as described above) MUST use
timezoned representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary.
A maximum allowed length can be listed using the form base64(N), where N is the maximum length in
characters after Base64 encoding.

All IP addresses are represented as strings either using IPv4 dotted-decimal notation or using any of the
IPv6 text representations defined in [7]. Unspecified or inapplicable IP addresses and subnet masks MUST
be represented as empty strings unless otherwise specified by the parameter definition.

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f)
displayed as six pairs of digits separated by colons. Unspecified or inapplicable MAC addresses MUST be
represented as empty strings unless otherwise specified by the parameter definition.

For unsignedInt parameters that are used for statistics, e.g. for byte counters, the actual value of the statistic
might be greater than the maximum value that can be represented as an unsignedInt. Such values
SHOULD wrap around through zero.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 15 of 37

For strings that are defined to contain comma-separated lists, the format is defined as follows. Between
every pair of successive items in a comma-separated list there MUST be a separator. The separator MUST
include exactly one comma character, and MAY also include one or more space characters before or after
the comma. The entire separator, including any space characters, MUST NOT be considered part of the list
items it separates. The last item in a comma-separated list MUST NOT be followed with a separator.
Individual items in a comma-separated list MUST NOT include a space or comma character within them.
If an item definition requires the use of spaces or commas, that definition MUST specify the use of an
escape mechanism that prevents the use of these characters.

For string parameters whose value is defined to contain the full hierarchical name of an object, the
representation of the object name MUST NOT include a trailing “dot.” An example of a parameter of this
kind in the InternetGatewayDevice data model is InternetGatewayDevice.Layer3Forwarding.Default-
ConnectionService. For this parameter, the following is an example of a properly formed value:

InternetGatewayDevice.WANDevice.1.WANConnectionDevice.2.WANPPPConnection.1

3.3 Vendor-Specific Parameters
A vendor MAY extend the standardized parameter list with vendor-specific parameters and objects.
Vendor-specific parameters and objects MAY be defined either in a separate naming hierarchy or within
the standardized naming hierarchy.

The name of a vendor-specific parameter or object not contained within another vendor-specific object
MUST have the form:

X_<VENDOR>_VendorSpecificName
In this definition <VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain
name. The OUI or domain name used for a given vendor-specific parameter MUST be one that is assigned
to the organization that defined this parameter (which is not necessarily the same as the vendor of the CPE
or ACS). An OUI is an organizationally unique identifier as defined in [4], which MUST formatted as a
six-hexadecimal-digit string using all upper-case letters and including any leading zeros. A domain name
MUST be upper case with each dot (“.”) replaced with a hyphen or underscore.

The VendorSpecificName MUST be a valid string as defined in 3.2, and MUST NOT contain a “.” (period)
or a space character.

Note – the use of the string “X_” to indicate a vendor-specific parameter implies that no standardized
parameter can begin with “X_”.

The name of a vendor-specific parameter or object that is contained within another vendor-specific object
which itself begins with the prefix described above need not itself include the prefix.

The full path name of a vendor-specific parameter or object MUST NOT exceed 256 characters in length.

Below are some example vendor-specific parameter and object names:

Device.UserInterface.X_012345_AdBanner
Device.X_EXAMPLE-COM_MyConfig.Status

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 16 of 37

When appropriate, a vendor MAY also extend the set of values of an enumeration. If this is done, the
vendor-specified values MUST be in the form “X_<VENDOR>_VendorSpecificValue”. The total length
of such a string MUST NOT exceed 31 characters.

3.4 Common Object Definitions
Table 2 provides a summary of the common data objects that are defined in this specification.

Table 2 – Summary of Common Data Objects

Object Name Allowed Location in
Hierarchy

Description

DeviceInfo Root and
Service Objects

General information about the device, including its identity and
version information.

ManagementServer Root Parameters associated with the communication between the
CPE and an ACS.

GatewayInfo Root Information to identify an Internet Gateway Device through
which the CPE is connected.

Time Root and
Service Objects

Parameters associated with an NTP or SNTP time client on the
CPE.

Config Root and
Service Objects

Contains general configuration state.

UserInterface Root and
Service Objects

Parameters related to the user interface of the CPE.

LAN Root and
Service Objects

Parameters related to IP-based LAN connectivity of the CPE.

Table 3 lists the Common Objects and their associated parameters defined for “Device”, version 1.1. This
definition is a superset of previously defined version, 1.0.

For a given implementation of this data model, the CPE MUST indicate support for the highest version
number of any object or parameter that it supports. For example, even if the CPE supports only a single
parameter that was introduced in version 1.1, then it will indicate support for version 1.1. The version
number associated with each object and parameter is shown in the Version column of Table 3.

Table 3 – Common Object definitions for Device:1
Name2 Type Write3 Description Default4 Version5
DeviceSummary string(1024) - See section 3.7. - 1.0

.DeviceInfo. object - This object contains general device information. - 1.0

Manufacturer string(64) - The manufacturer of the CPE (human readable
string).

- 1.0

2 The name of a Parameter is formed from the concatenation of the base path (see section 2.1), the object

name shown in the yellow header, and the individual Parameter name.
3 “W” indicates the parameter MAY be writable (if “W” is not present, the parameter is defined as read-

only). For an object, “W” indicates object instances can be Added or Deleted.
4 The default value of the parameter on creation of an object instance via TR-069. If the default value is an

empty string, this is represented by the symbol <Empty>. A hyphen indicates that no default value is
specified. For a parameter in which no default value is specified, on creation of an a parent object
instance, the CPE MUST set the parameter to a value that is valid according to the definition of that
parameter.

5 The Version column indicates the minimum data-model version required to support the associated
Parameter or Object.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 17 of 37

Name2 Type Write3 Description Default4 Version5
ManufacturerOUI string(6) - Organizationally unique identifier of the device

manufacturer. Represented as a six hexadecimal-
digit value using all upper-case letters and
including any leading zeros. The value MUST be a
valid OUI as defined in [4].

- 1.0

ModelName string(64) - Model name of the CPE (human readable string). - 1.0

Description string(256) - A full description of the CPE device (human
readable string).

- 1.0

ProductClass string(64) - Identifier of the class of product for which the serial
number applies. That is, for a given manufacturer,
this parameter is used to identify the product or
class of product over which the SerialNumber
parameter is unique.

- 1.0

SerialNumber string(64) - Serial number of the CPE. - 1.0

HardwareVersion string(64) - A string identifying the particular CPE model and
version.

- 1.0

SoftwareVersion string(64) - A string identifying the software version currently
installed in the CPE.
To allow version comparisons, this element
SHOULD be in the form of dot-delimited integers,
where each successive integer represents a more
minor category of variation. For example,
3.0.21where the components mean:
Major.Minor.Build.

- 1.0

EnabledOptions string(1024) - Comma-separated list of the OptionName of each
Option that is currently enabled in the CPE. The
OptionName of each is identical to the OptionName
element of the OptionStruct described in [2]. Only
those options are listed whose State indicates the
option is enabled.

- 1.0

AdditionalHardwareVersion string(64) - A comma separated list of any additional versions.
Represents any additional hardware version
information the vendor might wish to supply.

- 1.0

AdditionalSoftwareVersion string(64) - A comma separated list of any additional versions.
Represents any additional software version
information the vendor might wish to supply.

- 1.0

ProvisioningCode string(64) W Identifier of the primary service provider and other
provisioning information, which MAY be used by
the ACS to determine service provider-specific
customization and provisioning parameters.

- 1.0

DeviceStatus string - Current operational status of the device.
Enumeration of:

“Up”
”Initializing”
“Error”
“Disabled”

- 1.0

UpTime unsignedInt - Time in seconds since the CPE was last restarted. - 1.0

FirstUseDate dateTime - Date and time in UTC that the CPE first both
successfully established an IP-layer network
connection and acquired an absolute time
reference using NTP or equivalent over that
network connection. The CPE MAY reset this date
after a factory reset.
If NTP or equivalent is not available, this
parameter, if present, SHOULD be set to the
Unknown Time value.

- 1.0

DeviceLog string(32K) - Vendor-specific log(s). - 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 18 of 37

Name2 Type Write3 Description Default4 Version5
.ManagementServer. object - This object contains parameters relating to the

CPE’s association with an ACS.
- 1.0

URL string(256) W URL, as defined in [8], for the CPE to connect to
the ACS using the CPE WAN Management
Protocol.
This parameter MUST be in the form of a valid
HTTP or HTTPS URL.
The “host” portion of this URL is used by the CPE
for validating the ACS certificate when using SSL
or TLS.
Note that on a factory reset of the CPE, the value
of this parameter might be reset to its factory value.
If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

- 1.0

Username string(256) W Username used to authenticate the CPE when
making a connection to the ACS using the CPE
WAN Management Protocol.
This username is used only for HTTP-based
authentication of the CPE.
Note that on a factory reset of the CPE, the value
of this parameter might be reset to its factory value.
If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

- 1.0

Password string(256) W Password used to authenticate the CPE when
making a connection to the ACS using the CPE
WAN Management Protocol.
This password is used only for HTTP-based
authentication of the CPE.
When read, this parameter returns an empty string,
regardless of the actual value.
Note that on a factory reset of the CPE, the value
of this parameter might be reset to its factory value.
If an ACS modifies the value of this parameter, it
SHOULD be prepared to accommodate the
situation that the original value is restored as the
result of a factory reset.

- 1.0

PeriodicInformEnable boolean W Whether or not the CPE MUST periodically send
CPE information to the ACS using the Inform
method call.

- 1.0

PeriodicInformInterval unsignedInt
[1:]

W The duration in seconds of the interval for which
the CPE MUST attempt to connect with the ACS
and call the Inform method if PeriodicInformEnable
is true.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 19 of 37

Name2 Type Write3 Description Default4 Version5
PeriodicInformTime dateTime W An absolute time reference in UTC to determine

when the CPE will initiate the periodic Inform
method calls. Each Inform call MUST occur at this
reference time plus or minus an integer multiple of
the PeriodicInformInterval.
PeriodicInformTime is used only to set the “phase”
of the periodic Informs. The actual value of
PeriodicInformTime can be arbitrarily far into the
past or future.
For example, if PeriodicInformInterval is 86400 (a
day) and if PeriodicInformTime is set to UTC
midnight on some day (in the past, present, or
future) then periodic Informs will occur every day at
UTC midnight. These MUST begin on the very
next midnight, even if PeriodicInformTime refers to
a day in the future.
The Unknown Time value defined in section 3.2
indicates that no particular time reference is
specified. That is, the CPE MAY locally choose the
time reference, and is required only to adhere to
the specified PeriodicInformInterval.
If absolute time is not available to the CPE, its
periodic Inform behavior MUST be the same as if
the PeriodicInformTime parameter was set to the
Unknown Time value.

- 1.0

ParameterKey string(32) - ParameterKey provides the ACS a reliable and
extensible means to track changes made by the
ACS. The value of ParameterKey MUST be equal
to the value of the ParameterKey argument from
the most recent successful SetParameterValues,
AddObject, or DeleteObject method call from the
ACS.
The CPE MUST set ParameterKey to the value
specified in the corresponding method arguments if
and only if the method completes successfully and
no fault response is generated. If a method call
does not complete successfully (implying that the
changes requested in the method did not take
effect), the value of ParameterKey MUST NOT be
modified.
The CPE MUST only modify the value of
ParameterKey as a result of SetParameterValues,
AddObject, DeleteObject, or due to a factory reset.
On factory reset, the value of ParameterKey MUST
be set to empty.

- 1.0

ConnectionRequestURL string(256) - HTTP URL, as defined in [8], for an ACS to make a
Connection Request notification to the CPE.
In the form:

http://host:port/path
The “host” portion of the URL MAY be the IP
address for the management interface of the CPE
in lieu of a host name.

- 1.0

ConnectionRequestUsername string(256) W Username used to authenticate an ACS making a
Connection Request to the CPE.

- 1.0

ConnectionRequestPassword string(256) W Password used to authenticate an ACS making a
Connection Request to the CPE.
When read, this parameter returns an empty string,
regardless of the actual value.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 20 of 37

Name2 Type Write3 Description Default4 Version5
UpgradesManaged boolean W Indicates whether or not the ACS will manage

upgrades for the CPE. If true (1), the CPE
SHOULD NOT use other means other than the
ACS to seek out available upgrades. If false (0),
the CPE MAY use other means for this purpose.

- 1.0

KickURL string(256) - Present only for a CPE that supports the Kicked
RPC method.
LAN-accessible URL, as defined in [8], from which
the CPE can be “kicked” to initiate the Kicked RPC
method call. MUST be an absolute URL including
a host name or IP address as would be used on the
LAN side of the CPE.

- 1.0

DownloadProgressURL string(256) - Present only for a CPE that provides a LAN-side
web page to show progress during a file download.
LAN-accessible URL, as defined in [8], to which a
web-server associated with the ACS MAY redirect
a user’s browser on initiation of a file download to
observer the status of the download.

- 1.0

UDPConnectionRequestAddress string(256) - Address and port to which an ACS MAY send a
UDP Connection Request to the CPE (see Annex
G of [2]).
This parameter is represented in the form of an
Authority element as defined in [8]. The value
MUST be in one of the following two forms:

host:port
host

When STUNEnable is true, the “host” and “port”
portions of this parameter MUST represent the
public address and port corresponding to the NAT
binding through which the ACS can send UDP
Connection Request messages (once this
information is learned by the CPE through the use
of STUN).
When STUNEnable is false, the “host” and “port”
portions of the URL MUST represent the local IP
address and port on which the CPE is listening for
UDP Connection Request messages.
The second form of this parameter MAY be used
only if the port value is equal to “80”.

- 1.1

UDPConnectionRequestAddressNotification-
Limit

unsignedInt W The minimum time, in seconds, between Active
Notifications resulting from changes to the UDP-
ConnectionRequestAddress (if Active Notification is
enabled).

- 1.1

STUNEnable boolean W Enables or disables the use of STUN by the CPE.
This applies only to the use of STUN in association
with the ACS to allow UDP Connection Requests.

- 1.1

STUNServerAddress string(256) W Host name or IP address of the STUN server for
the CPE to send Binding Requests if STUN is
enabled via STUNEnable.
If empty and STUNEnable is true, the CPE MUST
use the address of the ACS extracted from the host
portion of the ACS URL.

- 1.1

STUNServerPort unsignedInt
[0:65535]

W Port number of the STUN server for the CPE to
send Binding Requests if STUN is enabled via
STUNEnable.
By default, this SHOULD be the equal to the default
STUN port, 3478.

- 1.1

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 21 of 37

Name2 Type Write3 Description Default4 Version5
STUNUsername string(256) W If non-empty, the value of the STUN USERNAME

attribute to be used in Binding Requests (only if
message integrity has been requested by the
STUN server).
If empty, the CPE MUST NOT send STUN Binding
Requests with message integrity.

- 1.1

STUNPassword string(256) W The value of the STUN Password to be used in
computing the MESSAGE-INTEGRITY attribute to
be used in Binding Requests (only if message
integrity has been requested by the STUN server).
When read, this parameter returns an empty string,
regardless of the actual value.

- 1.1

STUNMaximumKeepAlivePeriod int[-1:] W If STUN Is enabled, the maximum period, in
seconds, that STUN Binding Requests MUST be
sent by the CPE for the purpose of maintaining the
binding in the Gateway. This applies specifically to
Binding Requests sent from the UDP Connection
Request address and port.
A value of -1 indicates that no maximum period is
specified.

- 1.1

STUNMinimumKeepAlivePeriod unsignedInt W If STUN Is enabled, the minimum period, in
seconds, that STUN Binding Requests can be sent
by the CPE for the purpose of maintaining the
binding in the Gateway. This limit applies only to
Binding Requests sent from the UDP Connection
Request address and port, and only those that do
not contain the BINDING-CHANGE attribute. This
limit does not apply to retransmissions following the
procedures defined in [9].

- 1.1

NATDetected boolean - When STUN is enabled, this parameter indicates
whether or not the CPE has detected address
and/or port mapping in use.
A true value indicates that the received MAPPED-
ADDRESS in the most recent Binding Response
differs from the CPE’s source address and port.
When STUNEnable is false, this value MUST be
false.

- 1.1

.GatewayInfo. object - This object contains information associated with a
connected Internet Gateway Device.

- 1.0

ManufacturerOUI string(6) - Organizationally unique identifier of the associated
Internet Gateway Device. An empty string
indicates that there is no associated Internet
Gateway Device that has been detected.

- 1.0

ProductClass string(64) - Identifier of the product class of the associated
Internet Gateway Device. An empty string
indicates either that there is no associated Internet
Gateway Device that has been detected, or the
Internet Gateway Device does not support the use
of the product-class parameter.

- 1.0

SerialNumber string(64) - Serial number of the associated Internet Gateway
Device. An empty string indicates that there is no
associated Internet Gateway Device that has been
detected.

- 1.0

.Config. object - This object contains general configuration
parameters.

- 1.0

PersistentData string(256) W Arbitrary user data that MUST persist across CPE
reboots.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 22 of 37

Name2 Type Write3 Description Default4 Version5
ConfigFile string(32K) W A dump of the currently running configuration on

the CPE. This parameter enables the ability to
backup and restore the last known good state of
the CPE. It returns a vendor-specific document
that defines the state of the CPE. The document
MUST be capable of restoring the CPE’s state
when written back to the CPE using
SetParameterValues.

- 1.0

.Time. object - This object contains parameters relating an NTP or
SNTP time client in the CPE.

- 1.0

NTPServer1 string(64) W First NTP timeserver. Either a host name or IP
address.

- 1.0

NTPServer2 string(64) W Second NTP timeserver. Either a host name or IP
address.

- 1.0

NTPServer3 string(64) W Third NTP timeserver. Either a host name or IP
address.

- 1.0

NTPServer4 string(64) W Fourth NTP timeserver. Either a host name or IP
address.

- 1.0

NTPServer5 string(64) W Fifth NTP timeserver. Either a host name or IP
address.

- 1.0

CurrentLocalTime dateTime - The current date and time in the CPE’s local time
zone.

- 1.0

LocalTimeZone string(256) W The local time zone definition, encoded according
to IEEE 1003.1 (POSIX). The following is an
example value:

“EST+5 EDT,M4.1.0/2,M10.5.0/2”

- 1.0

.UserInterface. object - This object contains parameters relating to the user
interface of the CPE.

- 1.0

PasswordRequired boolean W Present only if the CPE provides a password-
protected LAN-side user interface.
Indicates whether or not the local user interface
MUST require a password to be chosen by the
user. If false, the choice of whether or not a
password is used is left to the user.

- 1.0

PasswordUserSelectable boolean W Present only if the CPE provides a password-
protected LAN-side user interface and supports
LAN-side Auto-Configuration.
Indicates whether or not a password to protect the
local user interface of the CPE MAY be selected by
the user directly, or MUST be equal to the
password used by the LAN-side Auto-Configuration
protocol.

- 1.0

UpgradeAvailable boolean W Indicates that a CPE upgrade is available, allowing
the CPE to display this information to the user.

- 1.0

WarrantyDate dateTime W Indicates the date and time in UTC that the
warranty associated with the CPE is to expire.

- 1.0

ISPName string(64) W The name of the customer’s ISP. - 1.0

ISPHelpDesk string(32) W The help desk phone number of the ISP. - 1.0

ISPHomePage string(256) W The URL of the ISP’s home page. - 1.0

ISPHelpPage string(256) W The URL of the ISP’s on-line support page. - 1.0

ISPLogo base64
(5460)

W Base64 encoded GIF or JPEG image. The binary
image is constrained to 4095 bytes or less.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 23 of 37

Name2 Type Write3 Description Default4 Version5
ISPLogoSize unsignedInt

[0:4095]
W Un-encoded binary image size in bytes.

If ISPLogoSize input value is 0 then the ISPLogo is
cleared.
ISPLogoSize can also be used as a check to verify
correct transfer and conversion of Base64 string to
image size.

- 1.0

ISPMailServer string(256) W The URL of the ISP’s mail server. - 1.0

ISPNewsServer string(256) W The URL of the ISP’s news server. - 1.0

TextColor string(6) W The color of text on the GUI screens in RGB
hexidecimal notation (e.g., FF0088).

- 1.0

BackgroundColor string(6) W The color of the GUI screen backgrounds in RGB
hexidecimal notation (e.g., FF0088).

- 1.0

ButtonColor string(6) W The color of buttons on the GUI screens in RGB
hexidecimal notation (e.g., FF0088).

- 1.0

ButtonTextColor string(6) W The color of text on buttons on the GUI screens in
RGB hexidecimal notation (e.g., FF0088).

- 1.0

AutoUpdateServer string(256) W The server the CPE can check to see if an update
is available for direct download to it. This MUST
NOT be used by the CPE if the Device.-
ManagementServer.UpgradesManaged parameter
is true (1).

- 1.0

UserUpdateServer string(256) W The server where a user can check via a web
browser if an update is available for download to a
PC. This MUST NOT be used by the CPE if the
Device.ManagementServer.UpgradesManaged
parameter is true (1).

- 1.0

AvailableLanguages string(256) - Comma-separated list of user-interface languages
that are available, where each language is
specified according to RFC 3066 [6].

- 1.0

CurrentLanguage string(16) W Current user-interface language, specified
according to RFC 3066 [6].

- 1.0

.LAN. object - This object contains parameters relating to IP-
based LAN connectivity of a device.
This object relates only to IP-layer LAN capabilities.
Lower-layer aspects of LAN connectivity are not
considered part of the common data model defined
in this specification.
For a device that contains multiple IP interfaces,
the scope of this object is limited to the default IP
interface. Data that might be associated with other
interfaces is not considered part of the common
data model defined in this specification.

- 1.0

AddressingType string W The method used to assign an address to this
interface. Enumeration of:

“DHCP”
“Static”

The ability to modify this parameter is OPTIONAL.

- 1.0

IPAddress string W The current IP address assigned to this interface.
The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

- 1.0

SubnetMask string W The current subnet mask.
The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 24 of 37

Name2 Type Write3 Description Default4 Version5
DefaultGateway string W The IP address of the current default gateway for

this interface.
The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.

- 1.0

DNSServers string(256) W Comma-separated list of IP address of the DNS
servers for this interface.
The ability to modify this parameter is OPTIONAL,
and this parameter cannot be modified if the
AddressingType is “DHCP”.
If this parameter is modifiable, the device MAY
ignore any DNS servers beyond the first two in the
list.

- 1.0

MACAddress string W The physical address of this interface. Writable
only if MACAddressOverride is present and equal
to true.

- 1.0

MACAddressOverride boolean W Whether the value of MACAddress parameter can
be overridden.
When true, MACAddress is writable.
When false, MACAddress is not writable, and the
default MAC address assigned by the device
SHOULD be restored.

- 1.0

DHCPOptionNumberOfEntries unsignedInt - Number of entries in the DHCP option table. - 1.0

.LAN.DHCPOption.{i}. object W This object is for configuration of DHCP options.
Each instance of this object represents a DHCP
option to be included by the DHCP client in client
requests. The DHCP client MAY include any other
options not specified in this table.

- 1.0

Request boolean W Whether this entry represents a request to the
DHCP server, or a value to be sent by the DHCP
client.
When true, this entry represents a request. In this
case, the DHCP client MUST include the specified
Tag in the Parameter Request List, as defined in
RFC 2132. The Value parameter is ignored in this
case.
When false, this entry represents a value to be sent
by the DHCP client. In this case, the DHCP client
MUST include a DHCP option formed from the Tag
and Value parameters (with the Length derived
from the length of the Value parameter).

- 1.0

Tag unsignedInt
[1:254]

W Tag of the DHCP option as defined in RFC 2132. - 1.0

Value base64 W Base64 encoded octet string to be used as the
Value of the DHCP option if Request is false.

<Empty> 1.0

.LAN.Stats. object - This object contains statistics for the default IP
interface.

- 1.0

ConnectionUpTime unsignedInt - The time in seconds that this IP interface has been
connected.
If the IP interface is using DHCP, this is the time
that the DHCP client has been only in the Bound or
Renewing states and the lower-layer interface has
continuously maintained a link.
If the IP interface is using static addressing, this is
the time that the lower-layer interface has
continuously maintained a link.

- 1.0

TotalBytesSent unsignedInt - Total number of IP payload bytes sent over this
interface since the device was last restarted as
specified in DeviceInfo.UpTime.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 25 of 37

Name2 Type Write3 Description Default4 Version5
TotalBytesReceived unsignedInt - Total number of IP payload bytes received over this

interface since the device was last restarted as
specified in DeviceInfo.UpTime.

- 1.0

TotalPacketsSent unsignedInt - Total number of IP packets sent over this interface
since the device was last restarted as specified in
DeviceInfo.UpTime.

- 1.0

TotalPacketsReceived unsignedInt - Total number of IP packets received over this
interface since the device was last restarted as
specified in DeviceInfo.UpTime.

- 1.0

CurrentDayInterval unsignedInt - Number of seconds since the beginning of the
period used for collection of CurrentDay statistics.
The device MAY align the beginning of each
CurrentDay interval with days in the UTC time
zone, but is not required to do so.

- 1.0

CurrentDayBytesSent unsignedInt - Total number of IP payload bytes sent over this
interface since the beginning of the current-day
interval as specified by CurrentDayInterval.

- 1.0

CurrentDayBytesReceived unsignedInt - Total number of IP payload bytes received over this
interface since the beginning of the current-day
interval as specified by CurrentDayInterval.

- 1.0

CurrentDayPacketsSent unsignedInt - Total number of IP packets sent over this interface
since the beginning of the current-day interval as
specified by CurrentDayInterval.

- 1.0

CurrentDayPacketsReceived unsignedInt - Total number of IP packets received over this
interface since the beginning of the current-day
interval as specified by CurrentDayInterval.

- 1.0

QuarterHourInterval unsignedInt - Number of seconds since the beginning of the
period used for collection of QuarterHour statistics.
The device MAY align the beginning of each
QuarterHour interval with real-time quarter-hour
intervals, but is not required to do so.

- 1.0

QuarterHourBytesSent unsignedInt - Total number of IP payload bytes sent over this
interface since the beginning of the quarter-hour
interval as specified by QuarterHourInterval.

- 1.0

QuarterHourBytesReceived unsignedInt - Total number of IP payload bytes received over this
interface since the beginning of the quarter-hour
interval as specified by QuarterHourInterval.

- 1.0

QuarterHourPacketsSent unsignedInt - Total number of IP packets sent over this interface
since the beginning of the quarter-hour interval as
specified by QuarterHourInterval.

- 1.0

QuarterHourPacketsReceived unsignedInt - Total number of IP packets received over this
interface since the beginning of the quarter-hour
interval as specified by QuarterHourInterval.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 26 of 37

Name2 Type Write3 Description Default4 Version5
.LAN.IPPingDiagnostics. object - This object defines access to an IP-layer ping test

for the default IP interface.
- 1.0

DiagnosticsState string W Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”
“Error_CannotResolveHostName”
“Error_Internal”
“Error_Other”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.
When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.
When the test is completed, the value of this
parameter MUST be either Complete (if the test
completed successfully), or one of the Error values
listed above.
If the value of this parameter is anything other than
Complete, the values of the results parameters for
this test are indeterminate.
When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.
After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.
Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.
While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.
While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

- 1.0

Host string(256) W Host name or address of the host to ping. - 1.0

NumberOfRepetitions unsignedInt
[1:]

W Number of repetitions of the ping test to perform
before reporting the results.

- 1.0

Timeout unsignedInt
[1:]

W Timeout in milliseconds for the ping test. - 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 27 of 37

Name2 Type Write3 Description Default4 Version5
DataBlockSize unsignedInt

[1:65535]
W Size of the data block in bytes to be sent for each

ping.
- 1.0

DSCP unsignedInt
[0:63]

W DiffServ codepoint to be used for the test packets.
By default the CPE SHOULD set this value to zero.

- 1.0

SuccessCount unsignedInt - Result parameter indicating the number of
successful pings (those in which a successful
response was received prior to the timeout) in the
most recent ping test.

- 1.0

FailureCount unsignedInt - Result parameter indicating the number of failed
pings in the most recent ping test.

- 1.0

AverageResponseTime unsignedInt - Result parameter indicating the average response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

- 1.0

MinimumResponseTime unsignedInt - Result parameter indicating the minimum response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

- 1.0

MaximumResponseTime unsignedInt - Result parameter indicating the maximum response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 28 of 37

Name2 Type Write3 Description Default4 Version5
.LAN.TraceRouteDiagnostics. object - This object is defines access to an IP-layer trace-

route test for the default IP interface.
- 1.0

DiagnosticsState string W Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”
“Error_CannotResolveHostName”
“Error_MaxHopCountExceeded”
“Error_Internal”
“Error_Other”

If the ACS sets the value of this parameter to
Requested, the CPE MUST initiate the
corresponding diagnostic test. When writing, the
only allowed value is Requested. To ensure the
use of the proper test parameters (the writable
parameters in this object), the test parameters
MUST be set either prior to or at the same time as
(in the same SetParameterValues) setting the
DiagnosticsState to Requested.
When requested, the CPE SHOULD wait until after
completion of the communication session with the
ACS before starting the diagnostic.
When the test is completed, the value of this
parameter MUST be either Complete (if the test
completed successfully), or one of the Error values
listed above.
If the value of this parameter is anything other than
Complete, the values of the results parameters for
this test are indeterminate.
When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow the
ACS to view the results, indicating the Event code
"8 DIAGNOSTICS COMPLETE" in the Inform
message.
After the diagnostic is complete, the value of all
result parameters (all read-only parameters in this
object) MUST be retained by the CPE until either
this diagnostic is run again, or the CPE reboots.
After a reboot, if the CPE has not retained the
result parameters from the most recent test, it
MUST set the value of this parameter to “None”.
Modifying any of the writable parameters in this
object except for this one MUST result in the value
of this parameter being set to “None”.
While the test is in progress, modifying any of the
writable parameters in this object except for this
one MUST result in the test being terminated and
the value of this parameter being set to “None”.
While the test is in progress, setting this parameter
to Requested (and possibly modifying other
writable parameters in this object) MUST result in
the test being terminated and then restarted using
the current values of the test parameters.

- 1.0

Host string(256) W Host name or address of the host to find a route to. - 1.0

Timeout unsignedInt
[1:]

W Timeout in milliseconds for the trace route test. - 1.0

DataBlockSize unsignedInt
[1:65535]

W Size of the data block in bytes to be sent for each
trace route.

- 1.0

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 29 of 37

Name2 Type Write3 Description Default4 Version5
MaxHopCount unsignedInt

[1:64]
W The maximum number of hop used in outgoing

probe packets (max TTL). The default is 30 hops.
- 1.0

DSCP unsignedInt
[0:63]

W DiffServ codepoint to be used for the test packets.
By default the CPE SHOULD set this value to zero.

- 1.0

ResponseTime unsignedInt - Result parameter indicating the response time in
milliseconds the most recent trace route test. If a
route could not be determined, this value MUST be
zero.

- 1.0

NumberOfRouteHops unsignedInt - Result parameter indicating the number of hops
within the discovered route. If a route could not be
determined, this value MUST be zero.

- 1.0

.LAN.TraceRouteDiagnostics.RouteHops.{i}. object - Result parameter indicating the components of the
discovered route. If a route could not be
determined, there will be no instances of this
object.

- 1.0

HopHost string(256) - Result parameter indicating the Host Name or IP
Address of a hop along the discovered route.

- 1.0

3.5 Inform Requirements
For CPE supporting the Device Root Object, the CPE MUST include in the ParameterList argument of the
Inform message all of the parameters listed in Table 4 that are present in the data model implementation
(any that are not present in the implementation need not be included in the Inform).

Table 4 – Forced Inform parameters

Parameter
Device.DeviceSummary

Device.DeviceInfo.HardwareVersion

Device.DeviceInfo.SoftwareVersion

Device.ManagementServer.ConnectionRequestURL

Device.ManagementServer.ParameterKey

Device.LAN.IPAddress

Note – the Forced Inform requirements do not apply to secondary instances of any of the above
parameters that might be contained within Service Objects.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 30 of 37

3.6 Notification Requirements
CPE MUST support Active Notification (see [2]) for all parameters defined in the Common Object
definitions for the Device Root Object (section 3.4) with the exception of those parameters listed in Table
5. For only those parameters listed Table 5, the CPE MAY reject a request by an ACS to enable Active
Notification via the SetParameterAttributes RPC by responding with fault code 9009 as defined in [2]
(Notification request rejected).

CPE MUST support Passive Notification (see [2]) for all parameters defined in the Common Object
definitions for the Device Root Object, with no exceptions.

Table 5 – Parameters for which Active Notification MAY be denied by the CPE

Parameter6
.DeviceInfo.

ModelName

Description

UpTime

FirstUseDate

DeviceLog

.ManagementServer.

ParameterKey

.Time.

CurrentLocalTime

.LAN.Stats.

ConnectionUpTime

TotalBytesSent

TotalBytesReceived

TotalPacketsSent

TotalPacketsReceived

CurrentDayInterval

CurrentDayBytesSent

CurrentDayBytesReceived

CurrentDayPacketsSent

CurrentDayPacketsReceived

QuarterHourInterval

QuarterHourBytesSent

QuarterHourBytesReceived

QuarterHourPacketsSent

QuarterHourPacketsReceived

.LAN.IPPingDiagnostics.

DiagnosticsState

SuccessCount

FailureCount

AverageResponseTime

MinimumResponseTime

MaximumResponseTime

6 The name of a Parameter referenced in this table is the concatenation of the base path (see section 2.1),

the object name shown in the yellow header, and the individual Parameter name.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 31 of 37

Parameter6
.LAN.TraceRouteDiagnostics.

DiagnosticsState

ResponseTime

NumberOfRouteHops

.LAN.TraceRouteDiagnostics.RouteHops.{i}.

HopHost

3.7 DeviceSummary Definition
The DeviceSummary parameter is defined to provide an explicit summary of the top-level data model of
the device, including version and profile information. This parameter MAY be used by an ACS to discover
the nature of the device and the ACS’s compatibility with specific objects supported by the device.

The DeviceSummary is defined as a list that includes the Root Object followed by all Service Object
instances (or support for a Service Object type if no instances are currently present). For each of these
objects, the DeviceSummary specifies the version of the object, the associated instance number used to
identify the specific object instance, and a list of the supported profiles for that object.

The syntax of the DeviceSummary parameter is defined formally as follows:

DeviceSummary = RootObject [", " ServiceObject]*

RootObject = ObjectName ":" ObjectVersion "[](" ProfileList ")"

ServiceObject = ObjectName ":" ObjectVersion "[" [Instance] "](" ProfileList ")"

ObjectVersion = MajorVersion "." MinorVersion

ProfileList = [Profile [", " Profile]*]

Profile = ProfileName ":" ProfileVersion

MajorVersion = Integer

MinorVersion = Integer

ProfileVersion = Integer

Integer = DIGIT*

Instance = ["+"] NONZERODIGIT [DIGIT]*

For each object instance, the ObjectVersion element MUST indicate the major and minor versions of the
object supported by the device.

The ObjectVersion for all objects defined prior to this specification for which explicit major and minor
version numbers have not been defined is 1.0. Future updates to these objects will specify distinct version
numbers.

The version for the “Device” object as defined in this specification is “1.0”.

Instance is the instance number of the particular object instance. If the device supports an object type, but
no instances are currently present, a single entry for this object MUST be listed in the DeviceSummary, and
the instance number MUST be empty ("[]"). In this case, the device need not list support for specific
profiles since the profile list might be dependent on the specific instance when it is instantiated.

If the instance number for an object might change (for example, if the instances represent physically
separate devices, being managed by proxy, that can be connected or disconnected), the instance number
MUST be prefixed with a “+” character. Lack of a “+” character indicates that the instance number is
expected to remain unchanged.

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 32 of 37

For each object (Root Object and Service Objects), a device MUST list all profiles that it supports in the
ProfileList element. That is, it MUST list all profiles for which the device’s actual level of support is a
superset. Each entry in the ProfileList MUST include the ProfileName and the ProfileVersion. The
ProfileVersion is a single integer representing the minor version of the profile.

Vendor-specific objects and profiles MAY be included in this list, and if so MUST begin with
X_<VENDOR>_, where <VENDOR> MUST be as defined in section 3.3.

3.7.1 DeviceSummary Examples
Below are some examples of the DeviceSummary parameter. (The first examples correspond directly to
the examples given in section 2.1.2.)

Simple device supporting the ABCService Service Object:

“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1)”

Device supporting both ABCService and XYZService Service Objects:

“Device:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1), XYZService:1.0[1](Baseline:1)”

Internet Gateway Device that also supports the ABCService and XYZService Service Objects:

“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1),
XYZService:1.0[1](Baseline:1)”

Device supporting the ABCService Service Object and proxying for two devices supporting the
functionality of the XYZService Service Object:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1), XYZService:1.2[1](Baseline:2),
XYZService:1.2[2](Baseline:2, AnotherProfile:3)”

Internet Gateway Device also serving as a management proxy for three devices supporting the functionality
of the ABCService Service Object:

“InternetGatewayDevice:1.0[](Baseline:1), ABCService:1.0[1](Baseline:1),
ABCService:1.0[2](Baseline:1), ABCService:1.0[3](Baseline:1, AnotherProfile:1)”

Version 1.0 Internet Gateway Device with no additional service objects supported:

“InternetGatewayDevice:1.0[](Baseline:1)”

Device supporting the ability to proxy for devices supporting the functionality of the ABCService Service
Object, but with no current instances of that object:

“Device:1.0[](Baseline:1), ABCService:2.17[]()”

Device supporting the ABCService Service Object with the baseline and a vendor-specific profile:

“Device:1.0[](Baseline:1), ABCService:2.17[1](Baseline:1, X_EXAMPLE-COM_MyProfile:2)”

Device supporting the ABCService Service Object, but with no profiles:

“Device:1.0[](Baseline:1), ABCService:2.17[1]()”

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 33 of 37

4 Profile Definitions

4.1 Notation
The following abbreviations are used to specify profile requirements:

Abbreviation Description
R Read support is REQUIRED.

W Both Read and Write support is REQUIRED. This MUST NOT be specified for a parameter that is
defined as read-only.

P The object is REQUIRED to be present.

C Creation and deletion of instances of the object via AddObject and DeleteObject is REQUIRED.

A Creation of instances of the object via AddObject is REQUIRED, but deletion is not required.

D Deletion of instances of the object via DeleteObject is REQUIRED, but creation is not required.

4.2 Baseline Profile
Table 6 defines the Baseline:1 profile for the Device:1 object. The minimum required version for this
profile is Device:1.0.

Table 6 – Baseline:1 Profile definition for Device:1
Name Requirement
Device. P

DeviceSummary R

Device.DeviceInfo. P

Manufacturer R

ManufacturerOUI R

ModelName R

Description R

SerialNumber R

HardwareVersion R

SoftwareVersion R

DeviceStatus R

UpTime R

Device.ManagementServer. P

URL W

Username W

Password W

PeriodicInformEnable W

PeriodicInformInterval W

PeriodicInformTime W

ParameterKey R

ConnectionRequestURL R

ConnectionRequestUsername W

ConnectionRequestPassword W

UpgradesManaged W

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 34 of 37

4.3 GatewayInfo Profile
Table 7 defines the GatewayInfo:1 profile for the Device:1 object. The minimum required version for this
profile is Device:1.0.

Table 7 – GatewayInfo:1 Profile definition for Device:1
Name Requirement
Device.GatewayInfo. P

ManufacturerOUI R

ProductClass R

SerialNumber R

4.4 Time Profile
Table 8 defines the Time:1 profile for the Device:1 object. The minimum required version for this profile
is Device:1.0.

Table 8 – Time:1 Profile definition for Device:1
Name Requirement
Device.Time. P

NTPServer1 W

NTPServer2 W

CurrentLocalTime R

LocalTimeZone W

4.5 LAN Profile
Table 9 defines the LAN:1 profile for the Device:1 object. The minimum required version for this profile
is Device:1.0.

Table 9 – LAN:1 Profile definition for Device:1
Name Requirement
Device.LAN. P

AddressingType R

IPAddress R

SubnetMask R

DefaultGateway R

DNSServers R

MACAddress R

Device.LAN.Stats. P

ConnectionUpTime R

TotalBytesSent R

TotalBytesReceived R

TotalPacketsSent R

TotalPacketsReceived R

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 35 of 37

4.6 IPPing Profile
Table 10 defines the IPPing:1 profile for the Device:1 object. The minimum required version for this
profile is Device:1.0.

Table 10 – IPPing:1 Profile definition for Device:1
Name Requirement
Device.LAN.IPPingDiagnostics. P

DiagnosticsState W

Host W

NumberOfRepetitions W

Timeout W

DataBlockSize W

DSCP W

SuccessCount R

FailureCount R

AverageResponseTime R

MinimumResponseTime R

MaximumResponseTime R

4.7 TraceRoute Profile
Table 11 defines the TraceRoute:1 profile for the Device:1 object. The minimum required version for this
profile is Device:1.0.

Table 11 – TraceRoute:1 Profile definition for Device:1
Name Requirement
Device.LAN.TraceRouteDiagnostics. P

DiagnosticsState W

Host W

Timeout W

DataBlockSize W

MaxHopCount W

DSCP W

ResponseTime R

NumberOfRouteHops R

Device.LAN.TraceRouteDiagnostics.RouteHops.{i}. P

HopHost R

4.8 UDPConnReq Profile
The UDPConnReq:1 profile for a Device implies support for all of the CPE requirements defined in Annex
G of [2], including support for the data model parameters as shown in Table 12. The minimum required
version for this profile is Device:1.1.

Table 12 – UDPConnReq :1 Profile definition for Device:1
Name Requirement
Device.ManagementServer. -

UDPConnectionRequestAddress R

UDPConnectionRequestAddressNotificationLimit W

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 36 of 37

Name Requirement
STUNEnable W

STUNServerAddress W

STUNServerPort W

STUNUsername W

STUNPassword W

STUNMaximumKeepAlivePeriod W

STUNMinimumKeepAlivePeriod W

NATDetected R

Data Model Template for TR-069-Enabled Devices TR-106 Amendment 1

 Page 37 of 37

Normative References
The following documents are referenced by this specification.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt

[2] TR-069 Amendment 1, CPE WAN Management Protocol, DSL Forum Technical Report

[3] TR-098 Amendment 1, Internet Gateway Device Data Model for TR-069, DSL Forum Technical
Report

[4] Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/faqs/OUI.html

[5] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[6] RFC 3066, Tags for the Identification of Languages, http://www.ietf.org/rfc/rfc3066.txt

[7] RFC 3513, Internet Protocol Version 6 (IPv6) Addressing Architecture,
http://www.ietf.org/rfc/rfc3513.txt

[8] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

[9] RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs), http://www.ietf.org/rfc/rfc3489.txt

