

 Bluetooth SIG Proprietary

Bluetooth® Erratum

▪ Revision: v1.0

▪ Revision Date: 2018-07-16

▪ Group Prepared By: Core Specification Working Group (CSWG)

▪ Feedback Email: core-main@bluetooth.org

This Erratum is mandatory and applies to the following specifications (collectively, the “Source
Specifications”):

 Core Specification v5.0 [1]

 Core Specification v4.2 [2]

 Core Specification v4.1 [3]

 Core Specification v4.0 [4]

 Core Specification v3.0 + HS [5]

 Core Specification v2.1 + EDR [6]

Abstract:

This document specifies the changes to be applied to the Core Specifications required to incorporate the
various pairing updates.

Erratum 10734: Pairing

Updates

mailto:core-main@bluetooth.org

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 2 of 61

Revision History

Revision Number Date Comments

v1.0 2018-07-16 Adopted by the Bluetooth SIG Board of Directors.

Contributors

Name Company

Joel Linsky Qualcomm Technologies, Inc.

Marcel Holtmann Intel Corporation

Alain Michaud Microsoft Corporation

Mayank Batra Qualcomm Technologies International, Ltd.

Brian Redding Qualcomm Technologies, Inc.

Clive D.W. Feather Samsung Electronics Co., Ltd.

Rasmus Abildgren Samsung Electronics Co., Ltd.

Shawn Ding Broadcom Corporation

L.C. Ko MediaTek Inc.

Pål Håland Nordic Semiconductor ASA

Martin Turon Google Inc.

Piotr Winiarczyk Silvair, Inc.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 3 of 61

Use of this specification is your acknowledgement that you agree to and will comply with the following notices and

disclaimers. You are advised to seek appropriate legal, engineering, and other professional advice regarding the use,

interpretation, and effect of this specification.

Use of Bluetooth specifications by members of Bluetooth SIG is governed by the membership and other related

agreements between Bluetooth SIG and its members, including those agreements posted on Bluetooth SIG’s website

located at www.bluetooth.com. Any use of this specification by a member that is not in compliance with the applicable

membership and other related agreements is prohibited and, among other things, may result in (i) termination of the

applicable agreements and (ii) liability for infringement of the intellectual property rights of Bluetooth SIG and its

members.

Use of this specification by anyone who is not a member of Bluetooth SIG is prohibited and is an infringement of the

intellectual property rights of Bluetooth SIG and its members. The furnishing of this specification does not grant any

license to any intellectual property of Bluetooth SIG or its members. THIS SPECIFICATION IS PROVIDED “AS IS” AND

BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES MAKE NO REPRESENTATIONS OR WARRANTIES AND

DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, TITLE,

NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR THAT THE CONTENT OF THIS SPECIFICATION IS

FREE OF ERRORS. For the avoidance of doubt, Bluetooth SIG has not made any search or investigation as to third parties

that may claim rights in or to any specifications or any intellectual property that may be required to implement any

specifications and it disclaims any obligation or duty to do so.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BLUETOOTH SIG, ITS MEMBERS AND THEIR AFFILIATES

DISCLAIM ALL LIABILITY ARISING OUT OF OR RELATING TO USE OF THIS SPECIFICATION AND ANY INFORMATION

CONTAINED IN THIS SPECIFICATION, INCLUDING LOST REVENUE, PROFITS, DATA OR PROGRAMS, OR BUSINESS

INTERRUPTION, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, AND EVEN IF BLUETOOTH SIG, ITS MEMBERS OR THEIR

AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF THE DAMAGES.

If this specification is a prototyping specification, it is solely for the purpose of developing and using prototypes to verify

the prototyping specifications at Bluetooth SIG sponsored IOP events. Prototyping Specifications cannot be used to

develop products for sale or distribution and prototypes cannot be qualified for distribution.

Products equipped with Bluetooth wireless technology ("Bluetooth Products") and their combination, operation, use,

implementation, and distribution may be subject to regulatory controls under the laws and regulations of numerous

countries that regulate products that use wireless non-licensed spectrum. Examples include airline regulations,

telecommunications regulations, technology transfer controls and health and safety regulations. You are solely

responsible for complying with all applicable laws and regulations and for obtaining any and all required authorizations,

permits, or licenses in connection with your use of this specification and development, manufacture, and distribution of

Bluetooth Products. Nothing in this specification provides any information or assistance in connection with complying

with applicable laws or regulations or obtaining required authorizations, permits, or licenses.

Bluetooth SIG is not required to adopt any specification or portion thereof. If this specification is not the final version

adopted by Bluetooth SIG’s Board of Directors, it may not be adopted. Any specification adopted by Bluetooth SIG’s

Board of Directors may be withdrawn, replaced, or modified at any time. Bluetooth SIG reserves the right to change or

alter final specifications in accordance with its membership and operating agreements.

Copyright © 2018. All copyrights in the Bluetooth Specifications themselves are owned by Apple Inc., Ericsson AB, Intel

Corporation, Lenovo (Singapore) Pte. Ltd., Microsoft Corporation, Nokia Corporation, and Toshiba Corporation. The

Bluetooth word mark and logos are owned by Bluetooth SIG, Inc. Other third-party brands and names are the property of

their respective owners.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 4 of 61

Contents

1 Language ... 7

1.1 Language conventions .. 7

2 Conventions used in this Erratum .. 8

3 Changes to Core Specification v5.0 ... 9

3.1 Changes to Core Specification v5.0, Volume 2, Part C: Link Manager Protocol Specification 9

3.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check ... 9

3.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side .. 10

3.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side ... 10

3.2 Changes to Core Specification v5.0, Volume 2, Part E: Host Controller Interface Functional

Specification ... 10

3.2.1 [Modified Section] 3 OVERVIEW OF COMMANDS AND EVENTS .. 10

3.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS .. 11

3.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command ... 11

3.2.4 [Modified Section] 7.7.65.9 LE Generate DHKey Complete Event ... 12

3.2.5 [Modified Section] 7.8.37 LE Generate DHKey Command ... 13

3.3 Changes to Core Specification v5.0, Volume 2, Part H: Security Specification 13

3.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS ... 13

3.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE ... 14

3.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION .. 14

3.4 Changes to Core Specification v5.0, Volume 3, Part C: Generic Access Profile 15

3.4.1 [Modified Section] 14.1 CROSS-TRANSPORT KEY DERIVATION ... 15

3.5 Changes to Core Specification v5.0, Volume 3, Part H: Security Manager Specification 16

3.5.1 [Modified Section] 2.3.5.6.1 Public Key Exchange .. 16

3.5.2 [Modified Section] 2.3.6 Repeated Attempts ... 17

3.5.3 [Modified Section] 3.5.5 Pairing Failed .. 18

3.6 Changes to Core Specification v5.0, Volume 6, Part B: Link Layer Specification 18

3.6.1 [Modified Section] 4.6 FEATURE SUPPORT ... 18

3.6.2 [New Section] 4.6.23 Remote Public Key Validation ... 19

3.6.3 [Modified Section] 5.1.4 Feature Exchange Procedure ... 20

4 Changes to Core Specification v4.2 ... 21

4.1 Changes to Core Specification v4.2, Volume 2, Part C: Link Manager Protocol Specification .. 21

4.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check ... 21

4.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side .. 22

4.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side ... 22

4.2 Changes to Core Specification v4.2, Volume 2, Part E: Host Controller Interface Functional

Specification ... 22

4.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION .. 22

4.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS .. 23

4.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command ... 23

4.2.4 [Modified Section] 7.7.65.9 LE Generate DHKey Complete Event ... 24

4.2.5 [Modified Section] 7.8.37 LE Generate DHKey Command ... 25

4.3 Changes to Core Specification v4.2, Volume 2, Part H: Security Specification 25

4.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS ... 25

4.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE ... 26

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 5 of 61

4.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION .. 26

4.4 Changes to Core Specification v4.2, Volume 3, Part C: Generic Access Profile 27

4.4.1 [Modified Section] 14.1 CROSS-TRANSPORT KEY DERIVATION ... 27

4.5 Changes to Core Specification v4.2, Volume 3, Part H: Security Manager Specification 28

4.5.1 [Modified Section] 2.3.5.6.1 Public Key Exchange .. 28

4.5.2 [Modified Section] 2.3.6 Repeated Attempts ... 29

4.5.3 [Modified Section] 3.5.5 Pairing Failed .. 30

4.6 Changes to Core Specification v4.2, Volume 6, Part B: Link Layer Specification 30

4.6.1 [Modified Section] 4.6 FEATURE SUPPORT ... 30

4.6.2 [New Section] 4.6.23 Remote Public Key Validation ... 31

4.6.3 [Modified Section] 5.1.4 Feature Exchange Procedure ... 31

5 Changes to Core Specification v4.1 ... 33

5.1 Changes to Core Specification v4.1, Volume 2, Part C: Link Manager Protocol Specification .. 33

5.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check ... 33

5.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side .. 34

5.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side ... 34

5.2 Changes to Core Specification v4.1, Volume 2, Part E: Host Controller Interface Functional

Specification ... 34

5.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION .. 34

5.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS .. 35

5.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command ... 36

5.3 Changes to Core Specification v4.1, Volume 2, Part H: Security Specification 37

5.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS ... 37

5.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE ... 37

5.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION .. 38

6 Changes to Core Specification v4.0 ... 39

6.1 Changes to Core Specification v4.0, Volume 2, Part C: Link Manager Protocol Specification .. 39

6.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check ... 39

6.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side .. 40

6.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side ... 40

6.2 Changes to Core Specification v4.0, Volume 2, Part E: Host Controller Interface Functional

Specification ... 41

6.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION .. 41

6.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS .. 41

6.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command ... 42

6.3 Changes to Core Specification v4.0, Volume 2, Part H: Security Specification 43

6.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS ... 43

6.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE ... 44

6.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION .. 44

7 Changes to Core Specification v3.0 + HS .. 46

7.1 Changes to Core Specification v3.0 + HS, Volume 2, Part C: Link Manager Protocol

Specification ... 46

7.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check ... 46

7.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side .. 47

7.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side ... 47

7.2 Changes to Core Specification v3.0 + HS, Volume 2, Part E: Host Controller Interface

Functional Specification .. 48

7.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION .. 48

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 6 of 61

7.2.2 [Modified Section] 6.26 SUPPORTED COMMANDS .. 48

7.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command ... 49

7.3 Changes to Core Specification v3.0 + HS, Volume 2, Part H: Security Specification 50

7.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS ... 50

7.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE ... 51

7.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION .. 51

8 Changes to Core Specification v2.1 + EDR.. 53

8.1 Changes to Core Specification v2.1 + EDR, Volume 2, Part C: Link Manager Protocol

Specification ... 53

8.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check ... 53

8.1.2 [Modified Section] 4.2.7.4.1 Check failure on the Responder side .. 54

8.1.3 [Modified Section] 4.2.7.4.1.1 Check failure on the initiator side ... 54

8.2 Changes to Core Specification v2.1 + EDR, Volume 2, Part E: Host Controller Interface

Functional Specification .. 55

8.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION .. 55

8.2.2 [Modified Section] 6.26 SUPPORTED COMMANDS .. 55

8.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command ... 56

8.3 Changes to Core Specification v2.1 + EDR, Volume 2, Part H: Security Specification 57

8.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS ... 57

8.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE ... 58

8.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION .. 58

9 Missing section numbers .. 60

10 References .. 61

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 7 of 61

1 Language

1.1 Language conventions

Please refer to and follow any terminology, language conventions, and interpretation sections of the

Source Specification(s).

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 8 of 61

2 Conventions used in this Erratum

The formatting and color conventions described in Table 2.1 below are used in this erratum to describe

the specific changes and additions to the Source Specification(s) identified on the cover page.

Text Color Description

black Text that is unmodified from the Source Specification.

red Text that is added to the Source Specification.

red strikethrough Text that is deleted from the Source Specification.

[green bracketed text] Comments that are intended to aid the reader.

blue Default color used for section numbers and headings of this
document.

Table 2.1: Color key for headings, captions, and body text

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 9 of 61

3 Changes to Core Specification v5.0

This Section sets forth the specific changes and additions, using the formatting and color conventions

described in Section 2, to Core Specification v5.0.

3.1 Changes to Core Specification v5.0, Volume 2, Part C: Link
Manager Protocol Specification

3.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check

[The modified section with changes is shown below.]

At this stage, both devices compute new confirmation values based on Diffie-Hellman key and previously

exchanged information according to [Vol 2] Part H, Section 7.7.4.

The Initiator shall send an LMP_DHKey_check PDU to the Responder. If the Initiator has determined that

the received public key is invalid (see [Vol 2] Part H, Section 7.6), the PDU should include a value that is

different from the computed confirmation value (for example, substituting a randomly generated number).

Otherwise, the PDU shall include including the computed confirmation value it has computed.

[Insert a paragraph break.]

Upon reception, if the received value is not equal to the one calculated according to [Vol 2] Part H,

Section 7.7.4, then the Responder shall follow the procedure in Section 4.2.7.4.1. If the values match, the

Responder should follow the procedure in Section 4.2.7.4.1 if the received public key is invalid (see [Vol

2] Part H, Section 7.6). Otherwise it shall reply with an LMP_accepted PDU if the received value is equal

to the one it has calculated according to Section 7.7.4. If it fails, refer to Section 4.2.7.3.5.1.

The Responder shall then send an LMP_DHKey_check PDU, to the Initiator including the its confirmation

value it has computed, to the Initiator. Upon reception, if the received value is not equal to the one

calculated according to [Vol 2] Part H, Section 7.7.4, then the Initiator shall follow the procedure in

Section 4.2.7.4.1.1. If the values match, the Initiator should follow the procedure in Section 4.2.7.4.1.1 if

the received public key is invalid (see [Vol 2] Part H, Section 7.6). Otherwise it shall reply with an

LMP_accepted PDU if the received value is equal to the one it has calculated according to [Vol 2] Part H,

Section 7.7.4. If it fails, refer to Section 4.2.7.4.1.1.

At this point, both devices shall compute the link key according to [Vol 2] Part H, Section 7.7.3.

If at least one device does not support both the Secure Connections (Controller Support) and the Secure

Connections (Host Support) features, the Initiator shall then start standard mutual authentication as

described in Section 4.2.1.1

If both devices support both the Secure Connections (Controller Support) and the Secure Connections

(Host Support) features, the Initiator shall then start secure authentication as described in Section 4.2.1.4.

After secure authentication, if encryption is enabled, the initiating device shall pause and immediately

resume encryption to produce a new encryption key. Note: This will cause a new encryption key to be

generated using the h3 function including the ACO created during the secure authentication process.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 10 of 61

A device that detects an invalid public key (see [Vol 2] Part H, Section 7.6) from the peer at any point

during the Secure Simple Pairing process shall fail the pairing process and therefore not create a link key.

3.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Responder should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Responder is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4, the

Responder shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

3.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Initiator should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Initiator is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4, the

Initiator shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

3.2 Changes to Core Specification v5.0, Volume 2, Part E: Host
Controller Interface Functional Specification

3.2.1 [Modified Section] 3 OVERVIEW OF COMMANDS AND EVENTS

[Insert a new row in Table 3.1 as shown below.]

Name Vers. Summary description Supported
Controllers

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 11 of 61

Read Local OOB
Extended Data
Command

4.1 This command is used to obtain Simple Pairing
Hash C and Randomizer R associated with both P-
192 and P-256 public keys, which are intended to
be transferred to a remote device using an OOB
mechanism.

BR/EDR

Read Local Simple
Pairing Options

Erratum
10734

The Read Local Simple Pairing Options command
is used to read the simple pairing options and the
maximum encryption key size supported.

BR/EDR

Read Local
Supported Codecs
Command

CSA 2 The Read Local Supported Codecs command is
used for a Host to query a Controller’s supported
codecs.

BR/EDR

Table 3.1: Alphabetical list of commands and events

3.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS

[The modified table with changes is shown below.]

Octet Bit Command Supported

39 0 LE Read RF Path Compensation Command

1 LE Write RF Path Compensation Command

2 LE Set Privacy Mode

3 Reserved for Future Use

4 Reserved for Future Use

5 Reserved for Future Use

6 Reserved for Future Use

7 Reserved for Future Use

40 All Reserved for Future Use

41 0 Reserved for Future Use

1 Reserved for Future Use

2 Reserved for Future Use

3 Read Local Simple Pairing Options

4 Reserved for Future Use

5 Reserved for Future Use

6 Reserved for Future Use

7 Reserved for Future Use

3.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

[A new section is added as shown below.]

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 12 of 61

 Command OCF Command
Parameters

Return Parameters

HCI_Read_Local_Simple_Pairing
_Options

0x000C Status,

Simple_Pairing_Options,

Maximum_Encryption_Key_Size

Description:

The Read_Local_Simple_Pairing_Options command is used to read the simple pairing options and the

maximum encryption key size supported. Bit 0 of the Simple_Pairing_Options return parameter shall be

set to 1.

Note: If this command is supported, then the Controller must support remote public key validation (see

[Vol 2] Part H, Section 7.6).

Command parameters:

None

Return parameters:

Status: Size: 1 octet

Value Parameter Description

0x00 Read_Local_Simple_Pairing_Options command succeeded.

0x01–0xFF Read_Local_Simple_Pairing_Options command failed. See [Vol 2] Part D, Error
Codes for a list of error codes and descriptions.

Simple_Pairing_Options: Size: 1 octet

Bit Number Parameter Description

0 Remote public key validation is always performed.

All other bits Reserved for future use.

Maximum_Encryption_Key_Size: Size: 1 octet

Value Parameter Description

0x07–0x10 Maximum encryption key size (in octets) supported.

All other values Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Local_Simple_Pairing_Options command has completed, a Command Complete event

shall be generated.

3.2.4 [Modified Section] 7.7.65.9 LE Generate DHKey Complete Event

[The modified Description with changes is shown below.]

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 13 of 61

Description:

This event indicates that LE Diffie Hellman key generation has been completed by the Controller.

If the Remote_P-256_Public_Key parameter of the HCI_LE_Generate_DHKey command (see Section

7.8.37) was invalid (see [Vol 3] Part H, Section 2.3.5.6.1), then all octets of the DHKey event parameter

should be set to 0xFF.

3.2.5 [Modified Section] 7.8.37 LE Generate DHKey Command

[The modified Description with changes is shown below.]

Description:

The LE_Generate_DHKey command is used to initiate generation of a Diffie-Hellman key in the Controller

for use over the LE transport. This command takes the remote P-256 public key as input. The Diffie-

Hellman key generation uses the private key generated by LE_Read_Local_P256_Public_Key command.

The Diffie-Hellman key returned via this command shall not be generated using any keys used for Secure

Connections over the BR/EDR transport.

If the remote P-256 public key is invalid (see [Vol 3] Part H, Section 2.3.5.6.1), the Controller shall return

an error and should use the error code Invalid HCI Command Parameters (0x12).

3.3 Changes to Core Specification v5.0, Volume 2, Part H: Security
Specification

3.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS

[The modified section with changes is shown below.]

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new

authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated

by a device claiming the same identity as the failed device. For each subsequent authentication failure,

the waiting interval shall be increased exponentially. For example, after each failure, the waiting interval

before a new attempt can be made could be twice as long as the waiting interval prior to the previous

attempt1. The waiting interval shall be limited to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the authentication procedure with a large number of

different keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 14 of 61

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

3.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair (step

1). This key pair needs to be generated only once per device and may be computed in advance of

pairing. A device may, at any time, choose to discard its public-private key pair and generate a new one,

although there is not a requirement to do so. See Section 5.1 for recommendations on how frequently this

key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (step 1a). The

responding device replies with its own public key (step 1b) These public keys are not regarded as secret

although they may identify the devices. Note that steps 1a and 1b are the same in all three protocols.

When both device’s Controllers and Hosts support Secure Connections, the P-256 elliptic curve is used.

When at least one device’s Controller or Host doesn’t support Secure Connections, the P-192 elliptic

curve is used.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-192 or

P-256) – see Section 7.6.

3.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

[The modified text with changes is shown below. Two new paragraphs have been inserted at the end.]

For P-256:
p = 11579208921035624876269744694940757353008614341529031419553363130

8867097853951

r = 11579208921035624876269744694940757352999695522413576034242225906

1068512044369

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 15 of 61

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

27d2604b

Gx = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945

d898c296

Gy = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb6406837bf51f5

The function P-256 is defined as follows. Given an integer u, 0 < u < r, and a point V on the curve E, the

value P-256(u,V) is computed as the x-coordinate of the uth multiple uV of the point V.

The private keys shall be between 1 and r/2, where r is the Order of the Abelian Group on the elliptic

curve (e.g. between 1 and 2256/2).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

3.4 Changes to Core Specification v5.0, Volume 3, Part C: Generic
Access Profile

3.4.1 [Modified Section] 14.1 CROSS-TRANSPORT KEY DERIVATION

[The modified section with changes is shown below.]

If both the local and remote devices support Secure Connections over the BR/EDR and LE transports,

devices may optionally generate keys of identical strength and the same MITM protection for both

transports as part of a single pairing procedure.

If both the local and remote devices support Secure Connections over the LE transport but not over the

BR/EDR transport, then the devices may optionally generate the BR/EDR keys of identical strength and

the same MITM protection as the LE keys as part of the LE pairing procedure.

If Secure Connections pairing occurs first on the LE transport the procedures in [Vol 3] Part H, Section

2.3.5.7 may be used.

If Secure Connections pairing occurs first on the BR/EDR transport the procedures in [Vol 3] Part H,

Section 2.3.5.7 may be used.

If the BR/EDR link key has been generated by a Controller that does not perform remote public key

validation (see [Vol 2] Part H, Section 7.6), then the LE LTK should not be generated from such a

BR/EDR link key using cross-transport key derivation.

Note: The Host can use the HCI_Read_Local_Simple_Pairing_Options command (see [Vol 2] Part E,

Section 7.4.X) or vendor-specific methods to determine whether the Controller performs remote public

key validation.

If the LE LTK has been generated using the HCI_LE_Generate_DHKey command (see [Vol 2] Part E,
Section 7.8.37) by a Controller that does not perform remote public key validation (see [Vol 3] Part H,
Section 2.3.5.6.1), then the BR/EDR link key should not be generated from such an LE LTK using cross-
transport key derivation.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 16 of 61

Note: The Host can use the Remote Public Key Validation feature bit (see [Vol 6] Part B, Section 4.6) or

vendor-specific methods to determine whether the HCI_LE_Generate_DHKey command performs the

remote public key validation.

3.5 Changes to Core Specification v5.0, Volume 3, Part H: Security
Manager Specification

3.5.1 [Modified Section] 2.3.5.6.1 Public Key Exchange

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair

(phase 1). The public-private key pair contains a private (secret) key, and a public key. The private keys

of devices A and B are denoted as SKa and SKb respectively. The public keys of devices A and B and

are denoted as PKa and PKb respectively. This key pair needs to be generated only once per device and

may be computed in advance of pairing. A device may, at any time, choose to discard its public-private

key pair and generate a new one, although there is not a requirement to do so. See Section 2.3.6 for

recommendations on how frequently this key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (phase 1a). The

responding device replies with its own public key (phase 1b) These public keys are not regarded as

secret although they may identify the devices. Note that phases 1a and 1b are the same in all three

protocols.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-256).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field. See [Vol 2] Part H, Section 7.6

for the values of a, b, and p.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

A device that detects an invalid public key from the peer at any point during the LE Secure Connections

pairing process shall not use the resulting LTK, if any.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 17 of 61

After the public keys have been exchanged, the device can then start computing the Diffie-Hellman Key.

When the Security Manager is placed in a Debug mode it shall use the following Diffie-Hellman private /

public key pair:

Private key: 3f49f6d4 a3c55f38 74c9b3e3 d2103f50 4aff607b eb40b799 5899b8a6

cd3c1abd

Public key (X): 20b003d2 f297be2c 5e2c83a7 e9f9a5b9 eff49111 acf4fddb cc030148

0e359de6

Public key (Y): dc809c49 652aeb6d 63329abf 5a52155c 766345c2 8fed3024 741c8ed0

1589d28b

Note: Only one side (initiator or responder) needs to set Secure Connections debug mode in order for

debug equipment to be able to determine the LTK and, therefore, be able to monitor the encrypted

connection.

3.5.2 [Modified Section] 2.3.6 Repeated Attempts

[The modified section with changes is shown below.]

When a pairing procedure fails a waiting interval shall pass before the verifier will initiate a new Pairing

Request command or Security Request command to the same claimant, or before it will respond to a

Pairing Request command or Security Request command initiated by a device claiming the same identity

as the failed device. For each subsequent failure, the waiting interval shall be increased exponentially.

That is, after each failure, the waiting interval before a new attempt can be made, could be for example,

twice as long as the waiting interval prior to the previous attempt1. The waiting interval should be limited

to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the pairing procedure with a large number of different

keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

1 Another appropriate integer value larger than 1 may be used.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 18 of 61

3.5.3 [Modified Section] 3.5.5 Pairing Failed

[The modified text with changes is shown below. A new paragraph has been inserted after the third

paragraph and before Figure 3.7.]

This is used when there has been a failure during pairing and reports that the pairing procedure has been

stopped and no further communication for the current pairing procedure is to occur. The Pairing Failed

command is defined in Figure 3.7.

Any subsequent pairing procedure shall restart from the Pairing Feature Exchange phase.

This command may be sent at any time during the pairing process by either device in response to a

message from the remote device.

During LE Secure Connections pairing, this command should be sent if the remote device’s public key is

invalid (see [Vol 3] Part H, Section 2.3.5.6.1). The Reason field should be set to “DHKey Check Failed”.

3.6 Changes to Core Specification v5.0, Volume 6, Part B: Link
Layer Specification

3.6.1 [Modified Section] 4.6 FEATURE SUPPORT

[The modified section with changes is shown below.]

The set of features supported by a Link Layer is represented by a bit mask called FeatureSet. The value

of FeatureSet shall not change while the Controller has a connection to another device. A peer device

may cache information about features that the device supports. The Link Layer may cache information

about features that a peer supports during a connection.

Within FeatureSet, a bit set to 0 indicates that the Link Layer Feature is not supported in this Controller; a

bit set to 1 indicates that the Link Layer Feature is supported in this Controller.

A Link Layer shall not use a procedure that is not supported by the peer’s Link Layer. A Link Layer shall

not transmit a PDU listed in the following subsections unless it supports at least one of the features that

requires support for that PDU.

The bit positions for each Link Layer Feature shall be as shown in Table 4.4. This table also shows if

these bits are valid between Controllers and which bits are masked before transmission to the peer

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 19 of 61

device. If a bit is shown as not valid, using ‘N’, then this bit shall be ignored upon receipt by the peer

Controller. If a bit is shown as masked, using ‘Y’, then this bit shall be set to zero when FeatureSet is sent

to the peer device; otherwise, it shall be left unchanged.

Bit
position

Link Layer Feature Valid from Controller
to Controller

Masked to
Peer

0 LE Encryption Y N

1 Connection Parameters Request Procedure Y N

2 Extended Reject Indication Y N

3 Slave-initiated Features Exchange Y N

4 LE Ping N N

5 LE Data Packet Length Extension Y N

6 LL Privacy N N

7 Extended Scanner Filter Policies N N

8 LE 2M PHY Y N

9 Stable Modulation Index - Transmitter Y N

10 Stable Modulation Index - Receiver Y N

11 LE Coded PHY Y N

12 LE Extended Advertising N N

13 LE Periodic Advertising N N

14 Channel Selection Algorithm #2 Y N

15 LE Power Class 1 Y N

16 Minimum Number of Used Channels
Procedure

 N

27 Remote Public Key Validation N Y

All other
valuesbits

Reserved for Future Use

Table 4.4: FeatureSet field’s bit mapping to Controller features

3.6.2 [New Section] 4.6.23 Remote Public Key Validation

[A new section is added as shown below.]

A Controller that supports Remote Public Key Validation shall validate the remote public key (see [Vol 3]

Part H, Section 2.3.5.6.1) sent by the Host in the HCI_LE_Generate_DHKey command (see [Vol 2] Part

E, Section 7.8.37).

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 20 of 61

3.6.3 [Modified Section] 5.1.4 Feature Exchange Procedure

[The modified section with changes is shown below.]

The Link Layer parameter for the current supported feature set (FeatureSet) may be exchanged after

entering the Connection State. Both the master and slave can initiate this procedure.

The FeatureSet information may be cached either during a connection or between connections. A Link

Layer should not request this information on every connection if the information has been cached for this

device. Cached information for a device from a previous connection is not authoritative and, therefore, an

implementation must be able to accept the LL_UNKNOWN_RSP PDU if use of a feature is attempted that

is not currently supported or used by the peer.

The FeatureSetM parameter is the feature capabilities of the Link Layer of the master with certain bits

masked as specified in Section 4.6.

The FeatureSetS parameter is the feature capabilities of the Link Layer of the Slave with certain bits

masked as specified in Section 4.6.

The FeatureSetUSED parameter is one octet long and is the logical AND of FeatureSetM[0] and

FeatureSetS[0].

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 21 of 61

4 Changes to Core Specification v4.2

This Section sets forth the specific changes and additions, using the formatting and color conventions

described in Section 2, to Core Specification v4.2.

4.1 Changes to Core Specification v4.2, Volume 2, Part C: Link
Manager Protocol Specification

4.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check

[The modified section with changes is shown below.]

At this stage, both devices compute new confirmation values based on Diffie-Hellman key and previously

exchanged information according to [Vol 2] Part H, Section 7.7.4, “The Simple Pairing Check Function f3,”

on page 1354.

The Initiator shall send an LMP_DHKey_check PDU to the Responder. If the Initiator has determined that

the received public key is invalid (see [Vol 2] Part H, Section 7.6), the PDU should include a value that is

different from the computed confirmation value (for example, substituting a randomly generated number).

Otherwise, the PDU shall include including the computed confirmation value it has computed.

[Insert a paragraph break.]

Upon reception, if the received value is not equal to the one calculated according to [Vol 2] Part H,

Section 7.7.4, then the Responder shall follow the procedure in Section 4.2.7.4.1. If the values match, the

Responder should follow the procedure in Section 4.2.7.4.1 if the received public key is invalid (see [Vol

2] Part H, Section 7.6). Otherwise it shall reply with an LMP_accepted PDU if the received value is equal

to the one it has calculated according to Section 7.7.4 on page 1354. If it fails, refer to Section 4.2.7.3.5.1

on page 305.

The Responder shall then send an LMP_DHKey_check PDU, to the Initiator including the its confirmation

value it has computed, to the Initiator. Upon reception, if the received value is not equal to the one

calculated according to [Vol 2] Part H, Section 7.7.4, then the Initiator shall follow the procedure in

Section 4.2.7.4.1.1. If the values match, the Initiator should follow the procedure in Section 4.2.7.4.1.1 if

the received public key is invalid (see [Vol 2] Part H, Section 7.6). Otherwise it shall reply with an

LMP_accepted PDU if the received value is equal to the one it has calculated according to Section 7.7.4

on page 1354. If it fails, refer to Section 4.2.7.4.1.1, “Check Failure on the Initiator Side,” on page 308.

At this point, both devices shall compute the link key according to [Vol 2] Part H, Section 7.7.3, “The

Simple Pairing Key Derivation Function f2,” on page 1353.

If at least one device does not support both the Secure Connections (Controller Support) and the Secure

Connections (Host Support) features, the Initiator shall then start standard mutual authentication as

described in Section 4.2.1.1

If both devices support both the Secure Connections (Controller Support) and the Secure Connections

(Host Support) features, the Initiator shall then start secure authentication as described in Section 4.2.1.4.

After secure authentication, if encryption is enabled, the initiating device shall pause and immediately

resume encryption to produce a new encryption key. Note: This will cause a new encryption key to be

generated using the h3 function including the ACO created during the secure authentication process.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 22 of 61

A device that detects an invalid public key (see [Vol 2] Part H, Section 7.6) from the peer at any point

during the Secure Simple Pairing process shall fail the pairing process and therefore not create a link key.

4.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Responder should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Responder is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on

page 1354, the Responder shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

4.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Initiator should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Initiator is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on page

1354, the Initiator shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

4.2 Changes to Core Specification v4.2, Volume 2, Part E: Host
Controller Interface Functional Specification

4.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION

[Insert a new row at the end of Table 3.5 as shown below.]

Name Vers. Summary description Supported
Controllers

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 23 of 61

LE Read Maximum
Data Length
Command

4.2
The LE Read Maximum Data Length command
allows the Host to read the Controller’s
supportedMaxTxOctets, supportedMaxTxTime,
supportedMaxRxOctets, and
supportedMaxRxTime parameters.

LE

Read Local Simple
Pairing Options

Erratum
10734

The Read Local Simple Pairing Options command
is used to read the simple pairing options and the
maximum encryption key size supported.

BR/EDR

Table 3.5: Controller information

4.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS

[The modified table with changes is shown below.]

Octet Bit Command Supported

35 0 LE Read Local Resolvable Address

1 LE Set Address Resolution Enable

2 LE Set Resolvable Private Address Timeout

3 LE Read Maximum Data Length

4 Reserved

5 Reserved

6 Reserved

7 Reserved

36 All Reserved

37 All Reserved

38 All Reserved

39 All Reserved

40 All Reserved

41 0 Reserved

1 Reserved

2 Reserved

3 Read Local Simple Pairing Options

4 Reserved

5 Reserved

6 Reserved

7 Reserved

4.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

[A new section is added as shown below.]

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 24 of 61

 Command OCF Command
Parameters

Return Parameters

HCI_Read_Local_Simple_Pairing_
Options

0x000C Status,

Simple_Pairing_Options,

Maximum_Encryption_Key_Size

Description:

The Read_Local_Simple_Pairing_Options command is used to read the simple pairing options and the

maximum encryption key size supported. Bit 0 of the Simple_Pairing_Options return parameter shall be

set to 1.

Note: If this command is supported, then the Controller must support remote public key validation (see

[Vol 2] Part H, Section 7.6).

Command parameters:

None

Return parameters:

Status: Size: 1 octet

Value Parameter Description

0x00 Read_Local_Simple_Pairing_Options command succeeded.

0x01–0xFF Read_Local_Simple_Pairing_Options command failed. See [Vol 2] Part D, Error
Codes for a list of error codes and descriptions.

Simple_Pairing_Options: Size: 1 octet

Bit Number Parameter Description

0 Remote public key validation is always performed.

All other bits Reserved for future use.

Maximum_Encryption_Key_Size: Size: 1 octet

Value Parameter Description

0x07–0x10 Maximum encryption key size (in octets) supported.

All other values Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Local_Simple_Pairing_Options command has completed, a Command Complete event

shall be generated.

4.2.4 [Modified Section] 7.7.65.9 LE Generate DHKey Complete Event

[The modified Description with changes is shown below.]

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 25 of 61

Description:

This event indicates that LE Diffie Hellman key generation has been completed by the Controller.

If the Remote_P-256_Public_Key parameter of the HCI_LE_Generate_DHKey command (see Section

7.8.37) was invalid (see [Vol 3] Part H, Section 2.3.5.6.1), then all octets of the DHKey event parameter

should be set to 0xFF.

4.2.5 [Modified Section] 7.8.37 LE Generate DHKey Command

[The modified Description with changes is shown below.]

Description:

The LE_Generate_DHKey command is used to initiate generation of a Diffie-Hellman key in the Controller

for use over the LE transport. This command takes the remote P-256 public key as input. The Diffie-

Hellman key generation uses the private key generated by LE_Read_Local_P256_Public_Key command.

The Diffie-Hellman key returned via this command shall not be generated using any keys used for Secure

Connections over the BR/EDR transport.

If the remote P-256 public key is invalid (see [Vol 3] Part H, Section 2.3.5.6.1), the Controller shall return

an error and should use the error code Invalid HCI Command Parameters (0x12).

4.3 Changes to Core Specification v4.2, Volume 2, Part H: Security
Specification

4.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS

[The modified section with changes is shown below.]

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new

authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated

by a device claiming the same identity as the failed device. For each subsequent authentication failure,

the waiting interval shall be increased exponentially. For example, after each failure, the waiting interval

before a new attempt can be made could be twice as long as the waiting interval prior to the previous

attempt1. The waiting interval shall be limited to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the authentication procedure with a large number of

different keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 26 of 61

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

4.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair (step

1). This key pair needs to be generated only once per device and may be computed in advance of

pairing. A device may, at any time, choose to discard its public-private key pair and generate a new one,

although there is not a requirement to do so. See Section 5.1 for recommendations on how frequently this

key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (step 1a). The

responding device replies with its own public key (step 1b) These public keys are not regarded as secret

although they may identify the devices. Note that steps 1a and 1b are the same in all three protocols.

When both device’s Controllers and Hosts support Secure Connections, the P-256 elliptic curve is used.

When at least one device’s Controller or Host doesn’t support Secure Connections, the P-192 elliptic

curve is used.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-192 or

P-256) – see Section 7.6.

4.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

[The modified text with changes is shown below. Two new paragraphs have been inserted at the end.]

For P-256:
p = 11579208921035624876269744694940757353008614341529031419553363130

8867097853951

r = 11579208921035624876269744694940757352999695522413576034242225906

1068512044369

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 27 of 61

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

27d2604b

Gx = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945

d898c296

Gy = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068

37bf51f5

The function P-256 is defined as follows. Given an integer u, 0 < u < r, and a point V on the curve E, the

value P-256(u,V) is computed as the x-coordinate of the uth multiple uV of the point V.

The private keys shall be between 1 and r/2, where r is the Order of the Abelian Group on the elliptic

curve (e.g. between 1 and 2256/2).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

4.4 Changes to Core Specification v4.2, Volume 3, Part C: Generic
Access Profile

4.4.1 [Modified Section] 14.1 CROSS-TRANSPORT KEY DERIVATION

[The modified section with changes is shown below.]

If both the local and remote devices support Secure Connections over the BR/EDR and LE transports,

devices may optionally generate keys of identical strength and the same MITM protection for both

transports as part of a single pairing procedure.

If both the local and remote devices support Secure Connections over the LE transport but not over the

BR/EDR transport, then the devices may optionally generate the BR/EDR keys of identical strength and

the same MITM protection as the LE keys as part of the LE pairing procedure.

If Secure Connections pairing occurs first on the LE transport the procedures in [Vol 3] Part H, Section

2.3.5.7 may be used.

If Secure Connections pairing occurs first on the BR/EDR transport the procedures in [Vol 3] Part H,

Section 2.3.5.7 may be used.

If the BR/EDR link key has been generated by a Controller that does not perform remote public key

validation (see [Vol 2] Part H, Section 7.6), then the LE LTK should not be generated from such a

BR/EDR link key using cross-transport key derivation.

Note: The Host can use the HCI_Read_Local_Simple_Pairing_Options command (see [Vol 2] Part E,

Section 7.4.X) or vendor-specific methods to determine whether the Controller performs remote public

key validation.

If the LE LTK has been generated using the HCI_LE_Generate_DHKey command (see [Vol 2] Part E,
Section 7.8.37) by a Controller that does not perform remote public key validation (see [Vol 3] Part H,

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 28 of 61

Section 2.3.5.6.1), then the BR/EDR link key should not be generated from such an LE LTK using cross-
transport key derivation.

Note: The Host can use the Remote Public Key Validation feature bit (see [Vol 6] Part B, Section 4.6) or

vendor-specific methods to determine whether the HCI_LE_Generate_DHKey command performs the

remote public key validation.

4.5 Changes to Core Specification v4.2, Volume 3, Part H: Security
Manager Specification

4.5.1 [Modified Section] 2.3.5.6.1 Public Key Exchange

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair

(phase 1). The public-private key pair contains a private (secret) key, and a public key. The private keys

of devices A and B are denoted as SKa and SKb respectively. The public keys of devices A and B and

are denoted as PKa and PKb respectively. This key pair needs to be generated only once per device and

may be computed in advance of pairing. A device may, at any time, choose to discard its public-private

key pair and generate a new one, although there is not a requirement to do so. See Section 2.3.6 for

recommendations on how frequently this key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (phase 1a). The

responding device replies with its own public key (phase 1b) These public keys are not regarded as

secret although they may identify the devices. Note that phases 1a and 1b are the same in all three

protocols.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-256).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field. See [Vol 2] Part H, Section 7.6

for the values of a, b, and p.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 29 of 61

A device that detects an invalid public key from the peer at any point during the LE Secure Connections

pairing process shall not use the resulting LTK, if any.

After the public keys have been exchanged, the device can then start computing the Diffie-Hellman Key.

When the Security Manager is placed in a Debug mode it shall use the following Diffie-Hellman private /

public key pair:

Private key: 3f49f6d4 a3c55f38 74c9b3e3 d2103f50 4aff607b eb40b799 5899b8a6

cd3c1abd

Public key (X): 20b003d2 f297be2c 5e2c83a7 e9f9a5b9 eff49111 acf4fddb cc030148

0e359de6

Public key (Y): dc809c49 652aeb6d 63329abf 5a52155c 766345c2 8fed3024 741c8ed0

1589d28b

Note: Only one side (initiator or responder) needs to set Secure Connections debug mode in order for

debug equipment to be able to determine the LTK and, therefore, be able to monitor the encrypted

connection.

4.5.2 [Modified Section] 2.3.6 Repeated Attempts

[The modified section with changes is shown below.]

When a pairing procedure fails a waiting interval shall pass before the verifier will initiate a new Pairing

Request command or Security Request command to the same claimant, or before it will respond to a

Pairing Request command or Security Request command initiated by a device claiming the same identity

as the failed device. For each subsequent failure, the waiting interval shall be increased exponentially.

That is, after each failure, the waiting interval before a new attempt can be made, could be for example,

twice as long as the waiting interval prior to the previous attempt1. The waiting interval should be limited

to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the pairing procedure with a large number of different

keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

1 Another appropriate integer value larger than 1 may be used.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 30 of 61

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

4.5.3 [Modified Section] 3.5.5 Pairing Failed

[The modified text with changes is shown below. A new paragraph has been inserted after the third

paragraph and before Figure 3.7.]

This is used when there has been a failure during pairing and reports that the pairing procedure has been

stopped and no further communication for the current pairing procedure is to occur. The Pairing Failed

command is defined in Figure 3.7.

Any subsequent pairing procedure shall restart from the Pairing Feature Exchange phase.

This command may be sent at any time during the pairing process by either device in response to a

message from the remote device.

During LE Secure Connections pairing, this command should be sent if the remote device’s public key is

invalid (see [Vol 3] Part H, Section 2.3.5.6.1). The Reason field should be set to “DHKey Check Failed”.

4.6 Changes to Core Specification v4.2, Volume 6, Part B: Link
Layer Specification

4.6.1 [Modified Section] 4.6 FEATURE SUPPORT

[The modified section with changes is shown below.]

When this information is sent from a Controller to a Host, a bit set to 0 indicates that the Link Layer

Feature is not supported in this Controller; a bit set to 1 indicates that the Link Layer Feature is supported

in this Controller.

When this information is sent from a Controller to a peer Controller, a bit set to 0 indicates that the Link

Layer Feature shall not be used by the Controllers; a bit set to 1 indicates that the Link Layer Feature

may be used by the Controllers.

The bit positions for each Link Layer Feature shall be as shown in Table 4.4. This table also shows if

these bits are valid for the intended destination and which bits are masked before transmission to the

peer device. If a bit is shown as not valid, using ‘N’, then this bit shall be ignored upon receipt. If a bit is

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 31 of 61

shown as masked, using ‘Y’, then this bit shall be set to zero when FeatureSet is sent to the peer device;

otherwise, it shall be left unchanged.

Bit
position

Link Layer Feature Valid from
Controller to Host

Valid from
Controller to
Controller

Masked to Peer

0 LE Encryption Y Y N

1 Connection Parameters
Request Procedure

Y Y N

2 Extended Reject Indication Y Y N

3 Slave-initiated Features
Exchange

Y Y N

4 LE Ping Y N N

5 LE Data Packet Length
Extension

Y Y N

6 LL Privacy Y N N

7 Extended Scanner Filter
Policies

Y N N

27 Remote Public Key
Validation

Y N Y

8 – 63All
other bits

RFU

Table 4.4: FeatureSet field’s bit mapping to Controller features

4.6.2 [New Section] 4.6.23 Remote Public Key Validation

[A new section is added as shown below.]

A Controller that supports Remote Public Key Validation shall validate the remote public key (see [Vol 3]

Part H, Section 2.3.5.6.1) sent by the Host in the HCI_LE_Generate_DHKey command (see [Vol 2] Part

E, Section 7.8.37).

4.6.3 [Modified Section] 5.1.4 Feature Exchange Procedure

[The modified section with changes is shown below.]

The Link Layer parameter for the current supported feature set (featureSet) may be exchanged after

entering the Connection State. Both the master and slave can initiate this procedure.

The featureSet information may be cached. A Link Layer should not request this information on every

connection if the information has been cached for this device. Cached information for a device may not be

authoritative, and therefore an implementation must be able to accept the LL_UNKNOWN_RSP PDU if

use of a feature is attempted that is not currently supported or used by the peer.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 32 of 61

The featureSetM parameter is the feature capabilities of the Link Layer of the master with certain bits

masked as specified in Section 4.6.

The featureSetS parameter is the feature capabilities of the Link Layer of the Slave with certain bits

masked as specified in Section 4.6.

The featureSetUSED is the logical AND of featureSetM and FeatureSetS.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 33 of 61

5 Changes to Core Specification v4.1

This Section sets forth the specific changes and additions, using the formatting and color conventions

described in Section 2, to Core Specification v4.1.

5.1 Changes to Core Specification v4.1, Volume 2, Part C: Link
Manager Protocol Specification

5.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check

[The modified section with changes is shown below.]

At this stage, both devices compute new confirmation values based on Diffie-Hellman key and previously

exchanged information according to [Vol 2] Part H, Section 7.7.4, “The Simple Pairing Check Function f3,”

on page 1337.

The Initiator shall send an LMP_DHKey_check PDU to the Responder. If the Initiator has determined that

the received public key is invalid (see [Vol 2] Part H, Section 7.6), the PDU should include a value that is

different from the computed confirmation value (for example, substituting a randomly generated number).

Otherwise, the PDU shall include including the computed confirmation value it has computed.

[Insert a paragraph break.]

Upon reception, if the received value is not equal to the one calculated according to [Vol 2] Part H,

Section 7.7.4, then the Responder shall follow the procedure in Section 4.2.7.4.1. If the values match, the

Responder should follow the procedure in Section 4.2.7.4.1 if the received public key is invalid (see [Vol

2] Part H, Section 7.6). Otherwise, it shall reply with an LMP_accepted PDU if the received value is equal

to the one it has calculated according to Section 7.7.4 on page 1337. If it fails, refer to Section 4.2.7.3.5.1,

“Check Failure on the Initiator Side,” on page 306.

The Responder shall then send an LMP_DHKey_check PDU, to the Initiator including the its confirmation

value it has computed, to the Initiator. Upon reception, if the received value is not equal to the one

calculated according to [Vol 2] Part H, Section 7.7.4, then the Initiator shall follow the procedure in

Section 4.2.7.4.1.1. If the values match, the Initiator should follow the procedure in Section 4.2.7.4.1.1 if

the received public key is invalid (see [Vol 2] Part H, Section 7.6). Otherwise, it shall reply with an

LMP_accepted PDU if the received value is equal to the one it has calculated according to Section 7.7.4

on page 1337. If it fails, refer to Section 4.2.7.4.1.1, “Check Failure on the Initiator Side,” on page 309.

At this point, both devices shall compute the link key according to [Vol 2] Part H, Section 7.7.3, “The

Simple Pairing Key Derivation Function f2,” on page 1336.

If at least one device does not support both the Secure Connections (Controller Support) and the Secure

Connections (Host Support) features, the Initiator shall then start standard mutual authentication as

described in Section 4.2.1.1

If both devices support both the Secure Connections (Controller Support) and the Secure Connections

(Host Support) features, the Initiator shall then start secure authentication as described in Section 4.2.1.4.

After secure authentication, if encryption is enabled, the initiating device shall pause and immediately

resume encryption to produce a new encryption key. Note: This will cause a new encryption key to be

generated using the h3 function including the ACO created during the secure authentication process.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 34 of 61

A device that detects an invalid public key (see [Vol 2] Part H, Section 7.6) from the peer at any point

during the Secure Simple Pairing process shall fail the pairing process and therefore not create a link key.

5.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Responder should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Responder is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on

page 1337, the Responder shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

5.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Initiator should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Initiator is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on page

1337, the Initiator shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

5.2 Changes to Core Specification v4.1, Volume 2, Part E: Host
Controller Interface Functional Specification

5.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION

[Insert a new row at the end of Table 3.5 as shown below.]

Name Vers. Summary description Supported
Controllers

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 35 of 61

Set MWS PATTERN
Configuration Command

CSA3
The Set MWS PATTERN Command
specifies the configuration of the pattern
indicated over the MWS Coexistence
Transport Layer.

BR/EDR, LE
and AMP

Read Local Simple Pairing
Options

Erratum
10734

The Read Local Simple Pairing Options
command is used to read the simple
pairing options and the maximum
encryption key size supported.

BR/EDR

Table 3.5: Controller information

5.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS

[The modified table with changes is shown below.]

Octet Bit Command Supported

33

0 Read Extended Page Timeout

1 Write Extended Page Timeout

2 Read Extended Inquiry Length

3 Write Extended Inquiry Length

4 LE Remote Connection Parameter Request Reply Command

5 LE Remote Connection Parameter Request Negative Reply Command

6 Reserved

7 Reserved

34 All Reserved

35 All Reserved

36 All Reserved

37 All Reserved

38 All Reserved

39 All Reserved

40 All Reserved

41

0 Reserved

1 Reserved

2 Reserved

3 Read Local Simple Pairing Options

4 Reserved

5 Reserved

6 Reserved

7 Reserved

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 36 of 61

5.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

[A new section is added as shown below.]

Command OCF Command
Parameters

Return Parameters

HCI_Read_Local_Simple_Pairing_
Options

0x000C Status,

Simple_Pairing_Options,

Maximum_Encryption_Key_Size

Description:

The Read_Local_Simple_Pairing_Options command is used to read the simple pairing options and the

maximum encryption key size supported. Bit 0 of the Simple_Pairing_Options return parameter shall be

set to 1.

Note: If this command is supported, then the Controller must support remote public key validation (see

[Vol 2] Part H, Section 7.6).

Command parameters:

None

Return parameters:

Status: Size: 1 octet

Value Parameter Description

0x00 Read_Local_Simple_Pairing_Options command succeeded.

0x01–0xFF Read_Local_Simple_Pairing_Options command failed. See [Vol 2] Part D, Error
Codes for a list of error codes and descriptions.

Simple_Pairing_Options: Size: 1 octet

Bit Number Parameter Description

0 Remote public key validation is always performed.

All other bits Reserved for future use.

Maximum_Encryption_Key_Size: Size: 1 octet

Value Parameter Description

0x07–0x10 Maximum encryption key size (in octets) supported.

All other values Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Local_Simple_Pairing_Options command has completed, a Command Complete event

shall be generated.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 37 of 61

5.3 Changes to Core Specification v4.1, Volume 2, Part H: Security
Specification

5.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS

[The modified section with changes is shown below.]

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new

authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated

by a device claiming the same identity as the failed device. For each subsequent authentication failure,

the waiting interval shall be increased exponentially. For example, after each failure, the waiting interval

before a new attempt can be made could be twice as long as the waiting interval prior to the previous

attempt1. The waiting interval shall be limited to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the authentication procedure with a large number of

different keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

5.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair (step

1). This key pair needs to be generated only once per device and may be computed in advance of

pairing. A device may, at any time, choose to discard its public-private key pair and generate a new one,

although there is not a requirement to do so. See Section 5.1 for recommendations on how frequently this

key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (step 1a). The

responding device replies with its own public key (step 1b) These public keys are not regarded as secret

although they may identify the devices. Note that steps 1a and 1b are the same in all three protocols.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 38 of 61

When both device’s Controllers and Hosts support Secure Connections, the P-256 elliptic curve is used.

When at least one device’s Controller or Host doesn’t support Secure Connections, the P-192 elliptic

curve is used.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-192 or

P-256) – see Section 7.6.

5.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

[The modified text with changes is shown below. Two new paragraphs have been inserted at the end.]

For P-256:
p = 11579208921035624876269744694940757353008614341529031419553363130

8867097853951

r = 11579208921035624876269744694940757352999695522413576034242225906

1068512044369

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

27d2604b

Gx = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945

d898c296

Gy = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068

37bf51f5

The function P-256 is defined as follows. Given an integer u, 0 < u < r, and a point V on the curve E, the

value P-256(u,V) is computed as the x-coordinate of the uth multiple uV of the point V.

The private keys shall be between 1 and r/2, where r is the Order of the Abelian Group on the elliptic

curve (e.g. between 1 and 2256/2).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 39 of 61

6 Changes to Core Specification v4.0

This Section sets forth the specific changes and additions, using the formatting and color conventions

described in Section 2, to Core Specification v4.0.

6.1 Changes to Core Specification v4.0, Volume 2, Part C: Link
Manager Protocol Specification

6.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check

[The modified section with changes is shown below.]

At this stage, both devices compute new confirmation values based on Diffie-Hellman key and previously

exchanged information according to [Vol 2] Part H, Section 7.7.4, “The Simple Pairing Check Function f3,”

on page 1105.

The Initiator shall send an LMP_DHKey_check PDU to the Responder. If the Initiator has determined that

the received public key is invalid (see [Vol 2] Part H, Section 7.6), the PDU should include a value that is

different from the computed confirmation value (for example, substituting a randomly generated number).

Otherwise, the PDU shall include including the computed confirmation value it has computed.

[Insert a paragraph break.]

Upon reception, if the received value is not equal to the one calculated according to [Vol 2] Part H,

Section 7.7.4, then the Responder shall follow the procedure in Section 4.2.7.4.1. If the values match, the

Responder should follow the procedure in Section 4.2.7.4.1 if the received public key is invalid (see [Vol

2] Part H, Section 7.6). Otherwise, it shall reply with an LMP_accepted PDU if the received value is equal

to the one it has calculated according to Section 7.7.4 on page 1105. If it fails, refer to Section 4.2.7.3.5.1,

“Check Failure on the Initiator Side,” on page 272.

The Responder shall then send an LMP_DHKey_check PDU, to the Initiator including the its confirmation

value it has computed, to the Initiator. Upon reception, if the received value is not equal to the one

calculated according to [Vol 2] Part H, Section 7.7.4, then the Initiator shall follow the procedure in

Section 4.2.7.4.1.1. If the values match, the Initiator should follow the procedure in Section 4.2.7.4.1.1 if

the received public key is invalid (see [Vol 2] Part H, Section 7.6). Otherwise, it shall reply with an

LMP_accepted PDU if the received value is equal to the one it has calculated according to Section 7.7.4

on page 1105. If it fails, refer to Section 4.2.7.4.1.1, “Check Failure on the Initiator Side,” on page 275.

At this point, both devices shall compute the link key according to [Vol 2] Part H, Section 7.7.3, “The

Simple Pairing Key Derivation Function f2,” on page 1104.

The Initiator shall then start standard mutual authentication as described in Section 4.2.1.1

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 40 of 61

A device that detects an invalid public key (see [Vol 2] Part H, Section 7.6) from the peer at any point

during the Secure Simple Pairing process shall fail the pairing process and therefore not create a link key.

6.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Responder should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Responder is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on

page 1105, the Responder shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

6.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Initiator should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Initiator is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on page

1105, the Initiator shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 41 of 61

6.2 Changes to Core Specification v4.0, Volume 2, Part E: Host
Controller Interface Functional Specification

6.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION

[Insert a new row at the end of Table 3.5 as shown below.]

Name Vers. Summary description Supported
Controllers

LE Read Supported States
Command

4.0
The LE Read Supported States
Command will read the current
supported state and role combinations
for the local LE Controllers.

LE

Read Local Simple Pairing
Options

Erratum
10734

The Read Local Simple Pairing Options
command is used to read the simple
pairing options and the maximum
encryption key size supported.

BR/EDR

Table 3.5: Controller information

6.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS

[The modified table with changes is shown below. Note: CSA2 alters octet 29, CSA3 alters octets 29 and

30, and CSA4 alters octets 29 to 32. In each case the CSA change overrides the changes in this

erratum.]

Octet Bit Command Supported

28

0 LE Start Encryption

1 LE Long Term Key Request Reply

2 LE Long Term Key Requested Negative Reply

3 LE Read Supported States

4 LE Receiver Test

5 LE Transmitter Test

6 LE Test End

7 Reserved

29 All Reserved

30 All Reserved

31 All Reserved

32 All Reserved

33 All Reserved

34 All Reserved

35 All Reserved

36 All Reserved

37 All Reserved

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 42 of 61

38 All Reserved

39 All Reserved

40 All Reserved

41

0 Reserved

1 Reserved

2 Reserved

3 Read Local Simple Pairing Options

4 Reserved

5 Reserved

6 Reserved

7 Reserved

6.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

[A new section is added as shown below.]

Command OCF Command
Parameters

Return Parameters

HCI_Read_Local_Simple_Pairing_
Options

0x000C Status,

Simple_Pairing_Options,

Maximum_Encryption_Key_Size

Description:

The Read_Local_Simple_Pairing_Options command is used to read the simple pairing options and the

maximum encryption key size supported. Bit 0 of the Simple_Pairing_Options return parameter shall be

set to 1.

Note: If this command is supported, then the Controller must support remote public key validation (see

[Vol 2] Part H, Section 7.6).

Command parameters:

None

Return parameters:

Status: Size: 1 octet

Value Parameter Description

0x00 Read_Local_Simple_Pairing_Options command succeeded.

0x01–0xFF Read_Local_Simple_Pairing_Options command failed. See [Vol 2] Part D, Error
Codes for a list of error codes and descriptions.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 43 of 61

Simple_Pairing_Options: Size: 1 octet

Bit Number Parameter Description

0 Remote public key validation is always performed.

All other bits Reserved for future use.

Maximum_Encryption_Key_Size: Size: 1 octet

Value Parameter Description

0x07–0x10 Maximum encryption key size (in octets) supported.

All other values Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Local_Simple_Pairing_Options command has completed, a Command Complete event

shall be generated.

6.3 Changes to Core Specification v4.0, Volume 2, Part H: Security
Specification

6.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS

[The modified section with changes is shown below.]

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new

authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated

by a device claiming the same identity as the failed device. For each subsequent authentication failure,

the waiting interval shall be increased exponentially. That is, after each failure, the waiting interval before

a new attempt can be made, could be for example, twice as long as the waiting interval prior to the

previous attempt1. The waiting interval shall be limited to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the authentication procedure with a large number of

different keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 44 of 61

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

6.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair (step

1). This key pair needs to be generated only once per device and may be computed in advance of

pairing. A device may, at any time, choose to discard its public-private key pair and generate a new one,

although there is not a requirement to do so. See Section 5.1 for recommendations on how frequently this

key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (step 1a). The

responding device replies with its own public key (step 1b) These public keys are not regarded as secret

although they may identify the devices. Note that steps 1a and 1b are the same in all three protocols.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-192 or

P-256) – see Section 7.6.

6.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

[The modified text with changes is shown below. Two new paragraphs have been inserted at the end.]

The following parameters are given:

• The prime modulus p, order r, base point x-coordinate Gx, base point y-coordinate Gy.

• The integers p and r are given in decimal form; bit strings and field elements are given in hex.

p = 6277101735386680763835789423207666416083908700390324961279

r = 6277101735386680763835789423176059013767194773182842284081

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 45 of 61

The function P192 is defined as follows. Given an integer u, 0 < u < r, and a point V on the curve E, the

value P192(u,V) is computed as the x-coordinate of the uth multiple uV of the point V.

The private keys shall be between 1 and r/2, where r is the Order of the Abelian Group on the elliptic

curve (e.g. between 1 and 2192/2).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 46 of 61

7 Changes to Core Specification v3.0 + HS

This Section sets forth the specific changes and additions, using the formatting and color conventions

described in Section 2, to Core Specification v3.0 + HS.

7.1 Changes to Core Specification v3.0 + HS, Volume 2, Part C:
Link Manager Protocol Specification

7.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check

[The modified section with changes is shown below.]

At this stage, both devices compute a new confirmation values based on Diffie-Hellman key and

previously exchanged information according to [Vol 2] Part H, Section 7.7.4, “The Simple Pairing Check

Function f3,” on page 967.

The Initiator shall send an LMP_DHKey_check PDU to the Responder. If the Initiator has determined that

the received public key is invalid (see [Vol 2] Part H, Section 7.6), the PDU should include a value that is

different from the computed confirmation value (for example, substituting a randomly generated number).

Otherwise, the PDU shall include including the computed confirmation value it has computed.

[Insert a paragraph break.]

Upon reception, if the received value is not equal to the one calculated according to [Vol 2] Part H,

Section 7.7.4, then the Responder shall follow the procedure in Section 4.2.7.4.1. If the values match, the

Responder should follow the procedure in Section 4.2.7.4.1 if the received public key is invalid (see [Vol

2] Part H, Section 7.6). Otherwise, it shall reply with an LMP_accepted PDU if the received value is equal

to the one it has calculated according to Section 7.7.4 on page 967. If it fails, refer to Section 4.2.7.3.5.1

on page 269.

The Responder shall then send an LMP_DHKey_check PDU, to the Initiator including the its confirmation

value it has computed, to the Initiator. Upon reception, if the received value is not equal to the one

calculated according to [Vol 2] Part H, Section 7.7.4, then the Initiator shall follow the procedure in

Section 4.2.7.4.1.1. If the values match, the Initiator should follow the procedure in Section 4.2.7.4.1.1 if

the received public key is invalid (see [Vol 2] Part H, Section 7.6). Otherwise, it shall reply with an

LMP_accepted PDU if the received value is equal to the one it has calculated according to Section 7.7.4

on page 967. If it fails, refer to Section 4.2.7.4.1.1, “Check Failure on the Initiator Side,” on page 272.

At this point, both devices shall compute the link key according to [Vol 2] Part H, Section 7.7.3, “The

Simple Pairing Key Derivation Function f2,” on page 966.

The Initiator shall then start standard mutual authentication as described in Section 4.2.1.1

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 47 of 61

A device that detects an invalid public key (see [Vol 2] Part H, Section 7.6) from the peer at any point

during the Secure Simple Pairing process shall fail the pairing process and therefore not create a link key.

7.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Responder should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Responder is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on

page 967, the Responder shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

7.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Initiator should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Initiator is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on page

967, the Initiator shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 48 of 61

7.2 Changes to Core Specification v3.0 + HS, Volume 2, Part E:
Host Controller Interface Functional Specification

7.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION

Insert a new row at the end of Table 3.4 as shown below.]

Name Vers. Summary description Supported
Controllers

Read BD_ADDR Command
1.1

The Read BD_ADDR command will read
the value for the BD_ADDR parameter.

BR/EDR

Read Local Simple Pairing
Options

Erratum
10734

The Read Local Simple Pairing Options
command is used to read the simple pairing
options and the maximum encryption key
size supported.

BR/EDR

Table 3.4: Controller information

7.2.2 [Modified Section] 6.26 SUPPORTED COMMANDS

[The modified table with changes is shown below. Note: CSA2 alters octet 29, CSA3 alters octets 29 and

30, and CSA4 alters octets 29 to 32. In each case the CSA change overrides the changes in this

erratum.]

Octet Bit Command Supported

24

0 Read Enhanced Transmit Power Level

1 Reserved

2 Read Best Effort Flush Timeout

3 Write Best Effort Flush Timeout

4 Short Range Mode

5 Reserved

6 Reserved

7 Reserved

25 All Reserved

26 All Reserved

27 All Reserved

28 All Reserved

29 All Reserved

30 All Reserved

31 All Reserved

32 All Reserved

33 All Reserved

34 All Reserved

35 All Reserved

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 49 of 61

36 All Reserved

37 All Reserved

38 All Reserved

39 All Reserved

40 All Reserved

41

0 Reserved

1 Reserved

2 Reserved

3 Read Local Simple Pairing Options

4 Reserved

5 Reserved

6 Reserved

7 Reserved

7.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

[A new section is added as shown below.]

Command OCF Command
Parameters

Return Parameters

HCI_Read_Local_Simple_Pairing_
Options

0x000C Status,

Simple_Pairing_Options,

Maximum_Encryption_Key_Size

Description:

The Read_Local_Simple_Pairing_Options command is used to read the simple pairing options and the

maximum encryption key size supported. Bit 0 of the Simple_Pairing_Options return parameter shall be

set to 1.

Note: If this command is supported, then the Controller must support remote public key validation (see

[Vol 2] Part H, Section 7.6).

Command parameters:

None

Return parameters:

Status: Size: 1 octet

Value Parameter Description

0x00 Read_Local_Simple_Pairing_Options command succeeded.

0x01–0xFF Read_Local_Simple_Pairing_Options command failed. See [Vol 2] Part D, Error
Codes for a list of error codes and descriptions.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 50 of 61

Simple_Pairing_Options: Size: 1 octet

Bit Number Parameter Description

0 Remote public key validation is always performed.

All other bits Reserved for future use.

Maximum_Encryption_Key_Size: Size: 1 octet

Value Parameter Description

0x07–0x10 Maximum encryption key size (in octets) supported.

All other values Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Local_Simple_Pairing_Options command has completed, a Command Complete event

shall be generated.

7.3 Changes to Core Specification v3.0 + HS, Volume 2, Part H:
Security Specification

7.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS

[The modified section with changes is shown below.]

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new

authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated

by a device claiming the same identity as the failed device. For each subsequent authentication failure,

the waiting interval shall be increased exponentially. That is, after each failure, the waiting interval before

a new attempt can be made, could be for example, twice as long as the waiting interval prior to the

previous attempt1. The waiting interval shall be limited to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the authentication procedure with a large number of

different keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 51 of 61

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

7.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair (step

1). This key pair needs to be generated only once per device and may be computed in advance of

pairing. A device may, at any time, choose to discard its public-private key pair and generate a new one,

although there is not a requirement to do so. See Section 5.1 for recommendations on how frequently this

key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (step 1a). The

responding device replies with its own public key (step 1b) These public keys are not regarded as secret

although they may identify the devices. Note that steps 1a and 1b are the same in all three protocols.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-192 or

P-256) – see Section 7.6.

7.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

[The modified text with changes is shown below. Two new paragraphs have been inserted at the end.]

The following parameters are given:

• The prime modulus p, order r, base point x-coordinate Gx, base point y-coordinate Gy.

• The integers p and r are given in decimal form; bit strings and field elements are given in hex.

p = 6277101735386680763835789423207666416083908700390324961279

r = 6277101735386680763835789423176059013767194773182842284081

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 52 of 61

The function P192 is defined as follows. Given an integer u, 0 < u < r, and a point V on the curve E, the

value P192(u,V) is computed as the x-coordinate of the uth multiple uV of the point V.

The private keys shall be between 1 and r/2, where r is the Order of the Abelian Group on the elliptic

curve (e.g. between 1 and 2192/2).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 53 of 61

8 Changes to Core Specification v2.1 + EDR

This Section sets forth the specific changes and additions, using the formatting and color conventions

described in Section 2, to Core Specification v2.1 + EDR.

8.1 Changes to Core Specification v2.1 + EDR, Volume 2, Part C:
Link Manager Protocol Specification

8.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check

[The modified section with changes is shown below.]

At this stage, both devices compute a new confirmation values based on Diffie-Hellman key and

previously exchanged information according to [Vol 2] Part H, Section 7.7.4, “The Simple Pairing Check

Function f3,” on page 900.

The Initiator shall send an LMP_DHKey_check PDU to the Responder. If the Initiator has determined that

the received public key is invalid (see [Vol 2] Part H, Section 7.6), the PDU should include a value that is

different from the computed confirmation value (for example, substituting a randomly generated number).

Otherwise, the PDU shall include including the computed confirmation value it has computed.

[Insert a paragraph break.]

Upon reception, if the received value is not equal to the one calculated according to [Vol 2] Part H,

Section 7.7.4, then the Responder shall follow the procedure in Section 4.2.7.4.1. If the values match, the

Responder should follow the procedure in Section 4.2.7.4.1 if the received public key is invalid (see [Vol

2] Part H, Section 7.6). Otherwise, it shall reply with an LMP_accepted PDU if the received value is equal

to the one it has calculated according to Section 7.7.4 on page 900. If it fails, refer to Section 4.2.7.3.5.1,

“Check Failure on the Initiator Side,” on page 265.

The Responder shall then send an LMP_DHKey_check PDU, to the Initiator including the its confirmation

value it has computed, to the Initiator. Upon reception, if the received value is not equal to the one

calculated according to [Vol 2] Part H, Section 7.7.4, then the Initiator shall follow the procedure in

Section 4.2.7.4.1.1. If the values match, the Initiator should follow the procedure in Section 4.2.7.4.1.1 if

the received public key is invalid (see [Vol 2] Part H, Section 7.6). Otherwise, it shall reply with an

LMP_accepted PDU if the received value is equal to the one it has calculated according to Section 7.7.4

on page 900. If it fails, refer to Section 4.2.7.4.1.1, “Check failure on the initiator side,” on page 268.

At this point, both devices shall compute the link key according to [Vol 2] Part H, Section 7.7.3, “The

Simple Pairing Key Derivation Function f2,” on page 899.

The Initiator shall then start standard mutual authentication as described in Section 4.2.1.1

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 54 of 61

A device that detects an invalid public key (see [Vol 2] Part H, Section 7.6) from the peer at any point

during the Secure Simple Pairing process shall fail the pairing process and therefore not create a link key.

8.1.2 [Modified Section] 4.2.7.4.1 Check failure on the Responder side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Responder should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Responder is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on

page 900, the Responder shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

8.1.3 [Modified Section] 4.2.7.4.1.1 Check failure on the initiator side

[The modified first paragraph with changes is shown below.]

If the received public key is invalid (see [Vol 2] Part H, Section 7.6), the Initiator should send an

LMP_not_accepted PDU with reason “Authentication Failure”. If the confirmation value received via LMP

by the Initiator is not equal to the one it has calculated according to [Vol 2] Part H, Section 7.7.4 on page

900, the Initiator shall send an LMP_not_accepted PDU with reason “Authentication Failure”.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 55 of 61

8.2 Changes to Core Specification v2.1 + EDR, Volume 2, Part E:
Host Controller Interface Functional Specification

8.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION

[Insert a new row at the end of Table 3.4 as shown below.]

Name Vers. Summary description

Read BD_ADDR
Command

1.1
The Read BD_ADDR command will read the value for the
BD_ADDR parameter.

Read Local Simple
Pairing Options

Erratum
10734

The Read Local Simple Pairing Options command is used to
read the simple pairing options and the maximum encryption
key size supported.

Table 3.4: Controller information

8.2.2 [Modified Section] 6.26 SUPPORTED COMMANDS

[The modified table with changes is shown below. Note: CSA2 alters octet 29 and CSA3 alters octets 29

and 30. In each case the CSA change overrides the changes in this erratum.]

Octet Bit Command Supported

20

0 Reserved

1 Reserved

2 Send Keypress Notification

3 IO Capabilities Response Negative Reply

4 Reserved

5 Reserved

6 Reserved

7 Reserved

21 All Reserved

22 All Reserved

23 All Reserved

24 All Reserved

25 All Reserved

26 All Reserved

27 All Reserved

28 All Reserved

29 All Reserved

30 All Reserved

31 All Reserved

32 All Reserved

33 All Reserved

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 56 of 61

34 All Reserved

35 All Reserved

36 All Reserved

37 All Reserved

38 All Reserved

39 All Reserved

40 All Reserved

41

0 Reserved

1 Reserved

2 Reserved

3 Read Local Simple Pairing Options

4 Reserved

5 Reserved

6 Reserved

7 Reserved

8.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

[A new section is added as shown below.]

Command OCF Command
Parameters

Return Parameters

HCI_Read_Local_Simple_Pairing_
Options

0x000C Status,

Simple_Pairing_Options,

Maximum_Encryption_Key_Size

Description:

The Read_Local_Simple_Pairing_Options command is used to read the simple pairing options and the

maximum encryption key size supported. Bit 0 of the Simple_Pairing_Options return parameter shall be

set to 1.

Note: If this command is supported, then the Controller must support remote public key validation (see

[Vol 2] Part H, Section 7.6).

Command parameters:

None

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 57 of 61

Return parameters:

Status: Size: 1 octet

Value Parameter Description

0x00 Read_Local_Simple_Pairing_Options command succeeded.

0x01–0xFF Read_Local_Simple_Pairing_Options command failed. See [Vol 2] Part D, Error
Codes for a list of error codes and descriptions.

Simple_Pairing_Options: Size: 1 octet

Bit Number Parameter Description

0 Remote public key validation is always performed.

All other bits Reserved for future use.

Maximum_Encryption_Key_Size: Size: 1 octet

Value Parameter Description

0x07–0x10 Maximum encryption key size (in octets) supported.

All other values Reserved for future use.

Event(s) generated (unless masked away):

When the Read_Local_Simple_Pairing_Options command has completed, a Command Complete event

shall be generated.

8.3 Changes to Core Specification v2.1 + EDR, Volume 2, Part H:
Security Specification

8.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS

[The modified section with changes is shown below.]

When the authentication attempt fails, a waiting interval shall pass before the verifier will initiate a new

authentication attempt to the same claimant, or before it will respond to an authentication attempt initiated

by a device claiming the same identity as the failed device. For each subsequent authentication failure,

the waiting interval shall be increased exponentially. That is, after each failure, the waiting interval before

a new attempt can be made, could be for example, twice as long as the waiting interval prior to the

previous attempt1. The waiting interval shall be limited to a maximum.

The maximum waiting interval depends on the implementation. The waiting time shall exponentially

decrease to a minimum when no new failed attempts are made during a certain time period. This

procedure prevents an intruder from repeating the authentication procedure with a large number of

different keys.

To protect a device's private key, a device should implement a method to prevent an attacker from

retrieving useful information about the device's private key using invalid public keys. For this purpose, a

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 58 of 61

device should change its private key after every pairing (successful or failed). Otherwise, it should change

its private key at least after any of the following can use one of the following methods:

• Change its private key after three failed attempts from any BD_ADDR and

• after 10 ten successful pairings from any BD_ADDR; or

• after any combination of these such that 3 three successful pairings count as one failed pairing.; or

• Verify that the received public keys from any BD_ADDR are on the correct curve; or

• Implement elliptic curve point addition and doubling using formulas that are valid only on the correct

curve.

8.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE

[The modified section with changes is shown below.]

Initially, each device generates its own Elliptic Curve Diffie-Hellman (ECDH) public-private key pair (step

1). This key pair needs to be generated only once per device and may be computed in advance of

pairing. A device may, at any time, choose to discard its public-private key pair and generate a new one,

although there is not a requirement to do so. See Section 5.1 for recommendations on how frequently this

key pair should be changed.

Pairing is initiated by the initiating device sending its public key to the receiving device (step 1a). The

responding device replies with its own public key (step 1b) These public keys are not regarded as secret

although they may identify the devices. Note that steps 1a and 1b are the same in all three protocols.

A device shall validate that any public key received from any BD_ADDR is on the correct curve (P-192 or

P-256) – see Section 7.6.

8.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

[The modified text with changes is shown below. Two new paragraphs have been inserted at the end.]

The following parameters are given:

• The prime modulus p, order r, base point x-coordinate Gx, base point y-coordinate Gy.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 59 of 61

• The integers p and r are given in decimal form; bit strings and field elements are given in hex.

p = 6277101735386680763835789423207666416083908700390324961279

r = 6277101735386680763835789423176059013767194773182842284081

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

The function P192 is defined as follows. Given an integer u, 0 < u < r, and a point V on the curve E, the

value P192(u,V) is computed as the x-coordinate of the uth multiple uV of the point V.

The private keys shall be between 1 and r/2, where r is the Order of the Abelian Group on the elliptic

curve (e.g. between 1 and 2192/2).

A valid public key Q = (XQ, YQ) is one where XQ and YQ are both in the range 0 to p - 1 and satisfy the

equation (YQ)2 = (XQ)3 + aXQ + b (mod p) in the relevant curve’s finite field.

A device can validate a public key by directly checking the curve equation, by implementing elliptic curve

point addition and doubling using formulas that are valid only on the correct curve, or by other means.

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 60 of 61

9 Missing section numbers

Where this erratum adds new sections to the Source Specifications, these new sections are given the

same section number in all versions of the Source Specification (including versions under development

and not yet published). This means that, in some cases, there will be section numbers missing in older

Source Specification versions. For each such missing number, a new section is inserted with the title and

content both “This section is not currently used”. The missing section numbers are as follows:

Source Specifications Volume and Part Missing section numbers

v2.1 + EDR Volume 2, Part E Sections 7.4.7 and 7.4.8

v3.0 + HS and v4.0 Volume 2, Part E Section 7.4.8

v4.2 Volume 6, Part B Sections 4.6.9 to 4.6.22

v5.0 Volume 6, Part B Sections 4.6.16 to 4.6.22

Erratum 10734: Pairing Updates / Erratum

 Bluetooth SIG Proprietary Page 61 of 61

10 References

[1] Core Specification version 5.0, dated 2016-Dec-06, location

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043

[2] Core Specification version 4.2, dated 2014-Dec-02, location

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439

[3] Core Specification version 4.1, dated 2013-Dec-03, location

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=282159

[4] Core Specification version 4.0, dated 2010-Jun-30, location

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737

[5] Core Specification version 3.0 + HS, dated 2009-Apr-21, location

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=174214

[6] Core Specification version 2.1 + EDR, dated 2007-Jul-26, location

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=241363

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=282159
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=174214
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=241363

	1 Language
	1.1 Language conventions

	2 Conventions used in this Erratum
	3 Changes to Core Specification v5.0
	3.1 Changes to Core Specification v5.0, Volume 2, Part C: Link Manager Protocol Specification
	3.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check
	3.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side
	3.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

	3.2 Changes to Core Specification v5.0, Volume 2, Part E: Host Controller Interface Functional Specification
	3.2.1 [Modified Section] 3 OVERVIEW OF COMMANDS AND EVENTS
	3.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS
	3.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command
	3.2.4 [Modified Section] 7.7.65.9 LE Generate DHKey Complete Event
	3.2.5 [Modified Section] 7.8.37 LE Generate DHKey Command

	3.3 Changes to Core Specification v5.0, Volume 2, Part H: Security Specification
	3.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS
	3.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE
	3.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

	3.4 Changes to Core Specification v5.0, Volume 3, Part C: Generic Access Profile
	3.4.1 [Modified Section] 14.1 CROSS-TRANSPORT KEY DERIVATION

	3.5 Changes to Core Specification v5.0, Volume 3, Part H: Security Manager Specification
	3.5.1 [Modified Section] 2.3.5.6.1 Public Key Exchange
	3.5.2 [Modified Section] 2.3.6 Repeated Attempts
	3.5.3 [Modified Section] 3.5.5 Pairing Failed

	3.6 Changes to Core Specification v5.0, Volume 6, Part B: Link Layer Specification
	3.6.1 [Modified Section] 4.6 FEATURE SUPPORT
	3.6.2 [New Section] 4.6.23 Remote Public Key Validation
	3.6.3 [Modified Section] 5.1.4 Feature Exchange Procedure

	4 Changes to Core Specification v4.2
	4.1 Changes to Core Specification v4.2, Volume 2, Part C: Link Manager Protocol Specification
	4.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check
	4.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side
	4.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

	4.2 Changes to Core Specification v4.2, Volume 2, Part E: Host Controller Interface Functional Specification
	4.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION
	4.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS
	4.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command
	4.2.4 [Modified Section] 7.7.65.9 LE Generate DHKey Complete Event
	4.2.5 [Modified Section] 7.8.37 LE Generate DHKey Command

	4.3 Changes to Core Specification v4.2, Volume 2, Part H: Security Specification
	4.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS
	4.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE
	4.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

	4.4 Changes to Core Specification v4.2, Volume 3, Part C: Generic Access Profile
	4.4.1 [Modified Section] 14.1 CROSS-TRANSPORT KEY DERIVATION

	4.5 Changes to Core Specification v4.2, Volume 3, Part H: Security Manager Specification
	4.5.1 [Modified Section] 2.3.5.6.1 Public Key Exchange
	4.5.2 [Modified Section] 2.3.6 Repeated Attempts
	4.5.3 [Modified Section] 3.5.5 Pairing Failed

	4.6 Changes to Core Specification v4.2, Volume 6, Part B: Link Layer Specification
	4.6.1 [Modified Section] 4.6 FEATURE SUPPORT
	4.6.2 [New Section] 4.6.23 Remote Public Key Validation
	4.6.3 [Modified Section] 5.1.4 Feature Exchange Procedure

	5 Changes to Core Specification v4.1
	5.1 Changes to Core Specification v4.1, Volume 2, Part C: Link Manager Protocol Specification
	5.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check
	5.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side
	5.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

	5.2 Changes to Core Specification v4.1, Volume 2, Part E: Host Controller Interface Functional Specification
	5.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION
	5.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS
	5.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

	5.3 Changes to Core Specification v4.1, Volume 2, Part H: Security Specification
	5.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS
	5.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE
	5.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

	6 Changes to Core Specification v4.0
	6.1 Changes to Core Specification v4.0, Volume 2, Part C: Link Manager Protocol Specification
	6.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check
	6.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side
	6.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

	6.2 Changes to Core Specification v4.0, Volume 2, Part E: Host Controller Interface Functional Specification
	6.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION
	6.2.2 [Modified Section] 6.27 SUPPORTED COMMANDS
	6.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

	6.3 Changes to Core Specification v4.0, Volume 2, Part H: Security Specification
	6.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS
	6.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE
	6.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

	7 Changes to Core Specification v3.0 + HS
	7.1 Changes to Core Specification v3.0 + HS, Volume 2, Part C: Link Manager Protocol Specification
	7.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check
	7.1.2 [Modified Section] 4.2.7.4.1 Check Failure on the Responder Side
	7.1.3 [Modified Section] 4.2.7.4.1.1 Check Failure on the Initiator Side

	7.2 Changes to Core Specification v3.0 + HS, Volume 2, Part E: Host Controller Interface Functional Specification
	7.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION
	7.2.2 [Modified Section] 6.26 SUPPORTED COMMANDS
	7.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

	7.3 Changes to Core Specification v3.0 + HS, Volume 2, Part H: Security Specification
	7.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS
	7.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE
	7.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

	8 Changes to Core Specification v2.1 + EDR
	8.1 Changes to Core Specification v2.1 + EDR, Volume 2, Part C: Link Manager Protocol Specification
	8.1.1 [Modified Section] 4.2.7.4 Authentication stage 2: DHKey Check
	8.1.2 [Modified Section] 4.2.7.4.1 Check failure on the Responder side
	8.1.3 [Modified Section] 4.2.7.4.1.1 Check failure on the initiator side

	8.2 Changes to Core Specification v2.1 + EDR, Volume 2, Part E: Host Controller Interface Functional Specification
	8.2.1 [Modified Section] 3.4 CONTROLLER INFORMATION
	8.2.2 [Modified Section] 6.26 SUPPORTED COMMANDS
	8.2.3 [New Section] 7.4.9 Read Local Simple Pairing Options Command

	8.3 Changes to Core Specification v2.1 + EDR, Volume 2, Part H: Security Specification
	8.3.1 [Modified Section] 5.1 REPEATED ATTEMPTS
	8.3.2 [Modified Section] 7.1 PHASE 1: PUBLIC KEY EXCHANGE
	8.3.3 [Modified Section] 7.6 ELLIPTIC CURVE DEFINITION

	9 Missing section numbers
	10 References

