Aigasoone

TR-069 Amendment 3
CPE WAN Management Protocol

Issue: 1
Issue Date: November 2010
Protocol Version: 1.2

© The Broadband Forum. All rights reserved.

CPE WAN Management Protocol TR-069 Amendment 3

Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband
network system development and deployment. This Broadband Forum Technical Report has been
approved by members of the Forum. This Broadband Forum Technical Report is not binding on
the Broadband Forum, any of its members, or any developer or service provider. This Broadband
Forum Technical Report is subject to change, but only with approval of members of the Forum.
This Technical Report is copyrighted by the Broadband Forum, and all rights are reserved.
Portions of this Technical Report may be copyrighted by Broadband Forum members.

This Broadband Forum Technical Report is provided AS IS, WITH ALL FAULTS. ANY
PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL
REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT
PERMITTED BY LAW ANY REPRESENTATION OR WARRANTY, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY:

(A) OF ACCURACY, COMPLETENESS, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;

(B) THAT THE CONTENTS OF THIS BROADBAND FORUM TECHNICAL REPORT
ARE SUITABLE FOR ANY PURPOSE, EVEN IF THAT PURPOSE IS KNOWN TO
THE COPYRIGHT HOLDER;

(C) THAT THE IMPLEMENTATION OF THE CONTENTS OF THE TECHNICAL
REPORT WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

By using this Broadband Forum Technical Report, users acknowledge that implementation may
require licenses to patents. The Broadband Forum encourages but does not require its members
to identify such patents. For a list of declarations made by Broadband Forum member companies,
please see http://www.broadband-forum.org. No assurance is given that licenses to patents
necessary to implement this Technical Report will be available for license at all or on reasonable
and non-discriminatory terms.

ANY PERSON HOLDING A COPYRIGHT IN THIS BROADBAND FORUM TECHNICAL
REPORT, OR ANY PORTION THEREOF, DISCLAIMS TO THE FULLEST EXTENT
PERMITTED BY LAW (A) ANY LIABILITY (INCLUDING DIRECT, INDIRECT, SPECIAL,
OR CONSEQUENTIAL DAMAGES UNDER ANY LEGAL THEORY) ARISING FROM OR
RELATED TO THE USE OF OR RELIANCE UPON THIS TECHNICAL REPORT; AND (B)
ANY OBLIGATION TO UPDATE OR CORRECT THIS TECHNICAL REPORT.

Broadband Forum Technical Reports may be copied, downloaded, stored on a server or otherwise
re-distributed in their entirety only, and may not be modified without the advance written

permission of the Broadband Forum.

The text of this notice must be included in all copies of this Broadband Forum Technical Report.

November 2010 © The Broadband Forum. All rights reserved. Page 2 0of 197

CPE WAN Management Protocol

TR-069 Amendment 3

TR Issue History
Issue Number | Issue Date Issue Editor Changes
Issue 1 May 2004 Jeff Bernstein, 2Wire Issue 1
Tim Spets, Westell
Issue 1 November 2006 Jeff Bernstein, 2Wire Clarification of original document
Amendment 1 John Blackford, 2Wire
Mike Digdon, SupportSoft
Heather Kirksey, Motive
William Lupton, 2Wire
Anton Okmianski, Cisco
Issue 1 November 2007 William Lupton, 2Wire CWMP vl1.1: Multicast Download
Amendment 2 Davide Moreo, Telecom Italia support, 10 AUTONOMOUS
TRANSFER COMPLETE event,
AutonomousTransferComplete
method, additional Download fault
codes, interoperability clarifications,
minor editorial changes.
Issue 1 November 2010 John Blackford, Pace CWMP v1.2: Small updates for IPv6
Amendment 3 Heather Kirksey, Alcatel-Lucent related to DHCP, Additions for
a1 Software Module Management support
William Lupton, P
Hham Luptofl, Face (including new RPCs, Inform Event
Codes, fault codes, and an Annex on
UUIDs), ScheduleDownload RPC, and
CancelTransfer RPC.

Comments or questions about this Broadband Forum Technical Report should be directed

to info@broadband-forum.org.

Editors John Blackford Pace
Heather Kirksey Alcatel-Lucent
William Lupton ~ Pace
BroadbandHome™ Greg Bathrick
Working Group Chairs Heather Kirksey
Vice Chair Jason Walls UNH
November 2010 © The Broadband Forum. All rights reserved.

john.blackford@pace.com
hkirksey@motive.com
william.lupton@pace.com

PMC-Sierra

Alcatel-Lucent

Page 3 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Table of Contents

I INErOAUCTION L.ttt et ettt et et e e ebeebeesabeenbeesnseenseesnneans 13
1.1 Functional COMPONENLScceeeiieriieriieiiienieetie et eieeeteeieeseteeseeesereebeeseneenneas 13
1.1.1 Auto-Configuration and Dynamic Service Provisioning............c......... 13

1.1.2 Software/Firmware Image Managementccceevceeeriienieenieenneennen. 14

1.1.3 Software Module Management............c.ccccueeviierieeriieniieeniienie e 14

1.1.4 Status and Performance Monitoringccceecueevvierieeniienieenieenneennen. 14

L.1.5 DiIQ@NOSTICS. c.ueeeutieiieeiieiieeieeite et eite et et e et e seaeebeessaeenbeesaseenseessseenseas 14

1.2 Positioning in the End-to-End Architecture..........c.ccooceevervienieninienienenicnene 14
1.3 SeCUIIty GOALS ...coviiieiieiieiie ettt ettt ettt e b e ennees 15
1.4 Architectural GOAlSccoeviiiiiiiieiiieieee e 15
1.5 ASSUMPLIONS ..c.eviiiieeiiieiieeteette et et et e et e eite et e staeeteessaeesbeessseenseesaseenseessneenseas 16
1.6 TeIMINOLOZY ..c.evieiieeiiieiieeiie ettt ettt ettt et ettt e et e sebeebeeeabeenbeesnneenneas 17
1.7 ADDIEVIALIONSeouiieiiieiieeiie ettt ettt ettt ettt e ebeeseaeebeesabeenseesnneenneas 18
1.8 Document CONVENTIONSccveriieriierieetienieeteesteenseeseteeseessseenseessseenseessseesees 20
2 ATCRIEECIUTE ...ttt ettt et ettt et e s beeteeesbeeseesnseenseesnnaens 20
2.1 Protocol COMPONENLS.......ccueeruiieiieiieeiienieeteeiie et esite et eteeebeeseesareeseessseenseas 20
2.2 Security MEChaNISMScceeviieiiieriieiiieriie ettt ettt iee et e et eae s e seaeenneas 21
2.3 Architectural COMPONENLSccueeruiiiiieriieeiieiie et eiee et eieeere e eae e seaeeeeas 21
2.3.1 Parameters.....ccccueiiruiieiiiieeiiee ettt ettt ettt 21

2.3.2 File Transferscccueevieiiieiiecieeiect et e 22

2.3.3 CPE Initiated SESSIONScccveeriieriieriieiieeieeriieeieeiee e eiee e eeeesnneenees 23

2.3.4 Asynchronous ACS Initiated SESSIONSccceevvieriienieeiieniieiieereenen. 23

3 Procedures and REQUITEMENTScccuieiiiiiiierieeiieeie ettt ens 23
3.1 ACS DISCOVETY uvvieniieeiiieiieeieesieettesiteeteesteeebeessaeeseessseenseassseenseessseeseesssensees 24
3.2 Connection EstabliShment............ccccoeriiiiiiiiiiiiiiieiee e 27
3.2.1 CPE Connection INitiationc.eeeeeerieeriieeiiienieeieenieeieesiee e eieesaneens 27

3.2.2 ACS Connection INitiation.........c.eeeueerieerieeiiienieeieenie e esiee e eieesiaeens 29

3.3 UsC Of TLS @nd TCPoiiiiieiieieeeee ettt 31
3.4 USC O HTTP .ottt ettt et 33
3.4.1 Encoding SOAP over HTTP......cccccciiiiiiiiiiiiiieeeeeeeee e 33

3.4.2 Transaction SESSIONS........ccueerieeruierieeiiieniieeieenieeeteenteesseesseesseenseesnseens 34

3.4.3 File Transferscccueeciieiiieiiecieeieee ettt 36

3.4.4 AUthentiCatiON......c.cocuiiiiiiiiieiieeieete ettt ettt e s eesae e ens 36

3.4.5 Digest AUthentiCationcccueevuierieeiiierieeiienee ettt eeeeeee s ens 37

3.4.6 Additional HTTP Requirementscccceeecueenieniienieniienieeieeiie e 38

3.5 USC O SOAP ..ottt ettt et sbeenneas 38
3.6 RPC Support REQUITEMENLSceecviiriiieiieiieeiieeie ettt 44
3.7 Transaction Session Procedures..........ccoevieriieiiinieeiiienie e 45
3.7.1 CPE OPEIationcccueevuiieiiieiiieiieeiieeieesiee et sieeeteeieeeveesaeesnveesaesaeeens 45

3.7.2 ACS OPETAtION.....ueieiiiiiieiieeiieeteeeite et esite et esaeeereesseeebeenseessbeeseesnseans 55

3.7.3 Transaction EXamples.........cccceevuieriiiiiienieeiienie et 58
NOrmMative RETEIENCES.......ccouiiiiiiiiieiiee ettt 60

November 2010 © The Broadband Forum. All rights reserved. Page 4 of 197

CPE WAN Management Protocol TR-069 Amendment 3

ANNexX A. RPC MEthOdSccievericivnricisnnicssnnissssncsssnesssncssssncssssscssssscssssssssssssssssssssssssssns 63
AT INETOAUCTION ...ttt e et e e et e e eabe e saaeeenaaeeeareeeeens 63
A2 RPC Method USAZEeeiuiieiieiiiieiie ettt ettt sttt e et ibe b e eaeennees 63
A2 T DAt TYPES ..eeeuirieeiiieeiieeeiiee ettt e et e e st e e st e e sttt e e sibeeesabeesaaeesbbeesnsteesaneeesnbeeenanes 63
A.2.2 Other REQUITEMENTS........ooiuiieiiieiieiiieiie ettt ettt e seae e 64
A.3 Baselineg RPC MESSAZESccueeruiieriieiiieiieiieeieeeieeieesteeteeseteesseessseenseesnseenseasssesnseas 64
A.3.1 Generic MEthOdScuviieiiiiciiecce e 64
A.3.1.1GetRPCMEthOdS.......ccuviiiiiiieiiieeeece e 64

A.3.2 CPE MEEhOUS.....ccuiiieiiieeiee ettt et e e e e 66
A.3.2.1SetParameterValues.........cc.eeevieeeciiiieiieeciie e 66
A.3.2.2GetParameterValuesc..eeecveeeciiieeiieeeie e 68
A.3.2.3GetParameterNaAMEScuvviieeeiiiee e aaaee s 69
A.3.2.4SetParameter AttriDULEScccveeeiiieciee e 71
A.3.2.5GetParameter AttriDULEScccuveeeiiiieciie et 75

A 3. 2.6 AAAODJECE......ecvieiieeieciieie ettt et 76
AL3.2.7DCIEtEODJECEeeiiieieeiie ettt 79
A.3.2.8D0WNI0Ad ... 80
AL3.29REDOOL. ...t 85

A.3.3 ACS MEIOMS ...ttt ettt b e et e e ssaeseesnens 86
A3 TINTOIM .o e 86
A.3.3.2TransferComplete.......cccuveuieiiieiiieeiieiieee et 88
A.3.3.3AutonomousTransferCompletecoocveevieriiienieniiienieeieeeeeeeee. 90

A4 0ptioNAl RPC MESSAZESeevieeiiieiieeiiieiieeieeieeeteeieesaeeseeseteesseessseenseesssesnseessseensees 91
A 4.1 CPE MEthOdS. .. oottt ettt ettt e 91
A.4.1.1GetQueuedTransters.ccuieviieeciieeiie e 91
A.4.1.2Schedulelnformccoooviiiiiieeiecce e 92

A4 1. 3SEVOUCKETS......eiiiiiieiie et 92

A4 T AGELOPLIONS. ...eoutieiiieeiie et eiee ettt ete et e st e esteeebeebeessseeteessseenseessseenseas 93

A4 TSUPLOAA ..o 94

A 4.1 .6FaCtOTYRESELeiiiiieiiiieeiee e 96
A.4.1.7GetAllQueuedTransfers........ccocveeviieeciiieciie e 96
A.4.1.8ScheduleDownload..............cocueeeiiiieiiiieciie e 98
A4.1.9CancelTransterccoueieciiiiiiie et 102

A4.1.10 ChangeDUSHALEccveeciieiieeiieiie ettt 102

A4.2 ACS MEIOMS ...ttt e e ere s 106
Ad 2 TKICKEA. .. oiiiiiiciieeeecee et 106
A.4.2.2RequestDownload..........ccoueeriiiiiiiiiieiiee e 106
A.4.2.3DUStateChangeComplete..........cceereeeriienieeiieinieeieeiie e 107
A.4.2.4AutonomousDUStateChangeComplete..........ccceeeveenieniienienirenenne, 110

ASFault HanAINgooviiiiiiieiiee ettt e 113
A.5.1 CPE Fault Codes.......ccuviiiiiiiiiiieeeiie ettt svae e 113
A.5.2 ACS FaUlt COdeS ...ooiouiiiieiiieeiie ettt e 115
A.6 RPC Method XML SChEemaooeeiiiiiiiieciie et e 115

November 2010 © The Broadband Forum. All rights reserved. Page 50f197

CPE WAN Management Protocol TR-069 Amendment 3

ANNEX B, REMOVE...ccceiieiiiirrrrnnnerieceenrsssssnnseeeececssssssnssssssecesssssssssssssasssssssssnsasssssssssssses 150
Annex C. Signed VOUCKEIS......uiiieiiiiviinisrinsnniessssnesssncsssiessssncssssssssssssssssssssssssssssssns 151
C.l OVEIVICW ettt e et e e e et e e e e etaeeeeeeataeeeeetseeeeeentreeeeeeaneeeeennes 151
C.2 Control of Options Using VOUCKETS.........cc.coviiiiieriiriieiieeie e 151
C.3 VOoUChEr DefiNItiON.......ccoviiiiiiiiiie ettt ere e e et e e e eeaaeeeeenes 152
Annex D. Web Identity Management..........cccccceeeverescercssnicssnnncssssscssssscssssssssssssssseses 156
D1 OVEIVIEW ettt e e e e e e e et e e e e eaaeeeeeetaeeeeeeaeeeeeenaneeeean 156
D.2 Use of the Kicked RPC Method.........c.c..ooooiiiiiiiiiiiiieeiee e 156
D.3 Web Identity Management Proceduresccoocveviieiieniieiiienieeieeie e 157
D.4 LAN Side INtEITACE ...c.veeeiieiiieiieiie ettt ettt et e s abe e e 158
Annex E. Signed Package Format...........ccoeiivvverinsercssnicssnicssnnicssssscssssssssssssssssees 160
E. 1 INtrOQUCHION ...t e e e et e e e e etaeeeeeaneeeean 160
E.2 Signed Package Format StrucCtureccccovieeiieiiieniieiiecie e 160
E.2.1 Encoding CONVENtIONS.cecuteruieeriienieeiienieeieeseeeteesereeseessseeseessneesseessseens 161
E.3 Header FOIMAL.........ccvviiiiiiiiiececieee et enaee s 161
E.4 Command List FOIMALcoooiiviiiiiiiiiieceieee et 161
E.4.1T ComMMAN TYPES...cecueeeiiiiiieeiieiiieeieesiieeteeette et esite et e seeeeaeeseteesseessaeesaesnsaens 162
E.4.2 End Command............cooouviiiiiiiiieeeeiiee et eeetee e eeetae e e e e eeaeee e 163
E.4.3 Extract and Add Commands...........cc..ocoeeiviiieiiiuiieeeeiieee e 163
E.4.4 Remove COMMANAS..........cooeeiviiieiiiiieeeeeieeeeeeeieeeeeeeaeeeeeeetveeeeeeareeeeeeneeeeeenns 164
E.4.5 M0OVe COMMANGS........ccoouviieiiiiiieeeeiiieeeeeteeeeeeeaeeeeeeete e e eeeaaeeeeeeaaeeeeeeareeeeeenns 164
E.4.6 Version and Description Commands...........ccceceerireriienieenienieeiiesieesieeseens 165
E.4.7 Timeout COMMANASceeeiviiiieiiiiieeeeiieieeeeeteeeeeeeteeeeeeetreeeeeeareeeeeereeeeeenes 166
E.4.8 Reboot COMMANd........cccuveiiiiiiiiiieeeiiiee e eeetee e eetae e e e et e e eeaeeeeeeans 168
E.4.9 Format File SYSteM.......c.coviiiiiiiiiiiiieieciee et 168
E.4.10 Minimum and Maximum Version Commands.............ccccceeeevvvreeeeeineeeeenns 168
E.4.11 Role COmMMANAcccuviiiiiiiiiieieeieie et eeete e e eeaae e e eeaeeeeeenns 169
E.4.12 Minimum Storage Commands............ccceerveerienieeniieneeeniiesieeieesveenseesneens 170
E.4.13 Required Attributes Command............cccoecvieiirniieniieniieiieeie e 170
E.5 SI@NALUTES ...coviiiiiieiieiie et ettt ettt e et e et sabe e b eene 171
Annex F. Device-Gateway ASSOCIALIONceeeverircnressercssnrcsssnncsssnncssssscssssssssssessssseses 173
F.1 INtrOUCHION ...t et e e e e e e e eaaeeeeeaneee s 173
F.1.1T TerminolOZYccccvieiuiieiieiie ettt ettt ettt et e seaeesaesanaens 173
F.2 PIOCEAUIES ..ot e e e e e e eetaeeeeeaneeaean 174
F.2.1 Gateway ReqUIr€mMeNtS.........ccoeeiieiiiiniieiieiie ettt ens 174
F.2.2 Device ReqQUITEMENTS......cc.ececuiiiiiiiiieiieeiieeie ettt et seae e ens 175
F.2.3 ACS REQUITEIMENLSccuviiiiieiieiieeiieniieeieeeieeeieesiteeteeseaeeaeesaaeesseessneeseesasaens 176
F.2.4 Device-Gateway Association FIOWS..........ccccoevieriieniiniiinieiiecicece e 177
F.2.5 DHCP Vendor OPtiOnS........cceeeveeriierieeiiienieesieesieenteesereesseessseeseessseesseessseens 178
F.3 Security Considerations...........cceerireriierieeiiienieeieesieeieesteeseesteeseeseseenseesnseenseennns 179

November 2010 © The Broadband Forum. All rights reserved. Page 6 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Annex G. Connection Request via NAT Gateway.......ccocceevueerseecsenssnenseecssnecsanssnncnes 181
G.1 INEOAUCLION ...ttt ettt ettt sb e et sbe s 181
G2 PrOCEAUIES ...ttt ettt sttt sbe et st sbe s 181
G.2.1 CPE REQUITEMENLS.eeeiiiiiiieiieeiieeiieeiieeieeeteeiee e enteeseteebeessaeenseesnseenseesnns 182
G.2.1.1BINAING DISCOVETYeeevieiieeiieiieeiieeiieeieesee et sve et e sereeeeesae e e e 183
G.2.1.2Maintaining the Binding............cccccceeviieiiiniiiiiieieciec e 184
G.2.1.3Communication of the Binding Information to the ACS 185
G.2.1.4UDP Connection REqUESLSc.cccueeriieiiienieeiienieeieeeie e 187

G.2.2 ACS REQUITEIMENLSeieuvieiieeiieeiieeiieeite et eteeieeeereeeeeseteeaeessaeeseesaseenseeenns 188
G.2.2.1STUN Server ReqUIrEMENLScceerurerrierireiienieeieenreesieesaeeeeenens 188
G.2.2.2Determination of the Binding Information...............ccccecveevienirenennne. 189
G.2.2.3UDP Connection REqUESLSc.ceeveeriieiiienieeiienie e 190

G.2.3 MESSAZE FIOWS ..ottt ettt ettt e 192

G.3 Security CoNSIAETAtIONS.c..eeiiieriieeieeiieeieeieesteetteeteeseeeseteebeessreeseesaseeseessreenseas 195
Annex H. Software Module Management UUID USageccceeuvrercuercrcnnccssneccsnncens 196
H.T OVEIVIEW ..ttt sttt ettt et sb et 196
H.2 UUID Generation REQUITEMENLScccveevierireiieiieeiiesie ettt 197
H.3 CPE REQUITCIMENLScuviieiiieiiieiieiieeieesiteeteeeite et e siteeteeseeeebeessaeenseesaneenseesnseenseennns 197

November 2010 © The Broadband Forum. All rights reserved. Page 7 0of 197

CPE WAN Management Protocol TR-069 Amendment 3

List of Tables

Table 1 — Protocol layer SUMMATYc.cooviieiiieiieeiienie ettt ettt ens 21
Table 2 — Encapsulated Vendor Specific OPtionsc.ceceeeieeriienieenieenieeiiesieeiee s 25
Table 3 — Session Retry Wait INtervals...........cccveviieiiiiniiiiieiieceee e 29
Table 4 — SOAP Header EICMENtS.........cc.cooiieiiiiiiieiieieeitee ettt 43
Table 5 — RPC mesSage reqUITEIMENTSccceeerveerieeriienieeieenieeiieseeeseessreeseessneenseesssaens 44
Table 6 — CPE Message Transmission CONSLraiNScceeeveeriierieenieeniieenieeneeeneeeneens 47
Table 7 — EVENE TYPES ..veevieeiiieiieeieeeiieeit ettt eite ettt et ite et e s aeebeesabeenseesnneenseesnsaens 49
Table 8 — ACS Message Transmission CONStIAINEScecuverveeriierieenieenieenieesveeneeeseeens 56
TabIE O — DA EYPES ..eevveeiieeiiieiieeieeeiie ettt ettt e et estte et e e st e e bt essbeebeesaseenseessneeseennsaans 63
Table 10 — GetRPCMethods argumentscccueecuieeieeriienieeiieeie et seeeeee s e 65
Table 11 — GetRPCMethodsResponse argumentsoceeeveerueenieenieenieenieenieenieesnens 65
Table 12 — SetParameterValues argumentsc.ccceeeieeriienieeniienieeieeeie e sveeieeeieeens 66
Table 13 — SetParameterValuesResponse argumentscceeeveeeeeerieenieenieesieenieeneenns 66
Table 14 — ParameterValueStruct definition...........ccceeeeieiiieiiieiiieiie e 67
Table 15 — GetParameterValues arguments............ccceeeveeriieiieeiiienieeieeeie e 68
Table 16 — GetParameterValuesResponse argumentsccoecveeeeeerieenieenieesieenieennenns 68
Table 17 — GetParameterNames arguments..........c.cccueeeveerieenieeniieniieesieenieeseeseeenseesneens 69
Table 18 — GetParameterNamesResponse argumentsceeeveereeerieenieenieeseeenieennnenns 70
Table 19 — ParameterInfoStruct definitioncccccceeeiieiieiiieiienieeee e 70
Table 20 — SetParameter Attributes argUMENtSceccveevveerieeriienieerieenieeeeesveeseeseeens 71
Table 21 — SetParameterAttributesResponse argumentsceccveeveerieenieenveenieennenns 71
Table 22 — SetParameterAttributesStruct definitionccoeeveeviieriieiiieniieeiecie e 72
Table 23 — GetParameter Attributes argUMENtS.........c.eeeeeerieerieeriienieeieeeieereesreeeeeeaeeens 75
Table 24 — GetParameterAttributesResponse argumentscocceeveerieenieenieenieennnenns 75
Table 25 — ParameterAttributeStruct definition...........ccceevieriiieiieniiiiieeiceeece e 75
Table 26 — AddODJECt ArZUMENLSceecuieiiiieiieriieeieeeie et eeee et teesaeebeeseaeeseeeaeeens 78
Table 27 — AddObjectResSponse argUmMENLtS..........c.cccveereeerieenieeriienieerieesieeeeesneesseesaeeens 78
Table 28 — DeleteObject argUMENTS..........eeeiieiiierieeiieeieeiteeeeeiee et e e ereeseneeseesaeeens 80
Table 29 — DeleteObjectReSponse argUMENLtSceceeerueerieeriieniieesieenieenieesveesseesneens 80
Table 30 — Download argUMENLScceeriieriienieeiieeie ettt eae et e sene e saee e 82
Table 31 — DownloadResponse arguments.............cccueeeeeerieenieeniienieenieeeieeiee e eieeeeeeens 85
Table 32 — Reb0Ot argUMENLSc.covuiiiiiiiiiiiiiesie ettt ens 86
Table 33 — RebootResponse argUmeENtscceeveeeiienieesiienieeiieeie et eiee e ens 86
Table 34 — INfOrm argUmMENTS...........cooveiiiieriieiieeie ettt et e re e teeeaeebeeseaeeseesaeaens 86
Table 35 — InformReSpONSE argUIMENLSceovieriieeiieeiieeiieeieeieeeee et eee et e seeeeiee e e 87
Table 36 — DeviceldStruct definition..........covvieierieririerieieeeeeee e 87
Table 37 — EventStruct definitioncocccevuieiiiiiniiiieniececeeeeee e 88
Table 38 — TransferComplete argUmENts............cccueeevierieeriienieeiiienie e eieeiee e eieeeiee e 89
Table 39 — TransferCompleteResponse argumentsccccueeeveereeerieenieenieeseeenieeseens 89
Table 40 — FaultStruct definitioncocuiiiiieiiieiieeiieee et 89
Table 41 — AutonomousTransferComplete arguments..............ccceeeveeerieniienienieenieeneeens 90
Table 42 — AutonomousTransferCompleteResponse arguments............cccceeeveevveenieennnnnn. 91
Table 43 — GetQueuedTransfers argUMENtSccceeeeeeiiieriieeniieeie et eve e eeeens 91
Table 44 — GetQueuedTransfersResponse argumentsccoeceeeceeerieenieenieesieenieeneenns 91
Table 45 — QueuedTransferStruct definitioncccceeeeiiiiiiiiiciicceeeeeee e, 91

November 2010 © The Broadband Forum. All rights reserved. Page 8 0f 197

CPE WAN Management Protocol TR-069 Amendment 3

Table 46 — ScheduleInform arguUmMENtsccceevieeiiieriieiieie et 92
Table 47 — ScheduleInformResponse arguments.............cccceeeveeriierieenieenieeniesee e 92
Table 48 — SetVouchers argUmentscoeoeerieeiiienieeniiesie ettt ens 92
Table 49 — SetVouchersResponse argumentsc.cocveerueerieeriienieenieenieeiee e eieeseeens 93
Table 50 — GetOPtioNS ArGUIMENLScccuieriieriieiieeiieeieeitesteetteseeesteessaeeseessneenseesnseens 93
Table 51 — GetOptionSRespoNse argUmMEeNtscceeeeeeriierieeniienieerieeeieeiee e eieesieens 93
Table 52 — OptionStruct defiNItIONcccuieiiieiiieiie et 93
Table 53 — Upload argUmeENtSccceeeciieriieiiieiieeiieeie et see et e seeesaeebeeseaeeseesaeaens 94
Table 54 — UploadResponse argumEnLtS...........c.ceeueeueerieerieenieeiiienieeieesieereesneeseesaneens 96
Table 55 — FactoryReset argUmeEnts..........cocveeeuierieeiiienieeieeeie ettt ens 96
Table 56 — FactoryResetResponse argumentsccccueerueerieeniienieenieenieeieeseeeieesaeens 96
Table 57 — GetAllQueuedTransfers argUmMEntscc.eevueeeieeriieniieeneenieeee e e 97
Table 58 — GetAllQueuedTransfersResponse arguments.............ceccueevueerieenieenieenieennenns 97
Table 59 — AllQueuedTransferStruct definitionccocveeeeiiieiiieiiiieeeeeee e, 97
Table 60 — ScheduleDownload argumentscccceeeieeriienieeniienie e 99
Table 61 — ScheduleDownloadResponse argumentsocceeeveerueenveereesieeenieenneenne 100
Table 62 — TimeWindowStruct definitioncceevcvieriieriienienie e 100
Table 63 — CancelTransfer argumentscccueevieriieriienieeiieeie et 102
Table 64 — CancelTransferResponse arguments............cceccveereeriieniienieeneesieeniee e eneen 102
Table 65 — ChangeDUState ATGUMENLS.cccvieriieriieiieeieeiieeieeiee e eieesreeaeesereeneees 103
Table 66 — ChangeDUStateResponse Argumentscceeeeeeieeniienieeneenieenieenreenee 104
Table 67 — OperatioNStIUCt TYPES ...oecveeriieiieiiieiie ettt 104
Table 68 — InstallOpStruct DefiNition........cceeeiieiieiiieiieeie et 104
Table 69 — UpdateOpStruct Definitioncceevieriierieniieiieeie e 104
Table 70 — UninstallOpStruct Definitionc.cecveeiieriieniieiieeie e 105
Table 71 — Kicked argumentsccceeoiieriieiiieiieeie et 106
Table 72 — KickedResSpONse arguUmeEntscc.eevveeeiierieenieeniienieeieeeeeesiee e evee e eneees 106
Table 73 — RequestDownload argumentscceecueeruieriienienieeieeie e 106
Table 74 — RequestDownloadResponse arguments...........c.oeeeeeieerieenieenieesieenieesreeneenn 107
Table 75 — ArgStruct definitioncceevvieriieiiieieeie e 107
Table 76 — DUStateChangeComplete ATgUMENLScc.eeeveerieerieeriienieerieenieenieenveeneees 108
Table 77 — OpResultStruct Definitionccccoevieeiieiieniiiieeeeee e 108
Table 78 — FaultStruct Definitionccceeoiiiiiiiniinieieneeeeeeeee e 109
Table 79 — DUStateChangeCompleteResponse Arguments...........ccceecveeeiverieeneeeneneennen. 110
Table 80 — AutonomousDUStateChangeComplete Argumentsc.ccceeeeeeieeneneennen. 111
Table 81 — AutonOpResultStruct Definitionccoeeeeriieiiiniieiicceeee e 111
Table 82 — FaultStruct Definitioncccooieiiiiiieiiieiece e 112
Table 83 — AutonomousDUStateChangeCompleteResponse Arguments...................... 113
Table 84 — Fault COARSeoruiiiiriiiiiiieciceece et 113
Table 85 — Fault COARSeoruiiiiriiiiiiieceeee et 115
Table 86 — Option specification definitionceecvierieriienieniieieee e 152
Table 87 — DeviceldStruct definition..........cocueveiviiriinieieiieeeeee e 153
Table 88 — Recommended CGI Arguments for the kick URLccooviiiiiiennnnen. 158
Table 89 — Signed package component SUMMATYcccueereerieenieenveenienieenieesreeeees 160
Table 90 — Signed package header format.............cccceeviieiiiiniiniieieee e 161
Table 91 — Command fOrmatcocueriiiiiriiniieee e 161

November 2010 © The Broadband Forum. All rights reserved. Page 9 0of 197

CPE WAN Management Protocol TR-069 Amendment 3

Table 92 — Command TypPe SUMMATYcceeriieriieriieiieeieerieeeteeieeeeeeieeseteesseeseneeneees 162
Table 93 — Value format for the extract and add commands.............cc.ccccoevviieeiiinneneenn. 163
Table 94 — Value format for the remove commandscoccveeeeeiinieeeeeiveeeeeeieeeeens 164
Table 95 — Value format for the move commandsccoovvveieeeiiiieeeiiiniee e, 165
Table 96 — Value format for the timeout commandscoccveeeeeiireeeeeeineeeeeeiieeeens 166
Table 97 — Timeout command defiNItioNScoovvveeeiiiivieeeeiiieee e 167
Table 98 — Value format for the minimum and maximum version commands............... 168
Table 99 — Value format for the role command...............cccoeeeeviiiiiiiiiieecceeee e, 170
Table 100 — Value format for the minimum storage commandsccccecveevueenrennen. 170
Table 101 — Value format for the required attributes command..............ccccecueevvenenrnnen. 171
Table 102 — Encapsulated Vendor-Specific Option-Data fields..........cccccoeevveeriiennennen. 179
Table 103 — Optional STUN attributes used in Binding Request messages................... 185

November 2010 © The Broadband Forum. All rights reserved. Page 10 of 197

CPE WAN Management Protocol TR-069 Amendment 3

List of Figures
Figure 1 — Positioning in the End-to-End Architecturec.cceceveeniniienienenieneeicnne 15
Figure 2 — Protoco] STACKooiiiuiiiiiieiicieeeeeree e 20
Figure 3 — Transaction Session EXample.........cocooveriiriniiiniiiiniienicicesceeceseeene 58
Figure 4 — Example with the ACS using HoldRequests equal trueccccevveeniennnenn. 59
Figure 5 — Example Option SPecifiCationcccceevuereenieriinienieeieneeieeiesieee e 153
Figure 6 — Example signed VOUCKET..........ccccuiiiiiiiiiiiieicce e 153
Figure 7 — Sequence of events for the “kick” mechanism............cccccoceeveriiniininnennnn. 158
Figure 8 — Signed package formatccocuieiiiiiiiiiiiniieee e 160
Figure 9 — Download state diagram used for timeout model............c.ccoeriiniininnicnnene. 167
Figure 10 — Device-Gateway Association using DHCP DiSCOVeT..........cccceveerieriennnene. 177
Figure 11 — Device-Gateway Association Using DHCP Inform..........c.ccoceevvenieennennne. 178
Figure 12 — Binding discovery / maintenance from the primary source port................. 193
Figure 13 — Binding Request from secondary source port for binding timeout discovery
... 193
Figure 14 — Binding change notification authenticated by the ACSccccoovviennen. 194
Figure 15 — Binding change notification not authenticated by the ACSccc...... 194
Figure 16 — UDP Connection REqUESt.........ccceveiriiriiriiniiniinieiececeeieeescee e 195

November 2010 © The Broadband Forum. All rights reserved. Page 11 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Executive Summary
A protocol for communication between a CPE and Auto-Configuration Server (ACS) that

encompasses secure auto-configuration as well as other CPE management functions
within a common framework.

November 2010 © The Broadband Forum. All rights reserved. Page 12 of 197

1.1

1.1.1

CPE WAN Management Protocol TR-069 Amendment 3

Introduction

Note — Sections I and 2 of this document are introductory and do not define
requirements of this protocol.

This document describes the CPE WAN Management Protocol, intended for
communication between a CPE and Auto-Configuration Server (ACS). The CPE WAN
Management Protocol defines a mechanism that encompasses secure auto-configuration
of a CPE, and also incorporates other CPE management functions into a common
framework.

This document specifies the generic requirements of the management protocol methods
which can be applied to any TR-069 CPE. Other documents specify the managed
objects, or data models, for specific types of devices or services.

Functional Components

The CPE WAN Management Protocol is intended to support a variety of functionalities
to manage a collection of CPE, including the following primary capabilities:

* Auto-configuration and dynamic service provisioning
* Software/firmware image management

* Software module management

* Status and performance monitoring

* Diagnostics

Auto-Configuration and Dynamic Service Provisioning

The CPE WAN Management Protocol allows an ACS to provision a CPE or collection of
CPE based on a variety of criteria.

The provisioning mechanism allows CPE provisioning at the time of initial connection to
the broadband access network, and the ability to re-provision or re-configure at any
subsequent time. This includes support for asynchronous ACS-initiated re-provisioning
of a CPE.

The identification mechanisms included in the protocol allow CPE provisioning based
either on the requirements of each specific CPE, or on collective criteria such as the CPE
vendor, model, software version, or other criteria.

The protocol also provides optional tools to manage the CPE-specific components of
optional applications or services for which an additional level of security is required to
control, such as those involving payments. The mechanism for control of such
applications and services is the Software Module Management mechanism as defined in
A.4.1.10 (ChangeDUState RPC), A.4.2.3 (DUStateChangeComplete RPC), and described
in Appendix II / TR-157 Amendment 3 [29].

The provisioning mechanism allows straightforward future extension to allow
provisioning of services and capabilities not yet included in this version of the
specification.

November 2010 © The Broadband Forum. All rights reserved. Page 13 of 197

1.1.2

1.1.3

1.1.4

1.1.5

1.2

CPE WAN Management Protocol TR-069 Amendment 3

Software/Firmware Image Management

The CPE WAN Management Protocol provides tools to manage downloading of CPE
software/firmware image files. The protocol provides mechanisms for version
identification, file download initiation (ACS initiated downloads and optional CPE
initiated downloads), and notification of the ACS of the success or failure of a file
download.

Software Module Management

The CPE WAN Management Protocol enables an ACS to manage modular software and
execution environments on a CPE. Capabilities provided include the ability to install,
update, and uninstall software modules as well as notification to the ACS of success or
failure of each action. The protocol also provides support to start and stop applications
on the CPE, enable and disable execution environments, and inventory the software
modules available on the device.

Status and Performance Monitoring

The CPE WAN Management Protocol provides support for a CPE to make available
information that the ACS may use to monitor the CPE’s status and performance statistics.
It also defines a set of mechanisms that allow the CPE to actively notify the ACS of
changes to its state.

Diagnostics

The CPE WAN Management Protocol provides support for a CPE to make available
information that the ACS may use to diagnose and resolve connectivity or service issues
as well as the ability to execute defined diagnostic tests.

Positioning in the End-to-End Architecture

The ACS is a server that resides in the network and manages devices in or at the
subscriber premises. The CPE WAN Management Protocol may be used to manage both
DSL B-NTs and other types of CPE, including stand-alone routers and LAN-side client
devices. It is agnostic to the specific access medium utilized by the service provider,
although it does depend on IP-layer connectivity having been established by the device.

Note — in the case of a B-NT, TR-046 [2] describes the overall framework for
B-NT auto-configuration, and TR-062 [3] and TR-044 [4] define the ATM layer
and IP layer auto-configuration procedures. Other types of broadband CPE
should make use of the protocols appropriate to their network architectures in
order to obtain IP connectivity.

Note — where the CPE WAN Management Protocol is used to manage both a B-
NT (or other Internet Gateway Device), and a LAN-side client device operating
behind that B-NT (or other Internet Gateway Device), Annex F defines a
mechanism to allow the ACS to associate the two so that they may be managed
together.

November 2010 © The Broadband Forum. All rights reserved. Page 14 of 197

1.3

1.4

CPE WAN Management Protocol TR-069 Amendment 3

Figure 1 — Positioning in the End-to-End Architecture

OSS/BSS

Policy
’ Scope of CPE WAN Management
Protocol (CWMP):
Q) ACS Southbound Interface

Managed LAN
Device

call E Manage_d LAN
Center \% E Device
" . Managed Interne
e Auto-Configuration Gateway Device
‘\ Server (ACS) y
_/

ACS Northbound Interface

Security Goals

The CPE WAN Management Protocol is designed to provide a high degree of security.
The security model is also designed to be scalable. It is intended to allow basic security
to accommodate less robust CPE implementations, while allowing greater security for
those that can support more advanced security mechanisms. In general terms, the
security goals of the CPE WAN Management Protocol are as follows:

* Prevent tampering with the management functions of a CPE or ACS, or the
transactions that take place between a CPE and ACS.

* Provide confidentiality for the transactions that take place between a CPE and ACS.
* Allow appropriate authentication for each type of transaction.

e Prevent theft of service.

Architectural Goals
The protocol is intended to provide flexibility in the connectivity model. The protocol is
intended to provide the following:

* Allow both CPE and ACS initiated connection establishment, avoiding the need for a
persistent connection to be maintained between each CPE and an ACS.

* The functional interactions between the ACS and CPE should be independent of
which end initiated the establishment of the connection. In particular, even where
ACS initiated connectivity is not supported, all ACS initiated transactions should be
able to take place over a connection initiated by the CPE.

* Allow one or more ACSs to serve a population of CPE, which may be associated with
one or more service providers.

The protocol is intended to support discovery and association of ACS and CPE:

November 2010 © The Broadband Forum. All rights reserved. Page 15 0of 197

1.5

CPE WAN Management Protocol TR-069 Amendment 3

* Provide mechanisms for a CPE to discover the appropriate ACS for a given service
provider.

* Provide mechanisms to allow an ACS to securely identify a CPE and associate it with
a user/customer. Processes to support such association should support models that
incorporate user interaction as well as those that are fully automatic.

The protocol is intended to allow an ACS access to control and monitor various
parameters associated with a CPE. The mechanisms provided to access these parameters
are designed with the following premises:

* Different CPE may have differing capability levels, implementing different subsets of
optional functionality. Additionally, an ACS may manage a range of different device
types delivering a range of different services. As a result, an ACS must be able to
discover the capabilities of a particular CPE.

* An ACS must be able to control and monitor the current configuration of a CPE.

* Other control entities besides an ACS may be able to control some parameters of a
CPE’s configuration (e.g., via LAN-side auto-configuration). As a result, the
protocol must allow an ACS to account for external changes to a CPE’s
configuration. The ACS should also be able to control which configuration
parameters can be controlled via means other than by the ACS.

* The protocol should allow vendor-specific parameters to be defined and accessed.

The protocol is intended to minimize implementation complexity, while providing
flexibility in trading off complexity vs. functionality. The protocol incorporates a
number of optional components that come into play only if specific functionality is
required. The protocol also incorporates existing standards where appropriate, allowing
leverage of off-the-shelf implementations.

The protocol is intended to be agnostic to the underlying access network.

The protocol is also designed to be extensible. It includes mechanisms to support future
extensions to the standard, as well as explicit mechanisms for vendor-specific extensions.

Assumptions

Some assumptions made in defining the CPE WAN Management Protocol are listed
below:

* All CPE regardless of type (bridge', router, or other) obtain an IP address in order to
communicate with an ACS.

* A CPE can interact with a single ACS at a time. At any time, a CPE is aware of
exactly one ACS with which it can connect. (Note: a collection of ACSs behind a
load balancer is considered a single ACS for the purposes of this document.)

! In the case of a bridge, the CPE must establish IP-layer connectivity specifically for management communication.

The mechanism used to establish this connectivity would depend on the specific network architecture. For
example, a DSL bridge may connect using IPoE with DHCP for address allocation, or may connect using PPPoE.

November 2010 © The Broadband Forum. All rights reserved. Page 16 of 197

1.6

CPE WAN Management Protocol

Terminology

TR-069 Amendment 3

The following terminology is used throughout the series of documents defining the CPE
WAN Management Protocol.

ACS

Action

Applied

B-NT

Committed

CPE

CWMP

Data Model

Deployment
Unit

Device

Event

Execution

Environment

Execution
Unit

November 2010

Auto-Configuration Server. This is a component in the broadband
network responsible for auto-configuration of the CPE for advanced
services.

An explicitly triggered transition in the software module state model; e.g.
Install, Update, Uninstall, Start, Stop, etc. (see Appendix II/TR-157 [29])

A change to the CPE’s configuration has been applied when the CPE has
stopped using the previous configuration and begun using the new
configuration.

Broadband-Network Termination. A specific type of Broadband CPE
used in DSL networks.

A change to the CPE’s configuration has been committed when the
change has been fully validated, the new configuration appears in the
configuration data model for subsequent ACS operations to act on, and
the change will definitely be applied in the future, as required by the
protocol specification.

Customer Premises Equipment; refers to any TR-069-compliant device
and therefore covers both Internet Gateway Devices and LAN-side end
devices.

CPE WAN Management Protocol (the subject of this standard).

A hierarchical set of Parameters that define the managed objects
accessible via TR-069 for a particular device or service.

An entity that can be individually deployed on the Execution
Environment. A Deployment Unit can consist of functional Execution
Units and/or configuration files and/or other resources.

Used interchangeably with CPE.

An indication that something of interest has happened that requires the
CPE to notify the ACS.

A software platform that enables the dynamic loading and unloading of
Software Modules. Typical examples include Linux, OSGi, .NET, and
Java ME. Some Execution Environments enable the sharing of resources
amongst modules.

A functional entity that, once started, initiates processes to perform tasks
or provide services, until it is stopped. Execution Units are deployed by
Deployment Units. The following list of concepts could be considered
an Execution Unit: services, scripts, software components, libraries, etc.

Page 17 of 197

© The Broadband Forum. All rights reserved.

1.7

CPE WAN Management Protocol

Internet
Gateway
Device

Parameter

RPC

Session

Software
Module

STB

Transaction

Transaction
Session

VolP
Endpoint

TR-069 Amendment 3

A CPE device, typically a broadband router, that acts as a gateway
between the WAN and the LAN.

A name-value pair representing a manageable CPE parameter made
accessible to an ACS for reading and/or writing.

Remote Procedure Call.

A contiguous sequence of CWMP transactions between a CPE and an
ACS. Note that a Session may span multiple TCP connections.

The common term for all software (other than firmware) that will be
installed on an Execution Environment, including the concepts of
Deployment Units and Execution Units.

Set Top Box. This device contains Audio and Video decoders and is
intended to be connected to Analog TV and / or Home Theaters.

A message exchange between a CPE and ACS consisting of a single
request followed by a single response, initiated either by the CPE or
ACS.

The same as a Session. The “Transaction” qualifier is sometimes used
for emphasis.

A Voice over IP device that acts as the initiation/termination point for
VolIP calls. Examples of Endpoints include VoIP phones and analog
terminal adapters (ATAsS).

Abbreviations
This Technical Report defines the following abbreviations:

ACL
ACS
ADSL
AES
ASCII
ATA
ATM
BOOTP
CGl
CN
CPE
CSRF
CWMP
DHCP
DNS
DSL
DSM-CC
DU

November 2010

Access control list

Auto-Configuration Server

Asymmetric Digital Subscriber Line
Advanced Encryption Standard

American Standard Code for Information Interchange
Analog terminal adapter

Asynchronous Transfer Mode

Boot Strap Protocol

Common Gateway Interface

Common Name

Customer Premise Equipment

Cross-site request forgery

CPE WAN Management Protocol

Dynamic Host Configuration Protocol
Domain Name System

Digital Subscriber Line

Digital storage media command and control
Deployment Unit

Page 18 of 197

© The Broadband Forum. All rights reserved.

CPE WAN Management Protocol TR-069 Amendment 3

EE
EU
FLUTE
FTP
HMAC
HTML
HTTP
HTTPS
IANA
ID

IP
IPv6
ISO
LAN
LSB
MD5
NAT
NTP
NT
OSGi
OuUIl
PKCS
QoS
RFC
RPC
RSA
SFTP
SHAL1
SNMP
SNTP
SOAP
SSH
SSL
STB
STUN
TCP
TFTP
TLS
TLV
TR
TTL
TV
UDP
UPnP
URI
URL

Execution Environment

Execution Unit

File Delivery over Unidirectional Transport
File transfer Protocol

Hash-based Message Authentication Code
Hypertext Markup Language

Hypertext Transfer Protocol

Hypertext Transfer Protocol over Secure Socket Layer
Internet Assigned Numbers Authority
Identifier

Internet Protocol

Internet Protocol version 6

International Organization for Standardization
Local Area Network

Least significant bit

Message-Digest algorithm 5

Network Address Translation

Network Time Protocol

Network Termination

OSGi Alliance (former Open Services Gateway initiative)
Organizationally Unique Identifier

Public Key Cryptography Standards
Quality of Service

Request for Proposal

Remote Procedure Call

Rivest, Shamir and Adleman (crypto system)
SSH File Transfer Protocol

Secure Hash Algorithm 1

Simple Network Management Protocol
Simple Network Time Protocol

Simple Object Access Protocol

Secure Shell

Secure Socket Layer

Set Top Box

Session Traversal Utilities for NAT
Transmission Control Protocol

Tiny File transfer Protocol

Transport Layer Security

Type length value

Technical Report

Time to Live

Television

User Datagram Protocol,

Universal Plug and Play

Uniform Resource Identifier

Universal Resource Locator

November 2010 © The Broadband Forum. All rights reserved. Page 19 of 197

1.8

2.1

CPE WAN Management Protocol TR-069 Amendment 3

URN Uniform Resource Name
UTC Coordinated Universal Time

UTF Universal Multiple-Octet Coded Character Set Transformation Format
UUID Universally Unique Identifier
VoIP Voice over Internet Protocol

WAN Wide Area Network

XML Extensible Markup Language
XSD XML Schema

XSS Cross-Site Scripting

Document Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in [1].

The key word “DEPRECATED” refers to a protocol feature, e.g. an RPC Method or
Event Type, that is defined and valid in the current version of the standard but is not
strictly necessary, e.g. because another more powerful feature has been defined. Such
features SHOULD NOT be used; they might be removed from the next major version of
the protocol.

Architecture

Protocol Components

The CPE WAN Management Protocol comprises several components that are unique to
this protocol, and makes use of several standard protocols. The protocol stack defined by
the CPE WAN Management Protocol is shown in Figure 2. A brief description of each
layer is provided in Table 1. Note that the CPE and ACS must adhere to the requirements
of the underlying standard protocols unless otherwise specified.

Figure 2 — Protocol stack

CPE/ACS Management Application

RPC Methods

SOAP

HTTP

SSL/TLS

TCP/IP

November 2010 © The Broadband Forum. All rights reserved. Page 20 of 197

2.2

23
2.3.1

CPE WAN Management Protocol TR-069 Amendment 3

Table 1 — Protocol layer summary

Layer Description

CPE/ACS Application The application uses the CPE WAN Management Protocol on the CPE and ACS,
respectively. The application is locally defined and not specified as part of the CPE
WAN Management Protocol.

RPC Methods The specific RPC methods that are defined by the CPE WAN Management Protocol.
These methods are specified in Annex A.

SOAP A standard XML-based syntax used here to encode remote procedure calls. Specifically
SOAP 1.1, as specified in [9].

HTTP HTTP 1.1, as specified in [6].

TLS The standard Internet transport layer security protocol. Specifically, TLS 1.2 (Transport

Layer Security) as defined in [11] (or a later version). Note that previous versions of this
specification referenced SSL 3.0 and TLS 1.0.

TCP/IP Standard TCP/IP.

Security Mechanisms

The CPE WAN Management Protocol is designed to allow a high degree of security in
the interactions that use it. The CPE WAN Management Protocol is designed to prevent
tampering with the transactions that take place between a CPE and ACS, provide
confidentiality for these transactions, and allow various levels of authentication.

The following security mechanisms are incorporated in this protocol:

* The protocol supports the use of TLS for communications transport between CPE and
ACS. This provides transaction confidentiality, data integrity, and allows certificate-
based authentication between the CPE and ACS.

* The HTTP layer provides an alternative means of CPE and ACS authentication based
on shared secrets. Note that the protocol does not specify how the shared secrets are
learned by the CPE and ACS.

Architectural Components

Parameters

The RPC Method Specification (see Annex A) defines a generic mechanism by which an
ACS can read or write Parameters to configure a CPE and monitor CPE status and
statistics. Parameters for various classes of CPE are defined in separate documents. At
the time of writing the following standards define TR-069 data models.

¢ TR-098: Internet Gateway Device Data Model for TR-069 [24]

e TR-104: Provisioning Parameters for VoIP CPE [25]

* TR-135: Data Model for a TR-069 Enabled STB [26]

* TR-140: TR-069 Data Model for Storage Service Enabled Devices [27]

* TR-143: Enabling Network Throughput Performance Tests and Statistical
Monitoring [28]

¢ TR-157: Component Objects for CWMP [29]
¢ TR-181: Device Data Model for TR-069 [31] and [32]

November 2010 © The Broadband Forum. All rights reserved. Page 21 of 197

2.3.2

CPE WAN Management Protocol TR-069 Amendment 3

* TR-196: Femto Access Point Service Data Model [30]

Each Parameter consists of a name-value pair. The name identifies the particular
Parameter, and has a hierarchical structure similar to files in a directory, with each level

separated by a “.”” (dot). The value of a Parameter may be one of several defined data
types (see TR-106 [13]).

Parameters may be defined as read-only or read-write. Read-only Parameters may be
used to allow an ACS to determine specific CPE characteristics, observe the current state
of the CPE, or collect statistics. Writeable Parameters allow an ACS to customize
various aspects of the CPE’s operation. All writeable Parameters must also be readable
although those that contain confidential user information, e.g. passwords, may return
empty values when read (this is specified in the corresponding data model definition).
The value of some writeable Parameters may be independently modifiable through means
other than the interface defined in this specification (e.g., some Parameters may also be
modified via a LAN side auto-configuration protocol).

Because other protocols (as well as subscriber action) may independently modify the
device configuration, the ACS cannot assume that it is the only entity modifying device
configuration. Additionally, it is possible that a LAN-side mechanism could alter device
configuration in such a way that it contravenes the intended ACS-supplied configuration.
Care should be taken in the implementation of both WAN and LAN-side auto-
configuration mechanisms, as well as subscriber-facing interfaces, to limit the instances
of such an occurrence.

The protocol supports a discovery mechanism that allows an ACS to determine what
Parameters a particular CPE supports, allowing the definition of optional parameters as
well as supporting straightforward addition of future standard Parameters.

The protocol also includes an extensibility mechanism that allows use of vendor-specific
Parameters in addition to those defined in this specification.

File Transfers

The RPC Method Specification (see Annex A) defines mechanisms to facilitate file
transfers for a variety of purposes, such as downloading firmware upgrades or vendor-
specific configuration files, (optionally) installing or updating software modules, and
(optionally) uploading configuration or log files from the device.

File transfers can be performed by means of Unicast or (for downloads) Multicast
transport protocols. Unicast protocols include HTTP/HTTPS, FTP, SFTP and TFTP.
Multicast protocols include FLUTE and DSM-CC. Support for HTTP/HTTPS is
mandatory, and protocols other than those listed here can be supported.

When a file transfer is initiated by the ACS via any of the method calls that can cause a
file transfer, the CPE is provided with the location of the file (or possibly files in the case
of a software module installation or update) to be transferred, or details of the Multicast
group to join (for Multicast downloads). The CPE then performs the transfer(s), and
notifies the ACS of success or failure.

November 2010 © The Broadband Forum. All rights reserved. Page 22 of 197

2.3.3

CPE WAN Management Protocol TR-069 Amendment 3

Downloads may be optionally initiated by a CPE. In this case, the CPE first requests a
download of a particular file type from the ACS. The ACS may then respond by
initiating the download following the same steps as an ACS-initiated download.

File transfers may also be optionally initiated by an external event, e.g. a Multicast
firmware availability announcement or user-initiated software module updates. In this
case, the CPE performs the transfer autonomously, and notifies the ACS of the success or
failure.

CPE Initiated Sessions

The RPC Method Specification (see Annex A) defines a mechanism that allows a CPE to
inform a corresponding ACS of various conditions, and to ensure that CPE-to-ACS
communication will occur with some minimum frequency.

This includes mechanisms to establish communication upon initial CPE installation in
order to ‘bootstrap’ initial customized Parameters into the CPE. It also includes a
mechanism to establish periodic communication with the ACS on an ongoing basis, or
when events occur that must be reported to the ACS (such as when the broadband IP
address of the CPE changes).

In each case, when communication is established the CPE identifies itself uniquely via
manufacturer and serial number information (and optional product class identifier) so that
the ACS knows which CPE it is communicating with and can respond in an appropriate
way.

2.3.4 Asynchronous ACS Initiated Sessions

An important aspect of service auto-configuration is the ability for the ACS to inform the
CPE of a configuration change asynchronously. This allows the auto-configuration
mechanism to be used for services that require near-real-time reconfiguration of the CPE.
For example, this may be used to provide an end-user with immediate access to a service
or feature they have subscribed to, without waiting for the next periodic contact.

The CPE WAN Management Protocol incorporates a mechanism for the ACS to issue a
Connection Request to the CPE at any time, instructing it to establish a communication
session with the ACS.

While the CPE WAN Management Protocol also allows polling by the CPE in lieu of
ACS-initiated connections, the CPE WAN Management Protocol does not rely on polling
or establishment of persistent connections from the CPE to provide asynchronous
notification.

The basic mechanism defined in the CPE WAN Management Protocol to enable
asynchronous ACS initiated communication assumes direct I[P addressability of the CPE
from the ACS. An alternative mechanism is defined in Annex G, which accommodates
CPE operating behind a NAT gateway that are not directly addressable by the ACS.

Procedures and Requirements

This Section, along with the Annexes referenced in this Section, defines the normative
requirements of the CPE WAN Management Protocol.

November 2010 © The Broadband Forum. All rights reserved. Page 23 of 197

3.1

CPE WAN Management Protocol TR-069 Amendment 3

This Section also references a number of standards and other specifications that form part
of the CPE WAN Management Protocol. Unless otherwise specified, the CPE and ACS
MUST adhere to the requirements of these referenced specifications.

ACS Discovery

Note - DHCPv4 options 43 (Vendor Specific Information) and 60 (Vendor Class
Identifier) are used rather than the more recent DHCPv4 options 124 (Vendor-
Identifying Vendor Class) and 125 (Vendor-Identifying Vendor-Specific
Information), which are based on DHCPv6 options 16 (Vendor Class) and 17
(Vendor Specific Information). This is because DHCPv4 options 43 and 60 have
been used in all previous versions of this document, and so these options need to
continue to be supported for backwards compatibility. Specifying DHCPv4
options 124 and 125 in addition would be unnecessarily complicated, since both
CPE and ACS would need to continue to support options 43 and 60.

The CPE WAN Management Protocol defines the following mechanisms that MAY be
used by a CPE to discover the address of its associated ACS:

1.

The CPE MAY be configured locally with the URL of the ACS. For example, this
MAY be done via a LAN-side CPE auto-configuration protocol. If necessary, the
CPE would use DNS to resolve the IP address of the ACS from the host name
component of the URL.

As part of the IP layer auto-configuration, a DHCP server on the access network
MAY be configured to include the ACS URL as a DHCP option [14]/[35]. If
necessary, the CPE would use DNS to resolve the IP address of the ACS from the
host name component of the URL. In this case additional DHCP options MAY be
used to set:

* The ProvisioningCode, which MAY be used to indicate the primary service
provider and other provisioning information to the ACS.

* The CWMPRetryMinimumWaitInterval, which MAY be used to set the initial
value of the CWMP session retry minimum wait interval, as specified in Section
3.2.1.1.

* The CWMPRetryIntervalMultiplier, which MAY be used to set the initial value of
the CWMP session retry interval multiplier, as specified in Section 3.2.1.1.

A CPE identifies itself to the DHCP server as supporting this method by including the
string “dslforum.org” (all lower case) anywhere in the DHCPv4 Vendor Class
Identifier (option 60) or in a DHCPv6 Vendor Class (option 16) vendor-class-data
item.

The CPE MAY use the values received from the DHCP server in the Vendor Specific
Information (DHCPv4 option 43 / DHCPv6 option 17) to set the corresponding
parameters as listed in Table 2. This DHCP option is encoded as a list of one or more
Encapsulated Vendor-Specific Options in the format defined in [14] /[35]. This list
MAY include other vendor-specific options in addition to those listed here.

November 2010 © The Broadband Forum. All rights reserved. Page 24 of 197

CPE WAN Management Protocol TR-069 Amendment 3

If the CPE obtained an ACS URL through DHCP and it cannot reach the ACS, the
CPE MUST use DHCP to re-discover the ACS URL. The CPE MUST consider the
ACS unreachable if it cannot establish a TCP connection to it for 300 seconds at each
of the IP addresses to which the ACS URL resolves. If the CPE does not receive a
DHCP reply, it MUST attempt to retry according to [20] / [35].

When the CPE needs to contact the ACS, it MUST use the DHCP discovery
mechanism in the following scenarios:

* [f'the CPE has an empty value for the ManagementServer.URL parameter, or

* If'the CPE is unable to contact the ACS and the CPE originally (the first
successful time after the most recent factory reset) obtained its ACS URL through
DHCP.

This behavior enables the CPE to go back to the use of DHCP for finding the ACS if
an ACS URL had not been pre-configured in the CPE. For example, this can handle
the situation of setting an incorrect ACS URL on the CPE. This behavior is not
meant as an ACS failover mechanism.

The CPE MUST remember the mechanism it used to locate the ACS after each
factory reset. If the CPE did not use DHCP to discover the ACS URL, then it
SHOULD NOT fall back to using DHCP for ACS discovery. If the CPE originally
used DHCP for ACS discovery, then when it fails to contact the ACS, it MUST
perform re-discovery via DHCP. The last requirement holds even if the ACS URL
has been subsequently set through a non-DHCP mechanism.

Table 2 — Encapsulated Vendor Specific Options

Encapsulated Encapsulated Vendor- Parameter?

Option Specific Option number

URL of the ACS 1 ManagementServer.URL

Provisioning code 2 Devicelnfo.ProvisioningCode

CWMP retry mini- 3 ManagementServer. CWMPRetryMinimumWait-
mum wait interval Interval

CWMP retry interval 4 ManagementServer. CWMPRetryIntervalMultiplier
multiplier

All the encapsulated option values MUST be represented as strings and MUST be
valid values for their corresponding parameters. The specified URL MUST be an
absolute URL. The encapsulated option values MUST NOT be null terminated. If
the CPE receives an encapsulated option value that is null terminated, the CPE MUST
accept the value provided, and MUST NOT interpret the null character as part of the
value.

3. The CPE MAY have a default ACS URL that it MAY use if no other URL is
provided to it.

2 As defined in [24], [31], and [32].

November 2010 © The Broadband Forum. All rights reserved. Page 25 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The ACS URL MUST be in the form of a valid HTTP or HTTPS URL [6]. Use of an
HTTPS URL indicates that the CPE MUST establish an SSL or TLS connection to the
ACS.

Once the CPE has established a connection to the ACS, the ACS MAY at any time
modify the ACS URL Parameter stored within the CPE (ManagementServer.URL, as
defined in [24], [31], and [32]). Once modified, the CPE MUST use the modified URL
for all subsequent connections to the ACS.

The “host” portion of the ACS URL is used by the CPE for validating the certificate from
the ACS when using certificate-based authentication. Because this relies on the accuracy
of the ACS URL, the overall security of this protocol is dependent on the security of the
ACS URL.

The CPE SHOULD restrict the ability to locally configure the ACS URL to mechanisms
that require strict security. The CPE MAY further restrict the ability to locally set the
ACS URL to initial setup only, preventing further local configuration once the initial
connection to an ACS has successfully been established such that only its existing ACS is
permitted subsequently to change this URL.

The use of DHCP for configuration of the ACS URL SHOULD be limited to situations in
which the security of the link between the DHCP server and the CPE can be assured by
the service provider. Since DHCP does not itself incorporate a security mechanism, other
means of ensuring this security SHOULD be provided.

The ACS URL MAY contain a DNS hostname or an IP address. When resolving the
ACS hostname, the DNS server might return multiple IP addresses. In this case, the CPE
SHOULD randomly choose an IP address from the list. When the CPE is unable to reach
the ACS, it SHOULD randomly select a different IP address from the list and attempt to
contact the ACS at the new IP address. This behavior ensures that CPEs will balance
their requests between different ACSs if multiple IP addresses represent different ACSs.

The CPE MUST NOT cache the DNS server response beyond the duration of time to live
(TTL) returned by DNS server unless it cannot contact the DNS server for an update.
This behavior is required by DNS RFC 1034 [5] and provides an opportunity for the DNS
server to update stale data.

It is further RECOMMENDED that the CPE implements affinity to a particular ACS IP
address. Affinity to a given IP address means that the CPE will attempt to use the same
IP address for as along as it can contact the ACS at this address. This creates a more
stable system and can allow the ACS to perform better due to better caching. To
implement the affinity the CPE SHOULD store to persistent storage the last successfully
used IP address and the list of IP addresses from which it was selected. The CPE
SHOULD continue to perform DNS queries as normal, but SHOULD continue using the
same IP address for as long as it can contact the ACS and for as long as the list of IP
addresses returned by the DNS does not change. The CPE SHOULD select a new 1P
address whenever the list of [P addresses changes or when it cannot contact the ACS.
This provides an opportunity for service providers to reconfigure their network.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see
[17]), and the ACS MAY use this port in its URL.

November 2010 © The Broadband Forum. All rights reserved. Page 26 of 197

CPE WAN Management Protocol TR-069 Amendment 3

3.2 Connection Establishment

3.2.1 CPE Connection Initiation

The CPE MAY at any time initiate a connection to the ACS using the pre-determined
ACS address (see Section 3.1). A CPE MUST establish a connection to the ACS and
issue the Inform RPC method (following the procedures described in Section 3.7) under
the following conditions:

The first time the CPE establishes a connection to the access network on initial
installation

On power-up or reset

Once every ManagementServer.PeriodicInformInterval (for example, every 24
hours)

When so instructed by the optional ScheduleInform method

Whenever the CPE receives a valid Connection Request from an ACS (see
Section 3.2.1.2)

Whenever the URL of the ACS changes
Whenever a parameter is modified that is required to initiate an Inform on change.

Whenever the value of a parameter that the ACS has marked for “active
notification” via the SetParameterAttributes method is modified by an external
cause (a cause other than the ACS itself). Parameter changes made by the ACS
itself via SetParameterValues MUST NOT cause a new session to be initiated. If
a parameter is modified more than once before the CPE is able to initiate a session
to perform the notification, the CPE MUST perform only one notification.

If a parameter is modified by an external cause while a session is in progress, the
change causes a new session to be established after the current session is
terminated (it MUST NOT affect the current session).

In order to avoid excessive traffic to the ACS, a CPE MAY place a locally
specified limit on the frequency of parameter change notifications. This limit
SHOULD be defined so that it is exceeded only in unusual circumstances. If this
limit is exceeded, the CPE MAY delay by a locally specified amount initiation of
a session to notify the ACS. After this delay, the CPE MUST initiate a session to
the ACS and indicate all relevant parameter changes (those parameters that have
been marked for notification) that have occurred since the last such notification.

Whenever a download or upload completes (either successfully or
unsuccessfully), provided that CPE policy indicates that the ACS needs to be
notified of the download or upload completion.

The ACS MUST always be notified of the completion of downloads or uploads
that were specifically requested by the ACS.

CPE policy MUST determine whether to notify the ACS of the completion of
downloads or uploads that were not specifically requested by the ACS.

November 2010 © The Broadband Forum. All rights reserved. Page 27 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Note — this CPE policy is expected to be remotely configurable. For example, the
CPE might be configured to notify the ACS only if a download or upload (not
specifically requested by the ACS) was of management-related content.

* Whenever an unsuccessfully terminated session is retried according to the session
retry policy specified in Section 3.2.1.1.

The CPE MUST NOT maintain an open connection to the ACS when no more
outstanding messages exist on the CPE or ACS. Refer to Section 3.7.1.4 for details of
CPE session termination criteria.

3.2.1.1 Session Retry Policy

A CPE MUST retry failed sessions to attempt to redeliver events that it has previously
failed to deliver and to allow the ACS to make additional requests in a timely fashion.
Section 3.7.1.5 details the rules for successful event delivery, for retrying event delivery,
and for discarding events after failing to deliver them. The CPE MUST keep track of the
number of times it has attempted to retry a failed session.

If the CPE fails to establish a session, this might be because the CPE supports CPE WAN
Management Protocol v1.1 (or later) and the ACS supports only v1.0. If this situation is
suspected (see Section 3.7.2.1), the CPE MUST revert to v1.0 when retrying the failed
session.

A CPE MUST retry a failed session after waiting for an interval of time specified in
Table 3 or when a new event occurs, whichever comes first. The CPE MUST choose the
wait interval by randomly selecting a number of seconds from a range given by the post-
reboot session retry count. When retrying a failed session after an intervening reboot, the
CPE MUST reset the wait intervals it chooses from as though it were making its first
session retry attempt. In other words, if a session is retried when a new event other than
BOOT occurs, it does not reset the wait interval, although the continued occurrence of
new events might cause sessions to be initiated more frequently than shown in the table.
Regardless of the reason a previous session failed or the condition prompting session
retry, the CPE MUST communicate to the ACS the session retry count.

The wait interval range is controlled by two parameters, the minimum wait interval and
the interval multiplier, each of which corresponds to a data model parameter, and which
are described in the table below.

Descriptive Name Symbol® Default* Data Model Parameter Name
Minimum wait interval m 5 seconds ManagementServer. CWMPRetryMinimumWaitInterval
Interval multiplier k 2000 ManagementServer. CWMPRetryIntervalMultiplier

The factory default values of these parameters MUST be the values that were hard-coded
in previous versions of the CPE WAN Management Protocol, i.e. the values from the
Default column. These values MAY be overridden by values obtained via DHCP, as
explained in Section 3.1. They MAY also be changed by the ACS at any time.

These symbols are used in Table 3.
These are the values that were hard-coded in previous versions of the CPE WAN Management Protocol.

November 2010 © The Broadband Forum. All rights reserved. Page 28 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Beginning with the tenth post-reboot session retry attempt, the CPE MUST choose from
the fixed maximum range shown in Table 3. The CPE MUST continue to retry a failed
session until it is successfully terminated or until the rules defined in the “Retry/Discard
Policy” column within Table 7 take precedence. Once a session terminates successfully,
the CPE MUST reset the session retry count to zero and no longer apply session retry
policy to determine when to initiate the next session.

Table 3 — Session Retry Wait Intervals

Post reboot session | Default Wait interval range Actual Wait interval range
retry count (min-max seconds) (min-max seconds)

#1 5-10 m — m.(k/1000)

#2 10-20 m.(k/1000) — m.(k/1000)?
#3 20-40 m.(k/1000)* — m.(k/1000)°
#4 40-80 m.(k/1000)* — m.(k/1000)*
#5 80-160 m.(k/1000)* — m.(k/1000)°
#6 160-320 m.(k/1000)° — m.(k/1000)°
#7 320-640 m.(k/1000)° — m.(k/1000)"
#8 640-1280 m.(k/1000)" — m.(k/1000)°
#9 1280-2560 m.(k/1000)° — m.(k/1000)°
#10 and subsequent 2560-5120 m.(k/1000)° — m.(k/1000)"

3.2.1.2 Use of random source port

3.2.2

Each time the CPE first connects to the ACS after rebooting, it SHOULD use a different
ephemeral TCP source port in order to avoid the possibility of reusing the same port that
it used last time. Reuse of the same port could cause the ACS to reject the connection if
the elapsed time since the previous connection is less than the ACS’s configured TCP
TIME WAIT value.

In order to minimize the probability that the same ephemeral port number is used on
successive occasions, the port SHOULD be selected using a strong randomization
mechanism.

ACS Connection Initiation

The ACS MAY at any time request that the CPE initiate a connection to the ACS using
the Connection Request mechanism. Support for this mechanism is REQUIRED in a
CPE, and is RECOMMENDED in an ACS.

This mechanism relies on the CPE having an IP address that is routable from the ACS. If
the CPE is behind a firewall or if there is a NAT device between the ACS and CPE, the
ACS might not be able to access the CPE at all. Annex G defines a mechanism that
allows an ACS to contact a CPE connected via a NAT device.

The Connection Request mechanism is defined as follows:

* The Connection Request MUST use an HTTP 1.1 GET to a specific URL designated
by the CPE. The URL value is available as read-only Parameter on the CPE. The
path of this URL value SHOULD be randomly generated by the CPE so that it is
unique per CPE.

November 2010 © The Broadband Forum. All rights reserved. Page 29 of 197

CPE WAN Management Protocol TR-069 Amendment 3

* The Connection Request MUST make use of HTTP, not HTTPS. The associated
URL MUST be an HTTP URL.

* No data is conveyed in the Connection Request HTTP GET. Any data that might be
contained SHOULD be ignored by the CPE.

* The CPE MUST use HTTP digest authentication [7] to authenticate the ACS before
proceeding—the CPE MUST NOT initiate a connection to the ACS due to an
unsuccessfully authenticated request.

* The CPE MUST accept Connection Requests from any source that has the correct
authentication parameters for the target CPE.

* The CPE’s response to a successfully authenticated Connection Request MUST use
either a “200 (OK)” or a “204 (No Content)” HTTP status code. The CPE MUST
send this response immediately upon successful authentication, prior to it initiating
the resulting session. The length of the message-body in the HTTP response MUST
be zero.

* The CPE SHOULD restrict the number of Connection Requests it accepts during a
given period of time in order to further reduce the possibility of a denial of service
attack. If the CPE chooses to reject a Connection Request for this reason, the CPE
MUST respond to that Connection Request with an HTTP 503 status code (Service
Unavailable). In this case, the CPE SHOULD NOT include the HTTP Retry-After
header in the response.

¢ Ifthe CPE successfully authenticates and responds to a Connection Request as
described above, and if it is not already in a session, then it MUST, within 30 seconds
of sending the response, attempt to establish a session with the pre-determined ACS
address (see Section 3.1) in which it includes the “6 CONNECTION REQUEST”
EventCode in the Inform.

Note — in practice there might be exceptional circumstances that would cause a
CPE to fail to meet this requirement on rare occasions.

* [Ifthe ACS receives a successful response to a Connection Request but after at least
30 seconds the CPE has not successfully established a session that includes the “6
CONNECTION REQUEST” EventCode in the Inform, the ACS MAY retry the
Connection Request to that CPE.

* If, once the CPE successfully authenticates and responds to a Connection Request,
but before it establishes a session to the ACS, it receives one or more successfully
authenticated Connection Requests, the CPE MUST return a successful response for
each of those Connection Requests, but MUST NOT initiate any additional sessions
as a result of these additional Connection Requests, regardless of how many it
receives during this time.

* [fthe CPE is already in a session with the ACS when it receives one or more
Connection Requests, it MUST NOT terminate that session prematurely as a result.
The CPE MUST instead take one of the following alternative actions:

November 2010 © The Broadband Forum. All rights reserved. Page 30 of 197

3.3

CPE WAN Management Protocol TR-069 Amendment 3

* Reject each Connection Request by responding with an HTTP 503 status code
(Service Unavailable). In this case, the CPE SHOULD NOT include the HTTP
Retry-After header in the response.

* Following the completion of the session, initiate exactly one new session
(regardless of how many Connection Requests had been received during the
previous session) in which it includes the “6 CONNECTION REQUEST”
EventCode in the Inform. In this case, the CPE MUST initiate the session
immediately after the existing session is complete and all changes from that
session have been applied.

This requirement holds for Connection Requests received any time during the interval
that the CPE considers itself in a session, including the period in which the CPE is in
the process of establishing the session.

* The CPE MUST NOT reject a properly authenticated Connection Request for any
reason other than those described above. If the CPE rejects a Connection Request for
any of the reasons described above, it MUST NOT initiate a session with the ACS as
a result of that Connection Request.

This mechanism relies on the ACS having had at least one prior communication with the
CPE via a CPE-initiated interaction. During this interaction, if the ACS wishes to allow
future ACS-initiated transactions, it would use the value of the ManagementServer.-
ConnectionRequestURL Parameter (see [24], [31] , and [32]). If the URL used for
management access changes, the CPE MUST notify the ACS by issuing an Inform
message indicating the new management I[P address (see [24], [31] , and [32]), thus
keeping the ACS up-to-date.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see
[17]), and the CPE MAY use this port in the Connection Request URL.

Use of TLS and TCP

Note — previous versions of this specification referenced SSL 3.0 and TLS 1.0.
These are no longer mentioned in the text below, and SHOULD NOT be used.

The use of TLS to transport the CPE WAN Management Protocol is RECOMMENDED,
although the protocol MAY be used directly over a TCP connection instead. If TLS is
not used, some aspects of security are sacrificed. Specifically, TLS provides
confidentiality and data integrity, and allows certificate-based authentication in lieu of
shared secret-based authentication.

Certain restrictions on the use of TLS and TCP are defined as follows:
* The CPE SHOULD support TLS 1.2 [11] (or a later version).

* The CPE SHOULD communicate its capabilities to the ACS as specified in Appendix
E of RFC 5246 [11], allowing the ACS to choose the protocol.

November 2010 © The Broadband Forum. All rights reserved. Page 31 of 197

CPE WAN Management Protocol TR-069 Amendment 3

* Ifthe ACS URL has been specified as an HTTPS URL, the CPE MUST establish
secure connections to the ACS, and SHOULD use TLS 1.2 (or, if supported, a later
version).

Note — if the ACS does not support the version with which the CPE establishes the
connection, it might be necessary to negotiate an earlier TLS 1.x version, or even
SSL 3.0. This implies that the CPE has to support the mandatory cipher suites for
all supported TLS or SSL versions.

Note — TLS RSA WITH AES 128 CBC SHA is the only mandatory TLS 1.2
cipher suite.

¢ RC4-based cipher suites MUST NOT be used with TLS 1.2.
* A CPE MUST be able to initiate outgoing connections to the ACS.
* An ACS MUST be able to accept CPE-initiated connections.

e IfTLS 1.2 (or a later version) is used, the CPE MUST authenticate the ACS using the
ACS-provided certificate. Authentication of the ACS requires that the CPE MUST
validate the certificate against a root certificate, and that the CPE MUST ensure that
the value of the CN (Common Name) component of the Subject field in the certificate
exactly matches the host portion of the ACS URL known to the CPE (even if the host
portion of the ACS URL is an IP address). This MUST be a direct string comparison
between the CN and the host portion of the ACS URL. If either of these is in the
form of a hostname (rather than an IP address), this comparison MUST NOT involve
the IP address that the hostname resolves to.

To validate against a root certificate, the CPE MUST contain one or more trusted root
certificates that are either pre-loaded in the CPE or provided to the CPE by a secure
means outside the scope of this specification.

If as a result of an HTTP redirect, the CPE is attempting to access an ACS at a URL
different from its pre-configured ACS URL, the CPE MUST validate the CN
component of the ACS certificate against the host portion of the redirected ACS URL
rather than the pre-configured ACS URL.

A CPE SHOULD wait until it has accurate absolute time before contacting the ACS.
If a CPE chooses to contact the ACS before it has accurate absolute time (or if it does
not support absolute time), it MUST ignore those components of the ACS certificate
that involve absolute time, e.g. not-valid-before and not-valid-after certificate
restrictions.

¢ Support for CPE authentication using client-side certificates is OPTIONAL for both

the CPE and ACS. Such client-side certificates MUST be signed by an appropriate

chain. When client-side certificates are used to authenticate the CPE to the ACS, the

Common Name (CN) field in the CPE certificate MUST be one of the following two

types:

* Unique CPE client certificate. In this case, the value of the CN field MUST be
globally unique for each CPE. Specifically, the CN field MUST adhere to the
format recommended for the username/userid in Section 3.4.4.

November 2010 © The Broadband Forum. All rights reserved. Page 32 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Examples:
00DO09E-0123456789
012345-STB-0123456789
012345-Set%2DTop%2DBox-0123456789
Generic CPE client certificate. In this case, the value of the CN field MAY be the

same among a set of CPE, such as all CPE of a specific model from a given
vendor. The content of the CN field is not specified in this case.

If generic CPE client certificates are used, the ACS SHOULD additionally
authenticate the CPE using HTTP basic or digest authentication to establish the
identity of a specific CPE.

3.4 Use of HTTP

SOAP messages are carried between a CPE and an ACS using HTTP 1.1 [6], where the
CPE acts as the HTTP client and the ACS acts as the HTTP server.

Note — the CPE WAN Management Protocol also uses HTTP for Connection
Requests, where the ACS acts as the HTTP client and the CPE acts as the HTTP
server. This usage of HTTP is described in Section 3.2.1.2.

3.4.1 Encoding SOAP over HTTP

The encoding of SOAP over HTTP extends the HTTP binding for SOAP, as defined in
Section 6 of [9], as follows:

A SOAP request from an ACS to a CPE is sent over an HTTP response, while the
CPE’s SOAP response to an ACS request is sent over a subsequent HTTP POST.

When there is a SOAP response in an HTTP Request, or when there is a SOAP
Fault response in an HTTP Request, the SOAPAction header in the HTTP
Request MUST have no value (with no quotes), indicating that this header
provides no information as to the intent of the message. That is, it MUST appear
as follows:

SOAPAction:

When an HTTP Request or Response contains a SOAP Envelope, the HTTP
Content-Type header MUST have a type/subtype of “text/xml”.

An empty HTTP POST MUST NOT contain a SOAPAction header.
An empty HTTP POST MUST NOT contain a Content-Type header.

An HTTP response that contains any CPE WAN Management Protocol payload (a
SOAP request to the CPE, a successful SOAP response to the CPE, or a SOAP
fault response containing a Fault element defined in Section 3.5) MUST use the
HTTP status code 200 (OK).

November 2010 © The Broadband Forum. All rights reserved. Page 33 0f 197

CPE WAN Management Protocol TR-069 Amendment 3

Below is an example HTTP Response from an ACS containing a SOAP Request:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: xyz

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<soap:Body>
<cwmp :Request>
<argument>value</argument>
</cwmp:Request>
</soap:Body>
</soap:Envelope>

Note — in the above example, the XML namespace prefixes used are only
examples. The actual namespace prefix values are arbitrary, and are used only to
refer to a namespace declaration.

Note — in the above example, the CWMP namespace identifier “urn:dslforum-
org:cwmp-1-0"is only an example and is not necessarily the version that is
defined by this specification.

3.4.2 Transaction Sessions

For a sequence of transactions forming a single session, a CPE SHOULD maintain a TCP
connection that persists throughout the duration of the session. However, if the TCP
connection is cleanly closed after an HTTP request/response round trip, and if the session
has not otherwise terminated (either successfully or unsuccessfully) at the time of the last
HTTP response, the CPE MUST continue the session by sending the next HTTP request
in a new TCP connection.

After receiving an authentication challenge, the CPE MUST send the next HTTP request
(including the "Authorization" HTTP header) in the same TCP connection unless the
ACS specifically requested, via a "Connection: close" HTTP header, that the TCP
connection be closed’. In the latter case, the CPE MUST honor the ACS request, close
the TCP connection, and send the next HTTP request (including the "Authorization"
HTTP header) in a new TCP connection.

If the CPE for any reason fails to establish a TCP connection, fails to send an HTTP
message, or fails to receive an HTTP response, the CPE MUST consider the session
unsuccessfully terminated. The CPE MUST wait a minimum of 30 seconds before
declaring a failure to establish a TCP connection, or failure to receive an HTTP response.

The ACS SHOULD make use of a session cookie to maintain session state as described
in [8]. The ACS MAY make use of old-style “Netscape” cookies as well as, or instead
of, the new-style cookies of [8]. The ACS SHOULD use only cookies marked for
Discard, and SHOULD NOT assume that a CPE will maintain a cookie beyond the
duration of the session.

5 This extra requirement is necessary because some ACS implementations might utilize the underlying TCP

connection as a mechanism to detect replay attacks (see the note in Section 3.4.5). Such implementations would
require the response to an authentication challenge to use the same TCP connection as the challenge.

November 2010 © The Broadband Forum. All rights reserved. Page 34 of 197

CPE WAN Management Protocol TR-069 Amendment 3

To ensure that an ACS can make use of a session cookie, a CPE MUST support the use of
cookies as defined in [8] including the return of the cookie value in each subsequent
HTTP POST, with the exception that a CPE need not support storage of cookies beyond
the duration of a session. In particular, because the ACS might send old-style, new-style,
or a mixture of old-style and new-style cookies, the CPE MUST support the compatibility
requirements of Section 9.1 of [8]. The CPE MUST support the use of multiple cookies
by the ACS, and MUST make available at least 512 bytes for storage of cookies.

When a transaction session is completed successfully or terminated unsuccessfully, a
CPE MUST close the associated TCP connection to the ACS and discard all cookies
marked for Discard.

A CPE MUST support the use of HTTP redirection by the ACS. The CPE and ACS
requirements associated with the use of HTTP redirection are as follows:

* A CPE MUST support the 302 (Found) and 307 (Temporary Redirect) HTTP status
codes.

* A CPE MAY also support the 301 (Moved Permanently) HTTP status code for
redirection.

* The CPE MUST allow redirection to occur at any point during a session (including
the Inform response), and the ACS MAY issue a redirect at any point during a
session.

* [fthe CPE is redirected, it MUST attempt to continue the session using the URL
provided in the HTTP redirect response. Specifically, the CPE MUST re-send the
HTTP POST that resulted in the redirect response to the ACS at the redirected URL,
and the CPE MUST then attempt to proceed with the session exactly as if no
redirection had occurred.

* [fthe CPE is redirected, the redirected URL MUST apply only to the remainder of the
current session or until a subsequent redirect occurs later in the same session. The
redirected URL MUST NOT be saved by the CPE (i.e. as the value of Management-
Server.URL, as defined in [24], [31], and [32]) for use in any subsequent session or
any subsequent retries of the session. This requirement MUST hold even if the 301
(Moved Permanently) HTTP status code is used for redirection.

* The CPE MUST allow up to 5 consecutive redirections. If the CPE is redirected
more than 5 times consecutively, it MAY consider the session unsuccessfully
terminated.

* The URL provided in HTTP redirection MAY be an HTTP or HTTPS URL. The
appropriate transport mechanism (TCP or TLS) MUST be used with the new target
regardless of the transport used before redirection.

e If TLS is used for the redirected session, requiring the CPE to authenticate the ACS,
the authentication MUST be based on the redirected URL rather than the pre-
configured ACS URL (see Section 3.3).

* Inan HTTP response sent by the ACS containing a redirect status code, the length of
the HTTP message-body MUST be zero. If the CPE receives an HTTP re-direct

November 2010 © The Broadband Forum. All rights reserved. Page 350f 197

3.4.3

3.4.4

CPE WAN Management Protocol TR-069 Amendment 3

response with a non-empty message-body, it MUST ignore the content of the
message-body.

* When redirected, the CPE MUST include all cookies associated with the session in
subsequent HTTP requests to the redirected ACS. The CPE MUST consider a
redirect from an ACS to be a “verifiable transaction” as defined in [8], and thus it
MUST send cookies to the redirected ACS without performing domain validation of
each cookie.

File Transfers

If the CPE is instructed to perform a file transfer via a Download, ScheduleDownload,
Upload, or ChangeDUState (Install or Update operations) request from the ACS, and if
the file location is specified as an HTTP URL with the same host name as the ACS, then
the CPE MUST choose one of the following approaches in performing the transfer:

* The CPE MAY send the HTTP GET/PUT over the already established
connection. Once the file has been transferred, the CPE MAY then proceed in
sending additional messages to the ACS while continuing to maintain the
connection (this option is not valid for ScheduleDownload or ChangeDUState
(Install or Update operations)).

* The CPE MAY open a second connection over which to transfer the file, while
maintaining the session to the ACS over which it can continue to send messages.

* The CPE MAY terminate the session to the ACS and then perform the transfer.

If the file location is not an HTTP URL or is not in the same domain as the ACS or
requires use of a different port, then only the latter two options are available to it.

A CPE MUST support the use of TLS as specified in Section 3.3 for establishment of a
separate TCP connection to transfer a file using HTTP. The CPE MUST use TLS when
the file location is specified as an HTTPS URL.

The CPE MUST support both HTTP basic and digest authentication for file transfers.
The specific authentication method is chosen by the file server by virtue of providing a
basic or digest authentication challenge. If authentication is used by the file server, the
ACS MUST specify credentials using the specific RPC method used to initiate the
transfer (i.e., Download, ScheduleDownload, Upload,ChangeDUState (Install or Update
operations)).

Authentication

If the CPE is not authenticated using TLS, the ACS MUST authenticate the CPE using
HTTP. If TLS is being used for encryption, the ACS MAY use either basic or digest
authentication [7]. If TLS is not being used, then the ACS MUST use digest
authentication.

The CPE MUST support both HTTP basic and digest authentication. The ACS chooses
the authentication scheme by virtue of providing a basic or digest authentication
challenge.

November 2010 © The Broadband Forum. All rights reserved. Page 36 of 197

3.4.5

CPE WAN Management Protocol TR-069 Amendment 3

If the CPE has received an authentication challenge from the ACS (either basic or digest),
the CPE SHOULD send an Authorization header in all subsequent HTTP requests for the
duration of the TCP connection. Whether or not the CPE does this, the ACS MAY issue
subsequent authentication challenges at any stage of the session within a single or
multiple TCP connections.

If any form of HTTP authentication is used to authenticate the CPE, the CPE SHOULD
use a username/userid that is globally unique among all CPE manufacturers.
Specifically, the CPE username/userid SHOULD be in one of the following two formats:

<OUI> "-" <ProductClass> "-" <SerialNumber>

<OUI> "-" <SerialNumber>

If a username/userid of the above format is used, the <OUI>, <ProductClass>, and
<SerialNumber> fields MUST match exactly the corresponding parameters included in
the DeviceldStruct in the Inform message, as defined in Annex A, except that, in order to
guarantee that the parameter values can be extracted from the username/userid, any
character in the <ProductClass> and <SerialNumber> that is not either alphanumeric or
an underscore (“) MUST be escaped using URI percent encoding, as defined in RFC
3986 [12].

If a username/userid of the above format is used, the second form MUST be used if and
only if the value of the ProductClass parameter is empty.

Examples:
012345-0123456789
012345-STB-0123456789
012345-Set%2DTop%2DBox-0123456789

The password used in either form of HTTP authentication SHOULD be a unique value
for each CPE. That is, multiple CPE SHOULD NOT share the same password. This
password is a shared secret, and thus MUST be known by both CPE and ACS. The
method by which a shared secret becomes known to both entities on initial CPE
installation is outside the scope of this specification. Both CPE and ACS SHOULD take
appropriate steps to prevent unauthorized access to the password, or list of passwords in
the case of an ACS.

Digest Authentication

This Section outlines requirements for use of digest authentication within the CPE WAN
Management Protocol. These requirements apply to authentication of connections for
RPC exchanges as well as for file transfers. Note that ACS and CPE play the role of
HTTP client and server interchangeably for different types of connections. The ACS
plays the role of the HTTP client when making connection requests. The CPE plays the
role of the HTTP client when initiating connections to the ACS.

The CPE and the ACS MUST support the RFC 2617 “qop” option containing the value
“auth”. According to RFC 2617, this means that the HTTP client MUST use a new style
digest mechanism when this option is provided to it by the HTTP server.

November 2010 © The Broadband Forum. All rights reserved. Page 37 of 197

3.4.6

3.5

CPE WAN Management Protocol TR-069 Amendment 3

When using digest authentication, for each new TCP connection opened, the ACS
SHOULD use a new nonce value and the CPE SHOULD use a new cnonce value.

Note — if TLS is not used for a CPE WAN Management Protocol session, the
policy used by the ACS for reusing nonce values for HTTP authentication can
significantly affect the security of the session. In particular, if the ACS re-uses a
nonce value when re-authenticating across multiple TCP connections, the ACS
can be vulnerable to replay attacks. However, if TLS is used for a session, then
this risk is largely mitigated.

The CPE and the ACS MUST support the MD5 digest algorithm. The CPE MUST
additionally support the MD5-sess digest algorithm.

Additional HTTP Requirements
The following additional HTTP-related requirements are specified:

* Whenever the ACS sends an empty HTTP response, it MUST use the “204 (No
Content)” HTTP status code.

* Whenever the CPE sends an empty HTTP request, the length of the HTTP
message-body MUST be zero.

* The CPE MUST NOT make use of pipelining as defined in HTTP 1.1 [6].

Use of SOAP

The CPE WAN Management Protocol defines SOAP 1.1 [9] as the encoding syntax to
transport the RPC method calls and responses defined in Annex A.

The following describes the mapping of RPC methods to SOAP encoding:

* The encoding MUST use the standard SOAP 1.1 envelope and serialization
namespaces:

* Envelope namespace identifier "http://schemas.xmlsoap.org/soap/envelope/"
* Serialization namespace identifier "http://schemas.xmlsoap.org/soap/encoding/"

* The namespace identifier for CPE WAN Management Protocol version 1.n is always
“urn:dslforum-org:cwmp:1-n”, e.g. for v1.0 it was “urn:dslforum-org:cwmp:1-0” and
for v1.42 it will be “urn:dslforum-org:cwmp:1-42”.

* In SOAP Envelopes that they send, both ACS and CPE SHOULD use the
namespace identifier corresponding to the highest version that they support.

Note — in order to provide interoperability with v1.0 implementations, there are
circumstances where ACS and/or CPE need to use the v1.0 namespace identifier.
These requirements are given in Sections 3.2.1.1 (CPE session retry), 3.7.1.1
(CPE session initiation) and 3.7.2.1 (ACS session initiation).

e Both ACS and CPE MUST be able to extract the version from the namespace
identifier in SOAP Envelopes that they receive.

November 2010 © The Broadband Forum. All rights reserved. Page 38 0of 197

CPE WAN Management Protocol TR-069 Amendment 3

* The data types used in Annex A correspond directly to the data types defined in the
SOAP 1.1 serialization namespace. (In general, the types used in Annex A are
restricted subsets of the corresponding SOAP types.)

* Following the SOAP specification [9], elements specified as being of type
“anySimpleType” MUST include a type attribute to indicate the actual type of the
element.

* Elements of a type other than “anySimpleType” MAY include a type attribute if and
only if the element is defined using a named data type in the RPC method XML
schema in Annex A. If a type attribute is included, the value of the type attribute
MUST exactly match the named data type specified in the schema.

* For an array argument, the argument name specified in the table in which the array is
defined MUST be used as the name of the overall array element. The name of the
member elements of an array MUST be the data type of the array as specified in the
table in which the array is defined (excluding the brackets and any length limitation
given in parentheses), and MUST NOT be namespace qualified. For example, an
argument named ParameterList, which is an array of ParameterValueStruct structures,
would be encoded as:

<ParameterList soap-enc:arrayType="cwmp:ParameterValueStruct[2]">
<ParameterValueStruct>
<name>Parameterl</name>
<value xsi:type="someType">1234</value>
</ParameterValueStruct>
<ParameterValueStruct>
<name>Parameter2</name>
<value xsi:type="someType">5678</value>
</ParameterValueStruct>
</ParameterList>

As a second example, the MethodList array in the GetRPCMethodsResponse would
be encoded as:

<MethodList soap-enc:arrayType="xsd:string[3]">
<string>GetRPCMethods</string>
<string>Inform</string>
<string>TransferComplete</string>
</MethodList>

Note — in the above examples, the XML namespace prefixes used are only
examples. The actual namespace prefix values are arbitrary, and are used only to
refer to a namespace declaration.

Note — it is always necessary to specify an XML namespace prefix for the
arrayType attribute. For arrays of CWMP-specific types this will always be the
CWMP namespace prefix, and for arrays of other types it will always be the XML
Schema namespace prefix or the SOAP encoding namespace prefix.

* Regarding the SOAP specification for encoding RPC methods (Section 7 of [9]), for
each method defined in Annex A, each argument listed in the method call represents
an [in] parameter, while each argument listed in the method response represents an
[out] parameter. There are no [in/out] parameters used.

November 2010 © The Broadband Forum. All rights reserved. Page 39 of 197

CPE WAN Management Protocol TR-069 Amendment 3

* The RPC methods defined use the standard SOAP naming convention whereby the
response message corresponding to a given method is named by adding the
“Response” suffix to the name of the method.

* A SOAP Envelope MUST contain exactly one Body element.

* A CPE MUST be able to accept a SOAP request with a total envelope size of at least
32 kilobytes (32768 bytes) without resulting in a “Resources Exceeded” response.

* A CPE MUST be able to generate a SOAP response of any required length without
resulting in a “Resources Exceeded” response, i.e. there is no maximum CPE SOAP
response length.

* An ACS MUST be able to accept a SOAP request with a total envelope size of at
least 32 kilobytes (32768 bytes) without resulting in a “Resources Exceeded”
response.

* An ACS MUST be able to generate a SOAP response of any required length without
resulting in a “Resources Exceeded” response, i.e. there is no maximum ACS SOAP
response length.

* A fault response MUST make use of the SOAP Fault element using the following
conventions:

* The SOAP faultcode element MUST indicate the source of the fault, either
Client or Server, as appropriate for the particular fault. In this usage, Client
represents the originator of the SOAP request, and Server represents the SOAP
responder. The recipient of the fault response need not make use of the value of
this element, and MAY ignore the SOAP faultcode element entirely.

* The SOAP faultstring sub-element MUST contain the string “CWMP
fault”.

* The SOAP detail element MUST contain a Fault structure. The RPC method
XML schema in Annex A formally defines this structure. This structure contains
the following elements:

o A FaultCode element that contains a single numeric fault code as defined
in Annex A.

o A FaultString element that contains a human readable description of the
fault.

o A SetParameterValuesFault element, to be used only in an error
response to the SetParameterValues method, that contains a list of one or more
structures indicating the specific fault associated with each parameter in error.
This structure contains the following elements:

o A ParameterName element that contains the full path name of the
parameter in error.

November 2010 © The Broadband Forum. All rights reserved. Page 40 of 197

CPE WAN Management Protocol TR-069 Amendment 3

o A FaultCode element that contains a single numeric fault code as

defined in Annex A that indicates the fault associated with the particular
parameter in error.

o A FaultString element that contains a human readable description of
the fault for the particular parameter in error.

Below is an example envelope containing a fault response:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<soap:Header>
<cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
</soap:Header>
<soap:Body>
<soap:Fault>
<faultcode>Client</faultcode>
<faultstring>CWMP fault</faultstring>
<detail>
<cwmp:Fault>
<FaultCode>9000</FaultCode>
<FaultString>Upload method not supported</FaultString>
</cwmp:Fault>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

Below is an example envelope containing a fault response for a SetParameterValues
method call:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<soap:Header>
<cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
</soap:Header>
<soap:Body>
<soap:Fault>
<faultcode>Client</faultcode>
<faultstring>CWMP fault</faultstring>
<detail>
<cwmp:Fault>
<FaultCode>9003</FaultCode>
<FaultString>Invalid arguments</FaultString>
<SetParameterValuesFault>
<ParameterName>
InternetGatewayDevice.Time.NTPServerl
</ParameterName>
<FaultCode>9007</FaultCode>
<FaultString>Invalid IP Address</FaultString>
</SetParameterValuesFault>
<SetParameterValuesFault>
<ParameterName>
InternetGatewayDevice.Time.LocalTimeZoneName
</ParameterName>
<FaultCode>9007</FaultCode>
<FaultString>String too long</FaultString>
</SetParameterValuesFault>
</cwmp:Fault>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

November 2010 © The Broadband Forum. All rights reserved. Page 41 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Note — in the above examples, the XML namespace prefixes used are only
examples. The actual namespace prefix values are arbitrary, and are used only to
refer to a namespace declaration.

Note — in the above example, the CWMP namespace identifier “urn:dslforum-
org:cwmp-1-0"is only an example and is not necessarily the version that is
defined by this specification.

A fault response MUST only be sent in response to a SOAP request. A fault response
MUST NOT be sent in response to a SOAP response or another fault response.

If a fault response does not follow all of the above requirements, the SOAP message
MUST be deemed invalid by the recipient. The consequences of invalid SOAP on the
CPE WAN Management Protocol session are described in Section 3.7.

* When processing a received envelope, both ACS and CPE MAY ignore: (a) any
unknown XML elements within the SOAP Body® and their sub elements or content,
(b) any unknown XML attributes and their values, (c) any embedded XML
comments, and (d) any XML processing instructions. Alternatively the ACS and
CPE MAY explicitly validate the received XML and reject an envelope that includes
unknown elements. Note that this precludes extending existing messages by
including additional arguments without changing the name of the message.

¢ If an RPC method requires references to XML Schema namespaces (for example for
the “type” attribute, or for references to XML Schema data types), these references
MUST be to the 2001 versions of these namespace definitions, specifically,
http://www.w3.0rg/2001/XMLSchema-instance and
http://www.w3.0rg/2001/XMLSchema. The recipient MAY reject an RPC method
that references a different version of either of these namespaces.

As an example of an RPC method encoded as described above, a GetParameterNames
request would be encoded as:

<soap-env:Envelope xmlns:soap-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<soap-env:Header>
<cwmp:ID soap-env:mustUnderstand="1">0</cwmp:ID>
</soap-env:Header>
<soap-env:Body>
<cwmp : GetParameterNames>
<ParameterPath>Object.</ParameterPath>
<NextLevel>0</NextLevel>
</cwmp : Get ParameterNames>
</soap-env :Body>
</soap-env:Envelope>

With the exception that reception of a SOAP request to invoke an unsupported RPC method MUST result in a

SOAP-layer fault response with a fault code indicating “Method not Supported” (fault code 8000 or 9000).

November 2010 © The Broadband Forum. All rights reserved. Page 42 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Note — in the above example, the XML namespace prefixes used are only
examples. The actual namespace prefix values are arbitrary, and are used only to
refer to a namespace declaration.

Note — the CWMP namespace prefix is specified only for elements that are defined
at the top level of the CWMP schema (ID and GetParameterNames in the above

example). It is incorrect to specify a namespace on elements contained within
such elements (ParameterPath and NextLevel in the above example). This is
because the CWMP schema specifies an elementFormDefault value of
“unqualified”.

Note — in the above example, the CWMP namespace identifier “urn:dslforum-
org:cwmp-1-0" is only an example and is not necessarily the version that is
defined by this specification.

The CPE WAN Management Protocol defines a series of SOAP Header elements as
specified in Table 4.

Table 4 — SOAP Header Elements

Tag Name

Description

ID

This header element MAY be used to associate SOAP requests and responses using a unique identifier
for each request, for which the corresponding response contains the matching identifier. The value of
the identifier is an arbitrary string and is set at the discretion of the requester.

If used in a SOAP request, the ID header MUST appear in the matching response (whether the response
is a success or failure).

Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true) for
this header.

HoldRequests

This header MAY be included in envelopes sent from an ACS to a CPE to regulate transmission of
requests from the CPE. This header MUST NOT appear in envelopes sent from a CPE to an ACS.
This tag has Boolean values of “0” (false) or “1” (true). If the tag is not present, this is interpreted as
equivalent to a “0” (false).

The behavior of the CPE on reception of this header is defined in Section 3.7.1.3. Support in the CPE
for this header is REQUIRED.

Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true) for
this header.

Below is an example of a message showing the use of all of the defined headers:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
<soap:Header>

</soap:Header>
<soap:Body>

</soap:Body>
</soap:Envelope>

<cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
<cwmp: HoldRequests soap:mustUnderstand="1">0</cwnmp:HoldRequests>

<cwmp:Action>
<argument>value</argument>
</cwmp:Action>

Note — in the above example, the XML namespace prefixes used are only
examples. The actual namespace prefix values are arbitrary, and are used only to
refer to a namespace declaration.

November 2010

© The Broadband Forum. All rights reserved. Page 43 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Note — in the above example, the CWMP namespace identifier “urn:dslforum-
org:cwmp-1-0"is only an example and is not necessarily the version that is

defined by this specification.

3.6 RPC Support Requirements

Table 5 provides a summary of all methods, and indicates the conditions under which
implementation of each RPC method defined in Annex A is REQUIRED or OPTIONAL.

Table 5 — RPC message requirements

Method name

CPE requirement

ACS requirement

CPE methods Responding Calling
GetRPCMethods REQUIRED OPTIONAL
SetParameterValues REQUIRED REQUIRED
GetParameterValues REQUIRED REQUIRED
GetParameterNames REQUIRED REQUIRED
SetParameterAttributes REQUIRED OPTIONAL
GetParameterAttributes REQUIRED OPTIONAL
AddObject REQUIRED OPTIONAL
DeleteObject REQUIRED OPTIONAL
Reboot REQUIRED OPTIONAL
Download REQUIRED’ REQUIRED7
ScheduleDownload OPTIONAL OPTIONAL
Upload OPTIONAL OPTIONAL
FactoryReset OPTIONAL OPTIONAL
GetQueuedTransfers (DEPRECATED) OPTIONAL® OPTIONAL
GetAllQueuedTransfers OPTIONAL OPTIONAL
CancelTransfer OPTIONAL OPTIONAL
ScheduleInform OPTIONAL OPTIONAL
ChangeDUState OPTIONAL OPTIONAL
SetVouchers (DEPRECATED) OPTIONAL® OPTIONAL
GetOptions (DEPRECATED) OPTIONAL9 OPTIONAL
ACS methods Calling Responding
GetRPCMethods OPTIONAL REQUIRED
Inform REQUIRED REQUIRED
TransferComplete REQUIRED" REQUIRED"
AutonomousTransferComplete OPTIONAL REQUIRED
DUStateChangeComplete OPTIONAL™ OPTIONAL™

REQUIRED only if file downloads of any type are supported.

8 DEPRECATED in favor of GetAllQueuedTransfers.

The voucher mechanism has been DEPRECATED in favor of the Software Module Management mechanism.
REQUIRED only if file downloads or uploads of any type are supported.

! REQUIRED only if the ACS supports initiation of file downloads or uploads.

12" If the CPE responds to the ChangeDUState RPC then it MUST support this RPC.

1 If the ACS supports the ChangeDUState RPC then it MUST respond to this RPC.

November 2010 Page 44 of 197

© The Broadband Forum. All rights reserved.

CPE WAN Management Protocol TR-069 Amendment 3

Method name CPE requirement ACS requirement
AutonomousDUStateChangeComplete OPTIONAL OPTIONAL
RequestDownload OPTIONAL OPTIONAL
Kicked (DEPRECATED) OPTIONAL OPTIONAL™

3.7 Transaction Session Procedures

All transaction sessions MUST begin with an Inform message from the CPE contained in
the initial HTTP POST. This serves to initiate the set of transactions and communicate
the limitations of the CPE with regard to message encoding. An Inform message MUST
NOT occur more than once during a session (this limitation does not apply to the
potential need to retransmit an Inform request due to an HTTP “401 Unauthorized” status
code received as part of the HTTP authentication process, or due to an HTTP 3xx status
code received as part of an HTTP redirect).

The session ceases when both the ACS and CPE have no more requests to send and no
responses remain due from either the ACS or the CPE. At such time, the CPE MUST
close the connection.

No more than one transaction session between a CPE and its associated ACS can exist at
a time.

Note — a transaction session is intended to persist only as long as there are
messages to be transferred in either direction. A session and its associated TCP
connection are not intended to be held open after a specific exchange of
information completes.

3.7.1 CPE Operation

3.7.1.1 Session Initiation

The CPE will initiate a transaction session to the ACS as a result of the conditions listed
in Section 3.2.1. Once the connection to the ACS is successfully established, the CPE
initiates a session by sending an initial Inform request to the ACS. This indicates to the
ACS the current status of the CPE and that the CPE is ready to accept requests from the
ACS.

The CPE MUST consider the session to have been successfully initiated if and only if it
receives a successful Inform response.

If the CPE receives a successful Inform response in which the namespace identifier
indicates that the ACS supports only v1.0 of the CPE WAN Management Protocol, the
CPE MUST revert to v1.0 for the remainder of the session.

Note — v1.0 of the protocol is a special case because it did not consider
interoperability between different versions of the protocol. New requirements
added in vi.1 guarantee that a CPE and an ACS which both support vi.1 (or
later) will interoperate without the need for either party to revert to an earlier

4 DEPRECATED due to the deprecation of Annex D, which is the Section that defined the usage of this RPC.

November 2010 © The Broadband Forum. All rights reserved. Page 45 of 197

CPE WAN Management Protocol TR-069 Amendment 3

version (it is implied that later minor protocol versions will not add mandatory
protocol features or RPC methods).

From the time a session is initiated until the session is terminated, the CPE MUST ensure
the transactional integrity of all Parameters accessible via the CPE WAN Management
Protocol. During the course of a session, all configurable Parameters of the CPE MUST
appear to the ACS as a consistent set modified only by the ACS. Throughout the session
the CPE MUST shield the ACS from seeing any updates to the Parameters performed by
other entities. This includes the values of configurable parameters as well as presence or
absence of configurable parameters and objects. The means by which the CPE achieves
this transactional integrity is a local matter.

The CPE MUST take any necessary steps to ensure transactional integrity of the session.
For example, it might be necessary, in exceptional cases, for the CPE to terminate a
LAN-side management session in order to meet CWMP session establishment
requirements.

3.7.1.2 Incoming Requests

While in a session (after the session was successfully initiated, but before the session
termination criteria described in 3.7.1.4 have been met), on reception of a SOAP request
from the ACS, the CPE MUST respond to that request in the next HTTP POST that it
sends to the ACS.

3.7.1.3 Outgoing Requests

While in a session (after the session was successfully initiated, but before the session
termination criteria described in 3.7.1.4 have been met), if the CPE has one or more
requests to send to the ACS, the CPE MUST send one of these requests in the next HTTP
POST if and only if all of the following conditions are met:

* The most recently received HTTP response from the ACS did not contain a SOAP
request.

* The ACS has indicated that HoldRequests is false (see Section 3.5). This condition is
met if and only if the most recently received HTTP response from the ACS contained
one of the following:

o A SOAP envelope with the HoldRequests header set to a value of false.
o A SOAP envelope with no HoldRequests header.
o No SOAP envelope (an empty HTTP response).

* At any prior time during the current session, the CPE has not sent an empty HTTP
POST at a time that the ACS had indicated that HoldRequests is false (as described
above).

If the CPE has more than one request pending when the above criteria are met, the choice
of which request to send is at the discretion of the CPE unless otherwise specified.

While in a session, if any of the above conditions are not met or if the CPE has no
requests to send to the ACS, and if the most recent HTTP response from the ACS did not
contain a SOAP request, the CPE MUST send an empty HTTP POST.

November 2010 © The Broadband Forum. All rights reserved. Page 46 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Once the CPE has sent an empty HTTP POST when the most recent HoldRequests was
false (see Section 3.5), the CPE MUST NOT send any further requests for the remainder
of the session. In this case, if the CPE has additional requests to send to the ACS, the
CPE MUST wait until a subsequent session to send these requests.

Table 6 summarizes what the CPE MUST send to the ACS as long as the session is in
progress (after the session was successfully initiated, but before the session termination
criteria described in 3.7.1.4 have been met).

Table 6 — CPE Message Transmission Constraints

HoldRequests | ACS request outstanding No ACS request outstanding
CPE requests pending15 False Response Request

True Response Empty HTTP POST
No CPE requests pending | - Response Empty HTTP POST

3.7.1.4 Session Termination

The CPE MUST terminate the transaction session when all of the following conditions
are met:

1) The ACS has no further requests to send the CPE. The CPE concludes this if and
only if the most recent HTTP response from the ACS was empty.

2) The CPE has no further requests to send to the ACS and the CPE has issued an
empty HTTP POST to the ACS while HoldRequests is false (which indicates to
the ACS that the CPE has no further requests for the remainder of the session).
As defined in Table 6, if this condition has not been met but the CPE has no
further requests or responses, it MUST send an empty HTTP POST, which will
then fulfill this condition.

3) The CPE has received all outstanding response messages from the ACS.

4) The CPE has sent all outstanding response messages to the ACS resulting from
prior requests.

The CPE MUST also consider a session unsuccessfully terminated if it has received no
HTTP response from an ACS for a locally determined time period of not less than 30
seconds. If the CPE fails to receive an HTTP response, the CPE MUST NOT attempt to
retransmit the corresponding HTTP request as part of the same session.

If the CPE receives a SOAP-layer fault in response to an Inform request with a fault code
other than “Retry request” (fault code 8005), the CPE MUST consider the session to have
terminated unsuccessfully.

If the CPE receives an HTTP response from the ACS for which the XML is not well-
formed, for which the SOAP structure is deemed invalid, that contains a SOAP fault that
is not in the form specified in Section 3.5, or for which the CPE deems that the protocol

'3 The CPE can have requests pending only if the CPE has not already sent an empty HTTP POST when the most
recent HoldRequests was false. Otherwise, the CPE is considered to have no requests pending.

November 2010 © The Broadband Forum. All rights reserved. Page 47 of 197

CPE WAN Management Protocol TR-069 Amendment 3

has been violated, the CPE MUST consider the session to have terminated
unsuccessfully.

If the CPE receives an HTTP response from the ACS with a fault status code (a 4xx or
5xx status code) that is not otherwise handled by the CPE, the CPE MUST consider the
session to have terminated unsuccessfully. Note that while the CPE would accept an
HTTP response with a “401 Unauthorized” status code as part of the normal
authentication process, when the CPE subsequently attempts to authenticate, if the
resulting HTTP response contains a “401 Unauthorized” status code, the CPE MUST
consider the session to have terminated unsuccessfully.

If the above conditions are not met, the CPE MUST continue the session.

If the CPE receives a SOAP-layer fault response as defined in Section 3.5 with a fault
code other than “Retry request” (fault code 8005) in response to any method other than
Inform, the CPE MUST continue with the remainder of the session. That is, a fault
response of this type MUST NOT cause the session to unsuccessfully terminate.

Note — in a fault condition, it is entirely at the discretion of the ACS whether its
fault response is a SOAP-layer fault, which would cause the session to continue,
or an HTTP-layer fault, which would cause the session to terminate
unsuccessfully.

If one or more messages exchanged during a session results in the CPE needing to reboot
to complete the requested operation, the CPE MUST wait until after the session has
cleanly terminated based on the above criteria before performing the reboot.

If the session terminates unexpectedly, the CPE MUST retry the session as specified in
Section 3.2.1.1. The CPE MAY place locally specified limits on the number of times it
attempts to reestablish a session in this case.

3.7.1.5 Events

An event is an indication that something of interest has happened that requires the CPE to
notify the ACS via an Inform request defined in Section A.3.3.1. The CPE MUST
attempt to deliver every event at least once. If the CPE is not currently in a session with
the ACS, it MUST attempt to deliver events immediately; otherwise, it MUST attempt to
deliver them after the current session terminates. The CPE MUST receive confirmation
from the ACS for it to consider an event successfully delivered. Once the CPE has
delivered an event successfully, the CPE MUST NOT send the same event again. On the
other hand, the ACS MUST be prepared to receive the same event more than once
because the ACS might have sent a response the CPE never receives. Many types of
events (e.g., PERIODIC, VALUE CHANGE) can legally appear in subsequent sessions
even when successfully delivered in the earlier session. In such cases, an event in the
later session indicates the reoccurrence of an event of the same type rather than an
attempt to retry an event delivery failure.

For every type of event there is a policy that dictates if and when the CPE MUST retry
event delivery if a previous delivery attempt failed. When event delivery is retried it
MUST be in the immediately following session; events whose delivery fails in one
session cannot be omitted in the following session and then later redelivered.

November 2010 © The Broadband Forum. All rights reserved. Page 48 of 197

CPE WAN Management Protocol TR-069 Amendment 3

For most events, delivery is confirmed when the CPE receives a successful
InformResponse. Six standard event types (KICKED'®, TRANSFER COMPLETE,
AUTONOMOUS TRANSFER COMPLETE, REQUEST DOWNLOAD, DU STATE
CHANGE COMPLETE, and AUTONOMOUS DU STATE CHANGE COMPLETE)
indicate that one or more methods (Kicked [Section A.4.2.1], TransferComplete [Section
A.3.3.2], AutonomousTransferComplete [Section A.3.3.3], RequestDownload [Section
A.4.2.2], DUStateChangeComplete [Section A.4.2.3], AutonomousDUStateChange-
Complete [Section A.4.2.4] respectively) will be called later in the session, and it is the
successful response to these methods that indicates event delivery. The CPE MAY also

send vendor-specific events (using the syntax specified in Table 7), in which case
successful delivery, retry, and discard policy is subject to vendor definition.

If no new events occur while the CPE has some events to redeliver, the CPE MUST
attempt to redeliver them according to the schedule defined by the session retry policy in

Section 3.2.1.1.

Below is a table of event types, their codes in an Inform request, their cumulative
behavior, the responses the CPE MUST receive to consider them successfully delivered,
and the policy for retrying and/or discarding them if delivery is unsuccessful.

Table 7 — Event Types

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy
"0 BOOTSTRAP" Single Indicates that the session was | InformResponse The CPE MUST NOT

established due to first-time
CPE installation or a change to
the ACS URL.

The specific conditions that
MUST result in the
BOOTSTRAP EventCode are:

e First time connection of the
CPE to the ACS from the
factory.

e First time connection of the
CPE to the ACS after a
factory reset.

e First time connection of the
CPE to the ACS after the
ACS URL has been
modified in any way.

Note that as with all other

EventCode values, the

BOOTSTRAP EventCode MAY

be included in the Event array

along with other EventCode
values. It would be expected,
for example, that on the initial
boot of the CPE from the
factory, the CPE would include
both the BOOTSTRAP and

BOOT EventCodes.

ever discard an
undelivered
BOOTSTRAP event.
All other undelivered
events MUST be
discarded on
BOOTSTRAP.

' DEPRECATED due to the deprecation of Annex D, which is the Section that defined the usage of this Event.

November 2010

© The Broadband Forum. All rights reserved.

Page 49 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy
"1 BOOT" Single Indicates that the session was | InformResponse The CPE MUST retry
established due to the CPE delivery until it
being powered up or reset. reboots before
This includes initial system discarding it.
boot, as well as reboot due to
any cause, including use of the
Reboot method.
"2 PERIODIC" Single Indicates that the session was | InformResponse The CPE MUST NOT
established on a periodic ever discard an
Inform interval. undelivered
PERIODIC event
(except on
BOOTSTRAP).
"3 SCHEDULED" Single Indicates that the session was | InformResponse The CPE MUST NOT
established due to a ever discard an
Schedulelnform method call. undelivered
This event code MUST only be SCHEDULED event
used with the “M (except on
Schedulelnform” event code BOOTSTRAP).
(see “M Schedulelnform”,
below).
"4 VALUE Single Indicates that since the last InformResponse The CPE MUST retry
CHANGE" successful Inform (under the delivery until it
conditions defined in Section reboots or the ACS
A.3.2.4), the value of one or URL is modified
more parameters with Passive before discarding it.
or Active Notification enabled
(including parameters defined
to require Forced Active
Notification) has been modified
(even if its value has changed
back to the value it had at the
time of the last successful
Inform).
If this EventCode is included in
the Event array, all such
modified parameters MUST be
included in the ParameterList in
this Inform. If this event is ever
discarded then the list of
modified parameters MUST be
discarded at the same time.
"5 KICKED""” Single Indicates that the session was | KickedResponse The CPE MAY retry
(DEPRECATED) established for the purpose of delivery at its
web identity management (see discretion.
Annex D) and that a Kicked
method (see Section A.4.2.1)
will be called one or more times
during this session.
“6 CONNECTION Single Indicates that the session was | InformResponse The CPE MUST NOT

REQUEST”

established due to a
Connection Request from the
ACS as described in Section
3.2.

retry delivery.

7 DEPRECATED due to the deprecation of Annex D, which is the Section that defined the usage of this Event.

November 2010

© The Broadband Forum. All rights reserved.

Page 50 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy
“7 TRANSFER Single Indicates that the session was | TransferCompleteResponse | The CPE MUST NOT
COMPLETFE” established to indicate the ever discard an
completion of a previously undelivered
requested download or upload TRANSFER
(either successful or COMPLETE event
unsuccessful) and that the (except on
TransferComplete method will BOOTSTRAP).
be called one or more times
during this session.
This event code MUST only be
used with the “M Download”,
“M ScheduleDownload” and/or
“M Upload” event codes (see
“M Download”, “M
ScheduleDownload” and “M
Upload”, below).
"8 DIAGNOSTICS Single Used when reestablishing a InformResponse The CPE MUST retry
COMPLETE" connection to the ACS after delivery until it
completing one or more reboots before
diagnostic test initiated by the discarding it.
ACS.
“9 REQUEST Single Indicates that the session was | RequestDownloadResponse | The CPE MAY retry
DOWNLOAD” established for the CPE to call delivery at its
the RequestDownload method discretion.
(see Section A.4.2.2) one or
more times.
“10 AUTONOMOUS | Single Indicates that the session was | AutonomousTransfer- The CPE MUST NOT
TRANSFER established to indicate the CompleteResponse ever discard an
COMPLETE” completion of a download or undelivered
upload that was not specifically AUTONOMOUS
requested by the ACS (either TRANSFER
successful or unsuccessful) COMPLETE event
and that the Autonomous- (except on
TransferComplete method will BOOTSTRAP).
be called one or more times
during this session.
“11 DU STATE Single Indicates that the session was | DUStateChangeComplete- |The CPE MUST NOT
CHANGE established to indicate the Response ever discard an
COMPLETE” completion of a previously undelivered DU
requested DU state change, STATE CHANGE
either successful or COMPLETE event
unsuccessful, and that the (except on
DUStateChangeComplete BOOTSTRAP).
method will be called during
this session.
This method MUST only be
used with the “M
ChangeDUState” event code
(see “M ChangeDUState”,
below).
“12 AUTONOMOUS | Single Indicates that the session was | AutonomousDUState- The CPE MUST NOT
DU STATE established to indicate the ChangeCompleteResponse | ever discard an
CHANGE completion of a DU state undelivered
COMPLETE” change not specifically AUTONOMOUS DU
requested by a STATE CHANGE
ChangeDUState RPC (either COMPLETE event
successful or unsuccessful) (except on
and that the Autonomous- BOOTSTRAP).
DUStateChangeComplete
method will be called during
this session.
November 2010 © The Broadband Forum. All rights reserved. Page 51 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Event Code Cumulative | Explanation ACS Response for Retry/Discard
Behavior Successful Delivery Policy
“M Reboot” Multiple The CPE rebooted upon InformResponse The CPE MUST NOT
request from the ACS through ever discard an
the use of the Reboot RPC. undelivered “M
Overlaps with one of the Reboot” event
causes that can generate a “1 (except on
BOOT” event code. BOOTSTRAP).
“M Schedulelnform” | Multiple The ACS requested a InformResponse The CPE MUST NOT
scheduled Inform. ever discard an
undelivered “M
Schedulelnform”
event (except on
BOOTSTRAP).
“M Download” Multiple A content download previously | TransferCompleteResponse | The CPE MUST NOT
requested by the ACS using ever discard an
the Download method (see undelivered “M
Section A.3.2.8) has finished. Download” event
Overlaps with “7 TRANSFER (except on
COMPLETE". BOOTSTRAP).
“M Multiple A content download previously | TransferCompleteResponse | The CPE MUST NOT
ScheduleDownload” requested by the ACS using ever discard an
the ScheduleDownload method undelivered “M
(see Section A.4.1.8) has ScheduleDownload”
finished. Overlaps with “7 event (except on
TRANSFER COMPLETE”. BOOTSTRAP).
“M Upload” Multiple A content upload previously TransferCompleteResponse | The CPE MUST NOT
requested by the ACS using ever discard an
the Upload method (see undelivered “M
Section A.4.1.5) has finished. Upload” event
Overlaps with “7 TRANSFER (except on
COMPLETE". BOOTSTRAP).
“M ChangeDUState” | Multiple A DU state change previously | DUStateChangeComplete- | The CPE MUST NOT
requested by the ACS using Response ever discard an
the ChangeDUState method undelivered “M
(see Section A.4.1.10) has ChangeDUState”
finished. Overlaps with “11 DU event (except on
STATE CHANGE BOOTSTRAP).
COMPLETE".
"M " <vendor- Not The action requested by a Not specified Not specified
specific method> specified vendor-specific method is
complete. The action taken by
the CPE and response by the
ACS is vendor-specific. A
vendor-specific method name
MUST be in the form specified
in Section A.3.1.1.
For example:
“M X_012345_MyMethod”
November 2010 © The Broadband Forum. All rights reserved. Page 52 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Event Code

Cumulative
Behavior

Explanation

ACS Response for
Successful Delivery

Retry/Discard
Policy

“X “<\/ENDOR> "
<event>

Not
specified

Vendor-specific event. The
VENDOR after the “X* and
space is a unique vendor
identifier, which MAY be either
an OUIl or a domain name. The
OUI or domain name used for a
given vendor-specific event
MUST be one that is assigned
to the organization that defined
this method (which is not
necessarily the same as the
vendor of the CPE or ACS). An
OUl is an organizationally
unique identifier as defined in
[10], which MUST be formatted
as a 6 hexadecimal-digit OUI
(organizationally unique
identifier), with all upper-case
letters and any leading zeros
included. A domain name
MUST be upper case with each
dot (“.”) replaced with a hyphen
or underscore.

For example:

“X 012345 MyEvent”
“X ACME_COM MyEvent”

Not specified

Not specified

November 2010

© The Broadband Forum. All rights reserved.

Page 53 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The Cumulative Behavior column of the above table distinguishes between event types
that are not cumulative (“Single”) and those that are cumulative (“Multiple”). For
example, if the CPE reboots while the previous “1 BOOT” event has not yet been
delivered, it makes no sense for the next Inform to contain two “1 BOOT” Event array
entries. In contrast, if a download completes while the previous “M Download” event
has not yet been delivered, the next Inform would contain two “M Download” Event
array entries because each relates to a different ACS request. The “Single” and
“Multiple” cumulative behaviors are defined as follows:

* [fan event with “Single” cumulative behavior occurs, the list of events in the next
Inform MUST contain only one instance of this EventCode, regardless of whether
there are any undelivered events of the same type.

* [fan event with “Multiple” cumulative behavior occurs, the new EventCode MUST
be included in the list of events, independent of any undelivered events of the same
type, and this MUST NOT affect any such undelivered events.

When one or more events are directly related to the same root cause, then all such events
MUST be included in the Event array. Below are examples of such cases (this list is not
exhaustive):

* Reboot caused by the Reboot RPC method. In this case the Inform MUST include at
least the following EventCode values:

"1 BOOT"
"M Reboot"

* TransferComplete sent in a new session due to a prior Download request, where there
is no reboot associated with the completion of the transfer:

"7 TRANSFER COMPLETE"
"M Download"

* One or more parameter values for which Passive Notification has been set have
changed since the most recent Inform, and a periodic Inform occurs (in this case, the
events MUST be included in the same Inform because for Passive Notifications, the
Inform in which the “4 VALUE CHANGE” event would occur would have to result
from some other cause—in this example, a periodic inform):

"2 PERIODIC"
"4 VALUE CHANGE"

For events that are due to unrelated causes, if they occur simultaneously, the CPE
SHOULD include all such events in the same Inform message, but MAY send separate
Inform messages for each such event. An example of unrelated events is:

"2 PERIODIC"
"7 TRANSFER COMPLETE"

3.7.1.6 Method Retry Behavior

If in response to a request from the CPE the CPE receives a “Retry request” response
(fault code 8005) from the ACS, the CPE MUST resend the identical request in the next

November 2010 © The Broadband Forum. All rights reserved. Page 54 of 197

CPE WAN Management Protocol TR-069 Amendment 3

HTTP POST within the current session. This behavior applies to all ACS methods
(including Inform).

If instead the CPE receives a fault response with any fault code other than 8005 in
response to any method other than Inform, the CPE MUST proceed with the session, and
MUST NOT attempt to retry the method (such a response in the case of Inform will
terminate the session, as described in Section 3.7.1.4).

3.7.2 ACS Operation

3.7.2.1 Session Initiation

Upon receiving the initial Inform request from the CPE, if the ACS wishes to allow the
initiation of the session, it MUST respond with an Inform response.

If the ACS receives an initial Inform request from the CPE in which the namespace
identifier indicates that the CPE supports only v1.0 of the CPE WAN Management
Protocol, the ACS MUST revert to v1.0 for the entire session.

Note — v1.0 of the protocol is a special case because it did not consider
interoperability between different versions of the protocol. New requirements
added in vi.1 guarantee that a CPE and an ACS which both support vi.1 (or
later) will interoperate without the need for either party to revert to an earlier
version (it is implied that later minor protocol versions will not add mandatory
protocol features or RPC methods).

Note — an ACS that supports only v1.0 of the CPE WAN Management Protocol
will expect the initial Inform request from the CPE to use the v1.0 namespace
identifier “urn:dslforum-org:cwmp-1-0", and to contain only event types that
were defined in v1.0 of the protocol. The behavior of such an ACS when it
receives an initial Inform from a CPE that supports vi.1 (or later) is not possible
to predict. The ACS might fail to notice that the CPE supports a later version, in
which case it will respond with an Inform response; it might return a SOAP-layer
fault; or it might return an HTTP-layer fault. If it returns a fault, the CPE will
need to decide whether or not to revert to v1.0 of the protocol when retrying the
failed session.

If the ACS receives an initial Inform request from the CPE in which the CWMP
namespace identifier indicates an unknown later minor version than that which is
implemented within the ACS, the behavior of an ACS is not possible to predict. If the
namespace identifier represents a later minor version, the ACS SHOULD assume that the
namespace it knows about is backwards compatible, in which case it will respond with an
Inform response containing a namespace identifier supported by the ACS; or it MAY
return a SOAP-layer fault; or it MAY return an HTTP-layer fault. If the ACS returns a
fault, the CPE will need to decide whether or not to revert to v1.0 of the protocol when
retrying the failed session.

The ACS MUST ignore any event types that it does not recognize.

November 2010 © The Broadband Forum. All rights reserved. Page 55 0f 197

CPE WAN Management Protocol TR-069 Amendment 3

3.7.2.2 Incoming Requests

While in a session (after the session was successfully initiated, but before the session
termination criteria described in 3.7.2.4 have been met), on reception of a SOAP request
from the CPE, the ACS MUST respond to that request in the next HTTP response sent to
the CPE.

If the ACS wishes to prevent the CPE sending requests during some portion of the
session, it MAY do so by setting the HoldRequests header to true in each envelope
transmitted to the CPE until the ACS again wishes to allow requests from the CPE. The
ACS MUST allow CPE requests before completion of a session (this MAY be done
either explicitly via the HoldRequests header or implicitly by sending an empty HTTP
response).

3.7.2.3 Outgoing Requests

While in a session (after the session was successfully initiated, but before the session
termination criteria described in 3.7.2.4 have been met), if the ACS has one or more
requests to send to the CPE and the most recent HTTP POST from the CPE did not
contain a SOAP request, the ACS MUST send one of these requests in the next HTTP
response.

Otherwise, while in a session, if the ACS has no requests to send to the CPE and the most
recent HTTP POST from the CPE did not contain a SOAP request, the ACS MUST send
an empty HTTP response.

Table 8 summarizes what the ACS MUST send to the CPE as long as the session is in
progress (after the session was successfully initiated, but before the session termination
criteria described in 3.7.2.4 have been met).

Table 8 — ACS Message Transmission Constraints

CPE request outstanding No CPE request outstanding
ACS requests pending Response Request
No ACS requests pending Response Empty HTTP response

3.7.2.4 Session Termination

Since the CPE is driving the HTTP connection to the ACS, only the CPE is responsible
for connection initiation and teardown.

The ACS MUST consider the session terminated when all of the following conditions are
met:

1) The CPE has no further requests to send the ACS. The ACS concludes this if and
only if it has received an empty HTTP POST from the CPE while HoldRequests
is false.

2) The ACS has no further requests to send the CPE and the most recent HTTP
response the ACS sent to the CPE was empty (which indicates to the CPE that the
ACS has no further requests).

3) The ACS has sent all outstanding response messages to the CPE resulting from
prior requests.

November 2010 © The Broadband Forum. All rights reserved. Page 56 of 197

CPE WAN Management Protocol TR-069 Amendment 3

4) The ACS has received all outstanding response messages from the CPE.

If all of the above criteria have been met before the ACS has sent its final HTTP
response, the final HTTP response from the ACS MUST be empty.

If the above criteria have not all been met, but the ACS has not received an HTTP POST
from a given CPE within a locally defined timeout of not less than 30 seconds, it MAY
consider the session terminated. In this case, the ACS MAY attempt to reestablish a
session by performing a Connection Request (see Section 3.2.1.2).

If the ACS receives an HTTP POST from the CPE for which the XML is not well-
formed, for which the SOAP structure is deemed invalid, or that contains a SOAP fault
that is not in the form specified in Section 3.5, the ACS MUST respond to the CPE with
an HTTP 400 status code (Bad Request), and MUST consider the session to have
terminated unsuccessfully. This fault response MUST NOT contain any SOAP content,
but MAY contain human-readable text that further explains the nature of the fault.

If the ACS receives a request associated with a session that it considers expired, or if the
ACS determines that some other protocol violation has occurred, or for other reasons at
the discretion of the ACS'®, the ACS MAY cause a session to terminate unsuccessfully
by responding to the CPE with an HTTP 400 status code (Bad Request). This HTTP
response MUST NOT contain any SOAP content, but MAY contain human readable-text
that further explains the nature of the fault.

If the ACS receives a SOAP fault response from the CPE, as defined in Section 3.5, the
ACS MUST interpret any unrecognized fault code between 9000 and 9799 (inclusive) the
same as 9001 (Request denied), and MAY choose among the following actions:

e The ACS MAY force the unsuccessful termination of the session. To do this, the
ACS MUST respond to the CPE with an HTTP 400 status code (Bad Request). This
HTTP response MUST NOT contain any SOAP content, but MAY contain human
readable-text that further explains the nature of the fault. This will result in the CPE
retrying the session.

* The ACS MAY attempt to terminate the session successfully, in which case the CPE
will not attempt to retry the session. To do this, the ACS would send no more
requests to the CPE, and would follow the rules defined above to determine when the
session terminates.

* The ACS MAY continue with the session, sending additional requests to the CPE.

'8 With the exception that reception of a SOAP request to invoke an unsupported RPC method MUST result in a
SOAP-layer fault response with a fault code indicating “Method not supported” (fault code 8000).

November 2010 © The Broadband Forum. All rights reserved. Page 57 of 197

CPE WAN Management Protocol

3.7.3 Transaction Examples

TR-069 Amendment 3

In the example shown in Figure 3, the ACS first reads a set of parameter values, and
based on the result, sets some parameter values.

Figure 3 — Transaction Session Example

CPE

ACS

Open connection

<

SSL initiation

>

HTTP post

Inform request

HTTP response

Inform response

HTTP post (empty)

HTTP response

GetParameterValues request

HTTP post

GetParameterValues response

HTTP response

SetParameterValues request

HTTP post

SetParameterValues response

HTTP response (empty)

Close connection

November 2010

© The Broadband Forum. All rights reserved.

Page 58 of 197

CPE WAN Management Protocol TR-069 Amendment 3

In the example shown in Figure 4, the ACS first initiates a file download, and the CPE
sends a TransferComplete later in the same session. Note that this scenario could occur
only if the file download is very short and the CPE is capable of performing it in parallel
with the ongoing CPE WAN Management Protocol session (which a CPE is nof required
to do). To allow this possibility, the ACS sets HoldRequests equal to true until it has
completed sending requests to the CPE.

Figure 4 — Example with the ACS using HoldRequests equal true
CPE ACS

Open connection

>

< SSL initiation >

HTTP post
Inform request

HTTP response
Inform response (HoldRequests = true)

HTTP post (empty)

Y

HTTP response
Download request (HoldRequests = true)

HTTP post
Download response (status = 1)

HTTP response (empty)

HTTP post
TransferComplete request

HTTP response
TransferComplete response

HTTP post (empty)

HTTP response (empty)

Close connection

November 2010 © The Broadband Forum. All rights reserved. Page 59 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Normative References

The following documents are referenced by this specification. Where the protocol
defined in this specification depends on a referenced document, support for all required
components of the referenced document is implied unless otherwise specified.

The following references are associated with document conventions or context for this
specification, but are not associated with requirements of the CPE WAN Management
Protocol itself.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt

[2] TR-046, Auto-Configuration Architecture & Framework, Broadband Forum
Technical Report

[3] TR-062, Auto-Configuration for the Connection Between the DSL Broadband
Network Termination (B-NT) and the Network using ATM, Broadband Forum
Technical Report

[4] TR-044, Auto-Configuration for Basic Internet (IP-based) Services, Broadband
Forum Technical Report

The following references are associated with required components of the CPE WAN
Management Protocol.

[5] RFC 1034, Domain names — concepts and facilities,
http://www.ietf.org/rfc/rfc1034.txt

[6] RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt

[7] RFC 2617, HTTP Authentication: Basic and Digest Access Authentication,
http://www.ietf.org/rfc/rfc2617.txt

[8] RFC 2965, HTTP State Management Mechanism,
http://www.ietf.org/rfc/rfc2965.txt

[9] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-
SOAP-20000508

[10] Organizationally Unique Identifiers (OUIs),
http://standards.ieee.org/faqs/OUILhtml

[11]RFC 5246, The Transport Layer Security (TLS) Protocol, Version 1.2,
http://www.ietf.org/rfc/rfc5246.txt

[12] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax,
http://www.ietf.org/rfc/rfc3986.txt

[13] TR-106 Amendment 4, Data Model Template for TR-069-Enabled Devices,
Broadband Forum Technical Report

November 2010 © The Broadband Forum. All rights reserved. Page 60 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The following references are associated with optional or recommended components of
the CPE WAN Management Protocol.

[14] RFC 2132, DHCP Options and BOOTP Vendor Extensions,
http://www.ietf.org/rfc/rfc2132.txt

[15] XML-Signature Syntax and Processing, http://www.w3.0rg/2000/09/xmldsig

[16] PKCS #7, Cryptographic Message Syntax Standard,
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html or
http://www.ietf.org/rfc/rfc2315.txt

[17] Port Numbers, http://www.iana.org/assignments/port-numbers

[18] IANA Private Enterprise Numbers registry,
http://www.lana.org/assignments/enterprise-numbers

[19]RFC 2104, HMAC: Keyed-Hashing for Message Authentication,
http://www.ietf.org/rfc/rfc2104.txt

[20] RFC 2131, Dynamic Host Configuration Protocol,
http://www.ietf.org/rfc/rfc2131.txt

[21]1RFC 3489, STUN - Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs), http://www.ietf.org/rfc/rfc3489.txt

[22]1 RFC 3925, Vendor-Identifying Vendor Options for Dynamic Host Configuration
Protocol version 4 (DHCPv4), http://www .ietf.org/rfc/rfc3925.txt

[23]1 HTML 4.01 Specification, http://www.w3.org/TR/html4

[24] TR-098 Amendment 2, Internet Gateway Device Data Model for TR-069,
Broadband Forum Technical Report

[25] TR-104, Provisioning Parameters for VolP CPE, Broadband Forum Technical
Report

[26] TR-135, Data Model for a TR-069 Enabled STB, Broadband Forum Technical
Report

[27] TR-140 Issue 1.1, TR-069 Data Model for Storage Service Enabled Devices,
Broadband Forum Technical Report

[28] TR-143 Corrigendum 2, Enabling Network Throughput Performance Tests and
Statistical Monitoring, Broadband Forum Technical Report

[29] TR-157 Amendment 3, Component Objects for CWMP, Broadband Forum
Technical Report

[30] TR-196, Femto Access Point Service Data Model, Broadband Forum Technical
Report

[31] TR-181 Issue 1, Device Data Model for TR-069, Broadband Forum Technical
Report

[32] TR-181 Issue 2, Device Data Model for TR-069, Broadband Forum Technical
Report

November 2010 © The Broadband Forum. All rights reserved. Page 61 of 197

CPE WAN Management Protocol TR-069 Amendment 3

[33] RFC 5389, Session Traversal Utilities for NAT (STUN),
http://www.ietf.org/rfc/rfc5389.txt

[34] RFC 4122, A Universally Unique [Dentifier (UUID) URN Namespace,
http://www.ietf.org/rfc/rfc4122 .txt

[35]RFC 3315, Dynamic Host Configuration Protocol for IPv6 (DHCPvG6),
http://www.ietf.org/rfc/rfc3315.txt

November 2010 © The Broadband Forum. All rights reserved. Page 62 of 197

AA1

A.2

A.2.1

CPE WAN Management Protocol TR-069 Amendment 3

Annex A. RPC Methods

Introduction

In the CPE WAN Management Protocol, a remote procedure call mechanism is used for
bi-directional communication between a CPE device and an Auto-configuration Server
(ACS). This Annex specifies the specific procedure calls (methods). This includes both
methods initiated by an ACS and sent to a CPE, as well as methods initiated by a CPE
and sent to an ACS.

This specification is intended to be independent of the syntax used to encode the defined
RPC methods. The particular encoding syntax to be used in the context of the CPE WAN
Management Protocol is defined in Section 3.5.

RPC Method Usage

Data Types

The RPC methods defined in this specification make use of a limited subset of the default
SOAP data types [9]. The complete set of types utilized in this specification along with
the notation used to represent these types is listed in Table 9.

Table 9 — Data types

Type Description

string For strings listed in this specification, a maximum allowed length can be listed using the form string(N),
where N is the maximum string length in characters.

For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated
value determines the maximum length. If a string does not have an explicitly indicated maximum
length or is not an enumeration, the default maximum is 16 characters. Action arguments containing
strings longer than the specified maximum MAY result in an “Invalid arguments” error response.

int Integer in the range —2147483648 to +2147483647, inclusive.

For some int types listed, a value range is given using the form int{Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit.

unsignedint Unsigned integer in the range 0 to 4294967295, inclusive.

For some unsignedint types listed, a value range is given using the form unsignedint[Min:Max], where
the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.

boolean Boolean, where the allowed values are “0”, “1”, “true”, and “false”. The values “1” and “true” are
considered interchangeable, where both equivalently represent the logical value true. Similarly, the
values “0” and “false” are considered interchangeable, where both equivalently represent the logical
value false.

November 2010 © The Broadband Forum. All rights reserved. Page 63 of 197

A.2.2

A3
A.3.1

A.3.1.1

CPE WAN Management Protocol TR-069 Amendment 3

Type Description

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.

All times MUST be expressed in UTC (Universal Coordinated Time) unless explicitly stated otherwise
in the definition of a variable of this type.

If absolute time is not available to the CPE, it SHOULD instead indicate the relative time since boot,
where the boot time is assumed to be the beginning of the first day of January of year 1, or
0001-01-01T00:00:00. For example, 2 days, 3 hours, 4 minutes and 5 seconds since boot would be
expressed as 0001-01-03T03:04:05. Relative time since boot MUST be expressed using an
untimezoned representation. Any untimezoned value with a year value less than 1000 MUST be
interpreted as a relative time since boot.

If the time is unknown or not applicable, the following value representing “Unknown Time” MUST be
used: 0001-01-01T00:00:00Z.

Any dateTime value other than one expressing relative time since boot (as described above) MUST
use timezoned representation (that is, it MUST include a timezone suffix).

base64 Base64 encoded binary.

A maximum allowed length can be listed using the form base64(N), where N is the maximum length in
characters after Base64 encoding.

anySimpleType The value of an element defined to be of type “anySimpleType” MAY be of any simple data type,
including (but not limited to) any of the other types listed in this table.

Following the SOAP specification [9], elements specified as being of type “anySimpleType” MUST
include a type attribute to indicate the actual type of the element. For example:

<ParameterValueStruct>
<Name>InternetGatewayDevice.ProvisioningCode</Name>
<Value xsi:type="xsd:string">code12345</Value>
</ParameterValueStruct>

The namespaces xsi and xsd used above are as defined in [9].

The methods used in this specification also make use of structures and arrays (in some
cases containing mixed types). Array elements are indicated with square brackets after
the data type. If specified, the maximum length of the array is indicated within the
brackets. If the maximum length is not specified, unless otherwise indicated, there is no
fixed requirement on the number of elements the recipient will be able to accommodate.
A request with an array too large for the recipient to accommodate SHOULD result in the
“Resources exceeded” fault code. Unless otherwise specified, the order of items in an
array MUST NOT have any effect on the interpretation of the contents of the array.

Other Requirements
Any message sent or received whose arguments do not adhere to the normative CWMP
XSD as defined in A.6 MUST generate an error response.

Future versions of this specification MUST NOT alter the RPC method signatures
defined in this Annex. Any changes needed in a future version MUST result only in new
RPC methods with distinct names being defined.

Baseline RPC Messages

Generic Methods

The methods listed in this Section are REQUIRED to be supported on both CPE devices
and ACSs. Either a CPE or ACS MAY call these methods.

GetRPCMethods

This method MAY be used by a CPE or ACS to discover the set of methods supported by
the ACS or CPE it is in communication with. This list MUST include all the supported

November 2010 © The Broadband Forum. All rights reserved. Page 64 of 197

CPE WAN Management Protocol TR-069 Amendment 3

methods, both standard methods (those defined in this specification or a subsequent
version) and vendor-specific methods. The receiver of the response MUST ignore any
unrecognized methods.

Vendor-specific methods MUST be in the form X <VENDOR> MethodName, where
<VENDOR> is a unique vendor identifier, which MAY be either an OUI or a domain
name. The OUI or domain name used for a given vendor-specific method MUST be one
that is assigned to the organization that defined this method (which is not necessarily the
same as the vendor of the CPE or ACS). An OUI is an organizationally unique identifier
as defined in [10], which MUST formatted as a 6 hexadecimal-digit OUI
(organizationally unique identifier), with all upper-case letters and any leading zeros
included. A domain name MUST be upper case with each dot (“.””) replaced with a
hyphen or underscore. Examples: X 012345 MyMethod, X ACME COM_MyMethod.

The calling arguments for this method are defined in Table 10. The arguments in the
response are defined in Table 11.

Table 10 — GetRPCMethods arguments

Argument Type Description

- void This method has no calling arguments.

Table 11 — GetRPCMethodsResponse arguments

Argument Type Description

MethodList | string(64)[] | Array of strings containing the names of each of the RPC methods the recipient supports.
The list of methods returned by an ACS MUST always include “Inform”.

For example, a CPE implementing only the baseline methods defined in this version of
the specification would return the following list when requested by an ACS:

"GetRPCMethods"
"SetParameterValues"
"GetParameterValues"
"GetParameterNames"
“SetParameterAttributes”
“GetParameterAttributes”
“AddObject”
“DeleteObject”

“Reboot”

“Download”

As another example, an ACS implementing only the baseline methods defined in this
version of the specification would return the following list when requested by a CPE:

“Inform”
"GetRPCMethods"
“TransferComplete”

The following fault codes are defined for this method for response from a CPE: 9001,
9002.

The following fault codes are defined for this method for response from an ACS: 8001,
8002, 8005.

November 2010 © The Broadband Forum. All rights reserved. Page 65 of 197

A.3.2

A.3.2.1

CPE WAN Management Protocol

CPE Methods

The methods listed in this Section are defined to be supported on a CPE device. Only an
ACS can call these methods.

SetParameterValues

This method MAY be used by an ACS to modify the value of one or more CPE
Parameters. The calling arguments for this method are defined in Table 12. The
arguments in the response are defined in Table 13.

TR-069 Amendment 3

Table 12 — SetParameterValues arguments

Argument

Type

Description

ParameterList

ParameterValueStruct[]

Array of name-value pairs as specified in Table 14. For each name-
value pair, the CPE is instructed to set the Parameter specified by the
name to the corresponding value.

This array MUST NOT contain more than one entry with the same
Parameter name. If a given Parameter appears in this array more than
once, the CPE MUST respond with fault 9003 (Invalid arguments).

If the length of this array is zero, then the CPE MUST set the
ParameterKey to the value specified by the ParameterKey argument,
but MUST NOT set any other parameter values.

ParameterKey

string(32)

The value to set the ParameterKey parameter. The CPE MUST set
ParameterKey to the value specified in this argument if and only if
SetParameterValues completes successfully. If SetParameterValues
does not complete successfully (implying that the parameter value
changes requested did not take effect), the value of ParameterKey
MUST NOT be modified. ParameterKey provides the ACS a reliable
and extensible means to track changes made by the ACS. The value of
this argument is left to the discretion of the ACS, and MAY be left
empty.

Table 13 — SetParameterValuesResponse arguments

Argument

Type

Description

Status

int[0:1]

A successful response to this method returns an integer enumeration defined as follows:
0 = All Parameter changes have been validated and applied.

1 = All Parameter changes have been validated and committed, but some or all are not yet
applied (for example, if a reboot is required before the new values are applied).

On successful receipt of a SetParameterValues RPC, the CPE MUST apply the changes
to all of the specified Parameters atomically. That is, either all of the value changes are
applied together, or none of the changes are applied at all. In the latter case, the CPE
MUST return a fault response indicating the reason for the failure to apply the changes.
The CPE MUST NOT apply any of the specified changes without applying all of them.
This requirement MUST hold even if the CPE experiences a crash during the process of
applying the changes. The order of Parameters listed in the ParameterList has no
significance—the application of value changes to the CPE MUST be independent from
the order in which they are listed.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the requested
changes prior to sending the SetParameterValues response. If it does so, the CPE MUST
set the value of Status in the response to 0 (zero), indicating that the changes have been

applied.

November 2010

© The Broadband Forum. All rights reserved. Page 66 of 197

CPE WAN Management Protocol TR-069 Amendment 3

If the CPE requires the session to be terminated before applying some or all of the
Parameter values, the CPE MUST reply before all Parameter values have been applied,
and thus MUST set the value of Status in the response to 1. In this case, the reply MUST
come only after all validation of the request has been completed and the new values have
been appropriately saved such that they will definitely be applied as soon as physically
possible after the session has terminated. Once the CPE issues the SetParameterValues
response, all changes associated with the corresponding request (including the new
ParameterKey) MUST be available for subsequent commands to operate on, regardless of
whether the changes have been applied or not. In particular, the use of
GetParameterValues to read a parameter modified by an earlier SetParameterValues
MUST return the modified value, even if that value has not yet been applied.

If the value of Status in the SetParameterValues response is 1, the requested changes
MUST be applied as soon as physically possible after the session has terminated, and no
later than the beginning of the next session. Note that if a CPE requires a reboot to cause
the changes to be applied, the CPE MUST initiate that reboot on its own after the
termination of the session. Because some CPE will not require a reboot in these
circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying
the CPE’s configuration, since this would result in an unnecessary reboot. Note also that
if application of a configuration change by the CPE would result in a service disruption
(for example, if the CPE requires a reboot to apply the requested change), it is not the
responsibility of the CPE to avoid or delay such a disruption. To minimize the impact of
such a disruption, the ACS MAY delay requesting such a configuration change until an
appropriate time, but this is entirely at the ACS’s discretion.

The use of the Status value is independent between successive SetParameterValues,
AddObject, or DeleteObject requests within the same session. The use of a Status value
of 1 in response to one request does not necessarily imply that subsequent requests in the
same session will also respond in the same way.

The ACS MAY set parameter values in any combination or order of its choosing using
one or multiple SetParameterValues RPCs.

All modifications to a CPE’s configuration resulting from use of the SetParameterValues
method MUST be retained across reboots of the CPE.

The ParameterValueStruct structure is defined in Table 14.

Table 14 — ParameterValueStruct definition

Name Type Description

Name string(256) This is the name of a Parameter. The CPE MUST treat
the parameter name as case sensitive.

Value anySimpleType This is the value the Parameter is to be set.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005,
9006, 9007, 9008.

If there is a fault due to one or more parameters in error, the fault response for this
method MUST include a SetParameterValuesFault element for each parameter in error.

November 2010 © The Broadband Forum. All rights reserved. Page 67 of 197

A3.2.2

CPE WAN Management Protocol TR-069 Amendment 3

In this case, the primary fault code indicated for the overall fault response MUST be
Invalid Arguments (9003).

The CPE MUST reject an attempt to set values using the SetParameterValues RPC that
would result in an invalid configuration, where an invalid configuration is defined as one
of the following:

* A parameter value or combination of parameter values that are explicitly prohibited in
the definition of the data model(s) supported by the CPE.

* A parameter value or combination of parameter values that are not supported by the
CPE.

In both of the above cases, the response from the CPE MUST include a
SetParameterValuesFault element for each such parameter, indicating the Invalid
Parameter Value fault code (9007).

The CPE MUST NOT impose any additional configuration restrictions beyond the
exceptions described above and restrictions otherwise explicitly permitted or required by
the CPE WAN Management Protocol.

GetParameterValues

This method MAY be used by an ACS to obtain the value of one or more CPE
Parameters. The calling arguments for this method are defined in Table 15. The
arguments in the response are defined in Table 16.

Table 15 — GetParameterValues arguments

Argument Type Description

ParameterNames | string(256)[] | Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a partial path name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A partial path
name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber

Below is an example of a partial path name:
InternetGatewayDevice.Devicelnfo.

Table 16 — GetParameterValuesResponse arguments

Argument Type Description

ParameterList | ParameterValueStruct[] | Array of name-value pairs, as specified in Table 14, containing the
name and value for each requested Parameter.

If multiple entries in the ParameterNames array in the
GetParameterValues request overlap such that there are multiple
requests for the same Parameter value, it is at the discretion of the CPE
whether or not to duplicate that Parameter in the response array. That
is, the CPE MAY either include that Parameter value only once in its
response, or it MAY include that Parameter value once for each
instance that it was requested.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

November 2010 © The Broadband Forum. All rights reserved. Page 68 of 197

A3.23

CPE WAN Management Protocol TR-069 Amendment 3

If the fault is caused by one or more invalid parameter names in the ParameterNames
array, the Invalid Parameter Name fault code (9005) MUST be used instead of the more
general Invalid Arguments fault code (9003). The value of a ParameterNames element
MUST be considered invalid if it does not exactly match either the name of a parameter
currently present in the CPE’s data model (if the ParameterNames element does not end
with a dot) or the name of an object currently present in the CPE’s data model (if
ParameterNames element ends with a dot).

GetParameterNames
This method MAY be used by an ACS to discover the Parameters accessible on a
particular CPE. The calling arguments for this method are defined in Table 17. The
arguments in the response are defined in Table 18.

Table 17 — GetParameterNames arguments

Argument

Type

Description

ParameterPath

string(256)

A string containing either a complete Parameter name, or a partial path name
representing a subset of the name hierarchy. An empty string indicates the top of
the name hierarchy. A partial path name MUST end with a “.” (dot) after the last
node name in the hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber

Below is an example of a partial path name:
InternetGatewayDevice.Devicelnfo.

NextLevel

boolean

If false, the response MUST contain the Parameter or object whose name exactly
matches the ParameterPath argument, plus all Parameters and objects that are
descendents of the object given by the ParameterPath argument, if any (all levels
below the specified object in the object hierarchy). For example, if ParameterPath
were “InternetGatewayDevice.LANDevice.1.Hosts.”, the response would include the
following (if there were a single instance of Host with instance number “1”):

InternetGatewayDevice.LANDevice.1.Hosts.
InternetGatewayDevice.LANDevice.1.Hosts.HostNumberOfEntries
InternetGatewayDevice.LANDevice.1.Hosts.Host.
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.IPAddress
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.AddressSource
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.LeaseTimeRemaining
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.MACAddress
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.HostName
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.Interface Type
InternetGatewayDevice.LANDevice.1.Hosts.Host.1.Active

If true, the response MUST contain all Parameters and objects that are next-level

children of the object given by the ParameterPath argument, if any. For example, if

ParameterPath were “InternetGatewayDevice.LANDevice.1.Hosts.”, the response

would include the following:
InternetGatewayDevice.LANDevice.1.Hosts.HostNumberOfEntries
InternetGatewayDevice.LANDevice.1.Hosts.Host.

Or, if ParameterPath were empty, with NextLevel equal true, the response would list

only “InternetGatewayDevice.” (if the CPE is an Internet Gateway Device).

November 2010

© The Broadband Forum. All rights reserved. Page 69 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Table 18 — GetParameterNamesResponse arguments

Argument Type Description

ParameterList | ParameterinfoStruct] | Array of structures, each containing the name and other information for a
Parameter or object, as defined in Table 19.

When NextLevel is false, this list MUST contain the Parameter or object
whose name exactly matches the ParameterPath argument, plus all
Parameters and objects that are descendents of the object given by the
ParameterPath argument, if any (all levels below the specified object in
the object hierarchy). If the ParameterPath argumentis an empty
string, names of all objects and Parameters accessible on the particular
CPE are returned.

When NextLevel is true, this list MUST contain all Parameters and object
that are next-level children of the object given by the ParameterPath
argument, if any.

For a Parameter, the Name returned in this structure MUST be a full path
name, ending with the name of the Parameter element. For an object, the
Name returned in this structure MUST be a partial path, ending with a dot.
This list MUST include any objects that are currently empty. An empty
object is one that contains no instances (for a multi-instance object), no
child objects, and no child Parameters.

If NextLevel is true and ParameterPath refers to an object that is empty,
this array MUST contain zero entries.

The ParameterList MUST include only Parameters and objects that are
actually implemented by the CPE. If a Parameter is listed, this implies
that a GetParameterValues for this Parameter would be expected to
succeed.

Table 19 — ParameterinfoStruct definition

Name Type Description
Name string(256) This is the full path name of a Parameter or a partial path.
Writable boolean Whether or not the Parameter value can be overwritten

using the SetParameterValues method.

If Name is a partial path that refers to an object, this
indicates whether or not AddObject can be used to add
new instances of this object.

If Name is a partial path that refers to a particular instance
of a multi-instance object, this indicates whether or not
DeleteObject can be used to remove this particular
instance.

This element MUST be true only if the corresponding
Parameter or object as implemented in this CPE is writable
as described above. The value of this element MUST
reflect only the actual implementation rather than whether
or not the specification of the Parameter or object allows it
to be writable.

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

If the fault is caused by an invalid ParameterPath value, the Invalid Parameter Name fault
code (9005) MUST be used instead of the more general Invalid Arguments fault code
(9003). A ParameterPath value MUST be considered invalid if it is not an empty string
and does not exactly match a parameter or object name currently present in the CPE’s
data model. If NextLevel is true and ParameterPath is a Parameter name rather than a
partial path, the CPE MUST return a fault response with the Invalid Arguments fault code
(9003).

November 2010 © The Broadband Forum. All rights reserved. Page 70 of 197

A3.2.4

CPE WAN Management Protocol TR-069 Amendment 3

SetParameterAttributes

This method MAY be used by an ACS to modify attributes associated with one or more
CPE Parameter. The calling arguments for this method are defined in Table 20. The
arguments in the response are defined in Table 21.

On successful receipt of a SetParameterAttributes RPC, the CPE MUST apply the
changes to all of the specified Parameters immediately and atomically. That is, either all
of the attribute changes are applied together, or none of the changes are applied at all. In
the latter case, the CPE MUST return a fault response indicating the reason for the failure
to apply the changes. The CPE MUST NOT apply any of the specified changes without
applying all of them. This requirement MUST hold even if the CPE experiences a crash
during the process of applying the changes.

The ACS MAY set parameter attributes in any combination or order of its choosing using
one or multiple SetParameterAttributes RPCs.

If there is more than one entry in the ParameterList array, and the SetParameterAttributes
request is successful as described above, the CPE MUST apply the attribute changes in
the order of the ParameterList array. That is, if multiple entries in the ParameterList
would result in modifying the same attribute of a given parameter, the attribute value
specified later in the ParameterList array MUST overwrite the attribute value specified
earlier in the array. This behavior might seem to be inconsistent with that of
SetParameterValues, for which it is an error to specify the same parameter name more
than once; this difference is because, unlike SetParameterValues, SetParameterAttributes
permits a mixture of full and partial paths to be specified.

All modifications to a CPE’s configuration resulting from use of the
SetParameterAttributes method MUST be retained across reboots of the CPE.

Attributes are associated with actual parameter instances. When a parameter is deleted,
its attributes MUST also be deleted. Note that this means that if another parameter with
the same path name as a previously deleted parameter is created in the future, this new
parameter will not inherit attributes from the previously deleted parameter.

A CPE MUST NOT allow any entity other than the ACS to modify attributes of a
parameter.

Table 20 — SetParameterAttributes arguments

Argument Type Description

ParameterList | SetParameterAttributesStruct[] | List of changes to be made to the attributes for a set of
Parameters. Each entry in this array is a SetParameter-
AttributesStruct as defined in Table 22.

As described above, the order of entries in this array is
significant.

Table 21 — SetParameterAttributesResponse arguments

Argument Type Description

- void This method response has no arguments.

November 2010 © The Broadband Forum. All rights reserved. Page 71 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Table 22 — SetParameterAttributesStruct definition

Name Type Description

Name string(256) This is the name of a Parameter to apply the new
attributes. Alternatively, this MAY be a partial path
name, indicating that the new attributes are to be
applied to all Parameters below this point in the
naming hierarchy. For such Parameters within multi-
instance objects where the instance number is below
the specified point in the naming hierarchy, the
specified attribute values MUST only be applied within
instances that exist at the time this method is invoked.
A partial path name MUST end with a “.” (dot) after
the last node name in the hierarchy. An empty string
indicates the top of the name hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber

Below is an example of a partial path name:
InternetGatewayDevice.Devicelnfo.

NotificationChange | boolean If true, the value of Notification replaces the current
notification setting for this parameter or group of
parameters. If false, no change is made to the
notification setting.

Notification int[0:2] Indicates whether the CPE will include changed
values of the specified parameter(s) in the Inform
message, and whether the CPE will initiate a session
to the ACS when the specified parameter(s) change in
value. The following values are defined:

0 = Notification off. The CPE need not inform the
ACS of a change to the specified parameter(s).

1 = Passive notification. Whenever the specified
parameter value changes, the CPE MUST
include the new value in the ParameterList in the
Inform message that is sent the next time a
session is established to the ACS.

If the CPE has rebooted, or the URL of the ACS
has changed since the last session, the CPE
MAY choose not to include the list of changed
parameters in the first session established with
the new ACS.

2 = Active notification. Whenever the specified
parameter value changes, the CPE MUST initiate
a session to the ACS, and include the new value
in the ParameterList in the associated Inform
message.

For parameters defined in the corresponding data
model as requiring Forced Active Notification, the
value of the Notification attribute is irrelevant and an
attempt to set it to a value other than 2 will be ignored.

Whenever a parameter change is sent in the Inform

message due to a non-zero Notification setting, the

Event code "4 VALUE CHANGE" MUST be included
in the list of Events.

Note that if the CPE deletes an object containing
parameters for which Notification is enabled (active or
passive), this MUST NOT be considered a value-
change for the purpose of Notification.

By default, prior to any changes to this attribute by an
ACS, its value SHOULD be 0 (Notification off) unless
otherwise specified in the appropriate data model
definition.

The CPE MAY provide no support for Active
Notification on a parameter deemed inappropriate for
Active Notification. A parameter is deemed
inappropriate for Active Notification if and only if that

November 2010 © The Broadband Forum. All rights reserved. Page 72 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Name

Type

Description

parameter is explicitly defined as such in the definition
of the corresponding data model. Parameters that
might be deemed inappropriate for Active Notification
include parameters that change frequently, such as
statistics. A CPE MUST accept a request to enable
Passive Notification for any parameter.

Note that if a CPE implementation does not allow a
particular parameter value to change in a manner that
would result in a Notification (e.g., a capability flag
that could only change as a result of a firmware
update that requires a reboot, or a writeable
parameter that can only be modified via the CPE
WAN Management Protocol), then support for
Notification for this parameter involves no more than
keeping track of the value of its Notification attribute.
For such a parameter, the CPE implementation need
not incorporate a mechanism to detect value changes
nor to initiate Notifications based on such changes.

AccessListChange

boolean

If true, the value of AccessList replaces the current
access list for this parameter or group of parameters.
If false, no change is made to the access list.

November 2010

© The Broadband Forum. All rights reserved. Page 73 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Name Type Description

Accesslist string(64)[] Array of zero or more entities for which write access

to the specified Parameter(s) is granted. If there are
no entries, write access is only allowed from an ACS.
At present, only one type of entity is defined that can
be included in this list:

“Subscriber” Indicates write access by an
interface controlled on the
subscriber LAN. Includes any
and all such LAN-side
mechanisms, which MAY include
but are not limited to TR-064
(LAN-side DSL CPE
Configuration Protocol), UPnP,
the device’s user interface, client-
side telnet, and client-side
SNMP.

Currently, access restrictions for other WAN-side
configuration protocols is not specified.

The ACS MAY further specify management entities in
the ACL using a vendor-specific prefix. If such
entities are specified by vendors, they MUST be
preceded by X_<VENDOR>_and follow the syntax for
vendor extensions for parameter names defined in
[13].

The CPE MUST correctly interpret the value
“Subscriber” as described above, but MUST ignore
any other individual values in this array that it does
not understand.

By default, prior to any changes to the access list by
an ACS, access SHOULD be granted to all entities
specified above.

The TR-069 ACS always has write access to all
writeable parameters regardless of being on the
access list. Other entities have write access only if
they appear on the access list. An entity that is
restricted from write access to a certain parameter
MUST NOT be allowed to change parameter values
and MUST NOT be allowed to delete objects within
which the parameter is contained. The TR-069
access control mechanism does not prevent any
entity from creating new object instances.

The CPE MUST accept changes to the AccessList for
any Parameter even if that Parameter is read-only
and its value cannot be modified by any management
entity. For such read-only Parameters, the CPE
MUST store the modified AccessList value and return
it when requested via GetParameterAttributes, but
MAY otherwise ignore this value.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005,
9009.

If the fault is caused by an invalid parameter name, the Invalid Parameter Name fault
code (9005) MUST be used instead of the more general Invalid Arguments fault code
(9003). If the CPE does not support Active Notifications on a parameter deemed
inappropriate (as described above), it MUST reject an attempt to enable Active
Notification for that parameter by responding with fault 9009 (Notification request
rejected). If Active notification is being enabled for parameter(s) specified via a partial
path and the CPE does not support Active notification for one or more such parameters
deemed inappropriate below this point in the naming hierarchy, the CPE MUST reject the
request and respond with fault code 9009 (Notification request rejected).

November 2010 © The Broadband Forum. All rights reserved. Page 74 of 197

CPE WAN Management Protocol TR-069 Amendment 3

A.3.2.5 GetParameterAttributes

This method MAY be used by an ACS to read the attributes associated with one or more
CPE Parameter. The calling arguments for this method are defined in Table 23. The
arguments in the response are defined in Table 24.

Table 23 — GetParameterAttributes arguments

Argument Type Description

ParameterNames | string(256)[] | Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a partial path name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A partial path
name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.

Below is an example of a full Parameter name:
InternetGatewayDevice.Devicelnfo.SerialNumber

Below is an example of a partial path name:
InternetGatewayDevice.Devicelnfo.

Table 24 — GetParameterAttributesResponse arguments

Argument Type Description

ParameterList | ParameterAttributeStruct[] | List of access control information for the specified set of Parameters.
Each entry in this array is a ParameterAttributeStruct as defined in
Table 25.

If the ParameterNames argument in the request was a partial path,
and if there are no Parameters within the object represented by that
partial path (at any level below), the ParameterList MUST be empty,
and this MUST NOT cause an error response.

Table 25 — ParameterAttributeStruct definition

Name Type Description

Name string(256) This is the name of a Parameter to which the
attributes are given. The Name MUST be a full
Parameter name, and MUST NOT be a partial path.

Notification int[0:2] Indicates whether the CPE will include changed
values of the specified parameter(s) in the Inform
message, and whether the CPE will initiate a
session to the ACS when the specified parameter(s)
change in value. The following values are defined:

0 = Notification off. The CPE need not inform the
ACS of a change to the specified parameter(s).

1 = Passive notification. Whenever the specified
parameter value changes, the CPE MUST
include the new value in the ParameterList in
the Inform message that is sent the next time a
session is established to the ACS.

2 = Active notification. Whenever the specified
parameter value changes, the CPE MUST
initiate a session to the ACS, and include the
new value in the ParameterList in the
associated Inform message.

November 2010 © The Broadband Forum. All rights reserved. Page 75 of 197

A.3.2.6

CPE WAN Management Protocol

TR-069 Amendment 3

Name Type

Description

AccessList string(64)[]

Array of zero or more entities for which write access
to the specified Parameter(s) is granted. If there
are no entries, write access is only allowed from an
ACS. At present, only one type of entity is defined
that can be included in this list:

“Subscriber” Indicates write access by an
interface controlled on the
subscriber LAN. Includes any
and all such LAN-side
mechanisms, which MAY
include but are not limited to
TR-064 (LAN-side DSL CPE
Configuration Protocol), UPnP,
the device’s user interface,
client-side telnet, and client-
side SNMP.

The list MAY include vendor-specific entities, which
MUST be preceded by X_<VENDOR>_and follow
the syntax for vendor extensions for parameter
names defined in [13].

The ACS MAY ignore any individual items in this
array that it does not understand.

By default, prior to any changes to the access list by
an ACS, the AccessList attribute for all parameters
SHOULD include all entities that the CPE supports,
indicating access granted to all of these entities.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If the fault is caused by an invalid parameter name, the Invalid Parameter Name fault
code (9005) MUST be used instead of the more general Invalid Arguments fault code

(9003).

AddObject

This method MAY be used by the ACS to create a new instance of a multi-instance
object—a collection of Parameters and/or other objects for which multiple instances are
defined. The method call takes as an argument the path name of the collection of objects
for which a new instance is to be created. For example:

Top.Group.Object.

This path name does not include an instance number for the object to be created. That
instance number is assigned by the CPE and returned in the response. Once assigned the
instance number of an object cannot be changed and persists until the object is deleted
using the DeleteObject method. After creation, Parameters or sub-objects within the
object are referenced by the path name appended with the instance number. For example,
if the AddObject method returned an instance number of 2, a Parameter within this

instance can then be referred to by the path:

Top.Group.Object.2.Parameter

November 2010 © The Broadband Forum. All rights reserved. Page 76 of 197

CPE WAN Management Protocol TR-069 Amendment 3

On creation of an object using this method, the Parameters contained within the object
MUST be set to their default values and the associated attributes MUST be set to the
following:

* Notification is set to zero (notification off) unless otherwise specified in the
appropriate data model definition

e AccessList includes all defined entities

The calling arguments for this method are defined in Table 26. The arguments in the
response are defined in Table 27.

Addition of an object MUST be done atomically. That is, either all of the Parameters and
sub-objects are added together, or none are added. In the latter case the CPE MUST
return a fault response indicating the reason for the failure to add the object. The CPE
MUST NOT add any contained Parameters or sub-objects as a result of this method call
without adding all of them (all Parameters and sub-objects supported by that CPE). This
requirement MUST hold even if the CPE experiences a crash during the process of
performing the addition.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the object
creation prior to sending the AddObject response. If it does so, the CPE MUST set the
value of Status in the response to 0 (zero), indicating that the object creation has been
applied.

If the CPE requires the session to be terminated before applying the object creation, the
CPE MUST reply before the object creation has been applied, and thus MUST set the
value of Status in the response to 1. In this case, the reply MUST come only after all
validation of the request has been completed and the object creation request has been
appropriately saved such that it will definitely be applied as soon as physically possible
after the session has terminated. Once the CPE issues the AddObject response, all
changes associated with the corresponding request (including the new ParameterKey)
MUST be available for subsequent commands to operate on, regardless of whether the
changes have been applied or not. In particular, even if the object creation has not yet
been applied, the CPE MUST allow the use of SetParameterValues, GetParameterValues,
SetParameterAttributes, and GetParameterAttributes to operate on parameters within the
newly created object, as well as the use of AddObject to create a sub-object within the
newly created object, and DeleteObject to delete either a sub-object or the newly created
object itself.

If the value of Status in the AddObject response is 1, the requested object creation MUST
be applied as soon as physically possible after the session has terminated, and no later
than the beginning of the next session. Note that if a CPE requires a reboot to cause the
object creation to be applied, the CPE MUST initiate that reboot on its own after the
termination of the session. Because some CPE will not require a reboot in these
circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying
the CPE’s configuration, since this would result in an unnecessary reboot. Note also that
if application of a configuration change by the CPE would result in a service disruption
(for example, if the CPE requires a reboot to apply the requested change), it is not the
responsibility of the CPE to avoid or delay such a disruption. To minimize the impact of

November 2010 © The Broadband Forum. All rights reserved. Page 77 of 197

CPE WAN Management Protocol TR-069 Amendment 3

such a disruption, the ACS MAY delay requesting such a configuration change until an
appropriate time, but this is entirely at the ACS’s discretion.

The use of the Status value is independent between successive SetParameterValues,
AddObject, or DeleteObject requests within the same session. The use of a Status value
of 1 in response to one request does not necessarily imply that subsequent requests in the
same session will also respond in the same way.

All modifications to a CPE’s configuration resulting from use of the AddObject method
MUST be retained across reboots of the CPE. This MUST include the values of object
instance numbers.

Table 26 — AddObject arguments

Argument Type Description

ObjectName string(256) | The path name of the collection of objects for which a new instance is to be created.
The path name MUST end with a “.” (dot) after the last node in the hierarchical name
of the object.

ParameterKey | string(32) The value to set the ParameterKey parameter. The CPE MUST set ParameterKey to

the value specified in this argument if and only if AddObject completes successfully. If
AddObject does not complete successfully (implying that the requested object did not
get added), the value of ParameterKey MUST NOT be modified. ParameterKey
provides the ACS a reliable and extensible means to track changes made by the ACS.
The value of this argument is left to the discretion of the ACS, and MAY be left empty.

Table 27 — AddObjectResponse arguments

Argument

Type

Description

InstanceNumber

Unsignedint[1:]

The instance number of the newly created object. Once created, a Parameter
or sub-object within this object can be later referenced by using this instance
number in the path name. The instance number assigned by the CPE is
arbitrary and instance numbers assigned by sequential calls to AddObject
need not be consecutive.

The CPE SHOULD NOT assign an instance number that has been used for a
previously deleted object instance. The CPE SHOULD exhaust the full space
of integer values for a given object before re-using instance numbers.

Once an object instance is created, the assigned instance number MUST
persist unchanged until the object is subsequently deleted (either by the ACS
or by a third party). This implies that the instance number MUST persist
across reboots of the CPE, and that the CPE MUST NOT allow the instance
number of an existing object instance to be modified by a third-party entity.

Status

int[0:1]

A successful response to this method returns an integer enumeration defined
as follows:

0 = The object has been created.

1 = The object creation has been validated and committed, but not yet applied
(for example, if a reboot is required before the new object can be applied).

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

If an AddObject request would result in exceeding the maximum number of such objects
supported by the CPE, the CPE MUST return a fault response with the Resources

Exceeded (9004)

November 2010

fault code.

© The Broadband Forum. All rights reserved. Page 78 of 197

A3.2.7

CPE WAN Management Protocol TR-069 Amendment 3

DeleteObject

This method is used to remove a particular instance of an object. This method call takes
as an argument the path name of the object instance including the instance number. For
example:

Top.Group.Object.2.

If this method call is successful, the specified instance of this object is subsequently
unavailable for access and the CPE MUST discard the state previously associated with all
Parameters (values and attributes) and sub-objects contained within this instance.

When an object instance is deleted, the instance numbers associated with any other
instances of the same collection of objects remain unchanged. Thus, the instance
numbers of object instances in a collection might not be consecutive.

The calling arguments for this method are defined in Table 28. The arguments in the
response are defined in Table 29.

If the request is valid, it is strongly RECOMMENDED that the CPE apply the object
deletion prior to sending the DeleteObject response. If it does so, the CPE MUST set the
value of Status in the response to 0 (zero), indicating that the object deletion has been
applied.

If the CPE requires the session to be terminated before applying the object deletion, the
CPE MUST reply before the object deletion has been applied, and thus MUST set the
value of Status in the response to 1. In this case, the reply MUST come only after all
validation of the request has been completed and the object deletion request has been
appropriately saved such that it will definitely be applied as soon as physically possible
after the session has terminated. Once the CPE issues the DeleteObject response, all
changes associated with the corresponding request (including the new ParameterKey)
MUST be available for subsequent commands to operate on, regardless of whether the
changes have been applied or not. In particular, the use of GetParameterNames and
GetParameterValues MUST indicate the absence of the deleted object, and any attempt to
modify or read parameters or sub-objects within the deleted object MUST fail.

If the value of Status in the DeleteObject response is 1, the requested object deletion
MUST be applied as soon as physically possible after the session has terminated, and no
later than the beginning of the next session. Note that if a CPE requires a reboot to cause
the object deletion to be applied, the CPE MUST initiate that reboot on its own after the
termination of the session. Because some CPE will not require a reboot in these
circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying
the CPE’s configuration, since this would result in an unnecessary reboot. Note also that
if application of a configuration change by the CPE would result in a service disruption
(for example, if the CPE requires a reboot to apply the requested change), it is not the
responsibility of the CPE to avoid or delay such a disruption. To minimize the impact of
such a disruption, the ACS MAY delay requesting such a configuration change until an
appropriate time, but this is entirely at the ACS’s discretion.

The use of the Status value is independent between successive SetParameterValues,
AddObject, or DeleteObject requests within the same session. The use of a Status value

November 2010 © The Broadband Forum. All rights reserved. Page 79 of 197

CPE WAN Management Protocol TR-069 Amendment 3

of 1 in response to one request does not necessarily imply that subsequent requests in the
same session will also respond in the same way.

On deletion, all Parameters and sub-objects contained within this object MUST be
removed atomically. That is, either all of the Parameters and sub-objects are removed
together, or none are removed at all. In the latter case, the CPE MUST return a fault
response indicating the reason for the failure to delete the object. The CPE MUST NOT
remove any contained Parameters or sub-objects as a result of this method call without
removing all of them. This requirement MUST hold even if the CPE experiences a crash
during the process of performing the deletion.

All modifications to a CPE’s configuration resulting from use of the DeleteObject
method MUST be retained across reboots of the CPE.

Table 28 — DeleteObject arguments

Argument Type Description

ObjectName string(256) | The path name of the object instance to be removed. The path name MUST end with
a “.” (dot) after the instance number of the object.

ParameterKey | string(32) The value to set the ParameterKey parameter. The CPE MUST set ParameterKey to
the value specified in this argument if and only if DeleteObject completes successfully.
If DeleteObject does not complete successfully (implying that the requested object did
not get deleted), the value of ParameterKey MUST NOT be modified. ParameterKey
provides the ACS a reliable and extensible means to track changes made by the ACS.
The value of this argument is left to the discretion of the ACS, and MAY be left empty.

Table 29 — DeleteObjectResponse arguments

Argument | Type | Description

Status int[0:1] | A successful response to this method returns an integer enumeration defined as follows:
0 = The object has been deleted.

1 = The object deletion has been validated and committed, but not yet applied (for example, if a
reboot is required before the object can be deleted).

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

If the fault is caused by an invalid ObjectName value, the Invalid Parameter Name fault
code (9005) MUST be used instead of the more general Invalid Arguments fault code
(9003). The ObjectName value MUST be considered invalid if it does not exactly match
the name of a single instance of a multi-instance object currently present in the CPE’s
data model.

A.3.2.8 Download
Note — The functionality provided by this method overlaps that of the
ScheduleDownload method [Section A.4.1.8]. Unlike ScheduleDownload, this
method does not provide fine-grained control over when the download can be
performed and applied. Also, this method permits a file to be downloaded and
applied within the same session.

November 2010 © The Broadband Forum. All rights reserved. Page 80 of 197

CPE WAN Management Protocol TR-069 Amendment 3

This method MAY be used by the ACS to cause the CPE to download a specified file
from the designated location. The calling arguments for this method are defined in Table
30. The arguments in the response are defined in Table 31.

When a download is initiated using this method, the CPE MUST indicate successful or
unsuccessful completion of the download using one of the following three means:

* A DownloadResponse with the Status argument having a value of zero (indicating
success), or a fault response to the Download request (indicating failure).

* A TransferComplete message sent later in the same session as the Download request
(indicating either success or failure). In this case, the Status argument in the
corresponding DownloadResponse MUST have a value of one.

* A TransferComplete message sent in a subsequent session (indicating either success
or failure). In this case, the Status argument in the corresponding DownloadResponse
MUST have a value of one.

Regardless of which means is used, the CPE MUST only indicate successful completion
of the download after the downloaded file has been both successfully transferred and
applied. While the criterion used to determine when a file has been successfully applied
is specific to the CPE’s implementation, the CPE SHOULD consider a downloaded file
to be successfully applied only after the file is installed and in use as intended.

In the particular case that the downloaded file is a software image, the CPE MUST
consider the downloaded file to be successfully applied only after the new software image
is actually installed and operational. If the software image replaces the overall software
of the CPE (which would typically require a reboot to install and begin execution), the
SoftwareVersion represented in the data model MUST already reflect the updated
software image in the session in which the CPE sends a TransferComplete indicating
successful download.

If the CPE requires a reboot to apply the downloaded file, then the only appropriate
means of indicating successful completion is the third option listed above—a
TransferComplete message sent in a subsequent session.

If the file cannot be successfully downloaded or applied, the CPE MUST NOT attempt to
retry the file download on its own initiative, but instead MUST report the failure of the
download to the ACS using any of the three means listed above. Upon the ACS being
informed of the failure of a download, the ACS MAY subsequently attempt to reinitiate
the download by issuing a new Download request.

If the CPE receives one or more Download or ScheduleDownload requests before
performing a previously requested download, the CPE MUST queue all requested
downloads and perform each of them as closely as possible to the requested time (based
on the value of the DelaySeconds argument and the time of the request). Queued
downloads MUST be retained across reboots of the CPE. The CPE MUST be able to
queue a minimum of three file transfers (downloads and uploads).

For each download performed, the CPE MUST send a distinct TransferComplete. Note
that the order in which a series of requested downloads will be performed might differ
from the order of the corresponding requests due to differing values of DelaySeconds.

November 2010 © The Broadband Forum. All rights reserved. Page 81 of 197

CPE WAN Management Protocol TR-069 Amendment 3

For example, an ACS could request a download with DelaySeconds equal to one hour,
then five minutes later request a second download with DelaySeconds equal to one
minute. In this case, the CPE would perform the second download before the first.

All modifications to a CPE’s configuration resulting from use of the Download method
MUST be retained across reboots of the CPE.

Table 30 — Download arguments

Argument

Type

Description

CommandKey

string(32)

The string the CPE uses to refer to a particular download. This argument is
referenced in the methods Inform, TransferComplete, GetQueuedTransfers,
GetAllQueuedTransfers and CancelTransfer.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

FileType

string(64)

An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image"

"2 Web Content"

“3 Vendor Configuration File”

“4 Tone File” (see [25] Appendix B)

“5 Ringer File” (see [25] Appendix B)
The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"

<VENDOR?> is replaced by a unique vendor identifier, which MAY be either an
OUI or a domain name. The OUI or domain name used for a given vendor-
specific file type MUST be one that is assigned to the organization that defined
this method (which is not necessarily the same as the vendor of the CPE or ACS).
An OUl is an organizationally unique identifier as defined in [10], which MUST be
formatted as a 6 hexadecimal-digit OUI (organizationally unique identifier), with all
upper-case letters and any leading zeros included. A domain name MUST be

«n

upper case with each dot (“.”) replaced with a hyphen or underscore.

If and only if the CPE supports downloading of firmware images using the
Download method, the CPE MUST support the "1 Firmware Upgrade Image"
FileType value. All other FileType values are OPTIONAL.

The FileType value of "2 Web Content" is intended to be used for downloading
files that contain only web content for a CPE’s web-based user interface. A CPE
that supports a web-based user interface and allows the content to be downloaded
from the ACS via the Download method as a distinct file containing only web
content SHOULD use the FileType value of "2 Web Content" when performing
such a download. A CPE that supports a web-based user interface and allows the
content to be downloaded from the ACS MAY instead include web content as part
of its firmware upgrade image, or use some other means to update the web
content in the CPE. Such a CPE need not support the FileType value of "2 Web
Content".

URL

string(256)

URL, as defined in [12], specifying the source file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in Section
2.3.2, MAY be supported.

If the CPE receives multiple Download requests with the same source URL, the
CPE MUST perform each download as requested, and MUST NOT assume that
the content of the file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username

string(256)

Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password

string(256)

Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

November 2010

© The Broadband Forum. All rights reserved. Page 82 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Argument

Type

Description

FileSize

unsignedint

The size of the file to be downloaded in bytes.

The FileSize argument is intended as a hint to the CPE, which the CPE MAY use
to determine if it has sufficient space for the file to be downloaded, or to prepare
space to accept the file.

The ACS MAY set this value to zero. The CPE MUST interpret a zero value to
mean that that the ACS has provided no information about the file size. In this
case, the CPE MUST attempt to proceed with the download under the
presumption that sufficient space is available, though during the course of
download, the CPE might determine otherwise.

The ACS SHOULD set the value of this parameter to the exact size of the file to
be downloaded. If the value is non-zero, the CPE MAY reject the Download
request on the basis of insufficient space.

If the CPE attempts to proceed with the download based on the value of this
argument, but the actual file size differs from the value of this argument, this could
result in a failure of the download. However, the CPE MUST NOT cause the
download to fail solely because it determines that the value of this argument is
inaccurate.

TargetFileName

string(256)

The name of the file to be used on the target file system. This argument MAY be
left empty if the target file name can be extracted from the downloaded file itself,
or from the URL argument, or if no target file name is needed. If this argument is
specified, but the target file name is also indicated by another source (for example,
if it is extracted from the downloaded file itself), this argument MUST be ignored.

If the target file name is used, the downloaded file would replace any existing file
of the same name (whether or not the CPE archives the replaced file is a local
matter).

If present, this parameter is treated as an opaque string with no specific
requirements for its format. That is, the TargetFileName value is to be interpreted
based on the CPE’s vendor-specific file naming conventions. Note that this
specification does not preclude the use of a file naming convention in which the
file’s path can be specified as part of the file name.

November 2010

© The Broadband Forum. All rights reserved. Page 83 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Argument

Type

Description

DelaySeconds

unsignedint

This argument has different meanings for Unicast and Multicast downloads. For
Unicast downloads it is the number of seconds before the CPE will initiate the
download. For Multicast downloads the CPE will initiate the download
immediately and it is the number of seconds available for initiating, performing and
applying the download.

The following applies only to Unicast downloads, i.e. to downloads where the URL
specifies a Unicast download transport protocol.

The number of seconds from the time this method is called to the time the
CPE is requested to initiate the download. A value of zero indicates that no
delay is requested. If a non-zero delay is requested, the download MUST
NOT occur in the same transaction session in which the request was issued.

The CPE MUST perform and apply the download immediately after the time
indicated by DelaySeconds, unless this is not possible for reasons outside
the CPE’s control, in which case the CPE MUST attempt to perform and
apply the download within one hour after the time indicated by
DelaySeconds. If the CPE cannot begin the download within this time
window, the CPE MUST consider the download to have failed and report this
failure to the ACS using the TransferComplete method. If the download
completes before the end of this time window, the CPE MUST apply the
download prior to the end of this time window. If the download is still in
progress at the end of this time window, the CPE MUST apply the download
immediately upon completion of the download.

The following applies only to Multicast downloads, i.e. to downloads where the
URL specifies a Multicast download transport protocol:

The number of seconds from the time this method is called that are available
for the CPE to initiate, perform and apply the download. Multicast downloads
MUST NOT occur in the same transaction session in which the request was
issued.

The CPE MUST perform and apply the download immediately, unless this is
not possible for reasons outside the CPE’s control, in which case the CPE
MUST attempt to perform and apply the download within DelaySeconds of
the download request. If the CPE cannot complete the download within this
time window, the CPE MUST consider the download to have failed and report
this failure to the ACS using the TransferComplete method.

The following applies to both Unicast and Multicast downloads:

The CPE MUST attempt to perform the download within the time window
specified above even if the CPE reboots one or more times prior to that time.

SuccessURL

string(256)

When applicable, this argument contains the URL, as defined in [12], the CPE
SHOULD redirect the user’s browser to if the download completes successfully.
This URL MAY include CGI arguments (for example, to maintain session state).
This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.

When there is no need for such a URL, this argument SHOULD be empty.

FailureURL

string(256)

When applicable, this argument contains the URL, as defined in [12], the CPE
SHOULD redirect the user’s browser to if the download does not complete
successfully. This URL MAY include CGI arguments (for example, to maintain
session state).

This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.

When there is no need for such a URL, this argument SHOULD be empty.

November 2010

© The Broadband Forum. All rights reserved. Page 84 of 197

A.3.2.9

CPE WAN Management Protocol TR-069 Amendment 3

Table 31 — DownloadResponse arguments

Argument

Type

Description

Status

int[0:1]

A successful response to this method returns an integer enumeration defined as

follows:

0 = Download has completed and been applied.

1 = Download has not yet been completed and applied (for example, if the CPE needs
to reboot itself before it can perform the file download, or if the CPE needs to reboot
itself before it can apply the downloaded file).

If the value of this argument is non-zero, the CPE MUST subsequently call the

TransferComplete method to indicate the completion status of this download (either

successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime

dateTime

The date and time download was started in UTC. This need only be filled in if the
download has been completed. Otherwise, the value MUST be set to the Unknown
Time value.

CompleteTime

dateTime

The date and time the download was fully completed and applied in UTC. This need
only be filled in if the download has been completed. Otherwise, the value MUST be
set to the Unknown Time value.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004,
9010, 9012, 9013.

If an attempt is made to queue an additional download when the CPE’s file transfer queue
is already full, the CPE MUST respond with fault 9004 (Resources exceeded). If the
CPE detects the presence of the “userinfo” component in the file source URL, it
SHOULD reject the Download request with the fault code 9003 (Invalid arguments). If
the CPE rejects the Download request because the FileSize argument exceeds the
available space on the device, it MUST use the Download Failure (9010) fault code.

Reboot

This method causes the CPE to reboot, and calls for use of extreme caution. The CPE
MUST send the method response and complete the remainder of the session prior to
rebooting. The calling arguments for this method are defined in Table 32. The
arguments in the response are defined in Table 33.

Note — Multiple invocations of this method within a single session MUST result in
only a single reboot. In this case the Inform following the reboot would be
expected to contain a single “1 BOOT” EventCode and an “M Reboot”
EventCode for each method invocation.

This method is primarily intended for troubleshooting purposes. This method is not
intended for use by an ACS to initiate a reboot after modifying the CPE’s configuration
(e.g., setting CPE parameters or initiating a download). If a CPE requires a reboot after
its configuration is modified, the CPE MUST initiate that reboot on its own after the
termination of the session. Because some CPE will not require a reboot in these
circumstances, an ACS SHOULD NOT call the Reboot method as a result of modifying
the CPE’s configuration, since this would result in an unnecessary reboot.

November 2010

© The Broadband Forum. All rights reserved. Page 85 0f 197

A3.3

A.3.3.1

CPE WAN Management Protocol TR-069 Amendment 3

Table 32 — Reboot arguments

Argument Type

Description

CommandKey | string(32)

The string to return in the CommandKey element of the InformStruct when the CPE
reboots and calls the Inform method.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be an
empty string.

Table 33 — RebootResponse arguments

Argument

Type

Description

void

This method response has no arguments.

The following fault codes are defined for this method: 9001, 9002, 9003.

ACS Methods

The methods listed in this Section are defined to be supported on an ACS. Only a CPE
can call these methods.

Inform

A CPE MUST call the Inform method to initiate a transaction sequence whenever a
session with an ACS is established. The calling arguments for this method are defined in
Table 34. The arguments in the response are defined in Table 35.

Table 34 — Inform arguments

Argument

Type

Value

DevicelId

DeviceldStruct

A structure that uniquely identifies the CPE, defined in Table 36.

Event

EventStruct[64]

An array of structures, as defined in Table 7 in Section 3.7.1.5,
indicating the events that caused the transaction session to be
established. If one or more causes exist, the CPE MUST list all such
causes. The ACS MUST NOT place any significance on the order of
events within this array.

If a CPE needs to deliver more than 64 events in a single Inform (this
would be expected to occur only under exceptional circumstances and
on rare occasions), it MUST discard the oldest “M” (method-related)
events in order to avoid exceeding the maximum array size.

If the session was established solely because the previous session
terminated unsuccessfully, this array MUST NOT contain events that
have already been delivered (if all events have already been delivered
this array MUST be empty).

If further events occur while a previous failed session is being retried,
the new events MUST be incorporated into the retried session’s event
array.

If the CPE establishes a session for which none of the standard event
codes apply, then this array MAY be empty.

MaxEnvelopes

unsignedint

This argument MUST be set to a value of 1 because this version of the
protocol supports only a single envelope per message, and on reception
its value MUST be ignored.

CurrentTime

dateTime

The current date and time known to the CPE. This MUST be
represented in the local time zone of the CPE, and MUST include the
local time-zone offset from UTC (with appropriate adjustment for daylight
savings time). How the local time zone is determined by the CPE is
beyond the scope of this specification.

November 2010

© The Broadband Forum. All rights reserved. Page 86 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Argument Type Value

RetryCount unsignedint Number of prior times an attempt was made to retry this session.
This MUST be zero if and only if the previous session, if any, completed
successfully, i.e. it will be reset to zero only when a session completes
successfully.

ParameterList | ParameterValueStruct] | Array of name-value pairs as specified in Table 14. This parameter

MUST contain the name-value for the following parameters:

* Every parameter for which the ACS has set the Notification attribute
to either Active Notification or Passive Notification whose value has
been modified by an entity other than the ACS since the last
successful Inform notification (including values modified by the CPE
itself).

* Every parameter defined in the corresponding data model as requiring
Forced Active Notification (regardless of the value of the Notification
attribute) for which the value has been modified by an entity other
than the ACS since the last successful Inform notification (including
values modified by the CPE itself).

» Every parameter defined in the corresponding data model as being
required in every Inform.

If a parameter has changed more than once since the last successful
Inform notification, the parameter MUST be listed only once, with only
the most recent value given. In this case, the parameter MUST be
included in the ParameterList even if its value has changed back to the
value it had at the time of the last successful Inform.

Whenever the CPE is re-booted, or if the ACS URL is modified, the CPE
MAY at that time clear its record of parameters pending notification due
to a value change (though, the CPE MUST retain the values of the
Notification attribute for all parameters). If the CPE clears its record of
parameters pending notification due to a value change, it MUST at the
same time discard the corresponding “4 VALUE CHANGE” event.

If the value of at least one parameter listed in the ParameterList has
been modified by an entity other than the ACS since the last successful
Inform notification to the same ACS, the Inform message MUST include
the EventCode “4 VALUE CHANGE”. This includes value changes to
any of the parameters that are listed due to being required in every
Inform. Otherwise, the Inform message MUST NOT include the
EventCode “4 VALUE CHANGE”.

If the Inform message does include the “4 VALUE CHANGE” EventCode
then the ParameterList MUST include only those parameters that meet
one of the three criteria listed above. If the Inform message does not
include the “4 VALUE CHANGE” EventCode, the ParameterList MAY
include additional parameters at the discretion of the CPE.

Note that if the Inform message includes the “8 DIAGNOSTICS
COMPLETE" EventCode, the CPE is not required to include in the
ParameterList any parameters associated with results of the
corresponding diagnostic, and as described above, if the “4 VALUE
CHANGE” EventCode is also present in the Inform, the ParameterList
MUST include only those parameters that meet one of the three criteria
listed above.

Table 35 — InformResponse arguments

Argument

Type Description

MaxEnvelopes

unsignedint | This argument MUST be set to a value of 1 because this version of the protocol

ignored.

supports only a single envelope per message, and on reception its value MUST be

Table 36 — DeviceldStruct definition

Name Type Description
Manufacturer string(64) Manufacturer of the device (for display only).
November 2010 © The Broadband Forum. All rights reserved. Page 87 of 197

A.3.3.2

CPE WAN Management Protocol TR-069 Amendment 3

Name Type Description

OouI string(6) Organizationally unique identifier of the device manufacturer. Represented
as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [10].

This value MUST remain fixed over the lifetime of the device, including
across firmware updates. Any change would indicate that it's a new device
and would therefore require a BOOTSTRAP Inform.

ProductClass string(64) Identifier of the class of product for which the serial number applies. That is,
for a given manufacturer, this parameter is used to identify the product or
class of product over which the SerialNumber parameter is unique.

This value MUST remain fixed over the lifetime of the device, including
across firmware updates. Any change would indicate that it's a new device
and would therefore require a BOOTSTRAP Inform.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

This value MUST remain fixed over the lifetime of the device, including
across firmware updates. Any change would indicate that it's a new device

and would therefore require a BOOTSTRAP Inform.

Table 37 — EventStruct definition

Name Type Description

EventCode string(64) Each value consists of an identifying character followed by a text description
of the cause. See Table 7 in Section 3.7.1.5 for event codes, handling rules,
and a syntax for specifying vendor-specific events.

The value of this parameter is case sensitive and MUST exactly match
either one of the values defined in Table 7 in Section 3.7.1.5, or the vendor-
specific form also specified in that table.

CommandKey string(32) If the EventCode in this Event list entry corresponds to a cause in which a
CommandKey has been specified, this element MUST contain the value of
that CommandKey.

For this version of the specification, the following causes result in this
argument being set to the value of the CommandKey argument in the
originating method call:

* Schedulelnform method (EventCode = “M Schedulelnform”)

* Reboot method (EventCode = “M Reboot”)

* Download method (EventCode = “M Download”)

* ScheduleDownload method (EventCode = “M ScheduleDownload”)

* ChangeDUState method (EventCode = “M ChangeDUState”)

* Upload method (EventCode = “M Upload”)

For each of the above methods, the CommandKey value from the method
argument MUST appear in the Event array entry containing the EventCode
value shown above. For all other EventCode values defined in this

specification, the value of CommandKey MUST be an empty string.

The following fault codes are defined for this method: 8001, 8002, 8003, 8004, 8005.

An ACS that receives an Inform without a “0 BOOTSTRAP” EventCode from a CPE
from which it has not previously received an Inform with the “0 BOOTSTRAP”
EventCode MAY, at its discretion, respond with a fault code of 8003 (Invalid arguments).

TransferComplete

This method informs the ACS of the completion (either successful or unsuccessful) of a
file transfer initiated by an earlier Download, ScheduleDownload or Upload method call.
It MUST NOT be called for a file transfer that has been successfully canceled via a
CancelTransfer method call.

November 2010 © The Broadband Forum. All rights reserved. Page 88 0f 197

CPE WAN Management Protocol TR-069 Amendment 3

This paragraph applies only when the file transfer was initiated via Download or Upload.
It does not apply to ScheduleDownload, which does not support downloading within the
same session. TransferComplete MUST be called only when the associated Download or
Upload response indicated that the transfer had not yet completed at that time (indicated
by a non-zero value of the Status argument in the response). In such cases, it MAY be
called either later in the same session in which the transfer was initiated or in any
subsequent session. Note that in order for it to be called within the same session in which
the transfer was initiated, the CPE will have been sent the InformResponse and
Download or Upload request while HoldRequests was true. When used, this method
MUST be called only after the transfer has successfully completed, and in the case of a
download, the downloaded file has been successfully applied, or after the transfer or
apply has failed. If this method fails, the CPE MUST NOT regard the ACS as having
been informed of the completion of the file transfer, and MUST attempt to call the
method again, either in the current session or in a new session, subject to the event
delivery rules of Section 3.7.1.5. The calling arguments for this method are defined in
Table 38. The arguments in the response are defined in Table 39.

Table 38 — TransferComplete arguments

Argument Type Value

CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download,
ScheduleDownload or Upload method call that initiated the transfer.

FaultStruct FaultStruct | A FaultStruct as defined in Table 40. If the transfer was successful, the FaultCode is
set to zero. Otherwise a non-zero FaultCode is specified along with a FaultString
indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not available, the
value of this argument MUST be set to the Unknown Time value.

CompleteTime | dateTime The date and time the transfer was fully completed and applied in UTC. The CPE
SHOULD record this information and report it in this argument, but if this information is
not available, the value of this argument MUST be set to the Unknown Time value.

Table 39 — TransferCompleteResponse arguments

Argument Type Value

- void This method response has no arguments.

Table 40 — FaultStruct definition

Name Type Value

FaultCode unsignedint | The numerical fault code as defined in Section A.5.1. In the case of a fault, allowed
values are: 9001, 9002, 9010, 9011, 9012, 9014, 9015, 9016, 9017, 9018, 9019, 9020.
A value of 0 (zero) indicates no fault.

FaultString | string(256) | A human-readable text description of the fault. This field SHOULD be empty if the
FaultCode equals 0 (zero).

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,
8005.

November 2010 © The Broadband Forum. All rights reserved. Page 89 of 197

A.3.3.3

CPE WAN Management Protocol TR-069 Amendment 3

AutonomousTransferComplete

This method informs the ACS of the completion (either successful or unsuccessful) of a
file transfer that was not specifically requested by the ACS. When used, this method
MUST be called only after the transfer has successfully completed, and in the case of a
download, the downloaded file has been successfully applied, or after the transfer or
apply has failed (e.g. a timeout expired). If this method fails, the CPE MUST NOT
regard the ACS as having been informed of the completion of the file transfer, and
MUST attempt to call the method again, either in the current session or in a new session,
subject to the event delivery rules of Section 3.7.1.5. The calling arguments for this
method are defined in Table 41. The arguments in the response are defined in Table 42.

Table 41 — AutonomousTransferComplete arguments

Argument Type Value

AnnounceURL string(1024) | The URL on which the CPE listened to the announcements that led to this transfer
being performed, or an empty string if this transfer was not performed as a result
of an announcement, or if no such URL is available.

TransferURL string(1024) | The URL from or to which this transfer was performed, or an empty string if no
such URL is available.

IsDownload boolean Indicates whether the autonomous transfer was a download (true) or an upload
(false).

FileType string(64) An integer followed by a space followed by the file type description. Only the

following values are currently defined for the FileType argument:
"1 Firmware Upgrade Image" (download only)
"2 Web Content" (download only)
“3 Vendor Configuration File” (download or upload) [DEPRECATED for
upload]
“4 Vendor Log File” (upload only) [DEPRECATED]
“4 Tone File” (download only; see [25] Appendix B)
“5 Ringer File” (download only; see [25] Appendix B)
“6 Vendor Configuration File <i>” (upload only)
“7 Vendor Log File <i>”" (upload only)

For “6 Vendor Configuration File <i>", <i> is replaced by the instance number
from the Vendor Config File object as defined in the appropriate Root data
model. The instance number corresponds to that of the entry in the vendor
config file table that the CPE uploaded.

For “7 Vendor Log File <i>”, <i> is replaced by the instance number from the
Vendor Log File object as defined in the appropriate Root data model. The
instance number corresponds to that of the entry in the vendor log file table
that the CPE uploaded.

The following format is defined to allow the unique definition of vendor-specific file
types:
"X <VENDOR> <Vendor-specific identifier>"

<VENDOR?> is replaced by a unique vendor identifier, which MAY be either an
OUI or a domain name. The OUI or domain name used for a given vendor-
specific file type MUST be one that is assigned to the organization that defined
this method (which is not necessarily the same as the vendor of the CPE or ACS).
An OUl is an organizationally unique identifier as defined in [10], which MUST be
formatted as a 6 hexadecimal-digit OUI (organizationally unique identifier), with all
upper-case letters and any leading zeros included. A domain name MUST be

«n

upper case with each dot (“.”) replaced with a hyphen or underscore.

FileSize unsignedint | The size of the file in bytes, or zero if this information is not available or if the CPE
chooses not to make it available.

TargetFileName | string(256) The name of the file on the target (CPE) file system, or an empty string if this
information is not available or if the CPE chooses not to make it available.

November 2010 © The Broadband Forum. All rights reserved. Page 90 of 197

A4

A.4.1

A.41.1

CPE WAN Management Protocol TR-069 Amendment 3

Argument Type Value

FaultStruct FaultStruct A FaultStruct as defined in Table 40. If the transfer was successful, the FaultCode
is set to zero. Otherwise a non-zero FaultCode is specified along with a
FaultString indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not available,
the value of this argument MUST be set to the Unknown Time value.

CompleteTime dateTime The date and time the transfer was fully completed and applied in UTC. The CPE
SHOULD record this information and report it in this argument, but if this
information is not available, the value of this argument MUST be set to the
Unknown Time value.

Table 42 — AutonomousTransferCompleteResponse arguments

Argument Type Value

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,
8005.

Optional RPC Messages

CPE Methods

The methods listed in this Section MAY optionally be supported on a CPE device. Only
an ACS can call these methods.

GetQueuedTransfers

Note — this method is DEPRECATED in favor of GetAllQueuedTransfers [Section
A4.1.7].

This method MAY be used by an ACS to determine the status of previously requested
downloads or uploads. The calling arguments for this method are defined in Table 43.
The arguments in the response are defined in Table 44.

Table 43 — GetQueuedTransfers arguments

Argument Type Description

- void This method has no calling arguments.

Table 44 — GetQueuedTransfersResponse arguments

Argument Type Description

TransferList | QueuedTransferStruct[16] | Array of structures as defined in Table 45, each describing the state of
one transfer that the CPE has been instructed to perform, but has not
yet been fully completed.

Table 45 — QueuedTransferStruct definition

Name Type Description

CommandKey | string(32) | Set to the value of the CommandKey argument passed to CPE in the Download or Upload
method call that initiated the transfer.

November 2010 © The Broadband Forum. All rights reserved. Page 91 of 197

A.41.2

A.413

CPE WAN Management Protocol TR-069 Amendment 3

Name Type Description

State int[1:3] The current state of the transfer. Defined values are:
1 = Not yet started
2 = In progress
3 = Completed, finishing cleanup

All other values are reserved.

The following fault codes are defined for this method: 9000, 9001, 9002.

Schedulelnform

This method MAY be used by an ACS to request the CPE to schedule a one-time Inform
method call (separate from its periodic Inform method calls) sometime in the future. The
calling arguments for this method are defined in Table 46. The arguments in the response
are defined in Table 47.

Table 46 — Schedulelnform arguments

Argument Type Description

DelaySeconds | unsignedint | The number of seconds from the time this method is called to the time the CPE is
requested to intiate a one-time Inform method call. The CPE sends a response, and
then DelaySeconds later calls the Inform method. This argument MUST be greater
than zero.

CommandKey string(32) The string to return in the CommandKey element of the InformStruct when the CPE
calls the Inform method.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

Table 47 — SchedulelnformResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

SetVouchers

Note — this method, as part of the “voucher mechanism” as defined in Annex C, is
DEPRECATED in favor of the “Software Module Management mechanism” as
described in Appendix Il / TR-157 Amendment 3 [29].

This method MAY be used by an ACS to set one or more option Vouchers in the CPE.
The calling arguments for this method are defined in Table 48. The arguments in the
response are defined in Table 49.

Table 48 — SetVouchers arguments

Argument Type Description

VoucherList | base64[] | Array of Vouchers, where each Voucher is represented as a Base64 encoded octet string.
The detailed structure of a Voucher is defined in Annex C.

November 2010 © The Broadband Forum. All rights reserved. Page 92 of 197

A41.4

CPE WAN Management Protocol TR-069 Amendment 3

Table 49 — SetVouchersResponse arguments

Argument

Type

Description

void

This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004.

GetOptions

Note — this method, as part of the “voucher mechanism” as defined in Annex C, is
DEPRECATED in favor of the “Software Module Management mechanism” as
described in Appendix Il / TR-157 Amendment 3 [29].

This method MAY be used by an ACS to obtain a list of the options currently set in a
CPE, and their associated state information. The calling arguments for this method are
defined in Table 50. The arguments in the response are defined in Table 51.

Table 50 — GetOptions arguments

Argument Type

Descri

ption

OptionName | string(64) | A string

the met

representing either the name of a particular Option, or an empty string indicating
hod SHOULD return the state of all Options supported by the CPE (whether or not

they are currently enabled).

Table 51 — GetOptionsResponse arguments

Argument Type

De

scription

OptionList | OptionStruct[]

Array of OptionStructs as defined in Table 52, containing either a single OptionStruct if
information about a particular Option was requested, or a list of OptionStructs, one for
each option supported by the CPE.

Table 52 — OptionStruct definition

Name

Type

Description

OptionName

string(64)

Identifying name of the particular Option.

VoucherSN

unsignedint

Identifying number of the particular Option.

State

unsignedint

A number formed by two bits, defined as follows:
Bit 0 (LSB):

0 = Option is currently disabled

1 = Option is currently enabled
Bit 1:

0 = Option has not been setup

1 = Option has been setup

The interpretation of the setup state of an Option is Option-specific, but in
general is to be interpreted as indicating whether the end-user has
actively performed any actions required to make the Option fully
operational.

Mode

int[0:2]

This element specifies whether the designated Option is enabled or
disabled; and if enabled, whether or not an expiration has been specified.
The defined values are:

0 = Disabled
1 = Enabled with expiration
2 = Enabled without expiration

November 2010

© The Broadband Forum. All rights reserved. Page 93 of 197

A.41.5

CPE WAN Management Protocol TR-069 Amendment 3

Name Type Description

StartDate dateTime The specified start date for the Option in UTC. If in the future, this is the
date the Option is to be enabled. If in the past, this is the date the Option
was enabled.

This element applies only when the value of the Mode element is 1
(Enabled with expiration). When the Mode element has any other value,
StartDate MUST be set to the Unknown Time value.

ExpirationDate dateTime The specified date the Option is to expire in UTC, if any.

This element applies only when the value of the Mode element is 1
(Enabled with expiration). When the Mode element has any other value,
ExpirationDate MUST be set to the Unknown Time value.

IsTransferable boolean Indicates whether or not the Option has been designated transferable or
non-transferable (see Annex C). Defined values are:

0 = Non-transferable

1 = Transferable

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

Upload

This method MAY be used by the ACS to cause the CPE to upload a specified file to the
designated location. The calling arguments for this method are defined in Table 53. The
arguments in the response are defined in Table 54.

If the file cannot be successfully uploaded, the CPE MUST NOT attempt to retry the file
upload on its own initiative, but instead MUST report the failure of the upload to the ACS
via either the Upload response (if it has not yet been sent) or the TransferComplete
method. Upon the ACS being informed of the failure of an upload, the ACS MAY
subsequently attempt to reinitiate the upload by issuing a new Upload request.

If the CPE receives one or more Upload requests before performing a previously
requested upload, the CPE MUST queue all requested uploads and perform each of them
as closely as possible to the requested time (based on the value of the DelaySeconds
argument and the time of the request). Queued uploads MUST be retained across reboots
of the CPE. The CPE MUST be able to queue a minimum of three file transfers
(downloads and uploads).

For each upload performed, the CPE MUST send a distinct TransferComplete. Note that
the order in which a series of requested uploads will be performed might differ from the
order of the corresponding requests due to differing values of DelaySeconds. For
example, an ACS could request an upload with DelaySeconds equal to one hour, then
five minutes later request a second upload with DelaySeconds equal to one minute. In
this case, the CPE would perform the second upload before the first.

Table 53 — Upload arguments

Argument Type Description

CommandKey string(32) The string the CPE uses to refer to a particular upload. This argument is referenced
in the methods Inform, TransferComplete, GetQueuedTransfers,
GetAllQueuedTransfers and CancelTransfer.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

November 2010 © The Broadband Forum. All rights reserved. Page 94 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Argument

Type

Description

FileType

string(64)

An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

“1 Vendor Configuration File” [DEPRECATED]
“2 Vendor Log File” [DEPRECATED]

“3 Vendor Configuration File <i>”

“4 Vendor Log File <i>”

For “3 Vendor Configuration File <i>", <i> is replaced by the instance number
from the Vendor Config File object as defined in the appropriate Root data
model. The CPE uploads the file that corresponds to that entry in the vendor
config file table.

For “4 Vendor Log File <i>", <i> is replaced by the instance number from the
Vendor Log File object as defined in the appropriate Root data model. The CPE
uploads the file that corresponds to that entry in the vendor log file table.

The following format is defined to allow the unique definition of vendor-specific file
types:
"X <VENDOR> <Vendor-specific identifier>"

<VENDOR?> is replaced by a unique vendor identifier, which MAY be either an OUI or
a domain name. The OUI or domain name used for a given vendor-specific file type
MUST be one that is assigned to the organization that defined this method (which is
not necessarily the same as the vendor of the CPE or ACS). An OUl is an
organizationally unique identifier as defined in [10], which MUST be formatted as a 6
hexadecimal-digit OUI (organizationally unique identifier), with all upper-case letters
and any leading zeros included. A domain name MUST be upper case with each dot
(“.”) replaced with a hyphen or underscore.

The FileType argument is intended to fully identify the file to be uploaded. If the
standard values listed above are insufficient to uniquely identify the file, then vendor-
specific file types MAY be used that provide more specific information to allow the
intended file to be identified.

URL

string(256)

URL, as defined in [12], specifying the destination file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in Section
2.3.2, MAY be supported. When performing an upload to the URL specified by this
argument, the CPE MUST make use of the HTTP PUT method.

This argument specifies only the destination file location, and does not indicate in any
way the name or location of the local file to be uploaded. The local file to be
uploaded MUST be determined only by the FileType argument.

This URL MUST NOT include the “userinfo” component, as defined in [12].

Username

string(256)

Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password

string(256)

Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

DelaySeconds

unsignedint

The number of seconds from the time this method is called to the time the CPE is
requested to initiate the upload. A value of zero indicates that no delay is requested.
If a non-zero delay is requested, the upload MUST NOT occur in the same
transaction session in which the request was issued.

The CPE MUST perform the upload immediately after the time indicated by
DelaySeconds, unless this is not possible for reasons outside the CPE’s control, in
which case the CPE MUST attempt to perform the upload within one hour after the
time indicated by DelaySeconds. If the CPE cannot begin the upload within this time
window, the CPE MUST consider the upload to have failed and report this failure to
the ACS using the TransferComplete method.

The CPE MUST attempt to perform the upload within the time window specified
above even if the CPE reboots one or more times prior to that time.

November 2010

© The Broadband Forum. All rights reserved. Page 95 of 197

A.4.1.6

A41.7

CPE WAN Management Protocol TR-069 Amendment 3

Table 54 — UploadResponse arguments

Argument Type Description
Status int[0:1] A successful response to this method returns an integer enumeration defined as
follows:

0 = Upload has completed.

1 = Upload has not yet completed (for example, if the upload needs to wait until after
the session has been terminated).

If the value of this argument is non-zero, the CPE MUST subsequently call the

TransferComplete method to indicate the completion status of this upload (either

successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime dateTime | The date and time upload was started in UTC. This need only be filled in if the upload
has been completed. Otherwise, the value MUST be set to the Unknown Time value.

CompleteTime | dateTime | The date and time the upload was fully completed and applied in UTC. This need only
be filled in if the upload has been completed. Otherwise, the value MUST be set to the
Unknown Time value.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004,
9011, 9012, 9013.

If an attempt is made to queue an upload when the file transfer queue is already full, the
CPE MUST respond with fault 9004 (Resources exceeded). If the CPE detects the
presence of the “userinfo” component in the file destination URL, it SHOULD reject the
Upload request with the fault code 9003 (Invalid arguments).

FactoryReset

This method resets the CPE to its factory default state, and calls for use with extreme
caution. The CPE MUST initiate the factory reset procedure only after successful
completion of the session. The calling arguments for this method are defined in Table 55.
The arguments in the response are defined in Table 56.

Table 55 — FactoryReset arguments

Argument Type Description

- void This method has no arguments.

Table 56 — FactoryResetResponse arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

GetAllQueuedTransfers

This method MAY be used by an ACS to determine the status of all queued downloads
and uploads, including any that were not specifically requested by the ACS, i.e.
autonomous transfers. The calling arguments for this method are defined in Table 57.
The arguments in the response are defined in Table 58.

November 2010 © The Broadband Forum. All rights reserved. Page 96 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Table 57 — GetAllQueuedTransfers arguments

Argument

Type

Description

void

This method has no calling arguments.

Table 58 — GetAllQueuedTransfersResponse arguments

Argument

Type

Description

TransferList

AllQueuedTransferStruct[16]

Array of structures as defined in Table 59, each describing the state
of one transfer that has not yet been fully completed.

Table 59 — AllQueuedTransferStruct definition

Name Type Description
CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download,
ScheduleDownload or Upload method call that initiated the transfer, or an empty
string for an autonomous transfer.
State int[1:3] The current state of the transfer. Defined values are:
1 = Not yet started
2 = In progress
3 = Completed, finishing cleanup
All other values are reserved.
IsDownload boolean Indicates whether the transfer is a download (true) or an upload (false).
FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:
"1 Firmware Upgrade Image" (download only)
"2 Web Content" (download only)
“3 Vendor Configuration File” (download or upload) [DEPRECATED for
upload]
“4 VVendor Log File” (upload only) [DEPRECATED]
“4 Tone File” (download only; see [25] Appendix B)
“5 Ringer File” (download only; see [25] Appendix B)
“6 Vendor Configuration File <i>” (upload only)
“7 Vendor Log File <i>”" (upload only)
For “6 Vendor Configuration File <i>", <i> is replaced by the instance number
from the Vendor Config File object as defined in the appropriate Root data
model. The instance number corresponds to that of the entry in the vendor
config file that the CPE had been instructed to upload.
For “7 Vendor Log File <i>”, <i> is replaced by the instance number from the
Vendor Log File object as defined in the appropriate Root data model. The
instance number corresponds to that of the entry in the vendor log file table
that the CPE had been instructed to upload.
The following format is defined to allow the unique definition of vendor-specific file
types:
"X <VENDOR> <Vendor-specific identifier>"
<VENDOR?> is replaced by a unique vendor identifier, which MAY be either an
OUI or a domain name. The OUI or domain name used for a given vendor-
specific file type MUST be one that is assigned to the organization that defined
this method (which is not necessarily the same as the vendor of the CPE or ACS).
An OUI is an organizationally unique identifier as defined in [10], which MUST be
formatted as a 6 hexadecimal-digit OUI (organizationally unique identifier), with all
upper-case letters and any leading zeros included. A domain name MUST be
upper case with each dot (“.”) replaced with a hyphen or underscore.
FileSize unsignedint | The size of the file in bytes, or zero if this information is not available or if the CPE
chooses not to make it available.
November 2010 © The Broadband Forum. All rights reserved. Page 97 of 197

A.41.8

CPE WAN Management Protocol TR-069 Amendment 3

Name Type Description

TargetFileName | string(256) The name of the file on the target (CPE) file system, or an empty string if this
information is not available or if the CPE chooses not to make it available.

The following fault codes are defined for this method: 9000, 9001, 9002.

ScheduleDownload

Note — the functionality provided by this method overlaps that of the Download
method [Section A.3.2.8]. Unlike Download, this method provides fine-grained
control over when the download can be performed and applied. Also, this method
does not permit a file to be downloaded and applied within the same session.

This method MAY be used by the ACS to cause the CPE to download a specified file
from the designated location and apply it within either one or two specified time
windows. The CPE MUST support two time windows. The calling arguments for this
method are defined in Table 60. The arguments in the response are defined in Table 61.

When a download is initiated using this method, the CPE MUST indicate successful or
unsuccessful completion of the download via a TransferComplete message sent in a
subsequent session.

The CPE MUST only indicate successful completion of the download after the
downloaded file has been both successfully transferred and applied. While the criterion
used to determine when a file has been successfully applied is specific to the CPE’s
implementation, the CPE SHOULD consider a downloaded file to be successfully applied
only after the file is installed and in use as intended.

In the particular case that the downloaded file is a software image, the CPE MUST
consider the downloaded file to be successfully applied only after the new software image
is actually installed and operational. If the software image replaces the overall software
of the CPE (which would typically require a reboot to install and begin execution), the
software version represented in the data model MUST already reflect the updated
software image in the session in which the CPE sends a TransferComplete indicating
successful download.

If the file cannot be successfully downloaded or applied within the boundaries of the
specified time windows, the CPE MUST NOT attempt to retry the file download on its
own initiative, but instead MUST report the failure of the download to the ACS. Upon
the ACS being informed of the failure of a download, the ACS MAY subsequently
attempt to reinitiate the download by issuing a new ScheduleDownload request.

If an unrecoverable error occurs during a download, e.g. the file is not accessible or is
corrupted, the file transfer MUST be aborted, even if the failure occurred on the first of
two time windows.

If the CPE receives one or more Download or ScheduleDownload requests before
performing a previously requested download, the CPE MUST queue all requested
downloads and perform each of them as closely as possible to the requested time (based
on the values of WindowStart in the time windows and the time of the request). Queued
downloads MUST be retained across reboots and firmware upgrades of the CPE. The
CPE MUST be able to queue a minimum of three file transfers (downloads and uploads).

November 2010 © The Broadband Forum. All rights reserved. Page 98 of 197

CPE WAN Management Protocol TR-069 Amendment 3

For each download performed, the CPE MUST send a distinct TransferComplete. Note
that the order in which a series of requested downloads will be performed might differ
from the order of the corresponding requests due to differing time windows. For
example, an ACS could request a download with a time window starting in one hour, then
five minutes later request a second download with a time window starting in one minute.
In this case, the CPE would perform the second download before the first.

All modifications to a CPE’s configuration resulting from use of the ScheduleDownload
method MUST be retained across reboots of the CPE.

If (and only if) the file transfer does not impact subscriber services, a CPE MAY transfer
the file outside of a time window. For example, this might be the case for CPE which use
Multicast streams for downloads. However, the CPE MUST never apply a downloaded
file outside of a time window.

Table 60 — ScheduleDownload arguments

Argument

Type

Description

CommandKey

string(32)

The string the CPE uses to refer to a particular download. This argument is
referenced in the methods Inform, TransferComplete, GetQueuedTransfers,
GetAllQueuedTransfers and CancelTransfer.

The value of the CommandKey is entirely at the discretion of the ACS and MAY be
an empty string.

FileType

string(64)

An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image"

"2 Web Content"

“3 Vendor Configuration File”

“4 Tone File” (see [25] Appendix B)

“5 Ringer File” (see [25] Appendix B)
The following format is defined to allow the unique definition of vendor-specific file
types:

"X <VENDOR> <Vendor-specific identifier>"
<VENDOR?> is replaced by a unique vendor identifier, which MAY be either an OUI
or a domain name. The OUI or domain name used for a given vendor-specific file
type MUST be one that is assigned to the organization that defined this method
(which is not necessarily the same as the vendor of the CPE or ACS). An OUl is an
organizationally unique identifier as defined in [10], which MUST be formatted as a 6
hexadecimal-digit OUI (organizationally unique identifier), with all upper-case letters
and any leading zeros included. A domain name MUST be upper case with each
dot (“.”) replaced with a hyphen or underscore.
If and only if the CPE supports downloading of firmware images using the
ScheduleDownload method, the CPE MUST support the "1 Firmware Upgrade
Image" FileType value. All other FileType values are OPTIONAL.
The FileType value of "2 Web Content" is intended to be used for downloading files
that contain only web content for a CPE’s web-based user interface. A CPE that
supports a web-based user interface and allows the content to be downloaded from
the ACS via the ScheduleDownload method as a distinct file containing only web
content SHOULD use the FileType value of "2 Web Content" when performing such
a download. A CPE that supports a web-based user interface and allows the
content to be downloaded from the ACS MAY instead include web content as part of
its firmware upgrade image, or use some other means to update the web content in
the CPE. Such a CPE need not support the FileType value of "2 Web Content".

URL

string(256)

URL, as defined in [12], specifying the source file location. HTTP and HTTPS
transports MUST be supported. Other optional transports, as specified in Section
2.3.2, MAY be supported.

If the CPE receives multiple ScheduleDownload requests with the same source
URL, the CPE MUST perform each download as requested, and MUST NOT
assume that the content of the file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in [12].

November 2010

© The Broadband Forum. All rights reserved. Page 99 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Argument

Type

Description

Username

string(256)

Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

Password

string(256)

Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

FileSize

unsignedint

The size of the file to be downloaded in bytes.

The FileSize argument is intended as a hint to the CPE, which the CPE MAY use to
determine if it has sufficient space for the file to be downloaded, or to prepare space
to accept the file.

The ACS MAY set this value to zero. The CPE MUST interpret a zero value to
mean that that the ACS has provided no information about the file size. In this case,
the CPE MUST attempt to proceed with the download under the presumption that
sufficient space is available, though during the course of download, the CPE might
determine otherwise.

The ACS SHOULD set the value of this parameter to the exact size of the file to be
downloaded. If the value is non-zero, the CPE MAY reject the ScheduleDownload
request on the basis of insufficient space.

If the CPE attempts to proceed with the download based on the value of this
argument, but the actual file size differs from the value of this argument, this could
result in a failure of the download. However, the CPE MUST NOT cause the
download to fail solely because it determines that the value of this argument is
inaccurate.

TargetFile-
Name

string(256)

The name of the file to be used on the target file system. This argument MAY be left
empty if the target file name can be extracted from the downloaded file itself, or from
the URL argument, or if no target file name is needed. If this argument is specified,
but the target file name is also indicated by another source (for example, if it is
extracted from the downloaded file itself), this argument MUST be ignored. If the
target file name is used, the downloaded file would replace any existing file of the
same name (whether or not the CPE archives the replaced file is a local matter).

If present, this parameter is treated as an opaque string with no specific
requirements for its format. That is, the TargetFileName value is to be interpreted
based on the CPE’s vendor-specific file naming conventions. Note that this
specification does not preclude the use of a file naming convention in which the file’s
path can be specified as part of the file name.

TimeWindow-
List

TimeWin-
dowStr-
uct[1:2]

This structure defines the time window(s) during which the CPE MUST perform and
apply the download. As noted earlier, if a file transfer does not generate additional
network traffic and does not impact subscriber services, the CPE is permitted to
perform (but not apply) the download outside of a time window.

A CPE MUST be able to accept a request with either one or two TimeWindowStruct
elements.

The time windows MUST NOT overlap, i.e. if there are two time windows, the
second window’s WindowStart value has to be greater than or equal to the first
window’s WindowEnd value.

Table 61 — ScheduleDownloadResponse arguments

Argument

Type

Description

void

This method response has no arguments.

Table 62 — TimeWindowStruct definition

Name Type Description

WindowStart unsignedint Start of this time window as an offset in seconds after receiving the
download request. An offset is used in order to avoid a
dependence on absolute time.

WindowEnd unsignedint End of this time window as an offset in seconds after receiving the
download request. An offset is used in order to avoid a
dependence on absolute time.

November 2010 © The Broadband Forum. All rights reserved. Page 100 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Name

Type

Description

WindowMode

string(64)

An integer followed by a space followed by the time window mode
description. The following values are currently defined:

“1 At Any Time”

“2 Immediately”

“3 When Idle”

“4 Confirmation Needed”

The following format is defined to allow for the unique definition of
vendor-specific time window modes:

“X <VENDOR> <Vendor specific identifier>"

<VENDOR?> is replaced by a unique vendor identifier, which MAY
be either an OUI or a domain name. The OUI or domain name
used for a given vendor-specific file type MUST be one that is
assigned to the organization that defined this method (which is not
necessarily the same as the vendor of the CPE or ACS). An OUI
is an organizationally unique identifier as defined in [10], which
MUST be formatted as a 6 hexadecimal-digit OUI (organizationally
unique identifier), with all upper-case letters and any leading zeros
included. A domain name MUST be upper case with each dot (“.”)
replaced with a hyphen or underscore.

WindowMode specifies when within this time window the CPE is
permitted to perform and apply the download. As noted earlier, if a
file transfer does not impact subscriber services, the CPE is
permitted to perform (but not apply) the download outside of a time
window.

The CPE MUST support “1 At Any Time”. This means that the

CPE MAY perform and apply a download at any time during the
time window even if this results in interruption of service for the
subscriber.

The CPE MUST support “2 Immediately”. This means that the
CPE MUST perform and apply a download immediately at the start
of the time window even fif this results in interruption of service for
the subscriber.

The CPE MUST support “3 When Idle”. This means that
interruption of service from the subscriber standpoint MUST NOT
occur during the time window. How the CPE determines this is
outside the scope of this specification.

The CPE MAY support “4 Confirmation Needed”. This means that
the CPE MUST ask for and receive confirmation before performing
and applying the download. It is outside the scope of this
specification how the CPE asks for and receives this confirmation.
If confirmation is not received, this time window MUST NOT be
used.

UserMessage

string(256)

A message to the user of the CPE, to inform him about a download
request. The CPE MAY use this message when seeking
confirmation from the user, e.g. when WindowMode is “4
Confirmation Needed”.

When there is no need for such a message, it SHOULD be empty
and MUST be ignored.

MaxRetries

int

The maximum number of retries for downloading and/or applying
the file before regarding the transfer as having failed. Refers only
to this time window (each time window can specify its own value).
A value of 0 means “No retries are permitted”. A value of -1
means “the CPE determines the number of retries”, i.e. that the
CPE can use its own retry policy, not that it has to retry forever.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004,

9010, 9013.

If an attempt is made to queue an additional download when the CPE’s file transfer queue
is already full, the CPE MUST respond with fault 9004 (Resources exceeded). If the
CPE detects the presence of the “userinfo” component in the file source URL, or detects

November 2010

© The Broadband Forum. All rights reserved. Page 101 of 197

A.41.9

A.4.1.10

CPE WAN Management Protocol TR-069 Amendment 3

overlapping or otherwise invalid time windows (including zero windows supplied, or
unsupported time window modes), it SHOULD reject the ScheduleDownload request
with the fault code 9003 (Invalid arguments). If the CPE rejects the ScheduleDownload
request because the FileSize argument exceeds the available space on the device, it
MUST use the Download Failure (9010) fault code.

CancelTransfer

This method MAY be used by the ACS to cause the CPE to cancel a file transfer initiated
by an earlier Download, ScheduleDownload or Upload method call. The
TransferComplete method is not called for a file transfer that has successfully been
canceled. The calling arguments for this method are defined in Table 63. The arguments
in the response are defined in Table 64.

Table 63 — CancelTransfer arguments

Name Type Description

CommandKey string(32) The command key that was provided in the original Download,
Upload or ScheduleDownload RPC.

Table 64 — CancelTransferResponse arguments

Name Type Description

- void This method response has no arguments

The following fault codes are defined for this method: 9000, 9001, 9004, 9021.

The CPE might be unable to cancel an active transfer, e.g. the file might currently be
being downloaded in an uninterruptible way, or the CPE might be just about to apply the
downloaded file. In this case, the CPE MUST respond with fault 9021 (Cancelation of
file transfer not permitted in current transfer state). If the ACS is planning to cancel
transfers, it SHOULD use a unique command key for each transfer. However, if the
command key matches more than one transfer, the CPE MUST attempt to cancel all the
matching transfers, and MUST respond with fault 9021 (described above) if it is unable
to cancel all of them, in which case it SHOULD cancel as many matching transfers as it
can. It is not an error to specify an invalid command key.

ChangeDUState
Appendix 11 / TR-157 Amendment 3 [29] details a Theory of Operation for
Software Module Management, including defining the implicit and explicit state
transitions for a DU.

This method MAY be used by an ACS to trigger the explicit state transitions of Install,
Update, and Uninstall for a Deployment Unit (DU), i.e. installing a new DU, updating an
existing DU, or uninstalling an existing DU. The calling arguments for this method are
defined in Table 65. The arguments in the response are defined in Table 66.

When a DU state change is initiated using this method the CPE MUST indicate
successful or unsuccessful completion of the state change via the
DUStateChangeComplete method sent in a subsequent session or via a CWMP fault sent
within the same session.

November 2010 © The Broadband Forum. All rights reserved. Page 102 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The ChangeDUState method MUST include one or more DU operations within a single
method call, where a DU operation is described by one of the three types of operation
structures (OperationStruct) that are defined in Table 67. There MUST, however, be only
one resultant DUStateChangeComplete method for each ChangeDUState method issued
by the ACS, and the DUStateChangeComplete MUST contain at least one result for each
operation, including both successful and unsuccessful operations. The CPE MAY apply
the operations in any order it chooses, but it MUST report the results for each operation
in the same order as they were sent in the request. If the ACS wants to effect multiple
state transitions for the same DU, then it SHOULD utilize multiple ChangeDUState
RPCs to do so.

Regardless of the order in which the operations are applied, the CPE MUST complete
each operation within one hour. If the CPE is unable to do so, it MUST consider that
specific operation in error and send the appropriate FaultStruct in the resulting
DUStateChangeComplete method call.

The CPE MUST send the related DUStateChangeComplete RPC within 24 hours of
responding to the ChangeDUState method. If the CPE has not been able to complete all
of the operations within that 24 hour time window, it MUST consider the remaining
operations in error and send the appropriate FaultStruct within the resulting
DUStateChangeComplete RPC.

If the ACS sends a request that contains more operation structures than the CPE can
handle, the CPE MAY respond with a “Resources exceeded” (9004) CWMP Fault. The
CPE MUST, however, be able to accept a minimum of sixteen (16) operation structures
within a single request without issuing a “Resources exceeded” (9004) CWMP Fault.

If a DU state change fails, the CPE MUST NOT attempt to retry the state change on its
own initiative, but instead MUST report the failure of the operation to the ACS using the
DUStateChangeComplete method. Upon the ACS being informed of operation failure
the ACS MAY subsequently attempt to reinitiate the DU state change by issuing a new
ChangeDUState request.

Each DU operation contains an argument called UUID, which enables an ACS to
uniquely identify a DU across CPE. The UUID is also a part of the Deployment Unit
table’s unique key, along with the version of the DU and the Execution Environment that
the DU is installed against. The format of the UUID and rules for generating the UUID
are defined in RFC 4122 [34]. Additional rules for generating the UUIDs for Software
Module Management are defined in Annex H. If the rules defined in RFC 4122 and
Annex H are adhered to, both an ACS and a CPE will generate an equivalent UUID.

All modifications to a CPE’s configuration resulting from use of the ChangeDUState
method MUST be retained across reboots of the CPE.

Table 65 — ChangeDUState Arguments

Argument Type Description

Operations | OperationStruct]] | The set of DU-related operations to be performed. The argument can contain any
combination of the various OperationStruct types.

CommandKey | string(32) The string the CPE uses to refer to a particular ChangeDUState. This argument is
referenced in the methods Inform and DUStateChangeComplete. The value of the
CommandKey is entirely at the discretion of the ACS and MAY be an empty string.

November 2010 © The Broadband Forum. All rights reserved. Page 103 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Table 66 — ChangeDUStateResponse Arguments

Argument

Type Description

void This method response has no arguments.

Table 67 — OperationStruct Types

Name Type Description

InstallOpStruct OperationStruct | This is a type of OperationStruct used to Install new DUs on an Execution
Environment.

UpdateOpStruct OperationStruct | This is a type of OperationStruct used to Update existing DUs on an
Execution Environment.

UninstallOpStruct | OperationStruct | This is a type of OperationStruct used to Uninstall existing DUs from an

Execution Environment.

The three OperationStruct types in this table correspond to the three different explicit
actions defined in the State Diagram in Appendix II / TR-157 Amendment 3 [29]. These
are the structures that are allowed to appear in the Operations argument of the
ChangeDUState RPC.

Table 68 — InstallOpStruct Definition

Name

Type Description

URL

string(1024) | The URL, as defined in RFC 3986 [12], that specifies the location of the DU to
be installed. HTTP and HTTPS transports MUST be supported. Other optional
transports, as specified in Section 2.3.2, MAY be supported. If the CPE receives
multiple Install requests with the same source URL, the CPE MUST perform
each Install as requested, and MUST NOT assume that the content of the file to
be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in RFC 3986
[12].

UUID

string(36) The UUID (see RFC 4122 [34] and Annex H) of the DU to be installed. The ACS
MAY send down an empty string in which case the CPE MUST generate the
UUID based on the rules defined in RFC 4122 [34] and Annex H.

Username

string(256) Username to be used by the CPE to authenticate with the file server, if
authentication is required.

Password

string(256) Password to be used by the CPE to authenticate with the file server, if
authentication is required.

ExecutionEnvRef

string(256) A reference to the Execution Environment upon which the DU is to be installed.
This argument is the path name of the Execution Environment object instance,
including its instance number. The path name MUST end with a “.” (dot) after
the instance number of the object.

If this string is either not provided or sent in as an empty string, the CPE MUST
choose which Execution Environment to use.

Table 69 — UpdateOpStruct Definition

Name Type

Description

UuUID string(36)

The UUID (see RFC 4122 [34] and Annex H) of the existing DU that is to be updated.

Version string(32)

The Version indicates which version of the DU to update when there are multiple versions
available. If there are multiple versions available, this argument MUST be specified.

November 2010

© The Broadband Forum. All rights reserved. Page 104 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Name Type Description

URL string(1024) | The URL, as defined in RFC 3986 [12], that specifies the location of the update to be
applied to the existing DU(s). HTTP and HTTPS transports MUST be supported. Other
optional transports, as specified in Section 2.3.2, MAY be supported. If the CPE receives
an Update request with the same source URL as a previous Update or Install, the CPE
MUST perform each Update as requested, and MUST NOT assume that the content of the
file to be downloaded is the same each time.

This URL MUST NOT include the “userinfo” component, as defined in RFC 3986 [12].

Username | string(256) Username to be used by the CPE to authenticate with the file server, if authentication is
required.

Password | string(256) Password to be used by the CPE to authenticate with the file server, if authentication is
required.

The combination of the UUID and URL determine which DU(s) will be updated. There
are four possibilities (NOTE: if the URL is empty then the Username and Password
SHOULD also be empty):

¢ UUID populated, URL empty: The CPE MUST Update the DU with the matching UUID based on
its internal URL (the CPE SHOULD use the credentials that were last used to Install or Update
this DU)

e UUID empty, URL populated: The CPE MUST Update the DU that last used the URL at either
Install or Update (i.e. matches the URL parameter in the DeploymentUnit. {i}. table)

* UUID populated, URL populated: The CPE MUST Update the DU with the matching UUID and
update its internal URL

¢ UUID empty, URL empty: The CPE MUST Update all DUs based on their internal URL (the CPE
SHOULD use the credentials that were last used to Install or Update the DU)

Note that because this option [UUID empty, URL empty] is intended to update all DUs, the
Version MUST NOT be specified. If the Version is specified, the CPE SHOULD consider this
operation in fault using 9003 as the fault code.

Table 70 — UninstallOpStruct Definition

Name Type Description

UUID string(36) The UUID (see RFC 4122 [34] and Annex H) of the existing DU that is to be
uninstalled.

Version string(32) The version of the DU to be uninstalled. If this argument is not provided or is an

empty string, all versions of the DU with the corresponding UUID are uninstalled.

ExecutionEnvRef | string(256) | A reference to the Execution Environment that the DU is to be uninstalled from.
This argument is the path name of the Execution Environment object instance,
including its instance number. The path name MUST end with a “.” (dot) after the
instance number of the object.

If this string is either not provided or sent in as an empty string, the CPE MUST
uninstall this DU from all Execution Environements that it is installed on.

The following fault codes are defined for this method: 9000, 9001, 9002, and 9004.

These are the fault codes for the RPC as a whole; there can also be faults reported against
specific operations contained in the DUStateChangeComplete FaultStruct (see A.4.2.3 for
more details regarding the faults related to the individual operations). Appendix IL.5 /
TR-157 Amendment 3 [29] provides a description of the Software Module Management
faults.

If the ACS sends a request that contains more operation structures than the CPE can
handle, the CPE MAY respond with a 9004 (Resources Exceeded) CWMP Fault. Note
that this scenario is differentiated from the 9027 (System Resources Exceeded) fault

November 2010 © The Broadband Forum. All rights reserved. Page 105 of 197

A4.2

A.4.21

A.4.2.2

CPE WAN Management Protocol

TR-069 Amendment 3

described in A.4.2.3, in which the CPE does not have the resources to perform the install
or update of the DU.

ACS Methods

The methods listed in this Section MAY optionally be supported on an ACS. Only a
CPE can call these methods.

Kicked

Note — this method is DEPRECATED due to the deprecation of Annex D, which
defined the usage of this RPC.

The CPE calls this method whenever the CPE is “kicked” as described in Annex D. The
calling arguments for this method are defined in Table 71. The arguments in the response
are defined in Table 72.

Table 71 — Kicked arguments

Argument | Type Value

Command string(32) Generic argument that MAY be used by the ACS for identification or other purposes.
Referer string(64) The content of the “Referer” HTTP header sent to the CPE when it was kicked.

Arg string(256) Generic argument that MAY be used by the ACS for identification or other purposes.
Next string(1024) | The URL the ACS SHOULD return in the method response under normal conditions.

Table 72 — KickedResponse arguments

Argument

Type

Value

NextURL

string(1024)

The next URL the user’s browser SHOULD be redirected to. This URL MAY include CGI
arguments (for example, to maintain session state).

If the ACS wishes to send the user’s browser to a page on the CPE device itself, only the
path portion of the URL is returned as a result (e.g. “/security/index.html”). This allows the
CPE to use its canonical hostname in the HTTP 302 response. Note that this would require
the ACS to have previous knowledge of available URLs on the CPE device through some
mechanism outside the scope of this specification.

If this method returns a fault, the CPE SHOULD redirect the browser to an error page
resident on the CPE device.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

RequestDownload

This method allows the CPE to request a file download from the ACS. On reception of
this request, the ACS MAY call the Download method to initiate the download. The

calling arguments for this method are defined in Table 73. The arguments in the response
are defined in Table 74.

Table 73 — RequestDownload arguments

Argument Type Value
FileType string(64) This is the FileType being requested (see Table 30 for the list of allowed file types).
November 2010 © The Broadband Forum. All rights reserved. Page 106 of 197

A.4.23

CPE WAN Management Protocol TR-069 Amendment 3

Argument Type Value

FileTypeArqg | ArgStruct[16] | Array of zero or more additional arguments, where each argument is a structure of
name-value pairs as defined in Table 75. The use of the additional arguments
depend on the FileType specified.

The following arguments are defined for each of the currently defined file types.

FileType FileTypeArg Names
1 Firmware Upgrade (none)
2 Web Content “Version”
3 Vendor Configuration File (none)
4 Tone File (none)

(see [25] Appendix B)
5 Ringer File (none)

(see [25] Appendix B)

If the ACS receives arguments that it does not understand, it MUST ignore the
unknown arguments, but process the request using the arguments that it does
understand.

Table 74 — RequestDownloadResponse arguments

Argument Type Description

- void This method response has no arguments.

Table 75 — ArgStruct definition

Name Type Description
Name string(64) Argument name.
Value string(256) Argument value.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

DUStateChangeComplete

This method informs the ACS of the completion of an earlier requested ChangeDUState
method call, including both successful and unsuccessful operations. This method MUST
be called only after the CPE has completed any file transfers related to the
ChangeDUState request and attempted all of the operations specified in the
ChangeDUState request, or if the ChangeDUState request times out. If the ACS fails the
DUStateChangeComplete method, the CPE MUST NOT regard the ACS as having been
informed of the completion of the file transfer, and MUST attempt to call the method
again, either in the current session or in a new session, subject to the event delivery rules
of Section 3.7.1.5.

There MUST be exactly one DUStateChangeComplete method for each ChangeDUState
method called. The DUStateChangeComplete method MUST contain the results,
whether success or failure, for each of the requested operations in the ChangeDUstate
request. The entries in the Results argument MUST be in the same order as in the
requesting ChangeDUState method, although the order in which the CPE actually applies
the changes is up to the CPE implementation. There are situations in which a single

November 2010 © The Broadband Forum. All rights reserved. Page 107 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

ChangeDUState operation affects multiple Deployment Units. In this case there MUST
be an OpResultStruct entry for each affected DU contained within the Results argument.

The calling arguments for this method are defined in Table 76. The arguments in the
response are defined in Table 79.

Table 76 — DUStateChangeComplete Arguments

Name Type

Description

Results OpResultStruct(]

The results of Operations performed against DUs.

CommandKey string(32)

The value of the CommandKey argument passed to the
CPE in the corresponding ChangeDUState method call.

Table 77 — OpResultStruct Definition

Name

Type

Description

UUID

string(36)

The UUID as defined in RFC 4122 [34] of the DU that was affected. In
the case of an Install, this will be the UUID of the DU that was created. In
the case of an Update or Uninstall, it will be the existing UUID of the DU
that was either updated or uninstalled.

DeploymentUnitRef

string(256)

A reference to the DU affected. In the case of an Install, this is the DU
that was created. In the case of an Update, this is the DU that was
updated. In the case of an Uninstall, this is the DU that was removed.

The DU reference is a full path name of the DeploymentUnit object
instance, including its instance number. The path name MUST end with a

.” (dot) after the instance number of the object.

Version

string(32)

The version of the DU affected. This MUST match the Version parameter
contained within the instance of the DeploymentUnit that is contained
within the DeploymentUnitRef argument. In the case of an Install, this will
be the version of the DU created. In the case of an Update, it will be the
updated version of the DU. In the case of an Uninstall, it will be the
version of the uninstalled DU.

CurrentState

string

The current state of the affected DU. This state was attained either by
completing a requested Operation in the ChangeDUState method or
reflects the state of the DU after a failed attempt to change its state.

The following values are defined:

* Installed: The DU is in an Installed state due to one of the following:
successful Install, successful Update, failed Update, or failed Uninstall. In
the case of a failed Update or failed Uninstall the Fault argument will
contain an explanation of the failure.

* Uninstalled: The DU was successfully Uninstalled from the device.

* Failed: The DU could not be installed in which case a DU instance
MUST NOT be created in the data model.

Resolved

boolean

Whether or not the DU operation resolved all of its dependencies. In the
case of an Uninstall, this value is meaningless and SHOULD be true.

ExecutionUnitReflList

string

A comma-separated list of the Execution Units related to the affected DU.
Each Execution Unit (EU) in the list is a full path name of the
ExecutionUnit object instance, including its instance number. The path
name MUST end with a “.” (dot) after the instance number of the object.
In the case of an Install, this will be the list of EUs that were created as a
result of the DU’s installation.

In the case an Update, this will be the list of all EUs currently associated
with the updated DU, including those that were created through the initial
DU installation and any updates that had already occurred but not
including any EUs that no longer exist on the device because of this or
previous updates.

In the case of an Uninstall, this will be the list of the EUs removed from
the device due to the DU being removed.

November 2010

© The Broadband Forum. All rights reserved. Page 108 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Name

Type Description

StartTime dateTime The date and time the operation on the DU was started in UTC. The CPE

SHOULD record this information and report it in this argument, but if this
information is not available, the value of this argument MUST be set to the
Unknown Time value, as defined in Section 3.2 / TR-106 [13].

CompleteTime dateTime The date and time the operation on the DU was fully completed and

applied in UTC. The CPE SHOULD record this information and report it in
this argument, but if this information is not available, the value of this
argument MUST be set to the Unknown Time value, as defined in Section
3.2/ TR-106 [13].

Fault

FaultStruct | A FaultStruct as defined in Table 78. If the operation was successful, the
FaultCode MUST be zero. Otherwise a non-zero FaultCode is specified
along with a FaultString indicating the failure reason.

Table 78 — FaultStruct Definition

Name

Type Description

FaultCode unsignedint | The numerical fault code as defined in Section A.5.1. In the case of a fault, allowed

values are: 9001, 9003, 9012, 9013, 9015, 9016, 9017, 9018, 9022, 9023, 9024, 9025,
9026, 9027, 9028, 9029, 9030, 9031, and 9032.

A value of 0 (zero) indicates no fault.

FaultString | string(256) | A human-readable text description of the fault. This field SHOULD be empty if the

FaultCode equals 0 (zero).

Appendix I1.5 / TR-157 Amendment 3 [29] provides a description of the Software
Module Management faults. The following error conditions are some examples of how a
CPE could fail a specific operation:

If the CPE cannot complete the operation for some unknown reason, it SHOULD
reject the operation with a 9001 (Request Denied) fault code.

If the CPE detects the presence of the “userinfo” component in the file source
URL, it SHOULD reject the operation with a 9003 (Invalid Arguments) fault
code.

If the CPE cannot find the Execution Environment specified in the Install
operation, it SHOULD reject the operation with a 9023 (Unknown Execution
Environment) fault code.

If the CPE determines that the Deployment Unit being installed doesn’t match
either the Execution Environment specified or any Execution Environment on the
device, it SHOULD reject the operation with a 9025 (Deployment Unit to
Execution Environment Mismatch) fault code

If the CPE determines that the Deployment Unit being updated doesn’t match the
type of Execution Environment that it was previously installed against, it
SHOULD reject the operation with a 9025 (Deployment Unit to Execution
Environment Mismatch) fault code.

If the CPE detects that the Deployment Unit being installed already has the same
version as one already installed on the same Execution Environment, it SHOULD
reject the operation with a 9026 (Duplicate Deployment Unit) fault code.

November 2010 © The Broadband Forum. All rights reserved. Page 109 of 197

A4.24

CPE WAN Management Protocol TR-069 Amendment 3

* Ifthe CPE detects that that there are no more system resources (disk space,
memory, etc.) to perform the Install or Update of a Deployment Unit, it SHOULD
reject the operation with a 9027 (System Resources Exceeded) fault code.

* [f the CPE cannot find the Deployment Unit specified in the Update operation, it
SHOULD reject the operation with a 9028 (Unknown Deployment Unit) fault
code.

* [farequested operation attempts to alter the State of a Deployment Unit in a
manner that conflicts with the Deployment Unit State Machine Diagram
(Appendix I / TR-157 Amendment 3 [29]), the CPE SHOULD reject the
operation with a 9029 (Invalid Deployment Unit State) fault code.

* [farequested operation attempts to Uninstall a DU that caused an EE to come
into existence, where that EE has at least 1 installed DU or at least 1 child EE,
then the CPE SHOULD reject the operation with a 9029 (Invalid Deployment
Unit State) fault code.

Table 79 — DUStateChangeCompleteResponse Arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,
8005.

AutonomousDUStateChangeComplete

This method informs the ACS of the completion (successful or unsuccessful) of a DU
state change that was not specifically requested via CWMP using the ChangeDUState
RPC. When used, this method MUST be called only after the CPE has completed any file
transfers and carried out all operations related to the Autonomous DU State Change.

This method MAY contain the results from multiple autonomous DU state changes; it is
implementation specific how the CPE chooses to aggregate the autonomous DU state
changes, although the CPE MUST notify the ACS of any autonomous DU state changes
within 24 hours of the time the operations were completed by the CPE. The CPE
SHOULD make every attempt to aggregate, as much as possible, the autonomous change
notifications to the ACS in the interest of scalability.

If the ACS fails this method, the CPE MUST NOT regard the ACS as having been
informed of the completion of the file transfer, and MUST attempt to call the method
again, either in the current session or in a new session, subject to the event delivery rules
of Section 3.7.1.5.

The calling arguments for this method are defined in Table 80. The arguments in the
response are defined in Table §3.

November 2010 © The Broadband Forum. All rights reserved. Page 110 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Table 80 — AutonomousDUStateChangeComplete Arguments

Name Type

Description

Results AutonOpResultStruct[]

The results of Autonomous Operations performed against
DUs.

Table 81 — AutonOpResultStruct Definition

Name

Type

Description

UUID

string(36)

The UUID as defined in RFC 4122 [34] of the DU that was affected by the
autonomous state change. In the case of an Install, this will be the UUID
of the DU that was created. In the case of an Update or Uninstall, it will
be the existing UUID of the DU that was either updated or uninstalled.

DeploymentUnitRef

string(256)

A reference to the DU affected by the autonomous state change. In the
case of an Install, this is the DU that was created. In the case of an
Update, this is the DU that was updated. In the case of an Uninstall, this
is the DU that was removed.

The DU reference is a full path name of the DeploymentUnit object
instance, including its instance number. The path name MUST end with a

.” (dot) after the instance number of the object.

Version

string(32)

The version of the DU that was affected by the autonomous state change.
This MUST match the Version parameter contained within the instance of
the DeploymentUnit that is contained within the DeploymentUnitRef
argument. In the case of an Install, this will be the version of the DU
created. In the case of an Update, it will be the updated version of the
DU. In the case of an Uninstall, it will be the version of the uninstalled DU

CurrentState

string

The current state of the affected DU. This state was attained either by
completing an autonomous Operation or reflects the state of the DU after
a failed attempt to autonomously change its state.

The following values are defined:

* Installed: The DU is in an Installed state due to one of the following:
successful Install, successful Update, failed Update, or failed Uninstall. In
the case of a failed Update or failed Uninstall the Fault argument will
contain an explanation of the failure..

* Uninstalled: The DU was successfully uninstalled from the device.

* Failed: The DU could not be installed in which case the DU instance
MUST NOT be created in the data model.

Resolved

boolean

Whether or not the autonomous DU operation resolved all of its
dependencies. In the case of an Uninstall, this value is meaningless and
SHOULD be true.

ExecutionUnitReflList

string

A comma-separated list of the Execution Units related to the affected DU.

Each Execution Unit (EU) in the list is a full path name of the
ExecutionUnit object instance, including its instance number. The path
name MUST end with a “.” (dot) after the instance number of the object.
In the case of an Install, this will be the list of EUs that were created as a
result of the DU’s installation.

In the case an Update, this will be the list of all EUs currently associated
with the updated DU, including those that were created through the initial
DU installation and any updates that had already occurred, but not
including any EUs that no longer exist on the device because of this or
previous updates.

In the case of an Uninstall, this will be the list of the EUs removed from
the device due to the DU Un-Installation.

StartTime

dateTime

The date and time the autonomous operation on the DU was started in
UTC. The CPE SHOULD record this information and report it in this
argument, but if this information is not available, the value of this
argument MUST be set to the Unknown Time value, as defined in Section
3.2/ TR-106 [13].

November 2010

© The Broadband Forum. All rights reserved. Page 111 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Name Type

Description

CompleteTime dateTime

The date and time the autonomous operation on the DU was fully
completed and applied in UTC. The CPE SHOULD record this
information and report it in this argument, but if this information is not
available, the value of this argument MUST be set to the Unknown Time
value, as defined in Section 3.2/ TR-106 [13].

Fault FaultStruct

A FaultStruct as defined in Table 82. If the autonomous operation was
successful, the FaultCode MUST be zero. Otherwise a non-zero
FaultCode is specified along with a FaultString indicating the failure
reason.

OperationPerformed string

The operation that was performed against the DU via the autonomous
state change. The following values are defined:

Install — The autonomous Operation attempted was the Installation of a
DU.

Update — The autonomous Operation attempted was the Update of an
existing DU.

Uninstall — The autonomous Operation attempted was the Un-Installation
of an existing DU.

Table 82 — FaultStruct Definition

Name Type Description

FaultCode unsignedint | The numerical fault code as defined in Section A.5.1. In the case of a fault, allowed

values are: 9001, 9003, 9012, 9013, 9015, 9016, 9017, 9018, 9022, 9023, 9024, 9025,
9026, 9027, 9028, 9029, 9030, 9031, and 9032.

A value of 0 (zero) indicates no fault.

FaultString | string(256) | A human-readable text description of the fault. This field SHOULD be empty if the

FaultCode equals 0 (zero).

Appendix I1.5 / TR-157 Amendment 3 [29] provides a description of the Software
Module Management faults. The following error conditions are some examples of how a

CPE could fail a specific operation:

* [f the CPE cannot complete the operation for some unknown reason, it SHOULD
reject the operation with a 9001 (Request Denied) fault code.

* If the CPE detects the presence of the “userinfo” component in the file source
URL, it SHOULD reject the operation with a 9003 (Invalid Arguments) fault

code.

* [f the CPE cannot find the Execution Environment specified in the Install
operation, it SHOULD reject the operation with a 9023 (Unknown Execution

Environment) fault code.

* If the CPE determines that the Deployment Unit being installed doesn’t match
either the Execution Environment specified or any Execution Environment on the
device, it SHOULD reject the operation with a 9025 (Deployment Unit to
Execution Environment Mismatch) fault code

* If the CPE determines that the Deployment Unit being updated doesn’t match the
type of Execution Environment that it was previously installed against, it
SHOULD reject the operation with a 9025 (Deployment Unit to Execution
Environment Mismatch) fault code.

November 2010 © The Broadband Forum. All rights reserved. Page 112 of 197

CPE WAN Management Protocol TR-069 Amendment 3

* Ifthe CPE detects that the Deployment Unit being installed already has the same
version as one already installed on the same Execution Environment, it SHOULD
reject the operation with a 9026 (Duplicate Deployment Unit) fault code.

* Ifthe CPE detects that that there are no more system resources (disk space,
memory, etc.) to perform the Install or Update of a Deployment Unit, it SHOULD
reject the operation with a 9027 (System Resources Exceeded) fault code.

* [f the CPE cannot find the Deployment Unit specified in the Update operation, it
SHOULD reject the operation with a 9028 (Unknown Deployment Unit) fault
code.

* [farequested operation attempts to alter the State of a Deployment Unit in a
manner that conflicts with the Deployment Unit State Machine Diagram
(Appendix I / TR-157 Amendment 3 [29]), the CPE SHOULD reject the
operation with a 9029 (Invalid Deployment Unit State) fault code.

* [farequested operation attempts to Uninstall a DU that caused an EE to come
into existence, where that EE has at least 1 installed DU or at least 1 child EE,
then the CPE SHOULD reject the operation with a 9029 (Invalid Deployment
Unit State) fault code.

Table 83 — AutonomousDUStateChangeCompleteResponse Arguments

Argument Type Description

- void This method response has no arguments.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004,
8005.

A.5 Fault Handling

A.5.1 CPE Fault Codes

Table 84 lists the fault codes that can be returned by a CPE. Note that the fault code
values are shown in decimal representation.

Table 84 — Fault codes

Fault code Description Type'®

9000 Method not supported Server

9001 Request denied (no reason specified) Server

9002 Internal error Server

9003 Invalid arguments Client

9004 Resources exceeded (when used in association with SetParameterValues, this Server
MUST NOT be used to indicate parameters in error)

' The specified Type MUST be used to determine the value of the SOAP faultcode element as described in Section
3.5.

November 2010 © The Broadband Forum. All rights reserved. Page 113 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Fault code Description Type'®
9005 Invalid parameter name (associated with Set/GetParameterValues, Client
GetParameterNames, Set/GetParameterAttributes, AddObject, and DeleteObject)

9006 Invalid parameter type (associated with SetParameterValues) Client
9007 Invalid parameter value (associated with SetParameterValues) Client
9008 Attempt to set a non-writable parameter (associated with SetParameterValues) Client
9009 Notification request rejected (associated with SetParameterAttributes method). Server
9010 File transfer failure (associated with Download, ScheduleDownload, Server

TransferComplete or AutonomousTransferComplete methods).

9011 Upload failure (associated with Upload, TransferComplete or AutonomousTrans- Server
ferComplete methods).

9012 File transfer server authentication failure (associated with Upload, Download, Server
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomoutDUStateChangeComplete methods).

9013 Unsupported protocol for file transfer (associated with Upload, Download, Server
ScheduleDownload, DUStateChangeComplete, or
AutonomoutDUStateChangeComplete methods).

9014 File transfer failure: unable to join multicast group (associated with Download, Server
TransferComplete or AutonomousTransferComplete methods).

9015 File transfer failure: unable to contact file server (associated with Download, Server
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomoutDUStateChangeComplete methods).

9016 File transfer failure: unable to access file (associated with Download, Server
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomoutDUStateChangeComplete methods).

9017 File transfer failure: unable to complete download (associated with Download, Server
TransferComplete, AutonomousTransferComplete, DUStateChangeComplete, or
AutonomousDUStateChangeComplete methods).

9018 File transfer failure: file corrupted or otherwise unusable (associated with Server
Download, TransferComplete, AutonomousTransferComplete,
DUStateChangeComplete, or AutonomoutDUStateChangeComplete methods).

9019 File transfer failure: file authentication failure (associated with Download, Server
TransferComplete or AutonomousTransferComplete methods).

9020 File transfer failure: unable to complete download within specified time windows Client
(associated with TransferComplete method).

9021 Cancelation of file transfer not permitted in current transfer state (associated with Client
CancelTransfer method).

9022 Invalid UUID Format (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Install, Update, and Uninstall)

9023 Unknown Execution Environment (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Install only)

9024 Disabled Execution Environment (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Install, Update, and Uninstall)

9025 Deployment Unit to Execution Environment Mistmatch (associated with Server
DUStateChangeComplete or AutonomoutDUStateChangeComplete methods:
Install and Update)

9026 Duplicate Deployment Unit (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Install only)

9027 System Resources Exceeded (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Install and Update)

9028 Unknown Deployment Unit (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Update and Uninstall)

9029 Invalid Deployment Unit State (associated with DUStateChangeComplete or Server
AutonomoutDUStateChangeComplete methods: Install, Update and Uninstall)

November 2010 © The Broadband Forum. All rights reserved. Page 114 of 197

A.5.2

A.6

W ~J oy Ul W

I I I S R R R e e N el
AU WNHFEOW®WJOUd WNE OV

CPE WAN Management Protocol TR-069 Amendment 3

Fault code Description Type'®

9030 Invalid Deployment Unit Update — Downgrade not permitted (associated with Server
DUStateChangeComplete or AutonomoutDUStateChangeComplete methods:
Update only)

9031 Invalid Deployment Unit Update — Version not specified (associated with Server
DUStateChangeComplete or AutonomoutDUStateChangeComplete methods:
Update only)

9032 Invalid Deployment Unit Update — Version already exists (associated with Server
DUStateChangeComplete or AutonomoutDUStateChangeComplete methods:
Update only)

9800 - 9899 Vendor defined fault codes -

ACS Fault Codes

Table 85 lists the fault codes that can be returned by an ACS. Note that the fault code
values are shown in decimal representation.

Table 85 — Fault codes
Fault code Description Type'®
8000 Method not supported Server
8001 Request denied (no reason specified) Server
8002 Internal error Server
8003 Invalid arguments Client
8004 Resources exceeded Server
8005 Retry request Server
8800 - 8899 Vendor defined fault codes -

RPC Method XML Schema

The XML schema, which is the normative definition for all RPC methods defined for the
CPE WAN Management Protocol, is specified below:

<?xml version="1.0" encoding="UTF-8"?>
<l--
CWMP XML Schema v1.2

Notice:

The Broadband Forum is a non-profit corporation organized to create
guidelines for broadband network system development and deployment. This
XML Schema has been approved by members of the Forum. This document is
not binding on the Broadband Forum, any of its members, or any developer
or service provider. This document is subject to change, but only with
approval of members of the Forum.

This document is provided "as is," with all faults. Any person holding a

copyright in this document, or any portion thereof, disclaims to the fullest

extent permitted by law any representation or warranty, express or implied,

including, but not limited to,

(a) any warranty of merchantability, fitness for a particular purpose,
non-infringement, or title;

(b) any warranty that the contents of the document are suitable for any
purpose, even if that purpose is known to the copyright holder;

(c) any warranty that the implementation of the contents of the documentation
will not infringe any third party patents, copyrights, trademarks or
other rights.

This publication may incorporate intellectual property. The Broadband Forum
encourages but does not require declaration of such intellectual property.

November 2010 © The Broadband Forum. All rights reserved. Page 115 of 197

CPE WAN Management Protocol

For a list of declarations made by Broadband Forum member companies,
please see http://www.broadband-forum.org.

Copyright The Broadband Forum. All Rights Reserved.

Broadband Forum XML Schemas may be copied, downloaded, stored on a server or
otherwise re-distributed in their entirety only. The text of this
notice must be included in all copies.

Summary:
XML Schema for TR-069 CPE WAN Management Protocol (CWMP) v1.2 RPC requests
and responses.

Version History:

November 2006: cwmp-1-0.xsd, extracted from TR-069 Amendment 1
November 2007: cwmp-1-1.xsd, extracted from TR-069 Amendment 2
December 2010: cwmp-1-2.xsd, extracted from TR-069 Amendment 3

-—>
<xs:schema xm!

"http://www.w3.0rg/2001/XMLSchema"
"http://schemas.xmlsoap.org/soap/envelope/"
c="http://schemas.xmlsoap.org/soap/encoding/"
"urn:dslforum-org:cwmp-1-2"
space="urn:dslforum-org:cwmp-1-2"
fault="unqualified"
ormDefault="unqualified">

<xs:import "http://schemas.xmlsoap.org/soap/envelope/"
1tion="http://schemas.xmlsoap.org/soap/envelope/"/>
"http://schemas.xmlsoap.org/soap/encoding/"

cation="http://schemas.xmlsoap.org/soap/encoding/"/>

<xs:import

SOAP Header Elements
-—>
<xs:element name="ID">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute ref="soapenv:mustUnderstand" use="required" fix
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

/>

<xs:element name="HoldRequests">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:boolean">
<xs:attribute ref="soapenv:mustUnderstand" use="required" fixed="1"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>

<l--

Extendable Fault Code Type Definitions
-=>
<xs:simpleType name="CPEFaultCodeType">

<xs:annotation>
<xs:documentation>

CPE Fault Codes from 9000 to 9799
9000 - Method not supported
9001 - Request denied (no reason specified)
9002 - Internal error
9003 - Invalid arguments
9004 - Resources exceeded
9005 - Invalid parameter name
9006 - Invalid parameter type
9007 - Invalid parameter value

R R

November 2010 © The Broadband Forum. All rights reserved. Page116of197

TR-069 Amendment 3

98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
lel
162
163
164
165
166
167
168

CPE WAN Management Protocol

9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020

R T e A . N S S

windows

9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032

R I I . . N

TR-069 Amendment 3

- Attempt to set a non-writable parameter
- Notification request rejected
- File transfer failure

- Upload failure

- File transfer server authentication failure
- Unsupported protocol for file transfer

- File
- File
- File
- File
- File
- File
- File

transfer
transfer
transfer
transfer
transfer
transfer
transfer

failure:
failure:
failure:
failure:
failure:
failure:
failure:

unable to join multicast group

unable to contact file server

unable to access file

unable to complete download

file corrupted

file authentication failure

unable to complete download within specified time

- Cancelation of file transfer not permitted in current transfer state
- Invalid UUID Format
- Unknown Execution Environment

- Disabled Execution Environment

- Deployment Unit to Execution Environment Mismatch
- Duplicate Deployment Unit

- System Resources Exceeded

- Unknown
- Invalid
- Invalid
- Invalid
- Invalid

</xs:documentation>
</xs:annotation>
<xs:restriction
<xs:minInclusive
<xs:maxInclusive
</xs:restriction>
</xs:simpleType>

<xs:simpleType

"xs:unsignedInt">

Deployment Unit

Deployment Unit State

Deployement Unit Update - Downgrade not permitted
Deployement Unit Update - Version not specified
Deployment Unit Update - Version already exists

"9000"></xs:minInclusive>
"9799"></xs:maxInclusive>

"CPEExtensionFaultCodeType">

<xs:annotation>
<xs:documentation>Range of CPE Fault Codes from 9033 to 9799 for future
extension</xs:documentation>
</xs:annotation>
<xs:restriction
<xs:minInclusive
<xs:maxInclusive
</xs:restriction>
</xs:simpleType>

<xs:simpleType

"xs:unsignedInt">

"9033"/>
"9799" />

"CPEVendorFaultCodeType">

<xs:annotation>
<xs:documentation>Vendor Extension range for CPE Fault Codes from 9800 to
9899</xs:documentation>
</xs:annotation>
<xs:restriction
<xs:minInclusive
<xs:maxInclusive
</xs:restriction>
</xs:simpleType>

<xs:simpleType

"ACSFaultCodeType">

<xs:annotation>

"xs:unsignedInt">

"9800"></xs:minInclusive>
"9899"></xs:maxInclusive>

<xs:documentation>
ACS Fault Codes from 8000 to 8005
* 8000 - Method not supported

* 8001 - Request denied (no reason specified)
* 8002 - Internal error

* 8003 - Invalid arguments

* 8004 - Resources exceeded

*

8005 - Retry request
</xs:documentation>
</xs:annotation>

<xs:restriction "xs:unsignedInt">
<xs:minInclusive "8000"></xs:minInclusive>
<xs:maxInclusive "8799"></xs:maxInclusive>

November 2010 © The Broadband Forum. All rights reserved. Page 117 of 197

CPE WAN Management Protocol TR-069 Amendment 3

169 </xs:restriction>

170 </xs:simpleType>

171

172 <xs:simpleType "ACSVendorFaultCodeType">

173 <xs:annotation>

174 <xs:documentation>Vendor Extension range for ACS Fault Codes from 8800 to
175 8899</xs:documentation>

176 </xs:annotation>

177 <xs:restriction "xs:unsignedInt">

178 <xs:minInclusive "8800"></xs:minInclusive>
179 <xs:maxInclusive "8899"></xs:maxInclusive>
180 </xs:restriction>

181 </xs:simpleType>

182

183

184 <l--

185 Extendable File Type Definitions

186 -=>

187 <xs:simpleType "TransferFileType">

188 <xs:annotation>

189 <xs:documentation>

190 This type is used for AllQueuedTransferStruct and AutonomousTransferComplete
191 </xs:documentation>

192 </xs:annotation>

193 <xs:restriction "xs:string">

194 <xs:maxLength "e4n/>

195 <xs:pattern "[1-97\d* (\S+)+">

196 <xs:annotation>

197 <xs:documentation>

198 This pattern allows the following File Types:
199 * 1 Firmware Upgrade Image

200 * 2 Web Content

201 * 3 Vendor Configuration File

202 * 4 Vendor Log File

203 * 4 Tone File

204 * 5 Ringer File

205 </xs:documentation>

206 </xs:annotation>

207 </xs:pattern>

208 <xs:pattern "[1-97\d*(\S+)+ [1-9]\d*">
209 <xs:annotation>

210 <xs:documentation>

211 This pattern allows the following File Types:
212 * 6 Vendor Configuration File [1-9]\d*
213 * 7 Vendor Log File [1-9]\d*

214 </xs:documentation>

215 </xs:annotation>

216 </xs:pattern>

217 <xs:pattern "X [0-9A-F]{6} .+"/>

218 <xs:pattern "X \S+ .+"/>

219 </xs:restriction>

220 </xs:simpleType>

221

222 <xs:simpleType "DownloadFileType">

223 <xs:annotation>

224 <xs:documentation>This type is used for Download and RequestDownload</xs:documentation>
225 </xs:annotation>

226 <xs:restriction "xs:string">

227 <xs:maxLength "e4n/>

228 <xs:pattern "[1-91\d* (\S+)+">

229 <xs:annotation>

230 <xs:documentation>

231 This pattern allows the following File Types:
232 * 1 Firmware Upgrade Image

233 2 Web Content

234 * 3 Vendor Configuration File

235 * 4 Tone File

236 * 5 Ringer File

237 </xs:documentation>

238 </xs:annotation>

239 </xs:pattern>

November 2010 © The Broadband Forum. All rights reserved. Page 118 of 197

CPE WAN Management Protocol TR-069 Amendment 3

240 <xs:pattern "X [0-9A-F]{6} .+"/>

241 <xs:pattern "X \S+ .+"/>

242 </xs:restriction>

243 </xs:simpleType>

244

245 <xs:simpleType "UploadFileType">

246 <xs:annotation>

247 <xs:documentation>This type is used for Upload</xs:documentation>
248 </xs:annotation>

249 <xs:restriction "xs:string">

250 <xs:maxLength "e4n/>

251 <xs:pattern "[1-91\d* (\S+)+">

252 <xs:annotation>

253 <xs:documentation>

254 This pattern allows the following File Types:
255 * 1 Vendor Configuration File

256 * 2 Vendor Log File

257 </xs:documentation>

258 </xs:annotation>

259 </xs:pattern>

260 <xs:pattern "[1-97\d*(\S+)+ [1-9]\d*">
261 <xs:annotation>

262 <xs:documentation>

263 This pattern allows the following File Types:
264 * 3 Vendor Configuration File [1-9]\d*
265 * 4 Vendor Log File [1-9]\d*

266 </xs:documentation>

267 </xs:annotation>

268 </xs:pattern>

269 <xs:pattern "X [0-9A-F]{6} .+"/>

270 <xs:pattern "X \S+ .+"/>

271 </xs:restriction>

272 </xs:simpleType>

273

274

275 <l--

276 Extendable Event Code Definition

277 -=>

278 <xs:simpleType "EventCodeType">

279 <xs:restriction "xs:string">

280 <xs:maxLength "e4n/>

281 <xs:pattern "N\d+ (\S+)+">

282 <xs:annotation>

283 <xs:documentation>

284 This pattern allows the following Event Codes:
285 * 0 BOOTSTRAP

286 * 1 BOOT

287 * 2 PERIODIC

288 * 3 SCHEDULED

289 * 4 VALUE CHANGE

290 * 5 KICKED

291 * 6 CONNECTION REQUEST

292 * 7 TRANSFER COMPLETE

293 * 8 DIAGNOSTICS COMPLETE

294 * 9 REQUEST DOWNLOAD

295 * 10 AUTONOMOUS TRANSFER COMPLETE

296 * 11 DU STATE CHANGE COMPLETE

297 * 12 AUTONOMOUS DU STATE CHANGE COMPLETE
298 </xs:documentation>

299 </xs:annotation>

300 </xs:pattern>

301 <xs:pattern "M \S+">

302 <xs:annotation>

303 <xs:documentation>

304 This pattern allows the following Event Codes:
305 * M Reboot

306 * M ScheduleInform

307 * M Download

308 * M ScheduleDownload

309 * M Upload

310 * M ChangeDUState

November 2010 © The Broadband Forum. All rights reserved. Page 119 of 197

CPE WAN Management Protocol TR-069 Amendment 3

311 </xs:documentation>

312 </xs:annotation>

313 </xs:pattern>

314 <xs:pattern "M X \S+"/> <!-- no spaces in method names -->
315 <xs:pattern "X [0-9A-F]{6} .+"/>

316 <xs:pattern "X \S+ .+"/>

317 </xs:restriction>

318 </xs:simpleType>

319

320

321 <l--

322 Extendable Time Window Mode Definition

323 -—>

324 <xs:simpleType "TimeWindowModeValueType">

325 <xs:restriction "xs:string">

326 <xs:maxLength "e4n/>

327 <xs:pattern "[1-971\d* (\S+)+">

328 <xs:annotation>

329 <xs:documentation>

330 This pattern allows the following Time Window Modes:
331 * 1 At Any Time

332 * 2 Immediately

333 * 3 When Idle

334 * 4 Confirmation Needed

335 </xs:documentation>

336 </xs:annotation>

337 </xs:pattern>

338 <xs:pattern "X [0-9A-F]{6} .+"/>

339 <xs:pattern "X \S+ .+"/>

340 </xs:restriction>

341 </xs:simpleType>

342

343

344 <l==

345 TransferComplete Fault Types

346 -=>

347 <xs:simpleType "TransferCompleteCPEFaultCodeType">
348 <xs:annotation>

349 <xs:documentation>

350 Restricted subset of CPEFaultCodeType that are specific for the
351 TransferComplete and AutonomousTransferComplete RPCs
352 </xs:documentation>

353 </xs:annotation>

354 <xs:restriction "tns:CPEFaultCodeType">

355 <xs:enumeration "9001"/>

356 <xs:enumeration "9002" />

357 <xs:enumeration "9010"/>

358 <xs:enumeration "9011"/>

359 <xs:enumeration "9012"/>

360 <xs:enumeration "9014"/>

361 <xs:enumeration "9015"/>

362 <xs:enumeration "9016"/>

363 <xs:enumeration "9017"/>

364 <xs:enumeration "9018"/>

365 <xs:enumeration "9019"/>

366 <xs:enumeration "9020"/>

367 </xs:restriction>

368 </xs:simpleType>

369

370 <xs:complexType "TransferCompleteFaultStruct">
371 <xs:annotation>

372 <xs:documentation>Fault information for TransferComplete and
373 AutonomousTransferComplete</xs:documentation>

374 </xs:annotation>

375 <xs:sequence>

376 <xs:element "FaultCode">

377 <xs:annotation>

378 <xs:documentation>Fault codes only related to TransferComplete RPCs</xs:documentation>
379 </xs:annotation>

380 <xs:simpleType>

381 <xs:union>

November 2010 © The Broadband Forum. Al rights reserved. Page 120 of 197

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

CPE WAN Management Protocol

TR-069 Amendment 3

<xs:simpleType>

<xs:restriction
<xs:enumeration

"xs:unsignedInt">
VIOVI>

<xs:annotation>
<xs:documentation>No fault</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:simpleType>

<xs:restriction

"tns:TransferCompleteCPEFaultCodeType" />

</xs:simpleType>
<xs:simpleType>

<xs:restriction

"tns:CPEExtensionFaultCodeType"></xs:restriction>

</xs:simpleType>
<xs:simpleType>

<xs:restriction

"tns:CPEVendorFaultCodeType"></xs:restriction>

</xs:simpleType>

</xs:union>

</xs:simpleType>
</xs:element>

<xSs

<xs:simpleType>
<xs:restriction
<xs:maxLength

<=

telement

"FaultString">

"xs:string">
Il256"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>

DUStateChangeComplete Fault Types

-—>

<xs:simpleType
<xs:annotation>
<xs:documentation>
Restricted subset of CPEFaultCodeType that are specific for a single operation
in the DUStateChangeComplete and AutonomousDUStateChangeComplete RPCs
</xs:documentation>
</xs:annotation>
<xs:restriction

<xSs

<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:

<xXSs

<XS:

<xXSs

<XS:
<XS:

<xXSs

<XS:

<xSs

<XS:

<xXSs

<XS:

renumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
enumeration
renumeration
enumeration
renumeration
enumeration
enumeration
renumeration
enumeration
renumeration
enumeration
renumeration
enumeration

</xs:restriction>
</xs:simpleType>

<xs:complexType
<xs:annotation>
<xs:documentation>
Structure used to convey success or failure status of an operation performed on a
Deployment Unit
</xs:documentation>

November 2010

"DeploymentUnitCPEFaultCodeType">

"tns:CPEFaultCodeType">
"9001"/>
"9003"/>
"9012"/>
"9013"/>
"9015"/>
"9016"/>
"9017"/>
"9018"/>
"9022"/>
"9023"/>
"9024"/>
"9025"/>
"9026" />
"9027"/>
"9028"/>
"9029"/>
"9030"/>
"9031"/>
"9032"/>

"DeploymentUnitFaultStruct">

© The Broadband Forum. All rights reserved.

Page 121 of 197

CPE WAN Management Protocol TR-069 Amendment 3

453 </xs:annotation>

454 <xs:sequence>

455 <xs:element "FaultCode">

456 <xs:annotation>

457 <xs:documentation>Fault codes only related to DUStateChangeComplete
458 RPCs</xs:documentation>

459 </xs:annotation>

460 <xs:simpleType>

461 <xs:union>

462 <xs:simpleType>

463 <xs:restriction "xs:unsignedInt">

464 <xs:enumeration ">

465 <xs:annotation>

466 <xs:documentation>No fault</xs:documentation>
467 </xs:annotation>

468 </xs:enumeration>

469 </xs:restriction>

470 </xs:simpleType>

471 <xs:simpleType>

472 <xs:restriction "tns:DeploymentUnitCPEFaultCodeType"/>
473 </xs:simpleType>

474 <xs:simpleType>

475 <xs:restriction "tns:CPEExtensionFaultCodeType"></xs:restriction>
476 </xs:simpleType>

477 <xs:simpleType>

478 <xs:restriction "tns:CPEVendorFaultCodeType"></xs:restriction>
479 </xs:simpleType>

480 </xs:union>

481 </xs:simpleType>

482 </xs:element>

483 <xs:element "FaultString" "xs:string" "o" ">
484 <xs:annotation>

485 <xs:documentation>

486 An optional detail message providing further context for the fault
487 </xs:documentation>

488 </xs:annotation>

489 </xs:element>

490 </xs:sequence>

491 </xs:complexType>

492

493

494 <l--

495 Generic Type Definitions

496 -=>

497 <xs:simpleType "CommandKeyType">

498 <xs:restriction "xs:string">

499 <xs:maxLength "32"/>

500 </xs:restriction>

501 </xs:simpleType>

502

503 <xs:simpleType "ObjectNameType">

504 <xs:restriction "xs:string">

505 <xs:maxLength "256" />

506 <xs:pattern TOENLT/>

507 </xs:restriction>

508 </xs:simpleType>

509

510 <xs:simpleType "ParameterKeyType">

511 <xs:restriction "xs:string">

512 <xs:maxLength "32"/>

513 </xs:restriction>

514 </xs:simpleType>

515

516 <xs:complexType "ParameterNames">

517 <xs:complexContent>

518 <xs:restriction "soapenc:Array">

519 <xs:sequence>

520 <xs:element "string" " "unbounded">
521 <xs:simpleType>

522 <xs:restriction "xs:string">

523 <xs:maxLength "256" />

November 2010 © The Broadband Forum. All rights reserved. Page 122 of 197

CPE WAN Management Protocol TR-069 Amendment 3

524 </xs:restriction>

525 </xs:simpleType>

526 </xs:element>

527 </xs:sequence>

528 <xs:attribute "soapenc:arrayType" "required"/>
529 </xs:restriction>

530 </xs:complexContent>

531 </xs:complexType>

532

533 <xs:complexType "ParameterValueStruct">
534 <xs:sequence>

535 <xs:element "Name">

536 <xs:simpleType>

537 <xs:restriction "xs:string">
538 <xs:maxLength "256" />

539 </xs:restriction>

540 </xs:simpleType>

541 </xs:element>

542 <xs:element "Value" "xs:anySimpleType"/>
543 </xs:sequence>

544 </xs:complexType>

545

546 <xs:complexType "ParameterValueList">
547 <xs:complexContent>

548 <xs:restriction "soapenc:Array">
549 <xs:sequence>

550 <xs:element "ParameterValueStruct" "tns:ParameterValueStruct" "o
551 "unbounded" />

552 </xs:sequence>

553 <xs:attribute "soapenc:arrayType" "required"/>
554 </xs:restriction>

555 </xs:complexContent>

556 </xs:complexType>

557

558

559 <l--

560 GetRPCMethods Type Definition

561 -=>

562 <xs:complexType "MethodList">

563 <xs:complexContent>

564 <xs:restriction "soapenc:Array">
565 <xs:sequence>

566 <xs:element "string" "unbounded">
567 <xs:simpleType>

568 <xs:restriction "xs:string">
569 <xs:maxLength "e4n/>

570 </xs:restriction>

571 </xs:simpleType>

572 </xs:element>

573 </xs:sequence>

574 <xs:attribute "soapenc:arrayType" "required"/>
575 </xs:restriction>

576 </xs:complexContent>

577 </xs:complexType>

578

579

580 <l--

581 Inform Type Definitions

582 -=>

583 <xs:complexType "DeviceIdStruct">

584 <xs:sequence>

585 <xs:element "Manufacturer">

586 <xs:simpleType>

587 <xs:restriction "xs:string">
588 <xs:maxLength "e4n/>

589 </xs:restriction>

590 </xs:simpleType>

591 </xs:element>

592 <xs:element "OoUI">

593 <xs:simpleType>

594 <xs:restriction "xs:string">

November 2010 © The Broadband Forum. Al rights reserved. Page 123 of 197

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

CPE WAN Management Protocol

<xs:length value="6"/>
<xs:pattern value="[0-9A-F]{6}"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ProductClass">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="SerialNumber">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="64"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType name="EventStruct">
<xs:sequence>

<xs:element re="EventCode" typ

<xs:element name="CommandKey" typ
</xs:sequence>
</xs:complexType>

e="tns:EventCodeType"/>
e="tns:CommandKeyType" />

<xs:complexType name="EventList">
<xs:complexContent>
<xs:restriction base="soapenc:Array">
<xs:sequence>

<xs:element name="EventStruct" type="tns:EventStruct" min

</xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<l--
Get Parameter Names Type Definitions
—-—=>
<xs:complexType name="ParameterInfoStruct">
<xs:sequence>
<xs:element name="Name">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Writable" type
</xs:sequence>
</xs:complexType>

"xs:boolean"/>

<xs:complexType name="ParameterInfoList">
<xs:complexContent>
<xs:restriction base="soapenc:Array">
<xs:sequence>

Occurs="0" maxOcc

TR-069 Amendment 3

"eaAn />

<xs:element name="ParameterInfoStruct" type="tns:ParameterInfoStruct" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

November 2010

© The Broadband Forum. All rights reserved.

Page 124 of 197

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

CPE WAN Management Protocol TR-069 Amendment 3

<l--
Get/Set Parameter Attributes Type Definitions
-=>
<xs:simpleType "AccessListValueType">
<xs:restriction "xs:string">
<xs:maxLength "e4n/>
<xs:enumeration "Subscriber"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType "AccessList">
<xs:complexContent>
<xs:restriction "soapenc:Array">
<xs:sequence>
<xs:element "string" "tns:AccessListValueType"
"o" "unbounded" />

</xs:sequence>
<xs:attribute "soapenc:arrayType" "required"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:simpleType "ParameterAttributeNotificationValueType">
<xs:restriction "xs:int">
<xs:enumeration ">

<xs:annotation>
<xs:documentation>Notification off. The CPE need not inform the ACS of a change to the
specified parameter (s)</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>Passive notification. Whenever the specified parameter value changes,
the CPE MUST include the new value in the ParameterList in the Inform message that is sent the
next time a session is established to the ACS</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration 2>
<xs:annotation>
<xs:documentation>Active notification. Whenever the specified parameter value changes,
the CPE MUST initiate a session to the ACS, and include the new value in the ParameterList in the
associated Inform message</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration 3>
<xs:annotation>
<xs:documentation>Reserved for future use</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration 4>
<xs:annotation>
<xs:documentation>Reserved for future use</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration 5>
<xs:annotation>
<xs:documentation>Reserved for future use</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration o>
<xs:annotation>
<xs:documentation>Reserved for future use</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>

<xs:complexType "SetParameterAttributesStruct">
<xs:sequence>
<xs:element "Name">

<xs:simpleType>

November 2010 © The Broadband Forum. All rights reserved. Page 125 of 197

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

CPE WAN Management Protocol TR-069 Amendment 3

<xs:restriction base="xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element n "NotificationChange" type="xs:boolean"/>
<xs:element name="Notification" type="tns:ParameterAttributeNotificationValueType"/>
<xs:element n "AccessListChange" type="xs:boolean"/>
<xs:element name="AccessList" type="tns:AccessList"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="SetParameterAttributesList">

<xs:complexContent>
<xs:restriction
<xS:sequence>

"soapenc:Array">

<xs:element name="SetParameterAttributesStruct" type="tns:SetParameterAttributesStruct"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>
</xs:restriction>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ParameterAttributeStruct">
<xs:sequence>
<xs:element name="Name">

<xs:simpleType>

<xs:restriction ba "xs:string">

<xs:maxLength va "256" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element nc "Notification" type="tns:ParameterAttributeNotificationValueType"/>
<xs:element name="AccessList" type="tns:AccessList"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="ParameterAttributeList">
<xs:complexContent>
<xs:restriction base="soapenc:Array">

<xSs:sequence>
<xs:element

e="ParameterAttributeStruct" type="tns:ParameterAttributeStruct"

minC rs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>

</xs:restriction>
</xs:complexContent>
</xs:complexType>

<l--

Schedule Download Time Window Type Definitions
-=>
<xs:complexType name="TimeWindowStruct">

<xSs:sequence>
<xs:element n
<xs:element name
<xs:element n
<xs:element name
<xs:simpleType>
<xs:restriction ! "xs:string">
<xs:maxLength value="256"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="MaxRetries" type="xs:int"/>
</xs:sequence>
</xs:complexType>

"WindowStart" "xs:unsignedInt"/>
"WindowEnd" ty "xs:unsignedInt"/>
"WindowMode" type="tns:TimeWindowModeValueType"/>

"UserMessage">

<xs:complexType name="TimeWindowList">

November 2010 © The Broadband Forum. All rights reserved. Page 126 of 197

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

CPE WAN Management Protocol TR-069 Amendment 3

<xs:complexContent>

<xs:restriction base="soapenc:Array">
<xs:sequence>
<xs:element name="TimeWindowStruct" type="tns:TimeWindowStruct" maxOccurs="2"/>
</xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>

</xs:restriction>
</xs:complexContent>
</xs:complexType>

<!--
TransferComplete Type Definitions
-=>
<xs:simpleType name="TransferStateType">
<xs:restriction b "xs:int">
<xs:enumeration value="1">

<xs:annotation>
<xs:documentation>Not yet started</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="2">
<xs:annotation>
<xs:documentation>In progress</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration value="3">
<xs:annotation>
<xs:documentation>Completed</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="QueuedTransferStruct">
<xs:sequence>

<xs:element "CommandKey" type="tns:CommandKeyType"/>
<xs:element n "State" type="tns:TransferStateType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="TransferList">

<xs:complexContent>
<xs:restriction
<xSs:sequence>

"soapenc:Array">

<xs:element name="QueuedTransferStruct" type="tns:QueuedTransferStruct" minOccurs
maxOccurs="16"/>
</xs:sequence>
<xs:attribute ref="soapenc:arrayType" use="required"/>

</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:complexType name="AllQueuedTransferStruct">
<xs:sequence>
<xs:element name="CommandKey" type="tns:CommandKeyType"/>

"State" type="tns:TransferStateType"/>
"IsDownload" type="xs:boolean"/>
<xs:element "FileType" t "tns:TransferFileType"/>
<xs:element nar "FileSize" tyr "xs:unsignedInt"/>
<xs:element name="TargetFileName">
<xs:simpleType>
<xs:restriction
<xs:maxLength -
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:element
<xs:element

"xs:string">
"256"/>

<xs:complexType name="AllTransferList">

November 2010 © The Broadband Forum. All rights reserved. Page 127 of 197

non

CPE WAN Management Protocol TR-069 Amendment 3

879 <xs:complexContent>

880 <xs:restriction "soapenc:Array">

881 <xs:sequence>

882 <xs:element "AllQueuedTransferStruct" "tns:AllQueuedTransferStruct"
883 "o" "1e"/>

884 </xs:sequence>

885 <xs:attribute "soapenc:arrayType" "required"/>
886 </xs:restriction>

887 </xs:complexContent>

888 </xs:complexType>

889

890

891 <l--

892 Software Module Management Type Definitions

893 -—>

894 <xs:simpleType "DeploymentUnitUUID">

895 <xs:annotation>

896 <xs:documentation>

897 A unique identifier for a Deployment Unit
898 </xs:documentation>

899 </xs:annotation>

900 <xs:restriction "xs:string">

901 <xs:pattern "[A-Fa-f0-9]{8}-[A-Fa-f0-9]{4}-[A-Fa-f0-9]{4}-[A-Fa-f0-9]{4}-[A-Fa-f0-
902 91 {12}"/>

903 </xs:restriction>

904 </xs:simpleType>

905

906 <xs:simpleType "DeploymentUnitState">

907 <xs:annotation>

908 <xs:documentation>

909 The state of a Deployment Unit on the device
910 </xs:documentation>

911 </xs:annotation>

912 <xs:restriction "xs:string">

913 <xs:enumeration "Installed">

914 <xs:annotation>

915 <xs:documentation>

916 The Deployment Unit has been Installed.
917 </xs:documentation>

918 </xs:annotation>

919 </xs:enumeration>

920 <xs:enumeration "Uninstalled">

921 <xs:annotation>

922 <xs:documentation>

923 The Deployment Unit has been Uninstalled.
924 </xs:documentation>

925 </xs:annotation>

926 </xs:enumeration>

927 <xs:enumeration "Failed">

928 <xs:annotation>

929 <xs:documentation>

930 The Deployment Unit Installed failed such that the Deployment Unit instance
931 could not be created.

932 </xs:documentation>

933 </xs:annotation>

934 </xs:enumeration>

935 </xs:restriction>

936 </xs:simpleType>

937

938 <xs:simpleType "DefaultDeploymentUnitOperationType">
939 <xs:restriction "xs:string">

940 <xs:enumeration "Install">

941 <xs:annotation>

942 <xs:documentation>

943 Install of a Deployment Unit

944 </xs:documentation>

945 </xs:annotation>

946 </xs:enumeration>

947 <xs:enumeration "Update">

948 <xs:annotation>

949 <xs:documentation>

November 2010 © The Broadband Forum. Al rights reserved. Page 128 of 197

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

CPE WAN Management Protocol TR-069 Amendment 3

Update of a Deployment Unit
</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration "Uninstall">
<xs:annotation>
<xs:documentation>
Uninstall of a Deployment Unit
</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>

<xs:simpleType "DeploymentUnitOperationType">
<xs:union>
<xs:simpleType>
<xs:restriction "tns:DefaultDeploymentUnitOperationType"/>
</xs:simpleType>
<xs:simpleType>
<xs:restriction "xs:string">
<xs:annotation>
<xs:documentation>
Vendor specific operation types
</xs:documentation>
</xs:annotation>
</xs:restriction>
</xs:simpleType>
</xs:union>
</xs:simpleType>

<xs:complexType "OperationStruct" "true">
<xs:annotation>
<xs:documentation>
A base type for Deployment Unit operations that can be performed on a device
</xs:documentation>
</xs:annotation>
</xs:complexType>

<xs:complexType "InstallOpStruct">
<xs:annotation>
<xs:documentation>
An operation indicating a Deployment Unit should be installed
</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension "tns:0OperationStruct">
<xs:sequence>
<xs:element "URL" " ">

<xs:annotation>
<xs:documentation>
The URL of the Deployment Unit to download
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:anyURI">
<xs:maxLength "1024" />
</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "UguID" "tns:DeploymentUnitUUID" " ">

<xs:annotation>
<xs:documentation>
The UUID to be used for the Deployment Unit being installed.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "Username" "o ">
<xs:annotation>
<xs:documentation>
An optional username with which to authenticate against the url

November 2010 © The Broadband Forum. All rights reserved. Page 129 of 197

CPE WAN Management Protocol TR-069 Amendment 3

1021 </xs:documentation>

1022 </xs:annotation>

1023 <xs:simpleType>

1024 <xs:restriction "xs:string">

1025 <xs:maxLength "256" />

1026 </xs:restriction>

1027 </xs:simpleType>

1028 </xs:element>

1029 <xs:element "Password" "o" ">

1030 <xs:annotation>

1031 <xs:documentation>

1032 An optional password with which to authenticate against the url

1033 </xs:documentation>

1034 </xs:annotation>

1035 <xs:simpleType>

1036 <xs:restriction "xs:string">

1037 <xs:maxLength "256" />

1038 </xs:restriction>

1039 </xs:simpleType>

1040 </xs:element>

1041 <xs:element "ExecutionEnvRef" "o ">

1042 <xs:annotation>

1043 <xs:documentation>

1044 A reference to the Execution Environment upon which the Deployment Unit
1045 is to be associated (e.g., ".SoftwareModules.ExecEnv.1l.")

1046 </xs:documentation>

1047 </xs:annotation>

1048 <xs:simpleType>

1049 <xs:restriction "xs:string">

1050 <xs:maxLength "256" />

1051 </xs:restriction>

1052 </xs:simpleType>

1053 </xs:element>

1054 </xs:sequence>

1055 </xs:extension>

1056 </xs:complexContent>

1057 </xs:complexType>

1058

1059 <xs:complexType "UpdateOpStruct">

1060 <xs:annotation>

1061 <xs:documentation>

1062 An operation indicating an individual or all Deployment Units should be updated
1063 </xs:documentation>

1064 </xs:annotation>

1065 <xs:complexContent>

1066 <xs:extension "tns:OperationStruct">

1067 <xs:sequence>

1068 <xs:element "yuIiD" "tns:DeploymentUnitUUID" "o" ">
1069 <xs:annotation>

1070 <xs:documentation>

1071 The UUID of the Deployment Unit to update. If the UUID is not present and the URL
1072 is

1073 present then the URL will be used to determine the Deployment Unit to update. If
1074 both

1075 the UUID and the URL are not specified, the operation indicates all installed
1076 Deployment Units should be updated.

1077 </xs:documentation>

1078 </xs:annotation>

1079 </xs:element>

1080 <xs:element "Version" "o" ">

1081 <xs:annotation>

1082 <xs:documentation>

1083 An optional Version used to clarify which Deployment Unit to update.
1084 Only required in the case where multiple versions of the same Deployment Unit
1085 are installed on the device, in which case if not specified the update request
1086 will be rejected.

1087 </xs:documentation>

1088 </xs:annotation>

1089 <xs:simpleType>

1090 <xs:restriction "xs:string">

1091 <xs:maxLength "32m />

November 2010 © The Broadband Forum. All rights reserved. Page 130 of 197

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

CPE WAN Management Protocol TR-069 Amendment 3

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "URL" "o ">
<xs:annotation>
<xs:documentation>
The URL to be used when updating a Deployment Unit. If a UUID is
provided and the URL is present then it serves as an updated URL
for the existing installed Deployment Unit. If the UUID is not
present and the URL is, it is used to determine the Deployment Unit
to update. If neither the URL or UUID is specified then all
Deployment Units are to be updated.
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:anyURI">
<xs:maxLength "1024" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "Username" "o ">
<xs:annotation>
<xs:documentation>
An optional username with which to authenticate against the url
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "Password" "o ">
<xs:annotation>
<xs:documentation>
An optional password with which to authenticate against the url
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType "UninstallOpStruct">
<xs:annotation>
<xs:documentation>
An operation indicating a Deployment Unit should be un-installed
</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension "tns:0OperationStruct">
<xs:sequence>
<xs:element "UguID" "tns:DeploymentUnitUUID" " ">

<xs:annotation>
<xs:documentation>
The UUID of the Deployment Unit to un-install
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "Version" "o ">
<xs:annotation>
<xs:documentation>
An optional Version used to clarify which Deployment Unit to uninstall.
If not specified and there are multiple versions of the same Deployment Unit
installed on the device, then all of them will be uninstalled.

November 2010 © The Broadband Forum. All rights reserved. Page 131 of 197

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

CPE WAN Management Protocol TR-069 Amendment 3

</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "32m />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "ExecutionEnvRef" "o ">
<xs:annotation>
<xs:documentation>
A reference to the Execution Environment upon which the Deployment Unit
is to be removed from (e.g., ".SoftwareModules.ExecEnv.1l.")
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:complexType "OpResultStruct">
<xs:annotation>
<xs:documentation>
The result of a Deployment Unit operation performed on the device
</xs:documentation>
</xs:annotation>
<xS:sequence>
<xs:element "UguID" "tns:DeploymentUnitUUID" " ">
<xs:annotation>
<xs:documentation>
The UUID of the affected Deployment Unit
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "DeploymentUnitRef" "xs:string" " ">
<xs:annotation>
<xs:documentation>
A reference to the affected Deployment Unit
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "Version" " ">
<xs:annotation>
<xs:documentation>
The Version of the affected Deployment Unit
</xs:documentation>
</xs:annotation>
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "32" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "CurrentState" "tns:DeploymentUnitState" "v
<xs:annotation>
<xs:documentation>

The current state of the affected Deployment Unit after performing the operation

</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "Resolved" "xs:boolean" "n ">
<xs:annotation>
<xs:documentation>
Whether or not the Deployment Unit resolved all of its dependencies after the
Installation or Update

November 2010 © The Broadband Forum. All rights reserved. Page 132 of 197

nyns

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

CPE WAN Management Protocol TR-069 Amendment 3

</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "ExecutionUnitRefList" type="xs:string" " ">
<xs:annotation>
<xs:documentation>
A comma-separated list of execution unit references (e.g.,
".SoftwareModules.ExecutionUnit.2, .SoftwareModules.ExecutionUnit.3").
In the case of an install, the execution units are those created by the operation.
In
the case of an uninstall, the execution units are those removed by the operation. In
the case of an update, the execution units are those that remain after the operation
has completed.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "StartTime" "xs:dateTime" " ">
<xs:annotation>
<xs:documentation>
The time on the device the operation on the affected Deployment Unit started. If the
CPE cannot determine this, then the value should be the Unknown Time value.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "CompleteTime" "xs:dateTime" " ">
<xs:annotation>
<xs:documentation>
The time on the device the operation on the affected Deployment Unit completed
(successfully
or otherwise). If the CPE cannot determine this, then the value should be the Unknown
Time
value.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "Fault" "tns:DeploymentUnitFaultStruct" " ">
<xs:annotation>
<xs:documentation>
Fault structure conveying the success or, in the case of failure, reason for the
failure,
of the operation
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>

<xs:complexType "AutonOpResultStruct">
<xs:annotation>
<xs:documentation>
The result of a Deployment Unit operation performed autonomously on the device (i.e., not
at the
direct request of the ACS)
</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension "tns:OpResultStruct">
<xs:sequence>
<xs:element "OperationPerformed" "tns:DeploymentUnitOperationType"
nyn s

<xs:annotation>
<xs:documentation>
The operation that was performed against the deployment unit
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

November 2010 © The Broadband Forum. All rights reserved. Pagel33of197

1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

CPE WAN Management Protocol TR-069 Amendment 3

<l--
Voucher and Option Type Definitions
—-—=>
<xs:complexType "VoucherList">
<xs:complexContent>
<xs:restriction "soapenc:Array">
<xs:sequence>
<xs:element "base64" "soapenc:base64" " "unbounded" />
</xs:sequence>
<xs:attribute "soapenc:arrayType" "required"/>

</xs:restriction>
</xs:complexContent>
</xs:complexType>

<xs:complexType "OptionStruct">
<xs:sequence>
<xs:element "OptionName">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "e4n/>

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "VouchersN" "xs:unsignedInt"/>
<xs:element "State">
<xs:simpleType>
<xs:restriction "xs:unsignedInt">
<xs:enumeration ">

<xs:annotation>
<xs:documentation>Option is disabled and not setup</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>Option is enabled and not setup</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>Option is disabled and setup</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration "3nr>
<xs:annotation>
<xs:documentation>Option is enabled and setup</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "Mode">
<xs:simpleType>
<xs:restriction "xs:int">
<xs:enumeration "o">
<xs:annotation>
<xs:documentation>0 - Disabled</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>1 - Enabled with expiration</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>2 - Enabled without expiration</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>

November 2010 © The Broadband Forum. All rights reserved. Page 134 of 197

CPE WAN Management Protocol TR-069 Amendment 3

1376 </xs:element>

1377 <xs:element "StartDate" "xs:dateTime"/>
1378 <xs:element "ExpirationDate" "xs:dateTime" "o"/>
1379 <xs:element "IsTransferable">

1380 <xs:simpleType>

1381 <xs:restriction "xs:int">

1382 <xs:enumeration "o">

1383 <xs:annotation>

1384 <xs:documentation>Non-transferable</xs:documentation>
1385 </xs:annotation>

1386 </xs:enumeration>

1387 <xs:enumeration ">

1388 <xs:annotation>

1389 <xs:documentation>Transferable</xs:documentation>
1390 </xs:annotation>

1391 </xs:enumeration>

1392 </xs:restriction>

1393 </xs:simpleType>

1394 </xs:element>

1395 </xs:sequence>

1396 </xs:complexType>

1397

1398 <xs:complexType "OptionList">

1399 <xs:complexContent>

1400 <xs:restriction "soapenc:Array">

1401 <xs:sequence>

1402 <xs:element "OptionStruct" "tns:OptionStruct" "o
1403 "unbounded" />

1404 </xs:sequence>

1405 <xs:attribute "soapenc:arrayType" "required"/>
1406 </xs:restriction>

1407 </xs:complexContent>

1408 </xs:complexType>

1409

1410 <xs:complexType "ArgStruct">

1411 <xs:sequence>

1412 <xs:element "Name">

1413 <xs:simpleType>

1414 <xs:restriction "xs:string">

1415 <xs:maxLength "e4n/>

1416 </xs:restriction>

1417 </xs:simpleType>

1418 </xs:element>

1419 <xs:element "Value">

1420 <xs:simpleType>

1421 <xs:restriction "xs:string">

1422 <xs:maxLength "256" />

1423 </xs:restriction>

1424 </xs:simpleType>

1425 </xs:element>

1426 </xs:sequence>

1427 </xs:complexType>

1428

1429 <xs:complexType "FileTypeArg">

1430 <xs:complexContent>

1431 <xs:restriction "soapenc:Array">

1432 <xs:sequence>

1433 <xs:element "ArgStruct" "tns:ArgStruct" "o" "16"/>
1434 </xs:sequence>

1435 <xs:attribute "soapenc:arrayType" "required"/>
1436 </xs:restriction>

1437 </xs:complexContent>

1438 </xs:complexType>

1439

1440

1441 <l==

1442 Fault Definition

1443 -=>

1444 <xs:element "Fault">

1445 <xs:complexType>

1446 <xs:sequence>

November 2010 © The Broadband Forum. All rights reserved. Page 135 of 197

CPE WAN Management Protocol TR-069 Amendment 3

1447 <xs:element name="FaultCode">

1448 <xs:simpleType>

1449 <xs:union>

1450 <xs:simpleType>

1451 <xs:restriction base="tns:CPEFaultCodeType"></xs:restriction>
1452 </xs:simpleType>

1453 <xs:simpleType>

1454 <xs:restriction base="tns:CPEVendorFaultCodeType"></xs:restriction>
1455 </xs:simpleType>

1456 <xs:simpleType>

1457 <xs:restriction base="tns:ACSFaultCodeType"></xs:restriction>
1458 </xs:simpleType>

1459 <xs:simpleType>

1460 <xs:restriction base="tns:ACSVendorFaultCodeType"></xs:restriction>
1461 </xs:simpleType>

1462 </xs:union>

1463 </xs:simpleType>

1464 </xs:element>

1465 <xs:element name="FaultString" type="xs:string" minOccurs="0"/>

1466 <xs:element name="SetParameterValuesFault" minOccurs="0" maxOccurs="unbounded">
1467 <xs:complexType>

1468 <xs:sequence>

1469 <xs:element name="ParameterName" type="xs:string"/>

1470 <xs:element name="FaultCode">

1471 <xs:simpleType>

1472 <xs:union>

1473 <xs:simpleType>

1474 <xs:restriction base="tns:CPEFaultCodeType"></xs:restriction>
1475 </xs:simpleType>

1476 <xs:simpleType>

1477 <xs:restriction base="tns:CPEVendorFaultCodeType"></xs:restriction>
1478 </xs:simpleType>

1479 </xs:union>

1480 </xs:simpleType>

1481 </xs:element>

1482 <xs:element name="FaultString" type="xs:string" minOccurs="0"/>
1483 </xs:sequence>

1484 </xs:complexType>

1485 </xs:element>

1486 </xs:sequence>

1487 </xs:complexType>

1488 </xs:element>

1489

1490

1491 <l==

1492 Generic RPC Messages - Annex A.3.1

1493 -=>

1494 <!-- GetRPCMethods -->

1495 <xs:element name="GetRPCMethods">

1496 <xs:annotation>

1497 <xs:documentation>GeRPCMethods message - Annex A.3.1.1</xs:documentation>
1498 </xs:annotation>

1499 <xs:complexType/>

1500 </xs:element>

1501

1502 <!-- GetRPCMethodsResponse -->

1503 <xs:element name="GetRPCMethodsResponse">

1504 <xs:annotation>

1505 <xs:documentation>GeRPCMethodsResponse message - Annex A.3.1.1</xs:documentation>
1506 </xs:annotation>

1507 <xs:complexType>

1508 <xs:sequence>

1509 <xs:element name="MethodList" type="tns:MethodList"/>

1510 </xs:sequence>

1511 </xs:complexType>

1512 </xs:element>

1513

1514

1515 <l==

1516 CPE messages - Annex A.3.2

1517 -=>

November 2010 © The Broadband Forum. All rights reserved. Page136of197

CPE WAN Management Protocol TR-069 Amendment 3

1518 <!-- SetParameterValues -->

1519 <xs:element "SetParameterValues">

1520 <xs:annotation>

1521 <xs:documentation>SetParameterValues message - Annex A.3.2.1</xs:documentation>
1522 </xs:annotation>

1523 <xs:complexType>

1524 <xs:sequence>

1525 <xs:element "ParameterList" "tns:ParameterValuelList"/>

1526 <xs:element "ParameterKey" "tns:ParameterKeyType"/>

1527 </xs:sequence>

1528 </xs:complexType>

1529 </xs:element>

1530

1531 <!-- SetParameterValuesResponse -->

1532 <xs:element "SetParameterValuesResponse">

1533 <xs:annotation>

1534 <xs:documentation>SetParameterValuesResponse message - Annex A.3.2.1</xs:documentation>
1535 </xs:annotation>

1536 <xs:complexType>

1537 <xs:sequence>

1538 <xs:element "Status">

1539 <xs:simpleType>

1540 <xs:restriction "xs:int">

1541 <xs:enumeration "o">

1542 <xs:annotation>

1543 <xs:documentation>All Parameter changes have been validated and
1544 applied</xs:documentation>

1545 </xs:annotation>

1546 </xs:enumeration>

1547 <xs:enumeration ">

1548 <xs:annotation>

1549 <xs:documentation>All Parameter changes have been validated and committed, but
1550 some or all are not yet applied (for example, if a reboot is required before the new values are
1551 applied)</xs:documentation>

1552 </xs:annotation>

1553 </xs:enumeration>

1554 </xs:restriction>

1555 </xs:simpleType>

1556 </xs:element>

1557 </xs:sequence>

1558 </xs:complexType>

1559 </xs:element>

1560

1561 <!-- GetParameterValues -->

1562 <xs:element "GetParameterValues">

1563 <xs:annotation>

1564 <xs:documentation>GetParameterValues message - Annex A.3.2.2</xs:documentation>
1565 </xs:annotation>

1566 <xs:complexType>

1567 <xs:sequence>

1568 <xs:element "ParameterNames" "tns:ParameterNames" />

1569 </xs:sequence>

1570 </xs:complexType>

1571 </xs:element>

1572

1573 <!-- GetParameterValuesResponse -->

1574 <xs:element "GetParameterValuesResponse">

1575 <xs:annotation>

1576 <xs:documentation>GetParameterValuesResponse message - Annex A.3.2.2</xs:documentation>
1577 </xs:annotation>

1578 <xs:complexType>

1579 <xs:sequence>

1580 <xs:element "ParameterList" "tns:ParameterValuelList"/>

1581 </xs:sequence>

1582 </xs:complexType>

1583 </xs:element>

1584

1585 <!-- GetParameterNames -->

1586 <xs:element "GetParameterNames">

1587 <xs:annotation>

1588 <xs:documentation>GetParameterNames message - Annex A.3.2.3</xs:documentation>

November 2010 © The Broadband Forum. All rights reserved. Page 137 of 197

1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659

CPE WAN Management Protocol TR-069 Amendment 3

</xs:annotation>
<xs:complexType>
<xS:sequence>

<xs:element "ParameterPath">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "NextLevel" "xs:boolean"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- GetParameterNamesResponse -->
<xs:element "GetParameterNamesResponse">
<xs:annotation>
<xs:documentation>GetParameterNamesResponse message - Annex A.3.2.3</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "ParameterList" "tns:ParameterInfolist"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- SetParameterAttributes -->
<xs:element "SetParameterAttributes">
<xs:annotation>
<xs:documentation>SetParameterAttributes message - Annex A.3.2.4</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "ParameterList" "tns:SetParameterAttributesList"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- SetParameterAttributesResponse -->
<xs:element "SetParameterAttributesResponse">
<xs:annotation>
<xs:documentation>SetParameterAttributesResponse message - Annex A.3.2.4</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- GetParameterAttributes -->
<xs:element "GetParameterAttributes">
<xs:annotation>
<xs:documentation>GetParameterAttributes message - Annex A.3.2.5</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "ParameterNames" "tns:ParameterNames" />
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- GetParameterAttributesResponse -->
<xs:element "GetParameterAttributesResponse">
<xs:annotation>
<xs:documentation>GetParameterAttributesResponse message - Annex A.3.2.5</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "ParameterList" "tns:ParameterAttributeList"/>
</xs:sequence>
</xs:complexType>
</xs:element>

November 2010 © The Broadband Forum. All rights reserved. Page1380f197

CPE WAN Management Protocol TR-069 Amendment 3

1660 <!-- AddObject -->

1661 <xs:element "AddObject">

1662 <xs:annotation>

1663 <xs:documentation>AddObject message - Annex A.3.2.6</xs:documentation>
1664 </xs:annotation>

1665 <xs:complexType>

1666 <xs:sequence>

1667 <xs:element "ObjectName" "tns:0bjectNameType" />
1668 <xs:element "ParameterKey" "tns:ParameterKeyType"/>
1669 </xs:sequence>

1670 </xs:complexType>

1671 </xs:element>

1672

1673 <!-- AddObjectResponse -->

1674 <xs:element "AddObjectResponse">

1675 <xs:annotation>

1676 <xs:documentation>AddObjectResponse message - Annex A.3.2.6</xs:documentation>
1677 </xs:annotation>

1678 <xs:complexType>

1679 <xs:sequence>

1680 <xs:element "InstanceNumber">

1681 <xs:simpleType>

1682 <xs:restriction "xs:unsignedInt">

1683 <xs:minInclusive />

1684 </xs:restriction>

1685 </xs:simpleType>

1686 </xs:element>

1687 <xs:element "Status">

1688 <xs:simpleType>

1689 <xs:restriction "xs:int">

1690 <xs:enumeration "o">

1691 <xs:annotation>

1692 <xs:documentation>The object has been created</xs:documentation>
1693 </xs:annotation>

1694 </xs:enumeration>

1695 <xs:enumeration ">

1696 <xs:annotation>

1697 <xs:documentation>The object creation has been validated and committed, but not
1698 yet applied</xs:documentation>

1699 </xs:annotation>

1700 </xs:enumeration>

1701 </xs:restriction>

1702 </xs:simpleType>

1703 </xs:element>

1704 </xs:sequence>

1705 </xs:complexType>

1706 </xs:element>

1707

1708 <!-- DeleteObject -->

1709 <xs:element "DeleteObject">

1710 <xs:annotation>

1711 <xs:documentation>DeleteObject message - Annex A.3.2.7</xs:documentation>
1712 </xs:annotation>

1713 <xs:complexType>

1714 <xs:sequence>

1715 <xs:element "ObjectName" "tns:0bjectNameType" />
1716 <xs:element "ParameterKey" "tns:ParameterKeyType"/>
1717 </xs:sequence>

1718 </xs:complexType>

1719 </xs:element>

1720

1721 <!-- DeleteObjectResponse -->

1722 <xs:element "DeleteObjectResponse">

1723 <xs:annotation>

1724 <xs:documentation>DeleteObjectResponse message - Annex A.3.2.7</xs:documentation>
1725 </xs:annotation>

1726 <xs:complexType>

1727 <xs:sequence>

1728 <xs:element "Status">

1729 <xs:simpleType>

1730 <xs:restriction "xs:int">

November 2010 © The Broadband Forum. All rights reserved. Page 139 of 197

CPE WAN Management Protocol TR-069 Amendment 3

1731 <xs:enumeration "o">

1732 <xs:annotation>

1733 <xs:documentation>The object has been deleted</xs:documentation>
1734 </xs:annotation>

1735 </xs:enumeration>

1736 <xs:enumeration ">

1737 <xs:annotation>

1738 <xs:documentation>The object deletion has been validated and committed, but not
1739 yet applied</xs:documentation>

1740 </xs:annotation>

1741 </xs:enumeration>

1742 </xs:restriction>

1743 </xs:simpleType>

1744 </xs:element>

1745 </xs:sequence>

1746 </xs:complexType>

1747 </xs:element>

1748

1749 <!-- Download -->

1750 <xs:element "Download">

1751 <xs:annotation>

1752 <xs:documentation>Download message - Annex A.3.2.8</xs:documentation>
1753 </xs:annotation>

1754 <xs:complexType>

1755 <xs:sequence>

1756 <xs:element "CommandKey" "tns:CommandKeyType" />
1757 <xs:element "FileType" "tns:DownloadFileType"/>
1758 <xs:element "URL">

1759 <xs:simpleType>

1760 <xs:restriction "xs:string">
1761 <xs:maxLength "256" />
1762 </xs:restriction>

1763 </xs:simpleType>

1764 </xs:element>

1765 <xs:element "Username">

1766 <xs:simpleType>

1767 <xs:restriction "xs:string">
1768 <xs:maxLength "256" />
1769 </xs:restriction>

1770 </xs:simpleType>

1771 </xs:element>

1772 <xs:element "Password">

1773 <xs:simpleType>

1774 <xs:restriction "xs:string">
1775 <xs:maxLength "256" />
1776 </xs:restriction>

1777 </xs:simpleType>

1778 </xs:element>

1779 <xs:element "FileSize" "xs:unsignedInt"/>
1780 <xs:element "TargetFileName">
1781 <xs:simpleType>

1782 <xs:restriction "xs:string">
1783 <xs:maxLength "256" />
1784 </xs:restriction>

1785 </xs:simpleType>

1786 </xs:element>

1787 <xs:element "DelaySeconds" "xs:unsignedInt"/>
1788 <xs:element "SuccessURL">

1789 <xs:simpleType>

1790 <xs:restriction "xs:string">
1791 <xs:maxLength "256" />
1792 </xs:restriction>

1793 </xs:simpleType>

1794 </xs:element>

1795 <xs:element "FailureURL">

1796 <xs:simpleType>

1797 <xs:restriction "xs:string">
1798 <xs:maxLength "256" />
1799 </xs:restriction>

1800 </xs:simpleType>

1801 </xs:element>

November 2010 © The Broadband Forum. All rights reserved. Page 140 of 197

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

CPE WAN Management Protocol TR-069 Amendment 3

</xs:sequence>
</xs:complexType>
</xs:element>

<!-- DownloadResponse -->
<xs:element "DownloadResponse">
<xs:annotation>
<xs:documentation>DownloadResponse message - Annex A.3.2.8</xs:documentation>
</xs:annotation>
<xs:complexType>
<xS:sequence>

<xs:element "Status">
<xs:simpleType>
<xs:restriction "xs:int">
<xs:enumeration "o">

<xs:annotation>
<xs:documentation>Download has completed and been applied</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>Download has not yet been completed and
applied</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "StartTime" "xs:dateTime"/>
<xs:element "CompleteTime" "xs:dateTime"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- Reboot -->
<xs:element "Reboot">
<xs:annotation>
<xs:documentation>Reboot message - Annex A.3.2.9</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "CommandKey" "tns:CommandKeyType" />
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- RebootResponse -->
<xs:element "RebootResponse">
<xs:annotation>
<xs:documentation>RebootResponse message - Annex A.3.2.9</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<l--
Optional CPE messages - Annex A.4.1
-—>
<!-- GetQueuedTransfers -->
<xs:element "GetQueuedTransfers">

<xs:annotation>
<xs:documentation>GetQueuedTransfers message - Annex A.4.1.1</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- GetQueuedTransfersResponse -->
<xs:element "GetQueuedTransfersResponse">
<xs:annotation>
<xs:documentation>GetQueuedTransfersResponse message - Annex A.4.1.1</xs:documentation>
</xs:annotation>

November 2010 © The Broadband Forum. All rights reserved. Page 141 of 197

1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

CPE WAN Management Protocol TR-069 Amendment 3

<xs:complexType>
<xSs:sequence>
<xs:element "TransferList" "tns:TransferList"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- ScheduleInform -->
<xs:element "ScheduleInform">
<xs:annotation>
<xs:documentation>ScheduleInform message - Annex A.4.1.2</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "DelaySeconds" "xs:unsignedInt"/>
<xs:element "CommandKey" "tns:CommandKeyType" />
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- ScheduleInformResponse -->
<xs:element "ScheduleInformResponse">
<xs:annotation>
<xs:documentation>ScheduleInformResponse message - Annex A.4.1.2</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- SetVouchers -->
<xs:element "SetVouchers">
<xs:annotation>
<xs:documentation>SetVouchers message - Annex A.4.1.3</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "VoucherList" "tns:VoucherList"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- SetVouchersResponse -->
<xs:element "SetVouchersResponse">
<xs:annotation>
<xs:documentation>SetVouchersResponse message - Annex A.4.1.3</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- GetOptions -->
<xs:element "GetOptions">
<xs:annotation>
<xs:documentation>GetOptions message - Annex A.4.1.4</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>

<xs:element "OptionName">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "e4n/>

</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- GetOptionsResponse -->
<xs:element "GetOptionsResponse">
<xs:annotation>
<xs:documentation>GetOptionsResponse message - Annex A.4.1.4</xs:documentation>
</xs:annotation>

November 2010 © The Broadband Forum. All rights reserved. Page 142 of 197

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

CPE WAN Management Protocol TR-069 Amendment 3

<xs:complexType>
<xs:sequence>
<xs:element "OptionList" "tns:OptionList"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- Upload -->
<xs:element "Upload">
<xs:annotation>
<xs:documentation>Upload message - Annex A.4.1.5</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element "CommandKey" "tns:CommandKeyType" />
<xs:element "FileType" "tns:UploadFileType"/>
<xs:element "URL">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "Username">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "Password">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "DelaySeconds" "xs:unsignedInt"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- UploadResponse -->
<xs:element "UploadResponse">
<xs:annotation>
<xs:documentation>UploadResponse message - Annex A.4.1.5</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element "Status">
<xs:simpleType>
<xs:restriction "xs:int">
<xs:enumeration "o">

<xs:annotation>
<xs:documentation>Upload has been completed</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumeration ">
<xs:annotation>
<xs:documentation>Upload has not yet completed</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "StartTime" "xs:dateTime"/>
<xs:element "CompleteTime" "xs:dateTime"/>
</xs:sequence>
</xs:complexType>
</xs:element>

November 2010 © The Broadband Forum. All rights reserved. Page 143 of 197

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

CPE WAN Management Protocol TR-069 Amendment 3

<!-- FactoryReset -->
<xs:element "FactoryReset">
<xs:annotation>
<xs:documentation>FactoryReset message - Annex A.4.1.6</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- FactoryResetResponse -->
<xs:element "FactoryResetResponse">
<xs:annotation>
<xs:documentation>FactoryResetResponse message - Annex A.4.1.6</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- GetAllQueuedTransfers -->
<xs:element "GetAllQueuedTransfers">
<xs:annotation>
<xs:documentation>GetAllQueuedTransfers message - Annex A.4.1.7</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- GetAllQueuedTransfersResponse -->
<xs:element "GetAllQueuedTransfersResponse">
<xs:annotation>
<xs:documentation>GetAllQueuedTransfersResponse message - Annex A.4.1.7</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element "TransferList" "tns:AllTransferList"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- ScheduleDownload -->
<xs:element "ScheduleDownload">
<xs:annotation>
<xs:documentation>ScheduleDownload message - Annex A.4.1.8</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>

<xs:element "CommandKey" "tns:CommandKeyType" />
<xs:element "FileType" "tns:DownloadFileType"/>
<xs:element "URL">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "Username">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>

<xs:element "Password">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element "FileSize" "xs:unsignedInt"/>
<xs:element "TargetFileName">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "256" />

November 2010 © The Broadband Forum. All rights reserved. Page 144 of 197

CPE WAN Management Protocol TR-069 Amendment 3

2086 </xs:restriction>

2087 </xs:simpleType>

2088 </xs:element>

2089 <xs:element "TimeWindowList" "tns:TimeWindowList"/>
2090 </xs:sequence>

2091 </xs:complexType>

2092 </xs:element>

2093

2094 <!-- ScheduleDownloadResponse -->

2095 <xs:element "ScheduleDownloadResponse">

2096 <xs:annotation>

2097 <xs:documentation>ScheduleDownloadResponse message - Annex A.4.1.8</xs:documentation>
2098 </xs:annotation>

2099 <xs:complexType/>

2100 </xs:element>

2101

2102 <!-- CancelTransfer -->

2103 <xs:element "CancelTransfer">

2104 <xs:annotation>

2105 <xs:documentation>CancelTransfer message - Annex A.4.1.9</xs:documentation>
2106 </xs:annotation>

2107 <xs:complexType>

2108 <xs:sequence>

2109 <xs:element "CommandKey" "tns:CommandKeyType" />

2110 </xs:sequence>

2111 </xs:complexType>

2112 </xs:element>

2113

2114 <!-- CancelTransferResponse -->

2115 <xs:element "CancelTransferResponse">

2116 <xs:annotation>

2117 <xs:documentation>CancelTransferResponse message - Annex A.4.1.9</xs:documentation>
2118 </xs:annotation>

2119 <xs:complexType/>

2120 </xs:element>

2121

2122 <!-- ChangeDUState -->

2123 <xs:element "ChangeDUState">

2124 <xs:annotation>

2125 <xs:documentation>

2126 A request to perform an action on a Deployment Unit on the device
2127 </xs:documentation>

2128 </xs:annotation>

2129 <xs:complexType>

2130 <xs:sequence>

2131 <xs:element "Operations" "tns:OperationStruct" "
2132 "unbounded">

2133 <xs:annotation>

2134 <xs:documentation>

2135 The operations to be performed. The content of an operation is contained within the
2136 operation

2137 sub-type.

2138 </xs:documentation>

2139 </xs:annotation>

2140 </xs:element>

2141 <xs:element "CommandKey" "tns:CommandKeyType" "o ">
2142 <xs:annotation>

2143 <xs:documentation>

2144 An optional command key used to correlate future results of the operation or
2145 changes made to

2146 the device as a result of the operation.

2147 </xs:documentation>

2148 </xs:annotation>

2149 </xs:element>

2150 </xs:sequence>

2151 </xs:complexType>

2152 </xs:element>

2153

2154 <!-- ChangeDUStateResponse -->

2155 <xs:element "ChangeDUStateResponse">

2156 <xs:annotation>

November 2010 © The Broadband Forum. All rights reserved. Page 145 of 197

CPE WAN Management Protocol TR-069 Amendment 3

2157 <xs:documentation>

2158 Response to a ChangeDUState message

2159 </xs:documentation>

2160 </xs:annotation>

2161 <xs:complexType/>

2162 </xs:element>

2163

2164 <l--

2165 ACS messages - Annex A.3.3

2166 -=>

2167 <!-- Inform -->

2168 <xs:element name="Inform">

2169 <xs:annotation>

2170 <xs:documentation>Inform message - Annex A.3.3.1</xs:documentation>
2171 </xs:annotation>

2172 <xs:complexType>

2173 <xs:sequence>

2174 <xs:element "DeviceId" e "tns:DeviceIdStruct"/>
2175 <xs:element "Event" type="tns:EventList"/>

2176 <xs:element "MaxEnvelopes" "xs:unsignedInt"/>
2177 <xs:element "CurrentTime" t "xs:dateTime"/>

2178 <xs:element "RetryCount" ty "xs:unsignedInt"/>
2179 <xs:element nar "ParameterList" type="tns:ParameterValuelList"/>
2180 </xs:sequence>

2181 </xs:complexType>

2182 </xs:element>

2183

2184 <!-- InformResponse -->

2185 <xs:element name="InformResponse">

2186 <xs:annotation>

2187 <xs:documentation>InformResponse message - Annex A.3.3.1</xs:documentation>
2188 </xs:annotation>

2189 <xs:complexType>

2190 <xs:sequence>

2191 <xs:element name="MaxEnvelopes" type="xs:unsignedInt"/>
2192 </xs:sequence>

2193 </xs:complexType>

2194 </xs:element>

2195

2196 <!-- TransferComplete -->

2197 <xs:element name="TransferComplete">

2198 <xs:annotation>

2199 <xs:documentation>TransferComplete message - Annex A.3.3.2</xs:documentation>
2200 </xs:annotation>

2201 <xs:complexType>

2202 <xs:sequence>

2203 <xs:element "CommandKey" ty "tns:CommandKeyType" />
2204 <xs:element "FaultStruct" type="tns:TransferCompleteFaultStruct"/>
2205 <xs:element "StartTime" type="xs:dateTime"/>

2206 <xs:element nar "CompleteTime" be="xs:dateTime" />

2207 </xs:sequence>

2208 </xs:complexType>

2209 </xs:element>

2210

2211 <!-- TransferCompleteResponse -->

2212 <xs:element name="TransferCompleteResponse">

2213 <xs:annotation>

2214 <xs:documentation>TransferCompleteResponse message - Annex A.3.3.2</xs:documentation>
2215 </xs:annotation>

2216 <xs:complexType/>

2217 </xs:element>

2218

2219 <!-- AutonomousTransferComplete -->

2220 <xs:element name="AutonomousTransferComplete">

2221 <xs:annotation>

2222 <xs:documentation>AutonomousTransferComplete message - Annex A.3.3.3</xs:documentation>
2223 </xs:annotation>

2224 <xs:complexType>

2225 <xs:sequence>

2226 <xs:element name="AnnounceURL">

2227 <xs:simpleType>

November 2010 © The Broadband Forum. All rights reserved. Page 146 of 197

CPE WAN Management Protocol TR-069 Amendment 3

2228 <xs:restriction base="xs:string">

2229 <xs:maxLength value="1024"/>

2230 </xs:restriction>

2231 </xs:simpleType>

2232 </xs:element>

2233 <xs:element name="TransferURL">

2234 <xs:simpleType>

2235 <xs:restriction base="xs:string">

2236 <xs:maxLength value="1024"/>

2237 </xs:restriction>

2238 </xs:simpleType>

2239 </xs:element>

2240 <xs:element "IsDownload" type="xs:boolean"/>
2241 <xs:element "FileType" type="tns:TransferFileType"/>
2242 <xs:element n: "FileSize" type="xs:unsignedInt"/>
2243 <xs:element name="TargetFileName">

2244 <xs:simpleType>

2245 <xs:restriction base="xs:string">

2246 <xs:maxLength value="256"/>

2247 </xs:restriction>

2248 </xs:simpleType>

2249 </xs:element>

2250 <xs:element ne="FaultStruct" type="tns:TransferCompleteFaultStruct"/>
2251 <xs:element "StartTime" type="xs:dateTime"/>
2252 <xs:element name="CompleteTime" type="xs:dateTime"/>
2253 </xs:sequence>

2254 </xs:complexType>

2255 </xs:element>

2256

2257 <!-- AutonomousTransferCompleteResponse -->

2258 <xs:element name="AutonomousTransferCompleteResponse">
2259 <xs:annotation>

2260 <xs:documentation>AutonomousTransferCompleteResponse message - Annex
2261 A.3.3.3</xs:documentation>

2262 </xs:annotation>

2263 <xs:complexType/>

2264 </xs:element>

2265

2266

2267 <l--

2268 Optional ACS messages - Annex A.4.2

2269 -=>

2270 <!-- Kicked -->

2271 <xs:element name="Kicked">

2272 <xs:annotation>

2273 <xs:documentation>Kicked message - Annex A.4.2.1</xs:documentation>
2274 </xs:annotation>

2275 <xs:complexType>

2276 <xs:sequence>

2277 <xs:element name="Command">

2278 <xs:simpleType>

2279 <xs:restriction base="xs:string">

2280 <xs:maxLength value="32"/>

2281 </xs:restriction>

2282 </xs:simpleType>

2283 </xs:element>

2284 <xs:element name="Referer">

2285 <xs:simpleType>

2286 <xs:restriction base="xs:string">

2287 <xs:maxLength value="64"/>

2288 </xs:restriction>

2289 </xs:simpleType>

2290 </xs:element>

2291 <xs:element name="Arg">

2292 <xs:simpleType>

2293 <xs:restriction base="xs:string">

2294 <xs:maxLength value="256"/>

2295 </xs:restriction>

2296 </xs:simpleType>

2297 </xs:element>

2298 <xs:element name="Next">

November 2010 © The Broadband Forum. All rights reserved. Page 147 of 197

2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369

CPE WAN Management Protocol TR-069 Amendment 3

<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "1024"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- KickedResponse -->
<xs:element "KickedResponse">
<xs:annotation>
<xs:documentation>KickedResponse message - Annex A.4.2.1</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>

<xs:element "NextURL">
<xs:simpleType>
<xs:restriction "xs:string">
<xs:maxLength "1024"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- Requestbownload -->
<xs:element "RequestDownload">
<xs:annotation>
<xs:documentation>RequestDownload message - Annex A.4.2.2</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "FileType" "tns:DownloadFileType"/>
<xs:element "FileTypeArg" "tns:FileTypeArg"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- RequestbDownloadResponse -->
<xs:element "RequestDownloadResponse">
<xs:annotation>
<xs:documentation>RequestDownloadResponse message - Annex A.4.2.2</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- DUStateChangeComplete -->
<xs:element "DUStateChangeComplete">
<xs:annotation>
<xs:documentation>
A message indicating a prior ChangeDUState request to perform an action on a
Deployment Unit on the device has completed
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xSs:sequence>
<xs:element "Results" "tns:0OpResultStruct" "n "unbounded">
<xs:annotation>
<xs:documentation>
The results of the operation performed. The ordering of the operation results
matches the
order of the operations in the corresponding ChangeDUState message.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "CommandKey" "tns:CommandKeyType" "o ">
<xs:annotation>
<xs:documentation>

November 2010 © The Broadband Forum. All rights reserved. Page 148 of 197

2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422

CPE WAN Management Protocol

TR-069 Amendment 3

The command key specified in the corresponding ChangeDUState message, if any
</xs:documentation>

</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- DUStateChangeCompleteResponse -->
<xs:element "DUStateChangeCompleteResponse">

<xs:annotation>
<xs:documentation>

Response to a DUStateChangeComplete message

</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

<!-- AutonomousDUStateChangeComplete -->
<xs:element "AutonomousDUStateChangeComplete">

<xs:annotation>
<xs:documentation>

A message indicating an autonomous action for a Deployment Unit on the device has

completed
</xs:documentation>
</xs:annotation>
<xs:complexType>
<xS:sequence>

<xs:element "Results" "tns:AutonOpResultStruct"

"unbounded">
<xs:annotation>

<xs:documentation>
The results of the operation performed
</xs:documentation>

</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

<!-- AutonomousDUStateChangeCompleteResponse -->
<xs:element "AutonomousDUStateChangeCompleteResponse">

<xs:annotation>
<xs:documentation>

Response to a AutonomousDUStateChangeComplete message

</xs:documentation>
</xs:annotation>
<xs:complexType/>
</xs:element>

</xs:schema>

November 2010

© The Broadband Forum. All rights reserved.

nyn

Page 149 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Annex B. Removed

Annex Removed.

November 2010 © The Broadband Forum. All rights reserved. Page 150 of 197

C.1

C.2

CPE WAN Management Protocol TR-069 Amendment 3

Annex C. Signed Vouchers

Note — the mechanism defined in this Annex is DEPRECATED in favor of the
“Software Module Management mechanism” as described in Appendix 11 / TR-157
Amendment 3 [29].

Overview

The CPE WAN Management Protocol defines an optional mechanism for securely
enabling or disabling optional CPE capabilities. Unlike Parameters, the Voucher
mechanism provides an additional layer of security for optional capabilities that require
secure tracking (such as those involving payment).

A Voucher is a digitally signed data structure that instructs a CPE to enable or disable a
set of Options. An Option is any optional capability of a CPE. When an Option is
enabled, the Voucher can specify various characteristics that determine under what
conditions that Option persists.

Control of Options Using Vouchers

An Option can be disabled, enabled, or enabled with expiration. An Option that is
enabled with no expiration stays enabled until the ACS explicitly disables it. An Option
that is enabled with expiration stays enabled only for the duration specified in the
Voucher. After the specified duration period, the CPE MUST disable the Option itself.

An Option can also be defined as either transferable or non-transferable. If not otherwise
specified, an Option enabled by a Voucher is non-transferable. A non-transferable
Option is automatically disabled if the CPE becomes associated with a different
broadband service provider than was in use at the time the Option was enabled. A
transferable Option is one that is maintained with the CPE regardless of any subsequent
changes of service provider.

Each Voucher, which can contain instructions to enable or disable one or more Options,
MUST be digitally signed using the XML-Signature format [15]. Before applying the
instructions in the Voucher, a CPE MUST validate the signature and authenticate the
signer.

A Voucher is specific to a single CPE and cannot be used on a CPE other than the one
indicated in the Voucher. This ensures that the mechanism used to distribute Vouchers
can be used to ensure that only those CPEs that have properly appropriated an Option can
enabled that Option.

A CPE supporting the use of Vouchers MUST support a network time synchronization
protocol such as NTP or SNTP to ensure access to accurate time and date information.

November 2010 © The Broadband Forum. All rights reserved. Page 151 of 197

C3

CPE WAN Management Protocol TR-069 Amendment 3

Application of a received voucher by the CPE, or comparison of an existing voucher
against its expiration date, SHOULD only occur once the CPE has established network
time.

The following Voucher-related methods are defined in Annex A of this specification:

* SetVouchers: Allows an ACS to download a list of Vouchers to a CPE. Each
Voucher MAY enable or disable the Options defined within that Voucher.

* GetOptions: Allows an ACS to query the state of any or all Options supported by the
CPE.

Voucher Definition

The RPC method SetVouchers allows an ACS to enable, disable, or modify the state of
one or more Options. The SetVouchers method takes as an argument an array of
Vouchers. Each Voucher in the array is separately Base64 encoded.

Prior to Base64 encoding, each Voucher is a signed XML structure utilizing the XML-
Signature format [15]. Each independently signed Voucher MAY include one or more
Option specifications. Each Option specification is a structure that specifies the intended
state for the specified Option.

The elements of the Option specification are defined in Table 86. An Option MAY
contain additional XML elements specific to the particular Option. An example Option
specification structure is shown in Figure 5. An example of an entire signed Voucher is
shown in Figure 6. In this example, two separate Options are enabled in the same
Voucher.

Table 86 — Option specification definition

Name Type Description

VSerialNum string(64) Unique serial number identifying the particular Voucher. For a given
ACS, each new Voucher created MUST be assigned a distinct
Voucher serial number. This value MUST be unique across all CPE
managed by that ACS and all Vouchers issued to a given CPE at
different times.

Deviceld DeviceldStruct A structure that uniquely identifies the particular CPE for which the
Voucher is to apply. This structure is defined in Table 87.

On receipt of a Voucher, a CPE MUST ensure that the information in
the device ID matches its actual identity. If not, it MUST ignore the
Voucher and respond with a Request Denied fault.

OptionIdent string(64) Identifying name of the particular Option to be enabled or disabled.
OptionDesc string(256) Text description of the Option.
StartDate dateTime Optional element. The date and time in UTC that the Option is to be

enabled (only meaningful if Mode = EnableWithExpiration or
EnableWithoutExpiration). If this element is not present, or if the
specified time has already passed, an Option to be enabled is
enabled immediately.

Duration unsignedint Required if Mode = EnableWithExpiration. For an Option enabled
with expiration, this element specifies the duration the Option will
remain enabled in units of DurationUnits. If a start date is specified,
the duration is relative to that start date.

November 2010 © The Broadband Forum. All rights reserved. Page 152 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Name Type Description

DurationUnits string Required if Mode = EnableWithExpiration. This element specifies the
units in which the duration element is specified. The allowed values
are:

“Days”
“Months”

Mode string This element specifies whether the designated Option is to be
enabled or disabled, and if enabled, whether or not an expiration is
specified. The allowed values are:

“Disable”
“EnableWithExpiration
“EnableWithoutExpiration

Transferable boolean Optional element. A value of true (1) indicates that the Option is
considered transferable, meaning that Option is to remain enabled
until any specified expiration date regardless of any changes in
service provider.

If this element is false (0) or not present, the Option is considered
non-transferable, requiring the Option be disabled upon change in
service provider, associated with any change to the ProvisioningCode
as defined in [24], [31], and [32].

Table 87 — DeviceldStruct definition

Name Type Description

Manufacturer string(64) The manufacturer of the device. This parameter is for display only and
need not be checked as part of the validation.

OouI string(6) Organizationally unique identifier of the device manufacturer. Represented
as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [10].

ProductClass string(64) Identifier of the class of product for which the serial number applies. That
is, for a given manufacturer, this parameter is used to identify the product
or class of product over which the SerialNumber parameter is unique.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

Figure 5 — Example Option specification

<dsig:0bject xmlns="" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#" Id="option0">

<Option>

<VSerialNum>987654321</VSerialNum>

<DeviceId>

<Manufacturer>Example</Manufacturer>
<0UI>012345</0UI>
<ProductClass>Gateway</ProductClass>

<SerialNumber>123456789</SerialNumber>

</DevicelId>

<OptionIdent>Option Name</OptionIdent>
<OptionDesc>Option Description</OptionDesc>
<StartDate>20021025T12:06:34</StartDate>
<Duration>280</Duration>
<DurationUnits>Days</DurationUnits>
<Mode>EnableWithExpiration</Mode>

</Option>
</dsig:0bject>

Figure 6 — Example signed Voucher

<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<SignedInfo>

November 2010

© The Broadband Forum. All rights reserved.

Page 153 of 197

CPE WAN Management Protocol TR-069 Amendment 3

<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"></CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-
shal"></SignatureMethod>
<Reference URI="#option0">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></DigestMethod>
<DigestValue>TUuSqr2utLtQM5tY2DB1jL3nV00=</DigestValue>
</Reference>
<Reference URI="#optionl">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n-
20010315"></Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"></DigestMethod>
<DigestValue>/YX1C/E6zNf0+w41G66NeXGOQB0=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>
KAMfgOSnmGH52gRVGLNFEEM4 PPkRSmMMUGr2D8E3vwwi280e1Bn5bpwQ==
</SignatureValue>
<KeyInfo>
<KeyValue>
<DSAKeyValue>
<P>
/X9TgR11E11S30gcLuzk5/YRt1I870QAwx4/gLZRIMIFXUAIUftZPY1Y+r/F9bow9s
ubVWzXgTuAHTRV8mMZgt2uZUKWkn5/0BHsQIsJPu6nX/rfGG/g7vV+£GgKYVDwT 7g/bT
xR7DAJVUE1OoWkTL2dfOuK2HXKu/yIgMzZndFIAcc=
</P>
<Q>12BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>
9+GghdabPd7LvKtcNrhXuXmUr 7v60ugC+VdMCz 0HgmdRWVeOutRZT+ZxBxCBgLRJFn
EJj6EwoFhO3zwkyjMim4TwWeotUEfI004KOuHiuzpnWRbgN/C/ohNWLx+2J6ASQ7zKTx
vghRkImog9/hWuWfBpKLZ16AelU1ZAFMO/7PSSo=
e
<Y>
TBASA/mjLI8bc2KM7u9X6nHHVIMPgZtTBhrl/Fzs2AkdYCYMwyy+v+0XU7u5el8JukK
G7/uo0lVhjXNSn6ZgObF+wuMoyP/OUmNbSkdN1aRXXHPRSW2CcG3v)fV+Csg/LP3z£fD
xDkImsC8LuKXht/g4+nksA/31icROXWagQJU9IpUQ=
</Y>
</DSAKeyValue>
</KeyValue>
<X509Data>
<X509IssuerSerial>
<X509IssuerName>
EMAILADDRESS=name@example.com, CN=Example, OU=CMS, O=Example, L=San\20Jose,
ST=California, C=US
</X509IssuerName>
<X509SerialNumber>4</X509SerialNumber>
</X509IssuerSerial>
<X509SubjectName>
CN=eng.bba.certs.example.com, OU=CMS, O=Example, L=San\20Jose, ST=CA, C=US
</X509SubjectName>
<X509Certificate>
MIIEUJjCCA7ugAwIBAgIBBDANBgkghkiG9wOBAQUFADCBhDELMAkKGALUEBhMCVVMXEZARBgNVBAGT
CkNhbG1lmb3JuaWEXETAPBgNVBACTCENhbiBKb3N1MQ4wDAYDVQQKEwWUyV21yZTEMMAOGALUECXMD
Q01TMQ4wDAYDVQQDEwWUyV21yZTEfMBOGCSgGSIb3DQEJARYQZWIyb3duQDJ3aXJ1lLmNvbTAeFwOw
MjA5MDUyMDU4MT ZaFw0xMjASMDI yMDU4MT ZaMG0xCzAJBgNVBAYTALVTMOswCQYDVQQIEwJDQTER
MA8GA1UEBxMIU2FuIEpvc2UxDjAMBgNVBAOTBTIXaXJ1MQwwCgYDVQQLEWNDTVMxIDAeBgNVBAMT
F2VuZy5iYmEuY2VydHMuMndpcmUuY29tMIIBtzCCASWGByqGSM44BAEWggEfAOGBAPL /U4EddRIp
Ut9KnC7s50f2EbdSPOIEAMMePAC2USZpRVIAIIHTWT2NWPg/xfW6MPbLm1Vs14E7gB00b/JmYLdr
mVClpJ+£f£6AR7TECLCT7upl/63xhv401fnxgimFQ8E+4P208UewwI1lVBNaFpEy9InXzrithlyrv8iID
GZ3RSAHHAhUAL2BQjxUjC8yykrmCouuEC/BYHPUCGYEA9+GghdabPd7LvKtcNrhXuXmUr7v60uqC
+VdMCzO0HgmdRWVeOutRZT+ZxBxCBgLRIJFNE] 6EwoFhO3zwkyjMim4 TwileotUfI004KOuHiuzpnWR
bgN/C/ohNWLx+2J6ASQ7zKTxvghRkImog9/hWuWfBpKLZ16Ae1U1ZAFMO/7PSSoDgYQAAOGATBAS
A/mjLI8bc2KM7u9X6nHHVIMPgZtTBhrl/Fzs2AkdYCYMwyy+v+0XU7u5e18JuKG7/uolVhjXNSn6
ZgObF+wuMoyP/OUmNbSkdN1aRXXHPRsW2CcG3v]jfV+Csg/LP3zfDxDkImsC8LuKXht/g4+nksA/3
1cROXWagQJU9pUSjgdAwgcOwHQYDVROOBBYEFMT1 /ebdHLjaEoSS1PcLCAdFX32gMIGbBgNVHSME

November 2010 © The Broadband Forum. All rights reserved. Page 154 of 197

CPE WAN Management Protocol TR-069 Amendment 3

gZMwgZChgYgkg¥YcwgYQxCzAJBgNVBAYTALVTMRMWEQYDVQQIEwWpDYWxpZm9ybml hMREwDwYDVQQH
EwhTYW4gSm9zZTEOMAWGA1UEChMFM1dpcmUxDDAKBgNVBASTAONNUZEOMAWGA1UEAXMEFM1 dpcmUx
HzAdBgkghkiGI9wOBCQEWEGVicm93bkAyd21yZS5jb22CAQAWDgYDVROPAQH/BAQDAgeAMAOGCSOG
SIb3DQEBBQUAA4AGBAF1PGAbyvAOp+607nXfF3jzAdoHdaZh55C8s0Q9J62IF8D1j16JxR7pjcCp2
1YmWkwQOMncGEg+X8xP7BIgqntDmI1YXuDT1XbyxXsu61lnT7nCbIJwMwlLOXFwN+Axy7BM3NkKkAFE5SMb
aaoJWtmD1QrvcAFfDhLeBT+tIRueK7Pg9LDS
</X509Certificate>
<X509Certificate>
MIICeTCCAeICAQAWDQYJKoZIhvcNAQEEBQAWgYQxCzAJBgNVBAYTALIVTMRMWEQYDVQQOIEWPDYWxp
Zm9ybmlhMREwDwYDVQQHEWhTYW4gSm9zZTEOMAWGA1UEChMFM1dpcmUxDDAKBgNVBASTAONNUZEO
MAwWGA1UEAxMFM1dpcmUxHzAdBgkghkiGOwOBCQEWEGVicm93bkAyd21yZS5jb20wHhcNMDEwWNzMx
MDMwNj Q5WhcNMDcwMT IxMDMwNJQ5WjCBhDELMAKGA1UEBhMCVVMXE zARBgNVBAgGTCkNhbG1lmb3Ju
AWEXETAPBgNVBACTCFNhbiBKb3N1MQ4wDAYDVQQOKEWUyYV21yZTEMMAOGALIUECXMDQO1TMQ4wDAYD
VQODEwWUyV21yZTEfMBOGCSgGSIb3DQEJARYQZWIyb3duQDJI3aXJ1LmNvbTCBnzANBgkghkiGOw0B
AQEFAAOBJjQAwWgYkCgYEA1ISJIbL610J/6SBoet3aA8fki8s7pb/QUZueWj+0YKoDaQWh4MUCTOKO6
N/0Z2cLMVg8JyezEpdnh31VM/Ni5ow2Mst4dpdccQQEHouUgqwNUWIBEFUL196/LPRyLjoM2Ne IXSKM]
AdPwvcenxmgeVBr/ZUmr4JQpdSI2AZJuHvCIjUsCAWEAATANBgkghkiGO9w0OBAQQFAAOBgQBa3CCX
ga9L0grGWxpNj312Az+tYz8bpEp2e2pAVrIJHdW/CJIJOuR1E3410TkhfYFabCuuieF7Jcwf1B3+cGo
JrLWgeKgsNnrbmMFC/9hnrL1gZKEKiOPOaGSFS/PwInodGWFZCiaQmeG+J6CWeASiFMdwgRGVESW
axfzzIKiXsXwkA==
</X509Certificate>
</X509Data>
</KeyInfo>
<dsig:0bject xmlns="" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#" Id="option0">
<Option>
<VSerialNum>987654321</VSerialNum>
<DeviceId>
<Manufacturer>Example</Manufacturer>
<0UI>012345</0UI>
<ProductClass>Gateway</ProductClass>
<SerialNumber>123456789</SerialNumber>
</DevicelId>
<OptionIdent>First option name</OptionIdent>
<OptionDesc>First option description</OptionDesc>
<StartDate>20021025T12:06:34</StartDate>
<Duration>280</Duration>
<DurationUnits>Days</DurationUnits>
<Mode>EnableWithExpiration</Mode>

</Option>
</dsig:0bject>
<dsig:0bject xmlns="" xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#" Id="optionl">
<Option>
<VSserialNum>987654322</VSerialNum>
<DeviceId>
<Manufacturer>Example</Manufacturer>
<OUI>00D09E</OUI>

<ProductClass>Gateway</ProductClass>
<SerialNumber>123456789</SerialNumber>
</DevicelId>
<OptionIdent>Second option name</OptionIdent>
<OptionDesc>Second option description</OptionDesc>
<StartDate>20021025T12:06:34</StartDate>
<Duration>280</Duration>
<DurationUnits>Days</DurationUnits>
<Mode>EnableWithExpiration</Mode>
</Option>
</dsig:0bject>
</Signature>

November 2010 © The Broadband Forum. All rights reserved. Page 155 of 197

D.1

D.2

CPE WAN Management Protocol TR-069 Amendment 3

Annex D. Web Identity
Management

Note—the mechanism defined in this Annex is DEPRECATED and might be
removed from a future version of this document. This is because, considering
CSRF (cross-site request forgery) and XSS (cross-site scripting), the home
network is no longer a trusted environment. JavaScript downloaded from the
Internet could allow a malicious script to perform redirects and connect to a web
site or portal with the “unknowing” subscriber web identity.

Overview

To support web-based applications or other CPE-related web pages on a back-end web
site for access from a browser within the CPE’s local network, the CPE WAN
Management Protocol provides an optional mechanism that allows such web sites to
customize their content with explicit knowledge of the customer associated with that
CPE. That is, the location of users browsing from inside the CPE’s LAN can be
automatically identified without any manual login process.

The protocol defines a set of optional interfaces that allow the web site to initiate
communication between the CPE and ACS, which allows a web site in communication
with that ACS to identify which CPE the user is operating behind. This allows the web
site to customize its content to be specific to the associated broadband account, the
particular type of CPE, or any other characteristic that is known to the ACS.

Note—this identification mechanism does not distinguish among different users
on the same network behind a single CPE. In situations where identification of a
specific user is required, a separate identity management mechanism, such as
manual login, would be needed.

Use of the Kicked RPC Method

The CPE WAN Management Protocol defines an optional Kicked RPC method in Annex
A, which can be used to support web identity management functionality.

The CPE’s invocation of the Kicked method is initiated by an external stimulus to the
CPE. This external stimulus is assumed to be web-based, and thus the associated method
provides a means to communicate information that would be useful in a web-based
transaction. A suggested definition of the stimulus interface is given in Section D.4.

The information contained in the Kicked method call includes both the information
needed to uniquely identify the CPE, but also parameters that can be used to associate the
method call with a particular web browser session.

November 2010 © The Broadband Forum. All rights reserved. Page 156 of 197

D.3

CPE WAN Management Protocol TR-069 Amendment 3

The response to the Kicked method allows the ACS to specify a URL to which the
browser SHOULD be redirected. This URL MAY contain CGI arguments that allow the
ACS to continue to track the browser session.

Web Identity Management Procedures

The Web Identity Management mechanism is based on a model in which a web server is
associated with and can communicate with an ACS. Whenever this web server wishes to
either identify the user’s CPE or cause the CPE to establish communication with the ACS
for some other purpose, the following sequence of events will occur (under normal
conditions):

1. The user’s browser accesses a web page that requires knowledge of, or
communication with, the user’s CPE.

2. The web site redirects the browser to a specific URL accessible only from the CPE’s
private-network (LAN) interface through which the browser “kicks” the CPE,
providing the CPE via CGI arguments with information it needs to follow the
subsequent steps (see Section D.4).

3. The CPE notifies the ACS that it has been kicked, using the “Kicked” RPC method
call defined in Annex A. In this method call, the CPE identifies itself and passes
information to uniquely identify the browser session.

4. The ACS responds to this method call by passing a URL that the CPE SHOULD
redirect the user’s browser. This URL would normally include CGI arguments that
identify the session state. While the connection is open, the ACS MAY also initiate
any other appropriate RPC transactions.

5. The CPE responds to the browser’s HTTP request by redirecting the browser to the
URL indicated by the ACS.

This exchange allows the ACS to uniquely identify the CPE; potentially generate a
custom page based on knowledge of the particular user, their equipment, and any
associated account privileges; and then direct the user to that customized page.

The ACS MAY also initiate any other RPC transactions that are appropriate given the
particular user action. For example, if a user requests a firmware upgrade to their CPE
from a web page, the ACS could instruct the CPE to initiate a file download over the
same connection that the ACS responds to the Kicked method call.

Figure 7 shows the sequence of events associated with this mechanism. The numbers
shown correspond to the step numbers above.

November 2010 © The Broadband Forum. All rights reserved. Page 157 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Figure 7 — Sequence of events for the “kick” mechanism

Web Site

B-NT

ACS

D.4 LAN Side Interface

A CPE MAY support web identity management by providing a LAN-side web URL
accessible from a browser operating on the local network.

The associated web server in the CPE SHOULD support CGI arguments to be passed to
corresponding arguments in the Kicked RPC method defined in Annex A. The
RECOMMENDED arguments are listed in Table 88.

Table 88 — Recommended CGIl Arguments for the kick URL

Name Type Value

command string(32) The value to be passed in the Command argument of the Kicked
method call. This CGl argument allows the ACS to identify a command
it is to perform in response to the resulting Kicked method call.

arg string(256) The value to be passed in the Arg argument of the Kicked method call.
This CGI argument MAY be used by the ACS to pass arguments for
the corresponding command. The particular uses for this argument are
not defined.

next string(1024) The value to be passed in the Next argument of the Kicked method
call. This contains the URL the web site wishes the browser be sent
after the Kicked process has completed. The ACS processing the
Kicked method MAY override this request and return a different URL in
the Kicked response.

To initiate the kick process, the browser would be sent to the CPE’s URL, for example
via an HTTP 302 redirect or via a form post. This access would include the CGI
arguments as defined in Table 88. For example, the browser might be redirected to:

November 2010 © The Broadband Forum. All rights reserved. Page 158 of 197

CPE WAN Management Protocol TR-069 Amendment 3

http://cpe-host-
name/kick.html?command=<#>&arg=<arg>&next=<url>

After the CPE receives the corresponding HTTP GET request, the CPE SHOULD initiate
a Kicked method call, using the CGI arguments to fill in the method arguments as
defined in Annex A.

The CPE SHOULD limit the number of Kicked method calls it sends to the ACS per hour
to a defined maximum value. Receiving a kick request that would result in exceeding

this maximum value is considered a security violation and SHOULD NOT result in a call
to the Kicked method.

November 2010 © The Broadband Forum. All rights reserved. Page 159 of 197

E.1

E.2

CPE WAN Management Protocol TR-069 Amendment 3

Annex E. Signed Package Format

Note — the mechanism defined in this Annex is DEPRECATED in favor of the
“Software Module Management mechanism” as described in Appendix II / TR-
157 Amendment 3 [29].

Introduction

This document specifies a signed package format that MAY be used to securely
download files into a recipient device. The format allows one or more files to be
encapsulated within a single signed package. The package format allows the recipient to
authenticate the source, and contains instructions for the recipient to extract and install
the contents.

The signed package format is intended to be used for download from a server via HTTP,
HTTPS, or FTP file transfer, or via other means of file transfer from a remote or local
source.

Signed Package Format Structure
The basic format of a signed package file is shown in Figure 8.

Figure 8 — Signed package format

Fixed length .

header Signatures
Command Payload
list files

A general description of each of the signed package format components is given in Table
89.

Table 89 — Signed package component summary

Component Description

Header The header is a fixed-length structure including a preamble, format version, and the lengths of
the command list and payload components.

November 2010 © The Broadband Forum. All rights reserved. Page 160 of 197

E.2.1

E.3

CPE WAN Management Protocol TR-069 Amendment 3

Component Description

Command list The command list contains a sequence of instructions to be followed in extracting and installing
the files contained within the package.
Each command is in the form of a type-length-value (TLV).

Signatures This section of the package contains a PKCS #7 digital signature block containing a set of zero
or more digital signatures as described in Section E.5.

Payload files This section of the package contains one or more files to be installed following the instructions in
the command list.

This document does not define any specific payload file formats.

Encoding Conventions

The following encoding conventions are used throughout this specification unless
explicitly stated otherwise:

* Multi-octet numeric values are encoded in network byte order (big endian format).

* File or directory path names are specified in UNIX format (e.g., “/dir/dir/base.ext”).

Header Format

The signed package header is a fixed-length 24-octet structure. The format of the header
is defined in Table 90.

Table 90 — Signed package header format

Field Type Description

Preamble 8 octets A fixed sequence of octets containing the following hexadecimal values:
32 57 49 52 45 5F 53 50

An interpreter of the signed package format MUST verify that the preamble
contains exactly this sequence of values for the package to be considered valid.

Major version 32-bit integer Value indicating the major component of the package format version. An
implementation conforming to this specification has a major version of 1 (one).

Changes to the major version denote incompatible changes to this format.

Minor version 32-bit integer Value indicating the minor component of the package format version. An
implementation conforming to this specification has a minor version of 0 (zero).
Changes to the minor version denote compatible changes to the package format.
An implementation implementing this version of the specification SHOULD be
capable of interpreting packages encoded using a format with a different minor
version value.

Command list | 32-bit integer Length in octets of the command list. The command list length MUST be less
length than 2'°.

Payload 32-bit integer Length in octets of the payload, including all files contained within it.

length

E.4 Command List Format

Each command in the command list has a format specified in Table 91.

Table 91 — Command format

Field Type Description
Type 32-bit integer Specifies the particular command.
Length 32-bit integer Specifies the length in octets of the Value field. The total length of the command

is Length + 8 octets.

Value (Conditional) Zero or more octets of parameters associated with the particular command type.

November 2010 © The Broadband Forum. All rights reserved. Page 161 of 197

E.4.1

CPE WAN Management Protocol TR-069 Amendment 3

If a recipient of this file format finds a Type value that is unknown to it, it MUST ignore
the command and continue parsing the remainder of the package, using the Length value
to skip to the next command, if any.

Command Types

The command list contains two types of commands: package parameters and actions to
be taken. Examples of package parameters include the software version of a contained
software image or a timeout for the remainder of the download. Examples of actions are
add, remove, and move. The actions taken together in the order specified in the
command list define the sequence of modifications to the file system required to extract
and install the contained files.

The file-related commands have two variants: one that operates on explicit files and
another that operates on versioned files. The name of a versioned file has a fixed “base”
up to 8 characters in length, and an “extension” that is 3 characters in length. Each time
the content of a versioned file is updated, the file extension is changed to a new value that
indicates the file version. Because of this, if an upgrade needs to replace a versioned file,
any existing file with the same base name but different extension MUST be removed.

The specific commands defined by this specification are listed in Table 92.

Table 92 — Command Type summary

Type Command name

0 End

1 Extract File

2 Extract Versioned File
3 Add File

4 Add Versioned File

5 Remove File

6 Remove Versioned File
7 Remove Sub-Tree

8 Move File

9 Move Versioned File
10 Version

11 Description

12 Recoverable Timeout
13 Unrecoverable Timeout
14 Initial Timeout

15 Initial Activity Timeout
16 Reboot

17 Format File System

18 Minimum Version

19 Maximum Version

20 Role

21 Minimum Non-Volatile Storage
22 Minimum Volatile Storage Size
23 Reserved

November 2010 © The Broadband Forum. All rights reserved. Page 162 of 197

E.4.2

E.4.3

CPE WAN Management Protocol TR-069 Amendment 3

Type Command name

24 Reserved

25 Required Attributes

1000- Vendor-specific commands
9999

End Command

This command signifies the end of the command list. This command need not be present
in a command list, but if encountered a recipient MUST stop parsing the remainder of the
command list portion of the package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value
field follows.

Extract and Add Commands

The extract and add commands include Extract File, Extract Versioned File, Add File,
and Add
Versioned File.

The extract commands instruct the recipient to remove any existing file of the same name
and replace it with the specified file in the payload.

The add commands instruct the recipient to first check for an existing file of the same
name, and only install the new file if no existing file can be found.

For the versioned file variants of these commands, the above operations consider an
existing file as any file that has the same base name as the specified file. That is, the
Extract Versioned File command removes all existing files with the same base name and
any extension prior to installing the new file. Similarly, the Add Versioned File
command checks for any file with the same base name as the specified file, regardless of
extension, and only installs the new file if no such file can be found.

When a new file is to be created in a directory that does not exist, the recipient MUST
create the required directory.

All of the extract and add commands include information in the Value portion of the
command. The format of this information is defined in Table 93.

Table 93 — Value format for the extract and add commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:
Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by

the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.
Path Length 32-bit integer The length of the Path field in octets.

November 2010 © The Broadband Forum. All rights reserved. Page 163 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Field Type Description

Hash Type 32-bit integer Type of hash algorithm used in creating the Hash field. The following values are
currently defined:
1 = SHA-1. When set to this value, the Hash field contains the 20-octet SHA-1
hash of the specified file. The Hash Length value in this case MUST be set to 20
(decimal).
All other values are reserved.

Hash Offset 32-bit integer The offset in octets from the beginning of the Value field to the Hash field in this

command.

Hash Length

32-bit integer

The length of the Hash field in octets.

File Offset 32-bit integer The offset in octets from the beginning of the payload portion of the package to
the beginning of the specified file.
File Length 32-bit integer The length of the file payload in octets. The actual contents of the file are found
in the file payload portion of the package.
Path String of length Path of the specified file, including the directory tree and file name.
Path Length
Hash Octet string of Hash of the payload file using the hash algorithm defined in the Hash Type field.

length Hash
Length

The hash of the payload file is included in the command because the signatures
validate only the package header and command list. By including the file hash in
the command, the signature ensures the validity of the file contents.

E.4.4 Remove Commands

The remove commands include Remove File, Remove Versioned File, and Remove Sub-

Tree.

The Remove File command removes the file with the specified path, if it exists.

The Remove Versioned File command removes all files with the same base as the
specified file, regardless of extension.

The Remove Sub-Tree command removes all files and directories beneath and including
the specified path.

All of the remove commands include information in the Value portion of the command.
The format of this information is defined in Table 94.

Table 94 — Value format for the remove commands

Field Type Description
Flags 32-bit integer A bit-field defined as follows:
Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.
All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.
Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this

command.

Path Length

32-bit integer

The length of the Path field in octets.

Path

String of length
Path Length

Path of the specified file or directory.

E.4.5 Move Commands

The move commands include Move File and Move Versioned File.

November 2010

Page 164 of 197

© The Broadband Forum. All rights reserved.

CPE WAN Management Protocol TR-069 Amendment 3

The Move File command renames a file to the name specified in this command. If the
destination path specified indicates a different directory, the file is moved to the indicated
destination directory.

The Move Versioned File command moves a file matching the base name of the file
specified in the source path, regardless of the extension. If more than one such file exists
in the specified directory, only one of the files is moved and the others are deleted. If the
versioned file extension string is a decimal number, then the lowest numbered file is
moved and the rest are deleted.

In all cases, if there is already a file with the same path as the specified destination file,
the move commands will overwrite that file.

If the source file specified in a move command does not exist, no action is taken, and the
recipient continues to process the remaining commands in the command list.

All of the move commands include information in the Value portion of the command.
The format of this information is defined in Table 95.

Table 95 — Value format for the move commands

Field Type Description

Flags 32-bit integer A bit-field defined as follows:
Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by

the recipient.

Source Path 32-bit integer The offset in octets from the beginning of the Value field to the Source Path field
Offset in this command.
Source Path 32-bit integer The length of the Source Path field in octets.
Length
Destination 32-bit integer The offset in octets from the beginning of the Value field to the Destination Path
Path Offset field in this command.
Destination 32-bit integer The length of the Destination Path field in octets.
Path Length
Source Path String of length Path of the source file.
Source Path
Length
Destination String of length Path of the destination to which the source file is to be moved/renamed.
Path Destination Path
Length

E.4.6 Version and Description Commands

The Value field for both the Version and Description commands contain a single UTF-8
string to be used for informational, display, or logging purposes.

The Version field is intended to indicate the overall version associated with the package.
For example, if the package contains a software upgrade (which can include many
individual files), the Version field MAY be used to indicate the new software version
associated with the upgrade.

November 2010 © The Broadband Forum. All rights reserved. Page 165 of 197

E.4.7

CPE WAN Management Protocol TR-069 Amendment 3

Timeout Commands

The timeout commands include Initial Timeout, Initial Activity Timeout, Recoverable
Timeout, and Unrecoverable Timeout.

The timeout commands specify a timeout value for the continued download of the
package file before the download SHOULD be terminated. These commands are to
accommodate the case where the command and signature portions of the package are
downloaded and interpreted prior to downloading the remainder of the package file. The
timeout commands MAY be used to control the timeout parameters associated with a
download process of this type. If the package is downloaded or received as a whole prior
to interpreting the package contents, the timeout commands MAY be ignored.

Each timeout command includes information in the Value portion of the command. The
format of this information is defined in Table 96.

Table 96 — Value format for the timeout commands

Field Type Description

Timeout 32-bit Integer The timeout value in seconds relative to the beginning of the package download
operation. A value of 0 (zero) indicates an infinite timeout.

Each of the timeout commands allows a distinct timeout value to be specified, where the
Timeout field in that command indicates the desired value. The use of each timeout
value is based on the state of the recipient as it processes commands using the state
transition model shown in Figure 9. The figure shows the state transitions that occur as
each command in the command list is processed in sequence. For each command
processed, the state remains the same until one of the cases indicated by the state
transition arrows occurs.

November 2010 © The Broadband Forum. All rights reserved. Page 166 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Figure 9 — Download state diagram used for timeout model

Recoverable

State
Remove command

w/ Unsafe flag = 0

Start
download

Initial State

Install complete

Extract, Add, Move, or Remove
w/ Unsafe flag = 1
OR Format File System

End

Unrecoverable
State

Extract, Add, Move, or Remove
w/ Unsafe flag = 1
OR Format File System

The above state diagram is used during a download to determine which timeout values to
use. The definition of each of the timeout types associated with the timeout commands is
shown in Table 97.

Table 97 — Timeout command definitions

Command Description

Initial Timeout This command sets the download timeout used during the Initial State as shown in
Figure 9. This timeout is measured from the time the overall package download
began.

Initial Activity Timeout This command sets an activity timeout to be used only during the Initial State as

shown in Figure 9. The activity timeout is measured from the most recent time any
package data had been transferred to the recipient.

Note that during all states other than the Initial State, there is no activity timeout (the
activity timeout is infinite).

Recoverable Timeout This command sets the download timeout used during the Recoverable State as
shown in Figure 9. This timeout is measured from the time the overall package
download began.

Unrecoverable Timeout This command sets the download timeout used during the Unrecoverable State as
shown in Figure 9. This timeout is measured from the time the overall package
download began.

November 2010 © The Broadband Forum. All rights reserved. Page 167 of 197

E.4.8

E.4.9

CPE WAN Management Protocol TR-069 Amendment 3

Reboot Command

This command indicates that the recipient reboot in order to complete the installation
process. Ifused, this command MUST be the last command in the command list (other
than End, if present).

The Length parameter for this command MUST be 0 (zero), indicating that no Value
field follows.

Format File System

This command indicates that the recipient reformat its file system as part of the
installation process. If used, this command implies that all existing files in the file
system (or the portion of the file system relevant for the installation process) are to be
cleared and overwritten by the new files in the package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value
field follows.

E.4.10 Minimum and Maximum Version Commands

The Minimum Version and Maximum Version commands are used to specify the range
of software version numbers for which the package is intended to apply.

When a minimum and/or maximum version number is specified in the package using
these commands, the recipient MUST NOT install the files or take any other action
specified in the command list if the software version of the recipient falls outside the
indicated range.

This command MAY be used only if the format of the actual software version associated
with the recipient is in a hierarchical format that can be compared numerically given the
procedures outlined below.

The minimum and maximum version commands include information in the Value portion
of the command. The format of this information is defined in Table 98.

Table 98 — Value format for the minimum and maximum version commands

Field Type Description
Version Array of 32-bit An array of integer elements indicating the version number. This is considered a
integers hierarchical version number (e.g., “1.0.20.3”), where each successive integer
represents a more minor element of the version number.

The following procedure is used to determine if a version is within the indicated range.

If a Minimum Version is given, then for each element of the Version array, beginning
with the first (most major element):

1. If this element of the recipient’s actual version is greater than the corresponding
element of the minimum version, then the recipient’s version meets the
requirement and the procedure is complete.

2. [If this element of the recipient’s actual version number is less than the
corresponding element of the minimum version, then the recipient’s version does
not meet the requirement. In this case, the procedure is complete and the recipient

November 2010 © The Broadband Forum. All rights reserved. Page 168 of 197

CPE WAN Management Protocol TR-069 Amendment 3

MUST NOT install the files in this package or follow any of the remaining
commands.

3. Otherwise (the values are equal),

a. If'this is the last element in the array, then the recipient’s version meets
the requirement and the procedure is complete.

b. Otherwise (more elements remain), the procedure SHOULD continue at
step 1 using the next element of the array.

If a Maximum Version is given, then for each element of the Version array, beginning
with the first (most major element):

1. Ifthis element of the recipient’s actual version is less than the corresponding
element of the maximum version, then the recipient’s version meets the
requirement and the procedure is complete.

2. If this element of the recipient’s actual version number is greater than the
corresponding element of the maximum version, then the recipient’s version does
not meet the requirement. In this case, the procedure is complete and the recipient
MUST NOT install the files in this package or follow any of the remaining
commands.

3. Otherwise (the values are equal),

a. If'this is the last element in the array, then the recipient’s version meets
the requirement and the procedure is complete.

b. Otherwise (more elements remain), the procedure SHOULD continue at
step 1 using the next element of the array.

E.4.11 Role Command

The role command is used to indicate the target application or purpose of the package.
This is intended to indicate any side effects or post-processing that might be required for
a particular package.

The role commands include information in the Value portion of the command. The
format of this information is defined in Table 99.

November 2010 © The Broadband Forum. All rights reserved. Page 169 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Table 99 — Value format for the role command

Field Type Description

Role 32-bit integer An enumeration indicating the target application or purpose of the package. The
following values are defined:

1 = Software upgrade

2 = Software recovery

3 = Web content

4 = Vendor configuration

5 = Tone file (see [25] Appendix B)

6 = Ringer file (see [25] Appendix B)

Values with OxFF as their most significant octet are to be interpreted as a
vendor-specific Role. In this case, the subsequent three octets contain the OUI
(organizationally unique identifier) identifying the vendor as defined in [10].
When this value is used, the vendor MAY define subsequent additional
arguments to be included in this command in order to specifically identify the
role. Any additional arguments are to be interpreted in a vendor-specific
manner.

All other values are reserved.

E.4.12 Minimum Storage Commands

The minimum storage commands include Minimum Volatile Storage Size and Minimum
Non-Volatile Storage Size.

The minimum storage commands indicate the minimum requirement of the recipient
device to be able to install the files contained in the package. If present, each command
indicates the minimum requirement for the type of storage indicated by the command
name.

If the recipient device does not meet a specified minimum requirement, the recipient
MUST NOT install any of the files in the package or continue processing commands.

The minimum storage commands include information in the Value portion of the
command. The format of this information is defined in Table 100.

Table 100 — Value format for the minimum storage commands

Field Type Description

Storage Size 32-bit Integer The minimum required storage in bytes of the type indicated by the command.

E.4.13 Required Attributes Command

The Required Attributes command is used to specify additional attributes of the recipient
device that are required in order for the package to be considered valid for installation.

One or more Required Attributes commands MAY be included in a single package, each
indicating a different class of attributes required.

The Required Attribute command includes information in the Value portion of the
command. The format of this information is defined in Table 101.

November 2010 © The Broadband Forum. All rights reserved. Page 170 of 197

CPE WAN Management Protocol

TR-069 Amendment 3

Table 101 — Value format for the required attributes command

Field

Type

Description

Defining Entity

32-bit Integer

Identifier indicating the definer of the Class and Attribute values used in this
command. The following values are defined:

A value of 0 (zero) indicates standard Class and Attribute definitions. Standard
definitions are those defined by this version or future versions of this
specification.

Values with OxFF as their most significant octet indicate vendor-specific Class
and Attribute definitions. In this case, the subsequent three octets contain the
OUI (organizationally unique identifier) identifying the vendor as defined in [10].
If a recipient processes a Required Attributes command with a defining entity
value that it does not recognize, it SHOULD ignore the command and continue
processing subsequent commands.

Class

32-bit Integer

An enumeration indicating the criterion for which the recipient is to be compared
to determine whether or not this package is appropriate for that device. For a
given criterion, the attribute array field indicates the particular allowed values
associated with that criterion.

In this version of the specification, no standard class values are defined. For
vendor-specific defining entities, the interpretation of class values is vendor-
specific.

If a recipient processes a Required Attributes command with a class value that it
does not recognize, it SHOULD ignore the command and continue processing
subsequent commands.

Attribute Array

Array of 32-bit
Integer

A variable-length array attribute, where each attribute is an enumeration of a
particular allowed value for the particular class.

If actual value associated with the recipient device matches any of the values
listed in this array, then the recipient meets the specified requirement.
Otherwise, the recipient does not meet the requirement and the package MUST
NOT be installed.

In this version of the specification, no standard attribute values are defined. For
vendor-specific defining entities, the interpretation of attribute values is vendor-
specific.

E.5 Signatures

The signature section immediately follows the command list section of the package file.
The signature section consists of a digital signature block using the PKCS #7 signature
syntax [16].

In particular, the signature block includes exactly one PKCS #7 SignedData object, which
contains zero or more signatures with the following constraints:

The signatures are “external signatures,” meaning that the signed message is not
encapsulated within the SignedData object. Instead, the signed message data consists
of the octet string formed by the header and the command list components of the

package.

The contentType element of the contentinfo MUST indicate type “data.”

The content element of the contentInfo MUST be empty, since this is an external
signature and the message data resides outside the signature itself.

The digestAlgorithm used for each signature MUST be of type SHA-1.

The digestEncryptionAlgorithm used for each signature MUST be of type RSA.

November 2010

© The Broadband Forum. All rights reserved. Page 171 of 197

CPE WAN Management Protocol TR-069 Amendment 3

* The Tag value indicating the Identifier associated with the overall SignedData object
MUST be less than or equal to 30, resulting in a single-octet encoding of the
Identifier.

* Ifthere are no signatures in the signature block, there would be no extended
certificates or certificate revocation lists, the SignerInfo set would be empty, and the
digestAlgorithms set MAY be empty. All the other fields in SignedData MUST be
present as normal. Note that the content of an empty signature block is independent
of the content of the package and thus can be pre-computed as a fixed sequence of
bytes.

If the signature block contains more than one signature, at least one of the signatures
MUST be successfully validated for the recipient to consider the signed package as
trusted.

If one or more signatures are expected by the package recipient, the recipient MUST
validate the signature or signatures prior to processing the commands contained within
the command list. If none of the included signatures are validated, the recipient MUST
NOT process any of the commands in the command list or install any of the files
contained in the package.

If the recipient implementation is such that command list validation and processing might
be done without having loaded the entire package file from its source, the recipient MAY
assume that the combined length of the header, command list, and signature block is no
greater than 150 kilobytes.

Note that although the signed message data includes only the package header and
command list, the signature assures the integrity of the entire package because all
commands that refer to payload files include a hash of the file contents.

Note also that additional signatures can be added to an existing signed package file
without modifying any part of the file other than the signature block itself. The package
format is structured such that the other content (header, command list, and payload) of
the package file need not change if the length of the signature block changes.

November 2010 © The Broadband Forum. All rights reserved. Page 172 of 197

F.1

F.1.1

CPE WAN Management Protocol TR-069 Amendment 3

Annex F. Device-Gateway
Association

Introduction

The CPE WAN Management Protocol can be used to remotely manage CPE Devices that
are connected via a LAN through a Gateway. When an ACS manages both a Device and
the Gateway through which the Device is connected, it can be useful for the ACS to be
able to determine the identity of that particular Gateway.

The procedures defined in this Annex allow an ACS to determine the identity of the
Gateway through which a given Device is connected.

As an example of when this capability might be needed, an ACS establishing QoS for a
particular service might need to provision both the Device as well as the Gateway
through which that Device is connected. To do the latter, the ACS would need to
determine the identity of that particular Gateway.

The specific scenario that the defined mechanism is intended to accommodate is where
both the Gateway and Device are managed via the CPE WAN Management Protocol, and
both are managed by the same ACS (or by distinct ACSs that are appropriately coupled).
Where a Device and Gateway are managed by independent ACSs, it is assumed that there
is no requirement for either ACS to be made aware of the Device-Gateway association.

The defined mechanism relies on the Device’s use of DHCP [20] / [35]. It is expected
that the vast majority of remotely manageable Devices will use DHCP, though not
necessarily all such Devices. While the mechanism defined here for Device-Gateway
association requires the use of DHCP, a Device using this mechanism need not use
DHCP for address allocation. This mechanism makes no assumptions about the address
allocated to the Device. That is, the Device might have a private or public IP address.

Terminology
The following terminology is used in this Annex.

Device CPE connected via local area network through a Gateway, bridge, or
router.

Device A three-tuple that uniquely identifies a Device, which includes the

Identity manufacturer OUI, serial number, and (optionally) product class.

Gateway Internet Gateway Device.

Gateway A three-tuple that uniquely identifies a Gateway, which includes the
Identity manufacturer OUI, serial number, and (optionally) product class.

November 2010 © The Broadband Forum. All rights reserved. Page 173 of 197

F.2

F.2.1

CPE WAN Management Protocol TR-069 Amendment 3

Procedures

The procedures for Device-Gateway association are summarized as follows:

* A Device following this Annex will pass its Device Identity to the Gateway via a
vendor-specific DHCP option. When the Gateway receives this information, it
populates a table containing identity information for each Device on its LAN. This
information is made available to the ACS via the ManageableDevice table in the
Gateway’s data model, defined in [24] and [32].

* In the DHCP responses, the Gateway provides the Device with its Gateway Identity,
which the Device makes available to the ACS via the GatewayInfo data object
defined in [31] and [32]. The Device notifies the ACS of changes to the contents of
this object. Thus a Device connecting to a previously unknown Gateway will result in
the ACS being notified of the Gateway Identity.

* To ensure the validity of this information, which is carried over an inherently insecure
DHCP exchange, the ACS validates the Gateway Identity provided by the Device by
crosschecking against the Device Identity provided by the Gateway.

Gateway Requirements

A Gateway conforming to this Annex MUST support the DeviceAssociation:1 profile as
defined in [24] and [32].

A Gateway conforming to this Annex MUST inspect all DHCPv4 or DHCPv6 requests
received on a LAN interface and determine if the requesting Device has included its
Device Identity in the request. A DHCP request is determined to include the Device
Identity if it contains a DHCPv4 V-I Vendor-Specific Information Option (option number
125, as defined in [22]) or DHCPv6 Vendor-Specific Information Option (option number
17, as defined in [35]) that includes the Device Identity information, as defined in Section
F.2.5. The DHCPv4 requests for which this requirement applies are DHCPDISCOVER,
DHCPREQUEST, and DHCPINFORM. The DHCPv6 requests for which this
requirement applies are SOLICIT, REQUEST, RENEW, and INFORMATION-
REQUEST.

If the DHCP request is determined to include the Device Identity, then the Gateway
MUST do the following:

* The Gateway MUST include its Gateway Identity in all subsequent DHCP
responses. The Gateway Identity is carried in the DHCPv4 V-I Vendor-Specific
Information Option (option number 125, as defined in [22]) or DHCPv6 Vendor-
Specific Information Option (option number 17, as defined in [35]), as defined in
Section F.2.5. The DHCPv4 responses for which this requirement applies are
DHCPOFFER and DHCPACK. The DHCPv6 responses for which this
requirement applies are ADVERTISE and REPLY.

* On successful completion of the DHCP exchange, if an entry with a matching
Device Identity is not currently listed in the ManageableDevice table, then the
Gateway MUST add a new entry in its ManageableDevice table (see [24] and
[32]) that includes the Device Identity for this Device.

November 2010 © The Broadband Forum. All rights reserved. Page 174 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The Gateway MUST adhere to the following additional requirements:

The Gateway MUST retain a Device’s entry in the ManageableDevice table as
long as the Device remains actively connected to the Gateway’s LAN.

The Gateway MUST remove a Device’s entry when either:

o The DHCP-supplied information becomes invalid, e.g. the DHCPv4 lease
expires or is released.

o The Gateway determines that the Device is no longer actively connected to
the Gateway’s LAN using a locally defined means of connectivity detection.

The Gateway MUST allow the ACS to request active notification on additions
or deletions to the ManageableDevice table. If the ACS has set the Notification
Attribute for the parameter ManagementServer.ManageableDeviceNumberOf-
Entries to Active Notification, then the Gateway MUST notify it each time a
Device entry is added or removed using the Notification mechanism defined by
the CPE WAN Management Protocol. If Active Notification is enabled for this
parameter, the Gateway MUST limit the frequency of Active Notification
resulting from changes to the number of entries in the ManageableDevice table
as specified by the value of the ManageableDeviceNotificationLimit parameter
in the same object.

F.2.2 Device Requirements

A Device conforming to this Annex MUST support the GatewaylInfo:1 profile as defined
in[31] and [32].

A Device conforming to this Annex MUST do the following:

In DHCP requests, the Device MUST include a DHCPv4 V-I Vendor-Specific
Information Option (option number 125, as defined in [22]) or DHCPv6 Vendor-
Specific Information Option (option number 17, as defined in [35]) that includes
its Device Identity information, as defined in Section F.2.5. The DHCPv4
requests for which this requirement applies are DHCPDISCOVER,
DHCPREQUEST, and DHCPINFORM. The DHCPv6 requests for which this
requirement applies are SOLICIT, REQUEST, RENEW, and INFORMATION-
REQUEST.

If the DHCP response includes the Gateway Identity carried in the DHCPv4 V-1
Vendor-Specific Information DHCP Option (option number 125, as defined in
[22]) or DHCPv6 Vendor-Specific Information Option (option number 17, as
defined in [35]), as defined in Section F.2.5, the Device MUST record the
received value in the GatewayInfo data object defined in [31] and [32]. All of the
following values MUST be recorded:

Device.Gatewaylnfo.ManufacturerOUI

Device.GatewaylInfo.SerialNumber

Device.Gatewaylnfo.ProductClass

November 2010 © The Broadband Forum. All rights reserved. Page 175 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The DHCPv4 responses for which this requirement applies are DHCPOFFER and
DHCPACK. The DHCPv6 response for which this requirement applies are
ADVERTISE and REPLY.

If any of the elements of the Gateway Identity are not present in the V-1 Vendor-
Specific Information DHCP Option, the Device MUST record an empty string for
each such item (replacing the previous value, if any).

For all of the parameters in the Device.Gatewaylnfo object, the Device MUST by
default set the Notification attribute as defined in Annex A to Active Notification.
The Device MUST apply this default whenever the URL of the ACS is set or
subsequently modified. Whenever Active Notification is enabled for these
parameters, the device MUST actively notify the ACS as defined in Annex A if
the value of any of these parameters changes.

If the DHCP-discovered information becomes invalid, e.g. the DHCPv4 lease is
released or expires without renewal, all entries in the GatewayInfo object MUST
be discarded (set to the empty string).

F.2.3 ACS Requirements

Whenever a Device is associated with a Gateway, the Device will notify the ACS,
providing the new Gateway Identity information. When this occurs, the ACS SHOULD
do the following:

If the ACS has previously associated the Device with a Gateway, the ACS
SHOULD examine the Gateway Identity from the Device (from the GatewayInfo
object) and compare it to the Gateway Identity of the prior association. If the
association is unchanged, the ACS need not take any further action.

If the Gateway Identity from the Device is different from the identity of the
Gateway previously associated with the Device, or if there was no previous
Gateway association for the Device, then the ACS SHOULD first validate the
information provided by the Device, and if validated, update the Device-Gateway
association to indicate the new Gateway Identity.

The ACS SHOULD consider the association valid on/y if all elements of the
Device Identity match the Device Identity elements in at least one entry in the
ManageableDevice table of the indicated Gateway (see [24] and [32]). The ACS
would determine the current contents of the ManageableDevice table either by
contacting the Gateway using a Connection Request to read the table, or receiving
Active Notifications on additions and deletions to this table (by the ACS having
previously requested Active Notifications on the ManageableDeviceNumberOf-
Entries parameter).

November 2010 © The Broadband Forum. All rights reserved. Page 176 of 197

CPE WAN Management Protocol TR-069 Amendment 3

F.2.4 Device-Gateway Association Flows
Note — The examples in this Section are specific to DHCPv4. The flows for DHCPv6

would display the same logic but with DHCPv4 messages replaced with the
corresponding DHCPv6 messages.

Figure 10 shows the flow associated with the procedures for Device-Gateway association,
where the Device uses a DHCP Discover message to initiate the association as part of
DHCP address allocation.

Device Gateway ACS
i i I
' | :
I
: DHCP Discover (device identity) : :
I Ny
i g l
I] I
| DHCP Offer (gateway identity) | :
X : I
: DHCP Request (device identity) : :
| “u |
| | Add device record to :
: : ManageableDevice table :
I I
: DHCP Ack (gateway identity) : :
A i I
I I I
I ! I
I TR-069 Inform (device + gateway identity) I
| | g
I I I
: TR-069 Inform Response |
N T 1
' : :
I
I] Establish TR-069 Session I
I] I
| e 2
I | . I
| Soarseercoube (3801 | opina
I Cross-
: Check
I
I
I
I

Figure 10 — Device-Gateway Association using DHCP Discover

November 2010 © The Broadband Forum. All rights reserved. Page 177 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The use of DHCP does not dictate that the device use DHCP for address allocation. If the
Device obtains IP addressing parameters using other means, the device would use a
DHCP Inform for the exchange of information with the Gateway. The flow for this case
is show in Figure 11.

Device Gateway ACS
1 T 1
1 1]
| | |
: DHCP Inform (device identity) I :
I A |
] 1 1
1 1 1
1 1
! ! Add device record to !
: : ManageableDevice table :
1 1
1 DHCP Ack (gateway identity) ! !
K 1 |
1 1 1
! ! !
) TR-069 Inform (device + gateway identity) 1
| E >
i i I
L TR-069 Inform Response !
[i 1
| | I
1 | Establish TR-069 Session 1
1 1 [
I i ittty X
i | |
: : Get ManageableDevice table (TR-069) : Optional
: f' """""""""""" ': Cross-
1 1 Check
1
]
1
)

Figure 11 — Device-Gateway Association Using DHCP Inform

F.2.5 DHCP Vendor Options

The Device Identity and Gateway Identity information exchanged via DHCP MUST be
contained within the DHCPv4 V-1 Vendor-Specific Information Option (option number
125, as defined in [22]) or DHCPv6 Vendor-Specific Information Option (option number
17, as defined in [35]). These DHCP options are defined to allow vendor-specific
information from multiple distinct organizations, where the specific organization is
explicitly identified via an IANA Enterprise Number.

For DHCP messages that contain Device Identity or Gateway Identity information, the
Vendor-Specific Information DHCP Option MUST include an element identified with the
IANA Enterprise Number for the Broadband Forum that follows the format defined
below. The IANA Enterprise Number for the Broadband Forum is 3561 in decimal (the
“ADSL Forum” entry in the IANA Private Enterprise Numbers registry [18]).

November 2010 © The Broadband Forum. All rights reserved. Page 178 of 197

F.3

CPE WAN Management Protocol TR-069 Amendment 3

Each vendor-specific element within this DHCP Option is defined to contain a series of
one or more Encapsulated Vendor-Specific Option-Data fields, encoded as specified in
[22]/[35]. Each such field includes a Sub-Option Code, a Sub-Option Length, and Sub-
Option Data. The values for these elements defined in this Annex are listed in Table 102.

Table 102 — Encapsulated Vendor-Specific Option-Data fields

Encapsulated Option Sub-Option | Source Source Parameter?®

Code Entity
DeviceManufacturerOUI 1 Device Device.Devicelnfo.ManufacturerOUI**
DeviceSerialNumber 2 Device Device.Devicelnfo.SerialNumber'
DeviceProductClass 3 Device Device.Devicelnfo.ProductClass®’
GatewayManufacturerOU| 4 Gateway Devicelnfo.ManufacturerOUI*
GatewaySerialNumber 5 Gateway Devicelnfo.SerialNumber?
GatewayProductClass 6 Gateway Devicelnfo.ProductClass®

In encoding the source parameter value in the corresponding Sub-Option Data element,
the resulting string MUST NOT be null terminated.

For a DHCP request from the Device that contains the Device Identity, the DHCP Option
MUST contain the following Encapsulated Vendor-Specific Option-Data fields:

¢ DeviceManufacturerOUI
e DeviceSerialNumber

* DeviceProductClass (this MAY be left out if the corresponding source parameter
is not present)

For a DHCP response from the Gateway that contains the Gateway Identity, the DHCP
Option MUST contain the following Encapsulated Vendor-Specific Option-Data fields:

* GatewayManufacturerOUI
* GatewaySerialNumber

¢ GatewayProductClass (this MAY be left out if the corresponding source
parameter is not present)

Security Considerations

While this Annex was designed to provide a high degree of security, some known
vulnerabilities remain:

* While the mechanism to allow the ACS to validate the identity information
provided to it by the Device is optional, it is strongly encouraged that this
validation be implemented. The use of this validation is the only means within
the context of this Annex to overcome the lack of an inherent integrity checking
mechanism in the DHCP exchange between the Device and Gateway. By using

% The value of the corresponding Sub-Option Data element is obtained from the specified parameter value.
21 As defined in [31] and [32].
2 As defined in [24] and [32].

November 2010 © The Broadband Forum. All rights reserved. Page 179 of 197

CPE WAN Management Protocol TR-069 Amendment 3

this validation, attempts to tamper with the identity information of either the
Device or Gateway can be detected by the ACS.

* The condition for validation of the Device-Gateway association is that the Device
can communicate over the LAN to the Gateway and that the Device and Gateway
can authenticate themselves via the CPE WAN Management Protocol to the ACS.
The possibility exists that a valid Device not present on a Gateway’s LAN could
falsify its association with a Gateway by providing a communication path
between the Device and the Gateway’s LAN. For example, a Device could
establish a communication path to a server, which in turn communicates with a
Trojan horse application on the target LAN, which acts as a proxy for the Device.
Providing such a path could make the Device indistinguishable from one
physically connected to the LAN. To mitigate this possibility, the Gateway can
optionally provide mechanisms to allow the user to monitor and regulate what
devices are present on the LAN.

November 2010 © The Broadband Forum. All rights reserved. Page 180 of 197

GA1

G.2

CPE WAN Management Protocol TR-069 Amendment 3

Annex G. Connection Request via
NAT Gateway

Note — This mechanism only works with “Classic STUN” as defined in RFC 3489
[21], which has been made obsolete by the introduction of RFC 5389 [33]. This
mechanism was not designed to work with STUN as defined in RFC 5389. IPv6
deployments will either not use NAT or will use it in different ways. A future version
of this document will consider IPv6 deployments.

Introduction

The CPE WAN Management Protocol can be used to remotely manage CPE Devices that
are connected via a LAN through a Gateway. When an ACS manages a Device
connected via a NAT Gateway (where the Device has been allocated a private IP
address), the CPE WAN Management Protocol can still be used for management of the
Device, but with the limitation that the Connection Request mechanism defined in
Section 3.2.1.2 that allows the ACS to initiate a Session cannot be used.

The procedures defined in this Annex allow an ACS to initiate a Session with a device
that is operating behind a NAT Gateway. This provides the equivalent functionality of
the Connection Request defined in Section 3.2.1.2, but makes use of a different
mechanism to accommodate this scenario.

The mechanism defined in this Annex does not assume that the Gateway through which
the Device is connected supports the CPE WAN Management Protocol. This mechanism
requires support only in the Device and the associated ACS.

Procedures

To accommodate the ability for an ACS to issue the equivalent of a Connection Request
to CPE allocated a private address through a NAT Gateway that might not be CPE WAN
Management Protocol capable, the following is required:

e The CPE MUST be able to discover that its connection to the ACS is via a NAT
Gateway that has allocated a private IP address to the CPE.

* The CPE MUST be able to maintain an open NAT binding through which the
ACS can send unsolicited packets.

* The CPE MUST be able to determine the public IP address and port associated
with the open NAT binding, and communicate this information to the ACS.

To accomplish the above items, this Annex defines a particular use of the STUN
mechanism, defined in RFC 3489 [21].

November 2010 © The Broadband Forum. All rights reserved. Page 181 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The use of STUN for this purpose requires that a new UDP-based Connection Request
mechanism be defined to augment the existing TCP-based Connection Request
mechanism defined in Section 3.2.1.2.

The procedures for making use of STUN to allow the use of UDP Connection Requests
to a CPE are summarized as follows:

* The ACS enables the use of STUN in the CPE (if it is not already enabled by
factory default) and designates the STUN server for the CPE to use.

¢ The CPE uses STUN to determine whether or not the CPE is behind a NAT
Gateway with a private allocated address.

* [fthe CPE is behind a NAT Gateway with a private allocated address, the CPE
uses the procedures defined in STUN to discover the binding timeout.

* The CPE sends periodic STUN Binding Requests at a sufficient frequency to keep
alive the NAT binding on which it listens for UDP Connection Requests.

* When the CPE determines the public IP address and port for the NAT binding on
which it is listening for UDP Connection Requests, and whenever it subsequently
changes, the CPE communicates this information to the ACS. Two means are
provided by which the ACS, at its discretion, can obtain this information—either
from information provided in the STUN Binding Request messages themselves,
or via Notification on changes to the UDPConnectionRequestAddress parameter,
which the CPE will update to include the public Connection Request address and
port.

* Whenever the ACS wishes to establish a connection to the CPE, it can send a
UDP Connection Request to the CPE. To accommodate the broadest class of
NAT Gateways, this will be sent from the same source address and port as the
STUN server.

G.2.1 CPE Requirements

A CPE conforming to this Annex MUST support the UDPConnReq :1 profile as defined
in [24] and [32] if the CPE is an Internet Gateway Device, or as defined in [31] and [32]
if the CPE is any other type of Device.

Whenever the STUNEnable parameter in the ManagementServer object is set to true,
CPE following the requirements of this Annex MUST make use of the procedures
defined in STUN [21] to determine whether or not address and/or port translation is
taking place between the CPE and the STUN server. If address and/or port translation is
taking place, the CPE MUST:

* Determine the public IP address and port for the NAT binding on which it is
listening for UDP Connection Request messages.

* Discover the NAT binding timeout, and send STUN Binding Request messages at
a rate necessary to keep alive this binding.

* Indicate via STUN optional attributes on which binding it is listening for UDP
Connection Requests, and if the binding has recently changed. Also, update the

November 2010 © The Broadband Forum. All rights reserved. Page 182 of 197

G.211

CPE WAN Management Protocol TR-069 Amendment 3

UDPConnectionRequestAddress parameter to indicate the current public IP
address and port associated with the binding.

* Listen for UDP Connection Request messages, and act on these messages when
they arrive.

The details of each of these functions are defined in the following Sections.

Note — While the CPE requirements defined here certainly apply to a Device
connected via LAN to a Gateway, the same procedures can be followed by a
Gateway, which might be operating behind a network-based NAT gateway. Thus the
requirements are defined generically for CPE, which might be either a Device or
Gateway.

Binding Discovery

When STUN is enabled via the STUNEnable parameter in the ManagementServer object,
the CPE MUST send Binding Request messages to the STUN server designated in the
STUNServerAddress and STUNServerPort parameters, as defined in [21]. If no
STUNServerAddress is given, the address of the ACS determined from the host portion
of the ACS URL MUST be used as the STUN server address.

For the purpose of binding discovery, Binding Requests MUST be sent from the source
address and port on which the CPE will be listening for UDP Connection Requests if it
determines that address and/or port translation is in use (Binding Requests for binding
timeout discovery, will be sent from a different port as described in Section G.2.1.2).

The basic Binding Request message allows the CPE to determine if address and/or port
translation is in use between the CPE and the STUN server. This is determined by
comparing the source address and port on which the request was sent to the MAPPED-
ADDRESS attribute received in a response from the STUN server. If either the address
or port is different, then translation is in use.

If it is determined that address and/or port translation is in use, the CPE MUST record the
value of the MAPPED-ADDRESS attribute in the most recently received Binding
Response. This represents the public IP address and port to which UDP Connection
Requests would be sent.

Each time the CPE subsequently sends a Binding Request for the purpose of maintaining
the binding (see G.2.1.2), the CPE MUST again determine if address and/or port
translation is in use, and if so, obtain the public IP address and port information from the
MAPPED-ADDRESS attribute in a successful Binding Response. The actions the CPE
will take when this information changes are defined in Section G.2.1.3.

If the CPE has been provisioned with a STUNUsername and STUNPassword in the
ManagementServer object, then if the CPE receives a Binding Error Response from the
STUN server with a fault code of 401 (Unauthorized), then the CPE MUST resend the
Binding Request with the USERNAME and MESSAGE-INTEGRITY attributes as
defined in [21]. Whenever a Binding Request is sent that includes the MESSAGE-
INTEGRITY attribute, the CPE MUST discard a corresponding Binding Response if the
MESSAGE-INTEGRITY attribute in the Binding Response is either invalid, as defined
in [21], or is not present.

November 2010 © The Broadband Forum. All rights reserved. Page 183 of 197

G.21.2

CPE WAN Management Protocol TR-069 Amendment 3

If the local IP address allocated to the CPE changes, the CPE MUST re-discover the
binding using the procedures described above. The minimum limit on the Binding
Request period defined by STUNMinimumKeepAlivePeriod does not apply in this case.

Other than Binding Request messages sent explicitly in response to a Binding Error
Response from the STUN server with a fault code of 401 (Unauthorized), the CPE
MUST NOT include the MESSAGE-INTEGRITY attributes in any Binding Request.*®

The STUN client in the CPE need not support the CHANGE-REQUEST attribute of
STUN Binding Requests, nor need it understand the CHANGED-ADDRESS, SOURCE-
ADDRESS, and REFLECTED-FROM attributes present in a Binding Response.**

The STUN client in the CPE need not support the STUN messages for exchanging a
Shared Secret. None of these messages are used in the application defined in this Annex.

Maintaining the Binding

To keep alive the NAT binding, the CPE MUST periodically retransmit Binding Request
messages from the source address and port on which the CPE will be listening for UDP
Connection Requests.

The CPE MUST NOT send these Binding Requests more frequently than is specified by
the STUNMinimumKeepAlivePeriod parameter in the ManagementServer object.

The CPE MUST send these Binding Requests at least as frequently as is specified by the
STUNMaximumKeepAlivePeriod parameter in the ManagementServer object, if a value
is specified.

If the value of STUNMinimumKeepAlivePeriod and STUNMaximumKeepAlivePeriod
are not equal, then the CPE MUST actively discover the longest keep-alive period for
which the NAT binding is maintained. To do this, the CPE MUST use the procedures
described generally in [21] to learn the binding timeout. Specifically, the CPE MUST be
able to test whether the binding has timed out by sending Binding Requests from a
secondary source port distinct from the primary source port, and use the RESPONSE-
ADDRESS attribute in the Binding Request to indicate that the STUN Binding Response
be sent to the primary source port (the port on which the CPE is listening for UDP
Connection Request messages).

The specific procedures by which the CPE uses Binding Requests from the secondary
source port to determine the binding timeout is left to the discretion of the CPE vendor.
In general, the procedure would consist of two phases: a discovery phase, and a
monitoring phase. During the discovery phase, the CPE is attempting to learn the value
of the binding timeout, and would test different timeout values to determine the actual
timeout value (for example, using a binary search). During the monitoring phase, the
CPE would periodically test the binding prior to refreshing it to determine if the binding

2 Because the STUN specification requires the STUN server to use message integrity in its response if message

integrity was used in the request, the CPE cannot use message integrity for Binding Requests on its own, but only
when so directed by the STUN server. This is to ensure that the server has total discretion as to when and whether
message integrity is to be used.

These attributes are primarily intended to allow discovery of the type of NAT in use, which is not required for this
Annex.

24

November 2010 © The Broadband Forum. All rights reserved. Page 184 of 197

G.21.3

CPE WAN Management Protocol TR-069 Amendment 3

is still in place. If not, the CPE could then revert to the discovery phase to determine a
new value for the binding.

The minimum limit on the Binding Request period defined by STUNMinimumKeep-
AlivePeriod does not apply to Binding Requests sent from a secondary source port.

Communication of the Binding Information to the ACS

Two means are defined by which the ACS can be informed of the binding information.
The CPE MUST support both methods.” The first method involves the use of optional
STUN attributes sent in the Binding Requests. The second method involves the CPE
updating the value of the UDPConnectionRequestAddress parameter as the binding
information changes.

Table 103 specifies a set of STUN attributes are defined for this application. These use
Attribute Type values that are greater than Ox7FFF, which the STUN specification
defines as “optional.” STUN servers that do not understand optional attributes, are
required to ignore them.

Table 103 — Optional STUN attributes used in Binding Request messages

Attribute Type | Name Description

0xC001 CONNECTION-REQUEST-BINDING Indicates the binding on which the CPE is listening for
UDP Connection Requests.

The content of the Value element of this attribute MUST
be the following byte string:
0x64 0x73 0x6C 0x66
0x6F 0x72 0x75 0x6D
0x2E Ox6F 0x72 0x67
0x2F 0x54 0x52 0x2D
0x31 0x31 0x31 0x20
This corresponds to the following text string:*®
“dslforum.org/TR-111"

A space character is the last character of this string so
that its length is a multiple of four characters.

The Length element of this attribute MUST equal:
0x0014 (20 decimal)

0xC002 BINDING-CHANGE Indicates that the binding has changed.
This attribute contains no value. lts Length element
MUST be equal to zero.

This attribute MUST only be used where the
CONNECTION-REQUEST-BINDING is also included.

A CPE MUST include the CONNECTION-REQUEST-BINDING attribute in every
Binding Request message whose source address and port are the address and port on
which it is listening for UDP Connection Request messages. In all other Binding Request
messages, the CPE MUST NOT include this attribute.

¥ Defining two methods allows flexibility by the ACS in making the tradeoffs between these two approaches.

Specifically, the STUN-based approach may require a tighter coupling between the ACS itself and the associated
STUN server, while the Notification-based approach may result in greater communication overhead.

This text string is used to allow an observer, including the NAT Gateway itself, to identify that these STUN
messages represent UDP Connection Request bindings associated with this specification. A Gateway might use
this knowledge to optimize the associated performance. For example, a Gateway could lengthen the UDP timeout
associated with this binding to reduce the frequency of binding updates.

26

November 2010 © The Broadband Forum. All rights reserved. Page 185 of 197

CPE WAN Management Protocol TR-069 Amendment 3

In every Binding Request message sent in which the CPE includes the CONNECTION-
REQUEST-BINDING attribute, if the value of the STUNUsername parameter in the
ManagementServer object is non-empty, the CPE MUST include the USERNAME
attribute set to the value of the STUNUsername parameter, if necessary padded with
trailing spaces to make its length a multiple of 4 bytes (as required by the STUN
protocol).

Whenever the CPE detects a change to the NAT binding (as well as the first time the CPE
determines the binding), it MUST immediately send a Binding Request message from the
primary source port (the port on which the CPE is listening for UDP Connection Request
messages) that includes the BINDING-CHANGE attribute. This Binding Request MUST
NOT include the RESPONSE-ADDRESS or CHANGE-REQUEST attributes. In all
other Binding Request messages, the CPE MUST NOT include the BINDING-CHANGE
attribute. The minimum limit on Binding Request period defined by STUNMinimum-
KeepAlivePeriod does not apply to Binding Requests that include the BINDING-
CHANGE attribute.

For Binding Requests that include the BINDING-CHANGE attribute, the CPE MUST
follow the retransmission procedures define in [21] to attempt to ensure the successful
reception. If, following these retransmission procedures, the CPE determines that the
Binding Request has failed, it MUST NOT make further attempts to send Binding
Requests that include the BINDING-CHANGE attribute (until the binding subsequently
changes again).

When the CPE determines that address and/or port mapping is in use, and whenever the
CPE determines that the binding has changed (as well as the first time the CPE
determines the binding), the CPE MUST update the value of the
UDPConnectionRequestAddress parameter in the ManagementServer object.
Specifically:

* The Host portion of the UDPConnectionRequestAddress MUST be set to the
current public IP address for the binding associated with the UDP Connection
Request as determined from the most recent binding information.

* The Port portion of the UDPConnectionRequestAddress MUST be set to the
current public port for the binding associated with the UDP Connection Request
as determined from the most recent binding information.

When the CPE determines that address and/or port mapping is in use, the CPE MUST
also set the NATDetected parameter in the ManagementServer object to true.

If the ACS has set the Notification attribute on the UDPConnectionRequestAddress
parameter to Active Notification, then whenever the binding information has changed,
the CPE MUST establish a connection to the ACS and include the
UDPConnectionRequestAddress in the Inform message, as defined in Annex A.

When the UDPConnectionRequestAddress is changed, if the time since the most recent
Notification on a change to the UDPConnectionRequestAddress is less than the value of
UDPConnectionRequestAddressNotificationLimit, the Notification MUST be delayed
until the specified minimum time period is met.

November 2010 © The Broadband Forum. All rights reserved. Page 186 of 197

G.214

CPE WAN Management Protocol TR-069 Amendment 3

Note — In addition to the specified minimum notification period, the CPE MAY use its
discretion to delay notifying the ACS of updated binding information in order to
avoid excessive notifications. Such a delay would only be used if the CPE is
confident that the binding is likely to change again within a brief period. For
example, during active discovery of the binding timeout it is reasonable to expect
frequent binding changes. Similarly, a CPE might be able to detect that a security
attack is causing frequent binding changes, and limit the number of notifications until
the attack ceases.

If the CPE determines that neither address nor port mapping are in use, then the CPE
MUST indicate this to the ACS by setting the NATDetected parameter to false, and
setting the UDPConnectionRequestAddress such that the Host and Port are the local IP
address and port on which the CPE is listening for UDP Connection Request messages.

UDP Connection Requests

A CPE conforming to this Annex MUST listen for UDP Connection Request messages
on the port that it has designated for this purpose. This MUST be true whether or not the
CPE has detected address or port translation in use, and whether or not the use of STUN
is enabled.

Note — a CPE MUST also continue to listen for TCP-based Connection Requests as
defined in Section 3.2.1.2.

The format of the UDP Connection Request message is defined in Section G.2.2.3.
When the CPE receives a UDP Connection Request message, it MUST both authenticate
and validate the message.

A UDP Connection Request message is valid if and only if the following requirements
are met:

* It MUST NOT violate any requirements specified in [6] for an HTTP 1.1
request message.

* The Method given in the Request Line MUST be “GET”.

* The Timestamp given by the value of the “ts” query string argument MUST be
strictly greater than the Timestamp value for the UDP Connection Request
message that had been most recently received, validated, and authenticated.

To allow the above comparison to be made, the CPE MUST maintain a
persistent record of Timestamp value of the most recent UDP Connection
Request that was successfully validated and authenticated (except across CPE
reboots). The Timestamp value for any UDP Connection Request message that
fails to be validated or authenticated MUST NOT be recorded. The CPE MAY
maintain a record of this most recent Timestamp across CPE reboots. If the
CPE does not maintain this value across reboots, then immediately following
the reboot the value zero MUST be used.

The CPE MAY place stricter requirements on the Timestamp than stated above.
The CPE MAY, for example, additionally verify that the Timestamp is within a
time window relative to its understanding of the current time. If a CPE chooses

November 2010 © The Broadband Forum. All rights reserved. Page 187 of 197

G.2.2

G.2.21

CPE WAN Management Protocol TR-069 Amendment 3

to do this, it SHOULD avoid making the time window too narrow, in order to
allow for a reasonable margin of error in both the CPE and ACS.

* The Message ID given by the value of the “id” query string argument MUST be
distinct from that of the UDP Connection Request message that had been most
recently received, validated, and authenticated.

* The Username given by the value of the “un” query string argument MUST
match the value of the parameter Device.ManagementServer.Connection-
RequestUsername.

A UDP Connection Request message is authenticated if and only if the following
requirements are met:

* The Signature given by the value of the “sig” query string argument MUST
match the value of the signature locally computed by the CPE following the
procedure specified in Section G.2.2.3 using the local value of the parameter
Device.ManagementServer.ConnectionRequestPassword.

Whenever a CPE receives and successfully authenticates and validates a UDP
Connection Request, it MUST follow the same requirements as for a TCP-based
Connection Request that are defined in Section 3.2.1.2.

The CPE MUST ignore a UDP Connection Request that is not successfully authenticated
or validated.

The CPE MUST ignore the content of any non-empty Message Body that might be
present in the UDP Connection Request (this allows the possibility of the use of a non-
empty message body in a future version of this protocol).

Because STUN responses and UDP Connection Requests will be received on the same
UDP port, the CPE MUST appropriately distinguish STUN messages from UDP
Connection Requests using the content of the messages themselves. As the first byte of
all STUN messages defined in [21] is either 0 or 1, and the first byte of the UDP
Connection Request is always an ASCII encoded alphabetic letter, the CPE MAY use this
distinction to distinguish between these messages.

Port 7547 has been assigned by IANA for the CPE WAN Management Protocol (see
[17]), and the CPE MAY use this port for UDP Connection Requests.

ACS Requirements

An ACS following the requirements of this Annex MUST be associated with a STUN
server that follows the requirements defined in this Section.

STUN Server Requirements

The STUN server MUST conform to all of the requirements defined in [21], with the
following exceptions, which the STUN server MAY choose not to implement.

* The STUN server need not support the Shared Secret exchange mechanism
defined in [21]. If message integrity is used, the shared secrets MUST be
statically provisioned, and correspond to the STUNUsername and
STUNPassword parameters in the ManagementServer object in the CPE.

November 2010 © The Broadband Forum. All rights reserved. Page 188 of 197

G.2.2.2

G.2.2.2.1

CPE WAN Management Protocol TR-069 Amendment 3

* The STUN server need not support a secondary source IP address or port for
sending Binding Responses (A2/P2). If it does not, the CHANGED-ADDRESS
attribute SHOULD be filled in with the primary address and port (A1/P1), and the
STUN server MAY ignore the CHANGE-REQUEST attribute if received in a
Binding Request.

The STUN server MAY require message integrity for any received Binding Requests of
its choosing by responding to the request with a Binding Error Response with fault code
401 (Unauthorized).

Determination of the Binding Information

The ACS can choose either of the two defined mechanisms to determine the current
binding information from a CPE.

STUN-based Approach

If the ACS chooses to use the attributes received by the STUN server, it SHOULD set a
non-empty STUNUsername and STUNPassword in the ManagementServer object of
each CPE. The STUNUsername MUST be unique among all CPE managed by the
corresponding ACS to ensure that the CPE can be distinguished. The STUNPassword
SHOULD be unique among all CPE managed by the corresponding ACS, and SHOULD
follow the password strength guidelines specified in [21].

Whenever the STUN server receives a Binding Request that includes both the BINDING-
CHANGE and CONNECTION-REQUEST-BINDING attributes:

* The STUN server SHOULD respond with a Binding Error Response with fault
code 401 (Unauthorized) in order to force the CPE to retransmit the Binding
Request with message integrity included.

* When the STUN server receives the retransmitted request with message integrity,
it SHOULD authenticate the requester. This would likely involve communication
between the STUN server and ACS if they were not implemented as a single
entity.

* [f the authentication fails, the STUN server MUST respond with a Binding
Request Error as defined in [21] and take no further action.

¢ [f the authentication is successful, the STUN server SHOULD extract the source
IP address and port from the Binding Request message, and record these as the
new IP address and port to be used for UDP Connection Requests. Depending on
the implementation, this might involve the STUN server informing the ACS of
the IP address and port along with the corresponding STUNUsername, from
which the ACS would then record this information for the CPE corresponding to
that STUNUsername.

* The STUN server SHOULD perform the above only once for a given Transaction
ID in the Binding Request. Redundant copies of the Binding Request with the
same Transaction ID SHOULD be ignored.

November 2010 © The Broadband Forum. All rights reserved. Page 189 of 197

G.2.2.22

G.2.23

CPE WAN Management Protocol TR-069 Amendment 3

Using this approach, the STUN server MAY choose not to require message integrity or
authenticate any Binding Requests other than those for which it follows the above
procedures to determine the binding information.

The ACS MAY determine the current binding at any time even if no change was notified
by following the above procedure on any received Binding Request for which the
CONNECTION-REQUEST-BINDING attribute is present. The required presence of the
USERNAME attribute in these Binding Requests allows the ACS to tentatively
determine the CPE’s identity prior to subsequent authentication. This allows an ACS to
periodically verify the binding information to ensure that it is up-to-date in case explicit
indications of a binding change had failed to reach the ACS.

If the ACS determines that the CPE is no longer behind a NAT that is doing address or
port mapping, the ACS MAY use TCP-based Connection Requests as defined in Section
3.2.1.2.

Notification-based Approach

If the ACS chooses to use Active Notification on the UDPConnectionRequestAddress
parameter, it SHOULD do the following:

* Set the Notification attribute for the UDPConnectionRequestAddress parameter to
Active Notification.

* Record changes to the UDPConnectionRequestAddress parameter whenever this
parameter is included in the Inform message, and use the most recently recorded
value to determine the destination of UDP Connection Request messages.
Specifically, the destination IP address for UDP Connection Request messages is
determined from the “host” portion of this parameter, and the destination port is
determined from the “port” portion of this parameter. If the host is given as a
domain name, the ACS MUST use DNS to determine the associated IP address.
If the port is not explicitly given in the UDPConnectionRequestAddress
parameter, port 80 MUST be used as the default value.

* Observe the value of the NATDetected parameter (either by reading it when
UDPConnectionRequestAddress changes, or by enabling Active Notification on
this parameter as well). Whenever this parameter is false, the ACS MAY use
TCP-based Connection Requests as defined in Section 3.2.1.2.

Using this approach, the ACS MAY choose not to require message integrity or
authenticate any STUN Binding Requests, since these requests are not used to convey
information to the ACS. In this case, the ACS need not set a STUNUsername or
STUNPassword in the CPE.

UDP Connection Requests

The ACS MUST send UDP Connection Request messages from the same source IP
address and port as the STUN server.

A UDP Connection Request message MUST be transmitted within a single UDP packet
sent to the IP address and port determined by the ACS as described in Section G.2.2.2.

November 2010 © The Broadband Forum. All rights reserved. Page 190 of 197

CPE WAN Management Protocol TR-069 Amendment 3

The ACS SHOULD send multiple copies of the same UDP Connection Request message
in order to reduce the likelihood that the message is lost due to packet loss. When an
ACS sends multiple copies of the same UDP Connection Request, the content of the
message (including the message ID, timestamp, and cnonce, as defined below) MUST be
identical for each successive copy.

There is no response message associated with a UDP Connection Request message.

The format of the UDP Connection Request message is derived from the format of an
HTTP 1.1 [6] GET message, though the HTTP 1.1 protocol itself is not used.
Specifically, the UDP Connection Request message MUST conform to the following
requirements:

e It MUST be a valid HTTP 1.1 GET message as defined in [6].
* It MUST contain no Message Body.

* If a Content-Length header is present, its value MUST be zero.
* The Method given in the Request Line MUST be “GET”.

* The Request-URI given in the Request Line MUST be an Absolute-URI
according to the rules defined in [12]. The URI MUST be formed as follows:

o The Scheme portion of the URI MUST be “http” or “HTTP”.

o The Authority portion of the URI MUST be as specified in [12]. The ACS
MAY set this to the value of Device.ManagementServer.UDPConnection-
RequestAddress, if it is known. Otherwise, the ACS MUST derive this
string from the actual destination IP address and port to which the UDP
Connection Request message will be sent. The “port” portion of this
string MUST be present unless the destination port number is “80”.

o The Path portion of the URI MUST be empty.

o The Query portion of the URI MUST contain a query string encoded as
defined by the “application/x-www-form-urlencoded” content type
defined in [23]. The query string MUST contain the following name-
value pairs:

Name Value

ts Timestamp. The number of seconds since the Unix epoch until the time the
message is created (the standard Unix timestamp).

id Message ID. An unsigned integer value that MUST be set to the same value for
all retransmitted copies of the same UDP Connection Request. The value MUST
change between successive distinct UDP Connection Requests.

un Username. The value of the parameter Device.ManagementServer.Connection-
RequestUsername as read from the CPE.

cn Cnonce. A random string chosen by the ACS.

November 2010 © The Broadband Forum. All rights reserved. Page 191 of 197

G.23

CPE WAN Management Protocol TR-069 Amendment 3

Name Value

sig Signature. Formed from the 40-character hexadecimal representation (case
insensitive) of HMAC-SHA1 (Key, Text) [19], where:

* Key is the value of the parameter Device.ManagementServer.Connection-
RequestPassword as read from the CPE.

* Text is a string formed by concatenating the following elements (in the order
listed, with no spaces between items):

* The value of the ts (Timestamp) element
* The value of the id (Message ID) element
* The value of the un (Username) element
* The value of the cn (Cnonce) element

Below is an example Request-URI:

http://10.1.1.1:8080?ts=1120673700&1d=1234&un=CPE57689
&cn=XTGRWIPC6D3IPXS3&sig=3545F7B5820D76A3DF45A3A509DA8DSC
38F13512

Message Flows

The following figures show example message flows associated with the procedures
defined in Sections G.2.1 and G.2.2 to support Connection Requests to devices behind a
NAT gateway.

In all of the examples, the address/port pairs use the notation (4, P), where A4 is the IP
address and P is the port. In the examples, the CPE uses (41, P1) as its primary port (the
port on which the CPE is listening for UDP Connection Request messages) and (41, P2)
is its secondary port (used for binding timeout discovery). When passing through a NAT
Gateway, these addresses are translated to (41', P1') and (41', P2'), respectively. In all of
the examples it is assumed that the STUN Server does not have a secondary address/port
and thus the CHANGED-ADDRESS attribute in the Binding Response (which need not
be used by the CPE) contains its primary address/port, (43, P3).

November 2010 © The Broadband Forum. All rights reserved. Page 192 of 197

CPE WAN Management Protocol TR-069 Amendment 3

Figure 12 shows the periodic binding discovery and binding maintenance flows where the
CPE sends the Binding Request from the primary source port and includes the
CONNECTION-REQUEST-BINDING and (if a Username had been set) USERNAME
attributes. In this example it is assumed that the STUN Server has not chosen to
authenticate the request.

(41, P1) (41, P1") (43, P3)
(41, P2) (41' P2 ACS/
CPE Gateway STUN Server
From (41, PI) BINDING-REQUEST (CONNECTION-REQUEST- >
To (43, P3) > BINDING : USERNAME)
BINDING-RESPONSE (MAPPED-ADDRESS=A1'PI': From (43, P3)
< ¢ SOURCE-ADDRESS=43,P3 - CHANGED-ADDRESS=A3,P3) To (41’ P1

Figure 12 — Binding discovery / maintenance from the primary source port

Figure 13 shows a Binding Request sent by the CPE from its secondary source port for
the purpose of discovering whether or not the primary binding has timed out in the NAT
gateway. In this case the Binding Request does not include the CONNECTION-
REQUEST-BINDING attribute since it is not sent from the primary source port. The last
leg of the exchange (shown in grey) will not occur if the primary binding has timed out.

(A1, P1) (Al', P1") (43, P3)
(41, P2) (41, P2) ACS/
CPE Gateway STUN Server
From (41, P2) > BINDING-REQUEST (RESPONSE-ADDRESS=A1", P1") >
To (43, P3)
BINDING-RESPONSE (MAPPED-ADDRESS=A1'P2" : From (43, P3)
SOURCE-ADDRESS=A3,P3 - CHANGED-ADDRESS=A43.P3 : To (41’ PI)
REFLECTED-FROM=A1'"P2’)

Figure 13 — Binding Request from secondary source port for binding
timeout discovery

Figure 14 shows a Binding Change notification where the STUN Server has chosen to
make use of the STUN-based approach (see Section G.2.2.2.1), and therefore

November 2010 © The Broadband Forum. All rights reserved. Page 193 of 197

CPE WAN Management Protocol TR-069 Amendment 3

authenticates the Binding Request prior to storing the information associating the
Username with the current binding address and port.

(A1, P1) (Al', P1") (43, P3)
(A1, P2) (4l' P2) ACS/
CPE Gateway STUN Server
From (41, P1) BINDING-REQUEST (CONNECTION-REQUEST- >
To (43, P3) > BINDING : BINDING-CHANGE : USERNAME)
< < BINDING-ERROR-RESPONSE (401) From (43, P3)
To (41, PI")
From (41, P1) BINDING-REQUEST (CONNECTION-REQUEST-
To (43, P3) > BINDING - BINDING-CHANGE - USERNAME : >
MSG-INTEGRITY)
Associate
Username
with
(Al', P1")
BINDING-RESPONSE (MAPPED-ADDRESS=AI'PI' : From (43, P3)
B ¢ SOURCE-ADDRESS=43,P3 : CHANGED-ADDRESS=43,P3 - To (41’ P1Y)
MSG-INTEGRITY)

Figure 14 — Binding change notification authenticated by the ACS

Figure 15 shows a Binding Change notification where the STUN Server has chosen to
make use of the Notification-based approach (see Section G.2.2.2.2), and therefore does
not need to authenticate the Binding Request since the ACS instead uses CPE WAN
Management Protocol Notification to update the binding information.

(41, P1) (41", PI') (43, P3)
(41, P2) (41, P2) ACS/
CPE Gateway STUN Server
From (41, P1) BINDING-REQUEST (CONNECTION-REQUEST- >
To (43, P3) > BINDING : BINDING-CHANGE : USERNAME)

Figure 15 — Binding change notification not authenticated by the ACS

November 2010

BINDING-RESPONSE (MAPPED-ADDRESS=A1',PI'" :

From (43, P3)

<

SOURCE-ADDRESS=A43,P3 : CHANGED-ADDRESS=A3,P3)

© The Broadband Forum. All rights reserved.

To (41", PI)

Page 194 of 197

G.3

CPE WAN Management Protocol TR-069 Amendment 3

Figure 16 shows a UDP Connection Request message sent to the CPE to initiate a CPE
WAN Management Protocol session. In this example, the STUN Server sends the
identical UDP Connection Request multiple times to improve the likelihood of successful
reception by the CPE.

(A1, P1) (Al', P1") (43, P3)
(A1, P2) (41", P2") ACS/
CPE Gateway STUN Server
< < UDP Connection Request From (43, P3)
. To (41, PI")
< < UDP Connection Request From (43, P3)
To (41', PI")

Figure 16 — UDP Connection Request

Security Considerations

The following security considerations associated with the procedures defined in this
Annex are identified:

* The STUN specification describes several potential attacks using the STUN
mechanism. The reader is referred to Section 12 of RFC 3489 [21] for a detailed
description of these potential attacks and the associated risk.

* Because binding changes will result in actions required by the ACS—
authentication of a CPE, and subsequent database update, and potentially
establishment of a CPE WAN Management Protocol session over which to
receive an Inform—attacks that can cause frequent changes to the NAT binding
could result in an increased burden on the ACS. The ACS can set a minimum
limit on the rate of Notifications on binding changes if Active Notification is
used. However, there is a tradeoff between the maximum Notification rate and
the length of time for which the ACS might not be able to send Connection
Requests to the CPE due to out-of-date information.

November 2010 © The Broadband Forum. All rights reserved. Page 195 of 197

H.1

CPE WAN Management Protocol TR-069 Amendment 3

Annex H. Software Module
Management UUID
Usage

Overview

The Software Module Management mechanism uses a UUID (see RFC 4122 [34] for a
complete definition of UUID) to uniformly identify a Deployment Unit across CPE.
Since Deployment Units can be installed multiple times on a single CPE (e.g. multiple
versions of the same Deployment Unit or the same version of the Deployment Unit on
different Execution Environments), a Deployment Unit on a specific CPE is uniquely
identified by the combination of UUID, version, and Execution Environment that the
Deployment Unit is installed upon, but the UUID is still the uniform unique identifier of
that Deployment Unit (i.e. this means that the UUID will be the same independent of the
version of the Deployment Unit). A version 3 UUID is a method for generating UUIDs
from “names” that are unique within some “namespace”, which means that a UUID
generated by different actors but using the same “name” and “namespace” will cause the
generation of the same exact UUID. The Software Module Management mechanism
requires, whether the ACS or the CPE generates the UUID, that the UUID be generated
in the exact same manner following both the rules defined in Section 4.3 / RFC 4122 [34]
and the rules defined within this Annex.

Section 4.3 / RFC 4122 [34] identifies the following high-level requirements for a
Version 3 UUID:

* The UUIDs generated at different times from the same name in the same
namespace MUST be equal.

* The UUIDs generated from two different names in the same namespace should be
different (with very high probability).

* The UUIDs generated from the same name in two different namespaces should be
different with (very high probability).

e Iftwo UUIDs that were generated from names are equal, then they were generated
from the same name in the same namespace (with very high probability).

The remainder of this Annex defines additional rules that MUST be followed by the ACS
and CPE when generating a UUID as well as under what circumstances a CPE will be
required to generate a UUID.

November 2010 © The Broadband Forum. All rights reserved. Page 196 of 197

H.2

H.3

CPE WAN Management Protocol TR-069 Amendment 3

UUID Generation Requirements

The following set of additional requirements ensures that the Version 3 UUID will be
uniform regardless of whether the ACS or CPE generates it:

1) The FQDN “namespace” UUID as defined in Appendix C /RFC 4122 [34] MUST
be used: 6ba7b810-9dad-11d1-80b4-00c04fd430c8

2) The SHA-1 hash algorithm MUST be used instead of MD5

3) The “name” will be the FQDN of the Deployment Unit, which MUST be a
combination of the Deployment Unit’s Name (the value that will be contained
within the DeployementUnit.{i}.Name parameter) and the Deployment Unit
Vendor’s domain name (the value that will be contained within the
DeploymentUnit. {i}.Vendor parameter). The format is: ‘<Name> + “.” +

<Vendor> + “.”’. For example, if the DU Vendor is “broadband-forum.org” and
the DU Name is “samplel”, then the FQDN of the DU is “samplel.broadband-
forum.org.”

Note, as the Deployment Unit’s Name is used within generation of the FQDN,
it MUST be altered if it contains any characters other than 0-9, a-z, A-Z, _
(underscore), or — (hyphen). Percent encoding MUST be used to replace any
other characters (i.e. a ‘%’ character followed by the ASCII hex value of the
replaced character). For example, a Deployment Unit Name of “sample.1”
would be converted to “sample%s2el”.

An example of a Version 3 UUID looks like:
76183ed7-6a38-3890-66ef-a6488efb6690

CPE Requirements
There are three circumstances when a CPE MUST generate its own UUID:

a) Factory-Installed Deployment Units : a Deployment Unit is installed at factory
time without the aid of an ACS

b) LAN-Side-Installed Deployment Units : a Deployment Unit is installed by a
LAN-Side management mechanism (e.g. UPnP DM SMS, CLI, or GUI) without
the aid of an ACS

c) ACS-Installed Deployment Units : a Deployment Unit is installed by an ACS, but
the ACS either doesn’t send the UUID or sends an empty string as the UUID
within the Install operation of the ChangeDUState RPC.

In these circumstances the CPE MUST generate the UUID as it installs the Deployment
Unit. The ACS can discover / validate the generated UUID by either inspecting the
DUStateChangeComplete or inspecting the Deployment Unit data model table.

November 2010 © The Broadband Forum. All rights reserved. Page 197 of 197

