
Introduction to

Mathematical Programming

Theory and Algorithms of Linear and Nonlinear Optimization

Michael Kupferschmid

unix[1] cat students.m

function students(whom)
printf(’%s students\n’,whom)
students(’and their’)

end

unix[2] octave
octave:1> printf(’\nthis book is dedicated to ’); students(’my’)

this book is dedicated to my students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
and their students
:

Copyright c© 2023 Michael Kupferschmid. d

′′
a

All rights reserved. Except as permitted by the fair-use provisions in Sections 107 and 108 of the 1976
United States Copyright Act, no part of this book may be stored in a computer, reproduced, translated, or
transmitted, in any form or by any means, without prior written permission from the author.

This book,“Introduction to Mathematical Programming” by Michael Kupferschmid, is licensed under
cc-by 4.0. Anyone who complies with the terms specified in
https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted. Inquiries and requests for permission to use material from
the book in other ways should be emailed to the appropriate address at the contact tab of the website from
which it was downloaded. This is the first edition.

The analytical techniques, mathematical results, and computer programs presented in this book are
included only for their instructional value. They have been carefully checked and tested, but they are not
guaranteed for any particular purpose, and they should not be used in any application where their failure
to work as expected might result in injury to persons, damage to property, or economic loss. Michael
Kupferschmid offers no warranty or indemnification and assumes no liabilities with respect to the use of any
information contained in this book. For further disclaimers of liability, see §0.6.

MATLAB R© is a registered trademark of MathWorks. UnixTM is a trademark of The Open Group. MapleTM

is a trademark of Waterloo Maple, Inc. Mathematica R© is a registered trademark of Wolfram Research, Inc.
This book was typeset by the author using LATEX2ε.

Contents

0 Introduction 1

0.1 Optimization . 1
0.2 About This Book . 1

0.2.1 Audience . 2
0.2.2 Pedagogical Approach . 2
0.2.3 Computing . 5
0.2.4 Coverage and Organization . 7
0.2.5 Typographical Conventions . 9

0.3 Teaching From This Book . 11
0.4 About The Author . 13
0.5 Acknowledgements . 13
0.6 Disclaimers . 14
0.7 Exercises . 14

1 Linear Programming Models 17

1.1 Allocating a Limited Resource . 17
1.1.1 Formulating the Linear Program 18
1.1.2 Finding the Optimal Point . 19
1.1.3 Modeling Assumptions . 21
1.1.4 Solution Techniques . 22

1.2 Solving a Linear Program Graphically . 22
1.3 Static Formulations . 23

1.3.1 Brewing Beer . 24
1.3.2 Coloring Paint . 25

1.4 Dynamic Formulations . 28
1.4.1 Scheduling Shift Work . 28
1.4.2 Making Furniture . 30

1.5 Nonsmooth Formulations . 33
1.5.1 Minimizing the Maximum . 33
1.5.2 Minimizing the Absolute Value . 35
1.5.3 Summary . 38

1.6 Bilevel Programming . 39
1.7 Applications Overview . 42
1.8 Compressed Sensing . 43

1.8.1 Perfect Data . 44
1.8.2 Regularization . 46

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

iv Contents

1.8.3 Related Problems . 47
1.9 Exercises . 47

2 The Simplex Algorithm 55

2.1 Standard Form . 55
2.2 The Simplex Tableau . 57
2.3 Pivoting . 58

2.3.1 Performing a Pivot . 59
2.3.2 Describing Standard Forms . 60

2.4 Canonical Form . 61
2.4.1 Basic Feasible Solutions . 62
2.4.2 The pivot.m Routine . 63
2.4.3 Finding a Better Solution . 65
2.4.4 The Simplex Pivot Rule . 66

2.5 Final Forms . 68
2.5.1 Optimal Form . 68
2.5.2 Unbounded Form . 69
2.5.3 Infeasible Forms . 70

2.6 The Solution Process . 70
2.7 The pivot Program . 72
2.8 Getting Canonical Form . 73

2.8.1 The Subproblem Technique . 73
2.8.2 The Method of Artificial Variables 78

2.9 Getting Standard Form . 83
2.9.1 Inequality Constraints . 83
2.9.2 Maximization Problems . 84
2.9.3 Free Variables . 85
2.9.4 Nonpositive Variables . 87
2.9.5 Variables Bounded Away from Zero 88
2.9.6 Summary . 89

2.10 Exercises . 89

3 Geometry of the Simplex Algorithm 99

3.1 A Graphical Solution in Detail . 99
3.2 Graphical Interpretation of Pivoting . 101

3.2.1 Pivoting in Slow Motion . 102
3.2.2 A Guided Tour in R2 . 102
3.2.3 Observations From the Guided Tour 107

3.3 Graphical Interpretation of Tableaus . 108
3.3.1 Slack Variables in the Graph . 109
3.3.2 Alternate Views of a Linear Program 110

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Contents v

3.3.3 Unbounded Feasible Sets . 112
3.4 Multiple Optimal Solutions . 113

3.4.1 Optimal Rays . 113
3.4.2 Optimal Edges . 114
3.4.3 Signal Tableau Columns . 114

3.5 Convex Sets . 115
3.5.1 Convexity of the Feasible Set . 116
3.5.2 Convexity of the Optimal Set . 117

3.6 Higher Dimensions . 118
3.6.1 Finding All Optimal Solutions . 118
3.6.2 Finding All Extreme Points . 123

3.7 Exercises . 127

4 Solving Linear Programs 131

4.1 Implementing the Simplex Algorithm . 131
4.2 The Revised Simplex Method . 137

4.2.1 Pivot Matrices . 138
4.2.2 Not Doing Unnecessary Work . 139
4.2.3 The Phase-2 Algorithm . 141
4.2.4 Phase-1 Algorithms . 142
4.2.5 Not Using Unnecessary Space . 143

4.3 Large Problems . 146
4.3.1 Representing the Basis Inverse . 147
4.3.2 Exploiting Problem Structure . 147
4.3.3 Decomposition . 148

4.4 Linear Programming Software . 151
4.4.1 Picking a Good Pivot Column . 151
4.4.2 Tolerances and Scaling . 153
4.4.3 Preprocessing . 154
4.4.4 Black-Box Solvers . 155

4.5 Degeneracy . 155
4.5.1 Simplex Algorithm Convergence . 157
4.5.2 Ways to Prevent Cycling . 158
4.5.3 Degeneracy and Convergence in Practice 160

4.6 Exercises . 164

5 Duality and Sensitivity Analysis 171

5.1 Algebraic Duality Relations . 172
5.1.1 Both Problems Infeasible . 172
5.1.2 Both Problems Feasible . 172
5.1.3 One Problem Feasible . 176

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

vi Contents

5.1.4 Shadow Prices . 177

5.1.5 Complementary Slackness . 180

5.1.6 Multiple Optima and Degeneracy 181

5.2 Finding Duals . 187

5.2.1 The Standard Form Linear Program 187

5.2.2 The Transportation Problem . 188

5.2.3 Finding Duals Numerically . 190

5.3 Efficiency Considerations . 192

5.3.1 Tall & Thin vs Short & Fat . 192

5.3.2 The Dual Simplex Method . 194

5.4 Sensitivity Analysis . 196

5.4.1 Changes to Problem Data . 197

5.4.2 Inserting or Deleting Columns . 199

5.4.3 Inserting or Deleting Rows . 201

5.4.4 Shadow-Price Curves . 203

5.5 Exercises . 205

6 Linear Programming Models of Network Flow 213

6.1 The Transportation Problem . 217

6.1.1 Finding a Basic Feasible Solution 217

6.1.2 Finding a Better Solution . 221

6.1.3 Degeneracy . 226

6.1.4 The Transportation Simplex Algorithm 228

6.1.5 Other Starting Methods . 230

6.1.6 Multiple Optimal Solutions . 232

6.2 Unequal Supply and Demand . 232

6.2.1 More Supply Than Demand . 233

6.2.2 Less Supply Than Demand . 233

6.2.3 “At Least This Much” Demands . 234

6.3 Transshipment . 235

6.4 General Network Flows . 237

6.4.1 Finding a Basic Feasible Solution 239

6.4.2 The General Network Flow Algorithm 242

6.5 Solving Network Models . 242

6.5.1 Computer Implementation . 242

6.5.2 Capacity Constraints . 243

6.5.3 Related Problems . 244

6.6 Exercises . 247

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Contents vii

7 Integer Programming 255

7.1 Explicit Enumeration . 255
7.2 Implicit Enumeration . 257
7.3 Branch-and-Bound for Integer Programs . 260
7.4 Multiple Optimal Points . 263
7.5 Zero-One Programs . 266

7.5.1 Branch-and-Bound for Zero-One Programs 268
7.5.2 Checking Feasible Completions . 269

7.6 Integer Programming Formulations . 272
7.6.1 Techniques . 272
7.6.2 Applications . 273

7.7 Solving Integer Programs . 275
7.7.1 Mixed-Integer Programs . 275
7.7.2 Other Methods . 276
7.7.3 Integer Programming Software . 276

7.8 Dynamic Programming . 276
7.8.1 The Shortest-Path Problem . 277
7.8.2 Integer Nonlinear Programming . 279

7.9 Computational Complexity . 282
7.10 Exercises . 283

8 Nonlinear Programming Models 291

8.1 Fencing the Garden . 291
8.2 Analytic Solution Techniques . 292

8.2.1 Graphing . 293
8.2.2 Calculus . 294
8.2.3 The Method of Lagrange . 295
8.2.4 The KKT Method . 295

8.3 Numerical Solution Techniques . 298
8.3.1 Black-Box Solvers . 298
8.3.2 Custom Software . 301

8.4 Applications Overview . 302
8.5 Parameter Estimation . 303
8.6 Regression . 305

8.6.1 One Predictor Variable . 306
8.6.2 Multiple Predictor Variables . 309
8.6.3 Ridge Regression . 310
8.6.4 Least-Absolute-Value Regression 313
8.6.5 Regression on Big Data . 315

8.7 Classification . 315
8.7.1 Measuring Classification Error . 317

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

viii Contents

8.7.2 Two Predictor Variables . 318
8.7.3 Support Vector Machines . 322
8.7.4 Nonseparable Data . 325
8.7.5 Classification on Big Data . 329

8.8 Exercises . 329

9 Nonlinear Programming Algorithms 335

9.1 Pure Random Search . 335
9.2 Rates of Convergence . 339
9.3 Local Minima . 343
9.4 Robustness versus Speed . 344
9.5 Variable Bounds . 346
9.6 The Prototypical Algorithm . 347
9.7 Exercises . 349

10 Steepest Descent 353

10.1 The Taylor Series in Rn . 353
10.2 The Steepest Descent Direction . 354
10.3 The Optimal Step Length . 354
10.4 The Steepest Descent Algorithm . 356
10.5 The Full Step Length . 360
10.6 Convergence . 361

10.6.1 Error Curve . 361
10.6.2 Bad Conditioning . 363
10.6.3 Vector and Matrix Norms . 364

10.7 Local Minima . 366
10.8 Open Questions . 369
10.9 Exercises . 370

11 Convexity 375

11.1 Convex Functions . 375
11.2 The Support Inequality . 376
11.3 Global Minima . 378
11.4 Testing Convexity Using Hessian Submatrices 379

11.4.1 Finding the Determinant of a Matrix 381
11.4.2 Finding the Principal Minors of a Matrix 382

11.5 Testing Convexity Using Hessian Eigenvalues 384
11.5.1 When the Hessian is Numbers . 385
11.5.2 When the Hessian is Formulas . 387

11.6 Generalizations of Convexity . 388
11.7 Exercises . 388

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Contents ix

12 Line Search 395

12.1 Exact and Approximate Line Searches . 395
12.2 Bisection . 396

12.2.1 The Directional Derivative . 398
12.2.2 Staying Within Variable Bounds . 399
12.2.3 A Simple Bisection Line Search . 402

12.3 Robustness Against Nonconvexity . 403
12.3.1 The Wolfe Conditions . 405
12.3.2 A Simple Wolfe Line Search . 406
12.3.3 MATLAB Implementation . 408

12.4 Line Search in Steepest Descent . 412
12.4.1 Steepest Descent Using bls.m . 413
12.4.2 Steepest Descent Using wolfe.m . 414

12.5 Exercises . 416

13 Newton Descent 421

13.1 The Full-Step Newton Algorithm . 421
13.2 The Modified Newton Algorithm . 424
13.3 Line Search in Newton Descent . 428

13.3.1 Modified Newton Using bls.m . 428
13.3.2 Modified Newton Using wolfe.m 430

13.4 Quasi-Newton Algorithms . 432
13.4.1 The Secant Equation . 432
13.4.2 Iterative Approximation of the Hessian 433
13.4.3 The BFGS Update Formula . 435
13.4.4 Updating the Inverse Matrix . 439
13.4.5 The DFP and BFGS Algorithms 439
13.4.6 The Full BFGS Step . 442

13.5 Exercises . 445

14 Conjugate-Gradient Methods 449

14.1 Unconstrained Quadratic Programs . 449
14.2 Conjugate Directions . 450
14.3 Generating Conjugate Directions . 453
14.4 The Conjugate Gradient Algorithm . 454
14.5 The Fletcher-Reeves Algorithm . 458
14.6 The Polak-Ribière Algorithm . 459
14.7 Quadratic Functions . 461

14.7.1 Quadratic Forms in R2 . 461
14.7.2 Ellipses . 463
14.7.3 Plotting Ellipses . 468

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

x Contents

14.8 Exercises . 472

15 Equality Constraints 479

15.1 Parameterization of Constraints . 481
15.2 The Lagrange Multiplier Theorem . 483
15.3 The Method of Lagrange . 486
15.4 Classifying Lagrange Points Analytically . 490

15.4.1 Problem-Specific Arguments . 490
15.4.2 Testing the Reduced Objective . 490
15.4.3 Second Order Conditions . 491

15.5 Classifying Lagrange Points Numerically . 495
15.6 Exercises . 498

16 Inequality Constraints 505

16.1 Orthogonality . 506
16.2 Nonnegativity . 506
16.3 The Karush-Kuhn-Tucker Conditions . 509
16.4 The KKT Theorems . 513
16.5 The KKT Method . 514
16.6 Convex Programs . 516
16.7 Constraint Qualifications . 518
16.8 NLP Solution Phenomena . 521

16.8.1 Redundant and Necessary Constraints 522
16.8.2 Implicit Variable Bounds . 523
16.8.3 Ill-Posed Problems . 524

16.9 Duality in Nonlinear Programming . 525
16.9.1 The Lagrangian Dual . 528
16.9.2 The Wolfe Dual . 529
16.9.3 Some Handy Duals . 530

16.10 Finding KKT Multipliers Numerically . 534
16.11 Exercises . 538

17 Trust-Region Methods 547

17.1 Restricted-Steplength Algorithms . 547
17.2 An Adaptive Modified Newton Algorithm 551
17.3 Trust-Region Algorithms . 557

17.3.1 Solving the Subproblem Exactly . 559
17.3.2 Solving the Subproblem Quickly . 562

17.4 An Adaptive Dogleg Newton Algorithm . 568
17.5 Bounding Loops . 572
17.6 Exercises . 574

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Contents xi

18 The Quadratic Penalty Method 581

18.1 The Quadratic Penalty Function . 582
18.2 Minimizing the Quadratic Penalty Function 589
18.3 A Quadratic Penalty Algorithm . 591
18.4 The Awkward Endgame . 593

18.4.1 A Numerical Autopsy . 593
18.4.2 The Condition Number of a Matrix 597

18.5 Exercises . 600

19 The Logarithmic Barrier Method 605

19.1 The Logarithmic Barrier Function . 608
19.2 Minimizing the Barrier Function . 613
19.3 A Barrier Algorithm . 616
19.4 Comparison of Penalty and Barrier Methods 620
19.5 Plotting Contours of the Barrier Function 621
19.6 Exercises . 625

20 Exact Penalty Methods 631

20.1 The Max Penalty Method . 631
20.2 The Augmented Lagrangian Method . 638

20.2.1 Minimizing a Convex Lagrangian 639
20.2.2 Minimizing a Nonconvex Lagrangian 640
20.2.3 The Augmented Lagrangian Function 642
20.2.4 An Augmented Lagrangian Algorithm 645
20.2.5 Conclusion . 648

20.3 Alternating Direction Methods of Multipliers 650
20.3.1 Serial ADMM . 651
20.3.2 Parallel ADMM . 653

20.4 Exercises . 656

21 Interior-Point Methods 663

21.1 Interior-Point Methods for LP . 663
21.1.1 A Primal-Dual Formulation . 665
21.1.2 Solving the Lagrange System . 667
21.1.3 Solving the Linear Program . 670

21.2 Newton’s Method for Systems of Equations 674
21.2.1 From One Dimension to Several . 674
21.2.2 Solving the LP Lagrange System Again 676

21.3 Interior-Point Methods for NLP . 679
21.3.1 A Primal-Dual Formulation . 683
21.3.2 A Primal Formulation . 686

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

xii Contents

21.3.3 Accelerating Convergence . 688
21.3.4 Other Variants . 690

21.4 Exercises . 691

22 Quadratic Programming 697

22.1 Equality Constraints . 697
22.1.1 Eliminating Variables . 699
22.1.2 Solving the Reduced Problem . 703

22.2 Inequality Constraints . 710
22.2.1 Finding a Feasible Starting Point 712
22.2.2 Respecting Inactive Inequalities . 715
22.2.3 Computing the Lagrange Multipliers 720
22.2.4 An Active Set Implementation . 723

22.3 A Reduced-Newton Algorithm . 727
22.4 Exercises . 731

23 Feasible-Point Methods 739

23.1 Reduced-Gradient Methods . 739
23.1.1 Linear Constraints . 739
23.1.2 Nonlinear Constraints . 742

23.2 Sequential Quadratic Programming . 750
23.2.1 A Newton-Lagrange Algorithm . 752
23.2.2 Equality Constraints . 755
23.2.3 Inequality Constraints . 758
23.2.4 A Quadratic Max Penalty Algorithm 762

23.3 Exercises . 767

24 Ellipsoid Algorithms 773

24.1 Space Confinement . 773
24.2 Shor’s Algorithm for Inequality Constraints 774
24.3 The Algebra of Shor’s Algorithm . 778

24.3.1 Ellipsoids in Rn . 778
24.3.2 Hyperplanes in Rn . 781
24.3.3 Finding the Next Ellipsoid . 783

24.4 Implementing Shor’s Algorithm . 790
24.5 Ellipsoid Algorithm Convergence . 794
24.6 Recentering . 796
24.7 Shah’s Algorithm for Equality Constraints 800
24.8 Other Variants . 801
24.9 Summary . 802
24.10 Exercises . 803

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Contents xiii

25 Solving Nonlinear Programs 809

25.1 Summary of Methods . 809
25.2 Mixed Constraints . 811

25.2.1 Natural Algorithm Extensions . 811
25.2.2 Extensions Beyond Constraint Affinity 811
25.2.3 Implementing Algorithm Extensions 812

25.3 Global Optimization . 813
25.3.1 Finding A Minimizing Point . 813
25.3.2 Finding The Best Minimizing Point 815

25.4 Scaling . 815
25.4.1 Scaling Variables . 817
25.4.2 Scaling Constraints . 817

25.5 Convergence Testing . 819
25.6 Calculating Derivatives . 820

25.6.1 Forward-Difference Approximations 820
25.6.2 Central-Difference Approximations 821
25.6.3 Computational Costs . 823
25.6.4 Finding the Best ∆ . 824
25.6.5 Computing Finite-Difference Approximations 827
25.6.6 Checking Gradients and Hessians 829
25.6.7 Automatic Differentiation . 831

25.7 Large Problems . 833
25.7.1 Problem Characteristics . 833
25.7.2 Coordinate Descent . 834
25.7.3 Method Characteristics . 837
25.7.4 Semi-Analytic Results . 838
25.7.5 Nasty Problems . 839

25.8 Exercises . 840

26 Algorithm Performance Evaluation 849

26.1 Algorithm vs Implementation . 851
26.1.1 Specifying the Algorithm . 851
26.1.2 Designing Experiments . 852

26.2 Test Problems . 853
26.2.1 Defining the Problems . 854
26.2.2 Constructing Bounds . 855

26.3 Error vs Effort . 858
26.3.1 Measuring Solution Error . 860
26.3.2 Counting Function Evaluations . 861
26.3.3 Measuring Processor Time . 863
26.3.4 Counting Processor Cycles . 866

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

xiv Contents

26.3.5 Problem Definition Files . 870
26.3.6 Practical Considerations . 872

26.4 Testing Environment . 873
26.4.1 Automating Experiments . 874
26.4.2 Utility Programs . 875

26.5 Reporting Experimental Results . 876
26.5.1 Tables . 876
26.5.2 Performance Profiles . 877
26.5.3 Publication . 878

26.6 Exercises . 879

27 pivotpivotpivot: A Simplex Algorithm Workbench 885

27.1 Commands . 886
27.2 Installing the pivot Program . 913

27.2.1 Building the Executable . 913
27.2.2 Other Files . 914

27.3 Running the pivot Program . 914
27.3.1 Using the Command-Line Interface 914
27.3.2 Using the Built-In Help . 915
27.3.3 Printing the Screen . 916

27.4 Exercises . 917

28 Appendices 921

28.1 Calculus . 921
28.1.1 Extrema of a Function of One Variable 921
28.1.2 Taylor’s Series for a Function of One Variable 922
28.1.3 The Gradient of a Quadratic Form 923

28.2 Linear Algebra . 923
28.2.1 Matrix Arithmetic . 924
28.2.2 The Transpose of a Matrix . 925
28.2.3 Inner and Outer Products . 926
28.2.4 Linear Independence . 927
28.2.5 Matrix Inversion . 927
28.2.6 Matrix Identities . 928

28.3 Numerical Computing . 929
28.3.1 Finding a Root with Bisection . 929
28.3.2 Finding a Root with Newton’s Method 930
28.3.3 Floating Point Arithmetic . 932

28.4 Matlab Programming Conventions . 932
28.4.1 Control Structures . 933
28.4.2 Variable Names . 933

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Contents xv

28.4.3 Iteration Counting . 936
28.5 Linear Programs Used in the Text . 938
28.6 Integer Linear Programs Used in the Text 943
28.7 Nonlinear Programs Used in the Text . 944
28.8 Integer Nonlinear Program Used in the Text 956
28.9 Exercises . 956

29 Bibliography 963

29.1 Suggested Reading . 963
29.2 Technical References . 964
29.3 Other References . 976

30 Index 979

30.1 Subject Index . 979
30.2 Symbol Dictionary . 1014
30.3 Bibliography Citations . 1018

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0

Introduction

This book is about formulating mathematical models for optimization problems, solving
the models by analytic techniques and iterative numerical algorithms, implementing the
algorithms in computer programs, and using computational experiments to study how the
programs behave.

0.1 Optimization

Who among us has not wished for an idyllic marriage, a
flawless gemstone, or a house with four southern exposures?
Alas, our happiness is often tempered by tradeoffs and
constraints, and then instead of demanding perfection we
must do the best we can. Sometimes this optimization

takes only common sense, but many problems can benefit
from a more systematic and quantitative approach.

“For since the fabric of the uni-
verse is most perfect and the
work of a most wise Creator,
nothing at all takes place in the
universe in which some rule of
maximum or minimum does not
appear.” – Leonhard Euler

The approach that we will use is based on an algebraic description or mathematical

model of the optimization problem. In trying to find a best course of action we will ignore
certain details and construct a simplified idealization that is just realistic enough to predict
how the outcomes we care about depend on the actions we take.

“I fail every day.
Yet to victory am I born.”
– Ralph Waldo Emerson

In life we often approach success only gradually, by making a
sequence of mistakes that miss the mark by less and less; trial
and error are essential in learning how to play the piano or how to
bake bread, and if perfection is ever achieved it is on the very last

try. To solve a mathematical optimization model it is usually also necessary to use trial
and error, in the form of an iterative algorithm or numerical procedure that (we hope)
produces, from each wrong answer that it finds, an answer that is closer to being right.

Because of the iterative nature of optimization algorithms, it is a practical necessity that
their steps of logic and arithmetic be carried out automatically by a computer program.

0.2 About This Book

In 1988, early in my career at Rensselaer Polytechnic Institute, I attended a faculty meeting
about combining two of our optimization courses and persuaded my colleagues that we should
use the opportunity to introduce some material about numerical methods. Then I spent many
years as Scientific Programming Consultant, helping graduate students and research faculty

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2 About This Book

with numerical computing, supervising thesis projects on optimization, publishing my own
research, and teaching courses including Mathematical Models of Operations Research.

It was not until 2014 that I began teaching the course I had helped to design, which was
by then called Computational Optimization. We used three very good textbooks [1] [4] [5],
but together they did not quite cover the syllabus and the students claimed to prefer my
notes. In Operations Research I always used the linear programming chapters from successive
editions of [3], but the course gradually evolved away from that text and again I found the
students relying more on my notes.

In 2015 I began this book to give my students typeset classnotes, so I hope they like it as
much as they did the handwritten version and that other instructors find it useful for their
students too. Because the notes were designed mainly to provide an easy introduction to the
more comprehensive texts cited above, this book should be read to accompany those works
rather than to replace them.

0.2.1 Audience

The courses in which I have taught this material enroll mostly juniors, seniors and first-year
graduate students in mathematics, engineering, computer science, and finance, but postdocs
and precocious sophomores have also found them worthwhile. I have assumed that readers
will have some prior knowledge of computer programming and numerical methods as well as
undergraduate mathematics, as detailed in §28. However, the computer programs presented
in the book advance gradually from very simple to only moderately complex and they are
all explained in detail, so students who have had even a superficial exposure to MATLAB can
easily learn the coding along with the mathematics.

0.2.2 Pedagogical Approach

Tell a good story. Of all the wondrous tellings in
science it is the never-ending story of mathematics, at
once awesome in majesty and familiar as breakfast, that
is surely the most beguiling. You can learn about it
without ever having fallen in love, but learning the thing
itself requires enough enchantment that you will cherish

“So much of science proceeds by
telling stories . . . Even the most
distant and abstract subjects . . .
fall within the bounds of necessary
narrative.” – S. J. Gould

the tale and remember how it goes. In this book I have tried very hard to enchant you
by weaving words, pictures, equations, graphs, code, and computational results into a clear
and simple narrative. This is the only way I know how to teach, and if by the end I have
succeeded you will not only know the subject but also love it as I do.

Let the reader discover the ideas. You will learn from this book if and only
if you actually read it. Many pages are needed to tell the story of mathematical optimization,
partly because there are many ideas in the subject and partly because you will remember
only the ones that I help you discover for yourself. It will be obvious in many places that I am

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.2.2 Pedagogical Approach 3

trying not to spoil the plot by prematurely revealing what happens next. Serious students
typically enjoy reading a story that is told in this way, but if you always look at the last page
of a mystery first you might be happier using the Index to read the book in fragments. If a
need for instant gratification makes you abandon this book entirely in favor of the internet,
please remember that humbug often passes for wisdom on the web.

Use few proofs. A good proof can deepen our understanding and lead to fresh
insights and valuable discoveries, and even a bad proof can (within fundamental limita-
tions [119, p98]) persuasively establish the claims of its theorem. Mathematics often seems
to progress by proving things. It is therefore tempting to explain linear programming by
starting at the foundations of linear algebra and proving a succession of theorems concerning
row-reduced echelon form; after that, all of the results that are needed for practical applica-
tion follow trivially. To explain nonlinear programming it is similarly tempting to begin with
precise definitions for differentiable and twice-differentiable functions and then prove a suc-
cession of theorems to build up the magnificent edifice of the Karush-Kuhn-Tucker theory;
after that, the results that are needed for practical applications follow trivially. I have known
a few students for whom this austere and lofty approach actually seemed to work, though
none have ever used the word “trivial” in telling me about their struggles with it.

Many other students have told me, after studying optimization in that way, “I understood
all of the proofs, but I never knew what any of them had to do with solving problems.”
Rigor can unfortunately be accompanied by mortis, and formal ity by the sharp odor of
formaldehyde. Our focus will be on the practical use of ideas that are mostly quite simple
and intuitive, and which I would rather have you understand from a plausibility argument
than be distracted from by the technical details of a formal proof. I have therefore tried
to make the exposition in this book so compelling and transparent that each discovery will
seem, by the time we make it, obvious enough that no formal proof is required. If you want
to learn how to construct proofs you should study books such as [1], [148], [8], and [136].
There are unfortunately a few places where I was driven to the heavy machinery because I
felt unable to make the case in any other way, so the book does formally prove these eight
theorems; I apologize for this lapse.

§ theorem

3.5.1 The set X = {x ∈ Rn | Ax = b, x ≥ 0} is convex.
3.5.2 The set of points that are optimal for a linear program is convex.

13.4.3 The BFGS update maintains symmetry of B.
13.4.3 The BFGS result satisfies the secant equation.
13.4.3 if U is nonsingular, then U⊤MU is PD if and only if M is PD.
13.4.3 The BFGS update maintains positive definiteness of B.
16.4 The KKT points of a convex program are global minima.
16.6 Convex constraints fi(x) ≤ 0 have a convex intersection.

I have stated another nine important results in the form of theorems, listed on the next page,
but without formal proof.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4 About This Book

§ theorem

10.7 First-order necessary conditions for optimality.
10.7 Second-order necessary conditions for optimality.
10.7 Strong second-order sufficient conditions.
10.7 Weak second-order sufficient conditions.
11.3 Global minimizers.
11.3 Unique global minimizer.
13.4.4 The Sherman-Morrison-Woodbury formula.
15.2 Existence of Lagrange multipliers.
16.4 Existence of KKT multipliers.

The algorithms discussed in this book can be proved to converge under certain conditions,
at least if we assume that they are implemented in perfect arithmetic. But the conditions
are seldom satisfied and most of the methods work well enough to be useful even when they
are not, so I have omitted formal proofs of convergence and cited other books where they
can be found. Theorems of the alternative are charming but far from our focus on practical
methods for numerical optimization, so I have also refrained from discussing those.

Use many examples. A colleague of mine was once lecturing in an abstract way on
some mathematical topic when he was interrupted by a student. “Professor,” the student
asked, “could you please show us a specific example of what you are talking about?” The
lecturer replied, flustered and annoyed, “Oh, very well, if you really want to get specific then
let x equal some constant a.” I found it hard to blame the student for dropping that course!
Every general theory has its origin in particular problems, so to investigate mathematical
optimization we will generalize from concrete numerical examples rather than trying to learn
the general theory first and apply it after.

Engage the reader in conversation. In this book I refer to myself as “I” or
“me” and to the reader as “you,” but the personal pronoun that appears most often is “we.”
I am neither a king nor a pope and I do not have a mouse in my pocket, so “we” will always
refer to the two of us together. Thus, for example, when I say in §8.1 “As in formulating
a linear program, we begin by summarizing the data.” I mean to suggest that you imagine
the two of us working on the data summary together.

Use actual code. The difference between a clever idea and a hare-brained scheme
is often in the details of carrying it out, so in explaining optimization algorithms it is essential
to discuss their practical implementation in computer programs. To clarify the theory and
animate the algorithms, I have tried to implement every method in working code. Usually
this code is not sufficiently robust to serve as a numerical recipe for solving every problem.
However, you should try to become as familiar with the example programs as with the
mathematics and the prose, because in optimization all three are co-equal tools of discourse.
To meet the needs of readers having different cognitive styles I have often used multiple
representations of an algorithm, including pseudocode and flowcharts as well as MATLAB

code and in-line comments, in describing its implementation.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.2.3 Computing 5

0.2.3 Computing

To learn how to write your own programs you must write programs of your own, and the Ex-
ercises provide many opportunities for you to do that. But you will learn faster and develop
better coding habits if you start by imitating the correct programs discussed in the text. I
have assumed that you know a little about computer programming in a procedural language
such as Java or C, and that you have at least watched someone else use base MATLAB. A
typical optimization class includes at least a few students who are facile programmers, so
if you are not you can ask one who is for help getting started. This book demands only
meager programming skill, and it does not include any algorithms that involve the explicit
manipulation of tree data structures (which computer scientists think of as the start of real
programming).

Why did I spoil this otherwise wonderful book by not using your favorite programming
language? My statistician friends wish I had chosen R, the computer scientists wish I had
chosen C++, and the big-data mechanics can’t imagine computing without Python. There
are probably even engineers who would have preferred that the examples be written in
FORTRAN. I suspect that whatever language I had chosen when I began, half of the readers
would now want something else. My personal preference runs toward assembler language,
so I had no emotional investment in picking a high-level computing environment and ended
up using several.

Unix. This is the operating system most ardently championed by developers of software
for scientific and technical applications, and its command-line interface makes it possible to
show how it was used. I have therefore assumed that it, rather than Windows or Mac OS-X,
is where the user asks the computer to run programs, as in this example from §26.3.4.

unix[1] ftn eacyc.f ea.f matmpy.f cse.f ek1.f getcyc.c
unix[2] a.out > ek1.e

Unix is used only a few times (in §3, §26, and §27) and each interaction is explained in
detail. Unix is worth knowing, but you do not need to know anything about it to read this
book. The applications that are described below can be used on any machine, not just on
computers running Unix, and they work the same on all of them.

MATLAB OR OCTAVE. These are high-level software environments that can be used,
either interactively or by writing programs, to do numerical calculations. MATLAB optionally
includes toolboxes for a wide variety of tasks (including optimization) and it can be licensed
from The Math Works, Inc. for most computers and operating systems. Octave [50] is
a program that works like MATLAB except that it lacks the MATLAB toolboxes, and it
can be downloaded free for most computers and operating systems. Octave has all of the
functionality required for this book, and although it provides extensions to MATLAB I have
been careful to avoid using them. My students have used both Octave and MATLAB with
equal success, so whenever I refer to MATLAB in this book I will mean either MATLAB or
Octave. The MATLAB programming in this book is not difficult, it is usually extensively

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6 About This Book

commented, and it is often explained line-by-line in the body of the text. To keep the
programs easy to understand, I have observed the coding standards outlined in §28.4.

THE pivotpivotpivot PROGRAM. This is a learning tool for manipulating linear programming
tableaus. All of the tableau operations described in this book can be performed by hand
for the small examples we will study, but the pivot operation involves enough arithmetic
to be tedious and once you have learned how to do it little is to be gained from additional
practice. Homework papers in which the pivoting has been done by hand are typically rife
with numerical errors, sometimes to the extent that the whole point of a problem is lost.
Trivial mistakes deserve only little penalties, so the grader must spend a long time figuring
out which errors are new at each step and which were propagated from earlier in the solution
process. For many years I have therefore encouraged my students to use some program to
automate that particular calculation, and because pivot can do many other operations as
well I have used it extensively in this book. As discussed in §2.7 you can understand the
examples without having or using the program, but if you want the code you can download
it for free from the publisher’s web site and install it on your computer.

The pivot program is written in classical FORTRAN and available only in source, so if your
computing environment does not already include a FORTRAN compiler you will need to install
one first by following the instructions in §27.2. Although the program will accommodate
problems having up to 30 rows and 40 columns, neither its data structures nor its algorithms
are of industrial strength so it is not meant to serve as a production linear program solver.
The bones of the program are very old, so I also do not offer it as a paragon of design. If
you have an idea for improving either the program or its manual in §27.1, please tell me so
that I can make corrections and improvements in a future release of the program or a future
edition of this text.

Maple OR Mathematica. These amazing symbolic algebra programs can analytically
solve equations and inequalities, evaluate derivatives and integrals, and do arbitrary-precision
arithmetic. In §8.2.4 I will show you how Maple works, but I have made scant use of it else-
where and none at all of Mathematica or of the symbolic computation features of MATLAB,
because all three programs are proprietary closed-source products with high license fees. As
I write this the Sage Math open-source mathematical software system (see sagemath.org)
has recently become available, and its wide-ranging capabilities might soon make it the
preferred free alternative to these commercial offerings.

AMPL AND NEOS. AMPL[61] is a modeling language in which you can describe an
optimization problem for solution by one of the canned packages that are available on the
NEOS web server. I will show you in §8.3.1 how to use these utilities to solve nonlinear
programs but, because our focus is on constructing algorithms rather than simply solving
problems, they will play no other role in this book.

gnuplot.gnuplot.gnuplot. This program draws graphs from data. It is available free for many computing
environments and sometimes it works better than the corresponding functions of Octave, so
I will show you how to use it in §3.6.1 and thereafter use it a few times to draw graphs in
three dimensions.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.2.4 Coverage and Organization 7

FORTRAN. For teaching numerical algorithms and experimenting with their implemen-
tation MATLAB or Octave is the ideal platform, but writing a production solver in FORTRAN

[100, §0.3] or some other compiled language usually produces much faster machine code. We
will use FORTRAN in §26.3 for studying the performance of optimization algorithms, but you
don’t need to know the language to read this book.

0.2.4 Coverage and Organization

According to its subtitle this book is about theory and algorithms of linear optimization
and nonlinear optimization, so in the summary on the following page those two segments
account for most of the Chapters. The one on nonlinear optimization can be subdivided into
Chapters 10, 13, 14, and 17 on methods for unconstrained problems, Chapters 15 and 16
on the theory of constrained optimization, and Chapters 18–24 on methods for constrained
problems. The Chapters on constrained problems can be further subdivided according to
whether they describe methods for equality constraints (Chapter 18), inequality constraints
(Chapters 19 and 21), or both (Chapters 20, 22, and 23). The checkerboard display shows
how the material on model formulation, mathematical theory, numerical algorithms, and
practical implementation is distributed through the Chapters.

According to its title this book is an introduction, so I have omitted some topics that
are covered in some graduate courses, such as Lagrangian methods for integer programming
and computing the rank-one update of a matrix by adjusting its triangular factors.

While many readers will be reassured by my focus on classical theory and methods,
others might wish that I had written only about topics that have become fashionable much
more recently. At the dawn of numerical optimization, computer memories were tiny and
machine-readable data were scarce so the problems that people could actually solve did not
have many variables. Little problems that are nice are not very interesting, so for many
years the focus of research and algorithm development was on problems that are downright
nasty. Much of what is known, and thus much of what you will learn from this book, has
to do with solving models that are complex, unstructured, nonconvex, and nonsmooth, but
not very large. As I finish this book in 2020, the problems that business and industry seem
most eager to solve arise from the use of machine learning for data analytics. Most of these
problems are theoretically very easy because they have a strictly convex objective and linear
constraints, but they are practically very difficult because they have millions of variables.
Unfortunately the techniques that work well for problems that are nasty mostly do not scale,
because their storage requirements and running time grow quadratically with the number
of variables. While most research in optimization was historically focused on developing
sophisticated methods for solving small nasty models, it is now focused on the formulation
of huge nice models tractable for very simple methods that scale linearly with problem size.

The techniques that are used for big-data problems are based on the classical methods,
and many applications that are never mentioned on Fox News still give rise to problems that
are of the traditional kind, so I have been loath to simply abandon the prior art in favor

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8 About This Book

model formulation

mathematical theory
numerical algorithms

practical implementation
reference

0 Introduction
1 Linear Programming Models
2 The Simplex Algorithm
3 Geometry of the Simplex Algorithm
4 Solving Linear Programs
5 Duality and Sensitivity Analysis
6 Linear Programming Models of Network Flow
7 Integer Programming
8 Nonlinear Programming Models
9 Nonlinear Programming Algorithms
10 Steepest Descent
11 Convexity
12 Line Search
13 Newton Descent
14 Conjugate-Gradient Methods
15 Equality Constraints
16 Inequality Constraints
17 Trust-Region Methods
18 The Quadratic Penalty Method
19 The Logarithmic Barrier Method
20 Exact Penalty Methods
21 Interior-Point Methods
22 Quadratic Programming
23 Feasible-Point Methods
24 Ellipsoid Algorithms
25 Solving Nonlinear Programs
26 Algorithm Performance Evaluation
27 pivot: A Simplex Algorithm Workbench
28 Appendices
29 Bibliography
30 Index

li
n
ea
r

op
ti
m
iz
at
io
n

n
on

li
n
ea
r
op

ti
m
iz
at
io
n

of the new. The compromise that I have struck is to embed applications and algorithms
that are essential to the big-data revolution into a conventional treatment of mathematical
programming. The list below shows what these topics are and where they are discussed.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.2.5 Typographical Conventions 9

location material most relevant to big-data problems

§1.5.1 minimizing the maximum
§1.5.2 minimizing the absolute value
§1.8 compressed sensing
§4.3 solving large linear programs
§8.6.5 regression on big data
§8.7.5 classification on big data
§16.6 convex programs
§16.9 duality in nonlinear programming
§20.2.4 the augmented Lagrangian method
§20.3 alternating direction methods of multipliers
§25.7 solving large nonlinear programs

I hope you will find that this book provides a useful introduction to techniques specifically
useful in data analytics, along with a solid background in the mathematical theory and
classical methods of optimization.

0.2.5 Typographical Conventions

page headers. Each right-hand (odd-numbered) page shows the title of the current Sec-
tion or Subsection above its top rule, and the corresponding left-hand page shows the title
of the Chapter or Section of which the Section or Subsection on the right-hand page is
a part. For example, the header of this page shows the Subsection title Typographical

Conventions while the header of the facing page shows the Section title About This

Book. Although some parts come and go in the course of a page and thus never get men-
tioned at all, you might find the page headers (together with the Table of Contents) helpful
in navigating through the book. In the text, “Section” can refer to either a Section or a
Subsection.

key words. An important word is printed bold on its first or defining appearance in the
text but slanted in an Exercise, and it is an Index entry. Other Index entries are for ideas
and concepts that might not be described in the text by a single key word.

references. The literature citation [100, §4.6.1] is to section 4.6.1 in Bibliography ref-
erence 100, the book Classical FORTRAN. Context will often make it obvious whether a
literature citation is given to suggest additional reading or to support a specific claim that
is made in this book. The pages on which each citation appears are listed in §30.3.

exercises. The final Section in each Chapter consists of questions on that Chapter, ar-
ranged in roughly the same order as the material to which they refer. Exercises marked [E]

test only whether you recall what you have read, and can often be answered by quoting ver-
batim from the text; Exercises marked [H] test your comprehension of what you have read

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10 About This Book

and often require some hand calculation; Exercises marked [P] ask you to use a computer
or write a program. Questions marked [E] are not always easy, and questions marked [H]

are not always hard, but some of the [H] questions are much harder than others and a few
are research problems to which I do not know the answer.

approximate numbers. Numbers that are stated as decimal fractions are sometimes
imprecise. If a mathematical analysis yields an answer that is a formula and I round its
exact value r to, say, 1.23 then I will write r ≈ 1.23 to indicate that the decimal is not exact.
If a computer calculation yields a value for the floating point variable r that rounds to 1.23,
I will write r = 1.23 even though the value might be inexact because of the rounding or
errors resulting from machine arithmetic or the infinitely-convergent nature of an algorithm.
Outputs printed by computer programs will always be in typewriter font.

example problems. This book includes many example optimization problems. I will give
names to those that are referred to more than once, and collect all of the named problems
in §28.5–§28.8. The page where each named problem is first mentioned is given in §30.1.

mathematical symbols. Sometimes I will use f (α) to mean f (x + α); otherwise the
notation follows the prototypes in this table. The precise in-context meanings of variables
are given in §30.2.

notation meaning

s a scalar
sk the value of s at iteration k

s2 s × s

v a column vector
v⊤ a row vector
vk the vector v at iteration k

v j the j’th element of v or of v⊤

v2
j

v j × v j

vi the i’th vector v

vk
i

the vector vi at iteration k

[vk
i
] j the j’th element of vi at iteration k

0 a vector of all zeros
1 a vector of all ones
e j the j’th unit vector, zero except for 1 in element j

M an m × n matrix; a simplex tableau
M⊤ the n × m transpose of M
M−1 the inverse of a square matrix M

M−⊤ the transpose of the inverse of M
Mk the matrix M at iteration k

Mi the row vector that is the i’th row of the matrix M

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.3 Teaching From This Book 11

notation meaning

f (s) a scalar function of the scalar s

f (v) a scalar function of the vector v
f (v; p) a scalar function in which p is a fixed parameter
f(v) a vector function of the vector v
A a set
|A| the cardinality of the set A
Rn the space of n-vectors having real components
Rn
+

the positive orthant of Rn

Zn the space of n-vectors having integer components
× scalar multiplication
XX a contradiction
X a confirmation
x the Hebrew letter resh
σ the Hebrew letter samech
� the end of a proof or argument
−→ the problem on the right is derived from the one on the left
←→ the two optimization problems have the same optimal point

boxes. Sometimes I will box an important result in a complicated derivation for emphasis
or so that I can refer to it (equations are not numbered). In line-by-line descriptions of
computer programs, a boxed number such as 123 refers to that line in the program’s listing.

other conventions. Crosshatching in the graphical solution of an optimization problem
indicates the feasible set. A “smooth” function is one that is sufficiently differentiable for
the purpose at hand. A “function” can be either a mathematical function or a Matlab

subprogram. I will use “minimum” to refer, depending on context, to a minimizing point of
an optimization problem or to the objective value at a minimizing point.

0.3 Teaching From This Book

A determined student can learn what this book has to teach by reading it and working the
Exercises, but I hope that the book will also be required or recommended as a course text.
The sample syllabi at the top of the next page are for the courses that gave rise to the book,
and assume a 14-week semester with 2 class meetings per week all dedicated to instruction.
These two courses, or two courses like them, are not big enough to cover all of the material
in the book. Parts of the book can be used in other courses, serving different audiences and
having different aims, as either a primary or an alternate text. Some possibilities are listed
in the middle of the next page.

One approach to teaching this material is to recapitulate the book’s exposition in class and
expect the students to read the relevant Sections afterward. Another is to expect the students

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12 Introduction

Mathematical Models of Operations Research
mostly Juniors and Seniors

class topics reading

1 the idea of LP; graphical solution 1.1-1.2
2 static formulations 1.3
3 dynamic formulations 1.4
4 nonsmooth formulations 1.5-1.6
5 bilevel programs; compressed sensing 1.7-1.8
6 standard form and pivoting 2.1-2.3
7 canonical form and final forms 2.4-2.7
8 the subproblem technique 2.8.1
9 the method of artificial variables 2.8.2

10 getting standard form 2.9
11 graphical interpretation of pivoting 3.1-3.2
12 graphical interpretation of tableaus 3.3-3.4
13 convex sets 3.5
14 higher dimensions 3.6
15 implementing the simplex algorithm 4.1
16 the revised simplex method 4.2
17 large problems; software 4.3-4.4
18 convergence, degeneracy, and cycling 4.5
19 duality relations and shadow prices 5.1
20 finding duals; dual simplex method 5.2-5.3
21 sensitivity analysis 5.5
22 the transportation problem 6.1-6.2
23 transshipment; general network flows 6.3-6.4
24 explicit and implicit enumeration 7.1-7.2
25 branch-and bound for IP 7.3-7.4
26 zero-one programs 7.5
27 IP formulations; software 7.6-7.8
28 dynamic programming; complexity 7.8-7.9

Computational Optimization
mostly graduate students

class topics reading

1 nonlinear programming models 8.1-8.5
2 regression 8.6
3 classification; SVMs 8.7
4 NLP algorithms 9.1-9.6
5 steepest descent 10.1-10.8
6 convexity 11.1-11.6
7 bisection line search 12.1-12.2
8 Wolfe line search 12.3-12.4
9 Newton descent 13.1-13.3

10 quasi-Newton algorithms 13.4
11 the method of Lagrange 15.1-15.3
12 classifying Lagrange points 15.4-15.5
13 KKT; constraint qualifications 16.1-16.7
14 solution phenomena and duality 16.8-16.10
15 restricted steplength methods 17.1-17.2
16 trust-region algorithms 17.3-17.4
17 the quadratic penalty method 18.1-18.4
18 the logarithmic barrier method 19.1-19.4
19 exact penalty methods 20.1-20.2.3
20 augmented Lagrangian and ADMM 20.2.4-20.3
21 interior-point methods for LP 21.1-21.2
22 interior-point methods for NLP 21.3
23 feasible-point methods 23.1-23.2
24 space confinement 24.1-24.3
25 ellipsoid algorithms 24.4-24.8
26 solving nonlinear programs 25.1-25.5
27 approximating derivatives 25.6-25.7
28 algorithm performance 26.1-26.5

typical other course title parts most likely to be of interest

Introduction to Optimization 1, 2, 6, 7, 8, 9, 10, 25, 26
Linear Programming 1, 2, 27, 3, 4, 5, 6, 21.1
Nonlinear Programming Fundamentals 8, 9, 10, 11, 13, 15, 16, 17
Nonlinear Programming Algorithms 8, 9, 11, 12, some from {13–24}, 25, 26
Network Optimization 1, 2, 3, 4, 5, 6
Data Analytics 1, 2, 4, 8, 15, 16, 20.3, 25.7
Numerical Methods 9, 10.6, 12, 18.4, 25, 26
Convex Analysis 3, 11, 15, 16, 24
Quadratic Programming 14, 18, 22
Integer Programming 1, 2, 3, 7
Analysis of Algorithms 4, 7, 26

to read the relevant Sections first and devote each class to a summary of the reading and
a detailed study of one example (perhaps chosen from the Exercises so as to be different
from those discussed in the text). The Exercises marked [E] can be used in short quizzes
or graded homework to test whether a student has done the reading. Computing can (and
ideally should) be made a part of the course by assigning Exercises marked [P], or by
assigning a term project, or by including hands-on programming in some classes.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.5 Acknowledgements 13

0.4 About The Author

My professional life began in 1968 when I received a BS degree in electrical engineering
from Rensselaer and went to work for Sikorsky Aircraft designing autopilots for military
helicopters. After three years (and 53 test flights) I returned for an MEng degree in control
systems engineering. Then I studied theatre engineering at the Yale School of Drama (Meryl
Streep and Sigourney Weaver were also students at that time), became a licensed Professional
Engineer, and designed controls for scenery-lifting winches at a little company that has since
become part of the Wenger Corporation. There I also managed a group of technicians and
drafters until 1978, when I returned yet again to Rensselaer set on a future in research and
teaching (which in my innocence I imagined would not involve management). In 1980 I
received an MS degree in operations research and statistics, and in 1981 the PhD for a thesis
[98] about numerical optimization. Then I spent the next 34 years as a staff consultant and
teacher of engineering and mathematics courses, eventually publishing 21 research articles
in refereed journals. I also co-authored one textbook [3] first published in 1988 and wrote
another on my own [100] first published in 2002, both of which are still in print. Now I hope
to teach courses from this book, and to see it come into the widest possible use by students
and by other instructors.

0.5 Acknowledgements

My gratitude begins with Don Schwendeman and Kristin Bennett, who made it possible for
me finally to teach Computational Optimization a quarter of a century after I advocated for
its introduction. I am grateful to Kristin and to Joe Ecker for sharing their classnotes, and
to Joe for sharing the code he wrote for the course (though both the text and the code in
this book ended up being quite different from either of theirs).

Next I must thank my Operations Research and Computational Optimization students
for taking those courses and thereby helping me to perfect my own class notes, which as I have
explained form the basis for this text. Drafts of the book have been used in those and other
courses by Kristin Bennett, John Mitchell, Rong Ji Lai, and Yangyang Xu, eliciting valuable
feedback from students including Joseph Hitchcock, Xiaoyan Lu, Miao Qi, Jonathan Reilly,
and Yu Chen. John Mitchell suggested improvements to §1.8, §5.1.6, and several Exercises.

Some of the ideas in §26.2 and §26.3 came from work that was done by Steve Dziuban,
David Covey, and Eric Johnson when they were my PhD students. The inspiration for the
pivot command Gnf (see §27.1) was a class project by Scott Sacci, and a prototype of the
pivot manual was a class project by Miranda Polin, Jen Karkoska, and Christine Goodrich.
Dan Serino helped me with MATLAB.

Several friends who read parts of the book in draft pointed out errors or made other
valuable suggestions, including Ken Miller, Matt Milone, Nancy Lawson, Hari Prasadh,
Seth Lotts, and M. S. Krishnamoorthy.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14 Introduction

Kevin Lewis worked many hardware miracles to keep my various antique laptop comput-
ers running for long enough to finish the project, and Erin Lynch emailed and printed many
drafts.

While all of these people helped me and deserve a share of the credit for whatever you
might like about this book, I must take the blame for any failures of judgement or other
mistakes you find in it. I will of course be very happy to receive corrections or comments so
that I can perfect the book in a later edition.

0.6 Disclaimers

Although I have tried very hard to ensure that everything in this book is correct, I cannot
guarantee it (perhaps the author is the person least capable of issuing such a guarantee). I
make no warranties, express or implied, that the mathematics, algorithms, or code contained
in this book are free of error, or are consistent with any particular standard of merchantabil-
ity, or that they will be suitable for any particular purpose. Both I and the publisher disclaim
all liability for direct or consequential damages resulting from the use of anything you find
in this book. The computer codes in particular are present only for instructional purposes
and should not be relied upon for solving any problem whose incorrect solution could result
in injury to a person, destruction of property, or loss of data. While you are welcome to all
of the code, please be aware of its shortcomings and remember that you are using it at your
own risk.

0.7 Exercises

0.7.1[E] What is this book about?

0.7.2[E] What is optimization?

0.7.3[E] What is a mathematical model of an optimization problem?

0.7.4[E] This book discusses two basic ways of solving optimization models. (a) What are
they? (b) Can every problem be solved in both ways? Explain.

0.7.5[E] When trial and error is used to solve an optimization model, what form does the
process take? What makes a numerical algorithm iterative?

0.7.6[E] Why is it usually necessary to use a computer program to perform the steps of
an optimization algorithm?

0.7.7[E] When I began writing this book, several very good texts about linear and non-
linear optimization were already in print. Why do I think this book might be a worthwhile
supplement to them?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

0.7 Exercises 15

0.7.8[E] Who are the audience for this book? How much computing background do you
need in order to read it?

0.7.9[E] List the main features of the pedagogical approach that I used in writing this
book. Why do I try to help you discover the ideas for yourself?

0.7.10[E] What is the role of proof in this book? How many theorems are formally stated,
and how many are proved? Why was it necessary to include these theorems and proofs?
Have I proved the convergence of the algorithms discussed in the book?

0.7.11[E] Which usually comes first in this book, a general theory or a specific example?

0.7.12[E] When the text says “we” to whom is it referring?

0.7.13[E] Why are the algorithms in this book implemented in working code?

0.7.14[E] In discussing optimization theory and algorithms I will use three basic forms of
expression. What are they? What are the different representations for an algorithm that I
will use in describing its implementation?

0.7.15[E] What computing background have I assumed you will have as you begin reading
this book? Where can you find help in getting started with the computer programming
required by this book?

0.7.16[E] List the computing environments used in this book. Why did I choose Unix,
rather than Windows or Mac OS-X, as the operating system to assume in examples that
involve using one?

0.7.17[E] How do MATLAB and Octave differ?

0.7.18[E] Does this book make any use of the MATLAB Optimization Toolbox? Does it use
any of the extensions that Octave makes to MATLAB?

0.7.19[E] Describe the pivot program. Where can you find instructions telling how to
install the program if you want to have it? Do you need to install it on your computer in
order to understand the examples in this book?

0.7.20[E] How do Maple and Mathematica differ from Octave and base MATLAB?

0.7.21[E] What are AMPL and NEOS, and why do they play only a small role in this
book?

0.7.22[E] How is gnuplot used in this book? Find out how to get it for your computer,
and explain the procedure.

0.7.23[E] Why is FORTRAN usually preferable to MATLAB or Octave as a language for
writing production optimization software? Do you need to know FORTRAN to read this
book?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16 Introduction

0.7.24[E] The content summary of §0.2.4 divides the Chapters of this book into 6 segments.
What are they? Which Chapters include material relating to the practical implementation
of optimization algorithms?

0.7.25[E] Research in optimization used to be focused on developing sophisticated methods
for small nasty models, but it is now focused on the formulation of huge nice models that
are tractable for very simple methods. Why?

0.7.26[E] Where does this book discuss topics that are of interest for the solution of opti-
mization problems involving big data? Why does the book also discuss methods for solving
traditional models that do not involve big data?

0.7.27[E] Explain how to navigate through this book by using (a) the page headers; (b) the
Table of Contents; (c) the Index.

0.7.28[E] What does it mean when a word is printed in bold type?

0.7.29[E] Each Exercise in this book is marked [E] or [H] or [P]. What do these designa-
tions mean? Which category consists of questions that might be included in a reading quiz
to test a student’s recall?

0.7.30[E] If the text says r = 1.23, is the value given exactly? If the text says r=1.23, is
the value given exactly? Explain.

0.7.31[E] The optimal objective value of the ek1 problem is given approximately as 614.2
in §24.2. Where can you find its value precise to machine precision?

0.7.32[E] What does the symbol XX denote?

0.7.33[E] What does a boxed number such as 123 denote?

0.7.34[E] Do the mathematical results, algorithm descriptions, or computer code in this
book come with any sort of warranty? Explain.

0.7.35[H] If you find a mistake in the book, how can you report it to the author? Hint:
read the verso on the back of the title page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1

Linear Programming Models

We begin, as mathematics often begins, with a story.
Two of the courses in which David is enrolled have their first exams next week. He is

already confident that he knows 2 of the 5 textbook sections to be covered by the Linear
Programming exam, but in dark moments of terror and self-reproach he is forced to admit
that he has so far learned nothing at all about Art History. He estimates that he can master
the remaining Linear Programming sections if he spends 3 hours studying the book and 2
hours working problems, but to catch up in Art History he needs to devote 10 hours to
learning his class notes and visiting the on-line gallery. He hopes to get the highest grades
he possibly can, but to avoid having an alert sent to his advisor he must score at least 60%
on each exam. Unfortunately, his family commitments and other courses leave him only 12
hours to prepare for these exams. What should he do?

1.1 Allocating a Limited Resource

David has already learned enough from his Linear Programming course to recognize his
problem as an optimization. His goal, stated more precisely, is to maximize the sum of
the two exam scores, but because his time for study is a limited resource there is a tradeoff
between the two scores; the only way he can do better on one exam is by doing less well on
the other.

He cannot directly control the scores he will get but he can control the allocation of
his study time, so to describe the problem mathematically he identifies these decision

variables.
x1 = hours spent studying for Linear Programming

x2 = hours spent studying for Art History

If he already knows 2
5
of the Linear Programming material he could score 40% on that exam

without any further study at all, and if 5 hours are enough to learn the rest then studying
for x1 hours should allow him to achieve a score of

s1 = 40 + 60 × 1
5
x1 = 40 + 12x1.

If 10 hours are enough to learn all of the Art History that will be tested, then studying for
x2 hours should allow him to achieve a score of

s2 = 100 × 1
10
x2 = 10x2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18 Allocating a Limited Resource

The scores s1 and s2 are state variables, because they depend on x1 and x2 and are useful
in describing the problem but they are not themselves decision variables. In this problem
what makes them important is that the quantity to be maximized is their total T = s1 + s2.

The statement of David’s problem includes conditions that must be satisfied by any
solution. They can be expressed in terms of the decision variables and state variables like
this.

s1 ≥ 60

s2 ≥ 60

x1 + x2 ≤ 12

}

avoid unwanted attention from advisor

meet other obligations

Additional conditions, while not given explicitly in the problem statement, are implied by
the story or demanded by common sense.

s1 ≤ 100

s2 ≤ 100

x1 ≥ 0

x2 ≥ 0

}

can’t get better than a perfect score

}

can’t study for less than 0 hours

Now David knows what to do: he should study Linear Programming for x1 hours and Art
History for x2 hours, where x1 and x2 are chosen so that all of these conditions are satisfied
and T is as high as possible. But how can he find those values of x1 and x2?

1.1.1 Formulating the Linear Program

The analysis above can be summarized algebraically in the form of this mathematical

program, which I will call the twoexams problem (see §28.5.1).

maximize
x∈R2

40 + 12x1 + 10x2 = T

subject to 40 + 12x1 ≥ 60 a

10x2 ≥ 60 b

x1 + x2 ≤ 12 c

40 + 12x1 ≤ 100 d

10x2 ≤ 100 e

x1 ≥ 0 f

x2 ≥ 0 g

In a mathematical program an objective function is maximized or minimized subject to
side conditions or constraints, which can be inequalities or equalities. Because the objective
and constraint functions in this mathematical program are all linear in the decision variables,
it is called a linear program.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.1.2 Finding the Optimal Point 19

1.1.2 Finding the Optimal Point

This linear program might seem daunting because it requires us to find values of x1 and
x2 that satisfy the seven constraint inequalities a – g simultaneously. But because this
problem has only two decision variables we can graph its feasible set X, crosshatched below,
which contains all such feasible points.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

x1

x2

f
x 1
≥
0

a
x 1
≥

5 3

d
x 1
≤
5

gx2 ≥ 0

c

x
1 +

x
2 ≤

12

ex2 ≤ 10

bx2 ≥ 6

X

The nonnegativity constraints x1 ≥ 0 and x2 ≥ 0, represented respectively by the x2 and
x1 coordinate axes in this graph, confine the feasible set to the first quadrant. The constraint
on study time, x1 + x2 ≤ 12, rules out points above the diagonal line. The vertical lines are
the limits on x1 that must be enforced to ensure that 60 ≤ s1 ≤ 100, and the horizontal lines
are the limits on x2 that must be enforced to ensure that 60 ≤ s2 ≤ 100. In this problem the
nonnegativities are redundant constraints because they do not affect the feasible set.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20 Allocating a Limited Resource

Now to solve the linear program we need only select, from among all the points in X, one
that maximizes the objective function

T = s1 + s2 = 40 + 12x1 + 10x2.

For a given value of T, this equation describes an objective contour that we can plot along
with the feasible set. In the picture below I have drawn one objective contour through the
point [5

3
, 6]⊤ where T = 120, and another through [5, 7]⊤ where T = 170.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

x1

x2

X • x⋆ = [5, 7]⊤

T
=
170

or
1.2x

1
+
x
2
=
13

T
=
120

or
1.2x

1
+
x
2
=
8

di
re
ct
ion

of
in
cr
ea
sin
g
T

The objective contours are parallel to one another and as we increase T they move up and
to the right. The feasible point yielding the highest objective value is thus the corner of X
marked x⋆, and David’s optimal test preparation program is to spend x1 = 5 hours studying
Linear Programming and x2 = 7 hours studying Art History; this will allow him to earn exam
scores of s1 = 100 and s2 = 70. He could do better in Art History by choosing a feasible
point with a higher x2, but only by decreasing x1 and settling for lower values of s1, and T .

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.1.3 Modeling Assumptions 21

1.1.3 Modeling Assumptions

In formulating his time allocation problem as a linear program, David made several important
idealizing approximations. This is inevitable whenever we attempt a conceptually simple
description of our inherently complicated world. Often the assumptions we find it necessary
or convenient to make are also quite reasonable, and then they can lead to a realistic and
useful mathematical model, but always it is prudent to remember what they were.

The most obvious assumptions underlying the twoexams linear programming model are
David’s estimates about how much of the Linear Programming material he already knows,
how long it will take him to learn the rest, and how long it will take him to catch up in Art
History. Experienced students often make good guesses about such things, but sometimes
they guess wrong. In other settings the coefficients and constants in a linear programming
model might be uncertain statistical estimates from data, arbitrary numbers specified by
some authority, or the results of theoretical calculations concerning a natural phenomenon.

The objective and constraint functions of the twoexams model are linear in x1 and x2,
and this implies strict proportionality of the output T to each of those inputs. Each minute
spent on study is assumed to produce the same increment in knowledge and understanding,
even though in reality comprehension grows more quickly in the middle of learning a topic
than it does at either end and fatigue makes the first minute of study more effective than
the last. The credit on each exam is assumed to be uniformly distributed over the material
to be covered, so that knowing p% of it results in a grade of p%, even though some topics
typically carry more weight than others and instructors do not always accurately disclose
exam content. Exam performance is assumed to depend only on student knowledge and
understanding, but other factors such as anxiety and distraction can also play a role. The
credit that will be given is assumed to be precisely proportional to the knowledge displayed,
but in practice exams are organized into parts and the distribution of partial credit might
not be smooth.

In a linear program x is a real variable, so we implicitly assumed that study time is
infinitely divisible even though we know that David probably won’t measure it with split-
second precision. The optimal point we found for twoexams has components that happen to
be whole numbers, but that was just a coincidence. In other settings the decision variables
count discrete things rather than measuring something continuous, and then using linear
programming entails the assumption that rounding the continuous solution gets close enough
to the right count. This might be a good approximation if a decision variable represents the
number of grains in a corn silo but a bad one if it represents the number of silos on a farm.
Insisting that a mathematical program have whole number solution components turns it into
a much more difficult integer linear program or integer nonlinear program (see §7).

If the numbers in the twoexams problem had been a little different, its feasible set X
might have been empty so that the problem was infeasible. If this possibility did not cross
David’s mind as he wrote down the linear program, then feasibility was another thing he
unwittingly assumed.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22 Linear Programming Models

1.1.4 Solution Techniques

The solution to a mathematical program is an optimal vector x⋆ whose components are
the best possible values of the variables. Together these numbers specify an ideal plan of
action or optimal program of things to do, and that is the origin of the name “mathematical
programming.” Certain mathematical programs can be solved using analytical methods that
were discovered long before the digital computer was invented, but others can be solved only
by numerical methods implemented in computer programs. Thus, while the discipline of
mathematical programming preceded that of computer programming, there is an intimate
connection between the two and they have developed together [36]. This book is about
mathematical programs, analytical and numerical methods for solving them, and computer
programs that implement the numerical methods.

In §1.1.2 we solved the twoexams problem graphically, and throughout the book we will
often study examples that have one, two, or three variables by drawing a graph (see the Index
entry for “graphical solution”). This approach gives so much insight into linear programming
that I have devoted the next Section and all of §3 to the construction and interpretation of
graphical solutions.

Real mathematical programs typically have more than three variables, and then it is
necessary to use analytic or numerical solution techniques. In §2 we will take up the simplex
algorithm for solving linear programs, and we will write and begin using numerical software
to implement it. As we explore the theory and methods of linear optimization the examples
that we consider will often be divorced from the applications that gave rise to them, so
before we leave the topic of linear programming models we will consider several formulation
techniques in §1.3–§1.6, a survey of applications in §1.7, and in §1.8 one important application
that is currently of great interest.

1.2 Solving a Linear Program Graphically

The procedure outlined below can be used to solve any linear program that has inequality
constraints and two (or with obvious extensions three) variables. Several features of the
graphical solution that are referred to here in an informal way will be given more precise
definition in §3.

To begin the solution process you need an algebraic statement of the linear program, a
sheet of graph paper, and a straightedge. If the variables are nonnegative the feasible set
will be in the first quadrant, but for convenience in plotting constraints it might be useful
to extend the axes to negative values. Experiment with the axis scales to find good ones.

Plot each constraint contour as the line where the constraint holds with equality; the
inequality will be satisfied on one side and violated on the other. If x1 = 0, what is x2? If
x2 = 0, what is x1? If the answers are not the origin, draw a line between the intercepts; if
setting x1 = 0 makes x2 = 0 then write the constraint as x2 = mx1 and plot that line through
the origin. Draw hash marks perpendicular to each inequality to show which side is feasible;

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.3 Static Formulations 23

you can find out by picking a point (such as the origin) on one side or the other and asking
“does this point satisfy the constraint?”

The constraint inequalities partition the x1–x2 plane into windowpanes, some of them
extending off the page. Figure out which one windowpane is feasible for all of the inequalities,
and outline or crosshatch it. This feasible set is the intersection of the constraint sides on
which you drew hash marks. No constraints cross the interior of a feasible set. To verify
that you have identified the feasible set, pick a point inside it (not a corner) and evaluate
the constraint functions numerically to show that all of the inequalities are satisfied there.

Plot a trial contour of the objective function. To do this evaluate the objective at some
corner of the feasible set; then plot a dashed line, passing through that corner, on which the
objective has that value.

Find the optimal point. Translate the objective contour you drew parallel to itself in
the direction that maximizes or minimizes the objective (whichever is required) until its
intersection with the feasible set is a single point or an edge. That point or edge is optimal;
label it. The point or edge obtained by translating the objective contour in the other direction
will minimize the objective if you found its maximum, or maximize it if you found its
minimum. You can check your work by evaluating the objective at both extreme corners, or
at all corners, of the feasible set. Find the coordinates of the optimal point algebraically, by
solving simultaneously the equations of the inequalities that intersect there.

Plot the optimal objective contour, if the trial contour you drew before does not happen
to go through the optimal point. Evaluate the objective at the optimal point and plot a
dashed line through it on which the objective has that value. The optimal objective contour
cannot cross the interior of the feasible set.

If the linear program is infeasible (X is empty) or unbounded (which we will study in
§2.5.2) then it has no solution, and this procedure will also reveal that fact.

1.3 Static Formulations

To construct a mathematical programming model for any optimization, we can proceed as
we did in analyzing the twoexams problem.

1. Summarize the facts in a way that makes them easy to understand. If the problem is
simple a concise statement in words might be good enough, but often it is helpful to
organize the data in a table or diagram.

2. Identify decision variables. These always quantify the things we can directly control.

3. State the constraints mathematically. Remember to include obvious constraints

such as nonnegativities and natural constraints such as that there are 24 hours in a
day or that 100% of something is all of it.

4. State the objective mathematically. What is to be minimized or maximized?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24 Static Formulations

1.3.1 Brewing Beer

When barley is allowed to partially germinate and is then dried, it becomes malt. When malt
is crushed and mixed with water, boiled with hops, and fermented with yeast it becomes the
delightful beverage we call beer. Sarah operates a local craft brewery that makes Porter,
Stout, Lager, and India Pale Ale beer by using different amounts of pale malt, black malt,
and hops. For example, to make 5 gallons of Porter requires 7 pounds of pale malt, 1
pound of black malt, and 2 ounces of hops, and the finished keg can be sold for $90. The
technology table below summarizes the resource requirements and anticipated revenue for
all four varieties, along with the stock on hand of each ingredient.

Porter Stout Lager IPA stock
pale malt 7 10 8 12 160 lb
black malt 1 3 1 1 50 lb
hops 2 4 1 3 60 oz
revenue $90 $50 $0 $70

How much of each product should Sarah make to maximize her revenue?

1. The first step in the formulation procedure of §1.3.0 is to summarize the facts, and this
has already been done in the technology table above.

2. What Sarah controls is how much of each product she will make, so the decision variables
are

x1 = kegs of Porter to make,

x2 = kegs of Stout to make,

x3 = kegs of Lager to make, and

x4 = kegs of IPA to make.

3. Sarah’s revenue increases as she sells more beer so ideally x j = +∞ for j = 1 . . . 4, but the
limited stock of ingredients makes this plan infeasible. For example, a production program
[x1, x2, x3, x4]

⊤ requires 7x1 + 10x2 + 8x3 + 12x4 pounds of pale malt, but only 160 pounds are
in stock. To keep from using more supplies than she has, Sarah must choose x1, x2, x3, and
x4 so that

7x1 + 10x2 + 8x3 + 12x4 ≤ 160

1x1 + 3x2 + 1x3 + 1x4 ≤ 50

2x1 + 4x2 + 1x3 + 3x4 ≤ 60.

The amount of each beer variety produced can’t be negative, so the obvious constraints
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 must also be satisfied by an optimal production program.

4. Sarah’s goal is to maximize her total revenue 90x1 + 150x2 + 60x3 + 70x4.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.3.2 Coloring Paint 25

Thus we can state the brewery problem (see §28.5.2) as the following linear program

maximize
x∈R4

90x1 + 150x2 + 60x3 + 70x4

subject to 7x1 + 10x2 + 8x3 + 12x4 ≤ 160

1x1 + 3x2 + 1x3 + 1x4 ≤ 50

2x1 + 4x2 + 1x3 + 3x4 ≤ 60

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

x4 ≥ 0

Because x1, x2, x3, and x4 are real variables, this formulation assumes that fractional amounts
of each variety can be made. Later we will find that the optimal solution to this problem is
x⋆ = [5, 12 1

2
, 0, 0]⊤, in which the amount of Stout to be made is not a whole number of kegs

(see §7.1).

1.3.2 Coloring Paint

A chemical company has developed two batch processes for making pigments. Both pro-
cesses use feedstocks designated a, b, and c, but each is based on a different sequence of
reactions. The RB process produces a final product called red, but at an intermediate stage
it incidentally yields some blue as a byproduct. The BR process produces mostly blue,
with red as a byproduct. One batch of the RB process uses 5 liters of a, 7 liters of b, and 2
liters of c to produce 9 liters of red and 5 liters of blue, while one batch of the BR process
uses 3 liters of a, 9 liters of b, and 4 liters of c to produce 5 liters of red and 11 liters of
blue. A paint company has offered to buy as much product as the chemical company can
make, at $6 per liter of red and $12 per liter of blue, but it insists that at least half of the
shipment be red. The chemical company has on hand 1500 liters of a, 2520 liters of b, and
1200 liters of c. How should it use this inventory of feedstocks to maximize its revenue?

1. The problem description includes a welter of details, so we begin by organizing them in
the technology table below.

feedstock feedstock used feedstock
type RB process BR process available
a 5 3 1500
b 7 9 2520
c 2 4 1200

red 9 5 $6
blue 5 11 $12

pigment RB process BR process revenue
color product produced per liter

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26 Static Formulations

2. Unlike the brewery, the chemical company does not directly control how much of each
product it makes; it only controls how many batches of the two products it makes by each
process.

x1 = runs of the RB process to make

x2 = runs of the BR process to make

3. Like the brewery, the chemical company cannot use more inputs than it has. For example,
making x1 runs of the RB process and x2 runs of the BR process will use 5x1 + 3x2 liters of
feedstock a, but only 1500 liters are on hand. To keep from using more than its supply of
each feedstock, the chemical company must choose x1 and x2 so that

5x1 + 3x2 ≤ 1500

7x1 + 9x2 ≤ 2520

2x1 + 4x2 ≤ 1200.

Making x1 runs of the RB process and x2 runs of the BR process will produce r = 9x1+5x2
liters of red and b = 5x1 + 11x2 liters of blue. The customer’s requirement that at least
half the total product shipped be red means that

r

r + b
=

9x1 + 5x2

14x1 + 16x2
≥ 1

2
.

As it stands this ratio constraint is nonlinear, but unless r + b = 0 we can rewrite it as a
linear inequality.

18x1 + 10x2 ≥ 14x1 + 16x2

4x1 ≥ 6x2

4. The chemical company wants to maximize its revenue R = 6r + 12b = 114x1 + 162x2.

Including nonnegativity constraints, we can state the paint problem (see §28.5.3) as this
linear program.

maximize
x∈R2

114x1 + 162x2 = R

subject to 5x1 + 3x2 ≤ 1500

7x1 + 9x2 ≤ 2520

2x1 + 4x2 ≤ 1200

2x1 − 3x2 ≥ 0

x1 ≥ 0

x2 ≥ 0

This problem has only two variables so I solved it graphically by following the procedure
given in §1.2, obtaining the picture on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.3.2 Coloring Paint 27

The slope of the objective function contours is
slightly less than the slope of the constraint con-
tour 7x1 + 9x2 = 2520, so the optimal point
is the intersection of that line with x2 =

2
3
x1.

Solving the two equations simultaneously yields
x⋆ ≈ [193.85, 129.23]⊤ and the optimal objective con-
tour, which is shown dashed, has the equation
114x1 + 162x2 = R⋆ ≈ 43034. If the paint company
offered less per liter for blue, the objective con-
tours would be steeper and at some price (see
Exercise 1.9.16) x̄ would become optimal.

x2

600

500

400

300

200

100

0 x1
0 100 200 300 400 500 600

5
x
1
+
3
x
2
=
1500

7x
1 +

9x
2 =

2520

2x1 + 4x2 = 1200 x2
=

2
3
x1

X

◦x̄
•x⋆

R
=
R ⋆

The third constraint 2x1 + 4x2 ≤ 1200 does not affect the feasible set, so it is redundant
and could be removed from the problem without changing the answer.

The phrasing of the problem statement suggests that the number of batches run using
each process should be a whole number, but both components of x⋆ have fractional parts.
Rounding each to the nearest integer yields x̂ = [194, 129]⊤, which happens to be the optimal
integer point for this problem. In general, rounding each component in the solution of a
linear program to the nearest whole number can yield a point that is infeasible or that is
feasible but not the optimal integer point. To be sure of finding the optimal integer point
for a mathematical program it is necessary to use the techniques of §7.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28 Dynamic Formulations

1.4 Dynamic Formulations

Many optimization problems involve an ordered sequence of decisions each of which is some-
how affected by those that came before it [151, §2.6]. The key to formulating such a problem
as a mathematical program is often a conservation law that holds at the beginning of each
stage in the process being modeled. Finding such a law can reveal precisely what it is that
we control and hence what the decision variables ought to be.

1.4.1 Scheduling Shift Work

The number of airplanes that are in flight varies with the time of day, so the number of people
who are needed to staff an air traffic control center varies by work period. If a center has
the following daily staff requirements and each controller works for two consecutive periods,
how can the schedule be covered with the minimum number of controllers?

work period controllers needed
j time interval r j

1 0000-0300 3
2 0300-0600 6
3 0600-0900 14
4 0900-1200 18
5 1200-1500 16
6 1500-1800 14
7 1800-2100 12
8 2100-2400 6

1. The number of workers present is governed the following conservation law.

number of controllers
working during period j

=

number of controllers
who start work at the
beginning of period j

+

number of controllers
who started work at the
beginning of the previous
period

Here the indexing of the periods is cyclic, so when j = 1 the previous period is j = 8. The
table of requirements and the conservation law together summarize the facts of this problem.

2. The manager of the center cannot directly control how many people will be on duty
during any given work period, because some will have started in the previous period and
they cannot be sent home early. However, the conservation law makes it clear that what the
manager does control is how many people start work at the beginning of each period, and
those are the natural decision variables.

x j = number of controllers starting work at the beginning of period j, j = 1 . . . 8

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.4.1 Scheduling Shift Work 29

3. Using the conservation law and these decision variables we can express the staffing
requirements like this.

x1 + x8 ≥ r1

x j + x j−1 ≥ r j j = 2 . . . 8

The number of people starting work in period j can never be negative, so an optimal solution
must also have x j ≥ 0 for j = 1 . . . 8.

4. Assuming that no controller works more than one 2-period shift, each begins work exactly
once each day and the number needed to cover a day is the total number who start work.
Thus we must minimize this sum.

N =

8∑

j=1

x j

Now we can formulate the shift problem (see §28.5.4) as this linear program.

minimize
x∈R8

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = N

subject to x1 + x8 ≥ 3

x1 + x2 ≥ 6

x2 + x3 ≥ 14

x3 + x4 ≥ 18

x4 + x5 ≥ 16

x5 + x6 ≥ 14

x6 + x7 ≥ 12

x7 + x8 ≥ 6

x j ≥ 0 j = 1 . . . 8.

The solution is x⋆ = [3, 4, 10, 8, 8, 6, 6, 0]⊤, so 45 people are required to cover the schedule.
To satisfy the constraints it is necessary that some work periods are overstaffed even in this
optimal program; for example, x⋆1 + x⋆2 = 7 > 6 = r2.

The x j count people, so it is essential that their optimal values be whole numbers. It
might seem to have been by lucky coincidence that the solution we found has components
that are all integers, but the structure of this problem ensures that if the requirements are
whole numbers then the x⋆

j
will be too (see Exercise 1.9.17).

The shift assignments we found are repeated each day, so this planning problem is said
to have a finite horizon. Of course most people don’t work all seven days of each week, so
the 45 people in the daily schedule are probably not the same people each day.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30 Dynamic Formulations

1.4.2 Making Furniture

A specialty furniture company has a contract to manufacture wooden rocking chairs for a
retail chain. The chairs are in great demand but their production is limited by the number
of skilled artisans the furniture company can assign to make them. During each 2-week
production period a worker can either assemble 50 chairs or stain and varnish 25. Finished
chairs sell for $300 each, but there is also a market for unfinished chairs at $120. Each
period’s sales are delivered to the retailer in a single shipment at the end of the period. Up
to 200 unfinished chairs can be stored from one period to the next, but no finished chair is
ever packed into storage because that might damage the varnish. The furniture company’s
factory has enough space and staff to assign up to 12 workers to chair production during the
next three periods. If there are currently 100 unfinished chairs in storage, what production
schedule should the company follow to maximize its revenue over the next six weeks?

1. To summarize the facts of this problem it is helpful to make a stage diagram showing
the flow of unfinished and finished chairs through the production process.

stock

finish ship

keep

assemble

ship

stock

finish ship

keep

assemble

ship

stock

finish ship

keep

assemble

ship

ship

j = 1 j = 2 j = 3

This picture suggests the following conservation law.

chairs in stock at
start of period j

=
chairs in stock at
start of period j−1 +

chairs assembled
during period j− 1 −

chairs shipped at
end of period j − 1

2. To express this relationship mathematically we can introduce variables to count for each
period the chairs in stock at the beginning, the chairs assembled, the chairs finished and
shipped, and the chairs that are left unfinished but shipped.

s j = number of chairs in stock at start of period j

a j = number of chairs assembled in period j

f j = number of chairs finished and shipped in period j

u j = number of chairs shipped unfinished at end of period j

Then conservation of chairs requires that s j = s j−1 + a j−1 − (f j−1 + u j−1).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.4.2 Making Furniture 31

Of the quantities defined above the first three are state variables because the company does
not control them directly. The company does control u j and

x j = number of workers assembling chairs in period j

y j = number of workers finishing chairs in period j

so they are the decision variables.

3. It makes no sense for any of the variables to be negative. The state variables and decision
variables are related, according to the problem description, in the following ways.

x j + y j ≤ 12 up to 12 workers can be used, if there is enough work
a j ≤ 50x j each assembler can make 50 chairs, if there is space to store them
f j ≤ 25y j each finisher can finish 25 chairs, if there are enough unfinished

f j + u j ≤ s j we can’t ship more chairs than are in stock at the period start
s2 ≤ 200 there is only enough space
s3 ≤ 200 to store 200 unfinished chairs

To enforce the conservation law requires the following state equation constraints.

s1 = 100

s2 = s1 + a1 − (f1 + u1)
s3 = s2 + a2 − (f2 + u2)
0 = s3 + a3 − (f3 + u3)

According to the problem description the starting stock is 100 chairs; at the end of the third
production period everything has been sold, so there is no ending stock.

4. At the ends of the production periods the furniture company realizes these revenues.

R1 = 300 f1 + 120u1

R2 = 300 f2 + 120u2

R3 = 300 f3 + 120(s3 − f3) + 120a3

At the end of the third production period we sell the f3 chairs that have been finished in
that period, the entire remaining stock (s3 − f3) of unfinished chairs, and the a3 unfinished
chairs that are assembled in period three. The objective to be maximized is thus

R = R1 + R2 + R3

= 300 f1 + 120u1 + 300 f2 + 120u2 + 180 f3 + 120s3 + 120a3

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

32 Dynamic Formulations

Now we can formulate the chairs problem (see §28.5.5) as the linear program below.
This model has 18 variables, 4 equality constraints, and 14 inequality constraints in addition
to the nonnegativities.

maximize
saaa f u x y

120s3 + 120a3 + 300 f1 + 300 f2 + 180 f3 + 120u1 + 120u2 = R

subject to x1 + y1 ≤ 12

x2 + y2 ≤ 12

x3 + y3 ≤ 12

a1 − 50x1 ≤ 0

a2 − 50x2 ≤ 0

a3 − 50x3 ≤ 0

f1 − 25y1 ≤ 0

f2 − 25y2 ≤ 0

f3 − 25y3 ≤ 0

f1 + u1 − s1 ≤ 0

f2 + u2 − s2 ≤ 0

f3 + u3 − s3 ≤ 0

s2 ≤ 200

s3 ≤ 200

s1 = 100

s2 − s1 − a1 + f1 + u1 = 0

s3 − s2 − a2 + f2 + u2 = 0

s3 + a3 − f3 − u3 = 0

s ≥ 0

aaa ≥ 0

f ≥ 0

u ≥ 0

x ≥ 0

y ≥ 0

This linear program has the optimal solution

x⋆ = [4, 4, 0]⊤

y⋆ = [4, 8, 8]⊤

u⋆ = [0, 0, 0]⊤

s⋆ = [100, 200, 200]⊤

a⋆ = [200, 200, 0]⊤

f⋆ = [100, 200, 200]⊤

R⋆ = 150000.

Notice that only 8 workers are needed in periods 1 and
3, and that no chairs are ever shipped unfinished. The
optimal values of the decision variables x j, y j, and u j tell
the company what to do; the corresponding values of
the state variables s j, a j and f j, along with the objective
value, describe the consequences of those actions.

The structure of the shift problem ensures that
if the data are whole numbers then the optimal point
will have integer components, but that is not true
of this problem. If the data had been different the
solution might have required that some workers divide
their time between assembly and finishing or that
fractional numbers of chairs be shipped. To ship
whole chairs we would need to find a feasible rounded
solution or solve the problem as an integer program.

If the furniture company’s contract with the retail chain is for longer than the next six
weeks, we could enlarge the model to include more production periods (each would add six
variables, six nonnegativities, and six other constraints to the formulation). If the contract
has no certain end date then the planning problem would have an infinite horizon and we
would need to decide how many periods are enough. In this problem the production process
achieves steady state in period 2, so if production is to continue past period 3 we could have
4 workers finish and 8 assemble in periods 2, 3, . . . In other problems the startup transient
lasts longer, or some input such as the number of workers available varies from one period
to the next so that steady state is never achieved (see Exercise 1.9.22).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.5.1 Minimizing the Maximum 33

1.5 Nonsmooth Formulations

This Chapter is about formulating linear programs, in which the objective and constraints
are linear functions of the decision and state variables. It is very desirable for an optimization
to have this special form because, as we shall see beginning in §2, linear programs are easy
to solve. Some optimization problems in which the functions are not linear can, by clever
tricks, be recast as linear programs. In this Section we will consider two important kinds of
nonlinear optimization that can be easily solved in this way.

1.5.1 Minimizing the Maximum

A disaster-recovery team is equipped with two gasoline-powered water pumps having different
fuel-consumption and water-pumping rates as summarized below.

pump fuel used [gal/hr] water pumped [1000 ft3/hr]

A 2 12
B 8 20

The team has been allocated 16 gallons of gasoline to use in pumping out a hospital basement
that is flooded with 60000 ft3 of water. If pumps A and B start at the same time, how long
should each be run to drain the basement as soon as possible?

The decision variables in this problem are implicit in its statement.

xA = hours pump A runs

xB = hours pump B runs

Using these variables and the data given in the table above we can state the constraints
mathematically.

2xA + 8xB ≤ 16 use no more gasoline than provided
12xA + 20xB = 60 pump out all of the water

xA ≥ 0 pump A time can’t be negative
xB ≥ 0 pump B time can’t be negative

The pump that is running at the moment the basement becomes empty stops then, so the
time it takes to pump out all of the water will be xA if pump A is the last to stop or xB if
pump B is the last to stop. In other words the time t required is the larger of xA and xB, so
the team wants to

minimize t = max(xA, xB).

This function is nonlinear, so it cannot be the objective in a linear program. It is also not
smooth, which makes it hard to minimize using the techniques for nonlinear programming
that we will take up starting in §8.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

34 Nonsmooth Formulations

Because the problem has only two variables, we can solve it graphically as shown below.
The contours of t are corners rather than straight lines, but they are not hard to draw. For
example, if t = 1 that must be the value of xB if xB ≥ xA (above the diagonal xA = xB). If
xA ≥ xB (below the diagonal) then t = 1 must be the value of xA.

xB

4

3

2

1

0 xA
0 1 2 3 4 5 6 7 8

x A
=
x B

12x
A + 20x

B = 60

2xA + 8xB ≤ 16

• x
⋆

t = 1

t = t⋆

Because the second constraint is an equality it is satisfied only on the line 12xA + 20xB = 60,
so in this picture the feasible set is the line segment that is drawn thick. The feasible point
having the lowest objective value is the leftmost point on that line segment, which is marked
x⋆. Solving the two constraint equations simultaneously yields

x⋆ =
[
20
7
, 9
7

]⊤

t⋆ = 20
7
.

Thus the optimal pumping schedule is to run both for 9
7
= 1.29 hours, then shut pump B

off and let pump A continue to run for an additional 11
7
= 1.57 hours. This uses all of the

gasoline and empties the basement in max(20
7
, 9
7
) ≈ 2.86 hours.

Now notice that if t = max(xA, xB) then

t ≥ xA

t ≥ xB.

We can see this in the graph above, where at each point on the t = 1 contour 1 ≥ xA and
1 ≥ xB. Minimizing t subject to these two constraints will push t down against whichever
bound is higher so that constraint is satisfied with equality, making t equal to the larger of
xA and xB. Using this idea we can formulate the optimization as the linear program shown
at the top of the next page, which I will call the pumps problem (see §28.5.6).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.5.2 Minimizing the Absolute Value 35

minimize
xA xB t

t

subject to t ≥ xA
t ≥ xB

2xA + 8xB ≤ 16

12xA + 20xB = 60

xA ≥ 0

xB ≥ 0

This linear program has three variables so it is hard to solve graphically, but the simplex
method that you will learn later yields the optimal point x⋆

A
=

20
7
, x⋆

B
=

9
7
, t⋆ = 20

7
. This is the

x⋆ we found above by solving the two-variable nonlinear problem graphically. At this point
the constraint t ≥ xA is satisfied with equality while t ≥ xB is satisfied as a strict inequality.

1.5.2 Minimizing the Absolute Value

An incandescent lamp works by passing an electric current through a metal filament. Because
the filament has resistance, the flow of current raises the temperature of the metal until it
emits visible light in addition to waste heat. If the resistance of the filament is constant,
then according to Ohm’s law the current that flows through it is a linear function of the
voltage across it. The circuit diagram below shows a battery of v volts connected to an ideal
resistor of R ohms and the current flow of i amperes that results.

v
+

− R i =
v

R

The resistance of a metal such as tungsten depends on its temperature. As the voltage
applied to an incandescent lamp is increased the temperature of the filament increases and
its resistance also increases, so Ohm’s law does not apply and i is a nonlinear function of v.
Once I had occasion to measure the current flowing in a large incandescent lamp at several
different voltages, and five of my observations are given in the table below.

observation j v [volts] i [amperes]

1 0 0
2 10 2.5
3 50 5.3
4 90 7.4
5 120 8.5

These data are plotted in the graph on the next page. Can we deduce from them a formula
describing the relationship between i and v?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

36 Nonsmooth Formulations

0

2

4

6

8

10

0 20 40 60 80 100 120 140

v [volts]

i
[a
m
p
er
es
]

•

•

•

•

•

e2

e3 = 0

e4

e5

To derive a simple model for predicting the current at voltages between these data points,
I ignored the complicated physics of the light bulb and guessed that a function of the form

i(v) = av + b
√
v

might be made to fit the measurements by adjusting the parameters a and b. The solid
line above plots i(v) for b = 0.5, with a = (i3 − b

√
v3)/v3 ≈ 0.035 chosen so that the curve

passes through the point (v3, i3) exactly (every function of the assumed form passes through
the origin). This trial function is clearly not a good fit to the data, because the estimate it
provides is too low at v2 yet too high at v4 and v5. One way of finding the values of a and b

that yield the best fit is to minimize the sum of the absolute values of the errors,

E =

5∑

j=2

| e j| =
5∑

j=2

∣
∣
∣ i j − i(v j)

∣
∣
∣ =

5∑

j=2

∣
∣
∣ i j − av j − b

√
v j

∣
∣
∣

=

∣
∣
∣
∣2.5 − 10a − b

√
10

∣
∣
∣
∣ +

∣
∣
∣
∣5.3 − 50a − b

√
50

∣
∣
∣
∣ +

∣
∣
∣
∣7.4 − 90a − b

√
90

∣
∣
∣
∣ +

∣
∣
∣
∣8.5 − 120a − b

√
120

∣
∣
∣
∣ .

The absolute values make E nonlinear in a and b, so it cannot be the objective of a linear
program. It is also not smooth, so it is hard to minimize using nonlinear programming.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.5.2 Minimizing the Absolute Value 37

Because the problem has only two variables we can solve it graphically in the same way
that we solved the nonlinear version of the pumps problem. The contours of E(a, b) are
hard to plot by hand (even though they are polyhedra) so I used Octave, obtaining the
picture below. Computer-generated contour plots will be an indispensable tool in our study
of nonlinear programming, so I will have much more to say about their construction and
interpretation in §9.1 and §19.5.

0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

0.81

0.815

0.82

-0.003 -0.0025 -0.002 -0.0015 -0.001 -0.0005 0

b

a

0.42

0.34

0.26
0.34

0.42

•
(a⋆, b⋆)

Here each curve is the locus of points where E(a, b) has the value shown, so (a⋆, b⋆) must be
inside the central figure; it turns out to be the point marked with a dot.

It is possible [152] to write E(a, b) in a way that does not involve absolute values, by
using the following elementary property of real numbers.

A real number y can always be written
as y = u − w, where u ≥ 0, w ≥ 0, and
one or the other is zero; then | y | = u+w.

A couple of examples might convince you that this is true. If y = 10 we can write it as
y = u −w where u = 10 and w = 0; then u + w = 10 + 0 = 10 = | y |. If y = −10 we can write it
as y = u − w where u = 0 and w = 10; then u + w = 0 + 10 = | y |. In our formula for E(a, b),
each term is of the form | y j | and can therefore be written as the sum of two variables u j and
w j whose difference is y j.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

38 Nonsmooth Formulations

Doing that produces the following linear program for minimizing E(a, b), which I will call
the bulb problem (see §28.5.7).

minimize
a buw

E = (u2 + w2) + (u3 + w3) + (u4 + w4) + (u5 + w5)

subject to u2 − w2 = 2.5 − 10a − b
√
10

u3 − w3 = 5.3 − 50a − b
√
50

u4 − w4 = 7.4 − 90a − b
√
90

u5 − w5 = 8.5 − 120a − b
√
120

u2, u3, u4, u5 ≥ 0

w2, w3, w4, w5 ≥ 0

a, b free

The state variables u j and w j are nonnegative because that is required by the real number
property that is boxed on the previous page, but a and b are unconstrained in sign so they
are said to be free variables.

The optimal solution to this linear program has a⋆ = −0.00187741 and b⋆ = 0.79650632,
resulting in a fit with total error E⋆ = 0.25092429. These values of a and b are the ones
marked in the contour diagram on the previous page, and when they are used in the model
function it has the curve drawn dashed in the graph on the page before that. The very small
value of a⋆ suggests that not much would be lost by simplifying the model to i = b

√
v.

The state variables corresponding to data points 2 and 5 have u⋆
j
= w⋆

j
= 0 because the

dashed curve passes through them exactly. At point 4, u⋆4 = 0.01264476 and w⋆4 = 0 because
the model underestimates the data by a small amount; at point 3, w⋆3 = 0.23827953 and
u⋆3 = 0 because it overestimates by a larger amount.

The model function that I assumed does not describe the data precisely, so no combination
of parameter values could make the dashed curve pass through all of the points. Minimizing
the sum of the absolute values of the e j selects the set of data points that yields the lowest
error when the curve comes as close as possible to going through them. The other data
points, in this case point 3, are essentially ignored, and are thus identified by the algorithm
as outliers. The ability to reject outliers is an important virtue of this approach to fitting
an equation to data.

1.5.3 Summary

In both linear and nonlinear programming we would almost always rather solve a smooth
problem than one whose functions are not everywhere differentiable. Nondifferentiability
can arise for reasons other than the ones we have studied, but it is so often the result of
minimizing a maximum or an absolute value that the formulation techniques of this Section
will be of use throughout the book. They are summarized in somewhat more general form
in the table on the next page, where the smooth problem is a linear program only if fi(x)

happens to be linear in x. In the notation of this table, x = [xA, xB]
⊤ for the pumps problem

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.6 Bilevel Programming 39

and x = [a, b]⊤ for the bulb problem. If a nonsmooth problem includes constraints they must
of course be carried over to the smooth reformulation. Some problems call for minimizing
the maximum of terms that are absolute values, and then both reformulation techniques
must be applied (see Exercise 1.9.37).

nonsmooth problem smooth problem

minimize
x

t = max
i=1...m

{

fi(x)
} minimize

t x
t

subject to t ≥ fi(x) i = 1 . . .m

minimize
x

m∑

i=1

∣
∣
∣ fi(x)

∣
∣
∣

minimize
uwx

m∑

i=1

(ui + wi)

subject to
ui − wi = fi(x)

ui ≥ 0

wi ≥ 0






i = 1 . . .m

1.6 Bilevel Programming

Crude oil, a complex mixture of hydrocarbons, is separated into products having different
boiling points by a process called fractional distillation. Some fractions are then transformed,
using heat and pressure in a process called cracking, into the lighter compounds that make
up gasoline.

Every month a refinery distills enough crude oil to bring its stock of kerosene up to its
storage capacity of 1000 barrels. It considers gasoline an important secondary product so
it sends some of the kerosene stock to be cracked, but at the premium price point of $100
per barrel it expects to sell no more than 300 barrels of gasoline in a month. It markets the
remainder of the kerosene as jet fuel, which is the refinery’s primary product (and for which
it has a good reputation in the aviation industry) at $50 per barrel.

As a separate business unit of the refinery, the cracking operation independently maxi-
mizes its production of gasoline based on the amount of kerosene that it has been allocated.
To start up the process requires 50 barrels of kerosene, which are not cracked; after that
each barrel that is cracked yields 0.8 barrel of gasoline. Any allocated kerosene that is not
cracked is returned to the refinery and is not sold that month.

Kerosene and gasoline are shipped sequentially, partitioned by spacers, in a single pipeline.
The pipeline company has contracted to ship up to 900 barrels each month, but it will not
accept any partition of less than 100 barrels.

How much kerosene should the refinery crack into gasoline each month to maximize its
revenue from selling jet fuel and gasoline?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

40 Linear Programming Models

The amount of gasoline produced depends on the amount of kerosene made available,
but in a complicated way that makes it hard to formulate this problem as a single linear
program. Because the cracking business decides for itself how much gasoline to make, it is
more natural to model each part of the production process separately.

If the refinery sends x barrels of kerosene for cracking then 1000− x remain to be sold as
jet fuel. The x barrels of kerosene that are cracked produce y barrels of gasoline, so the total
revenue to be maximized is 50(1000 − x) + 100y. The jet fuel and gasoline that are shipped
must each be more than the pipeline minimum but together be less than its capacity. Thus
the refinery wants to

maximize
x y

50(1000 − x) + 100y = revenue

subject to 1000 − x ≥ 100 kerosene pipeline minimum
1000 − x ≤ 900 pipeline capacity limit

y ≤ 300 policy limit on gasoline sales
y maximizes the gasoline from x barrels of kerosene.

Meanwhile the cracking operation’s optimization problem is

maximize
y

y gasoline produced

subject to y ≤ 0.8(x − 50) yield from cracking
y ≥ 100 gasoline pipeline minimum
y ≤ 900 − x pipeline capacity limit.

These linear programs are connected by the last constraint in the refinery model, which
requires that y(x) be the optimal point of the cracking optimization, so they can be combined
into the following bilevel program [43].

maximize
x y

f0(x, y) = 50000 − 50x + 100y

subject to






f1(x, y) = x − 900 ≤ 0

f2(x, y) = 100 − x ≤ 0

f3(x, y) = y − 300 ≤ 0

y solves





maximize
y

g0(y; x) = y

subject to






g1(y; x) = y − 0.8(x − 50) ≤ 0

g2(y; x) = 100 − y ≤ 0

g3(y; x) = y − 900 + x ≤ 0





The outer problem or overall optimization is solved by varying both x and y, but in the
inner problem, shown here enclosed by square brackets, x is treated as a constant parameter
and the optimization is performed by varying only y.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.6 Bilevel Programming 41

inner problem
y

0

100

200

300

400

500

x
0 100 200 300 400 500 600 700 800 900

g2(y; x) = 0

g 1
(y
; x
) =

0

g
3 (y; x)

=
0

Y when x = 400

y⋆ when x = 400 •

The graph above plots the constraints of the inner problem. For any given fixed value of
x, the values of y that are feasible for the inner problem are points on the vertical line that
is delimited by the inner constraints. For example, at x = 400 the feasible set Y of the inner
problem is the line drawn there.

outer problem
y

0

100

200

300

400

500

x
0 100 200 300 400 500 600 700 800 900

f 2
(x
,y
)
=
0

f 1
(x
,y
)
=
0

f3(x, y) = 0

X

•
(x⋆, y⋆)

f0(x
, y)
=
587

50

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

42 Linear Programming Models

The objective of the inner problem is g0(y; x) = y, so for a given value of x it is maximized
at the top of the feasible line Y(x). In the picture, the optimal point of the inner problem
when x = 400 is marked with a dot.

The locus of points y⋆(x) is called the inducible region of the inner problem, and it
is plotted as the bent line in the lower graph. In solving the outer problem, one of the
constraints that must be satisfied is that y is on this bent line. The other constraints of
this outer problem are simple bounds on x and y. The feasible set X of the outer problem
is that part of the inducible region that is within these bounds, and it is drawn with thick
lines. The outer constraints f1(x, y) ≤ 0 and f2(x, y) ≤ 0 do not affect the feasible set, but the
outer constraint f3(x, y) ≤ 0 intersects the inducible region and results in a feasible set that
is comprised of two disjoint line segments.

Having identified the feasible set X of the outer problem, we can easily find the feasible
point having the highest objective value; this turns out to be x⋆ = 425, y⋆ = 300.

Often a situation involving decision makers who act independently but whose actions
affect one another can be modeled as a bilevel program. A bus company that is optimizing
improvements to its route map must anticipate that its riders will optimize their own travel
choices in response; an automobile dealership that is negotiating to employ a salesperson on
commission must anticipate the agent’s personal objective and constraints [23].

The two-stage graphical approach illustrated above can be used only for tiny problems,
so analytic and numerical methods, based on the theory and algorithms we will study, are
essential. Even when the inner and outer problems are both linear programs the bilevel
problem is decidedly nonlinear, and in many practical applications the functions fi and
gi are themselves nonlinear. Bilevel programs are among the most difficult optimization
problems, and they are an active area of research in nonlinear programming [86].

1.7 Applications Overview

The toy problems discussed above suggest only a few of the many uses that linear program-
ming has in science, engineering, business, and government. Here are a few representative
fields in which linear optimization models play an important role (as we shall see in §8.4
some of them are also fields in which nonlinear programming is widely used).

signal processing supply-chain management
airline flight scheduling natural gas transmission
arbitrage and investment banking disaster response planning
machine learning public health and nutrition [169]
pollution abatement city planning
fulfillment and delivery operations military logistics
renewable energy distribution conservation of natural resources [65]

The references cited in the list above and described in the table below discuss the formulation
of specific application problems from some of these fields. I have arranged the books in

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.8 Compressed Sensing 43

decreasing order of their emphasis on problem formulation; useful general advice is also
provided in [25, §I], [35, §3-1,3-2], [145, §2.1-2.2], [79, §5.1], and [151, §2.2].

reference modeling content

[145, §2] The formulation examples concern gasoline blending, advertising media selection, investment
portfolio design, transportation and assignment problems, production scheduling, make-or-buy
decisions, the traveling salesman problem, the general diet problem, awarding contracts, and
maintaining a “profitable ecological balance.” The chapter includes 32 formulation exercises.

[151, §2] The formulation examples are described as product mix selection, feed mix selection, fluid
blending, arbitrage transactions, integrated production planning, and product allocation
through a transportation network. The final two sections of the chapter pose 23 exercises.

[79] Models are given in §2.4 for regional planning and controlling air pollution; in this chapter
problems 1, 2, and 3 are formulations. Models are given in §4 for network, assignment, and
multi-divisional planning problems; in this chapter all 30 problems are formulations. In §5,
problems 1-21 are formulations.

[3, §2] The formulation examples involve making furniture, brewing beer, mixing oil, warehousing
peanuts, raising chickens, scheduling nurses, curve fitting, inconsistent systems of equations,
and feasibility problems. Exercises 2.8, 2.10, 2.12-2.16, and 2.18-2.22 are formulations.

[35] Sections 3-3 through 3-7 discuss a transportation problem, blending examples, a product mix
problem, a warehouse problem, and an on-the-job training problem. In §3-9, problems 4
through 22 are formulations.

1.8 Compressed Sensing

The first application of linear programming listed in the survey of §1.7 is signal processing,
and an important example of signal processing is radar imaging. A synthetic-aperture radar
[27] emits pulses of microwave radiation. When the radio waves encounter a target they
excite current flow in the object so that it emits radiation, and these pulses travel back to
the radar where they are detected. The received signals are filtered by analog electronics,
converted to numbers, and processed to construct a Fourier transform [101] of the scene,
which can then be numerically inverted to obtain a picture of the object.

target

F

radar transform

F −1

inversion image

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

44 Compressed Sensing

Each element of the transform is a complex number. The raster above shows the real part,
with dark pixels correspond to high values and light ones correspond to low values. In a
transform with enough points (this one has 128 × 128 pixels) many of them will be almost
zero. I used a log transformation to make the pixels with low values visible; if I had not
done so the raster would appear mostly blank with only a few dark pixels near the center.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

10−5 10−4 10−3 10−2 10−1 100

Transform elements that are very small contribute little to the reconstructed image.
The histogram on the left above shows the proportion of pixels whose real values have the
indicated orders of magnitude. The lowest 90% of the values, below the threshold of 0.125,
are to the left of the vertical line. Setting those values (and the corresponding imaginary
parts) to zero and inverting the resulting sparse transform yields the reconstruction shown
on the right above. This image contains some artifacts but it is still recognizable as a picture
of the target. Lowering the threshold to include half of the pixels yields a transform whose
inverse is hard to distinguish from the full reconstruction. Thus it is possible to more or less
perform the radar imaging task by using only a fraction of the information captured in the
transform, and in some applications the fraction that must be retained can be quite small.

The time that is needed to acquire a radar image would be greatly reduced if we could
capture only the high-value pixels of the transform and not bother measuring the others.
Unfortunately that is not possible, because each element of the transform depends on all of
the input data. However, it is possible by using compressed sensing [75] to make a very
good guess about what the good pixels are, based on a small number of measurements.

1.8.1 Perfect Data

Suppose we construct a vector x by stacking the columns of the unknown transform matrix
vertically, with the leftmost column on top, the second column below that, and so on until the
rightmost column is on the bottom. For our example this results in a vector n = 1282 = 16384

elements long (to keep things simple we will assume that it contains only the real parts of
the transform elements). Next suppose that our radar set has been designed to report, for
each pulse that it sends and receives, only the value bi = Ai

⊤x of some linear combination
of the transform elements. To be consistent with m such measurements, the vector x would

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.8.1 Perfect Data 45

have to satisfy this system of linear algebraic equations in which the Ai are the rows of A.

Ax = b

If A1 . . .Am were the unit vectors then A would be an n × n identity matrix and we could
get the transform exactly by solving the square system. In compressed sensing the ai j are
randomly generated coefficients and m ≪ n, so there are too few equations to uniquely
determine the solution and many vectors x satisfy the linear system. But we know that x is
sparse, or that we can treat it as sparse and still recover the image, so the x we want is very
likely to be one that has the fewest nonzero elements.

The number of nonzero elements in a vector x is not really a norm (see §10.6.3) but it is
conventionally referred to [39, §1.2.1] as the zero norm, ||x||0. Using this notation, the x we
want is the one that solves the following mathematical program.

minimize
x∈Rn

||x||0
subject to Ax = b

Alas, to find it we might need to try all of the ways that there could be m nonzero elements
among the n elements of x, of which there are [116, Theorem 1.8]

(

n

m

)

=
n!

m!(n − m)! .

For n = 1282 and m = 20 this number is on the order of 1067.

When we histogrammed the elements of the transform in our example we saw that the
elements we want to consider nonzero are not too far from 1 and most of the elements we
want to consider zero are much smaller, so it might be reasonable to approximate the number
of nonzeros in x by the sum of the absolute values of its elements,

||x||1 =
n∑

j=1

|x j|.

This is about 1354 for our dense transform, while the number of nonzeros in the sparse
transform is 1594. The compressed sensing problem

minimize
x∈Rn

||x||1
subject to Ax = b

thus approximates the solution of the zero norm problem, and [45, Theorem 8] if x is sparse
enough it can be shown to solve it exactly. Using a formulation technique from §1.5.3 we
can rewrite this optimization as the linear program at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

46 Compressed Sensing

minimize
u v x

n∑

j=1

(u j + v j)

subject to A(u − v) = b

u j − v j = x j

u j ≥ 0

v j ≥ 0






j = 1 . . . n

Even for n = 1282 this optimization is non-trivial, and in a real radar application the image
raster might be much bigger. Special techniques based on the interior point method of §21.1
can be used [24] to solve the resulting big data problem.

1.8.2 Regularization

Above I argued that the sparsest solution x⋆ to Ax = b is sparse because it is a Fourier
transform. No physical measurement is perfect, so in practice our radar set reports for each
pulse not bi but bi+η, where η is random noise. Then solving the compressed sensing problem
actually yields the sparsest vector x̂ that satisfies Ax = b + ηηη. But b = Ax⋆ so

Ax̂ = Ax⋆ + ηηη.

If y is any vector that makes Ay = ηηη then

Ax̂ = Ax⋆ + Ay

Ax̂ = A(x⋆ + y)

x̂ = x⋆ + y.

The unknown noise vector ηηη is dense so almost every possible unknown y is too, and that
makes it unlikely that x̂ will be sparse. By insisting in our formulation of the compressed
sensing problem that Ax = b is satisfied exactly, we made it almost certain that the mathe-
matical program will produce the wrong answer if the data come from the real world.

To keep noise from making it impossible to find a sparse x we can, instead of insisting
that the constraint be satisfied exactly, regularize the objective by adding a term that
penalizes constraint violations.

minimize
x∈Rn

||x||1 + µ(Ax − b)⊤(Ax − b)

Now by adjusting the positive penalty parameter µ we can control the tradeoff between
sparseness of the optimal point, which is achieved by minimizing ||x||1, and satisfaction of
the constraints. Using the same formulation technique as before we can make this problem
smooth, but because the penalty term involves the product x⊤x the result is a quadratic
rather than a linear program (see §22).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.9 Exercises 47

The regularized noisy compressed sensing problem has a closed-form semi-analytic solu-
tion that can be found by soft thresholding [17, §4.4.3]. Soft thresholding is unfortunately
beyond the scope of this introductory text, but I will have more to say about semi-analytic
results in §25.7.4.

1.8.3 Related Problems

Compressed sensing is used in transform-based imaging technologies other than radar, in-
cluding magnetic resonance imaging, computer assisted tomography, and geophysical data
analysis. It also plays a role in image compression, where the transforms that are used are
based on wavelets other than sinusoids.

Basis pursuit [17, §6.2] is another name for compressed sensing; the lasso technique

for identifying the best variables to use in a regression model [17, §6.4] gives rise to the same
optimization problem as regularized compressed sensing.

1.9 Exercises

1.9.1[E] In many optimization problems our goal is to find the best way to allocate limited
resources. Are there optimization problems that do not fit this prototype? If yes, give
an example; if no, explain how all optimizations can be thought of as resource allocation
problems.

1.9.2[E] In the mathematical formulation of an optimization model, variables represent
the quantities that are being reasoned about. (a) What is a decision variable? (b) What is
a state variable? (c) What is a free variable?

1.9.3[H] Explain the formulas given in §1.1 for s1 and s2 of the twoexams problem. Why
are s1 and s2 identified as state variables rather than as decision variables?

1.9.4[E] What precisely is a mathematical program? Describe its form and identify its
parts. What makes a mathematical program a linear program? What modeling assumptions
underlie the formulation of an optimization as a linear program?

1.9.5[E] The word “programming” can be a synonym for “planning.” What sort of plan
is specified by a computer program? What sort of plan is specified by the solution to a
mathematical program? How does mathematical programming differ from the writing of a
computer program to carry out mathematical calculations? Is there any connection between
the two?

1.9.6[H] In a typical resource allocation problem [3, p17-18] the decision variables measure
the levels of different production activities, doing more of any activity increases the
objective, and the amount we can do is limited only by the resources. To solve such a
problem it might seem that we could just find a production program that uses up all of the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

48 Linear Programming Models

resources. (a) With the help of an example, explain why that is usually impossible. (b) If
there is a production program that does use up all of the resources, is it necessarily optimal?
If yes, explain why; if no, provide a counterexample.

1.9.7[H] Show by evaluating the constraint functions of the twoexams problem that the
point [2, 8]⊤ satisfies all of them. Why is this sufficient to establish that X is the feasible set?

1.9.8[E] What is a nonnegativity constraint? What makes a constraint redundant? What
is a constraint contour? Explain how a linear program can be infeasible.

1.9.9[H] What is an objective contour? Why are the objective contours of a linear program
parallel to each other? What is an optimal vector?

1.9.10[H] Show that in the twoexams problem, reducing the total study time available
reduces the size of the feasible set. For what values of total study time available is the
feasible set empty?

1.9.11[H] Why can’t a constraint contour ever cross the interior of the feasible set of a linear
program? Why can’t the optimal objective contour ever cross the interior of the feasible set?

1.9.12[E] In §1.3.0 I suggested a systematic procedure for formulating linear programs.
(a) List the steps in that procedure. (b) When a problem is dynamic, an additional formula-
tion step is often helpful; what is it? (c) What is an obvious constraint? What is a natural
constraint? What is a technology table?

1.9.13[H] What assumptions are implicit in the formulation of the brewery problem? You
might find it helpful to consult www.beerrecipes.org or review the similar formulations
suggested in [3, p16-17] and [145, p55-56]. How would the model need to change for Sarah
to maximize profit rather than revenue?

1.9.14[H] The optimal solution to the brewery problem is x⋆ = [5, 12 1
2
, 0, 0]⊤, in which the

amount of Stout to be made is not a whole number of kegs. (a) Can Sarah round up that
solution component and make 13 kegs of Stout, along with the optimal 5 kegs of Porter?
(b) Can she round down and make 12 kegs of Stout along with 5 kegs of Porter? Is this the
optimal integer solution? (c) Stout fetches by far the highest price per keg. Why isn’t the
best strategy to simply make as much Stout as possible? (d) There is clearly a market for
all four varieties of beer. Why not make some of each?

1.9.15[H] The paint problem of §1.3.2 includes a ratio constraint that the total product
shipped be at least half red. Now suppose the paint company instead insists that 2

3
of the

total product shipped be red. (a) Is it still possible for the chemical company to make
money by using its available feedstock to produce product for the paint company? If no,
explain why not; if yes, how does the formulation change? (b) Is it possible for a ratio
constraint to render a linear programming problem infeasible? If not, explain why not; if so,
provide an example.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.9 Exercises 49

1.9.16[H] In the paint problem of §1.3.2, at what selling price for blue would x⋆ and x̄

both be optimal production programs?

1.9.17[H] The shift problem of §1.4.1 has an optimal point with integer components, if
all of the requirements are integers. Explain how the structure of the problem ensures this.
What makes this a finite horizon planning problem?

1.9.18[H] How does the formulation of the shift problem change if each shift consists of
three work periods (a total of 9 hours) rather than two?

1.9.19[H] The shift formulation of §1.4.1 assumes that every day is the same. (a) Enlarge
the formulation to determine the optimal deployment of controllers across the work week,
Monday through Friday, assuming that the requirements ri j for day i and work period j are
not necessarily the same from day to day. (b) Enlarge the formulation to include weekends.
How can you ensure that no controller works more than five days in each week?

1.9.20[H] The chairs formulation of §1.4.2 involves three decision variables and three state
variables. (a) Can this problem be formulated in a way that requires fewer than three decision
variables? If yes explain how; if no explain why not. (b) Can this problem be formulated in
a way that requires fewer than three state variables? If yes explain how; if no explain why
not. (c) Is a formulation that involves the fewest possible variables always to be preferred
to one that involves more?

1.9.21[E] What is a stage diagram? What is a state equation?

1.9.22[H] Under what circumstances would the chairs formulation be an infinite-horizon
planning problem? If an infinite-horizon problem never reaches steady state but future inputs
are always known for the upcoming k periods, how can mathematical programming be used
to plan the next production period?

1.9.23[H] A hardware supplier produces J-bolts of
a single size, and nuts to go with them, for use in
fastening steel cables to support posts for highway
guard rails. Each bolt or nut must be processed on
3 different machines during its manufacture. The
table to the right shows the time required on each

machine times/ton time
number bolts nuts available

1 3 1 9
2 1 3 9
3 2 2 16

machine to process one ton of each product, and the amount of time available on each
machine during the next production period. The company can sell all the bolts it can make,
but along with them it must also deliver nuts weighing at least as much and not more than
twice as much. (a) Letting x1 represent the tons of bolts made and x2 the tons of nuts made,
formulate a linear programming model whose solution will maximize the revenue from selling
bolts (the nuts are given away). (b) Solve the problem graphically. On your graph crosshatch
the feasible set, label the optimal point x⋆, and draw a dashed line for the optimal objective
function contour. Label each constraint hyperplane with the inequality that it represents.
(c) Find x⋆1 and x⋆2 algebraically.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

50 Linear Programming Models

1.9.24[H] A linear programming student hates exercise but wants to impress a certain
person by walking for at least an hour each day. By choosing an appropriate closed path
the student can adjust the number of minutes spent walking uphill, downhill, and on the
level. The prospective significant-other tags along, and agrees to hold hands one minute for
every 20 they walk on the flat or downhill, and the whole time they walk uphill. Meanwhile,
the student thinks (but wisely does not say) “exercise is really tiring” for one minute out
of every ten minutes they walk on the flat, all the time they walk uphill, and not at all
when they are walking downhill. It takes three times as long to ascend a given height
walking uphill as it does to descend that vertical distance walking downhill. The student
wants to maximize the daily hand-holding time without wasting more than ten minutes on
thoughts of exhaustion, and hopes to formulate an optimization problem whose solution will
reveal how many minutes the two friends should spend walking uphill, downhill, and on the
level. (a) What can the student directly control? Call these decision variables x j, j = 1 . . .,
and define them precisely. (b) In terms of your decision variables, what constraints are
imposed by the statement of the problem? Express these requirements as equations or
inequalities involving the decision variables. (c) How can the student’s objective be stated
mathematically in terms of the decision variables? (d) Use the graphical method to solve
the linear program you have formulated, and report the optimal distribution of times, in
minutes per day, spent walking uphill, downhill, and on the flat. On your graph crosshatch
the feasible set, label the optimal point x⋆, and draw a dashed line for the optimal objective
function contour. (e) What practical considerations are ignored in the statement of the
problem? What does this illustrate about the mathematical modeling of real situations?

1.9.25[H] A foundry must decide how many tons x1 of new steel and how many tons x2
of scrap metal to mix in casting steel shot for one of its customers. The ratio of scrap to
new metal in the mix cannot exceed 7:8. Producing the shot costs $300 per ton of new
steel included in the mix and $500 per ton of scrap included. Thus, for example, using
4 tons of new steel and 1 ton of scrap metal would yield 5 tons of shot at a production
cost of 4 × $300 + 1 × $500 = $1700. The customer requires at least 5 tons of shot, but
will accept more. The foundry has 4 tons of new steel and 6 tons of scrap metal on hand.
(a) Formulate a linear programming model whose solution [x1, x2]

⊤ minimizes the foundry’s
cost of production, subject to the various constraints. (b) Show that the constraints imply
1 ≤ x2 ≤ 3 1

2
. (c) Solve the problem graphically. On your graph crosshatch the feasible set,

label the optimal point x⋆, and draw a dashed line for the optimal objective function contour.
Label each constraint hyperplane with the inequality that it represents. (d) How much new
steel and scrap metal are left over from the optimal production program?

1.9.26[H] A college senior estimates that the probability he will find a job prior to gradu-
ation is zero if he does not search for work, even if he keeps his 3.0 grade-point average (out
of 4.0). He can improve his chances by interviewing prospective employers, or by raising his
grades, or by doing both. His probability of finding a job will increase by 0.05 for every hour-
per-day that he spends interviewing, and will increase or decrease by 0.06 for each increase

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.9 Exercises 51

or decrease of 0.1 in his average. To maintain his 3.0 he finds that he needs to attend class
and do homework for 8 hours per day, and he expects his average to rise or fall by 0.125 for
every hour-per-day he increases or decreases that time. (a) Formulate a linear programming
model to find the hours x he should spend each day looking for work and the hours y he
should spend each day on school, to maximize the probability z of finding a job. (b) Solve
the problem (i.e., find the optimal values of x and y) by using the graphical method. On
your graph crosshatch the feasible set, label the optimal point, and draw a dashed line for
the optimal objective function contour. What is the student’s probability of finding a job
if he carries out the optimal program? What does his grade-point average become? How
many hours does he get to spend on things other than school and job-hunting each day, such
as eating and sleeping? (c) The job-search optimization model is unrealistically pessimistic,
though students who have a hard time finding a job might not think so. Suggest some ways
to make the model more realistic. Is your improved model still a linear program?

1.9.27[H] A company uses 2 machines to manufacture 2 products. It wants to maximize
the total units of product made in this production period, but the units of product B made
must be at least one-third of the total. (a) Supply numerical values for t11, t12, t13, a21, a22,
and a23, and a formula for b3, to make the following technology table and linear program
formulation consistent with one another. Should the question marks be replaced by ≤, =, or
≥? (b) What must be the meanings of x1 and x2?

machine time/unit time/unit time
product A product B available

lathe t11 t12 t13
sander 6 3 36

maximize
x∈R2

x1 + x2

subject to 12x1 + 8x2 ≤ 96

a21x1 + a22x2 ? a23
x1 ? 1

3
b3

x1 and x2 ≥ 0

(c) Solve the problem graphically and report x⋆. (d) What is the optimal integer solution?

1.9.28[H] Upon his arrival at college, a student whose parents forced him to eat the health-
iest possible diet decides that while he is away at school he will instead eat the least healthy
diet he can design. He knows the two main constituents of this diet will be jelly donuts
and atomic-hot chicken wings, but he needs to determine their ideal mixture. After years of
exposure to Brussels sprouts and fresh mangoes, the student figures his body can initially
tolerate only certain amounts of fat, sugar, and synthetic additives. On the other hand, he
is determined to eat at least 3 dozen donuts and 2 buckets of wings every day. The table
below shows the quota (in dozens or buckets) and nutritional content (in ounces per dozen or
bucket) of the donuts and wings, the health hazard (in lost days of life per ounce consumed)
presented by each kind of content, and the maximum daily content amounts (in ounces) the
student thinks he can stand. (a) Formulate a linear programming model to maximize the
health hazard of this diet subject to the student’s constraints. Assume the student can eat
any fraction of a dozen or bucket. (b) Solve the problem by using the graphical method. On
your graph crosshatch the feasible set, label the optimal point, and draw a dashed line for

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

52 Linear Programming Models

the optimal objective function contour. What is the worst possible diet? How much health
hazard does it deliver?

basic food group
fat sugar chemicals

health hazard 0.0010 0.0008 0.0005
maximum tolerated 156 80 42

donuts 3 12 10 2
wings 2 20 5 4

component quota

1.9.29[H] Discuss the assumptions implicit in our formulation of the pumps problem. How
might each pump practically be fueled with the correct amount of gasoline?

1.9.30[H] The graphical solution of the pumps problem in §1.5.1 shows the contours of
t = max(xA, xB) as corners in the first quadrant. If the contours of this function are extended
into the other quadrants of the graph, are they squares centered at the origin? If yes, explain
why; if no, construct a function whose contours are squares centered at the origin.

1.9.31[E] If a linear program has two variables and its constraints include a single equality,
what will the feasible set look like in a graphical solution of the problem?

1.9.32[H] If t = max(xA, xB) then t ≥ xA and t ≥ xB. (a) Show that this is true. (b) If t is
minimized at [x⋆

A
, x⋆

B
]⊤ and x⋆

A
, x⋆

B
, show that one of the constraints must be satisfied as an

equality and the other must be satisfied as an inequality. (c) Show thatmax(0, f) = (f+| f |)/2.
1.9.33[H] If y = u − v where u ≥ 0 and v ≥ 0, how is the quantity u + v related to y? Give
an example to illustrate your answer.

1.9.34[H] In §1.5.2 we found that fitting the model function i = va+ b
√
v to the given data

yielded a very small value for the parameter a. (a) Revise the bulb formulation to derive
a linear program that fits the model function i = b

√
v. (b) Graphically approximate the

solution of the nonlinear problem.

1.9.35[E] What is an outlier? Give the most precise definition you can.

1.9.36[H] Use linear programming to find values of x1 and x2 that minimize

|x1 + x2 − 1| + |x1 + x2 − 3|.

1.9.37[H] It is possible for a square system of linear algebraic equations Ax = b to be
inconsistent, and then no vector x satisfies them all. In that case we might be interested
in finding the x⋆ that comes closest to satisfying them, in the sense that it minimizes the
largest absolute row deviation |aaai⊤x − bi| [3, p26-27]. Formulate a linear program whose
solution yields x⋆.

1.9.38[E] What is the inducible region of a bilevel program, and how can it be found?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1.9 Exercises 53

1.9.39[E] The outer problem in a bilevel program must include a constraint that has a
special form. What is this constraint?

1.9.40[E] If both the outer problem and the inner problem of a bilevel program are linear
programs, is the bilevel problem a linear program?

1.9.41[H] Our bilevel formulation of the oil refinery problem makes many implicit assump-
tions about the situation being modeled. Write down all of them that you can think of.
Hint: when in the production process do the various steps occur?

1.9.42[H] Formulate the oil refinery problem of §1.6 as a one-level linear program, and
compare its graphical solution to the answer we found using the bilevel formulation.

1.9.43[H] In perfect-data compressed sensing the linear system Ax = b containing the
measurements is underdetermined, because the matrix A is m×n and m ≪ n. What property
of x is used to select, from among all the vectors satisfying this system, the one that is most
likely to approximate the transform of the image?

1.9.44[H] What is the zero norm of a vector, and what symbol is used to represent it? In
what ways does the zero norm fail to meet the mathematical definition of a vector norm?

1.9.45[H] In §1.8.1 we derived three optimization models for the perfect-data compressed
sensing problem. (a) Give the formulation in terms of ||x||0, and explain why it cannot be
used in practice. (b) Give the formulation in terms of ||x||1, and explain why it is hard to
solve by the classical techniques of nonlinear programming. (c) Give the formulation as a
linear program, and explain why it is challenging to solve when its data are of realistic size.

1.9.46[H] How does measurement noise affect the optimal transform that is found by our
perfect-data compressed sensing model? How can the formulation be changed to more grace-
fully accommodate noise?

1.9.47[H] Rewrite the regularized noisy compressed sensing problem as a smooth quadratic
program.

1.9.48[H] The curve-fitting example of §1.5.2 and the bilevel program of §1.6 use, respec-
tively, an incandescent lamp and an oil refinery to illustrate general ideas about mathematical
programming. Those technologies are still important to our economy and everyday lives as I
write these words, but they might have become quaint historical curiosities by the time you
work this Exercise. However, if you have understood this Chapter you should be able to see
optimization problems everywhere you look. (a) Make up a new example to illustrate curve-
fitting by minimizing a sum of absolute values. (b) Make up a new example to illustrate
bilevel linear programming.

1.9.49[H] Like any technology, mathematical optimization can be used for good or evil
purposes. Describe one application of linear programming that you would consider beneficial
to humanity and one application that you would consider harmful. How will your ethical
judgements affect your conduct as a practitioner of linear programming?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2

The Simplex Algorithm

In §1 you learned the graphical method for solving linear programs. When there are more
than three variables it is necessary to use a method that does not depend on drawing a
picture. We will study two, the interior point algorithm [89] in §21.1 and the simplex

algorithm [35] in this Chapter.

2.1 Standard Form

The simplex algorithm solves linear programs that are stated in a special way called standard

form. Here is the standard form that we will use.

minimize
x∈Rn

z(x) = d + c⊤x

subject to Ax = b

x ≥ 0

A linear program that is in standard form has these three distinguishing characteristics.

• It is aminimization. The twoexams, brewery, paint, chairs, and oil refinery problems
of §1 were all naturally formulated as maximizations, so to put them into standard form
we must reverse the sense of the optimization. Whenever I call the objective function
of a mathematical program z, the optimization will always be a minimization.

• It has equality constraints. The pumps problem included a single equality constraint but
it and all the other examples had inequality constraints, so to put them into standard
form requires some reformulation. I will use m to denote the number of constraints that
are not nonnegativities (these are called functional constraints) so in a standard-
form problem the constraint coefficient matrix A and the constant column b will
always have m rows. Sometimes I will refer to b as the right-hand side vector.

• It has nonnegative variables. In the bulb problem the model parameters a and b were
free variables, so to put that problem into standard form requires some reformulation.
I will use n to denote the number of variables, so A will always have n columns and
the solution vector x and the objective cost coefficient vector c will always have
n rows. The optimal point of a linear program is sure to be in the boundary of the
feasible set, so it is essential that X include its boundary points and thus that x be
greater than or equal to zero rather than strictly positive.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

56 The Simplex Algorithm

The linear program below is the brewery problem of §1.3.1 in standard form; in §2.9, I will
explain how to put any linear program into standard form.

minimize
x∈R7

−90x1 − 150x2 − 60x3 − 70x4 + 0x5 + 0x6 + 0x7

subject to 7x1 + 10x2 + 8x3 + 12x4 + 1x5 + 0x6 + 0x7 = 160

1x1 + 3x2 + 1x3 + 1x4 + 0x5 + 1x6 + 0x7 = 50

2x1 + 4x2 + 1x3 + 3x4 + 0x5 + 0x6 + 1x7 = 60

x ≥ 0

This problem has n = 7 variables and m = 3 functional equality constraints. The vector
inequality means that each variable is nonnegative.

x ≥ 0 ⇔ x j ≥ 0, j = 1 . . . n

I will (almost) always use j to index the variables of a mathematical program and i to index
the constraints.

The scalar constant d is often nonzero (as in, for example, twoexams) but in this problem
it happens to be zero so the objective function value is

z(x) = c⊤x =
[

−90 −150 −60 −70 0 0 0
]





x1
x2
x3
x4
x5
x6
x7




=

n∑

j=1

c jx j

= −90x1 − 150x2 − 60x3 − 70x4.

Here c⊤, the transpose of the cost vector c, is a row vector, so the inner product (also
called the scalar product or dot product) c⊤x is conformable. If you need to brush up
on matrix arithmetic you can consult §28.2, but I will also refresh your memory about the
facts we need as we first need them.

The problem has this constraint coefficient matrix and constant column.

A =





7 10 8 12 1 0 0

1 3 1 1 0 1 0

2 4 1 3 0 0 1




=





a11 a12 · · · a1n
...

...
...
...

am1 am2 · · · amn





=





A1

...

Am





b =





160

50

60




=





b1
...

bm





It will occasionally be convenient to refer to row i of a matrix A as Ai. All of the other
vectors in this book, denoted by lower-case bold letters such as x, are column vectors. Thus
Aix is the dot product of row i with the column x and the equality constraints can be written
as shown at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.2 The Simplex Tableau 57

Ax =





A1

A2

A3









x1
x2
x3
x4
x5
x6
x7





=





A1x

A2x

A3x




=





n∑

j=1

a1 jx j

n∑

j=1

a2 jx j

n∑

j=1

a3 jx j





= b

2.2 The Simplex Tableau

We will often state a linear program algebraically, as in the formulations of §1 and the
description of standard form given in §2.1. To solve a problem with the simplex algorithm,
it is convenient to represent its standard form more compactly in a simplex tableau.
Rearranging the terms in our definition of standard form we get the algebraic statement
below, in which the right hand side vector b actually appears on the left (this is more
natural if tableaus with different numbers of columns are to be manipulated by a computer
program). The objective and constraints are represented by the tableau on the right, in
which each column of c⊤ and A is to be thought of as multiplied by the variable x j that
appears in the corresponding column of the equations.

minimize
x∈Rn

z − d = c⊤x

subject to b = Ax

x ≥ 0 nonnegativity of x is implicit

z −d c⊤

b A

objective row





constraint rows

If you think of the vertical line inside the tableau as a column of = signs, and visualize (if it
is not present) the z that I have printed to the left of the objective row, then you can read
off the objective and constraint equations from the tableau. There are m constraint rows

and n variables, so a simplex tableau always has m + 1 rows and n + 1 columns.
The nonnegativity constraints are implied in representing the problem by a tableau,

rather than being stated explicitly. To be represented by a tableau a linear program must
be in standard form, and that means all of the variables are nonnegative.

The standard form given above for the brewery problem has this tableau.

T0 =

x1 x2 x3 x4 x5 x6 x7
0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

58 The Simplex Algorithm

Often I will label the right-hand columns of a tableau with the names of the corresponding
variables, but usually it is easy to tell from the problem context which variables go with
which columns even if they are not labeled.

2.3 Pivoting

The third constraint row of the brewery tableau represents the equation

60 = 2x1 + 4x2 + x3 + 3x4 + x7

or, dividing through by 4, 15 = 1
2
x1 + x2 +

1
4
x3 +

3
4
x4 +

1
4
x7 4

or, arbitrarily solving for x2, x2 = 15 − 1
2
x1 − 1

4
x3 − 3

4
x4 − 1

4
x7.

We could substitute this expression for x2 into the objective and the other constraints to
eliminate that variable from them, like this.

0 = −90x1 − 150
(

15 − 1
2
x1 − 1

4
x3 − 3

4
x4 − 1

4
x7

)

− 60x3 − 70x4
⇒ 2250 = −15x1 − 22 1

2
x3 + 42

1
2
x4 + 37

1
2
x7 1

160 = 7x1 + 10
(

15 − 1
2
x1 − 1

4
x3 − 3

4
x4 − 1

4
x7

)

+ 8x3 + 12x4 + x5

⇒ 10 = 2x1 + 5
1
2
x3 + 4

1
2
x4 + x5 − 2 1

2
x7 2

50 = x1 + 3
(

15 − 1
2
x1 − 1

4
x3 − 3

4
x4 − 1

4
x7

)

+ x3 + x4 + x6

⇒ 5 = −1
2
x1 +

1
4
x3 − 1 1

4
x4 + x6 − 3

4
x7 3

The new equations are algebraically equivalent to the old ones so we could use them to
replace the rows of T0, obtaining this tableau.

T1 =

x1 x2 x3 x4 x5 x6 x7

2250 −15 0 −22 1
2

42 1
2

0 0 37 1
2

1

10 2 0 5 1
2

4 1
2

1 0 −2 1
2

2

5 −1
2

0 1
4
−1 1

4
0 1 −3

4
3

15 1
2

1 1
4

3
4

0 0 1
4

4

T0 and T1 are equivalent tableaus in the sense that they represent two different standard
forms of exactly the same linear program, and other tableaus equivalent to T0 and T1 could
be produced in a similar way. The simplex algorithm generates equivalent tableaus until
finding a standard form that reveals the solution.

It would have been much easier to transform T0 into T1 by using the elementary row
operations of linear algebra [147, §1]. Unfortunately, not every sequence of elementary row

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.3.1 Performing a Pivot 59

operations on a tableau yields an equivalent tableau (see Exercise 2.10.21). In generating a
new tableau like T1, the easiest way to be certain that it represents the same linear program
we started with is to perform the particular sequence of row operations that is called a pivot,
as follows.

• Select a pivot element ahp , 0, where h ∈ {1 . . .m} is the index in A of
the pivot row and p ∈ {1 . . . n} is the index in A of the pivot column.
A “pivot” in the constant column of a tableau (corresponding to p = 0)
is never useful; a “pivot” in the objective row (corresponding to h = 0)
produces a new tableau that is not equivalent to the starting tableau.

• Divide the pivot row of the tableau by the pivot element. This makes
the pivot element equal to 1.

• Add multiples of the resulting pivot row to the other rows of the tableau
to get zeros elsewhere in the pivot column.

The simplex algorithm is defined in terms of pivots, so we will consider the pivot to be
the fundamental operation that we use in solving linear programs. We will never need or use
any other row operations.

2.3.1 Performing a Pivot

The pivot operation is in fact so important to everything we will do between now and §8
that it deserves the following step-by-step illustration.

To obtain T1 from T0 by pivoting we can proceed as follows. First we select the pivot
element ahp = a32, which I have circled in the tableau T0 below. In generating a sequence of
tableaus by hand pivoting, it is helpful to circle each pivot element.

T0 = Aa32

x1 x2 x3 x4 x5 x6 x7
0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

Next we divide the pivot row by the pivot element to obtain that row of the result tableau.

T1 =

x1 x2 x3 x4 x5 x6 x7

15 1
2

1 1
4

3
4

0 0 1
4

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

60 Pivoting

To zero out the objective function component in the pivot column we can add 150 times this
new row 4 to row 1 of T0 and fill in the objective row as shown below.

T1 =

x1 x2 x3 x4 x5 x6 x7

2250 −15 0 −22 1
2

42 1
2

0 0 37 1
2

15 1
2

1 1
4

3
4

0 0 1
4

To zero out the 10 in the pivot column we can subtract 10 times the new row 4 from row 2
of T0 and fill in the result.

T1 =

x1 x2 x3 x4 x5 x6 x7

2250 −15 0 −22 1
2

42 1
2

0 0 37 1
2

10 2 0 5 1
2

4 1
2

1 0 −2 1
2

15 1
2

1 1
4

3
4

0 0 1
4

Finally, to complete T1 we can zero out the 3 in the pivot column by subtracting 3 times
the new row 4 from row 3 of T0.

T1 =

x1 x2 x3 x4 x5 x6 x7

2250 −15 0 −22 1
2

42 1
2

0 0 37 1
2

10 2 0 5 1
2

4 1
2

1 0 −2 1
2

5 −1
2

0 1
4
−1 1

4
0 1 −3

4

15 1
2

1 1
4

3
4

0 0 1
4

In performing a pivot by hand it is unnecessary to separately show or explain the intermediate
steps as I have done here. Now that you know how to pivot you can simply look at T0, do
the arithmetic in your head, and write down T1.

2.3.2 Describing Standard Forms

In T0 the constraint coefficient matrix, constant column, and cost vector are the A, b and c

of our initial standard form for the brewery problem. To be fussy about this we could refer
to them as A0, b

0 and c0. Pivoting changes the numbers in the tableau, so the corresponding
parts of T1 are different and should technically be called A1, b

1 and c1 (the entries of c1 are
called reduced costs). This precise notation is occasionally helpful, but usually we will be
talking about these quantities in a generic way. From now on we will therefore think of A,
b, c, and also d and z, without subscripts or superscripts, as denoting their values in any
standard form problem or tableau. This is similar to the use of a single variable name in
a computer program to represent a quantity that changes as the iterations of an algorithm
progress [100, §2.2,§2.6].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.4 Canonical Form 61

2.4 Canonical Form

Pivoting on the element circled in T1 on the previous page produces the tableau T2 shown
below (you should verify some of the numbers to be sure that you understand the pivot).

T2 =

b

x1 x2 x3 x4 x5 x6 x7

2290 10
11
−6 9

11
0 0 60 10

11
4 1
11

0 27 3
11

1 9
11

4
11

0 1 9
11

2
11

0 − 5
11

4 6
11

−13
22

0 0 −1 5
11
− 1

22
1 − 7

11

14 6
11

9
22

1 0 6
11
− 1

22
0 4

11

Many possible vectors satisfy Ax = b and x ≥ 0 and are therefore feasible for the linear
program. Can you read off one of them from this tableau?

The tableau contains a system of 3 constraint equations in 7 variables. This system is
underdetermined but not inconsistent, so we can find a solution by setting any 4 of the
variables to zero and solving for the others. If we pick the variables having coefficients of 1
to be those that are nonzero then they will be easy to solve for. Setting the others to zero,
x1 = x4 = x5 = x7 = 0 and the constraint equations read like this.

1 9
11
=

4
11
(0) + 0x2 + 1x3 +

9
11
(0) + 2

11
(0) + 0x6 − 5

11
(0)

4 6
11
= −13

22
(0) + 0x2 + 0x3 − 1 5

11
(0) − 1

22
(0) + 1x6 − 7

11
(0)

14 6
11
=

9
22
(0) + 1x2 + 0x3 +

6
11
(0) − 1

22
(0) + 0x6 +

4
11
(0)

Except for 1x2, 1x3, and 1x6, every term to the right of the equals signs is zero because either
the coefficient or the variable is zero. But there is no need to write out the equations; if while
looking at T2 we think of those variables whose tableau columns are not identity columns as
being zero, then we can simply read off the others as

x2 = b3 = 14 6
11

x3 = b1 = 1 9
11

x6 = b2 = 4 6
11
.

Because b ≥ 0 in T2 this solution satisfies x ≥ 0 as well as Ax = b.
What makes it possible to find a feasible point in this way is that T2 (like T0 and T1) is

in canonical form. A canonical form tableau has these three distinguishing characteristics.

• The A part of the tableau contains all the columns of the m × m identity matrix.

• The reduced cost entries c j over those identity columns are zero.

• The constant column is nonnegative: b ≥ 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

62 Canonical Form

The identity columns in a canonical-form tableau are called basis columns and their
order in the m × m identity matrix, here S = (x3, x6, x2), is the basic sequence of the
tableau; the tableau is said to be in canonical form with respect to this basic sequence.
The variables in the basic sequence are the basic variables, while the others, here x1, x4,
x5, and x7, are the nonbasic variables.

Pivoting in a canonical-form tableau makes the entering variable corresponding to the
pivot column basic, and it makes the leaving variable whose column had a 1 in the pivot
row nonbasic. The pivot from T1 to T2 made the x3 column basic while the x5 column, which
had its 1 in the pivot row, became a nonbasic column.

2.4.1 Basic Feasible Solutions

By assuming the nonbasic variables are zero in T2, we were able to read off the feasible point

x2 =
[

0, 14 6
11
, 1 9

11
, 0, 0, 4 6

11
, 0

] ⊤
.

This is called the basic feasible solution that is associated with that canonical-form
tableau. In T2 the reduced cost vector is

c⊤ =
[

−6 9
11
, 0, 0, 60 10

11
, 4 1

11
, 0, 27 3

11

] ⊤

so the dot product that appears in the objective function row of T2 is

c⊤x2 = −6 9
11
(0) + 0(14 6

11
) + 0(1 9

11
) + 60 10

11
(0) + 4 1

11
(0) + 0(4 6

11
) + 27 3

11
(0) = 0.

At the basic feasible solution x̄ associated with any canonical form tableau, x̄ j = 0 for
nonbasic variables and c j = 0 for basic variables, so c⊤x̄ = 0.

At the basic feasible solution x2, the objective row of T2 looks like the picture on the left
below and represents the equation on the right

z 2290 10
11

c⊤x2 z + 2290 10
11
= c⊤x2 = 0

z = −2290 10
11

Because c⊤x̄ = 0 in any canonical-form tableau, the element T(1, 1) in its upper left corner is
the negative of the objective value at the associated basic feasible solution x̄.

−z c⊤x̄ ≡ 0

canonical-form tableau

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.4.2 The pivot.m Routine 63

Of course the value of c⊤x at an arbitrary point x that is not the basic feasible solution
is not zero. In T2 the objective row says

z + 2290 10
11
= −6 9

11
x1 + 60

10
11
x4 + 4

1
11
x5 + 27

3
11
x7

z = −2290 10
11
− 6 9

11
x1 + 60

10
11
x4 + 4

1
11
x5 + 27

3
11
x7.

The basic feasible solution x2 associated with T2 has x1 = x4 = x5 = x7 = 0, so z(x2) = −2290 10
11
.

But we are trying to minimize z, so we would like to make it lower while keeping all of the
x j ≥ 0. Is there some way to do that, according to the formula above?

Yes! Because the reduced cost for x1 is negative, we could decrease z by letting x1 be
positive instead of zero. To make x1 positive we can introduce it as a basic variable by
pivoting on some element ah1 in the x1 column of T2.

2.4.2 The pivot.m Routine

In pivoting from T0 to T1 to T2 I did exact arithmetic, so that you could obtain the same
results by hand and thereby confirm that you understand the process. When the entries of
an initial tableau are integers, successive pivots often produce fractions having progressively
larger denominators and this makes hand calculation increasingly tedious. Practical applica-
tions usually involve data that are arbitrary real numbers, and then hand pivoting is nearly
impossible. Using a computer program to perform pivots will spare us much labor as we
continue our study of the brewery problem in §2.4.3, so this seems an opportune moment to
introduce pivot.m, which is listed on the next page. MATLAB calls a code segment like this
a function because it has inputs and outputs, but I will call one that we write a routine

to distinguish it from mathematical functions and from code functions like sqrt() that are
built into MATLAB. The line numbers 1 through 40 on the left are not part of the code.

The input parameters 1 are T, a tableau that might or might not be in canonical form;
mm = m + 1, the number of rows in the tableau; nn = n + 1, the number of columns in the
tableau; ip, the index in T of the pivot row; jp, the index in T of the pivot column; and
S, a vector describing the basic sequence. If the pivot element is ahp then ip = h + 1 and
jp = p + 1. Each element of S is 0 if the corresponding variable column is nonbasic, or if it
is basic the index in T of the row containing its identity 1.

The output parameters 1 are Tnew, the tableau resulting from the pivot; Snew, the basic
sequence of the new tableau; and a return code rc that signals success if it is 0 39 or, if it
is 1, failure because the specified pivot element T(ip,jp) is zero 5 .

If the pivot element is nonzero the routine 9-15 computes the elements of the new tableau,
except for those in the 10 pivot row and 12 pivot column, by a process equivalent to what
we have been doing by hand. The quantity T(ii,jp)/T(ip,jp) 13 is the fraction of the
original pivot row that must be subtracted from the row ii being updated to zero out the el-
ement in the pivot column of that row. Next 17-20 we update the elements in the pivot row,
except 18 for the pivot element. This 19 is where the pivot row gets divided by the pivot

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

64 Canonical Form

1 function [Tnew,Snew,rc]=pivot(T,mm,nn,ip,jp,S)
2 % perform a pivot at T(ip,jp)
3 %
4 if(T(ip,jp) == 0) % check for a zero pivot
5 rc=1; % signal the error
6 return % and give up
7 end % finished checking
8
9 for ii=1:mm % update tableau rows
10 if(ii == ip) continue; end % except for pivot row
11 for jj=1:nn % update non-pivot columns
12 if(jj == jp) continue; end
13 Tnew(ii,jj)=T(ii,jj)-T(ip,jj)*T(ii,jp)/T(ip,jp);
14 end
15 end % advance to the next row
16
17 for jj=1:nn % update pivot row
18 if(jj == jp) continue; end % except for pivot column
19 Tnew(ip,jj)=T(ip,jj)/T(ip,jp); % divide by the pivot element
20 end % advance to next column
21
22 for ii=1:mm % update pivot column
23 if(ii == ip) % making the pivot element
24 Tnew(ii,jp)=1; % exactly 1
25 else % and the other elements
26 Tnew(ii,jp)=0; % exactly 0
27 end % finished testing
28 end % finished with the column
29
30 for jj=2:nn % update the basis
31 if(S(jj-1) == ip) % mark outgoing column
32 Snew(jj-1)=0; % nonbasic
33 else % while keeping
34 Snew(jj-1)=S(jj-1); % the other columns unchanged
35 end % finished testing
36 end % finished removing outgoing
37 Snew(jp-1)=ip; % mark incoming column basic
38
39 rc=0; % signal success
40 end % and return to the caller

element. Then 22-28 we update the pivot column, making the pivot element 1 and the
others 0; this is to prevent roundoff errors from making the elements of the new identity
column slightly different from 1 and 0. If the pivot element is negative, zeros in that row
of the other identity columns remain zero but acquire a minus sign (see Exercise 2.10.25).
Finally 30-37 the vector describing the basic sequence is revised to mark the column whose
identity 1 was in the pivot row as nonbasic 32 and the pivot column as basic 37 .

I tested this routine by using it to perform the pivots we earlier did by hand, as shown
in the Octave session on the next page. First 1> I gave the variable T0 the contents of
tableau T0. Then 2> I set S0 to describe the basic sequence of T0 according to the scheme
described above: the first four variable columns are nonbasic, then the basic columns have
their 1 entries in rows 2, 3, and 4 of the tableau. Next 3> I set Octave’s output format so
that the result tableaus will fit on the screen. The first invocation of pivot.m 4> produces
T1, which has basic sequence S1, and the second invocation 5> produces T2 and S2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.4.3 Finding a Better Solution 65

octave:1> T0=[0,-90,-150,-60,-70,0,0,0;
> 160,7,10,8,12,1,0,0;
> 50,1,3,1,1,0,1,0;
> 60,2,4,1,3,0,0,1]
T0 =

0 -90 -150 -60 -70 0 0 0
160 7 10 8 12 1 0 0
50 1 3 1 1 0 1 0
60 2 4 1 3 0 0 1

octave:2> S0=[0,0,0,0,2,3,4];
octave:3> format bank
octave:4> [T1,S1,rc]=pivot(T0,4,8,4,3,S0)
T1 =

2250.00 -15.00 0.00 -22.50 42.50 0.00 0.00 37.50
10.00 2.00 0.00 5.50 4.50 1.00 0.00 -2.50
5.00 -0.50 0.00 0.25 -1.25 0.00 1.00 -0.75
15.00 0.50 1.00 0.25 0.75 0.00 0.00 0.25

S1 =

0.00 4.00 0.00 0.00 2.00 3.00 0.00

rc = 0.00
octave:5> [T2,S2,rc]=pivot(T1,4,8,2,4,S1)
T2 =

2290.91 -6.82 0.00 0.00 60.91 4.09 0.00 27.27
1.82 0.36 0.00 1.00 0.82 0.18 0.00 -0.45
4.55 -0.59 0.00 0.00 -1.45 -0.05 1.00 -0.64
14.55 0.41 1.00 0.00 0.55 -0.05 0.00 0.36

S2 =

0.00 4.00 2.00 0.00 0.00 3.00 0.00

rc = 0.00
octave:6>

2.4.3 Finding a Better Solution

In §2.4.1 we reasoned that pivoting in the x1 column of T2 would yield a new basic feasible
solution having an objective value lower than z = -2290.91. There are three possible pivot
positions in that column so I tried them all, obtaining the results shown on the next page.

Pivoting at T2(3,2)=-0.59 7> yields tableau T3a, which has b2 = -7.69 < 0 and is
therefore not in canonical form. Pivoting on a negative ahp in a canonical-form tableau
always makes a positive bh negative and thereby destroys canonical form. The basic solu-
tion represented by this tableau is x3a = [-7.69,17.69,4.62,0,0,0,0]⊤, which violates the
nonnegativity constraint x1 ≥ 0 and therefore cannot be a basic feasible solution.

Pivoting at T2(4,2)=0.41 8> yields tableau T3b, which has b1 = -11.11 < 0 and is
therefore also not in canonical form. To zero out a12 = 0.36 it was necessary to subtract

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

66 Canonical Form

octave:6> T2
T2 =

2290.91 -6.82 0.00 0.00 60.91 4.09 0.00 27.27
1.82 0.36 0.00 1.00 0.82 0.18 0.00 -0.45
4.55 -0.59 0.00 0.00 -1.45 -0.05 1.00 -0.64
14.55 0.41 1.00 0.00 0.55 -0.05 0.00 0.36

octave:7> [T3a]=pivot(T2,4,8,3,2,S2)
T3a =

2238.46 0.00 0.00 0.00 77.69 4.62 -11.54 34.62
4.62 0.00 0.00 1.00 -0.08 0.15 0.62 -0.85
-7.69 1.00 -0.00 -0.00 2.46 0.08 -1.69 1.08
17.69 0.00 1.00 0.00 -0.46 -0.08 0.69 -0.08

octave:8> [T3b]=pivot(T2,4,8,4,2,S2)
T3b =

2533.33 0.00 16.67 0.00 70.00 3.33 0.00 33.33
-11.11 0.00 -0.89 1.00 0.33 0.22 0.00 -0.78
25.56 0.00 1.44 0.00 -0.67 -0.11 1.00 -0.11
35.56 1.00 2.44 0.00 1.33 -0.11 0.00 0.89

octave:9> [T3c]=pivot(T2,4,8,2,2,S2)
T3c =

2325.00 0.00 0.00 18.75 76.25 7.50 0.00 18.75
5.00 1.00 0.00 2.75 2.25 0.50 0.00 -1.25
7.50 0.00 0.00 1.62 -0.12 0.25 1.00 -1.38
12.50 0.00 1.00 -1.12 -0.38 -0.25 0.00 0.88

octave:10> quit

x1 x2 x3 x4 x5 x6 x7

0.36/0.41 ≈ 0.88 times the pivot row from the second row of the tableau, making b1 negative.
The basic solution represented by this tableau is x3b = [35.56,0,-11.11,0,0,25.56,0]⊤,

which violates the nonnegativity x3 ≥ 0, so it is not feasible either.

Pivoting at T2(2,2)=0.36 9> yields T3c. This tableau has b ≥ 0 and the three identity
columns with zero costs over them, so it is in canonical form with the basic feasible solution
x3c = x⋆ = [5,12.5,0,0,0,7.5,0]⊤ and objective value z⋆ = -2325 < -2290.91.

This example has shown that if we pick a suitable pivot position it is possible to reduce
the objective value by pivoting from one canonical-form tableau to another canonical-form
tableau. The simplex algorithm does this repeatedly, eventually generating a tableau whose
basic feasible solution is the optimal point. The pivots we performed to get from T0 to T1

to T2 to T3c are in fact simplex algorithm pivots for solving the brewery problem.

2.4.4 The Simplex Pivot Rule

Could we have found the right pivot location in tableau T2 without trying every possible
ah1? Our goal was to decrease the objective by making x1 positive, so instead of pivoting we
could think of increasing x1 gradually by setting it equal to some number t ≥ 0 while keeping

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.4.4 The Simplex Pivot Rule 67

the other nonbasic variables x4 = x5 = x7 = 0. How must the basic variables x2, x3, and x6
change to keep the constraints Ax = b satisfied? The constraint rows of T2 require that

1.82 = 0.36x1 + x3 ⇒ x3 = 1.82 − 0.36t
4.55 = -0.59x1 + x6 ⇒ x6 = 4.55 + 0.59t

14.55 = 0.41x1 + x2 ⇒ x2 = 14.55 − 0.41t

so to remain feasible we must make

x(t) =





x1
x2
x3
x4
x5
x6
x7





=





t

14.55 − 0.41t
1.82 − 0.36t

0

0

4.55 + 0.59t

0





.

When t = 0 we have x(t) = [0,14.55,1.82,0,0,4.55,0]⊤, which is the basic feasible solution
x2 corresponding to T2; when t = 5 we have x(t) = [5,12.5,0,0,0,7.5,0]⊤, which is the
basic feasible solution x3c corresponding to T3c.

To reduce z as much as possible we want to make t as high as possible while keeping
x(t) ≥ 0, so t must satisfy these inequalities.

t ≥ 0 X

14.55 − 0.41t ≥ 0 ⇒ t ≤ 14.55/0.41 = b3/a31 = 35.49

1.82 − 0.36t ≥ 0 ⇒ t ≤ 1.82/0.36 = b1/a11 = 5.00

0 ≥ 0 X

0 ≥ 0 X

4.55 + 0.59t ≥ 0 ⇒ t ≥ 4.55/(-0.59) = b2/a22 = −7.71
0 ≥ 0 X






⇒ t ≤ 5

It was the pivot on a11 that produced the canonical-form tableau T3c, and now we can see
why: among the positive ah1 in the pivot column, a11 has the lowest ratio bh/ah1.

We can also see where to pivot in the x1 column of T2 by noticing that in the x(t) we
found above, as t is increased from zero both x2 and x3 decrease. The first to become zero is
x3, so that variable leaves the basis as x1 enters the basis. In T2 the x3 identity column has
its 1 in the first row, so that must be the pivot row.

We chose p = 1 as the pivot column because c1 = -1.82 is negative and z will therefore be
decreased by introducing x1 into the basis. We chose h = 1 as the pivot row because pivoting
there keeps b ≥ 0 and thereby preserves canonical form. These two ideas are combined in
the summary given at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

68 Final Forms

In a canonical-form tableau having one or more c j < 0, to decrease z perform a pivot on ahp
according to this simplex pivot rule:

• choose the pivot column p so that cp < 0;

• choose the pivot row h so that

bh

ahp
= min

i

{

bi

aip

∣
∣
∣
∣
∣
aip > 0

}

.

This choice of h pivots on the positive aip where the ratio bi/aip is smallest, so the pivot is
called the minimum-ratio pivot in column p.

2.5 Final Forms

We begin solving any linear programming problem in the fervent hope that some sequence
of simplex-rule pivots will lead to an optimal basic feasible solution, but that future is only
one of several that might possibly come to pass.

2.5.1 Optimal Form

When we solved the brewery problem in §2.4 a sequence of simplex-rule pivots led to T3c.
It has the associated basic feasible solution x⋆ = [5,12.5,0,0,0,7.5,0]⊤, in which x3, x4,
x5, and x7 are nonbasic. The objective row of that tableau represents this equation.

z + 2325 = 18.75x3 + 76.25x4 + 7.5x5 + 18.75x7

Because these reduced costs are all positive, increasing any of the nonbasic variables from
zero could only increase the objective value.

z = −2325 + [18.75x3 + 76.25x4 + 7.5x5 + 18.75x7]
︸ ︷︷ ︸

≥ 0

Thus z(x) ≥ z(x⋆) for all x ≥ 0, and x⋆ must be optimal. A canonical-form tableau having
c ≥ 0 is in optimal form.

≥ 0 ≥ 0 · · · ≥ 0

canonical-form tableau

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.5.2 Unbounded Form 69

2.5.2 Unbounded Form

Now consider a new example, which I will call the unbd problem (see §28.5.8).

x1 x2 x3 x4 x5
−9 0 0 −2 1 0

3 0 0 −1 2 1

1 1 0 0 1 0

5 0 1 −4 1 0

This tableau is in canonical form and has c3 < 0, so we can reduce the objective by increasing
x3 while we keep x4 nonbasic. No ah3 is positive so we cannot do this by pivoting according
to the simplex rule, but we can let x3 = t ≥ 0 and study what happens as we increase t

gradually. To remain feasible for Ax = b we must simultaneously adjust the basic variables
to satisfy the constraint equations.

3 = −t + x5 ⇒ x5 = 3 + t

1 = x1 ⇒ x1 = 1

5 = x2 − 4t ⇒ x2 = 5 + 4t

To remain feasible for x ≥ 0 requires that

x1 = 1 ≥ 0 X

x2 = 5 + 4t ≥ 0 ⇒ t ≥ −5
4

x3 = t ≥ 0 X

x4 = 0 ≥ 0 X

x5 = 3 + t ≥ 0 ⇒ t ≥ −3

but these conditions are satisfied for or all t ≥ 0. The objective row of the tableau says that
z − 9 = −2t so z = 9 − 2t and by increasing t indefinitely we can make z as low as we like.
This problem has no optimal vector, and informally we will say that z⋆ = −∞.

When a canonical-form tableau has some c j < 0 but ai j ≤ 0 for all i ∈ {1 . . .m} it is in
unbounded form.

< 0

≤ 0
≤ 0
...
≤ 0
≤ 0

canonical-form
tableau

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

70 The Simplex Algorithm

2.5.3 Infeasible Forms

If a tableau is in canonical form then the linear program it represents has at least one feasible
point, namely the basic feasible solution associated with the tableau. In §2.8 you will learn
how to put any tableau into canonical form if the problem has one.

But not every problem does, because not every linear program is feasible. If there is no
x ≥ 0 that simultaneously satisfies all of the constraints Ax = b, then the search for an initial
canonical form is sure to produce a tableau having a constraint row like either the second or
the third constraint row in this tableau, which I will call the infea problem (see §28.5.9).

x1 x2 x3 x4
2 0 0 −3 8

1 0 1 5 −1
4 0 0 0 0

−7 1 0 2 6

z + 2 = − 3x3 + 8x4
1 = x2 + 5x3 − x4
4 = 0 XX

−7 = x1 + + 2x3 + 6x4 XX

The equations represented by this tableau are shown on the right. Nonnegative values of
x2, x3, and x4 can be found to satisfy the first constraint, but no x can satisfy the second
constraint and no nonnegative x can satisfy the third. It is occasionally useful to distinguish
between these two ways in which a linear program can be infeasible, so we will identify them
as follows [3, p49-50].

infeasible form 1 infeasible form 2

, 0 0 0 · · · 0 0 < 0 ≥ 0 ≥ 0 · · · ≥ 0 ≥ 0

2.6 The Solution Process

In this book to “solve” a linear program means to

• find an optimal vector x⋆ or

• show that the problem has an unbounded objective and thus no optimal point or

• show that the problem is infeasible and thus has no optimal point.

Some authors call this resolving the problem, in the sense of deciding which of the three
possible outcomes it has, but we will consider a linear program to have been solved if we get
to any of the final forms described in §2.5.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.6 The Solution Process 71

The solution of a linear program by the simplex algorithm is traditionally [35, §5-2]
divided into two phases. Phase 1 finds an initial canonical form tableau for a problem that
is already in standard form, or discovers that the problem is infeasible. Phase 2 pivots an
initial canonical form tableau to optimal form, or discovers that the problem is unbounded.
Phase 0 is what we will call the reformulation of an arbitrary linear program into standard
form. The whole solution process is pictured below [3, p50].

algebraic statement

phase 0





reformulation §2.9

standard form

phase 1






subproblem technique §2.8.1
artificial variables §2.8.2

canonical form

infeasible form

optimal form

phase 2






simplex rule pivots §2.4.4 unbounded form

You already know how to transform an initial canonical form tableau into either optimal
or unbounded form, by repeatedly applying the simplex rule as we did in §2.4. There we
adopted the pivot.m MATLAB function to automate the arithmetic of pivoting. In §2.8 and
§2.9 we will take up phase 1 and phase 0 of the solution process. There it will be convenient
to automate other tableau manipulations in addition to pivoting, so first we will pause to
consider a much more powerful computational utility.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

72 The Simplex Algorithm

2.7 The pivot Program

In his magnum opus The Art of Computer Programming, Donald Knuth described a hypo-
thetical computer and invented a machine language for it which he called MIX [94, p x-xi].
He then used this imaginary language to illustrate the algorithms and programming ideas
that are the subject of his book, in the process making them independent of any particular
computing environment and thus relevant to all of them. Since then several MIX simulators
have been written in various real programming languages, but few of the many students who
have learned from his book ever used one to actually run the programs.

Imitating his approach I have provided, by means of the user’s manual in §27.1, the
abstract definition of a hypothetical computer program named pivot. This imaginary utility
automates pivoting and many other tableau manipulations, and from now on I will talk about
it as though it were real. You can download my implementation of pivot by following the
directions given in §27.2 or (far better) write your own, but you do not need to be able to
run the program in order to understand the examples in which we will use it.

The pivot program (like pivot.m) refers to a tableau element by its row i and column
j in the tableau rather than by its row h and column p in the A matrix. As an introduction
to the program, I have used it below to solve the brewery problem by a different sequence of
simplex-rule pivots. More of the program’s features will become evident in future examples.

> This is PIVOT, Unix version 4.2
> For a list of commands, enter HELP.
>
< tableau 4 8
< insert
T(1, 1)... = 0 -90 -150 -60 -70 0 0 0
T(2, 1)... = 160 7 10 8 12 1 0 0
T(3, 1)... = 50 1 3 1 1 0 1 0
T(4, 1)... = 60 2 4 1 3 0 0 1

0. -90. -150. -60. -70. 0. 0. 0.
160. 7. 10. 8. 12. 1. 0. 0.
50. 1. 3. 1. 1. 0. 1. 0.
60. 2. 4. 1. 3. 0. 0. 1.

< pivot 4 3

2250. -15.0 0. -22.50 42.50 0. 0. 37.50
10. 2.0 0. 5.50 4.50 1. 0. -2.50
5. -0.5 0. 0.25 -1.25 0. 1. -0.75
15. 0.5 1. 0.25 0.75 0. 0. 0.25

< p 2 2

2325.0 0. 0. 18.750 76.250 7.50 0. 18.750
5.0 1. 0. 2.750 2.250 0.50 0. -1.250
7.5 0. 0. 1.625 -0.125 0.25 1. -1.375
12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875

< quit
> STOP

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.8.1 The Subproblem Technique 73

2.8 Getting Canonical Form

This tableau, representing a linear program that I will call sf1 (see §28.5.10), is not in
canonical form. Its b part has negative components, its A part contains only one column of
the 5 × 5 identity, and the cost over that column is not zero.

x1 x2 x3 x4 x5 x6 x7
0 −8 6 2 0 −7 5 0

−1 0 −3 0 8 6 −4 3

−2 −9 7 0 −5 0 0 −9
3 −6 0 1 −7 4 −6 5

4 9 −5 0 0 3 9 4

1 0 −1 0 3 9 5 −2

There are two approaches to putting a tableau like this into canonical form: either get
identity columns with zero costs first and then make b nonnegative, or make b nonnegative
first and then get identity columns with zero costs.

2.8.1 The Subproblem Technique

The approach of getting the identity columns first is called the subproblem technique

[145, §3.7] [3, §3.5]. Pivoting on any nonzero ahp makes that element 1 and zeroes out the
other elements in the pivot column. We will adopt a systematic way of doing this to generate
the m identity columns, as follows.

pivoting-in a basis

let h← 1

1 find any nonzero element in row h of A
if each ahp = 0 and bh = 0 the row is redundant; delete it, let m← m − 1, and GO TO 1

if each ahp = 0 and bh , 0, STOP with infeasible form 1
pivot on ahp
if h < m let h← h + 1 and GO TO 1

STOP with m identity columns having zero costs.

Using this algorithm I found a basis for sf1, as shown in the
pivot session excerpt on the next page. The first command reads
the starting tableau from the text file sf1.tab, which is listed to
the right. This algorithm pays no attention to the signs of the
pivot elements or to the ratios ahp/bh, so it often produces nega-
tive b elements even if b ≥ 0 in the starting tableau (which here
it is not). Pivoting-in a basis revealed a redundant constraint, so
at the end I deleted the zero row 6.

6 8
x1 x2 x3 x4 x5 x6 x7

0 -8 6 2 0 -7 5 0
-1 0 -3 0 8 6 -4 3
-2 -9 7 0 -5 0 0 -9
3 -6 0 1 -7 4 -6 5
4 9 -5 0 0 3 9 4
1 0 -1 0 3 9 5 -2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

74 Getting Canonical Form

< read sf1.tab
Reading the tableau...
...done.

x1 x2 x3 x4 x5 x6 x7
0. -8. 6. 2. 0. -7. 5. 0.
-1. 0. -3. 0. 8. 6. -4. 3.
-2. -9. 7. 0. -5. 0. 0. -9.
3. -6. 0. 1. -7. 4. -6. 5.
4. 9. -5. 0. 0. 3. 9. 4.
1. 0. -1. 0. 3. 9. 5. -2.

< p 2 5

x1 x2 x3 x4 x5 x6 x7
0.000 -8. 6.000 2. 0. -7.00 5.0 0.000
-0.125 0. -0.375 0. 1. 0.75 -0.5 0.375
-2.625 -9. 5.125 0. 0. 3.75 -2.5 -7.125
2.125 -6. -2.625 1. 0. 9.25 -9.5 7.625
4.000 9. -5.000 0. 0. 3.00 9.0 4.000
1.375 0. 0.125 0. 0. 6.75 6.5 -3.125

< p 3 3

x1 x2 x3 x4 x5 x6 x7
3.0731707 2.536585 0. 2. 0. -11.390244 7.926829 8.3414634
-0.3170732 -0.658537 0. 0. 1. 1.024390 -0.682927 -0.1463415
-0.5121951 -1.756098 1. 0. 0. 0.731707 -0.487805 -1.3902439
0.7804878 -10.609756 0. 1. 0. 11.170732 -10.780488 3.9756098
1.4390244 0.219512 0. 0. 0. 6.658537 6.560976 -2.9512195
1.4390244 0.219512 0. 0. 0. 6.658537 6.560976 -2.9512195

< p 4 4

x1 x2 x3 x4 x5 x6 x7
1.5121951 23.756098 0. 0. 0. -33.731707 29.487805 0.3902439
-0.3170732 -0.658537 0. 0. 1. 1.024390 -0.682927 -0.1463415
-0.5121951 -1.756098 1. 0. 0. 0.731707 -0.487805 -1.3902439
0.7804878 -10.609756 0. 1. 0. 11.170732 -10.780488 3.9756098
1.4390244 0.219512 0. 0. 0. 6.658537 6.560976 -2.9512195
1.4390244 0.219512 0. 0. 0. 6.658537 6.560976 -2.9512195

< p 5 6

x1 x2 x3 x4 x5 x6 x7
8.8021978 24.868132 0. 0. 0. 0. 62.725275 -14.560440
-0.5384615 -0.692308 0. 0. 1. 0. -1.692308 0.307692
-0.6703297 -1.780220 1. 0. 0. 0. -1.208791 -1.065934
-1.6336996 -10.978022 0. 1. 0. 0. -21.787546 8.926740
0.2161172 0.032967 0. 0. 0. 1. 0.985348 -0.443223
0.0000000 0.000000 0. 0. 0. 0. 0.000000 0.000000

< delete 6 0

x1 x2 x3 x4 x5 x6 x7
8.8021978 24.868132 0. 0. 0. 0. 62.725275 -14.560440
-0.5384615 -0.692308 0. 0. 1. 0. -1.692308 0.307692
-0.6703297 -1.780220 1. 0. 0. 0. -1.208791 -1.065934
-1.6336996 -10.978022 0. 1. 0. 0. -21.787546 8.926740
0.2161172 0.032967 0. 0. 0. 1. 0.985348 -0.443223

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.8.1 The Subproblem Technique 75

The final tableau on the previous page has b1 < 0, b2 < 0, and b3 = -1.6336996 < 0.
Ignoring b1 and b2 for the moment, how might we make b3 less negative than it is, while
keeping b4 nonnegative? Recall from §2.4 that the number in the upper left corner of a
canonical-form tableau is always −z, and that pivoting by the simplex rule minimizes z

which increases −z.
If the third constraint row were the objective row of a linear program, then b3 would be

the negative of that problem’s objective value and we could increase it by pivoting that linear
program toward optimality. To keep b4 nonnegative while we did that we could include that
row as a constraint. Below I have outlined a subproblem in which b3 is the −z element of
a tableau whose only constraint is the original row having b4 > 0.

< digits 4

> Display precision is set to 4 digits.

< list

x1 x2 x3 x4 x5 x6 x7

8.802 24.87 0. 0. 0. 0. 62.73 -14.56

-0.538 -0.69 0. 0. 1. 0. -1.69 0.31

-0.670 -1.78 1. 0. 0. 0. -1.21 -1.07

-1.634 -10.98 0. 1. 0. 0. -21.79 8.93

0.216 0.03 0. 0. 0. 1. 0.99 -0.44

b1 =

b2 =

b3 =

b4 =

subproblem

The subproblem tableau is in canonical form, because its single bh is 0.216 > 0 and it has
one identity column with a zero cost (the x5 column). There are two possible simplex-rule
pivot elements in the subproblem, the 0.03 and the 0.99; I arbitrarily picked the 0.99

because it has the most negative reduced cost, and pivoted the whole tableau. Although our
choice of a pivot position is guided by the subproblem, the other rows must also be included
in the pivot to preserve m = 4 identity columns and keep the new tableau equivalent to the
original.

< p 5 7

x1 x2 x3 x4 x5 x6 x7

-4.955 22.77 0. 0. 0. -63.66 0. 13.65

-0.167 -0.64 0. 0. 1. 1.72 0. -0.45

-0.405 -1.74 1. 0. 0. 1.23 0. -1.61

3.145 -10.25 0. 1. 0. 22.11 0. -0.87

0.219 0.03 0. 0. 0. 1.01 1. -0.45

b1 =

b2 =

b3 =

b4 =

The pivot made b3 > 0 but left b2 < 0, so we can form a new subproblem having that element
as its upper left corner. Now both b3 and b4 are nonnegative, and to ensure that they stay
that way those constraint rows must be included in the new subproblem. Unfortunately,
this subproblem is unbounded (in the x7 column) so we cannot increase b2 by pivoting the
subproblem toward optimality.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

76 Getting Canonical Form

Fortunately, pivoting on the negative subproblem objective entry in the unbounded col-
umn will make b2 positive while keeping b3 and b4 nonnegative. To see why this happens
it is helpful to examine the details of the pivot operation. First we divide the pivot row by
the pivot element a27 = -1.61, which makes that element 1 and b2 positive. Then we add
multiples of this new pivot row to the constraint rows of the subproblem, to make the other
elements in the subproblem pivot column zero. Because a37 = -0.87 and a47 = -0.45 are
both negative, the needed multiples are positive. But b2 is now positive, so adding positive
multiples of it to b3 and b4 will keep them positive.

< p 3 8

x1 x2 x3 x4 x5 x6 x7

-8.393 8.012 8.483 0. 0. -53.25 0. 0.

-0.053 -0.145 -0.282 0. 1. 1.37 0. 0.

0.252 1.081 -0.621 0. 0. -0.76 0. 1.

3.365 -9.305 -0.543 1. 0. 21.45 0. 0.

0.333 0.520 -0.279 0. 0. 0.67 1. 0.

b1 =

b2 =

b3 =

b4 =

Notice that in addition to making b2 positive, the pivot increased b3 and b4 as we predicted.
It left b1 negative so we form a final subproblem, which also happens to be unbounded (in
the x2 column). Pivoting on that subproblem objective element yields this canonical form.

< p 2 3

x1 x2 x3 x4 x5 x6 x7

-9.992 3.631 0. 0. 30.11 -11.95 0. 0.

0.189 0.516 1. 0. -3.55 -4.87 0. 0.

0.369 1.402 0. 0. -2.20 -3.79 0. 1.

3.467 -9.025 0. 1. -1.93 18.80 0. 0.

0.385 0.664 0. 0. -0.99 -0.69 1. 0.

Can the subproblem technique be used if the starting tableau has every bh < 0? In this
example, which I will call sf2 (see §28.5.11), we cannot form a subproblem in the usual way.

< read sf2.tab

Reading the tableau...

...done.

x1 x2 x3 x4 x5 x6

0. 0. 0. 4. -1. 2. 0.

-15. 0. 0. -1. 1. -1. 1.

-8. 1. 0. 0. -1. 0. 0.

-5. 0. 1. -1. 3. -2. 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.8.1 The Subproblem Technique 77

But if the first constraint row is considered the objective in a subproblem that has no
constraints and is thus unbounded, then we can pivot on either a13 or a15.

< p 2 6

x1 x2 x3 x4 x5 x6

-30. 0. 0. 2. 1. 0. 2.

15. 0. 0. 1. -1. 1. -1.

-8. 1. 0. 0. -1. 0. 0.

25. 0. 1. 1. 1. 0. -2.

The pivot on a15 resulted in b1 > 0 and b3 > 0, so both of those constraints must be included
in a subproblem to increase b2. Rearranging the rows makes this subproblem easy to visualize
(it is always prudent to do this when solving a problem by hand) and then one pivot achieves
canonical form.

< swap 2 3

x1 x2 x3 x4 x5 x6

-30. 0. 0. 2. 1. 0. 2.

-8. 1. 0. 0. -1. 0. 0.

15. 0. 0. 1. -1. 1. -1.

25. 0. 1. 1. 1. 0. -2.

< p 4 5

x1 x2 x3 x4 x5 x6

-55. 0. -1. 1. 0. 0. 4.

17. 1. 1. 1. 0. 0. -2.

40. 0. 1. 2. 0. 1. -3.

25. 0. 1. 1. 1. 0. -2.

In §4.1 we will implement the subproblem technique in MATLAB, and then instead of swap-
ping rows we will maintain a list of the indices of the rows that are in each subproblem.
That will let us use the same code to solve the subproblems and the canonical-form tableau
that is discovered by the subproblem technique.

Subproblems are in canonical form by construction. It might take more than one pivot
to get a subproblem’s −z entry nonnegative, but once that is achieved we construct the next
larger subproblem rather than solving the current one to optimality. Sometimes solving a
subproblem to make one bh nonnegative also makes others nonnegative. Pivoting a sub-
problem toward optimality might reveal that it is unbounded, in which case we pivot in its
objective row and that makes its −z entry positive. If a subproblem reaches optimal form
with its −z entry still negative, the original problem is in infeasible form 2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

78 Getting Canonical Form

Now we can summarize the procedure we have developed for making the bh nonnegative
in a tableau that has a basis.

getting b nonnegative

if every bh < 0 then
if any constraint row h has ahp ≥ 0 for all p ∈ {1 . . . n}, STOP with infeasible form 2
otherwise pivot on any negative entry in the first constraint row

1 if every bh ≥ 0, STOP with canonical form
if some bh < 0 then
form a subproblem with that row as objective and all rows with bh ≥ 0 as constraints
if the subproblem is unbounded pivot in that column of its objective and GO TO 1

otherwise pivot the subproblem towards optimality by simplex rule pivots
if the subproblem’s optimal −z entry is negative, STOP with infeasible form 2
otherwise when the subproblem’s −z entry becomes nonnegative, GO TO 1

When we write MATLAB code for the simplex method in §4.1 the subproblem technique will
consist of two routines, one for pivoting-in a basis and one that implements this algorithm.

2.8.2 The Method of Artificial Variables

The other approach to getting canonical form [145, §3.6] [3, §3.8] begins by multiplying every
constraint row that has a negative bh through by −1, to make b ≥ 0. In this form the linear
program is called the original problem.

minimize
x∈Rn

z = c⊤x

subject to Ax = b ≥ 0

x ≥ 0

The A matrix in the original problem does not necessarily contain any basis columns, so we
append the identity columns to the tableau and do some pivots to move them into the A

part as basis columns. To accomplish that we form and solve this artificial problem.

minimize
x∈Rn y∈Rm

1⊤y = y1 + · · · + ym
subject to Ax + Iy = b

x ≥ 0

y ≥ 0

Here 1 is a column vector of m 1’s and the yi are called artificial variables. Because b is
nonnegative the constraints of the artificial problem can be satisfied by letting x = 0 and
y = b, so every artificial problem is feasible. Because y ≥ 0 the artificial objective 1⊤y is
always nonnegative, so the minimization of 1⊤y subject to y ≥ 0 will try to make it zero.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.8.2 The Method of Artificial Variables 79

If (x⋆, y⋆) is optimal for the artificial problem and the artificial objective has an optimal
value of zero, then

1⊤y⋆ = 0

y⋆ ≥ 0

}

⇒ y⋆ = 0 but
y⋆ = 0

Ax⋆ + Iy⋆ = b

}

⇒ Ax⋆ = b

so x⋆ is feasible for the original problem.
Conversely, if x⋆ is feasible for the original problem then it satisfies Ax⋆ = b and

Ax⋆ = b

Ax⋆ + Iy⋆ = b

}

⇒ b + Iy⋆ = b⇒ y⋆ = 0⇒ 1⊤y⋆ = 0

so the optimal value of the artificial objective is zero.
Thus the original problem is feasible if and only if the artificial problem has an optimal

value of zero. In that case we can get an initial canonical form for the original problem from
the x part of the optimal tableau for the artificial problem, as shown by this example.

> This is PIVOT, Unix version 4.2
> For a list of commands, enter HELP.
>
< read sf1.tab
Reading the tableau...
...done.

x1 x2 x3 x4 x5 x6 x7
0. -8. 6. 2. 0. -7. 5. 0.
-1. 0. -3. 0. 8. 6. -4. 3.
-2. -9. 7. 0. -5. 0. 0. -9.
3. -6. 0. 1. -7. 4. -6. 5.
4. 9. -5. 0. 0. 3. 9. 4.
1. 0. -1. 0. 3. 9. 5. -2.

< * first we multiply rows with negative b’s through by -1
< scale 2 0 -1;
< scale 3 0 -1

x1 x2 x3 x4 x5 x6 x7
0. -8. 6. 2. 0. -7. 5. 0.
1. 0. 3. 0. -8. -6. 4. -3.
2. 9. -7. 0. 5. 0. 0. 9.
3. -6. 0. 1. -7. 4. -6. 5.
4. 9. -5. 0. 0. 3. 9. 4.
1. 0. -1. 0. 3. 9. 5. -2.

< * this is the "original" problem; now we form the artificial
< append 0 5; * append 5 columns of zeros
< insert 2 9; * and make them the identity columns
T(2, 9) = 1 * by putting 1’s
< insert 3 10; * on the diagonal
T(3,10) = 1
< insert 4 11;
T(4,11) = 1
< insert 5 12;
T(5,12) = 1
< insert 6 13;
T(6,13) = 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

80 Getting Canonical Form

< names x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5
0. -8. 6. 2. 0. -7. 5. 0. 0. 0. 0. 0. 0.
1. 0. 3. 0. -8. -6. 4. -3. 1. 0. 0. 0. 0.
2. 9. -7. 0. 5. 0. 0. 9. 0. 1. 0. 0. 0.
3. -6. 0. 1. -7. 4. -6. 5. 0. 0. 1. 0. 0.
4. 9. -5. 0. 0. 3. 9. 4. 0. 0. 0. 1. 0.
1. 0. -1. 0. 3. 9. 5. -2. 0. 0. 0. 0. 1.

< * next we replace the objective by the artificial objective
< insert 1 0
T(1, 1)... = 0 0 0 0 0 0 0 0 1 1 1 1 1

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5
0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
1. 0. 3. 0. -8. -6. 4. -3. 1. 0. 0. 0. 0.
2. 9. -7. 0. 5. 0. 0. 9. 0. 1. 0. 0. 0.
3. -6. 0. 1. -7. 4. -6. 5. 0. 0. 1. 0. 0.
4. 9. -5. 0. 0. 3. 9. 4. 0. 0. 0. 1. 0.
1. 0. -1. 0. 3. 9. 5. -2. 0. 0. 0. 0. 1.

< * pivoting on the identity column 1’s makes those costs zero
< p 2 9;
< p 3 10;
< p 4 11;
< p 5 12;
< p 6 13

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5
-11. -12. 10. -1. 7. -10. -12. -13. 0. 0. 0. 0. 0.

1. 0. 3. 0. -8. -6. 4. -3. 1. 0. 0. 0. 0.
2. 9. -7. 0. 5. 0. 0. 9. 0. 1. 0. 0. 0.
3. -6. 0. 1. -7. 4. -6. 5. 0. 0. 1. 0. 0.
4. 9. -5. 0. 0. 3. 9. 4. 0. 0. 0. 1. 0.
1. 0. -1. 0. 3. 9. 5. -2. 0. 0. 0. 0. 1.

< * now the artificial problem is in canonical form
< digits 4
> Display precision is set to 4 digits.
< solve

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y4 y5
-0.00 +0.00 0. 0. -0.00 -0.00 0. 0. 2.00 2.000 1. 0. 2.000
+0.00 +0.00 0. 0. -0.00 -0.00 0. 0. -1.00 -1.000 0. 1. -1.000
0.37 1.40 0. 0. -2.20 -3.79 0. 1. 0.29 0.156 0. 0. -0.230
3.47 -9.02 0. 1. -1.93 18.80 0. 0. -0.30 -0.336 1. 0. 1.443
0.39 0.66 0. 0. -0.99 -0.69 1. 0. 0.19 0.074 0. 0. 0.049
0.19 0.52 1. 0. -3.55 -4.87 0. 0. 0.37 0.057 0. 0. -0.295

< * optimal objective value is zero so original problem is feasible
< * row 2 is zeros in the x part so that constraint is redundant
< delete 2 0;
< delete 0 12

x1 x2 x3 x4 x5 x6 x7 y1 y2 y3 y5
-0.000 +0.000 0. 0. -0.000 -0.00 0. 0. 2.000 2.000 1. 2.000
0.369 1.402 0. 0. -2.205 -3.79 0. 1. 0.287 0.156 0. -0.230
3.467 -9.025 0. 1. -1.926 18.80 0. 0. -0.303 -0.336 1. 1.443
0.385 0.664 0. 0. -0.992 -0.69 1. 0. 0.189 0.074 0. 0.049
0.189 0.516 1. 0. -3.549 -4.87 0. 0. 0.369 0.057 0. -0.295

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.8.2 The Method of Artificial Variables 81

< * the basic columns are all in the x part
< * delete artificial columns and restore original objective row
< delete 0 9;
< delete 0 9;
< delete 0 9;
< delete 0 9;
< insert 1 0
T(1, 1)... = 0 -8 6 2 0 -7 5 0

x1 x2 x3 x4 x5 x6 x7
0.000 -8.000 6. 2. 0.000 -7.00 5. 0.
0.369 1.402 0. 0. -2.205 -3.79 0. 1.
3.467 -9.025 0. 1. -1.926 18.80 0. 0.
0.385 0.664 0. 0. -0.992 -0.69 1. 0.
0.189 0.516 1. 0. -3.549 -4.87 0. 0.

< * pivoting on the identity 1’s makes those costs zero
< p 5 3;
< p 3 4;
< p 4 7;
< p 2 8

x1 x2 x3 x4 x5 x6 x7
-9.992 3.631 0. 0. 30.11 -11.95 0. 0.
0.369 1.402 0. 0. -2.20 -3.79 0. 1.
3.467 -9.025 0. 1. -1.93 18.80 0. 0.
0.385 0.664 0. 0. -0.99 -0.69 1. 0.
0.189 0.516 1. 0. -3.55 -4.87 0. 0.

< * this is a canonical form for the original problem

Most linear programs have many possible canonical forms, so the artificial problem typically
has multiple optimal solutions (see Exercise 2.10.67) and the one we find might leave some
yi basic. If the optimal value of the artificial problem is not zero (1⊤y⋆ > 0) then the original
problem is infeasible and it is not possible to make all of the yi basic. If some yi remain in
the basis but the artificial problem has an optimal value of zero, then those yi can and must
be made nonbasic to complete the construction of a basis for the original problem. There
are two possible cases.

1. The basic yi column has its 1 in row h, bh = 0 and ahp = 0 for p ∈ {1 . . . n} (there are
zeros in the x columns of row h). Then that row of the original problem is redundant,
so we can delete the row and the basic yi column from the optimal-form tableau of the
artificial problem. This happened in the example above, when we deleted row 2 and
column 12 of the artificial problem’s optimal tableau.

2. The basic yi column has its 1 in row h and some ahp in the x part of the tableau is
nonzero. Then we can pivot on that element to make column p basic and the yi column
nonbasic.

These complications are included in the flowchart on the next page, which summarizes the
method of artificial variables. The abbreviation CF means canonical form.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

82 Getting Canonical Form

starting tableau

multiply rows having bh < 0 through by −1 to get b ≥ 0

“original” problem

append artificial yi basis columns
replace the original objective row with one for the artificial objective z = 1

⊤
y

artificial problem

pivot on the 1’s in the yi columns to zero the costs over them

artificial problem in CF

pivot the artificial problem to optimality

artificial in optimal form

?
1
⊤
y⋆ > 0

original problem is infeasible; STOP

1
⊤
y⋆ = 0

?

a basis column having its 1 in row h

remains in the y part of the tableau

?
some ahp , 0 in x part

pivot on any ahp , 0
in the x part

bh = 0 and all ahp = 0 in the x part

delete row h and
the basic yi column

the basis columns
are all in the x

part of the tableau

delete artificial columns
restore original objective row

original problem in

CF except that the c j’s
above the Im×m columns
are probably not zero

pivot on the 1’s in the Im×m columns to zero those c j’s

original problem in CF

pivot to optimal
or unbounded form

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.9.1 Inequality Constraints 83

The method of artificial variables is a way of manipulating the constraints of a linear
program. Once the constraints are expressed in the form we want, with basis columns in the
x part of the tableau, we can discard the artificial columns and objective and replace the
constraints of the original problem by the reworked ones under the original objective.

2.9 Getting Standard Form

Recall from §2.1 that a linear program in standard form is a minimization with equality
constraints and nonnegative variables. Many formulations, including those we considered in
§1, lead to problems which do not fit that description but can be rewritten so that they do.

2.9.1 Inequality Constraints

The second constraint of the brewery problem, “don’t use more black malt than you have,”
is formulated in §1.3.1 as this inequality.

1x1 + 3x2 + 1x3 + 1x4 ≤ 50

The optimal production program x⋆ = [5, 12 1
2
, 0, 0]⊤ uses

1×5 + 3×12 1
2
+ 1×0 + 1×0 = 42 1

2

pounds of black malt, so the constraint is satisfied as an inequality with 50 − 42 1
2
= 7 1

2

pounds of black malt left over. At x⋆ this inequality is said to be slack or inactive; if it
were satisfied as an equality it would be tight or active. We can rewrite the inequality as
an equation by introducing a slack variable x6 to represent the amount of black malt that
is not used:

1x1 + 3x2 + 1x3 + 1x4 + 1x6 = 50.

When we solved the standard-form brewery problem the optimal value of x6 came out 7 1
2
,

as you can confirm by inspecting the optimal tableau T3c of §2.4.3.
Unused resources generate no revenue, so the objective function cost coefficient of a slack

variable is zero. If we introduce additional slacks x5 and x7 to represent the unused amounts
of pale malt and hops we get this reformulation of the brewery problem, which has equality
constraints but is still a maximization and thus not yet in canonical form.

maximize
x∈R7

90x1 + 150x2 + 60x3 + 70x4 + 0x5 + 0x6 + 0x7

subject to 7x1 + 10x2 + 8x3 + 12x4 + 1x5 + 0x6 + 0x7 = 160

1x1 + 3x2 + 1x3 + 1x4 + 0x5 + 1x6 + 0x7 = 50

2x1 + 4x2 + 1x3 + 3x4 + 0x5 + 0x6 + 1x7 = 60

x ≥ 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

84 Getting Standard Form

Notice that the added columns for x5, x6, and x7 are the columns of I3×3 with zero costs
above them, so they constitute an all-slack basis. Here I have used the name x4+i for the
slack variable associated with inequality constraint i, but in the future I will often call it si
to distinguish it from the variables that are not slacks.

To rewrite a greater-than-or-equal-to inequality as an equation by this approach we must
first multiply through by −1 to change the sense of the inequality. Here is how we would
rewrite the first constraint in our formulation of the shift problem as an equation.

x1 + x8 ≥ 3

−x1 − x8 ≤ −3
−x1 − x8 + s1 = −3

In order for the slack variable that we add to the left-hand side to be nonnegative the
inequality must already be turned around, so it is important to do the multiplication through
by −1 first.

2.9.2 Maximization Problems

If f (x) = x2−2x+2 then y = + f (x), the quadratic graphed on top, has
its minimum value of 1 at x = 1 while y = − f (x), which is graphed
on the bottom, has its maximum value of −1 at x = 1. It is true in
general (and in particular when f (x) is a linear function) that

maximum
x

[− f (x)] = −minimum
x

[

+ f (x)
]

and these extreme values are attained at the same point x⋆. Thus to
maximize a given objective we need only minimize its negative. It is
necessary to remember this sign change when reporting the optimal
value of the original maximization, but it does not affect the optimal
point. To convert the brewery problem from the maximization of
§1.3.1 to the minimization of §2.1, I changed the sign of each per-
keg revenue from positive to negative; minimizing the negative of
the total revenue maximizes the total revenue.

2

1

y

1 2 3
x

y
=
+
f (
x)

y
=
−
f (x)

minimize
x∈R7

−90x1 − 150x2 − 60x3 − 70x4 + 0x5 + 0x6 + 0x7

subject to 7x1 + 10x2 + 8x3 + 12x4 + 1x5 + 0x6 + 0x7 = 160

1x1 + 3x2 + 1x3 + 1x4 + 0x5 + 1x6 + 0x7 = 50

2x1 + 4x2 + 1x3 + 3x4 + 0x5 + 0x6 + 1x7 = 60

x ≥ 0

Now the problem is in standard form, and because it has a basis and b ≥ 0 it happens also
to be in canonical form.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.9.3 Free Variables 85

2.9.3 Free Variables

Some linear programs, such as our bulb problem, are naturally formulated in terms of
variables that are unconstrained in algebraic sign. Here is a simpler example with a single
free variable.

minimize
y∈R1

z = y

subject to y ≥ −10
y free

The lowest value of y that is greater than or equal to −10 is obviously y⋆ = −10. The logic of
our simplex algorithm depends on the variables being nonnegative (but see [71, Myth 13])
so we cannot use it to solve the problem when it is stated like this. However, from §1.5.2,

any real number y can be written
as y = u−w, where u ≥ 0 and w ≥ 0.

Using this fact any free variable can be replaced by the difference between two nonnegative
ones, so we could reformulate the above example like this.

minimize
u∈R1 w∈R1

z = u −w
subject to u −w ≥ −10

u ≥ 0

w ≥ 0

This problem can be solved by inspection too. To minimize z we want u to be as low as
possible and w to be as high as possible. Because u is nonnegative it can go no lower than
0, and if u = 0 then −w ≥ −10 or w ≤ 10. Thus u⋆ = 0 and w⋆ = 10.

Now, however, we can rewrite the functional inequality constraint as an equation in
nonnegative variables and solve the problem by the simplex method. First we multiply
through by −1 to reverse the inequality, and then we add a slack to get this standard form.

minimize
u∈R1 w∈R1 s∈R1

z = u −w
subject to −u +w +s = 10

u ≥ 0

w ≥ 0

s ≥ 0

The corresponding tableau is already in canonical form and only one phase-2 pivot is needed
to obtain optimal form.

u w s

0 1 −1 0

10 −1 1 1

u w s

10 0 0 1

10 −1 1 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

86 Getting Standard Form

If we substitute y j = u j−w j to replace a free variable by the difference between nonnegative
ones, it will turn out that in the simplex solution either u j or w j is zero and the other is
| y⋆

j
|. If there are r free variables and we replace each of them in this way, we end up with

2r nonnegative variables. But the fact about real scalars that is boxed on the previous page
can be generalized to vectors as follows.

Any vector y of r real numbers can be
written as y = u − w1, where u ≥ 0,
w ≥ 0, and 1 is a column vector of r 1’s.

For example,

y =





22

−8
−3




=





30

0

5




−





8

8

8




=





30

0

5




− 8





1

1

1




= u − w1

where r = 3,
w = max

j∈{1...r}

(

|y j|
∣
∣
∣ y j < 0

)

= |y2| = 8,

and that (second) element of u is zero. Using this idea we can replace the r free variables in
y by r nonnegative variables in u and the single nonnegative scalar w.

In solving a linear program with
free variables, we need not (and usu-
ally cannot) figure out u⋆ and w⋆

ahead of time. But if we substitute
y j = u j − w for each of the free vari-
ables and require that u ≥ 0 and
w ≥ 0, then the optimization will
discover u⋆ and w⋆ having the prop-
erties we observed in the example
above. To show how the idea works
we will use it to get standard form
for the problem below, which has
two free variables and the graphical
solution on the right.

minimize
y∈R2

z = y1 + y2

subject to −2y1 − y2 ≤ 4

y1 − y2 ≤ 10

y free

y2

−10

y1
10

−
2
y
1 −

y
2
=
4

y 1
− y

2
=
10

Y

z
= −6

• y⋆ = [2,−8]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.9.4 Nonpositive Variables 87

Substituting y1 = u1 − w and y2 = u2 − w we get this problem with nonnegative variables.

minimize
u∈R2 w∈R1

(u1 − w) + (u2 − w)
subject to −2(u1 − w) − (u2 − w) ≤ 4

(u1 − w) − (u2 − w) ≤ 10

u ≥ 0

w ≥ 0

Simplifying and adding slacks yields canonical form.

minimize
u∈R2 w∈R1

u1 + u2 − 2w
subject to −2u1 − u2 + 3w + s1 = 4

u1 − u2 + s2 = 10

u ≥ 0

w ≥ 0

s ≥ 0

The pivot session finds u⋆ = [10, 0]⊤ and w⋆ = 8.
Then u⋆ − w⋆1 = [10, 0]⊤ − [8, 8]⊤ = [2,−8]⊤ = y⋆X

> This is PIVOT, Unix version 4.2
> For a list of commands, enter HELP.
>
< tableau 3 6
< names u1 u2 w s1 s2;
< insert
T(1, 1)... = 0 1 1 -2 0 0
T(2, 1)... = 4 -2 -1 3 1 0
T(3, 1)... = 10 1 -1 0 0 1

u1 u2 w s1 s2
0. 1. 1. -2. 0. 0.
4. -2. -1. 3. 1. 0.
10. 1. -1. 0. 0. 1.

< solve

u1 u2 w s1 s2
6. 0. 0. 0. 0.6666667 0.3333333
10. 1. -1. 0. 0.0000000 1.0000000
8. 0. -1. 1. 0.3333333 0.6666667

< quit
> STOP

2.9.4 Nonpositive Variables

Some linear programs are naturally
stated using variables that are less
than or equal to zero. For exam-
ple, in an engineering problem a de-
sign variable might be a fraction less
than or equal to 1 so an optimiza-
tion variable that is its logarithm is
nonpositive. In the example below,
solved graphically to the right, y2 is
nonnegative but y1 is nonpositive.
The functional constraints are the
same as those in the free-variables
example.

minimize
y∈R2

z = y1 + y2

subject to −2y1 − y2 ≤ 4

y1 − y2 ≤ 10

y1 ≤≤≤ 0

y2 ≥ 0

y2

−10

y1
10

−
2
y
1 −

y
2
=
4

y 1
− y

2
=
10

z
= −2

•
[−2, 0]⊤=y⋆

Y

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

88 Getting Standard Form

To reformulate the problem so that all of the variables are non-
negative we can let y1 = −x1; then adding slacks we get standard
form.

minimize
x1∈R1 y2∈R1 s∈R2

z = −x1 +y2
subject to 2x1 −y2 +s1 = 4

−x1 −y2 +s2 = 10

x1 ≥ 0

y2 ≥ 0

s ≥ 0

One pivot finds x⋆1 = 2 and y⋆2 = 0, so y⋆ = [−x⋆1 , y⋆2]
⊤
= [−2, 0]⊤X

x1 y2 s1 s2
0 −1 1 0 0

4 2 −1 1 0

10 −1 −1 0 1

x1 y1 s1 s2

2 0 1
2

1
2

0

2 1 −1
2

1
2

0

12 0 −3
2

1
2

1

2.9.5 Variables Bounded Away from Zero

A problem in standard form has nonnegative variables, but many linear programs (such as
twoexams and chairs) include functional constraints that impose additional simple bounds.
In this problem x1 and x2 are both bounded away from zero.

minimize
x∈R2

z = x1 −x2
subject to x1 ≥ 2

x2 ≤ −3

To restate the problem with all of the variables non-
negative we could let y2 = −x2 and rewrite the second
constraint as −y2 ≤ −3. Then, multiplying the first
constraint through by −1 to reverse the inequality
and adding slacks, we get this standard form

minimize
x1∈R1 y2∈R1 s∈R2

z = x1 +y2

subject to −x1 +s1 = −2
−y2 +s2 = −3

x1 ≥ 0

y2 ≥ 0

s ≥ 0

Then we can form a tableau and solve the problem;
the pivot session on the right finds x⋆1 = 2 and y⋆2 = 3,
so x⋆ = [2,−3]⊤.

> This is PIVOT, Unix version 4.2
> For a list of commands, enter HELP.
>
< t 3 5
< names x1 y2 s1 s2;
< in
T(1, 1)... = 0 1 1 0 0
T(2, 1)... = -2 -1 0 1 0
T(3, 1)... = -3 0 -1 0 1

x1 y2 s1 s2
0. 1. 1. 0. 0.
-2. -1. 0. 1. 0.
-3. 0. -1. 0. 1.

< solve

x1 y2 s1 s2
-5. 0. 0. 1. 1.
2. 1. 0. -1. 0.
3. 0. 1. 0. -1.

< quit
> STOP

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.10 Exercises 89

The top picture shows some of the feasible set X for this
problem, along with the objective function contour through
its optimal point.

A simpler reformulation is based on these observations.

x1 ≥ 2 ⇒ w1 = x1 − 2 ≥ 0

x2 ≤ −3 ⇒ w2 = −x2 − 3 ≥ 0

In terms of w our problem becomes

minimize
w∈R2

z = (w1 + 2) − (−w2 − 3) = w1 + w2 + 5

subject to w ≥ 0

which by inspection has the optimal point w⋆ = [0, 0]⊤. The
bottom picture shows the objective function contour through
the optimal point along with some of the feasible set W,
which is now the whole first quadrant; the reformulation has
eliminated the functional constraints entirely. From w⋆ we
find x⋆ = [2,−3]⊤.

x1
2

x2

−3
X

x⋆•

w1

w2

W

w⋆
•

2.9.6 Summary

Here are some prototypes for the reformulations discussed above.

§ not standard form substitute and require

2.9.1 x1 + x2 + 2x3 ≤ 10 x1 + x2 + 2x3 + s1 = 10 s1 ≥ 0

2x1 − x2 − x3 ≥ 8 −2x1 + x2 + x3 + s2 = −8 s2 ≥ 0

2.9.2 max −3x1 + x2 − 4x3 min 3x1 − x2 + 4x3 sign change for optimal value
2.9.3 x1 free x1 = u − w u ≥ 0, w ≥ 0

x1, x2 free x1 = u1 − w, x2 = u2 − w u1 ≥ 0, u2 ≥ 0, w ≥ 0

2.9.4 x1 ≤ 0 y1 = −x1 y1 ≥ 0

2.9.5 x1 ≥ 2 w1 = x1 − 2 w1 ≥ 0

x2 ≤ −3 w2 = −x2 − 3 w2 ≥ 0

2.10 Exercises

2.10.1[E] List two numerical methods for solving linear programs, and tell where they are
discussed in this book.

2.10.2[E] What are the distinguishing characteristics of a linear program that is in standard
form?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

90 The Simplex Algorithm

2.10.3[E] What is a functional constraint? Describe the constraints a mathematical pro-
gram might have that are not functional constraints.

2.10.4[E] The definition of standard form given in §2.1 involves quantities named d, c, x,
A, and b. (a) What English phrase is used in this book to refer to each of these quantities?
(b) What variable names are almost always used in this book to denote the number of func-
tional constraints, the number of variables, the index of a particular functional constraint,
and the index of a particular variable? (c) In terms of those numbers, what are the dimen-
sions of d, c, x, A, and b? (d) When an objective function in this book is named z, is it to
be maximized or minimized? (e) Most vectors in this book are denoted by lower-case bold
letters. Are they column vectors, or row vectors? If M is a matrix, what does Mi denote?

2.10.5[H] Why are the sign constraints in our standard form for a linear program non-
negativities, rather than requiring x to be strictly positive?

2.10.6[E] The simplex tableau that we use to represent a standard form linear program
is defined in §2.2. (a) Describe its structure and contents. (b) In terms of the number of
variables n and the number of constraints m, how big is a simplex tableau? (c) Where in a
simplex tableau are the constraints x ≥ 0?

2.10.7[H] The first two rows of a tableau look like this.

x1 x2 x3 x4
1 2 3 4 5

6 7 8 9 0

(a) What equation is represented by the first row? (b) What equation is represented by the
second row?

2.10.8[H] How can you tell if two simplex tableaus are equivalent?

2.10.9[E] What is the fundamental operation that we use in solving linear programs by
the simplex method?

2.10.10[E] There are three steps to performing a pivot. What are they?

2.10.11[E] Why is it necessary for a pivot element to be nonzero?

2.10.12[P] The following tableau [3, p47] can be transformed into an equivalent tableau by
substitution or by pivoting.

T0 =

x1 x2 x3 x4
0 −2 −1 0 0

5 2 −1 0 1

10 1 1 1 0

(a) Solve the first constraint equation to obtain an expression for x1 in terms of the other
variables, and substitute to eliminate that variable from the other rows. (b) By hand, perform

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.10 Exercises 91

a pivot that produces the same result. (c) Perform the pivot by using the pivot program.
(d) Perform the pivot by using the pivot.m routine.

2.10.13[H] Performing a “pivot” in the objective row of a simplex tableau yields a new
tableau that is not equivalent to the original one. To see that this is true, consider the
following tableau.

T0 =

x1 x2 x3 x4
0 −2 −1 0 0

5 2 −1 0 1

10 1 1 1 0

(a) What linear program does T0 represent? (b) Perform the arithmetic of a pivot using as
the pivot element the −2 in the objective row, and show that the resulting tableau describes
a linear program that is not equivalent to the one we began with. (c) In the subproblem
technique of §2.8.1 we sometimes pivot in the objective row of a subproblem. How can the
resulting tableau still describe the original linear program?

2.10.14[E] What is a reduced cost?

2.10.15[E] What are the distinguishing characteristics of a tableau that is in canonical
form?

2.10.16[E] Which columns of a canonical-form tableau are the basis columns? Which
variables are basic and which are nonbasic?

2.10.17[E] Explain how to read off the basic feasible solution associated with a canonical
form tableau.

2.10.18[H] The following tableau is in canonical form.

T0 =

x1 x2 x3 x4
0 −2 −1 0 0

5 2 −1 0 1

10 1 1 1 0

(a) What is its associated basic feasible solution? (b) What is the tableau’s basic sequence
S ? (c) If a pivot is performed on the 2, which variable will enter the basis and which will
leave?

2.10.19[H] In §2.2 the quantity shown in the upper left corner of the simplex tableau is
−d, the negative of the constant d in our standard form. In §2.4.1 the quantity shown in the
upper left corner of the canonical-form tableau T2 is −z, which is 2290 10

11
. Explain how both

of these pictures can be correct.

2.10.20[H] In a canonical-form tableau, what is c⊤x̄ if x̄ is the basic feasible solution asso-
ciated with the tableau? How can we minimize c⊤x by moving away from the basic feasible
solution? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

92 The Simplex Algorithm

2.10.21[H] The linear program on the left has the tableau on the right.

minimize −2x1 + x2 − x3
subject to x1 − 2x2 + 2x3 + x4 = −5

x2 − x3 + x5 = 5

x ≥ 0

T0 =

x1 x2 x3 x4 x5
0 −2 1 −1 0 0

−5 1 −2 2 1 0

5 0 1 −1 0 1

(a) Pivot on the a22 element of T0 to produce tableau T1, in which S = (x4, x2) and b is
nonnegative. Confirm that the basic feasible solution corresponding to T1 satisfies the con-
straints of the original problem. Is T1 equivalent to T0? (b) Perform the following sequence
of row operations on T0 to produce tableau T2:

r2 ← r2 + r3
r2 ← r2 + r1
r1 ← r1 − r3

Confirm that T2 also has S = (x4, x2) and b ≥ 0. Does its basic feasible solution satisfy the
constraints of the original problem? Is T2 equivalent to T0? (c) Every pivot is a sequence
of row operations. Is every sequence of row operations a pivot? (d) Why can’t the objective
row of a simplex tableau be treated like a constraint row?

2.10.22[H] In the pivot.m routine of §2.4.2, ip and jp are the indices of the pivot row
and column in T. To what indices h and p in the constraint coefficient matrix A do these
correspond?

2.10.23[E] In the pivot.m routine of §2.4.2, why are the elements in the pivot row and
column computed separately from the other elements in the result tableau?

2.10.24[P] In the pivot.m routine of §2.4.2, why is the pivot row divided by the pivot
element only after the tableau elements that are not in the pivot row or column have been
updated? Hint: what happens if the routine is invoked with the same matrix for T and Tnew?

2.10.25[P] The pivot.m routine of §2.4.2 constructs the entering basis column by assigning
the value 1 to its element in the pivot row and the value 0 to its elements not in the
pivot row, but it computes the other elements of the new tableau by performing floating-
point arithmetic. Revise the routine to construct all of the basis columns that are in the
new tableau (of which there might be fewer than m) by assignment rather than by doing
arithmetic.

2.10.26[E] This Chapter introduces two different ways to describe the basic sequence of
a tableau. The basic sequence of tableau T2 is given in one place as S = (x3, x6, x2) but in
pivot.m it is S=(0,4,2,0,0,3,0). Explain how to get each characterization from the other.
When is each most useful?

2.10.27[H] Suppose that we pivot in column p of a canonical-form tableau having cp < 0.

(a) What happens if the pivot element ahp is negative? (b) What happens if h, the pivot row
in A, is chosen so that the ratio bh/ahp is not the minimum ratio in column p?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.10 Exercises 93

2.10.28[H] Consider the following linear program.

minimize
x∈Rn

c⊤x

subject to Ax ≤ b

x ≥ 0

Show [3, Exercise 3.22] that if c ≥ 0 and b ≥ 0 then x⋆ = 0.

2.10.29[H] In the t–analysis of §2.4.4, increasing t from 0 to 5 moves x(t) from the basic
feasible solution corresponding to T2 to the basic feasible solution corresponding to T3c.
(a) Where does the value t = 5 come from? (b) What is x(t) when t = 2 1

2
? (c) Is x(2 1

2
)

feasible? (d) Is x(2 1
2
) a basic solution? Explain.

2.10.30[E] What is the simplex pivot rule? Why does the simplex algorithm use it in
pivoting a canonical-form tableau toward optimality?

2.10.31[H] If we pivot by the minimum-ratio rule in a tableau that is not in canonical form,
does x move toward x⋆? Explain.

2.10.32[E] What final forms can the simplex algorithm produce?

2.10.33[H] In §1 we formulated linear programming models for several practical applica-
tions. Unfortunately, not every linear program has an optimal point. (a) Describe three
ways in which a linear program can fail to have an optimal point. (b) When a linear pro-
gram is defective in one of these ways, does it mean that there is something wrong with the
formulation? Does it mean that there is something wrong with the underlying application
problem? Explain.

2.10.34[H] The pictures in §2.5 show what a tableau looks like in each of the possible final
forms. A linear program that is feasible and not unbounded typically has many canonical
forms, and it is only by solving the problem that we find an optimal one. (a) Can a linear
program that is unbounded have canonical form tableaus that do not reveal its unbounded-
ness? If not, explain why not; if so, provide an example. (b) Can a linear program that is
infeasible have tableaus that do not reveal its infeasibility? If not, explain why not; if so,
provide an example.

2.10.35[E] What does an optimal form tableau look like? Why can’t its objective value be
further reduced?

2.10.36[H] What is indicated by a tableau that is not in canonical form but has c ≥ 0?

2.10.37[H] In the brewery problem discussed in §2.1, b1 = 160. (a) Change its value to
150 and show that the resulting linear program has multiple optimal solutions. (b) What
vectors x are optimal for the revised problem?

2.10.38[E] What does an unbounded form tableau look like? Why can its objective value
be reduced without limit?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

94 The Simplex Algorithm

2.10.39[H] Is the following tableau [3, p48-49] in unbounded form?

−9 0 0 −2 −1 0

3 0 0 −1 2 1

−1 1 0 0 1 0

5 0 1 −4 1 0

If so, explain why; if not, obtain a final form that is not unbounded.

2.10.40[E] What does an infeasible form tableau look like?

2.10.41[E] Can pivoting in a canonical-form tableau ever yield infeasible form? Explain.

2.10.42[H] Suppose that each of the constraint rows in a tableau has the property that some
vector x satisfies the equation it represents. Is it necessarily true that the linear program is
feasible? If so, explain why; if not, provide a counterexample.

2.10.43[H] Consider the following tableau.

x1 x2 x3 x4 x5
9 0 −a c 0 0
a 1 −a 1 0 0
2 0 b −1 1 0
4 0 −1 d 0 1

Give general conditions, if any, on a, b, c, d, and e (not just particular values) so that the
tableau is in (a) optimal form; (b) unbounded form; (c) infeasible form.

2.10.44[E] What does it mean to “solve” a linear program? Describe the three phases of
the solution process.

2.10.45[E] In studying the simplex algorithm, why might it be helpful to have a utility
program capable of manipulating tableaus? Describe three different manipulations of a
simplex tableau that can be performed by the pivot program discussed in §2.7.

2.10.46[E] Where in this book are the pivot program’s commands explained in detail?
Can any of its commands be abbreviated?

2.10.47[E] To put a simplex tableau into canonical form it is necessary to transform it so
that it has basis columns and to make its b part nonnegative. In what order are these tasks
performed (a) by the subproblem technique; (b) by the method of artificial variables?

2.10.48[E] If in a tableau that does not have a basis we perform pivots to obtain canonical
form, can some sequence of pivots be performed to restore the original tableau? Explain.

2.10.49[E] The subproblem technique begins by pivoting-in a basis. (a) Explain how it
does that. (b) If b ≥ 0 at the start of this process, is b necessarily nonnegative at the end?

2.10.50[E] After the subproblem technique has pivoted-in a basis, it gets b nonnegative.
Explain how it does that.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.10 Exercises 95

2.10.51[E] In forming a subproblem it is necessary to include all of the rows having bh ≥ 0.
(a) Why is that? (b) What if, at the beginning of the process, there are no such rows?
(c) Why is it necessary to pivot the entire tableau when solving a subproblem? (d) How can
a subproblem solution be completed if the subproblem is unbounded in column p?

2.10.52[H] Does pivoting in the objective row of an unbounded subproblem ever leave the
bh that is its upper-left corner negative? What does pivoting in the objective row of an
unbounded subproblem do to the bh of its constraint rows?

2.10.53[E] Solving a subproblem makes its upper-left entry go up. (a) Does that entry
always become nonnegative? Explain. (b) Is it necessary to solve a subproblem all the way
to optimality? Explain. (c) Can negative bh that are not in a subproblem ever become
nonnegative in the process of solving the subproblem?

2.10.54[E] Is a subproblem always in canonical form? If so, explain why; if not, present a
counterexample.

2.10.55[E] If a linear program has redundant constraints, at what stage of the subproblem
technique is that fact discovered?

2.10.56[E] If a linear program is infeasible, at what stage in the subproblem technique is
that discovered?

2.10.57[H] The method of artificial variables is flowcharted at the end of §2.8.2. Draw
a similar flowchart for the subproblem technique, including enough detail to show how it
detects redundant and inconsistent constraints.

2.10.58[H] Often in performing a step of the subproblem technique several possible pivot
positions can be used. This latitude leads some students to assume (incorrectly) that any
pivot producing a desirable result constitutes using this technique. (a) Present an example
illustrating how it is possible for the technique to require a choice between possible pivot
positions. (b) In your example, identify a pivot position that does not conform to the
algorithm. (c) Explain why “I feel lucky” pivoting is not a practical strategy in general.

2.10.59[H] In §2.8.1 we found an initial canonical form for the sf1 problem. (a) Pivot that
tableau to optimality. (b) Change the sign of the objective and solve the revised problem.

2.10.60[E] How does the method of artificial variables make b nonnegative? How does it
supply basis columns to the resulting tableau?

2.10.61[E] Describe the form that a linear program must be in if it is to serve as the original
problem in the method of artificial variables.

2.10.62[E] If a linear program has redundant constraints, when in the method of artificial
variables is that fact discovered?

2.10.63[E] If a linear program is infeasible, when in the method of artificial variables is
that discovered?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

96 The Simplex Algorithm

2.10.64[H] If the artificial variables are all nonbasic in the solution of an artificial problem,
how can we construct an initial canonical form tableau for the original problem?

2.10.65[H] The method of artificial variables solves an artificial problem. (a) Describe this
problem, identifying the artificial variables. (b) Is every artificial problem feasible? If so,
write down a feasible solution. If not, present a counterexample. (c) What is the algebraic
sign of an artificial objective? (d) If the optimal value of an artificial problem is zero, what
can we deduce about the corresponding original problem?

2.10.66[H] If an artificial variable remains basic in the solution of an artificial problem and
the corresponding constraint is not redundant, how can we move that basis column into the
x part of the tableau?

2.10.67[H] In §2.8.2 we used the method of artificial variables to find an initial canonical
form for the sf1 problem. The solution that we found to the artificial problem, with basic
sequence S = (x7, x3, x6, x2), is not unique. (a) Pivot by the minimum-ratio rule in the x1
column of the optimal tableau for the artificial problem. Does this change the objective
value? Explain. (b) What canonical form for the original problem do we obtain from this
optimal solution to the artificial problem?

2.10.68[H] This tableau already has b ≥ 0 and one basis column.

x1 x2 x3 x4 x5
0 1 0 2 −1 4

6 1 0 −1 −3 1

5 −1 1 0 3 −3

(a) Use the method of artificial variables with one artificial variable to find an initial canonical
form. (b) Pivot the canonical-form tableau to optimality.

2.10.69[H] Can every linear program be put into standard form? If yes, explain why; if
no, give a counterexample.

2.10.70[E] In a resource allocation problem, some resource might not be used up by a
given production program. (a) What do we call a variable that is introduced to represent
the amount of the resource that is not used up? (b) What objective cost coefficient is
associated with such a variable?

2.10.71[E] How much slack is there in an active inequality constraint?

2.10.72[H] Consider the following linear program.

minimize
x∈R2

−x1 + x2

subject to x2 ≥ 1
2
x1 − 1

2

x1 + x2 ≤ 4

x ≥ 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

2.10 Exercises 97

(a) Reformulate the problem into standard form, using y j for the variables in the standard-
form problem. (b) Show that the standard-form problem is equivalent to the original problem
in the sense that if x̂ is a feasible point for the original problem and its optimal value is ẑ

then there is a feasible point ŷ for the standard-form problem that yields the objective value
ẑ. Explain how to construct x̂ from ŷ. (c) If any two linear programs are equivalent in
this sense and one has an optimal value of z⋆, why must it be true that the other has an
optimal value of z⋆? (d) If any two linear programs are equivalent in this sense and one is
feasible but unbounded, why must the other also be feasible but unbounded? (e) If any two
linear programs are equivalent in this sense and one is infeasible, why must the other also
be infeasible?

2.10.73[P] Consider the following linear program.

minimize
x∈R2

2x1 + x2

subject to x1 − x2 ≤ −1
x1 − x2 ≥ +1

x ≥ 0

(a) Reformulate the problem to have equality constraints. (b) Construct an original problem
for the method of artificial variables. (c) Construct an artificial problem, and pivot on the
appended identity-column 1’s to zero those costs. The resulting canonical-form tableau
should be in optimal form with both artificial variables still basic. (d) Pivot in the x part of
the tableau to move the artificial basis columns there, or explain why that cannot be done.

2.10.74[H] Reformulate this linear program into standard form, and solve it.

maximize
x∈R2

−x1 + x2

subject to 1
2
x1 − x2 ≤ 1

2

−x1 − x2 ≥ −4
x ≥ 0

2.10.75[H] Consider the following linear program, which is similar to Exercise 3.4 of [3].

maximize
x∈R6

2x1 + 6x2 − 1x3 + 5x4 − 4x5 + 3x6
subject to x1 + x2 + x3 + x4 + x5 + x6 = 1

x ≥ 0

(a) Reformulate the problem into standard form and construct a simplex tableau that repre-
sents it. (b) Perform a single pivot to obtain optimal form. (c) Give a rule for writing down
the solution to any linear program of the form

maximize
x∈Rn

c⊤x

subject to
∑n

j=1 x j = 1

x ≥ 0

Such a rule is called a semi-analytic result (see §25.7.4).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

98 The Simplex Algorithm

2.10.76[H] Examples in §2.9.3 and
§2.9.4 have the same objective and
functional constraints but impose
different requirements on the signs
of the variables. For each set of
sign requirements given below, say
which regions of R2 marked α, β, γ,
and δ in the picture on the right are
included in the feasible set of the
problem, and give the coordinates
of the resulting optimal point.

(a) y1 ≥ 0, y2 ≥ 0;
(b) y1 ≥ 0, y2 free;
(c) y1 free, y2 ≥ 0;
(d) y1 free, y2 free;
(e) y1 ≤ 0, y2 free;
(f) y1 free, y2 ≤ 0;
(g) y1 ≤ 0, y2 ≤ 0.

αβ

γ δ

minimize
y∈R2

z = y1 + y2

subject to −2y1 − y2 ≤ 4

y1 − y2 ≤ 10

y2

y1

−
2
y
1 −

y
2
=
4

y 1
− y

2
=
10

2.10.77[H] For each set of sign requirements in Exercise 2.10.76, reformulate the problem
into standard form and solve it to confirm the optimal points that you predicted.

2.10.78[H] Solve the following linear program.

minimize
x∈R2

z = −y1
subject to 1

2
y1 − y2 ≤ −3

2
1
2
y1 + y2 ≤ 1

2

y1, y2 free

2.10.79[H] Reformulate the following problem to eliminate the functional constraints that
bound the variables away from zero. Solve it graphically and by using the simplex method.

maximize
x∈R2

x1 − x2

subject to x1 ≤ −1
x2 ≥ 1

x1 + x2 ≥ 1

2.10.80[H] In the first example of §2.9.3, u = 1 and w = 11 also solves the linear program.
Why did the simplex algorithm find u = 0 and w = 10, making one of the nonnegative
variables zero?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3

Geometry of the Simplex Algorithm

In §2 you learned how to solve a linear program by pivoting in a tableau according to the
simplex algorithm. A problem having two or three variables can also be solved graphically by
following the procedure described in §1.2, as we did for the twoexams, paint, pumps, bulb,
and oil refinery problems. This Chapter is about the many connections between the simplex
and graphical solutions. Most practical problems have many variables so they cannot be
solved graphically, but valuable insights about linear programming in general can be gained
from the study of low-dimensional examples.

3.1 A Graphical Solution in Detail

In the graph problem (see §28.5.12) given below the inequality constraints of the algebraic
formulation on the right are graphed on the left along with the optimal objective contour.
The feasible set X is outlined with thick lines, and the optimal point is marked x⋆.

x2

0

1

2

3

4

5

x1
0 1 2 3 4 5 6

x2 = 5

x
1 +

6
5 x

2 =
6 x 1

− x
2
=
2

x
1
=
3

X

•x
⋆

z
=
−
172

A B H F

C

G

D

E K

minimize − 2x1 − x2 = z

subject to x1 +
6
5
x2 ≤ 6

x1 − x2 ≤ 2

x1 ≤ 3

x2 ≤ 5

x1 ≥ 0

x2 ≥ 0

An inequality constraint divides Rn into two halfspaces. In the graph above, the constraint
x1 +

6
5
x2 ≤ 6 has the associated halfspaces

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

100 Geometry of the Simplex Algorithm

{

x
∣
∣
∣ x1 +

6
5
x2 ≤ 6

}

feasible

∪
{

x
∣
∣
∣ x1 +

6
5
x2 > 6

}

infeasible

= R2

The set of points where a ≤ or ≥ constraint is satisfied with equality is called the constraint’s
hyperplane. In our example, x1 +

6
5
x2 ≤ 6 has the associated hyperplane

{

x
∣
∣
∣ x1 +

6
5
x2 = 6

}

which belongs to the constraint’s feasible halfspace. To represent an inequality constraint
we plot its hyperplane. The constraint is satisfied on the line and on one side (the feasible
halfspace) and violated on the other side of the line (the infeasible halfspace).

The constraint hyperplanes partition Rn into disjoint regions. In our example we see 19
distinct “windowpanes,” each of which is marked with a dot • in the graph below.

x11 2 4 5 6

x2

1

2

3

4

5

•

•
•

• •
•

•

•

•

•
•••

•

•
•

•

•

•

E

A B

C

D

F

The union of these regions is R2 and the intersec-
tion of any two is empty. Each disjoint region is
a convex polyhedron whose interior is not crossed
by any constraint hyperplane. (AEF is a convex
polyhedron but it is not disjoint from ABCDE
because AEF ∩ ABCDE , ∅.)

In every partitioning of Rn some of the disjoint
regions are unbounded; the 12 border regions in
the picture are unbounded.

Exactly one of the disjoint regions contains all
the points that satisfy all of the inequalities; it is
called the feasible set. The feasible set is thus
the intersection of the feasible halfspaces associ-
ated with the constraints. The feasible set X for
our example, crosshatched in the graph on the
next page, is this intersection of halfspaces:

X =
{

x
∣
∣
∣ x1 +

6
5
x2 ≤ 6

}

∩
{

x
∣
∣
∣ x1 − x2 ≤ 2

}

∩
{

x
∣
∣
∣ x1 ≤ 3

}

∩
{

x
∣
∣
∣ x2 ≤ 5

}

∩
{

x
∣
∣
∣ x1 ≥ 0

}

∩
{

x
∣
∣
∣ x2 ≥ 0

}

The intersection of two or more constraint hyperplanes is called a vertex of the constraints.
In our example there are 11 vertices, each of which is marked with a dot • in the graph on
the next page. The vertices of the feasible set are called extreme points. An extreme point
is a feasible point that is not the midpoint of any line segment contained in the feasible set.
The point [1, 0]⊤ is not an extreme point, even though it is in the boundary of X, because it
is the midpoint of the feasible line segment [A,B]. The point [2, 0]⊤, which is point B, is an
extreme point because it is not the midpoint of any line segment in X.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.2 Graphical Interpretation of Pivoting 101

x2

1

2

3

4

5

x11 4 5 6

•

•

•
••

•

•

•

•

•

•E

A
B H

C

D

F

G

K

X

An edge is a line segment between two vertices
which lies on a constraint hyperplane and contains
no other vertex; [B,H] is an edge but [B,F] and
[B,K] are not. An edge of the feasible set is a line
segment between two extreme points such that no
point on the line segment is the midpoint of two
distinct feasible points that are not on the line
segment. [D,E] is an edge of X, but [A,D] is not.

The boundary of the feasible set is the union
of its edges and its rays. Rays are discussed in
§3.3.3 below. In this example the feasible set has
no rays, so its boundary is the union of its edges:

∂X = [A,E] ∪ [E,D] ∪ [D,C] ∪ [C,B] ∪ [B,A]

3.2 Graphical Interpretation of Pivoting

We can put our example into standard form by adding slack variables, obtaining this algebraic
formulation.

minimize −2x1 − x2
subject to x1 +

6
5
x2 +s1 = 6

x1 − x2 +s2 = 2

x1 +s3 = 3

x2 +s4 = 5

x ≥ 0

s ≥ 0

The tableau below representing this linear program has the basic solution [0, 0, 6, 2, 3, 5]⊤ in
which x = 0. In the graphs above x = 0 is the origin, so the tableau is said to correspond

to the origin in the graph, and to show this both are labeled A. In §3.3.1 we shall see how
the basic variables (s in tableau A) can sometimes also be found in the graph.

A =

x1 x2 s1 s2 s3 s4
0 −2 −1 0 0 0 0

6 1 6
5

1 0 0 0

2 1 −1 0 1 0 0

3 1 0 0 0 1 0

5 0 1 0 0 0 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

102 Graphical Interpretation of Pivoting

3.2.1 Pivoting in Slow Motion

Suppose that in tableau A we let x1 = t ≥ 0 and keep x2 = 0. Then to remain feasible we
must adjust s1, s2, s3, and s4. The constraint rows require that

6 = t + s1 ⇒ s1 = 6 − t
2 = t + s2 ⇒ s2 = 2 − t
3 = t + s3 ⇒ s3 = 3 − t

5 = s4 ⇒ s4 = 5

Using these expressions for s1, s2, s3, and s4, we can write the basic solution represented by
the tableau as a function of t, and from it we deduce that t ≤ 2 to keep x ≥ 0.





x(t)
− − −
s(t)



 =





t

0
− − −
6 − t
2 − t
3 − t
5





t ≥ 0 X

0 ≥ 0 X

6 − t ≥ 0 ⇒ t ≤ 6

2 − t ≥ 0 ⇒ t ≤ 2

3 − t ≥ 0 ⇒ t ≤ 3

5 ≥ 0 X






⇒ t ≤ 2

This t−analysis should be familiar from §2.4.4; setting t = 2 corresponds to pivoting on the
circled element of tableau A to the new basic solution [2, 0, 4, 0, 1, 5]⊤, which corresponds to
the vertex marked B in the graphs. If 0 < t < 2, however, the point represented by the
tableau is interior to the line segment [A,B]. For example, if t = 1 the (nonbasic) point is
[1, 0, 5, 1, 2, 5]⊤ which in the graph is halfway between A and B. Thus, if t increases gradually
from 0 to 2, the point represented by the tableau slides gradually from A to B in the picture.

3.2.2 A Guided Tour in R2

A pivot moves the basic solution represented by the tableau from one vertex to another along
(and only along) a constraint hyperplane. The pivot session below shows the trajectory of
basic solutions resulting from a sequence of pivots, including some pivots that do not follow
the simplex rule. As you read this Section it will be helpful to refer to the graph in §3.1.
The file tour.tab contains the tableau labeled A above.

> This is PIVOT, Unix version 4.2

> For a list of commands, enter HELP.

>

< read tour.tab

Reading the tableau...

...done.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.2.2 A Guided Tour in R2 103

x1 x2 s1 s2 s3 s4

0. -2. -1.0 0. 0. 0. 0.

6. 1. 1.2 1. 0. 0. 0.

2. 1. -1.0 0. 1. 0. 0.

3. 1. 0.0 0. 0. 1. 0.

5. 0. 1.0 0. 0. 0. 1.

< * This is tableau A, corresponding to point A = [0,0] in the

< * picture. When we put our example into standard form that

< * happened to also put it into canonical form. Using phase 2 of

< * the simplex algorithm we can pivot to optimality like this.

<

< pivot 3 2

x1 x2 s1 s2 s3 s4

4. 0. -3.0 0. 2. 0. 0.

4. 0. 2.2 1. -1. 0. 0.

2. 1. -1.0 0. 1. 0. 0.

1. 0. 1.0 0. -1. 1. 0.

5. 0. 1.0 0. 0. 0. 1.

< * This is tableau B, corresponding to point B = [2,0].

<

< pivot 4 3

x1 x2 s1 s2 s3 s4

7.0 0. 0. 0. -1.0 3.0 0.

1.8 0. 0. 1. 1.2 -2.2 0.

3.0 1. 0. 0. 0.0 1.0 0.

1.0 0. 1. 0. -1.0 1.0 0.

4.0 0. 0. 0. 1.0 -1.0 1.

< * This is tableau C.

<

< pivot 2 5

x1 x2 s1 s2 s3 s4

8.5 0. 0. 0.8333333 0. 1.1666667 0.

1.5 0. 0. 0.8333333 1. -1.8333333 0.

3.0 1. 0. 0.0000000 0. 1.0000000 0.

2.5 0. 1. 0.8333333 0. -0.8333333 0.

2.5 0. 0. -0.8333333 0. 0.8333333 1.

< * This is tableau D.%

< * We have found the optimal point; now let’s pivot back to the

< * starting tableau.

<

< pivot 2 4

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

104 Graphical Interpretation of Pivoting

x1 x2 s1 s2 s3 s4

7.0 0. 0. 0. -1.0 3.0 0.

1.8 0. 0. 1. 1.2 -2.2 0.

3.0 1. 0. 0. 0.0 1.0 0.

1.0 0. 1. 0. -1.0 1.0 0.

4.0 0. 0. 0. 1.0 -1.0 1.

< * This is tableau C.

<

< pivot 4 6

x1 x2 s1 s2 s3 s4

4. 0. -3.0 0. 2. 0. 0.

4. 0. 2.2 1. -1. 0. 0.

2. 1. -1.0 0. 1. 0. 0.

1. 0. 1.0 0. -1. 1. 0.

5. 0. 1.0 0. 0. 0. 1.

< * This is tableau B.

<

< pivot 3 5

x1 x2 s1 s2 s3 s4

0. -2. -1.0 0. 0. 0. 0.

6. 1. 1.2 1. 0. 0. 0.

2. 1. -1.0 0. 1. 0. 0.

3. 1. 0.0 0. 0. 1. 0.

5. 0. 1.0 0. 0. 0. 1.

< * This is tableau A.

< * We are back where we began. The cost coefficient of x2 is also

< * negative, so there is another path to the optimal point. In

< * the x2 column there is a tie for the minimum ratio,

< * so there are two possible pivots.

<

< pivot 5 3

x1 x2 s1 s2 s3 s4

5. -2. 0. 0. 0. 0. 1.0

-0. 1. 0. 1. 0. 0. -1.2

7. 1. 0. 0. 1. 0. 1.0

3. 1. 0. 0. 0. 1. 0.0

5. 0. 1. 0. 0. 0. 1.0

< * This is tableau E1, with x1 and s4 nonbasic.

< * Because there was a tie in the minimum ratio

< * in tableau A, this tableau has a zero constant column entry b1=0

< * (the minus sign is due to roundoff in the numerical calculations).

<

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.2.2 A Guided Tour in R2 105

< pivot 2 2

x1 x2 s1 s2 s3 s4

5. 0. 0. 2. 0. 0. -1.4

-0. 1. 0. 1. 0. 0. -1.2

7. 0. 0. -1. 1. 0. 2.2

3. 0. 0. -1. 0. 1. 1.2

5. 0. 1. 0. 0. 0. 1.0

< * This is tableau E2, with s1 and s4 nonbasic. E is said to be a

< * degenerate vertex, because 3 constraint hyperplanes

< * intersect there but only 2 are needed to determine the point in

< * R^2 (x2 <= 5 is redundant). Because b1=0 the pivot we did

< * at (2,2) is called a degenerate pivot. The objective

< * did not change, and this tableau corresponds to the same point

< * E as the previous one; only the basic sequence changed.

<

< pivot 2 7

x1 x2 s1 s2 s3 s4

5. -1.1666667 0. 0.8333333 0. 0. 0.

+0. -0.8333333 0. -0.8333333 0. 0. 1.

7. 1.8333333 0. 0.8333333 1. 0. 0.

3. 1.0000000 0. 0.0000000 0. 1. 0.

5. 0.8333333 1. 0.8333333 0. 0. 0.

< * This is tableau E3, with x1 and s1 nonbasic.

< * This tableau corresponds to the vertex E in the final way that

< * is possible. Because the pivot at (2,7) was once again

< * degenerate it changed neither the objective nor the point.

<

< pivot 4 2

x1 x2 s1 s2 s3 s4

8.5 0. 0. 0.8333333 0. 1.1666667 0.

2.5 0. 0. -0.8333333 0. 0.8333333 1.

1.5 0. 0. 0.8333333 1. -1.8333333 0.

3.0 1. 0. 0.0000000 0. 1.0000000 0.

2.5 0. 1. 0.8333333 0. -0.8333333 0.

< * This is tableau D.

< * It is equivalent to the first optimal tableau we found

< * but has the constraint rows permuted.

<

< * Pivoting not by the simplex rule leads to infeasible points.

< * Such pivots are called exterior pivots and by performing them

< * we can visit other vertices.

<

< pivot 3 6

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

106 Graphical Interpretation of Pivoting

x1 x2 s1 s2 s3 s4

9.4545455 0. 0. 1.3636364 0.63636364 0. 0.

3.1818182 0. 0. -0.4545455 0.45454545 0. 1.

-0.8181818 0. 0. -0.4545455 -.54545455 1. 0.

3.8181818 1. 0. 0.4545455 0.54545455 0. 0.

1.8181818 0. 1. 0.4545455 -.45454545 0. 0.

< * This is tableau G.

< pivot 5 5

x1 x2 s1 s2 s3 s4

12. 0. 1.4 2. 0. 0. 0.

5. 0. 1.0 0. 0. 0. 1.

-3. 0. -1.2 -1. 0. 1. 0.

6. 1. 1.2 1. 0. 0. 0.

-4. 0. -2.2 -1. 1. 0. 0.

< * This is tableau F.

< pivot 4 3

x1 x2 s1 s2 s3 s4

5. -1.1666667 0. 0.8333333 0. 0. 0.

+0. -0.8333333 0. -0.8333333 0. 0. 1.

3. 1.0000000 0. 0.0000000 0. 1. 0.

5. 0.8333333 1. 0.8333333 0. 0. 0.

7. 1.8333333 0. 0.8333333 1. 0. 0.

< * This is tableau E3 with its constraint rows permuted.

< * Notice that with a single pivot we jumped over two vertices.

< undo

x1 x2 s1 s2 s3 s4

12. 0. 1.4 2. 0. 0. 0.

5. 0. 1.0 0. 0. 0. 1.

-3. 0. -1.2 -1. 0. 1. 0.

6. 1. 1.2 1. 0. 0. 0.

-4. 0. -2.2 -1. 1. 0. 0.

< * This is tableau F.

< * By choosing a different pivot we can jump to a different

< * tableau representing the E vertex.

< pivot 2 3

x1 x2 s1 s2 s3 s4

5. 0. 0. 2. 0. 0. -1.4

5. 0. 1. 0. 0. 0. 1.0

3. 0. 0. -1. 0. 1. 1.2

-0. 1. 0. 1. 0. 0. -1.2

7. 0. 0. -1. 1. 0. 2.2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.2.3 Observations From the Guided Tour 107

< * This is the E2 tableau with its rows permuted.

< * The E1 tableau can’t be reached from point F in one pivot

< * because it differs from the point F tableau in two basis

< * columns, not just one; to reach it we would need to "turn the

< * corner" (even though it’s the same point) by performing a

< * second pivot.

<

< * Instead let’s visit the remaining vertices shown in the

< * picture (there are two other vertices that are not shown).

< pivot 3 4

x1 x2 s1 s2 s3 s4

11. 0. 0. 0. 0. 2. 1.0

5. 0. 1. 0. 0. 0. 1.0

-3. 0. 0. 1. 0. -1. -1.2

3. 1. 0. 0. 0. 1. 0.0

4. 0. 0. 0. 1. -1. 1.0

< * This is the K tableau.

< pivot 2 7

x1 x2 s1 s2 s3 s4

6. 0. -1.0 0. 0. 2. 0.

5. 0. 1.0 0. 0. 0. 1.

3. 0. 1.2 1. 0. -1. 0.

3. 1. 0.0 0. 0. 1. 0.

-1. 0. -1.0 0. 1. -1. 0.

< * This is the H tableau.

< quit

> STOP

3.2.3 Observations From the Guided Tour

Having explored our example problem by pivoting, we can now say some more about the
relationships between its graph and its tableaus.

Two tableaus that are connected by a single pivot (e.g., tableaus A and B or tableaus
E1 and E2) are called adjacent tableaus; two vertices that are connected by a single edge
(e.g., vertices A and B) are called adjacent vertices.

Each tableau or basic solution of the constraint equations corresponds to exactly one
vertex or intersection of constraint hyperplanes [3, p96] (see Exercise 3.7.7). A single pivot
can move from any vertex on a hyperplane to any other vertex on the hyperplane (or to the
same vertex if it is degenerate) because only a single basis column swap is needed. However,
a single vertex can correspond to several different tableaus. Whether or not the vertex is
degenerate, the constraint rows can be permuted, yielding different tableaus that correspond

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

108 Geometry of the Simplex Algorithm

to the same point (and hence the same tableau letter in the example) but have different basic
sequences. If the vertex is nondegenerate (exactly n constraint hyperplanes intersect there)
then the same variables are basic in each tableau and the basic feasible solution is the same
in each tableau. In the example only one tableau letter corresponds to each nondegenerate
vertex.

If the vertex is degenerate (more than n hyperplanes cross) then the same variables are
zero in each tableau and the basic feasible solution is the same in each tableau, but some
zero variables are basic with bi = 0 while others are zero because they are nonbasic. If a
vertex is degenerate some of its tableaus might be more than one pivot away from a tableau
corresponding to an adjacent vertex (in our example, tableau E1 is two pivots from tableau
D, even though vertex E is only one edge away from vertex D).

If a vertex in Rn is the intersection of r constraint hyperplanes then [153, §1.4] there are
(

r

n

)

=
r!

n!(r − n)!

different sets of basic variables corresponding to the point. In our example vertex E is
degenerate with r = 3, so we found

(

3

2

)

=
3!

2!(3 − 2)! =
3 × 2 × 1
(2 × 1)(1) = 3

tableaus E1, E2, and E3, with different basic variables, all corresponding to that vertex.
Nondegenerate phase-2 simplex pivots yield adjacent tableaus corresponding to adjacent

extreme points, because each pivot turns a corner of the feasible set. However, if we start at
a feasible point and pivot not by the simplex rule, we move along the hyperplane to a vertex
that is not adjacent to the starting point and is thus not an extreme point (in our example
if we start at point A and do a pivot that is in the x1 column but not in the minimum-ratio
row, we move to vertex H or F rather than to vertex B).

3.3 Graphical Interpretation of Tableaus

We have described a constraint’s hyperplane as the set of points where that inequality is
satisfied with equality, but each hyperplane is also the set of points where that constraint’s
slack variable is zero. In our example, on the hyperplane {x|x1 + 6

5
x2 = 6} we have s1 = 0.

Similarly, each coordinate axis is the set of points where the other coordinates are zero;
on the x1 axis we have x2 = 0. Our example is graphed again on the next page with each
constraint identified by which variable is zero on its hyperplane. Pivoting from A to B

decreases s1, s2, and s3 in the tableau because in the picture the point B is closer than
point A is to the hyperplanes where those variables are zero. A vertex is the intersection of
hyperplanes where a variable (slack or coordinate) is zero, so it is possible to move to any
vertex by pivoting to make those variables nonbasic. At A, x1 = x2 = 0; at B, x2 = s2 = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.3.1 Slack Variables in the Graph 109

x2

0

1

2

3

4

5
x 1
=
0

x1
0 1 2 3 4 5 6

x2 = 0

s
1 =

0

s 2
=
0

s
3
=
0

s4 = 0

A

A =

x1 x2 s1 s2 s3 s4
0 −2 −1 0 0 0 0

6 1 6
5

1 0 0 0

2 1 −1 0 1 0 0
3 1 0 0 0 1 0
5 0 1 0 0 0 1

B
B =

x1 x2 s1 s2 s3 s4
4 0 −3 0 2 0 0

4 0 11
5

1 −1 0 0

2 1 −1 0 1 0 0

1 0 1 0 −1 1 0

5 0 1 0 0 0 1

3.3.1 Slack Variables in the Graph

Sometimes it is also possible to read off the values of the basic variables from the graph. At
the point x = 0, to which tableau A corresponds, s = [6, 2, 3, 5]⊤ and these values can be
found in the graph as the x1, x1, x1, and x2 intercepts of the hyperplanes on which the slacks
are zero. In each case, if the coefficient of xp in an equality constraint (i.e., in the tableau
constraint row) is 1, then it is the xp intercept of the corresponding inequality’s hyperplane
that tells the value of the slack variable associated with that constraint.

If we rewrite the first inequality as 5
6
x1+ x2 ≤ 5 before adding slacks to get standard form,

the picture remains unchanged but corresponding to point A we get the tableau on the left
below.

x1 x2 s1 s2 s3 s4
0 −2 −1 0 0 0 0

5 5
6

1 1 0 0 0

2 1 −1 0 1 0 0
3 1 0 0 0 1 0
5 0 1 0 0 0 1

x1 x2 s1 s2 s3 s4
0 −2 −1 0 0 0 0
30 5 6 1 0 0 0
2 1 −1 0 1 0 0
3 1 0 0 0 1 0
6 0 1 0 0 0 1

Now it is x2 that has a coefficient of 1 in the first constraint, so to read off the value s1 = 5

from the graph we must use the x2 intercept of the s1 = 0 constraint hyperplane.
Of course we could write the first inequality like this instead: 5x1 + 6x2 ≤ 30. Then the

tableau corresponding to the origin, shown on the right above, has s1 = 30. Now neither
x1 nor x2 has a coefficient of 1 in that constraint, so we cannot read the tableau’s value of
s1 = 30 from the graph directly on either coordinate axis. However, by looking at the tableau
we can see that the x1 intercept of that constraint hyperplane will be 30/5 = 6 and the x2
intercept will be 30/6 = 5.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

110 Graphical Interpretation of Tableaus

3.3.2 Alternate Views of a Linear Program

If we are given only a graph of the constraint and objective contours for a linear program
with inequality constraints, we can easily write down an algebraic statement of the problem.
Then, using the techniques of §2.9 and §2.8, we can put the problem into standard form and
pivot to obtain a canonical-form tableau.

If we are instead given only a canonical-form tableau that someone obtained in that way,
can we figure out what inequality-constrained linear program they must have started with?
To study this question, consider the canonical-form tableau on the left below (it happens to
be in optimal form but that is not a requirement for what we are about to do).

x1 x2 x3 x4 x5 x6
17
2

0 0 5
6

0 7
6

0

3 1 0 0 0 1 0
5
2

0 1 5
6

0 −5
6

0
3
2

0 0 5
6

1 −11
6

0
5
2

0 0 −5
6

0 5
6

1

z + 17
2
=

5
6
x3 +

7
6
x5

3 = x1 + x5
5
2
= x2 +

5
6
x3 − 5

6
x5

3
2
=

5
6
x3 + x4 − 11

6
x5

5
2
= −5

6
x3 +

5
6
x5 + x6

The equations represented by the tableau are given to its right. If we rearrange them as
shown below, so that the nonbasic variables x3 and x5 come first, then the basic variables x1,
x2, x4, and x6 look like slacks that were added to turn ≤ constraints into equalities.

z + 17
2
=

5
6
x3 +

7
6
x5

3 = x5 + x1
5
2
=

5
6
x3 − 5

6
x5 + x2

3
2
=

5
6
x3 − 11

6
x5 + x4

5
2
= −5

6
x3 +

5
6
x5 + x6

Looked at in this way, the tableau must have come from the inequality-constrained linear
program below.

minimize − 17
2
+

5
6
x3 +

7
6
x5 = z

subject to x5 ≤ 3
5
6
x3 − 5

6
x5 ≤ 5

2
5
6
x3 − 11

6
x5 ≤ 3

2

−5
6
x3 +

5
6
x5 ≤ 5

2

x ≥ 0

Using this statement of the problem we can graph the constraint and objective contours as
usual, obtaining the picture on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.3.2 Alternate Views of a Linear Program 111

x5

3

2

1

−1

−2

−3

x3−3 −2 −1
1

2 3 4 5 6
•x
⋆

z
= − 17

2

D
C

B

AE

F

G

HK

The tableau we began with is actually the optimal tableau of the example problem we have
been using all along, as you should verify by finding tableau D in the Guided Tour of §3.2.2.
(To emphasize that we could have started from any canonical-form tableau, without knowing
where it came from, I disguised tableauD here by using rational rather than decimal fractions
and by replacing the variable names s1 through s4 with x3 through x6.)

This graph and the one in §3.1 both describe the same linear program, but they look quite
different because they were drawn from different tableaus. The graph in §3.1 is a view of
the problem from tableau A, whereas the graph above is a view of the problem from tableau
D. The nonbasic variables in the tableau from which a view is drawn are always the axes of
that view’s graph, so the origin of the graph corresponds to the basic feasible solution in the
tableau and the dimension of the feasible set is the number of nonbasic variables. Because
the coordinates of the graph are the nonbasic variables, the values of the basic variables can
(perhaps) be read from the graph only by thinking of them as slacks and using the approach
discussed in §3.3.1.

Because tableau D is in optimal form, x⋆ is where the nonbasic variables x3 and x5 are
zero, which is the origin of the graph in this view. In the view from tableau A, the optimal
point is still at vertex D but that vertex is not at the origin.

Notice that the feasible set in the view from tableau D, outlined above in thick lines, has
the same vertices, in the same order, as the feasible set in the view from tableau A. At each
iteration the simplex algorithm sees the problem from the perspective of the current basic
feasible solution; it uses only local information. The solution process can be thought of as
generating a sequence of views, each pivot moving from the origin in the current view to the
vertex that will become the origin in the next.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

112 Graphical Interpretation of Tableaus

3.3.3 Unbounded Feasible Sets

It is possible for a linear program to have an unbounded feasible set, as shown by this
example (we will consider several possible objective functions).

minimize z

subject to x1 − x2 ≥ 0

x1 + x2 ≥ 2

x ≥ 0

If a feasible set is unbounded it includes feasible rays.
In this problem the boundary of X is the one edge and
two rays shown in the graph.

∂X = {x | x1 + x2 = 2} ∩ {x | 1 ≤ x1 ≤ 2} edge
∪ {x | x1 = x2 ≥ 1} diagonal ray
∪ {x | x2 = 0, x1 ≥ 2} horizontal ray

x2

0

1

2

x10 1 2

ra
y

edge

ray

X

Unbounded optimal value. If a linear program has an unbounded optimal value, like
the unbd problem of §2.5.2, then its feasible set must be unbounded too. The linear program
above is unbounded if, for example, z = −x1 − 2x2. Then it has these starting and final
tableaus.

x1 x2 s1 s2
0 −1 −2 0 0

0 −1 1 1 0

−2 −1 −1 0 1

−→

x1 x2 s1 s2

3 0 0 1
2
−3

2

1 1 0 −1
2
−1

2

1 0 1 1
2
−1

2

The final tableau’s s2 column reveals unbounded form, because c4 < 0 and ai4 ≤ 0 for all i.
If we let s2 = t ≥ 0 and keep s1 = 0 then its constraint rows require

1 = x1 − 1
2
t ⇒ x1 = 1 + 1

2
t

1 = x2 − 1
2
t ⇒ x2 = 1 + 1

2
t

so x1 = x2 and both remain nonnegative no matter how high we make t. From the objective
row we see that z = −3 − 3

2
t, so

lim
t→∞

z = −∞.

Starting from the point [1, 1]⊤ corresponding to the final tableau, we can imagine sliding x

to the right and up along the diagonal ray forever, decreasing the objective as we go.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.4.1 Optimal Rays 113

Unique optimal point. But a linear program with
an unbounded feasible set need not have an unbounded
optimal value. The linear program above has a unique
optimal point if, for example, z = x1. Then it has the
optimal point shown in the graph to the right, and these
are the starting and final tableaus. This final tableau is
in optimal form.

x1 x2 s1 s2
0 1 0 0 0

0 −1 1 1 0

−2 −1 −1 0 1

−→

x1 x2 s1 s2

−1 0 0 1
2

1
2

1 0 1 1
2
−1

2

1 1 0 −1
2
−1

2

x2

0

1

2

x10 1 2

• x⋆

z
=
1

The optimal tableau’s s2 column still indicates a feasible ray, because ai4 ≤ 0 for all i. If we
again let s2 = t ≥ 0 and keep s1 = 0, we find as before that x1 = x2 =

1
2
t, so x remains feasible

no matter how high we make t. Now, however, z = 1+ 1
2
t so only the point [1, 1]⊤ where t = 0

is optimal. The signal of unbounded form that we identified in §2.5.2 is actually a tableau
column indicating a ray that happens also to have a negative c j.

3.4 Multiple Optimal Solutions

If the objective of a linear program has its optimal value at two different feasible points, then
those points are multiple optimal solutions. If the objective contours are parallel to an
edge or ray of the feasible set, that whole edge or ray can be optimal. If the feasible set is
bounded then any multiple optima must be on an edge, but a problem with an unbounded
feasible set can have multiple optima either on an edge or on a ray.

3.4.1 Optimal Rays

If in the example of §3.3.3 we let z = x1 − x2 then the
optimal set is the whole ray from [1, 1]⊤ (including that
point). In the final tableau the ray that is indicated by
the s2 column (because ai4 ≤ 0 for all i) is now optimal,
because c4 = 0. If we let s2 = t ≥ 0 and keep s1 = 0 we
still find that x1 = x2 = 1 + 1

2
t, so that x remains feasible

no matter how high we make t.

x1 x2 s1 s2
0 1 −1 0 0

0 −1 1 1 0

−2 −1 −1 0 1

−→

x1 x2 s1 s2
0 0 0 1 0

1 0 1 1
2
−1

2

1 1 0 −1
2
−1

2

x2

0

1

2

x10 1 2

•

z
=
0

op
tim

al
ra
y

Now, however, z = 0 independent of t, so every point on the ray is optimal.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

114 Multiple Optimal Solutions

3.4.2 Optimal Edges

If in the example of §3.3.3 we let z = x1 + x2 then we can solve the problem by pivoting as
shown below.

x1 x2 s1 s2
0 1 1 0 0

0 −1 1 1 0

−2 −1 −1 0 1

−→

x1 x2 s1 s2
−2 0 0 0 1

2 0 2 1 −1
2 1 1 0 −1

−→

x1 x2 s1 s2
−2 0 0 0 1

1 0 1 1
2
−1

2

1 1 0 −1
2
−1

2

The starting tableau for this problem, on the left, cor-
responds to the origin. Pivoting on the circled element
yields the middle tableau, which is in optimal form and
corresponds to the point [2, 0] in the picture.

The x2 column in the middle tableau is nonbasic but
it has c2 = 0, so if we pivot anywhere in that column
the multiple of the pivot row that gets added to the
objective row is zero. That means the (1, 1) element
of the tableau won’t change, so the objective value will
remain the same. The right tableau, resulting from the
minimum-ratio pivot, corresponds to the point [1, 1]⊤ in
the picture and is also in optimal form.

x2

0

1

2

x10 1 2

•

•

z
=
2

optim
al

edge

It is clear from the graph that the whole edge between [1, 1]⊤ and [2, 0]⊤ is optimal, but
by pivoting we can find only the endpoints because they correspond to basic solutions of
the constraint equations. Of course we can find the interior points of the line segment by
pivoting in slow motion as in §3.2.1.

3.4.3 Signal Tableau Columns

We have seen, in this Chapter and in §2, that certain properties of a linear program are
indicated by the signs of the entries in its tableau. In the summary of these patterns given
below, when multiple signs are shown for the aip that means those entries can have a mixture
of the signs shown. Most of these sign patterns occur in only some of a linear program’s
canonical form tableaus, and none of them necessarily mean anything in a tableau that is
not in canonical form. Recall from §2.5.3 that infeasibility is signalled by sign patterns in a
tableau’s rows, and is discovered in the process of trying to get canonical form.

xp
−
−
0

+

The tableau is not yet in optimal form, and this column is a can-
didate pivot column. In the simplex rule, we pivot on a positive
aip for which bi/aip is the smallest.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.5 Convex Sets 115

xp
0

−
0

+

A pivot in this column will not change the objective value, so
if the tableau is in optimal form (which depends on the other
c j) and pivoting in this column by the simplex rule yields a new
basic feasible solution, that point is an alternate optimum.

xp
+

−
0

+

A simplex pivot in this column would make the objective value
worse, so this is not a candidate pivot column if we are solving
the linear program. If the other c j are also nonnegative then the
tableau is in optimal form.

xp
−
−
0

−

The feasible set is unbounded, and the linear program has an
unbounded optimal value. This is the “unbounded” final form
of §2.5.2.

xp
0

−
0

−

The feasible set is unbounded, and an optimal ray emanates from
the basic feasible solution represented by the tableau.

xp
+

−
0

−

The feasible set is unbounded, and a non-optimal feasible ray
emanates from the basic feasible solution represented by the
tableau.

3.5 Convex Sets

The linear program we studied in §3.4.2 had two optimal vertices, and from the graphical
solution we could see that the line segment connecting them was also optimal. The interior
points of that line segment are not basic, but they can be discovered by slow-motion pivoting
as described in §3.2.1. Is it always true that the line segment between two optimal points is
also optimal, and that it can be traced out by slow-motion pivoting?

Consider the problem whose graphical solution is shown at the top of the next page.
Here there are also two optimal points, x̂ and x̄, but the line segment between them falls
outside of the feasible set. Because the interior points of that line segment are infeasible,
they cannot be optimal.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

116 Convex Sets

x2

6

5

4

3

2

1

0 x1
0 1 2 3 4 5 6

N

z
=

16
3

•x̂

•x̄

minimize −x1 − x2 = z

subject to x2 ≤ max
{

6 − 3
2
x1, 4 − 2

3
x1

}

x1 ≤ 4

x2 ≤ 4

x ≥ 0

The picture describes the optimization problem
stated above, which is of course not a linear pro-
gram as defined in §1.1.1. The objective and con-
straint functions of a linear program must be linear
functions, but here the first constraint has a kink
in its graph. This nonlinear program really belongs
later in the book, but it is useful here to illustrate
a nonconvex feasible set.

A set S is convex if and only if
x ∈ S
y ∈ S

}

⇒ [x, y] ⊆ S

The empty set, a single point, a line segment, a circle, an ellipse, the regular polygons, a
halfspace, and Rn all satisfy this definition of a convex set [110, §4.1]. In the problem of
§3.4.2, the line segment connecting the multiple optimal points is itself optimal because the
feasible set of that problem is convex, but in the above problem N is nonconvex because
x̂ ∈ N and x̄ ∈ N but the line segment [x̂, x̄] < N. An equivalent but more often useful
characterization is that a set S is convex if and only if

x ∈ S
y ∈ S

}

⇒ λx + (1 − λ)y ∈ S for all λ ∈ [0, 1].

The point w = λx + (1 − λ)y, 0 ≤ λ ≤ 1, is called a convex combination of x and y and is
on the line between x and y.

•
x

λ = 1
•
y

λ = 0
•
w

If the line above happens to be an edge of a linear program’s feasible set, and if pivoting in
slow motion slides w from y to x, then the parameter t of §3.2.1 is zero at λ = 0 and equal
to the minimum ratio at λ = 1.

3.5.1 Convexity of the Feasible Set

Using the second definition of convexity given above, we can prove that the feasible set of a
linear program is always convex [3, §4.2].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.5.2 Convexity of the Optimal Set 117

Theorem: The set X = {x ∈ Rn | Ax = b, x ≥ 0} is convex.

Proof: Suppose that x0 ∈ X and x1 ∈ X. Then to prove that X is a convex set it suffices to
show that w = λx0 + (1 − λ)x1 ∈ X for all λ ∈ [0, 1].

x0 ∈ X ⇒ x0 ≥ 0

x1 ∈ X ⇒ x1 ≥ 0

λ ∈ [0, 1] ⇒ λ ≥ 0 and (1 − λ) ≥ 0

Thus λx0 + (1 − λ)x1 ≥ 0

so w ≥ 0.

Aw = A(λx0 + (1 − λ)x1)
Aw = Aλx0 + A(1 − λ)x1

Aw = λAx0 + (1 − λ)Ax1

but x0 ∈ X ⇒ Ax0 = b

and x1 ∈ X ⇒ Ax1 = b.

Thus Aw = λb + (1 − λ)b
so Aw = b.

We have shown that w ≥ 0 and Aw = b, so w ∈ X and X is convex. �

3.5.2 Convexity of the Optimal Set

In §3.4.2 the optimal set is a line segment, which is convex, but when n > 2 the optimal set
can be of higher dimension. Is it still a convex set? Using the convexity of the feasible set,
we can prove that it is [3, §4.2].

Theorem: The set of points that are optimal for a linear program is convex.

Proof: If x⋆ is unique, it is convex because a point is convex. Otherwise suppose that x0

and x1 are distinct optimal vectors in Rn. Then to prove that the optimal set is convex it
suffices to show that w = λx0 + (1 − λ)x1 is optimal for all λ ∈ [0, 1]. For w to be optimal it
must be feasible and have the optimal objective value.

x0 optimal ⇒ x0 ∈ X
x1 optimal ⇒ x1 ∈ X

x0 ∈ X
x1 ∈ X
X is convex






⇒ w = λx0 + (1 − λ)x1 ∈ X from §3.5.1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

118 Higher Dimensions

x0 optimal ⇒ c⊤x0 = z⋆

x1 optimal ⇒ c⊤x1 = z⋆

w = λx0 + (1 − λ)x1 ⇒ c⊤w = λc⊤x0 + (1 − λ)c⊤x1

c⊤x0 = z⋆

c⊤x1 = z⋆

c⊤w = λc⊤x0 + (1 − λ)c⊤x1






⇒ c⊤w = λz⋆ + (1 − λ)z⋆ = z⋆

We have shown that w ∈ X and c⊤w = z⋆ for all λ ∈ [0, 1], so any convex combination of
optimal points is optimal and the optimal set of a linear program is convex. �

Convexity makes linear programming relatively easy, both in practice and in the theory
of computational complexity (see §7.9). The example above illustrates that in a nonlinear
program neither the feasible set nor the optimal set need be convex. We will revisit the
subject of convexity from the standpoint of nonlinear programming in §11.

3.6 Higher Dimensions

In the preceding Sections of this Chapter we have discussed many amazing and delightful
things about linear programming in R2, but how do they generalize to Rn?

In R3 constraint and objective contours are planes instead of lines, and feasible sets look
like faceted gemstones. In higher dimensions those geometrical objects are called hyperplanes
and n-dimensional polyhedra, but giving them technical names does not help us much to
imagine what they “look” like. Instead of pictures we must put our trust in linear algebra
and the formal operations you learned in §2. Yet it is still true that the feasible set of a linear
program is the intersection of its feasible halfspaces, that tableaus correspond to vertices,
that a pivot moves from one vertex to another along a constraint hyperplane, that unbounded
feasible sets have rays, that multiple optima are possible when the objective contours are
parallel to a constraint, and so on. In fact, except for the pictures nothing we have done
with our two-dimensional examples works only in two dimensions. The fundamental ideas
are true in general, so they can inform your mathematical intuition and maybe help you to
visualize some things that you can’t actually see.

In this Section we consider two important problems which, although they are in more
than two dimensions, can still be understood, or understood better, by thinking about the
geometry of the simplex algorithm.

3.6.1 Finding All Optimal Solutions

In §3.4.2 we found an optimal edge, and it was easy to see from the picture that it was the
entire optimal set. In higher dimensions, it can take more work to be sure that every optimal
point has been accounted for.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.6.1 Finding All Optimal Solutions 119

Although it is not obvious from the starting tableau A below, this linear program [3, p103-
105] has multiple optimal solutions. To find all of the optimal tableaus it is necessary to
consider every possible simplex-rule pivot connecting them. This is also sufficient, because
the convexity of the optimal set guarantees that if there are multiple optimal tableaus each
will be adjacent to at least one of the others. To show that we have found them all, an
arrow is drawn from each pivot position to the tableau that results from the pivot. The
basic feasible solution corresponding to each tableau is given to its right.

A = [0, 0, 0, 2, 4]⊤

x1 x2 x3 x4 x5
0 −1 −1 1 0 0

2 1 1 −1 1 0

4 −1 1 0 0 1

Tableau A is in canonical form, and
its columns reveal that it is not yet in
optimal form. There are two possible
phase-2 simplex pivots.

B = [2, 0, 0, 0, 6]⊤

x1 x2 x3 x4 x5
2 0 0 0 1 0

2 1 1 −1 1 0

6 0 2 −1 1 1

Tableau B is in optimal form, and its
x2 column reveals that there is another
optimal point.

C = [0, 2, 0, 0, 2]⊤

x1 x2 x3 x4 x5
2 0 0 0 1 0

2 1 1 −1 1 0

2 −2 0 1 −1 1

Tableau C is also optimal. Its x1 col-
umn reveals an alternate optimum, but
the circled pivot returns to B. The x3
column indicates a different optimum.

D = [0, 4, 2, 0, 0]⊤

x1 x2 x3 x4 x5
2 0 0 0 1 0

4 −1 1 0 0 1

2 −2 0 1 −1 1

TableauD is in optimal form too. Its x5
column reveals another optimum, but
the circled pivot returns to tableau C.

We have identified the optimal basic solutions B, C, and D, but there are other optimal
points that we can’t find by pivoting. From §3.5.2 we know that every convex combination
of the three optimal vertices is also optimal. This linear program has 5 variables, so its
optimal vertices define a two-dimensional figure in R5, which is pictured on the left below.
The side lengths ||B − C||2, ||B − D||2, and ||C − D||2 are drawn in correct proportions.

•B

•
C

•
D

This triangle is called the convex hull H of the optimal vertices, and
it contains all of their convex combinations [1, §2.1.3].

H = {x ∈ R5 | x = αB + βC + γD, α ≥ 0, β ≥ 0, γ ≥ 0, α + β + γ = 1}

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

120 Higher Dimensions

But H is not the whole optimal set, either. The x3 column of tableau B and the x1 column
of tableau D each indicate an optimal ray. In tableau B, we can’t pivot in the x3 column
but we could increase x3 and remain feasible. If we let x3 = t and keep x2 and x4 nonbasic,
then the constraints require that

x(t) =





2 + t

0

t

0

6 + t





= B + t





1

0

1

0

1





= B + tu.

Thus there is an optimal ray u that emanates from the optimal point B and goes in the
direction [1, 0, 1, 0, 1]⊤ forever. In tableau D, we can’t pivot in the x1 column but we could
increase x1 and still remain feasible. If we let x1 = t and keep x4 and x5 nonbasic, then the
constraints require that

x(t) =





t

4 + t

2 + 2t

0

0





= D + t





1

1

2

0

0





= D + tv.

Thus there is an optimal ray v that emanates from the optimal point D and goes in the
direction [1, 1, 2, 0, 0]⊤ forever. Of course it is not only u and v that belong to the optimal
set, but all of their convex combinations as well. The convex hull of two rays in R5 is once
again a two-dimensional figure, but this one is unbounded.

Formally we can say that the optimal set for this problem is that unbounded face of
the feasible set which includes H and all convex combinations of the points on the rays u

and v emanating from two vertices of H. Perhaps we can imagine this geometry, and if the
dimension of the feasible set were higher that is all we could do. But this problem has 3
nonbasic variables, so its feasible set is in R3 and we can actually draw a graph.

Because we found optimal rays it must be that the feasible set is unbounded, so to
complete its characterization we must check whether it includes other rays. The x3 column
in tableau A and the x4 column in tableau D indicate non-optimal rays, and by the same
method we used above they are

p =





0

0

1

1

0





from A q =





0

0

1

1

0





from D

The feasible rays p and q happen to be parallel.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.6.1 Finding All Optimal Solutions 121

It is easy to sketch one plane in three dimensions but hard to sketch several with their
intersections, so making an accurate picture requires a systematic approach and graphing
software. The simplest procedure is to specify the coordinates of the corners of each face of
the feasible set. Then the MATLAB plot3() function or the gnuplot command splot can
be used to render the planes.

To begin it is necessary to select a view as we did in §3.3.2. For this problem the view
that is easiest to interpret is the one from tableau C, in which the nonbasic variables are x1,
x3, and x4. These will be the coordinate axes in the graph, so in this view the coordinates
of each vertex of the feasible set will be those elements of the corresponding basic solution,
as follows.

Â = [0, 0, 2]⊤

B̂ = [2, 0, 0]⊤

Ĉ = [0, 0, 0]⊤

D̂ = [0, 2, 0]⊤

Because we will specify the corners of each face, we must pick a point on each ray at which
to cut the unbounded feasible set. Each ray that appears in this view will, like each vertex,
have for its components the x1, x3, and x4 elements of the vectors we found above. For
example, the ray u becomes in this view ū = [1, 1, 0]⊤. Arbitrarily choosing t = 10, we find
these points on the rays to specify as corners of the faces in which they lie.

B̂ + 10ū = [2, 0, 0]⊤ + 10[1, 1, 0]⊤ = [12, 10, 0]⊤ = û

D̂ + 10v̄ = [0, 2, 0]⊤ + 10[1, 2, 0]⊤ = [10, 22, 0]⊤ = v̂

Â + 10p̄ = [0, 0, 2]⊤ + 10[0, 1, 1]⊤ = [0, 10, 12]⊤ = p̂

D̂ + 10q̄ = [0, 2, 0]⊤ + 10[0, 1, 1]⊤ = [0, 12, 10]⊤ = q̂

Above we saw that the optimal vertices B, C, and D lie in the same plane; because the
rays u and v are also optimal and the optimal set is convex, they and all of their convex
combinations must lie in that plane too, so the optimal face of the feasible set (cut off at
t = 10) is outlined by the sequence of points B̂, Ĉ, D̂, û, v̂, B̂. The tableaus A, B, and C are
adjacent, so those vertices must also be adjacent and lie in the same plane; no other tableau
is adjacent to more than one of them, so the triangle outlined by B̂, Ĉ, Â, B̂ is another
face of the feasible set. The rays p and q are feasible, and the feasible set is convex, so all
convex combinations of p and q are also feasible; thus another face of the feasible set must
be outlined by the points Â, p̂, q̂, D̂, Ĉ, Â. These faces partially bound a solid figure which,
because the feasible set is convex, must be completed by two other faces.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

122 Higher Dimensions

To specify the numerical coordinates of the points for plotting it is necessary to decide in
what order to give them. Using the order (x1, x4, x3) orients the axes in such a way that the
optimal face is in front, with none of it hidden by other faces of the feasible set, so that is
the order I used in the data file listed below on the left.

this is file rays.dat

front (optimal) face

2 0 0 # B

0 0 0 # C

0 0 2 # D

10 0 22 # u

12 0 10 # v

2 0 0 # B

bottom face in x1-x4 plane

2 0 0 # B

0 0 0 # C

0 2 0 # A

2 0 0 # B

back face

0 2 0 # A

0 12 10 # p

0 10 12 # q

0 0 2 # D

0 0 0 # C

0 2 0 # A

top face

0 0 2 # D

0 10 12 # q

10 0 22 # u

0 0 2 # D

bottom face tilted up

2 0 0 # B

12 0 10 # v

0 12 10 # p

0 2 0 # A

2 0 0 # B

this is file rays.gnu

set xrange [0:12]

set yrange [0:12]

set zrange [0:25]

set view 30,60

set xyplane at 0

set nokey

set terminal postscript eps

set output "rays.eps"

splot "rays.dat" with lines

unix[1] echo ’load "rays.gnu"’ | gnuplot

The gnuplot input file listed above on the right configures the plot, and when it is loaded
as shown in the Unix command the program produces the picture on the next page (except
for the annotations, which I added later).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.6.2 Finding All Extreme Points 123

 0

 2

 4

 6

 8

 10

 12 0

 2

 4

 6

 8

 10

 12

 0

 5

 10

 15

 20

 25

x1

x3

x4

A

B

C

D

u

û

v
v̂

p

p̂

q
q̂

Part of the optimal face (which should be seen as vertical and above the x1 − x4 plane) is
crosshatched. The boundary of the feasible set can be seen to resemble a sheet-metal air
duct that flares out from the origin and has a trapezoidal cross section (of course its interior
points are also feasible).

3.6.2 Finding All Extreme Points

It is an article of faith in operations research that linear programming is an aid to decision
making, but [151, §1.3] many an analyst has heard an executive say something that, when
translated from business jargon into optimization jargon, decodes like this:

“The course of action you recommend, while optimal in a technical sense, would
be inconvenient to actually follow in this particular case. I want more options,
so that I can pick one based on factors that are too subjective to be included in
your mathematical model. Are there other production programs that are almost
as good as the one you found?”

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

124 Higher Dimensions

Geometrically, this question is about how much the objective function changes as we
pivot from the optimal vertex of the feasible set to each adjacent vertex, then from each of
those to its neighboring vertices, and so on. Exploring the feasible set in this way might
yield useful insights about its geometry even if it has too many dimensions to picture. For
example, if there are several vertices that are only slightly suboptimal but differ quite a bit
in their coordinates, then the surface of the jewel must be relatively flat near x⋆.

Analytically, the question is about finding the second-best basic feasible solution, or the
third-best, or the hundredth-best. Why not enumerate all vertices of the feasible set, in order
of increasing objective value? Then we could provide our decision-maker with an exhaustive
list of suboptimal alternatives. We would also systematically find all of the optimal basic
solutions if there are several (which we worried about in §3.6.1).

To see how such an enumeration is possible, consider the following optimal tableau, which
solves the brewery problem of §1.3.1.

x1 x2 x3 x4 s1 s2 s3
2325.0 0 0 18.750 76.250 7.50 0 18.750

5.0 1 0 2.750 2.250 0.50 0 -1.250

7.5 0 0 1.625 -0.125 0.25 1 -1.375

12.5 0 1 -1.125 -0.375 -0.25 0 0.875

To find the next-best basic feasible solution we must pivot away from optimality while staying
feasible and while increasing the objective (decreasing the (1, 1) entry of the tableau) as little
as possible. In which nonbasic column does the minimum-ratio pivot increase the objective
the least?

In the x3 column the minimum-ratio pivot is at a13 = 2.750, and that would increase the
objective by (c3/a13)b1 = 34 1

11
. In the x4 column the only possible pivot is on the 2.250, and

that would increase the objective by 169 4
9
. In the s1 column the minimum-ratio pivot is on

the 0.50, and that would increase the objective by 75. In the s3 column the only possible
pivot is on the 0.875, and that would increase the objective by 267 6

7
. Thus it is the pivot at

a13 that yields the next-best tableau, which we could then analyze in the same way to find
the next-best one after that.

The MATLAB program on the next page automates this process, generating all of the
basic feasible solutions in objective-value order. Its first stanza could be modified to read
the starting data from a file, and then it could be used for any problem.

The output of the program, which is shown on the page after the listing, reveals that
the Brewery Problem has 6 basic feasible solutions. The dimension of the feasible set
is 4 so we can’t graph it, but from the objective values we can see that there are two
production programs “almost as good” as the optimal one. The second-best vertex, at
x = [0,14.55,1.82,0]⊤, has z = -2290.91 which is within 2% of the optimal value, and
the third-best vertex, which is at x = [0,15,0,0]⊤, has z = -2250 which is within 4% of the
optimal value. The next alternative is within 7% of optimal, but the others are much worse.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.6.2 Finding All Extreme Points 125

% subopt.m: list all basic feasible solutions in objective order

% define the problem
T=[2325.0,0,0,18.750,76.250, 7.50,0,18.750; % optimal tableau

5.0,1,0, 2.750, 2.250, 0.50,0,-1.250;
7.5,0,0, 1.625,-0.125, 0.25,1,-1.375;
12.5,0,1,-1.125,-0.375,-0.25,0, 0.875];

S=[2,4,0,0,0,3,0]; % its basic sequence
n=7; % number of variables
m=3; % number of functional constraints

maxpiv=factorial(n)/factorial(n-m)-1; % only maxpiv pivots are possible
for npiv=1:maxpiv % so do no more than that

T % report the current tableau

pos=0; % count
for j=2:n+1 % the

if(T(1,j) > 0); pos=pos+1; end % positive
end % costs
if(pos == 0); break; end % pivot only until there are none left

% find the next pivot away from optimality
dzmin=realmax;
jzmin=0;
izmin=0;
for j=1:n % examine each variable column

if(S(j) == 0 && T(1,1+j) > 0) % try nonbasic columns with positive cost

rmin=realmax;
for i=1:m % find

if(T(1+i,1+j) > 0) % the
r=T(i+1,1)/T(1+i,1+j); % minimum
if(r < rmin) % ratio

rmin=r; % pivot
imin=i; % position

end % in
end % this

end % column

% pivoting there would increase the objective by this much
dz=T(1+imin,1)*T(1,1+j)/T(1+imin,1+j);

if(dz < dzmin) % we want
dzmin=dz; % to change
jzmin=j; % the objective
izmin=imin; % as little

end % as possible
end

end

% perform the pivot yielding smallest dz
mp=m+1; % number of rows in tableau
np=n+1; % number of columns in tableau
ip=izmin+1; % tableau row of pivot
jp=jzmin+1; % tableau column of pivot
[Tnew,Snew,rc]=pivot(T,mp,np,ip,jp,S); % perform the pivot
if(rc ~= 0); exit; end % quit if pivot failed
T=Tnew; % update the tableau
S=Snew; % update the basic sequence

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

126 Higher Dimensions

octave:1> format bank
octave:2> subopt
T =

2325.00 0.00 0.00 18.75 76.25 7.50 0.00 18.75
5.00 1.00 0.00 2.75 2.25 0.50 0.00 -1.25
7.50 0.00 0.00 1.62 -0.12 0.25 1.00 -1.38
12.50 0.00 1.00 -1.12 -0.38 -0.25 0.00 0.88

T =

2290.91 -6.82 0.00 0.00 60.91 4.09 0.00 27.27
1.82 0.36 0.00 1.00 0.82 0.18 0.00 -0.45
4.55 -0.59 0.00 0.00 -1.45 -0.05 1.00 -0.64
14.55 0.41 1.00 0.00 0.55 -0.05 0.00 0.36

T =

2250.00 -15.00 0.00 -22.50 42.50 0.00 0.00 37.50
10.00 2.00 0.00 5.50 4.50 1.00 0.00 -2.50
5.00 -0.50 0.00 0.25 -1.25 0.00 1.00 -0.75
15.00 0.50 1.00 0.25 0.75 0.00 0.00 0.25

T =

2155.56 -33.89 0.00 -74.44 0.00 -9.44 0.00 61.11
2.22 0.44 0.00 1.22 1.00 0.22 0.00 -0.56
7.78 0.06 0.00 1.78 0.00 0.28 1.00 -1.44
13.33 0.17 1.00 -0.67 0.00 -0.17 0.00 0.67

T =

933.33 -49.17 -91.67 -13.33 0.00 5.83 0.00 0.00
13.33 0.58 0.83 0.67 1.00 0.08 0.00 0.00
36.67 0.42 2.17 0.33 0.00 -0.08 1.00 0.00
20.00 0.25 1.50 -1.00 0.00 -0.25 0.00 1.00

T =

0.00 -90.00 -150.00 -60.00 -70.00 0.00 0.00 0.00
160.00 7.00 10.00 8.00 12.00 1.00 0.00 0.00
50.00 1.00 3.00 1.00 1.00 0.00 1.00 0.00
60.00 2.00 4.00 1.00 3.00 0.00 0.00 1.00

octave:3> quit

Notice that the final and most-suboptimal tableau discovered by the program is the initial
canonical form for the problem.

Linear programs typically encountered in practice have basic feasible solutions whose
number grows very fast with problem size, so in studying a realistic application it might not
be practical to rank-order all of them. But for a large problem most of the basic feasible
solutions will be too suboptimal to be of interest anyway, and it might still be useful to
generate the first few nearly-optimal ones.

In §5.4 we will take up sensitivity analysis, which is useful for answering other questions
about a linear programming model. Some of the techniques we study there will also involve
pivoting from an optimal tableau to a suboptimal one.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.7 Exercises 127

3.7 Exercises

3.7.1[E] Explain one insight about linear programming in general that you have gained
from our study of low-dimensional examples in this Chapter.

3.7.2[E] What halfspaces are associated with the constraint 4x1 − 3x2 + 5x3 ≤ 9? What is
the constraint’s associated hyperplane? To which halfspace does the hyperplane belong?

3.7.3[E] Each constraint hyperplane of a linear program divides Rn into two halfspaces,
one feasible and the other infeasible. Together the constraint hyperplanes divide Rn into
disjoint regions. The feasible set is the region that is the intersection of all the feasible
halfspaces. In the example of §3.1, pick a region that is not the feasible set and explain how
it is also the intersection of halfspaces.

3.7.4[E] When is a vertex an extreme point? How many vertices can belong to an edge?
Is the boundary of a feasible set always the union of its edges?

3.7.5[H] In the graph problem of §3.1, the point [1, 0]⊤ is the midpoint of the edge [A,B],
and it is also the midpoint of other line segments in X. Describe the set L of all line segments
in X of which [1, 0]⊤ is the midpoint.

3.7.6[E] The tableaus of a linear program correspond to vertices in its graph. What is
necessary for a tableau to correspond to a given vertex?

3.7.7[H] In the Guided Tour of §3.2.2 each basic feasible solution corresponds to one
extreme point of the feasible set. (a) Could a linear program ever have a basic feasible
solution that corresponded to some point other than an extreme point of its feasible set?
Could a linear program ever have a feasible set with an extreme point that did not correspond
to one of its basic feasible solutions? Make a convincing argument based on what you know
about the geometry of the simplex algorithm. (b) Use linear algebra to construct a formal
proof that every basic feasible solution of any canonical form linear program is an extreme
point of the feasible set defined by {x | Ax = b, x ≥ 0}.
3.7.8[E] In §3.2.1 we saw how, as t is increased from 0 to the minimum ratio for a pivot,
the point represented by a tableau slides from one vertex to another along a constraint
hyperplane. What happens to the objective value z as this is happening? For the example
of that Section, derive an expression for z(t) and confirm that z(0) is the objective value at
vertex A and z(2) is the objective value at vertex B.

3.7.9[E] When there is a tie for the minimum ratio in pivoting from a given tableau T1 to
a next tableau T2, what does the resulting pattern of entries in some row of T2 signal about
the linear program? Which row of T2 is it that shows this?

3.7.10[E] What makes a vertex degenerate? What makes a pivot degenerate? Does a
degenerate pivot always result in a decrease in the objective function? Does a pivot always
move the solution from one vertex to an adjacent vertex? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

128 Geometry of the Simplex Algorithm

3.7.11[E] Is a pivot by the simplex rule ever an exterior pivot? Explain. Does a pivot by
the simplex rule always move from one extreme point to an adjacent extreme point?

3.7.12[E] If two tableaus are the same except that their constraint rows are permuted, do
they have the same basic sequence? Do they have the same basic variables?

3.7.13[H] If we use the simplex algorithm to solve a linear program that has an optimal
solution, does choosing each pivot column as one with the most negative cost always lead to
optimal form in the fewest pivots? If yes, explain why; if no, provide a counterexample.

3.7.14[E] In the example of §3.1 there are two paths from vertex A to the optimal point
at vertex D. (a) If a linear program has a feasible set of dimension 2, can there ever be more
than two paths from a starting point to the optimal point? (b) If a linear program has a
feasible set of dimension 3, how many paths might there be from a starting point to the
optimal point? In answering this question it might be helpful to imagine what a convex
polyhedron looks like in R3.

3.7.15[E] In §3.3 I claimed that because a vertex can be viewed as the intersection of n
hyperplanes on which a variable is zero, it is possible to move to any vertex by pivoting to
make those variables zero. Use this advice to pivot from A to K in the example.

3.7.16[H] In §3.3.1 we read the values of the basic variables s1, s2, s3, and s4 from tableau
A and then were able to find them in the graph, which shows the view from that tableau.
(a) Read the values of the basic variables from tableau B and find those values in the view
from tableau B. (b) Can you find the values of the tableau B basic variables in the view
from tableau A?

3.7.17[E] In the view of §3.3.2, can you read off the values of the slack variables x1, x2, x3,
and x4 from the graph? If yes, what are their values? If not, why not?

3.7.18[H] Draw views of the §3.3.2 example from tableau (a) B; (b) C; (c) E.

3.7.19[H] From the following tableau draw a view of the linear program and solve the
problem graphically. What is the dimension of the feasible set?

x1 x2 x3 x4 x5
0 0 1 −1 1 0

10 1 1 1 1 0

5 0 1 1 1
5

1

3.7.20[E] If a linear program has a feasible ray, can it have a finite optimal value? If it has
an unbounded optimal value, can it have a feasible ray? If a tableau has a column whose
ai j indicate a ray, what is sufficient to ensure that the linear program has an unbounded
optimal value?

3.7.21[E] If the unique optimal vertex of a linear program is degenerate, does the linear
program have multiple optima? If the objective function contours of a linear program are
parallel to a constraint hyperplane, does the linear program have multiple optimal solutions?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

3.7 Exercises 129

3.7.22[H] Construct a linear program having an optimal-form tableau in which c j = 0 over
a nonbasic column but there is only one optimal point.

3.7.23[E] Does a ray include the point from which it emanates? If a tableau has a column
whose ai j indicate a ray, what is sufficient to ensure that the ray is optimal?

3.7.24[E] Can all of the points on an optimal edge be found by pivoting? In the example
of §3.4.2, show how to find the optimal point [3

2
, 1
2
]⊤.

3.7.25[E] Describe the sign pattern of entries in a canonical-form tableau that indicates
the linear program has the following properties: (a) infeasible form 1; (b) infeasible form 2;
(c) degeneracy; (d) suboptimality; (e) optimal form; (f) multiple bounded optimal solutions;
(g) an optimal ray; (h) a non-optimal feasible ray; (i) unbounded form.

3.7.26[H] Prove that the intersection of two convex sets is a convex set.

3.7.27[E] Sketch the convex hull of the feasible set N in the example of §3.5. Is the set N
the intersection of halfspaces?

3.7.28[H] How does the proof of §3.5.2 fail if X is not known to be convex?

3.7.29[E] A linear program can have more than one optimal vertex. What other points
might belong to the optimal set?

3.7.30[E] If a linear program has two optimal vertices, why must the tableaus corresponding
to them be adjacent tableaus?

3.7.31[H] The convex hull of an equilateral triangle is the triangle itself. Write a formula for
the convex combination of the triangle’s vertices and show that by adjusting the parameters
the formula can produce any point in the triangle (and no points outside of it).

3.7.32[E] In the example of §3.6.1, three edges of the feasible set are incident to vertex D.
Explain how this can be discovered by inspecting tableau D.

3.7.33[H] Draw a view of the example in §3.6.1 from tableau A, and use it to solve the
problem graphically.

3.7.34[P] Modify the MATLAB program of §3.6.2 to find all of the basic feasible solutions
to the example of §3.1.

3.7.35[P] Our statement of the simplex pivot rule in §2.4.4 just says to pick a pivot column
with a negative c j. In practice we have usually chosen the most negative c j, but computer
implementations sometimes use the first negative c j or the most negative c j from a candidate
list of the first p columns having c j < 0. It is also possible to select the pivot column as
one (or one from a candidate list) whose minimum-ratio pivot yields the biggest decrease in
z. More work is required to select the pivot column in this way, but if the greatest possible
decrease in z is achieved at each iteration it might be possible to reach optimal form with
fewer pivots. (a) Modify the MATLAB code given in §4.1 to use this “best-z” strategy, and
test it on some examples. (b) Add code to count the numbers of arithmetic operations used,

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

130 Geometry of the Simplex Algorithm

and compare the total numbers required by this strategy to the total numbers required by
the strategy of picking the first negative c j. (c) Why do you think this Exercise is located
in this Chapter rather than in §4?

3.7.36[H] In the graph problem of §3.1, the constraint x2 ≤ 5 is redundant because it could
be removed without changing the feasible set. (a) When the procedure outlined in §2.8.1
for pivoting-in a basis is applied to this problem, does it discover the redundant constraint?
(b) Does the method of artificial variables outlined in §2.8.2 discover the redundant con-
straint? (c) How can we ensure that the feasible set of a linear programming problem will
have no degenerate vertices?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4

Solving Linear Programs

The process outlined in §2.6 for solving a linear program consists of reformulation into
standard form, putting the resulting tableau into canonical form by the subproblem technique
or the method of artificial variables, and pivoting by the simplex rule until one of the final
forms is obtained. Reformulation or phase 0 is, as we saw in §2.9, essentially algebraic and
thus not easily automated. In contrast the simplex algorithm, which transforms a standard-
form tableau into canonical form via phase 1 and then into a final form via phase 2, is
essentially numerical, and to be practical it must be automated. This Chapter is about
using the simplex method to solve real problems.

4.1 Implementing the Simplex Algorithm

As illustrated in §2.9.3 and §2.9.5 the pivot program’s SOLVE command can be used to
perform the simplex algorithm, but sometimes we will wish to solve a linear program as part
of a larger calculation and then it will be convenient to have an implementation in MATLAB.
The code presented in this Section combines ideas that were introduced in §2.4 and §2.8.1
and identifies infeasible and unbounded as well as optimal form, so its details illuminate the
whole algorithm.

The top-level routine of this implementation is simplex.m, listed on the next page. It
receives 1 the tableau T of a standard-form problem, the number of equality constraints m
and the number of variables n, and returns 1 the solution vector xstar, the final tableau
Tnew, and a return code rc whose value signals success if rc=0, infeasibility if rc=1, or
unboundedness in column rc of the tableau if rc>1.

The vector tr contains the indices in the tableau of the mr rows that make up the
problem. To begin 6-9 all of the rows are included, but if pivoting-in a basis reveals a row
to be redundant the list will be modified to exclude that row.

This routine invokes 11 newseq.m to pivot-in an identity, 19 phase1.m to implement
the subproblem technique, and 28 phase2.m to obtain a final form. If infeasible form is
discovered by newseq 12 or phase1 20 this routine returns with 13,21 rc=1. If unbounded
form is discovered by phase2 29 this routine returns 30-31 in rc the number of the tableau
column that reveals the unboundedness. Otherwise 32-41 the basic solution is extracted
from the optimal-form tableau and returned in xstar. Here, as in the pivot.m routine of
§2.4.2, each element of the basic-sequence vector S or Snew corresponds to a variable column
of the tableau and contains 0 if that variable is nonbasic or the row number in the tableau
of the identity-column 1 if the variable is basic.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

132 Solving Linear Programs

1 function [xstar,rc,Tnew]=simplex(T,m,n)
2 % solve a linear program in standard form
3
4 nn=n+1; % tableau columns = variables+1
5 mm=m+1; % tableau rows = constraints+1
6 for ii=1:mm % to start include them all
7 tr(ii)=ii; % in the list of rows
8 end % that are in the problem
9 mr=mm; % there are mr of those
10
11 [Tnew,S,trnew,mrnew,rc0]=newseq(T,mm,nn,tr,mr); % get identity
12 if(rc0 != 0) % on failure
13 rc=1; % report infeasible
14 return % and give up
15 else % otherwise
16 T=Tnew; % update the tableau
17 end % and continue
18
19 [Tnew,Snew,rc1]=phase1(T,S,mm,nn,tr,mr); % get b nonnegative
20 if(rc1 != 0) % on failure
21 rc=1; % report infeasible
22 return % and give up
23 else % otherwise
24 T=Tnew; % update the tableau
25 S=Snew; % update the basic sequence
26 end % and continue
27
28 [Tnew,Snew,rc2]=phase2(T,S,mm,nn,tr,mr); % get c nonnegative
29 if(rc2 != 0) % on failure
30 rc=rc2; % report unbounded form in column rc
31 return % and give up
32 else % otherwise
33 rc=0; % report optimal form
34 for j=1:n % for each j
35 ii=Snew(j); % find the row of the basic column 1
36 if(ii == 0) % if this column is nonbasic
37 xstar(j)=0; % return zero
38 else % otherwise
39 xstar(j)=Tnew(ii,1); % return the basic variable value
40 end % finished retrieving this variable
41 end % finished constructing x* vector
42 end % end of simplex algorithm
43 end

The newseq.m routine, listed on the next page, receives 1 a tableau T having mm rows
and nn columns, the list tr of tableau rows in the problem, and the number mr of tableau
rows in the problem. To begin 6-8 it initializes the basic sequence vector S to zeros, which
marks all of the variable columns as nonbasic. Then 11-40 it considers the constraint rows
one at a time. First it 14-20 searches the row for an entry that is big enough to pivot on,
and if it finds one 17-18 it remembers the column number jp and 23 pivots there using the
pivot.m routine. The tableau and its basic sequence are updated 24-25 and 26 the next
row is considered. This process continues until a pivot has been performed in each constraint
row so that a basis is present. Then 42-43 the list and number of active rows are updated
and the routine returns 1 the updated tableau Tnew, the basic sequence S, the new row list
trnew and count mrnew, and rc0=0 5 to signal that a basis is present.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.1 Implementing the Simplex Algorithm 133

1 function [Tnew,S,trnew,mrnew,rc0]=newseq(T,mm,nn,tr,mr)
2 % get the identity columns with zero costs above
3
4 ztol=1e-6; % set zero tolerance
5 rc0=0; % assume this routine will succeed
6 for j=2:nn % start
7 S(j-1)=0; % with
8 end % no basis
9 ir=1; % point to the objective row
10
11 while(ir < mr) % are any constraint rows left to consider?
12 ir=ir+1; % yes; advance to the next one
13 ip=tr(ir); % in row ip
14 jp=0; % find
15 for jj=2:nn % the first
16 if(abs(T(ip,jj)) > ztol) % nonzero entry
17 jp=jj; % at column jp
18 break % and use it
19 end % if not yet
20 end % keep looking
21
22 if(jp > 0) % if we found a nonzero entry
23 [Tnew,Snew,rc]=pivot(T,mm,nn,ip,jp,S); % pivot on it
24 T=Tnew; % update the tableau
25 S=Snew; % and the basic sequence
26 continue % go to do the next row
27 end % otherwise fall through
28
29 if(abs(T(ip,1)) <= ztol) % A row is zero; check the b
30 for iir=ir:mr-1 % this tableau row is redundant
31 tr(iir)=tr(iir+1); % copy the row pointers up
32 end % to squeeze out redundant row
33 tr(mr)=0; % zero last pointer now repeated
34 mr=mr-1; % one less row in the problem
35 ir=ir-1; % account for the deletion
36 else % we have discovered infeasible form 1
37 rc0=1; % set the return code to indicate that
38 break % and return
39 end % finished processing the zero A row
40 end % finished with constraint rows in the problem
41
42 trnew=tr; % return updated list of active rows
43 mrnew=mr; % and updated number of active rows
44 end

If some row of the tableau has zeros in its A part, then the search for a pivot position
15-20 leaves jp=0 14 . The second stanza in the while loop 22-27 is skipped, and the last
stanza 29-39 is executed instead. It checks 29 whether |bip| ≈ 0. If it is, then to remove
the redundant constraint from the problem the indices of the remaining constraint rows (if
ir < mr so that there are any) are copied up 30-32 ; the index of the last row, now unused,
is set to zero 33 ; and the number of rows in the problem is reduced by one 34 . So that
ir will point to the next constraint row after it is incremented 12 , it is 35 reduced by one
here. If bip , 0 then 37 the return code is set to show infeasible form 1 and 38 the while

loop is interrupted. The list 42 and number 43 of active rows are updated, and the routine
returns with rc0=1 to signal that no basis is present. I used the MATLAB while construct
instead of a for loop (see §28.4.1) because both ir and mr are changed inside it.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

134 Solving Linear Programs

1 function [Tnew,Snew,rc1]=phase1(T,S,mm,nn,tr,mr)
2 % get constant column nonnegative, or find problem infeasible
3
4 ztol=1e-6; % set zero tolerance
5 Tnew=T; % return T on failure
6 Snew=S; % return S on failure
7
8 ii=0; % assume every b is negative
9 for ir=2:mr % search the constant column
10 ic=tr(ir); % constraint rows in the problem
11 if(T(ic,1) >= 0) % is this b nonnegative?
12 ii=ic; % yes; remember the tableau row
13 break % we found one
14 end % so stop
15 end % searching
16
17 if(ii == 0) % every b is negative
18 jp=0; % search
19 for jj=2:nn % the first A row
20 if(T(tr(2),jj) < 0) % for a negative entry
21 jp=jj; % and remember where it was
22 break % found one
23 end % finished testing
24 end % finished searching row
25 if(jp == 0) % if no A row entry is negative
26 rc1=2; % signal infeasible form 2
27 return % and give up
28 else % otherwise
29 [Tnew,Snew,rc]=pivot(T,mm,nn,tr(2),jp,S); % pivot there
30 T=Tnew; % update T
31 S=Snew; % update S
32 end % pivot made b1 nonnegative
33 end % now ready for subproblems

The phase1.m routine, listed above and on the next page, implements the subprob-
lem technique. The method of artificial variables could be used instead of newseq.m and
phase1.m (see Exercise 4.6.12) but this code is brief and requires no additional array stor-
age. The routine begins by 8-15 finding a nonnegative bi. If there are none it 18-24 finds a
negative entry in the first constraint row and 28-32 pivots on it to make b1 > 0. If there is
no negative entry in the row it 25-27 sets rc1=2 to indicate infeasible form 2 and resigns.

When there is at least one nonnegative bi, subproblems are solved 35-73 to make the
others nonnegative. There are mm-1 constraint rows in the tableau, so the process of searching
for a negative bi and solving a subproblem to make it nonnegative will be repeated no
more than 35 that number of times. The process begins by 36-48 constructing the next
subproblem. The vector sr will list the ms tableau rows included in the subproblem, starting
with the subproblem objective. To begin 36-37 the code sets sr(1)=0 to show that no
subproblem objective has been found yet. Then 38-48 it examines each constraint row in
the problem, makes the first one with a negative bi 40-43 the subproblem objective, and
makes all of the rows with nonnegative bi 44-47 the subproblem constraints. If no negative
bi remain 49-52 it returns rc1=0 to show that canonical form has been achieved.

The phase2.m routine is invoked 54 to solve the subproblem, which is sure to be in
canonical form, and 55-56 the tableau and basic sequence are updated. If the optimal

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.1 Implementing the Simplex Algorithm 135

35 for p=1:mm-1 % need no more than m subprobs
36 ms=1; % construct the next subproblem
37 sr(ms)=0; % row ms is to be selected
38 for ir=2:mr % search constraint rows
39 ii=tr(ir); % that are in the problem
40 if(T(ii,1) < 0) % for a negative b
41 if(sr(1) == 0) % if it is the first
42 sr(1)=ii; % make it the subprob obj
43 end; % finished making subprob obj
44 else % this b is nonnegative
45 ms=ms+1; % enlarge the subproblem
46 sr(ms)=ii; % and add this row to it
47 end % done testing this row
48 end % done constructing subproblem
49 if(sr(1) == 0) % if no subproblem objective
50 rc1=0; % signal canonical form
51 return % and return
52 end % done testing completion
53
54 [Tnew,Snew,rc2]=phase2(T,S,mm,nn,sr,ms); % solve subproblem
55 T=Tnew; % update T
56 S=Snew; % update S
57 if(abs(T(sr(1),1)) < ztol) % if final b is tiny
58 T(sr(1),1)=0; % make it zero exactly
59 end % finished checking b
60
61 if(rc2 == 0 && T(sr(1),1) < 0) % if final b is negative
62 rc1=2; % mark infeasible form 2
63 return % and give up
64 end % finished with infeasible
65
66 if(rc2 > 0 && T(sr(1),1) < 0) % if subproblem unbounded
67 jp=rc2; % pivot in unbounded column
68 ip=sr(1); % in objective
69 [Tnew,Snew,rc]=pivot(T,mm,nn,ip,jp,S); % do the pivot
70 T=Tnew; % update T
71 S=Snew; % update S
72 end % finished with unbounded
73 end % finished with subproblems
74 rc1=0; % signal success
75 end

subproblem objective value is small enough that it might be numerical noise 57-59 it is set
to zero; this prevents roundoff errors from making a feasible problem appear infeasible. If
phase2.m reports success but the optimal subproblem objective value is negative 61 the
routine 62-63 sets rc1=2 to indicate infeasible form 2 and resigns. If 66 the subproblem is
unbounded and its objective is still negative 67-71 a pivot is performed in column rc2 of
the subproblem objective row. Then 73 we repeat the process until b ≥ 0.

The phase2.m routine, listed on the next page, cannot require more than

n!/(n − m)!

iterations 8 to reach a final form (see §4.5). If this number is 9 greater than the highest
integer allowed in the MATLAB range expression 1:kmax, that integer 2147483645 is used for

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

136 Solving Linear Programs

1 function [Tnew,Snew,rc2]=phase2(T,S,mm,nn,tr,mr)
2 % optimize a tableau in canonical form, or find it unbounded
3
4 ztol=1e-6; % set zero tolerance
5 Tnew=T; % return T on failure
6 Snew=S; % return S on failure
7
8 kmax=factorial(nn-1)/factorial(nn-mm); % theoretical maximum
9 if(kmax > intmax-2) kmax=intmax-2; end % integer iteration limit
10
11 for k=1:kmax % do up to kmax pivots
12 cmin=0; % find
13 jp=0; % in
14 ii=tr(1); % the objective row
15 for jj=2:nn % the column
16 if(T(ii,jj) < cmin) % with the lowest
17 cmin=T(ii,jj); % negative cost entry
18 jp=jj; % and remember the column number
19 end % finish testing cost entry
20 end % finish finding least cost entry
21
22 if(jp == 0 || cmin > -ztol) % no (sufficiently) negative cost
23 rc2=0; % signal optimal form
24 return % and return to the caller
25 end % finished testing for optimality
26
27 ip=minr(T,tr,mr,jp); % find min ratio row in column jp
28 if(ip == 0) % if there is none
29 rc2=jp; % signal unbounded in column jp
30 return % and return to the caller
31 end % finished finding pivot row
32
33 [Tnew,Snew,rc]=pivot(T,mm,nn,ip,jp,S); % pivot at T(ip,jp)
34 T=Tnew; % update the tableau
35 S=Snew; % and the basic sequence
36 end % for the next iteration
37 end

kmax instead. Each iteration begins 12-20 by finding the variable column having the low-
est adjusted cost. If 22 no negative costs remain, the routine 23 sets rc2=0 to indicate
convergence and 24 returns.

Once a pivot column is chosen 27 minr.m is invoked to find the minimum-ratio row. If
no ai,jp in the pivot column jp is positive, minr.m returns zero for the pivot row; then 28-31

this routine sets rc2 to the index of the unbounded column and resigns. If a pivot row was
found then 33 pivot.m is invoked to perform the pivot, the tableau and basic sequence are
34-35 updated, and 36 the iterations continue. If kmax iterations are performed without
finding a final form the routine returns 37 the current tableau and basic sequence.

The minr.m routine, listed on the next page, starts by 6 setting minr = +∞. Then 8-17

it examines the constraint rows of the pivot column jp, skipping 9-11 elements too small to
be a pivot, in search of the positive one with the lowest value of 12 bi/ai,jp. When a ratio
is found that is 13 lower than the lowest one found previously, rmin is updated 14 along
with 15 the corresponding tableau row. On return ip is the minimum ratio row or zero if
the problem is unbounded.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.2 The Revised Simplex Method 137

1 function ip=minr(T,tr,mr,jp);
2 % find the minimum ratio row ip in pivot column jp of T
3
4 ztol=1.e-6; % zero tolerance
5 ip=0; % return index zero on failure
6 rmin=realmax; % rmin = +infinity
7
8 for ii=2:mr % check each constraint row
9 if(T(tr(ii),jp) <= ztol) % is this pivot negative or too small?
10 continue % yes; skip it
11 end % and continue down the column
12 r=T(tr(ii),1)/T(tr(ii),jp); % find this row ratio
13 if(r < rmin) % is it lower than best so far?
14 rmin=r; % yes; update best so far
15 ip=tr(ii); % and the row where it happens
16 end % and continue
17 end % until all rows are checked
18 end

In the Octave session below I used simplex.m to solve the brewery problem. The optimal
tableau is the one we found in §2.4.3 except that the constraint rows are permuted.

octave:1> % brewery
octave:2> T=[0,-90,-150,-60,-70,0,0,0;
> 160, 7, 10, 8, 12,1,0,0;
> 50, 1, 3, 1, 1,0,1,0;
> 60, 2 4, 1, 3,0,0,1];
octave:3> format bank
octave:4> [xstar,rc,Tstar]=simplex(T,3,7)
xstar =

5.00 12.50 0.00 0.00 0.00 7.50 0.00

rc = 0.00
Tstar =

2325.00 0.00 0.00 18.75 76.25 7.50 0.00 18.75
5.00 1.00 0.00 2.75 2.25 0.50 0.00 -1.25
12.50 0.00 1.00 -1.12 -0.37 -0.25 0.00 0.88
7.50 0.00 0.00 1.62 -0.13 0.25 1.00 -1.37

octave:5> quit

You can confirm that simplex.m returns rc=4 for the unbd problem of §2.5.2, which is
unbounded in tableau column 4, and rc=1 for the infea problem of §2.5.3, which is in both
infeasible forms. Solving sf1 shows that the routine leaves redundant rows in the tableau
even though it ignores them in solving the problem.

4.2 The Revised Simplex Method

When we pivot by the simplex algorithm to solve a linear program, whether we do the
calculations by hand or with a computer every element of each tableau gets filled in. To
find the multipliers for the non-pivot rows we do m divisions. Then each of the 1 + n − m

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

138 The Revised Simplex Method

constant and nonbasic columns requires a multiplication in every row and a subtraction in
the m non-pivot rows. Is all of this arithmetic really necessary?

In carrying out the algorithm there are two reasons why we need each tableau: to deter-
mine the position of the next pivot, and to find the elements of the tableau resulting from
that pivot so that we can do it all again. It would be less work to compute only enough of
the current tableau to determine the position of the next pivot, while keeping track of the
pivots we have already done so that when a final form is reached we can extract the optimal
point or report that there is none. This is the idea of the revised simplex method [3, §3.9]
[145, §4.3].

4.2.1 Pivot Matrices

Pivoting in a tableau yields a new tableau. It is an interesting fact of matrix arithmetic
that premultiplying the original tableau by an appropriate square matrix also yields the new
tableau, as illustrated by the example below. I will call this linear program pm (see §28.5.13).





1 0 1

0 1 −1
2

0 0 1
2





x1 x2 x3 x4
−3 0 1 0 −2
3 1 1 0 1

2 0 −4 1 2

=

x1 x2 x3 x4
−1 0 −3 1 0

2 1 3 −1
2

0

1 0 −2 1
2

1

x1 x2 x3 x4
−1 0 −3 1 0

2 1 3 −1
2

0

1 0 −2 1
2

1

same
result
tableau

In order for this to work, the last m columns of the pivot matrix must be the columns of
the new tableau corresponding to the basic-sequence columns in the original tableau. Here
m = 2, and in the original tableau the basic sequence is S = (x1, x3). In the new tableau
the x1 column becomes the second column of the pivot matrix and the x3 column becomes
the third column of the pivot matrix. How this happens is more obvious if we consider the
multiplication of the x3 column in the original tableau by the pivot matrix.





1 0 1

0 1 −1
2

0 0 1
2









0

0

1





=





0 × 1 + 0 × 0 + 1 × 1

0 × 0 + 0 × 1 + 1 × −1
2

0 × 0 + 0 × 0 + 1 × 1
2





=





1

−1
2
1
2





Because the x3 column of the original tableau is a basis column, multiplying it by the pivot
matrix copies out the pivot-matrix column corresponding to the row of the identity-column
1. If the new x1 and x3 columns produced by the matrix multiplication equal those resulting
from the pivot, then so do the others.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.2.2 Not Doing Unnecessary Work 139

Recall from §2.3 that a pivot is a particular sequence of row operations. Performing those
row operations on the (m + 1) × (m + 1) identity matrix yields a pivot matrix which, when it
premultiplies an (m+1)× (n+1) tableau, performs that pivot in the tableau. To do the pivot
circled in the example above, we divide row 3 by the pivot element 2. Then we subtract the
new row 3 from row 2 to zero out the 1 in the pivot column, and add twice the new row 3 to
row 1 to zero out the −2. Performing these operations on the 3 × 3 identity matrix we find





1 0 0

0 1 0

0 0 1




→ r3/2→





1 0 0

0 1 0

0 0 1
2





→ r2−r3 →





1 0 0

0 1 −1
2

0 0 1
2





→ r1+2r3 →





1 0 1

0 1 −1
2

0 0 1
2





.

To find the pivot matrix that performs a given pivot, it is only necessary to “do to the
identity whatever you would like to do to the tableau” [3, p75]. Because we never pivot in
the objective row of a tableau, the first column of a pivot matrix is always the first identity
column.

4.2.2 Not Doing Unnecessary Work

In the matrix multiplication of §4.2.1 we found all the elements of the result tableau, but
only a few of them are needed to pick the next pivot position. That element is circled in the
tableau T1 on the right below.





1 0 1

0 1 −1
2

0 0 1
2





x1 x2 x3 x4
−3 0 1 0 −2
3 1 1 0 1

2 0 −4 1 2

=

x1 x2 x3 x4
−3
3

−2
Q1 T0 T1

To find the simplex pivot column in T1 we need the objective function cost coefficients.
Some of these we know without having to calculate them, because they are the zero costs
of the new basis columns. The basic sequence of T0 is S0 = (x1, x3) and there we pivot in
the second constraint row of the x4 column, so we know even before performing the pivot
that the basic sequence of T1 is going to be S1 = (x1, x4). In general if we pivot on ahp then
element h of S gets replaced by xp. Thus c1 = c4 = 0 in T1 and we can begin checking cost
entries with c2. That is the dot product of the x2 column in T0 with the first row of Q1,
which turns out to be −3. If we are willing to use the first negative cost rather than the most
negative cost (they are the same in this case) then we can take p = 2 as the pivot column.

To find the pivot row in T1 we need a12 and a22 and, if both are positive, the corresponding
constant-column values b1 and b2 so that we can compare the ratios b1/a12 and b2/a22. In
this case there is only one positive constraint coefficient so that must be the pivot element
and there is no need to find the minimum ratio.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

140 The Revised Simplex Method

To perform the pivot in T1 we would divide row 2 by 3, add three times the new row 2
to row 1, and add 2 times the new row 2 to row 3. Doing these things to the identity matrix
we get

Q2 =





1 1 0

0 1
3

0

0 2
3

1





.

To perform the marked pivot in T1 we can compute T2 = Q2T1, but we found T1 = Q1T0 so
T2 = Q2 [Q1T0] = P2T0 where

P2 = Q2Q1 =





1 1 0

0 1
3

0

0 2
3

1









1 0 1

0 1 −1
2

0 0 1
2





=





1 1 1
2

0 1
3
−1

6

0 2
3

1
6





.

Performing the pivot circled in T1 will make S2 = (x2, x4). Using this information about the
basic sequence of T2 and the pivot matrix P2 we can continue the solution process like this.





1 1 1
2

0 1
3
−1

6

0 2
3

1
6





x1 x2 x3 x4

−3 0 1 0 −2
3 1 1 0 1

2 0 −4 1 2

=

x1 x2 x3 x4
1
2

2
3
7
3

P2 T0 T2

We know without calculating them that c2 and c4 are zero in T2, because x2 and x4 are
basic variables in S2.

We also know without calculating it that c1 > 0 in T2, because the x1 column was basic
in T1, where S1 = (x1, x4), and became nonbasic in T2, where S2 = (x2, x4). In T1 the basic
x1 column had a cost coefficient of zero, and its identity-column 1 must have been in the
pivot row because that is how x1 came to be nonbasic in T2. Every simplex-rule pivot is in
a column with c j < 0 on an ahp > 0, so the multiple of the pivot row that gets added to the
objective row is positive. Thus c1 became in T2 that positive multiple of its identity-column
1 in T1. (In pivoting from T0 to T1 the basic variable x3 likewise became nonbasic so its cost
coefficient c3 became positive in T1, as you should confirm.)

Tableau T2 has c ≥ 0 so it is in optimal form. To recover the optimal point we compute
b. Then using the basic sequence S2 it must be that x⋆2 = b1 and x⋆4 = b2, so x⋆ = [0, 2

3
, 0, 7

3
]⊤.

If the optimal value is of interest the −z entry of T2 can be found by computing one more
dot product.

By using pivot matrices, updating the basic sequence S, and thinking carefully about
what happens as we pivot from each canonical-form tableau to the next, we were able to
solve this problem without finding most of the elements in T1 and T2. In solving a problem
with n ≫ m, as is typical of real applications, this can save a lot of work.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.2.3 The Phase-2 Algorithm 141

4.2.3 The Phase-2 Algorithm

In solving the pm example we began with a tableau already in canonical form, so the process
we used had the effect of carrying out phase 2 of the simplex algorithm. It is summarized
by the flowchart below, in which k counts the iterations or pivots.

ENTER with T0 in canonical form

P0 = I

S0 = basic sequence of T0

k ← 0

?
yes

no

unbounded report unbounded

?
yes

no

optimal
find [−z⋆, b]⊤
= first column of Tk

= Pk × first column of T0

use Sk to arrange the
elements of b into x⋆

report z⋆ and x⋆

EXIT

k ← k + 1

pick the next pivot position
find the resulting Sk
find Qk by row operations on I

Pk = QkPk−1

find only needed entries of
Tk = PkT0

The “needed entries of Tk” are those c j that might be negative up to the first one that is,
the aip in that column, and if more than one aip is positive the corresponding bi. However,
when this algorithm is implemented in a computer program it might turn out that it is less
work to calculate some tableau entries that are not needed than it would be to perform the
tests required to avoid calculating them.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

142 The Revised Simplex Method

4.2.4 Phase-1 Algorithms

The modified-simplex approach can also be used to find an initial canonical form, in either
of the two ways that we considered in §2.8. One way is to construct an artificial problem and
use the phase-2 algorithm of 4.2.3 to solve it. The other is to use pivot matrices to pivot-in
a basis and to solve subproblems, calculating at each step only those tableau entries that
are needed.

In the tableau T−2 below only x3 is basic, so S−2 = (�, x3) is incomplete. To pivot-in a
basis I performed the circled pivot by premultiplying with Q−1 to obtain T−1. A tableau
that results from pivoting-in a basis can have some bi negative, so I began computing the
elements of T−1 by finding b1 and b2. Because b2 is negative I formed a subproblem to
increase it. Computing the cost entries in the subproblem objective row revealed a21 < 0 so
the subproblem pivot must be on a11.





1 0 0

0 1 0

0 −1 1





x1 x2 x3 x4
3 2 3 0 0

3 1 1 0 1

−1 −1 −5 1 1

=

x1 x2 x3 x4

3 1

−4 −2
Q−1 T−2 with S−2 = (�, x3) T−1 with S−1 = (x4, x3)

The pivot matrix that performs the pivot on a11 in T−1 is

Q0 =





1 −2 0

0 1 0

0 2 1




so P0 = Q0Q−1 =





1 −2 0

0 1 0

0 2 1









1 0 0

0 1 0

0 −1 1




=





1 −2 0

0 1 0

0 1 1





and we can find T0 as follows.





1 −2 0

0 1 0

0 1 1





x1 x2 x3 x4
3 2 3 0 0

3 1 1 0 1

−1 −1 −5 1 1

=

x1 x2 x3 x4

3

2

P0 T−2 with S−2 = (�, x3) T0 with S0 = (x1, x3)

Now b1 > 0 and b2 > 0 and S0 contains a complete basis, so it must be that T0 is in canonical
form. You can fill in the remaining entries to verify that this is the starting tableau given
in §4.2.1 for the pm problem, but in solving that problem by the revised simplex algorithm
from this point we would find only the c j whose values we do not already know, then the aip
in the pivot column, and continue as we did in §4.2.2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.2.5 Not Using Unnecessary Space 143

4.2.5 Not Using Unnecessary Space

In solving a small linear program by the simplex algorithm it is convenient to manipulate its
(m + 1)× (n+ 1) tableau [107, p58]. A tableau that is in canonical form includes the identity
columns, which makes its basic feasible solution obvious at a glance. But in solving a linear
program by the revised simplex method we update the basic sequence S separately, and this
allows the algorithm to be described in terms of a data structure that is only m × m. In
solving a problem with n≫ m, as is typical of real applications, this can save a lot of space.

In §2.2 we formed this initial tableau for the brewery problem, in which the all-slack
basis has the sequence S0 = (x5, x6, x7).

b0









c0⊤N

[




]




N0

c0⊤B

[




]




B0

T0 =

x1 x2 x3 x4 x5 x6 x7
0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

z = c⊤NxN + c
⊤
BxB






b = NxN + BxB

If we collect the variables that are basic into x0
B
= [x5, x6, x7]

⊤ and those that are nonbasic into
x0
N
= [x1, x2, x3, x4]

⊤, that also partitions the cost and constraint coefficients in this tableau
as shown. In general the rows of any tableau with a basis can be thought of as representing
the equations given to the right, in which the m × m matrix B is called the basis matrix.

Solving the constraint equation for the basic variables we find

xB = B−1b − B−1NxN .

At a basic feasible solution xN = 0 so xB = B−1b; in T0, for example,

x0B = B−10 b0 = Ib0 =





160

50

60




.

If we increase some nonbasic variable from zero, the formula for xB tells how the basic
variables must change to maintain feasibility. Substituting it into the equation for the
objective and letting y⊤ = c⊤BB

−1 we find

z = c⊤NxN + c
⊤
B

(

B−1b − B−1NxN
)

= c⊤BB
−1b +

(

c⊤N − c⊤BB−1N
)

xN

= y⊤b + (c⊤N − y⊤N) xN .

At a basic feasible solution xN = 0 so z = y⊤b; in T0, for example, y⊤ = [0, 0, 0]B−1 = [0, 0, 0]

and z = y⊤b = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

144 The Revised Simplex Method

If we increase some nonbasic variable from zero, the formula

z = y⊤b + (c⊤N − y⊤N)
︸ ︷︷ ︸

reduced costs

xN

shows that the objective will change by an amount that depends on xN and the nonbasic

reduced cost vector in parentheses. For T0 we found that y⊤ = [0, 0, 0] so its nonbasic
reduced cost vector is just c0⊤N = [−90,−150,−60,−70].

Now suppose that we store the original problem data

A =





x1 x2 x3 x4 x5 x6 x7
7 10 8 12 1 0 0

1 3 1 1 0 1 0

2 4 1 3 0 0 1




b =





160

50

60





as fixed constants but treat B, xB, xN, cB and cN as variables with these initial values.

B =





1 0 0

0 1 0

0 0 1





xB = [x5, x6, x7]
⊤
= [160, 50, 60]⊤

xN = [x1, x2, x3, x4]
⊤
= [0, 0, 0, 0]⊤

cB = [0, 0, 0]⊤

cN = [−90,−150,−60,−70]⊤

Can we solve the brewery problem by manipulating only these variables?

Because the reduced cost vector cN has negative entries the current solution must not
be optimal. We can find a better point by increasing the variable that corresponds to any
negative entry in cN , so let x1 = t or xN = [t, 0, 0, 0]⊤. To stay feasible we must adjust xB to

xB = B−1b − B−1NxN .

The matrix-vector product

NxN =





7 10 8 12

1 3 1 1

2 4 1 3









t

0

0

0





= t





7

1

2





is always just t times the column of A that corresponds to the nonbasic variable being
increased, so it is never actually necessary to write down N. The current basis matrix B is
the identity so B−1 is too, and

xB =





160

50

60




− t





7

1

2




=





160 − 7t
50 − t
60 − 2t




.

160 − 7t ≥ 0 ⇒ t ≤ 160
7
≈ 22.9

50 − t ≥ 0 ⇒ t ≤ 50

60 − 2t ≥ 0 ⇒ t ≤ 30

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.2.5 Not Using Unnecessary Space 145

The highest value of t that keeps xB ≥ 0 is t = 160
7
, and it yields





x5
x6
x7




=





160 − 7t
50 − t
60 − 2t




=





0
190
7
100
7





and





x1
x2
x3
x4





=





t

0

0

0





=





160
7

0

0

0





.

The pivot has made x5 nonbasic and x1 basic, changing the basic sequence to S1 = (x1, x6, x7).

xB =





x1
x6
x7




=





160
7
190
7
100
7





xN =





x2
x3
x4
x5





=





0

0

0

0





This basic sequence specifies the columns of the original data that make up the new B, cB,
and cN.

B =





7 0 0

1 1 0

2 0 1




B−1 =





1
7

0 0

−1
7

1 0

−2
7

0 1





cB = [−90, 0, 0]⊤
cN = [−150,−60,−70, 0]⊤

Using these quantities we can compute reduced costs for the new nonbasic columns.

y⊤ = c⊤BB
−1
= [−90, 0, 0]





1
7

0 0

−1
7

1 0

−2
7

0 1





=

[

−90
7
, 0, 0

]

y⊤N = [−90
7
, 0, 0]





10 8 12 1

3 1 1 0

4 1 3 0




=

[

−900
7
,−720

7
,−1080

7
,−90

7

]

c⊤N − y⊤N = [−150,−60,−70, 0] −
[

−900
7
,−720

7
,−1080

7
,−90

7

]

=

[

−150
7
, 300

7
, 590

7
, 90

7

]

Here as usual N is not a separate matrix but merely a shorthand way of referring to those
columns of A that correspond to the current set of nonbasic variables. In pricing out the
nonbasic columns we can compute the elements of y⊤N and c⊤N − y⊤N one at a time until
finding the first reduced cost that is negative. In a real problem A might have a great many
columns, so it is important for efficiency to refrain from finding unneeded elements of y⊤N.

It is the first nonbasic variable, now x2, that has a negative reduced cost, so we let x2 = t

or xN = [t, 0, 0, 0] and write down, by inspection of A,

NxN = t





10

3

4




.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

146 Solving Linear Programs

Then we can find the basic variables in terms of t,

xB = B−1(b − NxN) =





1
7

0 0

−1
7

1 0

−2
7

0 1









160 − 10t

50 − 3t

60 − 4t




=





160
7
− 10

7
t

190
7
− 11

7
t

100
7
− 8

7
t





and the minimum-ratio row.

160
7
− 10

7
t ≥ 0 ⇒ t ≤ 160

10
= 16

190
7
− 11

7
t ≥ 0 ⇒ t ≤ 190

11
≈ 17.27

100
7
− 8

7
t ≥ 0 ⇒ t ≤ 100

8
= 12.5

The minimum ratio pivot that increases x2 makes the third basic variable, x7, nonbasic,
changing the basic sequence to S2 = (x1, x6, x2) and yielding

xB =





x1
x6
x2




=





160
7
− 10

7
100
8

190
7
− 11

7
100
8

100
8





=





5

7.5

12.5




xN =





x3
x4
x5
x7





=





0

0

0

0





Pricing out this solution reveals that the reduced costs corresponding to its nonbasic variables
are all positive, so x⋆ = [5, 12.5, 0, 0, 0, 7.5, 0]⊤. This is the optimal point we found in §2.4.3
for the brewery problem.

Although the algorithm flowcharted in §4.2.3 requires less arithmetic than this one it
requires about twice as much space, so the matrix simplex method [107, §3.7] illustrated
by this example is always used in production linear programming codes based on pivoting,
and it is the one that most authors (e.g., [4, §5.2.1], [5, §3.3], [79, §17.4]) refer to as the
revised simplex method.

Stating the problem in matrix form reveals that solving a linear program consists simply
of finding the best set of A columns to have in the basis, or the best m of the n variables to
allow to be nonzero. The basis matrix enters into the revised simplex calculations in such
a way that each step uses the original problem data. The canonical form at iteration k is
represented by the square linear system Bkx = b, where the columns of Bk are the columns
of A that are in Sk. Each phase-2 pivot exchanges one of the columns of A that is in B for
another column of A, and each basic feasible solution is xk = B−1

k
b.

4.3 Large Problems

Our näıve implementation of the tableau simplex method in simplex.m is straightforward
and easy to understand, but it is practical for solving only small linear programs. The matrix
version of the revised simplex method uses less processor time and memory, but it too is
unsuitable for large problems unless implemented in a more subtle way than suggested above.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.3.2 Exploiting Problem Structure 147

Since the discovery of the simplex algorithm in July of 1947 [35, p15] several generations
of very smart people have refined its software realization, in the process generating a vast
literature whose details are well beyond the scope of this text. Here I will describe only a few
of their clever ideas, which you can find out more about by consulting the cited references.

4.3.1 Representing the Basis Inverse

Whenever we needed B−1 in §4.2.5 I just wrote it down as though finding it were effortless,
but a revised simplex code that uses this basis inverse matrix must somehow calculate it
at each step. Explicitly inverting B with a direct method requires a number of arithmetic
operations that is proportional to m3 [20, p282], which is ruinous if m is large. The first
practical implementations of the revised simplex method found B−1

k
through a less-expensive

process of updating B−1
k−1, either by pivoting an augmented matrix [103, §1.2.2] [107, p60-63]

or by using a product-form inverse [4, §7.5.1] [103, §6.2] in which B−1 is represented as a
product of elementary matrices.

If B has an inverse it is convenient in matrix algebra to denote the solution to Br = s

as r = B−1s, and that is what we did in §4.2.5. But to solve the linear system numerically
it is better to begin by finding a lower-triangular matrix L and an upper-triangular matrix
U such that B = LU. Then LUr = s, and if we let Ur = v we can solve Lv = s for v very
easily by doing simple substitutions. Once v has been found we can solve Ur = v for r in
the same easy way. If this approach of matrix factorization followed by forward- and
back-substitutions is used for solving the linear systems in the revised simplex algorithm,
the factors Lk and Uk can be found by updating Lk−1, and Uk−1 [4, §7.5.2] [5, §13.4]. Even if
the product-form inverse is used to update B−1, calculating r = B−1s turns out to be slower
and less accurate, so modern codes update L and U and solve the triangular systems Lv = s

and Ur = v instead.

4.3.2 Exploiting Problem Structure

Large linear programs almost always [103, page v] have special structure: if we were to put
the standard-form problem into a tableau its entries (perhaps after some rearrangement of
rows and columns) would have a regular pattern. Often, as in the case of the transportation
problem that we will study in §6, it is possible to develop a special-purpose algorithm that
exploits the particular pattern that is present, to reduce the amount of work or space needed
to solve the problem. It might be impractical to solve a very large problem except by using
an algorithm that takes advantage of its structure. The most broadly useful exploitations of
special structure are upper bounding and column generation.

upper bounding Many linear programs have the special structure that some constraints
are upper bounds on the variables (see §2.9.5). For example, the branch-and-bound algorithm
for solving integer linear programs, which we will study in §7, generates linear programming

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

148 Large Problems

subproblems that include upper bound constraints. A bound such as x1 ≤ 3 can be handled
like any other inequality, by adding a slack variable and a row to A and b. But it is also
possible to modify the revised simplex algorithm [4, §7.2] [103, §6.3] [145, §10.6] in such a
way that upper bounds on the variables are handled in the same way as their (usually zero)
lower bounds without enlarging the basis matrix B. The algorithm becomes significantly
more complicated, but if many variables have upper bounds this strategy can save both
work and space.

column generation Some linear programs have a special structure that permits a col-
umn of A with negative cost to be produced when needed by solving an auxiliary problem
within each iteration of the revised simplex method. This permits the simplex iterations to
continue until the auxiliary problem’s solution reveals that optimality has been achieved,
and it can make possible the solution of problems in which there are too many variables to
find or store all of A.

4.3.3 Decomposition

The most important instance in which column generation can be used is when the nonzero
constraint coefficients of a large linear program can be arranged into a block-angular struc-
ture so that

A =





A11 A12 · · · A1p

A21

A32

. . .

A(p+1)p





.

Each block A(j+1) j contains the coefficients in a set of constraints that involve only a subset
of the variables, but the coupling equations in the first row involve all of the variables.
If it were not for the coupling equations each linear (sub)program represented by an A(j+1) j

block could be solved independently to find the optimal values of its variables.
For simplicity we will consider the case when p = 2, so that the linear program having

constraint coefficient matrix A can be written as follows,

minimize
x∈Rn

z = c1⊤x1 + c2⊤x2

subject to A11x
1
+ A12x

2
= b1

A21x
1

= b2

A32x
2
= b3

x1, x2 ≥ 0

where x1 = [x1 . . . xn1]
⊤, x2 = [xn1+1 . . . xn1+n2]

⊤, and n1 + n2 = n. If there are m1 coupling
equations and the block constraints have a total of m2 rows then this problem has m = m1+m2

equality constraints and n variables.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.3.3 Decomposition 149

In any optimal solution, x1 and x2 must each satisfy its block and nonnegativity con-
straints, which define these polyhedra.

X1 =

{

x1 ∈ Rn1
∣
∣
∣ A21x

1
= b2, x1 ≥ 0

}

X2 =

{

x2 ∈ Rn2
∣
∣
∣ A32x

2
= b3, x2 ≥ 0

}

If X1 is bounded and has extreme points u1 . . .uL1 then [103, §3.2] any point x1 ∈ X1 can be
written (see §3.5) as the convex combination

x1 =

L1∑

l=1

αlu
l where

L1∑

l=1

αl = 1 and αl ≥ 0, l = 1 . . . L1.

If X2 is bounded and has extreme points v1 . . . vL2 then any point x2 ∈ X2 can be written as
the convex combination

x2 =

L2∑

l=1

βlv
l where

L2∑

l=1

βl = 1 and βl ≥ 0, l = 1 . . . L2.

Here L1 and L2 are the numbers of extreme points of the polyhedra X1 and X2. A polyhedron
in Rn can have many more than n extreme points, so typically L1 ≫ n1 and L2 ≫ n2.

By substituting these representations of x1 and x2 we can rewrite the original linear
program in terms of the extreme points as this master problem.

minimize
α∈RL1 β∈RL2

z = c1⊤
L1∑

l=1

αlu
l
+ c2⊤

L2∑

l=1

βlv
l

subject to A11

L1∑

l=1

αlu
l
+ A12

L2∑

l=1

βlv
l
= b1

L1∑

l=1

αl = 1

L2∑

l=1

βl = 1

ααα ≥ 0

βββ ≥ 0

Now there are a huge number of variables but only m1 + 2 constraints, so the basis matrix
B is small. This problem is therefore easy, if only we can figure out where to pivot at every
iteration of the revised simplex algorithm. It turns out [4, §7.4] [103, §3.3] that there is an
auxiliary problem, also an easy linear program, that can be used on each constraint block
to generate an extreme-point column having a negative cost or to determine that there are
none.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

150 Large Problems

To solve the master problem by the revised simplex method it is convenient to rewrite it
as follows.

minimize
w∈RL1+L2

c⊤Mw

subject to AMw = bM

w ≥ 0

where






c⊤M =

[

c1⊤u1 · · · c1⊤uL1 , c2⊤v1 · · · c2⊤vL2
]

w⊤ = [ααα⊤, βββ⊤]

AM =





A11u
1 · · · A11u

L1 A12v
1 · · · A12v

L2

1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1





bM =





b1

1

1





If at some stage the basis inverse matrix is B−1 and the original costs corresponding to the
basic columns are [cM]

⊤
B then we can find y⊤ = [cM]

⊤
BB
−1
=

[

ȳ, yα, yβ
]

. This vector is m + 2

elements long, with its last two elements corresponding to the sum constraints on ααα and βββ.
Then the reduced costs are the elements of this vector.

c⊤M − y⊤AM =

[

(c1⊤ − ȳ⊤A11)u
1 · · · (c1⊤ − ȳ⊤A11)u

L1 , (c2⊤ − ȳ⊤A12)v
1 · · · (c2⊤ − ȳ⊤A12)v

L1
]

Because [4, p232] the ul and vl are extreme points of X1 and X2 we can find the lowest
reduced cost among the terms involving the ul by solving the auxiliary problem on the left
below and the lowest reduced cost among the terms involving the v1 by solving the auxiliary
problem on the right.

minimize
x1∈Rn1

q1 =
(

c1⊤ − A⊤11ȳ
)
⊤x1 − yα

subject to x1 ∈ X1

minimize
x2∈Rn2

q2 =
(

c2⊤ − A⊤12ȳ
)
⊤x2 − yβ

subject to x2 ∈ X2

If either problem has an objective value that is negative then its optimal vector is one of the
extreme points ul or vl and that column of AM can be chosen to enter the basis; if q⋆1 ≥ 0

and q⋆
2
≥ 0 then the current basis is optimal for the master problem.

When the original problem has p ≥ 2 blocks of constraints we get p subproblems, and
because they involve disjoint sets of variables they could be solved simultaneously on a
computer with p processors.

If the master problem has the optimal solution (ααα⋆, βββ⋆), the solution to the original linear
program is

x⋆1 = Uααα⋆

x⋆2 = Vβββ⋆

where U and V are matrices whose columns are respectively the u and the v columns that
are basic in the solution to the master problem.

To simplify the exposition above I assumed that X1 and X2 are bounded sets, but
[103, §3.2] the decomposition algorithm also works if there are rays.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.4.1 Picking a Good Pivot Column 151

4.4 Linear Programming Software

The algorithm improvements described in §4.2 and §4.3 are mathematical results and thus
largely independent of how the simplex method calculations are carried out. Refinements can
also be made in the implementation of the algorithm [4, §7.6] [5, §13.5,13.7] and computer
programs that are considered to be of industrial strength do that too.

4.4.1 Picking a Good Pivot Column

To solve a canonical-form linear program by the simplex algorithm we can pivot in any
column having c j < 0, so in the revised simplex methods described above we avoided some
work by picking the first such column; I will call this the first-negative pricing rule.
Might a heuristic that requires more columns to be priced out for each pivot nonetheless
speed convergence, by allowing the algorithm to reach optimal form in fewer iterations? To
study this question recall the graph problem of §3.1, whose starting tableau is shown on the
left below.

x1 x2 s1 s2 s3 s4
0 −2 −1 0 0 0 0

6 1 6
5

1 0 0 0

2 1 −1 0 1 0 0

3 1 0 0 0 1 0

5 0 1 0 0 0 1

x1 x2 s1 s2 s3 s4
4 0 −3 0 2 0 0

4 0 11
5

1 −1 0 0

2 1 −1 0 1 0 0

1 0 1 0 −1 1 0

5 0 1 0 0 0 1

x1 x2 s1 s2 s3 s4
5 −2 0 0 0 0 1

0 1 0 1 0 0 −6
5

7 1 0 0 1 0 1

3 1 0 0 0 1 0

5 0 1 0 0 0 1

In this problem z = −2x1 − x2 so a unit increase in x1 improves the objective by 2 while a
unit increase in x2 improves the objective by only 1. This suggests that we should pivot in
the column having the most negative c j, which I will call the most-negative pricing rule.
Following it yields the top tableau on the right, with an objective value of z = −4.

Alas, the most-negative pricing rule does not always result in the biggest improvement
to the objective value; pivoting in the x2 column above produces the bottom tableau on
the right, with an objective value of z = −5. Rather than picking the column with the most
negative c j we could calculate for each column having a negative c j what the objective would
change to if the pivot were performed in that column,

zk+1 = zk + bh

(
c j

ah j

)

.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

152 Linear Programming Software

Then we could pick the column whose pivot would result in the lowest zk+1. Unfortunately
this optimal pricing rule requires finding the pivot row h in each possible pivot column. To
do this using the MATLAB code we wrote in §4.1 would require an invocation of minr.m for
each column we consider, and this is likely to take more work than we could save by picking
better pivots.

A strategy that is cheaper than optimal pricing but yields faster convergence than first-
negative pricing is the steepest-edge pricing rule [4, §7.6.1]. In the matrix simplex method
of §4.2.5 we derived this formula telling how the basic variables must be related to the
nonbasic ones in order for x⊤ = [x⊤N , x

⊤
B] to be feasible.

xB = B−1b − B−1NxN
If xk is a basic feasible solution and we change xN from 0 by increasing some nonbasic variable,
then xB must also change to remain feasible and we will move to this point.

x =





xN

xB



 =





xN

B−1
k
b − B−1

k
NxN



 =





0

B−1
k
b



 +





xN

−B−1
k
NxN



 = xk +

[

I

−B−1
k
N

]

xN = xk + ZkxN

For example, in solving the brewery problem our first pivot increased x1, changing xN from
[0, 0, 0, 0]⊤ to [t > 0, 0, 0, 0]⊤ and moving the solution to

x(t) = x0 + Z0xN =





0

0

0

0

160

50

60





+





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−7 −10 −8 −12
−1 −3 −1 −1
−2 −4 −1 −3









t

0

0

0





=





0

0

0

0

160

50

60





+ t





1

0

0

0

−7
−1
−2





= x0 + tv1.

v1 v2 v3 v4

The columns of Z, which I have labeled v1, v2, v3, and v4, are the edge directions in which
x(t) moves if we pivot by the simplex rule in the first, second, third, or fourth nonbasic
column of A, and the distance t that we move is the minimum ratio for that column.

Recall that the costs associated with the nonbasic variables are given by ĉ⊤ = c⊤N−c⊤BB−1N.
At the first pivot in our example, c⊤B = [0, 0, 0]⊤ so

ĉ1 = c1 − [0, 0, 0]





−7
−1
−2




= −90, ĉ2 = c2 − [0, 0, 0]





−10
−3
−4




= −150, . . .

and in general ĉ j = [c⊤N , c
⊤
B]v j = c⊤v j. In this dot product the identity-column part of v j picks

the appropriate nonbasic cost c j out of c and the part of v j that is a column of −B−1N is
used in calculating the second term in the formula for ĉ j.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.4.2 Tolerances and Scaling 153

We have shown that the reduced costs associated with the nonbasic variables can be
found one at a time in each iteration k of revised simplex by constructing Zk and computing
ĉ j = c⊤v j for each column v j of Zk (that is, for each j in the current index set of nonbasic
variables). Thinking about the pricing-out operation in this way reveals that each reduced
cost ĉ j is a weighted sum of the c j in which the weights are the elements of the edge direction
vector v j. If some of the v j are longer than others this calculation can yield ĉ j values that do
not fairly represent the relative importance of the nonbasic variables. Steepest-edge pricing
removes this bias by normalizing each edge direction vector to compute

c̄ j =
1

||v j||
c⊤v j

and pivoting in the column for which c̄ j is most negative. To avoid the work of explicitly
computing Zk and normalizing its columns, in practice a rather complicated updating scheme
[4, p261-264] is used to find the normalized edge directions.

In a problem that has many columns it might be expensive to apply the most-negative
or steepest-edge pricing rule to all of them. This is called full pricing. Instead many codes
do partial pricing, by finding the most negative ĉ j or c̄ j among a smaller candidate list

of nonbasic columns. Thus the most-negative and steepest-edge pricing rules can each be
either full or partial.

4.4.2 Tolerances and Scaling

Our MATLAB implementation of the tableau simplex algorithm in §4.1 must avoid pivoting
on a zero ahp, delete a constraint row that is all zeros, accept a subproblem solution if its
objective value is close enough to zero, and identify optimal form when the reduced costs
are all positive or zero. In each context the numbers that ought to be zero would be if we
used exact arithmetic but usually come out slightly different in floating point. To decide if
a real value can be assumed zero I compare its absolute value to ztol = 10−6. This zero

tolerance works for the examples we have studied, in which the coefficients are neither much
bigger nor much smaller than 1, but it would cause the algorithm to malfunction in solving
a problem whose data are all tiny numbers or all huge ones.

If a problem has data that span many orders of magnitude it is likely that at least some of
its basis matrices will be ill-conditioned, and this accelerates the accumulation of roundoff
errors (see §10.6.2).

To mitigate these tolerance and conditioning effects many authors (e.g. [4, §7.6.4]) rec-
ommend scaling the constraint rows or variable columns of a linear program, or both, to
make the element largest in absolute value have magnitude near 1. To keep the scaling cal-
culations themselves from introducing roundoff errors [77, p60] the scale factor can be made
a power of 2. Although [87, §4.8-4.9] scaling often fails to ensure the accuracy of computed
results, linear programming packages commonly provide scaling options and also allow the
user to set the various tolerances that are used (which might not all have the same value).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

154 Linear Programming Software

4.4.3 Preprocessing

If the newseq.m routine of §4.1 discovers a zero A row it either removes the redundant
constraint if bi = 0 or reports infeasible form 1 if bi , 0. Because this happens before entering
phase1.m it can be thought of as simplifying the problem (or, if infeasibility is discovered,
solving it) before the simplex algorithm even begins. In our MATLAB implementation this
preprocessing is an accidental byproduct of pivoting-in a basis, but many production codes
explicitly analyze a linear program for these and other ways of making the problem smaller
or easier, before applying the simplex algorithm [5, §13.7] [4, §7.6.5].

An equality constraint that involves a single variable (this is called a row singleton)
fixes the value of that variable. By substituting this value wherever the variable appears,
both the variable and the constraint can be eliminated from the problem.

In a code that uses upper-bounding as described in §4.3.2, a general constraint that is
really just an upper bound on a variable can be treated that way instead. Variable bounds
that happen to be known can also sometimes be used to simplify other constraints. In this
example

x1 + x2 = 10

x1 ≥ 10

x ≥ 0

it must be that x1 = 10 and x2 = 0, so we can fix those values and remove both constraints.
One pass of preprocessing might simplify the problem in such a way that a second pass

can make further simplifications. In this example

x3 = 1

x3 + 2x4 = 5

the first pass could substitute for x3 its value of 1, removing that variable and the first
constraint. The resulting second constraint

1 + 2x4 = 5

then implies that x4 = 2 so a second pass of preprocessing could replace that variable by its
value, eliminating x4 and this constraint.

Some preprocessors can detect and exploit more complicated relationships between con-
straints. Simplifying a problem might dramatically reduce the number of pivots required to
solve it, but preprocessing also takes work and the more sophisticated the preprocessing is
the more work it takes. For a given linear program some optimal level of preprocessing will
minimize the total time to solution, but unfortunately that level is hard to guess beforehand.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.5 Degeneracy 155

4.4.4 Black-Box Solvers

Some books on applied operations research introduce linear programming by showing the
student how a particular canned computer program or package can be used to solve typical
problems, and this practical knowledge might be all an analyst needs to get useful answers
out of well-behaved optimization models. Of course some formulations are infeasible or
unbounded or badly-scaled, or have optimal rays or multiple optimal vertices or some other
peculiarity, and then it can be hard to interpret the output from a linear programming
package without having some idea how it works inside.

Other books refrain even from naming particular packages in light of how many have come
and gone, waxing and waning in popularity, over the long history of linear programming (a
web search will turn up dozens). Yet linear programming is, in theory and largely also in
practice, a solved problem, and a few simplex-method codes have persisted for so many
years that it seems likely they will still be in use as you read these words [117, §5]. Surely
these deserve to be mentioned, even though this book is mainly about the mathematical and
algorithmic foundations of numerical optimization rather than production software.

For most small problems, most any solver will do. Our MATLAB routine simplex.m has
the virtue that you know all about it. At any given moment in history there are other free
open-source solvers, of varying capabilities and quality, that can be downloaded from the
internet. Excel can solve linear programs exactly by representing the data as fractions. Both
Maple and Mathematica can solve linear programs symbolically as well as numerically.
Lingo has both a venerable heritage and a modern interface for web applications.

For the largest problems, only purpose-written code will do. Models that involve vast
amounts of data always have special structure, and any effective approach to solving them
must exploit it. Often interior-point methods (see §21.3 and [5, §14.4]) work better than the
simplex algorithm in this context.

For linear programs of intermediate size, two widely respected packages are CPLEX

(which implements interior-point as well as simplex algorithms) and MINOS (which can
handle nonlinear as well as linear programs). Both of these solvers are proprietary, but you
can avoid paying a license fee if you use them via the NEOS web server discussed in §8.3.1.

4.5 Degeneracy

The right tableau is an optimal form for the left tableau [3, p52-53] [145, p91] [11].

x1 x2 x3 x4 x5 x6 x7

3 0 0 0 −3
4

20 −1
2

6

0 1 0 0 1
4
−8 −1 9

0 0 1 0 1
2
−12 −1

2
3

1 0 0 1 0 0 1 0

pivots

x1 x2 x3 x4 x5 x6 x7
17
4

0 3
2

5
4

0 2 0 21
2

3
4

1 −1
2

3
4

0 −2 0 15
2

1 0 2 1 1 −24 0 6

1 0 0 1 0 0 1 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

156 Solving Linear Programs

> This is PIVOT, Unix version 4.3
> For a list of commands, enter HELP.
>
< read cycle.tab
Reading the tableau...
...done.

x1 x2 x3 x4 x5 x6 x7
3. 0. 0. 0. -0.75 20. -0.5 6.
0. 1. 0. 0. 0.25 -8. -1.0 9.
0. 0. 1. 0. 0.50 -12. -0.5 3.
1. 0. 0. 1. 0.00 0. 1.0 0.

< p 2 5

x1 x2 x3 x4 x5 x6 x7
3. 3. 0. 0. 0. -4. -3.5 33.
0. 4. 0. 0. 1. -32. -4.0 36.
0. -2. 1. 0. 0. 4. 1.5 -15.
1. 0. 0. 1. 0. 0. 1.0 0.

< p 3 6

x1 x2 x3 x4 x5 x6 x7
3. 1.0 1.00 0. 0. 0. -2.000 18.00
0. -12.0 8.00 0. 1. 0. 8.000 -84.00
0. -0.5 0.25 0. 0. 1. 0.375 -3.75
1. 0.0 0.00 1. 0. 0. 1.000 0.00

< p 2 7

x1 x2 x3 x4 x5 x6 x7
3. -2.0000 3.000 0. 0.250000 0. 0. -3.0000
0. -1.5000 1.000 0. 0.125000 0. 1. -10.5000
0. 0.0625 -0.125 0. -.046875 1. 0. 0.1875
1. 1.5000 -1.000 1. -.125000 0. 0. 10.5000

< p 3 8

x1 x2 x3 x4 x5 x6 x7
3. -1.0000000 1.0000000 0. -0.50 16.000000 0. 0.
0. 2.0000000 -6.0000000 0. -2.50 56.000000 1. 0.
0. 0.3333333 -0.6666667 0. -0.25 5.333333 0. 1.
1. -2.0000000 6.0000000 1. 2.50 -56.000000 0. 0.

< p 2 2

x1 x2 x3 x4 x5 x6 x7
3. 0. -2.0000000 0. -1.7500000 44. 0.5000000 0.
0. 1. -3.0000000 0. -1.2500000 28. 0.5000000 0.
0. 0. 0.3333333 0. 0.1666667 -4. -0.1666667 1.
1. 0. 0.0000000 1. 0.0000000 0. 1.0000000 0.

< p 3 3

x1 x2 x3 x4 x5 x6 x7
3. 0. 0. 0. -0.75 20. -0.5 6.
0. 1. 0. 0. 0.25 -8. -1.0 9.
0. 0. 1. 0. 0.50 -12. -0.5 3.
1. 0. 0. 1. 0.00 0. 1.0 0.

This problem, which I will call cycle (see
§28.5.14), is more interesting than it might
appear, because there is a sequence of simplex-
rule pivots that leads from its first tableau back
to the same tableau without ever producing a
final form. In this pivot session the columns
are chosen by the most-negative pricing rule
and when there is a tie for the minimum ratio
the minimum ratio row having the smallest row
index is chosen. We have used these rules to
solve other problems, but following them here
makes the algorithm cycle endlessly through
the same six tableaus, none of which is the
optimal form given on the previous page. This
is not a result of roundoff error, and it happens
even if we use exact rather than floating-point
arithmetic.

To understand why the simplex algorithm
fails to converge on this problem we need
to investigate the circumstances in which it
succeeds.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.5.1 Simplex Algorithm Convergence 157

4.5.1 Simplex Algorithm Convergence

When we solve a linear program by the simplex algorithm, each pivot transforms one
canonical-form tableau into another. Each canonical form can be uniquely identified by
its basic sequence S. The number of possible basic sequences is the number of ways in which
the columns of Im×m can be placed among the n variable columns of the tableau. That number
is [3, p55]

ways to choose m columns from among n [153, p13]

ways to order a given set of m columns [153, p10]

q =

(

n

m

)

m! =
n!

(n − m)!m! m! =
n!

(n − m)! = n(n − 1) · · · (n − [m − 1]).

For example, if n = 5 and m = 3 then there are at most

q =
5!

(5 − 3)! =
(5)(5 − 1)(5 − 2)(5 − 3)(5 − 4)

(5 − 3)(5 − 4) = 5 × 4 × 3 = 60

possible basic sequences.
Each basic sequence determines a basic feasible solution and its objective value z. If each

phase-2 pivot decreases z, then each must generate a different basic feasible solution and no
basic sequence can repeat. If no basic sequence repeats, then because there are no more than
q of them the simplex algorithm must converge in no more than q phase-2 pivots.

When can we be sure that z decreases with each phase-2 pivot performed by the simplex
algorithm? This pivot in Tk yields the entries in Tk+1 (I have assumed that numbers not
shown on the left are appropriate for that tableau to be in canonical form, and they are of
course also updated by the pivot). After dividing the pivot row by the pivot element we
must add 3 times the new pivot row to the objective row to zero out the cost coefficient,

Tk =

5 −3

2 4

pivot

5 + 2
4
× 3 0

2
4

1
= Tk+1

The value of the upper-left entry in tableau Tk is −zk and after pivoting on ahp the upper-left
entry of tableau Tk+1 is −zk+1 = −zk + ∆z where

∆z =
bh

ahp
cp.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

158 Degeneracy

For Tk to be in canonical form it must be that bh ≥ 0. For column p to be chosen as the
pivot column it must be that cp < 0. For row h to be chosen as the pivot row it must be
that ahp > 0. Thus ∆z ≤ 0 and the pivot reduces the objective provided that bh , 0.

In our cycling example, b1 = b2 = 0 in every tableau, and the simplex algorithm pivots
we performed never made the objective go down. If a problem has even one canonical form
in which even one bi = 0, it is said to be a degenerate linear program. The graph

problem of §3.1 is degenerate because 3 hyperplanes intersect at vertex E of its feasible set,
overdetermining the point in R2. In the guided tour of §3.2.2 we found 3 canonical-form
tableaus representing that extreme point, each having b1 = 0. A linear program in which
every bi > 0 in every canonical form tableau is said to be nondegenerate. If the most-
negative pricing rule is used to select the pivot column and the smallest-row-index rule is used
to break ties in the selection of the minimum-ratio pivot row, then the simplex algorithm is
sure to converge only on problems that are nondegenerate.

4.5.2 Ways to Prevent Cycling

Cycling can be prevented by using more complicated rules to pick the pivot element at each
phase-2 iteration of the simplex algorithm.

The smallest-leaving-index rule [16, §1] [107, Exercise 3.12.35] uses the first-negative
pricing rule to pick the pivot column p. When the smallest bi/aip with aip > 0 is unique, it
picks that row as the pivot row h. If the minimum ratio occurs for more than one row, it
selects for the pivot row the minimum ratio row for which the corresponding basic variable
x j (the variable that will leave the basis) has the lowest index j. The pivot session in the
left column on the next page uses this rule to solve the cycle problem. The first three pivot
positions determined by this rule are the same ones we used in §4.5.0, but now to resolve
the tie in the fourth tableau we get to decide between row 2, for which the identity-column
1 is in the x6 column and row 3, for which the identity-column 1 is in the x5 column, and
therefore pick row 3. The remaining pivots are uniquely determined. The optimal tableau
is that given in §4.5.0 but with its constraint rows permuted.

The successive-ratio rule [3, p55-58] [145, §3.4] [38] permits any column having ck < 0

(including one chosen by steepest-edge pricing) to be used as the pivot column p. When the
smallest bi/aip with aip > 0 is unique, it picks that row as the pivot row h. If the minimum
ratio occurs for more than one row, it computes for each such row the successive ratios

bi

aip

ai1

aip

ai2

aip
. . .

aip

aip
. . .

ain

aip
.

Then it compares the rows of successive ratios one column at a time from left to right, until
a column is reached for which the successive ratio in one row is smallest. That minimum

successive-ratio row is chosen as the pivot row. The pivot session in the right column on
the next page uses this rule solve the cycle problem. The optimal tableau is that given in
§4.5.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.5.2 Ways to Prevent Cycling 159

> This is PIVOT, Unix version 4.3
> For a list of commands, enter HELP.
>
< read cycle.tab
Reading the tableau...
...done.

x1 x2 x3 x4 x5 x6 x7
3. 0. 0. 0. -0.75 20. -0.5 6.
0. 1. 0. 0. 0.25 -8. -1.0 9.
0. 0. 1. 0. 0.50 -12. -0.5 3.
1. 0. 0. 1. 0.00 0. 1.0 0.

< p 2 5

x1 x2 x3 x4 x5 x6 x7
3. 3. 0. 0. 0. -4. -3.5 33.
0. 4. 0. 0. 1. -32. -4.0 36.
0. -2. 1. 0. 0. 4. 1.5 -15.
1. 0. 0. 1. 0. 0. 1.0 0.

< p 3 6

x1 x2 x3 x4 x5 x6 x7
3. 1.0 1.00 0. 0. 0. -2.000 18.00
0. -12.0 8.00 0. 1. 0. 8.000 -84.00
0. -0.5 0.25 0. 0. 1. 0.375 -3.75
1. 0.0 0.00 1. 0. 0. 1.000 0.00

< p 2 7

x1 x2 x3 x4 x5 x6 x7
3. -2.0000 3.000 0. 0.250000 0. 0. -3.0000
0. -1.5000 1.000 0. 0.125000 0. 1. -10.5000
0. 0.0625 -0.125 0. -.046875 1. 0. 0.1875
1. 1.5000 -1.000 1. -.125000 0. 0. 10.5000

< p 3 2

x1 x2 x3 x4 x5 x6 x7
3. 0. -1. 0. -1.25 32. 0. 3.
0. 0. -2. 0. -1.00 24. 1. -6.
0. 1. -2. 0. -0.75 16. 0. 3.
1. 0. 2. 1. 1.00 -24. 0. 6.

< p 4 3

x1 x2 x3 x4 x5 x6 x7
3.5 0. 0. 0.5 -0.75 20. 0. 6.
1.0 0. 0. 1.0 0.00 0. 1. 0.
1.0 1. 0. 1.0 0.25 -8. 0. 9.
0.5 0. 1. 0.5 0.50 -12. 0. 3.

< p 4 5

x1 x2 x3 x4 x5 x6 x7
4.25 0. 1.5 1.25 0. 2. 0. 10.5
1.00 0. 0.0 1.00 0. 0. 1. 0.0
0.75 1. -0.5 0.75 0. -2. 0. 7.5
1.00 0. 2.0 1.00 1. -24. 0. 6.0

> This is PIVOT, Unix version 4.3
> For a list of commands, enter HELP.
>
< read cycle.tab
Reading the tableau...
...done.

x1 x2 x3 x4 x5 x6 x7
3. 0. 0. 0. -0.75 20. -0.5 6.
0. 1. 0. 0. 0.25 -8. -1.0 9.
0. 0. 1. 0. 0.50 -12. -0.5 3.
1. 0. 0. 1. 0.00 0. 1.0 0.

< p 3 5

x1 x2 x3 x4 x5 x6 x7
3. 0. 1.5 0. 0. 2. -1.25 10.5
0. 1. -0.5 0. 0. -2. -0.75 7.5
0. 0. 2.0 0. 1. -24. -1.00 6.0
1. 0. 0.0 1. 0. 0. 1.00 0.0

< p 4 7

x1 x2 x3 x4 x5 x6 x7
4.25 0. 1.5 1.25 0. 2. 0. 10.5
0.75 1. -0.5 0.75 0. -2. 0. 7.5
1.00 0. 2.0 1.00 1. -24. 0. 6.0
1.00 0. 0.0 1.00 0. 0. 1. 0.0

In the first tableau above I arbitrarily
chose x4 as the pivot column, so the suc-
cessive ratios for rows 2 and 3 are

0
0.25

1
0.25

0
0.25

0
0.25

0.25
0.25

−8
0.25

−1
0.25

9
0.25

0
0.50

0
0.50

1
0.50

0
0.50

0.50
0.50

−12
0.50

−0.5
0.50

3
0.50

The entries in the first column of succes-
sive ratios are both 0, but in the second
column 0

0.50
< 1

0.25
, so the pivot row is

row 3. The second pivot is uniquely de-
termined.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

160 Degeneracy

4.5.3 Degeneracy and Convergence in Practice

In the simplex algorithm implementation of §4.1, phase2.m picks 12-20 the variable column
with the most-negative cost as the pivot column. Then for the pivot row minr.m picks 12-16

the minimum-ratio constraint row, using 13 the row with the smallest row index if there is
a tie. As we have seen, these rules permit cycling.

To implement either the smallest-leaving-index or the successive-ratio anti-cycling rule it
is necessary to identify the constraint rows that are tied for the minimum ratio. We might
list them explicitly by calculating the row ratios for all possible pivot rows, sorting them into
ascending order, and searching the sorted list for the first value greater than the preceding
one; the rows corresponding to the identical ratios that appear before that first greater one
would then be the tied minimum-ratio rows. This approach is conceptually simple, but
it is expensive because the work of sorting m numbers grows at least as fast as m log2(m)

[95, §5.3.1] and as m2 for näıve methods like bubble sort.

It is faster to calculate the row ratios for all possible pivot rows, search for their minimum,
and simply rule out the rows that have ratios higher than that. The routines listed on the
next two pages both take this approach, setting flag(i)=0 to indicate that a constraint
row has been ruled out or leaving flag(i)=1 if the row is still a candidate to be chosen for
the pivot. Each of these routines is meant to replace minr.m in the phase2.m subroutine
of simplex.m, so it is necessary to address the rows of the tableau T indirectly using tr.
Recall from §4.1 that this vector contains the indices of the rows of T that are in the current
problem or subproblem. It will be easier to understand how smind.m and srr.m work if you
assume for now that tr(i)=i and that mr is the number m + 1 of rows in T.

First consider smind.m, which implements the smallest-leaving-index rule. The code
begins by 4 setting the zero tolerance ztol and 5 initializing flag to a vector of m ones.
This makes all of the constraint rows candidates for selection as the pivot row. The second
stanza 7-20 finds the row ratios r(i) for all possible pivot rows, and their minimum rmin.
In the process it 11-14 rules out rows that cannot be the pivot row because the pivot-column
element is not positive, and 18 sets ip to the index of the first minimum-ratio row. The
third stanza 22-31 rules out any remaining row whose ratio is greater than rmin 26-27 , or
counts the tie 28-30 if the ratio is equal to rmin. The fourth stanza 33-34 returns the pivot
row ip that was set earlier 18 if that row alone has the minimum ratio.

The final stanza 36-50 finds the minimum-ratio row whose identity-column 1 has the
lowest column index idxmin. It initializes idxmin to nn = n + 1, which is greater than the
highest column index in A. Then it 38-50 examines each constraint row. If the row has been
excluded previously 39 it is skipped; otherwise it is one of the tied rows. Recall that S(j)
is zero if x j is nonbasic or the row index in A of the identity-column 1 if x j is basic. The
loop over jj 40-45 searches the basis vector S to determine the column index idx in A of
the identity-column 1 that is in this row. That index idx is 46-49 compared to the lowest
index idxmin found so far; if it is lower idxmin is replaced and the pivot row ip is set to the
current row of T. At the end of this process the routine returns the last value set for ip.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.5.3 Degeneracy and Convergence in Practice 161

1 function ip=smind(T,tr,mr,jp,nn,S)
2 % find the pivot row using the smallest-leaving-index rule
3
4 ztol=1e-6;
5 flag=ones(1,mr-1);
6
7 % find the row ratios and their minimum
8 rmin=realmax;
9 ip=0;
10 for i=1:mr-1
11 if(T(tr(i+1),jp) <= ztol)
12 flag(i)=0;
13 continue
14 end
15 r(i)=T(tr(i+1),1)/T(tr(i+1),jp);
16 if(r(i) < rmin)
17 rmin=r(i);
18 ip=tr(i+1);
19 end
20 end
21
22 % rule out non-min-ratio rows and count min-ratio ties
23 tied=0;
24 for i=1:mr-1
25 if(flag(i) == 0) continue; end
26 if(abs(r(i)-rmin) > ztol)
27 flag(i)=0;
28 else
29 tied=tied+1;
30 end
31 end
32
33 % accept the minimum ratio row if it is unique
34 if(tied == 1) return; end
35
36 % among min ratio rows pick the one whose 1 has lowest col index
37 idxmin=nn;
38 for i=1:mr-1
39 if(flag(i) == 0) continue; end
40 for jj=2:nn
41 if(S(jj-1) == i+1)
42 idx=jj-1;
43 break
44 end
45 end
46 if(idx < idxmin)
47 idxmin=idx;
48 ip=tr(i+1);
49 end
50 end
51
52 end

Next consider srr.m, which implements the successive-ratio rule. The first stanza of this
code 4-5 is identical to that of smind.m. Then comes an outer loop 7-39 over the columns
jr of T, containing three stanzas that are almost identical to the second, third, and fourth
stanzas of smind.m. In the first pass of this loop jr=1, so T2,1 = b1, T3,1 = b2 . . .T(m+1),1 = bm
are used 19 in computing the row ratios bi/ai,jp. If only one row has the minimum ratio

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

162 Degeneracy

1 function ip=srr(T,tr,mr,jp,nn)
2 % find the pivot row using the successive-ratio rule
3
4 ztol=1e-6;
5 flag=ones(1,mr-1);
6
7 % use successive columns to form the row ratios
8 for jr=1:nn
9
10 % find the row ratios and their minimum
11 rmin=realmax;
12 ip=0;
13 for i=1:mr-1
14 if(flag(i) == 0) continue; end
15 if(T(tr(i+1),jp) <= ztol)
16 flag(i)=0;
17 continue
18 end
19 r(i)=T(tr(i+1),jr)/T(tr(i+1),jp);
20 if(r(i) < rmin)
21 rmin=r(i);
22 ip=tr(i+1);
23 end
24 end
25
26 % rule out non-min-ratio rows and count ties
27 tied=0;
28 for i=1:mr-1
29 if(flag(i) == 0) continue; end
30 if(abs(r(i)-rmin) > ztol)
31 flag(i)=0;
32 else
33 tied=tied+1;
34 end
35 end
36
37 % accept the minimum ratio row if it is unique
38 if(tied == 1) return; end
39 end
40 end

the routine 38 returns with ip set 22 to the index of that row. Otherwise the outer loop
advances jr to 2 and the process is repeated using T2,2 = a1,1, T3,2 = a2,1 . . .T(m+1),2 = am,1 in
computing the row ratios ai,1/ai,jp. If there is still no unique minimum ratio, jr is increased
again and again, stepping across the columns of A, until there is.

When there are ties in the minimum ratio, smind.m does the extra work of its final stanza
while srr.m does the extra work of repeating the stanzas in the body of its jr loop. Which
takes more processor cycles, and which choice of pivot row yields faster convergence of the
simplex algorithm [4, p166] depends on the particulars of the problem being solved. But
both smind.m and srr.m clearly do more work than minr.m even when the minimum ratio
is unique. How necessary is it for a production code to defend against the possibility of
cycling, and is there some less-expensive way to do that?

Almost all real linear programming models are degenerate, but for many years only a
few had been discovered that cycle [11] [82] [159]. Even if several vertices of the feasible

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.5.3 Degeneracy and Convergence in Practice 163

polyhedron are degenerate, the simplex algorithm might never encounter one in pivoting
from an initial vertex to an optimal vertex. If a degenerate vertex is encountered, the worst
consequence is usually that a few degenerate pivots are needed before the algorithm can move
on (to avoid such stalling is one reason that some preprocessors try to remove redundant
constraints). Unfortunately, linear programming relaxations of integer programs (see §7.3)
are frequently observed to cause cycling [5, p381] so to accommodate this important special
class of problems most production linear programming codes do somehow guard against it.
Several strategies can be used to minimize the cost of this prudence.

The smallest-leaving-index or successive-ratio rule can be used, instead of the ordinary
minimum-ratio rule, just when the current tableau has some bi = 0 so that its basic feasible
solution corresponds to a degenerate vertex [4, p167].

When the current tableau has some bi = 0, the constant-column entries corresponding to
the constraints that intersect there can be perturbed slightly to make the vertex nondegen-
erate [5, p381-382]. The unique minimum ratio row can then be used for the pivot row, and
a postprocessing step can remove the perturbation to ensure that the reported x⋆ is optimal
for the original problem. The nonzero value of ztol [4, §7.6.3] or unintentional roundoff
errors [63, p182] can through perturbation render nondegenerate a problem that would be
degenerate in perfect arithmetic or, much less likely, render degenerate a problem that would
be nondegenerate in perfect arithmetic.

After tied rows have been identified by using code like the first four stanzas of smind.m,
one of the tied rows can be chosen at random [145, p93]; this is less expensive than either
the full smallest-leaving-index rule or the successive-ratio rule, and often prevents cycling.

The crudest strategy is to fix an upper limit on phase-2 iterations and simply resign with
an error message in the unlikely event that a problem exceeds that limit because of cycling.

What is a practical limit to set on the iterations used by the simplex algorithm? In
§4.5.1 we found that in solving a nondegenerate problem it must converge in no more than
q = n!/(n − m)! iterations, and the phase2.m routine of §4.1 tries to use that theoretical
maximum for its kmax. But even for small problems this is an enormous number. For
example, if n = 20 and m = 10 then q ≈ 6.7 × 1011 pivots are needed in the worst case.
For a problem of that size phase2.m has to settle for making kmax=2147483645, the highest
integer allowed by MATLAB as a for-loop limit. If the algorithm actually needed all of those
iterations to solve real problems it would not be a practical computational tool.

In the worst case the number of phase-2 pivots needed by the simplex algorithm grows
exponentially with the size of the problem (see §7.9) and examples have been contrived [93]
to exhibit this by forcing it to visit every vertex of the feasible set. However, the linear
programming problem can be solved using other methods that require an amount of work
that grows only polynomially with the size of the problem [92]. Because linear programming
is easy in this sense, the simplex method almost always exhibits much better performance
than it does in the worst case. In solving real problems the number of phase-2 iterations
needed is [107, p59] on the order of 1.5m, independent of n. (The pivot program allows up
to 30 constraints so to be generous its SOLVE command sets a default iteration limit of 60.)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

164 Solving Linear Programs

The interior-point methods for linear programming that we will study in §21.1 cannot
cycle because of degeneracy and do not have the exponential worst-case time complexity of
the simplex algorithm, but degeneracy causes them other difficulties and they are faster in
practice only for very large problems. Thus the simplex method is widely used despite its
theoretical shortcomings.

4.6 Exercises

4.6.1[E] Outline the process described in §2.6 for solving a linear program. What parts
of the process can be automated? What parts must be automated in order for the solution
process to be practical?

4.6.2[P] We implemented the simplex algorithm in MATLAB in the routine simplex.m

and its subroutines, which are described in §4.1. (a) Why is it useful to understand this
code? (b) Draw a block diagram showing the main components of simplex.m, how they
are connected, and what they do. (c) List the possible values of the return code rc from
simplex.m and explain the meaning of each.

4.6.3[P] If simplex.m delivers a return code of rc=4, what do we know about the optimal
objective value of the linear program it is being used to solve?

4.6.4[P] The simplex.m routine described in §4.1 uses a vector named tr. (a) What do
the numbers in this vector indicate? (b) Why is it useful to introduce this vector? (c) How
many components does tr have?

4.6.5[P] The simplex.m routine described in §4.1 uses a vector named S. (a) How many
components does this vector have? (b) What do the numbers in S mean? (c) What does it
indicate if all of the entries in S are zero? (d) Can an element of S ever be 1? Explain.

4.6.6[P] Where in simplex.m are redundant rows excluded from the problem? How is
that done? What happens to the redundant rows?

4.6.7[P] When simplex.m is used to solve a linear program that is infeasible, where is the
infeasibility detected? Explain.

4.6.8[P] Explain the role of the zero tolerance ztol in simplex.m and its subroutines.

4.6.9[P] The newseq.m routine of §4.1 pivots-in a basis. (a) Explain how the routine
works. (b) What does it do if it is invoked with a basis already present in T? Explain.
(c) Under what circumstances does the routine return a nonzero return code rc0? (d) Why
is it convenient in this routine to process the rows of the tableau sequentially with a MATLAB

while construct, rather than with a for loop?

4.6.10[P] In the phase1.m routine of §4.1, how are the subproblems solved?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.6 Exercises 165

4.6.11[P] For simplicity the phase1.m routine refrains from exploiting every possible effi-
ciency in the subproblem technique. (a) Does the loop over p 35-73 ever need to be performed
mm-1 times? (b) Does that loop ever exit through its 73 end statement? (c) Is it necessary
to solve every subproblem 54 all the way to optimality? (d) Modify phase1.m to make it
faster in all the ways that you can think of, and test the resulting code.

4.6.12[P] Write a phase1.m routine that has the same calling sequence as the newseq

routine of §4.1 but uses the method of artificial variables instead of the subproblem tech-
nique. (a) How much additional array storage is required to use this approach? (b) Revise
simplex.m to use it, and show that the resulting code still solves the brewery problem.

4.6.13[P] What pricing rule does phase2.m use? If two columns have the same negative
reduced cost, which one is chosen as the pivot column?

4.6.14[P] What does phase2.m do if kmax pivots are performed without discovering a final
form? How is the value of kmax determined? Explain.

4.6.15[P] If two tableau rows have the same minimum ratio bi/ai,jp, which row’s index does
minr.m return for ip? How does the routine signal to its caller that it has discovered the
problem is unbounded?

4.6.16[P] How many additions, subtractions, multiplications, and divisions are performed
by the pivot.m function of §2.4.2 in carrying out one pivot in a canonical-form tableau that
has m + 1 rows and n + 1 columns?

4.6.17[E] Explain the basic idea of the revised simplex method.

4.6.18[H] The tableaus shown below are one pivot apart. Write down a pivot matrix Q

such that the matrix product QT1 produces T2. Circle the pivot element in T1.

T1 =

−3 0 1 0 −2
3 1 1 0 1

2 0 −4 1 2
1 pivot

−6 −1 0 0 −3
3 1 1 0 1

14 4 0 1 6

= T2

4.6.19[H] Construct a pivot matrix to pivot on the circled element in the following tableau,
use it to calculate the next tableau, and confirm that the result is the same as you get by
performing the pivot. x1 x2 x3 x4 x5 x6 x7

0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

4.6.20[H] Starting with tableau T, pivot matrices Q1, Q2, and Q3 are used in that order
to carry out three pivots. (a) Does the order affect the result? (b) What matrix P would T

have to be premultiplied by to produce the tableau resulting from the three pivots?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

166 Solving Linear Programs

4.6.21[E] If a tableau T has basic sequence S = (x4, x2, x6) and we pivot on a27, what will
be the new basic sequence? Construct an example to illustrate your answer.

4.6.22[E] A linear program has the initial and optimal tableaus shown below. If the pivot
matrix P performs pivots so that T⋆ = PT, explain how to write down P by inspection of
the two tableaus.

T0 =

0 −6 −5 −3 0 0

50 1 1 0 1 0

150 2 1 2 0 1

T⋆ =

400 1
2

0 0 7
2

3
2

50 1 1 0 1 0

50 1
2

0 1 −1
2

1
2

4.6.23[E] If Q is a pivot matrix and T is a tableau, then the product QT is a new tableau
that results from performing the pivot on T. If T has a basis and the pivot is in a nonbasic
column, the matrix multiplication changes the basic sequence. What happens if T does not
have a basis? Explain.

4.6.24[H] A linear program has the following canonical-form tableau.

x1 x2 x3 x4 x5 x6 x7
0 0 0 −2 7 2 5 0

80 0 0 4 4 1 −1 1

110 0 1 −1 1 3 1 0

20 1 0 2 3 −4 2 0

Use the phase-2 algorithm of §4.2.3 to solve the problem, filling in only those elements of
each tableau that are necessary to determine the next pivot position.

4.6.25[E] There are two ways in which the modified-simplex approach described in §4.2.2
and §4.2.3 can be used to obtain an initial canonical form. What are they?

4.6.26[H] In the matrix simplex method the constraints of the linear program are expressed
in the form b = NxN + BxB. (a) What is the matrix B called, and what are its dimensions?
(b) Write down a formula for the basic variables xB at a basic feasible solution. (b) If a
nonbasic variable is increased from zero, how must the basic variables change in order to
maintain feasibility?

4.6.27[E] What is the main computational advantage that the matrix simplex method has
over the tableau simplex method?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.6 Exercises 167

4.6.28[H] In the matrix simplex method the objective of the linear program is written in
the form z = c⊤NxN + c⊤BxB. (a) Suppose a nonbasic variable is increased from zero and the
basic variables are adjusted to maintain feasibility. Write down a formula for z in terms of
only xN and the data of the problem. (b) How can the formula for z in terms of xN be used
to select a variable to enter the basis? Explain.

4.6.29[H] In §4.2.5 the matrix simplex method is used to solve the brewery problem by
pivoting in the x1 column first. Use the matrix simplex method to solve the brewery problem
by pivoting in the x2 column first.

4.6.30[H] Solving a linear program consists of finding the best set of A columns to have in
the basis, or the best m of the n variables to allow to be nonzero. The subopt.m program of
§3.6.2 lists all of the basic feasible solutions of the brewery problem, in each of which 3 of
the 7 variables are basic. (a) How many ways are there to select 3 of the 7 variables to be
basic? (b) Why are there fewer basic feasible solutions than that?

4.6.31[E] Describe three refinements of the matrix simplex method that are commonly
used to facilitate the solution of large problems.

4.6.32[H] When the nonzero constraint coefficients of a large linear program can be ar-
ranged in a block-angular structure with p blocks, it is possible to decompose the problem
into a master problem and p subproblems. (a) What do the variables in the master problem
represent? (b) How big is the master problem? (c) How are the subproblems used in solving
the master problem by the matrix simplex algorithm?

4.6.33[E] Describe three different pricing rules that can be used in selecting a variable to
enter the basis in the matrix simplex algorithm.

4.6.34[E] Explain the difference between full and partial pricing. What is a candidate list?

4.6.35[H] What is the relationship between the zero tolerance used in a simplex algorithm
implementation and the scaling of the rows and columns in a linear program?

4.6.36[E] Many optimization codes offer some sort of preprocessing. (a) What benefits can
result from preprocessing a linear program before attempting its solution by the simplex
method? (b) Describe one kind of transformation that a preprocessor can do. (c) If prepro-
cessing an original linear program LP0 results in the transformed linear program LP1, might
it be worthwhile to preprocess LP1 and produce LP2 before solving LP2? Explain.

4.6.37[E] In §4.4.4 some folklore is collected about using black-box solvers. (a) Summarize
this advice. (b) Use a commercial solver of your choice to solve the brewery problem, and
describe your experience.

4.6.38[E] Does the simplex algorithm described in §2 always converge? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

168 Solving Linear Programs

4.6.39[H] Every linear program has a finite number of basic sequences. (a) How many basic
sequences q can there be if the linear program has n variables and m constraints? (b) Does
every linear program with n variables and m constraints have q basic sequences? If so, prove
it; if not, present a counterexample.

4.6.40[H] Show that
n!

(n − m)! = n(n − 1) · · · (n − [m − 1]).

4.6.41[E] What makes a linear program nondegenerate? Are most linear programs that
result from real applications nondegenerate?

4.6.42[H] If a linear program is nondegenerate, how do we know that the simplex algorithm
of §2 will solve it without cycling?

4.6.43[H] Show that the linear program

minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

is nondegenerate if and only if (a) every set of m columns chosen from the matrix [A, b] is
linearly independent; (b) in every basic feasible solution no basic variable is zero.

4.6.44[E] If a linear program has multiple optimal points, a pivot can leave z unchanged.
(a) Does this indicate that the problem is degenerate? (b) Why does this not affect the
convergence of the simplex algorithm?

4.6.45[H] The graph problem of §3.1 is degenerate at vertex E of its feasible set, where 3
constraint hyperplanes intersect. (a) Slightly change the right-hand sides of those constraints
so that the problem is not degenerate. How does this affect the optimal point? (b) Explain
how the true x⋆ can be recovered from the perturbed solution.

4.6.46[H] Find the next pivot position in the following tableau by using (a) the smallest-
leaving-index rule; (b) the successive-ratio rule.

x1 x2 x3 x4 x5 x6 x7 x8

3 −1
2

0 −3
4

0 6 0 20 0

0 −1 0 1
4

1 9 0 −8 0

1 3 0 2 0 5 0 6 1

1 1 0 0 0 0 1 0 0

0 −1
2

1 1
2

0 3 0 −12 0

4.6.47[H] In applying the successive-ratio rule [3, p54] can it ever happen that all of the
successive ratios for two tied candidate pivot rows come out the same? If so, provide an
example; if not; explain why not.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

4.6 Exercises 169

4.6.48[P] When the degenerate linear program of §4.5.0 is solved in §4.5.2 by pivoting
according to the successive-ratio rule, the first pivot is arbitrarily chosen to be in the x4
column. Solve the problem by pivoting according to the successive-ratio rule and making
the first pivot in the x6 column.

4.6.49[H] If we perform phase 1 of the simplex algorithm by pivoting-in a basis and then
solving subproblems to make b ≥ 0, might the simplex algorithm cycle in solving a subprob-
lem? If not, explain why not; if so, how can such cycling be prevented?

4.6.50[P] The smind.m and srr.m routines of §4.5.3 test for the equality of r(i) and rmin

by comparing abs(r(i)-rmin) to ztol. Why is this subterfuge necessary?

4.6.51[E] The smind.m and srr.m routines of §4.5.3 use the same approach to identify
constraint rows that are tied for the lowest ratio. (a) Describe the three steps that comprise
this approach. (b) What role does the vector flag play? (c) Why is flag initialized 5 to a
vector of all 1s? (d) Why is it necessary for these routines to address the rows of T indirectly
by means of the vector tr?

4.6.52[P] Explain how this code excerpt from smind.m finds, for each minimum-ratio row
in T, the column index in A of the row’s identity-column 1.

38 for i=1:mr-1
39 if(flag(i) == 0) continue; end
40 for jj=2:nn
41 if(S(jj-1) == i+1)
42 idx=jj-1;
43 break
44 end
45 end

:
50 end

4.6.53[P] In srr.m the three stanzas that constitute the body of the jr loop 8-39 get
executed repeatedly until the second stanza 26-35 produces tied=1. (a) What role does
the index jr play in this process? (b) Why does tied eventually become 1? (c) Why can
flag(i) elements that are set to 0 in one iteration of the jr loop be kept at 0 for subsequent
iterations?

4.6.54[P] When the minimum ratio is unique, the same pivot row ip is returned by minr.m,
smind.m, and srr.m, but minr.m does less work. (a) Count the elementary operations per-
formed by each routine in finding ip, in terms of the tableau dimensions mr and nn. (b) What
performance penalty is incurred by using smind.m or srr.m to solve problems that are non-
degenerate?

4.6.55[E] What is stalling and how can it be prevented?

4.6.56[E] If most real linear programming models are degenerate, why do so few of them
make the simplex algorithm of §2 cycle? Name one class of models that is more likely than
others to do that.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

170 Solving Linear Programs

4.6.57[E] Describe four strategies that prevent cycling or make it less likely but impose
less of a performance penalty than using the smallest-leaving-index or successive-ratio rule
at each phase 2 iteration. What are the drawbacks of these strategies?

4.6.58[E] If the simplex algorithm’s worst-case time complexity is exponential, why is its
average-case time complexity polynomial? How many iterations does it typically use in
solving a problem that has n variables and m constraints? Why is the simplex method widely
used if there are interior-point methods that do not suffer from its theoretical shortcomings?

4.6.59[P] The simplex.m implementation of §4.1 assumes that a final form will be found
by phase2.m in fewer than kmax iterations, but this ignores the possibility of cycling. Try
simplex.m on the cycle problem of §4.5. This should elicit the message

warning: phase2: some elements in list of return values are undefined

and print a final tableau that is the same as the initial one. (a) What element in the list of
return values from phase2.m is undefined, and why? (b) How many iterations does phase2.m
perform to produce this final tableau? Hint: 210/6=35. (c) Revise phase2.m to set rc2=1 if
kmax iterations are used because the routine did not execute either return 24,30 . Now rc2

is zero if optimal form is obtained, or jp>1 if the problem is unbounded in variable column
jp, or 1 if the allowed iterations were exhausted. (d) Revise phase1.m and simplex.m to
deal in some sensible way with the new return code rc2=1. What should these routines do
if phase2.m fails to converge? (e) Test your revised code on the cycle problem. Does it
somehow alert you to the presence of cycling? (f) Would this be a practical way to detect
cycling in a problem that had, say, n = 20 variables and m = 10 constraints? Explain.
(g) Why do you suppose I ignored the possibility of cycling in the version of the code that
is presented in §4.1? (h) Revise phase2.m to invoke smind.m instead of minr.m, and use
the resulting code to solve the cycle problem. Remember that the smallest-leaving-index
rule requires first-negative pricing to select the pivot column. (i) Revise phase2.m to invoke
srr.m instead of minr.m, and use the resulting code to solve the cycle problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5

Duality and Sensitivity Analysis

Of the many enchantments that suffuse the theory of linear programming, perhaps the most
powerful is the deep connection between problems that are duals of one another. In a pair
like the one shown below, which I will call dp1, the problems have a structural relationship
because the same coefficients appear in different roles. As pictured in the standard dual

pair at the bottom, the cost vector in the minimization or x problem is the constant vector
in the maximization or y problem, the constant vector in the x problem is the cost vector
in the y problem, and the constraint coefficient matrices are transposes of one another.

minimize
x∈R3

6x1 + 3x2 + 2x3

subject to x1 + x3 ≥ 2

2x1 + 2x2 − 2x3 ≥ 1

x ≥ 0

maximize
y∈R2

2y1 + y2

subject to y1 + 2y2 ≤ 6

2y2 ≤ 3

y1 − 2y2 ≤ 2

y ≥ 0

minimize
x∈R3

[

6 3 2
]

x

subject to

[

1 0 1

2 2 −2

]

x ≥
[

2

1

]

x ≥ 0

maximize
y∈R2

[

2 1
]

y

subject to





1 2

0 2

1 −2




y ≤





6

3

2





y ≥ 0

minimize
x∈Rn

x

subject to x ≥

x ≥ 0

maximize
y∈Rm

y

subject to y ≤

y ≥ 0

Later we will derive the y problems that correspond to x problems stated using various
names for the cost vector, constant vector, and constraint coefficient matrix, so it is best
to remember the relationship between the problems in this pictorial way. Often it will be
convenient to call one of the problems in a dual pair the primal problem P and the other
the dual problem D , but since each is the dual of the other the choice of which to call
what is purely aesthetic.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

172 Algebraic Duality Relations

5.1 Algebraic Duality Relations

The structural relationship between the problems of a dual pair gives rise to mathematical
connections between them. To explore these it is convenient to consider this particular pair
[3, §5.1], but because any dual pair can be written in this way our discoveries will apply (see
Exercise 5.5.33) to all of them.

P : minimize
x∈Rn

c⊤x

subject to Ax ≥ b

x ≥ 0

D : maximize
y∈Rm

b⊤y

subject to A⊤y ≤ c

y ≥ 0

5.1.1 Both Problems Infeasible

If c⊤ = [−1], b = [1], and A = [0] then the problems are these.

P : minimize
x∈R1

−1x
subject to 0x ≥ 1

x ≥ 0

D : maximize
y∈R1

1y

subject to 0y ≤ −1
y ≥ 0

No value of x can make 0x ≥ 1 and no value of y can make 0y ≤ −1, so in a dual pair

it is possible for both problems to be infeasible.

5.1.2 Both Problems Feasible

If x̄ is feasible for the minimization and ȳ is feasible for the maximization then from the
constraints of the two problems

c ≥ A⊤ȳ

x̄ ≥ 0

}

⇒ x̄⊤c ≥ x̄⊤(A⊤ȳ)

x̄⊤c ≥ (Ax̄)⊤ȳ

x̄⊤c ≥ ȳ⊤Ax̄

Ax̄ ≥ b

ȳ ≥ 0

}

⇒ ȳ⊤(Ax̄) ≥ ȳ⊤b.

Thus x̄⊤c ≥ ȳ⊤Ax̄ ≥ ȳ⊤b so

if x̄ is feasible for the min problem and ȳ is feasible for the max problem then c⊤x̄ ≥ b⊤ȳ.

This means that c⊤x̄ is an upper bound on b⊤y for any y that is feasible for the max problem,
and b⊤ȳ is a lower bound on c⊤x for any x that is feasible for the min problem. Therefore

if both problems are feasible then neither is unbounded.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.2 Both Problems Feasible 173

In the dp1 example we began with, both problems are feasible so neither is unbounded. We
can find their optimal vectors by reformulating them into standard form, constructing an
initial tableau for each, and pivoting by the simplex algorithm.

P : minimize
x∈R3

6x1 + 3x2 + 2x3 = zx

subject to x1 + x3 ≥ 2

2x1 + 2x2 − 2x3 ≥ 1

x ≥ 0

minimize
x∈R3 s∈R2

6x1 + 3x2 + 2x3

subject to −x1 − x3 + s1 = −2
−2x1 − 2x2 + 2x3 + s2 = −1

x, s ≥ 0

< read primal.tab
Reading the tableau...
...done.

x1 x2 x3 s1 s2
0. 6. 3. 2. 0. 0.

-2. -1. 0. -1. 1. 0.
-1. -2. -2. 2. 0. 1.

< * get canonical form
< pivot 2 2

x1 x2 x3 s1 s2
-12. 0. 3. -4. 6. 0.

2. 1. 0. 1. -1. 0.
3. 0. -2. 4. -2. 1.

< pivot 3 4

x1 x2 x3 s1 s2
-9.00 0. 1.0 0. 4.0 1.00
1.25 1. 0.5 0. -0.5 -0.25
0.75 0. -0.5 1. -0.5 0.25

D : maximize
y∈R2

2y1 + y2 = zy

subject to y1 + 2y2 ≤ 6

2y2 ≤ 3

y1 − 2y2 ≤ 2

y ≥ 0

minimize
y∈R2 w∈R3

−2y1 − y2

subject to y1 + 2y2 + w1 = 6

2y2 + w2 = 3

y1 − 2y2 + w3 = 2

y,w ≥ 0

< read dual.tab
Reading the tableau...
...done.

y1 y2 w1 w2 w3
0. -2. -1. 0. 0. 0.
6. 1. 2. 1. 0. 0.
3. 0. 2. 0. 1. 0.
2. 1. -2. 0. 0. 1.

< pivot 4 2

y1 y2 w1 w2 w3
4. 0. -5. 0. 0. 2.
4. 0. 4. 1. 0. -1.
3. 0. 2. 0. 1. 0.
2. 1. -2. 0. 0. 1.

< pivot 2 3

y1 y2 w1 w2 w3
9. 0. 0. 1.25 0. 0.75
1. 0. 1. 0.25 0. -.25
1. 0. 0. -0.50 1. 0.50
4. 1. 0. 0.50 0. 0.50

x⋆ = [1.25,0,0.75]⊤

zx = 6 × 1.25 + 3 × 0 + 2 × 0.75 = 9

y⋆ = [4,1]⊤

zy = 2 × 4 + 1 × 1 = 9

Notice that in the optimal tableau for D the cost coefficients of the slack variables wj are the
elements of the optimal vector for P, and in the optimal tableau for P the cost coefficients
of the slack variables si are the elements of the optimal vector for D. The primal and dual

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

174 Algebraic Duality Relations

solutions can both be read off from either optimal tableau because

the optimal vector for each problem is the transpose of the cost coefficients
for the slack variables in the optimal tableau for the other problem.

Also notice from the optimal tableaus in the example that c⊤x⋆ = b⊤y⋆. Earlier we found
that if x and y are feasible vectors then c⊤x ≥ b⊤y; now we see that the duality gap between
these objective values is zero when x = x⋆ and y = y⋆ so

if one problem has an optimal vector then so does
the other, and the objective values are equal.

To show that these two propositions are true in general we can recapitulate the above
solution of the dp1 min problem symbolically [3, p113-115] assuming that its data make the
problem feasible and bounded but are otherwise arbitrary.

P : minimize
x∈Rn

c⊤x

subject to Ax ≥ b

x ≥ 0

reformulate to
standard form

minimize
x∈Rn s∈Rm

c⊤x + 0⊤s

subject to −Ax + Is = −b
x, s ≥ 0

form
tableau

x s

0 c⊤ 0⊤

−b −A I

= T
pivot to
optimality

x s

y⋆⊤

M

T⋆ =

Recall from §4.2.1 that to construct a pivot matrix Q that will make QT = T⋆ we need only
do to the identity what we would like to do to T. But solving the problem did precisely
those things to the identity in the all-slack basis columns of T, yielding the s columns of T⋆.
Thus we can write down Q by inspection and fill in the rest of T⋆ by computing this matrix
product.

T⋆ = QT =





1 y⋆⊤

0
... M

0





x s

0 c⊤ 0⊤

−b −A I
=

x s

−y⋆⊤b (c⊤ − y⋆⊤A) y⋆⊤

−M1b... −MA M

−Mmb

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.2 Both Problems Feasible 175

Because T⋆ is in optimal form its cost coefficients are nonnegative, so

c⊤ − y⋆⊤A ≥ 0⊤

c − A⊤y⋆ ≥ 0

A⊤y⋆ ≤ c

and
y⋆⊤ ≥ 0⊤

y⋆ ≥ 0.

Thus y⋆ is feasible for the max problem. The optimal value of the min problem is c⊤x⋆ so it
must be that c⊤x⋆ = −(−y⋆⊤b) = b⊤y⋆ and y⋆ is optimal for the max problem �.

A similar construction can be used to show that x⋆ is the transpose of the cost coefficients
for the slack variables in the optimal tableau for the max problem.

z

12

11

10

9

8

7

6

5

4

3

2

1

0 pivots k
0 1 2

zx = zy

c⊤xk

P

p
i
v
o
t

2
2

p
i
v
o
t

3
4

D

b⊤yk

p
i
v
o
t

4
2

p
i
v
o
t

2
3

Plotting the c⊤xk and b⊤yk values gen-
erated by the simplex algorithm in solv-
ing the primal and dual problems of the
dp1 example yields the picture on the
left. The initial tableau for each prob-
lem has z = 0, so both curves begin at
the origin of this graph.

The primal problem starts infeasible
so a subproblem pivot is required to ob-
tain canonical form, and this is shown
as a dashed line. At the end of the
first pivot the primal is in canonical form
with c⊤x = 12 (the upper left entry in
the tableau is −zx for the minimization).
Then one phase 2 pivot reduces c⊤x to its
optimal value of 9.

The minimization corresponding to
the dual problem has an initial tableau
that is in canonical form. The first phase
2 pivot increases b⊤y to 4 and the second
increases it to its optimal value of 9 (the
upper left entry in the tableau is +zy for
the maximization problem, because we
had to change the sign of the objective
to put the problem into standard form).

It is clear from this picture that
c⊤x ≥ b⊤y when x and y are feasible for
their respective problems, and that the
duality gap between them is zero when
both vectors are optimal.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

176 Algebraic Duality Relations

5.1.3 One Problem Feasible

In the dual pair below, which I will call dp2, only one of the problems is feasible. Putting
each into standard form results in the initial tableaus shown.

P : minimize
x∈R2

−2x1 − x2

subject to x1 − 2x2 ≥ −3
−x2 ≥ −1

4x1 − x2 ≥ −5
x ≥ 0

minimize
x∈R2 s∈R3

−2x1 − x2

subject to −x1 + 2x2 + s1 = 3

x2 + s2 = 1

−4x1 + x2 + s3 = 5

x, s ≥ 0

x1 x2 s1 s2 s3

0 −2 −1 0 0 0

3 −1 2 1 0 0

1 0 1 0 1 0

5 −4 1 0 0 1

minimization problem is unbounded

D : maximize
y∈R3

−3y1 − y2 − 5y3
subject to y1 + 4y3 ≤ −2

−2y1 − y2 − y3 ≤ −1
y ≥ 0

minimize
y∈R3 w∈R2

3y1 + y2 + 5y3

subject to y1 + 4y3 + w1 = −2
−2y1 − y2 − y3 + w2 = −1

y, w ≥ 0

y1 y2 y3 w1 w2

0 3 1 5 0 0

−2 1 0 4 1 0

−1 −2 −1 −1 0 1

maximization problem is infeasible

The minimization on the left is feasible, but the x1 column of its tableau shows that it
is unbounded. Because of the structural relationship between duals, this column becomes
(with sign changes in the ai1) the boxed part of the second row in the tableau on the right,
from which it is obvious that the maximization problem is infeasible. Algebraically, if ȳ
were feasible for the max problem then b⊤ȳ would be a lower bound on c⊤x̄, but because
the min problem is unbounded c⊤x̄ has no lower bound. If it were the max problem that
was unbounded then no x̄ could exist to provide an upper bound c⊤x̄ on b⊤ȳ, and the min
problem would have to be infeasible. Thus the argument works both ways, and

if either problem is feasible but unbounded then the other problem is infeasible.

Both problems can be feasible and bounded as we saw in §5.1.2, or both can be infeasible as
we saw in §5.1.1, but if only one is infeasible then the other must be unbounded and if one
is unbounded the other must be infeasible.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.4 Shadow Prices 177

5.1.4 Shadow Prices

Recall from §1.3.1 that the constraints of the brewery problem keep Sarah from using more
of any ingredient than she has on hand.

T0 =

x1 x2 x3 x4 s1 s2 s3
0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0 pale malt
50 1 3 1 1 0 1 0 black malt
60 2 4 1 3 0 0 1 hops

The production program x0 = [0, 0, 0, 0]⊤ uses none of the resources, so in T0 each slack is
equal to the total supply of the ingredient it measures and the revenue from selling finished
products is zero.

T⋆ =

x1 x2 x3 x4 s1 s2 s3

2325 0 0 18 3
4

76 1
4

7 1
2

0 18 3
4

5 1 0 2 3
4

2 1
4

1
2

0 −1 1
4

12 1
2

0 1 −1 1
8
−3

8
−1

4
0 7

8

7 1
2

0 0 1 5
8
−1

8
1
4

1 −1 3
8

In T⋆ the slack variables are s⋆ = [0, 7 1
2
, 0]⊤, so to produce a revenue of 2325 the optimal

production program x⋆ = [5, 12 1
2
, 0, 0]⊤ uses all of the pale malt and all of the hops, with 7 1

2

pounds of black malt left over (s2 is still the slack in black malt, even though pivots have
moved its identity column 1 to a different row).

If one of Sarah’s fellow brewers needed some black malt she could give him up to 7 1
2

pounds from her stock for free, since she cannot use it anyway. Giving away some pale
malt or some hops, however, would change x⋆ and decrease the revenue she realizes from
producing beer. In order to have 1 pound of pale malt left over to give away, she would have
to change the production program in such a way that s⋆1 = 1. As discussed in §2.2, each row
of T⋆ corresponds to an equation whose = sign is represented by the vertical line inside the
tableau. To investigate the consequences of requiring that s1 have a particular value, we can
rewrite T⋆ by moving its s1 column from the right side of the equals signs to the left, like
this.

T =

x1 x2 x3 x4 s2 s3

2325 − 7 1
2
s1 0 0 18 3

4
76 1

4
0 18 3

4

5 − 1
2
s1 1 0 2 3

4
2 1
4

0 −1 1
4

12 1
2
+

1
4
s1 0 1 −1 1

8
−3

8
0 7

8

7 1
2
− 1

4
s1 0 0 1 5

8
−1

8
1 −1 3

8

If s1 = 0 this tableau represents the same production program as T⋆. Increasing s1 changes
the optimal solution to x⋆ = [5− 1

2
s1, 12

1
2
+

1
4
s1, 0, 0]

⊤, decreasing the revenue from production

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

178 Algebraic Duality Relations

by $7.50 for each pound of pale malt that Sarah insists on having left over. Of course T is
in optimal form only if its b part is nonnegative, which requires that

5 − 1
2
s1 ≥ 0 ⇒ s1 ≤ 10

12 1
2
+

1
4
s1 ≥ 0 ⇒ s1 ≥ −50

7 1
2
− 1

4
s1 ≥ 0 ⇒ s1 ≤ 30






⇒ s1 ≤ 10

If a buyer wanted some pale malt Sarah could sell him up to 10 pounds of her stock, and
if she charged $7.50 per pound for it her total revenue would remain unchanged.

[total revenue] = [revenue from making beer] + [revenue from selling pale malt]

= [2325 − 7 1
2
s1] + [7 1

2
s1] = 2325

The $7.50 per pound that Sarah needs to charge in order not to loose money by selling some
of her pale malt is called the shadow price of the resource. It is the amount by which the
objective is spoiled in T for each pound she sells, which we got from the cost coefficient in
the s1 column of T⋆.

Using a result from §5.1.2, the optimal vector y⋆ of the brewery problem’s dual is the
transpose of the cost coefficients for the s variables in the T⋆ tableau given above,

y⋆ =





7 1
2

0

18 3
4





.

Thus the shadow price of pale malt is also the optimal value of the dual variable y1 corre-
sponding to the first constraint. We could construct optimal-form tableaus as we did T, by
moving the s2 column and then the s3 column of T⋆ to the left of the equals signs, and those
tableaus would reveal that the shadow price of black malt is 0 = y⋆2 (recall that Sarah could
give some away for nothing) and that the shadow price of hops is 18 3

4
= y⋆3 .

Using another result from §5.1.2,

the optimal objective value = c⊤x⋆ = b⊤y⋆ = z⋆ = b1y
⋆
1 + . . . + bmy

⋆
m

so the [shadow price of resource i] =
∂z⋆

∂bi
= y⋆

i

and it is true in general that

the shadow price of a resource in one problem of a dual pair
is the optimal value of the corresponding variable in the other.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.4 Shadow Prices 179

Useful insights can be gained into a resource allocation problem by considering the eco-
nomic interpretation of its dual. Here I have written the brewery problem in the form of the
primal in the dual pair that we adopted in §5.1.0, then reversed the sense of the optimization
and the directions of the functional inequalities to obtain the original formulation of §1.3.1.

P : minimize
x∈R4

−90x1 − 150x2 − 60x3 − 70x4 = zx

subject to −7x1 − 10x2 − 8x3 − 12x4 ≥ −160
−1x1 − 3x2 − 1x3 − 1x4 ≥ −50
−2x1 − 4x2 − 1x3 − 3x4 ≥ −60

x ≥ 0

maximize
x∈R4

90x1 + 150x2 + 60x3 + 70x4

subject to 7x1 + 10x2 + 8x3 + 12x4 ≤ 160

1x1 + 3x2 + 1x3 + 1x4 ≤ 50

2x1 + 4x2 + 1x3 + 3x4 ≤ 60

x ≥ 0

In solving this problem we try to maximize the revenue from selling products by setting their
production levels x j, while not using more of each ingredient than the amount on hand.

Here is the dual of problem P, also rewritten to reverse the sense of the optimization
and the directions of the functional inequalities.

D : maximize
y∈R3

−160y1 − 50y2 − 60y3 = zy

subject to −7y1 − 1y2 − 2y3 ≤ −90
−10y1 − 3y2 − 4y3 ≤ −150
−8y1 − 1y2 − 1y3 ≤ −60
−12y1 − 1y2 − 3y3 ≤ −70

y ≥ 0

minimize
y∈R3

160y1 + 50y2 + 60y3

subject to 7y1 + 1y2 + 2y3 ≥ 90

10y1 + 3y2 + 4y3 ≥ 150

8y1 + 1y2 + 1y3 ≥ 60

12y1 + 1y2 + 3y3 ≥ 70

y ≥ 0

In solving this problem we try to minimize the total value to us of the ingredients that we
must use by setting their prices yi, while ensuring that the value we place on the ingredients
that go into one keg of each variety of beer is at least equal to the revenue we get from selling
that keg of product.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

180 Algebraic Duality Relations

We have seen that y⋆
i
, the shadow price for resource i, tells how much zx goes up per unit

reduction in the supply of that resource. In a symmetric (or, more precisely, dual) way, x⋆
j

tells how much zy goes down per unit reduction in the selling price of product j.

5.1.5 Complementary Slackness

In §5.1.2 we found that if x̄ is feasible for the min problem in a dual pair and ȳ is feasible
for the max problem, then c⊤x̄ ≥ ȳ⊤Ax̄ ≥ b⊤ȳ. By solving the min problem symbolically we
showed that at optimality these three quantities are equal. Thus we have

c⊤x⋆ = y⋆⊤Ax⋆ y⋆⊤Ax⋆ = b⊤y⋆

c⊤x⋆ − y⋆⊤Ax⋆ = 0 y⋆⊤Ax⋆ − b⊤y⋆ = 0

x⋆⊤(c − A⊤y⋆) = 0 y⋆⊤(Ax⋆ − b) = 0

The boxed equations are called the complementary slackness conditions. They hold
only at optimality, so

if x̄ is feasible for the min problem and ȳ is feasible for the max problem
and together they satisfy the complementary slackness conditions, then
x̄ = x⋆ and ȳ = y⋆.

For the brewery problem these are the complementary slackness conditions.

x1(−90 + 7y1 + 1y2 + 2y3) +

x2(−150 + 10y1 + 3y2 + 4y3) +
x3(−60 + 8y1 + 1y2 + 1y3) +

x4(−70 + 12y1 + 1y2 + 3y3) = 0

y1(−7x1 − 10x2 − 8x3 − 12x4 + 160) +
y2(−1x1 − 3x2 − 1x3 − 1x4 + 50) +

y3(−2x1 − 4x2 − 1x3 − 3x4 + 60) = 0

Because x⋆ is feasible for P we know that x⋆ ≥ 0 and Ax⋆ ≥ b or (Ax⋆ − b) ≥ 0. Because y

is feasible for D we know that y⋆ ≥ 0 and A⊤y⋆ ≤ c or (c − A⊤y⋆) ≥ 0. Thus all of the terms
in these equations are nonnegative and the only way each sum can equal zero is if each term
is zero. It is easy to verify that this is the case for x⋆ = [5, 12 1

2
, 0, 0]⊤ and y⋆ = [7 1

2
, 0, 18 3

4
]⊤.

For example,

x⋆1 (7y
⋆
1 + 1y

⋆
2 + 2y

⋆
3 − 90) = 5(7 × 7 1

2
+ 1 × 0 + 2 × 18 3

4
− 90)

= 5(0) = 0

y⋆2 (−1x⋆1 − 3x⋆2 − 1x⋆3 − 1x⋆4 + 50) = 0(−1 × 5 − 3 × 12 1
2
− 1 × 0 − 1 × 0 + 50)

= 0(7.5) = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.6 Multiple Optima and Degeneracy 181

In §5.1.4 we observed that if a resource is not used up its constraint is satisfied as a strict
inequality, its slack variable is positive, and its shadow price (the dual variable correspond-
ing to the constraint) is zero. Only when a resource is used up, so that its constraint is
satisfied with equality and its slack variable is zero, can its shadow price be positive. The
complementary slackness conditions show it is true in general that

at optimality, if a constraint in one problem is slack the corresponding
variable in the other is zero, and if a variable in one problem is positive
the corresponding constraint in the other is satisfied with equality.

5.1.6 Multiple Optima and Degeneracy

At optimality a positive variable in one problem of a dual pair implies that the corresponding
constraint in the other problem is tight. It might seem that the converse would also be true;
after all, if a constraint is satisfied with equality then tightening it will move the optimal
solution to a different point. But if the problem has multiple optimal solutions, changing
the optimal point need not change the objective. This dp3 problem, whose graphical and
simplex solutions are shown, has the form of the dual in the pair we adopted in §5.1.0.

y2

3

2

1

0 y1
0 1 2 3

w2 = 0

w
1
=
0

z⋆y = 3

•y
⋆2

•y
⋆1

Y

D : maximize
y∈R2

y1 + y2 = zy

subject to y1 + y2 ≤ 3

y2 ≤ 2

y ≥ 0

D0 =

y1 y2 w1 w2

0 −1 −1 0 0

3 1 1 1 0

2 0 1 0 1

x⋆⊤
D⋆

1
=

y1 y2 w1 w2

3 0 0 1 0

3 1 1 1 0

2 0 1 0 1

x⋆⊤
D⋆2 =

y1 y2 w1 w2

3 0 0 1 0

1 1 0 1 −1
2 0 1 0 1

The optimal set consists of y⋆1, y⋆2, and the edge between them. At y⋆2 = [1, 2]⊤ the second
constraint is satisfied with equality, but in the optimal tableaus D⋆1 and D⋆2 we see that the
cost coefficient of w2, which is the shadow price x⋆2 of the second constraint, is zero. Although
increasing w2 from zero would move the contour down and push the optimal point diagonally
along the optimal edge, that would not change zy.

The first constraint has the positive shadow price x⋆1 = 1, because increasing w1 from
zero would move that contour toward the origin and spoil the objective by an equal amount.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

182 Algebraic Duality Relations

The dual of the max problem we solved above is given below along with its graphical and
simplex solutions.

x2

1

0 x1
0 1

x
1
+
x
2
=
1

x 1
=
1

z
x
=
3

•x⋆

X

P : minimize
x∈R2

3x1 + 2x2 = zx

subject to x1 ≥ 1

x1 + x2 ≥ 1

x ≥ 0

P0 =

x1 x2 s1 s2
0 3 2 0 0

−1 −1 0 1 0

−1 −1 −1 0 1

y⋆1⊤
P⋆1 =

x1 x2 s1 s2
−3 0 2 3 0

1 1 0 −1 0

0 0 −1 −1 1

y⋆2⊤
P⋆2 =

x1 x2 s1 s2
−3 0 0 1 2

1 1 0 −1 0

0 0 1 1 −1

The optimal vertex x⋆ = [1, 0]⊤ is overdetermined by the intersection of 3 constraint hyper-
planes in R2, so it is represented by two different basic sequences and the pivot from P⋆1
to P⋆2 is degenerate. In both optimal tableaus, s1 = 0 and s2 = 0 because both functional
constraints are active. We can find their shadow prices graphically by considering the two
cases pictured below.

x̄ = [1 + s1, 0]
⊤

zx(x̄) = 3(1 + s1)

∂zx

∂s1
= 3 = y1

⋆1
∂zx

∂s2
= 0 = y2

⋆1

x2

1

0 x1
0 1

s2 x
1
+
x
2
=
1
+
s
2

x 1
=
1
+
s 1

z
x
=
z
x (x̄)

•
x̄

s1

x̂ = [1 + s1, s2 − s1]
⊤

zx(x̂) = 3(1 + s1) + 2(s2 − s1)

∂zx

∂s1
= 1 = y1

⋆2
∂zx

∂s2
= 2 = y2

⋆2

x2

s2

1

0 x1
0 1

s1

x
1
+
x
2
=
1
+
s
2

x 1
=
1
+
s 1

z
x
=
z
x (x̂)

•x̂

The graph on the left describes what happens if we perturb the solution represented by P⋆
1

by making s1 > 0. The optimal point is displaced to x̄ and the shadow prices we derive from
the resulting objective are the cost coefficients of the slack variables in that tableau. We

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.6 Multiple Optima and Degeneracy 183

could also deduce these numbers using the approach we took in §5.1.4, by moving the s1
column of the tableau to the left of the equals signs like this.

x1 x2 s2
−3 − 3s1 0 2 0

1 + 1s1 1 0 0

0 + 1s1 0 −1 1

In this basic feasible solution x1 = 1 + s1 and −zx = −3 − 3s1, as we found in the graphical
analysis, so the shadow price for the first constraint is again 3. Increasing s1 in this tableau
also increases s2 because it is basic. This is the only way to increase a basic variable without
changing the basis: change a nonbasic variable and thus the bi that is the value of the
basic variable. It would not make sense to study the effect of changing s2 by moving its
basic column to the other side of the line, because that would destroy canonical (and hence
optimal) form. Because s2 = s1 in this basis, the motion of the first constraint contour that
results from increasing s1 is enough by itself to change x̄, so the shadow price of the second
constraint is zero even though its contour gets dragged along too.

The graph on the right above describes what happens if we perturb the solution repre-
sented by P⋆2 . Now s2 > s1 and the optimal point is displaced to x̂, which I found by solving
for the intersection of the hyperplanes. The shadow prices we derive from the resulting
objective are the cost coefficients of the slack variables in the tableau. Because the s1 and
s2 columns are nonbasic, we could also deduce the shadow prices by moving those columns
one at a time to the other side of the line.

Even when a linear program is degenerate the cost coefficients of the slack variables in
each of its optimal tableaus can be interpreted as the shadow prices of the constraints in
that tableau. These vectors are also optimal points of the dual problem, and in this example
they are different so the dual has distinct multiple optima.

To further explore the connection between multiple optima in one problem of a dual pair
and degeneracy in the other, recall that our §5.1.2 symbolic solution of the min problem
yielded the optimal tableau on the left.

x s

−y⋆⊤b (c⊤ − y⋆⊤A) y⋆⊤

−M1b... −MA M

−Mmb

=

x1 x2 s1 s2
−3 0 2 3 0

1 1 0 −1 0

0 0 −1 −1 1

= P⋆1

Using this result we argued that y⋆ is optimal for the max problem and that c⊤x⋆ = b⊤y⋆.
For our dp3 example, the min problem has

M =

[

−1 0

−1 1

]

A =

[

1 0

1 1

]

b =

[

1

1

]

c =

[

3

2

]

y⋆ =

[

3

0

]

so P⋆1 is the tableau on the right above.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

184 Algebraic Duality Relations

To solve the max problem of the standard dual pair we put it into standard form like
this, adding the vector of slack variables w.

D : maximize
y∈Rm

b⊤y

subject to A⊤y ≤ c

y ≥ 0

max to min

add slacks
minimize
y∈Rm w∈Rn

−b⊤y
subject to A⊤y + w = c

y, w ≥ 0

Feasible points for the problem on the right satisfy w = c − A⊤y, so at the optimal point
w⋆⊤ = (c⊤ − y⋆⊤A), and these are just the cost coefficients of the x columns in P⋆1 . Similarly,
the cost coefficients of the y variables in the optimal tableau for the problem on the right are
the optimal values of the slacks s in our reformulation of the min problem of the standard
dual pair. Here again are the final tableaus we found above for the dp3 problems.

P⋆1 =

x1 x2 s1 s2
−3 0 2 3 0

1 1 0 −1 0

0 0 −1 −1 1

D⋆1 =

y1 y2 w1 w2

3 0 0 1 0

3 1 1 1 0

2 0 1 0 1

s⋆ = [0, 0]⊤

x⋆ = [1, 0]⊤
y⋆ = [3, 0]⊤

w⋆ = [0, 2]⊤

It is true in general that

the optimal slack vector for each problem is the transpose of the cost coefficients
for the non-slack variables in the optimal tableau for the other problem.

In §5.1.2 we found that the vector of optimal non-slack variables for each problem is the
transpose of the cost coefficients for the slack variables in the optimal tableau for the other,
so all of the components in the solution [x⋆⊤, s⋆⊤] to the min problem appear as cost coefficients
in the optimal tableau for the max problem and all of the components in [y⋆⊤,w⋆⊤] appear
as cost coefficients in the optimal tableau for the min problem.

If one problem has an alternate optimal solution some nonbasic column in its optimal
tableau must have a zero cost coefficient, and that means the corresponding constant-column
entry in the optimal tableau of the other problem is zero. Thus

if one problem in a dual pair has multiple optimal vectors
then the other problem is degenerate.

If one problem is degenerate and the slack variable cost coefficients in the different tableaus
representing its optimal point are different, as in the dp3 primal, then the other problem has
multiple optimal vertices. In the dual pair dp4 on the next page [114] both problems are
degenerate and each has two optimal vertices.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.1.6 Multiple Optima and Degeneracy 185

P

x3

4

x2
4

x1

2

A

C

B

x⋆1

x⋆2

D

1

y3

1
y2

1
y1

D

E

F

y⋆1

y⋆2

P : minimize
x∈R3

x1 + x2 + x3

subject to 2x1 + 3x2 + x3 ≥ 4

2x1 + x2 + 3x3 ≥ 4

x1 + x2 + x3 ≥ 2

x ≥ 0

a

b

c

x1 x2 x3 s1 s2 s3
0 1 1 1 0 0 0

−4 −2 −3 −1 1 0 0

−4 −2 −1 −3 0 1 0

−2 −1 −1 −1 0 0 1

solve

x1 x2 x3 s1 s2 s3
−2 0 0 0 0 0 1

2 1 0 2 0 −1 1

0 0 1 −1 0 1 −2
0 0 0 0 1 1 −4

x⋆1 = [2, 0, 0]⊤

x1 x2 x3 s1 s2 s3
−2 0 0 0 0 0 1

1 1
2

0 1 0 −1
2

1
2

1 1
2

1 0 0 1
2
−1 1

2

0 0 0 0 1 1 −4
x⋆2 = [0, 1, 1]⊤

D : maximize
y∈R3

4y1 + 4y2 + 2y3

subject to 2y1 + 2y2 + y3 ≤ 1

3y1 + y2 + y3 ≤ 1

y1 + 3y2 + y3 ≤ 1

y ≥ 0

d

e

f

y1 y2 y3 w1 w2 w3

0 −4 −4 −2 0 0 0

1 2 2 1 1 0 0

1 3 1 1 0 1 0

1 1 3 1 0 0 1

solve

y1 y2 y3 w1 w2 w3

2 0 0 0 0 1 1
1
4

1 0 1
4

0 3
8
−1

8
1
4

0 1 1
4

0 −1
8

3
8

0 0 0 0 1 −1
2
−1

2

y⋆1 = [1
4
, 1
4
, 0]⊤

y1 y2 y3 w1 w2 w3

2 0 0 0 0 1 1

1 4 0 1 0 1 1
2
−1

2

0 −1 1 0 0 −1
2

1
2

0 0 0 0 1 −1
2
−1

2

y⋆2 = [0, 0, 1]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

186 Duality and Sensitivity Analysis

The optimal set for the primal consists of the vertices x⋆1 and x⋆2 and the line connecting
them; the optimal set for the dual consists of the vertices y⋆1 and y⋆2 and the line con-
necting them. These optimal tableaus for the primal have slack variable cost coefficients
[0, 0, 1]⊤ = y⋆2 and these optimal tableaus for the dual have slack variable cost coefficients
[0, 1, 1]⊤ = x⋆2; in each optimal tableau a degenerate pivot can be performed to represent the
point by a different basic sequence, and the slack variable cost coefficients in those tableaus
correspond to x⋆1 and y⋆1 (see Exercise 5.5.27). This example shows that

it is possible for both problems to be degenerate,

and in that case both can have multiple optimal vertices. If both problems in a dual pair
are degenerate it is also possible that neither has multiple optimal vertices, as shown by the
example below [71, Myth 12].

0

x2

0
x1 0

y2

0
y1

P : minimize
x∈R2

0⊤x

subject to x1 ≥ 0

x2 ≤ 0

x ≥ 0

x1 x2 s1 s2
0 0 0 0 0

0 −1 0 1 0

0 0 1 0 1

x1 x2 s1 s2
0 0 0 0 0

0 1 0 −1 0

0 0 1 0 1

D : maximize
y∈R2

0⊤y

subject to y1 ≤ 0

y2 ≥ 0

y ≥ 0

y1 y2 w1 w2

0 0 0 0 0

0 1 0 1 0

0 0 −1 0 1

y1 y2 w1 w2

0 0 0 0 0

0 1 0 1 0

0 0 1 0 −1

The primal tableaus on the left are separated by a degenerate pivot, so both represent the
same point x⋆ = [0, 0]⊤. The cost coefficients of the s variables are the same in both tableaus,
so the dual does not have multiple optimal vertices. The tableaus on the right are also
separated by a degenerate pivot, so both of them represent the same point y⋆ = [0, 0]⊤. The
cost coefficients of the w variables are the same in both tableaus, so the primal does not
have multiple optimal vertices either.

In 21.1.3 we will see that the convergence and numerics of the primal-dual interior point
method for linear programming are affected by the presence of multiple optimal solutions in
either problem and the resulting degeneracy of the other.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.2.1 The Standard Form Linear Program 187

5.2 Finding Duals

The dual of a max problem is a min problem and the dual of a min problem is a max
problem, but finding the dual of a given linear program is more than just a complicated way
of changing the direction of the optimization. The dual of a linear program must have the
structural relationship to its primal discussed in §5.0, so that the two problems will have the
algebraic relationships to each other discussed in §5.1.

The easiest way to find a dual is to rewrite the given linear program in the form of one
of the problems in the standard dual pair. Then the dual of the given linear program is the
other problem in the standard dual pair, which can be rewritten if necessary to put it in a
convenient form. In rewriting the given linear program or the dual, it is often helpful to

• replace an equality constraint by opposing inequality constraints, or replace opposing
inequality constraints by an equality constraint;

• combine vectors or matrices into one, or partition the elements of a single vector or
matrix into different ones;

• replace a free variable by the difference between nonnegative variables as in §2.9.3, or
replace the difference between nonnegative variables by a free variable.

The other reformulation techniques discussed in §2.9 are also sometimes useful in this context.

We have been using x as the variable, c as the cost vector, b as the constant vector, and
A as the constraint coefficient matrix in the min or primal problem of the standard dual
pair. In finding the duals of arbitrary linear programs, which might use those variable names
in other ways, it is better to keep in mind the pictorial representation of the standard dual
pair that was suggested in the introduction to the Chapter.

5.2.1 The Standard Form Linear Program

Recall from §2.1 that a linear program is in standard form when it is written like this.

minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

Both problems in the standard dual pair have inequality constraints, so to make this problem
resemble either of them we must replace the equality by opposing inequalities.

Ax = b⇔ Ax ≤ b and Ax ≥ b

Then the original problem can be rewritten as at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

188 Finding Duals

minimize
x∈Rn

c⊤x

subject to Ax ≥ b

−Ax ≥ −b
x ≥ 0

−→

minimize
x∈Rn

c⊤x

subject to

[

A

−A

]

x ≥
[

b

−b

]

x ≥ 0

The problem on the right is in the form of the min problem in the standard dual pair.

If we introduce dual variables u and v each the length of b, we can write the max problem
of the standard dual pair like this [3, p120-121].

maximize
y∈Rm

[b⊤,−b⊤]
[

u

v

]

subject to [A⊤,−A⊤]
[

u

v

]

≤ c

[

u

v

]

≥ 0

−→
maximize
u∈Rm v∈Rm

b⊤(u − v)
subject to A⊤(u − v) ≤ c

u, v ≥ 0

Letting the difference u − v between nonnegative variables be a free variable y yields the
simpler dual on the right below.

P : minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

D : maximize
y∈Rm

b⊤y

subject to A⊤y ≤ c

y free

Having established that these linear programs are a dual pair, they can from now on be used
like the dual pair that we earlier identified as standard. In particular, we can use them to
easily write down the dual of any linear program that is in standard form.

5.2.2 The Transportation Problem

In §6 we will take up linear programming models of network flows. The simplest of them is
this transportation problem, in which si is a supply, dj is a demand, and ci j and xi j are
the unit cost of shipping and the amount shipped from source i to destination j.

minimize
x ∈ Rpq

∑

j∈D

∑

i∈S
ci jxi j = α(x) p = |S|, q = |D|

subject to
∑

j∈D
xi j = si i ∈ S
∑

i∈S
xi j = dj j ∈ D

x ≥ 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.2.2 The Transportation Problem 189

In developing an algorithm to solve this problem we will make use of its dual. To find that
dual we begin by putting this primal into the form of one of the problems in some dual pair.
Because the problem is already in standard form it is convenient to rewrite it as the min
problem in the dual pair we derived in §5.2.1.

It will be easy to write the general transportation problem in that form if we first consider
a specific instance. This one [3, p123] has sources S = {1, 2} and destinations D = {3, 4, 5}.

minimize
x∈R6

c13x13 + c14x14 + c15x15 + c23x23 + c24x24 + c25x25

subject to x13 + x14 + x15 = s1
x23 + x24 + x25 = s2

x13 + x23 = d3
x14 + x24 = d4

x15 + x25 = d5

x ≥ 0

If we put the xi j and ci j into vectors in the order they appear above, we can write the
objective as c⊤x. If we put the right-hand side values into b = [s1, s2, d3, d4, d5]

⊤ and repeat
in A the pattern of 1 and 0 coefficients evident in the p = 2 source constraints and q = 3

demand constraints,

A =





1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1





}

p rows





q rows

︸ ︷︷ ︸

pq columns

︷ ︸︸ ︷
q columns

we can write the constraints as Ax = b.

To form the dual we must introduce a variable corresponding to each constraint, and
because there are two sets of those it is natural to let u = [u1 . . . up] correspond to the supply
constraints and v = [vp+1 . . . vp+q] correspond to the demand constraints. Then y⊤ = [u⊤, v⊤]

and we can write the dual as at the top left on the next page. In the dual of our example, on
the top right, notice that each inequality is of the form ui + v j ≤ ci j. From that it is apparent
this must be the dual of the general transportation problem.

maximize
u∈Rp v∈Rq

∑

i∈S
siui +

∑

j∈D
d jv j

subject to ui + v j ≤ ci j i ∈ S, j ∈ D
u, v free

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

190 Finding Duals

maximize
y ∈ Rp+q

b⊤y

subject to A⊤y ≤ c

y free

maximize
u∈R2 v∈R3

[s1, s2, d3, d4, d5]





u1
u2
v3
v4
v5





subject to





1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1









u1
u2
v3
v4
v5





≤





c13
c14
c15
c23
c24
c25





u, v free

5.2.3 Finding Duals Numerically

Putting the problems of the standard dual pair from §5.1 into standard form yields the initial
tableaus Tp and Td below.

P : minimize
x∈Rn

c⊤x

subject to Ax ≥ b

x ≥ 0

x s

Tp =

0 c⊤ 0 · · · 0

1 0

−b −A 0
. . . 0

0 1

n m

m

D : maximize
y∈Rm

b⊤y

subject to A⊤y ≤ c

y ≥ 0

y w

Td =

0 −b⊤ 0 · · · 0

1 0

c A⊤ 0
. . . 0

0 1

m n

n

Much can be learned about linear programming duality by studying numerical examples, so
to facilitate experimentation I wrote the duals.m routine listed below.

1 function [Tp,Tpstar,Td,Tdstar]=duals(A,b,c)
2 % construct and solve both problems in the standard dual pair
3
4 m=size(A,1);
5 n=size(A,2);
6
7 Tp=[0, c’,zeros(1,m);
8 -b,-A, eye(m)];
9 [xs,rc,Tpstar]=simplex(Tp,m,n+m);
10
11 Td=[0,-b’,zeros(1,n);
12 c, A’,eye(n)];
13 [yw,rc,Tdstar]=simplex(Td,n,m+n);

This code uses the built-in MATLAB functions eye, which returns an identity matrix, and
zeros, which returns a matrix of all zeros.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.2.3 Finding Duals Numerically 191

From given data this routine constructs initial tableaus for the primal 7-8 and dual
11-12 and 9,13 uses simplex.m to pivot them to final form. In the Octave session below
I used duals.m to solve the brewery problem and its dual, after giving A, b, and c values
that put the problems in the form of P and D above.

octave:1> A=[-7,-10,-8,-12;-1,-3,-1,-1;-2,-4,-1,-3]
A =

-7 -10 -8 -12
-1 -3 -1 -1
-2 -4 -1 -3

octave:2> b=[-160;-50;-60]
b =

-160
-50
-60

octave:3> c=[-90;-150;-60;-70]
c =

-90
-150
-60
-70

octave:4> format bank
octave:5> [Tp,Tpstar,Td,Tdstar]=duals(A,b,c)
Tp =

0.00 -90.00 -150.00 -60.00 -70.00 0.00 0.00 0.00
160.00 7.00 10.00 8.00 12.00 1.00 0.00 0.00
50.00 1.00 3.00 1.00 1.00 0.00 1.00 0.00
60.00 2.00 4.00 1.00 3.00 0.00 0.00 1.00

Tpstar =

2325.00 0.00 0.00 18.75 76.25 7.50 0.00 18.75
5.00 1.00 0.00 2.75 2.25 0.50 0.00 -1.25
12.50 0.00 1.00 -1.12 -0.37 -0.25 0.00 0.88
7.50 0.00 0.00 1.62 -0.13 0.25 1.00 -1.37

Td =

0.00 160.00 50.00 60.00 0.00 0.00 0.00 0.00
-90.00 -7.00 -1.00 -2.00 1.00 0.00 0.00 0.00
-150.00 -10.00 -3.00 -4.00 0.00 1.00 0.00 0.00
-60.00 -8.00 -1.00 -1.00 0.00 0.00 1.00 0.00
-70.00 -12.00 -1.00 -3.00 0.00 0.00 0.00 1.00

Tdstar =

-2325.00 0.00 7.50 0.00 5.00 12.50 0.00 0.00
18.75 0.00 -1.62 0.00 -2.75 1.12 1.00 0.00
76.25 0.00 0.13 0.00 -2.25 0.37 0.00 1.00
18.75 0.00 1.37 1.00 1.25 -0.87 0.00 0.00
7.50 1.00 -0.25 0.00 -0.50 0.25 0.00 0.00

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

192 Efficiency Considerations

Tableaus Tp and Tpstar are recognizable from §2.2 and §4.1; we derived the dual of the
brewery problem in §5.1.4. Notice that x⋆ = [5, 12 1

2
, 0, 0]⊤ and y⋆ = [7 1

2
, 0, 18 3

4
]⊤ are each in

both optimal tableaus. From a tableau in the form of either Tp or Td it is easy to extract A,
b, and c, which can then be used to construct the other tableau.

5.3 Efficiency Considerations

In §5.2.3 we constructed tableaus for the problems in our standard dual pair. Because of
the slack variables they each have n+m columns, but Tp has m constraint rows while Td has
n. The constraint coefficient matrices are negative transposes of each other and are seldom
square, so typically m , n and one problem has more constraints than the other. We saw in
§5.1.2 how to find x⋆ and y⋆ in both optimal tableaus, so we can solve either problem. But
as I mentioned in §4.5.3, the number of phase-2 pivots required by the simplex algorithm
is observed in practice to depend on the number of constraints, and this suggests that one
problem in a dual pair might be easier to solve than the other.

5.3.1 Tall & Thin vs Short & Fat

To investigate this idea consider the following dp5 pair [3, §5.6] in which A is tall and thin
so that A⊤ is short and fat.

A

P : minimize
x∈R2

[

−1 −1
]

x

subject to





3 −1
2 −1
1 −1
0 −1
−1 3

−1 2

−1 1

−1 0





x ≥





0

−1
−3
−6
0

−1
−3
−6





x ≥ 0

A⊤

D : maximize
y∈R8

[

0 −1 −3 −6 0 −1 −3 −6
]

y

subject to

[

3 2 1 0 −1 −1 −1 −1
−1 −1 −1 −1 3 2 1 0

]

y ≤
[

−1
−1

]

y ≥ 0

I put each of these problems into standard form and solved it by following the pivot rules of
the simplex algorithm that we developed in §2, as shown on the next page. In the right-hand
pivot session I read the tableau for the primal problem and then used the DUAL command

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.3.1 Tall & Thin vs Short & Fat 193

to find the dual. The initial tableau for P is in canonical form, so only phase-2 pivots are
required to reach optimal form. Because the primal tableau has negative cost coefficients,
the initial tableau for D has negative constant-column entries and subproblem pivots are
needed to put it into canonical form; then a single phase-2 pivot reaches optimality.

> This is PIVOT, Unix version 4.4

> For a list of commands, enter HELP.

>

< read thin.tab

Reading the tableau...

...done.

x1 x2 s1 s2 s3 s4 s5 s6 s7 s8

0. -1. -1. 0. 0. 0. 0. 0. 0. 0. 0.

0. -3. 1. 1. 0. 0. 0. 0. 0. 0. 0.

1. -2. 1. 0. 1. 0. 0. 0. 0. 0. 0.

3. -1. 1. 0. 0. 1. 0. 0. 0. 0. 0.

6. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0.

0. 1. -3. 0. 0. 0. 0. 1. 0. 0. 0.

1. 1. -2. 0. 0. 0. 0. 0. 1. 0. 0.

3. 1. -1. 0. 0. 0. 0. 0. 0. 1. 0.

6. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1.

< * phase-2 simplex algorithm pivots

< pivot 6 2;

< pivot 7 3;

< pivot 8 8;

< pivot 9 9;

< pivot 5 10

x1 x2 s1 s2 s3 s4 s5 s6 s7 s8

12. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1.

12. 0. 0. 1. 0. 0. -1. 0. 0. 0. 3.

7. 0. 0. 0. 1. 0. -1. 0. 0. 0. 2.

3. 0. 0. 0. 0. 1. -1. 0. 0. 0. 1.

3. 0. 0. 0. 0. 0. 1. 0. 0. 1. -1.

6. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1.

6. 0. 1. 0. 0. 0. 1. 0. 0. 0. 0.

12. 0. 0. 0. 0. 0. 3. 1. 0. 0. -1.

7. 0. 0. 0. 0. 0. 2. 0. 1. 0. -1.

< * optimal form achieved in 5 pivots

> This is PIVOT, Unix version 4.4

> For a list of commands, enter HELP.

>

< read thin.tab;

Reading the tableau...

...done.

< dual

y1 y2 y3 y4 y5 y6 y7 y8 w1 w2

0. 0. 1. 3. 6. 0. 1. 3. 6. 0. 0.

-1. 3. 2. 1. 0. -1. -1. -1. -1. 1. 0.

-1. -1. -1. -1. -1. 3. 2. 1. 0. 0. 1.

< * make b1 positive

< p 2 6

y1 y2 y3 y4 y5 y6 y7 y8 w1 w2

0. 0. 1. 3. 6. 0. 1. 3. 6. 0. 0.

1. -3. -2. -1. 0. 1. 1. 1. 1. -1. 0.

-4. 8. 5. 2. -1. 0. -1. -2. -3. 3. 1.

< * pivot b2 subproblem toward optimality

< p 2 9

y1 y2 y3 y4 y5 y6 y7 y8 w1 w2

-6. 18. 13. 9. 6. -6. -5. -3. 0. 6. 0.

1. -3. -2. -1. 0. 1. 1. 1. 1. -1. 0.

-1. -1. -1. -1. -1. 3. 2. 1. 0. 0. 1.

< * unbounded subproblem; pivot in objective row

< p 3 2

y1 y2 y3 y4 y5 y6 y7 y8 w1 w2

-24. 0. -5. -9. -12. 48. 31. 15. 0. 6. 18.

4. 0. 1. 2. 3. -8. -5. -2. 1. -1. -3.

1. 1. 1. 1. 1. -3. -2. -1. 0. 0. -1.

< * phase 2 simplex algorithm pivot

< p 3 5

y1 y2 y3 y4 y5 y6 y7 y8 w1 w2

-12. 12. 7. 3. 0. 12. 7. 3. 0. 6. 6.

1. -3. -2. -1. 0. 1. 1. 1. 1. -1. 0.

1. 1. 1. 1. 1. -3. -2. -1. 0. 0. -1.

< * optimal form achieved in 4 pivots

floating point P D

operation 1 pivot 5 pivots 1 pivot 4 pivots
/ 8 40 2 8
* 27 135 27 108
- 24 120 18 72

As discussed in §4.2, one pivot in a tableau having m+ 1 rows and n+ 1 columns requires
m divisions, (1 + n − m)(m + 1) multiplications, and (1 + n − m)m subtractions (see Exercise
4.6.16). From the table of operation counts given above for this example it is clear that
solving the short fat problem takes less work than solving the tall thin one.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

194 Efficiency Considerations

5.3.2 The Dual Simplex Method

To solve the dual in §5.3.1, I first had to construct a tableau for that problem. Then I could
use phase 1 and phase 2 of the simplex method to pivot the dual tableau to optimal form.
The dual simplex method instead solves the dual by pivoting in the primal tableau.

In §5.2.3 we constructed these tableaus to represent the problems in our standard dual
pair. If c ≥ 0 then tableau D is in canonical form, and to put it into optimal form we would
perform minimum-ratio pivots to make −b⊤ ≥ 0⊤ while keeping c ≥ 0.

D =

y w

0 −b⊤ 0⊤

c A⊤ In×n

P =

x s

0 c⊤ 0⊤

−b −A Im×m

Because c⊤ ≥ 0, tableau P would be in optimal form if −b were nonnegative. We can make
−b ≥ 0 while keeping c⊤ ≥ 0⊤ by performing dual simplex pivots in tableau P.

To see how a dual simplex pivot works consider the dp6 example below [3, §5.5] in which
our goal is to solve the problem described by tableau P0. Comparing this tableau to the
template on the right above we can recover the values of A, b, and c; then using them in the
template on the left above yields D0. Tableaus P0 and D0, because they describe problems
that are duals of each other, are said to be dual tableaus. One consequence of the fact that
these are dual tableaus is that the entries in the nonbasic columns of the first constraint row
in P0 appear with signs changed in the constraint rows of the y1 column in D0.

D0 =

y1 y2 y3 w1 w2 w3 w4

0 50 5 −10 0 0 0 0

2 −1 −1 1 1 0 0 0

1 2 −1 1 0 1 0 0

5 1 −3 0 0 0 1 0

4 2 1 0 0 0 0 1

A⊤
(2, 3) element of A⊤ corresponds to (3, 2) element of −A

simplex pivot in D corresponds to dual simplex pivot in P

P0 =

x1 x2 x3 x4 s1 s2 s3
0 2 1 5 4 0 0 0

50 1 −2 −1 −2 1 0 0

5 1 1 3 −1 0 1 0

−10 −1 −1 0 0 0 0 1

−A

D1 =

y1 y2 y3 w1 w2 w3 w4

10 70 −5 0 0 10 0 0

1 −3 0 0 1 −1 0 0

1 2 −1 1 0 1 0 0

5 1 −3 0 0 0 1 0

4 2 1 0 0 0 0 1

P1 =

x1 x2 x3 x4 s1 s2 s3
−10 1 0 5 4 0 0 1

70 3 0 −1 −2 1 0 −2
−5 0 0 3 −1 0 1 1

10 1 1 0 0 0 0 −1

In D0 it is easy to see that the next step in solving the dual is to pivot on the circled
element (2, 3) of A⊤. That element of A⊤ in D corresponds to the (3, 2) element of −A in P.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.3.2 The Dual Simplex Method 195

Performing the pivots yields D1 and P1, and these are also dual tableaus. The entries in the
nonbasic columns of the first constraint row in P1 again appear with signs changed in the
constraint rows of the y1 column in D1, though in a different order due to the pivots.

Performing a simplex pivot in D and the corresponding dual-simplex pivot in P yield
tableaus that are duals of each other, so the pivots are equivalent. Just as simplex-rule
pivots in a canonical-form tableau D lead to either optimal or unbounded form, dual-simplex-
rule pivots in P lead to either optimal or infeasible form (assuming neither problem cycles).
Because D is feasible (it is in canonical form) P cannot be unbounded.

To perform the simplex pivot in D0 we used the rule we derived in §2.4.4, which can be
restated in terms of the variables in the D template like this.

• choose h so that −bh < 0;
• choose p so that

cp

a⊤ph
= min

j

{
c j

a⊤jh

∣
∣
∣
∣
∣
a⊤jh > 0

}

or
cp

ahp
= min

j

{
c j

ah j

∣
∣
∣
∣
∣
ah j > 0

}

Here the (j, i) element of A⊤ is a⊤ji = ai j. Applying this rule to P0 we find that only the third
element of −b is negative, −b3 = −10, so the pivot row is h = 3. To find the pivot column we
must compute the ratios of the c j to the positive a3 j. The numbers appearing in the −A part
of tableau P0 are the negatives of the ai j so the columns we want are those having negative
entries in row 3. But the ratios involve +ai j so in calculating them we must use the negatives
of those entries to find

c1

a31
=

2

−(−a31)
=

2

−(−1) =
2

1
= 2

c2

a32
=

1

−(−a32)
=

1

−(−1) =
1

1
= 1

and pick the minimum-ratio column p = 2.
It is easy to miss a sign change in this process, so you might find it simpler to remember

the dual-simplex pivot rule in terms of the primal tableau entries.

• choose a pivot row h that has a negative constant-column entry;
• in that row, for each column j that has a negative entry Th j find the ratio c j/(−Th j);
• choose as the pivot column one that has the minimum ratio.

The pivot session on the next page uses this pivot rule to solve the problem described by
tableau P0.

We assumed at the beginning that c⊤ ≥ 0⊤, so the process illustrated above can be viewed
as phase 2 of the dual simplex method. If pivoting-in a basis leaves some costs negative, a
dual version of the subproblem technique can be used to make c⊤ ≥ 0; thus the whole primal
simplex algorithm can be performed on the dual (without ever writing it down) by pivoting
in the primal. There are also primal-dual algorithms [107, §4.6] [162, §3.4] that combine
aspects of both. These topics are, unfortunately, beyond the scope of this introduction.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

196 Duality and Sensitivity Analysis

> This is PIVOT, Unix version 4.4
> For a list of commands, enter HELP.
>
< read P.tab
Reading the tableau...
...done.

x1 x2 x3 x4 s1 s2 s3
0. 2. 1. 5. 4. 0. 0. 0.

50. 1. -2. -1. -2. 1. 0. 0.
5. 1. 1. 3. -1. 0. 1. 0.

-10. -1. -1. 0. 0. 0. 0. 1.

< * the most-negative constant-column entry is -10 at i=4
< * that row has negative constraint coefficients -1 and -1
< * the column ratios are 2/[-(-1)]=2 and 1/[-(-1)]=1
< * so the pivot column is the x2 column and j=3
< p 4 3

x1 x2 x3 x4 s1 s2 s3
-10. 1. 0. 5. 4. 0. 0. 1.
70. 3. 0. -1. -2. 1. 0. -2.
-5. 0. 0. 3. -1. 0. 1. 1.
10. 1. 1. 0. 0. 0. 0. -1.

< * the most-negative constant-column entry is -5 at i=3
< * that row has a single negative entry at j=5
< p 3 5

x1 x2 x3 x4 s1 s2 s3
-30. 1. 0. 17. 0. 0. 4. 5.
80. 3. 0. -7. 0. 1. -2. -4.
5. 0. 0. -3. 1. 0. -1. -1.

10. 1. 1. 0. 0. 0. 0. -1.

< * optimal form

5.4 Sensitivity Analysis

In §5.1.4 we asked the following questions about the brewery model; we took the answer to
the first as the answer to the second, but they are actually not quite the same.

If Sarah decreases her supply of pale malt by exactly 1 pound, what will happen to
her revenue from selling beer?

How much should Sarah charge per pound of pale malt in order to keep her total
revenue, from selling both beer and malt, constant?

To answer the first question we might simply change the available resource in the starting
tableau and solve the modified problem. The original brewery model yields an optimal
revenue of −z⋆ = 2325 while the modified version yields −z̄⋆ = 2317 1

2
, so if Sarah sells a

pound of pale malt she will make 2325 − 2317 1
2
= $7.50 less from selling beer.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.4.1 Changes to Problem Data 197

The answer to the second question, how much Sarah should charge per pound of pale
malt, depends on how much she sells. We found that she can sell up to 10 pounds at $7.50
per pound without changing her total revenue, but for every pound she sells beyond that she
will need to charge more. One could approximate a price-versus-quantity curve for pale malt
by brute computation, but that would require the solution of many models each assuming
that she sells a different quantity. To study how shadow price depends on quantity it is
easier to use algebraic manipulations of the optimal tableau as we did in §5.1.4.

5.4.1 Changes to Problem Data

We begin our study of sensitivity analysis by taking up questions of the first kind, which
are about specific changes to the numbers in a model. In practical applications of linear
programming it is often useful to know what happens to the optimal solution of a resource
allocation problem when changes are made to the available resources, the selling prices of
the products, or the technology coefficients that appear in the constraint equations. The
effect of all these changes, taken singly or in combination, can be discovered by revising the
initial tableau and solving the modified problem from scratch. But if we know the optimal
tableau for the unmodified problem, we can usually find the optimal tableau for the modified
problem with much less work, especially if the perturbations to the data are small.

We know these starting and optimal tableaus for the unmodified brewery problem, so
by inspection we can write down the pivot matrix P that makes PT0 = T⋆.

T0 =

x1 x2 x3 x4 s1 s2 s3

0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0 pale malt

50 1 3 1 1 0 1 0 black malt

60 2 4 1 3 0 0 1 hops

T⋆ =

x1 x2 x3 x4 s1 s2 s3

2325 0 0 18 3
4
76 1

4
7 1
2

0 18 3
4

5 1 0 2 3
4

2 1
4

1
2

0 −1 1
4

12 1
2

0 1 −1 1
8
−3

8
−1

4
0 7

8

7 1
2

0 0 1 5
8
−1

8
1
4

1 −1 3
8

variable kegs of
x1 Porter
x2 Stout
x3 Lager
x4 IPA

P =





1 7 1
2

0 18 3
4

0 1
2

0 −1 1
4

0 −1
4

0 7
8

0 1
4

1 −1 3
8





To solve the problem described by a modified initial tableau T0, we can begin by computing
PT0. If that tableau happens to be in optimal form then it is the modified optimal tableau
T⋆; if not it provides a hot start for completing the solution of the modified problem. If in
PT0 some bi became negative but c⊤ ≥ 0⊤, then dual simplex pivots can be used to restore
canonical (and hence optimal) form; if some c j became negative but b ≥ 0 then primal
simplex pivots can be used to restore optimal form.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

198 Sensitivity Analysis

If Sarah sold one pound of pale malt that would change b1 from 160 to 159 in the starting
tableau for the brewery problem. To get close to the optimal tableau for the modified
problem we can perform the same pivots that solved the unmodified problem, by computing
this matrix product.

PT0 =





1 7 1
2

0 18 3
4

0 1
2

0 −1 1
4

0 −1
4

0 7
8

0 1
4

1 −1 3
8





x1 x2 x3 x4 s1 s2 s3

0 −90 −150 −60 −70 0 0 0

159 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

decrease pale malt
by 1 pound

=

x1 x2 x3 x4 s1 s2 s3

2317 1
2

0 0 18 3
4

76 1
4

7 1
2

0 18 3
4

4 1
2

1 0 2 3
4

2 1
4

1
2

0 −1 1
4

12 3
4

0 1 −1 1
8
−3

8
−1

4
0 7

8

7 1
4

0 0 1 5
8
−1

8
1
4

1 −1 3
8

= P⋆

The resulting tableau is in optimal form, so it is the optimal tableau for the modified problem
and we can read off −z̄⋆ = 2317 1

2
. If we really care only about this one number, I could have

saved some work by finding only the first row and column of this tableau to confirm that
it is in optimal form. As it turned out the prospective buyer in the story of §5.1.4 wasn’t
willing to spend $7.50 for the pound of pale malt, so Sarah kept her stock at 160 pounds.

Another local brewer who makes only India Pale Ale told Sarah that he might go out of
business, and in that case he would give her the 10 ounces of hops he had in stock. This
resource is used up in T⋆ (s⋆3 = 0) so having more of it might let Sarah brew more beer, and
with one less competitor selling IPA she thought she could increase her price for that product
to $75 per keg. What would her new optimal production program be in that scenario?

PT̂0 =





1 7 1
2

0 18 3
4

0 1
2

0 −1 1
4

0 −1
4

0 7
8

0 1
4

1 −1 3
8





increase price
by $5

x1 x2 x3 x4 s1 s2 s3

0 −90 −150 −60 −75 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

70 2 4 1 3 0 0 1

increase hops
by 10 ounces

=

x1 x2 x3 x4 s1 s2 s3

2512 1
2

0 0 18 3
4

71 1
4

7 1
2

0 18 3
4

−7 1
2

1 0 2 3
4

2 1
4

1
2

0 −1 1
4

21 1
4

0 1 −1 1
8
−3

8
−1

4
0 7

8

−6 1
4

0 0 1 5
8
−1

8
1
4

1 −1 3
8

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.4.2 Inserting or Deleting Columns 199

This time the pivots that solved the unmodified problem produce a tableau that is not in
optimal form, because two of its constant-column entries are negative. But doing a dual-
simplex pivot in the row of the most negative one yields this optimal form.

x1 x2 x3 x4 s1 s2 s3
2400 15 0 60 105 15 0 0

6 − 8
10

0 −2 2
10
−1 8

10
− 4

10
0 1

16 7
10

1 8
10

1 2
10

1
10

0 0

2 −1 1
10

0 −1 4
10
−2 6

10
− 3

10
1 0

= P̂⋆

Sarah’s new optimal production program would thus be x̂⋆ = [0, 16, 0, 0]⊤. As a result of the
IPA maker going out of business she would produce only Stout, even though she could now
charge more for IPA if she made any. Sarah worried about marketing only one product, but
fortunately for IPA lovers this competitor decided not to go out of business after all.

A single change in a linear programming model might affect more than one number in
T0. For example, if in the twoexams problem of §1.1.1 the grade that triggers an advisor
alert is increased to 65, constraints a and b are both affected.

5.4.2 Inserting or Deleting Columns

Every autumn Sarah gets inquires about an Oktoberfest beer, so she wants to consider
adding that variety to her production program. An internet search leads her to a recipe that
includes 5 pounds of pale malt, 2 pounds of black malt, and 2 ounces of hops. To earn the
good will of her customers she would be content to sell this specialty product for only $80
per keg. Would making it be worthwhile?

Letting x5 represent the kegs of Oktoberfest to make, Sarah inserts the product column
into her starting tableau and proceeds as usual.

new product

PT0 =





1 7 1
2

0 18 3
4

0 1
2

0 −1 1
4

0 −1
4

0 7
8

0 1
4

1 −1 3
8





x1 x2 x3 x4 x5 s1 s2 s3

0 −90 −150 −60 −70 −80 0 0 0

160 7 10 8 12 5 1 0 0

50 1 3 1 1 2 0 1 0

60 2 4 1 3 2 0 0 1

=

x1 x2 x3 x4 x5 s1 s2 s3

2325 0 0 18 3
4

76 1
4
−5 7 1

2
0 18 3

4

5 1 0 2 3
4

2 1
4

0 1
2

0 −1 1
4

12 1
2

0 1 −1 1
8
−3

8
1
2
−1

4
0 7

8

7 1
2

0 0 1 5
8
−1

8
1
2

1
4

1 −1 3
8

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

200 Sensitivity Analysis

If in PT0 the reduced cost over the x5 column had turned out to be positive then Sarah’s
original production program would have remained optimal and it would not be worthwhile
to make Oktoberfest. If Sarah wanted to know only that, I could have saved some work in
finding the matrix product by calculating only c5; if she wants to know the other consequences
of adding the new product we can do a primal simplex pivot in the x5 column to get this
optimal form.

x1 x2 x3 x4 x5 s1 s2 s3
2400 0 0 35 75 0 10 10 5

5 1 0 2 3
4

2 1
4

0 1
2

0 −1 1
4

5 0 1 −2 3
4
−1

4
0 −1

2
−1 2 1

4

15 0 0 3 1
4
−1

4
1 1

2
2 −2 3

4

= T⋆

Deleting from T0 a column that is nonbasic in T⋆ is trivial, because if the product is not
being made it can be removed from both tableaus without changing the optimal program.
Deleting from T0 a column that is basic in T⋆ is trickier, because in that case PT0 will lack
a basis. If, instead of adding Oktoberfest, Sarah stopped making Stout then we would get
this guess at a new optimal tableau.

deleted product

PT̂0 =





1 7 1
2

0 18 3
4

0 1
2

0 −1 1
4

0 −1
4

0 7
8

0 1
4

1 −1 3
8





x1 x3 x4 s1 s2 s3
0 −90 −60 −70 0 0 0

160 7 8 12 1 0 0

50 1 1 1 0 1 0

60 2 1 3 0 0 1

=

x1 x3 x4 s1 s2 s3

2325 0 18 3
4

76 1
4

7 1
2

0 18 3
4

5 1 2 3
4

2 1
4

1
2

0 −1 1
4

12 1
2

0 −1 1
8
−3

8
−1

4
0 7

8

7 1
2

0 1 5
8
−1

8
1
4

1 −1 3
8

Now there is no identity column whose 1 is in the second constraint row, so I pivoted on
the positive entry in that row (if there were more than one, picking an entry having the
minimum ratio c j/ah j would keep the pivot from making some cost coefficient negative).

x1 x3 x4 s1 s2 s3

2057 1
7

0 42 6
7

84 2
7

12 6
7

0 0

22 6
7

1 1 1
7

1 5
7

1
7

0 0

14 2
7

0 −1 2
7
−3

7
−2

7
0 1

27 1
7

0 −1
7
−5

7
−1

7
1 0

= T̂⋆

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.4.3 Inserting or Deleting Rows 201

5.4.3 Inserting or Deleting Rows

Our original formulation of the brewery problem in §1.3.1 did not require Sarah to produce a
certain amount of any product, and her unmodified optimal production program includes no
Lager or IPA. A tavern that buys her beer might find this inconvenient and request that she
supply at least 1 keg of Lager. The simplest way to enforce that condition is by appending
the constraint x3 ≥ 1 or −x3+ s4 = −1 to the optimal tableau; then one simplex pivot restores
optimal form (in general some dual simplex pivots might also be needed).

< read brewopt.tab
Reading the tableau...
...done.

x1 x2 x3 x4 s1 s2 s3
2325.0 0. 0. 18.750 76.250 7.50 0. 18.750

5.0 1. 0. 2.750 2.250 0.50 0. -1.250
12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875
7.5 0. 0. 1.625 -0.125 0.25 1. -1.375

< * this is T* for the unmodified problem
< append 1 1

x1 x2 x3 x4 s1 s2 s3
2325.0 0. 0. 18.750 76.250 7.50 0. 18.750 0.

5.0 1. 0. 2.750 2.250 0.50 0. -1.250 0.
12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875 0.
7.5 0. 0. 1.625 -0.125 0.25 1. -1.375 0.
0.0 0. 0. 0.000 0.000 0.00 0. 0.000 0.

< * add constraint -1=-x3+s4
< insert 5 0
T(5, 1)... = -1 0 0 -1 0 0 0 0 1

x1 x2 x3 x4 s1 s2 s3
2325.0 0. 0. 18.750 76.250 7.50 0. 18.750 0.

5.0 1. 0. 2.750 2.250 0.50 0. -1.250 0.
12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875 0.
7.5 0. 0. 1.625 -0.125 0.25 1. -1.375 0.
-1.0 0. 0. -1.000 0.000 0.00 0. 0.000 1.

< * pivot in the added row to make x3 basic
< pivot 5 4

x1 x2 x3 x4 s1 s2 s3
2306.250 0. 0. 0. 76.250 7.50 0. 18.750 18.750

2.250 1. 0. 0. 2.250 0.50 0. -1.250 2.750
13.625 0. 1. 0. -0.375 -0.25 0. 0.875 -1.125
5.875 0. 0. 0. -0.125 0.25 1. -1.375 1.625
1.000 0. 0. 1. 0.000 0.00 0. 0.000 -1.000

Production requirements can also be enforced [3, §6.2] by moving columns as we did in §5.1.4
but that approach, natural for hand calculation, is much harder to implement in code.

The technique illustrated above can also be used to add constraints that are not bounds
[3, p156]. The operations required to restore optimal form are then case-specific and more
complicated, but might still be easier than solving a modified problem from scratch.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

202 Sensitivity Analysis

To remove a constraint it is necessary to delete both its tableau row and its slack variable
column. If the slack is positive at optimality this is trivial, because a constraint that is not
active does not affect the optimal point. If the slack is nonbasic in T⋆ it is necessary to first
make it basic, as in this example of removing the first constraint from the brewery model.

< read brewopt.tab
Reading the tableau...
...done.

x1 x2 x3 x4 s1 s2 s3
2325.0 0. 0. 18.750 76.250 7.50 0. 18.750

5.0 1. 0. 2.750 2.250 0.50 0. -1.250
12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875
7.5 0. 0. 1.625 -0.125 0.25 1. -1.375

< * make s1 basic so it is not in the other equations
< pivot 2 6

x1 x2 x3 x4 s1 s2 s3
2250. -15.0 0. -22.50 42.50 0. 0. 37.50

10. 2.0 0. 5.50 4.50 1. 0. -2.50
15. 0.5 1. 0.25 0.75 0. 0. 0.25
5. -0.5 0. 0.25 -1.25 0. 1. -0.75

< * then remove the first constraint row
< delete 2 0

x1 x2 x3 x4 s1 s2 s3
2250. -15.0 0. -22.50 42.50 0. 0. 37.50

15. 0.5 1. 0.25 0.75 0. 0. 0.25
5. -0.5 0. 0.25 -1.25 0. 1. -0.75

< * and remove the s1 column
< delete 0 6

x1 x2 x3 x4 s2 s3
2250. -15.0 0. -22.50 42.50 0. 37.50

15. 0.5 1. 0.25 0.75 0. 0.25
5. -0.5 0. 0.25 -1.25 1. -0.75

< * now use primal simplex pivots to get optimal form
< pivot 3 4

x1 x2 x3 x4 s2 s3
2700. -60. 0. 0. -70. 90. -30.

10. 1. 1. 0. 2. -1. 1.
20. -2. 0. 1. -5. 4. -3.

< pivot 2 2

x1 x2 x3 x4 s2 s3
3300. 0. 60. 0. 50. 30. 30.

10. 1. 1. 0. 2. -1. 1.
40. 0. 2. 1. -1. 2. -1.

The deletions preserve canonical form, so this might be faster than removing the constraint
from the original tableau and solving the modified problem from scratch.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.4.4 Shadow-Price Curves 203

5.4.4 Shadow-Price Curves

Finally, we return to the second question of §5.4.0 and find the shadow price of pale malt
as a function of how much Sarah sells. This involves repeatedly moving a tableau column
to the left of the line, writing inequalities that must be satisfied to maintain canonical form,
increasing the value of a nonbasic variable, and pivoting if the variable reaches the minimum
row-ratio. As I mentioned in §5.4.3 these algebraic manipulations can also be used [3, §6.2]
to study changes in production requirements without adding constraints.

Here again on the left is the optimal tableau for the unmodified brewery model, in which
s1 is the amount of pale malt that is left over. The equations represented by this tableau
are still satisfied if we move the s1 column to the other side of the line, as in T1.

T⋆ =

x1 x2 x3 x4 s1 s2 s3

2325 0 0 18 3
4

76 1
4

7 1
2

0 18 3
4

5 1 0 2 3
4

2 1
4

1
2

0 −1 1
4

12 1
2

0 1 −1 1
8
−3

8
−1

4
0 7

8

7 1
2

0 0 1 5
8
−1

8
1
4

1 −1 3
8

T1 =

x1 x2 x3 x4 s2 s3

2325 − 7 1
2
s1 0 0 18 3

4
76 1

4
0 18 3

4

5 − 1
2
s1 1 0 2 3

4
2 1
4

0 −1 1
4

12 1
2
+

1
4
s1 0 1 −1 1

8
−3

8
0 7

8

7 1
2
− 1

4
s1 0 0 1 5

8
−1

8
1 −1 3

8

Now for every unit that we increase s1 the objective is spoiled by 7 1
2
, so the shadow price of

pale malt is y1 = $7.50 per pound. This is true only while T1 remains in canonical (and thus
optimal) form, which is while

5 − 1
2
s1 ≥ 0 ⇒ s1 ≤ 10

12 1
2
+

1
4
s1 ≥ 0 ⇒ s1 ≥ −50

7 1
2
− 1

4
s1 ≥ 0 ⇒ s1 ≤ 30






⇒ s1 ≤ 10.

When s1 reaches 10, x1 = 5 − 1
2
s1 reaches zero. Making s1 = 10 and x1 = 0 amounts to a

pivot on the circled element of T⋆, yielding the tableau on the left below.

T2 =

x1 x2 x3 x4 s1 s2 s3

2250 −15 0 −22 1
2

42 1
2

0 0 37 1
2

10 2 0 5 1
2

4 1
2

1 0 −2 1
2

15 1
2

1 1
4

3
4

0 0 1
4

5 −1
2

0 1
4
−1 1

4
0 1 −3

4

T3 =

x1 x2 x3 x4 s1 s2

2250 − 37 1
2
s3 −15 0 −22 1

2
42 1

2
0 0

10 + 2 1
2
s3 2 0 5 1

2
4 1
2

1 0

15 − 1
4
s3

1
2

1 1
4

3
4

0 0

5 + 3
4
s3 −1

2
0 1

4
−1 1

4
0 1

We pivoted away from optimality, so T2 is a suboptimal tableau. In it s1 = b1 is basic, so the
only way to increase s1 further is to change b1. The equations represented by this tableau
are still satisfied if we move the s3 column to the other side of the line, as in T3 (if there
were more than one a1 j < 0 we would move the column having the highest ratio c j/a1 j so as
to spoil the objective the least). Now we can increase s1 further by increasing s3.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

204 Sensitivity Analysis

Increasing s3 by one unit increases s1 by ∂s1/∂s3 = 2 1
2
units and decreases the revenue z that

Sarah realizes from making beer by ∂z/∂s3 = 37 1
2
units. The shadow price of pale malt is

therefore

y1 =
∂z

∂s1
=
∂z

∂s3

∂s3

∂s1
= 37 1

2
× 1

2 1
2

= $15.00 per pound.

Tableau T3 remains in canonical form while

10 + 2 1
2
s3 ≥ 0 ⇒ s3 ≥ −4

15 − 1
4
s3 ≥ 0 ⇒ s3 ≤ 60

5 + 3
4
s3 ≥ 0 ⇒ s3 ≥ −6 2

3






⇒ s3 ≤ 60,

but when s3 reaches 60, x2 = 15− 1
4
s3 reaches zero. Making s3 = 60 and x2 = 0 amounts to a

pivot on the circled element of T2, yielding the tableau below.

T0 =

x1 x2 x3 x4 s1 s2 s3
0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0

60 2 4 1 3 0 0 1

50 1 3 1 1 0 1 0

Except for a row permutation this is the starting tableau, so I have labeled it T0. In this
canonical form none of the pale malt is used so all of it can be sold; Sarah has given up
making beer and is now in the business of selling pale malt.

We found that the shadow price of pale
malt is

y1 =






7 1
2

for 0 ≤ s1 ≤ 10

15 for 10 ≤ s1 ≤ 160

so its sale generates this revenue.

r =






7 1
2
s1 for 0 ≤ s1 ≤ 10

75 + 15(s1 − 10) for 10 ≤ s1 ≤ 160

The graph shows r and the optimal rev-
enue from producing beer as functions of
the amount s1 of pale malt that is sold.
These curves have one kink at s1 = 10; in
general there are as many segments as there
are pivots between T⋆ and T0.

r

2325

75 s1
10 160

total revenue

pa
le
m
al
t
re
ve
nu
e

beer
revenue

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.5 Exercises 205

5.5 Exercises

5.5.1[E] If one linear program is the dual of another, there are certain structural relation-
ships between them. Explain what those structural relationships are (a) in words; (b) by
using a diagram.

5.5.2[E] In the standard dual pair described in the Chapter introduction, the unknown
vector is called x in one problem and y in the other. (a) Which problem is the minimization
problem, and which the maximization? (b) Might you encounter a dual pair in which the
variable names are switched? (c) How can you tell which problem in a dual pair is the primal
P and which is the dual D?

5.5.3[E] In §5.1 we arbitrarily adopted the variable names A, b, and c for the data arrays
of the standard dual pair and we arbitrarily identified one problem as the primal and the
other as the dual. (a) Write down the resulting algebraic statement of the standard dual
pair. (b) Explain in what sense the algebraic duality relations discussed in §5.1 apply to all
dual pairs rather than only to this particular one.

5.5.4[E] Say whether it is possible for both problems in a dual pair to be (a) infeasible;
(b) feasible and bounded; (c) feasible but unbounded.

5.5.5[H] If in our standard dual pair x̄ is feasible for the min problem and ȳ is feasible for
the max problem, why must it be true that c⊤x̄ ≥ b⊤ȳ? How does this ensure that neither
problem is unbounded?

5.5.6[H] If P is an optimal tableau for a primal problem in our standard dual pair and D

is an optimal tableau for the dual problem, x⋆ and y⋆ can both be found in each tableau.
(a) Explain where. (b) Why does this happen?

5.5.7[E] What is a duality gap, and why is it zero when x = x⋆ and y = y⋆?

5.5.8[H] If one problem in a dual pair has an optimal vector then so does the other; why?
If both have an optimal vector the objective values are equal; why?

5.5.9[H] In §5.1 we used matrix algebra to derive a formula for the optimal tableau of the
primal problem in our standard dual pair. The pivot matrix Q in this derivation contains
the slack-variable or s columns of the optimal tableau T⋆. (a) If the primal problem is the
one in the dp1 dual pair, what are the numerical values of the elements in Q? (b) Show
numerically that T⋆ = QT for that problem.

5.5.10[E] If one problem in a dual pair is unbounded, the other is infeasible. (a) Explain
how the structural relationship between the problems ensures this. (b) Explain how the
relationship between the objective values of the two problems ensures this.

5.5.11[E] If one problem in a dual pair is infeasible but the other is feasible, what can we
say about the optimal value of the problem that is feasible?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

206 Duality and Sensitivity Analysis

5.5.12[E] If one problem in a dual pair is infeasible, is it necessarily true that the other
problem is unbounded? Explain.

5.5.13[H] As explained in §2.5, a linear program that is solved by the simplex algorithm
must end in optimal form, unbounded form, infeasible form 1, or infeasible form 2. (a) Write
the brewery problem of §1.3.1 in the form of the minimization problem in our standard dual
pair, and construct its dual. Solve both problems to optimality and describe the connections
between the optimal tableaus. (b) Write the unbd problem of §2.5.2 in the form of the
minimization problem in our standard dual pair, and construct its dual. Apply the simplex
algorithm to both problems and describe the connections between the final-form tableaus.
(c) Modify the infea problem of §2.5.3 to be in only infeasible form 1. Write the resulting
problem in the form of the minimization problem in our standard dual pair, and construct its
dual. Apply the simplex algorithm to both problems and describe the connections between
the final-form tableaus. (d) Modify the infea problem of §2.5.3 to be in only infeasible
form 2. Write the resulting problem in the form of the minimization problem in our standard
dual pair, and construct its dual. Apply the simplex algorithm to both problems and describe
the connections between the final-form tableaus.

5.5.14[H] The unbd problem of §2.5.2 has a feasible ray r(t) = [1, 5, 0, 0, 3]⊤+ t[0, 4, 1, 0, 1]⊤,

where t ≥ 0. (a) Draw a view of the problem from the tableau given there, in which x3 and
x4 are nonbasic. Crosshatch the feasible set and draw an arrow to show the feasible ray.
(b) Write the problem in the form of the minimization P in our standard dual pair, and
state the numerical values of c, A, and b. (c) Confirm by numerical calculation that points
x = r(t) satisfy Ax ≥ b and x ≥ 0 for all t ≥ 0 and are thus feasible for P. (d) Construct the
dual D of the primal problem P. (e) Explain how it is possible to see by inspection of the
dual constraints that D is infeasible. Would this still be easy if A⊤ had many rows? (f) Show
how the primal ray r(t) can be used to compute a linear combination of the constraint rows
A⊤y ≤ c and thereby make the infeasibility of D obvious. Would this still be easy to do if A⊤

had many rows?

5.5.15[E] What is a shadow price? How are shadow prices related to the values of dual
variables? What is the shadow price of a resource that is slack at optimality?

5.5.16[H] Use the approach of §5.1.4 to deduce the shadow price of (a) black malt; (b) hops.

5.5.17[H] In solving the primal of the brewery problem we try to maximize revenue from
selling products by setting their production levels x j, while not using more of each ingredient
than the amount on hand. (a) Give a similar economic interpretation for the dual of the
brewery problem. What does its objective function represent, and what do its constraints
require? (b) In view of this economic interpretation, explain how solving the dual implicitly
solves the primal. (c) If y⋆

i
is the shadow price for resource i, of what is x⋆

j
the shadow price?

5.5.18[E] Write down the complementary slackness conditions in terms of the variables in
our standard dual pair.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.5 Exercises 207

5.5.19[E] If x̄ is feasible for the min problem in a dual pair and ȳ is feasible for the max
problem, and if together they satisfy the complementary slackness conditions, what can we
say about x̄ and ȳ?

5.5.20[H] If P is a linear program in the form of the min problem in the standard dual
pair of §5.1.0 and D is its dual, what must be true of the tableaus representing the problems
if they are both in canonical form? Explain.

5.5.21[H] The brewery problem has x⋆ = [5, 12 1
2
, 0, 0]⊤ and y⋆ = [7 1

2
, 0, 18 3

4
]⊤. Show that

these vectors satisfy the complementary slackness conditions.

5.5.22[H] At the optimal solutions to the problems in a dual pair, if a constraint in one
problem is slack the corresponding variable in the other problem is zero. Is it also true that if
a variable in one problem is zero the corresponding constraint in the other is slack? Explain.

5.5.23[H] At the optimal solutions to the problems of a dual pair, if a variable in one
problem is positive the corresponding constraint in the other is satisfied with equality. Is
it also true that if a constraint in one problem is satisfied with equality the corresponding
variable in the other is positive? Explain.

5.5.24[E] What must be true of a primal problem P if at optimality it has a constraint
that is satisfied with equality but the corresponding optimal variable in its dual D is zero?

5.5.25[H] This problem has its minimizing point at a degenerate vertex of its feasible set.

P : minimize
x∈R2

x1 − x2

subject to −x1 − x2 ≥ −1
−x2 ≥ −1

x ≥ 0

(a) Solve the problem graphically. (b) Put the problem into standard form and construct a
tableau. (c) There is a tie for the minimum ratio so there are two possible pivot positions.
Solve the problem by pivoting at each. (d) In each optimal tableau identify the optimal
values of the dual variables, and show by a graphical argument that they are the shadow
prices of the constraints. (e) Write down the dual D and solve it graphically. (f) Put the
dual problem into standard form and construct a tableau. (g) Solve the dual, finding both
of its optimal tableaus. (h) In each optimal tableau for the dual identify the optimal values
of the primal variables, and show that they are the shadow prices of the dual constraints.

5.5.26[H] If P is an optimal tableau for a primal problem in our standard dual pair and D

is an optimal tableau for its dual, the slack variables s⋆ and w⋆ can both be found in each
tableau. (a) Explain where. (b) Why does this happen?

5.5.27[H] The dp4 example in §5.1.6 is a dual pair in which both problems are degenerate
and each has two optimal vertices. Perform degenerate pivots in the optimal tableaus to
find a different optimal basis for each problem in which the slack variable cost coefficients
correspond to x⋆1 and y⋆1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

208 Duality and Sensitivity Analysis

5.5.28[H] The dp3 and dp4 examples of §5.1.6 show that if one problem in a dual pair is
degenerate the other can have multiple optimal vertices and if both problems are degenerate
both can have multiple optimal vertices. (a) If exactly one problem is degenerate at its
optimal point, can the other have a unique optimal vertex? If not, explain why; if so, devise
an example. (b) If each problem is degenerate at an optimal point, can each have a unique
optimal vertex? If not, explain why; if so, present an example.

5.5.29[E] The structural relationships between the problems in a dual pair give rise to
various algebraic relationships, which we studied in §5.1. (a) List all of the relationships
that are boxed in that Section. (b) Give an example to illustrate each.

5.5.30[H] Use the duality relations discussed in §5.1 to establish Farkas’ theorem: for
any A ∈ Rm×n and b ∈ Rm, exactly one of these systems has a solution.

Ax = b

x ≥ 0

A⊤y ≤ 0

b⊤y > 0

Hint: the final-form tableau of what linear program would answer the question “does the left
system have a solution?” Farkas’ result is the most famous theorem of the alternative,
of which many have been discovered [108, §2].

5.5.31[H] Construct a dual of the following linear program.

maximize
b∈Rm

a⊤b

subject to Cb ≤ y

b ≥ 0

5.5.32[H] In this linear program y1 is unconstrained in sign.

maximize
y∈R4

y1 + 2y2 + 3y3 + 4y4

subject to y1 + y2 + y3 + y4 ≤ 5

y1 − y2 ≥ −3
−y3 + y4 ≤ 6

y2, y3, y4 ≥ 0

(a) Reformulate this problem into standard form, construct an initial tableau, pivot to op-
timality, and from the optimal tableau read off y⋆. (b) Form the dual, solve it, and from its
optimal tableau read off y⋆. (c) Are the two problems equally easy to solve?

5.5.33[H] In §5.2.1 we derived this dual pair, in which the optimal tableau for P has no
slack variable columns whose cost coefficients could be the elements of y⋆.

P : minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

D : maximize
y∈Rm

b⊤y

subject to A⊤y ≤ c

y free

(a) In §5.1.0, I glibly claimed that the algebraic duality relations apply to all dual pairs
because any dual pair can be written in the form of our standard dual pair. Explain how

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.5 Exercises 209

this claim must be interpreted in order for it to be true in this case. Should I have worded
it more precisely? (b) Which algebraic duality relations of §5.1 hold for this P and D?

5.5.34[H] The coefficients in these constraint equations have a pattern you might recognize.

P : minimize
x∈R6

4x11 + 1x12 + 2x13 + 3x21 + 2x22 + 1x23

subject to x11 + x12 + x13 = 30

x21 + x22 + x23 = 10

x11 + x21 = 20

x12 + x22 = 15

x13 + x23 = 5

x ≥ 0

(a) Construct a dual D for this problem. (b) Put D into standard form. (c) Form an initial
tableau for D and pivot it to optimal form. (d) Can you deduce x⋆ from the optimal tableau
for D? Explain. (e) Form an initial tableau for P. Why is it not already in optimal form?
(f) Pivot the initial tableau for P to optimal form. (g) Can you deduce the optimal values
of the dual variables from the optimal tableau for P? Explain.

5.5.35[E] Putting the primal and dual problems of our standard dual pair into standard
form lead in §5.2.3 to tableaus that we called Tp and Td. If their coefficient matrices −A and
A⊤ are transposes (with a sign change) and A is usually not square, why do these tableaus
always have the same number of columns?

5.5.36[P] The duals.m routine of §5.2.3 can be used to construct and solve both problems
in the standard dual pair. (a) Use duals.m to solve the primal and dual problems of the
dp1 pair discussed in the Chapter introduction. (b) Use duals.m to solve the primal and
dual problems of the dp5 pair discussed in §5.3.1. (c) Deduce A, b and c from the dual you
found in Exercise 5.5.32(b) and use duals.m to solve that problem and the dual the function
constructs for it. Confirm that the primal and dual solutions agree with those you found in
solving the Exercise. (c) Use duals.m to solve the transportation problem of Exercise 5.5.34
and the dual that the function constructs for it.

5.5.37[H] In §5.2.3, I claimed that from a tableau in the form of either Tp or Td it is easy to
extract A, b, and c. (a) Show how to obtain these arrays from Tp for the brewery problem.
(b) Show how to obtain them from Td for that problem.

5.5.38[E] One problem in a primal-dual pair might be easier to solve than the other.
(a) Precisely what does it mean to say that one linear program is “easier to solve” than
another? (b) Why might the problems in a primal-dual pair differ in their ease of solution?

5.5.39[E] If the constraint coefficient matrix is tall and thin in one problem of a dual pair
but short and fat in the other, which problem is likely to be easier to solve? Why?

5.5.40[E] Explain in words the basic idea of the dual simplex method. How does a dual
simplex pivot work?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

210 Duality and Sensitivity Analysis

5.5.41[E] What makes two tableaus dual tableaus?

5.5.42[H] In §5.3.2, I claimed that D1 and P1 are dual tableaus. Prove that this claim is
true by (a) showing the structural relationships between the two tableaus; (b) showing that
the two tableaus describe linear programs that are duals of each other.

5.5.43[E] In §5.3.2, I wrote down dual tableaus D0 and D1 along with P0 and P1 to explain
how a dual simplex pivot works. In applying the dual simplex algorithm, are the pivots
performed in the primal tableau or in the dual one? Is it necessary to write down both?
Explain.

5.5.44[H] In §5.3.1 we solved the short & fat problem of the dp5 pair by doing subproblem
pivots to obtain canonical form and then a single phase-2 simplex-rule pivot to get optimal
form. (a) Solve the problem by using the dual simplex algorithm instead. (b) For each pivot
you perform in the short & fat problem, identify the corresponding pivot that is implicitly
performed in the tall & thin problem, explicitly perform that pivot in the primal tableau,
and show that at each step the resulting tableaus are duals of each other.

5.5.45[H] If one problem in a primal-dual pair is feasible and the dual simplex algorithm is
used to pivot the tableau for the other problem to a final form, what final forms are possible?

5.5.46[E] Write down the steps of the dual simplex algorithm in terms of the entries Ti j in
the primal tableau (where the pivots are performed).

5.5.47[H] Use the dual simplex algorithm of §5.3.2 to solve this problem [3, p127-128].

x1 x2 x3 x4 x5 x6
−10 0 0 3 1 2 0

−5 1 0 −1 0 −1 0

2 0 0 2 3 0 1

−7 0 1 2 −1 −1 0

5.5.48[E] On which of the elements in the following tableau [3, Exercise 5.18c] could we
perform (a) a subproblem pivot; (b) a dual-simplex pivot?

x1 x2 x3 x4 x5
0 0 5 3 2 0

−2 1 −1 −1 0 0

−3 0 1 −1 −1 1

(c) Solve the problem using the primal simplex algorithm. (d) Solve the problem using the
dual simplex algorithm.

5.5.49[H] Devise a dual version of the subproblem technique for getting canonical form,
and illustrate how it works.

5.5.50[E] Explain in words the basic idea of sensitivity analysis.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

5.5 Exercises 211

5.5.51[E] Sensitivity analysis is sometimes called postoptimality analysis [145, §5]
[151, §5] but most of the techniques described in §5.4 involve making changes to the initial
tableau. Why is it necessary to solve a linear program before studying the sensitivity of the
model to changes in its data?

5.5.52[E] A single approach is used in §5.4.1 to study changes in resource availabilities,
selling prices, and technology coefficients, singly or in combination. What is it?

5.5.53[E] In §5.4.1, I wrote down the pivot matrix P by looking at the initial and optimal
tableaus for the brewery problem. Explain how I did that.

5.5.54[H] Suppose that a particular sequence of pivots leads from the initial tableau T0 of
a linear program to an optimal tableau T⋆, that P is a pivot matrix such that PT0 = T⋆,
and that the initial tableau is then modified to T0 . (a) If the same sequence of pivots that
solved the original problem can be performed starting from T0 , the result tableau is given
by the matrix product PT0 . If this result tableau is in optimal form, how do we know that
it solves the modified problem? (b) If the modification of the initial tableau is such that the
same sequence of pivots that solved the unmodified problem cannot be performed, how is
the new optimal tableau T⋆ related to PT0? Present an example to illustrate your answer.

5.5.55[H] The optimal tableau T⋆ that I used in §5.4.1 is the one that we found with
simplex.m in §4.1, so it results from strictly following the steps of the algorithm that we
developed in §2. (a) Why are the constraint rows in this tableau permuted from those in the
optimal tableau that we found by hand-pivoting in §2.4.3? (b) Does it matter which optimal
tableau we use to find a pivot matrix P for sensitivity analysis? Explain. (c) In §5.4.1, each
constraint row in T0 is labeled to show the resource whose consumption it constrains. In T⋆

the slack variable for black malt, s2, has its identity-column 1 in the third row so s2 = 7 1
2
.

Does it make sense to therefore think of this row as still representing the constraint on black
malt? If so, which constraints are represented by the other rows, now that s1 and s3 are
nonbasic? Explain.

5.5.56[E] What is a hot start for solving a linear program?

5.5.57[H] When it seemed likely that her IPA-making competitor might go out of business,
Sarah investigated the consequences for her optimal production program of simultaneously
increasing her hops on hand to 70 ounces and increasing her price for IPA to $75 per keg.
What would happen if, in addition to these changes, she also reduced the black malt in the
IPA recipe from 12 pounds to 9 pounds?

5.5.58[H] If P is the pivot matrix that solves the unmodified brewery problem, propose a
change to the starting tableau T0 that will make PT0 have a negative cost coefficient.

5.5.59[H] If in the brewery model the amounts of pale malt, black malt, and hops are
[3, Exercise 6.8] increased simultaneously in the proportions p : p : 2p, how big can p get
before the optimal basic sequence changes from S = (x1, x2, s2)?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

212 Duality and Sensitivity Analysis

5.5.60[H] Suppose that in the brewery problem the initial tableau is modified to increase
the prices for Porter, Stout, Lager, and IPA by ρ, σ, λ, and α dollars respectively. Write
a system of inequalities in ρ, σ, λ, and α which if it is satisfied ensures that the optimal
production program x⋆ does not change.

5.5.61[H] The twoexams problem of §1.1 is a resource allocation problem. (a) Construct
an initial tableau T0 for the problem. (b) Pivot to optimal form and call the optimal tableau
T⋆. (c) Find a pivot matrix P such that PT0 = T⋆. (d) Use sensitivity analysis to find the
new optimal point if the grade that triggers an advisor alert is increased to 65.

5.5.62[H] In §5.4.2 we found that it would be profitable for Sarah to make Oktoberfest beer
if she can sell it for $80 per keg. What is the lowest price she could accept per keg if x5 is to
remain in the optimal basic sequence?

5.5.63[H] Use sensitivity analysis to study, by removing the x1 column from the brewery

model, what happens to the optimal solution if Sarah decides to stop making Porter.

5.5.64[H] In §5.4.3 we found, after appending a lower bound constraint on x3 to T⋆, that
one pivot on a4,3 was sufficient to restore optimal form. (a) Explain why, if a lower bound
constraint on xp is appended to T⋆, a single pivot on am+1,p restores optimal form if the
appended row m + 1 is the minimum-ratio row in the xp column. (b) Explain why, if the
appended row is not the minimum-ratio row in the xp column, one or more dual simplex
pivots are also required.

5.5.65[H] Suppose that Sarah acquires an unlimited supply of pale malt, so that it is no
longer necessary for her to constrain the amount she uses. Determine by sensitivity analysis
how the optimal solution changes if the first constraint row is removed from the brewery

model.

5.5.66[H] In §5.4.4 we studied how the sale of pale malt affects Sarah’s revenue from selling
beer. Repeat that analysis for (a) the sale of black malt; (b) the sale of hops.

5.5.67[H] In §5.4.4 we found the shadow price of pale malt as a function of how much Sarah
sells, by gradually increasing one nonbasic variable after another and pivoting whenever the
minimum row-ratio was reached. Then we could draw a curve showing the revenue realized
as a function of the quantity sold. Can you suggest a more direct way of determining the
breakpoints on that curve?

5.5.68[H] Why, apart from its profound and mystical character, do you suppose anyone
bothers to study linear programming duality? Now that you have read this whole Chapter,
list all of the ways you can think of in which duality theory is of practical use in linear
programming.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6

Linear Programming Models of Network Flow

A meat processing company with plants in Des Moines and Chicago provisions restaurant
suppliers in those cities, and also rents refrigerator trucks to operate on the interstate high-
ways shown below for shipping product to Minneapolis, Saint Louis, and Denver.

•
Denver

70

•
Kansas City

35

• Des Moines

70 • St Louis

55

•Chicago

94

•Minneapolis

35

90

25

76
80

The company predicts that during the next year it will sell 20 truckloads of product to
customers in Minneapolis, 25 truckloads to customers in Saint Louis, and 15 truckloads to
customers in Denver. To meet these requirements it will produce 50 truckloads more than
the local demand in Des Moines and 10 truckloads more than the local demand in Chicago.

Many possible routes can be used to move product from the processing plants to the out-
of-town customers. For example, the demand in Saint Louis could be met with a shipment
from Des Moines by sending it either through Minneapolis and Chicago or through Kansas
City. This route map is very simple and drawn to scale so you might be able to guess the
optimal shipping schedule, but more complicated problems are hard to solve by inspection
so we will formulate an optimization model to minimize the total expense of shipping.

To operate a truck costs the company $2 per mile for fuel and rent, plus $80 per hour
for the driver’s salary and benefits. From the distances and driving times between the cities
we can compute the cost for a truck to make each trip, as shown in the table on the next
page. To keep the numbers in the model simple I have in the last column rounded off each
trip cost to the nearest multiple of $100.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

214 Linear Programming Models of Network Flow

trip between distance time cost ci j
i city i j city j [miles] [hr:min] [$] [$ × 100]
1 Des Moines 4 Minneapolis 245 5:25 923 9
1 Des Moines 5 Denver 677 14:05 2481 25
1 Des Moines 6 Kansas City 197 4:10 727 7
2 Chicago 3 Saint Louis 324 7:15 1228 12
2 Chicago 4 Minneapolis 442 9:35 1651 17
4 Minneapolis 5 Denver 1374 29:55 5141 51
6 Kansas City 3 Saint Louis 257 5:25 947 9
6 Kansas City 5 Denver 600 12:25 2193 22

The first step in constructing our optimization model is to idealize the map on the
previous page by the network diagram below. The circles are nodes corresponding to
the m = 6 cities, each with its supply minus demand or net stock shown in an adjacent
box. The n = 10 links connecting the nodes correspond to the highways, but each link is
directed (even though the highways are not) because it represents shipments in just one
direction. Node 6 has zero net stock but it can be used as a transshipment point for
trucks from node 1 to pass through on their way to node 5 or node 3. Company policy also
allows transshipments through nodes 1, 2, and 4, and to make that possible the diagram
includes links for flow in both directions between nodes 1 and 4 and between nodes 2 and
4. Every truck that goes to node 3 or node 5 delivers its cargo rather than driving on to
another city.

−15 5
Denver

x 45

x15

x
65

4 Minneapolis−20
51 9

x
1
4

17

x
24

1
Des Moines

+50

9
25

x
4
1

7

6Kansas City
922

x16

2Chicago +10

x
42

17

12

−253

St Louis x23
x63

This network diagram summarizes not only the relevant geography but also the net stocks,
per-truck shipping costs, and admissible routes.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6 Introduction 215

Each link cost ci j that we found in the table is shown in the network diagram near the
tail of the arrow representing trips from node i to node j, and the number of trucks or flow
on that link is represented by the variable xi j shown near the head of the arrow.

A shipping schedule consists of a vector of flows xi j ≥ 0 for the links (i, j) that are in
the transportation network. For the meat processor’s network,

(i, j) ∈ N = {

(1, 4) (1, 5) (1, 6) (2, 3) (2, 4) (4, 1) (4, 2) (4, 5) (6, 3) (6, 5)
}

.

There are n = |N| = 10 elements in this set so there are n link flows in the shipping schedule
and n elements in the cost vector.

x = [x14, x15, x16, x23, x24, x41, x42, x45, x63, x65]
⊤

c = [9, 25, 7, 12, 17, 9, 17, 51, 9, 22]⊤

Here c14 = c41 = 9 and c24 = c42 = 17, so we have assumed that those link costs do not
depend on the direction of travel. With these definitions the total cost of shipments is c⊤x.

To be feasible, a shipping schedule must move the supplies to meet the demands. At
node 4, for example, after trucks have arrived from nodes 1 and 2 and departed for nodes 1,
2, and 5, node 4’s demand must have been met so that its net stock ends up zero.

(−20)
initial net stock

+ (x14 + x24)
trucks in

− (x41 + x42 + x45)
trucks out

= 0
final net stock

This node equilibrium equation expresses a conservation law like those discussed in §1.4.
Because shipping product costs money, in any optimal solution it will turn out that either
x14 or x41 is zero (or both) and that either x42 or x24 is zero (or both), but to allow flow in
either direction between nodes 1 and 4 and between nodes 2 and 4, all four variables must
be included in the model. Node 4 has a demand of 20, so its initial net stock is −20.

Minimizing the total cost of shipments subject to all m = 6 of the node equilibrium
constraints yields this linear program, which I will call nf1 (see §28.5.16).

minimize
x∈Rn

z(x) = 9x14 + 25x15 + 7x16 + 12x23 + 17x24 + 9x41 + 17x42 + 51x45 + 9x63 + 22x65

subject to x41 − x14 − x15 − x16 = −50 1

x42 − x23 − x24 = −10 2

x23 + x63 = 25 3

x14 + x24 − x41 − x42 − x45 = 20 4

x15 + x45 + x65 = 15 5

x16 − x63 − x65 = 0 6

x ≥ 0

The pivot session and optimal network diagram on the next page show that the solution of
this problem is x⋆ = [20, 15, 15, 10, 0, 0, 0, 0, 15, 0]⊤.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

216 Linear Programming Models of Network Flow

unix[1] pivot
> This is PIVOT, Unix version 4.4
> For a list of commands, enter HELP.
>
< read nf1.tab
Reading the tableau...
...done.

x14 x15 x16 x23 x24 x41 x42 x45 x63 x65
0. 9. 25. 7. 12. 17. 9. 17. 51. 9. 22.

-50. -1. -1. -1. 0. 0. 1. 0. 0. 0. 0.
-10. 0. 0. 0. -1. -1. 0. 1. 0. 0. 0.
25. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0.
20. 1. 0. 0. 0. 1. -1. -1. -1. 0. 0.
15. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1.
0. 0. 0. 1. 0. 0. 0. 0. 0. -1. -1.

< solve

x14 x15 x16 x23 x24 x41 x42 x45 x63 x65
-915. 0. 0. 0. 0. 12. 18. 22. 35. 0. 4.

20. 1. 0. 0. 0. 1. -1. -1. -1. 0. 0.
10. 0. 0. 0. 1. 1. 0. -1. 0. 0. 0.
15. 0. 0. 0. 0. -1. 0. 1. 0. 1. 0.
15. 0. 1. 0. 0. 0. 0. 0. 1. 0. 1.
15. 0. 0. 1. 0. -1. 0. 1. 0. 0. -1.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

4 −20

5−15 1 +50 2 +10

6 3 −25

15

20

15
15

10

In this example we formulated a general network flow model as a linear program and
solved it using the tableau simplex method. Some problems that have little or nothing to do
with trucking and highways can also be cast as general network flow models (see for example
Exercises 6.6.31 and 6.6.32) and solved in the same way.

Unfortunately, the size of the simplex tableau grows very fast as the network gets bigger.
If there are m nodes and flows are allowed in either direction between each node and
every other node then there are n = m(m − 1) directed links, leading to a tableau with
(m2 − m + 1) × (m + 1) = m3

+ 1 elements. Most networks are not fully connected (in our ex-
ample n = 1

3
m(m−1)) but [151, §6.1] real problems are often too big to solve with the tableau

simplex algorithm.
Fortunately, the problem has a special structure which can be exploited by a network

simplex algorithm that requires computer memory in an amount proportional to m2 rather
than m3. Developing such an algorithm is worthwhile for several reasons.

• It is a practical necessity if we are to find minimum-cost shipping schedules for networks
of realistic size.

• The exploitation of the special structure in this problem illustrates techniques that can
be used in constructing special-purpose algorithms for other problems.

• By analyzing successively more complicated problems, the development of the algo-
rithm will offer deeper insight into all network flow models.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.1 Finding a Basic Feasible Solution 217

6.1 The Transportation Problem

We begin our development of a compact algorithm for the general network flow problem by
considering its simplest instance, the transportation problem [3, §7.1] [151, §6.2] [79, §4.1]
[107, §5.1]. In the network diagram below, the supply nodes i = 1, 2, 3 are connected only
to the demand nodes j = 4, 5, 6.

1+20

2+20

3+20

4 −10

5 −25

6 −25

2
4

3

1
5

2

1

1
6

x14

x24

x 34

x
15

x25

x35

x
16

x
26

x36

Here x = [x14, x15, x16, x24, x25, x26, x34, x35, x36]
⊤, c = [2, 4, 3, 1, 5, 2, 1, 1, 6]⊤, and we want to

find a shipping schedule x that minimizes c⊤x subject to equilibrium constraints at the m = 6

nodes. Because there are no transshipments, the constraints have this simple and regular
form.

node initial stock + flow in − flow out = final stock

i = 1 +20 + 0 − (x14 + x15 + x16) = 0

i = 2 +20 + 0 − (x24 + x25 + x26) = 0

i = 3 +20 + 0 − (x34 + x35 + x36) = 0

j = 4 −10 + (x14 + x24 + x34) − 0 = 0

j = 5 −25 + (x15 + x25 + x35) − 0 = 0

j = 6 −25 + (x16 + x26 + x36) − 0 = 0

I multiplied the supply-node constraints through by −1 and then moved all initial stocks to
the constant column in constructing the simplex tableau T0 on the next page.

6.1.1 Finding a Basic Feasible Solution

Tableau T0 has no basis, so to solve the problem we start with phase 1. In §2.8.1 we began
the subproblem technique for phase 1 by pivoting-in a basis. In doing that for an arbitrary
linear program it is usually not possible to select each pivot according to the minimum-ratio
rule, so even if originally b ≥ 0 some of its entries end up negative. But in a transportation
problem it always is possible to pick a minimum-ratio row when pivoting-in a basis.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

218 The Transportation Problem

> This is PIVOT, Unix version 4.4
> For a list of commands, enter HELP.
>
< read nf2.tab
Reading the tableau...
...done.

x14 x15 x16 x24 x25 x26 x34 x35 x36
0. 2. 4. 3. 1. 5. 2. 1. 1. 6.
20. 1. 1. 1. 0. 0. 0. 0. 0. 0.
20. 0. 0. 0. 1. 1. 1. 0. 0. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
25. 0. 1. 0. 0. 1. 0. 0. 1. 0.
25. 0. 0. 1. 0. 0. 1. 0. 0. 1.

< p 5 2

x14 x15 x16 x24 x25 x26 x34 x35 x36
-20. 0. 4. 3. -1. 5. 2. -1. 1. 6.
10. 0. 1. 1. -1. 0. 0. -1. 0. 0.
20. 0. 0. 0. 1. 1. 1. 0. 0. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
25. 0. 1. 0. 0. 1. 0. 0. 1. 0.
25. 0. 0. 1. 0. 0. 1. 0. 0. 1.

< p 2 3

x14 x15 x16 x24 x25 x26 x34 x35 x36
-60. 0. 0. -1. 3. 5. 2. 3. 1. 6.
10. 0. 1. 1. -1. 0. 0. -1. 0. 0.
20. 0. 0. 0. 1. 1. 1. 0. 0. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
15. 0. 0. -1. 1. 1. 0. 1. 1. 0.
25. 0. 0. 1. 0. 0. 1. 0. 0. 1.

< p 6 6

x14 x15 x16 x24 x25 x26 x34 x35 x36
-135. 0. 0. 4. -2. 0. 2. -2. -4. 6.

10. 0. 1. 1. -1. 0. 0. -1. 0. 0.
5. 0. 0. 1. 0. 0. 1. -1. -1. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
15. 0. 0. -1. 1. 1. 0. 1. 1. 0.
25. 0. 0. 1. 0. 0. 1. 0. 0. 1.

< p 3 7

x14 x15 x16 x24 x25 x26 x34 x35 x36
-145. 0. 0. 2. -2. 0. 0. 0. -2. 6.

10. 0. 1. 1. -1. 0. 0. -1. 0. 0.
5. 0. 0. 1. 0. 0. 1. -1. -1. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
15. 0. 0. -1. 1. 1. 0. 1. 1. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.

< p 4 10

x14 x15 x16 x24 x25 x26 x34 x35 x36
-265. 0. 0. 2. -2. 0. 0. -6. -8. 0.

10. 0. 1. 1. -1. 0. 0. -1. 0. 0.
5. 0. 0. 1. 0. 0. 1. -1. -1. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
15. 0. 0. -1. 1. 1. 0. 1. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

< delete 7 0

x14 x15 x16 x24 x25 x26 x34 x35 x36
-265. 0. 0. 2. -2. 0. 0. -6. -8. 0.

10. 0. 1. 1. -1. 0. 0. -1. 0. 0.
5. 0. 0. 1. 0. 0. 1. -1. -1. 0.
20. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
15. 0. 0. -1. 1. 1. 0. 1. 1. 0.

T0

T1

T2

T3

T4

T5

T6

In the T0 and T1 tableaus, I made x14 and x15
basic by pivoting in the minimum ratio rows
of those columns.

A minimum-ratio pivot on either boxed
element in T2 would change a variable that is
already basic, so I skipped those columns. The
minimum-ratio pivot on the circled element
in the x25 column of T2 does not change any
variable that is already basic, so I made that
pivot. The minimum-ratio pivot in the x26
column of T3 does not change any variable
that is already basic, so I made that pivot.

A minimum-ratio pivot on either boxed
element in tableau T4 would change a basic
variable, so I pivoted in the x36 column instead
(the bottom row is tied for the minimum ratio
so I could have pivoted there.)

Tableau T5 is in canonical form, except for
the redundant row which I deleted. This al-
ways happens, because the sum of the supplies
equals the sum of the demands.

The special structure of the transportation
problem guarantees [3, §7.1] that it will always
be possible to perform phase 1 of the simplex
algorithm in this simple way, to get canonical
form in exactly m − 1 pivots.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.1 Finding a Basic Feasible Solution 219

In the network diagram below the costs are from T0, the flows are those in the basic
feasible solution of T6, and for clarity I have omitted the nonbasic links. Remember that on
the arrow representing link (i, j) the cost ci j is always shown near the tail and the flow xi j is
always shown near the head.

1+20

2+20

3+20

4 −10

5 −25

6 −25

2

4

5

2

6

10

10

15

5

20

A picture like this makes it easy to visualize the flows, but it takes up a lot of space and
requires some drawing skill. Usually we will find it more convenient to represent the current
state of a network in a transportation tableau. This one corresponds to the network
diagram above, and it also represents the basic feasible solution in T6.

supplies






demands
︷ ︸︸ ︷

4 10 5 25 6 25

1 20 210 410 3

2 20 1 515 25

3 20 1 1 620

c
x26
26

The uncircled numbers down the left side of a transportation tableau are always the supplies
in node-number order and the uncircled numbers across the top are always the demands in
node-number order, even if they are not labeled as such and even if the circled node numbers
are not provided. The (i, j)th entry in the tableau is ci j, and if that link is basic the flow xi j
is shown as a superscript (these numbers are not exponents). The flows in each row add up
to the row’s supply, and the flows in each column add up to the column’s demand.

We found the basic feasible solution that is shown in this transportation tableau by
pivoting in the simplex tableau, but it can be constructed much more easily by using the
northwest corner rule.The steps in this procedure are illustrated for our example by the
sequence of transportation tableaus on the next page, but in performing it you can annotate
a single tableau by filling in the flows as you assign them.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

220 The Transportation Problem

The process begins by assigning as much flow as possible to the link, in our case (1, 4), whose
reduced cost appears in the upper left or northwest corner of the tableau.

10 25 25

20 210 4 3

20 1 5 2

20 1 1 6

The most we can ship on the 2 in the northwest corner is 10,
because that meets the column’s demand; cross off the column.

10 25 25

20 210 410 3

20 1 5 2

20 1 1 6

The new northwest corner element is the 4. The most we can ship
on it is 10, because that uses up the first row’s supply; cross off
the row.

10 25 25

20 210 410 3

20 1 515 2

20 1 1 6

The new northwest corner element is the 5. The most we can ship
on it is 15, because that meets the column’s demand; cross off the
column.

10 25 25

20 210 410 3

20 1 515 25

20 1 1 6

The new northwest corner element is the 2. The most we can ship
on it is 5, because that uses up the second row’s supply; cross off
the row.

10 25 25

20 210 410 3

20 1 515 25

20 1 1 620

The new northwest corner element is the 6. Because total supply
equals total demand, shipping all of the row 3 supply simultane-
ously uses it up and meets the column 3 demand.

10 25 25

20 210 410 3

20 1 515 25

20 1 1 620
The resulting transportation tableau has the same initial basic
feasible solution we obtained by pivoting in the simplex tableau.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.2 Finding a Better Solution 221

6.1.2 Finding a Better Solution

In §6.1.0, to construct the initial simplex tableau T0 I multiplied the supply-node equilibrium
constraints through by −1. This has the effect of making the formulation look like this.

P : minimize
x ∈ Rn

∑

j∈D

∑

i∈S
ci jxi j = α(x)

subject to
∑

j∈D
xi j = si i ∈ S
∑

i∈S
xi j = dj j ∈ D

x ≥ 0

In our example transportation problem, which I will call nf2 when it is written in this form
(see §28.5.17), s = [20, 20, 20]⊤ are the supplies at nodes i ∈ S = {1, 2, 3} and d = [10, 25, 25]⊤

are the demands at nodes j ∈ D = {4, 5, 6}. Each demand is the negative of a negative net
stock and hence a positive number. There are p = |S| = 3 source nodes and q = |D| = 3

demand nodes so there are m = p + q = 6 constraints. The set of links is the set product
S × D = N = {

(1, 4) (1, 5) (1, 6) (2, 4) (2, 5) (2, 6) (3, 4) (3, 5) (3, 6)
}

, and the number of link
flows xi j is n = |N| = p × q = 9.

In §6.1.1 we found the initial basic feasible solution x̄ = [10, 10, 0, 0, 15, 5, 0, 0, 20]⊤ and
observed that because T6 has negative reduced costs this point is not optimal. Then we used
the northwest corner rule to find the same assignment of flows in the transportation tableau.
Does it also somehow reveal that x̄ is not optimal?

Recall from §5.1.5 that if x̄ is feasible for a linear program and ȳ is feasible for its dual,
and if the objective values are equal, then x̄ and ȳ are optimal. In §5.2.2 we found (with
slight changes in notation) this dual of the transportation problem.

D : maximize
u∈Rp v∈Rq

∑

i∈S
siui +

∑

j∈D
d jv j = β(u, v)

subject to ui + v j ≤ ci j i ∈ S, j ∈ D
u, v free

If some vector ȳ = [u⊤, v⊤]⊤ that makes the two objectives equal is also feasible for D , then
we can conclude that x̄ is optimal. The difference between the objectives is

α(x) − β(u, v) =




∑

j∈D

∑

i∈S
ci jxi j




−





∑

i∈S
siui +

∑

j∈D
d jv j





=





∑

i∈S

∑

j∈D
(ci j − ui − v j)xi j +

∑

i∈S

∑

j∈D
uixi j +

∑

j∈D

∑

i∈S
v jxi j




−





∑

i∈S
siui +

∑

j∈D
d jv j




.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

222 The Transportation Problem

Because we assumed that x is feasible,

∑

j∈D
xi j = si and

∑

i∈S
xi j = d j

so

∑

i∈S

∑

j∈D
uixi j =

∑

i∈S





∑

j∈D
xi j




ui =

∑

i∈S
siui and

∑

j∈D

∑

i∈S
v jxi j =

∑

j∈D





∑

i∈S
xi j



 v j =

∑

j∈D
d jv j.

Substituting in the last equation on the previous page,

α(x) − β(u, v) =




∑

i∈S

∑

j∈D
(ci j − ui − v j)xi j +

∑

i∈S
siui +

∑

j∈D
d jv j




−





∑

i∈S
siui +

∑

j∈D
d jv j





=

∑

i∈S

∑

j∈D
(ci j − ui − v j)xi j = 0.

The difference between the objectives will be zero if each term in the final sum is zero. If xi j
is nonbasic then it is zero, so to make sure each term is zero we need only require that

ci j − ui − v j = 0 for each (i, j) where xi j is basic.

To find, for a given basic feasible solution x̄, dual vectors that make β(u, v) = α(x̄), we need
to determine the p components of u and the q components of v, or m = p + q numbers
altogether. As we saw when we pivoted-in a basis for nf2 in §6.1.1, there are only m−1 basic
variables because there is always one redundant constraint, so there are m − 1 equations in
the above system and they can be satisfied by many choices of u and v.

We found this initial assignment of flows. Writing the equation above for each basic spot
(i, j) in the tableau yields the system of 5 equations in 6 unknowns on the right.

j = 4 j = 5 j = 6

10 25 25

i = 1 20 210 410 3

i = 2 20 1 515 25

i = 3 20 1 1 620

2 − u1 − v4 = 0

4 − u1 − v5 = 0

5 − u2 − v5 = 0

2 − u2 − v6 = 0

6 − u3 − v6 = 0

For small systems of linear equations having this special form it is easy to find a chain-

reaction solution [3, p170] by hand, or even by inspection if we write each ui to the right
of tableau row i and each v j below tableau column j. If we arbitrarily let u1 = 0 then

u1 = 0⇒
{

v4 = 2

v5 = 4⇒ u2 = 1⇒ v6 = 1⇒ u3 = 5.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.2 Finding a Better Solution 223

To solve for u and v in a computer program we can append u1 = 0 and solve the resulting
set of linear equations My = c.





1 0 0 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 1

1 0 0 0 0 0









u1
u1
u3
v4
v5
v6





=





2

4

5

2

6

0





octave:1> M=[1,0,0,1,0,0;
> 1,0,0,0,1,0;
> 0,1,0,0,1,0;
> 0,1,0,0,0,1;
> 0,0,1,0,0,1;
> 1,0,0,0,0,0];
octave:2> c=[2;4;5;2;6;0];
octave:3> y=M\c; y’
ans =

0 1 5 2 4 1

Here I have used Octave’s backslash operator, but code could be written to exploit the
pattern of 1’s and 0’s in M (such as by rearranging its rows and columns to permit the use
of banded-matrix techniques [67, §4.3]).

We have now found for nf2 that setting u = [0, 1, 5]⊤ and v = [2, 4, 1]⊤makes α(x̄) = β(u, v)
because ci j−ui−v j = 0 for each (i, j) where xi j is basic. But we can conclude that x̄ is optimal
only if ȳ = [u⊤, v⊤]⊤ is feasible for D , and that also requires ci j−ui−v j ≥ 0 for each (i, j) where
xi j is nonbasic. To find out whether that is the case we can price out the transportation
tableau by updating all of its reduced cost entries like this.

10 25 25 u

20 210 410 3 0

20 1 515 25 1

20 1 1 620 5

v 2 4 1

ci j ← ci j − ui − v j

10 25 25

20 010 010 2

20 −2 015 05

20 −6 −8 020

Notice in the new tableau that ci j = 0 on the basic spots because we chose u and v to make
that happen.

Unfortunately, three of the other reduced costs are negative so ȳ is not feasible for D and
x̄ is therefore not optimal for P. The reduced costs in the new transportation tableau are
the same as those in this initial canonical form simplex tableau, which we found in §6.1.1 by
pivoting-in a basis.

T6 =

x14 x15 x16 x24 x25 x26 x34 x35 x36
−265 0 0 2 −2 0 0 −6 −8 0

10 0 1 1 −1 0 0 −1 0 0

5 0 0 1 0 0 1 −1 −1 0

20 0 0 0 0 0 0 1 1 1

10 1 0 0 1 0 0 1 0 0

15 0 0 −1 1 1 0 1 1 0

Our first phase-2 pivot in T6, on the circled element, would increase x35 to 15 and make x25
nonbasic. Might we somehow perform this pivot in the transportation tableau?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

224 The Transportation Problem

Increasing x35 in the simplex tableau from 0 to t has the effect of introducing that much flow
from node 3 to node 5 in the network.

1+20

2+20

3+20

4 −10

5 −25

6 −25

2

4

5

2

1

6

10

10

15 − t

t

5 + t

20 − t

The supply at node 3 is still 20, but instead of shipping all of it to node 6 we can now ship
only 20 − t. To keep the sum of the flows into node 6 equal to its demand, we must increase
x26 from 5 to 5 + t. But node 2 can ship only 20, so x25 must decrease from 15 to 15 − t.
Together these changes amount to shifting t units of flow around the loop that is shown
dashed, alternately increasing and decreasing the flow on those links. The new flows still use
up the supplies and satisfy the demands, but now the total cost is

α(x) = 2x14 + 4x15 + 5x25 + 2x26 + 1x35 + 6x36

= 2(10) + 4(10) + 5(15 − t) + 2(5 + t) + 1(t) + 6(20 − t)
= 265 − 8t.

Each unit of flow we put on link (3, 5) changes α(x) by −8, the reduced cost that is in the
x35 column of T6 and in the (3, 5) spot of the priced-out transportation tableau.

To minimize α(x) we would like to make t as high as possible, but the flows must remain
nonnegative so

x35 = t ≥ 0

x36 = 20 − t ≥ 0

x26 = 5 + t ≥ 0

x25 = 15 − t ≥ 0






⇒ t ≤ 15,

which is the minimum ratio in the x35 column of T6. Shifting that amount of flow around the
loop makes x35 basic and x25 nonbasic while adjusting x26 and x36 to maintain feasibility, and
it corresponds exactly to performing the circled pivot in T6. It also corresponds to shifting
flow around a loop in the transportation tableau, as shown on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.2 Finding a Better Solution 225

A loop in a transportation tableau is an even number of 4 or more spots connected by lines
that are alternately horizontal and vertical. To perform a simplex-rule pivot, exactly one
of the spots should be nonbasic with a negative reduced cost and the others basic and thus
with zero reduced cost. The loop that includes a given nonbasic spot is unique [3, p173].

j = 4 j = 5 j = 6

10 25 25

i = 1 20 010 010 2

i = 2 20 −2 015 05

i = 3 20 −6 −8 020
shift t = 15

10 25 25

20 010 010 2

20 −2 0 020

20 −6 −815 05

On the left above we can shift flow in either direction around the loop, alternately adding
and subtracting the amount of the shift to maintain feasibility. Going counterclockwise, we
increase the flow on the −8 in the (3, 5) spot by t = 15, decrease the flow in the (3, 6) spot
by 15, increase the flow in the (2, 6) spot by 15, and decrease the flow in the (2, 5) spot by
15, yielding the tableau on the right in which x35 has become basic and x25 nonbasic. The
amount of the shift is the smallest of the flows from which we subtract in doing the shift.

additions and subtractions to flow
in shifting around a looppivot

element − +

−+

t = min{x36, x25} = min{20, 15} = 15

As in the network diagram, the shift amount t is the minimum ratio in the x35 column of T6.
Below I priced out the shifted tableau above, found that it is not optimal, constructed

another loop, performed another shift, and priced out that result to obtain optimal form.
From the optimal tableau, x⋆ = [10, 5, 5, 0, 0, 20, 0, 20, 0]⊤ which yields α(x⋆) = 115.

10 25 25 u

20 010 010 2 0

20 −2 0 020 −8
20 −6 −815 05 −8
v 0 0 8

price

10 25 25

20 010 010 −6
20 6 8 020

20 2 015 05
shift 5

10 25 25 u

20 010 05 −65 0

20 6 8 020 6

20 2 020 0 0

v 0 0 −6

price

10 25 25

20 010 05 05

20 0 2 020

20 2 020 6

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

226 The Transportation Problem

6.1.3 Degeneracy

In the new transportation tableau below I made a feasible initial assignment of flows by
starting in the northwest corner as we did in §6.1.1.

j = 4 j = 5 j = 6

10 5 20

i = 1 10 910 3 1

i = 2 15 2 35 710

i = 3 10 3 1 110

9 − u1 − v4 = 0

3 − u2 − v5 = 0

7 − u2 − v6 = 0

1 − u3 − v6 = 0

To price out this tableau we need to find u and v, so on the right I wrote the equations
ci j − ui − v j = 0 for the spots having positive flow. Letting u1 = 0 as usual, I attempted a
chain-reaction solution,

u1 = 0⇒ v4 = 9,

but this is as far as it gets because none of the other equations involves u1 or v4. What has
gone wrong is that there are 6 unknowns but with u1 = 0 only 5 equations. That is because
the assignment of flows made only 4 variables basic while we need m − 1 = 5. The reason
there are too few basic spots in the tableau is that making the first assignment of 10 units on
link (1, 4) simultaneously used up the supply at node 1 and satisfied the demand at node 4,
something that normally happens only when making the final assignment.

To study the phenomenon in more detail I constructed an initial simplex tableau D0 for
this problem, which I will call nf3 (see §28.5.18), and did these minimum-ratio pivots.

< read nf3.tab

x14 x15 x16 x24 x25 x26 x34 x35 x36
0. 9. 3. 1. 2. 3. 7. 3. 1. 1.

10. 1. 1. 1. 0. 0. 0. 0. 0. 0.
15. 0. 0. 0. 1. 1. 1. 0. 0. 0.
10. 0. 0. 0. 0. 0. 0. 1. 1. 1.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
5. 0. 1. 0. 0. 1. 0. 0. 1. 0.

20. 0. 0. 1. 0. 0. 1. 0. 0. 1.

< p 2 2;
< p 6 6;
< p 3 7;
< p 4 10

x14 x15 x16 x24 x25 x26 x34 x35 x36
-185. 0. -2. -8. -5. 0. 0. 2. 4. 0.

10. 1. 1. 1. 0. 0. 0. 0. 0. 0.
10. 0. -1. 0. 1. 0. 1. 0. -1. 0.
10. 0. 0. 0. 0. 0. 0. 1. 1. 1.
0. 0. -1. -1. 1. 0. 0. 1. 0. 0.
5. 0. 1. 0. 0. 1. 0. 0. 1. 0.
0. 0. 1. 1. -1. 0. 0. -1. 0. 0.

D0

D4

< p 7 3

x14 x15 x16 x24 x25 x26 x34 x35 x36
-185. 0. 0. -6. -7. 0. 0. 0. 4. 0.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
10. 0. 0. 1. 0. 0. 1. -1. -1. 0.
10. 0. 0. 0. 0. 0. 0. 1. 1. 1.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
5. 0. 0. -1. 1. 1. 0. 1. 1. 0.
0. 0. 1. 1. -1. 0. 0. -1. 0. 0.

< delete 5 0

x14 x15 x16 x24 x25 x26 x34 x35 x36
-185. 0. 0. -6. -7. 0. 0. 0. 4. 0.
10. 1. 0. 0. 1. 0. 0. 1. 0. 0.
10. 0. 0. 1. 0. 0. 1. -1. -1. 0.
10. 0. 0. 0. 0. 0. 0. 1. 1. 1.
5. 0. 0. -1. 1. 1. 0. 1. 1. 0.
0. 0. 1. 1. -1. 0. 0. -1. 0. 0.

D5

D6

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.3 Degeneracy 227

Tableau D4 has x̄ = [10, 0, 0, 0, 5, 10, 0, 0, 10]⊤, the same assignment of flows as in the trans-
portation tableau, with the incomplete basic sequence S = (x14, x26, x36, x25,�). To complete
a basis one more pivot is required, and to be minimum-ratio that pivot must be in a row
having bi = 0; I chose the alternative that makes x15 basic at 0. Tableau D5 still represents
x̄, but now that point is a basic feasible solution with S = (x14, x26, x36, x25, x15). Row 5 is
redundant because supply equals demand, so I deleted it. In the final tableau b5 = 0 so
the problem is degenerate, and for the basis in this tableau to be complete one of its basic
variables must be zero.

Making the variable x15 basic at zero by performing a minimum-ratio pivot in the simplex
tableau is equivalent to assigning a flow of zero on the (1, 5) spot in the transportation
tableau. If we do that we get the additional equation c15 − u1 − v5 = 3 − u1 − v5 = 0, and the
chain-reaction solution that failed before succeeds like this.

u1 = 0⇒
{

v4 = 9

v5 = 3⇒ u2 = 0⇒ v6 = 7⇒ u3 = −6.

The northwest corner rule, which we can now state precisely, introduces a basic flow of
zero when degeneracy is discovered, so that m − 1 flows are always made basic.

the northwest corner rule

initialize the row index i← 1

initialize the column index j← p + 1

1 ship as much as possible on link (i, j)

if the row i supply is used up and the column j demand is met
but this is not the final assignment
ship 0 on link (i, j + 1) and consider xi, j+1 = 0 basic

if the row i supply is used up
cross off row i and let i← i + 1

if the column j demand is satisfied
cross off column j and let j← j + 1

if any row or column is not yet crossed off, GO TO 1

This rule assigns one shipment for each of the p supplies that are used up and one shipment
for each of the q demands that are met, except for the last assignment which does both.
Recall that there are only p + q − 1 = m− 1 basic variables to assign, because the equality of
supply and demand always makes one constraint redundant. In §6.1.5 we will consider some
other methods of finding an initial feasible assignment of flows, and each of them will deal
with degeneracy in a way similar to that used here.

Degeneracy also manifests itself in phase 2 of the transportation simplex algorithm, as
we shall see in the next Section, and there it can result in cycling. Refinements to prevent
cycling are possible as in the tableau simplex algorithm, but they are beyond the scope of
this introduction.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

228 The Transportation Problem

6.1.4 The Transportation Simplex Algorithm

The solution process [3, §7.1-7.4] [79, §4.2] that we developed in §6.1.1, §6.1.2, and §6.1.3 is
summarized in the following formal statement of the transportation simplex algorithm. The
complications that arise from degeneracy are explained in [square brackets].

0. initialize

• Construct a transportation tableau for the problem, using the original per-unit
shipping costs.

• Find an initial basic feasible solution x, by using the northwest corner rule or
another start method. [If the basis is degenerate, some basic xi j will be zero.]

1. find dual vectors that make α(x) = β(u, v)

• Identify the tableau spots that are basic [including any that are basic with xi j = 0].
If there are p source rows in the transportation tableau and q destination columns,
there should be p + q − 1 basic variables.

• Using the current cost coefficients ci j, find u and v such that

ui + v j = ci j for every (i, j) where xi j is basic.

2. test for dual feasibility

• Replace the per-unit shipping costs by the reduced costs

ci j ← ci j − ui − v j for every (i, j).

The reduced cost on each basic spot should come out zero.

• If each reduced cost is nonnegative, the current x is optimal; STOP.

3. update the flows

• Find a loop.
Pick a spot having a negative reduced cost and find the unique loop starting at
that spot with all other spots in the loop being basic [some might have zero flow].

• Shift as much assigned flow as possible around the loop.
The amount to shift is the minimum flow assigned to any spot in the loop from
which you must subtract in performing the shift [and might be zero].

• Update the transportation tableau with the new flows.
If the shift makes one xi j in the loop zero, it becomes nonbasic. [If more than one
xi j in the loop becomes zero, pick one arbitrarily to be nonbasic and mark the
others basic with zero flow.]

4. continue

GO TO 1.

To illustrate the algorithm we will use it to solve the degenerate problem nf3.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.4 The Transportation Simplex Algorithm 229

The initial tableau includes the xi j only as a reminder of
which one goes where, so that I can refer to them in this
description; in performing the algorithm it is not necessary
to remember the names of the variables.

The northwest corner rule produces an initial assignment
of flows in which x15 = 0, to make p + q − 1 = 3 + 3 − 1 = 5

variables basic. In performing the algorithm by hand it is
prudent to check after each shift that the tableau still has
the right number of basic spots and that x is still feasible.

I found the dual vectors at each pricing step by inspec-
tion, choosing u1 = 0 and following the chain reaction. That
each shift is of 5 units is only a coincidence. Because the
problem is degenerate the final shift makes both x15 and x26
zero, so I arbitrarily chose x26 to be the one that is basic.

10 5 20

10 9x14 3x15 1x16

15 2x24 3x25 7x26

10 3x34 1x35 1x36

northwest

10 5 20 u

10 910 30 1 0

15 2 35 710 0

10 3 1 110 −6
v 9 3 7

price

10 5 20

10 010 00 −6
15 −7 05 010

10 0 4 010

shift

5

10 5 20 u

10 05 05 −6 0

15 −75 0 010 −7
10 0 4 010 −7
v 0 0 7

pr
ice

10 5 20

10 05 05 −13
15 05 7 010

10 7 11 010

shift

5

10 5 20 u

10 0 05 −135 0

15 010 7 05 13

10 7 11 010 13

v −13 0 −13
pr
ice

10 5 20

10 13 05 05

15 010 −6 05

10 7 −2 010

shift

5

10 5 20 u

10 13 0 010 0

15 010 −65 00 0

10 7 −2 010 0

v 0 −6 0
pr
ice

10 5 20

10 13 6 010

15 010 05 00

10 7 4 010

optimal form
x⋆ = [0, 0, 10, 10, 5, 0, 0, 0, 10]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

230 The Transportation Problem

6.1.5 Other Starting Methods

The northwest corner rule is easy to apply, but it usually produces an initial basic feasible
solution that is far from optimal. The three methods described on the next page pay attention
to the link costs, so they often find better starting points. The tableaus below show initial
flow assignments for the nf3 problem using all of the rules.

10 5 20

10 910 30 1

15 2 35 710

10 3 1 110

northwest corner
α(x0) = 185

10 5 20

10 9 3 110

15 210 3 75

10 3 15 15

smallest cost
α(x0) = 75

10 5 20

10 9 3 110

15 210 35 70

10 3 1 110

Vogel and Russell
α(x⋆) = 55

In this case Vogel’s rule and Russell’s rule both yield the optimal tableau. When the rules
are ranked by the quality of the starting point x0 that they typically produce, as measured
by α(x0), Russell’s rule > Vogel’s rule > the smallest-cost rule > the northwest corner rule.
Unfortunately, this is also their ranking by the amount of work they require.

Russell’s rule is the most laborious because of the pricing calculation that it uses to find
the ∆i j. Applying it to nf3, we find ū, v̄, and then ∆1

10 5 20 ū

10 9 3 1 9

15 2 3 7 7

10 3 1 1 3

v̄ 9 3 7

∆1 =





−9 −9 −15
−14 −7 −7
−9 −5 −9





10 5 20 ū

10 9 3 110

15 2 3 7 7

10 3 1 1 3

v̄ 3 3 7

∆2 =




−8 −7 −7
−3 −5 −9





10 5 20

10 9 3 110

15 2 3 70

10 3 1 110

10 5 20

10 9 3 110

15 210 35 70

10 3 1 110

= ci j − ūi − v̄ j. The most negative
element of ∆1 is the −15, so our first
assignment of flow is on the upper
right spot in the tableau. This uses
up the first supply, so I crossed off
that row. Now we find new vectors
ū and v̄, and ∆2. Its most nega-
tive element is the −9 so we assign
flow on the lower right spot in the
tableau. This simultaneously uses
up the third supply and satisfies the
third demand, so we must assign a
flow of 0 on the spot corresponding
to the next most negative element in
that row or column of ∆2, which is the
−7. I assigned the remaining supply
to the elements in the one remaining
row of the tableau.

In using each rule, when there is
a tie between links where flow can be

assigned the choice can be made at random (but see [133, p62-69]). The more work we do
in phase 1 to find a good starting point the less work we need to do in phase 2 simplex
iterations, and the best tradeoff [3, p181] is usually to get the best possible x0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.1.5 Other Starting Methods 231

smallest-cost rule [3, p178-179]
1 ship as much as possible on a link (i, j) having the smallest cost
if the row i supply is used up and the column j demand is met
but this is not the final assignment
ship 0 on a link in column j having the next smallest cost

if the row i supply is used up cross off row i

if the column j demand is satisfied cross off column j

if any row or column is not yet crossed off, GO TO 1

Vogel’s rule [3, p180-181] [79, p134-137] [133, §4]
1 if only one row or one column remains under consideration no choice remains

assign flows in that row or column to use up the supplies and satisfy the demands
EXIT with an initial basic feasible assignment of flows

for each row and column
find the difference between the two smallest remaining cost entries

pick a row or column having the largest difference
ship as much as possible on a link having the smallest cost
in a row or column that had the largest difference

if this simultaneously uses up a supply and meets a demand
but it is not the final assignment
ship 0 on a link having the next smallest cost
in the row or column where the nonzero assignment was made

if a supply is used up cross off that row
if a demand is satisfied cross off that column
GO TO 1

Russell’s rule [79, p137-138] [138]
1 if only one row or one column remains under consideration no choice remains

assign flows in that row or column to use up the supplies and satisfy the demands
EXIT with an initial basic feasible assignment of flows

for each row i find ūi, the maximum cost entry among columns still under consideration
for each column j find v̄ j, the maximum cost entry among rows still under consideration
for each link (i, j) not yet assigned a flow, compute ∆i j = ci j − ūi − v̄ j

ship as much as possible on a link having the most negative ∆i j
if this simultaneously uses up a supply and meets a demand
but it is not the final assignment
ship 0 on a link having the next most negative ∆i j
in the row or column where the nonzero assignment was made

if a supply is used up cross off that row
if a demand is satisfied cross off that column
GO TO 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

232 Linear Programming Models of Network Flow

6.1.6 Multiple Optimal Solutions

In an optimal-form simplex tableau a nonbasic column whose cost coefficient is zero indi-
cates (see §3.4) the presence of an alternate optimum, which can be found if the optimal
set is bounded by performing a minimum-ratio pivot in that column. In an optimal-form
transportation tableau alternate optima are indicated by nonbasic spots with zero reduced
cost, and they can be found by shifting flow onto those spots.

The tableau on the left represents the optimal basic feasible solution x⋆1, but the problem
is alleged [3, p186-187] to have three other distinct optimal basic feasible solutions. To reveal
x⋆2 we can choose a nonbasic spot with a zero reduced cost, find the unique loop containing
it and other spots that are all basic, and shift as much flow as possible around the loop.

15 30 15 30

20 0 2 3 020

15 6 015 1 0

10 010 00 9 7

15 3 015 4 2

30 05 5 015 010

shift t = 10

15 30 15 30

20 0 2 3 020

15 6 05 1 010

10 0 010 9 7

15 3 015 4 2

30 015 5 015 00

x⋆1 = [0, 0, 0, 20, 0, 15, 0, 0, 10, 0, 0, 0, 0, 15, 0, 0, 5, 0, 15, 10]⊤

x⋆2 = [0, 0, 0, 20, 0, 5, 0, 10, 0, 10, 0, 0, 0, 15, 0, 0, 15, 0, 15, 0]⊤

The maximum flow t that we can shift around this loop is the smallest of the flows assigned
to the spots from which we must subtract,

t = min {15, 10, 10} = 10.

Shifting this amount yields the optimal-form tableau on the right. Two of the assigned flows
in the loop are simultaneously reduced to zero by the shift, so to keep p+q−1 = 5+4−1 = 8

variables basic I arbitrarily chose the link in the lower right corner of the new tableau to be
basic with a flow of zero.

6.2 Unequal Supply and Demand

Our formulation of the transportation problem in §6.1 assumes that total supply is equal to
total demand, ∑

i∈S
si =

∑

j∈D
d j,

but there are practical situations in which that is not true. For example, a hardware manu-
facturer might intentionally keep more bolts in stock than it expects to ship so that it can
respond promptly to customer demands. Can our linear programming model still somehow
be used to find an optimal shipping schedule for meeting those demands?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.2.2 Less Supply Than Demand 233

6.2.1 More Supply Than Demand

Suppose that in our nf2 example the supply nodes are factories, the demand nodes are
hardware stores, and we are shipping boxes of bolts. We found above that α(x⋆) = 115 for
this problem. If each factory produces 5 boxes more, so that supply exceeds demand by a
total of 15 boxes, we could modify the formulation as shown on the left below. Each supply
is increased by 5 boxes, and a new node 7 is included with a demand for the 15 extra boxes.
Unlike the other nodes in the model, this fictitious demand point does not correspond to a
physical location because it represents the unsold inventories x17, x27, and x37 that are held
at the three factories.

fa
ct
or
ie
s






stores
︷ ︸︸ ︷

unshipped
︷︸︸︷

4 10 5 25 6 25 7 15

1 20+5 2 4 3 0

2 20+5 1 5 2 0

3 20+5 1 1 6 0

solve

10 25 25 15

25 010 2 0 015

25 00 4 025 1

25 00 025 4 1

In this new, larger problem total supply again equals total demand. Assuming that it costs
nothing to leave unsold bolts where they are, the cost to ship from each factory into its own
inventory is zero.

The optimal tableau on the right shows that increasing the supplies at nodes 2 and 3
changed the other flows so that all 15 units of excess supply, comprising the 5 units of extra
production at factory 1 and 10 units of its original production, are retained in inventory
there. Now α(x⋆) = 95, and the entry c16 = 0 indicates an alternate optimum that was not
present in the original problem. That problem was not degenerate but this one is, with basic
variables x24 = 0 and x34 = 0.

6.2.2 Less Supply Than Demand

If we have too little supply, no reformulation of any mathematical model will let us satisfy
the demand. We can, however, modify the transportation problem to find the least expensive
way of shipping the inadequate supplies we do have. Suppose that in our nf2 example each
factory now produces 5 boxes fewer, so that demand exceeds supply by a total of 15 boxes.
To make up this deficit we can, as shown on the left at the top of the next page, include a
fictitious supply of 15 boxes that can be shipped at zero cost to each of the stores. Throwing
away the fictitious-source row of the optimal tableau, on the right at the top of the next
page, leaves a shipping schedule for the supplies that we have. If there were some way of
altering this schedule to reduce its cost, then we could adjust the flows in the fictitious-source
row to make the enlarged problem feasible and it would also have the lower cost. But we
already found a lowest-cost solution to the enlarged problem, so it must be that the part of
the tableau above the dashed line is optimal for the original problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

234 Unequal Supply and Demand

fa
ct
or
ie
s






fictitious
source

stores
︷ ︸︸ ︷

4 10 5 25 6 25

1 20 − 5 2 4 3

2 20 − 5 1 5 2

3 20 − 5 1 1 6

7 15 0 0 0

solve

10 25 25

15 010 1 05

15 0 3 015

15 1 015 5

15 1 010 05

The optimal tableau on the right does not reveal degeneracy, but c24 = 0 so again there is
an alternate optimum that was not present in the original problem.

6.2.3 “At Least This Much” Demands

The bolt manufacturer of §6.2.1 had 25 boxes at each of its three factories when a change in
corporate tax law suddenly made it undesirable to keep unsold inventory. Fortunately, the
store at node 5 has agreed to accept more bolts than its minimum demand of 25 boxes. How
can the total supply be shipped at least cost?

Now instead of shipping the excess supply into inventory at the three factories, which
costs nothing, it must be shipped to node 5 at those per-unit costs, like this.

fa
ct
or
ie
s






stores
︷ ︸︸ ︷

extra to node 5
︷︸︸︷

4 10 5 25 6 25 7 15

1 25 2 4 3 4

2 25 1 5 2 5

3 25 1 1 6 1

solve

10 25 25 15

25 0 015 010 0

25 010 2 015 2

25 2 010 6 015

In this scenario the excess supply all comes from factory 3, and the store at node 5 receives
those 15 boxes in addition to its minimum demand of 25.

If the store at node 4 also agrees to accept more than its minimum demand, the formu-
lation must allow for the excess supply to go to either node 4 or node 5. Here node 7 will
absorb any extra shipments for node 4 and node 8 will absorb those for node 5.

fa
ct
or
ie
s






stores
︷ ︸︸ ︷

extra shipments
︷ ︸︸ ︷

fictitious
source

4 10 5 25 6 25 7 15 8 15

1 25 2 4 3 2 4

2 25 1 5 2 1 5

3 25 1 1 6 1 1

9 15 0 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.3 Transshipment 235

Now the indicated demand is 90, so to make the indicated supply equal to that number
we must add a fictitious source with a supply of 15 boxes. This supply will make up the
difference between the 15 boxes of excess supply at the factories and the 30 boxes now
demanded at nodes 7 and 8, so it must ship only to those nodes and with zero cost. To show
that node 9 cannot ship to the stores, I have left those cost coefficients blank.

I solved the problem by using our transportation algorithm as usual but skipping the
tableau spots that are blank, obtaining this optimal tableau.

fa
ct
or
ie
s






stores
︷ ︸︸ ︷

extra shipments
︷ ︸︸ ︷

fictitious
source

4 10 5 25 6 25 7 15 8 15

1 25 0 2 025 0 2

2 25 010 4 00 015 4

3 25 00 025 4 0 0

9 15 00 015

In this scenario the excess supply all goes from factory 2 through node 7 to the store at
node 4, so that store receives those 15 boxes in addition to its minimum demand of 10.
The 15 boxes that are shipped from node 9 through node 8 to the store at node 5 are only
a mathematical fiction, so the store at node 5 actually receives only its minimum demand
of 25.

6.3 Transshipment

Our formulation of the transportation problem assumes that each node is either a supply
or a demand, that only supply nodes ship, and that they ship only to demand nodes. The
network on the left has p = 2 supply nodes and q = 2 demand nodes, and the transportation
tableau on the right shows its supplies, demands, per-unit shipping costs, and optimal flows.

+10 1

+20 2

3 −15

4 −15

4

2

3

5

3 15 4 15

1 10 3 410

2 20 215 55

The total cost of these shipments is 95.
Now suppose that directed links are added to to make the network fully connected,

permitting flow at the same cost in either direction between any two nodes.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

236 Linear Programming Models of Network Flow

+10 1

+20 2

3 −15

4 −15

2

2
4

45

5

3

3
6

6

1

1

1 0 2 0 3 15 4 15

1 10 0 6 3 4

2 20 6 0 2 5

3 0 3 2 0 1

4 0 4 5 1 0

The resulting network is shown on the left with each link’s per-unit shipping cost at the tail
of its arrow. The added connections between nodes 1 and 2 and between nodes 3 and 4 have
costs of 6 and 1 respectively, but the connections between the other nodes have the same
costs as in the previous network. Now transshipments are allowed everywhere, so the supply
at node 1 or node 2 can take any path to node 3 or node 4.

We can formulate the problem of finding the least-cost assignment of flows as the trans-
portation problem on the right, in which each node is both a source and a destination. The
diagonal elements of this transshipment tableau are zero because it costs nothing to ship
from a node to itself. Because of the ordering of the rows and columns, the submatrix in the
lower left partition of the tableau is the transpose of the submatrix in the upper right.

There is no supply at node 3 or node 4 and there is no demand at node 1 or node 2, so
the optimal solution to this enlarged transportation problem is the one given on the previous
page for the network without transshipments. Our transportation algorithm will not ship
anything to a node where the demand is zero, and it cannot ship anything from a node whose
supply is zero. To make transshipments possible it is necessary to add a fictitious buffer

stock, equal to the total demand, to each supply and each demand, like this.

1 0+30 2 0+30 3 15+30 4 15+30

1 10+30 030 6 3 410

2 20+30 6 030 215 55

3 0+30 3 2 030 1

4 0+30 4 5 1 030

The buffer stock is a mathematical fiction, because adding it to both the supply and the
demand at a node does not change the net amount of stuff to be shipped or received. I have
modeled this fact in the transportation tableau by assigning a flow equal to the buffer stock
on each of the p + q = 4 diagonal zeros. This shows each node shipping its extra supply to
itself and thereby satisfying its own extra demand. To have a basic assignment of flows the
transshipment tableau needs a total of 2(p+q)−1 = 7, so in the upper right partition I have
made the assignment of p + q − 1 = 3 flows that we already know is optimal for the original
network. Now we can use our transportation algorithm to solve the problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.4 General Network Flows 237

30 30 45 45 u

40 030 6 3 410 0

50 6 030 215 55 1

30 3 2 030 1 −1
30 4 5 1 030 −4
v 0 −1 1 4

price

30 30 45 45

40 030 7 2 010

50 5 030 015 05

30 4 4 030 −2
30 8 10 4 030

shif
t 5

30 30 45 45 u

40 030 7 2 010 0

50 5 030 020 0 −2
30 4 4 025 −25 −2
30 8 10 4 030 0

v 0 2 2 0

price

30 30 45 45

40 030 5 0 010

50 7 030 020 2

30 6 4 025 05

30 8 8 2 030

+10 1

+20 2

3 −15

4 −15

4

x
3
4
=
5

x
14
=
10

2

x 2
3
=
20

1

The flows on the off-diagonal spots in the optimal transshipment tableau solve the network
problem, as pictured to the right. Of the 20 units flowing from node 2 to node 3, 15 satisfy
the demand at node 3 and the other 5 are redirected to node 4. In the accounting of the
tableau this moves 5 units of buffer stock from node 3 to node 4, but they are made up for
by the 5-unit excess of x23 over the demand at node 3.

Allowing transshipments can never increase the optimal shipping cost. For this example
the original network had an optimal cost of 95, but the cost of the transshipment solution is
85. The nonbasic spot (1, 3) has zero reduced cost, so there is at least one alternate optimum.

6.4 General Network Flows

A network in which transshipments are allowed at only certain nodes or from which some
links are missing can be described by a sparse transshipment tableau as shown on the
next page for the nf1 problem of §6.0. The nodes are ordered so that those with supplies
come first, those having zero net stock come next, and those having demands come last.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

238 Linear Programming Models of Network Flow

−15 5
Denver

x 45

x15

x
65

4 Minneapolis−20
51 9

x
1
4

17

x
24

1
Des Moines

+50

9
25

x
4
1

7

6Kansas City
922

x16

2Chicago +10

x
42

17

12

−253

St Louis x23
x63

1 0+60 2 0+60 6 0+60 3 25+60 4 20+60 5 15+60

1 50+60 060 725 910 2515

2 10+60 060 12 1710

6 0+60 035 925 22

3 0+60 060

4 0+60 9 17 060 51

5 0+60 060

}

supplies
}

transshipments





demands

The 10 nonzero shipping costs are for the links that are in the network, and the zero shipping
costs on the diagonal make it free to ship from a node to itself. The supply at each supply or
transshipment node and the demand at each transshipment or demand node is increased by
a buffer stock of 60, equal to the total supply. This transshipment tableau has 6 rows and 6
columns, so every basic feasible solution to the problem it describes must have 6+6−1 = 11

basic variables even though many of the possible links are missing.
The simplex tableau that we constructed for this problem in §6.0 has a constraint row

for each node, but one row is redundant because supply equals demand so each canonical
form has 5 basic variables. I found a feasible shipping schedule with the 5 basic variables
x14 = 10, x15 = 15, x16 = 25, x24 = 10, x63 = 25 and assigned those flows in the transshipment
tableau. Then I assigned flows on the 6 diagonal zeros to make each row and column sum
correct, so that a total of 5 + 6 = 11 spots are basic as required.

With this initial basic feasible assignment of flows I solved the problem using our trans-
portation algorithm as shown on the next page, obtaining the same optimal point x14 = 20,
x15 = 15, x16 = 15, x23 = 10, x63 = 15 that we found using the tableau simplex method.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.4.1 Finding a Basic Feasible Solution 239

60 60 60 85 80 75 u

110 060 725 910 2515 0

70 060 12 1710 8

60 035 925 22 −7
60 060 −16
60 9 17 060 51 −9
60 060 −25
v 0 −8 7 16 9 25

price

60 60 60 85 80 75

110 060 025 010 015

70 060 −12 010

60 035 025 4

60 060

60 18 34 060 35

60 060

shif
t 10

60 60 60 85 80 75 u

110 060 015 020 015 0

70 060 −1210 0 −12
60 045 015 4 0

60 060 0

60 18 34 060 35 0

60 060 0

v 0 12 0 0 0 0

price

60 60 60 85 80 75

110 060 015 020 015

70 060 010 12

60 045 015 4

60 060

60 18 22 060 35

60 060

6.4.1 Finding a Basic Feasible Solution

In solving nf1 as a sparse transshipment problem we used the basic feasible shipping schedule
x14 = 10, x15 = 15, x16 = 25, x24 = 10, x63 = 25 to construct an initial assignment of flows.
This schedule can be found by trying different assignments of flow in the network diagram,
but that is possible only for toy problems. A shipping schedule can also be found by pivoting
in the initial simplex tableau for a general network problem in the same way that we pivoted
in the initial simplex tableau for the transportation problem of §6.1.1, but as discussed earlier
using a simplex tableau at all is impractical for network problems of realistic size.

In solving the transshipment problem of §6.3, I used a shipping schedule that was optimal
for the transportation problem in the upper right partition of the transshipment tableau.
That was possible because every source node could ship to every demand node, which might
not be true in a general network problem. In the nf1 problem there is no link from supply
node 1 to demand node 3 or from supply node 2 to demand node 5, so the transportation
problem represented by the upper right partition of its transshipment tableau is

3 25 4 20 5 15

1 50 9 25

2 10 12 17

in which there is no way to make a feasible assignment of flows. But suppose that we add
artificial links to make the missing connections, as shown dashed in the network diagram

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

240 General Network Flows

below. If we make the shipping cost a on each artificial link arbitrarily high then any optimal
solution we find will surely assign zero flow there (a least-cost solution would include flow
on such a link only if the original network problem were infeasible).

−15 5

x 45

x15

x
65

4−20
51 9

x
1
4

17

x
24

1 +50

9
25

x
4
1

7

6
922

x16

2 +10

x
42

17

12

−253

x23
x63

a

x
13

x25

a

When the artificial links are included in the model the transportation tableau in the
upper right partition of the transshipment tableau no longer has any empty cells.

1 0+60 2 0+60 6 0+60 3 25+60 4 20+60 5 15+60

1 50+60 060 70 a25 920 255

2 10+60 060 12 17 a10

6 0+60 060 9 22

3 0+60 060

4 0+60 9 17 060 51

5 0+60 060

}

supplies
}

transshipments





demands

Now we can ship the entire buffer stock on each diagonal zero and use the northwest corner
rule in the transportation part of the transshipment tableau. This assignment of flows is
feasible but it makes only 10 variables basic and we need 11. The transportation-problem
links form a tree connecting nodes 1, 2, 3, 4, and 5, but the directed links in a basic feasible
solution to a transshipment problem must form a tree connecting all the nodes [3, §7.7]
and therefore must include a link from some supply to each transshipment-only node. To
provide this connection I assigned x16 = 0. Starting from this initial basic feasible assignment
of flows, I used our transportation algorithm to solve the problem as shown on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.4.1 Finding a Basic Feasible Solution 241

60 60 60 85 80 75 u

110 060 70 a25 920 255 0

70 060 12 17 a10 a−25
60 060 9 22 −7
60 060 −a
60 9 17 060 51 −9
60 060 −25
v 0

−(
a
−2

5
)

7 a 9 25

price

60 60 60 85 80 75

060 00 025 020 05

060 37−2a 33−a 010

060 16−a 4

060

18 a+1 060 35

060

shift 10

60 60 60 85 80 75 u

110 060 00 015 020 015 0

70 060 (37−2a)10 33−a 0 (37−2a)
60 060 16−a 4 0

60 060 0

60 18 a+1 060 35 0

60 060 0

v 0

−(
3
7−
2
a
)

0 0 0 0

60 60 60 85 80 75

060 00 015 020 015

060 010 a−4 2a−37
060 16−a 4

060

18 38−a 060 35

060

shift 15

60 60 60 85 80 75 u

110 060 015 0 020 015 0

70 060 010 a−4 2a−37 −(16−a)
60 045 (16−a)15 4 0

60 060 −(16−a)
60 18 38−a 060 35 0

60 060 0

v 0

(1
6−
a
)

0

(1
6−
a
)

0 0

60 60 60 85 80 75

060 015 a−16 020 015

060 010 12 a−21
045 015 4

060

18 22 060 35

060

The solution process turns some of the ui, v j, and ci j into expressions involving a, the shipping
cost on the artificial links. In the second tableau the reduced costs 37−2a, 33−a, and 16−a
are all negative because a is positive and arbitrarily high; in the final tableau the reduced
costs c13 = a−16 and c25 = a−21 of the artificial links are both positive for the same reason.
The final tableau shows the shipping schedule x14 = 20, x15 = 15, x16 = 15, x23 = 10, and
x63 = 15, which we earlier found to be optimal. The artificial links make it possible to find
an initial basic feasible assignment of flows, but because the original problem is feasible they
are nonbasic in the final tableau and do not enter into the optimal solution.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

242 Solving Network Models

6.4.2 The General Network Flow Algorithm

The solution process [127] [151, §6.3] that we developed in §6.4.0 and §6.4.1 is summarized
in the following formal statement of the general network flow algorithm. The complications
that arise from degeneracy in the transportation part of the sparse transshipment tableau
are explained in [square brackets].

0. initialize

• Construct a sparse transshipment tableau for the problem, ordering the nodes so
that those with supplies come first, those having zero net stock come next, and
those having demands come last. Add a buffer stock, equal to the total demand,
to each supply and each demand. In each empty cell of the transportation part
of the tableau, insert the shipping cost a of an artificial link. The diagonal costs
should be zero, and there should be as many off-diagonal cost entries as there are
links in the network.

• Find an initial basic feasible solution x by assigning the buffer stock on each
diagonal zero, assigning a flow of zero on some off-diagonal element in each pure-
transshipment column, and using the northwest corner rule or some other starting
rule in the transportation part of the tableau. [If the basis is degenerate, some xi j
in this part will also be zero.] If there are m nodes in the network, 2m − 1 spots
in the sparse transshipment tableau should be basic.

1. solve the sparse transshipment problem

• Apply steps 1-4 of the transportation simplex algorithm in §6.1.4 to the sparse
transshipment tableau, assuming that the artificial link cost a is arbitrarily high.
If an artificial link remains in the optimal solution, the original problem was
infeasible. Otherwise, the optimal shipping schedule consists of the off-diagonal
flows [some of which might be zero].

6.5 Solving Network Models

The algorithms we have developed can be used to solve small transportation, transshipment,
and general network flow examples by hand, but the devil turns out to be in the details when
they are used for practical applications.

6.5.1 Computer Implementation

To solve problems of realistic size the calculations must be performed by a computer program.
The transportation simplex algorithm of §6.1.4 is at the heart of all three algorithms, and it
has three main steps. Step 2, updating the reduced costs, requires that the same arithmetic

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.5.2 Capacity Constraints 243

be performed on every element of the tableau and is thus simple to automate. Steps 1 and 3,
however, involve some operations that are much harder to write code for than they are to do
by hand. To find the dual vectors it is easy to solve a linear system for the ui and v j, but first
the system must be constructed by finding each basic spot, making its cost the right-hand
side of its equation, and filling in the coefficient matrix 1s corresponding to ui and v j. To
shift flow it is easy to alternately add and subtract the same number on successive spots in
a loop, but first the loop must be discovered. Having chosen a nonbasic spot with a negative
ci j we might search row i for basic spots (i, k), then for each such spot search column k for
basic spots (l, k), and then for each such spot search row l for a basic spot in column j to
close the loop. But of course only the simplest loops have just four links; to find any possible
loop requires a more sophisticated approach.

How best to code these operations depends entirely on the data structures that are chosen
to represent the problem data and the state of the solution. A sparse transshipment tableau
that we draw by hand includes cells that contain reduced costs and many others that are
blank. Some of the nonblank spots are basic, with link flows that are either positive or zero,
while others are nonbasic with link flows that are also zero. On some tableaus we sketch a
polygon that indicates a loop. In a language like MATLAB we naturally think of representing
all of these objects by matrices and vectors, perhaps using sparse-matrix techniques [50, §22]
[100, §11.6.2] to compress the sparse transshipment tableau. But because the underlying
data structure of a network problem is the network rather than an array it might be much
simpler to implement the operations we need in a programming environment like C++,
which supports user-defined data structures and operations.

In a practical implementation of the general network flow algorithm it might be desir-
able also to automate step 0, sparing the analyst the tedium of constructing a large sparse
transshipment tableau from problem data and of finding an initial basic feasible solution.

Implementing the algorithms in this Chapter is, unfortunately, far beyond the scope of
this book. A few network optimization codes are available through the NEOS web server
[117, §9] but I have found a detailed algorithm description for only one, RELAX-IV [15]. This
is perhaps unsurprising given the technical challenge of producing industrial-strength code
and the commercial value of keeping it proprietary.

6.5.2 Capacity Constraints

Anyone who has been stuck in traffic has encountered an active link capacity constraint.
These are simple upper bounds like xi j ≤ wi j, so they are trivial to incorporate in a tableau
simplex formulation and can even be exploited in solving the linear program by the matrix
simplex method (see §4.3.2). Unfortunately, it is more complicated to accommodate capacity
constraints in the general network flow algorithm [151, p228]. To see why, consider adding a
capacity constraint to our original linear programming formulation of the nf1 problem. At
the top of the next page I have insisted that x15 ≤ 10 and introduced the slack variable s15
to make the added constraint an equality.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

244 General Network Flows

minimize
x∈Rn

z(x) = 9x14 + 25x15 + 7x16 + 12x23 + 17x24 + 9x41 + 17x42 + 51x45 + 9x63 + 22x65

subject to x41 − x14 − x15 − x16 = −50 1

x42 − x23 − x24 = −10 2

x23 + x63 = 25 3

x14 + x24 − x41 − x42 − x45 = 20 4

x15 + x45 + x65 = 15 5

x16 − x63 − x65 = 0 6

x15 + s15 = 10 link capacity constraint

x ≥ 0

For this problem the set of links is

N =
{

(1, 4) (1, 5) (1, 6) (2, 3) (2, 4) (4, 1) (4, 2) (4, 5) (6, 3) (6, 5)
}

.

If y1 . . . y7 are dual variables corresponding to the constraints and x is a feasible assignment
of flows, then recapitulating our analysis in §6.1.2 we find for this problem that

α(x) − β(y) =
∑

(i, j)∈N
(ci j − yi − y j)xi j − 10y7.

Reasoning as we did there, we derive a slightly different algorithm for solving the sparse
transshipment problem. To find a y that makes the primal and dual objectives equal we
must now solve one or the other of these systems, depending on the value of x15.

ci j − yi − y j = 0 where xi j is basic
y7 = 0

}

x15 < 10

ci j − yi − y j = 0 where xi j is basic and (i, j) , (1, 5)

(c15 − y1 − y5)x15 − 10y7 = 0

}

x15 = 10

Also, in shifting flows we must keep x15 ≤ 10.
If two of the link flows have upper bounds then both must be observed in shifting flow and

we have four cases to consider in finding y: the first flow at its upper bound but not the sec-
ond, the second but not the first, neither at its upper bound, or both at their upper bounds.
This näıve approach soon becomes unwieldy as the number of variable bounds increases.
Fortunately, there is a more sophisticated approach [145, §7] to using the transportation
problem dual in this context, which yields a more practical algorithm for capacitated flow
problems. Unfortunately, it too is far beyond the scope of this book.

6.5.3 Related Problems

The minimum-cost flow problem that we have studied is just one of many network optimiza-
tion problems. We will take a glance at three others here, and revisit two of them in §7.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.5.3 Related Problems 245

In the assignment problem [3, §7.6] [151, §6.4] [79, §4.4] task i ∈ {1 . . .m} can be
performed by agent j ∈ {1 . . .m} at cost ci j. If task i is assigned to agent j then xi j = 1,
otherwise xi j = 0. We seek an assignment x of tasks to agents that minimizes total cost.

minimize
x∈Zm×m

m∑

i=1

m∑

j=1

ci jxi j

subject to
m∑

i=1

xi j = 1 j = 1 . . .m

m∑

j=1

xi j = 1 i = 1 . . .m

xi j ∈ {0, 1} for all (i, j)

The first set of constraints ensure that exactly one task is assigned to each agent, and the
second set ensure that exactly one agent is assigned to each task. Because each xi j can be
only zero or one, this is an integer programming problem. In the linear programs we
have studied so far, x has always been a real variable (see §1.1.3) and we have seen that the
optimal point then need not necessarily have integer components even if the problem data are
all whole numbers. But because of the special structure of a transportation problem, if each
xi j is a whole number in the initial basic feasible assignment of flows then each x⋆

i j
will be too

[3, p177] (see Exercise 6.6.24). We can therefore replace xi j ∈ {0, 1} by the constraint xi j ≥ 0

in the formulation above and solve the assignment problem as a transportation problem in
which p = q = m and each si = d j = 1.

In the shortest-path problem [151, §6.5] [79, §6.3] each link (i, j) ∈ N of a network has
a length ci j ≥ 0 and a path is a sequence of directed links leading from an origin node to a
destination node. If link (i, j) is included in the path then xi j = 1, otherwise xi j = 0. We seek
a vector x specifying a path that has the lowest total length.

minimize
x∈Zm×m

m∑

i=1

m∑

j=1

ci jxi j

subject to
∑

(k, j)∈N
xk j −

∑

(i,k)∈N
xik =






+1 if k is the origin node
−1 if k is the destination node
0 otherwise

xi j ∈ {0, 1} for all (i, j) ∈ N

The constraints ensure that the origin node is exited one more time than it is entered, the
destination node is entered one more time than it is exited, and every other node is exited as
many times as it is entered. Because traversing any link incurs a cost, the minimization
ensures that no node is entered or exited more than once. This problem is equivalent
[151, p179] to the assignment problem, and can also be solved as a transportation problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

246 General Network Flows

These models have even simpler structures than the transportation problem of which they
are special cases, and algorithms have been discovered for solving the assignment [10] and
shortest path [151, §7.6-7.7] problems that are even more efficient than the transportation
simplex method.

In the traveling salesman problem [3, p246-247] [151, §6.5] a salesperson (who is just
as likely to be a woman) must depart from a city of origin, visit each of m − 1 other cities
exactly once, and return to the city of origin. Each ci j is the cost of traveling from city i to
city j. If link (i, j) ∈ N is included in the salesperson’s tour then xi j = 1, otherwise xi j = 0.
We seek a vector x specifying a tour of minimum total cost.

minimize
x∈Zm w∈Zm−1

∑

(i, j)∈N
ci jxi j

subject to
m∑

i=1

xi j = 1 for all j such that (i, j) ∈ N

m∑

j=1

xi j = 1 for all i such that (i, j) ∈ N

wi − w j + mxi j ≤ m − 1 for (i, j) ∈ N, i , 1, j , 1

xi j ∈ {0, 1} for (i, j) ∈ N

The first set of constraints ensure that each city will be entered exactly once, and the second
set ensure that each city will be exited exactly once. If those constraints were sufficient
this would be an assignment problem, but they do not ensure that the chosen links form a
tour. The network below has links N =

{

(1, 2) (1, 6) (2, 3) (3, 4) (4, 5) (5, 2) (5, 6) (6, 7) (7, 1)
}

connecting its m = 7 nodes. The unique tour x⋆ = [1, 0, 1, 1, 1, 0, 1, 1, 1]⊤ on the left has a
cost of 31 but the unique pair of subtours x̄ = [0, 1, 1, 1, 1, 1, 0, 1, 1]⊤ on the right, which also
satisfy the first two constraints, have a total cost of only 16 and would therefore be found
by the minimization.

1

2

3

4

5

6

7

9 1

2

3

4

8

1

2

3

1

1
0

1

1

1

1
0

1 1

2

3

4

5

6

7

9 1

2

3

4

8

1

2

3

1

0
1

1

1

1

0
1

1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.6 Exercises 247

To prevent the minimization from finding the subtour solution we could introduce these
constraints.

x23 + x34 + x45 + x52 ≤ 3

x16 + x67 + x71 ≤ 2

In any subtour all of the xi j = 1, so the left-hand sides in these constraints add up to 4 > 3

and 3 > 2 disallowing both subtours. Finding all of the possible subtours in a larger network
is usually very hard to do, but the third constraint in the problem statement rules out all of
them [151, p455-456]. Writing out this anti-subtour constraint for the example, we get these
inequalities.

w2 − w3 + 7x23 ≤ 6

w3 − w4 + 7x34 ≤ 6

w4 − w5 + 7x45 ≤ 6

w5 − w2 + 7x52 ≤ 6

w5 − w6 + 7x56 ≤ 6

w6 − w7 + 7x67 ≤ 6

Summing the first four yields 7(x23 + x34 + x45 + x52) ≤ 24 or x23 + x34 + x45 + x52 ≤ 24
7
< 4,

ruling out the first subtour; doing that makes the second subtour impossible as well. These
inequalities do not involve node 1, so they do not exclude the tour we found (proving in
general that the anti-subtour constraint does not rule out any tour takes more work).

The anti-subtour constraint makes the traveling salesman problem not equivalent to the
assignment problem, so it cannot be solved by using our transportation algorithm. When
we take up integer programming in §7 you will learn an algorithm for solving it, and also
another approach to solving the shortest-path problem.

6.6 Exercises

6.6.1[E] A network diagram is often helpful in the formulation of a network flow problem.
(a) In what ways does it idealize the underlying problem? (b) What are its constituent parts?
(c) What makes a link directed? (d) What is a transshipment point? Does a transshipment
point necessarily have zero supply and zero demand? (e) What is the net stock at a node?
(f) Where in a network diagram is a link cost ci j shown? (g) Where in a network diagram is
a link flow xi j shown? (h) What is a shipping schedule?

6.6.2[E] What makes a shipping schedule feasible?

6.6.3[E] Suppose that (i, j) and (j, i) are directed links connecting node i with node j.
(a) Is it necessarily true that ci j = c ji? If so, explain why; if not, suggest a reason why the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

248 Linear Programming Models of Network Flow

link costs might be different. (b) Can it ever happen that in an optimal shipping schedule
both xi j > 0 and x ji > 0? Explain your answer.

6.6.4[E] What conservation law is expressed by a node equilibrium equation? In a network
of m nodes in which total supply equals total demand, how many of the node equilibrium
equations are linearly independent?

6.6.5[H] Major repairs are being planned to route 70 in the highway network used by the
meat processing company of §6.0, and construction delays are expected to increase the travel
time on the link from Kansas City to St Louis by 20%. How does this affect the optimal
shipping schedule?

6.6.6[H] Suppose a network has m nodes and flow is possible in either direction between
any two of them. (a) How many directed links n must there be? Show that your answer
is correct for networks having m ∈ {3, 4, 5} nodes, and give a convincing argument that it
is correct in general. (b) If the general network flow problem with m nodes and n links is
formulated as a simplex tableau, derive expressions for the number of rows and the number
of columns in the tableau. (c) If n = m(m − 1), plot the number of elements in the simplex
tableau for m = 1 . . .1000.

6.6.7[E] What is the main advantage of the network simplex algorithm over the tableau
simplex algorithm? List three reasons for studying the development of the network simplex
algorithm.

6.6.8[E] What makes a network flow problem a transportation problem?

6.6.9[H] In §6.1 we formulated a transportation problem for solution by the tableau sim-
plex method in a way that made the tableau’s constant column b nonnegative. When we
pivoted-in a basis we always picked a minimum-ratio row, so that b remained nonnegative.
(a) What about the special structure of the transportation problem makes it always possible
to do that? (b) How many pivots are required, and why?

6.6.10[H] This transportation tableau describes a basic feasible solution to a network flow
problem. 9 10 11 12

20 19 310 51 7

22 2 4 610 812

(a) Draw the corresponding network diagram, showing the net stock at each node and the
link costs and flows. (b) Write down the shipping schedule x0 that is given in the tableau, and
show that it is feasible. To do this you might find it convenient to introduce node numbers.
(c) Construct a simplex tableau for this problem and perform minimum-ratio pivots to obtain
the basic feasible solution x0. (d) Explain how the flows shown in the transportation tableau
get assigned by the northwest corner rule.

6.6.11[H] Is it always possible to make an initial assignment of flows in a transportation
tableau by using the northwest corner rule? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.6 Exercises 249

6.6.12[E] If the supply-node equilibrium constraints of a transportation problem are mul-
tiplied through by −1 we get the linear program P given in §6.1.2. (a) Write down this
algebraic formulation of the problem. (b) In a network having source nodes 1, 2 . . . p and
demand nodes p+ 1, p+ 2 . . . p+ q, what is the set S? What is the set D? (c) What do i and
j index? (d) Explain the formula for α(x). (e) Explain the functional constraints. (f) Why
is it necessary for x to be nonnegative?

6.6.13[H] If you worked Exercise 5.5.34 you discovered that using the tableau simplex
method to solve the dual of the transportation problem is even harder than using it to
solve the primal. Is there some other way in which the dual is useful in solving the primal?
Explain.

6.6.14[E] In §5.2.2 we derived the transportation problem dual D that is used in §6.1.2.
(a) Write down D . (b) In a transportation network having p source nodes and q demand
nodes, what is the set S? What is the set D? (c) What do i and j index? (d) What do
the variables u and v represent? Hint: they are row multipliers. (d) Explain the formula for
β(u, v). (e) Explain the functional constraints. (f) Why is it necessary for u and v to be free
variables?

6.6.15[H] In §6.1.2 we used the primal P and dual D of the transportation problem to
derive a way of determining whether a particular assignment of flows in a transportation
tableau is optimal. (a) What is the way that we derived? (b) Why does it work?

6.6.16[H] If x̂ is feasible for the primal of a transportation problem, how can we choose
dual variables û and v̂ so that α(x̂) = β(û, v̂)?

6.6.17[P] To make α(x) = β(u, v) we find ui and v j such that ci j − ui − v j = 0 for each (i, j)

where xi j is basic. (a) If there are p supply nodes and q demand nodes in the transportation
problem, how many equations are there in this system? How many ui and v j are there
to find? (b) Describe the chain reaction solution method for finding vectors u and v that
satisfy the system. In using this method we have arbitrarily set u1 = 0; what happens if we
set u1 = −7 instead? (c) How can MATLAB be used to obtain the chain reaction solution?
(d) Are the vectors u and v uniquely determined?

6.6.18[H] If x̂ is feasible for the primal of a transportation problem and we have chosen û

and v̂ so that α(x̂) = β(û, v̂), what must be true in order for us to conclude that x̂ is optimal?

6.6.19[E] In the simplex tableau for a transportation problem, pivoting-in a basis produces
a vector c⊤ of reduced costs. (a) If we make the same basic feasible assignment of flows in the
transportation tableau for the problem, how do we find those same reduced costs? (b) Why
is it necessary to find the reduced costs? Explain.

6.6.20[H] A pivot in the simplex tableau for a transportation problem has the effect of
increasing a flow that was nonbasic (and hence zero) while decreasing a flow that was basic
to zero so that it becomes nonbasic. (a) Explain how this can be accomplished in a network
diagram by shifting flow around a loop. What determines the maximum amount of flow that

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

250 Linear Programming Models of Network Flow

can be shifted? (b) Draw the new network diagram that results from completing the shift
that is indicated in the network diagram of §6.1.2.

6.6.21[H] In a network diagram, a flow can be increased from zero by introducing that
link to form a loop and then shifting flow onto it. In a transportation tableau the flow can
be increased from zero by choosing the nonbasic spot that represents that link and forming
a loop which includes it. (a) What properties must the loop in the transportation tableau
have? (b) Describe a systematic procedure for finding the loop. (c) Why is the loop unique?
Hint: What do the spots in a loop correspond to in the simplex tableau for the transportation
problem?

6.6.22[E] To perform a simplex-rule pivot in a transportation tableau we shift flow around
a loop. (a) Does the direction of the shift matter? Explain. (b) What determines the largest
amount that can be shifted?

6.6.23[E] In performing an iteration of the transportation simplex algorithm we shift t units
of flow around a loop, where t is the smallest of the flows assigned to the spots from which
we subtract in doing the shift. (a) What happens if we shift less than t units of flow? Can
the resulting status of the network be described by a simplex tableau? Explain. (b) What
happens if we shift more than t units of flow? Can the resulting status of the network be
described by a simplex tableau? Explain.

6.6.24[H] If in the initial basic feasible assignment of flows for a transportation problem
each element of x0 is a whole number, then so will be the elements of the optimal shipping
schedule x⋆. Explain why.

6.6.25[H] Given an optimal simplex tableau we can pivot to all of the other basic feasible
solutions, and from each tableau we can read off the objective value corresponding to that
canonical form (see §3.2.2). Now suppose that we are instead given an optimal transportation
tableau, such as the one we found for nf3 in §6.1.4 in which x⋆ = [0, 0, 10, 10, 5, 0, 0, 0, 10]⊤.

(a) Is it possible to find all of the other basic feasible solutions by operating on the trans-
portation tableau? Explain. (b) Find α(x⋆) for the nf3 problem. Can this value be deduced
from the optimal transportation tableau for the problem? Explain.

6.6.26[E] An arbitrary linear program can be infeasible or unbounded, some of its vertices
can be degenerate, and it can have multiple optimal points. Which of these properties can
a transportation problem have? Explain.

6.6.27[E] The northwest corner rule can be used to make an initial assignment of flows.
(a) In using the rule what is evident if a flow assignment simultaneously uses up a supply
and satisfies a demand, but it is not the final assignment? What does the northwest corner
rule do then? (b) In a transportation tableau having p supply rows and q demand columns,
how many spots must be basic in a basic feasible assignment of flows? (c) In performing the
transportation simplex algorithm, what happens if a mistake leads to having too few basic
flows assigned? (d) Can degeneracy in a transportation problem lead to cycling?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.6 Exercises 251

6.6.28[H] In §6.1.3 we saw that degeneracy of a transportation problem can be revealed in
the process of making an initial assignment of flows. (a) Does that always happen? (b) How
else might degeneracy become evident in the transportation simplex solution process?

6.6.29[P] In §6.1.3 the first assignment of flows that I proposed had only 4 basic variables, so
with u1 = 0 appended the system had 5 equations in 6 unknowns and the chain-reaction solu-
tion failed. (a) Write the underdetermined system in the form My = c, as we did for the full-
rank example in §6.1.2, and solve it using MATLAB (I got y’=[0,4,-2,9,-1,3]). (b) Does
this result have any meaning for the transportation problem? (c) How does MATLAB “solve”
an underdetermined linear system?

6.6.30[E] The transportation simplex algorithm is stated in §6.1.4. (a) List its major steps.
(b) When does it stop? (c) If in performing the algorithm the flow becomes zero simultane-
ously on two previously-basic tableau spots, what does that indicate?

6.6.31[H] A cinema fan can watch new movies at two theatres, both of which are advertising
reduced prices next week. Theatre A offers 2 movies he wants to watch, each costing $16.50
this week or $9.00 next week. Theatre B offers 5 movies he wants to watch, each costing
$16.00 this week or $13.50 next week. The fan wants to watch 3 movies this week and 4
movies next week but doesn’t care which movies he watches in which week. (a) Formulate a
transportation problem whose solution will tell the fan how many movies he should watch at
each theatre each week. (b) Solve the problem using the transportation simplex algorithm.

6.6.32[H] A factory supplies customers with product. The factory produces 10 units of
product each month, but customer demand and the per-unit cost of shipping vary with the
month of delivery as shown for the first quarter in the table below.

month of delivery demand shipping cost
January 5 1
February 10 2
March 15 1

Product left over in January can be stored for delivery in February or March, and product
left over in February can be stored for delivery in March. However, it is company policy
to begin each calendar quarter with zero inventory, so the total production for the first
quarter equals the total demand and no first-quarter product can be stored for delivery
after March. The warehouse charges $2 to store 1 unit of product from January until
February, but $1 to store 1 unit of product from February until March. (a) Draw the network
diagram for a transportation problem whose solution will tell how to meet the first-quarter
demands at lowest total cost. (b) Write down the transportation tableau corresponding to the
network diagram. (c) Use the northwest-corner rule to make an initial feasible assignment
of shipments. Show that this assignment of shipments is optimal, and draw a network
diagram illustrating the solution. (d) Find an alternate optimal shipping schedule, and draw
a network diagram illustrating it.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

252 Linear Programming Models of Network Flow

6.6.33[E] Why does the northwest corner rule often produce an initial basic feasible solution
that is far from optimal? Why is it worthwhile to use a phase-1 procedure that produces a
better starting point, even if it takes more work?

6.6.34[H] To make an initial assignment of flows in the transportation tableau for the nf2
problem in §6.1.1, we used the northwest corner rule. Instead use (a) the smallest-cost rule;
(b) Vogel’s rule; (c) Russell’s rule. In each case report whether the initial assignment is
optimal.

6.6.35[H] Make an initial assignment of flows in the following transportation tableau [3, §7.4]
by using (a) the smallest-cost rule; (b) Vogel’s rule; (c) Russell’s rule.

15 10 10 5 30

10 3 6 8 11 5

15 1 9 3 2 7

30 4 2 8 25 15

5 9 1 4 9 8

10 2 4 2 11 1

(d) Solve the transportation problem.

6.6.36[H] The transportation tableaus in §6.1.6 represent optimal solutions x⋆1 and x⋆2 of
a transportation problem. Find all of the other alternate optima.

6.6.37[H] In §6.2.1 we assumed that it costs nothing to ship extra production from a factory
into its own inventory, but this might not be realistic. (a) If factories 1, 2, and 3 incur
inventory stocking costs of 3, 2, and 1 respectively for each box of bolts retained there, how
does the formulation change? (b) Solve the modified problem.

6.6.38[E] If a transportation problem has too little supply to meet the demand, what does
an optimal solution tell us?

6.6.39[E] Explain the role of a fictitious source in a transportation problem. How do we
know that the flows in the non-fictitious part of the optimal tableau are optimal for the
original problem?

6.6.40[E] A fully-connected network that has p supply nodes and q demand nodes is mod-
eled in §6.3 as a transshipment problem. (a) How many rows are in a transshipment tableau?
(b) How many columns are in a transshipment tableau? (c) Why are the diagonal elements
of a transshipment tableau zero? (d) Why is the cost coefficient matrix in the bottom left
partition the transpose of the cost coefficient matrix in the top right partition? (e) What is
the purpose of a buffer stock, and what should be its value?

6.6.41[E] What makes a general network flow problem different from a dense transshipment
problem? Describe the construction of a sparse transshipment tableau. Which off-diagonal
entries are nonzero?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

6.6 Exercises 253

6.6.42[H] In §6.4 we used x14 = 10, x15 = 15, x16 = 25, x24 = 10, and x63 = 25 to make
an initial assignment of flows in the sparse transshipment tableau for the nf1 problem.
(a) Perform minimum-ratio pivots to get this basis in the initial simplex tableau given in
§6.0 for the nf1 problem. (b) How did we complete the initial basic feasible assignment of
flows in the sparse transshipment tableau?

6.6.43[H] A basic feasible assignment of flows in a sparse transshipment tableau must
include directed links connecting all of the nodes in the network, forming a basic feasible
spanning tree [3, §7.7]. By performing minimum-ratio pivots in the initial simplex tableau
given in §6.0 for the nf1 problem, try to find a basis in which x16, x63, and x65 are all nonbasic,
so that there is no flow to or from node 6. Why is this impossible?

6.6.44[H] In §6.4.1 we made a feasible assignment of flows in the transportation part of
the transshipment tableau by adding artificial links and using the northwest corner rule.
(a) What ensures that these links will be nonbasic in an optimal solution to the general
network problem? (b) How did we assign the other flows that are needed to make an initial
basic feasible assignment for the sparse transshipment tableau? (c) Why is it necessary to
assign a zero flow somewhere off the diagonal in each column that corresponds to a pure-
transshipment point? (d) Could one of the other rules described in §6.1.5 be used to make
the initial assignment of flows in the transportation part of the transshipment tableau even
though it contains artificial links?

6.6.45[H] Revise the simplex tableau formulation of nf1 to include the artificial links x13
and x25 (set a = 1000 for numerical calculations). Perform minimum-ratio pivots to get
the initial basic feasible solution that we found by doing a northwest-corner assignment of
flows in the transportation part of the transshipment tableau. Pivot the simplex tableau to
optimality. Are x13 and x25 zero in the optimal solution?

6.6.46[P] Step 2 of the transportation simplex algorithm updates the ci j in the tableau.
Assume that the (i, j) entry of a matrix C(p,q) stores ci j and that the (i, j) entry of matrix
F(p,q) stores xi j or −1 if the spot is nonbasic or −2 if link (i, j) is missing. If the dual
variables are stored in vectors u and v, write MATLAB code to perform the update.

6.6.47[P] Step 1 of the transportation simplex algorithm finds the dual vectors u and v.
Assume that the (i, j) entry of a matrix C(p,q) stores ci j and that the (i, j) entry of matrix
F(p,q) stores xi j or −1 if the spot is nonbasic or −2 if link (i, j) is missing. If the augmented
linear system that must be solved to find the dual vectors is M*y=c as in §6.1.2, write MATLAB

code to construct the coefficient matrix M and the right-hand side vector c, solve for y, and
extract u and v from the solution vector.

6.6.48[P] Step 3 of the transportation simplex algorithm finds a loop and shifts flow around
it. Finding a loop involves searching the transportation tableau for basic spots that are in
the appropriate rows and columns to be vertices of the loop. (a) Describe an algorithm for
constructing a tree of vertices that might be consecutive in a closed loop, and explain how

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

254 Linear Programming Models of Network Flow

such a tree could be used to find the loop. (b) Using a linked list to represent the tree, write
code in a programming language of your choice to implement the algorithm you described
in part a.

6.6.49[E] Search the internet for computer codes that can be used to solve the network
optimization problems considered in this Chapter.

6.6.50[H] In §6.5.2 I revised the linear programming formulation of the nf1 problem to
include a capacity constraint. (a) Solve the revised problem by pivoting in the simplex
tableau. (b) Using the two-case rule we derived for finding y, solve the capacitated sparse
transshipment problem by the general network flow algorithm.

6.6.51[E] Name three network optimization problems other than finding a minimum-cost
shipping schedule.

6.6.52[E] What is an integer program, and how does it differ from linear programs such as
the brewery problem?

6.6.53[E] Why is it possible to solve the assignment problem, which is an integer program,
by using the transportation algorithm, which is based on the simplex method?

6.6.54[H] Show that the shortest-path problem can be written as an assignment problem.

6.6.55[E] The traveling salesman problem is very similar to an assignment problem ex-
cept for the presence of anti-subtour constraints. (a) Why are these constraints necessary?
(b) How do they work? (c) Why is this problem much more difficult than the assignment
problem?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7

Integer Programming

In quantifying our experience of the world most of us count bagels but measure cream cheese,
without ever pausing to contemplate how different one operation is from the other. When
we reason about the analog world of measurement we are free to use algebra and calculus,
but in the digital world of integers nothing is smooth and the exquisite machinery of real
analysis gets stuck at the discontinuities. Optimization problems in which some or all of the
variables are restricted to take on only whole-number values are called integer programs

[62] [3, §8] [151, §13] [79, §18]. They are not only more difficult than smooth optimizations
but fundamentally different in kind, because they are the archetype for a class of problems
requiring an amount of work that is an exponential function of problem size.

Unfortunately, in many practical applications of mathematical programming the optimal
vector we seek has components that naturally ought to be integers. In §1 the brewery would
prefer to sell whole kegs, the chemical factory would prefer to make a whole number of
process runs, the air traffic control center must assign whole people to start each shift, and
the furniture factory would prefer to have workers either assemble or finish chairs rather
than divide their time. Sometimes the answer to a smooth optimization happens to come
out integers, or a variable is so big that its fractional part doesn’t matter, or an artful
interpretation makes a non-integer result useful anyway, but there are other times when an
integer programming formulation cannot be avoided. This Chapter is about what to do then.

7.1 Explicit Enumeration

In §1.3.1 we found for the brewery problem that x⋆ =
[

5, 12 1
2
, 0, 0

]⊤, in which an odd half-keg
of Stout gets made. If all of Sarah’s customers insist on buying only full kegs, she suffers
a 150 × 1

2
= $75 decrease in revenue, from $2325 to $2250. Might she do better than that

by repeating the optimization subject to the additional integer constraint that x⋆ have
whole-number components? This is that problem, which I will name brewip (see §28.6.1).

minimize
x∈Z4

−90x1 − 150x2 − 60x3 − 70x4 = z(x)

subject to 7x1 + 10x2 + 8x3 + 12x4 ≤ 160

1x1 + 3x2 + 1x3 + 1x4 ≤ 50

2x1 + 4x2 + 1x3 + 3x4 ≤ 60

x j ≥ 0 and integer, j = 1 . . . 4

The original problem, without the integer constraint, is called the linear programming

relaxation of brewip.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

256 Integer Programming

1 % brewip.m: solve integer brewery problem by exhaustive enumeration
2
3 A=[7,10,8,12;
4 1, 3,1, 1;
5 2, 4,1, 3];
6 b=[160;50;60];
7 c=[-90;-150;-60;-70];
8
9 % find the maximum possible value of each variable
10 for j=1:4
11 xmax(j)=intmax;
12 for i=1:3
13 xmax(j)=min(xmax(j),fix(b(i)/A(i,j)));
14 end
15 end
16
17 % examine all integer points that might be feasible
18 zstar=0;
19 for x1=0:xmax(1)
20 for x2=0:xmax(2)
21 for x3=0:xmax(3)
22 for x4=0:xmax(4)
23 x=[x1;x2;x3;x4];
24
25 % is the point feasible?
26 s=b-A*x;
27 if(min(s) < 0)
28 continue
29 end
30 %
31 % yes; update the optimal point
32 z=c’*x;
33 if(z < zstar)
34 zstar=z;
35 xstar=x;
36 continue
37 end
38
39 end
40 end
41 end
42 end
43
44 xstar
45 zstar

octave:1> brewip
xstar =

4
13
0
0

zstar = -2310

The functional constraints require x1 ≤ ⌊160/7⌋ = 22, x1 ≤ ⌊50/1⌋ = 50, and x1 ≤ ⌊60/2⌋ = 30,
so every feasible integer point has x1 ∈ [0, 22]; similarly x2 ∈ [0, 15], x3 ∈ [0, 20], and
x4 ∈ [0, 13]. Thus there are only 23 × 16 × 21 × 14 = 108192 lattice points that might be
feasible. I wrote the MATLAB program listed above to 19-23 generate these points, 25-29

check each for feasibility, and 31-37 remember the feasible one having the lowest objective.
The Octave session on the right shows the program finding x⋆IP = [4, 13, 0, 0]⊤ for a revenue
of $2310, which is indeed better than brewing but not selling that extra half-keg of Stout.

The number of lattice points that must be considered in an exhaustive enumeration

like this grows exponentially with the number of variables in the problem, and generating

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.2 Implicit Enumeration 257

all of them is possible only if the feasible set is bounded. This makes exhaustive enumeration
practical only for a subset of very small integer programs.

A partial enumeration generates only some of the lattice points. The simplest strategy
is to round the non-integer components in the solution x⋆LP of the linear programming relax-
ation. For the brewery problem we found x⋆2 = 12 1

2
, and rounding this component down by

not selling the odd half-keg of Stout yielded the point [5, 12, 0, 0]⊤ which we found is feasible
but suboptimal; rounding up instead yields [5, 13, 0, 0]⊤, which violates the first and third
constraints. If x⋆LP has p non-integer components to be rounded up or down we get 2p lattice
points to check, and there is no guarantee that any of them will turn out to be x⋆IP.

Considering more of the lattice points
that are near x⋆LP makes the partial enu-
meration heuristic more robust, but it can
still fail if not enough points are included.
The problem below, which I will call spear
(see §28.6.2), has two feasible lattice points,
[0, 0]⊤ and [0, 1]⊤, and both are far enough
from x⋆LP that only exhaustive enumeration
would find them.

x ≥ 0 and integer

minimize
x∈Z2

−x1 − x2

subject to −13x1 + 14x2 ≤ 14

15x1 − 14x2 ≤ 0

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

x2

x1

•x⋆IP

•x
⋆
LP

In random enumeration [29, Part 2] we select a sample of the lattice points by chance,
find the objective value at each one that is feasible, and declare the point having the lowest
objective value to be optimal (this resembles the pure random search algorithm for nonlinear
programming discussed in §9.1). If the objective values are histogrammed, the resulting
sample probability density function can be used to estimate how close the objective at
the declared optimal point is to the true value z(x⋆

IP
). Refinements to this scheme include

examining adjacent lattice points to confirm the declared optimum or find a better one, and
repeating the random sample over a smaller region centered on the declared optimum.

Explicit enumeration is hard to use at all for an unbounded feasible set, takes too much
work if it includes all the lattice points, and might not find the right answer if it doesn’t.

7.2 Implicit Enumeration

If all the components of x⋆
LP

happen to be whole numbers, then x⋆
IP
= x⋆

LP
. Adding constraints

to a minimization problem can never decrease its optimal value, so z(x⋆IP) ≥ z(x⋆LP). By using
these two facts it is possible to deduce that whole sets of lattice points cannot include x⋆IP.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

258 Integer Programming

To see how, we will solve the bb1 problem (see §28.6.3) given below. The integer program
is labeled ip, its linear programming relaxation is labeled lp, and F is the set of points
satisfying the linear program’s constraints.






F






lp






ip

minimize
x∈Z2

−x1 − 3x2 = z(x)

subject to −x1 + x2 ≤ 2

x1 + x2 ≤ 6 1
2

x ≥ 0

x1 and x2 are integers

The top graph on the right shows the solution
of the linear programming relaxation lp

minimize
x ∈ F

z(x)

which is x⋆LP = [2 1
4
, 4 1

4
]⊤. In any solution to ip, x1

cannot have a fractional part so it must satisfy
either x1 ≤ 2 or x1 ≥ 3. In other words, the
solution to ip must be in either F ∩ {x|x1 ≤ 2} or
F ∩ {x|x1 ≥ 3}. To find it we can examine both
possibilities by branching on x1 to form these
two linear programs.

minimize
x ∈ F, x1 ≤ 2

z(x) minimize
x ∈ F, x1 ≥ 3

z(x)

x⋆ = [2, 4]⊤ x⋆ = [3, 3 1
2
]⊤

z⋆ = −14 z⋆ = −13 1
2

The solutions to these problems are shown in the
bottom graph on the right. The left problem has
its optimum at a point with integer components,
so that is the best lattice point in F ∩ {x1 ≤ 2}.
The optimal point for the right problem is not
a lattice point, so the solution does not tell us
what the best lattice point is in F ∩ {x1 ≥ 3}.
However, since the objective of the right problem
is worse than that of the left problem we know
that the best lattice point in F∩{x1 ≥ 3} is not as
good as the one we found on the left. Therefore,
it must be that x⋆IP = [2, 4]⊤.

x2

5

4

3

2

1

0 x1
0 1 2 3 4 5
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

F

z = −15

x2

5

4

3

2

1

0 x1
0 1 2 3 4 5
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

F
∩
{x
|x 1
≤
2
}

F
∩
{x
|x 1
≥
3
}

z = −14
z = −13 1

2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.2 Implicit Enumeration 259

Adding constraints on x2 instead produces this branching diagram, in which the
original linear programming relaxation at the top is called the master problem and the

branchings produce a tree of subproblems.
Subproblems a and b are solved in the graph
on the left below; c and d are solved on the
right. Because the solution to problem a has
a non-integer first component it is necessary
to branch again, on x1. This leads to the same
subproblem solutions we got before, and by
the same reasoning to x⋆IP = [2, 4]⊤.

We ruled out all of the
many suboptimal lattice
points without examining
any of them, so the enu-
meration performed by
this process is said to be
implicit. The algorithm
[64] [62, §4.3] [70, §8] is
stated precisely in §7.3 on
the next page.

minimize z(x)
x ∈ F

x⋆= [21
4 , 4

1
4]
⊤

z⋆=−15

x 2
≤ 4

a: minimize z(x)
x ∈ F, x2 ≤ 4

x⋆= [21
2 , 4]

⊤
z⋆=−141

2

x
2 ≥

5

b: minimize z(x)
x ∈ F, x2 ≥ 5

infeasible

x 1
≤ 2

c: minimize z(x)
x ∈ F, x1 ≤ 2, x2 ≤ 4

x⋆= [2, 4]⊤ z⋆=−14

x
1 ≥

3

d: minimize z(x)
x ∈ F, x1 ≥ 3, x2 ≤ 4

x⋆= [3, 31
2]
⊤

z⋆=−131
2

x2

5

4

3

2

1

0 x1
0 1 2 3 4 5
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
F ∩ {x|x2 ≥ 5} = ∅

F ∩ {x|x2 ≤ 4}

z = −14 1
2

x2

5

4

3

2

1

0 x1
0 1 2 3 4 5
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

F
∩
{x
|x 2
≤
4
}∩
{x
|x 1
≤
2
}

F
∩
{x
|x 2
≤
4
}∩
{x
|x 1
≥
3
}

z = −14
z = −13 1

2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

260 Integer Programming

7.3 Branch-and-Bound for Integer Programs

0. initialize

• Construct the linear programming relaxation lp and solve it. If the solution to
this master problem satisfies the integer constraints, it is optimal for ip; STOP.

• Find an upper bound z on the objective, equal to its value at some incumbent

solution that is feasible for ip; if no such point is known set z = +∞.

1. branch

• Select a subproblem whose subset of F is unfathomed. On the first iteration this
is the master problem; after that the bounding and fathoming steps must have
been completed for both subproblems that resulted from a given branching before
you branch again from either of them.

• Choose a noninteger component of the subproblem solution, and construct two
new subproblems. To one add a constraint to keep that variable no lower than
the next higher integer; to the other add a constraint to keep that variable no
higher than the next lower integer. Each new subproblem must also include all of
the bound constraints inherited from earlier branchings.

2. bound

Solve both new subproblems to obtain a lower bound z p on the objective over the
subset of F that is feasible for each of them.

3. fathom

Exclude subproblem p (and thus its subset of F) from further consideration if any of
these conditions is satisfied:

(a) the subproblem is infeasible, so its subset of F is empty

(b) z p ≥ z so some lattice point that is not in the subset
is at least as good as every point that is in the subset

(c) z p < z is attained at a lattice point in the subset

In case (c),

• declare the subproblem solution the incumbent solution to ip

• let z = z p

• if unfathomed subsets remain GO TO 3 and check them against the new z

4. test

If no unfathomed subsets remain, the incumbent solution is optimal for ip; STOP.
Otherwise, GO TO 1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.3 Branch and Bound for Integer Programs 261

The algorithm generates a binary tree in which the subproblems at the nodes differ only in
the bounds on the variables. When we exclude from further consideration a subset of F that
cannot contain x⋆IP we say that the subset (and hence its node) is fathomed, because we
have sounded its depths and either discovered a new incumbent solution or determined that
even its best lattice point is not as good as the incumbent solution we already know.

To illustrate the algorithm we will use it to solve this larger problem [62, Exercise 5.19.2],
which I will call bb2 (see §28.6.4).






F






lp






ip

minimize
x∈Z3

−4x1 − 5x2 − x3 = z

subject to 3x1 + 2x2 ≤ 10

x1 + 4x2 ≤ 11

3x1 + 3x2 + x3 ≤ 13

x ≥ 0

x1, x2, and x3 are integers

The picture below shows the constraint hyperplanes, the feasible set F, and all of the lattice
points + that are in F. The optimal solution to lp is the indicated vertex and the optimal
solution to ip happens to be the closest lattice point (recall from §7.1 that this does not
always happen). For clarity gnuplot chose a different scaling for each axis.

x1

11

13
3

10
3

x2

11
4

13
3

5

x3

F

x⋆LP = [1.8, 2.3, 0.7]⊤x⋆IP = [2, 2, 1]⊤

The diagram on the next page shows the entire tree of subproblems that results from the
branching decisions shown; different trees would result from picking other variables to branch
on (see Exercise 7.10.16). In carrying out the branch-and-bound algorithm on this tree only
part of the tree might actually be constructed.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

262 Integer Programming
m
in
im

ize
z(x

)
x
∈
F

x
⋆
=
[
95
,
2
3
1
0
,
71
0
] ⊤

z
⋆
=
−
1
9

41
0

x
3 ≤

0
x
3≥

1

a
:
m
in
im

ize
z(x

)
x
∈
F
,
x
3 ≤

0

x
⋆
=
[
95
,
2
3
1
0
,0
] ⊤

z
⋆
=
−
1
8

71
0

x
2 ≤

2
x2≥

3

b
:
m
in
im

ize
z(x

)
x
∈
F
,
x
3 ≥

1

x
⋆
=
[
53
,
73
,1
] ⊤

z
⋆
=
−
1
9
13

x
1 ≤

1
x1≥

2

c
:
m
in
im

ize
z(x

)
x
∈
F
,
x
2 ≤

2
,
x
3 ≤

0

x
⋆
=
[2
,2
,0
] ⊤

z
⋆
=
−
1
8

d
:
m
in
im

ize
z(x

)
x
∈
F
,
x
2 ≥

3
,
x
3 ≤

0

in
feasib

le

e
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,
x
3 ≥

1

x
⋆
=
[1
,
52
,
52
] ⊤

z
⋆
=
−
1
9

f
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≥

2
,
x
3 ≥

1

x
⋆
=
[2
,2
,1
] ⊤

z
⋆
=
−
1
9

x
3 ≤

2
x
3≥

3

g
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,1
≤
x
3 ≤

2

x
⋆
=
[1
,
52
,2
] ⊤

z
⋆
=
−
1
8
12

x
2 ≤

2
x2≥

3

h
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,
x
3 ≥

3

x
⋆
=
[
45
,
1
35
,3
] ⊤

z
⋆
=
−
1
8

91
0

x
2 ≤

2
x2≥

3

p
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,
x
2 ≤

2
,1
≤
x
3 ≤

2

x
⋆
=
[1
,2
,2
] ⊤

z
⋆
=
−
1
6

q
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,
x
2 ≥

3
,
x
3 ≤

2

in
feasib

le

r
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,
x
2 ≤

2
,
x
3 ≥

3

x
⋆
=
[1
,2
,4
] ⊤

z
⋆
=
−
1
8

s
:
m
in
im

ize
z(x

)
x
∈
F
,
x
1 ≤

1
,
x
2 ≥

3
,
x
3 ≥

3

in
feasib

le

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.4 Multiple Optimal Points 263

The master problem’s solution is not a lattice point so it cannot be x⋆IP. The origin is a
lattice point that is obviously in F so we can make x = [0, 0, 0]⊤ the incumbent solution; the
objective there is zero so we set z = 0. I arbitrarily chose x3 for the first branch, generating
subproblems a and b. Then I used the solve command of the pivot program to solve each
linear program. Neither subproblem solution satisfies any of the fathoming conditions of
algorithm step 3. Whenever more than one subset of F remains unfathomed the algorithm
allows us to select which subproblem to solve next, so what happens depends on the sequence
of choices we make.

In the breadth-first strategy we generate all of the nodes at the current depth of the
tree before any that are farther down. In this problem we branch first on subproblem a to
generate subproblems c and d, and solve them. Subproblem d is infeasible, so we fathom
that node of the branching diagram by condition (a). The solution to c is a lattice point
having z = −18 < 0 = z, so fathoming condition (c) is satisfied. We declare x = [2, 2, 0]⊤ to
be the incumbent solution and let z = −18. Next we branch on subproblem b to generate
subproblems e and f, and solve them. The solution to f is a lattice point having z = −19
so we update the incumbent solution to x = [2, 2, 1]⊤ and let z = −19. Node e has z = z so
it is fathomed by condition (b) and we never generate subproblem g, h, p, q, r, or s. No
subsets of F remain unfathomed, so the incumbent solution is optimal and x⋆IP = [2, 2, 1]⊤.

In the depth-first strategy we extend the branching diagram as far down as possible
before considering nodes to the left or right. In this problem we might pick subproblem b to
branch from first, generating subproblems e and f. The solution to f is a lattice point, so we
declare it the incumbent solution and let z = −19. This updated value of z is lower than the
optimal value for subproblem a, so we fathom that node and never generate subproblem c

or d. Node e has z = z so it is fathomed by condition (b) and we never generate subproblem
g, h, p, q, r, or s. No subsets of F remain unfathomed, so the incumbent solution is optimal
and x⋆IP = [2, 2, 1]⊤.

For this example the breadth-first strategy required the solution of 7 subproblems while
the depth-first strategy required the solution of only 5, but that is just because we decided
to start the depth-first solution by branching at node b rather than at node a. In practice
[117, p60] the optimal solution often occurs deep in the tree, and then the depth-first strategy
can have a bigger advantage over breadth-first. Our algorithm permits the selection of any
unfathomed node to branch from next, so it is also possible to use a deliberate strategy that
is neither breadth-first nor depth-first [3, p225], or even to make the selection at random.

7.4 Multiple Optimal Points

The problem at the top of the next page, which I will call bb3 (see §28.6.5), has the two
optimal points shown in its graphical solution. Both points are discovered by our branch-
and-bound algorithm if we slightly modify its fathoming conditions (see Exercise 7.10.19)
because each is the solution to a subproblem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

264 Integer Programming

Following the steps of the
algorithm as stated in §7.3 I
solved the master problem and
found that x⋆LP is not integer
feasible. The origin is a lattice
point in F so I declared it to
be the incumbent solution and
set z = 0. Then I branched on
x1 and solved the two resulting
subproblems. Subproblem a has
z = −3 < z = 0 and is therefore
fathomed by condition (c), so I
updated the incumbent solution
to x⋆1IP = [3, 3]⊤ and let z = −3.
Then I considered subproblem b,
which has z = −3 = z and is there-
fore fathomed by condition (b).
But by then its integer-feasible
optimal point x⋆2

IP
= [4, 3]⊤ had

already been revealed.






F






lp






ip

minimize
x∈R2

−x2 = z(x)

subject to −x1 + x2 ≤ 0

x1 + x2 ≤ 7

x ≥ 0

x1 and x2 are integersx2

5

4

3

2

1

0 x1
0 1 2 3 4 5 6 7
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

x⋆LP z = −3 1
2x⋆1IP x⋆2IP z = −3

minimize z(x)
x ∈ F

x⋆= [31
2
, 31

2
]⊤ z⋆=−31

2

x 1
≤ 3

x
1 ≥

4

a: minimize z(x)
x ∈ F, x1 ≤ 3

x⋆= [3, 3]⊤ z⋆=−3

b: minimize z(x)
x ∈ F, x1 ≥ 4

x⋆= [4, 3]⊤ z⋆=−3

If a subproblem has multiple optimal solutions, the situation can be somewhat more
complicated. This problem, which I will call bb4 (see §28.6.6) is solved on the next page.






F






lp






ip

minimize
x∈Z2

−x1 + x2 = z(x)

subject to x1 − x2 ≤ 3

x2 ≤ 3 1
3

x ≥ 0

x1 and x2 are integers

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.4 Multiple Optimal Points 265

x2

5

4

3

2

1

0 x1
0 1 2 3 4 5 6 7
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

F

z
⋆ =
−3

x⋆2LP = [6 1
3
, 3 1

3
]⊤

x⋆1LP = x⋆1IP = [3, 0]⊤

x⋆2IP = [6, 3]⊤

The relaxation lp has two optima at vertices of F, x⋆1LP = [3, 0]⊤ and x⋆2LP = [6 1
3
, 3 1

3
]⊤. One of

these is a lattice point, and we can see from the picture that others lurk in the optimal edge.
To search for them we might branch on a non-integer component of x⋆2LP like this.

minimize z(x)
x ∈ F

x⋆= [61
3 , 3

1
3]
⊤

z⋆=−3

x 2
≤ 3

x
2 ≥

4

a: minimize z(x)
x ∈ F, x2 ≤ 3

x⋆= [3, 0]⊤, [6, 3]⊤ z⋆=−3

b: minimize z(x)
x ∈ F, x2 ≥ 4

infeasible

Subproblem a has two vertex optima, at [3, 0]⊤ and [6, 3]⊤, so branch-and-bound (if it does
not give up too soon) can discover x⋆2IP . Unfortunately, the integer optima at [4, 1]⊤ and [5, 2]⊤

are beyond its view. To be sure of finding all of the optimal points when solving an integer
program by branch-and-bound we must, whenever a subproblem has multiple optima, find
all of the lattice points in its optimal set (which is in general of higher dimension than a
line). The details of such a hybrid algorithm are beyond the scope of this introduction.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

266 Integer Programming

7.5 Zero-One Programs

Most of the work in the branch-and-bound algorithm of §7.3 is in step 2, when we solve
both subproblems to get a lower bound z on the objective over each new subset of F. For
problems like the ones we have studied, in which the variables are nonnegative integers of
arbitrary magnitude, that usually requires two invocations of the simplex method or of an
interior-point method for linear programming.

If instead each x j is restricted to be 0 or 1, we can think of the integer program in an
entirely different way that makes it very easy to find lower bounds on the objective. In the
problem below [3, §8.4] which I will call bb5 (see §28.6.7), I denotes the set of 26 = 64 vectors
[x1, x2, x3, x4, x5, x6]

⊤ in which each x j is either 0 or 1.






ip






F

}

I

minimize
x∈Z6

2x1 + 2x2 + 4x3 + 7x4 + 8x5 + 9x6 = z(x)

subject to −5x1 + 3x2 − 2x3 + 3x4 + x5 − 2x6 ≤ 5

x1 − 2x3 − x4 − 3x5 + 3x6 ≤ 1

−x1 − 2x2 + x3 − x4 + 5x5 + x6 ≤ −3

x1, x2, x3, x4, x5, x6 ∈ {0, 1}

Because all of the coefficients in the objective function are nonnegative and each x j ∈ {0, 1}
the lowest value that z(x) could possibly have is z = 0, at x = [0, 0, 0, 0, 0, 0]⊤. If that point
were feasible for the inequalities then it would be optimal. Unfortunately it violates the
third constraint because 0 � −3, but that does not rule out the possibility that other lattice
points are in F.

If there is an optimal point it must have either x1 = 0 or x1 = 1. A systematic procedure
for investigating these alternatives is described by the branching diagram on the next page,
which is reminiscent of those we have drawn before but different from them in important
ways. Now to form a subproblem, rather than ignoring the integer constraints and minimizing
the objective over a subset of F, we ignore the inequality constraints and minimize the
objective over a subset of I. Above we minimized the objective over all of I and found for the
master problem that x = [0, 0, 0, 0, 0, 0]⊤, which is not feasible for F. This leads us to branch
on x1, generating subproblems a and b.

In subproblem b the minimization is over those elements of I having x1 = 1, and the
notation x ∈ 1 means that x belongs to the set of binary vectors having the form
[1, x2, x3, x4, x5, x6]

⊤. When the value of x1 is fixed at 0 or at 1 it is called a partial solution,
and the 25 = 32 possible vectors [x2, x3, x4, x5, x6]

⊤ are called its completions. Thus each
trial solution consists of a partial solution and one of its completions. The trial solution
[1, 0, 0, 0, 0, 0]⊤ violates the third constraint, so the lowest value that z(x) could have over
this subset of I is z = 4 at x = [1, 1, 0, 0, 0, 0]⊤. That point happens to be in F so it becomes
the incumbent solution x, and now we know that we can make z(x) at least as low as z = 4.
We have found the best point in this subset of I, so the node is fathomed.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.5 Zero-One Programs 267

minimize z(x)
x ∈ I

z = 0

x1 = 0 x1 = 1

a: minimize z(x)
x ∈ 0

z = 2

b: minimize z(x)
x ∈ 1

x = [1, 1, 0, 0, 0, 0]⊤ z = 4

x2 = 0 x2 = 1

c: minimize z(x)
x ∈ 00

no feasible completions

d: minimize z(x)
x ∈ 01

z = 6

In subproblem a the minimization is over those elements of I having x1 = 0, or x ∈ 0 .
We already found that the zero completion, yielding x = [0, 0, 0, 0, 0, 0]⊤, is infeasible, so
the lowest value that z(x) can have over this subset of I is z = 2, at x = [0, 1, 0, 0, 0, 0]⊤.

Unfortunately this x is also infeasible, but because z = 2 < 4 = z the subset still might
contain a lattice point better than the incumbent solution. To search for one I branched on
x2, generating subproblems c and d.

In subproblem c, x1 = x2 = 0 so the third constraint becomes

x3 − x4 + 5x5 + x6 ≤ −3

and its left-hand side can never be less than −1. Thus the partial solution x ∈ 00 has
no feasible completions, and the node is fathomed.

In subproblem d, the zero completion yields x = [0, 1, 0, 0, 0, 0]⊤ but that violates the third
constraint, so the lowest z(x) can be is z = 6, at x = [0, 1, 1, 0, 0, 0]⊤. But the lattice point we
found at node b has an objective lower than 6, so this node is fathomed because z > z. No
unfathomed nodes remain, so the incumbent solution is optimal and x⋆ = [1, 1, 0, 0, 0, 0]⊤.

This procedure depends on the objective function cost coefficients being nonnegative and
arranged in nondescending order, but that can always be achieved by using a substitution
of variables. For example,

z(y) = −10y1 + 2y2 − 3y3 −→





y1 = 1 − x3
y2 = x1
y3 = 1 − x2




−→ z(x) = 2x1 + 3x2 + 10x3 − 13.

The algorithm illustrated above is stated precisely in §7.5.1 on the next page. The
enumerations performed by this algorithm and by the §7.3 branch-and-bound algorithm
for integer programs are both implicit rather than explicit, but some authors [62, §4.5]
[151, §13.7] use the term implicit enumeration to refer exclusively to the zero-one algorithm.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

268 Zero-One Programs

7.5.1 Branch-and-Bound for Zero-One Programs

0. initialize

• Reformulate, if necessary, to make the objective function coefficients of the master
problem nonnegative and nondecreasing.

• If x = 0 ∈ F then it is optimal for ip; STOP.

• Set z to the sum of the objective coefficients.

• Set x = 0 and z = z(x) = 0.

1. branch

• Select a subproblem whose subset of I is unfathomed. On the first iteration this
is the master problem; after that the bounding and fathoming steps must have
been completed for both subproblems that resulted from a given branching before
you branch again from either of them.

• Construct two new subproblems by assigning 0 and 1 to the first variable that
was not yet fixed in the previous partial solution. Each of the two new partial
solutions is thus an extension by one variable of the previous partial solution, in
which the earlier assignments of variables to be 0 or 1 are retained.

2. bound

For each new subproblem p obtain a lower bound on the objective value over that
subset of I, by setting x equal to the previous partial solution completed by [1, 0 . . . 0]⊤

and z p = z(x).

3. fathom

Exclude subproblem p (and thus its subset of I) from further consideration if any of
these conditions is satisfied:

(a) there are no feasible completions in the subset

(b) z p ≥ z so some lattice point that is not in the subset
is at least as good as every point in the subset

(c) z p < z is attained at a point in the subset that is feasible for F

In case (c),

• declare x the incumbent solution to ip

• let z = z p

• if unfathomed subsets remain GO TO 3 and check them against the new z

4. test

If no unfathomed subsets remain, the incumbent solution is optimal for ip; STOP.
Otherwise, GO TO 1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.5.2 Checking Feasible Completions 269

In reformulating an ordinary linear program to have nonnegative and nondecreasing
objective coefficients we might use variable substitutions of the form y1 = −x3, but in a
zero-one program having y1 ∈ {0, 1} that would make x3 ∈ {0,−1}. The algorithm requires
that each x j ∈ {0, 1}, so it is important to change the signs of negative objective coefficients
by using variable substitutions of the form y1 = 1− x3 as illustrated earlier. That way x3 = 0

makes y1 = 1 and x3 = 1 makes y1 = 0.

Because the objective coefficients are nonnegative x = 0 yields the lowest possible value
of z(x), so that is the trial solution we try first; only if it does not satisfy the inequalities
must we branch and bound. That process is based on the upper bound z, which is highest
when x = [1, 1 . . . 1]⊤ and is then just the sum of the objective coefficients.

The partial solution that constrains each subproblem defines the subset of I over which
its minimization is performed, so each partial solution must inherit the variable assignments
that were made in the branching decisions that preceded its subproblem in the tree.

In the bounding step the zero completion of the previous partial solution is always infea-
sible, because otherwise the node that is parent to this one would have been fathomed by
condition (c) and there would have been no branch. Because the objective has its coefficients
in nondecreasing order its lower bound can always be found by using the previous partial
solution completed by [1, 0 . . .0]⊤. In [3, p233-238] this is referred to as looking ahead.

7.5.2 Checking Feasible Completions

Most of the work in zero-one branch-and-bound is in step 3(a), where we are obliged to say
if the partial solution constraining subproblem p is certain to have no feasible completions.

One way to answer this question would be to search for a completion that satisfies all
of the inequalities. We can generate the possible completions one at a time and for each
evaluate all of the constraints at the corresponding trial solution. As soon as we find a
completion that is feasible we can stop searching; there is at least one feasible completion,
which means that the fathoming condition fails. If we test all possible completions without
finding a feasible one, then the fathoming condition succeeds.

Another way to answer the question would be to search for an inequality that is violated
by all of the possible completions. If we find one then we can say for sure that there
are no feasible completions, and the fathoming condition succeeds. In our solution of bb5
subproblem c had the partial solution x ∈ 00 , making the third constraint look like
this.

−1(0) − 2(0) + x3 − x4 + 5x5 + x6 ≤ −3

Because x j ∈ {0, 1} the left-hand side has its minimum value of −1 when x = [0, 0, 0, 1, 0, 0]⊤,
so above I argued that no completion is feasible and the fathoming condition succeeds.

Even if no single constraint is violated by all possible completions, it is of course still
possible that every possible completion violates some constraint. In subproblem d of bb5,

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

270 Zero-One Programs

the partial solution x ∈ 01 makes the constraints look like this.

−5(0) + 3(1) − 2x3 + 3x4 + x5 − 2x6 ≤ 5

1(0) − 2(1) − x4 − 3x5 + 3x6 ≤ 1

−1(0) − 2(1) + x3 − x4 + 5x5 + x6 ≤ −3

The only completion that satisfies the third constraint is the one that makes the trial so-
lution x = [0, 1, 0, 1, 0, 0]⊤, but that point violates the first constraint. Thus, although each
constraint is feasible for some completion of x = 01 , no completion satisfies all of the
constraints. In solving bb5 I did not fathom node d by condition (a), but there are in fact no
feasible completions in that subset of I. If in carrying out the steps of the zero-one algorithm
we refrain from fathoming some node because no constraint is violated by every completion,
but the subset contains no feasible completions, that fact will be discovered at a later iter-
ation. If in the example node d had not been fathomed for a different reason before that
could happen, we would have branched from it and found the infeasibility.

Because of its simplicity you might prefer the first strategy described above, but searching
every node for a completion that satisfies all of the inequalities can be even more expensive
than solving the master problem by exhaustive enumeration. The second strategy is much
less work, as illustrated by its implementation in the fathoma.m routine listed below. The
inputs to this routine are a matrix A of constraint coefficients, a vector b of right-hand-side
values, and a vector x containing a partial solution followed by elements set equal to −1.
These special values correspond to the boxes that we have used to represent the possible
completions of a partial solution. The Octave session on the next page shows how the routine
can be used to decide whether fathoming condition (a) is satisfied by the partial solution at
each of the nodes in the bb5 branching diagram. Only for node c does the routine find that
every completion violates some constraint, and its return value row=3 shows it is the third
constraint that is always violated (as we found above).

1 function row=fathoma(A,b,x)
2 % return index of first constraint in Ax <= b violated by all completions
3
4 m=size(A,1); % find out how many rows are in A and b
5 row=0; % assume no such constraint will be found
6 ip=(x’ == 1); % indices in partial solution where x(j)=1
7 ic=(x’ == -1); % indices in trial solution to be completed
8 for i=1:m % check the constraints one at a time
9 ap=sum(A(i,ip)); % value of the partial solution
10 im=(A(i,:) < 0); % indices where coefficient A(i,j)<0
11 id=bitand(ic,im); % indices in completion where A(i,j)<0
12 ac=sum(A(i,logical(id))); % value of most negative completion
13 ax=ap+ac; % value of constraint
14 if(ax > b(i)); % if inequality is violated
15 row=i; % get the number of the offending row
16 return % and return it
17 end
18 end
19 end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.5.2 Checking Feasible Completions 271

octave:1> A=[-5, 3,-2, 3, 1,-2;
> 1, 0,-2,-1,-3, 3;
> -1,-2, 1,-1, 5, 1];
octave:2> b=[5;1;-3];
octave:3> % master problem
octave:3> x=[-1;-1;-1;-1;-1;-1];
octave:4> row=fathoma(A,b,x)
row = 0
octave:5> % node A
octave:5> x=[0;-1;-1;-1;-1;-1];
octave:6> row=fathoma(A,b,x)
row = 0
octave:7> % node B
octave:7> x=[1;-1;-1;-1;-1;-1];
octave:8> row=fathoma(A,b,x)
row = 0
octave:9> % node C
octave:9> x=[0;0;-1;-1;-1;-1]
octave:10> row=fathoma(A,b,x)
row = 3
octave:11> % node D
octave:11> x=[0;1;-1;-1;-1;-1];
octave:12> row=fathoma(A,b,x)
row = 0

If in a trial solution x ∈ Zn the first s elements are a partial solution and the final n− s are
a completion, then the left-hand side of constraint i can be found as the sum of two terms.

Aix =

s∑

j=1

ai jx j

︸ ︷︷ ︸

ap

+

n∑

j=s+1

ai jx j

︸ ︷︷ ︸

ac

The value of ap is fixed by the partial solution, but the value of ac depends on which of the
possible completions is used. The completion yielding the lowest value of ac will have x j = 1

where ai j < 0 and x j = 0 elsewhere. If Aix > bi for this completion, then no completion is
feasible for constraint i so no completion is feasible for F.

The routine 4 finds out how many inequalities there are and 5 prepares to return a
zero result in case a constraint is not found for which the partial solution has no feasible
completions. Then 6 it uses a MATLAB construct [50, §4.6] to make ip a row vector of
logical values in which ip(j)=T if x j = 1 or ip(j)=F otherwise. In a similar way 7 it makes
ic a row vector of logical values in which ic(j)=T if x j = −1 or ic(j)=F otherwise. Next
it enters a loop 8-18 over the constraints. For constraint i it first 1 computes ap as the
sum of those constraint coefficients in row i corresponding to the elements of the partial
solution that are 1. Then 10 it uses the MATLAB construct to make im a row vector of
logical values in which im(j)=T if ai j < 0 or im(j)=F otherwise, and 11 makes id(j)=T if
x j is an element of the completion and ai j < 0. Then 12 it computes ac as the sum of those
constraint coefficients in row i. Finally 13 it finds ax, the lowest possible left-hand-side of
constraint i, and 14-17 compares it to the right-hand side of constraint i. If the inequality
is violated it 15-16 returns the index of the constraint. If the loop completes without finding
a violated inequality, the routine returns 5 row=0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

272 Integer Programming Formulations

7.6 Integer Programming Formulations

Often an integer program is just a linear program to which we have appended the restriction
that the variables have integer values, such as when we required that Sarah’s brewery produce
only whole kegs of beer. But the same discontinuities that make integer programs hard to
solve also permit the formulation of models [3, §8.6] [79, §18.5] [151, §13.2] that select from
among discrete alternatives or enforce logical conditions.

7.6.1 Techniques

Changing to zero-one variables. Sometimes it is easier to solve an integer program
with bounded variables if it is written as a zero-one program. To see how this is possible
recall the bb1 problem, which is reproduced below.

minimize
x∈Z2

−x1 − 3x2 = z(x)

subject to −x1 + x2 ≤ 2

x1 + x2 ≤ 6 1
2

x ≥ 0

x1 and x2 are integers

binary decimal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

We can see from the second inequality that x1 ∈ {0, 1, 2, 3, 4, 5, 6} and x2 ∈ {0, 1, 2, 3, 4, 5, 6}.
With 3-bit binary numbers we can count up to 7, as shown on the right, so we could make
the substitutions

x1 = u1 + 2u2 + 4u3

x2 = v1 + 2v2 + 4v3

where u j ∈ {0, 1} and v j ∈ {0, 1} to rewrite the problem as this zero-one program.

minimize
u∈Z3 v∈Z3

−u1 − 2u2 − 4u3 − 3v1 − 6v2 − 12v3 = z(u, v)

subject to −u1 − 2u2 − 4u3 + v1 + 2v2 + 4v3 ≤ 2

u1 + 2u2 + 4u3 + v1 + 2v2 + 4v3 ≤ 6 1
2

u j ∈ {0, 1} and v j ∈ {0, 1}

Selecting from a list. Sometimes what makes a (linear or nonlinear) optimization prob-
lem into an integer program is that one or more real variables can take on only certain values.
For example, optimizing the design of an electronic circuit might involve choosing the best
value for a resistor from a list of standard values. To ensure that a variable r takes on one of
the values in the vector R = [2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2]⊤, we could introduce zero-one
variables y1 . . . y8 and enforce these constraints.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.6.2 Applications 273

r =

8∑

j=1

y jR j and
8∑

j=1

y j = 1

The right constraint ensures that exactly one of the y j will be 1, and then the left constraint
selects that single element of R for the value of r.

Enforcing logical conditions. Many optimization problems involve a selection from dis-
crete alternative courses of action. If the choice whether or not to pursue each alternative is
represented by the value of a zero-one variable,

x j =

{

0 reject alternative j

1 accept alternative j

then constraints like these can be imposed to model relationships between the actions.

x1 = 1 alternative 1 must be chosen
x1 + x2 = 1 exactly one of the two alternatives must be chosen
x1 + x2 ≥ 1 at least one of the two alternatives must be chosen
x1 + x2 ≤ 1 at most one of the two alternatives can be chosen
x1 + · · · + xp ≥ k at least k of the p alternatives must be chosen
x1 ≤ x2 alternative 1 can be chosen only if alternative 2 is also chosen
(1 − x1) ≤ (1 − x2) alternative 1 must be chosen if alternative 2 is chosen

Switching constraints on or off. Above we noticed that the second constraint of the
bb1 problem ensures x1 ≤ 6 and x2 ≤ 6. That means that the first constraint function

f1(x) = −x1 + x2

takes on its highest value of +6 when x = [0, 6]⊤, so f1(x) ≤ 6 would always be satisfied. If
we introduce a zero-one variable y and rewrite the first constraint as

−x1 + x2 ≤ 2 + 4y

then when y = 0 it is the original constraint but when y = 1 it becomes −x1 + x2 ≤ 6 and is
always satisfied. Thus, making y = 1 effectively removes this constraint from the problem.

If several inequalities have switches of this sort then relationships between them can be
imposed by enforcing logical conditions on the y j as described above.

7.6.2 Applications

In §6.5.3 we formulated the assignment, shortest-path, and traveling salesman problems as
integer programs. Three other integer programming models are also encountered in practice
often enough to be instantly recognizable and therefore known by name.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

274 Integer Programming Formulations

The knapsack problem. Jacob, age 15, had a terrible fight with his older brother and
has decided to run away from home. Unfortunately, the n possessions he would like to bring
weigh more than the W pounds he can carry. If item j has value v j and weight w j pounds,
which items should he choose to maximize their total value without making his backpack
too heavy? Having read this Chapter, he identifies the decision variables

x j =

{

0 if item j is left at home
1 if item j is brought along

and states the problem like this.

maximize
x∈Zn

v⊤x = z(x)

subject to w⊤x ≤ W

x j ∈ {0, 1} j = 1 . . . n

The research literature discusses many variations on this problem, the most famous of which
involve cutting smaller pieces from stock sizes of sheet metal, fabric, or other materials.

The capital budgeting problem. A large corporation has m different kinds of resources
(such as cash, land, equipment, and workers) at its disposal and contemplates deploying
them to some or all of n possible new projects (such as buying back stock, building new
factories, and introducing new products). Project j is expected to generate a revenue r j,
resource i is available in quantity bi, and the amount of resource i needed for project j is ai j.
Which projects should be undertaken? The question suggests these decision variables

x j =

{

0 if project j is rejected
1 if project j is undertaken

and they lead to this formulation.

maximize
x∈Zn

r⊤x = z(x)

subject to Ax ≤ b

x j ∈ {0, 1} j = 1 . . . n

This is a generalization of the knapsack problem from one resource (weight) to several.

The facility location problem. An international aid organization plans to deliver relief
supplies to n established refugee camps, by shipping from warehouse tents that it will erect
in places chosen from m possible locations. If ti is the cost of erecting a tent at site i, d j is
the demand at camp j, and ci j is the per-unit shipping cost from site i to camp j, which sites
should get a tent and how much should each site ship to each camp? Now there are both
zero-one and real decision variables.

yi =

{

0 if site i is rejected
1 if site i gets a tent

xi j = shipment from site i to camp j

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.7.1 Mixed-Integer Programs 275

The aid organization, always strapped for funds, seeks to minimize the total cost of the
operation.

z(x, y) =

m∑

i=1

tiyi

︸ ︷︷ ︸

tents

+

m∑

i=1

n∑

j=1

ci jxi j

︸ ︷︷ ︸

shipments

The shipments must meet the demands,

m∑

i=1

xi j = d j j = 1 . . . n

but they are further constrained because a site without a tent can ship nothing. A site with
a tent would never ship more than the total demand of all the camps, so we can summarize
the two possibilities like this

n∑

j=1

xi j ≤
{

0 yi = 0
∑n

j=1 d j yi = 1
i = 1 . . .m

or by the linear constraints
n∑

j=1

xi j ≤ yi

n∑

j=1

d j i = 1 . . .m.

If the warehouses, once constructed, are used repeatedly for periodic shipments to the
camps, then the demands and hence the optimal shipping schedule might change from period
to period. If shipments continue far into the future it might be realistic to discount their
costs to present value. The transportation network connecting the warehouses to the camps
might have missing links or capacity constraints, and the ci j might change over time. Thus
the basic facility location model can be complicated in various ways [151, §13.2].

7.7 Solving Integer Programs

Integer programming is a vast subject that we have so far barely glimpsed, but enough space
remains in this introduction only to touch on some practical considerations that arise in
solving real problems.

7.7.1 Mixed-Integer Programs

A problem having both integer and real variables, such as the facility location problem of
§7.6.2, is called a mixed-integer program. To solve it we could use the branch-and-bound
algorithm of §7.3 (even though the integer variables are zero-one) but branch only on the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

276 Dynamic Programming

integer variables. The linear programming relaxations involve all of the variables, so the
subproblem whose solution yields y⋆ also yields x⋆. Algorithms have also been devised
[62, §4.10] specifically for solving mixed-zero-one programs.

7.7.2 Other Methods

The branch-and-bound algorithms that we have studied are easy to understand and they
find optimal points exactly, but they are not always fastest. Other ways of solving integer
programs include cutting-plane methods [62, §5] [151, §13.4], branch-and-cut methods
[113], Lagrangian relaxation [58], variations of the simplex algorithm that produce inte-
ger solutions [71, §3], simulated annealing [132, §10.9] and other approximate heuristics
[62, §9] [74, §8-3,8-4], and dynamic programming (see §7.8).

7.7.3 Integer Programming Software

A computer program that implements either of the algorithms we have studied must somehow
store the branching tree. The representation and manipulation of trees is a fundamental topic
in data structures [94, §2.3] [83, §5] but it is beyond the modest programming experience that
I have assumed readers of this book will have (see §0.2.3). In §6.5.1 we also encountered a
tree, and there also I was forced to stop short of showing you MATLAB code for the algorithm
under discussion. But in case you someday write your own code for solving integer programs
I can pass on the observation [117, p60] that if the dual simplex algorithm is used to solve
the subproblems in a depth-first strategy, then the solution of each subproblem can be
found by an inexpensive update to the basis matrix factorization. Then it is also possible
[62, p119-121] to find sharper bounds x and to branch in a way that leads to the early
fathoming of new nodes. Production software for integer programming might incorporate
these and other algorithmic refinements, or permit the user to specify a branching order.

The CPLEX and Lingo packages mentioned in §4.4.4 can both solve integer linear pro-
grams and [117, §10] both use branch-and-bound.

7.8 Dynamic Programming

Many optimization problems can be modeled as a sequence of decisions, each of which
changes a state variable which in turn affects the alternatives that are possible at subsequent
decisions. For example, declaring an academic major affects the set of courses from which
a student can select, and choosing a particular sequence of those courses affects the set of
careers that will be open to the student upon graduation. Thus, to choose the right major
one must try to anticipate the whole series of future decisions that would ensue if each
alternative were chosen. Dynamic programming [13] [151] [3, §10] [79, §7] [74, §10-11] is
a computational strategy that can be used to study problems of this type.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.8.1 The Shortest-Path Problem 277

7.8.1 The Shortest-Path Problem

Simpler than choosing an academic
major is the problem of finding the
shortest path between two nodes in a
network. If in the network pictured to
the right [3, Exercise 10.4] the number
at the tail of each arrow is the length
of that link, what path from node
1 to node 13 has the smallest total
length? We could write this problem
as an integer program in the manner
of §6.5.3 and then use the §7.5.1 zero-
one algorithm to solve it, but because
of its special structure there is a much
easier way to answer the question.

From node 10 there is only one
path, of length 3, to node 13; if we
somehow find ourselves at node 10,
that path is the one we must take.

Likewise there is a unique path, of

st
a
g
e
1

1

2
3

4

st
a
g
e
2

6
2

6
3

5
4

1

2

3

2

4

3

3

1

2

st
a
g
e
3

5

6

4
6

4
7

4
8

6
9

3

3

2

1

4

2

2

4

3

st
a
g
e
4

10

11

12

3

2

3

st
a
g
e
5

13

length 2, from node 11 to node 13, and there is a unique path, having length 3, from node 12
to node 13. From node 5 there is only one possible path to node 10, so if we find ourselves
at node 5 we should take that path. Similarly there is a unique path from node 9 to node
12, so if we find ourselves at node 9 we should take the path to node 12.

From node 6 we can go to either node 10 or node 11. We already found that the shortest
path from node 10 to node 13 has length 3, so the path 6 → 10 → 13 has a total length of
3+3 = 6 units. We already found that the shortest path from node 11 to node 13 has length
2, so the path 6 → 11 → 13 has a total length of 2 + 2 = 4. Thus if we find ourselves at
node 6 we should go next to node 11 at the minimum length of 4 . As a reminder of this
minimum length to node 13, I have shown it in the rectangle near node 6.

From node 7 we can take the path 7→ 10→ 13 for a length of 1+3 = 4, or 7→ 11→ 13

for a length of 4 + 2 = 6, or 7→ 12→ 13 for a length of 2 + 3 = 5. Thus if we find ourselves
at node 7 we should go next to node 10 at the minimum length of 4 . By similar reasoning,

if we find ourselves at node 8 we should go to node 11 at a length of 4 .

The length of the optimal path from node 2 to node 13 is 1 + 6 = 7 if we go to node 5,

2 + 4 = 6 if we go to node 6, and 3 + 4 = 7 if we go to node 7, so the best choice is to go
from node 2 to node 6. Similarly, from node 3 we should go to node 6 and from node 4 we
should go to node 8. Now it is easy to see that from node 1 we should go to node 2, with a
minimum length for the whole path of 2 + 6 = 8. Starting from node 1 and moving from
each node to the optimal next node yields the shortest path 1→ 2→ 6→ 11→ 13.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

278 Dynamic Programming

In the picture on the previous page the nodes in each column or stage of the problem
have directed links entering only from their left and exiting only to their right. Using the
picture we solved the problem by finding the length of the shortest path to the destination
from each of the nodes in stage 4, then from each of the nodes in stage 3, then from each of
the nodes in stage 2, and finally from the single node in stage 1. Then, starting at node 1
and progressing from one stage to the next, we included in the shortest path that next node
which yielded the smallest remaining path length.

Suppose that in our example we index the stages by s = 1 . . . 5 and give the set of nodes
in stage s the name Ns, so that N1 = {1}, N2 = {2, 3, 4}, N3 = {5, 6, 7, 8, 9}, N4 = {10, 11, 12},
and N5 = {13}. If p ∈ Ns and q ∈ Ns+1 and there is a link between node p and node q, then
we will call the length of that link Lpq; if there is no link then Lpq = ∞. At the destination
node, s = 5 and because there is no next stage N6 = ∅ and f (6, q) = 0 for any q. With these
conventions the calculations above can be described by this recursion.

f (s, p) = length of shortest path to destination from node p of stage s

= min
q∈Ns+1

[Lpq + f (s+1, q)]

We can use this formula repeatedly to work backwards from the last stage to the first, so
it is called a backward recursive relation [3, p350]. For example, once all of the f (3, q)

have been found we can compute f (2, 3) like this.

f (2, 3) = min[L35+ f (3, 5), L36+ f (3, 6), L37+ f (3, 7), L38+ f (3, 8), L39+ f (3, 9)]

= min[∞+6, 2+4, 4+4, 3+4, ∞+6]
= 6 achieved by going from node p = 3 to node q = 6

Using backward recursive relations we can solve the problem like this.

f (4, 10) = length of shortest path to destination from node 10 of stage 4 = 3

f (4, 11) = length of shortest path to destination from node 11 of stage 4 = 2

f (4, 12) = length of shortest path to destination from node 12 of stage 4 = 3

f (3, 5) = 3 + f (4, 10) = 6

f (3, 6) = min[3 + f (4, 10), 2 + f (4, 11)] = 4

f (3, 7) = min[1 + f (4, 10), 4 + f (4, 11), 2 + f (4, 12)] = 4

f (3, 8) = min[2 + f (4, 11), 4 + f (4, 12)] = 4

f (3, 9) = 3 + f (4, 12) = 6

f (2, 2) = min[1 + f (3, 5), 2 + f (3, 6), 3 + f (3, 7)] = 6

f (2, 3) = min[2 + f (3, 6), 4 + f (3, 7), 3 + f (3, 8)] = 6

f (2, 4) = min[3 + f (3, 7), 1 + f (3, 8), 2 + f (3, 9)] = 5

f (1, 1) = min[2 + f (2, 2), 3 + f (2, 3), 4 + f (2, 4)] = 8

It is helpful to organize these calculations in a table; one that is suitable for hand com-
putation is shown on the following page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.8.2 Integer Nonlinear Programming 279

s p q Lpq + f (s+1, q) f (s, p)

4 10 13 3 + 0 3

4 11 13 2 + 0 2

4 12 13 3 + 0 3

3 5 10 3 + 3 6

3 6 10 3 + 3

3 6 11 2 + 2 4

3 7 10 1 + 3 4

3 7 11 4 + 2

3 7 12 2 + 3

3 8 11 2 + 2 4

3 8 12 4 + 3

3 9 12 3 + 3 6

2 2 5 1 + 6

2 2 6 2 + 4 6

2 2 7 3 + 4

2 3 6 2 + 4 6

2 3 7 4 + 4

2 3 8 3 + 4

2 4 7 3 + 4

2 4 8 1 + 4 5

2 4 9 2 + 6

1 1 2 2 + 6 8

1 1 3 3 + 6

1 1 4 4 + 5

The table must be constructed from top to
bottom, because the values we find for f (s, p) in
each stage become the f (s + 1, q) in the previous
stage (which is below it in the table). The down-
ward arrows show where the values of f (4, p) end
up in the calculations for stage 3. Each f (s, p)

value in the rightmost column is the minimum
over q of the entries in the previous column for
that (s, p).

To unwind the recursion we start with the
first-stage (p, q) yielding the lowest path length,
in this case (1, 2) with a length of 8. Next in
stage 2 we find the link from node 2 yielding
the lowest path length, (2, 6). Then in stage 3

we find the link from node 6 yielding the lowest
path length, (6, 11). Finally in stage 4 we find
the link from node 11 yielding the lowest path
length, (11, 13). The upward arrows show how
these links assemble into the shortest path 1 →
2→ 6→ 11→ 13.

The method [13] illustrated by this exam-
ple was first discovered by Richard Bellman [74,
p350], but it and several variants are sometimes
referred to as Dijkstra’s algorithm. A pro-
gram to perform these calculations might use
data structures quite different from this table.

7.8.2 Integer Nonlinear Programming

The branch-and-bound approach that we used in §7.3 to solve integer linear programs can
also be used to solve integer or zero-one nonlinear programs [151, Exercise 13.42]. Each
subproblem is once again a smooth relaxation of the integer-constrained master problem,
but now it is a nonlinear program and therefore must be solved using techniques such as
those discussed in Chapters 8–25 of this text.

When the objective of an integer nonlinear program is separable in the sense that we
can evaluate it in stages each involving a single variable, then it might be easier to solve the
problem using a dynamic programming approach [3, Exercises 10.12, 10.13, 10.14, 10.15].
The example on the next page, which I will call inlp (see §28.8.1) has only n = 2 variables,
so we can find its optimal lattice points x⋆1IP = [3, 2]⊤ and x⋆2IP = [3, 3]⊤ graphically. How could
we find these points without drawing a picture?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

280 Dynamic Programming

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

x2

x1

f 1
(x
)
=
0

f0 = 1.25

x⋆2
IP

x⋆NLP
x⋆1IP

f0 ≈ 0.52097

minimize
x∈Z2

f0(x) = (x1 − 4)2 + (x2 − 2 1
2
)2

subject to f1(x) = (x1 − 2)2 + (x2 − 4) ≤ 0

f2(x) = x1 ≥ 0 and integer
f3(x) = x2 ≥ 0 and integer

From the constraints we can deduce which lattice points are feasible, like this.

−x2 ≥ (x1 − 2)2 − 4 ≤ 0

(x1 − 2)2 ≤ 4

x1 − 2 ≤ 2

x1 ≤ 4 and x1 ≥ 0 so x1 ∈ {0, 1, 2, 3, 4}
but x2 ≤ 4 − (x1 − 2)2 so
x1 = 0 ⇒ x2 ∈ {0}
x1 = 1 ⇒ x2 ∈ {0, 1, 2, 3}
x1 = 2 ⇒ x2 ∈ {0, 1, 2, 3, 4}
x1 = 3 ⇒ x2 ∈ {0, 1, 2, 3}
x1 = 4 ⇒ x2 ∈ {0}.

Now suppose that in one stage of the solution process we choose a value of x1 from among
the possibilities. Then, in the next stage we choose a value of x2 from among the possibilities
for each value of x1. This process can be described by the directed graph on the next page,
in which the objective contribution of each assignment is shown on the corresponding link.
Now we can minimize f0(x) simply by finding the shortest path from start to finish.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.8.2 Integer Nonlinear Programming 281

5
4

start

(x1 − 4)2

0

1

4

9

16

25
4

4

1
4

3

1
4

2

1
4

1

25
4

0

choose x1 choose x2

4

3

2

1

0

9
4

1
4

1
4

9
4

25
4

(x2 − 2 1
2
)2

finish

stage 0 stage 1 stage 2 stage 3

Here I have used the same procedure as in §7.8.1. For example, if we choose x1 = 3 then we
can complete the evaluation of the objective by choosing x2 to be 0 (at an additional cost of
25
4
) or 1 (at an additional cost of 9

4
) or 2 or 3 (each of which increases the objective by 1

4
).

Thus the shortest path from the x1 = 3 node to finish has a cost of

min
{
25
4
, 9

4
, 1

4
, 1

4

}

=
1
4

as shown in the box above the x1 = 3 node. The two optimal paths from start to finish,
drawn with thick lines, reveal that x⋆1IP = [3, 2]⊤ and x⋆2IP = [3, 3]⊤. The backward recursive
relation that we derived in §7.8.1,

f (s, p) = length of shortest path to finish from node p of stage s

= min
q∈Ns+1

[Lpq + f (s+1, q)]

also works here if we label the stages as shown above and let

Lpq =






(q − 4)2 p = start, q ∈ N1

0 p ∈ N1, q ∈ N2

(p − 2 1
2
)2 p ∈ N2, q = finish.

Then we can recurse as we did in the §7.8.1 problem to find f (1, start), and as in that
example these calculations could be organized in a table (see Exercise 7.10.53).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

282 Integer Programming

Dynamic programming can also be used to solve nonlinear programs having a separable
objective function and variables that are continuous rather than being restricted to integer
values [3, §10.6] [74, §10.7]. However, that approach is unwieldy if there are more than a
few variables, and better methods for smooth nonlinear programs are discussed in Chapters
8–25. Dynamic programs having multiple state variables [3, §10.5] are also beyond the scope
of this introduction.

7.9 Computational Complexity

Branch-and-bound and dynamic programming are more efficient than exhaustive enumera-
tion, but both require an amount of computation that increases dramatically with problem
size. If we implement these algorithms in computer programs we can include code to count
the elementary arithmetic and logical operations they do in solving particular problems (see
§26.3) but to derive an analytic model that predicts in general how much work they require
it is necessary to consider a simpler and more idealized scenario.

In solving some integer linear programs (such as the n = 3 example of §7.3) the branch-
and-bound algorithm generates a binary tree having more than n layers, but to make our
analysis easy suppose there are exactly n. If each node in one layer produced two nodes in
the next there would be 1+2+4+ · · ·+2n−1 = 2n−1 nodes altogether. In practice some nodes
are fathomed during the solution process, so to be more realistic suppose that instead of
multiplying the number of nodes in each layer of the tree by 2 to get the number in the next
layer, the multiplier is r ∈ (1, 2]. Then the total number of nodes that must be considered is

N = 1 + r + r2 + · · · + rn−1 = rn − 1
r − 1 .

This node count N, and hence the work required to perform the algorithm, grows expo-
nentially with n, so in the worst case branch-and-bound has exponential algorithmic

complexity. No known algorithm capable of exactly solving integer linear programs re-
quires an amount of work that grows slower than that, so the integer linear programming
problem is said to have exponential problem complexity.

I mentioned in §4.5.3 that although the simplex method has exponential worst-case al-
gorithmic complexity, the smooth linear programming problem can be solved by other algo-
rithms requiring an amount of work that is only a polynomial function of problem size. The
complexity of a problem is the infimum of the complexities of the algorithms that can solve
it, so the smooth linear programming problem has polynomial problem complexity.

Problems that have exponential complexity are fundamentally harder than those that
have polynomial complexity [144, Part Three] because an exponential function always even-
tually grows faster than a polynomial function. The table on the next page shows that 2n

catches up with n2 at n = 4 and thereafter grows faster, and it is not hard to show that 2n

eventually gets to be bigger than anr for any a > 0 and positive integer r.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.10 Exercises 283

n 2n n2

1 1 1
2 4 4
3 8 9
4 16 16
5 32 25
6 64 36

By repeatedly applying L’Hospital’s rule [149, §4.5] we find that

lim
n→∞

2n

anr
= lim

n→∞

2n[ln (2)]

arnr−1
= lim

n→∞

2n[ln (2)]2

ar(r − 1)nr−2 = · · · = lim
n→∞

[ln (2)]r

ar!
2n = +∞.

If n is big enough then we can ignore any lower-order terms in a polynomial
whose first term is anr, so this result is enough to show that 2n gets to be
bigger than any polynomial function of n.

Problems having polynomial complexity are considered formally tractable because they
are relatively easy to solve, although some that are of practical importance are too large to
be solved even with a polynomial-time algorithm. Problems having exponential complexity
are considered formally intractable because they get to be so much harder as n increases,
even though, as we have seen, many integer linear programs that are of practical importance
can be solved.

I have been talking about the computer time needed to solve a problem, but the branch-
and-bound and dynamic programming algorithms also use an amount of memory that grows
exponentially with n, and that can also limit their practical utility.

7.10 Exercises

7.10.1[E] Write down all of the ways you can think of in which counting is different from
measuring. How are the two processes related?

7.10.2[E] Are integer linear programs usually easier to solve or harder to solve than
smooth linear programs? Explain.

7.10.3[H] An argument can be made that all optimization problems involving the physical
world are really integer programs. (a) Make the argument. What about the physical world
is inherently grainy? (b) Present an exception or counter-argument.

7.10.4[E] What is the linear programming relaxation of an integer program?

7.10.5[P] The brewip.m program includes code for computing bounds on the variables.
(a) Which lines of the program perform this calculation? (b) How do they work? (c) What
bounds are deduced by this code?

7.10.6[P] An integer program with a bounded feasible set can be solved by exhaustive
enumeration, if we are prepared to wait long enough. For each of the following problems,
use the constraints to deduce bounds on the variables, report the total number of lattice
points to be considered, and write a MATLAB program that solves the problem by exhaustive
enumeration: (a) the spear problem of §7.1; (b) the bb1 problem of §7.2; (c) the bb2 problem
of §7.3. (d) Show how exhaustive enumeration can be used to find both optimal points in
the bb3 problem of §7.4.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

284 Integer Programming

7.10.7[E] In exhaustive enumeration, how does the number of lattice points to check
depend on n, the number of variables in the problem?

7.10.8[H] In §7.1 we considered the possibility of examining all lattice points adjacent to
x⋆LP in search of x⋆IP. If the n variables in an integer programming problem are each restricted
to be either 0 or 1, how many lattice points are adjacent to a point having x j ∈ {0, 1}?
Explain.

7.10.9[E] Explain the differences between exhaustive enumeration, partial enumeration,
random enumeration, and implicit enumeration. Which of these methods are sure to find an
optimal point of an integer program?

7.10.10[E] The implicit enumeration scheme described in §7.2 is based on two key facts
about integer programs. What are those facts, and how are they used?

7.10.11[E] The implicit enumeration scheme of §7.2 involves branching. (a) When does
the algorithm branch on a variable? (b) How is branching accomplished? (c) What effect
does branching have on the branching diagram? (d) What effect does branching have in the
graphical solution of an integer program?

7.10.12[E] A branching diagram has the shape of an inverted tree. (a) What do the nodes of
the tree represent? (b) Where in the tree is the master problem? (c) How many subproblems
are generated by each branching?

7.10.13[E] In the branch-and-bound algorithm of §7.3, what is an incumbent solution?
Why is it necessary to set an upper bound z on the optimal objective value?

7.10.14[E] In the branch-and-bound algorithm of §7.3, how do we obtain for each subprob-
lem a lower bound z on the objective over that subset of F?

7.10.15[H] What does it mean to say that a node in a branching diagram has been fathomed?
What fathoming conditions are given in the branch-and-bound algorithm of §7.3? Explain
for each fathoming condition why its satisfaction means that the node is fathomed.

7.10.16[H] In §7.3 we used the branch-and-bound algorithm to solve the bb2 problem by
branching first on x3. Use the algorithm to solve the problem (a) by branching first on x1;
(b) by branching first on x2.

7.10.17[H] Use the branch-and-bound algorithm of §7.3 to solve the spear problem of §7.1.

7.10.18[E] In a branch-and-bound algorithm for solving integer programs, how does the
breadth-first strategy differ from the depth-first strategy? Which usually works best in
practice?

7.10.19[H] Modify the branch-and-bound fathoming conditions to account for the possibil-
ity that more than one subproblem solution is an optimal point for the integer program.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.10 Exercises 285

7.10.20[H] Use the branch and bound algorithm of §7.3 to find all solutions of the following
integer program

minimize
x∈Z3

−4x1 − 5x2 = z

subject to 3x1 + 2x2 ≤ 10

x1 + 4x2 ≤ 11

3x1 + 3x3 + x3 ≤ 13

x ≥ 0

x1, x2, x3 are integers

7.10.21[H] In our study of bb3 in §7.4 we branched on x2 to find a second integer optimum.
Show how it can be found by branching on x1 instead.

7.10.22[H] If an integer program has multiple optima and each is the solution of a sub-
problem, then the branch-and-bound algorithm can find them all. Is there any other way in
which an integer program can have multiple optima? Explain.

7.10.23[H] Solve bb5 by using the branch-and-bound algorithm of §7.3.

7.10.24[E] The §7.5.1 algorithm for zero-one integer programs and the §7.3 algorithm for
general integer programs both use branch-and-bound. How do they differ? Write down all
of the ways you can think of.

7.10.25[E] What does the notation x ∈ 110 mean? In it what is the partial solution?
What are its possible completions? What is its zero completion? Write down one of its
possible trial solutions.

7.10.26[H] Our zero-one algorithm assumes that the objective coefficients are nonnegative
and arranged in nondecreasing order. Use a substitution of variables to put the objective
z(y) = 10y1 − 11y2 + 1y3 − 7y4 + 5y5 into the required form in terms of x j, j = 1 . . . 5. Are your
x j ∈ {0, 1}? Why doesn’t the constant matter?

7.10.27[E] In the zero-one algorithm of §7.5.1, (a) why is z initially set to the sum of the
objective coefficients? (b) Why does the bounding step use the completion [1, 0 . . . 0]⊤ rather
than the zero completion? (c) If the bounding step used the zero completion, would the
algorithm still work? Explain. (d) What is looking ahead?

7.10.28[H] In the bounding step of the §7.5.1 zero-one algorithm we look ahead by using
the completion [1, 0 . . .0]⊤ rather than zero completion. (a) Why is the zero completion sure
to be infeasible? (b) Modify the algorithm to look farther ahead. Would it be worth the
effort to do this?

7.10.29[E] The algorithms of §7.3 and §7.5.1 each have one step that accounts for most of
the work. In each algorithm, which step is that? Which of these hard steps is easier?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

286 Integer Programming

7.10.30[P] In §7.5.2, I claimed that in performing “fathoming test (a)” in the zero-one algo-
rithm it is faster to search for an inequality that is violated by all possible completions than
it is to verify that none of the possible completions satisfy all of the inequalities. (a) Write
a MATLAB function findfc(A,b,x) that generates the possible completions to a partial so-
lution one at a time, and for each evaluates all of the constraints at the corresponding trial
solution. (b) Show that your code reports there are no feasible completions for node c in the
solution of bb5 but that there are feasible completions for all of the other nodes. (c) Time
fathoma.m and findfc.m (see §26.3.3) to determine which is faster. Does which is faster
depend on n? Does it depend on m?

7.10.31[H] In §7.5.2, I pointed out that even if no single constraint is violated by all pos-
sible completions it is still possible that every possible completion violates some constraint.
Explain why this claim is true.

7.10.32[H] Construct a zero-one program in which searching every node for a completion
that satisfies all of the inequalities is even more expensive than solving the master problem
by exhaustive enumeration.

7.10.33[P] The fathoma.m routine of §7.5.2 uses the MATLAB command ip=(x’ == 1).
(a) What does this command do? (b) Why did I use x’ rather than x? (c) Explain the
behavior of the MATLAB sum, bitand, and logical functions. (d) What return value from
fathoma.m means that “fathoming condition (a)” fails?

7.10.34[E] The integrality constraint of an integer program ensures that the optimal vector
will have whole-number components, but it also permits the modeling of situations that
cannot be described by a smooth linear program. Name two such situations.

7.10.35[H] In §7.6.1, I reformulated the bb1 problem as a zero-one program. (a) Use the
algorithm of §7.5.1 to solve it. (b) Use u⋆ and v⋆ to compute x⋆, and show that it is
the optimal point we found for the original problem. (c) In the reformulation the binary
representation of x1 can represent values from 0 to 7, yet we determined that x1 can take on
values only from 0 to 6. What effect, if any, does this have on the zero-one model and the
process of solving it?

7.10.36[E] In §7.6.1, I discussed an example of selecting an element from a list. What must
the vector y be in order to select the entry 4.7 from the list?

7.10.37[H] If x j ∈ {0, 1}, write a constraint to enforce the logical condition that x1 can be 1
only if both x2 = 1 and x3 = 1 (in other words, if either x2 = 0 or x3 = 0 then x1 = 0 but if
both x2 = 1 and x3 = 1 then x1 can be either 0 or 1). Is your constraint linear in the x j?

7.10.38[H] In §7.6.1, we added a switch to the first constraint of the bb1 problem. Can a
switch be added to the second constraint? If yes, rewrite the second constraint and explain
how the switch works. If no, explain why not.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.10 Exercises 287

7.10.39[H] If two five-digit integers are composed of the unique digits from 0 through 9,
their difference can be of either sign.

51627

−38490
13137

09483

−72615
−63132

(a) Formulate an integer linear program whose solution will be the digits of the two five-digit
integers whose difference is as small as possible. (b) Solve the integer program.

7.10.40[H] Consider this nonconvex optimization [74, §8-6].

minimize
x∈X

x1 + x2 = z(x)

where x ∈ X =
{

x ∈ R2
∣
∣
∣ x1 + x2 ≤ 4 ∩ [

(x2 ≥ 2 ∩ x1 ≥ 0) ∪ (x1 ≥ 2 ∩ x2 ≥ 0)
]}

(a) Solve the problem graphically. (b) By introducing switch variables y1 and y2, formulate
the problem as a mixed-zero-one integer program. (c) Solve the problem by using the zero-
one algorithm of §7.5.1.

7.10.41[E] Explain the difference between a knapsack problem and a capital budgeting
problem.

7.10.42[H] In the formulation of the facility location problem in §7.6.2 we replaced the
constraint

n∑

j=1

xi j ≤
{

0 yi = 0
∑n

j=1 d j yi = 1
i = 1 . . .m,

which is nonlinear, by the linear constraint

n∑

j=1

xi j ≤ yi

n∑

j=1

d j i = 1 . . .m.

Show that these constraints are equivalent.

7.10.43[H] Suppose that in the brewery problem of §1.3.1 a setup cost is incurred to
make any amount greater than zero of each product. Making zero kegs of Porter incurs no
setup cost, but if x1 > 0 then the fixed cost of setting up to make that variety is $3, and
this must be deducted from the revenue produced by selling Porter. The setup costs for
Stout, Lager, and IPA are respectively $4, $5, and $6. These fixed charges obviously affect
z⋆, and they might also change x⋆. Formulate this fixed-charge problem [74, §4-10] as a
mixed-zero-one program.

7.10.44[E] Describe one way of solving a mixed-integer linear program.

7.10.45[H] Solve the fixed-charge problem of Exercise 7.10.43 by using the algorithm of
§7.3 but branching only on the zero-one variables.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

288 Integer Programming

7.10.46[E] List four methods other than branch-and-bound for solving integer linear pro-
grams.

7.10.47[E] List two commercial software packages that can solve integer linear programs.

7.10.48[E] What characteristics must an optimization problem have in order for it to be a
candidate for solution by dynamic programming?

7.10.49[E] In §7.8.1 we used dynamic programming to solve a shortest-path problem.
(a) Explain in words the basic idea of this algorithm. (b) What do we mean by a stage
of the problem? (c) How are the calculations specified by a backward recursive relation?
(d) We used a table to organize the calculations. Explain how each of the f (s, p) values in
that table is obtained. (e) Explain how the shortest path can be deduced from the results
in the table of calculations.

7.10.50[H] In §7.8.1 we solved a shortest-path problem by dynamic programming. (a) Write
a MATLAB program to solve this problem by exhaustively enumerating the lengths of all the
possible paths from node 1 to node 13. (b) Write the problem as an integer program in the
manner of §6.5.3 and then use the §7.5.1 zero-one algorithm to solve it. (c) Which approach
requires the least work to find the shortest path?

7.10.51[H] Suppose that a link is added from node 7 to node 6 in the shortest-path problem
of §7.8.1. Can dynamic programming still be used to solve the problem? If not, explain why
not; if so, show how.

7.10.52[H] In the example of §7.8.1, is it possible to change which path is shortest by
changing the length of a single link? If not, explain why not; if so, specify a link-length
change that changes the shortest path, and report the new shortest path.

7.10.53[H] In §7.8.2 we used the dynamic programming approach to solve inlp. (a) Explain
how it is possible to deduce from the constraints of the problem which lattice points are
feasible. (b) Devise a table that can be used to organize the evaluation of the backward
recursive relations. (c) Evaluate the backward recursive relations to complete your table,
and show how the results can be used to determine x⋆IP. (c) Can the backward recursive
relations for this problem be used to find the solution analytically? Explain.

7.10.54[E] An integer nonlinear program can in principle be solved by using the branch-
and-bound approach of §7.3 to generate a tree of subproblems that are nonlinear programs.
(a) Why might this approach be difficult to use in practice? (b) What must be true of the
problem in order for it to be amenable to solution by dynamic programming instead?

7.10.55[H] In §7.8.2 we used dynamic programming to solve an integer nonlinear program.
(a) Show how the approach can also be used to solve the integer linear programs (a) bb1
of §7.2; (b) bb2 of §7.3. (c) How does the amount of computation required to perform the
algorithm increase with the size of the integer linear program? (d) Would this be an efficient
way of solving smooth linear programs?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

7.10 Exercises 289

7.10.56[H] Consider the following integer nonlinear program [3, Exercise 10.14].

maximize
x∈Z3

x1x2 + x2 + 2x1 = z(x)

subject to x1 + 2x2 ≤ 25

x1, x2 ≥ 0 and integer

(a) Solve the problem graphically. (b) Solve the problem by using the dynamic program-
ming approach, explaining the backward recursive relations that you use. Hint: rewrite the
objective so that it is separable.

7.10.57[E] Explain the difference between algorithm complexity and problem complexity.
Why is the complexity of an algorithm always an upper bound on the complexity of the
problem that it solves?

7.10.58[H] Suppose that a problem can be solved by either an algorithm that has poly-
nomial complexity or an algorithm that has exponential complexity. (a) What must be the
complexity of the problem? (b) Explain why the polynomial algorithm is usually preferable.
(c) Describe a class of problem for which the exponential algorithm might be preferable.

7.10.59[E] Why are problems that have exponential complexity considered formally in-
tractable while those that have polynomial complexity are considered formally tractable?
Why have I used the qualifier “formally” in these terms of art?

7.10.60[P] For n sufficiently positive 2n is greater than any polynomial function of n.
(a) Write a MATLAB program to compare the values of 2n and n5. For what values of n

is 2n > n5? (b) Give an analytic argument that there is some n for which 2n > anr for any a

and r. (c) Write a MATLAB program to find, for given values of a and r, the smallest value
of n for which 2n > anr. What does it report for a = 1 and r = 5?

7.10.61[H] According to L’Hospital’s rule, if limn→∞ f (n) = ∞ and limn→∞ g(n) = ∞ then

lim
n→∞

f (n)

g(n)
= lim

n→∞

d f /dn

dg/dn

provided dg/dn , 0. (a) If limn→∞ d f /dn = ∞ and limn→∞ dg/dn = ∞, how can the limit on
the right be evaluated? (b) If f (n) = 2n, compute d f /dn. (c) If g(n) = anr, compute dg/dn.
(d) Explain why

lim
n→∞

[ln (2)r]

ar!
2n = +∞.

if r is a positive integer and a > 0.

7.10.62[H] If the master problem in the first layer of a branch-and-bound tree has t con-
straints then each subproblem in the second layer will have t + 1 because of the bound
constraints we add to perform the branch. By the time we get to layer p each subproblem
will have m = t + p − 1 constraints, if no redundancies are eliminated along the way. As I

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

290 Integer Programming

mentioned in §4.5.3 the simplex algorithm typically uses about 3
2
m pivots, so to solve each

subproblem in layer p we can expect to use 3
2
(t + p − 1) pivots. In §4.2, I argued that if

a linear program has m constraints and n variables then to perform a single pivot takes m

divisions, (1 + n − m)m multiplications, and (1 + n − m)(m − 1) subtractions. Assuming that
each node in one layer of the tree produces r nodes in the next, derive a formula in terms
of n, t, and r for the number of elementary operations required to solve an integer linear
program. What is the complexity of the algorithm if the work it does is taken to be the total
number of elementary operations?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8

Nonlinear Programming Models

In §1 we studied linear programming models by considering several representative examples.
The formulation process and technical vocabulary that you learned then mostly apply to
nonlinear models as well, but now both the objective function and the constraint functions
can be nonlinear. Many problems that are commonly formulated as linear programs are really
nonlinear, and the simplifying approximation of linearity might not be justified when effects
such as economies of scale cause departures from strict proportionality between inputs and
outputs [3, §9.1]. Other models are essentially nonlinear, in that they cannot be linearized
without fundamentally changing their character.

We will begin by considering a model that is essentially nonlinear even though it is almost
a linear program.

8.1 Fencing the Garden

This summer Sarah’s vegetable garden was eaten mainly by the local wildlife, so next year
she plans to fence the critters out. To make the rectangular garden as big as possible she
will use a side of her garage as one side of the enclosure. The garage is 30 feet long, and she
has 40 feet of fencing on hand. What should be the dimensions of the garden to maximize
its area?

As in formulating a linear program, we begin by summarizing the data. In this problem
the easiest way to do that is in the diagram below.

garage

30 feet

driveway

garden

x2

x1 40 feet of fencing
are available

The next step is to select decision variables by answering the question “what can Sarah
control?” The answer is that she gets to pick the garden’s side lengths, labeled x1 and x2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

292 Nonlinear Programming Models

Then we look for constraints. If the garage wall is going to serve as one side of the
enclosure then x2 can’t be more than 30 feet, and if Sarah is not going to need extra fencing
then 2x1 + x2 can’t be more than the 40 feet she has on hand. It also doesn’t make sense for
either garden side to have a negative length. Finally we come to the objective, which is to
make the area x1 × x2 as big as possible. If we express these thoughts mathematically we get
this nonlinear program.

maximize
x∈R2

x1x2

subject to 2x1 + x2 ≤ 40

x2 ≤ 30

x1 ≥ 0

x2 ≥ 0

Using the transformation you learned in §2.9.2 and rearranging yields the minimization
below, which I will refer to from now on as the garden problem (it is cataloged in §28.7.1).

minimize
x∈R2

f0(x) = −x1x2 = z

subject to f1(x) = 2x1 + x2 − 40 ≤ 0

f2(x) = x2 − 30 ≤ 0

f3(x) = −x1 ≤ 0

f4(x) = −x2 ≤ 0

Stated this way, the garden problem is in the standard form that we will use for nonlinear
programs.

minimize
x∈Rn

f0(x) = z

subject to fi(x) ≤ 0, i = 1. . .m

This standard form also describes problems having equality constraints, because g(x) = 0

can always be replaced by the two constraints g(x) ≤ 0 and g(x) ≥ 0. The simplex method
implicitly enforces x ≥ 0 but algorithms for nonlinear programming do not, so this standard
form does not specify that the variables are nonnegative. If variables must be nonnegative,
as in the garden problem, explicit constraints must be included to ensure that. As in the
Chapters about linear programming, I will always use z for the value of a function that is
being minimized.

8.2 Analytic Solution Techniques

The nonlinear programming problem in general is really very simple to state: find a feasible
x, by any means you like, that yields the lowest possible value of the objective function.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.2.1 Graphing 293

“Any means” includes reading tea leaves or asking random passers-by, but other techniques
have been discovered that usually work better and this Section introduces some of them.
You should already have some idea how to solve the garden problem by graphing it or by
using calculus, but please don’t be alarmed if the other approaches are unfamiliar or if their
exhibition here doesn’t teach you how to use them, because we will cover them in detail
later.

8.2.1 Graphing

If n = 2, and maybe even if n = 3, we can solve a nonlinear program graphically in a
way similar to the way we have solved linear programs graphically (though the detailed
procedure of §1.2 is of limited help here). The constraints of the garden problem require
that 0 ≤ x1 ≤ 20 and 0 ≤ x2 ≤ 30, and using these bounds we can pick good scales for axes
and plot the graph below (I used MATLAB but this picture is also easy to sketch by hand).

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

x2

x1

2
x
1
+
x
2 ≤

40

x2 ≤ 30

x2 ≥ 0

x 1
≥
0

X z = −200

z = −100

• x⋆ = [10, 20]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

294 Analytic Solution Techniques

The feasible set of a nonlinear program has boundaries that are hypersurfaces, which
can be either flat or curved, and it includes its boundary points so it is a closed set [1, §A.3].
Because the constraints of the garden problem are linear their zero contours or hypersurfaces
are hyperplanes, and the intersection of their feasible halfspaces is the convex polyhedron
that is outlined in thick lines. This feasible set X has interior points and is bounded, but
in general the feasible set of a nonlinear program can be a single point or unbounded, or it
can be empty (in which case the nonlinear program is infeasible). It might or might not be
a convex set (see §3.5), and it might or might not even be a connected set [148, §9.3.3].

Because the objective is nonlinear its contours are curves. Two contours of f0(x) are
drawn above, for z = −100 and z = −200.

From the picture we see that the optimal point is where f0(x
⋆) = −200 and f1(x

⋆) = 0,
because making z lower than −200 would move the objective contour up and to the right
and then it would no longer touch X. In a nonlinear program the optimal point need not
be at an intersection of constraint contours, and might even be interior to the feasible set.
At the optimal point of this problem f1(x

⋆) = 0 so that constraint is tight, while the other
constraints are slack. We can read off the coordinates of x⋆ from the graph or find them
algebraically by solving these simultaneous equations.

−x1x2 = −200
2x1 + x2 − 40 = 0

}

⇒ x1 = 10, x2 = 20

A linear program that is feasible has either a finite optimal value that is attained at
an optimal point, or an unbounded optimal value and no optimal point. In addition to
those outcomes a feasible nonlinear program can have an infimum [148, §3.1.1] instead of a
minimum value. For example, minimize 1/x subject to x ≥ 0 is a feasible nonlinear program
and its objective is not unbounded, but its infimum of 0 is never attained so it has no
minimizing point (we might say informally that x⋆ = +∞).

8.2.2 Calculus

If a nonlinear program has m = 0 constraints, or if the only ones we need to worry about are
equalities, we might be able to find the minimizing point using calculus. From the statement
of the garden problem we could guess that the constraint 2x1 + x2 − 40 ≤ 0 will be tight or
active at optimality and the other constraints will be slack or inactive. Why use less fencing
than available, or give the garden implausible dimensions? In that case we can use the tight
constraint to eliminate x2 in the objective and get an unconstrained optimization in only x1.

2x1 + x2 − 40 = 0

x2 = 40 − 2x1
z = −x1x2 = −x1(40 − 2x1) = −40x1 + 2x21

Now we can treat minimizing z like an ordinary max-min problem (see §28.1.1).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.2.4 The KKT Method 295

Setting the first derivative of z to zero we can find x1, and then we can find x2 from the
constraint equation. In a problem having a more interesting objective function we might
not be able to solve the equation dz/dx = 0 analytically, or it might have multiple solutions.
Here there is only one, but we should still use the second-derivative test to verify that x⋆

actually minimizes z.

dz

dx1
= −40 + 4x1 = 0

4x1 = 40

x1 = 10

x2 = 40 − 2x1 = 40 − 2(10) = 20

d 2z

dx2
1

= +4 > 0 ⇒ x⋆ = [10, 20]⊤ is a minimizing point X

In §15.0 and §16.8.2 I will have more to say about using equality constraints (or tight
inequality constraints) to eliminate variables in nonlinear programs.

8.2.3 The Method of Lagrange

Another way to use the tight inequality constraint is to form the Lagrangian

L(x1, x2, u) = −x1x2 + u(2x1 + x2 − 40)

and minimize it with respect to both x and the Lagrange multiplier u.

∂L
∂x1

= −x2 + 2u = 0

∂L
∂x2

= −x1 + u = 0

∂L
∂u

= 2x1 + x2 − 40 = 0






⇒ x⋆1 = 10, x⋆2 = 20, u⋆ = 10

The equations above are called the Lagrange conditions and depending on the problem it
is possible that they will have no analytic solution. They can also have multiple solutions,
and in that case it will be necessary to sort out the ones that are minimizing points. We will
make a serious study of this approach in §15.3.

8.2.4 The KKT Method

If we were presented with the garden problem in mathematical form, without the story
and the picture, it might not be so obvious which constraints are tight at optimality. In
that case we could try an extension of the method of Lagrange called the KKT method,

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

296 Analytic Solution Techniques

which automatically figures out which constraints are tight (in §16.3 we will meet the people
for whom this method is named). In the KKT method the Lagrangian includes all of the
constraints, so for the garden problem we get

L(x, u) = −x1x2 + u1(2x1 + x2 − 40) + u2(x2 − 30) + u3(−x1) + u4(−x2)

Then we write down the KKT conditions as follows.

∂L
∂x1

= −x2 + 2u1 − u3 = 0

∂L
∂x2

= −x1 + u1 + u2 − u4 = 0

∂L
∂u1

= 2x1 + x2 − 40 ≤ 0

∂L
∂u2

= x2 − 30 ≤ 0

∂L
∂u3

= −x1 ≤ 0

∂L
∂u4

= −x2 ≤ 0

u1(2x1 + x2 − 40) = 0

u2(x2 − 30) = 0

u3(−x1) = 0

u4(−x2) = 0

u1 ≥ 0

u2 ≥ 0

u3 ≥ 0

u4 ≥ 0

Now we just need to find all solutions to this large system of nonlinear equations and
inequalities, and sort out the ones we want. That is a tedious chore by hand, but Maple is
very good at it as the conversation on the next page illustrates. Maple finds two solutions,
but it is easy to see which of them yields the lower objective value and is therefore the
minimizing point.

Nonlinear programs that are only slightly more complicated than the garden problem
can have KKT conditions that are much more difficult to solve, and then a computer algebra
system such as Maple is indispensable.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.2.4 The KKT Method 297

> eq1 := -x2+2*u1-u3 = 0;
-x2 + 2 u1 - u3 = 0

> eq2 := -x1+u1+u2-u4 = 0;
-x1 + u1 + u2 - u4 = 0

> eq3 := 2*x1+x2-40 <= 0;
2 x1 + x2 <= 40

> eq4 := x2-30 <= 0;
x2 <= 30

> eq5 := -x1 <= 0;
-x1 <= 0

> eq6 := -x2 <= 0;
-x2 <= 0

> eq7 := u1*(2*x1+x2-40) = 0;
u1 (2 x1 + x2 - 40) = 0

> eq8 := u2*(x2-30) = 0;
u2 (x2 - 30) = 0

> eq9 := -u3*x1 = 0;
-u3 x1 = 0

> eq10 := -u4*x2 = 0;
-u4 x2 = 0

> eq11 := u1 >= 0;
0 <= u1

> eq12 := u2 >= 0;
0 <= u2

> eq13 := u3 >= 0;
0 <= u3

> eq14 := u4 >= 0;
0 <= u4

> solve(
eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11,eq12,eq13,eq14,
x1,x2,u1,u2,u3,u4

);

u1 = 0, u2 = 0, u3 = 0, u4 = 0, x1 = 0, x2 = 0,
u1 = 10, u2 = 0, u3 = 0, u4 = 0, x1 = 10, x2 = 20

Of course it might turn out that the KKT conditions, like the Lagrange conditions or the
simple equation dz/dx = 0, have no closed-form solution at all. Even more disappointing,
some problems do not satisfy the conditions that are necessary for the KKT conditions or
the Lagrange conditions or even the derivative condition to yield the optimal point as a
solution. Must we abandon hope of ever solving such problems?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

298 Numerical Solution Techniques

8.3 Numerical Solution Techniques

Valuable insights into nonlinear programming can be gained by using the mathematical the-
ory of optimization to study toy examples, and we will do that routinely in future Chapters.
However, as our experience in the previous Section suggests, the techniques described there
are hard to use for the analytic solution of problems much larger or more complicated than
the garden example. Fortunately, that limited theory has informed the development of
methods that are effective for the numerical solution of many nonlinear programs arising in
practical applications. So if we can tolerate answers that are numbers instead of formulas,
we need not abandon the hope of solving real problems.

8.3.1 Black-Box Solvers

Often it is possible to carry out an optimization by using a computer program that some-
one else already wrote. If your main interest is in applications of nonlinear programming,
so that getting the answer is more important to you than understanding how, then you
should definitely take advantage of prepackaged or black-box software [117]. Of course,
writing some toy programs of your own first will prepare you to make intelligent use of the
professionally-written codes that are available. Selecting industrial-strength software, de-
scribing your problem to it, and interpreting the solution it reports should all be possible
once you know the theory and methods that are covered in the remainder of this book.

NEOS. The easiest way to get an answer, if you have access to the internet, is to use one
of the programs available on the NEOS Server. Navigating your web browser to

www.neos-server.org/neos/solvers/index.html

will display a list of programs capable of solving problems in several categories; the most
general are those intended for “Nonlinearly Constrained Optimization” and the most famous
program listed there is MINOS. Clicking on your selection will display a new page that
includes spaces where you can enter your email address and pathnames to files describing
your problem. Then you can click on a box to submit your job to the server, which will run
it and email you the results.

You specify your problem to NEOS in a modeling language, the most widely-used
of which is AMPL. This package has an excellent manual [61], which is indispensable and
downloadable for free. AMPL is itself a high-level programming language, and it can be used
to concisely describe a wide variety of optimization models along with the data sets to which
you want them applied. To solve the garden problem I needed to prepare only a model

file, which I called garden.mod, and a command file, which I called garden.cmd, both of
which are listed on the next page. In the model I maximized x1x2 rather than minimizing
−x1x2 only so that I could name the objective function area.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.3.1 Black-Box Solvers 299

this is AMPL input file garden.mod

var x1:=1;
var x2:=1;
maximize area: x1*x2;
subject to fence: 2*x1+x2 <= 40;
subject to wall: x2 <= 30;
subject to plusx: x1 >= 0;
subject to plusy: x2 >= 0;

this is NEOS input file garden.cmd

model garden.mod; <-- omit for NEOS
solve;
display x1,x2;
quit;

I submitted these files to NEOS as described earlier, and after a few minutes received via
email the results shown below. To make sense of the output stanza beginning “Presolve” we
would need to know some technical details about MINOS (but see §4.4.3).

NEOS Server Version 5.0
Job# : 966706
Password : QyJlpbSn
Solver : nco:MINOS:AMPL
Start : 2013-09-09 10:22:22
End : 2013-09-09 10:22:22
Host : neos-4.neos-server.org

Disclaimer:

This information is provided without any express or
implied warranty. In particular, there is no warranty
of any kind concerning the fitness of this
information for any particular purpose.

Job 966706 sent to neos-4.neos-server.org
password: QyJlpbSn

---------- Begin Solver Output -----------
Executing /opt/neos/Drivers/minos-ampl/minos-driver.py

at time: 2013-09-09 10:22:22.539775
File exists
You are using the solver minos.
Executing AMPL.
processing data.
processing commands.

Presolve eliminates 3 constraints.
Adjusted problem:
2 variables, all nonlinear
1 constraint, all linear; 2 nonzeros
1 inequality constraint
1 nonlinear objective; 2 nonzeros.

MINOS 5.51: optimal solution found.
2 iterations, objective 200
Nonlin evals: obj = 7, grad = 6.
x1 = 10
x2 = 20

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

300 Numerical Solution Techniques

The NEOS programs are very sophisticated and powerful, and accessing them through the
server ensures that they are, unlike other software you might find on the internet, safe to
use. Some are open-source [175] but others are proprietary, which means you can’t examine
their source code. Although some of the programs command a hefty fee if they are licensed
for stand-alone use, all of them can be used for free through the server (subject to a quite
generous limit on the CPU time you consume).

MATLAB. If you can afford this program, it is only a little more difficult to install it on
your computer than it is to use NEOS. MATLAB’s optimization toolbox contains functions
capable of solving a wide variety of mathematical programming problems [117, p105-106].

The free open-source work-alike Octave (see §0.2.3) lacks the optimization toolbox but
does have a built-in function sqp(xzero,f,g,h) for solving nonlinear programs. When used
in the simplest way it invokes these routines: f to compute values of the objective function,
g to compute values of the equality constraint functions, and h to compute values of the
inequality constraint functions, assuming the inequality constraints are written in the form
h(x) ≥ 0. To solve the garden problem I prepared these MATLAB functions.

% gdnobj.m: garden problem objective

function f=gdnobj(x)
f=-x(1)*x(2);

end

% gdngeq.m: garden problem inequality constraints

function h=gdngeq(x)
h=[40-2*x(1)-x(2)

30-x(2)
x(1)
x(2)];

end

Then I was able to invoke sqp() to solve the problem, as shown below. Because the garden
example has no equality constraints, I passed a null array for the g parameter. The solver
made no progress from the starting point x0 = [0, 0]⊤ but it found the right answer from
x0 = [1, 1]⊤ (that is also the starting point we used for MINOS).

octave:1> xzero=[0;0];
octave:2> xstar=sqp(xzero,@gdnobj,[],@gdngeq)
xstar =

0
0

octave:3> xzero=[1;1];
octave:4> xstar=sqp(xzero,@gdnobj,[],@gdngeq)
xstar =

10.000
20.000

octave:5> quit

MATLAB and Octave are both high-quality professional software, and Octave is open-source
so you can examine its workings if that is really necessary to investigate unexpected behavior.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.3.2 Custom Software 301

The user interface to sqp() is MATLAB functions, which are either easier to use than the
AMPL interface to NEOS or more difficult, depending on your prior experience and what you
need to do. By writing more complex f, g, and h routines it is possible to provide sqp() with
derivatives of the objective and constraint functions, and by using extra calling parameters
it is possible to impose lower and upper bounds on the variables, control the number of
iterations performed, and set a convergence tolerance. By adding return parameters it is
also possible to learn the optimal objective value, how many iterations were used, and other
information about the solution. Invocations of sqp() are easy to include in a larger MATLAB

program if, as sometimes happens, the optimization is just one step in a larger calculation.

8.3.2 Custom Software

If many nonlinear programs that arise in practice can be solved by simply using software
that has already been written and perfected by experts, and if much of that software can be
used for free, why would anyone go to the trouble of writing a new solver?

One answer, which I mentioned above, is that firsthand experience actually implementing
optimization methods, and in the process using the theory on which they are based, will help
you make effective use of those venerated black-box programs. This is the same argument I
made in §4.4.4 for learning linear programming rather than just learning about how to use
the excellent packages that are available for solving those problems, and it applies with extra
force in the case of nonlinear programming because more things can go wrong.

Indeed, some difficulties can arise from depending on prepackaged software even if you
know enough to make expert use of it.

The most obvious drawback of a black box program is that you either can’t look inside
or, if the source code is public, can’t readily understand what you see. Journal editors [170]
[176], referees, and the readers of scientific papers are often (justifiably) skeptical that a
calculation performed in secret is really the one that is wanted or that its results are correct.
If you write your own code you will know how it works, and that it works. You will also
incidentally avoid license charges and internet security exposures.

It is also possible that all of the extant programs will fail outright or run too long on the
one particular problem you desperately need to solve. In that case your only recourse might
be writing a special-purpose code, based on the theory and classical methods of nonlinear
programming, that precisely fits your project.

Finally, the fact that you are reading this book in the first place suggests you might be
someone who would enjoy writing a production-quality code of your own. The programs
that are available today were all written by people just like you, and they leave plenty of
room for improvement. The perfect solver has yet to be devised for either general nonlinear
programs or those falling in the other categories listed on NEOS. As I write these words, big
data problems (see §8.6 and §8.7) are of great and growing interest, and the development
of methods for solving them is an active area of research. This book uses MATLAB, but a
production code is typically written in a compiled language such as C++ or FORTRAN [100].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

302 Nonlinear Programming Models

8.4 Applications Overview

Besides being helpful in the fencing of vegetable gardens, nonlinear programming has many
uses in science, engineering, business, and government. Here are a few representative fields
in which nonlinear optimization models play an important role (some of them are also rec-
ognizable as fields in which linear programming is widely used).

composite beam design supply-chain management
option pricing disaster response planning
electronic circuit synthesis protein folding
machine learning genetic sequence alignment
radar signal processing molecular structure prediction
electoral redistricting drug design
electrical generator dispatching city planning
cancer radiotherapy pollution control
hospital operating-room scheduling military logistics
chemical synthesis aircraft design
design of experiments stellarator design
renewable energy feedback control

The references described below discuss the formulation of specific application problems from
some of these fields. I have arranged these books in decreasing order of their emphasis on
problem formulation; useful general advice is also provided in [2, §2.7] and [1, §1.3].

reference modeling content

[18] The chapter topics are weapons assignment, bid evaluation, alkylation process optimization,
chemical equilibrium, structural optimization, launch vehicle design, parameter estimation
and curve fitting, stochastic programming, and optimal sample sizes.

[4] Problems from scheduling, portfolio optimization, radiation therapy, image reconstruction,
and shape optimization are discussed in §1.7 and its exercises; §1.7.2 is about support vector
machines.

[46] Problems involving solar energy and the design of transformers are discussed in §V; a simpler
problem is discussed in §I.5.

[1] Problems from optimal control, structural design, mechanical design, electrical networks, wa-
ter resources management, stochastic resource allocation, and facility location are discussed
in §1.2, and Exercises 1.2–1.14 are nonlinear programming formulations.

[12] Problems involving economic order quantity, queueing systems, chemical reactors, box beams,
and material processing are discussed in §4; a simpler problem is discussed in §1.

[156] The design of a chemical plant is discussed in §2-01–§2-05.
[161] Problems involving regression, container design, and optimal control are discussed in §1.3–§1.5,

and other formulations are requested in exercises 1.4, 1.5, 1.6, 1.12, 1.13, and 1.14.
[74] The optimization of a manufacturing process beset by random flaws is discussed in §3-3.
[59] The design of a distillation column is discussed in §1.1.
[3] A nonlinear program is formulated in §9.1, and Exercises 9.1–9.3 are nonlinear programming

formulations.
[151] Exercises 14.47–14.51 are nonlinear programming formulations.
[80] Exercise 2.8 has four parts that are nonlinear programming formulations.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.5 Parameter Estimation 303

Many synthetic problems have also been made up just to illustrate the theory of
nonlinear optimization or how numerical methods work. Since mathematical programming
became a recognized subject in the 1940s, researchers and practitioners have collected small
problems of both the application and synthetic varieties for use in software testing, and I
will describe several well-known collections of such standard test problems in §26.2.1.

Some applications of nonlinear optimization give rise to problems that have many vari-
ables and in which the function values can depend on vast quantities of data. Practical
models for these big data problems are often constructed along with special-purpose meth-
ods for solving them.

As we explore the theory and methods of nonlinear optimization, the examples that
we consider will be synthetic problems having only a few variables and functions that are
specified by simple formulas. Before we leave the topic of nonlinear programming models we
will therefore consider an important application problem in each of the next three Sections.
To study them in detail it will be necessary to use simple instances, but hopefully you will
be able to imagine more realistic (and more challenging) versions of these problems. Here,
as in §8.2, you should be able to follow the development even if a few details happen to be
things you don’t know yet.

8.5 Parameter Estimation

Dynamical systems can often be described by differential equations whose form is determined
by physical laws. For example, the height y of an object of mass m falling under the influence
of gravity can be predicted from Newton’s second law (force = mass×acceleration) by solving
the following initial-value problem.

−mg = m
d2y

dt2
, y(0) = y0, y

′(0) = 0.

Integrating this equation to obtain y(t) is called the forward problem and yields

y(t) = y0 − 1
2
gt2.

In a physics course you might have used this result to predict the itinerary of an object as
it falls to Earth, near which g is about 32.17 ft/sec2. Now suppose that the experiment is
instead conducted near the surface of another planet, where the local value of g is unknown.
Using measurements of y at several values of t to estimate the constant parameter g is called
the inverse problem [132, §18.4] [106, §1.5].

We can estimate g by finding the value that makes the predictions y(tl; g) of the solution
to the differential equation agree as closely as possible with observations ŷl taken at times
tl, l = 1. . . L after the object is released. A direct way of doing this is to minimize, by varying
g, the sum of the squares of the differences between the ŷl and the y(tl; g), like this.

minimize
g

R(g) =

L∑

l=1

[ŷl − y(tl; g)]2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

304 Nonlinear Programming Models

The objective R is called the residual of the fit between the model and the data. If the data
are the measurements in this table

l time tl (sec) height ŷl (ft)

0 0 5000 = y0
1 5 4750
2 10 4037
3 15 2828

we can evaluate the sum to obtain the nonlinear program solved below.

minimize
g

R(g) = [ŷ1 − y(t1; g)]2 + [ŷ2 − y(t2; g)]2 + [ŷ3 − y(t3; g)]2

= [4750 − (5000 − 1
2
g52)]2

+ [4037 − (5000 − 1
2
g102)]2

+ [2828 − (5000 − 1
2
g152)]2

dR

dg
= 2[4750 − (5000 − 12.5g)]1(12.5)
+ 2[4037 − (5000 − 50g]1(50)
+ 2[2828 − (5000 − 112.5g]1(112.5)

= 30625g − 591250 = 0

g⋆ = 19.31 ft/sec2

This is a minimizing point because d2R/dg2 = 30625 > 0, so g⋆ is the best least-squares

estimate of g. Apparently this planet has about 60% of Earth’s gravity.
Another way to measure gravitational acceleration is by using a pendulum. If a point

mass m that is suspended from a frictionless pivot by a rigid, straight, weightless rod of
fixed length r is displaced from the vertical by an angle θ0 and released, its motion can be
predicted (also from Newton’s second law) by solving this initial value problem.

−mg sin (θ) = mr
d2θ

dt2
, θ(0) = θ0, θ

′(0) = 0

It is possible by using perturbation series [105, p48-53] to approximate θ(t) as accurately as
desired, but this problem has no closed-form analytic solution. If we make observations θ̂l
at times tl, l = 1. . . L after the pendulum is released, we can estimate g as we did before by
solving this nonlinear program.

minimize
g

R(g) =

L∑

l=1

[θ̂l − θ(tl; g)]2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.6 Regression 305

Now, however, we cannot simply substitute an algebraic expression for θ(t) into the formula
for R(g), simplify, and use calculus to find g⋆. In this case it is necessary to do the optimiza-
tion numerically, solving the initial value problem numerically whenever a value of θ(tl; g) is
needed by the nonlinear program solver (see Exercise 8.8.23 of reference [100]).

Until now we have considered only type–1 nonlinear programs, in which the function
values and derivatives could be calculated using formulas. The parameter estimation prob-
lem is usually a type–2 nonlinear program [49] like this one, in which the value and the
derivatives of the objective function (or of a constraint function, if there are any) must be
approximated numerically [115, §3].

Inverse problems are ubiquitous in science and engineering, making parameter estimation
probably the most common single application of nonlinear programming. Often the differ-
ential equation model is much more complicated than the ones we have considered. It might
involve multiple variables and several constant parameters, be a boundary-value problem
rather than an initial-value problem or have side conditions that are algebraic equations,
and make use of a large number of experimental measurements. If the errors in the observa-
tions do not follow the normal or Gaussian probability distribution, we might prefer to
minimize the sum of the absolute values of the errors rather than the sum of their squares,
and then the objective function is not everywhere differentiable. In some problems it is also
necessary to constrain the parameters to have a particular sign or to have some relationship
to one another. Thus, in addition to being of great practical importance, the estimation of
parameters in differential equation models often gives rise to nonlinear programs that are
among the hardest to solve.

8.6 Regression

David knows from experience that if the weather is good he can wake up at 7:00 and get to
work on time. If snow is forecast, however, he must set his alarm early to allow for shoveling
the driveway, and how many minutes that takes varies from storm to storm. Although he
can imagine several things that might affect his shoveling time, he is sure that the depth of
the snow is the most important factor. Last winter he gathered this data.

storm i snow inches xi shoveling minutes ŷi

1 0.3 10
2 5.8 67
3 2.0 31
4 3.3 60
5 5.9 63
6 1.8 28

Is there some way that David can use this information to predict his shoveling time when
each storm is forecast this year?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

306 Regression

8.6.1 One Predictor Variable

To investigate this question David plots the data, obtaining the graph below. From the
picture he conjectures that his shoveling time increases as a linear function of the snowfall,
with some variation resulting from the random effects of factors he didn’t measure. He draws
a straight line interpolating the data points, but other lines y = ax+b seem equally plausible.
Because the single predictor variable x affects the response variable y in a way that can
be described by an equation that is linear in the coefficients a and b, the problem of finding
the best straight line is called simple linear regression.

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

ŷ
[m

in
]

x [in]

e4

For each snow depth xi the straight line predicts a shoveling time of yi = axi + b. This
prediction is in error by an amount ei = ŷi − yi, which can have either sign. The graph shows
e4, which happens to be positive. We could find the best least-squares fit of the line to the
data by minimizing the sum of the squares of these errors.

minimize
a,b

E(a, b) =

n∑

i=1

e2i =

n∑

i=1

(ŷi − yi)2 =
n∑

i=1

(ŷi − [axi + b])2

Here the variables in the optimization problem, which are the slope and intercept we want to
estimate, are given the names a and b, while the data of the problem are in vectors named x

and y. I have also used i for the index on observations and n for the number of observations.
These departures from the notational conventions introduced in §8.1, which are used only
here and in §8.7, are a concession to the usage that is standard in the literature on regression
[123] and classification [14].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.6.1 One Predictor Variable 307

This formulation should be reminiscent of the parameter estimation problem in §8.5,
because here too we are estimating the constant parameters of a model. The difference is
that the parameter estimation model is a differential equation that is usually impossible to
solve, while this regression model is a linear algebraic equation that is trivial to solve.

Setting the derivatives of E with respect to a and b equal to zero yields the normal

equations boxed below, which are linear in a and b and have coefficients that are quantities
we can compute from the data. In the final step I used the fact that

∑n
i=1 1 = n. The limits

on the summations are always the same so for simplicity I have left them out.

∂E

∂a
=

∂

∂a

∑

(ŷi − [axi + b])2

=

∑ ∂

∂a
(ŷi − axi − b)2

=

∑

2(ŷi − axi − b)1(−xi) = 0

−
∑

xiŷi + a
∑

x2i + b
∑

xi = 0

∂E

∂b
=

∂

∂b

∑

(ŷi − [axi + b])2

=

∑ ∂

∂b
(ŷi − axi − b)2

=

∑

2(ŷi − axi − b)1(−1) = 0

−
∑

ŷi + a
∑

xi + bn = 0

Solving the normal equations simultaneously yields these formulas for a and b.

a =

∑

xiŷi − 1
n

∑

xi
∑

ŷi
∑

x2
i
− 1

n

∑

xi
∑

xi

b =

∑

ŷi − a
∑

xi

n

David finds, using the data given at the beginning of the Section, that

y(x) ≈ 9.634x + 12.498,

which is the line plotted in the graph. Thus the least-squares regression problem turns out
to have a closed-form analytic solution, and the only numerical calculation it requires is
evaluating the formulas for a and b.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

308 Regression

Simple linear regression can be described in a more compact way [123, §6.10] by arranging
the data and the unknown coefficients in matrices, like this.

Y =





ŷ1
ŷ2
...

ŷn





X =





1 x1
1 x2
...
...

1 xn





β =

[

b

a

]

Then the errors ei are elements of the vector

e = Y − Xβ =





ŷ1 − b − ax1
ŷ2 − b − ax2

...

ŷn − b − axn





=





ŷ1 − (ax1 + b)
ŷ2 − (ax2 + b)

...

ŷn − (axn + b)





=





ŷ1 − y1
ŷ2 − y2
...

ŷn − yn





and the sum-of-squares error is

E =
∑

(ŷi − yi)2 =
[

(ŷ1 − y1), (ŷ2 − y2) · · · (ŷn − yn)
]





(ŷ1 − y1)
(ŷ2 − y2)
...

(ŷn − yn)





= (Y − Xβ)⊤(Y − Xβ)
= Y⊤Y − 2β⊤(X⊤Y) + (Xβ)⊤(Xβ).

Setting the derivative with respect to β equal to zero we find thematrix normal equations,
which are boxed below.

∇βE = −2X⊤Y + 2X⊤(Xβ) = 0

X⊤Y − (X⊤X)β = 0

Now, provided X⊤X is nonsingular, we can find the regression coefficients like this.

(X⊤X)−1(X⊤Y) − (X⊤X)−1(X⊤X)β = 0

β = (X⊤X)−1(X⊤Y) = X+Y

where X+ = (X⊤X)−1X⊤ is called the pseudoinverse of the (non-square) matrix X [150,
p81-82].

Once again it is clear that least-squares regression is conceptually easy, because to find the
unknown parameters we only need to evaluate a formula. However, expressing the calculation
in matrix form reveals that finding β entails computing a matrix inverse, either explicitly (as
indicated above) or in effect (as in our algebraic solution of the scalar normal equations).
That requires many arithmetic operations, which take time and introduce roundoff errors
[60, p31] [30, p166-167], so in practice and especially if X⊤X is large we might prefer to solve
the boxed normal equations using Gauss elimination instead.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.6.2 Multiple Predictor Variables 309

8.6.2 Multiple Predictor Variables

This winter our friend David has made some use of the formula we derived for predicting
shoveling time based on snowfall, but his experience with blowing and drifting snow now
leads him to suspect that his regression model might be improved by considering wind speed
too. Some research into last winter’s meteorology turned up the extra column of data in the
table below.

storm i snow inches xi1 wind mph xi2 shoveling minutes ŷi

1 0.3 0.7 10
2 5.8 11.8 67
3 2.0 4.1 31
4 3.3 6.7 60
5 5.9 11.9 63
6 1.8 3.7 28

In many practical applications of regression the response variable y depends on p > 1 predic-
tor variables so the model function involves constant parameters β0 . . . βp. To accommodate
multiple predictor variables in our matrix formulation requires [123, §7] only that we adjust
the parameter vector β and the matrix X, as follows.

β =





β0
β1
...

βp





X =





1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
...
...

...
...

...

1 xn1 xn2 . . . xnp





For David’s new problem p = 2 and we have

β =





β0
β1
β2




X =





1 0.3 0.7

1 5.8 11.8

1 2.0 4.1

1 3.3 6.7

1 5.9 11.9

1 1.8 3.7





Y =





10

67

31

60

63

28





To find β⋆, I wrote the smneq.m program on the next page. In MATLAB it is easy to compute
the inverse of a matrix by using the inv() function, but as I mentioned above it is faster and
more accurate to solve the matrix normal equations by using Gauss elimination. To do that
I used chol() to perform the matrix factorization X⊤X = U⊤U, where U is upper-triangular.
Then the equation (U⊤U)β = (X⊤Y) can be solved in two steps, by first solving the triangular
system U⊤z = X⊤Y for z and then solving the triangular system Uβ = z for β. I used the
MATLAB backslash operator so, for example, bta=U\z solves Uβ = z for β. This program
uses the variable name bta for β to avoid confusion with the MATLAB built-in function beta.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

310 Regression

% smneq.m: solve the matrix normal equations
clear

load -ascii snowind.dat % read David’s new data
n=size(snowind,1); % find out how many data points
X=[ones(n,1),snowind(:,1:2)]; % construct the X matrix
Y=snowind(:,3); % construct the Y vector

U=chol(X’*X); % matrix factorization
z=U’\(X’*Y); % forward substitution to find z
bta=U\z % back substitution to find bta

octave:1> smneq
bta =

14.542
58.265
-24.193

octave:2> quit

The Octave session on the right shows the optimal regression coefficients, which yield the
multiple regression model

y = 14.542 + 58.265 × inches of snow − 24.193 ×mph of wind.

8.6.3 Ridge Regression

The multiple regression model we found in §8.6.2 is a good fit to the data, in that y predicts
ŷ accurately (see Exercise 8.8.32). But does it make any sense? It claims that about 58

minutes of shoveling are required to clear each inch of snow, which contradicts the data
in the table on the previous page. Even worse, it says that shoveling time dramatically
decreases with increasing wind speed while the data show exactly the opposite!

This phenomenon, which is called multicollinearity [123, §10.1], is unfortunately quite
common in multiple regression models. It results in coefficients having extreme values that
do not indicate the relative importance of the predictor variables. The β j also have large
sampling variance, so that next year’s data might yield wildly different values. The cause
of multicollinearity is a high correlation between predictor variables, which makes X⊤X almost
singular and the normal equations therefore hard to solve precisely (we will make a careful
study of matrix conditioning in §18.4.2). In David’s problem, xi2 = 2xi1 + 0.1 in every case
except one, so snowfall and wind speed are almost perfectly correlated.

Statisticians know all about multicollinearity and try in constructing their regression
models to avoid including predictor variables that are highly correlated. Unfortunately, when
many factors are obviously important some might be mutually correlated in complicated ways
that are difficult to anticipate. Eternal vigilance, while a prudent policy, is therefore not a
sure cure for multicollinearity. Fortunately, ridge regression can help.

In ordinary least squares orOLS regression, we solve the following nonlinear program.

min
β

E =

n∑

i=1

(ŷi − yi)2 =
n∑

i=1

(ŷi − Xiβ)
2

in which Xi = [1, xi1, . . . , xip] is the i’th row of X. If the errors in the observations yi are
independent identically-distributed random variables with mean zero, then [123, p38] the
Gauss-Markov Theorem guarantees that the estimates β are unbiased (not systematically

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.6.3 Ridge Regression 311

over- or under-estimating the true population values) and have minimum variance among
all unbiased estimators. Unfortunately, when the prediction variables are highly correlated
that minimum variance can be inconveniently large.

The ridge regression formulation [26, §8.5-8.9] [153, §9.9] assumes more realistically
that each observation adds to xi j some error vi j, where the vi j are independent identically-
distributed random variables with mean 0 and variance λ. To use this model we solve the
nonlinear program

min
β

E = E






n∑

i=1

(

ŷi − [Xi + Vi]β
)2






where Vi = [0, vi1, . . . , vip] is a row vector of random errors and E denotes the expected value
operator. Expanding the argument of the sum we find

(

ŷi − [Xi + Vi]β
)2
=

(

[Xiβ − ŷi] + Viβ
)2
= (Xiβ − ŷi)2 + 2(Xiβ − ŷi)(Viβ) + (Viβ)

2.

The expectation of a sum is the sum of the expectations of the terms [153, §2.7] so

E =

n∑

i=1

E
{

(Xiβ − ŷi)2
}

+ 2

n∑

i=1

E
{

(Xiβ − ŷi)(Viβ)
}

+

n∑

i=1

E
{

(Viβ)
2
}

.

The quantity (Xiβ− ŷi)2 does not depend on the random variables vi j so it is its own expecta-
tion. The vi j have zero mean, so E {Vi} = 0 and thus E

{

(Xiβ − ŷi)(Viβ)
}

= 0. The expectation
of a square is the square of the expectation plus the variance V [153, §2.8] so

E
{

(Viβ)
2
}

= E
{

(0 · β0 + vi1β1 + · · · + vipβp)2
}

=

[

E
{

(vi1β1 + · · · + vipβp)
}]2
+ V

{

(vi1β1 + · · · + vipβp)
}

.

But E
{

vi j
}

= 0 and the variance of a constant times a random variable is the square of the

constant times the variance of the random variable [153, §2.9] so

E
{

(Viβ)
2
}

= [0]2 + V
{

vi j
}

(β21 + · · · + β2p) = λ
p∑

j=1

β2j .

Thus the ridge regression nonlinear program reduces to this.

min
β

E =

n∑

i=1

(

Xiβ − ŷi
)2
+ λ

p∑

j=1

β2j

The regression coefficients β that solve this problem have lower variance than those produced
by OLS regression, but because of the second summation or bias term in the objective they
are no longer unbiased. Accepting some bias in exchange for a reduction in the sampling
variance of β is often a worthwhile tradeoff. Because the assumed variance of the vi j is seldom

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

312 Regression

actually known, and because its size affects the amount of the bias, λ is referred to as the
bias parameter. Notice that when λ = 0 ridge regression reduces to OLS regression.

Solving the ridge regression NLP analytically we get the following p+1 normal equations,
which can be solved for the p + 1 regression coefficients β0, β1, . . . , βp.

∂E

∂β0
=

n∑

i=1

2(ŷi − Xiβ)
1 · 1 = 0

∂E

∂β j
=

n∑

i=1

2(ŷi − Xiβ)
1 · xi j + λ(2β j) = 0, j = 1. . .p

These normal equations can be written in matrix form like this.

(X⊤X + λĪ)β = X⊤Y

Here Ī is like the (p + 1) × (p + 1) identity matrix, except that the (1,1) element is zero
because β0 is not included in the bias term. Adding a multiple of I to X⊤X also improves its
conditioning so some people do that instead, thus including β0 in the bias term even though
that is not justified by the statistical argument presented above; in that case the bias term
is referred to as a regularization.

As λ is increased from zero, the ridge regression coefficients become less extreme and
converge to estimates of their true values. Increasing λ also increases the bias in those
estimates, so we want to use the smallest value of λ that makes the parameter values stop
changing. This subjective judgement can be guided by a ridge trace, which plots the β j
as functions of λ. The ridge.m program on the next page solves the normal equations for
different values of λ and produces the graph below.

-20

-10

0

10

20

30

40

50

60

0 0.01 0.02 0.03 0.04 0.05

re
gr
es
si
on

co
effi

ci
en
t

bias λ

β0

β1

β2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.6.4 Least-Absolute-Value Regression 313

% ridge.m: plot the ridge trace
clear; clf; set(gca,’FontSize’,25)

load -ascii snowind.dat % read David’s new data
n=size(snowind,1); % find out how many data points
X=[ones(n,1),snowind(:,1:2)]; % construct the X matrix
Y=snowind(:,3); % construct the Y vector

Ibar=eye(3); % construct the identity
Ibar(1,1)=0; % zero the upper left element

for p=1:51 % consider 51 values of lambda
lambda(p)=0.001*(p-1); % going from 0 to 0.05
U=chol(X’*X+lambda(p)*Ibar); % matrix factorization
z=U’\(X’*Y); % forward substitution to find z
bta=U\z; % back substitution to find bta
b0(p)=bta(1); % capture the
b1(p)=bta(2); % coefficient estimates
b2(p)=bta(3); % to plot later

end

hold on % prepare to plot 3 curves
axis([0,0.05,-25,60]) % set graph axes
plot(lambda,b0) % plot the
plot(lambda,b1) % coefficient estimates
plot(lambda,b2) % saved earlier
hold off
print -deps -solid ridge.eps % print the graph

From the ridge trace it appears that λ = 0.04 is big enough to produce reliable estimates of
the coefficients, which yield this multiple regression model.

y = 12.256 + 3.4559 × inches of snow + 3.0709 ×mph of wind

Now it takes about 3 1
2
minutes to shovel an inch of snow and that time is increased by wind,

findings that are both plausible given the data. The fact that snowfall and wind speed are
both important and affect shoveling time in the same direction makes sense because they
are correlated.

8.6.4 Least-Absolute-Value Regression

In §1.5.2 we fitted a nonlinear model function to experimental data by minimizing the sum
of the absolute values of the ei, and we found that this strategy ignores outliers. The same
approach can also be used to reject outliers when fitting a linear regression model, and if we
apply the same transformations we get another linear program.

The data plotted in §8.6.1 contain an outlier, which pulls the least-squares regression
line up so that it is above every other data point. If we reformulate that problem as a
least-absolute-value or LAV regression, we get the standard-form linear program on the
next page. Here the free regression coefficients are each written as the difference between
nonnegative variables so that a = a+ − w and b = b+ − w. Recall that the optimization will

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

314 Regression

then force w to be zero if a+ > 0 and b+ > 0 or the absolute value of the most negative if one
or both are negative. As in §1.5.2, we write each |ei| = ui − vi where ui and vi are nonnegative
and the minimization will force one or the other of them to be zero.

minimize
a+ b+ w u v

E =

n∑

i=1

(ui + vi)

subject to
ui − vi = (a+ − w)xi + (b+ − w) − ŷi

a+, b+,w, ui, vi ≥ 0





i = 1 . . . n

I substituted the data (xi, ŷi) from the table of §8.6.0 into this formulation and used the
pivot program to solve the linear program, obtaining the simple regression model

y(x) ≈ 9.75x + 10.45,

which is plotted over the data in the graph below. This model has p = 2 parameters a and
b, so minimizing the sum of the absolute deviations automatically selects the best two data
points (here the second and fifth observations) to use in determining the LAV regression line.

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6

ŷ
[m

in
]

x [in]

Ignoring the outlier yields a fit that is probably more useful to David than the least-squares
one for estimating his snow-shoveling time.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7 Classification 315

LAV regression generalizes to multiple predictor variables as follows, where 1 is a vector of
n 1’s.

minimize
β w u v

E =

n∑

i=1

(ui + vi)

subject to
ui − vi = Xi(β − w1) − ŷi

βi,w, ui, vi ≥ 0

}

i = 1 . . .n

Bad conditioning of the X matrix due to multicollinearity is problematic in LAV regression
just as it is in the least-squares formulation, and it is often dealt with in the same way by
adding a regularization term. Depending on the regularization that is used, the resulting
optimization problem might still be a linear program.

8.6.5 Regression on Big Data

We have seen that in a purely mathematical sense the regression problem is easy, because the
OLS formulation has an explicit solution and the LAV formulation yields a linear program
we can solve in a finite number of pivots.

Unfortunately there are important applications (e.g., in bioinformatics) where a response
variable might depend on not just one or two predictor variables but on 1000 or 10000 or
100000. Then the (p+1)× (p+1) X matrix, which must be inverted or factored in solving the
normal equations or linear program, contains 106 or 108 or 1010 elements (typically most of
them zero). Even for linear systems that are well-conditioned, the growth in computing time,
the fill-in of sparse matrices, and the need to manage roundoff error make direct methods
such as Gauss elimination impractical when the number of rows and columns gets too big
[150, §32; p325].

To solve large sparse systems of linear equations it is necessary to resort to iterative

methods, which provide neither a formula for β⋆ nor even an exact numerical result in a
finite number of iterations. These methods are classified [87, §6] as stationary methods

such as Jacobi iteration, or gradient methods such as the conjugate gradient algorithm

[4, §13.2] [5, §5] (see §14).
Gradient methods for linear systems work by minimizing some measure of the error in a

trial solution, and this suggests instead simply minimizing one of our error measures E by
means of any nonlinear program solver. In practice that is the approach usually taken, often
using an algorithm tailor-made for the purpose (see §25.7).

8.7 Classification

Sarah wants to take Computational Optimization. She passed the one course that is an
official prerequisite, so the instructor has given her permission to enroll even though she
is only a junior. Now she is having second thoughts, because she wonders if the other six
undergraduate math courses she has passed provide enough background for her to get a

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

316 Classification

good grade in the graduate course. To help her decide, she interviews all of the people she
knows who have already taken Computational Optimization and asks each of them these
two questions.

Did you get at least a B in Computational Optimization?
Besides the prerequisite, how many math courses had you passed before?

She arranges the results of her survey in increasing order of prior courses passed, obtaining
the table below. The data justify Sarah’s indecision, because one student with even less
background than she has got a good grade while another with more background did not;
the students who got good grades are not separable, based on prior experience, from those
who got less than a B.

student i prior math courses xi grade ≥ B?

1 0 no
2 3 no
3 4 no
4 5 yes
5 7 no
6 10 yes
7 20 yes

Trying to find some way to classify herself as belonging to one group or the other based on
x, she plots the data along a line, representing a “no” response by an open ^ diamond and
a “yes” response by a filled _ one, and reasons as follows.

I have passed x̄ = 6 courses. Suppose that there is some number b such that if
x̄ ≥ b I am likely to get at least a B but if x̄ < b I am likely to get less than a
B. Then b must fall between x = 0 and x = 20. Nobody has taken fewer than
zero math courses beyond the prerequisite, and none of the graduate students I
know have taken more than twenty. In fact, b probably falls between the highest
value of x below which all the students failed (x = 4), and the lowest value of x
above which they all succeeded (x = 10). It might be reasonable to set b midway
between those limits, at b = 7. Because x̄ < 7 I fall in the “no” category, so even
though I have the prerequisite I should wait until I have more math background
before taking Computational Optimization.

x
0

^

3

^

4

^

5

_

7

^

10

_

20

_

Sarah is satisfied with this argument, but being at heart a mathematician she wonders if
some formulation of the problem as an optimization might permit a more certain conclusion.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7.1 Measuring Classification Error 317

8.7.1 Measuring Classification Error

Given a trial value of b, the distance from any point x on the line to b is f (x; b) = x − b.
Positive values of f (x; b) predict success (x > b) while negative values mean that x is too low
to ensure a good grade. For example, if b is set at 9, then Sarah’s experience x̄ = 6 yields
f (x̄; 9) = 6 − 9 = −3, predicting that she will not succeed in getting at least a B.

The survey results can be coded as follows.

yi =

{

+1 for “yes”
−1 for “no”

Then the quantity yi f (xi; b) is nonnegative if xi is classified correctly for that choice of b
or negative if xi is classified incorrectly. For example, if we pick b = 9 then y4 f (x4; 9) =

(+1) × (5 − 9) = −4 meaning the “yes” point 4 is classified incorrectly; it falls on the “no”
side of the classifier b = 9. On the other hand y7 f (x7; 9) = (+1)× (20−9) = +11 so the “yes”
point 7, which falls on the “yes” side of b = 9, is classified correctly.

For a given value of b the total number of misclassified points can then be found as

M(b) =

n∑

i=1

sgn(max (0,−yi f (xi; b))) where sgn(r) =






+1 if r > 0

0 if r = 0

−1 if r < 0

is signum function. If xi is misclassified for a given value of b then yi f (xi; b) < 0 so
max(0,−yi f (xi; b)) > 0 and 1 gets added to the sum. If xi is correctly classified, then
yi f (xi; b) ≥ 0 so max(0,−yi f (xi; b)) = 0 and 0 gets added to the sum. Sarah computes
M(b) using the data from the table and gets the graph below.

M(b)

0

1

2

3

4

b
0 3 4 5 7 10 20

◦

• ◦

• ◦

• ◦

• ◦

•

This function is piecewise constant, so it has jump discontinuities. To minimize the number
of points that are misclassified, b must be chosen either between 4 and 5, in which case
Sarah’s x̄ = 6 falls in the “yes” region, or between 7 and 10, in which case it falls in the “no”

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

318 Classification

region. This way of looking at the problem does not make Sarah feel any more confident
about what her decision should be.

Of course M(b) is just a count, and does not measure the amount of each misclassification.
Sarah’s next thought is that it might be more telling to minimize the sum of the classification
errors,

E(b) =

n∑

i=1

max (0,−yi f (xi; b)).

The graph of E(b) below is piecewise linear, so it is continuous but at the data points not
differentiable. It shows that to minimize the total classification error, b should be chosen
between 5 and 7. Since Sarah’s experience score is x̄ = 6, looking at the problem like this
does not reassure her about taking the course either.

E(b)

0

5

10

15

20

25

b
0 3 4 5 7 10 20

8.7.2 Two Predictor Variables

Dejected, Sarah explains to her friend David how she came to the conclusion that she should
not take Computational Optimization yet. David immediately suggests that she has ignored
some important factors in her analysis. “How hard did your friends work?” he wonders.
Returning to the students she surveyed earlier, Sarah asks one additional question.

“How many hours did you spend studying Computational Optimization outside
of class each week?”

Including the responses in her summary, she gets the revised table on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7.2 Two Predictor Variables 319

student i background xi1 effort xi2 yi symbol

1 0 3 −1 ^

2 3 1 −1 ^

3 4 1 −1 ^

4 5 7 +1 _

5 7 2 −1 ^

6 10 2 +1 _

7 20 4 +1 _

Now a two-dimensional graph is required to represent the survey data. Lo and behold, it
turns out to be possible in this space to draw many straight lines that separate the ^ symbols
from the _ symbols.

x2

0
1
2
3
4

7

10

x1
0 3 4 5 7 10 20

^

^ ^

_

^ _

_

The classifier shown has the equation x2 = 9− 4
5
x1 or f (x) = 4

5
x1 + x2 − 9 = 0, and we can use

this function to find out on which side of the hyperplane a given point falls. For example,
x4 = [5, 7]⊤ yields f (x4) =

4
5
×5+7−9 = 2 > 0 and is therefore on the _ side of the hyperplane,

while the point x5 = [7, 2]⊤ yields f (x5) =
4
5
× 7 + 2 − 9 = −7

5
< 0 so it is on the ^ side.

If the equation of the separating hyperplane is ax1+ x2−b = 0 then f (x; a, b) = ax1+ x2−b
measures the amount by which a point is on one side or the other, and the classifier that
minimizes the total error solves this optimization problem.

minimize
a b

E(a, b) =

n∑

i=1

max (0,−yi f (xi; a, b))

Recall from §1.5.1 that minimizing the maximum of two linear expressions can be recast as
a linear program. If we introduce variables ei = max (0,−yi f (xi; a, b)) then we can rewrite the
problem as shown on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

320 Classification

minimize
a b e

E(a, b) =

n∑

i=1

ei

subject to ei ≥ −yi f (xi; a, b) i = 1 . . . n

ei ≥ 0 i = 1 . . . n

The minimization will ensure that at optimality each ei is equal to the larger of −yk f (xi; a, b)
and zero. For Sarah’s problem we have

yi f (xi; a, b) = yi(axi1 + xi2 − b) = (yixi1)a + (−yi)b + (yixi2).

Then each functional constraint can be rewritten as an equality by adding a slack variable
si.

−ei + si = (yixi1)a + (−yi)b + (yixi2)

Using this result and the data from the enlarged table, the optimization becomes the
standard-form linear program

minimize
a b w e s

e1 + e2 + e3 + e4 + e5 + e6 + e7 = z

subject to −e1 + s1 − (0)a − (+1)b = −3
−e2 + s2 − (−3)a − (+1)b = −1
−e3 + s3 − (−4)a − (+1)b = −1
−e4 + s4 − (+5)a − (−1)b = +7

−e5 + s5 − (−7)a − (+1)b = −2
−e6 + s6 − (+10)a − (−1)b = +2

−e7 + s7 − (+20)a − (−1)b = +4

a ≥ 0, b ≥ 0, e ≥ 0, s ≥ 0

with the following initial tableau. In general a and b must be treated as free variables, but
in this problem they will be nonnegative so for simplicity this formulation assumes that.

e1 e2 e3 e4 e5 e6 e7 s1 s2 s3 s4 s5 s6 s7 a b

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

−3 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1
−1 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 3 −1
−1 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 4 −1
7 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 −5 +1

−2 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 7 −1
2 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 −10 +1

4 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 −20 +1

I used the pivot program to solve the problem and found three alternate optimal solutions,
corresponding to the hyperplanes plotted on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7.2 Two Predictor Variables 321

xi2

0
1
2
3
4

7

10

12

20

xi1
0 3 4 5 7 10 20

^

^ ^

_

^ _

_
A: x2 = 3 − 1

7 x1

B
:
x
2
=
12 −

x
1

C
:
x
2
=

392 −
52 x

1

marg
in C =

0

m
argin

B

margin A

For hyperplane A, points on and below the line are ^ while those above it are _. For
hyperplanes B and C, points on and above the line are _ while those below it are ^. In the
technical sense of our formulation, each of these hyperplanes achieves a perfect separation
between the ^ and _ points because each solution of the linear program has z⋆ = 0.

Sarah is reluctant to use any of the three hyperplanes as a classifier, however. Because
each of them goes through two of the data points, they afford no margin for error in the
classification of new points. Parallel to line B she draws a dashed line through x5 to show
how far apart the two sets of points really are in that direction. This distance is called a
margin between the convex hulls (see §3.6.1) of the two sets of points. Parallel to line A

she draws a dashed line through x6 to show the margin in that direction. The margin for
line C is zero. “The classifier I will actually use,” she decides, “is a line that bisects the
widest margin. That way it will be possible to classify a new point, such as one representing
me, with confidence even if its coordinates are not known precisely, provided it doesn’t fall
exactly on the margin bisector.”

Drawing the bisector of margin B, Sarah realizes that she can be confident of getting at
least a B in Computational Optimization if she is willing to study the subject outside of
class for enough hours each week to locate the new data point corresponding to her on the
_ side of that bisector (see Exercise 8.8.43).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

322 Classification

8.7.3 Support Vector Machines

In the end Sarah chose as a classifier the hyperplane bisecting the widest margin between
the two convex hulls of points. This suggests a different way of formulating classification
as an optimization problem [4, §1.7.2]. Consider the graph below, in which the convex hull
of the ^ points is separated from the convex hull of the _ points by the dashed box whose
width m is the margin of separation.

xi

0
1
2
3
4

7

xi
0 3 4 5 7 10 20

^

^ ^

_

^ _

_

m

If we maximize m subject to the requirement that the box stay between the convex hulls,
that will force the box to pivot into the optimal position shown below, and the bisector of
the optimal margin will be the same classifier Sarah found before.

x2

0
1
2
3
4

7

9
10
11
12

3






x1
0 3 4 5 7 10 20

^

^ ^

_
x4

^

x5
_
x6

_

m
⋆

best classifier x2 =
21
2
− x1

In this optimal configuration the points x5, x4, and x6 are called support vectors because
the box is tangent to them. Unlike the other data points, none of the support vectors can
be removed without changing the solution.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7.3 Support Vector Machines 323

To maximize m we need to know how it depends on the coefficients of the classifier
hyperplane. To derive that relationship in a general way it will be convenient to rescale

our problem so that the x̂2-intercepts of the margin boundaries are separated by 2 units (in
x1 − x2 space they are separated by 3 units, as shown in the bottom graph on the previous
page). If we make the substitution of variables shown on the right below, only the axis labels
and tic-mark values change.

x̂1 =
2
3
x1

x̂2 =
2
3
x2

x̂2

0

1

2

3

4

5

6

7

8

x̂1
0 1 2 3 4 5 6 7 8 9 10

_
x̂4

^

x̂5
_
x̂6

m

◦
p

◦
u

◦v

Recall from §3.1 that we can describe a hyperplane by the equation

p⊤x̂ + q = 0.

If we let p = [1, 1]⊤ and q = −7 then f (x̂; p, q) = p⊤x̂ + q = x̂1 + x̂2 − 7 = 0 is the equation of
the classifier hyperplane pictured above, and that line is orthogonal to the vector p. These
are the equations of the hyperplanes bounding the margin below and above.

x̂1 + x̂2 − 6 = 0 or p⊤x̂ + q = −1
x̂1 + x̂2 − 8 = 0 or p⊤x̂ + q = +1

In the picture I have extended p to intersect these hyperplanes at u = αp and v = βp, where

p⊤u + q = p⊤(αp) + q = −1 ⇒ α = (−1 − q)/(p⊤p)
p⊤v + q = p⊤(βp) + q = +1 ⇒ β = (+1 − q)/(p⊤p)

Then

v − u = βp − αp = p

p⊤p

[

(+1 − q) − (−1 − q)] = 2p

p⊤p
.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

324 Classification

Finally, [14] the margin is

m = ||v − u|| = 2||p||
||p||2 =

2

||p|| .

To maximize m, we should minimize ||p||, subject to the requirement that all of the points
end up correctly classified. The following support vector machine or SVM does that.

minimize
p q

p⊤p

subject to yi(p
⊤x̂i + q) ≥ 1 i = 1 . . . n

If yi = +1 and (p⊤x̂ + q) ≥ 1, then point i is correctly classified and falls on the _ side of the
margin; if yi = −1 and (p⊤x̂+ q) ≤ 1, then it is also correctly classified and falls on the ^ side
of the margin. The SVM finds the widest margin and returns the p and q that define its
bisector.

For our example the SVM simplifies to this.

minimize
p1 p2 q

p21 + p22 = z

subject to yi(p1 x̂i1 + p2 x̂i2 + q) ≥ 1 i = 1 . . .7

To solve Sarah’s problem numerically I used the MATLAB program cfyrun.m listed on the
top left below, which reads the file cfy.dat of unscaled data listed on the bottom left. (I
chose these file names because class and classify are reserved words in MATLAB.) The
program invokes the built-in function sqp() that we used in §8.3.1, and sqp() in turn invokes
the routines cfyobj.m and cfygeq.m that are listed on the right.

% cfyrun.m: classify using SVM
clear
global X Y

% read and scale the problem data
load -ascii cfy.dat
X=(2/3)*cfy(:,1:2);
Y=cfy(:,3);

% solve the SVM problem
pqzero=[0;0;0];
pqstar=sqp(pqzero,@cfyobj,[],@cfygeq)

% cfy.dat: unscaled classification data
0 3 -1
3 1 -1
4 1 -1
5 7 1
7 2 -1
10 2 1
20 4 1

% cfyobj.m: SVM objective function
function z=cfyobj(pq)
p=pq(1:2);
z=p’*p;

end

% cfygeq.m: SVM inequality constraints
function h=cfygeq(pq)
global X Y
p=pq(1:2);
q=pq(3);
h=[Y(1)*(p(1)*X(1,1)+p(2)*X(1,2)+q)-1

Y(2)*(p(1)*X(2,1)+p(2)*X(2,2)+q)-1
Y(3)*(p(1)*X(3,1)+p(2)*X(3,2)+q)-1
Y(4)*(p(1)*X(4,1)+p(2)*X(4,2)+q)-1
Y(5)*(p(1)*X(5,1)+p(2)*X(5,2)+q)-1
Y(6)*(p(1)*X(6,1)+p(2)*X(6,2)+q)-1
Y(7)*(p(1)*X(7,1)+p(2)*X(7,2)+q)-1];

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7.4 Nonseparable Data 325

octave:1> cfyrun

pqstar =

1.0000
1.0000

-7.0000

octave:2> quit

This Octave session reports p⋆ = [1, 1]⊤ and q⋆ = −7, which are the parameters of the optimal
classifier in x̂1− x̂2 space. The corresponding hyperplane in x1− x2 space has q = 3

2
×−7 = −21

2
,

as we found using the linear programming formulation, but it has the same p.

8.7.4 Nonseparable Data

One of the students Sarah queried is late in responding but does finally send her the data
x81 = 8, x82 = 6, y8 = −1. When this point is included and all of the data are scaled as
described in §8.7.3, we get the enlarged table and new graph below.

student i background x̂i1 effort x̂i2 yi symbol

1 0 2 −1 ^

2 2 2
3

−1 ^

3 8
3

2
3

−1 ^

4 10
3

14
3

+1 _

5 14
3

4
3

−1 ^

6 20
3

4
3

+1 _

7 40
3

8
3

+1 _

8 16
3

4 −1 ^

x̂2

0

1

2

3

4

5

6

7

8

9

10

11

x̂1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

_

^ _

^

^ ^

_

^
x̂8






ξ8

Now the ^ points are no longer linearly separable from the _ ones, so no matter what
hyperplane we draw some of the points will be misclassified. For the classifier and margin

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

326 Classification

that we determined earlier, the new point has the classification error ξ8 shown, and in general
we can let ξi denote the amount by which point i violates that side of the margin on which
it would fall if it were correctly classified. The soft-margin SVM generalizes our earlier
formulation to accommodate data like this that are not perfectly separable.

minimize
p q ξξξ

p⊤p + c

n∑

i=1

ξi

subject to yi(p
⊤x̂i + q) ≥ 1 − ξi i = 1 . . . n

ξi ≥ 0 i = 1 . . . n

The compromise parameter c > 0 expresses the weight that we attach to minimizing
misclassifications, relative to the conflicting goal of achieving the widest possible margin. The
minimization will make each classification error ξi just big enough to satisfy the constraints,
and how big that is will depend on p⋆ and hence on the value of c.

For our example the soft-margin SVM simplifies to this nonlinear program.

minimize
p1 p2 q ξξξ

p21 + p22 + c

8∑

i=1

ξi = z

subject to yi(p1 x̂i1 + p2 x̂i2 + q) ≥ 1 − ξi i = 1 . . . 8

ξi ≥ 0 i = 1 . . . 8

To experiment with this model I wrote the MATLAB program cfysrun.m listed on the next
page. It reads the cfys.dat file listed below and invokes sqp() with pointers to the routines
cfysobj.m and cfysgeq.m listed below, producing the output shown at the bottom of the
next page.

% cfysobj.m: soft-margin SVM objective
function z=cfysobj(pqxi)
global c
p=pqxi(1:2);
q=pqxi(3);
sxi=0;
for i=1:8

sxi=sxi+pqxi(3+i);
end
z=p’*p + c*sxi;

end

% cfys.dat
0 3 -1
3 1 -1
4 1 -1
5 7 1
7 2 -1
10 2 1
20 4 1
8 6 -1

% cfysgeq.m: soft-margin SVM constraints
function h=cfysgeq(pqxi)
global X Y
p=pqxi(1:2);
q=pqxi(3);
xi=pqxi(4:11);
h=[Y(1)*(p(1)*X(1,1)+p(2)*X(1,2)+q)-1+xi(1)

Y(2)*(p(1)*X(2,1)+p(2)*X(2,2)+q)-1+xi(2)
Y(3)*(p(1)*X(3,1)+p(2)*X(3,2)+q)-1+xi(3)
Y(4)*(p(1)*X(4,1)+p(2)*X(4,2)+q)-1+xi(4)
Y(5)*(p(1)*X(5,1)+p(2)*X(5,2)+q)-1+xi(5)
Y(6)*(p(1)*X(6,1)+p(2)*X(6,2)+q)-1+xi(6)
Y(7)*(p(1)*X(7,1)+p(2)*X(7,2)+q)-1+xi(7)
Y(8)*(p(1)*X(8,1)+p(2)*X(8,2)+q)-1+xi(8)
xi(1)
xi(2)
xi(3)
xi(4)
xi(5)
xi(6)
xi(7)
xi(8)];

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.7.4 Nonseparable Data 327

% cfysrun.m: classify using soft-margin SVM
clear; clf; set(gca,’FontSize’,20)
global X Y c

% read and scale the enlarged problem data
load -ascii cfys.dat
X=(2/3)*cfys(:,1:2);
Y=cfys(:,3);

% use these values of the compromise parameter
cs(1)=0.1;
cs(2)=0.5;
cs(3)=1.0;
for k=4:49
cs(k)=0.4*(k+1);

end

% solve the soft-margin SVM for the tabled values of c
printf(’ c intercepts margin xi\n’)
for k=1:49
c=cs(k); % set c
pqxizero=zeros(11,1); % starting point
pqxistar=sqp(pqxizero,@cfysobj,[],@cfysgeq); % solve the NLP
p=pqxistar(1:2); % extract p*
xi=pqxistar(4:11); % extract xi*
m(k)=2/norm(p); % save margin
tce(k)=0; % save
for i=1:8 % total

tce(k)=tce(k)+xi(i); % classification
end % error

% print some of the results
if(k <= 4 || k == 49)

q=pqxistar(3); % extract q*
x1=-q/p(1); % x1-intercept
x2=-q/p(2); % x2-intercept
printf(’%5.1f %5.2f %5.2f %5.2f’,c,x1,x2,m(k))
for i=1:8

printf(’%6.2f’,xi(i))
end
printf(’\n’)

end
end

% plot error and margin as functions of c
hold on
plot(cs,tce)
plot(cs,m)
hold off
print -deps -solid cfys.eps

octave:1> cfysrun
c intercepts margin xi
0.1 8.63 22.84 10.69 0.00 0.00 0.00 1.62 0.39 1.26 0.00 0.69
0.5 10.15 7.86 8.11 0.00 -0.00 0.00 1.12 0.43 1.27 0.00 1.05
1.0 12.63 4.94 5.48 0.00 0.00 -0.00 0.65 0.39 1.34 0.00 1.39
2.0 18.87 3.77 3.06 0.00 0.00 0.00 0.00 0.03 1.71 0.00 1.83
20.0 7.00 7.00 1.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33
octave:2> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

328 Classification

The printed output lists, for each of five values of c, the x1− and x2−intercepts of the
classifying hyperplane, the margin, and the resulting classification errors of the eight data
points. If c = 20 (we insist on minimizing the total classification error) we get the classifier
we found for the separable case, which ignores the extra point with an error of ξ8 = 3 1

3
as

pictured in the graph at the beginning of this Subsection. As c is reduced it becomes possible
to obtain successively wider margins, but at the cost of misclassifying more points. The extra
point, which made the data nonseparable, is misclassified in each of these solutions.

The hyperplanes are plotted below to show that quite different classifiers result from
using the different values of c. For clarity the corresponding margins are not shown, but if
they were we could confirm graphically the misclassifications indicated by values of ξi > 0 in
the printed output (see Exercise 8.8.46).

x̂2

0

1

2

3

4

5

6

7

8

9

10

11

x̂1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

_

^ _

^

^ ^

_

^

c
=
20.0

c = 2.0

c = 1.0

c
=
0.5

c
=
0
.1

The program cfysrun.m also produced the graph on the next page, which shows how the
margin and the total classification error both decrease with increasing c, up to a critical value
(of about 11) above which the classifier does not change. For this example a large increase
in margin can be had in exchange for a small increase in the total classification error, but
deciding what value of c yields the classifier that is most useful in practice is ultimately a
subjective judgment that depends on the particular application.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.8 Exercises 329

0

2

4

6

8

10

12

0 5 10 15 20

er
ro
r
or

m
ar
gi
n

compromise parameter c

total classification error
∑
ξi

margin m

8.7.5 Classification on Big Data

In a purely mathematical sense the perfect-separation and soft-margin SVM models are both,
like the regression models we studied in §8.6, easy. Although they have quadratic objectives
and inequality constraints, their feasible sets are polyhedra and under assumptions that are
usually satisfied they have unique solutions; see §22.

Unfortunately, there are important applications (e.g., in data mining) where the number
n of points to be classified is not seven or eight but 1000 or 10000 or 100000. Because
there are either n or 2n constraints, and in the case of soft-margin SVM n error variables ξi
in addition to the classification variables p and b, the nonlinear program quickly becomes
daunting as the size of the classification problem increases. Most real problems also have
more than the two predictor variables x we considered, and in big data applications there
might be many. Sometimes data that are not linearly separable are nonlinearly separable by
the use of kernel methods [4, §14.8.5]. Practical algorithms for these problems are often
based on the theory of nonlinear programming duality (see §16.9) and their development is
an active area of research.

8.8 Exercises

8.8.1[E] Give a concise statement of the nonlinear programming problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

330 Nonlinear Programming Models

8.8.2[E] Where in this textbook are example nonlinear programs, such as the garden

problem, cataloged? What characteristics of each problem are described in its catalog entry?

8.8.3[H] The garden problem is essentially nonlinear, in that it cannot be linearized with-
out fundamentally changing its character. Give an example of an optimization model that
is nonlinear but can reasonably be approximated by a linear program over some range of
parameter values.

8.8.4[E] State the standard form that this book uses for a nonlinear program. Give an
example to show that a problem including equality constraints can be stated in this standard
form. Can this standard form be used to describe a problem in which some of the variables
are required to be nonpositive? If so, explain how.

8.8.5[E] Prove that g(x) = 0 if and only if g(x) ≤ 0 and g(x) ≥ 0.

8.8.6[E] The simplex method assumes and implicitly enforces the requirement that each
variable be nonnegative. Is this also true of numerical algorithms for nonlinear programming?

8.8.7[H] The statement of the garden problem requires that one side of the enclosure be
provided by the garage wall. If more fencing were available, might it be possible to enclose
a larger area by relaxing that constraint and making the garden look like this?

garage

30 feet

driveway

garden

x2

x1 x1

x3 x3

(a) Formulate a new nonlinear program that assumes the fencing extends a distance x3 feet
on each side of the garage wall, as shown, and that 200 feet of fencing are available. (b) Find
a feasible x, by any means you like, that yields the largest area for this configuration. Does
x⋆3 turn out to be zero?

8.8.8[E] Show how the bounds 0 ≤ x1 ≤ 20 and 0 ≤ x2 ≤ 30 can be deduced from the
constraints of the garden problem.

8.8.9[H] In our graphical solution of the garden problem we found that the nonnegativity
constraints are slack at x⋆. (a) Show that if these constraints are removed from the problem
the optimal value of the objective function is +∞. (b) Is it ever true in a linear program
that removing a constraint that is inactive at x⋆ allows a different point to become optimal?
If so, give an example; if not, explain why not.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.8 Exercises 331

8.8.10[H] Revise the §1.2 procedure so that it works for nonlinear programs having n = 2.

8.8.11[E] State all of the ways you can think of in which the feasible set of a nonlinear
program can be different from that of a linear program. Is the feasible set of a linear program
also a closed set? Where in the feasible set must the optimal point of a nonlinear program
be?

8.8.12[E] State a nonlinear program that is feasible and bounded but does not have an
optimal point.

8.8.13[H] A nonlinear programming model includes either (a) the constraints on the left
[151, p514] or (b) the constraints on the right [1, p26].

−x ≤ 0

x − 1 ≤ 0

x(1 − x) ≤ 0

x(x − 1)(x − 2) = 0

What effect do these constraints have on the optimal value that will be found for x? (c) Can
the conditions that they place on x be handled in a different or better way? Explain.

8.8.14[E] What is a Lagrangian, and where is it used in nonlinear programming? State
one advantage the KKT method has over the method of Lagrange.

8.8.15[E] Name three non-graphical analytic methods for solving nonlinear programs.
Which of these are guaranteed always to discover an optimal solution? Which of them
can yield points that are not optimal? What role can computer algebra systems such as
Maple play in the use of these methods?

8.8.16[E] What is black-box software? Explain its virtues and drawbacks. State two
possible ways of accessing black-box software for nonlinear programming, and describe the
mechanism that each uses for specifying the problem to be solved.

8.8.17[E] Name one stand-alone industrial-strength program for solving nonlinear opti-
mization problems. Name one Octave function for solving nonlinear optimization problems.

8.8.18[E] What effect does the starting point have on the behavior of black-box nonlinear
program solvers?

8.8.19[E] If an optimization is just one step in a larger calculation, would it be easier to
solve it by using NEOS or by using MATLAB?

8.8.20[E] Why is it sometimes advantageous to write custom software for nonlinear pro-
gramming, rather than relying on black-box software? What computer programming lan-
guages are typically used for writing custom nonlinear program solvers?

8.8.21[E] State one field in which nonlinear programming plays a role, and describe a likely
application of nonlinear programming in that field.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

332 Nonlinear Programming Models

8.8.22[E] What is a synthetic test problem, and how do synthetic problems differ from
application problems? Where in this book can you find a list of nonlinear programming test
problem collections?

8.8.23[E] If a forward problem is integrating a differential equation that contains a fixed
parameter, what is the inverse problem?

8.8.24[H] In solving a parameter estimation problem, why is it customary to define the
residual as the sum of the squares of the errors, rather than as the sum of the errors or the
sum of their absolute values?

8.8.25[H] In §8.5 we considered the problem of estimating the gravitational acceleration
g from measurements of the angle of a pendulum at several times, and we found that this
yields a type-2 nonlinear program. But if θ is sufficiently small, then sin(θ) ≈ θ. (a) Use this
approximation to simplify the initial value problem, and show that the simplified problem
is satisfied by θ(t) = θ0 cos(ωt) where ω =

√

g/r. (b) Use this result to construct a type-1
nonlinear program whose solution would approximate g⋆.

l time tl (sec) angle θ̂l (radians)

0.0 0 0.150 = θ0
0.1 5 0.028

0.2 10 −0.135
0.3 15 −0.077

(c) Using the data given in the table above and the pendulum length r = 10 feet, solve the
nonlinear program by one of the solution techniques exhibited in §8.2.

8.8.26[E] Explain the difference between a type-1 and a type-2 nonlinear program.

8.8.27[E] How does linear regression differ from the problem of estimating the parameters
in a differential-equation model?

8.8.28[H] What are normal equations? By using the definitions of Y, X, and β given in
§8.6.1, show that the matrix normal equations are equivalent to the scalar normal equations.

8.8.29[E] What is the pseudoinverse of the nonsquare matrix X? Why might it be preferable
to use Gauss elimination to solve a least-squares system, rather than explicitly computing
the pseudoinverse and then premultiplying by it?

8.8.30[E] In the §8.6.2 matrix formulation of the multiple regression problem, why is the
first column of the X matrix all 1’s?

8.8.31[P] Write a MATLAB program that uses the chol() function to factor a matrix of
your choice, and confirm that the product of the factors yields the original matrix. Does the
factorization work for every matrix?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

8.8 Exercises 333

8.8.32[P] Modify the smneq.m program of §8.6.2 to compute the shoveling time predicted
by the multiple regression model for each data point, and compare these numbers to the
measured ŷ values. Is the model a good representation of the data?

8.8.33[E] What is multicollinearity, what are its causes, and how can its pernicious effects
be mitigated?

8.8.34[E] The coefficients β produced by OLS regression are unbiased, while those produced
by ridge regression are biased. Why would we ever prefer biased estimates?

8.8.35[E] What value of the bias parameter λ makes ridge regression equivalent to OLS
regression? What value should be used in practice? Explain the function of a ridge trace.

8.8.36[E] How can outliers be rejected in fitting a linear regression model? How do LAV
and OLS regression differ?

8.8.37[H] Multicollinearity can be dealt with in LAV multiple regression by adding a reg-
ularization term as in ridge regression. Propose a regularization that permits the model to
still be stated as a linear program, and state the linear program.

8.8.38[P] Write a MATLAB program to plot the signum function sgn(x) for −2 ≤ x ≤ 2. Use
the built-in function, then write your own, and show that they produce the same results.

8.8.39[H] Give an algebraic condition that must be satisfied in order for two sets of points
to be linearly separable. What is a classifier? If two sets of points are not linearly separable
on the basis of one predictor variable, might they be separable on the basis of two? Must
they be?

8.8.40[H] Explain how minimizing the maximum of 0 and f (x) is equivalent to minimizing
e subject to the constraints that e ≥ f (x) and e ≥ 0.

8.8.41[P] Starting from the tableau given in §8.7.2, use pivot or some other program of
your choice to solve the linear program, and show that you find the three alternate optima
discussed there. Why are these hyperplanes not ideal for use as classifiers?

8.8.42[E] What do we mean by the margin between two sets of points? Does its width
depend on the direction in which we look?

8.8.43[E] In §8.7.2 Sarah decided that she could take the course Computational Optimiza-
tion if she is willing to study the subject for a certain number of hours each week outside of
class. How many hours is that? Does that seem enough in view of the analysis in §8.7.3?

8.8.44[E] What are support vectors? What is a support vector machine?

8.8.45[H] A classification problem can always be rescaled so that its margin in the direction
p is 2/||p||. Is it necessary to actually perform this rescaling in order to solve the problem
using a support vector machine? Modify cfysrun.m to solve the example problem without
scaling the data, and explain how the results change.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

334 Nonlinear Programming Models

8.8.46[P] In §8.7.4 we plotted soft-margin SVM classifiers corresponding to five different
values of the compromise parameter c. For the hyperplane corresponding to c = 0.5 plot
dashed lines bounding the margin and use the resulting picture to confirm that points x4,
x5, x6, and x8 are misclassified.

8.8.47[E] In a soft-margin SVM, what happens if the compromise parameter c is made
very big? What happens if c is made very small? Does it make sense for c to be zero?

8.8.48[H] The optimization theory, algorithms, and software discussed in this book are,
in the abstract, of purely intellectual interest, but like every technology mathematical pro-
gramming has applications that are profoundly value-laden (see, e.g., [3, p1-2] [151, p9]).
In particular, unethical uses of big data by business and government have been widely, and
rightly, condemned (see, e.g., [171] [172] [165]). Discuss the moral implications of using
optimization techniques to extract actionable information from large sets of personal data
such as credit card transactions, medical records, and the geographical locations from which
cellphone calls are made. Are there noble and worthy uses for the information extracted
from such personal data? List some venal and destructive uses. Is there some way to permit
the good uses while preventing the bad ones?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9

Nonlinear Programming Algorithms

In §8, I used the garden problem to illustrate several different ways of solving nonlinear
programs. The analytic techniques mentioned there are seldom useful in practice, but they
will occupy us in §9.3, §15, and §16 because they provide the motivation and conceptual basis
for the numerical methods that will be our main focus. A numerical method is an iterative
algorithm [94, §1.1] [161, §4.3] or mechanical procedure that approximates the solution to a
mathematical problem by performing only arithmetic and logical operations. This Chapter
is about certain properties that are shared by all numerical optimization methods.

9.1 Pure Random Search

The most obvious numerical methods for unconstrained optimization are based on evaluating
the objective at points that are chosen arbitrarily. To see how this idea works, consider the
Rosenbrock problem (see §28.7.2) which I will refer to from now on as rb.

minimize
x∈R2

f (x) = 100(x2 − x21)
2
+ (1 − x1)

2

This classic is easy to state, trivial to solve analytically, and notoriously troublesome for
numerical methods that do not chose points arbitrarily. Both terms in the objective are
squares so f (x) is never negative, and it’s easy to see that f (x) is zero only at x⋆ = [1, 1]⊤.

The contour plot below, which was produced by the plotrb.m program listed on the next
page, reveals why the rb objective is sometimes referred to as the “banana function.”

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x1

x2

• x⋆

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

336 Nonlinear Programming Algorithms

1 % plotrb.m: plot contours of the rb objective
2 clear; clf; set(gca,’FontSize’,30)
3
4 % compute the function value on a grid of points
5 xl=[-2;-1];
6 xh=[2;2];
7 ng=200;
8 [xc,yc,zc,zmin,zmax]=gridcntr(@rb,xl,xh,ng);
9
10 % plot some contours
11 hold on
12 axis([-2,2,-1,2]);
13 vc=[0.1,1,4,8,16,32];
14 contour(xc,yc,zc,vc)
15
16 % print the resulting graph
17 print -deps -solid rb.eps

The plotrb.m program invokes 8 gridcntr.m to compute the value of f (x) at ng × ng =

40000 points in a box bounded by the lower and upper bounds 5 xl and 6 xh. Then it 13

sets some contour levels and 14 invokes the MATLAB contour function to draw the contour
diagram. Finally it 17 prints the graph so that I could include it on the previous page.

1 function [xc,yc,zc,zmin,zmax]=gridcntr(fcn,xl,xh,ng)
2 % evaluate fcn(x) at grid points equally spaced in [xl,xh]
3 zmax=-realmax;
4 zmin=+realmax;
5 for i=1:ng
6 xc(i)=xl(1)+(xh(1)-xl(1))*((i-1)/(ng-1));
7 for j=1:ng
8 yc(j)=xl(2)+(xh(2)-xl(2))*((j-1)/(ng-1));
9 x=[xc(i);yc(j)];
10 zc(j,i)=fcn(x);
11 zmax=max(zmax,zc(j,i));
12 zmin=min(zmin,zc(j,i));
13 end
14 end
15 end

The gridcntr routine used in plotrb.m figures out the x1-coordinates xc 6 and the
x2-coordinates yc 8 of the grid points, and invokes fcn 10 (here rb) to compute the
corresponding values zc of the objective. In addition to those vectors, gridcntr.m returns
1 the extreme values zmin and zmax that the objective takes on at the grid points. We will
be drawing many contour diagrams and will make extensive use of this routine.

1 % compute one value of the Rosenbrock function
2 function f=rb(x)
3 f=100*(x(2)-x(1)^2)^2+(1-x(1))^2;
4 end

The rb routine computes the value of f (x) at a single point by evaluating the formula given
earlier. The rb problem will be of continuing interest, so this function will also be used
again.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.1 Pure Random Search 337

If the optimal point of this problem had not been obvious from the formula, we could
have found it in the plot of the contours or by sorting through the grid of function values that
Octave used to draw them. This brute-force algorithm is called a grid search. There are
more sophisticated variants of grid search called pattern search methods [155, p145-157]
[5, §9.3] [4, §12.5.2], but a less sophisticated variant is actually of more interest to us now.

Instead of evaluating the objective at every point on a grid, or at a succession of points
each chosen based on previous function values, we could simply choose points xk at random,
compute each f (xk), and declare the xk yielding the lowest objective value to be optimal.
This simplest of all optimization algorithms is called pure random search. “Let’s just have
a go at it” is the favorite heuristic of all those people who seem eager to tell you they were
never good at math, so pure random search is used on a grand scale in business, government,
and everyday life. As implemented in the MATLAB program prs.m listed below, it is used
on a more modest scale to solve the rb problem.

1 % prs.m: solve the rb problem by pure random search
2 clear; clf; set(gca,’FontSize’,30)
3 format long
4
5 xl=[-2;-1]; % lower left corner of box
6 xh=[2; 2]; % upper right corner of box
7
8 xzero=[-1.2;1]; % starting point
9 xstar=[1;1]; % optimal point
10 ezero=norm(xzero-xstar); % error at starting point
11
12 fr=+realmax; % record value = +infinity
13 xk=xzero; % current iterate = starting point
14 for k=1:1000000 % try a million points
15 fk=rb(xk); % objective at current point
16 if(fk < fr) % better than record value?
17 fr=fk; % yes; remember it
18 xr=xk; % and where it happened
19 end
20 xerr(k)=norm(xr-xstar)/ezero; % remember error at record point
21 it(k)=k; % remember current iteration
22 u=rand(2,1); % random vector uniform on (0,1)
23 for j=1:2 % in each coordinate direction
24 xk(j)=xl(j)+u(j)*(xh(j)-xl(j)); % find value between bounds
25 end
26 end
27
28 xr % report best point found
29 fr % report the objective there
30 xerrend=xerr(1000000) % report final relative error
31 loglog(it,xerr) % plot log error versus log k
32 print -deps -solid prs.eps % print the plot

The program begins by 5-6 defining the box in which random points will be examined and
8-10 computing the error e0 = ||x0 − x⋆|| at the catalog starting point given for rb in
§28.7.2. The variable fr, representing the lowest objective value found so far or record

value, is initialized 12 to +∞. Then the for loop 14-26 examines 1000000 points randomly
positioned within the box.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

338 Nonlinear Programming Algorithms

Whenever a point is discovered 16 to have an objective value less than fr, the record
value is updated 17 and the point is 18 declared the record point xr. The relative error

of the current record point is then calculated 20 as xerr(k) = ek/e0 = ||xr − x⋆||/e0, and the
iteration number 21 is saved for plotting the error later.

Then the next trial point is generated. The statement u=rand(2,1) 22 makes u a
2-element column vector each of whose elements is a pseudorandom number uniformly dis-
tributed on the interval (0,1). Each of these random numbers u j is 23-25 mapped onto the
interval [xL

j
, xH

j
] to 24 produce xk(j), and 26 the loop over trial points continues.

At the end of the million trials, the record point and value are reported 28-29 along with
30 the final error xerrend, and a graph is produced 31-32 of log10(ek/e0) versus log10(k).
That error curve and an Octave session showing the program’s printed outputs are shown
below.

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ek
e0

k

octave:1> prs
xr =

1.00328430564206
1.00591651081019

fr = 5.47285992540590e-05
xerrend = 0.00307589144901223
octave:2> quit

At k = 0 we have ek = e0, so the relative error ek/e0 = 1 = 100 and the error curve begins
at (0, 100). Here the iterations are plotted on a log scale so the first point we see is the one
at k = 100 = 1, but by then no improvement had yet been made in the objective value.
Each transition from one error level to the next occurs when an iterate xk is generated that
has a lower objective value than the current record value f r. The curve goes up and down
because the measure of solution error that we are using is ||xr − x⋆||/e0 and in this problem
it is possible for the error in x to increase in moving from one record point to the next even
though the error in f (x) decreases.

The graph and the other outputs produced by prs.m change from one run to another,
because the values returned by rand do not repeat. However, the results shown above are
typical: xr ≈ x⋆ = [1, 1]⊤ and f r ≈ f (x⋆) = 0. The final relative error has log10(xerrend) =

−2.512 so xerrend = 10−2.512 and that is the final error level in the graph. To run prs.m on
my computer, which has a clock speed of 1GHz, took about three minutes.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.2 Rates of Convergence 339

9.2 Rates of Convergence

Algorithms for nonlinear programming are infinitely convergent, in contrast to the simplex
method which converges in a finite number of steps if it does not cycle. A given nonlinear
programming algorithm applied to a given problem might not even get close to the answer,
but if it does it will be in the limit as k → ∞. If an algorithm for finding x⋆ starts from x0

and generates iterates xk, we define the error of the k’th iterate as ek = ||xk − x⋆||. Then if

lim
k→∞

ek = 0

we say the algorithm converges to the solution x⋆.
Pure random search converges to the solution of rb, and its error curve shows log10(ek/e0)

decreasing in a roughly linear fashion as log10(k) increases. I modeled this behavior by draw-
ing the dashed line from the point (1, 100) to the final point in our experiment, (106, xerrend).
Using the definition of relative error and the equation of this straight line we find

log10(ek/e0) =






0 for k = 0
log10(xerrend)

log10(10
6 − 1) × log10(k) for k ≥ 1

where the slope of the line is

log10(c) =
log10(xerrend)

log10(10
6 − 1) ≈

−2.512
6
= −0.419 so that c ≈ 10−0.419 ≈ 0.381

Then we have

log10(ek/e0) =

{

0 for k = 0

log10(k) log10(c) for k ≥ 1

or, for k ≥ 1,
ek

e0
= clog10(k) so that ek = e0c

log10(k).

This is called sublinear convergence.
The convergence of the other algorithms we will study is described (when they converge

at all) by a different model [4, p58-61]. If the errors of successive iterates satisfy

lim
k→∞

ek+1

er
k

= c where 0 ≤ c < ∞.

the algorithm is said to have rate or order of convergence r with convergence constant

c. For example, if x0 = −10 this recurrence on x ∈ R1

xk+1 =
xk

2
+

2

xk

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

340 Nonlinear Programming Algorithms

generates iterates −10,−5.2,−2.9846, . . . that converge to x⋆ = −2. We can deduce the order
of convergence and the convergence constant of this sequence as follows.

ek = ||xk − x⋆|| = |xk + 2|

ek+1 = ||xk+1 − x⋆|| =
∣
∣
∣
∣
∣
∣

xk

2
+

2

xk
+ 2

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

2xk
([xk]2 + 4 + 4xk)

∣
∣
∣
∣
∣

=
1

|2xk| |x
k
+ 2|2

=
1

|2xk|e
2
k

lim
k→∞

ek+1

e2
k

=
1

|2x⋆| =
1

4
so this algorithm converges with r = 2 and c = 1

4
.

Most optimization algorithms are more complicated than this simple recurrence, so it is
seldom possible to find the order and constant of convergence analytically as in this example.
However, we can derive a general formula for ek as a function of k by assuming (somewhat
unrealistically) that the iterates xk obey exactly the recurrence

ek+1 = cerk

for all k rather than just as k →∞. Starting from e0 = ||x0 − x⋆|| we find

e1 = cer0

e2 = cer1 = c(cer0)
r
= c(crer

2

0) = c1+rer
2

0

e3 = cer2 = c(c1+rer
2

0)
r
= c1+r+r

2

er
3

0

e4 = cer3 = c(c1+r+r
2

er
3

0)
r
= c1+r+r

2
+r3er

4

0

...

ek = c
∑k−1

j=0 r
j

er
k

0 .

But the sum of a geometric series is

k−1∑

j=0

r j =






1 − rk
1 − r if r , 1

k if r = 1

so

ek =






c(1−r
k)/(1−r)er

k

0 if r , 1

cke0 if r = 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.2 Rates of Convergence 341

Because r can be bigger than 1 it is possible for ek+1 to be less than ek even if c > 1, but the
values that r and c can take on are restricted by the convergence requirement that

lim
k→∞

ek = 0.

We know that c ≥ 0 because it is the ratio of norms and a norm is never negative. If r were
negative the ek would alternate in sign, which is impossible because ek is a norm, so it must
be that r ≥ 0. If ek+1 < ek for all k, the algorithm will surely converge, and that will happen
if

cerk < ek

cer−1k < 1

c < 1/er−1k .

If r ≥ 1 we can require that c < 1/er−1
k

for the largest ek, which we just assumed is e0. If
r < 1, the inequality requires that c < e1−r

k
for the smallest ek, which is 0, but the algorithm

will certainly (and suddenly!) converge if c = 0. Thus, our formula for ek makes sense if

c < 1/er−10 for r ≥ 1

c = 0 for 0 ≤ r < 1.

For r = 1 the formula predicts ek = cke0, and this is called linear or first-order conver-
gence. If e0 = 1 and c = 0.1 a linearly-convergent algorithm generates a sequence of iterates
with relative errors of 1, 0.1, 0.01, 0.001, . . . in which one additional correct digit is obtained
for each iteration.

For r = 2 the formula predicts ek = c2
k−1e2

k

0 , and this is called quadratic or second-

order convergence. If e0 = 1 and c = 0.1 a quadratically-convergent algorithm generates a
sequence of iterates with relative errors of 1, 0.1, 0.001, 0.0000001, . . . in which the number of
correct digits doubles for each iteration after the second.

An algorithm having r > 1 is said to have superlinear convergence. Quadratic con-
vergence is superlinear, but often the term is used when 1 < r < 2.

In studying the convergence of an algorithm empirically we usually plot ek/e0 versus k,
so it is convenient to know when interpreting such a plot that the model predicts for k ≥ 1

ek/e0 =






ck for r = 1

(ce0)
2k−1 for r = 2or

log10(ek/e0) =






k log10 c for r = 1

(2k − 1)(log10 c + log10 e0) for r = 2

Error curves for algorithms having particular orders of convergence have characteristic shapes,
as shown by the graph on the next page. Here the horizontal axis uses a linear rather than
a logarithmic scale, and only the first 7 iterations are plotted.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

342 Nonlinear Programming Algorithms

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

1 2 3 4 5 6 7

k

ek
e0

sublinear

linear

quadratic

The picture was produced by the MATLAB program listed below, which uses the formula for
ek that we derived for sublinear convergence, the recurrence ek+1 = cek for linear convergence,
and the recurrence ek+1 = ce2

k
for quadratic convergence. All three error curves assume the

same value of c = 0.381 that we measured from the pure random search solution of rb. The
log error plot has the shape of a quadratic for quadratic convergence, a straight line for linear
convergence, and a line that barely descends for sublinear convergence.

% cvrg.m: plot a particular set of ideal error curves
set(gca,’FontSize’,20)

c=0.381
ezero=1;
quad=ezero; linr=ezero;

for k=1:7
y(k,1)=quad;
quad=c*quad^2;
y(k,2)=linr;
linr=c*linr;
y(k,3)=(c^log10(k))*ezero;
it(k)=k;

end

semilogy(it,y)
print -deps -solid cvrg.eps

To facilitate experimentation with different convergence characteristics (other than sublin-
ear) I wrote the MATLAB function listed on the next page. It computes the kmax’th iterate

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.3 Local Minima 343

from the formulas we derived and also by performing the iterations (so that the results can be
compared) and plots the ideal error curve. Experimenting with it will help you understand
how the convergence behavior of an algorithm depends on its rate r and constant c.

function converge(r,c,ezero,kmax)
% plot a given arbitrary set of ideal error curves
if(r == 1) % find ending error

form=ezero*c^kmax % from the formulas we derived
else

form=ezero^(r^kmax)*c^((1-r^kmax)/(1-r))
end

ek=ezero % current error = starting error
kk(1)=0; % at zero iterations
err(1)=ek/ezero; % starting relative error = 1
for k=2:kmax+1 % plot for k=0...kmax

ek=c*ek^r % recursion for next error
if(ek == 0) break; end % if zero no point in more
err(k)=ek/ezero; % current relative error
kk(k)=k-1; % at current iteration

end
semilogy(kk,err) % plot the iterated error curve

end

9.3 Local Minima

The rb problem has a single minimizing point at x⋆ = [1, 1]⊤, but the objective of a nonlinear
program can have a graph with multiple hills and valleys and therefore multiple minima.

The gpr problem (see §28.7.3), whose contour dia-
gram is shown on the right, has a single optimal point
x⋆ = [3, 4]⊤ at the bottom of its deepest valley, but also
many shallower valleys.

minimize
x∈R2

f (x) = eu
2

+ sin4 (v) + 1
2
w2

where u =
1
2
(x21 + x22 − 25)

v = 4x1 − 3x2
w = 2x1 + x2 − 10

To distinguish the various kinds of minima that can
occur we will use the following taxonomy [4, p45-46].

3

3.5

4

4.5

5

2 2.5 3 3.5 4

x1

x2 •
x⋆

x̄ is a if and only if

strict global minimum f (x̄) < f (x) for all x , x̄

global minimum f (x̄) ≤ f (x) for all x
strict local minimum f (x̄) < f (x) for all x ∈ Nε(x̄) \ x̄
local minimum f (x̄) ≤ f (x) for all x ∈ Nε(x̄)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

344 Nonlinear Programming Algorithms

In these definitions Nε(x̄) = {x ∈ Rn | ||x − x̄|| < ε}, where ε > 0, denotes an epsilon-

neighborhood of x̄ [136, p32]. If the norm is the 2-norm, this neighborhood is an open
ball centered at x̄. Thus if x̄ is a local minimum then f (x̄) ≤ f (x) for all points within some
positive radius ε of x̄. The symbol \ is “set minus” so Nε(x̄) \ x̄ means the neighborhood
without the point at its center. If x̄ is a strict local minimum then f (x̄) is strictly less than
f (x) at every other point within some positive radius ε of x̄.

In the case of a strict global minimum, x̄ = x⋆ is the unique point at which f (x) takes on
its lowest value. The point [3, 4]⊤ is the strict global minimizing point of the gpr problem
pictured above, and the point [1, 1]⊤ is the strict global minimizing point of the rb problem.

In the case of a global minimum that is not strict, x̄ = x⋆ is one point, but maybe not
the only point, at which f (x) takes on its lowest value. If x ∈ R2 the function f (x) = x21 has
its lowest value of zero at every point on the x2 axis, so they are all nonstrict global minima.

The distinction between strict and non-strict local minima is illustrated in the graph
below.

-2

-1

 0

 1

 2

 3

 4

-2 -1 0 1 2 3 4 5 6

x

f (x) = max(x/2 + cos2(x), sgn(x))

︸ ︷︷ ︸

local minima

•
strict local minimum

9.4 Robustness versus Speed

The convergence behavior of real algorithms is seldom predicted exactly by the theory we
developed in §9.2, because our analytical model is just an approximation and we never
actually let k reach ∞. The error curve we measured for pure random search doesn’t look
much like the theoretical one, and the experimental error curves that we draw for other
algorithms will often depart somewhat from the ideal. Actual performance must be measured
empirically. But the predictions of the model are at least qualitatively correct, and from them
we can conclude that linear convergence is good but quadratic convergence is dramatically
better. Sublinear convergence, especially for problems having n > 2, is practically useless;
unfortunately, even the best algorithms for some large problems can do no better [160, §4].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.4 Robustness versus Speed 345

Algorithms that achieve first-order convergence typically make use of first derivatives
in addition to function values, while those that achieve second-order convergence typically
require second derivatives as well. For this and other reasons fancy algorithms usually use
more CPU time per iteration than simple ones, but they need fewer iterations so they run
faster overall. Unfortunately, they also more often fail to converge, or get trapped at a local
minimum that is suboptimal (i.e., not as good as the global minimum). Yogi Berra could
have been thinking of this behavior when he famously remarked “We’re lost, but we’re making
good time.” Pure random search is very robust in that it finds a global minimizing point
almost no matter what the problem is like. It plods along using only function values, too
stupid not to work. Newton descent, which we will take up in §13, is by comparison elegant
and clever, and when it works it has breathtaking second-order convergence, but it fails
catastrophically on many problems. Of course this need not concern us if Newton descent
happens to work well on the one problem we want to solve. Special-purpose algorithms
have also been contrived to solve certain limited classes of problem very fast. But if our
aim is to design a general-purpose method, the goals of robustness and speed are always in
competition [2, §2.7]. The tradeoff between them is depicted graphically below, where each
point represents a different algorithm.

1

ro
b
u
st
n
es
s

0
slow speed fast

•
pure random search

•Newton descent

◦

◦

◦
◦

◦

◦

◦

In this picture robustness can be thought of as the likelihood of solving a problem chosen
at random from some universe of all possible nonlinear programs, while speed measures the
computational effort required to achieve some suitable level of accuracy in the reported x⋆.
Both of these notions will be made more precise and quantitative in §26.

Algorithms that fall in the lower left corner of this graph deserve only the scorn and
derision they receive. One that fell in the upper-right corner, a single method that could be
used to resolve any nonlinear program just as the simplex algorithm is used to resolve any

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

346 Nonlinear Programming Algorithms

linear program, has been a prize avidly sought since the foundations of numerical optimiza-
tion were laid. The story you will learn in future Chapters is therefore largely the tale of
heroic efforts to find some Northeast Passage into that (still vacant) corner of this graph.

9.5 Variable Bounds

To draw the contours of the rb objective and to solve the problem by pure random search,
we evaluated the function at points within a box defined by bounds [xL, xH] on the variables.
Here is a picture of the box, showing the coordinates of its corners.

x1

x2

(xL1 , x
H
2) (xH1 , x

H
2)

(xH1 , x
L
2)(xL1 , x

L
2)

We will use variable bounds in §12.2.2 to limit the range of a line search, in §24.3.1 to
construct a starting ellipsoid for the ellipsoid algorithm, and in several places to determine a
starting point x0 = 1

2
(xL + xH) from which to begin the solution of a problem. Variable bounds

can also be used to limit the radius of the trust region in the trust-region algorithm of §17.3,
to keep slack variables nonnegative in the §20.2.5 augmented Lagrangian algorithm extension
for inequality constraints, and to avoid regions of Rn where an objective or constraint function
is undefined. But the best reason for fixing bounds on the variables of a nonlinear program
before attempting a solution, whether analytic or numeric, is to ensure that you really
understand the formulation; having no idea where to look for the optimal point suggests
that the problem requires further preliminary study [1, p29]. Each of the example nonlinear
programs cataloged in §28.7 includes as part of the statement of the problem a specification
of the variable bounds that are to be respected in its solution.

The variable bounds that we use in solving a problem express our deductions about the
region of Rn where the optimal point must be found, or our expectations about where it is
likely to be found, rather than conditions that must be enforced. Therefore, while bounds
on the variables can be among the constraints usually they are not formal constraints.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.6 The Prototypical Algorithm 347

Bounds certain to contain x⋆ can often be established when an optimization problem is
formulated, based on laws of nature or on standard practice in the field of application. In
the garden problem of §8.1 the width of the garage and the length of the fence determined
variable bounds that we used in scaling our graph of the feasible region. Even synthetic prob-
lems with no practical application often include inequality constraints from which bounds
on the variables can be deduced. In the rare case when it is necessary to guess bounds in
the initial investigation of a problem, convergence to a suboptimal point that is at or outside
the bounds is evidence that those bounds were chosen too narrow. On the other hand, many
problems can be solved from bounds that are generous, so if you really must guess it might
not hurt to guess wide.

9.6 The Prototypical Algorithm

pro·to·typ·i·cal adj. Representing an
original model or type after which other
similar things are patterned.

All of the nonlinear programming algorithms we will study can be represented by the
flowchart on the next page, and I will occasionally refer to it in explaining how they work.

We begin by initializing the record value f r, the iteration counter k, and the current
estimate of the optimal point xk. Then the record value and the record point xr are updated.
A dashed box is drawn around these steps because, except when they are essential (as in the
case of pure random search and the ellipsoid algorithm of §24) I will routinely omit them
to simplify the explanation of the algorithms we will study. When you are learning how an
algorithm works it is instructive to watch the xk that are generated, rather than concealing
any missteps that might occur behind a record point. When you are using a nonlinear
programming algorithm to solve a practical problem, however, it is always prudent to keep
a record value and record point as shown in the flowchart, and to accept the record point,
rather than the final iterate, as the optimal vector.

Next comes the convergence test, which mentions the feasible set X. The rb and gpr

examples we used in this Chapter have no constraints, and for the next five Chapters we will
consider only unconstrained problems. Of course most nonlinear programs (like the garden
problem of §8.1) do have constraints, and if this flowchart is going to describe the methods
that solve them the convergence test must not return for x⋆ a point that is infeasible. As we
shall see in §10, the convergence criterion for a nonlinear programming algorithm is usually
based on whether a minimizing point has been (at least approximately) found, rather than
on an arbitrary iteration limit like the one that prs.m uses.

How xk+1 is determined is what characterizes each of the algorithms we will study, so
another way to view the rest of this book is that it is about what goes inside that box of

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

348 Nonlinear Programming Algorithms

the flowchart. For pure random search it is “pick xk+1 at random” but for more effective
algorithms the prescription can be much more complicated.

ENTER

f r ← +∞
k ← 0

xk ← x0

?
YES

NO

f0(x
k) < f r

f r ← f (xk)

xr ← xk

?
YES

NO

x⋆ minimizes
f0(x) over X

EXIT

determine

xk+1 ∈ [xL, xH]

k ← k + 1

In the next Chapter we begin our study of more effective algorithms with the method of
steepest descent, which uses first derivatives of the objective in determining xk+1 and thereby
achieves linear convergence. It is only a little more complicated than pure random search,
but to understand how it works you might find it helpful to return to this flowchart.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.7 Exercises 349

9.7 Exercises

9.7.1[E] An algorithm is a mechanical procedure that can be performed by rote. Describe,
as precisely as you can, an algorithm (not necessarily involving mathematics) that you carry
out routinely in the course of your everyday life.

9.7.2[E] A numerical method is an iterative algorithm that approximates the solution to
a mathematical problem by performing only arithmetic and logical operations. (a) What is
meant by an iterative algorithm? (b) Give examples of some arithmetic and logical opera-
tions. (c) Describe, as precisely as you can, a numerical method for solving some mathemat-
ical problem other than optimization.

9.7.3[E] Prove that x⋆ = [1, 1]⊤ is optimal for the rb problem of §28.7.2.

9.7.4[E] State the purpose of the MATLAB gridcntr function described in §9.1, and
explain how it works. In gridcntr.m, the name of the routine that calculates a value of the
function being contoured is fcn. In the example, how did we get gridcntr to use rb as that
routine?

9.7.5[H] Label each contour of the rb objective with the value the function has at every
point on the contour.

9.7.6[H] Suppose a grid search with ng=100 points is used to approximate the minimizing
point of a function of x ∈ R1 on the interval [xL, xH] = [0, 1]. (a) How much error might there
be in the estimate of x⋆? (b) Now suppose that x ∈ Rn where n > 1, and that xL = 0 (the
origin) and xH = 1 (a vector of all 1’s). How many function evaluations must be used, as a
function of n, to achieve the same level of error in x⋆?

9.7.7[P] A refinement of grid search shrinks the variable bounds after each sweep through
the grid, by bisecting the distance from xL

j
to xH

j
in each coordinate direction j = 1 . . . n to

throw away the half that does not appear to contain the minimizing point. Write a MATLAB

program to implement this idea, and use it to solve the rb problem.

9.7.8[P] Pure random search can easily be generalized to solve problems having con-
straints. Modify prs.m to enforce constraints, and use your program to solve the garden

problem of §8.1.

9.7.9[E] If a starting point x0 is identified as the catalog starting point, what does that
mean?

9.7.10[E] What is a record value? A record point? Why might it be helpful to update
these in the course of solving a nonlinear program?

9.7.11[E] In monitoring the convergence of a numerical method, why do we typically plot
the relative error log10(ek/e0), so that the error curve begins at 0, rather than the absolute
error log10(ek)?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

350 Nonlinear Programming Algorithms

9.7.12[H] How is it possible for xk+1 to be farther from x⋆ than xk is, even though f (xk+1)

is closer to f (x⋆) than f (xk) is? Give an example in which this happens.

9.7.13[E] How does an infinitely-convergent algorithm differ from one having finite conver-
gence? If a degenerate linear program cycles, does that make the simplex algorithm infinitely
convergent? What technical definition of convergence is adopted in this text? Does the pure
random search algorithm converge in that sense?

9.7.14[E] What must be true in order for an algorithm to have order of convergence r with
convergence constant c? For the algorithm to converge, is it necessary that c < 1? Explain.

9.7.15[E] If the solution error at x0 is e0, what does the sublinear convergence model of
§9.2 predict the solution error will be at x1? What is it predicted to be if the convergence is
linear with c = 1

2
?

9.7.16[P] The recurrence used as an example in §9.2 converges to x⋆ = −2 if x0 = −10.
To what point does it converge if x0 = +10? Write a MATLAB program to illustrate your
answer, and plot output from the program to illustrate the convergence of this algorithm. Is
the convergence still second-order? Is the convergence constant still 1

4
?

9.7.17[E] The model of algorithm convergence that we developed in §9.2 predicts what the
solution error ek will be after k iterations, given the rate of convergence r and the convergence
constant c. What value of r corresponds to quadratic convergence? What values of c are
possible for a convergent algorithm that has r = 1?

9.7.18[H] The convergence model of §9.2 predicts the appearance of error curves that plot
log10(ek/e0) versus k. (a) What are the slope and intercept of the straight line predicted by
the model for r = 1? (b) How does the convergence constant c affect the appearance of the
curve when r = 2?

9.7.19[E] Use converge.m to investigate what happens if r = 1
2
and x0 = 1. (a) Is conver-

gence achieved with c = 0.1? (b) Is convergence achieved with c = 0?

9.7.20[E] Many algorithms have superlinear convergence with 1 < r < 2. Use converge.m

to plot an error curve for 10 iterations if r = 1.1, c = 0.1, and e0 = 1.

9.7.21[P] Write a program that reproduces the contour diagram of the gpr objective shown
in §9.3 by using the gridcntr function of §9.1 to compute grid points and the MATLAB

contour function to draw the contours.

9.7.22[E] What do we mean by Nε(x̄)? How big is ε?

9.7.23[H] Prove that a strict global minimum is also a global minimum, a strict local
minimum, and a local minimum.

9.7.24[H] In §9.3 the case of a non-strict global minimum is illustrated by the example of
f (x) = x21, where x ∈ R2. Sketch a graph of f (x) showing which points are its global minima.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

9.7 Exercises 351

9.7.25[E] Write down the formula for a function that has more than one global minimizing
point.

9.7.26[E] Why is the convergence behavior of real algorithms seldom predicted exactly
by the theory we developed in §9.2? Is a quadratically-convergent algorithm always to be
preferred over one that has only linear convergence? Explain.

9.7.27[E] If a function has several local minima of different depths it is possible for a
nonlinear programming algorithm to get stuck at a suboptimal one. Does “suboptimal”
mean that the objective value there is less than at the global optimum? Explain.

9.7.28[E] Explain what is meant by the robustness of an algorithm, and how it typically
relates to the method’s speed.

9.7.29[E] In world history, what was the Northwest Passage? Why does §9.4 refer to a
Northeast Passage?

9.7.30[E] In this book, bounds on the variables are part of the specification of every non-
linear program. Why is that? Can bounds on the variables also be constraints? Must they
be constraints?

9.7.31[E] If you hope to eat lunch in a kosher deli, where might you focus your search
for one? (1) On a ranch in Wyoming; (2) at the bottom of the Marianas trench; (3) on
Manhattan Island in New York City; (4) on planet Earth; (5) it would be necessary to
search the entire universe. What does this question have to do with stating bounds on the
variables in a nonlinear programming problem?

9.7.32[E] Use the prescription x0 = 1
2
(xL + xH) to find an alternative (i.e., non-catalog)

starting point for the rb problem. How does using this x0 affect the error curve drawn by
prs.m?

9.7.33[E] In a certain nonlinear program involving the design of a whisky distillery, x3
represents the inside diameter of a glass tube. What does this fact suggest about the values
that x3 could plausibly take on?

9.7.34[E] From the statement of the garden problem in §8.1, deduce bounds on the vari-
ables. Do you need to know x⋆ in order to do this? Do you need to know what the objective
function is?

9.7.35[H] Consider the problem

minimize f (x) =
1

√
x − 1

+ 3
√
x − 1.

(a) Graph f (x) on the interval from x = 0 to x = 2. (b) Show analytically that x⋆ = 4
3
.

(c) What lower bound could you impose on x to prevent a numerical method from trying to
evaluate f (x) where it is not defined? When would it be necessary to enforce this bound as
an explicit constraint?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

352 Nonlinear Programming Algorithms

9.7.36[E] The prototypical algorithm of §9.6 calls for keeping a record point and value, but
I will often omit those steps from the algorithms we study. Why? Is it a good idea to omit
them from an algorithm implementation that you expect to use for solving real problems?
What must be true about an algorithm for it to be unnecessary to keep a record value and
point?

9.7.37[E] The flowchart given in §9.6 is for a generic nonlinear programming algorithm,
but the details of what happens in one block of the flowchart will vary with the specific
algorithm being represented. (a) Which block is that? (b) What detailed description does
that block contain for pure random search? (c) What does it mean that for the algorithm
to converge “x⋆ minimizes f0(x) over X”?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10

Steepest Descent

In §9 we found that although pure random search is very robust, its sublinear convergence
makes it too slow to be practical even for problems having only n = 2 variables. To get
linear or quadratic convergence a minimization algorithm must actually try to go downhill.
A function f (x) : Rn → R1 descends from a point x̄ most rapidly in the direction of its
negative gradient there. In this Chapter we will derive that result and use it to construct a
minimization algorithm that is far more useful than pure random search.

10.1 The Taylor Series in Rn

If the function f (x) is sufficiently differentiable, information about its slope and curvature
at a point x̄ are captured in its Taylor series expansion [1, §3.3.5] about that point.

for n = 1, f (x) ≈ f (x̄) + f ′(x̄)(x − x̄) + 1
2
f ′′(x̄)(x − x̄)2

for n > 1, f (x) ≈ f (x̄) + ∇f (x̄)⊤(x − x̄) + 1
2
(x − x̄)⊤H(x̄)(x − x̄)

The formula for n = 1, in which f ′ denotes the first derivative and f ′′ the second derivative,
might be familiar from a calculus course (if not see §28.1.2). For a function of n > 1 variables
the analog of f ′(x) is the gradient vector ∇f (x) and the analog of f ′′(x) is the Hessian

matrix H(x). The gradient vector and Hessian matrix are made up of partial derivatives of
the function, like this.

∇f (x) =





∂ f

∂x1
...
∂ f

∂xn





H(x) =





∂ 2f

∂x1∂x1
. . .

∂ 2f

∂x1∂xn
...

. . .
...

∂ 2f

∂xn∂x1
. . .

∂ 2f

∂xn∂xn





The Hessian matrix is square, and if the mixed partials are continuous then [110, §6.2]

∂ 2f

∂xi∂x j

=
∂ 2f

∂x j∂xi

so H is symmetric. We will be concerned with other properties of the Hessian matrix in §11,
and we will make use of the Taylor series expansion for n > 1 on many occasions throughout
the rest of the book.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

354 Steepest Descent

10.2 The Steepest Descent Direction

If we take a step α away from x̄ in the direction p, to x = x̄+αp as pictured below, then the
Taylor series expansion of f (x) yields

f (α) ≡ f (x̄ + αp) ≈ f (x̄) + αp⊤∇f (x̄) + 1
2
α2p⊤H(x̄)p.

Taking the derivative of this approximation with respect to α, we find

d f

dα
= 0 + p⊤∇f (x̄) + αp⊤H(x̄)p + terms of higher order in α.

x̄ •

x ◦






αp

p

At x̄ we have α = 0, so at that point d f /dα = p⊤∇f (x̄) is the rate of increase of the function.
The direction p of unit norm resulting in the most rapid decrease in f (x) makes d f /dα at
α = 0 as negative as possible and must therefore be the vector that solves this optimization
problem [5, §2.2].

minimize
p

p⊤∇f (x̄) subject to ||p|| = 1

We can write the dot product p⊤∇f (x̄) = ||p|| × ||∇f (x̄)|| × cos (θ) where θ is the angle between
the vectors measured on the hyperplane that contains them both (see §28.2.3). A norm is
never negative, so this quantity is minimized when cos (θ) = −1; then the vectors are collinear
and point in opposite directions. We required ||p|| = 1, so the direction of steepest descent is
the unit vector p that solves p⊤∇f (x̄) = 1 × ||∇f (x̄)|| × (−1). If some direction is downhill from
x̄, then ||∇f (x̄)|| , 0 and we can divide to obtain

p⊤
(

−∇f (x̄)
||∇f (x̄)||

)

= 1.

Because p⊤p = ||p||2 = 1, the equation above is satisfied by

p =
−∇f (x̄)
||∇f (x̄)|| .

Thus f (x) descends most steeply from a point x̄ in the direction opposite to its gradient
vector at that point.

10.3 The Optimal Step Length

We have shown that if x̄ is not already a minimizing point then f (x) can be reduced by
moving in the direction −∇f (x̄). To see how this idea can be used consider the nonlinear
program at the top of the next page, which is the gns problem (see §28.7.4).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.3 The Optimal Step Length 355

minimize f (x) = 4x21 + 2x
2
2 + 4x1x2 − 3x1 from x0 = [2, 2]⊤

Using the definition of the gradient from §10.1 we find

∇f (x) =





∂ f
∂x1

∂ f
∂x2





=





8x1 + 4x2 − 3

4x2 + 4x1




so ∇f (x0) =

[

21

16

]

.

Thus from the point x0 = [2, 2]⊤ the direction of steepest descent is

d0
= −∇f (x0) =

[

−21
−16

]

.

Moving a distance α in that direction takes us to the point

x0 + αd0
=

[

2

2

]

+ α

[

−21
−16

]

=

[

2 − 21α
2 − 16α

]

= x1,

and we want to choose α so that

f (α) ≡ f (x1) = 4(2 − 21α)2 + 2(2 − 16α)2 + 4(2 − 21α)(2 − 16α) − 3(2 − 21α)
= 3620α2 − 697α + 34

is minimized. Setting the derivative equal to zero and solving for α we find

d f

dα
= 7240α − 697 = 0 so α⋆ = 697/7240 ≈ 0.096271 = α0

and this is a minimizing point of f (α) because

d 2f

dα2
= 7240 > 0.

Moving from x0 a distance α0 in the steepest-descent direction d0 takes us to the point

x1 = x0 + α0d
0
=

[

2

2

]

+
697

7240

[

−21
−16

]

≈
[

−0.021685
0.459669

]

where the objective function is f (x1) ≈ 0.449655, a big reduction from f (x0) = 34. Unfortu-
nately x1 is not the optimal point, because

∇f (x1) ≈
[

−1.33480
1.75194

]

, 0.

However, we can use ∇f (x1) to continue the process of moving downhill.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

356 Steepest Descent

10.4 The Steepest Descent Algorithm

The calculations we did in §10.3 constitute one step of the steepest-descent algorithm,
first described by Cauchy [168] and formalized in the pseudocode below.

k = 0 start from x0

1 gk = ∇f (xk) find the uphill direction

if(||gk|| < ǫ) STOP if flat there is no uphill direction

dk
= −gk go downhill

α⋆ = argmin
α

f (xk + αdk) as far as you can

xk+1 = xk + α⋆dk move to that point

k = k + 1 count the iteration

GO TO 1 and repeat

The general optimization algorithm of §9.6 includes flowchart boxes for keeping a record
value and record point, in case (as in pure random search) the function values f (xk) do not
always decrease. In the steepest-descent algorithm it is reasonable to expect that f (xk+1)

will never be greater than f (xk), so for simplicity I have not provided in this description for
keeping a record value or a record point. However, a skeptic could reasonably argue that
roundoff errors or the nonzero value of ǫ might result in the objective not decreasing at every
step. Except for using a tiny amount of processing time and memory, keeping a record value
and record point to guard against that would not hurt (see Exercise 10.9.6).

The argmin operator used in this pseudocode returns the value α⋆ at which the mini-
mum is found, in contrast to the min operator, which would return the value of the function
there.

min
α

f (α) = value of f where f (α) is minimized = f (α⋆)

argmin
α

f (α) = value of α where f (α) is minimized = α⋆

We will use both the min operator and the argmin operator in describing optimization
algorithms.

The hard part of the steepest-descent algorithm, whether we execute it by hand or by
running a computer program, is finding α⋆ for each new point xk and direction dk. The task
of finding α⋆ for an arbitrary problem will occupy our whole attention in §12, but for this
particular problem we can find α⋆(x; d) in general, analytically, as follows.

f (x + αd) = 4(x1 + αd1)
2
+ 2(x2 + αd2)

2
+ 4(x1 + αd1)(x2 + αd2) − 3(x1 + αd1)

= α2(4d21 + 2d
2
2 + 4d1d2) + α(8x1d1 + 4x2d2 + 4x1d2 + 4x2d1 − 3d1)

+ (4x21 + 2x
2
2 + 4x1x2 − 3x1)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.4 The Steepest Descent Algorithm 357

d f

dα
= 2α(4d21 + 2d

2
2 + 4d1d2) + (8x1d1 + 4x2d2 + 4x1d2 + 4x2d1 − 3d1) = 0

α⋆ =
−(8x1d1 + 4x2d2 + 4x1d2 + 4x2d1 − 3d1)

(8d2
1
+ 4d2

2
+ 8d1d2)

Getting from the first expression for f (x+αd) to the second (on the previous page) is a little
complicated, so I checked all of this work using Maple as shown below. Here I differentiated
before simplifying rather than after, so all of the work is in the solve.

> f := 4*x1^2+2*x2^2+4*x1*x2-3*x1;

2 2
4 x1 + 2 x2 + 4 x1 x2 - 3 x1

> ff := subs(x1 = y1+alpha*d1, x2 = y2+alpha*d2, f);

2 2
4 (y1 + alpha d1) + 2 (y2 + alpha d2)

+ 4 (y1 + alpha d1)(y2 + alpha d2) - 3 y1 - 3 alpha d1

> fp := diff(ff, alpha);

8 (y1 + alpha d1) d1 + 4 (y2 + alpha d2) d2

+ 4 (y2 + alpha d2) d1 + 4 (y1 + alpha d1) d2 - 3 d1

> solve(fp = 0, alpha);

8 d1 y1 + 4 d1 y2 + 4 d2 y1 + 4 d2 y2 - 3 d1
- --

/ 2 2\
4 \2 d1 + 2 d1 d2 + d2 /

Using the first formula for α⋆, I wrote the MATLAB program on the next page. It invokes
gns.m to find f (x) and gnsg.m to find ∇f (x) (gnsh.m returns H(x) and is used later).

The first stanza of the program 1-17 implements the solution process described in the
pseudocode above. Twenty iterates are allowed 4 but 12 are enough to satisfy the con-
vergence condition 10 (epz is used for ǫ because eps is a reserved word in MATLAB). The
formula for α⋆(xk; dk) is evaluated in three steps 13-15 . The vectors xk 5 and yk 6 save
the kused 7 iterates produced by the algorithm so that they can be plotted later. The final
approximations to x⋆ 18 , ∇f (x⋆) 19 , and f (x⋆) 20 are reported along with kused 21 .

The second stanza uses 26 the gridcntr.m routine of §9.1 to compute the objective at
points equally spaced between the variable bounds 24,25 . Then 27-29 it finds contour levels
equal to the objective value at each of the iterations generated by the algorithm and 32 plots
those contours. To show the shape of the function, three more contour levels are plotted
33-36 . Finally the xk that were saved earlier 5-6 are plotted 37 to show the algorithm’s
convergence trajectory.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

358 Steepest Descent

1 % steep.m: use steepest descent to solve the gns problem
2 epz=1.e-06;
3 x=[2;2];
4 for kp=1:20
5 xk(kp)=x(1);
6 yk(kp)=x(2);
7 kused=kp;
8
9 g=gnsg(x);
10 if(norm(g) <= epz); break; end
11
12 d=-g;
13 numer=-(8*x(1)*d(1)+4*x(2)*d(2)+4*x(1)*d(2)+4*x(2)*d(1)-3*d(1));
14 denom= (8*d(1)^2+4*d(2)^2+8*d(1)*d(2));
15 alpha=numer/denom;
16 x=x+alpha*d;
17 end
18 x
19 g
20 f=gns(x)
21 kused
22
23 % plot convergence trajectory over contours
24 xl=[-2;-2];
25 xh=[3;3];
26 [xc,yc,zc]=gridcntr(@gns,xl,xh,200);
27 for kp=1:kused
28 vu(kp)=gns([xk(kp);yk(kp)]);
29 end
30 hold on
31 axis(’equal’)
32 contour(xc,yc,zc,vu)
33 vn(1)=20;
34 vn(2)=10;
35 vn(3)=5;
36 contour(xc,yc,zc,vn)
37 plot(xk,yk)
38 hold off
39 print -deps -solid steep.eps

function f=gns(x)
f=4*x(1)^2+2*x(2)^2+4*x(1)*x(2)-3*x(1);

end

function g=gnsg(x)
g=[8*x(1)+4*x(2)-3; 4*x(2)+4*x(1)];

end

function h=gnsh(x)
h=[8,4;4,4];

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.4 The Steepest Descent Algorithm 359

octave:1> steep
x =

0.75000
-0.75000

g =

-2.4169e-07
3.1722e-07

f = -1.1250
kused = 12
octave:2> quit

Running the program produces the output above and the graph below, which show that the
gns problem has f (x⋆) = −9

8
at x⋆ = [3

4
,−3

4
]⊤. Notice that each step in the steepest-descent

convergence trajectory is orthogonal to the preceding one; this is called zigzagging. At the
scale of this picture only four of the twelve iterates (three steps) can be seen clearly.

-2

-1

0

1

2

3

-2 -1 0 1 2 3

x1

x2

34.0

0.45

-1.05

-1.12

20.0

10.0

5.00

x0 = [2, 2]⊤

x1

x2

•

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

360 Steepest Descent

10.5 The Full Step Length

Many optimization techniques approximate f (x) near xk by the quadratic model function

q(x) = f (xk) + ∇f (xk)⊤(x − xk) + 1
2
(x − xk)⊤H(xk)(x − xk)

given by the first three terms in the Taylor series expansion for f (x). Another formula for
α⋆ can be obtained by minimizing this function along the direction of its steepest descent,
which is also −∇f (xk), as follows.

x = xk − α∇f (xk)
q(x) = f (xk) + ∇f (xk)⊤(−α∇f (xk)) + 1

2
(−α∇f (xk))⊤H(xk)(−α∇f (xk))

dq(x)

dα
= −∇f (xk)⊤∇f (xk) + α∇f (xk)⊤H(xk)∇f (xk) = 0

α⋆ =
∇f (xk)⊤∇f (xk)

∇f (xk)⊤H(xk)∇f (xk)

dS
= −α⋆∇f (xk) = − ∇f (xk)⊤∇f (xk)

∇f (xk)⊤H(xk)∇f (xk)∇f (x
k)

The vector dS is called the full steepest-descent step. Despite this name, the α⋆ yielding
it is usually not equal to 1. If f (x) happens to be a quadratic function then q(x) = f (x) and
the analysis above is equivalent to the one we did in §10.4, but if not the full step is usually
different from the optimal step we get by minimizing f (α).

For the gns problem f (x) is quadratic, and we can compute the full steepest-descent α⋆

from the starting point x0 = [2, 2]⊤ like this.

∇f (x0) =
[

21

16

]

from §10.3, so ∇f (x0)⊤∇f (x0) =
[

21 16
] [

21

16

]

= 697

H(x) =





∂ 2f

∂x1∂x1

∂ 2f

∂x1∂x2

∂ 2f

∂x2∂x1

∂ 2f

∂x2∂x2





=

[

8 4

4 4

]

independent of x

∇f (x0)⊤H∇f (x0) =
[

21 16
] [

8 4

4 4

] [

21

16

]

=

[

21 16
] [

232

148

]

= 7240

α⋆ =
697

7240

This is exactly the result we obtained by minimizing f (α).
Because the formula for dS is not specific to a particular problem, we can encapsulate

the full-step steepest-descent algorithm in the general-purpose routine sdfs.m listed
on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.6.1 Error Curve 361

function [xstar,kp]=sdfs(xzero,kmax,epz,grd,hsn)
xk=xzero;
for kp=1:kmax

% find the uphill direction
g=grd(xk);
if(norm(g) <= epz) break; end

% find the full steepest-descent step downhill
H=hsn(xk);
astar=(g’*g)/(g’*H*g);
d=-astar*g;

% take the full step
xk=xk+d;

end
xstar=xk;

end

Using this routine we can apply the algorithm to any problem for which we have MATLAB

functions that compute the gradient and Hessian. For the gns problem those are gnsg.m

and gnsh.m, listed in §10.4. Here kp numbers steps, of which there are 12 (see §28.4.3).

octave:1> [xstar,kp]=sdfs([2;2],20,1e-6,@gnsg,@gnsh)
xstar =

0.75000
-0.75000

kp = 12
octave:2> quit

10.6 Convergence

Steepest descent is clearly faster than pure random search, but just how fast is it? Because
the gns problem is quadratic, the full-step and optimal-step versions of steepest descent
generate the same sequence of points xk and we can use either to measure the algorithm’s
order of convergence.

10.6.1 Error Curve

The program on the next page uses sdfs in such a way that each iterate in the solution
process can be captured. It begins 4-6 by defining the starting and optimal points for the
problem and setting a tolerance too small to be achieved in the allowed iterations. Then 9 it
sets x to the starting point and 10-14 invokes sdfs 20 times, each time for a single iteration.
An important property of sdfs is that it is serially reusable [21, p47]; its local variables
are not saved from one invocation to the next, so it has no memory. Each invocation of
sdfs just continues the solution process from the current xzero for kmax iterations or until
convergence is achieved, so in sdconv.m each pass through the loop 10-14 replaces xk by
xk+1. This is a programming strategy that we will use throughout the book to study the
behavior of an optimization algorithm that is implemented in a MATLAB routine.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

362 Convergence

1 % sdconv.m: plot error in gns solution by steepest descent
2 clear; clf; set(gca,’FontSize’,30)
3
4 xzero=[2;2];
5 xstar=[0.75;-0.75];
6 epz=1e-15;
7
8 % generate the iterates and compute the errors
9 x=xzero;
10 for k=1:20
11 x=sdfs(x,1,epz,@gnsg,@gnsh);
12 error(k)=norm(x-xstar)/norm(xzero-xstar);
13 iters(k)=k;
14 end
15
16 % plot log error versus iterations
17 hold on
18 semilogy(iters,error,’o’)
19 semilogy([0,20],[1,error(20)])
20 hold off
21 print -deps -solid sdconv.eps
22 c=10^(log10(error(20))/20)

The solution error ek/e0 is saved 12 at each iteration along with the iteration count k 13 .
Then 18 the log relative error log10(ek/e0) is plotted as a function of k. When sdconv.m is
run it produces the graph below. These data clearly fall on a straight line, which has the
equation log10(ek/e0) = k log10 c that we derived in §9.2 (also see Exercise 10.9.20).

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 5 10 15 20

e k
/e

0

k

Thus the steepest-descent algorithm has order of convergence r = 1, also called first-order
or linear convergence. The left end of the line in the graph above is at (0, 100) because of
the definition of the log relative error, and its other end, at (20, error(20)), determines the
convergence constant c for the gns problem.

c = 10log10(error(20))/20 ≈ 0.21173

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.6.2 Bad Conditioning 363

This number, which is printed 22 by sdconv.m, corresponds to the log relative error of
−13.484 achieved at k=20. The equation of the error curve is therefore

log10(ek/e0) ≈ k log10(0.21173) ≈ −0.67422k

or ek ≈ e0 × 0.21173k. This is far better than the sublinear convergence we observed for pure
random search.

10.6.2 Bad Conditioning

Now that we have sdfs.m we might hope to solve the rb problem of §9.1 quickly too. Here
is what happens when we try.

octave:2> xstar=sdfs([-1.2;1],2,10,1e-6,@rbg,@rbh)
xstar =

-1.0111
1.0283

octave:3> xstar=sdfs([-1.2;1],2,100,1e-6,@rbg,@rbh)
xstar =

-0.80701
0.65171

octave:4> xstar=sdfs([-1.2;1],2,1000,1e-6,@rbg,@rbh)
xstar =

-1.5210
2.3004

octave:5> xstar=sdfs([-1.2;1],2,10000,1e-6,@rbg,@rbh)
xstar =

1.00000
1.00000

octave:6> quit

The full-step version of steepest descent can solve the rb problem, but only if it is permitted
to use a huge number of iterations. It can be shown [4, p407] [2, §1.3.2] that when an exact
line search is used the convergence constant for steepest descent has the upper bound

c ≤
[

κ − 1
κ + 1

]2

where κ is the condition number of the Hessian matrix at the optimal point,

κ =
∣
∣
∣

∣
∣
∣ H(x⋆)

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣
[

H(x⋆)
]−1 ∣∣

∣

∣
∣
∣ ≥ 1.

The condition number [20, §8.3] tells how close to singular a matrix is (I will have much
more to say about matrix conditioning in §18.4.2). If κ(H) is close to 1 then H is said to

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

364 Convergence

be well-conditioned. For example, if H = I then κ(H) = 1, c = 0, and steepest descent
converges in one iteration. Unfortunately, κ(H) is often much bigger than 1, and then c

might be only a little less than 1 so that steepest descent converges very slowly. In fact, the
algorithm can converge so slowly that ||xk+1 − xk|| becomes numerically zero, so that the xk

stop changing long before they get close to x⋆. One of the things that makes the rb problem
useful for testing is that H(x) is badly conditioned at x⋆ (see Exercise 10.9.21) and that
accounts for the poor performance of steepest descent on this problem. Our experiment used
the full step rather than an exact line search, so the convergence constant of the algorithm
might have been even worse (i.e., higher) than the bound stated above.

The bad conditioning of the rb problem’s Hessian near x⋆ corresponds geometrically to
the placement of that point in a long thin valley, which might therefore be regarded as a
“valley of the shadow of death” for steepest descent and, as we shall see, for other algorithms.

10.6.3 Vector and Matrix Norms

Ever since §3 I have used the notation ||x|| to denote the length of a vector. More generally,
a norm is a function that maps each element of a vector space to a scalar and has these
properties.

||x|| ≥ 0 with equality if and only if x = 0

||ax|| = |a| ||x|| for any scalar a

||x + y|| ≤ ||x|| + ||y|| triangle inequality

I will always use | • | to denote absolute value and || • || to denote a norm.

Norms of vectors. For x ∈ Rn the norms that are most frequently useful in optimization
are these.

||x|| = ||x||2 = +

√√
n∑

j=1

x2
j
= +
√
x⊤x ||x||1 =

n∑

j=1

|x j| ||x||∞ = max
j
{|x j|}

The subscript 2 denotes the Euclidean norm or inner-product norm. If x ∈ R1 and
f (x) is Lebesgue-integrable on an interval I, or f ∈ L(I), and if also f 2 ∈ L(I) then < f , f>=
∫

I
[f (x)]2 dx is the inner product of f (x) with itself and || f ||2 =

√

< f , f > is called the L2 norm
of f . Analogously if x ∈ Rn and f (x) = x, then < f , f>= x⊤x is the inner product of x with
itself, and

√
x⊤x is also called the L2 norm or just the 2-norm of x [8, §10.21].

Following this terminology, the sum of absolute values is often called the L1 norm or the
1-norm and the max-norm is also called the L∞ norm or the infinity-norm. When no
subscript appears on a norm, it is assumed to be the 2-norm.

In addition to the properties listed above as characteristic of any norm, the 2-norm has
several others [148, §9.1.2] given at the top of the next page. These assume that x ∈ Rn,
y ∈ Rn, and A ∈ Rm×n, and that 1 ∈ Rn is a vector of 1’s.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.6.3 Vector and Matrix Norms 365

||x||2 =
n∑

j=1

x2j = x⊤x

||x ± y||2 = ||x||2 + ||y||2 ± 2x⊤y

||Ax||2 = (Ax)⊤Ax = x⊤A⊤Ax

|x⊤y| ≤ ||x|| ||y|| Cauchy-Schwartz inequality

∇x||x|| = x/||x|| if ||x|| , 0

||a|| = |a| for any scalar a

||1|| = +
√
n

If ||x|| = 1 then x is a unit vector. The three norms listed above are related by the following
inequalities [67, §2.2-2.3] which hold for all vectors x ∈ Rn.

||x||2 ≤ ||x||1 ≤
√
n ||x||2

||x||∞ ≤ ||x||2 ≤
√
n ||x||∞

||x||∞ ≤ ||x||1 ≤ n ||x||∞

To find ||x|| with MATLAB or Octave use norm(x) or norm(x,2).

Norms of matrices. When A ∈ Rm×n the matrix norm that is most frequently useful in
optimization is [147, §7.2]

||A|| = ||A||2 = max
x,0

||Ax||2
||x||2

= +

√

λmax

where λmax is the maximum eigenvalue of A⊤A. (The matrix A⊤A is symmetric, so λmax is
always real and

√
λmax is the largest singular value of A.) From this definition we have the

inequality

||Ax|| ≤ ||A|| ||x||

for all x ∈ Rn, with equality holding for at least one nonzero x. If B ∈ Rn×q (i.e., if the matrix
product AB is conformable) then

||AB|| ≤ ||A|| ||B||

and if C ∈ Rm×n (i.e., if C has the same size as A) then

||(A + C)|| ≤ ||A|| + ||C||.

To find ||A|| with MATLAB or Octave use norm(A) or norm(A,2).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

366 Steepest Descent

10.7 Local Minima

The rb problem and the gns problem have n = 2, so for each we were able to draw a contour
diagram and know that the point we identified as x⋆ is the global minimum. If n > 2, how
can we tell whether a given point x̄ is any kind of minimum?

Since §8 we have made use of the fact that if f (x) is smooth and x̄ ∈ R1 is a minimizing
point, then d f /dx at that point is zero. In higher dimensions, if x̄ ∈ Rn is a minimizing point
then for j = 1 . . . n each of the partial derivatives ∂ f /∂x j must be zero there. In a graph of
f (x) this makes the tangent hyperplane to the function at x̄ horizontal.

The graph plotted below, which is of f (r) = 14
5
r2− 5

14
r4+1 where r =

√

(x1 − 2)2 + (x2 − 2)2,
looks like an inverted sombrero. For clarity only a single cross section is drawn, but rotated
about a vertical axis through x̄ it describes a ridge running around the top of the figure.

 0

 1

 2

 3

 4 0

 1

 2

 3

 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

f (x)

x1 x2

•

x̂

∂ f /∂
x2 =

0

∂ f /∂x1 = 0

•
x̄

The hyperplane that is tangent (at the lower dot) to the graph over the minimizing point
x̄ intersects the x1— f (x) coordinate plane in a straight line whose slope is ∂f /∂x1 and the
x2— f (x) coordinate plane in a straight line whose slope is ∂f /∂x2. Because these lines are
horizontal, both partial derivatives are zero. This observation generalizes to Rn as follows
[1, p167] [5, p14] [4, p359].

Theorem: first-order necessary conditions

if f (x) is differentiable at x̄
x̄ is a local minimum

then ∇f (x̄) = 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.7 Local Minima 367

Any point x̄ where ∇f (x̄) = 0 is called a stationary point. Minima are stationary, but so are
maxima such as x̂ (and all of the other points around the ridge) in the figure. Depending on
the function it is also possible for the gradient to be zero at points that are neither maxima
nor minima (e.g., saddle points [161, p45-46]). Thus,

x̄ is a local minimum ⇒ ∇f (x̄) = 0

but ∇f (x̄) = 0 ⇒/ x̄ is a local minimum.

Since §8 we have also made use of the fact that if f (x) is smooth and x̄ ∈ R1 is a point where
d f /dx = 0, then whether x̄ is a minimizing point depends on the sign of d2f /dx2 there. In
higher dimensions, if x̄ ∈ Rn is a stationary point then whether it is a minimum depends on
the definiteness of the Hessian matrix at that point. A matrix M is [67, §4.2]

positive definite ⇔ w⊤Mw > 0 for all w , 0

positive semidefinite ⇔ w⊤Mw ≥ 0 for all w.

The results below [1, p168-169] [5, p15-16] [4, p359-360] summarize the classification of
stationary points based on the definiteness of the Hessian matrix.

Theorem: second-order necessary conditions

if f (x) is twice differentiable at x̄
x̄ is a local minimum

then H(x̄) is positive semidefinite

Theorem: strong second-order sufficient conditions

if f (x) is twice differentiable at x̄
∇f (x̄) = 0

H(x̄) is positive definite

then x̄ is a strict local minimum

The implications in these theorems go in only one direction, as illustrated by the classic
example of f (x) = x4. This function obviously has a strict local minimum at x̄ = 0, but
H(x̄) = [d2f /dx2]= 12x̄2 = 0 so its Hessian matrix is only positive semidefinite there. Thus,

∇f (x̄) = 0 and H(x̄) positive definite ⇒ x̄ is a strict local minimum

but x̄ a strict local minimum ⇒/ H(x̄) is positive definite.

If H(x) is only positive semidefinite it might still be possible to deduce that x̄ is a local
minimum, though not necessarily a strict one, by using the following result [3, p271] (also
see Exercise 10.9.37).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

368 Steepest Descent

Theorem: weak second-order sufficient conditions

if f (x) is twice differentiable
∇f (x̄) = 0

H(x) is positive semidefinite for all x ∈ Nε(x̄)
then x̄ is a local minimum

These results show by their one-directional and equivocal character that the theory of non-
linear programming has rather limited power. This impression will only be confirmed when
we study constrained optimization in §15 and §16, and might help to explain the practical
importance of numerical methods. However, the points that we identified graphically as
global minima for the gns and rb problems can at least be confirmed analytically to be local
minima by using the theorems stated above.

For the gns problem, f (x) = 4x21 + 2x
2
2 + 4x1x2 − 3x1 and x⋆ = [3

4
,−3

4
]⊤.

∇f (x) =




8x1 + 4x2 − 3

4x2 + 4x1




so ∇f (x⋆) =

[

0

0

]

and H =

[

8 4

4 4

]

This Hessian is independent of x, and using the definition above we can show that it is
positive definite.

w⊤Hw =
[

w1 w2

]
[

8 4

4 4

] [

w1

w2

]

= 8w2
1 + 8w1w2 + 4w

2
2 = 4w2

1 + (2w1 + 2w2)
2

The final expression is a sum of squares so it can’t be negative. The only way it could be
zero is if w1 = 0 and w2 = 0, but that is impossible if w , 0. Thus w⊤Hw > 0 for all w , 0.
We found that f (x) is twice differentiable, that ∇f (x⋆) = 0, and that H is positive definite, so
the strong second-order sufficient conditions are satisfied and x⋆ is a strict local minimum.

For the rb problem, f (x) = 100(x2 − x21)
2
+ (1 − x1)

2 and x⋆ = [1, 1]⊤.

∇f (x) =
[

−400x1(x2 − x21) − 2(1 − x1)

200(x2 − x21)

]

so ∇f (x⋆) =
[

0

0

]

H(x) =

[

−400x2 + 1200x21 + 2 −400x1
−400x1 200

]

so H(x⋆) =

[

802 −400
−400 200

]

This Hessian depends on x and is not positive definite everywhere (see §13.1). It is positive
definite at x⋆ (that is hard to show by using the definition, but easy using other techniques
you will learn in §11). The strong second-order sufficient conditions are therefore satisfied
at x⋆ for this problem too, so its x⋆ is also a strict local minimum.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.8 Open Questions 369

10.8 Open Questions

In this Chapter we developed our first practical algorithm for numerical optimization, dis-
covering along the way some important ideas about the theory of nonlinear programming.
I hope that you are curious rather than satisfied, because we have raised several questions
that remain to be answered.

• When n is bigger than 2 or 3, so that we cannot draw a contour diagram, can we ever
be sure that we have found a global minimizing point? If so, can we ever establish that
the global minimum is unique? The conditions you have learned so far, when they hold
at all, let us conclude only that a point is a local minimum.

• In using the steepest-descent algorithm, how can we find the optimal step length α⋆ if
we can’t solve df /dα = 0 analytically? We can of course use the full steepest-descent
step instead, but usually the optimal step is different and results in better performance.

• Might it be possible to avoid zigzagging or to get quadratic convergence by moving
from each xk in some direction other than that of the negative gradient? The picture
below shows some contours of the gns problem along with the normalized gradient at
x0 and the hyperplane to which ∇f (x0) is orthogonal.

-2

-1

0

1

2

3

-1 0 1 2 3 4

x2

x1

∇f (x0)/||∇ f (x0)||

ste
ep
est

θ

d

•x0

• x⋆

Any vector d in the halfspace where 90◦ < θ < 270◦, so that ∇f (x)⊤d < 0, is a descent

direction. Some descent directions result in a more direct path to x⋆ than others, and
for this problem the direction of the dashed line would take us there in just one step.

Each of the next three Chapters will take up one of these important questions.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

370 Steepest Descent

10.9 Exercises

10.9.1[E] A function f (x) : Rn → R1 descends most rapidly in what direction?

10.9.2[E] The quadratic Taylor series approximation to a function is discussed in §10.1.
(a) Write down the quadratic Taylor series approximation to f (x) = ex about the point x = 1.
(b) Write down the quadratic Taylor series approximation to f (x) = ex1x2 about the point
x = [1,−1]⊤.
10.9.3[E] What is necessary in order for the Hessian matrix of a function to be symmetric?

10.9.4[H] Consider the vectors x = [1, 2, 3]⊤ and y = [−1, 0, 2]⊤. (a) Compute x⊤y =
∑

x jy j.
(b) Find θ, the angle between x and y measured in the plane containing them both, and use
it to compute x⊤y = ||x|| × ||y|| × cos (θ).
10.9.5[E] Starting from the x1 found in §10.3, continue the steepest-descent process by
hand, finding d1, α1, and x2. Is f (x2) < f (x1)?

10.9.6[P] Modify the pseudocode given in §10.4 for the steepest-descent algorithm to keep
a record value and a record point.

10.9.7[E] Explain the difference between the min operator and the argmin operator. What
is argmin(min(f (α)))?

10.9.8[H] From the first expression given in §10.4 for f (x + αd), derive the second.

10.9.9[P] What do we mean by an algorithm’s convergence trajectory? Write a MATLAB

program that draws contours of the rb problem and plots over them the convergence tra-
jectory of record points generated by the pure random search algorithm when it is used to
solve that problem.

10.9.10[P] Revise the steep.m program of §10.4 to solve the gns problem from the start-
ing point [−1, 1]⊤, and use it to produce a graph showing the convergence trajectory. Are
successive steepest-descent steps still orthogonal?

10.9.11[P] Derive an algebraic formula for α⋆(x; d) for the rb problem, and modify steep.m
to use it. Hint: use Maple or Mathematica. Does the optimal-step steepest-descent algorithm
converge to x⋆ = [1, 1]⊤?

10.9.12[E] What is zigzagging, and why does it happen?

10.9.13[H] In the example of §10.4.0, the convergence trajectory of the optimal-step steepest-
descent algorithm is made up of steps each of which is orthogonal to the previous one.
(a) Why does that happen? (b) Does it happen even if f (x) is not quadratic? (c) Are suc-
cessive steps of the full-step steepest-descent algorithm also orthogonal?

10.9.14[H] Using the definition of the quadratic model function given in §10.5, find the q(x)
that approximates the objective function f (x) = 4x21 + 2x

2
2 + 4x1x2 − 3x1 of the gns problem.

Show that q(x) = f (x). Why are these functions equal?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.9 Exercises 371

10.9.15[E] The full step length α⋆ derived in §10.5 is usually not equal to 1. What must
be true of H in order for α⋆ to equal 1 exactly? What does that mean about f (x)? How
many iterations of the full-step steepest descent algorithm are required to minimize f (x)?

10.9.16[E] How does the convergence trajectory of the optimal-step steepest-descent algo-
rithm differ from that of the full-step steepest-descent algorithm when both are used to solve
the gns problem? Explain.

10.9.17[P] Use sdfs.m to solve the Himmelblau 28 problem [80, p428],

minimize f (x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2.

Start from x0 = [1, 1]⊤ and show that f (x⋆) = 0. Is the optimal point you found the only
point that yields f (x) = 0?

10.9.18[H] In §10.6.1 a programming strategy is described for testing an optimization
method that is implemented as a MATLAB function. (a) What is the purpose of using the
strategy that is described? (b) Explain the properties that the optimization routine must
have in order for the strategy to be used.

10.9.19[H] When the steepest-descent algorithm converges, it typically generates iterates
that yield an error curve having the formula ek = e0 × ck. (a) What is the algorithm’s
order of convergence? (b) Explain how to find the convergence constant c from experimental
measurements of the ek.

10.9.20[P] In §10.6.1 we drew a straight line through the data of log relative error versus k,
but half of the experimental points lie above the line. (a) Why is that? Experimenting with
steepest descent for minimizing some other quadratic test functions might shed light on this
question. (b) Why would it not make sense to displace the straight line to the right slightly
so that it passes between the data points, leaving half below and half above? (c) Does the
model that we proposed in §9.2 for explaining algorithm convergence make predictions that
are quantitatively perfect in every instance? If not, why not? Are its predictions useful
anyway? Explain.

10.9.21[P] In §10.6.2 we saw that steepest descent converges very slowly in solving the rb
problem; none of the digits in x1000 were correct, but in x10000 all six of the digits displayed
were correct. (a) Conduct your own experiments to determine the smallest number of itera-
tions k⋆ between 1000 and 10000 for which xk⋆ is correct to six digits. (b) Assuming linear
convergence, use your value of k⋆ to estimate the convergence constant c for this problem.
(c) Find the condition number κ of H(x⋆). (d) Compute an upper bound on the value of c
based on κ. Is the convergence constant you estimated experimentally less than or equal to
this upper bound? If not, suggest a possible reason why.

10.9.22[H] Show that steepest descent minimizes f (x) = x⊤x in one step. Explain how this
result follows from H(x⋆) for this problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

372 Steepest Descent

10.9.23[E] State the three properties that characterize every norm of a vector. State one
additional property that characterizes the Euclidean norm of a vector.

10.9.24[E] In §8.6.4 we studied LAV regression. Why is LAV regression sometimes referred
to as L1 regression? In LAV regression, how is the sum of the absolute values of the deviations
related to the square root of the sum of their squares?

10.9.25[P] Find the Euclidean norm of this matrix

A =

[

7 5

5 3

]

(a) as
√
λmax, where λmax is the maximum eigenvalue of A⊤A; (b) by using the MATLAB

norm() function.

10.9.26[H] Using the definition of a matrix norm, prove the inequality ||Ax|| ≤ ||A|| × ||x||.
10.9.27[E] Find matrices A and B such that ||AB|| ≤ ||A|| × ||B||.
10.9.28[E] What is true of a hyperplane that is tangent to the graph of a function at a
minimizing point? How is this related to the gradient of the function at that point?

10.9.29[E] What must be true at a stationary point?

10.9.30[E] If a matrix is positive definite, must it be positive semidefinite? If so, prove
that by using the definitions given in §10.7; if not, find a counterexample.

10.9.31[E] Prove that the identity matrix is positive definite, and that the zero matrix is
positive semidefinite; then write down a matrix that is neither.

10.9.32[E] Prove that if A and B are square matrices of the same size and both are positive
definite, then the matrix A + B is positive definite.

10.9.33[H] In §10.7 it is shown for the rb problem that

H(x⋆) =

[

802 −400
−400 200

]

.

Use the definition of a positive-definite matrix to prove that this Hessian matrix is positive
definite.

10.9.34[E] This Exercise asks you to recall the four theorems that are stated in §10.7,
ideally from memory without looking them up. (a) State the first-order necessary conditions.
(b) State the second-order necessary conditions. (c) State the strong second-order sufficient
conditions. (d) State the weak second-order sufficient conditions.

10.9.35[E] Provide a counterexample to show that if x̄ is a strict local minimum, H(x̄) need
not be positive definite. Then construct a function that has a strict local minimum where
the Hessian matrix is positive definite.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

10.9 Exercises 373

10.9.36[E] If ∇f (x̄) = 0, is it possible that x̄ is a local minimum? Is it certain? If x̄ is a
strict local minimum, is it possible that H(x̄) is positive definite? Is it certain? Explain the
difference between necessary conditions and sufficient conditions.

10.9.37[H] A truncated Taylor’s series is introduced in §10.1 to approximate f (x) near
x̄. Taylor’s theorem [110, p224-225] says that there exists a point between x and x̄, say
x̄ + θ(x − x̄) with θ ∈ [0, 1], such that if H(x) is evaluated there instead of at x̄, the quadratic
approximation to f is exact at x. Use Taylor’s theorem to prove the theorem of §10.7 about
the weak second-order sufficient conditions. Hint: suppose that H(x) is positive semidefinite
for all x ∈ Nε(x̄) and pick the point w ∈ Nε(x̄). Then use Taylor’s theorem and the definition
of a positive semidefinite matrix to show that f (w) ≥ f (x̄).

10.9.38[E] What is necessary in order for a vector p to be a descent direction? Show that
if θ is defined as in the graph of §10.8, ∇f (x)⊤d < 0 if and only if 90◦ < θ < 270◦.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11

Convexity

In §10.7 we saw that it is sometimes possible by using the second-order sufficient conditions
to establish analytically that a given x⋆ is a local minimizing point for an unconstrained
optimization problem. But in §9.3 we saw that it is possible for a nonlinear program to have
multiple local minima, some of which are not global minima. In this Chapter we will see that
if the objective has the global property of being a convex function then every minimizing
point x⋆ is a global minimum.

11.1 Convex Functions

Recall from §3.5 that a set S is convex if and only if for all ŵ and w̄

ŵ ∈ S
w̄ ∈ S

}

⇒ λŵ + (1 − λ)w̄ ∈ S for all λ ∈ [0, 1].

In the figure below, for any distinct x̂ and x̄ the points ŵ = [x̂, f (x̂)]⊤ and w̄ = [x̄, f (x̄)]⊤ are
in epi(f) and so is the chord between them. Thus λŵ+ (1− λ)w̄ ∈ epi(f) for all λ ∈ [0, 1] and
epi(f) is a convex set.

0

5

10

15

20

25

30

0 2 4 6 8 10

f (x) convex

x

epi(f)

x̂ x̄

•ŵ

•w̄
λ f (x̂) + (1 − λ) f (x̄)

f (λx̂ + [1 − λ]x̄)

λx̂ + (1 − λ)x̄

In general the set
epi(f) =

{

[x, y]⊤ ∈ Rn+1
∣
∣
∣ y ≥ f (x)

}

is called the epigraph of f (x), and [1, Theorem 3.2.2] it is a convex set if and only if f (x) is
a convex function. Thus the function f (x) = (x− 3)2 + 2 graphed above is a convex function.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

376 Convexity

The epigraph of g(x) = 1
100

(3
2
x − 6)4 − 2

3
(3
2
x − 5)2 + 25 pictured below is not a convex set, so

g(x) is not a convex function.

0

5

10

15

20

25

30

0 2 4 6 8 10

g(x) nonconvex

x

epi(g)

x̂ x̄

chord below
function

For all points on a chord between (x̂, f (x̂)) and (x̄, f (x̄)) to be in epi(f), the graph of the
function must be below (or on) the chord, as in the graph on the previous page. In other
words, the function value at any convex combination of the points must be no greater than
the same convex combination of the function values at the points, or

f (λx̂ + [1 − λ]x̄)
value of function

≤ λ f (x̂) + (1 − λ) f (x̄)
height of chord

for all x̂, x̄, and λ ∈ [0, 1].

We will take this as the definition of a convex function. The chord between (x̂, g(x̂)) and
(x̄, g(x̄)) in the picture above has some points below the graph of the function, so using this
definition we see once again that g(x) is nonconvex.

If the boxed inequality is satisfied strictly for x̂ , x̄ then f (x) is strictly convex. From
this definition, a function that is strictly convex is also convex. If f (x) is a convex function
then − f (x) is a concave function; if f (x) is strictly convex then − f (x) is strictly concave.
Most functions are neither convex nor concave, but a linear function is both.

First-year calculus textbooks (e.g., [146, p275]) call convex functions “concave up” and
concave functions “concave down,” but this terminology is seldom used anywhere else so I
will avoid it. We will likewise have no use for the notion that a set might be concave like a
mirror or a lens, so our sets will be either convex or nonconvex.

11.2 The Support Inequality

Our definition of convexity says that the graph of the function is not above any chord,
but it is also not below any tangent [4, §2.3.1] [1, Theorem 3.3.3]. If a convex function is

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.2 The Support Inequality 377

smooth, this means that its graph is not below any first-order Taylor series approximation.
By algebraically rearranging the §11.1 definition of a convex function we find

f (λx̂ + [1 − λ]x̄) ≤ λ f (x̂) + (1 − λ) f (x̄)
f (x̄ + λ[x̂ − x̄]) ≤ λ f (x̂) + f (x̄) − λ f (x̄)

f (x̄ + λ[x̂ − x̄]) − f (x̄) ≤ λ[f (x̂) − f (x̄)]

f (x̄ + λa) − f (x̄) ≤ λ[f (x̂) − f (x̄)]

where a = [x̂ − x̄] , 0. Expanding the first term in the last line by Taylor’s series,

f (x̄ + λa) = f (x̄) + λa⊤∇f (x̄) + higher order terms
so

f (x̄) + λa⊤∇f (x̄) + higher order terms − f (x̄) ≤ λ[f (x̂) − f (x̄)].

or, for λ > 0,

a⊤∇f (x̄) + terms of order λ and higher ≤ f (x̂) − f (x̄).

Now in the limit as λ→ 0 we find at x̄ that

f (x̂) ≥ f (x̄) + ∇f (x̄)⊤(x̂ − x̄).

If f (x) is a convex function this inequality must be satisfied for all x̂ and x̄. Conversely, if
f (x) satisfies this inequality for all x̂ and x̄ then it must be a convex function. To see this,
let y = λx̂ + (1 − λ)x̄. Then

f (x̂) ≥ f (y) + ∇f (y)⊤(x̂ − y)
f (x̄) ≥ f (y) + ∇f (y)⊤(x̄ − y).

Multiplying the first inequality through by λ and the second through by (1 − λ) and adding
them together we get

λ f (x̂) + (1 − λ) f (x̄) ≥ f (y) + ∇f (y)⊤(λx̂ + (1 − λ)x̄ − y) = f (y) = f (λx̂ + [1 − λ]x̄)

which is the definition we began with. Thus a function f (x) is convex if and only if

f (x)
value of function

≥ f (x̄) + ∇f (x̄)⊤(x − x̄)
height of tangent

for all x, x̄

This support inequality plays an important role in the theory of nonlinear programming
as another characterization of convex functions. If f (x) is strictly convex then the support
inequality holds strictly for all x , x̄.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

378 Convexity

For the convex function f (x) = (x − 3)2 + 2 we find ∇f (x̄) = 2x̄ − 6, so the equation of a line
tangent to the graph of the function at x̄ is

y = (x̄ − 3)2 + 2 + (2x̄ − 6)(x − x̄).

For example, at x̄ = 5 the tangent line is y = 4x − 14 as shown on the left below.

0

5

10

15

20

25

30

0 2 4 6 8 10

y

x

y = (x − 3)2 + 2

y
=
4x
− 1
4

•

x̄

x

y

y = |x|

a supporting
hyperplane

Every hyperplane tangent to the graph of a convex function is a supporting hyperplane

to the epigraph of the function. By using the support inequality it can also be shown (see
Exercise 11.7.8) that if f (x) is smooth then it is convex if and only if

[∇f (x2) − ∇f (x1)]⊤(x2 − x1) ≥ 0.

Every convex function is continuous on the interior of its domain [1, Theorem 3.1.3]. In the
graph on the right, y = |x | is convex so it is continuous on R1, but it is not differentiable
at the origin. However, it still has supporting hyperplanes at that point (one is shown) for
which f (x) ≥ f (x̄) + ξξξ⊤(x − x̄). Each such vector ξξξ is called a subgradient of f (x) [1, §3.2.3].

Most optimization algorithms can be proved to converge only if it is assumed that the
objective and constraint functions of the nonlinear program are all convex. While some
important applications yield such convex programs, many others unfortunately do not.

11.3 Global Minima

At a local minimum x⋆, ∇f (x⋆) = 0 by the first-order necessary conditions of §9.3, so the
supporting hyperplane at x⋆ is horizontal. If f (x) is a convex function then by the support
inequality we have f (x) ≥ f (x⋆) for all x, so x⋆ is also a global minimum. If f (x) is a strictly

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.4 Testing Convexity Using Hessian Submatrices 379

convex function, then by the strict version of the support inequality x⋆ is the unique global
minimum. These results are summarized in the following theorems [1, Theorem 3.4.2].

Theorem: global minimizers

if ∇f (x̄) = 0

f (x) is a convex function
then x̄ is a global minimum

Theorem: unique global minimizer

if ∇f (x̄) = 0

f (x) is a strictly convex function
then x̄ is the unique global minimum

In the graph of the convex function f (x) = (x−3)2+2, the slope of a tangent line increases
as x increases so

d2f

dx2
≥ 0 for all x.

In general, if f (x) : Rn → R1 has a positive semidefinite Hessian matrix then it is a convex
function [1, Theorem 3.3.7], and if its Hessian matrix is positive definite then it is a strictly
convex function. The first of these implications also works in the other direction, but the
second does not; f (x) = x4 is strictly convex, but H(x) = ∂2f /∂x2 = 12x2 = 0 for x = 0 so it is
only positive semidefinite (we first encountered this counterexample in §10.7). Thus

H(x) is positive semidefinite for all x ⇔ f (x) is convex

H(x) is positive definite for all x ⇒ f (x) is strictly convex

f (x) is strictly convex ⇒/ H(x) is positive definite for all x.

11.4 Testing Convexity Using Hessian Submatrices

In §11.1 we found that f (x) is a convex function if epi(f) is a convex set; then f (x) satisfies
the defining inequality that requires every chord to be above or on the graph. In §11.2 we
saw that f (x) is a convex function if it satisfies either form of the support inequality. Each of
these characterizations can sometimes be used to show that a given function is convex, but
often it is easier to find out by checking the definiteness of the function’s Hessian matrix.
There are several ways to do that.

Recall from §10.7 that H is

positive semidefinite ⇔ w⊤Hw ≥ 0 for all w

positive definite ⇔ w⊤Hw > 0 for all w , 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

380 Convexity

It is also true that if the second partials that make up the Hessian are continuous then the
matrix is symmetric, its eigenvalues are real, and H is

positive semidefinite ⇔ every eigenvalue is ≥ 0

positive definite ⇔ every eigenvalue is > 0.

A third test that is usually easier to perform by hand is based on the determinants of
submatrices [3, §9.5] [110, §2.2]. A principal submatrix of an n × n matrix is obtained by
removing r ∈ [0, n − 1] of the rows along with the columns having the same indices as those
rows. Notice that a principal submatrix need not be comprised of elements from adjacent
rows and columns of the original matrix. A leading principal submatrix is obtained by
removing the last r rows and columns of the original matrix, so that the (1, 1) element of
the submatrix is the (1, 1) element of the original matrix and the submatrix is comprised
of elements from adjacent rows and columns of the original matrix. The original matrix is
itself a principal submatrix and a leading principal submatrix (corresponding to r = 0). A
minor of a square matrix is the determinant of a square submatrix. By computing minors
we can make use of the fact that if H is symmetric then it is

positive semidefinite ⇔ all of its principal minors are ≥ 0

positive definite ⇔ all of its leading principal minors are > 0.

Consider the example of determining whether the function f (x) = 2x41 + 3x
2
2 + x

2
3 − 2x1 − 2x2x3

is convex. Computing partial derivatives we find that

∂ f

∂x1
= 8x31 − 2

∂ f

∂x2
= 6x2 − 2x3

∂ f

∂x3
= 2x3 − 2x2

so

H(x) =





24x21 0 0

0 6 −2
0 −2 2




.

If the leading principal minors are all positive then H is positive definite and also positive
semidefinite; if any of them are negative then H is certainly not positive semidefinite. Thus
it makes sense to check those minors first.

To avoid confusion with the absolute value function, I will use the MATLAB notation
det() to denote the determinant of a scalar.

det(24x21) = 24x21 ≥ 0

∣
∣
∣
∣
∣
∣

24x21 0

0 6

∣
∣
∣
∣
∣
∣
= 144x21 ≥ 0

∣
∣
∣
∣
∣
∣
∣
∣

24x21 0 0

0 6 −2
0 −2 2

∣
∣
∣
∣
∣
∣
∣
∣

= 192x21 ≥ 0

The leading principal minors are all nonnegative, so to decide about H we must compute the
other principal minors, of which there are four. The rightmost principal minor listed on the
next page is made up of the corner elements (1,1), (1,3), (3,1), and (3,3) of the full matrix.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.4.1 Finding the Determinant of a Matrix 381

det(6) = 6 > 0 det(2) = 2 > 0

∣
∣
∣
∣
∣
∣

6 −2
−2 2

∣
∣
∣
∣
∣
∣
= 8 > 0

∣
∣
∣
∣
∣
∣

24x21 0

0 2

∣
∣
∣
∣
∣
∣
= 48x21 ≥ 0

All of the principal minors are nonnegative, so H(x) is positive semidefinite for all x, and
f (x) is convex but not strictly convex.

11.4.1 Finding the Determinant of a Matrix

To compute the determinants in the example above I used an algorithm called expansion

by minors. The smallest possible submatrix is a single element, so the smallest minor is
the determinant of a scalar and that is just the scalar.

octave:1> d=det(5)
d = 5
octave:2> d=det(-5)
d = -5

The determinant of a 2 × 2 matrix A is a11a22 − a21a12:

|A| =
∣
∣
∣
∣
∣
∣

1 2

3 4

∣
∣
∣
∣
∣
∣
= 1 × 4 − 3 × 2 = −2

octave:3> A=[1,2;3,4];
octave:4> d=det(A)
d = -2

The determinant of a 3 × 3 matrix B can be found by evaluating three 2 × 2 minors.

|B| =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 3

4 5 6

7 8 9

∣
∣
∣
∣
∣
∣
∣
∣

= 1 ×
∣
∣
∣
∣
∣
∣

5 6

8 9

∣
∣
∣
∣
∣
∣
− 4 ×

∣
∣
∣
∣
∣
∣

2 3

8 9

∣
∣
∣
∣
∣
∣
+ 7 ×

∣
∣
∣
∣
∣
∣

2 3

5 6

∣
∣
∣
∣
∣
∣
= 1(−3) − 4(−6) + 7(−3) = 0

octave:4> B=[1,2,3;4,5,6;7,8,9];
octave:5> det(B)
ans = -1.3326e-15

Here I formed submatrices by deleting the first column and each row in turn, multiplied each
minor by the first-column element in the deleted row, and alternately added and subtracted
the resulting terms. Now each of the 2 × 2 determinants can be found as described above.

This approach can be used to reduce the problem of finding an n × n determinant to the
problem of finding n determinants each n − 1 elements square. Here is a 4 × 4 example.

|C| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 ×

∣
∣
∣
∣
∣
∣
∣
∣

6 7 8

10 11 12

14 15 16

∣
∣
∣
∣
∣
∣
∣
∣

− 5 ×

∣
∣
∣
∣
∣
∣
∣
∣

2 3 4

10 11 12

14 15 16

∣
∣
∣
∣
∣
∣
∣
∣

+ 9 ×

∣
∣
∣
∣
∣
∣
∣
∣

2 3 4

6 7 8

14 15 16

∣
∣
∣
∣
∣
∣
∣
∣

− 13 ×

∣
∣
∣
∣
∣
∣
∣
∣

2 3 4

6 7 8

10 11 12

∣
∣
∣
∣
∣
∣
∣
∣

Notice the alternation of + and − signs in the combination of the 3 × 3 determinants.
Expansion by minors is a practical way to find the determinants of small matrices, and

it can be used even if the matrix elements are functions of x as in our first example. But

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

382 Testing Convexity Using Hessian Submatrices

the bookkeeping and arithmetic grow combinatorially as n increases. Computer programs
such as MATLAB compute the determinant of a matrix M by finding its lower and upper
triangular factors L and U and then using

|M| = |LU| = |L||U|.

The determinant of a triangular matrix is just the product of its diagonals, so the work
required by this approach is mainly in the matrix factorization and therefore grows as n3

rather than n! [67, p96]. Whether the matrix M is symmetric does not matter for expansion
by minors but does determine what algorithm is used to compute the factors L and U.

11.4.2 Finding the Principal Minors of a Matrix

We saw above that we can determine whether a matrix is positive definite by evaluating
only its leading principal minors, of which there are just n. The lpm.m routine on the left
performs this calculation for a matrix, assumed symmetric, whose entries are numbers.

function v=lpm(M)
% find the leading principal minors of a matrix

n=size(M,1);
for r=0:n-1

v(n-r)=det(M(1:n-r,1:n-r));
end

end

octave:1> M=[10,5,0;5,15,5;0,5,2]
M =

10 5 0
5 15 5
0 5 2

octave:2> lpm(M)
ans =

1.0000e+01 1.2500e+02 1.3553e-17

octave:3> quit

The Octave session on the right shows the leading principal minors found by lpm for the
matrix M. The determinant of the whole matrix, reported here as a tiny number, is actually
zero, so this test does not resolve the definiteness of M.

To test all of the principal minors of an n × n matrix we must generate the submatrices
obtained by removing all possible combinations of r ∈ [0, n − 1] rows and the same columns.
Our example matrix M with n = 3 has these 2n − 1 = 7 principal minors.

∣
∣
∣
∣
∣
∣
∣
∣

10 5 0

5 15 5

0 5 2

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

10 5

5 15

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

15 5

5 2

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

10 0

0 2

∣
∣
∣
∣
∣
∣

det(10) det(15) det(2)

Suppose we denote a matrix row (and matrix column with the same index) that is retained
in a submatrix by marking it with a one, and a row (and column with the same index) that
is removed by marking it with a zero. Using this scheme the submatrices in the minors above
could be specified by the following 3-bit strings.

111 110 011 101 100 010 001

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.4.2 Finding the Principal Minors of a Matrix 383

These are all of the possible 3-bit binary numbers except 000, or the numbers i=1:(2^n)-1.
The apm.m routine below generates the 2n − 1 bit strings representing the principal subma-
trices of a given n × n matrix M, deletes the appropriate rows and columns to generate each
submatrix, and finds the determinant of each submatrix.

1 function v=apm(M)
2 % find ALL principal minors of a matrix
3
4 % consider each principal submatrix
5 n=size(M,1);
6 for i=1:(2^n)-1
7 A=M;
8 s=n;
9 j=uint32(i);
10
11 % delete the rows and columns specified by the bit pattern
12 for k=1:n
13 p=bitget(j,1);
14 if(p == 0)
15 % decrement the size of the submatrix
16 s=s-1;
17
18 % delete row n-k+1 by copying rows up
19 for r=n-k+1:s
20 A(r,[1:n])=A(r+1,[1:n]);
21 end
22 % and zeroing out the bottom nonzero row
23 A(s+1,[1:n])=0;
24
25 % delete column n-k+1 by copying columns left
26 for c=n-k+1:s
27 A([1:n],c)=A([1:n],c+1);
28 end
29 % and zeroing out the rightmost nonzero column
30 A([1:n],s+1)=0;
31 end
32 j=bitshift(j,-1);
33 end
34
35 % the minor is the determinant of the submatrix
36 v(i)=det(A([1:s],[1:s]));
37 end
38 end

The built-in function uint32 9 converts its argument to an unsigned 32-bit integer; bitget
13 returns the value (0 or 1) of the rightmost bit of its 32-bit unsigned integer argument;
and bitshift 32 shifts its argument bitstring (here to the right by 1 bit). By using these
functions the routine examines the bits of the bit string that represents each submatrix. If a
row (and the corresponding column) are not included in the submatrix, it copies rows below
that row up 18-21 and columns to the right of that column left 25-28 overwriting and thus
removing the omitted row and column. Each such copying leaves a duplicate row at the
bottom 23 or column at the right 30 which is then set to zero.

The Octave session on the next page shows the principal minors for our n = 3 example,
which are found and reported by apm.m in the order 001, 010, 011, 100, 101, 111.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

384 Convexity

octave:1> M=[10,5,0;5,15,5;0,5,2]
M =

10 5 0
5 15 5
0 5 2

octave:2> apm(M)
ans =

2.0000e+00 1.5000e+01 5.0000e+00 1.0000e+01 2.0000e+01 1.2500e+02 1.3553e-17

octave:3> quit

Thus, for example, the third value reported is the determinant of the submatrix composed
of rows and columns 2 and 3 of M,

∣
∣
∣
∣
∣
∣

15 5

5 2

∣
∣
∣
∣
∣
∣
= 30 − 25 = 5.

Our scheme for representing which rows and columns are included in a given submatrix
works only for n up to 32, at which size there are 232 − 1 ≈ 4.3 × 109 principal submatrices
to check. Evaluating that number of determinants (many of them large) and reporting
their values would not be very practical. While checking minors is easier than computing
eigenvalues if the matrix is small, the opposite is true if the matrix is large, even though
finding the eigenvalues of a large matrix also takes a lot of work.

11.5 Testing Convexity Using Hessian Eigenvalues

Recall from §11.4 that a symmetric matrix H is positive semidefinite if and only if its eigen-
values are all nonnegative, and positive definite if and only if they are strictly positive. The
eigenvalues λ1 . . . λn of a square matrix A are [147, §5] the solutions of its characteristic

equation
|A − λI| = 0.

The matrix on the left below has the characteristic equation on the right. The roots of the
quadratic are λ1 ≈ 6.8 and λ2 ≈ 1.2, so this matrix is positive definite.

A =

[

6 −2
−2 2

] ∣
∣
∣
∣
∣
∣

6 − λ −2
−2 2 − λ

∣
∣
∣
∣
∣
∣
= (6 − λ)(2 − λ) − 4 = 0

12 − 8λ + λ2 − 4 = 0

λ2 − 8λ + 8 = 0

λ = 1
2
(8 ± 4

√
2)

To solve the characteristic equation of a matrix that is n × n we need to find the roots
of a polynomial of order n, and that cannot in general be done in closed form for n > 4.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.5.1 When the Hessian is Numbers 385

Unfortunately, finding all of the zeros of a high-order polynomial numerically by näıvely
using an algorithm such as bisection or Newton’s method is notoriously difficult [60, p169].

Finding the eigenvalues of even a small matrix can be awkward if its elements are not
numbers. If f (x) is quadratic then its Hessian is constant, but in general H(x) really does
depend on x. The function on the left below is a posynomial [3, §9.8] and therefore convex
for x > 0, but the characteristic equation of its Hessian, given on the right, is unwieldy.

f (x) = x−11 x
− 1

2

2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2x−31 x
− 1

2

2 − λ 1
2
x−21 x

− 3
2

2

1
2
x−21 x

− 3
2

2
3
4
x
− 5

2

2
x−11 − λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

If we found expressions for λ1(x) and λ2(x), it would be necessary to show that they are
nonnegative for all x > 0 in order to prove that f (x) is convex there, a feat of algebra worthy
of Maple. Of course the objective of a nonlinear program can have a Hessian that is both
large and comprised of algebraic expressions.

It should be clear from this discussion that using eigenvalues to test the convexity of a
function often calls for a certain amount of finesse. Fortunately there are some methods that
can be used to investigate the definiteness of large matrices whether they contain numbers
or formulas.

11.5.1 When the Hessian is Numbers

If H has elements that are numbers, a practical way to find its eigenvalues is with a numerical
method that is custom-made for the task. MATLAB, for example, uses Hessenberg and Shur
decompositions [150, §25] that avoid the characteristic equation altogether.

octave:1> M=[10,5,0;5,15,5;0,5,2]
M =

10 5 0
5 15 5
0 5 2

octave:2> lambda=eig(M)
lambda =

5.7988e-20
7.8211e+00
1.9179e+01

This is the same matrix we studied in §11.4.2, and here we find once again that it is positive
semidefinite. Two of the eigenvalues are positive and the third is, within roundoff error,
zero.

When we decided on the definiteness of M just now we paid attention only to the signs
of the eigenvalues, not to their values. The Gerschgorin circle theorem [147, p289]

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

386 Testing Convexity Using Hessian Eigenvalues

states that every eigenvalue of H lies in a union of circles C1 . . .Cn in the complex plane (a
nonsymmetric matrix can have complex eigenvalues). Circle Ci is centered at z = hii + 0

√
−1

and its radius is the sum of the absolute values of the other elements in row i. The Gerschgorin
circles for the above matrix M are shown below. C1 is centered at 10 with a radius of 5, C2 is
centered at 15 with a radius of 10, and is C3 centered at 2 with a radius of 5. The eigenvalues
reported by MATLAB, λ1 ≈ 0, λ2 ≈ 7.82, and λ3 ≈ 19.2, are marked with • dots and can be
seen to lie along the real axis within the union of the Gerschgorin circles.

√
−1

1 Re(z)

Im(z)

C2

C1C3

•
λ1

•
λ2

•
λ3

If each row of H has hii >
∑

j,i |hi j|, so that the matrix is diagonally dominant, then
every eigenvalue is positive and H is positive definite; if each row of H has hii <

∑

j,i |hi j|, then
all of the eigenvalues must be negative and H is surely not positive definite. In these cases the
definiteness of H can be determined simply by checking for diagonal dominance. Diagonal
dominance requires hii > 0 so it makes sense to check that condition before bothering to add
up the absolute values of the off-diagonal elements.

If in some row hii is equal to the sum of the absolute values of the off-diagonal elements,
then one of the circles is tangent to the imaginary axis and one of the eigenvalues might be
zero. If the circles lie otherwise in the right half-plane the matrix is positive semidefinite and
might be positive definite; if the circles lie otherwise in the left half-plane the matrix might
be positive semidefinite but is certainly not positive definite.

If a circle overlaps the imaginary axis, as in the picture above, then the Gerschgorin test
is equivocal so if we want to use eigenvalues we can’t avoid computing them.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.5.2 When the Hessian is Formulas 387

11.5.2 When the Hessian is Formulas

If the elements of the Hessian matrix are functions of x rather than numbers, it might still be
possible to determine the definiteness ofH by computing eigenvalues even if the characteristic
equation |H − λI| = 0 can’t be solved analytically for λ(x).

The convcheck.m routine listed below selects points at random within the variable
bounds 8-11 as in pure random search (see prs.m in §9.1). At each random point the
routine 12 invokes hsn to compute the Hessian matrix there and 13 finds its eigenvalues.
If an eigenvalue is 15 numerically zero the return parameter flag is 16 set to zero and the
checking of the eigenvalues continues. If an eigenvalue is 19 numerically negative flag is 20

set to -1 and there is no need to check further. On return flag=1 6 if no point was found
where the Hessian was not positive definite, flag=0 if the Hessian was positive semidefinite
at xbad, and flag=-1 if the Hessian was not even positive semidefinite at xbad.

1 % convcheck.m: search for a point where H(x) is not positive definite
2 function [flag,xbad]=convcheck(n,xl,xh,hsn)
3
4 x=zeros(n,1); % make x a column vector
5 xbad=x; % return xbad=0 if none found
6 flag=+1; % assume positive definite
7 for k=1:10^(n+1) % inspect many points
8 u=rand(n,1); % generate a random n-vector
9 for j=1:n % select
10 x(j)=xl(j)+u(j)*(xh(j)-xl(j)); % a random point
11 end % within the bounds
12 H=hsn(x); % find the Hessian there
13 ev=eig(H); % find its eigenvalues
14 for j=1:n % check them all
15 if(abs(ev(j)) < 1e-8) % if small assume zero
16 flag=0; % which makes H psd
17 xbad=x; % at this x
18 end
19 if(ev(j) < 1e-8) % if negative
20 flag=-1; % that makes H not psd
21 xbad=x; % at this x
22 return % and we are done
23 end
24 end
25 end

I tested the routine on the Hessian of the posynomial function we encountered in §11.5.0,
with the following result.

octave:1> flag=convcheck(2,[0;0],[10;10],@gph)
flag = 1
octave:2> quit

function h=gph(x)
h=zeros(2,2);
h(1,1)=2*x(1)^(-3)*x(2)^(-1/2);
h(1,2)=(1/2)*x(1)^(-2)*x(2)^(-3/2);
h(2,1)=h(1,2);
h(2,2)=(3/4)*x(2)^(-5/2)*x(1)^(-1);

end

Finding an eigenvalue that is negative proves that H is not positive semidefinite. Failing to
find an eigenvalue that is zero or negative, while short of proof that H is positive definite,
suggests that it is at least positive semidefinite.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

388 Convexity

11.6 Generalizations of Convexity

In the theory of nonlinear programming it is sometimes useful to consider functions that
are almost but not quite convex. An elaborate taxonomy [1, p144] has been developed to
distinguish between the strictly convex and convex functions we have studied so far, and
those that are nonconvex in various ways. Here I will mention only two of the categories. A
quasiconvex function satisfies the inequality

f (λx1 + [1 − λ]x2) ≤ max
{

f (x1), f (x2)
}

for all x1, x2, and λ ∈ [0, 1]

and has the interesting property that all of its level sets (see Exercise 11.7.3) are convex sets.
A pseudoconvex function is defined by the property, also interesting, that

∇f (x1)⊤(x2 − x1) ≥ 0⇒ f (x1) ≥ f (x2).

Some authors [2, p787] also distinguish strongly convex functions, which satisfy

f (x) ≥ f (x̄) + ∇f (x̄)⊤(x − x̄) + k
2
||x − x̄||2 for all x, x̄ and some k > 0

and are thus in a sense more convex than those that satisfy the ordinary support inequality.
You should be aware of this cottage industry of variations on the idea of a convex function,
but we will have scant use for them. The focus of this text is on algorithms, and most
nonconvex functions that are encountered in practice aren’t quasiconvex or pseudoconvex
either.

A generalization that we will use later in the book is the idea of local convexity. Through-
out this Chapter we have treated convexity as a global property that a function can have,
but in the discussion of methods it is often useful to describe what happens near a local
minimizing point. A function is locally convex if it satisfies the definition of a convex
function, or the support inequality, within some epsilon-neighborhood of a given point. If a
locally convex function is smooth, its Hessian will be positive semidefinite at points within
that neighborhood but perhaps not elsewhere.

11.7 Exercises

11.7.1[E] In solving an unconstrained nonlinear program, why do we care whether the
objective function is convex?

11.7.2[E] What is the epigraph of a function, and what property must it have for the
function to be convex? Does the epigraph have any special properties if the function is
strictly convex? If so, draw a picture to illustrate your answer.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.7 Exercises 389

11.7.3[H] The set S(α) = {x | f (x) ≤ α}, where α is a real number, is called the α level

set of f (x). (a) Use the definition of convexity to prove that if f (x) is a convex function
then S(α) is a convex set for all values of α. (b) If S(α) is a convex set for all values of α,
is f (x) necessarily a convex function? If not, sketch the graph of a counterexample. (c) If
f (x) is a nonconvex function, are all of its level sets necessarily nonconvex? If not, sketch a
counterexample. (c) How are a function’s level sets related to its epigraph?

11.7.4[E] In §11.1 we derived an inequality that we take as the definition of a convex
function. (a) Write it down from memory. (b) Give a graphical interpretation. (c) Explain
how the definition changes to describe a function that is strictly convex.

11.7.5[E] In §11.1, the convex function f has a unique minimum while the nonconvex
function g has multiple minima. Does a convex function always have a unique minimum? If
not, provide a counterexample. Does a nonconvex function always have multiple minima?
If not, provide a counterexample.

11.7.6[H] Use the definition of a convex function to prove that a linear function is both
convex and concave.

11.7.7[E] Write down the support inequality of §11.2 from memory, and give a graphical
interpretation. Explain how it changes to describe a function that is strictly convex.

11.7.8[H] Prove that if f (x) is smooth then it is convex if and only if

[∇f (x2) − ∇f (x1)]⊤(x2 − x1) ≥ 0.

Hint: to show ⇒ use the support inequality twice and add; to show ⇐ use the mean value
theorem, f (x2) − f (x1) = ∇f (x)⊤(x2 − x1) where x = λx1 + (1 − λ)x2 for some λ ∈ [0, 1].
11.7.9[E] What is a supporting hyperplane? If a convex function is not differentiable at
x̄, can it have a supporting hyperplane there? Explain.

11.7.10[H] A convex function is continuous on the interior of its domain. (a) Give an
example of a convex function that is discontinuous at a boundary of its domain. (b) Using a
picture, show how a function having a jump discontinuity is nonconvex. (c) Using a picture,
show how a function having a point discontinuity is nonconvex.

11.7.11[E] What is a subgradient? What is the subgradient of a smooth convex function?

11.7.12[H] In §11.2 the function y = |x | is graphed to illustrate that it has no derivative at
x = 0, and to show one of its supporting hyperplanes at that point. (a) Does this function
have a subgradient at x = 2? If not explain why not; if so give the equation of its supporting
hyperplane there. (b) What subgradients does the function have at x = 0? Write down an
algebraic description of the set of subgradients, and show on the graph the cone containing
the gradient vectors of all the hyperplanes in that set. (c) If a convex function f (x) is not
differentiable at x̄, can the cone of subgradients at that point ever include vectors that are
not in the epigraph of the function?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

390 Convexity

11.7.13[E] What is a convex program?

11.7.14[E] Use the strict version of the support inequality to prove the unique global min-
imizer theorem of §11.3.

11.7.15[E] True or false? (a) If f (x) is convex then its Hessian matrix H(x) is positive
semidefinite for all x. (b) If H(x) is positive definite for all x then f (x) is convex. (c) If f (x)

is strictly convex then f (x) is convex.

11.7.16[E] Give an example of a strictly convex function whose Hessian matrix is not
everywhere positive definite. Give an example of a strictly convex function whose Hessian
matrix is everywhere positive definite.

11.7.17[E] List all of the ways mentioned in this Chapter for determining whether a given
function f (x) is convex.

11.7.18[H] The definition of positive definiteness given in §10.7 assumes nothing about the
symmetry of the matrix, but the principal-minor test described in §11.4 is meaningless if the
matrix is nonsymmetric. (a) Use the definition to show that

A =

[

3 −4
1 2

]

is positive definite. (b) Prove that the matrixM+M⊤ is symmetric even if M is not. (c) Prove
that M is positive definite if and only if M+M⊤ is positive definite. (d) Devise a method
that uses this fact along with the principal-minor test to establish the definiteness of a
nonsymmetric matrix. Use your method and the apm.m routine to confirm that A is positive
definite. (e) Use MATLAB to find the real eigenvalues of A + A⊤, and conclude from them
that A is positive definite. (f) If M is nonsymmetric we can still use the Gerschgorin circle
theorem because [147, Exercise 6.2.8a] M is positive definite if and only if the real parts of
its complex eigenvalues are positive. Use this approach to show that A is positive definite.

11.7.19[P] A numerical measure of the asymmetry of a matrix A is given by

asym(A) = ||(A + A⊤)/2 − A||.

(a) Write a MATLAB routine asym.m to compute the asymmetry of a matrix using this
formula. (b) Revise the lpm.m and apm.m routines of §11.4.2 to use asym.m and test whether
M is symmetric as assumed.

11.7.20[H] Write down a function of two variables whose Hessian matrix is not symmetric.

11.7.21[H] The objective of the garden problem is f (x) = x1x2. Is this a convex function?
Use techniques discussed in this Chapter to support your answer.

11.7.22[H] The rb problem has objective f (x) = 100(x2−x21)2+(1−x1)2. (a) Find the Hessian
matrix H(x) of this function. (b) Determine the definiteness of f (x) based on minors.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.7 Exercises 391

11.7.23[H] Determine whether each of the following functions is or is not convex, and ex-
plain how you decided: (a) f (x) = ex; (b) f (x) = ex1 x2 ; (c) f (x) = −ln(x); (d) f (x) = 1/x, x > 0;
(e) f (x) = −2x1−6x2+2x21+3x22−4x1x2; (f) f (x) = 2x21+ x1x2+ x

2
2+ x2x3+ x

2
3−6x1−7x2−8x3+9.

11.7.24[H] Prove that the matrix

A =

[

2 1

1 3

]

is positive definite by each of the following methods. (a) Use the definition of a positive-
definite matrix given in §10.7. (b) Solve |A − λI| = 0 and use an argument based on the
eigenvalues of A. (c) Use the leading principal minors test of §11.4. (d) Use the Gerschgorin
circle theorem.

11.7.25[E] In the matrix below, all of the principal submatrices are boxed except one.
What is it? 



1 2 3

4 5 6

7 8 9





11.7.26[E] Consider the following symmetric matrix.

A =





6 2 1 −1
2 4 1 0

1 1 4 −1
−1 0 −1 3





(a) Write down all of the principal submatrices, and find all of the principal minors. Com-
pute the 1 × 1 and 2 × 2 minors by hand, but use MATLAB for the larger ones. (b) Check
your calculations by using the apm.m routine of §11.4.2 to compute the minors. (c) Identify
those principal submatrices that are leading principal submatrices. (d) Determine the defi-
niteness of the matrix based on your calculations. (e) Is there an easier way to establish the
definiteness of this particular matrix? If so, explain what it is.

11.7.27[E] If expansion by minors is used to compute the determinant of an n × n matrix,
how many 2 × 2 minors must be evaluated? Another method can be used to compute a
determinant, in which the number of arithmetic operations grows only polynomially with
the size of the matrix. What is it?

11.7.28[H] Solve the characteristic equation of this matrix to find its eigenvalues λ1 and λ2
as functions of p, q, r, and s.

A =

[

p q

r s

]

State conditions on p, q, r, and s to ensure that (a) the eigenvalues are a complex conjugate
pair in which the imaginary parts are nonzero; (b) the eigenvalues are real and equal; (c) the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

392 Convexity

eigenvalues are real and distinct. (d) What must be true of p, q, r, and s in order for A to
be positive definite by the eigenvalues test? Show that if those conditions are satisfied then
the matrix is also positive definite by the determinants test.

11.7.29[H] If a square symmetric matrix A is positive definite then its eigenvalues λi are
all positive. Show that the eigenvalues of A−1 are µi = 1/λi and hence A−1 is also positive
definite.

11.7.30[E] Explain why it is hard to find the eigenvalues of a large matrix by solving its
characteristic equation.

11.7.31[P] In §11.5.0 I proposed testing the convexity of the posynomial f (x) = x−11 x
− 1

2

2
by

finding the eigenvalues of its Hessian matrix. (a) Evaluate the determinant stated there and
solve the resulting quadratic equation to obtain expressions for λ1(x) and λ2(x). (b) Show
that for x > 0 the eigenvalues are positive. (c) Write a MATLAB program to draw some
contours of this function. You might find it helpful to use the gridcntr.m routine of §9.1.

11.7.32[P] According to the Gerschgorin circle theorem, where in the complex plane must
the eigenvalues of the following matrix lie?

A =





0 −2 1 −1
−1 5 2 0

1 −1 2 −3
−1 0 −1 1





Use MATLAB to find the eigenvalues, and confirm that they all lie in the union of the
Gerschgorin circles. If a matrix is symmetric, where do its eigenvalues lie? For a matrix to
be positive semidefinite, where must its eigenvalues lie?

11.7.33[E] What can be deduced about the definiteness of a matrix if one or more of its
Gerschgorin circles contains points on both sides of the imaginary axis?

11.7.34[E] What is a diagonally dominant matrix? Is a positive definite matrix always
diagonally dominant? If so, prove it; if not, provide a counterexample.

11.7.35[P] The convcheck.m routine of §11.5.2 can be used to investigate the positive
definiteness of a Hessian matrix H(x). (a) Can convcheck.m be used if H(x) is constant
rather than varying with x? Explain. (b) Use convcheck.m to assess the convexity of
f (x) = ex1x2 + x1x2. Are the results conclusive for this function? If not, explain why not. If
so, support your claim by evaluating H(x) at one point and using MATLAB to compute its
eigenvalues there.

11.7.36[E] The convcheck.m routine of §11.5.2 examines an n × n Hessian at 10n+1 points.
If the variable bounds are [−1,+1], how far apart (in Euclidean norm) would the points be,
as a function of n, if they were equally spaced?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

11.7 Exercises 393

11.7.37[H] Quasiconvex and pseudoconvex functions are described in §11.6. (a) Are con-
vex functions quasiconvex? Are they pseudoconvex? (b) Sketch the graph of a nonconvex
quasiconvex function. (c) Sketch the graph of a nonconvex pseudoconvex function.

11.7.38[H] Show that the level sets of a quasiconvex function are convex sets.

11.7.39[H] Is the function f (x) = ex strongly convex?

11.7.40[H] Find any intervals of x over which the function g(x) = 1
100

(3
2
x−6)4− 2

3
(3
2
x−5)2+25

of §11.1 is locally convex.

11.7.41[E] If f (x) is a convex function, is its derivative f ′(x) = d f /dx necessarily a convex
function? If yes, prove it; if no, provide a counterexample.

11.7.42[E] Once upon a time, in a certain university mathematics department, there were
two professors who both studied optimization. One posted on her office door the slogan “Life
is nice when things are linear.” In response the other posted on his office door the slogan
“Linearity is nice, but convexity is enough!” Were these people completely crazy? If not,
how do you interpret the two slogans?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12

Line Search

In §10 we considered steepest descent, the simplest gradient-based member of a large class
of optimization algorithms called descent methods. Descent methods work by finding a
downhill direction, performing a univariate minimization of the objective function in that
direction, and repeating the process until it generates a point x⋆ from which no direction is
downhill. The univariate minimization problem of finding

αk = argmin
α

f (xk + αdk) ≡ argmin
α

f (α),

which must be solved at each iteration k of a descent method, is called a line search. This
Chapter is about algorithms for searching a line in an arbitrary descent direction d that need
not be the direction of steepest descent.

12.1 Exact and Approximate Line Searches

The gns problem we studied in §10.4 is simple enough that calculus can be used to derive an
algebraic formula for α⋆

k
(xk; dk). Using such a formula to find α⋆

k
is called an exact analytic

line search. Numerically finding an α⋆
k
that minimizes f (α) to near machine precision, by

using a method such as those discussed in this Chapter, is called an exact numerical line

search. We will frequently use an exact line search of one kind or the other in our study of
descent methods, just to make it easy to understand what is happening.

However, in the use of a descent method it is rarely possible to do an exact line search
analytically and it is seldom desirable to do one numerically. It is only the final dk that
leads to x⋆, so finding all of the xk precisely is a waste of effort. It is necessary to find each
α⋆
k
accurate only to within some positive line search tolerance t, which is chosen just

small enough that the descent method converges to x⋆ within its tolerance ǫ. In the unusual
situation when we need to find x⋆ exactly, we can start with a loose line search tolerance and
tighten it as we approach the optimal point (we will make use of this refinement in §12.4.2
and again in §13 and §21).

A numerical line search begins with an interval of uncertainty [αL, αH], known to
contain α⋆, and its goal is to reduce that interval’s width. The table on the next page
describes several algorithms for reducing the interval of uncertainty. Methods that use only
function values [1, §8.1] [155, §2], listed in the top part of the table, try to find an α where
f (α) has its lowest value; those that use derivatives [1, §8.2], listed in the bottom part of the
table, try to find an α where f (α) has zero slope.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

396 Line Search

line search method vague description

grid search Find f (α) at several values of α evenly spaced in the interval
of uncertainty, and pick the α yielding the lowest f (α).

dichotomous search Repeatedly use finite differencing to bisect the remaining inter-
val of uncertainty, discarding at each line search iteration the
interval half that does not contain α⋆.

golden section Choose two values of α in a clever way and use the values of
f (α) to reduce the interval of uncertainty; thereafter at each
line search iteration choose one new value of α in a way that
lets the process be repeated (see Exercise 12.5.4).

Fibonacci Choose two values of α in an even more clever way and use
the values of f (α) to reduce the interval of uncertainty; then
for each of a fixed number of iterations choose one new value
of α in a way that lets the interval of uncertainty be reduced
further (see Exercise 12.5.5).

quadratic interpolation Choose three values of α in the interval of uncertainty, inter-
polate a quadratic through the points (α, f (α)), and minimize
the quadratic analytically [2, §C.2] [107, §7.2].

bisection Use bisection to approximately solve d f /dα = 0.
Newton’s method Use Newton’s method to approximately solve d f /dα = 0.

cubic interpolation Fit a clamped cubic spline [20, §3.6] to f (α) and minimize that.

Derivative-based methods require that f (α) be differentiable (which is often not the case for
type-2 problems) or that d f /dα be approximated by finite differencing, and they might find
a stationary point of f (α) that is not a minimum. Methods that use only function values
typically require lots of them and are therefore comparatively slow; thus in line searching we
encounter the usual tradeoff between robustness and speed. Of these algorithms the most
mathematically intriguing are the golden section search and the Fibonacci search, but the
idea that will prove most fruitful in our study of descent methods is the simplest derivative-
based one, bisection [3, p306-307].

12.2 Bisection

The bisection line search finds a zero of f ′(α) by using the familiar algorithm for finding
a zero of any scalar function of one variable (see §28.3.1). To see how it works consider the
example in the graph on the next page. If the current interval of uncertainty is [αL

s−1, α
H
s−1]

we compute αs as the midpoint of that interval and evaluate d f (α)/dα = f ′(α) there. If the
slope is positive as shown then we assume the minimizing point is in the left half and shrink
the interval by making αHs = αs while keeping αLs = α

L
s−1. If the slope is negative we assume

the minimizing point is in the right half and shrink the interval by making αLs = αs while
keeping αHs = α

H
s−1. Then we can repeat the process starting from the new interval [αLs , α

H
s].

This algorithm is formalized in the flowchart at the bottom of the page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.2 Bisection 397

 5

 10

 15

 20

 25

 30

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f (α)

α

αL
s−1 αH

s−1αs

f
′ (αs)

> 0

ENTER

find αL0 and αH0

s← 1

αs ← 1
2
(αL

s−1 + α
H
s−1)

?
close enough
yes

no

α⋆ ← αs

EXIT

? f ′(αs)
< 0

αLs ← αs

> 0
αHs ← αs

s← s + 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

398 Bisection

Line search iterations are indexed using s to distinguish them from iterations of the descent
method, which are indexed using k. To perform one iteration of the descent method we do
one line search that might require several line search iterations.

The first decision block in the flowchart is the convergence test. Often the stopping
condition is chosen to be | f ′(αs)| < t, so that t means how close to stationary we want α⋆ to
be, but some versions of the algorithm use αH

s−1 − αLs−1 < t instead or test both conditions.
If αH = αL further bisections would be pointless even if | f ′(α)| > t. In this example f ′(αs) is
quite small (αs is close to α⋆) even though the interval of uncertainty is very big.

12.2.1 The Directional Derivative

How can we find f ′(α), which is required for the bisection line search, when the overall
optimization problem is instead defined in terms of f (x) and its derivatives?

The graph on the next page shows one iteration of a descent method being used to
minimize f (x) = (x1−3)2+ (x2−4)2+5. In this picture it is easy to imagine a vertical pane of
glass, bordered by dk and the f (α) axis, slicing through the graph of the objective function.
It is in this plane that the objective is f (α) and the line search takes place; this parabola is
the same one graphed above. The line search yields the next iterate in the descent method,
xk+1, at α = α⋆. (If in this example dk were the direction of steepest descent then it would
pass through x⋆ and the line search would yield xk+1 = x⋆.)

The derivative of f (x) in the plane of the cut, f ′(α), is called the directional derivative
of f (x) at the point xk + αdk, and we can find it using the definition of a derivative.

f ′(α) = lim
h→0

f (α + h) − f (α)

h

= lim
h→0

f (xk + (α + h)d) − f (xk + αd)

h
= lim

h→0

f (xk + αd + hd) − f (xk + αd)

h

Expanding the first term in the numerator by Taylor’s series,

f (xk + αd + hd) = f (xk + αd) + hd⊤∇f (xk + αd) + higher order terms.

Then

f ′(α) = lim
h→0

[

f (xk + αd) + hd⊤∇f (xk + αd) + higher order terms

h
− f (xk + αd)

h

]

= lim
h→0

[

d⊤∇f (xk + αd) + terms of order h and higher
]

.

Thus f ′(α) = d⊤∇f (xk + αd)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.2.2 Staying Within Variable Bounds 399

-2
 0

 2
 4

 6
 8

 0

 2

 4

 6

 8

 0

 5

 10

 15

 20

 25

 30

z

x1

x2

x⋆•

f (α)

α = 0

α = α⋆

α

•xk

•x
k+1

d

12.2.2 Staying Within Variable Bounds

How can we find αL0 and αH0 , which are required for the bisection line search, when the overall
optimization problem instead includes bounds on x?

In the graph above, xk = [−1, 5]⊤ and the search direction dk
= [5,−4]⊤, so any point on

d is described by

xk + αdk
=

[

−1
5

]

+ α

[

5

−4

]

.

Now suppose the box outlined by the axes in the x1—x2 plane describes the given bounds on
x, so that xL = [−2,−1]⊤ and xH = [8, 9]⊤. This situation is shown more clearly in the graph
on the next page, in which the bounds on the variables are drawn as a dashed box.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

400 Bisection

x2

9

8

7

6

5

4

3

2

1

−1
x1−2 −1 1 2 3 4 5 7 8

•
xk

29
5

13
2

At its left end the line to be searched intersects the dashed box where x1 = xL1 = −2 or
−1 + 5α = −2, so α = −1

5
(that makes x2 = 5 − 4(−1

5
) = 29

5
). At its right end the intersection

is where x2 = xL2 = −1 or 5 − 4α = −1, so α = 3
2
(that makes x1 = −1 + 5(3

2
) = 13

2
). Thus,

for this example the lowest value of α is αL0 = −1
5
and the highest is αH0 =

3
2
. Of course it

might turn out in other cases, depending on the orientation of the line relative to the variable
bounds, that one or both intersection points are with the upper bounds on the variables.

We could have found the limits αL and αH algebraically, without drawing a picture, just
by requiring that xL ≤ xk + αdk ≤ xH, or

[

−2
−1

]

≤
[

−1
5

]

+ α

[

5

−4

]

≤
[

8

9

]

.

This represents four scalar inequalities.

−2 ≤ −1 + 5α ⇒ α ≥ −1
5

−1 + 5α ≤ 8 ⇒ α ≤ 9
5

−1 ≤ 5 − 4α ⇒ α ≤ 3
2

5 − 4α ≤ 9 ⇒ α ≥ −1

The bounds on the left correspond to the graph intersections we found above, and those on
the right correspond to the intersections that the line would make, if it were extended, with

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.2.2 Staying Within Variable Bounds 401

the upper limits on x1 and x2. From these four bounds on α we conclude that α ≤ 3
2
and

α ≥ −1
5
, as we found above graphically. In general for x ∈ Rn we have, for j = 1. . .n,

x j + αd j ≥ xL
j

α ≥
xLj − x j

d j
if d j > 0

α ≤
xLj − x j

d j
if d j < 0

x j + αd j ≤ xH
j

α ≤
xHj − x j

d j
if d j > 0

α ≥
xHj − x j

d j
if d j < 0

Thus

αL = max
j






xLj − x j

d j

∣
∣
∣
∣
∣
∣
d j>0

,
xHj − x j

d j

∣
∣
∣
∣
∣
∣
d j<0





αH = min

j






xHj − x j

d j

∣
∣
∣
∣
∣
∣
d j>0

,
xLj − x j

d j

∣
∣
∣
∣
∣
∣
d j<0






If we are doing a line search then d , 0, but it is possible for some particular d j to be zero;
then α is not constrained by motion in that coordinate direction, and the corresponding term
is omitted from the max and min over j.

The calculation of αL and αH described above is implemented in the arange.m routine
listed below. It receives the current point x = xk, the direction of search d = dk, the upper
and lower bounds xh = xH and xl = xL (assumed to contain x) and the number of variables
n; it returns al and ah, the corresponding lower and upper limits on α.

1 function [al,ah]=arange(x,d,xl,xh,n)
2 al=-realmax;
3 ah=+realmax;
4 for j=1:n
5 if(d(j) == 0) continue; end
6 tl=(xl(j)-x(j))/d(j);
7 th=(xh(j)-x(j))/d(j);
8 if [d(j) < 0]
9 al=max(al,th);
10 ah=min(ah,tl);
11 else
12 al=max(al,tl);
13 ah=min(ah,th);
14 end
15 end
16 end

The function begins by 2-3 initializing al = −∞ and ah = +∞, so that there are no bounds
on α. These values are not useful for starting a line search, but they get replaced as the
bounds on the x(j) are considered in the loop 4-15 . If 5 d(j)=0, that j is skipped and the
loop continues to the next coordinate direction. The terms involving xL

j
and xH

j
appearing

in the formulas are computed as 6 tl and 7 th respectively. Then 8-14 depending on the
sign of d(j), al and ah are updated so that when the loop is finished they have the values
given above.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

402 Bisection

I used arange.m to compute the limits on α that we found by hand earlier, as shown in this
Octave session excerpt.

octave:1> x=[-1;5];
octave:2> d=[5;-4];
octave:3> xl=[-2;-1];
octave:4> xh=[8;9];
octave:5> [al,ah]=arange(x,d,xl,xh,2)
al = -0.20000
ah = 1.5000
octave:6> quit

This result, [αL, αH] = [−1
5
, 3
2
], agrees with the interval we deduced.

We will routinely use arange.m to establish the starting interval [αL0 , α
H
0] over which to

conduct any line search, so as to avoid points outside the known variable bounds for the
nonlinear program. It might seem that the interval determined by arange is unnecessarily
wide, because it can encompass negative values of α. If d really is a descent direction it
should not be necessary in seeking a minimum to go the opposite way, so we might save
work by ignoring the al returned by arange and always using αL = 0. Alas, in solving
real nonlinear programs nonconvexity can confuse even the cleverest of descent methods,
and then the likelihood of missing a minimum can be reduced somewhat by searching the
whole line. Whenever a line search fails, debugging should begin with checking whether the
variable bounds xL and xH actually contain a minimizing point along the direction d.

12.2.3 A Simple Bisection Line Search

Armed with a formula for the directional derivative and a routine to compute the starting
interval of uncertainty, we can now implement the bisection line search algorithm flowcharted
earlier. The bls.m routine listed at the top of the next page receives the current point xk = xk,
the search direction dk = dk, the lower and upper bounds xl and xh on x, the number of
variables n, a pointer grd to a function that returns the gradient of the objective at a given
point, and a (stationarity) convergence tolerance tol = t, and it returns astar ≈ α⋆.

The calculation begins 2 with an invocation of arange to find al = αL and ah = αH.
Then 3 up to 52 bisections are performed, enough to reduce the interval of uncertainty by
a factor of 252 or more than 1015 (see §17.5). If before convergence is achieved the width of
the interval becomes numerically zero 5 or (much less likely) the iteration limit is met, the
routine returns 16 the current alpha. Otherwise it finds 6-8 the trial point x, the gradient
g there, and the directional derivative fp. Here the MATLAB statement fp=dk’*g evaluates
the formula f ′(α) = d⊤∇f (xk + αd) that we found in §12.2.1. If 9 fp is less in absolute value
than the line search convergence tolerance tol, the routine returns the current alpha. If
convergence has not yet been achieved, the sign of fp is used 10-14 to adjust the interval of
uncertainty and the iterations continue.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.3 Robustness Against Nonconvexity 403

1 function astar=bls(xk,dk,xl,xh,n,grd,tol)
2 [al,ah]=arange(xk,dk,xl,xh,n);
3 for s=1:52
4 alpha=(al+ah)/2;
5 if(al == ah) break; end
6 x=xk+alpha*dk;
7 g=grd(x);
8 fp=dk’*g;
9 if(abs(fp) < tol) break; end
10 if(fp < 0)
11 al=alpha;
12 else
13 ah=alpha;
14 end
15 end
16 astar=alpha;
17 end

I tested bls.m by using it to perform the line search that we did analytically in §10.4,
obtaining these results.

octave:1> format long
octave:2> xk=[2;2];
octave:3> dk=[-21;-16];
octave:4> xh=[3;3];
octave:5> xl=[-2;-2];
octave:6> astar=bls(xk,dk,xl,xh,2,@gnsg,0.01)
astar = 0.0962713332403274
octave:7> astar=bls(xk,dk,xl,xh,2,@gnsg,1e-8)
astar = 0.0962707182313482
octave:8> quit

The answer we found by hand was α⋆ = 697/7240 ≈ .0962707182320442, so even with a
line search tolerance as large as 0.01 the numerical approximation is quite good. We could
now invoke bls.m in our steepest-descent solution of the gns problem instead of evaluating,
or even deriving, the formula for α⋆ (see Exercise 12.5.19).

12.3 Robustness Against Nonconvexity

In the line search examples of §10.4 and §12.2, f (x) was convex so f (α) was unimodal. A
function f (α) being minimized is unimodal if and only if it has a single local minimum [107,
§7.1] [1, Exercise 8.10]. The logic of the bisection line search algorithm (and of several of the
other methods tabled in §12.1) depends on f (α) having this property, so problems that are
not unimodal, including most nonconvex problems, are much harder than those that are.

Suppose we want to minimize the wiggly function f (x) = 3x+e−x cos (9πx2) on the interval
[xL, xH] = [1

5
, 6
5
]. The next page shows a graph of f (xL + α) ≡ f (α) on the interval [αL, αH] =

[0, 1] along with an Octave session in which bls.m finds the wrong local minimum. The
bisection line search algorithm first tries α1 =

1
2
and finds the derivative negative, so it

throws away the left half of the interval. The next trial point is α2 =
3
4
, where the derivative

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

404 Line Search

is also negative, so it throws away the left half of the interval again. The trial point after
that is α3 =

7
8
, where the derivative is again negative, so once more it throws away the left

half of the interval. At α4 =
15
16

the derivative is positive, but by then the remaining interval
of uncertainty brackets a local minimum that is far from the global minimum in α and x.
Adding insult to injury, the objective value is higher at this point than where we started!
This sort of disaster is unfortunately not confined to specially-contrived toy problems like
this one, nor to the bisection line search.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

f (α)

α

x = 0.2 x = 1.2

•
found by bls

• true α∗ = 0.11776

octave:1> xk=0.2;
octave:2> dk=1;
octave:3> xl=0.2;
octave:4> xh=1.2;
octave:5> astar=bls(xk,dk,xl,xh,1,@wiglg,1e-8)
astar = 0.90296
octave:6> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.3.1 The Wolfe Conditions 405

12.3.1 The Wolfe Conditions

The failure of the bisection line search on the wiggly function could have been averted by
not looking so far from the starting point. The idea of restricting a line search to values
of α that are at least not obviously wrong is embodied in the Wolfe conditions [157].
These conditions on α > 0 can be stated in terms of ∇f (x) and d in the space of the overall
optimization [4, §11.5] [5, p34] as on the left below, or in terms of α in the space of the line
search subproblem as on the right. It is this second perspective that we will adopt here.

f (xk + αdk) ≤ f (xk) + [µ∇f (xk)⊤dk]α

|∇f (xk + αdk)⊤dk| ≤ η|∇f (xk)⊤dk |
or

f (α) ≤ f (0) + [µ f ′(0)]α

| f ′(α)| ≤ η| f ′(0)|

The first or sufficient decrease condition (also called theArmijo condition) requires
that the function value f (α) go down by at least a little. This is a reasonable request, since
we are trying to minimize f (α). The scalars f (0) and f ′(0) on the right-hand side of the
inequality are constants in a first-order Taylor series approximation f (α) ≈ f (0) + f ′(0)α to
f (α) at α = 0. If dk is a descent direction then f ′(α) < 0 and the straight line goes down as
α increases from 0. Thus the inequality requires a decrease in the function at α⋆ that is at
least some fraction of that predicted by its linear approximation at α = 0. That fraction is
the parameter µ ∈ (0, 1), which is typically chosen to be on the order of 0.0001 so that only
a small decrease is required.

-0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

f (α)

α

y = −0.0005727α + 0.9486
µ = 0.0001

y = −5.727α + 0.9486

µ
=
1

This figure shows the first part of the wiggly function, along with its first-order Taylor
series approximation (corresponding to µ = 1) and the straight line describing the sufficient
decrease condition for µ = 0.0001. Here the sufficient decrease condition rules out all values
of α greater than about 0.2.

If dk is not a descent direction this condition only limits the amount by which the function
can increase, but if µ is small that might still improve the robustness of the line search.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

406 Robustness Against Nonconvexity

The second or curvature condition requires that | f ′(α)| decrease by at least a little.
This is also a reasonable request, since we are trying to find a point where f ′(α) = 0. If
dk is a descent direction then f ′(0) < 0 and | f ′(0)| = − f ′(0), so the condition reduces to
| f ′(α)| ≤ −η f ′(0). This inequality says that the directional derivative f ′(α) can be of either
sign at α⋆ but no greater in absolute value than some fraction of its value at α = 0. That
fraction is the parameter η ∈ [0, 1). If η = 0 this condition specifies an exact line search, but
since that is not usually possible in numerical calculations the range of permissible η values
is in practice the open interval (0, 1).

-0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

f (α)

α

This figure shows tangent lines having slopes of ±η f ′(0) with η = 0.8, defining three intervals
over which the second Wolfe condition is satisfied. Because the first Wolfe condition excludes
the rightmost two of these intervals, only the left one, where α is between about 0.08 and
0.14, satisfies both Wolfe conditions.

Convergence proofs for the DFP and BFGS algorithms, which we will encounter in §13.4,
and for the Fletcher-Reeves algorithm of §14.5, require that line search results satisfy the
Wolfe conditions. No particular values are prescribed for the Wolfe parameters µ and η, but
the DFP and BFGS algorithms require µ > 0 and η < 1, while the Fletcher-Reeves algorithm
requires µ > 0 and η < 1

2
[5, p122,125-126]. Increasing µ or decreasing η makes it harder to

find an α that satisfies the Wolfe conditions, but if 0 < µ < η < 1 and f (α) is smooth and
bounded below then [5, Lemma 3.1] some α is sure to satisfy them both.

12.3.2 A Simple Wolfe Line Search

The flowchart on the next page outlines a näıve algorithm that can be viewed as a bisection
line search in which certain restrictions are imposed in an attempt to satisfy the Wolfe
conditions. It assumes that a minimum exists between α = 0 and the positive value of α
where a variable bound is first encountered in the given descent direction. At each stage in
the search, an interval [a, c] is assumed to contain a stationary point of f (α), so the flowchart

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.3.2 A Simple Wolfe Line Search 407

begins by setting a to zero and c to the upper bound on α. Before the search the starting
point, corresponding to α = 0, is the lowest point known, so α⋆ is initialized to zero. This
algorithm enforces an iteration limit, and to begin with no iterations have been performed
so the iteration counter s is initialized to 0.

ENTER

a = 0, c = limit of search
α⋆ = 0
s = 0

b = 1
2
(a + c)

?
sufficient
decrease

no

yes

c = b

?

curvature

yes

no

update record
Wolfe point ?

| f ′(b) | < tol

yes

no

α⋆ = b

?

f ′(b)

> 0 < 0

a = b

? s=smax

yes

no

s← s+1

record Wolfe point
α⋆ =

{

or final b

EXIT

Each iteration begins by finding the midpoint b = 1
2
(a + c) of the current interval. If f (b) is

not sufficiently lower than f (0), the first Wolfe condition is violated. But if dk is a descent
direction and f ′ is a continuous function of α, then f (α)must be less than f (0) for some α > 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

408 Robustness Against Nonconvexity

[148, §5] so if that is not true at b we must have stepped too far. The interval is shortened
by moving c left to b, the iteration counter is incremented, and we bisect again. This process
might be repeated several times until the sufficient decrease condition is satisfied.

If f (b) is sufficiently lower than f (0), so that the first Wolfe condition is satisfied, the
algorithm checks whether | f ′(b)| is sufficiently less than | f ′(0)|. If it is, the point α = b satisfies
the second Wolfe condition, which we referred to above as the curvature condition, and a
Wolfe point has been found. The box labeled “update record Wolfe point” remembers the
Wolfe point having the lowest function value. If the current point α = b is the best one found
so far, the convergence test is performed and if | f ′(b)| < tol that point is returned as α⋆. In
this case α⋆ satisfies both the Wolfe conditions and the stationarity tolerance.

If the curvature condition is not satisfied, or if it is but the convergence tolerance is not
met, then the sign of f ′(b) is used to discard half of the current interval. If f ′(b) > 0 then the
minimizing point is to the left of b, so c is moved left to b; if f ′(b) < 0 then the minimizing
point is to the right of b, so a is moved right to b. Then s is incremented, and the next
iteration begins.

If the iteration limit is met before finding a Wolfe point that satisfies the convergence
tolerance, the algorithm returns for α⋆ either the best Wolfe point found so far or, if no
Wolfe point has yet been found, the most recent interval midpoint b.

12.3.3 MATLAB Implementation

The source code of wolfe.m is listed in three parts beginning on the next page. The
function header 1-2 shows the input and return parameters, which are summarized in the
table below.

variable meaning

astar α⋆ approximation returned
rc return code, described later
s last iteration used by the line search algorithm

xk current point xk in the overall optimization
dk direction dk of the line to be searched
xl column vector of n lower bounds on the variables
xh column vector of n upper bounds on the variables
n number of variables in the overall optimization
fcn pointer to MATLAB routine that returns f (x)

grd pointer to MATLAB routine that returns ∇f (x)
mu Wolfe sufficient decrease parameter µ
eta Wolfe curvature condition parameter η
tol line search convergence tolerance t

smax line search iteration limit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.3.3 MATLAB Implementation 409

1 % naive Wolfe line search based on bisection
2 function [astar,rc,s]=wolfe(xk,dk,xl,xh,n,fcn,grd,mu,eta,tol,smax)
3
4 % initialize, and check for sensible inputs
5 s=0; % before searching we have done no iterations
6 astar=0; % and xk is the best point we know
7 fk=fcn(xk); % this is the function value there
8 gk=grd(xk); % this is the gradient vector there
9 dfk=gk’*dk; % this is the directional derivative in direction dk
10 if(dfk == 0) % does the function descend in either direction?
11 if(norm(gk) == 0)
12 rc=0; % no because xk is a stationary point
13 return
14 else
15 rc=5; % no because dk is orthogonal to gk
16 return
17 end
18 end
19 [amin,amax]=arange(xk,dk,xl,xh,n);
20 if(amin > 0)
21 rc=6; % xk is not in [xl,xh] so no interval to search
22 return
23 end
24 if(mu <= 0 || mu >= 1 || eta <= 0 || eta >= 1)
25 rc=7; % at least one Wolfe parameter has an illegal value
26 return
27 end
28 a=0; % the line search will start from xk
29 xa=xk; % that is the left end of the search interval
30 fa=fk; % this the function value there
31 fr=fa; % before searching it is the best value we know
32 if(dfk < 0) % which direction is downhill?
33 c=amax; % descend towards amax
34 else
35 c=amin; % descend towards amin
36 end
37 rc=4; % prepare to report failure
38

The variables s and astar are given initial values 5-6 so that they will be defined in the
event of an early return (rc=0, rc=5, rc=6, or rc=7). Then 7-9 the function value fk = f (0),
gradient gk = ∇f (xk), and directional derivative dfk = f ′(0) are found at the starting point
xk. If the directional derivative is zero 10 then no descent is possible, either because the
gradient is zero (xk is already a stationary point) or the direction vector is orthogonal to
the gradient (maybe because dk is zero); these cases are distinguished 11-17 and the routine
returns without doing anything. Next arange.m is used to find limits amin and amax on
α based on the variable bounds. If the lower limit returned by arange is positive then
xk < [xL, xH] or xL ≮ xH, so there is no interval to search and the routine returns without
doing anything. Then a check is performed to ensure that the Wolfe parameters are in range,
and if not the routine also returns without doing anything. The meanings of the various
return codes are summarized in the table on the next page.

After these sanity checks are passed, we finish initializing 28-37 for the line search. The
sufficient decrease condition depends on dk actually being a descent direction, so the routine

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

410 Robustness Against Nonconvexity

checks the sign of f ′(0) 32 to determine which direction is downhill, and sets the right end
c of the search interval accordingly. We intend that every direction dk we search in will be a
descent direction, but in the case of a nonconvex function it is possible (e.g., in §13.1 when
inv(H) can be found in Newton descent even though H is not positive definite) to generate
an uphill direction instead. In that case the most we can ask of a line search routine is that
it minimize f (α) along the line whose direction is dk within the specified bounds [xl,xh].
This routine does so, even if that involves moving “backwards” along dk.

The part of the program listed on the next page consists of one long loop 39-81 over the
iterations s, implementing the logic outlined in the flowchart of §12.3.2. Each iteration begins
by bisecting the current interval to find b 41 , computing f ′(b) 42-44 , and checking whether
it has become zero 45 ; if so, that point is stationary so no further iterations are possible, and
it is returned 46-48 as the answer. Then the sufficient decrease condition is checked 52-53

and if it is not satisfied the search interval is shrunk towards the starting point 67-69 . If the
sufficient decrease condition is satisfied, the curvature condition is checked 54 , and if it is
not satisfied control falls through the end 70 of the first if 53 . If the curvature condition
is satisfied, a Wolfe point has been found 55 so the record function value fr is updated
56-58 . If the current point is a new record point, the convergence test is performed 59 and
if it succeeds the current astar is returned as the answer 60-61 . If the sufficient decrease
condition is satisfied but either the curvature condition is not satisfied or the convergence
tolerance is not met, then the sign of f ′(b) is used to throw away one half of the current
search interval 73-79 . Because of the finite precision of floating-point numbers it is possible
that this process will result in an interval of zero width, and in that case 80 or if the
iteration limit smax has been met, control falls through the end of the loop 81 . Otherwise
the iteration counter is advanced and the next iteration begins.

rc meaning

0 xk is a stationary point so no descent is possible
1 α⋆ satisfies the Wolfe conditions and | f ′(α⋆)| < tol

2 α⋆ satisfies the Wolfe conditions but | f ′(α⋆)| ≮ tol

3 | f ′(α⋆)| < tol but α⋆ does not satisfy the Wolfe conditions
4 | f ′(α⋆)| ≮ tol and α⋆ does not satisfy the Wolfe conditions
5 dk is orthogonal to ∇f (xk) so no descent is possible
6 xk < [xL, xH]

7 µ < (0, 1) or η < (0, 1)

If wolfe.m is used in a context where it is important to find an α⋆ that satisfies the Wolfe
conditions but unimportant whether that point is stationary, the routine can be invoked with
tol set to a large number and the returned astar accepted only if rc is 0, 1, or 2. If instead
it is desired to perform an accurate bisection line search that uses the Armijo condition to
reject unwanted local minima (as in the wiggly function) the routine can be invoked with
tol set to a small number and the returned astar accepted if rc is 0, 1, or 3.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.3.3 MATLAB Implementation 411

39 % search the interval [a,c] for the minimizing point
40 for s=1:smax
41 b=(a+c)/2; % find the midpoint value of alpha
42 xb=xk+b*dk; % find the midpoint value of x
43 gb=grd(xb); % find the gradient there
44 dfb=gb’*dk; % find the directional derivative there
45 if(dfb == 0) % is this point exactly stationary?
46 rc=0; % yes; inform the caller
47 astar=b; % and return it
48 return
49 end
50
51 % check the Wolfe conditions
52 fb=fcn(xb); % find the function value at midpoint
53 if(fb <= fk+mu*dfk*b) % check sufficient decrease condition
54 if(abs(dfb) <= eta*abs(dfk)) % check curvature condition
55 rc=2; % this is a Wolfe point
56 if(fb < fr) % is this the best point found so far?
57 fr=fb; % yes; update the record value
58 astar=b; % save the record point for return
59 if(abs(dfb) < tol) % is it stationary enough?
60 rc=1; % the Wolfe point also satisfies tol
61 return % return it
62 end
63 end
64 end
65 else
66 % the function did not decrease enough; halve the step
67 c=b;
68 fc=fb;
69 continue
70 end
71
72 % decide which half to keep and bisect the interval
73 if(dfb < 0)
74 a=b; % the minimum is between b and c
75 fa=fb;
76 else
77 c=b; % the minimum is between a and b
78 fc=fb;
79 end
80 if(a == c) break; end
81 end
82

If the routine returns with rc=4 and s=smax, a better result might be achieved by trying
again with a larger value of smax (because this line search is based on bisection, it makes
sense to set smax=52 as in bls.m unless there is some reason to use a lower limit). If the
routine returns with rc=4 but s < smax, the search interval must have shrunk to zero and
f (α⋆) is probably the minimum of the function along the line xk + αdk within the specified
variable bounds. In that case the formulation of the problem should be reviewed to ensure
that the variable bounds actually encompass the optimal point. The other return codes
rc=5, rc=6, and rc=7 suggest a programming error in the routine that invokes wolfe.m.
Thus, all three of the return parameters from wolfe.m can be useful for figuring out what
happened during the line search.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

412 Line Search

The final part of the routine, listed below, ensures that appropriate values are returned
for astar and rc in the event that convergence is not achieved. If a Wolfe point was found
then rc got set to 2 55 , and in that case the astar that was set then 58 is returned 86 as
the answer. Otherwise α⋆ is taken 88 to be the final point b resulting from the bisection line
search. If it satisfies the convergence tolerance 89 then rc=3 is returned 90-91 ; otherwise
rc is still set to its initial value of 4 37 and that value is returned 93 .

83 % out of iterations or search interval has shrunk to zero
84 if(rc == 2)
85 % astar is the best Wolfe point but |f’(astar)| >= tol
86 return
87 else
88 astar=b; % return the final non-Wolfe point
89 if(abs(dfb) < tol) % is it at least stationary enough?
90 rc=3; % yes; report that
91 return
92 else
93 return % no; return with rc=4 set above
94 end
95 end
96 end

To test wolfe.m, I used it on the wiggly function as follows.

octave:1> xk=0.2;
octave:2> dk=1;
octave:3> xl=0.2;
octave:4> xh=1.2;
octave:5> [astar,rc,s]=wolfe(xk,dk,xl,xh,1,@wigl,@wiglg,0.0001,0.8,1e-8,50)
astar = 0.11776
rc = 1
s = 34
octave:6> quit

Now we get the true α⋆, so enforcing the Wolfe conditions did keep this line search from
finding the wrong local minimum of at least this wiggly test function.

12.4 Line Search in Steepest Descent

In §10 we studied two versions of the steepest-descent algorithm. The first version used
an exact analytic line search based on a formula for α⋆(x; d) that we derived for the gns

problem. The second version used the full steepest-descent step and can be applied to any
problem; we implemented the full-step algorithm in the sdfs.m routine and used it to solve
gns and rb.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.4.1 Steepest Descent Using bls.m 413

Now we can write two other implementations, using the bisection and Wolfe line searches,
to complete the following set of steepest-descent routines.

routine synopsis [xstar,k]= algorithm for α⋆

sd(xzero,xl,xh,n,kmax,epz,grd) optimal step from bls

sdw(xzero,xl,xh,n,kmax,epz,fcn,grd) Wolfe step from wolfe

sdfs(xzero,kmax,epz,grd,hsn) full step from formula

Many of the nonlinear programming algorithms that we will study in subsequent Chapters
make use of full steps in some descent direction, but when a line search is required we will
usually use wolfe.m to perform it. Unless the nonlinear program that we are trying to solve
is known for certain to be strictly convex, the robustness of any descent method based on a
line search depends on enforcing the Wolfe conditions.

On the other hand, wolfe.m is complicated enough that it might be hard to follow the
details of what is happening inside a descent algorithm that uses it. In studying the behavior
of a method such as steepest descent it might therefore be more informative to use bls.m

instead.

12.4.1 Steepest Descent Using bls.m

The routine below is similar to sdfs.m, but instead of using the full-step formula for α⋆ it 8

invokes bls. For simplicity I have used the same tolerance 3 for both the descent method
and the line search, but there might be situations in which it would be better if they were
different.

1 function [xstar,k]=sd(xzero,xl,xh,n,kmax,epz,grd)
2 xk=xzero;
3 tol=epz;
4 for k=1:kmax
5 g=grd(xk);
6 if(norm(g) <= epz) break; end
7 dk=-g;
8 astar=bls(xk,dk,xl,xh,n,grd,tol);
9 xk=xk+astar*dk;
10 end
11 xstar=xk;
12 end

The Octave session on the next page shows sd.m 5> successfully solving the gns problem
but failing 9>,10>,11> to solve the rb problem. The routine detects optimality when 13>

rb is started from its optimal point x⋆ = [1, 1]⊤, but when its published starting point
x0 = [−1.2, 1]⊤ is used, the point to which it converges has a gradient that is 12> far from
zero.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

414 Line Search in Steepest Descent

octave:1> format long
octave:2> xzero=[2;2];
octave:3> xl=[-2;-2];
octave:4> xh=[3;3];
octave:5> [xsd,ksd]=sd(xzero,xl,xh,2,20,1e-16,@gnsg)
xsd =

0.750000000756451
-0.749999999601187

ksd= 20
octave:6> xzero=[-1.2;1];
octave:7> xl=[-2;-1];
octave:8> xh=[2;2];
octave:9> [xsd,ksd]=sd(xzero,xl,xh,2,20,1e-16,@rbg)
xsd =

-0.554727115497666
0.296124455145839

ksd = 20
octave:10> [xsd,ksd]=sd(xzero,xl,xh,2,100,1e-16,@rbg)
xsd =

0.459758038760584
0.209774132099343

ksd = 100
octave:11> [xsd,ksd]=sd(xzero,xl,xh,2,1000,1e-16,@rbg)
xsd =

0.458457195908287
0.208574575848300

ksd = 1000
octave:12> rbg(xsd)
ans =

-0.788128069575381
-0.321684926357935

octave:13> [xsd,ksd]=sd([1;1],xl,xh,2,1000,1e-16,@rbg)
xsd =

1
1

ksd = 1
octave:14> quit

12.4.2 Steepest Descent Using wolfe.m

The routine on the next page is similar to sd.m, but instead of using bls it invokes wolfe
to find α⋆. To limit the number of arguments that must be passed to sdw.m I have fixed 3

µ = 0.0001 and 4 η = 0.4, which meet the requirements for the DFP, BFGS, and Fletcher-

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.4.2 Steepest Descent Using wolfe.m 415

Reeves algorithms mentioned in §12.3.1. You might encounter situations in which it would
make sense to use different numbers or to make them arguments of the function after all.

1 function [xstar,k]=sdw(xzero,xl,xh,n,kmax,epz,fcn,grd)
2 xk=xzero;
3 mu=.0001;
4 eta=0.4;
5 smax=52;
6 for k=1:kmax
7 g=grd(xk);
8 if(norm(g) <= epz) break; end
9 dk=-g;
10 tol=1000*epz*norm(g);
11 [astar,rc,kw]=wolfe(xk,dk,xl,xh,n,fcn,grd,mu,eta,tol,smax);
12 if(rc > 3) break; end
13 xk=xk+astar*dk;
14 end
15 xstar=xk;
16 end

I set 5 the line search iteration limit smax=52 as in bls.m because wolfe.m either halves the
step or bisects the interval of uncertainty. Here the tolerance tol depends 10 on epz and
||∇f (xk)|| so that the line search gets more precise as x⋆ is approached, but depending on the
problem some other heuristic might work better to reduce the number of descent iterations
needed, or tol=0.01 might work well enough. If wolfe.m fails 12 this routine gives up and
15 returns the best point it has found so far.

The Octave session below shows sdw.m successfully solving both the gns problem and
the rb problem. Enforcing the Wolfe conditions does make steepest descent robust against
nonconvexity [5, Theorem 3.2], but notice 9> that sdw.m requires many iterations to get
close to the solution of rb. In the next Chapter we will see that using a better descent
direction can dramatically improve the speed with which we solve rb and other problems.

octave:1> format long
octave:2> xzero=[2;2];
octave:3> xl=[-2;-2];
octave:4> xh=[3;3];
octave:5> [xsdw,ksdw]=sdw(xzero,xl,xh,2,20,1e-8,@gns,@gnsg)
xsd =

0.749999998476375
-0.749999998560381

ksdw = 16
octave:6> xzero=[-1.2;1];
octave:7> xl=[-2;-1];
octave:8> xh=[2;2];
octave:9> [xsdw,ksdw]=sdw(xzero,xl,xh,2,10000,1e-8,@rb,@rbg)
xsdw =

1.00000013041525
1.00000026156901

ksdw = 10000
octave:10> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

416 Line Search

12.5 Exercises

12.5.1[E] Is the simplex algorithm for linear programming a descent method, according
to the description at the beginning of this Chapter? Is pure random search?

12.5.2[E] What is the one-dimensional minimization problem solved by a line search? Is
a line search necessarily in the direction of steepest descent?

12.5.3[E] When is an exact line search appropriate? Explain. What is the goal of a
numerical line search? Name one advantage of a derivative-free line search method, and one
drawback.

12.5.4[P] In §12.1 the golden section line search is described as “mathematically intrigu-
ing.” Here is an outline of the algorithm, based on [1, p350].

0. Let λ0 = α
L
0 + (1− r)(αH0 −αL0) and µ0 = αL0 + r(αH0 −αL0), where r =

1
2 (
√
5− 1) ≈ 0.618. Evaluate

f (λ0) and f (µ0), let s = 0, and go to step 1.

1. If αHs − αLs < t stop with α⋆ ∈ [αLs , α
H
s]. Otherwise, if f (λs) > f (µs), go to step 2, or if

f (λs) ≤ f (µs), go to step 3.

2. Let αL
s+1
= λs and αH

s+1
= µs; then let λs+1 = µs, and µs+1 = α

L
s+1
+ r(αH

s+1
− αL

s+1
). Evaluate

f (µs+1), and go to step 4.

3. Let αL
s+1
= αLs and αH

s+1
= µs; then let µs+1 = λs, and λs+1 = α

L
s+1
+ (1− r)(αH

s+1
−αL

s+1
). Evaluate

f (λs+1), and go to step 4.

4. Replace s by s + 1 and go to step 1.

(a) Flowchart this algorithm. (b) Implement the algorithm in a MATLAB function
[astar]=golden(f,x,d,xl,xh,t) where f is a pointer to the objective function, x is the
current point xk, d is the direction vector dk, xl = xL and xh = xH are the bounds on x, and
t = t is the line search convergence tolerance. (c) Test your code on the wiggly function of
§12.3. (d) Explain what makes this algorithm so clever.

12.5.5[H] In §12.1 the Fibonacci line search is described as “mathematically intriguing.”
Study the detailed description given in [1, p351-354] and discuss the advantages and draw-
backs of this particular derivative-free method.

12.5.6[E] The logic of the bisection line search is that if the slope of f (α) is negative
(positive) at the current point then the minimizing point is to the right (left) of that point.
(a) Use a graph to explain this assumption. (b) What property is required of f (α) in order
for the assumption to come true?

12.5.7[E] If a bisection line search begins with an interval of uncertainty of [0, 1], derive
a formula for the width of the interval as a function of s, the number of line search iterations
that are performed.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.5 Exercises 417

12.5.8[H] In the example of §12.2.0, αs is close to α⋆. If the line search convergence
tolerance t is small enough that this is considered not sufficiently close, the algorithm outlined
in the flowchart takes another step. How many steps l does it take for αs+l to get closer to
α⋆ than αs was?

12.5.9[E] In the bisection line search, if at some iteration αH = αL, why is it pointless to
do further bisections? How could it happen that αH = αL but | f ′(α)| > t > 0?

12.5.10[E] How is f ′(α) related to f (xk + αdk) and the derivatives of f with respect to x?

12.5.11[H] In the picture of §12.2.1, sketch the gradient vector ∇f (xk + αd) at a few points
on d. Analytically calculate the dot product d⊤∇f (xk + αd) as a function of α, and confirm
the location of α⋆ indicated in the graphs.

12.5.12[E] By comparing points in the two graphs, confirm that the parabola graphed in
§12.2.0 is the same one graphed in §12.2.1.

12.5.13[H] If we know the starting point xk of a line search, the direction of search dk, and
bounds [xL, xH] on the variables, how can we find upper and lower bounds [αL, αH] on α?
What happens if d j = 0 for some value of j? Explain the geometrical basis of your answers.

12.5.14[E] Why do we use the arange.m routine to establish the starting interval [αL0 , α
H
0]

over which to conduct a line search? Does it ever make sense to accept an αL0 < 0? Explain.

12.5.15[E] Our derivation of the formulas for αL and αH, on which arange.m is based,
assumed that xk ∈ [xL, xH]. What values are returned for al and ah if that is not true?

12.5.16[H] In computing [αL, αH] from [xL, xH] it is proposed to use the following formulas
in place of those we derived in §12.2.2:

αL = max
j

min






xL
j
− x j

d j

,
xH
j
− x j

d j





αH = min

j
max






xL
j
− x j

d j

,
xH
j
− x j

d j





.

Do these formulas yield the same values as the formulas we derived? Give a convincing
algebraic argument to support your claim.

12.5.17[E] What does it mean to say that a quantity is “numerically zero”? Is such a
quantity necessarily equal to zero exactly? If not, how different from zero can it be?

12.5.18[P] The Octave session reproduced in §12.2.3 shows output from bls.m when it is
used to do a line search. Modify the code to print the values of s, alpha, and fp that are
generated, and repeat the calculations. How many iterations are used? How many correct
digits can you produce in astar by reducing tol?

12.5.19[P] Revise the steep.m program of §10.4 to use bls.m rather than the formula we
derived for α⋆. How do the results compare with what we found before?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

418 Line Search

12.5.20[P] The prototypical optimization algorithm of §9.6 specifies that xk+1 ∈ [xL, xH],
but for simplicity the sdfs.m routine of §10.5 ignores this requirement. Revise sdfs.m to
take less than the full steepest-descent step if that is necessary in order to remain within the
variable bounds.

12.5.21[E] Define a unimodal function. Are all convex functions unimodal? If not, draw
a convex function that is not unimodal. Are all unimodal functions convex? If not, draw a
unimodal function that is not convex.

12.5.22[H] Is the rb objective function unimodal? Present a convincing algebraic argument
to support your claim.

12.5.23[E] What property of f (α) can cause the bisection line search to find the wrong
local minimum?

12.5.24[E] Describe in words what the Wolfe conditions require.

12.5.25[E] Why do the Wolfe conditions apply only to α > 0? Why is µ usually chosen to
be close to 0 while η is usually chosen to be close to 1? Explain how η = 0 corresponds to
an exact line search. Does increasing µ and decreasing η make it easier or harder to find an
α satisfying the Wolfe conditions? Explain why.

12.5.26[H] The Wolfe conditions stated in §12.3.1 are sometimes referred to as the strong
Wolfe conditions to distinguish them from the weak Wolfe conditions [4, Exercise 5.15]
[5, p34]. The only difference between the strong and weak Wolfe conditions is that the weak
curvature condition is f ′(α) ≥ η f ′(0). Draw a graph to illustrate how the weak and strong
curvature conditions differ in the values of α that they allow.

12.5.27[P] The algorithm presented in §12.3.2 is described there as “a bisection line search
in which certain restrictions are imposed in an attempt to satisfy the Wolfe conditions.”
How would the algorithm change if a more sophisticated technique than bisection were used
to find each new trial point? Suppose in particular that instead of bisecting the interval on
which f ′(α) changes sign, linear interpolation is used to find the next trial α. (a) With the
aid of a graph, explain how linear interpolation can be used to find the next guess at a zero
of f ′(α). Sometimes this is called the secant method [60, §7.1] [20, §2.3] for finding a zero
of a function. (b) Revise the flowchart, and explain how the new algorithm works. (c) Revise
the code, and test it to show that it works. Is it faster than the version using bisection?

12.5.28[E] In the Wolfe line search algorithm of §12.3.2, why do we keep a record Wolfe
point? When does it get updated? What is true of every record Wolfe point?

12.5.29[H] What properties must f (α) have in order for it to be true that f (α) actually
decreases if we take a small enough step in a descent direction?

12.5.30[H] In attempting to perform a certain line search wolfe.m reports that no descent
is possible from xk. What are the two possible reasons why this could have happened? How
can you find out which of them occurred?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

12.5 Exercises 419

12.5.31[H] In wolfe.m if amin > 0 we conclude that there is no interval to search. Why?

12.5.32[E] Can wolfe.m be used to perform a very precise line search? Why might it be
desirable to perform an imprecise line search instead?

12.5.33[P] Revise the steep.m program of §10.4 to use wolfe.m rather than the formula
we found for α⋆. How do the results compare with what we found before?

12.5.34[P] Construct a function with a global minimum that wolfe.m does not find.

12.5.35[H] If an exact analytic line search is performed by evaluating a formula for α⋆(x; d),
can we be confident that the α⋆

k
we generate will satisfy the Wolfe conditions? If your answer

is no, construct a counterexample based on the wiggly function of §12.3.0. If your answer is
yes, why does an exact numerical line search generate points that do not necessarily satisfy
the Wolfe conditions?

12.5.36[E] Does the full-step steepest-descent algorithm generate step lengths αk that sat-
isfy the Wolfe conditions? If so, prove it. If not, explain why not.

12.5.37[P] Exactly how does sd.m fail on the rb problem? Write a MATLAB program that
invokes sd in a loop to perform one iteration at a time, as described in §10.6.1, and plots its
(non)convergence trajectory over contours of the objective function. How can the algorithm
stall at a point where the gradient is far from zero?

12.5.38[P] Why does sdw.m take so long to solve the rb problem? Write a MATLAB

program that invokes sdw in a loop to perform one iteration at a time, as described in
§10.6.1, and plots its convergence trajectory over contours of the objective function. Does
the picture suggest some change in the way wolfe is being used that might accelerate the
convergence of sdw.m?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13

Newton Descent

In §10 we developed the steepest descent algorithm, which is much faster than pure random
search yet still quite robust. Unfortunately it has only linear convergence, and bad condi-
tioning of the Hessian matrix can sometimes make it, like pure random search, too slow to
be useful. To be fast a minimization algorithm must somehow use second-order information
about the function. Newton descent uses the Hessian as well as the gradient and thereby
achieves quadratic convergence when it works at all, independent of Hessian conditioning
[107, p225] [5, p27,44-45]. In this Chapter we will study Newton descent and its character
flaws, along with several variants that are more robust than plain Newton descent but still
[4, Theorem 11.3] have superlinear convergence.

13.1 The Full-Step Newton Algorithm

In §10.1 we used the Taylor’s series expansion for a function of n variables,

f (x) ≈ q(x) = f (x̄) + ∇f (x̄)⊤(x − x̄) + 1
2
(x − x̄)⊤H(x̄)(x − x̄),

to derive the direction of steepest descent. Instead we could minimize the quadratic model
function q(x) and move to (or towards) that point. Setting the gradient equal to zero we
find

∇q(x) = ∇f (x̄) +H(x̄)(x − x̄) = 0

H(x̄)(x − x̄) = −∇f (x̄)
(x − x̄) = [H(x̄)]−1 (−∇f (x̄))

x = x̄ − [H(x̄)]−1 ∇f (x̄)

as the minimizing point of q(x). Thus we could move from xk = x̄ to xk+1 by letting

xk+1 = xk − [H(xk)]−1∇f (xk) = xk + dk

where the vector
dk
= −[H(xk)]−1∇f (xk)

is called the full Newton step.
The ntplain.m routine listed at the top of the next page uses this update formula to

implement the full-step Newton descent algorithm. Comparing this update to the one
we found for steepest descent in §10.4 reveals that steepest descent is a special case of Newton
descent when H = I.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

422 Newton Descent

function [xstar,kp]=ntplain(xzero,kmax,epz,grd,hsn)
xk=xzero;
for kp=1:kmax

% find the uphill direction
g=grd(xk);
if(norm(g) <= epz) break; end

% find the full Newton step downhill
H=hsn(xk);
d=-inv(H)*g;

% take the step
xk=xk+d;

end
xstar=xk;

end

This routine is identical to the sdfs.m routine of §10.5 except for the calculation of the
descent direction d. I tested ntplain.m on the gns problem and got the answer in one
iteration (when convergence is attained kp = k + 1 so here x⋆ = x1; see §28.4.3).

octave:1> [xstar,kp]=ntplain([2;2],10,1e-6,@gnsg,@gnsh)
xstar =

0.75000
-0.75000

kp = 2
octave:2> quit

At its starting point x̄ = [2, 2]⊤, the gns problem has the gradient and Hessian that we found
in §10.5. Using that data, its objective can be written like this.

f (x) = 4x21 + 2x
2
2 + 4x1x2 − 3x1

= 34 + [21, 16]

[

x1 − 2
x2 − 2

]

+
1
2
[x1 − 2, x2 − 2]

[

8 4

4 4

] [

x1 − 2
x2 − 2

]

= f (x̄) + ∇f (x̄)⊤(x − x̄) + 1
2
(x − x̄)⊤H(x̄)(x − x̄) = q(x)

so it is equal to its own quadratic model function (see Exercise 10.9.14). We derived the full
Newton step to minimize q(x), so for this problem it minimizes the objective. The Hessian
of this function is positive definite, so f (x) is strictly convex and x⋆ = [3

4
,−3

4
]⊤ is its unique

global minimizing point. In general, Newton descent finds x⋆ in a single step whenever f (x)

is quadratic and H is positive definite, just as steepest descent finds x⋆ in one step if H = I.
Next I tried ntplain.m on the rb problem, with the mixed results shown at the top of

the next page. From the catalog starting point x0 = [−1.2, 1]⊤ it finds the optimal point in
6 iterations, but starting from x̄ = [−1.2, 1.445]⊤ it fails with some nasty messages about H
being a singular matrix.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.1 The Full-Step Newton Algorithm 423

octave:3> [xstar,kp]=ntplain([-1.2;1],10,1e-6,@rbg,@rbh)
xstar =

1.00000
1.00000

kp = 7
octave:2> [xstar,kp]=ntplain([-1.2;1.445],6,1e-6,@rbg,@rbh)
warning: inverse: matrix singular to machine precision, rcond = 0
warning: inverse: matrix singular to machine precision, rcond = 0
warning: inverse: matrix singular to machine precision, rcond = 0
warning: inverse: matrix singular to machine precision, rcond = 0
warning: inverse: matrix singular to machine precision, rcond = 0
warning: inverse: matrix singular to machine precision, rcond = 0
xstar =

NaN
NaN

kp = 6
octave:3> quit

The trouble must be in computing inv(H), so I abandoned that way of getting d and tried
solving the linear system Hd = −g by Gauss elimination instead. Recall from §8.6.2 that to
do that we begin by finding an upper triangular matrix U such that H = U⊤U. Then the
linear system can be written U⊤Ud = −g or U⊤[Ud] = −g. If we let y = Ud then we can find
d in two steps. First we solve U⊤y = −g for y and then we solve Ud = y for d. In MATLAB

this process looks like statements 10-12 in the routine ntchol.m listed below

1 function [xstar,kp]=ntchol(xzero,kmax,epz,grd,hsn)
2 xk=xzero;
3 for kp=1:kmax
4 % find the uphill direction
5 g=grd(xk);
6 if(norm(g) <= epz) break; end
7
8 % find the full Newton step downhill
9 H=hsn(xk);
10 U=chol(H);
11 y=U’\(-g);
12 d=U\y;
13
14 % take the step
15 xk=xk+d;
16 end
17 xstar=xk;
18 end

Output from ntchol.m is shown at the top of the next page. The MATLAB chol() function
can factor a matrix only if it is positive definite, so that step fails with a different error
message. It turns out that H has a determinant of zero, so neither approach allows us to use
plain Newton descent if we start from [−1.2, 1.445]⊤ or if the algorithm happens to encounter
a point where H(x) is singular. How likely is that to happen?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

424 Newton Descent

octave:1> xzero=[-1.2,1.445];
octave:2> [xstar,k]=ntchol(xzero,10,1e-6,@rbg,@rbh)
error: chol: matrix not positive definite
error: called from ntchol.m at line 10, column 8
octave:3> H=rbh(xzero)
H =

1152 480
480 200

octave:4> det(H)
ans = 0
octave:5> quit

In §10.7 we found that for the rb problem

H(x) =

[

−400x2 + 1200x21 + 2 −400x1
−400x1 200

]

.

This matrix is positive definite if its leading principal minors are positive, or

200(1200x21 − 400x2 + 2) − 160000x21 > 0

and 1200x21 − 400x2 + 2 > 0.

These inequalities are both satisfied wherever x2 < x21 +
1
200

(see Exercise 13.5.6).
Along the line x2 = x21 +

1
200

the determinant of H(x) (the expression on the left in the
first inequality) is zero, and the Hessian is singular only there; everywhere else, whether it
is positive definite or not, it has an inverse. Why not somehow avoid the points where it is
singular and go back to using d=-inv(H)*g? Unfortunately, the solution of Hd = −g is sure
to be a descent direction only if H is positive definite. To see this recall from §10.8 that d is
a descent direction only if

∇f (x)⊤d < 0

g⊤(− [H]−1 g) < 0

−g⊤([H]−1 g) < 0

g⊤ [H]−1 g > 0

and this is sure to be true only if H is positive definite. So to solve the rb problem using
plain Newton descent we must start at a point where x2 < x21 +

1
200

and hope that no iterate
xk generated by the algorithm violates that inequality.

13.2 The Modified Newton Algorithm

Because plain Newton descent requires that the Hessian of the objective be positive definite,
the algorithm is poorly suited to problems that are not strictly convex. Although some
important applications give rise to strictly convex programs, a practical general-purpose

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.2 The Modified Newton Algorithm 425

method must be more robust. Steepest descent is quite robust, which suggests the following
strategy. If at some iterate H(xk) is not positive definite, modify it to be closer to the identity
so that d turns out to be closer to the steepest-descent direction. This modified Newton

algorithm is implemented in the code listed below.

1 function [xstar,kp,nm,rc]=ntfs(xzero,kmax,epz,grd,hsn,gama)
2 % modified Newton taking full step
3 n=size(xzero,1); % get number of variables
4 xk=xzero; % set starting point
5 nm=0; % no modifications yet
6 for kp=1:kmax % do up to kmax iterations
7 g=grd(xk); % find uphill direction
8 if(norm(g) <= epz) % is xk stationary?
9 xstar=xk; % yes; declare xk optimal
10 rc=0; % flag convergence
11 return % and return
12 end % no; continue iterations
13 H=hsn(xk); % get current Hessian matrix
14 [U,p]=chol(H); % try to factor it
15 while(p ~= 0) % does H need modification?
16 if(gama >= 1 || gama < 0) % yes; can it be modified?
17 xstar=xk; % no; gama value prevents that
18 rc=2; % flag nonconvergence
19 return % and return
20 end % yes; modification possible
21 H=gama*H+(1-gama)*eye(n); % average with identity
22 [U,p]=chol(H); % and try again
23 nm=nm+1; % count the modification
24 end % now Hd=U’Ud=-g
25 y=U’\(-g); % solve U’y=-g for y
26 dk=U\y; % solve Ud=y for d
27 xk=xk+dk; % take the full step
28 end % and continue
29 xstar=xk; % out of iterations
30 rc=1; % so no convergence yet
31 end

This code resembles ntchol.m in that it uses Gauss elimination to solve Hd = −g for the
descent direction d. Now, however, the MATLAB function chol() is invoked 14 with an
additional return parameter p that signals whether H was positive definite (p = 0) or not
(p , 0). If the matrix factorization failed because H was not positive definite 15 then H is
modified 21 to be the weighted average

H← γH + (1 − γ)I

of its previous value and the identity matrix. The weighting is specified by the parameter
gama (gamma is a reserved word in MATLAB) which can be given any value between 0 (if H is
not positive definite use steepest descent for this iteration) and 1 (if H is not positive definite
resign with rc=2). After H is modified another attempt is made 22 to factor it, updating
the flag p, and 15 the process continues until H is close enough to the identity that it is
positive definite. Then its factors are used in the usual way 25-27 to compute xk+1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

426 Newton Descent

In addition to xstar and kp, this routine returns 1 the total number of Hessian modi-
fications nm that it made and a return code rc to indicate whether (rc=0) the convergence
tolerance epz was satisfied, (rc=1) the specified iteration limit kmax was met, or (rc=2) it
was necessary to modify H but gama had a value which made that impossible.

I tried ntfs.m on the rb problem starting from [−1.2, 1.445] ⊤, where we found that H(x)

is singular, with the following results.

octave:1> [xstar,kp,nm,rc]=ntfs([-1.2;1.445],10,1e-6,@rbg,@rbh,0.5)
xstar =

1.00000
1.00000

kp = 7
nm = 1
rc = 0
octave:2> quit

Convergence was attained in kp-1=6 iterations and only one Hessian modification was re-
quired, so 5 of the iterations used were full Newton steps ensuring superlinear convergence.
To study the behavior of this algorithm in more detail, I wrote the MATLAB program
rbntfs.m listed below to produce the picture on the next page.

1 %rbntfs.m: study the solution of rb using modified Newton descent
2 clear; clf; set(gca,’FontSize’,20)
3 xl=[-2;-1]; % catalog lower bounds
4 xh=[2;2]; % catalog upper bounds
5 axis([xl(1),xh(1),xl(2),xh(2)],’equal’) % set graph axes
6 hold on % start the graph
7 [xc,yc,zc,zmin,zmax]=gridcntr(@rb,xl,xh,200); % grid the objective
8 vc=[0.1,1,4]; % set contour levels
9 contour(xc,yc,zc,vc) % draw the contours
10
11 for p=1:100 % find 100 points on
12 x(p)=xl(1)+(xh(1)-xl(1))*((p-1)/99); % the curve x2=x1^2+1/200
13 y(p)=x(p)^2+0.005; % where the Hessian
14 end % is singular
15 plot(x,y,’o’) % and plot them
16 plotpd(xl,xh,20,@rbh) % show where H is pd
17
18 yks=[-0.5,+0.5]; % define two starting points
19 for L=1:2 % for each
20 xk=[0;yks(L)]; % start there
21 for k=1:10 % do up to 10 iterations
22 [xkp,kp,nm,rc]=ntfs(xk,1,1e-6,@rbg,@rbh,0.5); % of modifed Newton
23 xt(k)=xk(1); % capture
24 yt(k)=xk(2); % the iterate
25 if(rc == 0) break; end % quit if tolerance met
26 xk=xkp; % otherwise update iterate
27 end % and continue
28 plot(xt,yt) % plot convergence trajectory
29 end
30 hold off
31 print -deps -solid rbntfs.eps

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.2 The Modified Newton Algorithm 427

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

•
x1

•
x2

•
x⋆

The program 7-9 draws three contours of the rb problem. Then 11-15 it plots as small
circles 100 points on the curve where H(x) is singular, and 16 plots as plus signs the points
on a 20 × 20 grid where H(x) is positive definite. Finally 18-29 it plots the convergence
trajectory of ntfs.m from two different starting points, with the weighting factor γ = 1

2
.

This analysis shows that H(x) is positive definite only below the curve where it is singular.
From x1 = [0,−1

2
]⊤ the algorithm takes 5 full Newton steps, only 3 of which are clearly visible,

to reach x⋆. From x2 = [0,+1
2
]⊤ it takes 6 steps, modifying the Hessian 8 times and making

an excursion far outside the frame of the picture before also reaching x⋆.
To produce the field of plus signs showing where H(x) is positive definite, I used the

plotpd.m routine listed on the next page. It computes the coordinates 5-7 of each point on
an npt × npt grid within the variable bounds [xl,xh], evaluates 8 the Hessian there, and
finds 9-10 the leading principal minors. If the Hessian is positive definite 11-12 it plots a
plus sign; if it is positive semidefinite 14-15 it plots a small circle. We will use plotpd()

again in §18.
As I mentioned at the beginning of this Chapter, the convergence rate of Newton descent

is r = 2 independent of the condition number of H(x⋆). Modified Newton descent converges
the same way if all of the H(xk) are positive definite, and with r > 1 if at least some of them
are. However, in both algorithms the condition number κ(H(xk)) does affect the numerical
accuracy with which each dk is found, as we shall see in §18.4.2, so bad conditioning of the
Hessian might limit the precision with which x⋆ can be determined (see Exercise 13.5.16).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

428 Line Search in Newton Descent

1 function plotpd(xl,xh,npt,hsn)
2 % plot + where H is pd, o where it is psd
3 for i=1:npt;
4 for j=1:npt;
5 xi(i)=xl(1)+(xh(1)-xl(1))*((i-1)/(npt-1));
6 yi(j)=xl(2)+(xh(2)-xl(2))*((j-1)/(npt-1));
7 x=[xi(i);yi(j)];
8 H=hsn(x);
9 lpm1=H(1,1);
10 lpm2=H(1,1)*H(2,2)-H(1,2)*H(2,1);
11 if(lpm1 > 0 && lpm2 > 0)
12 plot(xi(i),yi(j),’+’);
13 else
14 if(lpm1 >= 0 && lpm2 >= 0)
15 plot(xi(i),yi(j),’o’);
16 end
17 end
18 end
19 end
20 end

13.3 Line Search in Newton Descent

Instead of taking the full step in the modified Newton algorithm we could perform a line
search in each descent direction dk, and depending on the problem that might reduce the
number of descent iterations that are needed. I wrote two functions, using the bisection and
Wolfe line searches, to complete the following set of Newton descent routines.

routine synopsis [xstar,kp,nm,rc]= algorithm for α⋆

nt(xzero,xl,xh,kmax,epz,grd,hsn,gama) optimal step from bls

ntw(xzero,xl,xh,kmax,epz,fcn,grd,hsn,gama) Wolfe step from wolfe

ntfs(xzero,kmax,epz,grd,hsn,gama) full step from formula

We want our line searches to be in downhill directions, so it is still necessary to ensure that
each H is positive definite.

13.3.1 Modified Newton Using bls.m

The nt.m routine listed on the next page differs from ntfs.m in only three particulars.
Because bls.m requires the variable bounds xl and xh, these must be included in the nt.m

calling sequence 1 . As in sd.m, the line search tolerance tol is 7 set equal to the descent
method tolerance epz. Finally, instead of taking a full step the new point is found 30 as
xk+astar*dk.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.3.1 Modified Newton Using bls.m 429

1 function [xstar,kp,nm,rc]=nt(xzero,xl,xh,kmax,epz,grd,hsn,gama)
2 % modified Newton using bisection line search
3 n=size(xzero,1); % get number of variables
4 xk=xzero; % set starting point
5 nm=0; % no modifications yet
6 rc=0; % assume it will converge
7 tol=epz; % set line search tolerance
8 for kp=1:kmax % do up to kmax descents
9 g=grd(xk); % find uphill direction
10 if(norm(g) <= epz) % is xk stationary?
11 xstar=xk; % yes; declare xk optimal
12 rc=0; % flag convergence
13 return % and return
14 end % no; continue iterations
15 H=hsn(xk); % get current Hessian matrix
16 [U,p]=chol(H); % try to factor it
17 while(p ~= 0) % does H need modification?
18 if(gama >= 1 || gama < 0) % yes; can it be modified?
19 xstar=xk; % no; gama value prevents that
20 rc=2; % flag nonconvergence
21 return % and return
22 end % yes; modification possible
23 H=gama*H+(1-gama)*eye(n); % average with identity
24 [U,p]=chol(H); % and try again
25 nm=nm+1; % count the modification
26 end % now Hd=U’Ud=-g
27 y=U’\(-g); % solve U’y=-g for y
28 dk=U\y; % solve Ud=y for d
29 astar=bls(xk,dk,xl,xh,n,grd,tol);
30 xk=xk+astar*dk; % take the optimal step
31 end % and continue
32 xstar=xk; % out of iterations
33 rc=1; % so no convergence yet
34 end

This routine works better than sd.m on the gns and rb problems (compare the results below
and on the next page with those in §12.4.1) and it finds both minimizing points accurately.
However, its convergence tolerance is never satisfied when solving the rb problem, so it
always returns rc=1 (see Exercise 13.5.18).

octave:1> format long
octave:2> xzero=[2;2];
octave:3> xl=[-2;-2];
octave:4> xh=[3;3];
octave:5> [xstar,kp,nm,rc]=nt(xzero,xl,xh,20,1e-16,@gnsg,@gnsh,0.5)
xstar =

0.750000000000000
-0.750000000000000

kp = 2
nm = 0
rc = 0
octave:6> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

430 Line Search in Newton Descent

octave:1> format long
octave:2> xl=[-2;-1];
octave:3> xh=[2;2];
octave:4> [xstar,kp,nm,rc]=nt([0;-0.5],xl,xh,20,1e-16,@rbg,@rbh,0.5)
xstar =

0.999999984277081
0.999999970197678

kp = 20
nm = 0
rc = 1
octave:5> [xstar,kp,nm,rc]=nt([0;0.5],xl,xh,20,1e-16,@rbg,@rbh,0.5)
xstar =

1.00000011204406
1.00000023841858

kp = 20
nm = 8
rc = 1
octave:6> quit

Although nt.m uses the allowed iterations in these experiments, increasing the iteration limit
does not significantly change either reported xstar.

13.3.2 Modified Newton Using wolfe.m

The ntw.m routine listed on the next page differs from ntfs.m in only five particulars. Like
nt.m, it includes the variable bounds xl and xh in its calling sequence 1 so that they can
be passed on to the line search. It sets the Wolfe parameters 7-8 and line search iteration
limit smax 9 as in sdw.m, and it uses the same approach as in sdw.m 31 to make the line
search tolerance get smaller as the optimal point is approached. It tests 33 the return code
from wolfe.m and gives up if the line search failed. Finally, instead of taking a full step the
new point is found 34 as xk+astar*dk.

octave:1> format long
octave:2> xzero=[2;2];
octave:3> xl=[-2;-2];
octave:4> xh=[3;3];
octave:5> [xstar,kp,nm,rc]=ntw(xzero,xl,xh,100,1e-14,@gns,@gnsg,@gnsh,0.5)
xstar =

0.750000000000000
-0.750000000000000

kp = 2
nm = 0
rc = 0
octave:6> quit

The output shown above and on the next page demonstrates that ntw.m can solve the gns

and rb problems exactly.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.3.2 Modified Newton Using wolfe.m 431

1 function [xstar,kp,nm,rc]=ntw(xzero,xl,xh,kmax,epz,fcn,grd,hsn,gama)
2 % modified Newton using Wolfe line search
3 n=size(xzero,1); % get number of variables
4 xk=xzero; % set starting point
5 nm=0; % no modifications yet
6 rc=0; % assume it will converge
7 mu=0.0001; % Wolfe sufficient decrease
8 eta=0.4; % Wolfe curvature
9 smax=52; % line search iteration limit
10 for kp=1:kmax % do up to kmax descents
11 g=grd(xk); % find uphill direction
12 if(norm(g) <= epz) % is xk stationary?
13 xstar=xk; % yes; declare xk optimal
14 rc=0; % flag convergence
15 return % and return
16 end % no; continue iterations
17 H=hsn(xk); % get current Hessian matrix
18 [U,p]=chol(H); % try to factor it
19 while(p ~= 0) % does H need modification?
20 if(gama >= 1 || gama < 0) % yes; can it be modified?
21 xstar=xk; % no; gama value prevents that
22 rc=2; % flag nonconvergence
23 return % and return
24 end % yes; modification possible
25 H=gama*H+(1-gama)*eye(n); % average with identity
26 [U,p]=chol(H); % and try again
27 nm=nm+1; % count the modification
28 end % now Hd=U’Ud=-g
29 y=U’\(-g); % solve U’y=-g for y
30 dk=U\y; % solve Ud=y for d
31 tol=1000*epz*norm(g); % adapt line search tolerance
32 [astar,rcw,kw]=wolfe(xk,dk,xl,xh,n,fcn,grd,mu,eta,tol,smax);
33 if(rcw > 3) break; end % resign if line search failed
34 xk=xk+astar*dk; % take the optimal step
35 end % and continue
36 xstar=xk; % out of iterations
37 rc=1; % so no convergence yet
38 end

octave:1> format long
octave:2> xl=[-2;-1];
octave:3> xh=[2;2];
octave:4> [xstar,kp,nm,rc]=ntw([0;-0.5],xl,xh,100,1e-16,@rb,@rbg,@rbh,0.5)
xstar =

1
1

kp = 16
nm = 0
rc = 0
octave:5> [xstar,kp,nm,rc]=ntw([0;0.5],xl,xh,100,1e-16,@rb,@rbg,@rbh,0.5)
xstar =

1
1

kp = 14
nm = 8
rc = 0
octave:6> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

432 Newton Descent

13.4 Quasi-Newton Algorithms

The modified Newton algorithm has superlinear convergence and works from any starting
point, but it uses a lot of CPU time. Computing H(xk) might involve evaluating complicated
expressions for the matrix elements, and once they are all known factoring the result takes
on the order of n3 additional arithmetic operations. The time required to solve a problem
also includes the labor of deriving a formula for the Hessian, which can be a tedious and
tricky process even with the help of a computer algebra system such as Maple.

These drawbacks motivated a search for ways to approximate H(x) by using function and
gradient values that have to be computed anyway in performing Newton descent. Several
such approximations have been discovered that take only on the order of n2 arithmetic
operations, and the variable metric or quasi-Newton algorithms that use them still
have superlinear convergence. The DFP and BFGS methods that we will take up in this
Section were a “dramatic advance” that “transformed nonlinear optimization overnight”
[5, p135-136], and they have played an important role in practical optimization ever since.

13.4.1 The Secant Equation

If f (x) is a function of one variable and we know
its value at two distinct points xk and xk+1, we can
approximate its first derivative at xk+1 as

f ′(xk+1) ≈ f (xk+1) − f (xk)

xk+1 − xk
.

If the points happen to be far apart, as in the ex-
ample shown to the right, this approximation might
not be very accurate. 1

2

3

4

5

6

7

8

-2 -1 0 1 2 3

f (x) = 2x sin (x) − (x2 − 2) cos (x)

xk xk+1

f (xk+1)

f (xk)

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3

f ′(x) = x2 sin(x)

sk

yk

xk xk+1

f ′(xk+1)

f ′(xk)

Similarly, we can approximate the second deriva-
tive of f (x) at xk+1 as

f ′′(xk+1) ≈ f ′(xk+1) − f ′(xk)

xk+1 − xk
.

In other words,

f ′′(xk+1)(xk+1 − xk) ≈ f ′(xk+1) − f ′(xk)

or, letting sk = xk+1 − xk and yk = f ′(xk+1) − f ′(xk),

f ′′(xk+1)sk ≈ yk.

Here the slope of the chord that approximates f ′(x) between xk and xk+1 is yk/sk.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.4.2 Iterative Approximation of the Hessian 433

If x ∈ Rn, this way of approximating the second derivative of f (x) yields

H(xk+1)sk ≈ yk.

where now sk = xk+1 − xk and yk = ∇f (xk+1) − ∇f (xk) are vectors. If we can find a matrix Bk+1

such that
Bk+1sk = yk

exactly, then Bk+1 will approximate H(xk+1). This is called the secant equation.
We assume that the Hessian is symmetric (f (x) has continuous second partials) so we

want Bk+1 to be symmetric as well, and that means it has 1
2
n(n + 1) different elements. To

determine them uniquely we would need that many independent conditions. Given values
for sk and yk, the secant equation Bk+1sk = yk is a linear system of n scalar equations in the
elements of Bk+1, so it provides n conditions. We want the Hessian to be positive definite to
ensure the descent directions we find actually go downhill, so Bk+1 should be positive definite
too. That means its leading principal minors are all positive and there are n of those, so we
have another n conditions. The table below summarizes, for several values of n, the number
2n of conditions that must be satisfied and the number 1

2
n(n + 1) of Bk+1 elements to be

determined.

n 2n 1
2
n(n + 1)

1 2 1
2 4 3
3 6 6
4 8 10
...
...

...

}
not enough elements to ensure Bk+1

meets all of the conditions

}

not enough conditions to determine
Bk+1 uniquely

For n > 3 there are many possible choices for Bk+1.

13.4.2 Iterative Approximation of the Hessian

A quasi-Newton method starts with a matrix B0, typically set to I (which yields a steepest-
descent step), and then applies an update formula involving function and gradient values
to transform each Bk into Bk+1. From a Bk that is symmetric and positive definite, the update
formula must produce a Bk+1 having these three properties:

• it is also symmetric, like H(x);

• it is also positive definite, so that d = −B−1∇f (xk) is a descent direction;

• it satisfies the secant equation so that it approximates H(x).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

434 Quasi-Newton Algorithms

Many different update formulas can produce a Bk+1 having these properties [5, §6.3]. The
first effective one was found by Davidon, Fletcher, and Powell [40] and it is therefore known
as the DFP algorithm; the one most often used today was found by Broyden, Fletcher,
Goldfarb, and Shanno [131, p53-72] and is therefore known as the BFGS algorithm. If we
let

ρk =
1

yk⊤sk

then the two updates can be written as follows.

DFP: Bk+1
= (I − ρkyksk⊤)Bk(I − ρkskyk⊤) + ρkykyk⊤

BFGS: Bk+1
= Bk − Bksksk⊤Bk

sk⊤Bksk
+
ykyk⊤

yk⊤sk

These formulas involve both inner and outer products of vectors. The inner or dot
product yields a scalar while the outer product yields a matrix. For example, if

u =

[

1

2

]

and v =

[

3

4

]

then

u⊤v =
[

1 2
]
[

3

4

]

= 1 × 3 + 2 × 4 = 11

but

uv⊤ =

[

1

2

]
[

3 4
]

=

[

1 × 3 1 × 4
2 × 3 2 × 4

]

=

[

3 4

6 8

]

.

Remembering this, it is easy to confirm that all of the indicated products are conformable
and that the denominators in the BFGS update are scalars.

Either update produces (as we shall prove in §13.4.3) a Bk+1 that is symmetric and satisfies
the secant equation, and that is positive definite if the Wolfe curvature condition is satisfied.
Recall from §12.3.1 that the Wolfe curvature condition requires

|∇f (xk + αdk)⊤dk | ≤ η|∇f (xk)⊤dk|

If dk is a descent direction then |∇f (xk)⊤dk| = −∇f (xk)⊤dk > 0. If also xk+1 = xk + αdk then,
because η < 1, we have

|∇f (xk+1)⊤dk| < −∇f (xk)⊤d

But if that is true then both of these inequalities must hold.

∇f (xk+1)⊤dk < −∇f (xk)⊤dk

−∇f (xk+1)⊤dk < −∇f (xk)⊤dk

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.4.3 The BFGS Update Formula 435

Rearranging the last inequality, we get

∇f (xk+1)⊤dk − ∇f (xk)⊤dk > 0

[∇f (xk+1) − ∇f (xk)]⊤dk > 0

But [∇f (xk+1) − ∇f (xk)] = yk and dk
= (xk+1 − xk)/α = sk/α, so yk⊤sk/α > 0. Because α > 0,

yk⊤sk > 0. Thus, if the Wolfe curvature condition is satisfied then sk⊤yk > 0, and this is the
characterization that we will use in the next Section.

The DFP and BFGS updates require a lot of arithmetic but they still might be cheaper
than finding H(xk), and because they are guaranteed to produce a positive-definite result if
sk⊤yk > 0 we need never modify B to ensure that d = −B−1∇f (xk) is a descent direction.

13.4.3 The BFGS Update Formula

Extraordinary claims demand compelling evidence, so four theorems [53] are proved below
to establish that the BFGS update really does produce a matrix Bk+1 having the properties
listed in §13.4.2. Similar results can be obtained for the DFP update (see Exercise 13.5.27).

Theorem: the BFGS update maintains symmetry of B.
if Bk is symmetric and

Bk+1
= Bk − Bksksk⊤Bk

sk⊤Bksk
+
ykyk⊤

yk⊤sk

then Bk+1 is symmetric

Proof:

The transpose of a scalar is the scalar, and the transpose of a product is the product of the
transposes in opposite order, so

[Bk+1]⊤ = [Bk]⊤ − [(Bksk)(Bk⊤sk)⊤]⊤

sk⊤Bksk
+
[ykyk⊤]⊤

yk⊤sk

Bk is symmetric by assumption, and the transpose of a product is the product of the trans-
poses in opposite order, so

[Bk+1]⊤ = Bk − (Bk⊤sk)(Bksk)⊤

sk⊤Bksk
+
ykyk⊤

yk⊤sk

The transpose of a product is the product of the transposes in opposite order, so

[Bk+1]⊤ = Bk − Bk⊤sksk⊤Bk

sk⊤Bksk
+
ykyk⊤

yk⊤sk

This is the formula for Bk+1 so [Bk+1]⊤ = Bk+1 and Bk+1 is symmetric as was to be shown. �

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

436 Quasi-Newton Algorithms

Theorem: the BFGS result satisfies the secant equation.

if Bk+1
= Bk − Bksksk⊤Bk

sk⊤Bksk
+
ykyk⊤

yk⊤sk

then Bk+1sk = yk

Proof:

Using the update formula we compute

Bk+1sk = Bksk − Bksk(sk⊤Bksk)

(sk⊤Bksk)
+
yk(yk⊤sk)

(yk⊤sk)

Each of the quantities in parentheses is a scalar, so in each fraction the parenthesized quantity
in the numerator cancels out with the one in the denominator and we are left with

Bk+1sk = Bksk − Bksk + yk.

Thus Bk+1sk = yk as was to be shown. �

In proving that the BFGS update preserves the positive-definiteness of B (on the next two
pages) it will be convenient to use the following general result.

Theorem: Let U and M be square matrices the same size, with U upper triangular and
nonsingular. Then U⊤MU is positive definite if and only if M is positive definite.

Proof:

First suppose that U⊤MU is positive definite. We assumed U is nonsingular, so we can let
w = U−1z so that z = Uw. Then z⊤Mz = (Uw)⊤M(Uw) = w⊤(U⊤MU)w. But we assumed that
U⊤MU is positive definite, so w⊤(U⊤MU)w > 0 for all w , 0. Because U is upper triangular,
z = 0⇔ w = 0 so w , 0⇒ z , 0. Thus z⊤Mz > 0 for all z , 0, so M is positive definite.

Next suppose thatM is positive definite. We assumed U is nonsingular, so we can let w = Uv.
Then w⊤Mw = (Uv)⊤M(Uv) = v⊤(U⊤MU)v. But we assumed that M is positive definite, so
w⊤Mw > 0 for all w , 0. Because U is upper triangular, v = 0 ⇔ w = 0 so w , 0 ⇒ v , 0.
Thus v⊤(U⊤MU)v > 0 for all v , 0, so U⊤MU is positive definite.

In summary, if U is nonsingular then

U⊤MU positive definite ⇒ M is positive definite
M positive definite ⇒ U⊤MU is positive definite

In other words, U⊤MU is positive definite ⇔ M is positive definite, as was to be shown. �

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.4.3 The BFGS Update Formula 437

Theorem: the BFGS update maintains positive definiteness of B.

if Bk is positive definite and

the Wolfe curvature condition is satisfied so sk⊤yk > 0 and

Bk+1
= Bk − Bksksk⊤Bk

sk⊤Bksk
+
ykyk⊤

yk⊤sk

then Bk+1 is positive definite

Proof:

Write Bk
= U⊤U, its Cholesky factorization [150, §23]. This is possible because Bk is positive

definite. Substituting, the update formula becomes

Bk+1
= U⊤U − U⊤Usksk⊤U⊤U

sk⊤U⊤Usk
+
ykyk⊤

yk⊤sk
.

Now let
ȳ = U−⊤yk so yk = U⊤ȳ

s̄ = Usk so sk = U−1s̄.

The triangular factor U has positive elements on its diagonal, so it is nonsingular. The
notation U−⊤ denotes the transpose of the inverse of U. Substituting, we get

Bk+1
= U⊤U − U⊤

(

(Usk)(Usk)⊤

(Usk)⊤(Usk)

)

U +
U⊤ȳȳ⊤U

ȳ⊤UU−1s̄

= U⊤U − U⊤
(

s̄s̄⊤

s̄⊤s̄

)

U + U⊤
(

ȳȳ⊤

ȳ⊤s̄

)

U

= U⊤
(

I − s̄s̄⊤

s̄⊤s̄
+
ȳȳ⊤

ȳ⊤s̄

)

U.

Because U is nonsingular, U⊤MU is positive definite if and only if the matrix M is positive
definite. Thus, to show that Bk+1 is positive definite we need to show that

M =

(

I − s̄s̄⊤

s̄⊤s̄
+
ȳȳ⊤

ȳ⊤s̄

)

is positive definite, or z⊤Mz > 0 for all vectors z , 0. The remainder of the argument is
devoted to establishing that fact.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

438 Quasi-Newton Algorithms

We found that

M =

(

I − s̄s̄⊤

s̄⊤s̄
+
ȳȳ⊤

ȳ⊤s̄

)

so

z⊤Mz = z⊤z − (z⊤s̄)(s̄⊤z)

s̄⊤s̄
+
(z⊤ȳ)(ȳ⊤z)

ȳ⊤s̄

= z⊤z − (s̄⊤z)2

s̄⊤s̄
+
(ȳ⊤z)2

ȳ⊤s̄
.

Now suppose that the angle between s̄ and z is θ. Then

s̄⊤z = ||s̄|| ||z|| cos θ
(s̄⊤z)2 = (||s̄|| ||z|| cos θ)2

If the angle between ȳ and z is φ then we find similarly that

ȳ⊤z = ||ȳ|| ||z|| cosφ
(ȳ⊤z)2 = (||ȳ|| ||z|| cos φ)2

Then

z⊤Mz = ||z||2 − ||s̄||
2||z||2 cos2 θ
||s̄||2 +

||ȳ||2||z||2 cos2 φ
ȳ⊤s̄

z⊤Mz = ||z||2(1 − cos2 θ) + ||z||2
(

||ȳ||2 cos2 φ
ȳ⊤s̄

)

But
ȳ⊤s̄ = (U−⊤yk)⊤(Usk) = yk⊤U−1Usk = yk⊤sk > 0

because the Wolfe curvature condition is satisfied. Thus z⊤Mz ≥ 0 for all vectors z , 0, and
it can be equal to zero only if cos2 θ = 1 (z and s̄ are collinear, z = γs̄) and cos2 φ = 0 (ȳ and
z are orthogonal, ȳ⊤z = 0). To show that those things cannot both be true, suppose to the
contrary that they are both true. Then we would have

z = γs̄ = γUsk

ȳ⊤z = (U−⊤yk)⊤z = (U−⊤yk)⊤γUsk = γyk⊤U−1Usk = γyk⊤sk = 0

But yk⊤sk > 0 because the Wolfe curvature condition is satisfied, so it cannot be true that
both cos2 θ = 1 and cos2 φ = 0. Thus z⊤Mz > 0 for all z , 0, M is positive definite, and Bk+1

is also positive definite as was to be shown. �

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.4.5 The DFP and BFGS Algorithms 439

13.4.4 Updating the Inverse Matrix

Now we have a way to get superlinear convergence without computing the Hessian matrix.
Unfortunately, we still need to solve the linear system

Bkdk
= −∇f (xk)

for each descent direction dk, and this accounts for the majority of the computational effort
in each iteration. If we could somehow approximate G = B−1 ≈ H−1(xk) instead of B, then
each dk could be found by this much faster matrix multiply.

dk
= −Gk∇f (xk)

That turns out to be possible, thanks to the following miraculous gift from linear algebra
[5, p612]. This theorem is about a rank-one update to a matrix, which results from adding
the outer product of two vectors (and which we will encounter again in §24).

Theorem: the Sherman-Morrison-Woodbury formula

if Ā = A + ab⊤

A is nonsingular
Ā is nonsingular

then Ā−1 = A−1 − A−1ab⊤A−1

1 + b⊤A−1a

Using this result we can derive the following updates for G.

DFP: Gk+1
= Gk − Gkykyk⊤Gk

yk⊤Gkyk
+

sksk⊤

yk⊤sk

BFGS: Gk+1
= (I − ρkskyk⊤)Gk(I − ρkyksk⊤) + ρksksk⊤

Each update for G resembles the other update for B, revealing a deep connection between
the DFP and BFGS schemes. Surprisingly, they can perform differently in practice.

13.4.5 The DFP and BFGS Algorithms

Algorithms based on the DFP and BFGS updates are more complicated than plain Newton
descent because they use a Wolfe line search rather than taking a full step, but they are sim-
pler than modified Newton descent because it is never necessary to factor G. The MATLAB

routines dfp.m and bfgs.m listed on the next page differ only in their update formulas.
Their calling sequences do not include a routine to compute the Hessian; however, so that
they will be serially reusable they do include an initial value Gzero for the Hessian-inverse
approximation and return its final value in Gstar.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

440 Quasi-Newton Algorithms

1 % Davidon-Fletcher-Powell algorithm
2
3 function [xstar,Gstar,kp,rc]=dfp(xzero,Gzero,xl,xh,kmax,epz,fcn,grd)
4 n=size(xzero,1);
5 mu=0.0001;
6 eta=0.9;
7 tol=0.01;
8 smax=52;
9 xk=xzero;
10 g=grd(xk);
11 G=Gzero;
12 for kp=1:kmax
13 dk=G*(-g);
14 [astar,rc]=wolfe(xk,dk,xl,xh,n,fcn,grd,mu,eta,tol,smax);
15 if(rc > 2) break; end
16 sk=astar*dk;
17 xk=xk+sk;
18 gnew=grd(xk);
19 yk=gnew-g;
20 g=gnew;
21 if(norm(g) <= epz) break; end
22 G=G-((G*yk)*(yk’*G))/(yk’*G*yk)+(sk*sk’)/(yk’*sk);
23 end
24 xstar=xk;
25 Gstar=G;

1 % Broyden-Fletcher-Goldfarb-Shanno algorithm
2
3 function [xstar,Gstar,kp,rc]=bfgs(xzero,Gzero,xl,xh,kmax,epz,fcn,grd)
4 n=size(xzero,1);
5 mu=0.0001;
6 eta=0.9;
7 tol=0.01;
8 smax=52;
9 xk=xzero;
10 g=grd(xk);
11 G=Gzero;
12 for kp=1:kmax
13 dk=G*(-g);
14 [astar,rc]=wolfe(xk,dk,xl,xh,n,fcn,grd,mu,eta,tol,smax);
15 if(rc > 2) break; end
16 sk=astar*dk;
17 xk=xk+sk;
18 gnew=grd(xk);
19 yk=gnew-g;
20 g=gnew;
21 if(norm(g) <= epz) break; end
22 rho=1/(yk’*sk);
23 G=(eye(n)-rho*sk*yk’)*G* ...
24 (eye(n)-rho*yk*sk’)+rho*sk*sk’;
25 end
26 xstar=xk;
27 Gstar=G;

The line search can be imprecise 7 but as usual (see §12.2.3) I have allowed it smax=52

iterations 8 . The Wolfe parameter values 5,6 are chosen deliberately [5, p142] for quasi-
Newton algorithms, and we insist 15 that astar satisfy the Wolfe conditions; the return
code from wolfe.m is passed back 3 so that the calling routine can determine whether that

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.4.5 The DFP and BFGS Algorithms 441

happened. The update formulas are easy to code but lengthy; in bfgs.m I used the MATLAB

ellipsis “...” to continue the formula 23-24 from one line to the next.
To test these routines I wrote the tryqn.m program listed below. It exercises dfp.m and

bfgs.m on the rb problem and plots their error curves.

1 % tryqn.m: compare DFP to BFGS on the rb problem
2 clear; clf; set(gca,’FontSize’,25)
3
4 xl=[-2;-1];
5 xh=[2;2];
6 xzero=[-1.2;1];
7 xstar=[1;1];
8 ezero=norm(xzero-xstar);
9 kmax=100;
10 epz=1e-9;
11
12 % solve the problem using DFP
13 xk=xzero;
14 Gk=eye(2);
15 for kp=1:kmax
16 x=xk;
17 G=Gk;
18 [xk,Gk,kused,rc]=dfp(x,G,xl,xh,1,epz,@rb,@rbg);
19 kdfp(kp)=kp;
20 edfp(kp)=norm(xk-xstar)/ezero;
21 if(edfp(kp) < epz) break; end
22 end
23 printf(’DFP: x= %17.15f %17.15f at kp=%i3\n’,xk(1),xk(2),kp)
24
25 % solve the problem using BFGS
26 xk=xzero;
27 Gk=eye(2);
28 for kp=1:kmax
29 x=xk;
30 G=Gk;
31 [xk,Gk,kused,rc]=bfgs(x,G,xl,xh,1,epz,@rb,@rbg);
32 kbfgs(kp)=kp;
33 ebfgs(kp)=norm(xk-xstar)/ezero;
34 if(ebfgs(kp) < epz) break; end
35 end
36 printf(’BFGS: x= %17.15f %17.15f at kp=%i3\n’,xk(1),xk(2),kp)
37
38 % plot error versus iteration for the two methods
39 hold on
40 semilogy(kdfp,edfp);
41 semilogy(kdfp,edfp,’+’);
42 semilogy(kbfgs,ebfgs);
43 semilogy(kbfgs,ebfgs,’o’);
44 hold off
45 print -deps -solid tryqn.eps

The Hessian-inverse approximation Gk is initialized to the identity for both dfp.m 14 and
bfgs.m 27 . The loops 15-22 and 28-35 invoke 18 dfp.m and 31 bfgs.m to perform one
iteration at a time, so that the relative error of each iterate can be captured in edfp 20 and
ebfgs 33 for plotting 40-43 .

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

442 Quasi-Newton Algorithms

The tryqn.m program produces the output and error curves below.

octave:1> tryqn
DFP: x= 1.000000000356373 1.000000000988120 at kp=263
BFGS: x= 0.999999999792015 0.999999999566663 at kp=363
octave:2> quit

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 5 10 15 20 25 30 35 40

k

ek
e0

DFP

BFGS

Both algorithms accurately solve the rb problem from its catalog starting point with almost-
quadratic convergence, but dfp.m requires significantly fewer iterations.

13.4.6 The Full BFGS Step

In §13.1.0 we found that the full-step Newton algorithm fails when the Hessian H is non-
positive-definite at some iterate xk. But quasi-Newton methods approximate H−1 by a matrix
Gk that is positive definite for all k. Why not skip the Wolfe line search and just take a full
(α = 1) step in the descent direction dk

= −Gk∇f (xk)?
The trouble with this idea is that to ensure each Bk is positive definite, so that Gk is

positive definite and dk actually is a descent direction, we found it necessary to assume in
§13.4.3 that the Wolfe curvature condition is satisfied, and the full DFP or BFGS step might
not do that. On the other hand, it might! In fact, as the xk approach x⋆ this becomes
increasingly likely [5, p142]. In a quasi-Newton algorithm the line search can be safely
avoided altogether if α = 1 happens to satisfy the Wolfe conditions, even if that step length
is far from α⋆.

The chkwlf.m routine listed at the top of the next page returns rc=0 if a proposed
step length alpha satisfies both Wolfe conditions, rc=1 if it violates the sufficient decrease
condition, rc=2 if it violates the curvature condition, or rc=3 if it violates both. I used it in
bfgsfs.m, which is listed at the bottom of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.4.6 The Full BFGS Step 443

function [rc]=chkwlf(xk,dk,alpha,mu,eta,fcn,grd)
% check the Wolfe conditions
gk=grd(xk); % gradient at current point
dfk=gk’*dk; % directional derivative there
fk=fcn(xk); % function value at current point
x=xk+alpha*dk; % proposed next point
g=grd(x); % gradient there
df=g’*dk; % directional derivative there
f=fcn(x); % function value there
rc=0; % assume both conditions satisfied
if(f > fk+mu*dfk*alpha) % sufficient decrease?

rc=rc+1; % no; violated
end
if(abs(df) > eta*abs(dfk)) % curvature?

rc=rc+2; % no; violated
end

end

% Broyden-Fletcher-Goldfarb-Shanno taking a full step if possible
function [xstar,Gstar,kp,rc]=bfgsfs(xzero,Gzero,xl,xh,kmax,epz,fcn,grd)
n=size(xzero,1);
mu=0.0001;
eta=0.9;
tol=0.01;
smax=52;
xk=xzero;
g=grd(xk);
G=Gzero;
for kp=1:kmax

dk=G*(-g);
[rcchk]=chkwlf(xk,dk,1,mu,eta,fcn,grd); % is a full step OK?
if(rcchk == 0) % if so,

astar=1; % use it
rc=8; % and tell the caller

else
[astar,rc]=wolfe(xk,dk,xl,xh,n,fcn,grd,mu,eta,tol,smax);
if(rc > 2) break; end

end
sk=astar*dk;
xk=xk+sk;
gnew=grd(xk);
yk=gnew-g;
g=gnew;
if(norm(g) <= epz) break; end
rho=1/(yk’*sk);
G=(eye(n)-rho*sk*yk’)*G* ...
(eye(n)-rho*yk*sk’)+rho*sk*sk’;

end
xstar=xk;
Gstar=G;

If the final iteration of bfgsfs.m uses a full step rather than a line search, it returns rc=8
(this value differs from the return codes that can be passed back from wolfe.m). From the
results on the next page it is clear that the full BFGS step can sometimes be taken.

It might happen that α = 1 falls outside the line search limits [αL, αH] determined by
the variable bounds, so bfgsfs.m, like our other full-step routines sdfs.m and ntfs.m, can
return an optimal point that is not in [xL, xH] (but see Exercises 12.5.20 and 13.5.19).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

444 Quasi-Newton Algorithms

octave:1> format long
octave:2> Gzero=eye(2);
octave:3> xzero=[2;2];
octave:4> xl=[-2;-2];
octave:5> xh=[3;3];
octave:6> [xstar,Gstar,kp,rc]=bfgsfs(xzero,Gzero,xl,xh,100,1e-16,@gns,@gnsg)
xstar =

0.750000000000000
-0.750000000000000

Gstar =

0.250000000022406 -0.249999999982929
-0.249999999982929 0.500000000013006

kp = 4
rc = 8
octave:7> xl=[-2;-1];
octave:8> xh=[2;2];
octave:9> [xstar,Gstar,kp,rc]=bfgsfs([0;-0.5],Gzero,xl,xh,100,1e-16,@rb,@rbg)
xstar =

1
1

Gstar =

0.499800081614917 0.999569749238111
0.999569749238111 2.004081926521275

kp = 24
rc = 8
octave:10> [xstar,Gstar,kp,rc]=bfgsfs([0;0.5],Gzero,xl,xh,100,1e-16,@rb,@rbg)
xstar =

1
1

Gstar =

0.499427207759372 0.998853413502508
0.998853413502508 2.002704124873238

kp = 24
rc = 8
octave:11> quit

A version of dfp.m can be constructed that uses chkwlf.m and takes a full step if that
satisfies the Wolfe conditions (see Exercise 13.5.32) and it will complete our set of four
routines implementing quasi-Newton algorithms.

routine synopsis [xstar,Gstar,kp,rc]= algorithm for α⋆

dfp(xzero,Gzero,xl,xh,kmax,epz,fcn,grd) DFP update
bfgs(xzero,Gzero,xl,xh,kmax,epz,fcn,grd) BFGS update
dfpfs(xzero,Gzero,xl,xh,kmax,epz,fcn,grd) full DFP step if safe
bfgsfs(xzero,Gzero,xl,xh,kmax,epz,fcn,grd) full BFGS step if safe

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.5 Exercises 445

13.5 Exercises

13.5.1[H] In §13.1 claimed that

the quadratic approximation q(x) = f (x̄) + ∇f (x̄)⊤(x − x̄) + 1
2
(x − x̄)⊤H(x̄)(x − x̄)

has gradient ∇q(x) = ∇f (x̄) +H(x̄)(x − x̄).
Show that this claim is true. Hint: the gradient of a constant is zero.

13.5.2[E] Steepest descent is a simple and robust algorithm for unconstrained nonlinear
optimization. What drawbacks does it have that motivate the search for better methods?
How do Newton descent and its variants achieve superlinear convergence?

13.5.3[E] When does taking one full Newton step minimize a function? When does taking
one full steepest descent step minimize a function? When is a full Newton step the same as
a full steepest descent step?

13.5.4[H] Consider the system of linear equations Hd = −g in which

H =





4 −1 1

−1 4 1
4

2 3
4

1 2 3
4

3 1
2





and g =





1

2

3





(a) Show that H = U⊤U, where

U =





2 −1
2

1
2

0 2 1 1
2

0 0 1





.

(b) Demonstrate using hand calculations how d can be found by simple forward- and back-
substitutions. (c) Use MATLAB to repeat parts (a) and (b) .

13.5.5[E] Under what circumstances does plain Newton descent fail? How does it fail?

13.5.6[H] In §13.1 we found two inequalities that must be satisfied if the leading principal
minors of the rb Hessian matrix are positive, and I claimed that they are both satisfied
where x2 < x21 +

1
200

. (a) Prove that claim. (b) Explain why ntplain.m fails to solve the rb

problem from x0 = [−1.2, 1.445]⊤.
13.5.7[H] If H is positive definite, is it sure to have an inverse? If yes, prove it; if no,
provide a counterexample. If H has an inverse, is it sure to be positive definite? If yes, prove
it; if no, provide a counterexample.

13.5.8[H] Suppose we are minimizing a function f (x) where x ∈ R2, and that at a particular
point x̄ its gradient vector is g = ∇f (x̄) and its Hessian matrix is H(x̄). (a) Find values for
the elements of the Hessian matrix that make it symmetric and nonsingular but not positive
definite. (b) Find values for the elements of the gradient vector that make d = −H−1g not

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

446 Newton Descent

a descent direction. (c) What must be true of an unconstrained optimization in order for
plain Newton descent to be a suitable algorithm?

13.5.9[E] Name one important application that gives rise to a strictly convex uncon-
strained nonlinear program.

13.5.10[E] Explain in words the basic idea of modified Newton descent.

13.5.11[E] In modified Newton descent, what happens to the Hessian matrix when it be-
comes non-positive-definite if the weighting factor γ is (a) 0; (b) 0.5; (c) 1? (d) What does
the algorithm do if the Hessian never becomes non-positive-definite?

13.5.12[E] When does modified Newton descent have quadratic convergence? Can it ever
have only linear convergence?

13.5.13[P] Over a contour diagram of the rb problem like that in §13.2, plot the con-
vergence trajectory of the DFP algorithm from the two starting points x1 = [0,−1

2
]⊤ and

x2 = [0,+1
2
]⊤. Does either trajectory include an excursion far outside the frame of the pic-

ture?

13.5.14[P] The Himmelblau 28 problem [80, p428],

minimize f (x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2,

has optimal points near [0.29, 0.28]⊤ and [−21,−36.7]⊤. (a) Write down two inequalities that
must be satisfied at points where the Hessian matrix is positive definite. (b) Analytically
characterize the region(s) where the Hessian matrix is positive definite. (c) Use the MATLAB

function plotpd.m to show graphically where the Hessian matrix is positive definite. (d) Use
ntfs.m to solve this problem from the starting point x0 = [1, 1]⊤.

13.5.15[E] The condition number of the Hessian matrix does not affect the convergence
rate of plain Newton descent. Does it have any effect on the behavior of the algorithm?

13.5.16[P] In §13.2, I mentioned that bad conditioning of the Hessian might limit the
precision with which x⋆ can be determined. (a) Use MATLAB to find the condition number κ
of H(x⋆) for the rb problem. Recall from §10.6.2 that κ = 1 is perfect conditioning. (b) Use
format long in MATLAB to find out how precisely ntfs.m can solve the rb problem. Is this
Hessian badly enough conditioned to limit the accuracy with which you can find x⋆?

13.5.17[P] In §13.3.0, I claimed that using a line search in the modified Newton algorithm
might result in fewer descent iterations than using the full Newton step. Using format long

in MATLAB, compare the solutions found by ntfs.m to those found by ntw.m and nt.m.
(a) On the gns and rb problems, do the line-search methods use fewer or more descent
iterations than the full-step method to achieve roughly the same level of accuracy? (b) On
the gns and rb problems, are the line-search methods capable of greater accuracy than the
full-step method? (c) Name one reason unrelated to speed or accuracy why it is sometimes
preferable to use nt.m or ntw.m rather than ntfs.m.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

13.5 Exercises 447

13.5.18[P] For comparison with the sd.m routine of §12.4.1, the nt.m routine of §13.3.1 uses
the same tolerance for the descent method and the line search. Because of this the optimal
step length astar returned by bls for the rb problem is never quite precise enough to allow
the descent method convergence test to succeed, and although accurate solutions are returned
they are always accompanied by rc=1. (a) Find a better way of setting tol that enables
nt.m to satisfy some convergence tolerance epz on this problem. Is your solution likely to
work for all nonconvex problems? (b) Modify nt.m to receive the line search tolerance tol

as a separate parameter. Can you find values of epz and tol that allow your code to return
rc=0 on the rb problem? What is the smallest value of epz that you can use?

13.5.19[P] The prototypical optimization algorithm of §9.6 specifies that xk+1 ∈ [xL, xH],
but for simplicity the ntfs.m routine of §13.2 and the bfgsfs.m routine of §13.4.6 ignore this
requirement. (a) Revise ntfs.m to take less than the full Newton step if that is necessary in
order to remain within the variable bounds. (b) Revise bfgsfs.m to take less than the full
BFGS step if that is necessary in order to remain within the variable bounds.

13.5.20[E] Explain in words the basic idea of quasi-Newton algorithms. Name two partic-
ular quasi-Newton algorithms.

13.5.21[H] Quasi-Newton methods approximate Newton descent for minimizing f (x) just as
the secant method for minimizing f (x) [4, §12.3] approximates Newton’s method for finding
a zero of f ′(x) when x ∈ R1. The secant method of minimization uses the approximation

f ′′(xk) ≈ f ′(xk) − f ′(xk−1)

xk − xk−1
.

of §13.4.1 in the Newton zero-finding formula (see §28.3.2)

xk+1 = xk − f ′(xk)

f ′′(xk)
.

(a) Derive a formula for xk+1 in terms of xk, f ′(xk), xk−1, and f ′(xk−1). (b) Use your recursion
to minimize f (x) = (x − 1)2 starting from x0 = 10 and x1 = 7.

13.5.22[E] When does more than one matrix Bk+1 satisfy the secant equation? What other
properties must Bk+1 have if it is to approximate the Hessian? How do quasi-Newton methods
find a suitable Bk+1?

13.5.23[E] In the BFGS update formula for Bk+1, why is it important that sk⊤Bksk and yk⊤sk

be scalars? Show that they are scalars.

13.5.24[E] How can we express the Wolfe curvature condition in terms of sk = xk+1−xk and
yk = ∇f (xk+1) − ∇f (xk)?
13.5.25[E] In the modified Newton algorithm, H(xk) begins as the Hessian at xk, but it
might get averaged with the identity matrix. In a quasi-Newton method, is it ever necessary
to modify the matrix B that approximates the Hessian? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

448 Newton Descent

13.5.26[E] State the four theorems of §13.4.3. For each, briefly outline the argument used
in the proof.

13.5.27[H] The theorems of §13.4.3 establish that the BFGS update formula produces
a matrix Bk+1 having the properties listed in §13.4.2. State and prove similar theorems to
establish that the matrix Bk+1 produced by the DFP update formula also has those properties.

13.5.28[E] In a quasi-Newton method, why is it useful to approximate G ≈ H−1 rather
than B ≈ H?

13.5.29[E] Explain in words what the Sherman-Morrison-Woodbury formula allows us to
compute.

13.5.30[H] The introductory example of §13.4.1 shows that if xk+1 and xk are far apart the
secant approximation of the Hessian might not be very good. If a quasi-Newton method
succeeds in solving a nonlinear program, however, successive iterates get closer and closer
together as they converge to x⋆, and then the approximation G ≈ H−1 gets better. (a) Under
what circumstances does G approach H−1, in the sense that ||G −H−1|| → 0 as k → ∞?
(b) Does this happens for the gns problem? (c) Does it happen for the rb problem?

13.5.31[E] In the DFP and BFGS algorithms, why would it be unsafe to always use a step
length of α = 1 rather than doing a line search? Why is it necessary to use a Wolfe line
search? Can a full step ever be used? Explain.

13.5.32[P] Write a MATLAB routine dfpfs.m that uses chkwlf.m to find out whether a
full step satisfies the Wolfe conditions, and if so takes it rather than using the line search to
find a suitable step.

13.5.33[P] In the BFGS error curve of §13.4.5 the relative solution error can be seen to
sometimes increase from one iteration to the next. (a) Modify bfgs.m to keep a record point
and to return that instead of the current iterate xk. (b) Modify dfp.m to keep a record point
and return that instead of the current iterate xk. Do these changes affect the appearance of
the error curve?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14

Conjugate-Gradient Methods

When we used steepest descent to solve the gns problem in §10, we observed in the contour
diagram that each step taken by the algorithm was at right angles to the previous one.
Algebraically, two vectors are orthogonal if and only if their dot product is zero [147, §2.5].
In solving gns the first two steepest-descent steps are

α0d
0 ≈

[

-2.0217

-1.5403

]

and α1d
1 ≈

[

0.82772

-1.0864

]

,

and their precise dot product is

[α0d
0]⊤[α1d

1] = 0
or

d0⊤d1
= 0.

The fact that these vectors are related at all suggests a new way of thinking about how to
choose descent directions. Rather than relying on the sort of analysis we used in §10 and §13,
which was based on the Taylor’s series approximation to f (x), perhaps it would be a good
idea to somehow make dk depend explicitly on dk−1, dk−2 . . .d0. Zigzagging contributes to the
slow convergence of steepest descent, which took 12 iterations to solve gns to within ǫ = 10−6,
but making each descent direction depend on the previous ones in a more subtle way leads
to an algorithm that can solve problems like gns exactly in no more than n iterations.

14.1 Unconstrained Quadratic Programs

A nonlinear program in which the objective is quadratic and the constraints, if any, are linear
is called a quadratic program [5, §16.0] [1, §11.2]. The gns problem has the quadratic
objective 4x21 + 2x

2
2 + 4x1x2 − 3x1 so it is a quadratic program and can be written in the form

minimize
x∈R2

f (x) = 1
2
x⊤Qx − b⊤x starting from x0 = [2, 2]⊤

with
Q =

[

8 4

4 4

]

and b =

[

3

0

]

.

A quadratic function’s symmetric Qmatrix is also its Hessian, and this one is positive definite
so the gns objective is strictly convex and f (x) has a unique global minimizing point (we
encountered some other strictly convex quadratic programs in §8.6 and §8.7). In principle
we can minimize a strictly convex quadratic objective analytically, as shown at the top of
the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

450 Conjugate-Gradient Methods

∇f (x) = Qx − b = 0

x = Q−1b

However, as explained in §8.6.5 and §8.7.5, it is often preferable for both accuracy and speed
to solve the nonlinear program numerically instead.

From any point xk we can do an exact line search of a strictly convex quadratic function in
any direction dk by analytically solving the following one-dimensional minimization problem.

minimize
α

f (α) ≡ f (xk + αdk) = 1
2
(xk + αdk)⊤Q(xk + αdk) − b⊤(xk + αdk)

Setting the derivative with respect to α equal to zero,

d f

dα
= [Q(xk + αdk)]⊤dk − b⊤dk

= 0

(xk + αdk)⊤Q⊤dk
= b⊤dk.

The matrix Q is symmetric, so

αdk⊤Qdk
= b⊤dk − xk⊤Qdk

and we find that f (α) is minimized at

α⋆ = −[Qxk − b]⊤dk

dk⊤Qdk
.

The contours of a strictly convex quadratic function are ellipsoids [149, §12.6] in Rn (see
§24.3.1). If Q happens also to be diagonal then each contour is a right ellipsoid because its
axes make right angles to the coordinate hyperplanes. In that case we can find the optimal
value of each x j by minimizing the function along the jth coordinate direction, and thereby
reach x⋆ in at most n steps [5, §5.1].

Unfortunately, even in the elite guild of functions that are quadratic and strictly convex it
is rare to find one with a diagonal Hessian. The Q matrix of the gns problem is not diagonal,
and the graph we drew in §10.4 shows its elliptical objective contours tilted with respect to
the coordinate hyperplanes. Minimizing that function along the coordinate directions leaves
us far from x⋆ after n = 2 steps (see Exercise 14.8.11).

14.2 Conjugate Directions

Fortunately, many nondiagonal Q matrices can be diagonalized. Suppose we could find a
square matrix S, with columns s1 . . . sn, such that S⊤QS = ∆ where ∆ is a diagonal matrix.
What properties would the vectors s1 . . . sn need to have? By the rules of matrix multiplica-
tion,

∆i j = si⊤Qs j.

The diagonal elements of ∆ are sure to come out positive, because if i = j and Q is positive
definite then s j⊤Qs j > 0 by the §10.7 definition of a positive-definite matrix.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.2 Conjugate Directions 451

For the off-diagonal elements of ∆ to be zero we need

si⊤Qs j = 0 for all i , j.

Nonzero vectors si and s j that have this property are said to be conjugate with respect
to Q, or Q–conjugate [1, §8.8.1]. The orthogonal dk generated by steepest descent are thus
conjugate with respect to I. Because Q is positive definite and symmetric, if the vectors
s1 . . . sn are Q–conjugate then [4, Exercise 13.2.9] they are linearly independent (see §28.2)
so S is nonsingular and we can write

Q = S−⊤∆S−1.

Then our quadratic objective function becomes

f (x) = 1
2
x⊤[S−⊤∆S−1]x − b⊤x = 1

2
[x⊤S−⊤]∆[S−1x] − b⊤x = 1

2
[S−1x]⊤∆[S−1x] − b⊤x.

If we let w = S−1x then x = Sw and b⊤x = b⊤Sw = [S⊤b]⊤w. If we let a = S⊤b then b⊤x = a⊤w.
Then in w-space the objective is

f (w) = 1
2
w⊤∆w − a⊤w

and its Hessian matrix ∆ is diagonal. Now we can find w⋆ by doing at most n exact line
searches on f (w) in the coordinate directions, as described above, and then x⋆ = Sw⋆.

If Q is small it is easy to find vectors that are Q–conjugate by using the definition. For
the gns problem, if we arbitrarily pick s1 = [1, 0]⊤, then for s2 to be Q–conjugate to s1 we
need

s1⊤Qs2 =
[

1 0
]
[

8 4

4 4

] [

s1
s2

]

= 8s1 + 4s2 = 0

so, for example, s2 = [1
2
,−1]⊤ would work; conjugate directions are not unique. Then

S =





1 1
2

0 −1



 ∆ = S⊤QS =

[

8 0

0 2

]

a = S⊤b =





3
3
2





and the w–space objective f (w) = 1
2
w⊤∆w − a⊤w = 4w2

1 + w2
2 − 3w1 − 3

2
w2 can be minimized

one variable at a time like this.

∂ f

∂w1

= 8w1 − 3 = 0⇒ w⋆1 =
3
8

∂ f

∂w2

= 2w2 − 3
2
= 0⇒ w⋆2 =

3
4

Then

x⋆ = Sw⋆ =





1 1
2

0 −1









3
8
3
4



 =





3
4

−3
4



 .

Each coordinate direction e j in w–space maps to the direction Se j
= s j in x–space, so we

could alternatively do at most n exact line searches on f (x) in the conjugate directions

dk
= sk to reach x⋆.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

452 Conjugate-Gradient Methods

To illustrate the use of conjugate directions in solving a quadratic program numerically,
I wrote the MATLAB program easy.m listed below.

1 % easy.m: solve gns exactly in only n=2 steps
2
3 % data for the gns problem
4 Q=[8,4;4,4]; % matrix of the quadratic form in x-space
5 b=[3;0]; % linear-term coefficients in x-space
6 x=[2;2]; % starting point xzero
7
8 % conjugate directions
9 s1=[1;0]; % arbitrary first conjugate direction
10 s2=[1/2;-1]; % second direction chosen Q-conjugate to s1
11
12 % minimize f(w) in the coordinate directions w1 and w2
13 S=[s1,s2]; % diagonalizing matrix
14 Delta=S’*Q*S; % matrix of objective quadratic form in w-space
15 a=S’*b; % linear-term objective coefficients in w-space
16 w=inv(S)*x; % map xzero to w-space
17 d1=[1;0]; % w1 coordinate direction
18 alphaw1=-(Delta*w-a)’*d1/(d1’*Delta*d1); % exact line search step
19 w=w+alphaw1*d1; % take step in w1-direction
20 d2=[0;1]; % w2 coordinate direction
21 alphaw2=-(Delta*w-a)’*d2/(d2’*Delta*d2); % exact line search step
22 w=w+alphaw2*d2; % take step in w2-direction
23 xwstar=S*w % map result back to x-space
24
25 % minimize f(x) in the conjugate directions s1 and s2
26 x=[2;2]; % starting point
27 alphax1=-(Q*x-b)’*s1/(s1’*Q*s1); % exact line search step
28 x=x+alphax1*s1; % step in s1-direction
29 alphax2=-(Q*x-b)’*s2/(s2’*Q*s2); % exact line search step
30 xsstar=x+alphax2*s2 % step in s2-direction

The program begins by 3-5 fixing the values of Q and b and by 6 initializing x to the
starting point x0. This data suffices to precisely describe the gns problem as a quadratic
program. Then 8-10 it fixes the values of the Q–conjugate vectors s1 and s2.

To minimize f (w) it 13-15 finds S and from it ∆ and a, to define the problem in w–
space, and 16 maps the starting x to w–space. Next 17 it sets d1 to the first coordinate
direction, 18 uses the formula we derived above for the optimal step α⋆ in that direction,
and 19 updates the first component of w to w⋆

1
. Then 20-22 it repeats the process in the

w2-direction to update the second component of w to w⋆2 . Finally 23 it transforms w⋆ back
to x-space as xwstar.

A simpler way of solving the problem is to 25-30 minimize f (x) over the conjugate
directions s1 and s2. To do that the program 26 sets x to x0, 27 finds the optimal step in
the s1 direction, 28 updates x in that direction, and 29-30 repeats the process to update x
in the s2 direction.

Running the program produces the output shown on the next page. Either approach
finds the answer in two steps. The convergence trajectories in w–space and x–space are
plotted (using another program) to the right of the output from easy.m. The steps in the
x-space picture are obviously not orthogonal; instead they are Q–conjugate.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.3 Generating Conjugate Directions 453

octave:1> easy
xwstar =

0.75000
-0.75000

xsstar =

0.75000
-0.75000

octave:2> quit

-3

-2

-1

0

1

2

-1 0 1 2 3 4

w2

w1

•w0
αw1w1

•w
⋆

α
w
2
w
2

=

-2

-1

0

1

2

3

-2 -1 0 1 2 3

x2

x1

•x0αx1s1

•x⋆

α
x
2 s

2

In w-space every step after the first is a steepest-descent step in addition to being a coordinate-
direction step, but in x-space no step is necessarily in the steepest-descent direction (or the
Newton direction).

14.3 Generating Conjugate Directions

For larger problems or to automate the process illustrated in §14.2, we need a more systematic
method of finding conjugate directions. Here are some possible approaches.

• If Q is diagonalizable (if, for instance, the symmetric matrix has distinct eigenvalues
as in [150, Theorem 24.7]) then its eigenvectors are Q–conjugate. I will have more to
say in §14.7.2 about diagonalizing Q by using its eigenvectors.

• The Gram-Schmidt orthogonalization procedure [87, §4.18] can be modified to generate
vectors that are Q–conjugate.

• If Q is positive definite and an exact line search is used, the DFP algorithm of §13.4.5
generates dk that are Q–conjugate [1, Theorem 8.8.6]. By the time we have generated
them all, we have solved the nonlinear program.

All of these methods require a lot of computation, so conjugate gradient algorithms do some-
thing simpler. The idea is to generate the conjugate directions iteratively as the minimization
algorithm proceeds, in the manner of DFP, but by using these easier updates [5, §5.1]

rk = Qxk − b
dk
= −rk + βkdk−1

where βk is chosen to make d(k−1)⊤Qdk
= 0. That this is actually possible is the first of

several surprising things about conjugate gradient algorithms! We can find a formula for βk
by reasoning as shown at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

454 Conjugate-Gradient Methods

d(k−1)⊤Qdk
= 0

d(k−1)⊤Q(−rk + βkdk−1) = 0

d(k−1)⊤Qβkd
k−1
= d(k−1)⊤Qrk

βkd
(k−1)⊤Qdk−1

= d(k−1)⊤Qrk

βk =
d(k−1)⊤Qrk

d(k−1)⊤Qdk−1

βk =
rk⊤Qdk−1

d(k−1)⊤Qdk−1

The quantities in the numerator and denominator are both scalars, so βk is just a number.
If xk = x⋆ so that Qxk = b, the residual rk is zero and βk = 0.

14.4 The Conjugate Gradient Algorithm

Using the formulas for βk and rk along with results that we obtained earlier, we can construct
the following algorithm for solving the quadratic program

minimize
x

f (x) = 1
2
x⊤Qx − b⊤x

where Q is positive definite and symmetric.

r0 = Qx0 − b residual at starting point

d0
= −r0 first direction is steepest descent

for k = 0 . . . n − 1 exactly n steps are needed

αk = −
rk⊤dk

dk⊤Qdk
this is the optimal step length

xk+1 = xk + αkd
k move to the next point

rk+1 = Qxk+1 − b update the residual

βk+1 =
r(k+1)⊤Qdk

dk⊤Qdk
use the simple formula

dk+1
= −rk+1 + βk+1dk to generate the next conjugate direction

end

In deriving the formula for βk we insisted only that dk be Q–conjugate with dk−1, but all of
the dk generated by this algorithm are in fact mutually Q–conjugate [67, §10.2]. Further,
rk⊤dp

= 0 for p = 0 . . . k − 1, so each residual is orthogonal to all of the previous descent
directions, and rk⊤rp = 0 for p = 0 . . . k − 1 so each residual is also orthogonal to all of the
previous residuals. (Because rk = Qxk − b = ∇f (xk), successive gradients of the objective are

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.4 The Conjugate Gradient Algorithm 455

orthogonal rather than Q–conjugate, so “conjugate gradients” is a misnomer.) Using these
remarkable properties of the algorithm, we can simplify the formulas for αk and βk.

In the algorithm we used

αk = −
[Qxk − b]⊤dk

dk⊤Qdk
=
−rk⊤dk

dk⊤Qdk
.

The algorithm sets dk+1
= −rk+1 + βk+1dk so dk

= −rk + βkdk−1 and the numerator in the
expression for αk is

−rk⊤dk
= −rk⊤(−rk + βkdk−1) = rk⊤rk − βkrk⊤dk−1.

Each residual is orthogonal to the previous direction, so the last term is zero. Thus,

αk =
rk⊤rk

dk⊤Qdk
.

In the algorithm we used

βk+1 =
r(k+1)⊤Qdk

dk⊤Qdk
.

In this expression the term Qdk can be written in a different way. Notice that

rk+1 − rk = (Qxk+1 − b) − (Qxk − b) = Q(xk+1 − xk).

The algorithm sets xk+1 = xk + αkd
k so (xk+1 − xk) = αkd

k. Thus Q(αkd
k) = rk+1 − rk or

Qdk
= (rk+1 − rk)/αk. Substituting in the formula for βk+1 we find

βk+1 =
r(k+1)⊤(rk+1 − rk)/αk
dk⊤(rk+1 − rk)/αk

=
r(k+1)⊤rk+1 − r(k+1)⊤rk

dk⊤rk+1 − dk⊤rk
.

Each residual is orthogonal to the previous direction, so the first term in the denominator
is zero. Each residual is orthogonal to the previous residual, so the second term in the
numerator is zero. Finally, for the second term in the denominator we found above that
−rk⊤dk

= rk⊤rk. Thus,

βk+1 =
r(k+1)⊤rk+1

rk⊤rk
.

In the algorithm we used rk+1 = Qxk+1 − b, but recently we found Qdk
= (rk+1 − rk)/αk

so instead we could write

rk+1 = rk + αkQdk.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

456 Conjugate-Gradient Methods

Using the boxed expressions we can restate the algorithm given above in the following slightly
more efficient way.

r0 = Qx0 − b
d0
= −r0

for k = 0 . . . n − 1

αk =
rk⊤rk

dk⊤Qdk

xk+1 = xk + αkd
k

rk+1 = rk + αkQdk

βk+1 =
r(k+1)⊤rk+1

rk⊤rk

dk+1
= −rk+1 + βk+1dk

end

In this form it is called the conjugate gradient algorithm. Although it can solve uncon-
strained strictly convex quadratic programs by finding the unique x⋆ where

∇f (x⋆) = Qx⋆ − b = 0,

its most frequent use is for solving symmetric positive definite systems of linear algebraic
equationsQx = b when n is large [87, §6.13]. In that caseQ is typically also sparse [100, §11.6]
and the products Qdk are typically found without storing the zero elements of Q [4, §13.2].

In perfect arithmetic, convergence is achieved by doing exactly as many iterations as Q
has distinct eigenvalues. In practice [67, §10.2.7] rounding errors lead to a loss of orthogonal-
ity among the residuals and x⋆ might not be found in a finite number of steps; the observed
convergence of the algorithm is linear with constant

c ≤
(√
κ(Q) − 1
√
κ(Q) + 1

)

so its actual speed depends on the condition number of Q.
To experiment with the conjugate gradient algorithm I wrote the cg.m routine listed at

the top of the next page. The Octave session below the listing shows that n = 2 iterations
are enough to find an accurate solution to the gns problem and n = 4 are enough to find an
accurate solution to the linear system Ax = b, where [20, Exercise 6.6.3d]

A =





6 2 1 −1
2 4 1 0

1 1 4 −1
−1 0 −1 3





and b =





1

1

1

1





.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.4 The Conjugate Gradient Algorithm 457

1 function [xstar,kp,beta]=cg(xzero,kmax,epz,Q,b)
2 % minimize 1/2 x’Qx - b’x by conjugate gradients
3 xk=xzero;
4 rk=Q*xk-b;
5 d=-rk;
6 for kp=1:kmax
7 if(norm(rk) <= epz)
8 xstar=xk
9 return
10 end
11 alpha=(rk’*rk)/(d’*Q*d);
12 xk=xk+alpha*d;
13 rkp=rk+alpha*Q*d;
14 beta=(rkp’*rkp)/(rk’*rk);
15 d=-rkp+beta*d;
16 rk=rkp;
17 end
18 xstar=xk;
19 end

Some work could be saved by computing Q*d once and using the result in both 11 and 13 .
As x→ x⋆ the residual rk → 0, so if the specified kmax is higher than needed the convergence
test 7 might be necessary to avoid a 0/0 NaN (see §28.3.3) in the calculation 14 of beta.

octave:1> format long
octave:2> Q=[8,4;4,4];
octave:3> b=[3;0];
octave:4> xzero=[2;2];
octave:5> [xstar,kp,beta]=cg(xzero,2,1e-6,Q,b)
xstar =

0.750000000000000
-0.750000000000000

kp = 2
beta = 5.28511293092642e-31
octave:6> A=[6,2,1,-1;2,4,1,0;1,1,4,-1;-1,0,-1,3];
octave:7> b=[1;1;1;1];
octave:8> xzero=[0;0;0;0];
octave:9> [xstar,kp,beta]=cg(xzero,4,1e-6,A,b)
xstar =

0.1675392670157068
0.0890052356020942
0.3089005235602095
0.4921465968586388

kp = 4
beta = 1.05706753467554e-29
octave:10> A\b
ans =

0.1675392670157068
0.0890052356020942
0.3089005235602094
0.4921465968586387

octave:11> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

458 Conjugate-Gradient Methods

14.5 The Fletcher-Reeves Algorithm

The conjugate gradient algorithm is very effective for unconstrained minimization when the
objective happens to be quadratic and strictly convex, but its inner workings are intimately
dependent on those luxurious and rather unusual problem characteristics. Can we somehow
make use of the conjugate-directions idea in solving nonlinear programs that might be neither
quadratic nor convex?

One answer to this question is the Fletcher-Reeves algorithm, which results from
modifying the conjugate gradient algorithm to use ∇f (xk) in place of rk and a Wolfe line
search having µ > 0 and η < 1

2
(see §12.3.1) instead of the analytic formula for αk. The

resulting flrv.m routine is listed below.

1 function [xstar,kp,rc]=flrv(xzero,xl,xh,kmax,epz,fcn,grd)
2 % Fletcher-Reeves algorithm
3 n=size(xzero,1);
4 xk=xzero;
5 gk=grd(xk);
6 d=-gk;
7 mu=0.0001;
8 eta=0.4;
9 smax=52;
10 for kp=1:kmax
11 if(norm(gk) <= epz)
12 xstar=xk;
13 rc=0;
14 return
15 end
16 tol=1000*epz*norm(gk);
17 [astar,rcw,kw]=wolfe(xk,d,xl,xh,n,fcn,grd,mu,eta,tol,smax);
18 if(rcw > 2) break; end
19 xk=xk+astar*d;
20 gkp=grd(xk);
21 beta=(gkp’*gkp)/(gk’*gk);
22 d=-gkp+beta*d;
23 gk=gkp;
24 end
25 xstar=xk;
26 rc=1;
27 end

Now instead of using simple formulas to find and update rk we need to 5,20 invoke grd,
and instead of using a simple formula to find αk we need to 17 invoke wolfe, so some of
the magic of conjugate gradients clearly does not survive the trip from nice special case
to general nonlinear program. I used the same Wolfe parameters 7-9,16 as in ntw.m but
interrupted the calculations 18 if a Wolfe point cannot be found. The Octave session on
the next page shows that flrv.m solves gns in kp-1=2 iterations just as cg.m did. It also
solves rb from some starting points but, alas, not from its catalog starting point.

The Fletcher-Reeves algorithm has linear convergence and does not require storing a
matrix, so it is an alternative to steepest descent. As these results show, it can be faster.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.6 The Polak-Ribière Algorithm 459

octave:1> format long
octave:2> xzero=[2;2];
octave:3> xl=[-2;-2];
octave:4> xh=[3;3];
octave:5> [xstar,kp,rc]=flrv(xzero,xl,xh,100,1e-16,@gns,@gnsg)
xstar =

0.749999998604734
-0.749999998586113

kp = 3
rc = 1
octave:6> xl=[-2;-1];
octave:7> xh=[2;2];
octave:8> xzero=[0;-0.5];
octave:9> [xstar,kp,rc]=flrv(xzero,xl,xh,100,1e-16,@rb,@rbg)
xstar =

0.999999999999989
0.999999999999979

kp = 62
rc = 1
octave:10> xzero=[0;0.5];
octave:11> [xstar,kp,rc]=flrv(xzero,xl,xh,100,1e-16,@rb,@rbg)
xstar =

1.00000000000001
1.00000000000002

kp = 54
rc = 1
octave:12> xzero=[-1.2;1];
octave:13> [xstar,kp,rc]=flrv(xzero,xl,xh,100,1e-16,@rb,@rbg)
xstar =

1.42796766633753
2.00000000000000

kp = 47
rc = 1
octave:14> quit

14.6 The Polak-Ribière Algorithm

In §14.4 we used certain remarkable properties of the conjugate gradient algorithm to simplify
the formula for β. Those same properties permit other choices for β, which reduce to the
conjugate gradient formula whenever an exact line search is used and f (x) happens to be a
strictly convex quadratic. The alternative that seems to perform best is the method of Polak
and Ribière [130, §2.3] which uses

βk+1 =
r(k+1)⊤(rk+1 − rk)

rk⊤rk
.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

460 Conjugate-Gradient Methods

In the conjugate gradient algorithm r(k+1)⊤rk = 0, so in the ideal case this formula for β
reduces to the one we used in the Fletcher-Reeves algorithm. The scalar βk+1 is the amount
by which dk+1 is deflected from the direction of steepest descent −rk+1 = −∇f (xk+1) towards
the direction dk (recall that dk+1

= −rk+1 + βk+1dk). Here the amount of deflection is reduced
if successive gradients are almost the same, because that suggests the Hessian matrix might
already be close to diagonal. In general this formula can result in a dk that is not a descent
direction [5, §5.2] so line 21 in the code below ensures that β is nonnegative.

1 function [xstar,kp,rc]=plrb(xzero,xl,xh,kmax,epz,fcn,grd)
2 % Polak-Ribiere algorithm
3 n=size(xzero,1);
4 xk=xzero;
5 gk=grd(xk);
6 d=-gk;
7 mu=0.0001;
8 eta=0.4;
9 smax=52;
10 for kp=1:kmax
11 if(norm(gk) <= epz)
12 xstar=xk;
13 rc=0;
14 return
15 end
16 tol=1000*epz*norm(gk);
17 [astar,rcw,kw]=wolfe(xk,d,xl,xh,n,fcn,grd,mu,eta,tol,smax);
18 if(rcw > 2) break; end
19 xk=xk+astar*d;
20 gkp=grd(xk);
21 beta=max(0,(gkp’*(gkp-gk))/(gk’*gk));
22 d=-gkp+beta*d;
23 gk=gkp;
24 end
25 xstar=xk;
26 rc=1;
27 end

This routine finds x⋆ in fewer iterations than flrv.m for the gns problem and also for the
rb problem starting from x0 = [0,−1

2
]⊤ and x0 = [0,+1

2
]⊤, but unlike flrv.m it also solves rb

from the catalog starting point.

octave:1> format long
octave:2> xl=[-2;-2];
octave:3> xh=[3;3];
octave:4> xzero=[-1.2;1];
octave:5> [xstar,kp,rc]=plrb(xzero,xl,xh,100,1e-16,@rb,@rbg)
xstar =

0.999999999999978
0.999999999999957

kp = 18
rc = 1
octave:6> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.7.1 Quadratic Forms in R2 461

Polak-Ribière uses far fewer iterations than its competitor sdfs.m in solving this problem
(see §10.6.2) though at the cost of much more complicated updates. Several other formulas
for β have been proposed [5, §5.2] but the best of them are said to be only competitive with
Polak-Ribière.

14.7 Quadratic Functions

The quadratic objective of the gns problem is a strictly convex function because its Q matrix
is positive definite, and as we have seen that makes its contours ellipses. In future Chapters
we will encounter other quadratics whose contours are ellipses (or higher-dimensional ellip-
soids) as well as quadratics that are not convex. To help you draw and interpret contour
diagrams in two dimensions, and to help you imagine how these functions behave in higher
dimensions, this Section presents a survey of quadratic forms in general and a more detailed
analysis of ellipses in particular.

14.7.1 Quadratic Forms in R2

Any quadratic function of x ∈ Rn can be represented as

q(x) = 1
2
x⊤Qx + c⊤x + d

where the n × n matrix Q is symmetric but otherwise arbitrary, c is an n × 1 vector, and d

is a scalar (this is the notation I will use in §22).
The constant d simply raises or lowers the graph of the

function, while the linear term displaces the graph in x–space
as well as raising or lowering it. It is easy to see from the
n = 1 example plotted to the right that these effects change
the position of the graph but not its shape or orientation. In
contrast, changing Q can change the shape or orientation of
the graph of q(x) and of its contours, and we can study these
effects by varying Q while holding c and d fixed.

The graphs on the next two pages show the contours
of q(x) with c = 0 and d = 0 for various matrices Q. In
the top left panel on the next page Q is positive defi-
nite; q(x) = x21 + x22 and the contours of the strictly convex
bowl are circles that get bigger as the function value becomes

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3

q

x

x2 + 1
x2

x2 − x

more positive. In the top right panel Q is negative definite because −Q is positive defi-
nite [110, p139]; q(x) = −x21 − x22 and the contours of the strictly concave inverted bowl get
bigger as the function value becomes more negative. The bottom left graph shows the con-
tours of a straight trough having parabolic cross section when Q is positive semidefinite and
q(x) = 0x21 + 1x

2
2. The bottom right graph shows the contours of a parabolic ridge when Q is

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

462 Quadratic Functions

-10

-5

0

5

10

-10 -5 0 5 10

x2

x1

•

minimum
at q(x) = 0

q(x) = 8

4

2

1

Q =

[

1 0

0 1

]

positive definite

-10

-5

0

5

10

-10 -5 0 5 10

x2

x1

•

maximum
at q(x) = 0

q(x) = −8
−4
−2
−1

Q =

[

−1 0

0 −1

]

negative definite

-10

-5

0

5

10

-10 -5 0 5 10

x2

x1

all points along the bottom of the
trough are minima with q(x) = 0

q(x) = 8 4 2 1

Q =

[

0 0

0 1

]

positive semidefinite

-10

-5

0

5

10

-10 -5 0 5 10

x2

x1

all points along the top of the
ridge are maxima with q(x) = 0

q(x) = −8 −4 −2 −1

Q =

[

0 0

0 −1

]

negative semidefinite

negative semidefinite because −Q is positive semidefinite [110, p139] and q(x) = 0x21−1x22.
The final two graphs, at the top of the following page, show the saddle-point contours of
q(x) when Q is indefinite.

For other matrices Q the circles can become ellipses and they can be tilted, the lines can
be vertical or tilted, and the saddle can be oriented differently, but these pairs of pictures
represent the only three kinds of contour diagram that a quadratic in R2 can produce. In
higher dimensions the graph of q(x) can be a more complicated object whose projection onto
different two-dimensional flats can have any of these three characters, so if Q is indefinite
and n > 2 then q(x) might have multiple extrema and saddle points.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.7.2 Ellipses 463

-10

-5

0

5

10

-10 -5 0 5 10

x2

x1

q(x) = −8 q(x) = +8

Q =

[

0 1

1 0

]

indefinite

-10

-5

0

5

10

-10 -5 0 5 10

x2

x1

q(x) = +8 q(x) = −8

Q =

[

0 −1
−1 0

]

indefinite

14.7.2 Ellipses

The simplest ellipse is a circle. The
circles we plotted in §14.7.1 are some
contours of q(x) = 1

2
x⊤Qx where Q = I.

If Q is 1/r2 times the identity matrix,
then the q(x) = 1

2
contour or x⊤Qx = 1

describes the circle x21/r
2
+ x22/r

2
= 1

having radius r, pictured above to the
right.

If Q is again diagonal but its di-
agonal elements are different, then
[149, §11.6] x⊤Qx = 1 describes an
ellipse x21/a

2
+ x22/b

2
= 1 as pictured be-

low to the right. Its axes are paral-
lel to the coordinate axes, so adopt-
ing the terminology of §14.1 it is
a right ellipse. The longer axis
is called the major axis and the
shorter axis is called the minor axis.
Their halflengths, the semimajor and
semiminor axes, are the numbers a

and b that are squared in the denom-
inators of x21 and x22.

Q =





1

r2
0

0
1

r2





x2

x1−r
+r

+r

−r

Q =





1

a2
0

0
1

b2





x2

x1
semimajor
axis−a

+ase
m
im

in
o
r

a
x
is

+b

−b

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

464 Quadratic Functions

Making the off-diagonal elements of Q nonzero (but equal to each other because we
assumed the matrix is symmetric) tilts the ellipse with respect to the coordinate axes, as in
the example shown on the left below [147, p242-243]. Notice that this is an ellipse rather
than a circle even though the diagonal elements of Q happen to be equal.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

x2

x1

1√ λ 2
s
2

1√
λ
1 s 1

Q =

[

2 −1
−1 2

]

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

w2

w1

1√
λ2

v2

1√
λ1

v1

∆ =

[

3 0

0 1

]

The semimajor and semiminor axes of this ellipse, which are marked in the figure, depend
on the matrix elements in a more complicated way than for a right ellipse. To find out how,
we can diagonalize Q as we did in §14.2 to rotate the tilted ellipse into alignment with the
coordinate axes. Once again we use a square matrix S whose columns are Q–conjugate, but
now we will make those columns unit eigenvectors of Q. First, proceeding as in §11.5, we
find the eigenvalues of Q like this.

|Q − λI| =
∣
∣
∣
∣
∣
∣

2 − λ −1
−1 2 − λ

∣
∣
∣
∣
∣
∣
= (2 − λ)2 − 1 = λ2 − 4λ + 3 = 0 ⇒ λ1 = 3, λ2 = 1.

Then the eigenvectors s1 and s2 satisfy Qs j = λ js
j.

Qs1 = λ1s
1 ⇒

[

2 −1
−1 2

] [

s11
s12

]

= 3

[

s11
s22

]

⇒ −s11 − s12 = 0

Qs2 = λ2s
2 ⇒

[

2 −1
−1 2

] [

s21
s22

]

= 1

[

s21
s22

]

⇒ −s21 + s22 = 0

Two eigenvectors of unit length that satisfy these equations are s1 = [−1/
√
2, +1/

√
2]⊤ and

s2 = [−1/
√
2, −1/

√
2]⊤. The eigenvalues are distinct, so these vectors are sure to be Q–

conjugate and Q is sure to be diagonalizable. We can calculate S⊤QS = ∆ as follows.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.7.2 Ellipses 465

S =
[

s1 s2
]

=





−1
√
2

−1
√
2

+1
√
2

−1
√
2





so S⊤Q =
1
√
2

[

−1 1

−1 −1

] [

2 −1
−1 2

]

=
1
√
2

[

−3 3

−1 −1

]

and

S⊤QS =
1
√
2

[

−3 3

−1 −1

]

1
√
2

[

−1 −1
1 −1

]

=
1

2

[

6 0

0 2

]

=

[

3 0

0 1

]

= ∆

is the diagonal matrix of the eigenvalues. Using Q = S−⊤∆S−1 we can rewrite the x–space
equation of the ellipse in terms of ∆:

x⊤Qx = x⊤[S−⊤∆S−1]x = [x⊤S−⊤]∆[S−1x] = [S−1x]⊤∆[S−1x] = 1.

Now if we let w = S−1x the equation of the ellipse in w–space is

w⊤∆w = 1,

which is plotted in the right graph on the previous page. Because ∆ is a diagonal matrix
its eigenvalues are just its diagonal elements, so it is still true that λ1 = 3 and λ2 = 1;
the eigenvalues are preserved in the rotation. In w–space the eigenvectors v1 and v2 satisfy
∆v j
= λ jv

j.

∆v1 = λ1v
1 ⇒

[

3 0

0 1

] [

v11
v12

]

= 3

[

v11
v22

]

⇒ v2 = 0

∆v2 = λ2v
2 ⇒

[

3 0

0 1

] [

v21
v22

]

= 1

[

v21
v22

]

⇒ v1 = 0

Two eigenvectors of unit length that satisfy these equations are v1 = [1, 0]⊤ = e1 and
v2 = [0, 1]⊤ = e2, the unit vectors in the coordinate directions. These eigenvectors point in
the directions of the axes of the w–space ellipse. Because it is a right ellipse, its semimajor
and semiminor axes are respectively 1/

√
1 = 1 and 1/

√
3 ≈ 0.58, or 1/

√
λ2 and 1/

√
λ1. The

vectors shown in the right graph pointing from the center of the ellipse to the ends of its
major and minor axes are thus v2/

√
λ2 and v1/

√
λ1 as shown. If the right ellipse is rotated to

produce the picture on the left, these vectors rotate along with it, so in x–space they are
s2/
√
λ2 and s1/

√
λ1 as shown. Thus the half-axes of any ellipse, whether or not it is a right

ellipse, are 1/
√
λ1 and 1/

√
λ2.

The eigenvalues λλλ of a matrix depend on its condition number (see §18.4.2) so the con-
dition number κ(Q) affects the shape of the ellipse x⊤Qx = 1. The left picture on the next
page shows that the ellipse corresponding to a matrix having even a moderate condition
number is very thin (here 4 units) compared to its length (≈89 units). In higher dimensions
the ellipsoid corresponding to a badly-conditioned matrix can be thin in several dimensions,

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

466 Quadratic Functions

-50

-40

-30

-20

-10

0

10

20

30

40

-50 -40 -30 -20 -10 0 10 20 30 40

Q =

[

1 1

1 1.001

]

κ = 4002

λλλ ≈ [5 × 10−4, 2]⊤

x2

x1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q1 =





3
8

1
8

1
8

3
8





Q2 =

[

3 −1
−1 3

]

x2

x1

compared to its longest axis. This is the manifestation in geometry of a numerical phe-
nomenon which, as we first observed in §10.6.2, limits the performance of many optimization
algorithms.

The ellipse corresponding to a matrix differs in size and shape from the ellipse corre-
sponding to its inverse, as shown on the right above where the matrices Q1 and Q2 are
inverses of each other. If s is a unit eigenvector of Q1 with associated eigenvalue λ then

Q1s = λs

Q−11 Q1s = λQ
−1
1 s

(

1

λ

)

s = Q2s

so Q2 also has s as a unit eigenvector, with the associated eigenvalue 1/λ. Thus the ellipse
axes point in the same directions, but their lengths are different if λ , 1.

In §24 we will be interested in the volume V of an ellipsoid, which can be computed in
several different ways. In R2 this volume is just the area of an ellipse and is easily found by
integration [146, p421-422]. The ellipse pictured on the next page has the matrix

Q =





1
16

0

0 1
4



 so its equation is
x2

42
+
y2

22
= 1

and its semimajor and semiminor axes are a = 4 and b = 2 as shown. In the first quadrant
the height of the curve is given by

y = b

√

1 − x2

a2
=

b

a

√
a2 − x2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.7.2 Ellipses 467

y

x−4
+4 = a

+2 = b

−2

so the area of the whole ellipse is

V = 4

∫ a

0

b

a

√
a2 − x2 dx = πab = 8π ≈ 25.1

We saw earlier that the semimajor and semiminor axes can be found from the eigenvalues
of Q, which for this example are λ1 =

1
16

and λ2 =
1
4
. Thus

V = πab = π
(

1
√
λ1

) (

1
√
λ2

)

= π

(

1

1/4
× 1

1/2

)

= 8π.

Another way of writing this formula for the volume uses the product of the reciprocals of
the eigenvalues of Q.

V = π
√

1

λ1

1

λ2
= π

√

1

1/16
× 1

1/4
= π
√
16 × 4 = π

√
64 = 8π

The reciprocals of the eigenvalues of Q are just the eigenvalues of Q−1. By using the
eigenvectors of Q−1 we can diagonalize it, and this change of coordinates has the effect of
rotating the corresponding ellipse without changing its size or shape. The matrix of that
rotated ellipse is diagonal with the eigenvalues on the diagonal, so the product of its diagonals
its just its determinant. In our example Q−1 is already diagonal, and its determinant is the
product of its eigenvalues.

∣
∣
∣Q−1

∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣

16 0

0 4

∣
∣
∣
∣
∣
∣
∣

= 64

Then we can find the volume as

V = π
√

|Q−1| = π
√
64 = 8π.

Diagonalizing a matrix does not change its eigenvalues, so even if Q−1 is not diagonal we can
use this formula for the volume of the ellipse defined by Q. The factor that appears before
the square root is the volume V1 of a unit ball, which is just an epsilon-neighborhood of

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

468 Quadratic Functions

radius 1 (see §9.3). In R2 the unit ball is a unit circle, so its volume is its area π. In Rn the
volume of a unit ball is given [69, p620] by this formula.

V1 =
πn/2

Γ

(

1 +
n

2

) =






π⌊n/2⌋

⌊n/2⌋−1∏

j=0

(
n

2
− j

)
n even

π⌊n/2⌋

⌊n/2⌋∏

j=0

(
n

2
− j

)
n odd

The gamma function Γ(t) is defined by an integral (see §25.6) but when its argument is a
multiple of 1

2
as in this case it can be evaluated as a continued product [116, p534]. The

expressions on the right use the floor function ⌊n/2⌋ to obtain [94, §1.2.4] the highest integer
less than or equal to n/2 (this is different from n/2 only when n is odd). To use the formula

V = V1

√

|Q−1|.

it is not actually necessary to invert Q, because |Q−1| = 1/|Q |.
Now we can generalize from the first formula we found for the area of an ellipse in terms

of its semimajor and semiminor axes: if an ellipsoid in Rn has half-axes h j then its volume is

V = V1

n∏

j=1

h j.

14.7.3 Plotting Ellipses

We can plot the elliptical contours of a strictly convex quadratic by using the gridcntr.m

routine of §9.1 to compute function values and the MATLAB contour() command to inter-
polate between them and draw the curves. Often, however we will have occasion to plot a
single ellipse (as I did several times in §14.7.2) and then it is more convenient to exactly find
points on that particular curve and use the MATLAB plot() command to connect them. In
this Section I will assume for notational simplicity that the ellipse is described as the locus
of points where

[

x − x0 y − y0
]
[

a b

c d

] [

x − x0
y − y0

]

= 1.

We have assumed that the matrix is symmetric so in practice it will turn out that b and
c get the same value, but calling these elements by different names will make what follows
easier to understand.

Points on the curve can be computed by finding the lowest and highest x coordinates
where the ellipse is defined, dividing that interval into equally-spaced x values, and using a
formula to calculate the height of the curve at each. There are of course two y values for each

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.7.3 Plotting Ellipses 469

x, so some logic is required to distinguish the upper and lower branches of the ellipse and
to ensure that their ends connect, but despite this complication the approach has a simple
implementation (see Exercise 14.8.52). Unfortunately, the figure it generates often includes
the artifact of a vertical segment at each end of the ellipse, even when the increment in x is
made very small.

To produce a curve that is more likely to look smooth when a reasonable number of
points are used, we will instead take the approach of incrementing the central angle θ shown
in the picture below.

•
(x0, y0)

θ

r

•(x, y)

Here an arbitrary point (x, y) on the ellipse is a distance r from the center (x0, y0) at an angle
θ from the horizontal. From this geometry we find

y − y0
x − x0

= tan(θ)

y − y0 = (x − x0) tan(θ)

y = y0 + (x − x0) tan(θ).

From the equation of the ellipse,

a(x − x0)
2
+ (b + c)(x − x0)(y − y0) + d(y − y0)2 = 1.

Substituting for (y − y0) in this equation,

a(x − x0)
2
+ (b + c)(x − x0)

[

(x − x0) tan(θ)
]

+ d
[

(x − x0)
2 tan2(θ)

]

= 1

(x − x0)
2
[

a + (b + c) tan(θ) + d tan2(θ)
]

= 1.

(x − x0)
2
=

1

a + (b + c) tan(θ) + d tan2(θ)

x = x0 +
1

√

a + (b + c) tan(θ) + d tan2(θ)
.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

470 Quadratic Functions

Using the boxed equations I wrote the MATLAB function ellipse.m, which is listed below
and on the next page.

The input parameters 1 are xz = x0, yz = y0, the matrix Q = Q, and smax, which is
the number of interior points to use in constructing each quadrant of the figure. The return
parameters xt and yt are vectors of length tmax containing the coordinates to be plotted,
and the return code signals success (rc=0) or failure (rc=1).

The routine begins 4 by computing tmax, the total number of points that will be used. At
θ = π/2 and θ = 3π/2 the analysis breaks down, so for each quadrant I found the coordinates
of its first endpoint separately from those of its smax interior points. The picture shows the
first quadrant divided into smax+1=8 wedges, with endpoints at
θ = 0 and θ = π/2 and interior points numbered 1 . . . 7, spaced
equally at increments of ∆θ = (π/2)/(smax+1). The last boundary
point, at θ = π/2, is the first boundary point of the next quad-
rant, so to cover the four quadrants takes 4*(1+smax) points. To
close the curve the first point of the first quadrant must repeated,
yielding the formula in the code.

Next the routine 5-6 zeros xt and yt and 7 computes the

7 6 5
4

3

2

1
∆θ

determinant of Q. If 8 either leading principal minor is nonpositive, the routine resigns 10

with 9 rc=1. Otherwise 12-13 it copies the elements Q(1,1). . . into less verbose variable
names and 14 initializes t, which counts the points that have been found so far.

1 function [xt,yt,rc,tmax]=ellipse(xz,yz,Q,smax)
2 % plot the ellipse (x-xz)’Q(x-xz)=1
3
4 tmax=4*(1+smax)+1; % points to be returned
5 xt=zeros(tmax,1); % fix sizes
6 yt=zeros(tmax,1); % of coordinate vectors
7 detQ=Q(1,1)*Q(2,2)-Q(2,1)*Q(1,2); % determinant of Q
8 if(Q(1,1) <= 0 || detQ <= 0) % test leading principal minors
9 rc=1; % not pd => not an ellipse
10 return % give up
11 end
12 a=Q(1,1); b=Q(1,2); % extract
13 c=Q(2,1); d=Q(2,2); % its elements
14 t=0; % initialize point count
15
16 % first quadrant
17 t=t+1; % count the point
18 xt(t)=xz+1/sqrt(a); % x at theta=0
19 yt(t)=yz; % y at theta=0
20 for s=1:smax % find smax interior points
21 theta=(pi/2)*(s/(smax+1)); % angle
22 denom=a+(c+b)*tan(theta)+d*(tan(theta))^2; % denominator
23 t=t+1; % count the point
24 xt(t)=xz+1/sqrt(denom); % x at theta
25 yt(t)=yz+(xt(t)-xz)*tan(theta); % y at theta
26 end % end of quadrant
27

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.7.3 Plotting Ellipses 471

28 % second quadrant
29 t=t+1;
30 xt(t)=xz;
31 yt(t)=yz+1/sqrt(d);
32 for s=1:smax
33 theta=(pi/2)+(pi/2)*(s/(smax+1));
34 denom=a+(c+b)*tan(theta)+d*(tan(theta))^2;
35 t=t+1;
36 xt(t)=xz-1/sqrt(denom);
37 yt(t)=yz+(xt(t)-xz)*tan(theta);
38 end
39
40 % third quadrant
41 t=t+1;
42 xt(t)=xz-1/sqrt(a);
43 yt(t)=yz;
44 for s=1:smax
45 theta=pi+(pi/2)*(s/(smax+1));
46 denom=a+(c+b)*tan(theta)+d*(tan(theta))^2;
47 t=t+1;
48 xt(t)=xz-1/sqrt(denom);
49 yt(t)=yz+(xt(t)-xz)*tan(theta);
50 end
51
52 % fourth quadrant
53 t=t+1;
54 xt(t)=xz;
55 yt(t)=yz-1/sqrt(d);
56 for s=1:smax
57 theta=(3*pi/2)+(pi/2)*(s/(smax+1));
58 denom=a+(c+b)*tan(theta)+d*(tan(theta))^2;
59 t=t+1;
60 xt(t)=xz+1/sqrt(denom);
61 yt(t)=yz+(xt(t)-xz)*tan(theta);
62 end
63
64 % close the ellipse
65 t=t+1;
66 xt(t)=xz+1/sqrt(a);
67 yt(t)=yz;
68 rc=0;
69
70 end

The calculations for the first quadrant of the graph begin 17-19 with the first boundary
point. Then 20-26 the interior points are found. As can be seen from the picture above,
point s is at the angle 21

θs =
sπ/2

smax + 1
.

The quantity that appears under the radical in the formula for x is here called denom 22 . The
point counter t is incremented 23 and the formulas are used 24-25 to find the coordinates of
the point. The code for the other quadrants is similar but varies to account for the changing
geometry of the picture (see Exercise 14.8.53).

The final stanza in the code 64-68 repeats the starting point of the curve 66-67 = 18-19

and 68 sets rc=0 to signal success. This routine was used to draw the pictures in §14.7.2,
and I will use it in future Chapters whenever it is necessary to plot an ellipse.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

472 Conjugate-Gradient Methods

14.8 Exercises

14.8.1[E] Use the definition of orthogonality to show that the coordinate directions e j are
mutually orthogonal.

14.8.2[E] Steepest descent generates successive search directions that are orthogonal.
Why does that happen?

14.8.3[H] Two vectors u and v have the dot product u⊤v = ||u|| × ||v|| × cos(θ), where θ is
the angle between the vectors measured in the plane that contains them both [146, §11.3].
(a) Prove this equality. (b) Show that the algebraic and geometric definitions of orthogonality
imply each other.

14.8.4[H] What is necessary for a constrained nonlinear program to be a quadratic pro-
gram? Find Q, b, and c such that f (x) = 2x21 + 2x1x2 + 2x

2
2 − 3(x1 + x2 + 1) = 1

2
x⊤Qx− b⊤x+ c.

Why can the constant c be ignored in minimizing f (x)?

14.8.5[E] If f (x) = 1
2
x⊤Qx − b⊤x, what is its Hessian matrix H? Is H a function of x?

14.8.6[H] If f (x) = 1
2
x⊤Qx − b⊤x and Q is positive definite, then the system of linear

algebraic equations Qx = b has a unique solution. (a) Why is it sometimes preferable to
minimize f (x) rather than simply solving the linear system? (b) For

Q =

[

2 1

1 2

]

and b =

[

−3
−3

]

solve Qx = b both ways.

14.8.7[E] What line search step length minimizes the function f (x) = 1
2
x⊤Qx − b⊤x if we

start at the point x̄ and search in the direction d?

14.8.8[H] In §14.1, I claimed that if f (α) = 1
2
(xk + αdk)⊤Q(xk + αdk) then

d f

dα
= [Q(xk + αdk)]⊤dk − b⊤dk.

Show that this claim is true.

14.8.9[E] What is an ellipsoid? What is a right ellipsoid? What must be true of a
quadratic function’s Q matrix for the contours of the function to be right ellipsoids? Explain
why it is easy to minimize a function whose contours are right ellipsoids.

14.8.10[E] In solving the gns problem in §14.2 we found the conjugate directions s1 = [1, 0]⊤

and s2 = [1
2
,−1]⊤. Show that each x j

= Se j where e j is a coordinate direction.

14.8.11[P] The cyclic coordinate descent algorithm (see §25.7.2) is like steepest descent
except that it uses the coordinate directions e1, e2 . . . en, e1, e2 . . . en, . . . as the search directions.
(a) When does this algorithm produce the same sequence of iterates as the conjugate gradient
algorithm? (b) Find analytically an expression for the optimal step in direction e j if this
algorithm is used to solve the gns problem. (c) Write a MATLAB program that solves the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.8 Exercises 473

gns problem using cyclic coordinate descent. (d) Plot an error curve and use it to estimate
the algorithm’s rate and constant of convergence.

14.8.12[E] What does it mean to diagonalize a matrix?

14.8.13[H] Show that if S⊤QS = ∆ then, because of the rules of matrix multiplication,
∆i j = si⊤Qs j. If Q is positive definite, how do we know that si⊤Qsi > 0 for i = 1 . . . n?

14.8.14[H] Is the matrix

Q =

[

0 1

0 0

]

diagonalizable? If yes, find linearly independent columns s1 and s2 of S such that S⊤QS = ∆

is a diagonal matrix; if no, explain why that is impossible.

14.8.15[E] If Q = I, find two Q–conjugate vectors u and v other than e1 and e2.

14.8.16[E] Is there a matrix A such that the vectors u = [1,−2]⊤ and v = [−3, 6]⊤ are
A–conjugate? If yes, find A; if no, explain why u and v cannot be A–conjugate.

14.8.17[H] The function f (x) = 1
2
x⊤Qx − b⊤x where

Q =

[

2 1

1 2

]

and b =

[

−3
−3

]

has its strict global minimum at x⋆ = [−1,−1]⊤. (a) Find linearly independent vectors u

and v that are Q–conjugate. (b) Use u and v to diagonalize Q, and rewrite the function as
f (w) = 1

2
w⊤∆w−a⊤w where ∆ is a diagonal matrix. (c) Find the minimizing point w⋆ of f (w)

by any means you like. (d) From w⋆, find x⋆. (e) Minimize f (x) by any means you like, and
confirm that you find x⋆.

14.8.18[E] If f (x) = 1
2
x⊤Qx − b⊤x and we diagonalize Q by finding a matrix S such that

S⊤QS = ∆, then we can write f (w) = 1
2
w⊤∆w − a⊤w. (a) To minimize f (w) by searching in

conjugate directions, what directions should we use? (b) To minimize f (x) by searching in
conjugate directions, what directions should we use?

14.8.19[E] What is the maximum number of steps required to minimize a strictly convex
quadratic function of n variables by doing exact line searches along conjugate directions?
What is the minimum number of steps that might be sufficient?

14.8.20[P] In §14.3 several ways are suggested for generating conjugate directions. If Q
is symmetric and has distinct eigenvalues then its eigenvectors are Q–conjugate. Write a
program to solve the gns problem by using that approach. Hint: use the MATLAB statement
[S,Lambda,Sinv]=svd(Q) to find a matrix S whose columns are orthonormal eigenvectors
of Q, and then do an exact analytic line search in each of those directions.

14.8.21[P] In §14.3 several ways are suggested for generating conjugate directions. If Q
is positive definite and an exact line search is used, the DFP algorithm generates dk that

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

474 Conjugate-Gradient Methods

are Q–conjugate. Write a program to solve the gns problem by using that approach, and
confirm numerically that the directions it generates are conjugate.

14.8.22[E] Conjugate gradient algorithms use a simple method of generating conjugate
directions. What is it?

14.8.23[E] How is the residual r = Qx− b that is used in the conjugate gradient algorithm
related to the gradient of f (x)?

14.8.24[E] The conjugate gradient algorithm computes residual vectors rk and direction
vectors dk. Which of these vectors are Q–conjugate? Which of them are orthogonal?

14.8.25[P] When we solved the gns problem in §14.2 by searching conjugate directions,
we arbitrarily chose s1 = [1, 0]⊤. When the conjugate gradient algorithm is used to solve the
problem, the first direction it chooses is that of steepest descent (see lines 4-5 in cg.m).
(a) Write a MATLAB program that uses cg.m to solve the gns problem and plots its con-
vergence trajectory over contours of the objective. How does this picture compare to the
x-space plot in §14.2? (b) Modify cg.m to use the arbitrary direction s1 = [1, 0]⊤ as its first
d. Does it still solve gns in two steps? Does the algorithm still have the properties discussed
in §14.4? (c) In the conjugate gradient algorithm, why must r0 = Qx0−b in order for d1 and
d0 to be Q–conjugate?

14.8.26[E] In §14.4, pseudocode is listed for two versions of the conjugate gradient algo-
rithm. How much arithmetic is saved by using the second version rather than the first? Show
how cg.m can be rewritten to require only one matrix-vector multiplication per iteration.

14.8.27[P] Suppose all the elements of Q are zero except for the diagonal, whose elements
are all 10, and the superdiagonal and subdiagonal, whose elements are all 1. Write a MATLAB

function Qd(d) that receives a vector d and returns the product Qd without storing any of
the elements of Q. Test your routine using randomly-generated vectors d ∈ R1000. How can
you tell whether the results are correct?

14.8.28[E] What is the order of convergence of the conjugate gradient algorithm? How
does its convergence constant depend on Q? Why in practice might it not find x⋆ precisely
in n or fewer iterations?

14.8.29[P] Consider the linear system Ax = b where [20, Exercise 8.1.26]

A =





1.59 1.69 2.13

1.69 1.31 1.72

2.13 1.72 1.85




and b =





1

1

1




.

(a) Solve the linear system using the MATLAB backslash operator. (b) Solve the linear system
using the function cg.m of §14.4. (c) The conjugate gradient algorithm is guaranteed to
work only if A is positive definite and symmetric. Is the A given above positive definite and
symmetric?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.8 Exercises 475

14.8.30[P] The MATLAB command A=hilb(n) returns the n×n Hilbert matrix A, which
has ai j = 1/(i + j − 1). The condition number of the Hilbert matrix grows very fast as n

increases, so if it is the coefficient matrix in Ax = b the linear system becomes numerically
troublesome as n increases. Write a program that uses cg.m to solve Ax = b when A is the
n × n Hilbert matrix and b = 1, starting from x0 = 0, for several values of n. Plot k⋆(n), the
number of iterations required to achieve an error level of ǫ = 10−6, as a function of n.

14.8.31[P] The Fletcher-Reeves and Polak-Ribière algorithms are both generalizations of
the conjugate gradient algorithm. (a) How do they differ from it, and from each other?
(b) Use flrv.m and plrb.m to solve the gpr problem pictured in §9.3, starting from
x0 = [2, 3]⊤. How do the two algorithms compare? (c) Use flrv.m and plrb.m to solve the
Himmelblau 28 problem [80, p428],

minimize f (x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2,

starting from x0 = [1, 1]⊤. How do the two algorithms compare?

14.8.32[P] The Fletcher-Reeves and Polak-Ribière algorithms are competitive with steepest
descent because all three have linear convergence and don’t use the Hessian. Write a MATLAB

program that invokes sdw.m, flrv.m, and plrb.m to solve a problem one step at a time and
plot the convergence trajectories and error curves of the three algorithms. Use your program
to compare the algorithms when they are used to solve the problems (a) gns and (b) rb.

14.8.33[H] Show that the Polak-Ribière formula for βk+1 can result in a dk+1 that is not
a descent direction. In the code for plrb.m, what direction is used if the formula yields a
negative number?

14.8.34[H] The Polak-Ribière formula for βk+1 can be viewed as implementing the heuristic
that if ∇f (xk) has the same direction at successive points then steepest descent will lead to
x⋆. Construct an R2 example problem in which that happens. Can you construct an example
in which the heuristic fails?

14.8.35[E] If q(x) = 1
2
x⊤Qx + c⊤x + d and x ∈ R2, explain how the graph of the function

is affected by changing (a) d; (b) c. Illustrate your answers by drawing contour diagrams,
assuming Q is a positive definite matrix.

14.8.36[E] Suppose that q(x) is a quadratic function of x ∈ Rn. (a) Write down a formula
for q(x). Carefully describe the contours of q(x) if n = 2 and the function is (b) strictly
convex; (c) concave but not strictly concave; (d) neither convex nor concave.

14.8.37[E] How can we tell of a matrix is negative definite? How can we tell if it is negative
semidefinite?

14.8.38[H] If x ∈ R2, write down a function q(x) = 1
2
x⊤Qx whose contours are (a) vertical

lines; (b) slanting lines.

14.8.39[E] Describe the three kinds of contour diagram that a quadratic in R2 can produce.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

476 Conjugate-Gradient Methods

14.8.40[E] What makes an ellipse a circle? What makes an ellipse a right ellipse? If an
ellipse has the equation x21/16 + x22/36 = 1, what are its semiminor and semimajor axes?

14.8.41[E] A certain ellipse defined by x⊤Qx = 1 has axes that are not parallel to the
coordinate axes. (a) What must be true of Q? Write down all the properties you can think
of. (b) How do the semiminor and semimajor axes of the ellipse depend on Q? (c) How do
the directions of its axes depend on the matrix?

14.8.42[H] In §14.7.2 we found for the matrix on the left below the eigenvectors on the
right.

Q =

[

2 −1
−1 2

]
s1 =

[

−1/
√
2,+1/

√
2
] ⊤

s2 =
[

−1/
√
2,−1/

√
2
] ⊤

Show that s1 and s2 are Q–conjugate vectors.

14.8.43[H] Suppose an ellipse x⊤Qx = 1 has the matrix on the left. (a) Show that the
formula on the right gives the angle θ by which its graph is tilted.

Q =

[

q1 q0
q0 q2

]

θ = 1
2
arctan

(

q0

q1 − q2

)

(b) How can the eigenvectors s1 and s2 of Q be used to find θ?

14.8.44[E] If a matrix Q is diagonalized by writing it as Q = S−⊤∆S−1, what are the diagonal
elements of ∆? What are the off-diagonal elements of ∆?

14.8.45[E] How is the shape of an ellipse x⊤Qx = 1 affected by the condition number of Q?

14.8.46[E] Suppose that s1 and s2 are unit eigenvectors of the 2×2 positive definite matrix
Q. (a) How can you find unit eigenvectors of Q−1? (b) How are the eigenvalues of the two
matrices related? (c) How does the ellipsoid defined by x⊤Qx = 1 differ in appearance from
the ellipsoid defined by x⊤Q−1x = 1?

14.8.47[E] Give formulas for finding the area of an ellipse whose equation is x⊤Qx = 1 if you
know (a) its semimajor and semiminor axes; (b) the eigenvalues of Q; (c) the determinant of
Q−1; (d) the determinant of Q.

14.8.48[E] Give a precise definition of the term unit ball. Evaluate the expressions ⌊−5.3⌋
and ⌊5.3⌋.
14.8.49[H] Use the definition of V1, the volume of a unit ball in Rn, to show that the
volume of a unit ball is (a) π in R2; (b) 4

3
π in R3. (c) What is the volume of a unit ball in

R1?

14.8.50[H] An ellipse in R3 has all of its half-axes equal to 2. What is its volume?

14.8.51[E] Describe two ways of plotting an ellipse in MATLAB.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

14.8 Exercises 477

14.8.52[P] Suppose an ellipse is defined as the locus of points where

[

x − x0 y − y0
]
[

a b

c d

] [

x − x0
y − y0

]

= 1

and consider the problem of plotting its curve. (a) Derive a formula that gives y as a function
of the other variables. (b) Find the range of x over which the ellipse is defined. (c) Write
a MATLAB routine [xt,yt]=ellipsx(xzero,yzero,Q,tmax) that finds tmax points on the
curve at equally-spaced values of x in the range over which the ellipse is defined, and re-
turns their coordinates in the vectors xt and yt for plotting with the MATLAB command
plot(xt,yt). (d) Test your routine by using it to plot each ellipse in §14.7.2 for which
Q is given. How many points tmax do you need to get curves that look smooth? (e) Use
ellipse.m to plot the same ellipses. How many points does it require?

14.8.53[H] In the ellipse.m routine of §14.7.3, the coordinates of the first point in the
second quadrant are given by xt(t)=xz and yt(t)=yz+1/sqrt(d). (a) Where in the graph
of the ellipse does this point appear? (b) Why is it necessary to use a formula different from
the one we derived for y(θ) at this value of θ? (c) Explain why this formula is correct at that
angle.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15

Equality Constraints

Since leaving Chapter 8 we have indulged the simple and carefree vocation of minimizing
f (x) over all of Rn, but most practical applications of nonlinear programming give rise to
models in which x⋆ must also satisfy constraints. Our first application, the garden problem
of §8.1, had inequality constraints, and §8.2 illustrated several different methods of enforcing
them. With this Chapter we begin a more careful study of those same methods, starting
with the easier case of constraints that are equations [3, §9.3].

The nonlinear program below, which I will call arch1 (see §28.7.5), has m = 1 nonlinear
equality constraint.

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to f1(x) = 4 − (x1 − 2)2 − x2 = 0

There are only two variables so, as we did in §8.2.1 for the garden problem, we can get to
know this example by drawing its graph.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x1

x2

f1(x) = 4 − (x1 − 2)2 − x2 = 0

f0(x) = (x1 − 1)2 + (x2 − 1)2 = f0(x
⋆)

•x⋆
•x̄

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

480 Equality Constraints

The unconstrained minimizing point of f0(x) is obviously, from either the picture or the
objective formula, x̄ = [1, 1]⊤, where f0(x̄) = 0. That point does not satisfy the constraint,
because f1(x̄) = 4 − (1 − 2)2 − 1 = 2 , 0. A higher contour of the objective does touch the
zero contour of the constraint, at x⋆ ≈ [0.33, 1.20]⊤ where f0(x

⋆) ≈ 0.49.
To find x⋆ analytically we can use calculus as in §8.2.2. From the constraint equation

we find that x2 = 4 − (x1 − 2)2, and substituting that expression into the formula for f0(x)

yields a reduced objective in which the number of variables has been reduced from n = 2

to n − m = 1.
f0(x1) = (x1 − 1)2 + (4 − (x1 − 2)2 − 1)2

At the optimal point its derivative is zero, so we can find x⋆1 by solving

d f0

dx1
= 2(x1 − 1) + 2(3 − (x1 − 2)2)(−2(x1 − 2)) = 0

or 4x31 − 24x21 + 38x1 − 10 = 0.

To do that I wrote the MATLAB program cubslv.m listed below. It begins by 3-10 producing
the graph to the right. From the graph I was able to bracket the roots 11 and then 13-23

find them precisely using the built-in zero-finder fzero 17 . The notation @(x1) makes the
formula for the cubic an “anonymous function” of x1 [50, §11.10.2] so that it can be passed
directly to fzero. (We will use fzero again in §17.3.1, for finding the roots of a nonlinear
algebraic equation that is not a cubic.)

1 % cubslv.m: find the stationary points of arch1
2 % a graph shows where the roots are approximately
3 set(gca,’FontSize’,35)
4 for p=1:100
5 x1(p)=4*(p-1)/99;
6 y(1,p)=4*x1(p)^3-24*x1(p)^2+38*x1(p)-10;
7 y(2,p)=0;
8 end
9 plot(x1,y)
10 print -deps -solid cubslv.eps
11 xzeros=[0,1;2,3;3,4];
12
13 % then we can find them precisely
14 printf(’ x1 x2 f0 g h\n’)
15 for r=1:3
16 xzero=xzeros(r,:);
17 x1=fzero(@(x1)4*x1^3-24*x1^2+38*x1-10,xzero);
18 x2=4*x1-x1^2;
19 f=(x1-1)^2+(x2-1)^2;
20 g=4*x1^3-24*x1^2+38*x1-10;
21 h=12*x1^2-48*x1+38;
22 printf(’%7.5f %7.5f %7.4f %7.7f %7.3f\n’,x1,x2,f,abs(g),h)
23 end

-10

-5

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4

d f0
dx1

x1

This program prints the output shown at the top of the next page, where g means d f0/dx1
and h means d2 f0/dx

2
1. The zero values of g confirm that the three points are stationary,

and from the value of f0 and the sign of h we can classify them as the global minimum x⋆,
a global maximum, and a local minimum (see Exercise 15.6.4).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.1 Parameterization of Constraints 481

octave:1> cubslv
x1 x2 f0 g h

0.32702 1.20113 0.4934 0.0000000 23.586
2.20336 3.95864 10.2017 0.0000000 -9.504
3.46962 1.84022 6.8050 0.0000000 15.917
octave:2> quit

← global minimum
← global maximum
← local minimum

If a nonlinear program has m equality constraints we should in principle be able to use
them, as we did in this example and in §8.2.2, to eliminate m of the variables. Then we
can minimize the reduced objective to find the optimal values of the remaining variables,
and back-substitute into the equalities to get the values of the variables we eliminated.
Unfortunately it is seldom possible to do that analytically if there are m > 1 nonlinear
equalities, and it might not be possible even if there is only one [3, p274-278].

15.1 Parameterization of Constraints

The optimal point has another property that we could
use to find it. This graph of our example shows ∇f0(x⋆)
and ∇f1(x⋆) drawn to scale. Because the optimal con-
tour of f0 is tangent to the zero contour of f1 at x

⋆, the
gradients point in exactly opposite directions and are
related by ∇f0(x⋆) = −λ∇f1(x⋆), where the scalar λ is
the ratio of their lengths. Computing the gradients we
find [

2(x1 − 1)
2(x2 − 1)

]

= −λ
[

−2(x1 − 2)
−1

]

.

The optimal point is also on the curve f1(x) = 0, so x⋆

and λ satisfy the following equations. -1

0

1

2

3

4

5

-1 0 1 2 3 4

∇f0(x⋆)

∇f1(x⋆)

•x⋆

2(x1 − 1) = 2λ(x1 − 2)
2(x2 − 1) = λ

4 − (x1 − 2)2 − x2 = 0

Solving this system by eliminating λ and x2 we get a single equation in x1,

4x31 − 24x21 + 38x1 − 10 = 0,

which is the same cubic we found earlier. So this approach yields x⋆ ≈ [0.32702, 1.20113]⊤

as before, with λ⋆ = 2(x⋆2 − 1) ≈ 0.40226.
There is an important connection between the substitution approach and the gradient

approach, which we can see by considering a different way of using equality constraints to
eliminate variables.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

482 Equality Constraints

In our example the feasible set is all of the points on the curve described by

f1(x) = 4 − (x1 − 2)2 − x2 = 0.

Suppose we let t = x1 − 2. This choice of t means that x1 = 2 + t and we can rewrite the
constraint equation as 4− t2− x2 = 0. Thus the curve that is the feasible set has the following
parametric representation.

x1(t) = 2 + t

x2(t) = 4 − t2

As t varies from −2 to 2, the point [x1(t), x2(t)]
⊤ sweeps out the contour f1(x) = 0 shown in

the first picture. Substituting the above expressions into the formula for the objective,

f0(x1(t), x2(t)) = ((2 + t) − 1)2 + ((4 − t2) − 1)2

f0(t) = (1 + t)2 + (3 − t2)2.

This is just the reduced objective expressed in terms of t, and setting its derivative to zero
like this

d f0

dt
= 2(1 + t) + 2(3 − t2)(−2t) = 0

2 + 2t − 12t + 4t3 = 0

4t3 − 10t + 2 = 0

yields another cubic whose roots correspond to the stationary points we found before. But
the parameterization also has an interesting geometric interpretation. If we let

g(t) =

[

x1(t)

x2(t)

]

=

[

2 + t

4 − t2
]

then
dg

dt
=

[

1

−2t

]

.

We can also write the constraint gradient as a function of t.

∇f1(x) =
[

−2(x1 − 2)
−1

]

so ∇f1(t) =
[

−2(x1(t) − 2)
−1

]

=

[

−2((2 + t) − 2)
−1

]

=

[

−2t
−1

]

Now notice that
[∇f1(x)

] ⊤

[

dg

dt

]

=

[

−2t −1
]
[

1

−2t

]

= −2t + 2t = 0.

These vectors are orthogonal, which means that dg/dt is tangent to the curve f1(x) = 0. In
other words, dg/dt is tangent to the feasible set X = {x ∈ R2 | f1(x) = 0}.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.2 The Lagrange Multiplier Theorem 483

On X, x2 = 4 − (x1 − 2)2 so the slope of the curve is

dx2

dx1
= −2(x1 − 2) = 4 − 2x1.

Thus, for example, at x = [0, 0]⊤ we have dx2/dx1 = 4 so X, a curve in R2, has slope 4. At
x = [0, 0]⊤ we have t = −2 so dg/dt = [1, 4]⊤, and this vector in R2 also has slope 4/1 = 4.
Because of the definition of the derivative,

dg

dt
= lim
∆t→0

g(t + ∆t) − g(t)
∆t

is tangent to X for every value of t. As ∆t approaches zero the
chord in the picture to the right approaches the tangent line,
so that is the direction of dg/dt.

Earlier we noticed that the gradient of the objective is or-
thogonal to X at x⋆. But dg/dt is tangent to X, so ∇f0(x) must
be orthogonal to dg/dt at x⋆. The objective gradient is

∇f0(x) =
[

2(x1 − 1)
2(x2 − 1)

]

=

[

2([2 + t] − 1)
2([4 − t2] − 1)

]

=

[

2 + 2t

6 − 2t2
]

so at x⋆ we must have

•g(t)

•g(t + ∆t)
X

ta
n
ge
nt

li
n
e

[∇f0(t)]⊤
[

dg

dt

]

=
[
2 + 2t 6 − 2t2]

[

1

−2t

]

= 0

(2 + 2t) + (6 − 2t2)(−2t) = 0

4t3 − 10t + 2 = 0.

This is the same cubic we found before by minimizing the parameterized objective.
We have shown for this problem that if we can write x = g(t), then dg/dt is a vector that

is tangent to X and therefore orthogonal to ∇f1(t) everywhere and to ∇f0(t) at t⋆. Then we
can use the collinearity of ∇f1(t⋆) and ∇f0(t⋆) to find t⋆, and the parameterization to find x⋆.

15.2 The Lagrange Multiplier Theorem

The parameterization approach can be generalized to solve problems having m > 1 equality
constraints, without using the constraints to explicitly eliminate m of the variables. An
equality-constrained nonlinear program

minimize
x∈Rn

f0(x)

subject to fi(x) = 0 for i = 1 . . .m

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

484 Equality Constraints

has the feasible set X = {x ∈ Rn | fi (x) = 0, i = 1 . . .m}, which is the intersection of the m

hypersurfaces fi (x) = 0 in Rn. For example, if n = 3 and m = 2 then X is the curve that is
the intersection of two constraint hypersurfaces, as pictured below.

x3

x1

x2

f 1(
x)
=
0

f2(x) = 0

X

•
x̄

dg

dt

(

t̄
)

∇f2(x̄)

∇f1(x̄)

In general X is of dimension n − m, so we need n − m parameters tp to describe it. Suppose
we parameterize X by letting x j = g j(t) where j = 1 . . . n and t ∈ Rn−m. Then

x = g(t) =





g1(t)
...

gn(t)





and f0(x) = f0(g1(t) . . . gn(t))

so, by the chain rule,

∂ f0

∂tp
=
∂ f0

∂x1

∂g1

∂tp
+ · · · + ∂ f0

∂xn

∂gn

∂tp

= ∇f0(x)⊤





∂g1

∂tp
...
∂gn

∂tp





= ∇f0(x)⊤
[

∂g

∂tp

]

for p = 1 . . . n − m.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.2 The Lagrange Multiplier Theorem 485

Each vector [∂g/∂tp] is tangent to X. In the picture above n−m = 1 so there is one parameter
t, the feasible set X is the curve where the surfaces intersect, and [dg/dt] is tangent to it.
Because each vector [∂g/∂tp] is tangent to X, each must be orthogonal to all of the constraint
gradients. In the picture, [dg/dt] is orthogonal at t̄ to both ∇f1(x̄) and ∇f2(x̄).

If x̄ = g(t̄) is a local minimizing point then it is a stationary point of f0(t), so ∂f0/∂tp = 0

for p = 1 . . . n − m. Then 0 = ∇f0(x̄)⊤[∂g/∂tp], and each [∂g/∂tp] is orthogonal to ∇f0(x̄) also.
In the picture I omitted objective contours for clarity but they are also hypersurfaces,

and if x̄ is a minimizing point the objective contour passing through x̄ is tangent to X so its
gradient is orthogonal to [dg/dt]. For this example the orthogonality of all three gradients
to [dg/dt] looks (from a more convenient angle) like this, so the three gradients all lie in the
same 2-dimensional hyperplane (see Exercise 15.6.13).

dg

dt

(

t̄
)

∇f1(x̄)
−∇f0(x̄)

∇f2(x̄)

In general ∇f0(x̄),∇f1(x̄) . . .∇fm(x̄) all lie in the same m-dimensional hyperplane, so if the
constraint gradients are linearly independent (see §28.2.4) then the objective gradient can
be written as a linear combination of them, like this.

−∇f0(x̄) = λ1∇f1(x̄) + · · · + λm∇fm(x̄)

For a given set of constraint equalities it might be hard to find a parameterization x = g(t)

for which the system of equations ∇f0(t)⊤[∂g/∂tp] = 0, p = 1 . . . n − m, can be solved analyti-
cally, so it might seem that we are back almost where we began when we found it impossible
to use the equalities to eliminate m of the variables analytically. Fortunately, it is never
actually necessary to find or use a parameterization. If the constraint gradients are linearly
independent then all that is needed to be able to write the objective gradient as a linear com-
bination of the constraint gradients is that some parameterization exists. Whether that is
true for a given problem is answered by the implicit function theorem [148, p571-579]. In
the context of equality-constrained nonlinear programming, the hypotheses and conclusions
of the implicit function theorem are incorporated into the Lagrange multiplier theorem

[110, §7.2] stated at the top of the next page. What we noticed about the gradients in
the examples discussed above is true in general if the hypotheses of the Lagrange multiplier
theorem are satisfied.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

486 Equality Constraints

Theorem: existence of Lagrange multipliers

given the NLP minimize
x∈Rn

f0(x)

subject to fi(x) = 0, i = 1 . . .m,

if x̄ is a local minimizing point for NLP
n > m (there are more variables than constraints)
the fi (x) have continuous first partials with respect to the x j

the ∇fi (x̄), i = 1 . . .m, are linearly independent

then there exists a vector λλλ ∈ Rm such that

∇f0(x̄) +
m∑

i=1

λi∇fi(x̄) = 0.

The requirement that the constraint gradients be linearly independent is called a constraint

qualification, and the scalars λi are called Lagrange multipliers.

15.3 The Method of Lagrange

The Lagrange multiplier theorem suggests the following systematic procedure for finding an-
alytically the local minimizing points of an equality-constrained nonlinear program [78, §3.2].

1. Verify that
n > m and
for i = 1 . . .m and j = 1 . . . n the derivative ∂ fi/∂x j is a continuous function of x.

2. Form the Lagrangian function L(x,λλλ) = f0(x) +

m∑

i=1

λi fi(x).

3. Find all solutions (x̄, λ̄λλ) to these Lagrange conditions.

∇xL(x,λλλ) = ∇f0(x) +
m∑

i=1

λi∇fi(x) = 0

∂L
∂λi

= fi(x) = 0, i = 1 . . .m

The first or stationarity condition provides n equations and the second or feasibility
condition, which can also be written ∇λλλL = 0, provides m equations, and together
these are enough to determine the n components of x̄ and the m components of λ̄λλ.

4. Verify that the constraint gradients are linearly independent at the points x̄.

5. Classify the solutions (x̄, λ̄λλ) to identify the local minimizing points.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.3 The Method of Lagrange 487

We can solve the arch1 problem of §15.0 by using the method of Lagrange, as follows.

1. Verify that n > m: 2 > 1 X

2. Verify that the partial derivatives are continuous:

∂ f0

∂x1
= 2(x1 − 1)

∂ f0

∂x2
= 2(x2 − 1)

∂ f1

∂x1
= −2(x1 − 2)

∂ f1

∂x2
= −1

These functions are all continuous. X

3. Form the Lagrangian.

L(x, λ) = (x1 − 1)2 + (x2 − 1)2 + λ(4 − (x1 − 2)2 − x2)

4. Solve the Lagrange conditions.

∂L
∂x1

= 2(x1 − 1) − 2λ(x1 − 2) = 0

∂L
∂x2

= 2(x2 − 1) − λ = 0

∂L
∂λ

= 4 − (x1 − 2)2 − x2 = 0

Substituting λ = 2(x2 − 1) and x2 = 4− (x1 − 2)2 into the first equation and simplifying yields

4x31 − 24x21 + 38x1 − 10 = 0

which is the same cubic we found in §15.0. The Lagrange points (x̄, λ̄) are thus the same
points we found before.

x̄1 x̄2 λ̄

0.32702 1.20113 0.40226

2.20336 3.95864 5.91728

3.46962 1.84022 1.68044

For this problem λ̄ turns out to be positive at each Lagrange point, but in general a Lagrange
multiplier for an equality-constrained problem can have either sign (see Exercise 15.6.24).

5. Verify that the constraint gradients are linearly independent at x̄: since there is only one
constraint and ∇f1(x̄) , 0, that gradient is linearly independent. X

6. Classify the Lagrange points to identify the local minimizing points: in §15.0 we argued
based on the second derivative of the reduced objective that the first and last points on the
list above are minima, and based on the function value at those two points that the first one
is the global minimum.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

488 Equality Constraints

Lagrange multipliers play the same role in equality-constrained nonlinear programming
that dual variables play in linear programming, and here also they can be interpreted as
shadow prices [78, §3.3] (also see §16.9). Recall from §5.1.4 that the shadow price associated
with a constraint is the change in the optimal objective value that results from changing the
right-hand side of the constraint by one unit.

Suppose that in arch1 we relax the constraint enough
to move the optimal point to

x⋆
∆
= x⋆ + ∆

where the vector

∆ = δ∇f1(x⋆) = δ
[

−2(x⋆1 − 2)
−1

]

=

[

δ(4 − 2x⋆1)
−δ

]

is orthogonal to the constraint contour. This changes the
graphical solution as shown on the right. To compute the
shadow price associated with the constraint we need f0(x

⋆
∆
)

and f1(x
⋆
∆
) as functions of δ.

•x⋆ ◦x⋆
∆

f1(x) = 0

f1(x) > 0

f0(x) = f0(x
⋆)

f0(x) = f0(x
⋆
∆
)

f0(x
⋆
∆
) = ([x1 + δ(4 − 2x1)] − 1)2 + ([x2 − δ] − 1)2

= (x1 − 1)2 + (x2 − 1)2 + δ2(4 − 2x1)2 + δ2 + 2δ(4 − 2x1)(x1 − 1) − 2δ(x2 − 1)
= f0(x

⋆) + δ2(4 − 2x1)2 + δ2 + 2δ(4 − 2x1)(x1 − 1) − 2δ(x2 − 1)
f1(x

⋆
∆
) = 4 − ([x1 + δ(4 − 2x1)] − 2)2 − [x2 − δ]
= 4 − (x1 − 2)2 − x2 − δ2(4 − 2x1)2 − 2δ(4 − 2x1)(x1 − 2) + δ
= f1(x

⋆) − δ2(4 − 2x1)2 − 2δ(4 − 2x1)(x1 − 2) + δ

The change in the objective value per unit change in the constraint value is then

f0(x
⋆
∆
) − f0(x

⋆)

f1(x
⋆
∆
) − f1(x⋆)

=
δ2(4 − 2x1)2 + δ2 + 2δ(4 − 2x1)(x1 − 1) − 2δ(x2 − 1)

−δ2(4 − 2x1)2 − 2δ(4 − 2x1)(x1 − 2) + δ
.

Dividing numerator and denominator by δ and taking the limit as δ→ 0, we find the shadow
price

∂ f0

∂ f1
=

2(4 − 2x⋆1)(x⋆1 − 1) − 2(x⋆2 − 1)
−2(4 − 2x⋆1)(x⋆1 − 2) + 1

≈ −0.40226

which is the negative of the λ⋆ we reported earlier. (increasing f1 lets us decrease f0). We
can [161, §3.2] use the definition of the Lagrangian to show that in general

∂ f0

∂ fi
= −λi.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.3 The Method of Lagrange 489

L(x,λλλ) = f0(x) +

m∑

p=1

λp fp(x)

f0(x) = −
m∑

p=1

λp fp(x) +L(x,λλλ).

Differentiating with respect to fi,

∂ f0

∂ fi
= −λi +

∂L
∂ fi

which is the result we want if the second term is zero. We can think of computing ∂L/∂ fi
by relaxing the ith constraint, finding L(x⋆

δ
,λλλ⋆
δ
) and fi(x

⋆
δ
), forming the ratio of the changes

to L and fi, and taking the limit as δ → 0, as in the example above. That makes L and fi
both functions of δ, so that

∂L
∂ fi
=
∂L/∂δ
∂ fi/∂δ

.

Each of the derivatives with respect to δ is really a directional derivative in the direction
∇fi (x⋆), so using the result from §12.2.1 we can find them like this.

∂L/∂δ = ∇xL(x,λλλ⋆)⊤∇fi(x⋆)
∂ fi/∂δ = ∇fi(x)⊤∇fi(x⋆)

At x⋆ the gradient of the Lagrangian is zero so the first of these derivatives is zero, and at x⋆

the derivative ∂ fi/∂δ is the square of the norm of the constraint gradient. If the hypotheses
of the Lagrange multiplier theorem are satisfied then the constraint gradients are linearly
independent at x⋆ so ∇fi(x⋆) , 0 (see Exercise 15.6.20); thus ∂L/∂ fi = 0 and the result is
established. If ∇fi(x⋆) = 0 and also ∇f0(x⋆) = 0 then the constraint is inactive so λi = 0.

In using the method of Lagrange it is often difficult to be sure that you have found all
solutions to the Lagrange conditions. In arch1 the three algebraic equations were equivalent
to a single cubic, which we know from the fundamental theorem of algebra [8, Exercise 16.15]
has exactly three roots. Some of the roots might have turned out to be complex (and
therefore not meaningful for the optimization problem) or repeated, but at least we could
be sure that we had found them all. Usually the Lagrange conditions involve functions
other than polynomials, and then it might not be obvious even how many solutions there
are. Numerical methods are typically required in solving the Lagrange conditions for real
problems, and sometimes they are helpful even for toy problems like arch1, so as discussed
in §8.3 it is often more convenient to apply a numerical minimization algorithm from the
outset. Using many ideas from this Chapter, we will begin our study of algorithms for
equality-constrained nonlinear programs in §18.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

490 Classifying Lagrange Points Analytically

15.4 Classifying Lagrange Points Analytically

Another practical difficulty in using the method of Lagrange is classifying the solutions to the
Lagrange conditions once they have all been found. If the other hypotheses of the Lagrange
multiplier theorem are satisfied then every local minimum is a Lagrange point, but not every
Lagrange point is necessarily a local minimum (as illustrated by the arch1 example) nor
even a stationary point [74, p62].

15.4.1 Problem-Specific Arguments

Sometimes it is possible to prove that a Lagrange point x̄ is a local minimum by using
particular characteristics of the problem or of the point.

• If n = 2, a contour plot like the one in §15.0 can be used to approximate, and thereby
identify as a minimum, a point that has been found analytically by using the method
of Lagrange.

• If the problem is known to have a minimizing point and the Lagrange conditions can
be shown to have a unique solution, then because every local minimum is a Lagrange
point the unique Lagrange point must be the minimizing point.

• If the Lagrange points are known to all be stationary points, the one yielding the lowest
value of the objective must be the constrained minimizing point.

• If the objective function is convex and the constraints are linear, the problem is a convex
program; at a Lagrange point the constraint gradients must be linearly independent,
so the Lagrange points are global minima (see §16.6).

Usually no such ad hoc argument is possible, and resort must be made to one of the more
general approaches described next.

15.4.2 Testing the Reduced Objective

In studying our example we derived two equivalent formulas for the reduced objective, one
in terms of x and the other in terms of t.

f0(x1) = (x1 − 1)2 + (3 − (x1 − 2)2)2 f ′′0 (x1) = 12x21 − 48x1 + 38
f0(t) = (1 + t)2 + (3 − t2)2 f ′′0 (t) = 12t2 − 10

Because we knew f0(x1) we were able using the MATLAB program cubslv.m in §15.0 to
calculate f ′′0 (x̄1) and, based on §10.7, to classify the three stationary points by the sign of
this second derivative. Because we know a parameterization of the constraints we can do
the same thing using f ′′0 (t̄). All of these results are summarized on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.4.3 Second Order Conditions 491

x̄1 x̄2 f ′′(x̄) t̄ f ′′(t̄)

0.32702 1.20113 23.586 -1.67298 23.586

2.20336 3.95864 -9.504 0.20336 -9.504

3.46962 1.84022 15.917 1.46962 15.917

Either way we see that the second point is a maximum and the others are minima. If
n − m had been greater than 1 it would have been necessary to check the definiteness of the
(n − m) × (n − m) Hessian matrix of the reduced objective.

This approach is seldom useful in practice, because usually we can’t solve the constraints
to find a reduced objective in terms of x or parameterize them to find a reduced objective
in terms of t. However, the idea that we might check the Hessian of a reduced objective
motivates the easier (though still complicated) approach of the next Section.

15.4.3 Second Order Conditions

Suppose we construct a hyperplane T̂ that is
tangent to the feasible set X at a point x̂ ∈ X. For
T̂ to be tangent to X at x̂ it must be orthogonal
to each of the constraint gradients there and pass
through x̂, so

T̂ = {x ∈ Rn | ∇fi(x̂)⊤(x − x̂) = 0 for i = 1 . . .m} .

For a given feasible point x̂, points x that are on
T̂ must satisfy these m linear equations in the n

variables x j. We will assume the constraint gra-
dients are linearly independent, so that we could
solve this system to express m of the variables in
terms of the others. The graph on the right pic-
tures a hyperplane T̂ that is tangent at x̂ = [1, 3]⊤

to the contour f1(x) = 0 in the arch1 problem.
Now consider the gradient of the Lagrangian

at x̂.
∇xL(x̂, λ̂λλ) = ∇f0(x̂) +

m∑

i=1

λ̂i∇fi(x̂)

By the construction of T̂, the gradients ∇fi(x̂) are 0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

x1

x2

∇f1 (x̂)

λ̂∇f1 (x̂)

∇f
0
(x̂
)

T̂

∇ x
L(
x̂,
λ̂
)

x̂ •

X

each orthogonal to T̂; in arch1, ∇f1(x̂) is orthogonal to T̂ as shown. In the gradient of the
Lagrangian, the term m∑

i=1

λ̂i∇fi(x̂)

is a linear combination of vectors orthogonal to T̂, so it is also orthogonal to T̂; in other words,

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

492 Classifying Lagrange Points Analytically

its orthogonal projection on T̂ is the zero vector. Thus, at any point on X, assuming as we
did that the constraint gradients are linearly independent, the gradient of the Lagrangian is
the orthogonal projection on T̂ of the gradient of the objective [78, §3.6].

The graph on the previous page provides a geometric demonstration of the vector identity

∇xL(x̂, λ̂) = ∇f0(x̂) + λ̂∇f1(x̂)

and shows that ∇xL(x̂, λ̂) is the orthogonal projection of ∇f0(x̂) onto T̂. In general each ∇fi(x̂)
is orthogonal to ∇xL(x̂, λ̂λλ) so

∇fi(x̂)⊤∇xL(x̂, λ̂λλ) = 0 for i = 1 . . .m,

and these equations determine the λ̂i. For arch1, we have

∇f1(x̂) =
[

−2(x̂1 − 2)
−1

]

=

[

2

−1

]

∇xL(x̂, λ̂) =
[

2(x̂1 − 1)
2(x̂2 − 1)

]

+ λ̂

[

−2(x̂1 − 2)
−1

]

=

[

0 + 2λ̂

4 − λ̂

]

.

These vectors are orthogonal so it must be that at this x̂ we have

[

2 −1
]
[

0 + 2λ̂

4 − λ̂

]

= 2(0 + 2λ̂) − 1 (4 −λ̂) = 5λ̂ − 4 = 0 or λ̂ = 4
5
.

Thus the vectors pictured on the previous page are these.

∇f0(x̂) =
[

2(x̂1 − 1)
2(x̂2 − 1)

]

=

[

0

4

]

λ∇f1(x̂) =




8
5

−4
5



 ∇xL(x̂, λ̂) =




8
5
16
5





When we solve the Lagrange conditions we are finding points (x̄, λ̄λλ) where the orthogonal
projection of ∇f0(x̄) onto T is zero (you can convince yourself that this happens by imagining
what the construction on the previous page would look like at x⋆ in the first picture of §15.1).

There is nothing special about x̂ except that it is on X, so imagine now that we construct
the tangent hyperplane T̂ at some arbitrary point (x1, x2) ∈ X. There x2 = 4 − (x1 − 2)2, so T̂
is a line with slope dx2/dx1 = −2(x1 − 2) = 4 − 2x1. The Lagrangian and its gradient are as
we found earlier.

f0(x) = (x1 − 1)2 + (x2 − 1)2

f1(x) = 4 − (x1 − 2)2 − x2

so L = (x1 − 1)2 + (x2 − 1)2 + λ
[

4 − (x1 − 2)2 − x2
]

and ∇xL =

[

2(x1 − 1)
2(x2 − 1)

]

+ λ

[

−2(x1 − 2)
−1

]

=





∂L
∂x1
∂L
∂x2





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.4.3 Second Order Conditions 493

The vectors ∇f1(x) and ∇xL(x,λλλ) are still orthogonal, so

[

−2(x1 − 2) −1
]
[

2(x1 − 1) − 2λ(x1 − 2)
2(x2 − 1) − λ

]

= 0.

Computing the dot product and solving for λ we find that

−2(x1 − 2) [2(x1 − 1) − 2λ(x1 − 2)] − 1 [2(x2 − 1) − λ] = 0

−4(x1 − 2)(x1 − 1) + 4λ(x1 − 2)2 − 2(x2 − 1) + λ = 0

λ
[

4(x1 − 2)2 + 1
]

= 4(x1 − 2)(x1 − 1) + 2(x2 − 1)

λ =
4(x1 − 2)(x1 − 1) + 2(x2 − 1)

4(x1 − 2)2 + 1
.

How does the value of the Lagrangian vary along the tangent line T̂ as we change x1?
Thinking of L on T̂ as a function of x1 and x2(x1), we find by the chain rule that

L′ = ∂L
∂x1
+
∂L
∂x2

dx2

dx1

= [2(x1 − 1) − 2λ(x1 − 2)] + [2(x2 − 1) − λ] [4 − 2x1]
= 2(x1 − 1) − 2λ(x1 − 2) − 4x1x2 + 4x1 + 2λx1 + 8x2 − 8 − 4λ

L′′ = 2 − 2λ − 4
(

x1
dx2

dx1
+ x2

)

+ 4 + 2λ + 8
dx2

dx1
= 2 − 4 [x1(4 − 2x1) + x2] + 4 + 8(4 − 2x1).

where λ is given by the expression above. The graph on the left at the top of the next page
shows how L, L′, and L′′ vary with x1 on T̂.

Next recall the reduced objective and its derivatives, which we also found earlier.

f0(x) = (x1 − 1)2 + (x2 − 1)2

but x2 = 4 − (x1 − 2)2

so f0(x1) = (x1 − 1)2 + (3 − (x1 − 2)2)2

f ′0(x1) = 4x31 − 24x21 + 38x1 − 10
f ′′0 (x1) = 12x21 − 48x1 + 38

The graph on the right at the top of the next page shows how f0, f0
′, and f0

′′ vary with
x1 on X. These pictures confirm that L(x1) = f0(x1) (which is not surprising, since f1(x) = 0

on X) and also show that L′(x1) = f0
′(x1) and L′′(x1) = f0

′′(x1) (see Exercise 15.6.31).
The Lagrange points are the local minima and maximum of L(x1) = f0(x1), located where
L′(x1) = f ′0(x1) = 0, and the sign of L′′(x1) = f0

′′(x1) at each Lagrange point indicates whether
it is a minimum or a maximum.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

494 Classifying Lagrange Points Analytically

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4

va
lu
e
on
T̂

x1

x̄ 1
=
0
.3
2
7
0
2

x̄ 1
=
2
.2
0
3
3
6

x̄ 1
=
3
.4
6
9
6
2

L
L′

L′′

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3 3.5 4

va
lu
e
on
X

x1

x̄ 1
=
0
.3
2
7
0
2

x̄ 1
=
2
.2
0
3
3
6

x̄ 1
=
3
.4
6
9
6
2

f0

f ′
0

f ′′
0

It is true not just for this example but in general that the Hessian of the Lagrangian on
T̂, which I will call HL , is precisely the Hessian of the reduced objective function on X. Thus,
to classify Lagrange points based on the definiteness of the Hessian of the reduced objective,
we can instead test the definiteness of the Hessian of the Lagrangian on T̂. Usually, that is
much easier to do.

We defined the tangent hyperplane T̂ in such a way that it passes through x̂, but the
orthogonal projection of ∇f0(x̂) onto any hyperplane parallel to T̂ would also be ∇xL(x̂, λ̂λλ). In
particular, we would reach the same conclusions if we projected the objective gradient onto
the hyperplane

T = {x ∈ Rn | ∇fi(x̂)⊤x = 0 for i = 1 . . .m},

which passes through the origin instead of through x̂. We can therefore classify a Lagrange
point x̄, based on the reduced objective at x̄, by determining the definiteness of the Hessian
of the Lagrangian on T, as described next [3, p284-286][110, §7.2].

Theorem: classification of Lagrange points

given the NLP minimize
x∈Rn

f0(x)

subject to fi (x) = 0, i = 1 . . .m,

if T = {x ∈ Rn | ∇fi (x̄)⊤x = 0 for i = 1 . . .m}
(x̄, λ̄λλ) is a Lagrange point
x⊤HL(x̄, λ̄λλ)x > 0 for all nonzero vectors x ∈ T

then x̄ is a strict local minimizing point.

The hypotheses of this theorem are called the second-order sufficient conditions

[5, Theorem 12.6] [4, Theorem 14.16] [107, §10.5], because they test the Hessian or sec-
ond derivative of the Lagrangian on T and they are sufficient to ensure that a Lagrange
point x̄ is a strict local minimum.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.5 Classifying Lagrange Points Numerically 495

We can classify the Lagrange points of the arch1 problem using this theorem as follows.

∇f1(x̄)⊤x =
[

−2(x̄1 − 2), −1
]
[

x1
x2

]

= −2(x̄1 − 2)x1 − x2 = 0

so T =
{

x ∈ R2 | x2 = −2(x̄1 − 2)x1
}

L(x, λ̄) = (x1 − 1)2 + (x2 − 1)2 + λ̄(4 − (x1 − 2)2 − x2).

On T the Lagrangian is thus

LT(x1, λ̄) = (x1 − 1)2 + ([−2(x̄1 − 2)x1] − 1)2 + λ̄(4 − (x1 − 2)2 − [−2(x̄1 − 2)x1]).

Because n − m = 1 the Hessian of this Lagrangian is just its second derivative.

dLT
dx1

= 2(x1 − 1) + 2(−2(x̄1 − 2)x1 − 1)[−2(x̄1 − 2)] + λ̄[−2(x1 − 2) + 2(x̄1 − 2)]

= 2x1 − 2 + 4(x̄1 − 2)(2(x̄1 − 2)x1 + 1) + λ̄(−2x1 + 4 + 2x̄1 − 4)
= 2x1 − 2 + 8(x̄1 − 2)2x1 + 4(x̄1 − 2) + 2λ̄(x̄1 − x1)

d2LT
dx2

1

= 2 + 8(x̄1 − 2)2 − 2λ̄ = h

Evaluating this quantity at the three stationary points of arch1, we find that the values it
takes on match those we found earlier for f ′′(x̄) by using substitution and for f ′′(t̄) by using
parameterization.

x̄1 λ̄ h classification
0.32702 0.40226 23.586 > 0⇒ minimum
2.20336 5.91728 -9.504 < 0⇒ maximum
3.46962 1.68044 15.917 > 0⇒ minimum

Remember that HL must be positive definite on T to ensure that x̄ is a strict local minimum.
Just as the method of Lagrange is more likely to be analytically tractable than either substi-
tution or parameterization for finding stationary points, using the second-order conditions
is more likely to be analytically tractable for classifying them.

15.5 Classifying Lagrange Points Numerically

In §15.4.3 we defined the hyperplane tangent to the feasible set at a Lagrange point x̄

(translated to pass through the origin) by specifying the conditions that x must satisfy in
order to be on it:

T = {x ∈ Rn | ∇fi(x̄)⊤x = 0 for i = 1 . . .m}.

A different characterization of the points on T, while less geometrically intuitive, is more
convenient to use in numerical calculations (this approach is discussed in more detail in
§22.1.1).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

496 Equality Constraints

If we make the gradients of the constraints at x̄ the rows of an m× n matrix A, then for x to
be on T it must be in the nullspace [147, §2.4] of A.

A =





∇f1(x̄)⊤
...

∇fm(x̄)⊤





⇒ T = {x ∈ Rn | Ax = 0}

The nullspace T of the matrix A is the n−m dimensional subspace of Rn on which Ax = 0. If
linearly-independent vectors zp ∈ Rn span that subspace, so that they form a basis for T, then
we can write any x ∈ T as some combination y1z

1
+ . . . + yn−mz

n−m of those basis vectors. In
other words, if we make the basis vectors zp the columns of an n×(n−m)matrix Z, then every
x that is on T can be written as x = Zy for some y ∈ Rn−m. Then to show that x⊤HL(x̄, λ̄λλ)x > 0

for all nonzero vectors x ∈ T it suffices to show that (Zy)⊤HL(x̄, λ̄λλ)Zy = y⊤Z⊤HL(x̄, λ̄λλ)Zy > 0

for all nonzero vectors y ∈ Rn−m.
The quantity H = Z⊤HL(x̄, λ̄λλ)Z is called the projected Hessian [5, p337] of the

Lagrangian, and the second-order condition for x̄ to be a local minimum is satisfied if this
matrix is positive definite. To find H we need to compute Z, whose columns form a basis
for the nullspace of A. This basis is not unique so various algorithms have been contrived to
find one (e.g., [150, Theorem 5.2], [147, §2.4.2N], [91, §2]) but for our purposes the MATLAB

null() function [50, p381], which is based on the singular-value decomposition of A, will do
nicely. Once we know H we can determine its definiteness by examining its eigenvalues as
described in §11.5.

To implement this scheme I wrote the socheck.m routine listed at the top of the next
page. The program begins 6-9 by computing the Hessian of the Lagrangian HL at the given
Lagrange point (x, lambda). Then 11-14 it evaluates the constraint gradients to construct
the A matrix, 15 finds a basis for the nullspace of A, and 16 uses it to compute Hbar.
The final stanza of code 18-29 finds the eigenvalues of Hbar and decides based upon them
whether to signal that Hbar is positive definite (flag=1) or positive semidefinite (flag=0)
or neither (flag=-1).

When socheck.m is used to classify the Lagrange points we found for the arch1 problem,
it produces the output shown below. These results confirm our earlier determination (several
times) that these points are a local minimum, a local maximum, and a local minimum.

octave:1> x=[0.32702;1.20113];
octave:2> lambda=0.40226;
octave:3> flag=socheck(1,x,lambda,@arch1g,@arch1h)
flag = 1
octave:4> x=[2.20336;3.95864];
octave:5> lambda=5.91728;
octave:6> flag=socheck(1,x,lambda,@arch1g,@arch1h)
flag = -1
octave:7> x=[3.46962;1.84022];
octave:8> lambda=1.68044;
octave:9> flag=socheck(1,x,lambda,@arch1g,@arch1h)
flag = 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.5 Classifying Lagrange Points Numerically 497

1 function flag=socheck(m,x,lambda,grd,hsn)
2 % classify a Lagrange point (x,lambda)
3 % by examining the eigenvalues
4 % of the projected Hessian of the Lagrangian
5
6 HL=hsn(x,0); % Hessian of objective
7 for i=1:m % add in the sum of multiplier
8 HL=HL+lambda(i)*hsn(x,i); % times Hessian of constraint
9 end % to get Hessian of Lagrangian
10
11 for i=1:m % construct the matrix
12 g=grd(x,i); % whose rows are
13 A(i,:)=g’; % the constraint gradients
14 end % so that Ax=0 on T
15 Z=null(A); % get a basis for the nullspace
16 Hbar=Z’*HL*Z; % use it to project HL onto T
17
18 flag=+1; % assume Hbar will be pd
19 ev=eig(Hbar); % find the eigenvalues of Hbar
20 n=size(x,1); % number of variables
21 for p=1:n-m % check all eigenvalues of Hbar
22 if(abs(ev(p)) < 1e-8) % if small assume zero
23 flag=0; % which makes Hbar psd
24 continue % and check the next eigenvalue
25 end % done checking for Hbar psd
26 if(ev(p) < 1e-8) % if negative
27 flag=-1; % that makes Hbar not psd
28 break % no further checking is needed
29 end % done checking for Hbar not psd
30 end % done checking eigenvalues
31
32 end

The routines that socheck uses to compute gradients and Hessians for the arch1 problem are
listed below. The parameters passed into arch1g.m and arch1h.m are x, the point at which
a gradient or Hessian is to be computed; and i, the index of the function whose gradient or
Hessian is needed. The switch statement 4-9 computes the appropriate quantity depending
on the case specified by the value of i. Thus, for example, for case 0 5-6 arch1g.m returns
the gradient of f0 and arch1h.m returns the Hessian of f0.

1 function g=arch1g(x,i)
2 % return the gradient of function i
3
4 switch(i)
5 case 0
6 g=[2*(x(1)-1);2*(x(2)-1)];
7 case 1
8 g=[-2*(x(1)-2);-1];
9 end
10
11 end

1 function H=arch1h(x,i)
2 % return the Hessian of function i
3
4 switch(i)
5 case 0
6 H=[2,0;0,2];
7 case 1
8 H=[-2,0;0,0];
9 end
10
11 end

In future Chapters we will have many occasions to compute function, gradient, or Hessian
values for nonlinear programs that have constraints, and I will always code those routines in
this standard way.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

498 Equality Constraints

The problem given below, which I will call hill (see §28.7.6), has constraint surfaces
that resemble those pictured in §15.2.

minimize
x∈R3

f0(x) = x21 + x22 + x23

subject to f1(x) = 4 − 1
9
x21 − x3 = 0

f2(x) = 4 − 4
9
(4 − x2)

2 − x3 = 0

Both of its Lagrange points are minima.

octave:1> format long
octave:2> x=[3.23137107379720;2.38431446310140;2.83980455371408];
octave:3> lambda=[9;-3.32039089257184];
octave:4> flag=socheck(2,x,lambda,@hillg,@hillh)
flag = 1
octave:5> x=[-3.23137107379720;2.38431446310140;2.83980455371408];
octave:6> flag=socheck(2,x,lambda,@hillg,@hillh)
flag = 1

The arch1 problem has n = 2 and m = 1, while hill has n = 3 and m = 2. Finally,
consider the one23 problem (see §28.7.7), which has n = 3 and m = 1.

minimize
x∈R3

f0(x) = x1 + x22 + x3
3

subject to f1(x) = x1 + x2 + x3 − 1 = 0

The Octave session below tests two Lagrange points, one a min and the other a max.

octave:7> xa=[-0.0773502691896257;0.5;0.5773502691896257];
octave:8> xb=[1.077350269189626;0.5;-0.577350269189626];
octave:9> lambda=-1;
octave:10> flag=socheck(1,xa,-1,@one23g,@one23h)
flag = 1
octave:11> f0a=xa(1)+xa(2)^2+xa(3)^3
f0a = 0.365099820540249
octave:12> flag=socheck(1,xb,-1,@one23g,@one23h)
flag = -1
octave:13> f0b=xb(1)+xb(2)^2+xb(3)^3
f0b = 1.13490017945975
octave:14> quit

15.6 Exercises

15.6.1[E] What is a reduced objective of a nonlinear program? How is a reduced objective
formed? What gets reduced in forming a reduced objective?

15.6.2[E] Explain what the MATLAB function fzero does, and how to use it. When it is
used in the cubslv.m program of §15.0 its final parameter is xzero. What is the meaning
of that parameter, and what values does it take on when the program is run?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.6 Exercises 499

15.6.3[H] In §15.0 we used the MATLAB program cubslv.m to solve a cubic equation for
the values that x1 takes on at the stationary points of the arch1 problem. But as Cardano
reports in his Ars Magna, first published in 1545 ce [163] it is possible to find the roots of a
cubic equation as closed-form algebraic expressions. (a) Find on the internet the prescription
for solving a cubic equation analytically. (b) Use it to derive formulas for the roots of our
cubic, 4x3 − 24x2 + 38x − 10 = 0. (c) Evaluate the formulas to confirm that the numerical
solutions we found are correct. (d) Which approach do you prefer, the numerical or the
analytic? Make an argument to support your view.

15.6.4[P] In §15.0 we found three stationary points for the arch1 problem, one of which
corresponds to the optimal point we found graphically. (a) Explain the reasoning used there
to classify the stationary points as the global minimum, a global maximum, and a local
minimum. (b) Write a MATLAB program to graph the zero constraint contour and the
objective contours passing through the other two stationary points. What is the graphical
significance of the two stationary points that are not x⋆?

15.6.5[H] If we use the equality constraints of a nonlinear program to find formulas for m
of the variables in terms of the other n −m variables, then we can substitute those formulas
into the objective and solve the resulting unconstrained optimization. Give examples of
nonlinear equalities that cannot be used in this way (a) when m = 2; (b) when m = 1.

15.6.6[E] In the example of §15.0, why do ∇f0(x⋆) and ∇f1(x⋆) point in opposite directions?

15.6.7[H] Suppose the problem of §15.0 is modified to make f0(x) = (x1 + 1)
2
+ (x2 − 1)2.

(a) Find the new x⋆ numerically, and confirm your solution graphically. (b) Do ∇f0(x⋆) and
∇f1(x⋆) still point in opposite directions? Find λ⋆.

15.6.8[P] In §15.1 we used a parametric representation of the feasible set. Write a
MATLAB program that plots the feasible set using the command plot(x1,x2), where x1

and x2 are vectors containing the x1 and x2 coordinates of points on the curve. To compute
the vector elements x1(p) and x2(p) use a loop that finds the value of t corresponding to
the pth point to be plotted and then the formulas for x1(t) and x2(t) to find the coordinates.

15.6.9[P] In §15.1 we parameterized the constraint of the arch1 problem by finding
g(t) = [x1(t), x2(t)]

⊤, and we derived a cubic 4t3 − 10t + 2 = 0 whose roots are the station-
ary points t̄. (a) Show that the points t̄ correspond to the stationary points x̄ that we found
for the problem. (b) At each stationary point compute dg/dt and ∇f0(x), and show that the
vectors are orthogonal. (c) Write a MATLAB program to graph the feasible set, and to draw
at each stationary point the vector dg/dt.

15.6.10[E] How do we know in general that if g(t) is a parameterization of a constraint
then the vector dg/dt is tangent to the zero contour of the constraint?

15.6.11[H] In §15.1 we parameterized the constraint f1(x) = 0 of the arch1 problem as
g(t) = [2+ t, 4− t2]⊤, and we found f0(t) = (1+ t)2 + (3− t2)2. Show that d f0/dt = ∇f0(t)⊤[dg/dt]
at every feasible point, and that d f0/dt = 0 at t⋆.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

500 Equality Constraints

15.6.12[E] In §15.2 we argued that at a minimizing point of an equality-constrained non-
linear program, the gradients of the constraints and the gradient of the objective all lie in
the same m-dimensional hyperplane. (a) Outline the argument that we used to establish this
fact. (b) What is required in order for it to be possible to write the gradient of the objective
as a linear combination of the gradients of the constraints?

15.6.13[P] The hill problem of §15.5 has constraint surfaces similar to those depicted
in §15.2. (a) Find a parameterization of the feasible set X. (b) Write x = g(t) and f0(x) =

f0(g1(t), g2(t)). (c) Use the chain rule to find d f0/dt and show that it is equal to ∇f0(x)⊤[dg/dt].
(d) Show that ∇f0(x̄), ∇f1(x̄), and ∇f2(x̄) are all orthogonal to [dg/dt] at t̄ and thus lie in the
same plane. (e) Write ∇f0(x̄) as a linear combination of the constraint gradients, and find λ1
and λ2. (f) Use the equation you found in part e and the constraints to solve the problem.
(g) Use the method of Lagrange to solve the problem. Hint: Describe X by an equation
relating x1 and x2. Use that result and a constraint to find x3 as a function of x2. Then write
the objective in terms of x2 only, and use the MATLAB function fzero to solve the resulting
cubic. (h) Both Lagrange points of this problem are minima; explain how this is possible.

15.6.14[H] In solving an equality-constrained nonlinear program, we can write the gradient
of the objective as a linear combination of the gradients of the constraints if the constraint
gradients are independent and some parameterization of the constraints exists. (a) Given a
set of constraint gradients, how can you determine whether they are linearly independent?
Describe a computational procedure. (b) How can you determine whether a parameterization
of the constraints exists? (c) Is it ever necessary to find a parameterization of the constraints?

15.6.15[E] State the Lagrange multiplier theorem. What is a constraint qualification?
What is a Lagrange multiplier? What is a Lagrange point? What can you deduce about a
feasible point x̂ if n > m, the fi(x) have continuous first partials with respect to the x j at x̂,
and the ∇fi(x̂) are linearly independent, but no set of numbers λi solves this system of linear
equations?

∇f0(x̂) +
m∑

i=1

λi∇fi(x̂) = 0

15.6.16[H] It is required to find the point on the curve described by 7x1 − 3x22 = 0 that is
closest to the point [3, 1]⊤. (a) Formulate this problem as a nonlinear program. (b) Use the
method of Lagrange to find x⋆. (c) Solve the problem graphically to check your answer.

15.6.17[H] Use the method of Lagrange to solve this nonlinear program. The optimal value
is zero.

minimize
x∈R3

f0(x) = 2x21 + 5x
2
2 + 11x

2
3 + 20x1x2 − 4x1x3 + 16x2x3 + 9

subject to f1(x) = x21 + x22 + x23 = 1

15.6.18[H] Use the method of Lagrange to solve this nonlinear program. There are four
Lagrange points.

minimize
x∈R3

f0(x) = x21 + x22 + x23

subject to f1(x) = x1x2x3 = 1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.6 Exercises 501

15.6.19[H] Use the method of Lagrange to solve this nonlinear program.

minimize
x∈R2

f0(x) = x1 − 2x2
subject to f1(x) = x21 + x22 − 1 = 0

15.6.20[H] A collection of (one or more) vectors y1 . . . ym in Rm is linearly independent

[1, p751] if and only if
m∑

i=1

λi yi = 0 ⇒ λi = 0 for i = 1 . . .m.

(a) Explain why a single zero vector is not linearly independent but a single nonzero vector
is. (b) Can a set of m vectors be linearly independent if any one of them is the zero vector?
Explain. (c) Modify the constraint of the arch1 problem to be f1(x) = (x1−x⋆1)2+(x2−x⋆2)2 = 0

so that the feasible set consists of the single point x⋆ and ∇f1(x⋆) = 0. Write the Lagrange
conditions for this problem, and show that they are not satisfied by x⋆.

15.6.21[H] The following nonlinear program has n = 3 > 2 = m, and all of its ∂ fi/∂x j are
continuous functions.

minimize
x∈R3

f0(x) = x3 − x21

subject to f1(x) = x3 − x2 − 3 = 0

f2(x) = x3 + x2 − 3 = 0

(a) Sketch the constraint contours and the f0(x) = 0 objective contour in R3. Label the
feasible set X in your picture. (b) Write down the Lagrange conditions for this problem,
calling the multiplier for the first constraint λ1 and the multiplier for the second constraint
λ2. (c) Solve the Lagrange conditions to find x̄ and λ̄λλ, and mark x̄ in your picture. (d) Confirm
that the constraint gradients are linearly independent at x̄. (e) Is x̄ optimal for the nonlinear
program? Explain.

15.6.22[H] Apply the method of Lagrange to this nonlinear program [78, Example 2.2].

minimize
x∈R2

f0(x) = x31 + x1x2 − x2

subject to f1(x) = x2 = 0

(a) Is the Lagrange point you found a stationary point? (b) Is it the constrained minimum?
(c) Are the hypotheses of the Lagrange multiplier theorem satisfied? Explain.

15.6.23[E] Suppose we use the method of Lagrange to solve a nonlinear program having
equality constraints and (x⋆,λλλ⋆) is the optimal Lagrange point. If ∇fi(x⋆) , 0, what is the
shadow price associated with the constraint fi(x) = 0?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

502 Equality Constraints

15.6.24[H] When the method of Lagrange is used to solve the arch1 problem, λ⋆ turns out
to be positive. Use the method of Lagrange to solve the following problem, and show that
λ⋆ turns out to be negative.

minimize
x∈R2

f0(x) = −(x1 − 1)2 − (x2 − 1)2

subject to f1(x) = 4 − (x1 − 2)2 − x2 = 0

How does the graphical solution of this problem differ from that of arch1? Interpret the
negative λ⋆ as a ratio of gradient lengths, and as a shadow price.

15.6.25[E] Is every Lagrange point a local minimum? Is every Lagrange point a stationary
point? Explain.

15.6.26[E] What difficulties can arise in testing a reduced objective to classify a Lagrange
point? Describe two other general approaches to the analytical classification of Lagrange
points, comparing their difficulty and applicability.

15.6.27[H] In our study of the arch1 problem in §15.4.3, we defined

T̂ = {x ∈ Rn | ∇fi(x̂)⊤(x − x̂) = 0 for i = 1 . . .m} .

Use this definition to find the equation of the straight line that is T̂ at x̂ = [1, 3]⊤, and show
that it is tangent to the f1(x) = 0 contour there.

15.6.28[H] Show that if u, v, and w are vectors in Rn, u⊥w, v⊥w, and a and b are scalars,
then (au + bv)⊥w. The symbol ⊥ means that the vectors are orthogonal.

15.6.29[E] Verify the accuracy of the first picture in §15.4.3 by confirming that the vectors
plotted there are drawn to scale and have the relationships described. Confirm analytically
that the vectors drawn at right angles to one another are indeed orthogonal. What determines
the value of λ?

15.6.30[E] Suppose that at some point x̂ which is feasible for a nonlinear program the
constraint gradients are linearly independent and T = {x ∈ Rn | ∇fi(x̂)⊤x = 0 for i = 1 . . .m}
is a hyperplane tangent to the constraints. (a) Explain why the orthogonal projection of
the objective gradient onto T is the gradient of the Lagrangian. (b) Explain why, on T, the
Hessian of the reduced objective is equal to the Hessian of the Lagrangian.

15.6.31[P] Use a symbolic algebra program such as Maple or Mathematica, or carry out
the calculations by hand, to confirm the algebraic equality of the expressions found in §15.4.3
for (a) L(x1) and f0(x1); (b) L′(x1) and f ′0(x1); (c) L′′(x1) and f ′′0 (x1).

15.6.32[P] The first picture in §15.4.3 shows that ∇xL(x̂, λ̂) is the projection of ∇f0(x̂) onto
T̂. (a) Draw in the hyperplane T, and confirm that the projection of ∇f0(x̂) onto T is also
∇xL(x̂, λ̂). (b) Find L(x1), L′(x1), and L′′(x1) on T as functions of x1, and write a MATLAB

program to plot them. How does your graph differ from the §15.4.3 graph of those functions
on T̂?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

15.6 Exercises 503

15.6.33[E] To classify Lagrange points based on the definiteness of the Hessian of the
reduced objective, we can test the definiteness of the Hessian of the Lagrangian on T instead.
What makes that possible?

15.6.34[E] Explain how to use the second-order sufficient conditions to test whether a
Lagrange point x̄ is a local minimizing point.

15.6.35[H] Use the second-order sufficient conditions to classify the Lagrange point that
we found in §8.2.3 for the garden problem.

15.6.36[H] Consider the following nonlinear program.

minimize
x∈R3

f0(x) = −3x1x3 − 4x2x3
subject to f1(x) = x22 + x23 − 4 = 0

f2(x) = x1x3 − 3 = 0

(a) Use the method of Lagrange to find all of the Lagrange points. The optimal value is −17.
(b) Use the second-order sufficient conditions to classify each Lagrange point, and report x⋆.

15.6.37[H] In §15.4.3 we encountered the second-order sufficient conditions, which state
that if (x̄, λ̄λλ) is a Lagrange point and HL(x̄, λ̄λλ) is positive definite on T, then x̄ is a strict local
minimum. The second-order necessary conditions [5, Theorem 12.5] [4, Theorem 14.15]
[107, §10.5] state that if the Lagrange point (x̄, λ̄λλ) is a local minimum and the gradients of
the constraints are linearly independent there, then HL(x̄, λ̄λλ) is positive semidefinite on T.
Does this result add to our suite of techniques for classifying Lagrange points? Explain.

15.6.38[H] (a) The Lagrange conditions stated in the theorem of §15.2 are first-order nec-
essary conditions for problems having equality constraints. Show that when m = 0 they
reduce to the first order necessary conditions stated in the theorem of §10.7 for uncon-
strained problems. (b) How are the second-order necessary conditions given in Ex 15.6.37
for equality-constrained problems related to the second-order necessary conditions given in
§10.7 for unconstrained problems? (c) How are the second-order sufficient conditions given
in §15.4.3 for equality-constrained problems related to the strong second-order sufficient
conditions given in §10.7 for unconstrained problems?

15.6.39[E] What is the nullspace of a matrix? What is the projected Hessian of a La-
grangian? What does the MATLAB null() function take as an argument and return as a
result? Outline the calculation performed by the MATLAB program socheck.m, and explain
how it is used.

15.6.40[E] In §15.5 I described the standard approach that I will use for coding MATLAB

routines to compute function values, gradient vectors, and Hessian matrices for nonlinear
programs that have constraints. Explain what this approach is, and how it works.

15.6.41[H] Use the method of Lagrange to solve the one23 problem described in §15.5.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

504 Equality Constraints

15.6.42[P] The following problem is based on Himmelblau 5 [80, p397].

minimize
x∈R3

f0(x) = 1000 − x21 − 2x22 − x23 − x1x2 − x1x3

subject to f1(x) = x21 + x22 + x23 − 25 = 0

f2(x) = 8x1 + 14x2 + 7x3 − 56 = 0

The optimal point is alleged to be x⋆ = [3.512, 0.217, 3.552]⊤, and I found (by using the mults
routine of §16.10) the corresponding Lagrange multipliers to be λλλ = [1.22346, 0.27493]⊤. Is
this solution really a minimizing point?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16

Inequality Constraints

When we solved the garden problem by using calculus in §8.2.2 and by using the Lagrange
method in §8.2.3, we pretended that it was necessary to guess which constraints would be
tight at x⋆ and which would be slack. That guess was easy to make, because we had already
studied the problem graphically in §8.2.1. In the same easy way, we can decide based on the
pictures below that the inequality is active on the left but inactive on the right.

arch2

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to f1(x) = 4 − (x1 − 2)2 − x2 ≤ 0

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x1

x2

•x⋆

Here we can see that the constraint is tight
at x⋆, so we can treat it as an equality
and solve the problem using the Lagrange
method. When we did that in §15 we found
x⋆ ≈ [0.33, 1.20]⊤. At that optimal point,
f1(x

⋆) = 0 and λ⋆ ≈ 0.402 , 0.

arch3

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to f1(x) = 4 − (x1 − 2)2 − x2 ≥ 0

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x1

x2

•
x⋆

Here we see that the constraint is slack at
x⋆, so we can ignore it. In the Lagrange-
method formulation this can be accomplished
by setting λ = 0, which makes L(x, λ) = f0(x).
Now x⋆ = [1, 1]⊤, and at that optimal point
f1(x

⋆) = 2 , 0 and λ⋆ = 0.

Either the constraint is tight, so that f1(x
⋆) = 0, or λ⋆ = 0 so that the constraint is out of the

problem. This relationship between the value of an inequality constraint and the value of its
associated Lagrange multiplier holds in general [78, Example 2.4] and in the next Section it
will provide us with an automatic way of figuring out, in the process of finding x⋆, whether
an inequality is tight or slack. This will lead [3, §9.4] to an analytic method that we can use
to solve inequality-constrained nonlinear programs even when we can’t draw a graph.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

506 Inequality Constraints

16.1 Orthogonality

At the optimal point of an inequality-constrained nonlinear program, either fi(x) = 0 because
constraint i is active or λi = 0 because it is not. We can express this relationship algebraically
by requiring that

λi fi(x) = 0 for each i = 1 . . .m.

We don’t know, when we begin solving a problem, which of the fi(x
⋆) or λ⋆

i
(or possibly

both) will turn out to be zero, but if we append the boxed condition to the Lagrange
conditions then any point (x̄, λ̄λλ) that satisfies them all will tell us, by the values of the λ̄i,
which constraints are tight and which are slack at x̄. This is analogous to complementary
slackness in linear programming (see §5.1.5) so this condition is sometimes [1, §4.2.8] called
the complementary slackness condition. It can be stated in another way if we think of
the multipliers as a vector λλλ and the constraint function values as a vector f(x), like this.

λλλ =





λ1
...

λm





f(x) =





f1(x)
...

fm(x)





If for each i = 1 . . .m either fi = 0 or λi = 0 or both, then λλλ⊤f = 0, so the vectors are
orthogonal. I will therefore refer to the boxed condition as the orthogonality condition.

16.2 Nonnegativity

If there is only one constraint f1(x) ≤ 0 and it is tight at a local minimum x̄ (as at x⋆ in arch2)
then the objective and constraint gradients point in opposite directions so −∇f0(x̄) = λ∇f1(x̄)
with λ > 0. If the constraint is slack at x̄ (as at x⋆ in arch3) then λ = 0. Thus λ ≥ 0.

In §15.2 we saw that if two constraints are active at x̄ then their gradients and −∇f0(x̄)
all lie in the same 2-dimensional hyperplane. In fact, in the diagram shown there −∇f0(x̄)
is between the constraint gradients so it can be written as a nonnegative linear combination
of them and again λλλ ≥ 0. A simpler example illustrating this phenomenon is the problem
below, which I will call arch4.

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to f1(x) = 4 − (x1 − 2)2 − x2 ≤ 0

f2(x) =
13
8
+

1
4
x1 − x2 ≤ 0

The graph on the next page shows that the feasible set of arch4 is like that of arch2 but
truncated on each side by the new constraint. Both constraints are active at the optimal
point, which is where the optimal objective contour touches their left intersection.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.2 Nonnegativity 507

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

•x
⋆

f0(x) = f0(x
⋆)

f 1
(x
)
=
0

f2(x)
= 0

p(x ⋆
)

α∇f1 (x⋆)+
(1−
α
)∇
f2 (x
⋆
)

That turns out to be at x⋆ = [1
2
, 7
4
]⊤, where we have

∇f0(x⋆) =
[

−1
3
2

]

, ∇f1(x⋆) =
[

3

−1

]

, and ∇f2(x⋆) =
[

1
4

−1

]

.

To write −∇f0(x⋆) = λ1∇f1(x⋆) + λ2∇f2(x⋆) we need

[

1

−3
2

]

= λ1

[

3

−1

]

+ λ2

[
1
4

−1

]

or

[

3 1
4

−1 −1

] [

λ1
λ2

]

=

[

1

−3
2

]

which has the solution λλλ = [5
22
, 14
11
]⊤. The relationship between the gradients is easy to visualize

graphically if we rewrite the nonnegative linear combination above as a convex combination
(see §3.5). Letting α = λ1/(λ1 + λ2) =

5
33
, which makes (1 − α) = λ2/(λ1 + λ2) = 28

33
,

p(x⋆) =
−∇f0(x⋆)
λ1 + λ2

=
λ1∇f1(x⋆)
λ1 + λ2

+
λ2∇f2(x⋆)
λ1 + λ2

= α∇f1(x⋆) + (1 − α)∇f2(x⋆).

The picture above shows p(x⋆), the scaled negative gradient of the objective, as this convex
combination of the constraint gradients.

It is true in general that if the gradients of the active constraints are linearly independent
(see §28.2.4) at a local minimizing point x̄, then the scaled negative gradient of the objective
at x̄ can be written as a convex combination of the constraint gradients at x̄. Above, this
convex combination is the long diagonal of the parallelogram; in higher dimensions it is the
diameter of a polyhedron in Rn (see the first drawing in §3.6.1)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

508 Inequality Constraints

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

•
x̄

• x̂

α∇f1 (x̄)

−
(1−
α
)∇
f2 (x̄

) p(x̄)

If the objective in arch4 were different, might its negative gradient at a local minimizing
point fall outside the arc between the constraint gradients? Suppose we modify the arch4

problem by rotating its optimal objective contour about the arch4 optimal point, which I
will here call x̄, until p(x̄) is no longer between ∇f2(x̄) and ∇f1(x̄). That is the situation in
the picture above (I arbitrarily chose a rotation of 27◦). It is still possible to write

−∇f0(x̄) = λ1∇f1(x̄) + λ2∇f2(x̄),

but only if λλλ ≈ [0.67265,−0.94114]⊤, so the linear combination is no longer nonnegative. Now
p(x̄) = −∇f0(x̄)/(λ1 + |λ2|) and to write it as a convex combination we must use the negative
of ∇f2(x̄) like this.

p(x̄) = α∇f1(x̄) + (1 − α)
[−∇f2(x̄)

]

Here α = λ1/(λ1 + |λ2|) = 0.41681, which makes (1 − α) = 0.58319, and it is this convex com-
bination that is pictured in the graph above. Unfortunately, the formerly-optimal objective
contour now intersects the feasible set, so x̄ is no longer optimal (the new optimal point
is x̂). In order for the optimal objective contour not to cross over the zero contour of one
constraint or the other, −∇f0(x) must remain between the two constraint gradients, and that
means it can be represented as a nonnegative linear combination of them.

It is true in general [1, §4.2.13] that if x̄ is a local minimizing point and the gradients of
the active constraints fi(x̄) ≤ 0 are linearly independent there, then if we write

−∇f0(x̄) =
m∑

i=1

λi fi(x̄)

it will turn out that λi ≥ 0 for i = 1 . . .m.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.3 The Karush-Kuhn-Tucker Conditions 509

We can make use of this fact in solving inequality-constrained nonlinear programs by requir-
ing that

λi ≥ 0 for each i = 1 . . .m.

and I will refer to this as the nonnegativity condition.

16.3 The Karush-Kuhn-Tucker Conditions

Combining the results of §16.1 and §16.2 with those of §15.3 we get a set of conditions
that play the same role for inequality-constrained nonlinear programs that the Lagrange
conditions play for problems having equality constraints.

∇f0(x) +
m∑

i=1

λi∇fi(x) = 0

fi(x) ≤ 0

λi fi(x) = 0

λi ≥ 0






i = 1 . . .m

stationarity

feasibility

orthogonality

nonnegativity

Together these are called the Karush-Kuhn-Tucker conditions, because [164] they were
discovered first (in 1939) by William Karush [90] and then (in 1951) independently by Harold
W. Kuhn and Albert W. Tucker [97]. We will refer to the boxed conditions as theKKT con-

ditions and to a point that satisfies them as a KKT point, and we will call the multipliers
λi that satisfy them KKT multipliers.

By using the KKT conditions we can find local minimizing points for some inequality-
constrained nonlinear programs. To see how, consider the moon problem (see §28.7.11)
pictured below.

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4

x1

x2

◦0•1◦1 ◦
2

◦
2

•3

•3

f2(x) = 0

f1(x) = 0

f0(x
⋆) = −11 1

2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

510 Inequality Constraints

Here we want to maximize the radius of a circle centered at (3, 0) while remaining in the
feasible set that is shown crosshatched. An algebraic statement of the problem is given on
the left below and rewritten in the standard form of §8.1 on the right.

maximize
x∈R2

(x1 − 3)2 + x2
2

subject to x21 + x22 ≤ 1

(x1 + 2)
2
+ x2

2
≥ 22

minimize
x∈R2

f0(x) = −(x1 − 3)2 − x2
2

subject to f1(x) = x21 + x22 − 1 ≤ 0

f2(x) = −(x1 + 2)2 − x2
2
+ 4 ≤ 0

From the Lagrangian of the standard-form problem we can write the KKT conditions, as
follows.

L(x,λλλλλλλλλ) = f0(x) + λ1 f1(x) + λ2 f2(x)

= (−x21 − x22 + 6x1 − 9) + λ1(x21 + x22 − 1) + λ2(−x21 − x22 − 4x1)
∂L

∂x1
= −2x1 + 6 + 2λ1x1 − 2λ2x1 − 4λ2 = 0 a

∂L

∂x2
= −2x2 + 2λ1x2 − 2λ2x2 = 0 b

∂L

∂λ1
= x21 + x22 − 1 ≤ 0 c

∂L

∂λ2
= −x21 − x22 − 4x1 ≤ 0 d

λ1(x
2
1 + x22 − 1) = 0 e

λ2(−x21 − x22 − 4x1) = 0 f

λ1 ≥ 0 g

λ2 ≥ 0 h






∇xL = 0 stationarity






∇λλλL ≤ 0 feasibility





λλλ⊤f = 0 orthogonality

}

λλλ ≥ 0 nonnegativity

In solving KKT conditions it is often helpful to consider cases corresponding to the
possible combinations of slack and tight constraints. For this problem the possibilities are
described in the table below, where the logical value 0 means the constraint is assumed to
be slack (it is false that fi(x) = 0 so fi(x) < 0 and λi = 0) and 1 means the constraint is
assumed to be tight (it is true that fi(x) = 0 so λi can be nonzero). The case number, used
later to refer to each combination, is the value of the resulting binary number.

f1(x) = 0 f2(x) = 0 case number

0 0 0

0 1 1

1 0 2

1 1 3

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.3 The Karush-Kuhn-Tucker Conditions 511

Below, each case is analyzed to illustrate the sort of reasoning that is necessary to find points
satisfying the KKT conditions. Some different (and possibly more elegant) sequence of steps
might work in each chain of implications to arrive at the same conclusions.

case 0 (λ1 = 0, λ2 = 0): substituting these values into the conditions leads to a contradiction
XX, because the point [3, 0]⊤, marked ◦ and labeled 0 in the picture, is infeasible.

a ⇒ −2x1 + 6 = 0⇒ x1 = 3

b ⇒ −2x2 = 0⇒ x2 = 0

c ⇒ x21 + x22 − 1 = 32 + 02 − 1 = 8 � 0 XX

case 1 (λ1 = 0, λ2 , 0): the point [0, 0]⊤, marked • and labeled 1, satisfies all of the KKT
conditions with λ2 =

3
2
; the point [−4, 0]⊤, marked ◦ and also labeled 1, is infeasible.

b ⇒ −2x2 − 2λ2x2 = 0

⇒ λ2 = −1 or x2 = 0

h ⇒ λ2 = −1 � 0 XX so x2 = 0

f ⇒ −x21 − x22 − 4x1 = −x21 − (0)2 − 4x1 = 0

⇒ −x21 − 4x1 = 0

⇒ x1 = 0 or x1 = −4
c ⇒ x21 + x22 − 1 = (−4)2 + 02 − 1 = 15 � 0 XX so x1 = 0

a ⇒ −2x1 + 6 − 2λ2x1 − 4λ2 = −2(0) + 6 − 2λ2(0) − 4λ2 = 0

⇒ 6 − 4λ2 = 0

⇒ λ2 =
3
2

case 2 (λ1 , 0, λ2 = 0): the point [−1, 0]⊤ is infeasible; the point [1, 0]⊤ is feasible but
requires λ1 < 0. Both points are marked ◦ and labeled 2.

b ⇒ −2x2 + 2λ1x2 = 0

⇒ x2 = 0 or λ1 = 1

a ⇒ −2x1 + 6 + 2λ1x1 = −2x1 + 6 + 2(1)x1 = 6 , 0 XX so x2 = 0

c ⇒ x21 + x22 − 1 = x21 + 0
2 − 1 = 0

⇒ x1 = ±1
d ⇒ −x21 − x22 − 4x1 = −(−1)2 − (0)2 − 4(−1) = 3 � 0 XX so x1 , −1
a ⇒ −2x1 + 6 + 2λ1x1 = −2(+1) + 6 + 2λ1(+1) = 0

⇒ λ1 = −2
g ⇒ λ1 = −2 , 0 XX so x1 , +1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

512 Inequality Constraints

case 3 (λ1 , 0, λ2 , 0): the points [−1
4
,+

√

15
16
]⊤ and [−1

4
,−

√

15
16
]⊤, which are marked • and

labeled 3, both satisfy all of the KKT conditions, with λ1 =
5
2
and λ2 =

3
2
.

e ⇒ x21 + x22 − 1 = 0

⇒ x22 = 1 − x21

f ⇒ −x21 − x22 − 4x1 = −x21 − (1 − x21) − 4x1 = 0

⇒ x1 = −1
4

e ⇒ x22 = 1 −
(

−1
4

)2
= 1 − 1

16

⇒ x2 = ±
√

15
16

a ⇒ −2x1 + 6 + 2λ1x1 − 2λ2x1 − 4λ2 = −2
(

−1
4

)

+ 6 + 2λ1
(

−1
4

)

− 2λ2
(

−1
4

)

− 4λ2 = 0

⇒ 6 1
2
− 1

2
λ1 − 3 1

2
λ2 = 0

b ⇒ −2x2 + 2λ1x2 − 2λ2x2 = −2
(

±
√

15
16

)

+ 2λ1

(

±
√

15
16

)

− 2λ2
(

±
√

15
16

)

= 0

⇒ −2 + 2λ1 − 2λ2 = 0

⇒ λ1 = λ2 + 1

a ⇒ 6 1
2
− 1

2
λ1 − 3 1

2
λ2 = 6 1

2
− 1

2
(λ2 + 1) − 3 1

2
λ2 = 0

⇒ λ2 =
3
2

b ⇒ λ1 = λ2 + 1 =
(
3
2

)

+ 1 = 5
2

Among the four cases, we found these three points that satisfy the KKT conditions.

x1 x2 λ1 λ2 f0(x)

0 0 0 3
2

−9

−1
4
+

√

15
16

5
2

3
2
−11 1

2

−1
4
−

√

15
16

5
2

3
2
−11 1

2

The moon problem thus has the two alternate optima listed at the bottom of the table. In
the picture they are the horns of the moon, passed through by the optimal objective contour.
To solve the KKT conditions by hand is often an arduous task even for simple nonlinear
programs like this one, and it can be an impossible task for problems of realistic size and
complexity. The KKT conditions are more difficult to analyze than the Lagrange conditions
because of the extra orthogonality and nonnegativity requirements. Where human diligence
fails, Maple or Mathematica might succeed as illustrated in §8.2.4 for the garden problem,
but usually the most effective tool for solving real problems is a numerical minimization
algorithm. Using many ideas from this Chapter, we will begin our study of algorithms for
inequality-constrained nonlinear programs in §19.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.4 The KKT Theorems 513

16.4 The KKT Theorems

Two of the KKT points that we found for the moon problem were global minima, but what
about the third point? Can it ever happen that a local minimum is not a KKT point, or
that some KKT points are not local minima? These questions are answered by the KKT

theorems [1, §4.2] [5, §12.4] [4, §14.5] stated below.

Theorem: existence of KKT multipliers

given the NLP minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m,

if the fi(x), i = 0 . . .m, are differentiable
x̄ is a local minimizing point for NLP
the ∇fi(x̄), i ∈ I = {i | fi(x̄) = 0, i = 1 . . .m}, are linearly independent

or some other constraint qualification holds

then there exists a vector λ̄λλ ∈ Rm such that
(x̄, λ̄λλ) satisfies the KKT conditions.

The Lagrange multiplier theorem of §15.2 demands that the gradients of the equality con-
straints be linearly independent, but when the active constraints are inequalities it is some-
times possible to prove the existence of KKT multipliers even if that is not true; we will take
up constraint qualifications in §16.7. Because the hypotheses of this theorem are necessary
to ensure that a local minimum x̄ is a KKT point, they are often referred to as the KKT

necessary conditions; if the functions are differentiable and a constraint qualification holds
but there is no λ̄λλ that satisfies these conditions, then x̄ cannot be a local minimum.

Theorem: the KKT points of a convex program are global minima

given the NLP minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m,

if (x̄, λ̄λλ) satisfies the KKT conditions
the fi(x), i = 0 . . .m, are convex functions

then x̄ is a global minimizing point.

Proof (based on [1, Theorem 4.2.16]):

To show that such a KKT point x̄ is a global minimizer we will show that no other feasible
point x̂ has a lower objective value. Again let I = {i | fi(x̄) = 0} be the indices of the constraints
that are active at x̄. By the definition of convexity (see §11.1) we have for each constraint
i ∈ I that

fi(αx̂ + [1 − α]x̄) ≤ α fi(x̂) + (1 − α) fi(x̄) for all α ∈ [0, 1].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

514 Inequality Constraints

But fi(x̄) = 0 because i ∈ I, and fi(x̂) ≤ 0 because we assumed that x̂ is feasible, so

fi(αx̂ + [1 − α]x̄) ≤ 0 for α ∈ [0, 1].

Each active constraint already has a value fi(x̄) = 0 at the KKT point, so moving towards
x̂ does not increase the constraint value. The direction d = x̂ − x̄ is therefore a non-ascent
direction of fi(x), which means (see §10.8) that ∇fi(x̄)⊤d ≤ 0. At the KKT point x̄ we have
λi ≥ 0, so the sum

m∑

i=1

λi∇fi(x̄)⊤d ≤ 0

is likewise nonpositive. Because x̄ is a KKT point it satisfies the stationarity condition,

∇f0(x̄) +
m∑

i−1
λi∇fi(x̄) = 0.

Dotting each term in this equation with the direction vector d and rearranging, we find

∇f0(x̄)⊤d = −
m∑

i−1
λi∇fi(x̄)⊤d.

We established just above that the sum on the right-hand side is nonpositive, so ∇f0(x̄)⊤d ≥ 0.
By the support inequality for convex functions (see §11.2),

f0(x̂) ≥ f0(x̄) + ∇f0(x̄)⊤d ≥ f0(x̄)

for every feasible x̂. Thus x̄ must be a global minimizing point. �

Because the hypotheses of this theorem are sufficient to ensure that x̄ is a global minimum,
they are often referred to as the KKT sufficient conditions.

16.5 The KKT Method

Now we can formalize the method that we used in §16.3 to solve the moon problem.

1. Put the nonlinear program into standard form:

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1. . .m.

2. Verify that the objective and constraint functions are differentiable (this is required by
the KKT necessary conditions).

3. Form the Lagrangian L(x,λλλ) = f0(x) +

m∑

i=1

λi fi(x).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.5 The KKT Method 515

4. Write down the KKT conditions for the problem.

∇f0(x) +
m∑

i=1

λi∇fi(x) = 0

fi(x) ≤ 0

λi fi(x) = 0

λi ≥ 0






i = 1 . . .m

5. Find all solutions to the KKT conditions. Consider as a separate case each of the 2m

possible combinations of active and inactive constraints. For each case, simplify the
KKT conditions by setting the appropriate λi to zero. Then solve the equalities, decid-
ing between alternative solutions by looking for contradictions with the inequalities.
Only when each possible alternative has been shown to lead to either a contradiction
or a point that satisfies all of the conditions, move on to the next case.

6. Summarize the KKT points (x̄, λ̄λλ) that you found, and verify that the gradients ∇fi(x̄)
of the active constraints are linearly independent (or that some other constraint qual-
ification holds) at each of them.

7. Classify the solutions to identify the local minimizing points. If the problem is convex
then by the KKT sufficient conditions every KKT point is a global minimum; otherwise
each point must be classified by the techniques discussed in §15.4 and §15.5, assuming
tight constraints to be equalities and omitting slack constraints from the analysis.

In applying the KKTmethod it is helpful to remember the implications of the KKT theorems,
which are pictured in the diagram below (assuming the fi(x) are differentiable).

x̄ is a local minimum x̄ is a global minimum

constraint
qualification

(x̄, λ̄λλ) satisfies the KKT conditions

convexity

If a constraint qualification (such as linear independence of the gradients of the active con-
straints) holds then every local minimum satisfies the KKT conditions, but other points
that are not local minima might also satisfy them. If the problem is convex then every point
that satisfies the KKT conditions is a global minimum. Every global minimum is also a
local minimum, so if a constraint qualification is satisfied a global minimum also satisfies
the KKT conditions. However, none of the implications in this diagram works in the oppo-
site direction! This is further evidence that the analytic theory of nonlinear programming,
despite its elegance and beauty, has only limited power unless the problem is convex.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

516 Inequality Constraints

16.6 Convex Programs

In proving the second KKT theorem, we needed x̄ + α(x̂ − x̄) to be feasible for all α ∈ [0, 1],
and the convexity of the constraint functions ensured it would be. That is just a special case
of the following more general result.

Theorem: convex constraints fi(x) ≤ 0 have a convex intersection

given the NLP minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m,

if the fi(x), i = 1 . . .m, are convex functions

then X = {x ∈ Rn | fi(x) ≤ 0, i = 1 . . .m} is a convex set.

Proof:

Let Si(z) = {x ∈ Rn | fi(x) ≤ z } be the z level set of fi(x) (see Exercise 11.7.3) and pick two
points x̂ ∈ Si(z) and x̄ ∈ Si(z). Then fi(x̂) ≤ z and fi(x̄) ≤ z. Now let x = αx̂+ (1−α)x̄. Because
fi(x) is a convex function,

fi(x) ≤ α fi(x̂) + (1 − α) fi(x̄)
≤ αz + (1 − α)z = z

so x ∈ Si(z), and Si(z) must be a convex set. The feasible set X of a standard-form nonlinear
program is the intersection of the zero level sets Si(0) of its constraints, and the intersection
of convex sets is convex (see Exercise 3.7.26) so X is convex. �

According to this theorem, a convex program has a convex feasible set. However, not every
NLP with a convex feasible set is a convex program; a standard-form NLP is a convex
program only if its objective and all of its constraints are convex functions (see §11.2). A
nonconvex constraint can yield a feasible set that is convex like

C =
{

x ∈ R2 | x2 ≥ − cos (x1) ∩ x2 ≤ 0 ∩ x1 ∈ [−2, 2]
}

on the left or nonconvex like
N =

{

x ∈ R2 | x2 ≤ − cos (x1) ∩ x2 ≥ −1 1
4
+

1
2
(x1 − 1

4
)2
}

on the right.

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1 2 3

x2

x1

x 2
+
co
s(
x 1
) =

0

x2 = 0

C

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1 2 3

x2

x1

x
2
+
1
14 −

12 (x
1 −

14) 2
=
0

x 2
+
co
s(
x 1
) =

0

N

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.6 Convex Programs 517

A problem with equality constraints can be written in standard form, as explained in
§8.1, by replacing each equality with opposing inequalities, like this.

minimize f0(x)

subject to f1(x) = 0
−→

minimize f0(x)

subject to f1(x) ≤ 0

− f1(x) ≤ 0

The inequality-constrained problem has the KKT conditions derived below.

L = f0(x) + λ1 f1(x) + λ2
[− f1(x)

]

∇xL = ∇x f0(x) + λ1∇x f1(x) − λ2∇x f1(x) = 0

∂L
∂λ1

= f1(x) ≤ 0

∂L
∂λ2

= − f1(x) ≤ 0

λ1 f1(x) = 0

λ2
[− f1(x)

]

= 0

λ1 ≥ 0

λ2 ≥ 0

Recall from §2.9.3 that a variable unconstrained in sign can be written as the difference
between nonnegative variables. If we let λ = λ1 − λ2, we can rewrite the KKT conditions
above as follows.

L = f0(x) + (λ1 − λ2) f1(x)
= f0(x) + λ f1(x)

∇xL = ∇x f0(x) + (λ1 − λ2)∇x f1(x)
= ∇x f0(x) + λ∇x f1(x) = 0

f1(x) ≤ 0

f1(x) ≥ 0

}

⇒ f1(x) = 0 or
∂L
∂λ

= f1(x) = 0

λ1 f1(x) − λ2 f1(x) = (λ1 − λ2) f1(x) = λ f1(x) = 0

λ free

These are precisely the Lagrange conditions for the equality-constrained problem. It is true
in general that the Lagrange conditions are a special case of the KKT conditions when the
constraints are equalities. In order for this problem to be a convex program, f0(x) and both
of the inequality constraint functions f1(x) and − f1(x) must be convex, but if f1(x) is convex
then − f1(x) is concave. The only way for both constraint inequalities to be convex is if they
are linear, because then each is simultaneously convex and concave. If f1(x) is linear then
the feasible set is a hyperplane in Rn, which is a convex set. If f1(x) is nonlinear, then the
feasible set is a curved hypersurface, which is not convex. An equality-constrained NLP is a
convex program if and only if f0(x) is convex and the constraints are linear.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

518 Inequality Constraints

16.7 Constraint Qualifications

This nonlinear program [97] [1, §4.2.10], which I
will call cq1 (see §28.7.12) has x⋆ = [1, 0]⊤.

minimize
x∈R2

f0(x) = −x1
subject to f1(x) = x2 − (1 − x1)

3 ≤ 0

f2(x) = −x2 ≤ 0

From the Lagrangian

L = −x1 + λ1
[

x2 − (1 − x1)
3
]

+ λ2(−x2)
we derive the following KKT conditions.

-2

0

2

4

6

8

-1 -0.5 0 0.5 1 1.5 2

x2

x1x⋆•∇f0(x⋆)

f 0
(x
⋆
)
=
−1

∇f1(x⋆)

∇f2(x⋆)

∂L
∂x1

= −1 − 3λ1(1 − x1)
2(−1) = 0 a

∂L
∂x2

= λ1 − λ2 = 0

∂L
∂λ1

= x2 − (1 − x1)
3 ≤ 0

∂L
∂λ2

= −x2 ≤ 0

λ1 f1(x) = λ1
[

x2 − (1 − x1)
3
]

= 0

λ2 f2(x) = λ2(−x2) = 0

λ1 ≥ 0

λ2 ≥ 0

At the optimal point condition a reduces to

−1 − 3λ1(1 − 1)2(−1) = 0

or − 1 = 0 XX.

Oops! The other conditions are met, but x⋆ is not a KKT point because it does not satisfy
any constraint qualification. The one we have been using is linear independence of the
gradients of the active constraints, but for this problem we find

∇f0(x⋆) =
[

−1
0

]

∇f1(x⋆) =
[

−3(1 − x⋆1)(−1)
1

]

=

[

0

1

]

∇f2(x⋆) =
[

0

−1

]

so ∇f1(x⋆) and ∇f2(x⋆) are linearly dependent vectors and ∇f0(x⋆) cannot be written as a
linear combination of them. This deplorable situation is also clear from the graph.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.7 Constraint Qualifications 519

It is, however, possible for the optimal point of a nonlinear program to satisfy the KKT
conditions even though the constraint gradients are not lin-
early independent there. Consider the following problem,
which I will call cq2 (see §28.7.13).

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to f1(x) = x2 ≤ 0

f2(x) = −x2 ≤ 0

From the Lagrangian

L = (x1 − 1)2 + (x2 − 1)2 + λ1(x2) + λ2(−x2)

we derive the following KKT conditions.
-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1 1.5 2 2.5 3

cq2
x2

x1
•

x⋆

∇f1(x⋆)

∇f2(x⋆)

∂L
∂x1

= 2(x1 − 1) = 0 a

∂L
∂x2

= 2(x2 − 1) + λ1 − λ2 = 0 b

∂L
∂λ1

= x2 ≤ 0 c

∂L
∂λ2

= −x2 ≤ 0 d

λ1 f1(x) = λ1x2 = 0 e

λ2 f2(x) = λ2(−x2) = 0 f

λ1 ≥ 0 g

λ2 ≥ 0 h

The opposing inequalities make the x1 axis the feasible set. From a we get x⋆1 = 1, and
from c and d together we get x⋆2 = 0. Then b requires that λ2 = λ1 − 2, and any value
of λ1 ≥ 2 will do, so that λ2 is h nonnegative. When the gradients of the active constraints
are linearly dependent the λi are not uniquely determined, but in this case we could still use
the KKT method to find x⋆.

Why does the optimal point of cq2 satisfy the KKT conditions while the optimal point
of cq1 does not? The answer lies in the geometry of their feasible sets. The example below,
which I will call cq3 (see §28.7.14), has the optimal point x⋆ = [1− 1√

2
, 0]⊤, which satisfies the

KKT conditions.

minimize
x∈R2

f0(x) = x1

subject to f1(x) = x2 − 1
2
+ (x1 − 1)2 ≤ 0

f2(x) = −x2 − 1
2
+ (x1 − 1)2 ≤ 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

520 Inequality Constraints

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

cq3

T

•x⋆

f 0
(x
)
=

f 0
(x
⋆
)

f2 (x)
=
0

f 1
(x
)
=
0

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5 2

F

•

∇f1(x⋆)

∇f2(x⋆)

The picture on the left above shows the constraint contours and feasible set for cq3, along
with lines drawn from x⋆ tangent to the feasible set at that point. These lines delimit a
cone of tangents, which is marked T. To define the cone of tangents formally [1, §5.1.1]
[5, Example 12.4], consider a sequence of feasible points x1, x2 . . . approaching x⋆. Then

d = lim
k→∞

xk − x⋆
||xk − x⋆||

is the limiting direction of the chord between xk and x⋆ as xk approaches x⋆. The cone of
tangents T(x⋆) is the set of all possible such limiting directions d.

The picture on the right above shows the gradients of the active constraints at x⋆ along
with the cone of feasible directions that they determine,

F = {d ∈ Rn | ∇fi(x⋆)⊤d ≤ 0, i ∈ I }

where I = {i | fi(x⋆) = 0 } are the indices of the active inequalities (here I = {1, 2}).
In proving the first KKT theorem of §16.4 (see Exercise 16.11.37) it is necessary [1, §5.2]

to establish in one way or another that T = F, which is called the Abadie constraint

qualification. The sets T and F are equal if the gradients of the active constraints are
linearly independent, as in cq3, but they can also be equal in other circumstances. In the
cq2 problem, for example, the entire x1 axis is feasible and we have T = {d ∈ R2 | d2 = 0 }.
Using the gradients of the constraints, which are both active, we find

∇f1(x⋆)⊤d =
[

0 1
]
[

d1
d2

]

= d2 ∇f2(x⋆)⊤d =
[

0 −1
]
[

d1
d2

]

= −d2

so F = {d | d2 ≤ 0 ∩ −d2 ≤ 0 } = {d | d2 = 0 } and T = F. At the optimal point of the cq1

problem the constraint gradients are the same as for cq2, so once again F = {d | d2 = 0 }.
However, in cq1 the x1 axis is feasible only to the left of x⋆, so T = {d | d2 = 0 ∩ d1 ≤ 0 },
T , F, and the hypotheses of the theorem are not satisfied.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.8 NLP Solution Phenomena 521

It is not always easy to find T or even F for a given constraint set, especially when n > 2.
Fortunately, a hierarchy of stronger conditions have been discovered (linear independence
being the strongest) which are easier to check and which imply the Abadie constraint quali-
fication if they happen to be satisfied [1, §5.2] [108, Figure 7.3.2]. All of these conditions are
called constraint qualifications, and any of them can be used to fulfill that hypothesis of the
first KKT theorem. Various proofs have been provided based on these different conditions,
but the conclusions of the theorem are true whenever T = F (and the other hypotheses are
satisfied) even if some stronger constraint qualification assumed in a proof, such as linear
independence, is not satisfied.

There are special cases in which a constraint qualification is always satisfied.

• If the constraint functions are convex (as in a convex program) and the feasible set has
an interior relative to Rn (it is not flat) then Slater’s condition is satisfied. Recall
from §3 that a feasible point x̂ ∈ Rn is an interior point if fi(x̂) < 0 for i = 1 . . .m. The
example cq3 satisfies Slater’s condition.

• If the active constraints are all linear functions (as in a linear program) then T = F
[5, Lemma 12.7]. The example cq2 fits this description.

• If there is a single active constraint and its gradient is not zero then the linear inde-
pendence condition is satisfied.

If an NLP has differentiable functions and a constraint qualification is satisfied at a
local minimum x̄, then by the first KKT theorem x̄ is sure to be a KKT point. This
does not rule out the possibility that a local minimum x̄ will satisfy the KKT conditions
even if the hypotheses of the theorem are not met. In particular, it is possible (though no
longer guaranteed) for a local minimum x̄ to satisfy the KKT conditions even if a constraint
qualification is not satisfied there (see Exercise 16.11.35).

Some authors [4, §14.5.1] [78, §4.10] [107, §10.2] refer to a feasible point that satisfies a
constraint qualification (or a particular constraint qualification) as a regular point.

16.8 NLP Solution Phenomena

In our study of linear programming you might have been puzzled by some topics at first,
but after you understood them you probably did not find them too surprising. In a world
where everything obeys the laws of superposition and scaling, life is predictable, safe, and
not overly stimulating. We have already noticed several ways in which nonlinear programs,
especially when they are nonconvex, can be more interesting, perilous, and exciting. The
most striking difference is that they can have local minima, which makes them a lot harder
to solve, but there are also less obvious ways in which they can astonish and delight the
intrepid student. This Section describes a few of them.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

522 NLP Solution Phenomena

16.8.1 Redundant and Necessary Constraints

The problem below has the graphical solution shown on the right.

minimize
x∈R2

f0(x) = x1

subject to f1(x) = x21 + x22 − 4 ≤ 0

f2(x) = −x1 − 2 ≤ 0

The gradients of the constraints are not independent at x⋆,
but this is a convex program and its feasible set has an inte-
rior so Slater’s condition provides a constraint qualification.
From the Lagrangian

L = x1 + λ1(x
2
1 + x22 − 4) + λ2(−x1 − 2)

x1

−2 2

x2

•
x⋆

we derive the following KKT conditions.

∂L
∂x1

= 1 + 2λ1x1 − λ2 = 0

∂L
∂x2

= 2λ1x2 = 0

∂L
∂λ1

= x21 + x22 − 4 ≤ 0

∂L
∂λ2

= −x1 − 2 ≤ 0

λ1 f1(x) = λ1(x
2
1 + x22 − 4) = 0

λ2 f2(x) = λ2(−x1 − 2) = 0

λ1 ≥ 0

λ2 ≥ 0

Solving these conditions we find x⋆ = [−2, 0]⊤ as shown in the picture, with λλλ⋆ = [1
4
, 0]⊤. Both

constraints are satisfied with equality, but because λ⋆2 = 0 we can deduce that the second
one is redundant. Sure enough, removing it from the problem (such as by erasing its contour
from the graphical solution) does not change the optimal point.

Now consider this problem (see §28.7.15) which I will call branin after the person who
contrived the objective; that function is famous in unconstrained optimization as the three-
hump camel-back. But I have introduced a constraint to bound x1.

minimize
x∈R2

f0(x) = 2x21 − 21
20
x41 +

1
6
x6
1
+ x1x2 + x22

subject to f1(x) = −x1 + 1 ≤ 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.8.2 Implicit Variable Bounds 523

We can write the KKT conditions for branin in the usual way.

L = 2x21 − 21
20
x41 +

1
6
x61 + x1x2 + x22 + λ(−x1 + 1)

∂L
∂x1

= 4x1 − 21
5
x31 + x51 + x2 − λ = 0

∂L
∂x2

= x1 + 2x2 = 0

∂L
∂λ

= −x1 + 1 ≤ 0

λ f1(x) = λ(−x1 + 1) = 0

λ ≥ 0
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

x1

x2

•x̂
•x⋆

These conditions are satisfied at x⋆ ≈ [1.74755,−0.87372]⊤ with f0(x
⋆)≈ 0.2986 and λ⋆ = 0.

Thus the constraint is slack, as shown in the contour diagram on the right, and its shadow
price is zero. If we remove it from the problem, however, the optimal point becomes the un-
constrained minimum at x̂ = [0, 0]⊤, with f0(x̂) = 0. A constraint that is inactive at optimality
can be omitted from a linear programming model, or from a convex nonlinear programming
model, without changing the optimal point. In a nonconvex program, a constraint might be
necessary, rather than redundant, even though its optimal KKT multiplier is zero.

16.8.2 Implicit Variable Bounds

The problem below (which is similar to [5, §15.3]) has the
graphical solution shown on the right.

minimize
x∈R2

f0(x) = x21 + x22

subject to f1(x) = −(x1 − 1)3 + x22 ≤ 0

This problem has no constraint qualification (see Exercise
16.11.43) so we cannot solve it using the KKT method. How-
ever, because the constraint is active we might be able to use
it to eliminate a variable. -2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

x1

x2

•
x⋆

x22 = (x1 − 1)3

f0(x1) = x21 + (x1 − 1)3
d f0

dx1
= 2x1 + 3(x1 − 1)2 = 2x1 + 3(x

2
1 − 2x1 + 1) = 0

3x21 − 4x1 + 3 = 0

x1 =
4 ±

√

(−4)2 − 4(3)(3)
6

=
4 ±
√
16 − 36
6

=
4 ±
√
−20

6
XX

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

524 NLP Solution Phenomena

A complex value for x1 has no meaning for the optimization problem, so something has
gone wrong. What is the actual minimum value of the reduced objective?

f0(x1) = x31 − 2x21 + 3x1 − 1

lim
x1→−∞

f0(x1) = x31 − [lower order terms] = −∞

The reduced objective is unbounded! To see how this happened, consider that

(x1 − 1)3 = x22 ⇒ (x1 − 1)3 ≥ 0 in order for x2 to be real

⇒ (x1 − 1) ≥ 0

⇒ x1 ≥ 1.

By eliminating the equality constraint we inadvertently removed from the problem the im-
plicit constraint x1 ≥ 1, which could have been (and should have been) included explicitly
in the model. The problem of minimizing the reduced objective subject to that requirement
does have a constraint qualification, so we can solve it using the KKT method.

minimize
x1∈R1

f0(x1) = x21 + (x1 − 1)3

subject to f1(x1) = −x1 + 1 ≤ 0

L = x21 + (x1 − 1)3 + λ(−x1 + 1)
∂L
∂x1

= 2x1 + 3(x1 − 1)2 − λ = 0

∂L
∂λ

= −x1 + 1 ≤ 0

λ f1(x) = λ(−x1 + 1) = 0

λ ≥ 0

These conditions have the unique solution x⋆1 = 1 with λ⋆ = 2, and we deduce from the
original constraint that x⋆2 = (x⋆1 − 1)3 = 0 as we found graphically.

16.8.3 Ill-Posed Problems

A nonlinear program can, as I pointed out in §8.2.1, have a finite optimal value that is not
a minimum and is therefore never attained. It is also possible for the optimal value to be
attained at a finite point that cannot be found using the KKT theory because no constraint
qualification is satisfied, as in the cq1 problem of §16.7 or the first version of the example
in §16.8.2. A more subtle variation on this theme is exemplified by the problem on the next
page (see §28.7.16), which I will call hearn after its inventor [76].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.9 Duality in Nonlinear Programming 525

minimize
x

f0(x) =
(1 − x2)

2

2x1
+
(2 − x1)

2

2x2
+ 5x1 + 4x2 +

1

2

subject to x ∈
{

x ∈ R2
∣
∣
∣ x1 > 0, x2 > 0

}

∪ [0, 1]⊤ ∪ [2, 0]⊤

From the contour plot shown to the right we can guess that
x⋆ = [0, 1]⊤ and f0(x

⋆) = 6 1
2
. Unfortunately, f0 cannot be

evaluated at that point (this accounts for the missing parts
of the contours near x1 = 0). There is only one active con-
straint so the linear independence constraint qualification
is satisfied, but it is hard to use the KKT theory to find
x⋆ because ∇xL is not defined there. Problems like hearn are

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 0.01 0.02 0.03 0.04 0.05

x1

x2
6.505

6.510

6.520

6.530

6.540

6.550

said to be ill-posed [105, p123] because the nonlinear programming model breaks down
at the optimal point. We will also consider a problem to be ill-posed if (like this one) the
feasible set does not include all of its boundary points, or if it has infima instead of minima,
or if it lacks a constraint qualification, or [2, p79-80] if it is badly-scaled.

Nonconvexity is a property of nonlinear programs that often cannot be avoided in practi-
cal applications, but an ill-posed model must always be suspected of being unrealistic (bilevel
programs such as the one we studied in §1.6, which always lack a constraint qualification,
are a rare exception). Some ill-posed problems (e.g., cq1 and hearn) yield to numerical
methods, but others so far do not. From now on we will assume that the nonlinear programs
we are trying to solve are well-posed.

16.9 Duality in Nonlinear Programming

This one-dimensional optimization has the graphical solution to the right.

minimize
x∈R1

f0(x) = x2

subject to f1(x) = −x + 1 ≤ 0

Its Lagrangian yields the KKT conditions below, which are
satisfied at x⋆ = 1 with λ⋆ = 2.

L(x, λ) = x2 + λ(−x + 1)
∂L
∂x

= 2x − λ = 0

∂L
∂λ

= −x + 1 ≤ 0

λ f1(x) = λ(−x + 1) = 0

λ ≥ 0 -1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f

x

f0 (x)
=
x
2

f 1
(x
)
=
−x
+
1
=
0

feasible
set

•(x⋆, f ⋆0)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

526 Inequality Constraints

Because the problem has only one x variable and one KKT multiplier, we can draw the
surface plot of L(x, λ) shown below (I generated data with a FORTRAN program and then
used gnuplot).

L

4

λ

4

0

x
21

2
• (x⋆, λ⋆)

The Lagrangian goes up if we move from (x⋆, λ⋆) either way along the x direction and it stays
flat if we move from (x⋆, λ⋆) either way along the λ direction. In other words, the minimizing
point (x⋆, λ⋆) of the Lagrangian satisfies this definition [161, §2.6] of a saddle point:

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆) for all (x, λ).

In the picture, at each possible value of x there is some value of λ where the Lagrangian takes
on its highest value. For which value of x is that maximum Lagrangian value the lowest?
When x = 0 we have (from the formula for L on the previous page) L(λ) = λ, so in the
picture the surface has height 4 at λ = 4, and it gets higher as λ increases outside the frame
of the picture. When x = 2 we have L(λ) = 4 − λ, so the surface has height 4 at λ = 0, and
it gets higher if λ becomes negative. But at x = 1, L(λ) = 1 for every value of λ, and that is
the lowest value over x of the highest Lagrangian over λ. Thus, x⋆ solves this problem.

minimize
x

{

sup
λ

L(x, λ)
}

Because the highest value of L(λ) at a given x , x⋆ is not attained at a finite value of λ,
here I have used the supremum operator to describe this value, rather than the maximum.

In the picture, at each possible value of λ there is some value of x where the Lagrangian
takes on its lowest value. For which value of λ is that minimum Lagrangian the highest? For
this problem, it happens when λ = 2, and by reasoning similar to that above λ⋆ solves this
problem.

maximize
λ

{

inf
x
L(x, λ)

}

In case the lowest value of L(x) at a given λ , λ⋆ is not attained at a finite value of x, here
I have used the infimum operator over x rather than the minimum.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.9 Duality in Nonlinear Programming 527

For our example we have L(x, λ) = x2 + λ(−x + 1), and we find

sup
λ

L(x, λ) =
{

1 for x = 1

∞ for x , 1

If x = 1 then L = 1 for all values of λ. If x > 1 then (−x+ 1) < 0 and we can make L as high
as we like by letting λ → −∞. If x < 1 then (−x + 1) > 0 and we can make L as high as we
like by letting λ→ +∞.

Looking in the other direction, we find

inf
x
L(x, λ) =

{

0 for λ = 0

λ − 1
4
λ2 for λ , 0

If λ = 0 then L = x2, which is lowest at x = 0, where L = 0. If λ , 0 then L = x2 + λ(−x + 1)
is lowest where

∂L
∂x

= 2x − λ = 0

x = 1
2
λ

and at that value of x we have

L(λ) = (1
2
λ)2 + λ(−1

2
λ + 1)

=
1
4
λ2 − 1

2
λ2 + λ

= λ − 1
4
λ2.

Thus, we find that

min
x

sup
λ

L = min
x
{1,∞} = 1 at x⋆ = 1

and

max
λ

inf
x
L = max

λ

{

0, λ − 1
4
λ2

}

= max
λ

{

λ − 1
4
λ2

}

Letting w = λ − 1
4
λ2 we can perform the indicated maximization like this.

dw

dλ
= 1 − 1

2
λ = 0

λ⋆ = 2.

The graph of L(x,λλλ) is a hypersurface in Rn+m and is therefore usually hard to visualize,
but as in this example it is true in general [1, Theorems 6.2.5-6] that if a nonlinear program
is convex and has a constraint qualification then its Lagrangian has a saddle point, every
saddle point of the Lagrangian satisfies the KKT conditions for the nonlinear program, and
every KKT point is a saddle point.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

528 Duality in Nonlinear Programming

16.9.1 The Lagrangian Dual

In the analysis above we assumed nothing about the sign of λ, but we would reach the same
conclusions if we assumed it to be nonnegative (as we know from §16.2 that it must be at the
optimal point). Assuming now that λλλ ≥ 0 and using the same sort of reasoning we applied
to the example, we can find the “min sup” and “max inf” problems corresponding to the
standard form nonlinear program,

NLP: minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m.

This problem has

L(x,λλλ) = f0 +

m∑

i=1

λi fi(x)

so we can deduce that

sup
λλλ

L =
{

f0(x) if fi(x) ≤ 0 for i = 1 . . .m

∞ otherwise.

If even one constraint function is positive then we can make L as big as we like by letting
the corresponding λi approach infinity. However, if fi(x) ≤ 0 for i = 1 . . .m then including
any of them will reduce L, so its supremum is when λλλ = 0 and L = f0(x). Then

min
x

sup
λλλ

L = min
x

{∞, (f0(x) provided that fi(x) ≤ 0, i = 1 . . .m)
}

so the minimum over x of the supremum of L over λλλ is the solution to the primal problem

P : minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m,

which is just NLP again. The maximum over λλλ of the infimum over x is the solution to the
Lagrangian dual problem,

D : maximize
λλλ∈Rm

θ(λλλ) = inf
x
L(x,λλλ)

subject to λi ≥ 0, i = 1 . . .m,

which is the “max inf” problem with the added harmless assumption we used above that
the KKT multipliers are nonnegative.

The primal and dual of a nonlinear program are related just as the primal and dual of
a linear program are related, but in ways that are in some cases more subtle [1, Theorems
6.2.1,4] [5, Theorem 12.13] [109]. The main results are summarized on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.9.2 The Wolfe Dual 529

NLP Duality Relations

1. If x̄ is feasible for P and λ̄λλ is feasible for D , then f0(x̄) ≥ θ (λ̄λλ). If f0(x̄) > θ (λ̄λλ), the
difference between them is called the duality gap.

2. If x̄ is feasible for P and λ̄λλ is feasible for D , and if also f0(x̄) = θ (λ̄λλ), then x̄ solves P

and λ̄λλ solves D .

3. If D is unbounded, then P is infeasible.

4. If P is unbounded, then D is also unbounded.

5. If NLP is a convex program and Slater’s constraint qualification is satisfied, then
f0(x

⋆) = θ (λλλ⋆).

6. If NLP has each fi(x) differentiable and convex, and x⋆ solves P, and a constraint
qualification is satisfied at x⋆, and λλλ⋆ solves D with infxL(x,λλλ⋆) occurring at x̄, and if
L(x,λλλ⋆) is a strictly convex function of x at x̄, then x̄ = x⋆.

As discussed in §15.3, the dual variables λi can be viewed as shadow prices, so slack pri-
mal constraints fi(x

⋆) < 0 correspond to zero KKT multipliers λ⋆
i
= 0 and positive KKT

multipliers λi > 0 correspond to tight primal constraints fi(x
⋆) = 0.

As in linear programming it sometimes turns out that the dual of a nonlinear program is
easier to solve than the primal. If the rather demanding provisions of NLP Duality Relation 6
are met (or, if the duality gap is zero, maybe even if they are not) the primal solution can be
recovered from the dual. To exploit this fact special numerical methods have been developed
for solving the Lagrangian dual problem [1, §6.4-6.5].

The Lagrangian dual can be constructed, and NLP Duality Relations 1-4 can be used,
even if P is not a convex program [1, Example 6.2.2] and even if its objective and constraint
functions are not differentiable. Lagrangian duality has therefore also been used in the
development of alternatives to the branch-and-bound algorithm for integer programming.

16.9.2 The Wolfe Dual

The Lagrangian dual can be hard to use in practice because of the need to find the global
infimum of L(x,λλλ), but in some settings its great virtue of being indifferent to nonconvexity
and nondifferentiability might not actually be needed. If NLP has each fi(x) convex and
continuously differentiable (each derivative ∂ fi/∂x j exists and is itself continuous [148, p151])
then for a fixed λ̄λλ, infx L(x, λ̄λλ) occurs at the point x̄ if and only if ∇xL(x̄, λ̄λλ) = 0 [4, §14.8.3]
[161, §2.6.1]. This is just an application of the first-order necessary conditions from §10.7.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

530 Duality in Nonlinear Programming

Then if we maximize L(x,λλλ) over λλλ while insisting that ∇xL(x̄, λ̄λλ) = 0, we are really just
maximizing θ(λλλ), so we can rewrite D in the form of the Wolfe dual problem

D : maximize
λλλ∈Rm

L(x,λλλ)
subject to ∇xL(x,λλλ) = 0

λi ≥ 0, i = 1 . . .m.

To use the Wolfe dual (which is also referred to as the classical dual because it was dis-
covered first) NLP must be a convex program. If it also satisfies Slater’s condition then
NLP Duality Relation 5 ensures there is no duality gap. If in addition one or more of the
fi(x) happen to be strictly convex, so that L is strictly convex, then Relation 6 ensures that
solving the Wolfe dual will produce x⋆ along with λλλ⋆.

16.9.3 Some Handy Duals

linear programs. The LP below is the minimization problem of the standard dual pair
first introduced in §5.

P : minimize c⊤x

subject to Ax ≥ b

x ≥ 0

This is an instance of NLP in which the functions happen all to be linear, so it meets the
requirements to have a Wolfe dual. According to the prescription in §16.9.2, that is

maximize L(x, y,λλλ) = c⊤x + y⊤(b − Ax) + λλλ⊤(−x)
subject to ∇xL = c − A⊤y − λλλ = 0

y ≥ 0

λλλ ≥ 0

where y is a vector of KKT multipliers corresponding to the rows of Ax ≥ b and λλλ is a vector
of KKT multipliers corresponding to the rows of x ≥ 0. Using the equality constraint, we
can rewrite the objective like this.

c⊤x + y⊤(b − Ax) + λλλ⊤(−x) = c⊤x + y⊤b − y⊤Ax − λλλ⊤x
= (c⊤ − y⊤A − λλλ⊤)x + y⊤b
= (c − A⊤y − λλλ)⊤x + y⊤b
= y⊤b

The constraints can also be simplified, because

c − A⊤y = λλλ
λλλ ≥ 0

}

⇒ c − A⊤y ≥ 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.9.3 Some Handy Duals 531

Thus the dual of the primal LP is

D : maximize b⊤y

subject to A⊤y ≤ c

y ≥ 0

which is the max problem of our standard dual pair.

quadratic programs. Recall from §14.1 that a quadratic program has the form

P : minimize
x∈Rn

f0(x) =
1
2
x⊤Qx − b⊤x

subject to Ax ≤ c

where Q is a symmetric matrix. The functions are continuously differentiable, so if Q is
positive definite we can write its Wolfe dual as

maximize
λλλ∈Rm

L(x,λλλ) = 1
2
x⊤Qx − b⊤x + λλλ⊤(Ax − c)

subject to ∇xL = Qx − b + A⊤λλλ = 0

λλλ ≥ 0.

Solving the equality constraint for x we find

Qx − b + A⊤λλλ = 0

Qx = b − A⊤λλλ
x = Q−1(b − A⊤λλλ),

which we can substitute into the dual objective to obtain an optimization in terms of only
λλλ. I did the calculation one term at a time, as follows.

x⊤Qx = [Q−1(b − A⊤λλλ)]⊤Q[Q−1(b − A⊤λλλ)]
= (b − A⊤λλλ)⊤Q−⊤QQ−1(b − A⊤λλλ)
= (b − A⊤λλλ)⊤Q−1(b − A⊤λλλ)
= b⊤Q−1b − 2b⊤Q−1A⊤λλλ + λλλ⊤AQ−1A⊤λλλ

b⊤x = b⊤[Q−1(b − A⊤λλλ)]
= b⊤Q−1b − b⊤Q−1A⊤λλλ

λλλ⊤(Ax − c) = λλλ⊤A[Q−1(b − A⊤λλλ)] − λλλ⊤c
= λλλ⊤AQ−1b − λλλ⊤AQ−1A⊤λλλ − λλλ⊤c

Substituting the final expression for each quantity into the dual objective yields the result
on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

532 Duality in Nonlinear Programming

L(λλλ) = 1
2
b⊤Q−1b − b⊤Q−1A⊤λλλ + 1

2
λλλ⊤AQ−1A⊤λλλ − b⊤Q−1b + b⊤Q−1A⊤λλλ

+λλλ⊤AQ−1b − λλλ⊤AQ−1A⊤λλλ − λλλ⊤c
= −1

2
b⊤Q−1b − 1

2
λλλ⊤AQ−1A⊤λλλ + λλλ⊤(AQ−1b − c)

Thus the dual of the quadratic program is

D : maximize
λλλ∈Rm

L(λλλ) = −1
2
b⊤Q−1b − 1

2
λλλ⊤(AQ−1A⊤)λλλ + λλλ⊤(AQ−1b − c)

subject to λλλ ≥ 0.

Although this problem is a quadratic program like the primal, its constraints are simply
nonnegativities. That makes it easy to solve D numerically, either as an unconstrained
problem by enforcing lower bounds of zero in the line search (see §12.2.2) or by using a
special-purpose algorithm such as gradient projection [5, §16.7]. The constraints of P are
linear so a constraint qualification is satisfied (see §16.7) and according to NLP Duality
Relation 6 we can recover the primal solution as x⋆ = Q−1(b−A⊤λλλ⋆). Once again we see how
pleasant life can be in that tiny neighborhood of the nonlinear programming universe where
everything is perfectly smooth and strictly convex!

support vector machines. In §8.7.4 we studied the formulation of one particular strictly
convex quadratic program, the soft-margin SVM.

minimize
p q ξξξ

p⊤p + c

n∑

i=1

ξi

subject to yi(p
⊤xi + q) ≥ 1 − ξi i = 1 . . . n

ξi ≥ 0 i = 1 . . . n

Recall that in this model n is the number of data points and m is the number of dimensions.
The vectors xi ∈ Rm, i = 1 . . . n and y ∈ Rn are the scaled constant data of the problem,
and the compromise parameter c > 0 is a fixed scalar. The unknowns to be determined by
the optimization are the predictor variables p ∈ Rm and intercept q ∈ R1, and the resulting
classification errors ξξξ ∈ Rn.

To derive the Wolfe dual of this problem it is prudent for sanity to first restate it in a
more compact form. First consider the dot products that appear in the first n constraints,

p⊤xi = xi
⊤p = [xi1 . . . xim]





p1
...

pm





i = 1 . . . n.

If we make the vectors xi the columns of an m × n matrix X, then we can represent all of
these dot products by the single matrix-vector product X⊤p shown on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.9.3 Some Handy Duals 533

X⊤p =





x11 · · · x1m
...

...

xn1 · · · xnm









p1
...

pm





=





x1
⊤ p
...

xn
⊤p





To add q to each row, we can add the vector q1 to this matrix-vector product, where 1 ∈ Rn
is a vector of all 1s. To multiply each row by its yi, we can make the yi values the diagonal
entries of an n × n diagonal matrix Y and premultiply by Y. A vector that represents 1 − ξi
for i = 1 . . . n is 1 − ξξξ. Using these ideas the first n scalar constraints can be replaced by the
vector constraint

Y(X⊤p + q1) ≥ 1 − ξξξ
or YX⊤p + qy ≥ 1 − ξξξ

where the last step uses the fact that Y1 = y. Finally, we can restate the SVM primal
problem like this.

P : minimize
p q ξξξ

p⊤p + c1⊤ξξξ

subject to YX⊤p + qy ≥ 1 − ξξξ
ξξξ ≥ 0

The Lagrangian of this problem is

L(p, q,ξξξ) = p⊤p + c1⊤ξξξ + λλλ⊤(1 − ξξξ − YX⊤p − qy) + γγγ⊤(−ξξξ)
= p⊤p + c1⊤ξξξ + λλλ⊤1 − λλλ⊤ξξξ − λλλ⊤YX⊤p − qλλλ⊤y − γγγ⊤ξξξ

The first constraint in the Wolfe dual is that the gradient of the Lagrangian with respect to
the variables of optimization is zero. Starting with the p variables, we have

∇pL = 2p − (λλλ⊤YX⊤)⊤ = 0

p =
1
2
XY⊤λλλ = 1

2
XYλλλ

where the last step makes use of the fact that the diagonal matrix Y is its own transpose.
Continuing with the other variables, we also have

∇qL =
∂L
∂q
= −λλλ⊤y = 0

∇ξξξL = c1 − λλλ − γγγ = 0.

Using these relations we can simplify the Lagrangian and rewrite it in terms of only the
KKT multipliers λλλ and γγγ and the problem data, as follows.

L = (1
2
XYλλλ)⊤(1

2
XYλλλ) − (λλλ⊤YX⊤)(1

2
XYλλλ) + (c1⊤ − λλλ⊤ − γγγ⊤)ξξξ + λλλ⊤1 − qλλλ⊤y

= −1
4
(XYλλλ)⊤(XYλλλ) + λλλ⊤1

= −1
4
λλλ⊤(YX⊤XY)λλλ + λλλ⊤1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

534 Inequality Constraints

Then the Wolfe dual is

maximize
λλλ,γγγ

L(λλλ) = λλλ⊤1 − 1
4
λλλ⊤(YX⊤XY)λλλ

subject to λλλ⊤y = 0

c1 − λλλ − γγγ = 0

λλλ ≥ 0

γγγ ≥ 0.

This problem can be further simplified, because

c1 − λλλ = γγγ
γγγ ≥ 0

}

⇒ c1 − λλλ ≥ 0⇒ λλλ ≤ c1.

Thus we can write the SVM dual as

D : maximize
λλλ

L(λλλ) = λλλ⊤1 − 1
4
λλλ⊤K λλλ

subject to λλλ⊤y = 0

λλλ ≥ 0

λλλ ≤ c1

where the kernel K = YX⊤XY is a constant matrix that depends only on the data. This
dual is easier than the primal, because it has n variables rather than m + n + 1 and its only
non-bound constraint λλλ⊤y = 0 is a linear equality.

However, the main virtue of the SVM dual is that it permits the use of nonlinear classifiers.
By replacing the kernel K by a different function of the data it is possible to separate the
observations into categories based not a hyperplane but on a curved hypersurface [4, §14.8.5].
This extension to the original SVM model shows that duality can play an important role not
only in the solution of nonlinear programming problems but also in their formulation.

16.10 Finding KKT Multipliers Numerically

The reason for solving a nonlinear program is usually to find x⋆, because the optimal decision
variables tell us what to do in the application setting that gave rise to the optimization
problem. However, λλλ⋆ is often also of interest, because the dual variables are shadow prices
that tell which constraints are active and how strongly they affect the optimal objective
value. As we shall see in §26.3.1, λλλ⋆ is also used in the measurement of solution error when
evaluating the performance of an algorithm by computational experiments.

When we solve a primal nonlinear program analytically by the KKT method, we find
λλλ⋆ along with x⋆. When we solve a dual nonlinear program analytically we obviously get λλλ⋆,
and according to NLP Duality Relation 6 we might be able to recover x⋆. But most of this
book is about numerical methods, and most of them deliver an approximation to x⋆ only.
Given such a near-optimal (or maybe not-so-near-optimal) point, is there some way that we
can find the corresponding KKT multipliers λλλ⋆?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.10 Finding KKT Multipliers Numerically 535

To explore this question consider the problem below, which
I will call it nset (see §28.7.17).

minimize
x∈R2

f0(x) = (x1 − 1
2
)2 + x22

subject to f1(x) = cos(x1) + x2 ≤ 0

f2(x) =
1
2
(x1 − 1

4
)2 − x2 − 1 1

4
≤ 0

The feasible region of this nonlinear program is the set N
described in §16.6 and pictured again to the right. The
optimal contour of the objective is drawn tangent to the -2

-1

0

1

2

3

-2 -1 0 1 2 3

x2

x1

x̄

f0(x) = f0(x̄)

N

f1(x) = 0

feasible set at x⋆, which might be approximated by a numerical algorithm (or by us looking
at the graph) as x̄ = [1,−1

2
]⊤. A point that is in the boundary of the feasible set satisfies the

feasibility and orthogonality conditions for this problem, with λ2 = 0 and with λ1 > 0 to be
determined by the remaining KKT conditions. From the Lagrangian

L =
(

x1 − 1
2

)2
+ x22 + λ1

(

cos(x1) + x2
)

+ λ2
(
1
2
(x1 − 1

4
)2 − x2 − 1 1

4

)

we can write the stationarity condition ∇xL = 0 as follows.

∂L
∂x1

= 2
(

x1 − 1
2

)

− λ1 sin(x1) + λ2
(

x1 − 1
4

)

= 0

∂L
∂x2

= 2x2 + λ1 − λ2 = 0

Substituting x̄1 = 1, x̄2 = −1
2
, and λ̄2 = 0, these equations reduce to

1 − 0.84147λ1 = 0

−1 + λ1 = 0.

There are fewer active constraints than there are variables (as is typical) so λ1 is overdeter-
mined by a system of equations that is slightly inconsistent. How shall we pick a value that
comes as close as possible to satisfying the stationarity conditions?

In §1.5.2 we minimized a sum of absolute values; here we can use the same approach to
minimize the sum of the absolute row deviations in the equations above. In this optimization
problem I have included the KKT nonnegativity constraint on λ1.

minimize
λ1

z =
∣
∣
∣1 − 0.84147λ1

∣
∣
∣ +

∣
∣
∣ − 1 + λ1

∣
∣
∣

subject to λ1 ≥ 0

Recall that we can recast this as a linear program. Any number y can be written as y = p−q
where p and q are nonnegative numbers, one or both of which are zero; then | y | = p + q.
Using this idea we can rewrite our optimization as the linear program at the top of the next
page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

536 Inequality Constraints

minimize
λ1,d

z = (d+1 + d
−
1) + (d

+

2 + d
−
2)

subject to d+1 − d−1 = 1 − 0.84147λ1
d+2 − d−2 = −1 + λ1

d+1 , d
−
1 , d

+

2 , d
−
2 , λ1 ≥ 0

Putting this linear program in standard form, we get this initial tableau.

d+1 d−1 d+2 d−2 λ1

0 1 1 1 1 0

1 1 −1 0 0 0.84147

1 0 0 1 −1 1

I used the pivot program to find λ̄1 = 1. This yields the residual z = −0.15853, which is a
measure of the amount by which the stationarity equations are inconsistent.

We can generalize this approach to work for any standard-form nonlinear program. The
KKT stationarity condition requires that

∂ f0

∂x j

+

∑

i∈ I
λi
∂ fi

∂x j

= 0, j = 1 . . .n

where as usual I is the indices of the active constraints. The deviation for row j in this set
of equations is the quantity on the left hand side, which we can represent as d+

j
− d−

j
. Then

the absolute row deviation is d+
j
+ d−

j
and our linear program becomes

minimize
d+,d−,λλλ

z =

n∑

j=1

(d+j + d
−
j)

subject to d+j − d−j −
∑

i∈ I
λi
∂ fi

∂x j

=
∂ f0

∂x j

j = 1 . . . n

d+, d−,λλλ ≥ 0

with the tableau

T =

d+1 · · · d+n d−1 · · · d−n λ1 · · · λ| I |

0 1 · · · 1 1 · · · 1 0 · · · 0

∂ f0/∂x1 1 · · · 0 −1 · · · 0 −∂ f1/∂x1 · · · −∂ f| I |/∂x1
... 0

. . . 0 0
. . . 0

... · · · ...

∂ f0/∂xn 0 · · · 1 0 · · · −1 −∂ f1/∂xn · · · −∂ f| I |/∂xn

where each derivative is evaluated at the approximate minimizing point x̄. To construct this
tableau for an arbitrary NLP and x̄ and then solve the linear program, I wrote the mults.m
routine listed at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.10 Finding KKT Multipliers Numerically 537

1 function [lambda,z]=mults(iact,x,grd)
2 % estimate KKT multipliers
3 % by minimizing the sum of absolute row deviations
4 % in the stationarity condition of the NLP
5
6 n=size(x,1); % number of variables in NLP
7 mact=size(iact,2); % number of active constraints
8 T=zeros(1+n,1+2*n+mact); % the LP tableau is this big
9
10 g0=grd(x,0); % the NLP objective gradient
11 T(:,1)=[0;g0]; % is the LP constant column
12
13 for j=1:n % each LP d+ variable column
14 T(:,1+j)=[1;zeros(n,1)]; % has cost coefficient 1
15 T(1+j,1+j)=1; % and +1 in constraint row j
16 end
17
18 for j=1:n % each LP d- variable column
19 T(:,1+n+j)=[1;zeros(n,1)]; % has cost coefficient 1
20 T(1+j,1+n+j)=-1; % and -1 in constraint row j
21 end
22
23 for i=1:mact % each LP lambda variable column
24 gi=grd(x,iact(i)); % has zero cost and
25 T(:,1+2*n+i)=[0;-gi]; % negative constraint gradient
26 end
27
28 [dpdmla,rc,Tnew]=simplex(T,n,2*n+mact); % solve the LP
29 lambda=dpdmla(2*n+1:2*n+mact); % return the multipliers
30 z=Tnew(1,1); % and the residual
31
32 end

The inputs 1 to mults.m are iact, a list of the indices of the active constraints; x, the point
to be tested; and grd, a pointer to a routine that returns the gradient of a given function.
The tableau T 8 is constructed one column at a time working left to right, and then 28

the simplex routine of §4.1 is used to solve the LP. The optimal KKT multipliers 29 and
objective value 30 are extracted from the solution for return.

In the nset example, iact=[1] because only f1(x) is tight at x̄. Here nsetg(x,i) returns
∇fi(x) in the standard way that was described in §15.5. When I used mults.m to compute
λ1, it produced this output.

octave:1> xbar=[1;-0.5];
octave:2> [lambda1,z]=mults([1],xbar,@nsetg)
lambda1 = 1
z = -0.15853
octave:3> format long
octave:4> xhat=[0.967281605376012;-0.567539804600159];
octave:5> [lambda1,z]=mults([1],xhat,@nsetg)
lambda1 = 1.13507960920032
z = -1.09691717070893e-15

For our approximate minimizing point x̄ = [1,−1
2
]⊤ we get the same results as before, but

using a more precise estimate x̂ of the optimal point yields a different multiplier value and
a much smaller residual. A sensitive way to assess the accuracy of a numerical solution to

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

538 Inequality Constraints

a nonlinear program is by using mults.m or a program like it to compute the corresponding
λλλ, and observing the size of the residual. If a proposed solution really is a KKT point, the
equations of the stationarity condition should be very nearly consistent.

The routine has no trouble finding correct multipliers for the cq2 problem (even though
its active constraint gradients are linearly dependent) but it is no more successful at finding
multipliers for the cq1 problem than we were.

octave:6> xstar=[1;0];
octave:7> iact=[1,2];
octave:8> [lambda,z]=mults(iact,xstar,@cq2g)
lambda =

2 0

z = 0
octave:9> [lambda,z]=mults(iact,xstar,@cq1g)
lambda =

0 0

z = -1
octave:10> quit

The linear program in mults.m makes sense only if each equation of the stationarity condi-
tions can be satisfied for some vector lambda, but in §16.7 we observed for cq1 that

∇f0(x⋆) =
[

−1
0

]

∇f1(x⋆) =
[

0

1

]

∇f2(x⋆) =
[

0

−1

]

.

The first component of ∇f0(x⋆) is nonzero while the first component of both ∇f1(x⋆) and
∇f2(x⋆) is zero, so there is no value of λλλ for which ∂ f0/∂x1 = λ1∂ f1/∂x1 + λ2∂ f2/∂x1. These
constraint gradients are said not to cover the objective gradient, and that is necessary for
mults.m to work. More sophisticated implementations of the algorithm used in mults.m

begin by checking whether this coverage condition is satisfied. It is less severe than requiring
the constraint gradients to be linearly independent, but it is sure to be met only if T = F.

16.11 Exercises

16.11.1[E] How do we deal with slack constraints in solving a nonlinear program by the
Lagrange method? How do we discover which constraints are slack when we solve a nonlinear
program by the KKT method?

16.11.2[E] What does the KKT orthogonality condition require? Why does it have that
name? What purpose does it serve in the KKT method for solving inequality-constrained
nonlinear programs?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.11 Exercises 539

16.11.3[E] The discussion in §16.2 makes use of the idea that a vector can be between two
other vectors. What do I mean by that? If three vectors lie in a plane, isn’t each between
the other two? Explain.

16.11.4[E] Show that in the arch4 problem of §16.2, (a) x⋆ = [1
2
, 7
4
]⊤; (b) λλλ⋆ = [5

22
, 14
11
]⊤.

16.11.5[E] What is the difference between a nonnegative linear combination of vectors
and a convex combination? Illustrate your answer with an example.

16.11.6[E] Give a geometrical argument to explain why, for the arch4 problem, −∇f0(x⋆)
must fall between ∇f1(x⋆) and ∇f2(x⋆). What is sufficient to ensure that for a nonlinear
program in standard form −∇f0(x⋆) can be written as a nonnegative linear combination of
the constraint gradients at x⋆?

16.11.7[E] What does the KKT nonnegativity condition require? What purpose does it
serve [3, p293] in the KKT method for solving inequality-constrained nonlinear programs?

16.11.8[H] If either λi = 0 or fi(x) = 0 or both for i = 1 . . .m, then λλλ⊤f = 0. What must be
true in order for λλλ⊤f = 0 to ensure that either λi = 0 or fi(x) = 0 or both for i = 1 . . .m?

16.11.9[E] How do the KKT conditions differ from the Lagrange conditions? How do
KKT multipliers differ from Lagrange multipliers?

16.11.10[P] Use a computer algebra system such as Maple or Mathematica to solve the
KKT conditions for the moon problem of §16.3, and confirm that it reports the same KKT
points we found by hand.

16.11.11[E] What conditions are necessary to ensure that for a nonlinear program in stan-
dard form, if x̄ is a local minimizing point then there is a vector λ̄λλ such that (x̄, λ̄λλ) satisfies
the KKT conditions?

16.11.12[E] What conditions are sufficient to ensure that for a nonlinear program in stan-
dard form, if (x̄, λ̄λλ) satisfies the KKT conditions then x̄ is a global minimizing point?

16.11.13[E] The hypotheses of the two KKT theorems are referred to respectively as the
KKT necessary conditions and the KKT sufficient conditions. (a) From memory, write down
the necessary conditions. (b) From memory, write down the sufficient conditions.

16.11.14[E] If a nonlinear program in our standard form has m inequality constraints, how
many possible combinations of active and inactive constraints are there?

16.11.15[E] How can you classify KKT points to identify the local minima among them?

16.11.16[E] Under what circumstances does a global minimizing point for a standard-form
nonlinear program satisfy the KKT conditions?

16.11.17[H] The inequalities x1 + x2 ≥ 4 and 2x1 + x2 ≥ 5 define a convex set S ⊂ R2
[74, Exercise 6-7]. (a) Formulate a nonlinear program whose solution can be used to find
the minimum distance from the origin to S. (b) Solve the nonlinear program graphically.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

540 Inequality Constraints

(c) Use the KKT method to solve the nonlinear program analytically, and confirm that you
get the solution you found graphically.

16.11.18[H] Consider the following nonlinear program, in which a and b are constant
parameters.

minimize
x∈R2

f0(x) = (x1 − a)2 + (x2 − b)2

subject to f1(x) = (x1 − 12)2 + (x2 − 12)2 − 72 ≤ 0

f2(x) = x1 + x2 − 20 ≤ 0

Use the KKT method to find (x⋆,λλλ⋆) when (a) a = 11 and b = 14; (b) a = 20 and b = 8.
(c) Check your answers by solving the problems graphically.

16.11.19[H] Use the KKT method to solve this nonlinear program.

minimize
x∈R2

f0(x) = −x1 − 2x2 + x22

subject to f1(x) = x1 + x2 − 1 ≤ 0

f2(x) = x1 − 1 ≤ 0

f3(x) = −x2 ≤ 0

16.11.20[H] Use the KKT method to solve this nonlinear program.

minimize
x∈R2

f0(x) = x1 + 2x2 − x3
2

subject to f1(x) = 2x1 + x2 − 1 ≤ 0

f2(x) = −x1 ≤ 0

f3(x) = −x2 ≤ 0

Check your answer by solving the problem graphically.

16.11.21[H] Consider the following nonlinear program.

maximize
x∈R2

−x21 − 4x22 + 4x1x2 + x1 − 12x2
subject to x1 + x2 ≥ 4

Show that x⋆ = [61
18
, 11
18
]⊤ is the only solution to the KKT conditions, and find λ⋆.

16.11.22[H] Find all of the KKT points for this nonlinear program.

minimize
x∈R2

f0(x) = x21 − x22

subject to f1(x) = −(x1 − 2)2 − x22 + 4 ≤ 0

What is the optimal value?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.11 Exercises 541

16.11.23[P] This nonlinear program [1, Exercise 4.10] has a KKT point at x̄ = [1, 2, 5]⊤.

minimize
x∈R3

f0(x) = 2x21 + x22 + 2x
2
3 + x1x3 − x1x2 + x1 + 2x3

subject to f1(x) = x21 + x22 − x3 ≤ 0

f2(x) = x1 + x2 + 2x3 ≤ 16

f3(x) = −x1 − x2 ≤ −3
(a) Write the KKT conditions for this problem. (b) Confirm that x̄ satisfies the KKT con-
ditions. (c) Determine whether or not x̄ is a minimizing point. (d) Use a symbolic algebra
program such as Maple or Mathematica, or tedious hand calculations, to find all of the KKT
points. Is x̄ optimal?

16.11.24[E] A convex program has a convex feasible set, but there are two different ways
in which a nonlinear program that has a convex feasible set might not be a convex program.
What are they?

16.11.25[H] An NLP that has a nonconvex constraint can have a feasible set that is ei-
ther convex or nonconvex, as illustrated by the sets named C and N in §16.6. (a) Prove
analytically that C is a convex set. (b) Prove analytically that N is not a convex set.

16.11.26[H] For an inequality-constrained nonlinear program in standard form, the KKT
conditions require that λλλ⋆ ≥ 0. In §16.6 I claimed that the Lagrange conditions are a special
case of the KKT conditions when the constraints are equalities. Yet when the Lagrange
method is used to solve an equality-constrained nonlinear program, the Lagrange multipliers
can turn out to have either sign. How is this possible?

16.11.27[E] Can a convex program have an equality constraint? Explain.

16.11.28[H] The problem cq1 of §16.7 does not satisfy any constraint qualification.
(a) Modify the problem by adding the constraint x1 ≤ 1. Write down the KKT condi-
tions for the modified problem, and show that they are satisfied at x⋆ = [1, 0]⊤. (b) Find T
and F for the new problem. (c) Explain why x⋆ satisfies the KKT conditions for this problem
but not for cq1.

16.11.29[E] Give precise definitions for (a) the cone of tangents; (b) the cone of feasible
directions. Why are they important in the KKT theory of nonlinear programming? What
does it mean if they are different from each other?

16.11.30[H] The feasible set of a certain nonlinear program is defined by opposing inequal-
ities as X = {x ∈ R2 | f1(x) ≤ 0∩− f1(x) ≤ 0 }. (a) If f1(x) = x21 + x

2
2 − 2, show that F = T. (b) If

[5, p318] f1(x) = (x21 + x22 − 2)2, is it still true that F = T? Explain.

16.11.31[E] If a nonlinear program has linearly dependent constraint gradients at its opti-
mal point x⋆, is it possible for x⋆ to satisfy the KKT conditions? If so, what is necessary to
ensure that x⋆ satisfies the KKT conditions, even though the constraint gradients there are
linearly dependent?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

542 Inequality Constraints

16.11.32[H] Use the KKT method to solve this nonlinear program.

minimize
x∈R2

f0(x) = x21 − 1
3
x22

subject to f1(x) = x1 − x2 ≤ 0

f2(x) = x1 + x2 ≤ 0

f3(x) = x1 ≤ 0

Show that a constraint qualification is satisfied at the optimal point.

16.11.33[H] Consider this nonlinear program.

minimize
x∈R2

f0(x) = x21 + x22

subject to f1(x) = −(x1 − 1)3 + x22 ≤ 0

(a) Find x⋆. (b) Show that no constraint qualification is satisfied at x⋆.

16.11.34[H] Show that if an NLP has equality constraints (whether they are stated as
equalities or as pairs of opposing inequalities) the only way to get T = F at a Lagrange point
x̄ is for their gradients to be linearly independent there.

16.11.35[H] Suppose the objective of cq1 is replaced by f0(x) = (x1−1)2+(x2−1)2. (a) Show
that the optimal point x⋆ = [1, 0]⊤ now satisfies the KKT conditions. (b) Does changing the
objective affect T or F? If yes, show that T = F now. If no, explain how x⋆ can satisfy the
KKT conditions even though T , F.

16.11.36[E] List three special cases in which a constraint qualification is always satisfied.

16.11.37[H] Prove the first KKT theorem of §16.4, assuming for the constraint qualification
that T = F. First show that if x̄ is a local minimizing point then T ∩ {d | ∇f0(x̄)⊤d < 0} = ∅.
Then show that the system of inequalities

∇f0x̄⊤d < 0

∇fix̄⊤d ≤ 0, i ∈ I
has no solution d. Finally, use Farkas’ theorem (see Exercise 5.5.30) to establish the conclu-
sion of the first KKT theorem.

16.11.38[H] Use the KKT method to solve this nonlinear program.

minimize
x∈R2

f0(x) = −3x1 + 1
2
x22

subject to f1(x) = x21 + x22 − 1 ≤ 0

f2(x) = −x1 ≤ 0

f3(x) = −x2 ≤ 0

Confirm that λ3 = 0 even though the third constraint is active at the optimal point. Using
a contour diagram, explain the significance of this zero KKT multiplier.

16.11.39[E] Can a constraint whose optimal KKT multiplier is zero be removed from a
nonlinear program without changing the optimal point? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.11 Exercises 543

16.11.40[H] This nonlinear program [3, Exercise 9.33] has x⋆ = [2, 2, 2]⊤.

minimize
x∈R2

f0(x) = (x1 − 10)2 + (x2 − 10)2 + (x2 − 10)2

subject to f1(x) = x21 + x22 + x23 − 12 ≤ 0

f2(x) = −x1 − x2 − 2x3 ≤ 0

Use the KKT conditions to show that one of the constraints is redundant. Why does removing
it not change the optimal point?

16.11.41[H] Consider this nonlinear program [3, Exercise 9.34].

minimize
x∈R2

f0(x) = x1 + x2

subject to f1(x) = x21 + x22 − 1 ≤ 0

f2(x) = −x21 − x22 + 1 ≤ 0

Use the KKT conditions to show that the optimal KKT multipliers are not uniquely deter-
mined, and provide an interpretation of what that means.

16.11.42[H] The problem of §16.8.1 has KKT conditions that are satisfied by x⋆ = [−2, 0]⊤
and λλλ⋆ = [1

4
, 0]⊤. (a) Confirm that the KKT conditions are also satisfied by x⋆ = [−2, 0]⊤

and λλλ⋆ = [0, 1]⊤, in which it is the first constraint that appears to be redundant. (b) Can
the first constraint be removed from the problem without changing its solution? Explain.
(c) How is this problem related to the one discussed in §16.8.2?

16.11.43[H] Find F and T for the example of §16.8.2, and show that they are unequal. Find
F and T when the constraint x1 ≥ 1 is included, and show that they are equal.

16.11.44[E] In §16.8.3, I describe several properties of a nonlinear program any of which
will lead us to classify the problem as ill-posed. What are those properties? Are ill-posed
problems always nonsense?

16.11.45[H] In the hearn problem of §16.8.3, f0(x
⋆) is undefined because the first fraction

is 0/0. However, the major axes of the contours plotted there appear to fall on the line
x2 = 1 − 20x1, which terminates at x⋆ = [0, 1]⊤. (a) Substitute this expression for x2 into the
formula for f0(x) and solve the resulting 1-dimensional optimization problem. (b) Plot con-
tours of the original objective for f0(x) ∈ [6.6, 10.75]. Where is the approximation accurate?

16.11.46[H] In §16.9.0 we used the graph of the Lagrangian to derive the primal and dual
of a nonlinear program. (a) Explain why x⋆ is the solution to the “min sup” problem and λλλ⋆

is the solution to the “max inf” problem. (b) How are saddle points of a Lagrangian related
to the KKT points of the nonlinear program?

16.11.47[P] The example of §16.9.0 is a convex program with a constraint qualification, so
the graph of its Lagrangian is sure to be shaped like a saddle. Modify the example to make
it nonconvex, and plot L(x, λ) for the modified problem. Is the surface still shaped like a
saddle?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

544 Inequality Constraints

16.11.48[E] Assuming NLP is a nonlinear program in standard form, write down, from
memory if you can, (a) the primal problem P; (b) the Lagrangian dual problem D .

16.11.49[H] Write down all of the ways in which the NLP Duality Relations of §16.9.1
differ from the LP Duality Relations of §5.1. When is it possible to recover the optimal
vector for a primal NLP from the solution of the NLP’s dual?

16.11.50[H] Does every nonlinear program have a Lagrangian dual? If not, what is required
to ensure that it does? Does every nonlinear program have a Wolfe dual? If not, what is
required to ensure that it does?

16.11.51[E] Explain why the Wolfe dual is usually easier to find than the Lagrangian dual.

16.11.52[H] If P is a convex program with continuously differentiable fi(x) then we can
form its Wolfe dual D . Is D necessarily a convex program? Justify your answer.

16.11.53[E] How is the Wolfe dual of a linear program related to the LP dual we studied
in §5?

16.11.54[H] The hearn problem is discussed in §16.8.3. (a) Show that the following non-
linear program can be regarded as a dual of that problem.

minimize
x∈R3

1
2
y21 + y1 − y2 − 2y3

subject to 1
2
y22 + y3 − 5 ≤ 0

1
2
y23 + y2 − 4 ≤ 0

(b) Is this problem also ill-posed?

16.11.55[E] Give two reasons why it might be advantageous to work with a nonlinear
program’s dual rather than its primal.

16.11.56[H] To solve a nonlinear program’s dual analytically by using the KKT method,
it is necessary to introduce KKT multipliers. It would be natural to call these multipliers
x, but under what circumstances are their optimal values the same as the optimal values of
the primal variables x?

16.11.57[E] When we solve a nonlinear program for x⋆, why might we also care about λλλ⋆?

16.11.58[P] In the example of §16.10, I passed @nsetg as a parameter to mults.m so that
it could compute gradients of the functions in the nset problem. Code the MATLAB routine
nsetg.m in the standard way described in §15.5, and repeat the calculation using mults.m

to prove that it works.

16.11.59[P] Use the mults.m program to find λλλ⋆ for the cq3 problem of §16.7.

16.11.60[E] A research paper describes a new nonlinear program and states its optimal
point. Given x⋆ you might be able to solve the KKT conditions analytically for λλλ⋆, thus
confirming that x⋆ is at least a KKT point. How else might you check whether x⋆ is a KKT
point?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

16.11 Exercises 545

16.11.61[P] The set named N in §16.6 is the feasible set of the following nonlinear program.

minimize
x∈R2

f0(x) = −(x1 − 1
2
)2 − x22

subject to x ∈ N
(a) Solve the problem graphically to estimate x⋆. (b) Write down the KKT conditions and
explain how they can be used to approximate λλλ⋆. (c) Use the mults.m program of §16.10
to find the KKT multipliers corresponding to your estimate of x⋆. How big is the residual?
(d) Use the KKT conditions to compute x⋆ precisely. If at some step you need to solve an
equation numerically, remember the MATLAB fzero function discussed in §15.0. (e) Use the
mults.m program to find the KKT multipliers corresponding to your more accurate estimate
of x⋆. How big is the residual now?

16.11.62[E] What condition must be satisfied by a nonlinear program in order for it to be
possible to find λλλ⋆ from x⋆ by using the algorithm implemented in mults.m?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17

Trust-Region Methods

The numerical algorithms for nonlinear optimization that we have studied so far all solve
unconstrained problems. Such methods are important not only because some applications
give rise to problems without constraints, but also because many algorithms for problems
having constraints work by solving a sequence of unconstrained problems. Steepest descent,
Newton and quasi-Newton methods, and conjugate-gradient methods all generate xk+1 from
xk by taking either a full step determined by a formula or an optimal step determined by
a line search. Trust-region methods [5, §4] [4, §11.6] also solve unconstrained nonlinear
programs, but in a fundamentally different way. The conceptual basis of the trust-region
approach is more sophisticated than the simple ideas behind the descent methods, and its
development requires the KKT theory that was introduced in §16. Trust-region methods do
sometimes work better than descent methods, but they are also worth studying because their
construction illustrates the artful orchestration of many important ideas you have learned
about nonlinear programming.

17.1 Restricted-Steplength Algorithms

In §13 we developed ntfs.m to implement modified Newton descent, and found that it
achieves superlinear convergence in solving even the nonconvex rb problem. It can also solve
this problem, which I will call h35 (see §28.7.18), provided we start near x⋆ = [3, 1

2
]⊤.

minimize
x∈R2

f0(x) = v21 + v
2
2 + v

2
3

where vt = ct − x1(1 − xt
2
), t = 1, 2, 3

c1 = 1.5

c2 = 2.25

c3 = 2.625
octave:1> xzero=[2.5;0.3];
octave:2> epz=1e-6;
octave:3> gama=1;
octave:4> [xnewt,kp,nm,rc]=ntfs(xzero,20,epz,@h35g,@h35h,gama)
xnewt =

3.00000
0.50000

kp = 6
nm = 0
rc = 0

Only 5 iterations were used (kp=6) and each found the Hessian of f0 positive definite (nm=0).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

548 Trust-Region Methods

The routines h35g.m and h35h.m that are passed to ntfs are listed below; h35.m is used
later. In all three routines, t is an index on the terms in the objective.

% compute a gradient of h35
function g=h35g(x)
c=[1.5;2.25;2.625];
g=[0;0];
for t=1:3

v=c(t)-x(1)*(1-x(2)^t);
dvdx1=-(1-x(2)^t);
dvdx2=t*x(1)*x(2)^(t-1);
g=g+[2*v*dvdx1;2*v*dvdx2];

end
end

% compute an objective value of h35
function f=h35(x)
c=[1.5;2.25;2.625];
f=0;
for t=1:3

v=c(t)-x(1)*(1-x(2)^t);
f=f+v^2;

end
end

% compute a Hessian of h35
function h=h35h(x)
c=[1.5;2.25;2.625];
h=[0,0;

0,0];
for t=1:3

v=c(t)-x(1)*(1-x(2)^t);
dvdx1=-(1-x(2)^t);
dvdx2=t*x(1)*x(2)^(t-1);
dvdx1dx1=0;
dvdx1dx2=t*x(2)^(t-1);
dvdx2dx2=(t-1)*t*x(1)*x(2)^(t-2);
dvdx2dx1=t*x(2)^(t-1);
h=h+[2*v*dvdx1dx1+2*dvdx1^2, 2*v*dvdx1dx2+2*dvdx1*dvdx2;

2*v*dvdx2dx1+2*dvdx2*dvdx1, 2*v*dvdx2dx2+2*dvdx2^2];
end

end

Unfortunately, if we move the starting point just a little farther from x⋆, ntfs.m diverges.

octave:5> xzero=[1;0.6];
octave:6> gama=0.5;
octave:7> [xnewt,kp,nm,rc]=ntfs(xzero,1,epz,@h35g,@h35h,gama)
xnewt =

8.8686
-1.5310

kp = 1
nm = 0
rc = 1
octave:8> [xnewt,kp,nm,rc]=ntfs(xzero,2,epz,@h35g,@h35h,gama)
xnewt =

4.7604
21.4216

kp = 2
nm = 6
rc = 1
octave:9> [xnewt,kp,nm,rc]=ntfs(xzero,3,epz,@h35g,@h35h,gama)
xnewt =

-5.3543e+08
2.0081e+08

kp = 3
nm = 33
rc = 1

The algorithm takes ever-longer steps, soon finding itself in territory where the Hessian of the
objective is far from positive definite (as shown by the growth of nm). Trying five iterations

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.1 Restricted Steplength-Algorithms 549

puts ntfs.m into an endless loop, as it fails (because of overflow in h35h.m) to find a factorable
Hessian. Why does our faithful ntfs.m code now betray us with this lunatic behavior?

Recall from §13.1 that at each iteration Newton descent minimizes the quadratic model
function

f0(x) ≈ q(x) = f0(x
k) + ∇f0(xk)⊤(x − xk) + 1

2
(x − xk)⊤H(xk)(x − xk).

This q(x) matches f0(x) at xk in value, gradient, and Hessian, but unless f0(x) is itself
quadratic q(x) departs from f0(x) as we move toward xk+1. To study this phenomenon in
our example, I wrote the program below to plot both functions as x moves from x0 to x1.

% mismatch.m: study how q(x) departs from f(x) in taking first step
clear; clf; set(gca,’FontSize’,30)

x0=[1;0.6]; % starting point
x1=[8.8686;-1.5310]; % first iterate produced by ntfs.m
d=x1-x0; % full Newton step (nm was zero)
for t=1:101 % at each of 101 points

s(t)=0.012*(t-1); % along that direction
x=x0+s(t)*d; % find x

% evaluate the objective and model
f(t)=h35(x);
q(t)=h35(x0)+h35g(x0)’*(x-x0)+0.5*(x-x0)’*h35h(x0)*(x-x0);

end

figure(1); set(gca,’FontSize’,30)
hold on
axis([0,1.2,-30,10],’square’)
plot(s,f) % plot objective on a linear scale
plot(s,q) % plot quadratic on a linear scale
hold off
print -deps -solid mislin.eps

figure(2); set(gca,’FontSize’,30)
hold on
axis([0,1.2],’square’)
semilogy(s,f) % plot objective on a log scale
hold off
print -deps -solid mislog.eps

-30

-25

-20

-15

-10

-5

0

5

10

0 0.2 0.4 0.6 0.8 1 1.2

f0(x)

q(x)

fu
n
ct
io
n
va
lu
e

s

10
-1

10
0

10
1

10
2

10
3

10
4

0 0.2 0.4 0.6 0.8 1 1.2

f0(x)

lo
g-
sc
al
e
fu
n
ct
io
n
va
lu
e

s

x
=
x
0

x
=
x
1

The top graph shows that the x1 returned by ntfs.m is indeed the minimizing point of q in
the Newton descent direction, but it is far beyond the minimizing point of f0 in that direction.
The model function and the objective match near x0, but at x1 they look completely different.
The bottom picture uses a log scale to plot f0(x) and shows that at x1, contrary to the
quadratic model, the objective is actually rising steeply.

A simple way of avoiding this kind of blunder is to ensure q(x) is a good approximation
to f0(x) by prohibiting steps that are too big [59, §5]. To study this idea I wrote the program
on the next page, which keeps each step taken by our modified Newton algorithm from being
longer than r. We happen to know the optimal point of h35 so it is convenient to use ||x⋆−x0||
as a natural unit of distance, and based on it I chose two values of r 16,18 to compare. For
each r the program 14-49 solves the problem 21-34 one iteration at a time by 33 moving
in the directions 30 suggested by ntfs.m but in steps 32 no longer than r.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

550 Trust-Region Methods

1 % newth35.m: restrict Newton step length to solve h35
2 clear;clf
3
4 xzero=[1;0.6]; % starting point
5 xstar=[3;0.5]; % catalog optimal point
6
7 xl=[0.0;0.0]; % lower bounds for picture
8 xh=[15.0;2.0]; % upper bounds for picture
9 ng=100; vc=[0.1,1,4,8,16,32,64,128]; % set contouring parameters
10 [xc,yc,zc]=gridcntr(@h35,xl,xh,ng); % get function values on grid
11
12 epz=1e-6; % convergence tolerance
13 gama=0.5; % weight for modified Newton
14 for tr=1:2 % try two step-restrictions
15 if(tr == 1) % the first experiment
16 r=norm(xstar-xzero); % allows big steps
17 else % the second
18 r=0.001*norm(xstar-xzero); % requires tiny steps
19 end % finished setting r
20
21 xk=zeros(1500); yk=zeros(1500); % fix array sizes
22 x=xzero; % starting point
23 for k=1:1500; % do iterations
24 xk(k)=x(1); % remember the point
25 yk(k)=x(2); % for plotting later
26
27 [xnewt,kp,nm,rc]=ntfs(x,1,epz,@h35g,@h35h,gama); % new point
28
29 if(rc==0) break; end % stop on zero gradient
30 d=xnewt-x; % direction to move
31 if(norm(d) < epz) break; end % stop on short enough step
32 s=min(r,norm(d)); % limit the steplength
33 x=x+s*(d/norm(d)); % and move to the next xk
34 end % done with iterations
35 k % report iterations used
36
37 figure(tr); set(gca,’FontSize’,30) % separate the plots
38 hold on % begin plot
39 axis([xl(1),xh(1),xl(2),xh(2)]); % set axes
40 contour(xc,yc,zc,vc) % draw contour lines
41 plot(xk(1:k),yk(1:k),’+’); % plot convergence trajectory
42 plot(xk(1:k),yk(1:k)); % plot connecting lines
43 hold off % done with plot
44 if(tr == 1) % if big steps
45 print -deps -solid nth35a.eps % call the picture this
46 else % if tiny steps
47 print -deps -solid nth35b.eps % call the picture this
48 end % done printing the graph
49 end % done with step-restrictions

The iterations of this restricted steplength algorithm are plotted over contours of the
h35 objective in the graphs on the next page.

The picture on the left shows the convergence trajectory, plotted as + signs connected by
line segments, when each modified Newton step is restricted in length to r = ||x⋆−x0||. Taking
a single step of that length in the direction x⋆ − x0 would solve the problem. Our algorithm
takes a more roundabout path, but it does eventually find its way from x0 = [1, 0.6]⊤ to
x⋆ = [3, 1

2
]⊤, which is a big improvement over the abject failure of ntfs.m when we let it

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.2 An Adaptive Modified Newton Algorithm 551

decide for itself how far to go. Making r bigger than this results in an even more chaotic
path to x⋆, until a value of r is reached above which the algorithm again fails to converge.

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14

x2

x1
0

0.5

1

1.5

2

0 2 4 6 8 10 12 14

x2

x1

The picture on the right shows that restricting the steps to length r = 0.001||x⋆ − x0||
yields a more direct path to the optimal point. Making r even less than this does not result
in a further decrease in the length of the convergence trajectory.

These experimental findings suggest we should use an r at or below the value that yields
the shortest path (if we had some way of knowing ahead of time what that critical value is).
However, the newth35.m program delivers another output 35 and it reveals a big difference
in the number of iterations required to reach x⋆. The larger value of r lets us solve the
problem in k=335 iterations, while the smaller value of r requires k=1015. Each iteration
takes CPU time, so if performance matters we should use the biggest r that still lets us solve
the problem at all (it is also hard to imagine being able to figure out this critical value ahead
of time).

17.2 An Adaptive Modified Newton Algorithm

Instead of permanently setting r at either extreme, it is better to continuously adjust it as
the algorithm proceeds. That way it is possible to strike a balance between taking a few big
steps, some of which are likely to increase the distance to x⋆, and taking many tiny steps
each more likely to decrease that distance.

Suppose that in using modified Newton descent the step we take from xk is dk. To restrict
it we can instead let sk = min (r, ||dk||) and take a step pk

= sk[d
k/||dk||] in the recommended

descent direction but of length sk. If the full step happens to be no longer than r, then
pk
= dk; otherwise pk is a step of length r in the direction dk.

Modified Newton descent fails when, as in our example, the actual objective function is
too different at xk+1 from the model function that matched it exactly at xk. The quadratic
model predicts that the objective will go down by a certain amount as a result of taking
the step pk, so one way to assess its fidelity is to compare that prediction with the actual

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

552 Trust-Region Methods

objective reduction we observe. Then we can allow a step pk only if the actual reduction in
the objective, f0(x

k) − f0(x
k
+ pk), is not too different from the objective reduction predicted

by the model, which is f0(x
k) − q(xk + pk) where

q(xk + pk) = f0(x
k) + ∇f0(xk)⊤pk

+
1
2
pk⊤H(xk)pk.

We can decide whether the quadratic model is trustworthy based on the value of the objec-
tive reduction ratio

ρ =
actual reduction

predicted reduction
=

f0(x
k) − f0(x

k
+ pk)

f0(xk) − q(xk + pk)
.

If ρ is much different from 1, then the model is suspect. If the actual reduction is much less
than predicted, so that ρ is less than or equal to µ (typically chosen to be 1

4
), then we must

have stepped too far, to a place where q(x) is no longer a good approximation of f0(x), and
we should reduce r. If, on the other hand, the actual reduction is greater than predicted,
then even though the model is wrong we should take the step! We are after all trying to
minimize the function, and if fate provides us with a better point than expected we can
tolerate the indignity of being shown that our model is wrong. If the actual reduction is still
bigger, so that ρ is greater than or equal to η (typically chosen to be 3

4
) then it even makes

sense to increase r. This policy is summarized in the flowchart below.

ENTER take a step in direction d

s = min (r, ||d||)
p = s(d/||d||)
compute ρ

?

ρ > µ

no

model untrustworthy
r ← r/2

yes

result good enough
xk+1 = xk + p

?

ρ ≥ η

no yes

result very good
r ← 2r

EXIT

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.2 An Adaptive Modified Newton Algorithm 553

Accepting a trial steplength in a restricted-steplength algorithm only if it yields at least the
expected objective decrease is somewhat analogous to enforcing the sufficient decrease Wolfe
condition in a descent method that uses a line search.

The MATLAB routine ntrs.m, whose listing begins below, implements modified Newton
descent but with steps limited in length to the r produced by the algorithm in the flowchart.

1 function [xstar,kp,nm,rc,r]=ntrs(xzero,rzero,kmax,epz,fcn,grd,hsn,gama)
2 % adaptive modified Newton algorithm
3
4 n=size(xzero,1); % get number of variables
5 xk=xzero; % set starting point
6 r=rzero; % set starting steplength
7 mu=0.25; eta=0.75; % set r adjustment parameters
8 nm=0; % no Hessian modifications yet
9 for kp=1:kmax % allow kmax descent iterations
10 g=grd(xk); % find uphill direction
11 if(norm(g) <= epz) % is xk stationary?
12 xstar=xk; % yes; declare xk optimal
13 rc=0; % flag convergence
14 return % and return
15 end % no; continue iterations
16 H=hsn(xk); % get current Hessian matrix
17 [U,pz]=chol(H); % try to factor it
18
19 if(pz~=0) % is H positive definite?
20 if(gama >= 1 || gama < 0) % no; is modification possible?
21 xstar=xk; % no; gama value prevents that
22 rc=2; % flag nonconvergence
23 return % and return
24 end % yes; modification possible
25 tmax=1022; % limit modifications
26 for t=1:tmax % repeat until limit or success
27 H=gama*H+(1-gama)*eye(n); % average with identity
28 nm=nm+1; % count the modification
29 [U,pt]=chol(H); % try again to factor
30 if(pt==0) break; end % positive definite now?
31 end % no; continue modifications
32 if(pt~=0) % was modification successful?
33 xstar=xk; % no; factorization still fails
34 rc=3; % flag nonconvergence
35 return % and return
36 end % yes; modification succeeded
37 end % now Hd=U’Ud=-g
38
39 y=U’\(-g); % solve U’y=-g for y
40 dk=U\y; % solve Ud=y for d
41 if(xk+dk==xk) % is the Newton step too small?
42 xstar=xk; % yes; further descent impossible
43 rc=4; % flag nonconvergence
44 return % and return
45 end % no; continue iterations

This routine differs from ntfs.m in several ways. First, it requires 1 a pointer fcn to a
routine that finds the value of the objective function at a given point, and it returns 1 the
final step length r.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

554 Trust-Region Methods

Second, it modifies the Hessian, if that is necessary, by using a process that cannot loop
endlessly (compare lines 19-37 of this code with lines 15-24 of ntfs.m in §13.2). If the initial
factorization 17 fails and 20 gama has a value that permits H to be modified, this routine
allows only tmax 25-26 modifications. Here gama is interpreted as in ntfs.m: gama=0 means
that if H is not positive definite steepest descent should be used for this iteration, and gama=1

means that if H is not positive definite the routine should resign with rc=2. I will have more
to say in §17.5 about the choice of tmax=1022. As soon as successive averagings of H with
the identity 27 have made H positive definite 29 the modification process is interrupted
30 and the factors of H are used as in ntfs.m. If tmax adjustments do not yield a Hessian
that is positive definite 32 then 33-35 the routine sets rc=3 and resigns. If H is successfully
factored U is used 39-40 to find the descent direction dk, but if taking that Newton step
would not change xk 41 the routine returns 42 the current point as xstar and 43 rc=4.

47 if(kp==1) % start with rzero only if positive
48 if(rzero <= 0) r=norm(dk); end % else use full Newton step
49 end % done initializing r
50 tmax=52; % limit steplength adjustments
51 for t=1:tmax % repeat until limit or success
52 s=min(r,norm(dk)); % restrict steplength to r
53 p=s*(dk/norm(dk)); % find trial step
54 fxk=fcn(xk); % function value at xk
55 gxk=grd(xk); % gradient at xk
56 hxk=hsn(xk); % Hessian at xk
57 qxtry=fxk+gxk’*p+0.5*p’*hxk*p; % quadratic model prediction
58 xtry=xk+p; % find trial point
59 fxtry=fcn(xtry); % actual function value
60 if(fxk==qxtry) % does the model go downhill?
61 rho=(mu+eta)/2; % no; any decrease is enough
62 else % yes; continue adjustment
63 rho=(fxk-fxtry)/(fxk-qxtry); % reduction ratio
64 end % done finding rho
65 if(rho > mu) % enough reduction?
66 xk=xtry; % yes; accept trial step
67 if(rho >= eta) r=2*r; end % increase r if possible
68 break % and continue descent
69 else % no, stepped too far
70 r=r/2; % reduce steplength
71 if(r == 0) break; end % if process fails give up
72 end % finished testing rho
73 end % finished adjusting r
74 if(rho <= mu) % was r adjustment successful?
75 xstar=xtry; % no; return trial point
76 rc=5; % flag nonconvergence
77 return % and resign
78 end % yes; r adjustment succeed
79 end % continue descent
80
81 xstar=xk; % out of iterations
82 rc=1; % so no convergence yet
83 end

The third difference between this routine and ntfs.m is that here, instead of using the
full modified-Newton step dk, the step p that we take is determined using the steplength

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.2 An Adaptive Modified Newton Algorithm 555

adjustment algorithm described above. If no steplength limit is provided on input, r is
initialized 47-49 on the first descent iteration to the length of the full modified-Newton
step. This yields 52 s=norm(dk) and 53 p=dk on the first iteration of the 51-73 loop.
The function value 54 , gradient 55 , and Hessian 56 are found at xk to construct the
model function q(xk), which is used 57 to predict the objective value at the trial point xk+p.
Then 58-59 fcn is used to find the actual function value at the trial point, and the ratio of
reductions rho is calculated 60-64 . If the quadratic model function does not descend at all
60 (which would result in a division by zero at 63) then any decrease in the objective is
sufficient so rho is set 61 to a value bigger than mu but less than eta; otherwise we use 63

the formula given above.
If rho is high enough 65 , the trial point is accepted 66 , r might be increased 67 , and

the steplength adjustment process is interrupted 68 . The descent iterations then continue
79 using the new xk. If rho is too low 69 then 70 r is reduced and the steplength
adjustment iterations continue. If tmax iterations of steplength adjustment are exhausted
without achieving a suitable rho 74 then the routine 76 sets rc=5 and resigns 77 . If kmax
descent iterations are completed without convergence having been achieved 11 , that loop
terminates 79 and the routine returns with rc=1 82 .

To test ntrs.m I wrote the program ntrsh35.m listed on the next page, which produces
the graphs below.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 1.5 2 2.5 3 3.5

x2

x1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 1.5 2 2.5 3 3.5

x2

x1

On the left the steplength adjustment process begins with r = ||x⋆ − x0||, and ntrs converges
in k=7 iterations; on the right it begins with r = 0.001||x⋆ − x0|| and convergence takes k=15
iterations. The performance of this algorithm is dramatically better than the one using fixed
values of r that we studied in §17.1, so these pictures are scaled differently from those.

The graphs on the page after the listing show the steplength limit r being adjusted in
each iteration k of the algorithm. On the left the large starting value r = ||x⋆ − x0|| results in
second and third steps that would be too long, so r is reduced. When the very small starting
value r = 0.001||x⋆ − x0|| is used on the right, the quadratic model is initially accurate so r is
left unchanged for several iterations. In both cases the model underestimates the objective
reduction near x⋆ so r is repeatedly doubled.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

556 Trust-Region Methods

% ntrsh35.m: solve h35 using ntrs.m
clear;clf

xzero=[1;0.6]; % starting point
xstar=[3;0.5]; % catalog optimal point

xl=[0.5;0.0]; % lower bounds for picture
xh=[3.5;0.7]; % upper bounds for picture
ng=100; vc=[0.1,0.5,1,2,3,4.5,6,8]; % set contouring parameters
[xc,yc,zc]=gridcntr(@h35,xl,xh,ng); % get function values on grid

epz=1e-6; % convergence tolerance
gama=0.5; % weight for modified Newton
for tr=1:2

if(tr == 1) % the first experiment
r=norm(xstar-xzero); % allows big steps

else % the second
r=0.001*norm(xstar-xzero); % requires tiny steps

end % finished setting r

xk=zeros(1500); yk=zeros(1500); % fix array sizes
x=xzero; % starting point
rzero=r; % starting steplength
for k=1:20 % do iterations

xk(k)=x(1); % remember the point
yk(k)=x(2); % for plotting later
rk(k)=r; % remember the steplength
kk(k)=k-1; % and iteration in which used

[xstar,kp,nm,rc,r]=ntrs(x,rzero,1,epz,@h35,@h35g,@h35h,gama);

if(rc==0) break; end % stop on zero gradient
x=xstar; % start next iteration
rzero=r; % where this one left off

end % done with iterations
k % report iterations used

figure(tr); set(gca,’FontSize’,30) % separate convergence plots
hold on % begin plot
axis([xl(1),xh(1),xl(2),xh(2)]); % set axes
contour(xc,yc,zc,vc) % draw contour lines
plot(xk(1:k),yk(1:k),’+’); % plot convergence trajectory
plot(xk(1:k),yk(1:k)); % plot connecting lines
hold off % done with plot
if(tr == 1) % if big steps

print -deps -solid rsh35a.eps % call the picture this
else % if tiny steps

print -deps -solid rsh35b.eps % call the picture this
end % done printing the graph
figure(2+tr); set(gca,’FontSize’,30) % separate steplength plots
hold on % begin plot
plot(kk,rk,’o’) % plot r vs k
plot(kk,rk) % plot connecting lines
hold off % done with plot
if(tr == 1) % if starting r

print -deps -solid ntrsra.eps % call the picture this
else % if tiny starting r

print -deps -solid ntrsrb.eps % call the picture this
end % done printing the graph

end % done with experiments

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.3 Trust-Region Algorithms 557

0

1

2

3

4

5

0 1 2 3 4 5 6 7

r

k

r(0) = ||x⋆ − x0||

0

5

10

15

20

25

30

35

0 5 10 15 20

r

k

r(0) = 0.001||x⋆ − x0||

I also tried invoking ntrs.m with r=0 to default its initial steplength to the length of the
first full modified-Newton step. For h35 that is ||d0|| ≈ 8, compared to the initial steplength of
||x⋆−x0|| ≈ 2 that we used in ntrsh35.m. Now the routine solves the problem in 8 iterations.

octave:1> xzero=[1;0.6];
octave:2> rzero=0;
octave:3> epz=1e-6;
octave:4> gama=0.5;
octave:5> [xstar,kp,nm,rc,r]=ntrs(xzero,rzero,20,epz,@h35,@h35g,@h35h,gama)
xstar =

3.00000
0.50000

kp = 9
nm = 3
rc = 0
r = 16.304
octave:6> quit

17.3 Trust-Region Algorithms

Steepest descent, Newton descent, and conjugate gradient methods are each based on a model
function. Adaptively adjusting the steplength helps to ensure that the model matches the
objective throughout each step, so that the successive descent directions recommended by the
model actually go downhill. In §17.2 we developed an adaptive-steplength modified-Newton
algorithm that outperforms the full-step version of modified Newton on h35. Sometimes it
is possible to further improve the performance of an adaptive-steplength algorithm.

If restricting the length of the step from xk ensures that the model function is a good
description of the objective along the descent direction, then the model function might be a
good match to the objective over a whole trust region around xk. We will take this to be a
ball of radius r in Rn (but see [5, p97] [4, p391]) so in two dimensions it is the disk pictured
on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

558 Trust-Region Methods

xk•




r

• xnewt = xk + r(dk/||dk||)

full Newton descent step dk

•xk + p⋆ = xtrust

Ideally we would like xk+1 to minimize f0(x) over the trust region, but finding that point is
as hard as the original optimization. If the model is accurate over the trust region, however,
we can approximate that point by minimizing q(x) over the trust region. This will almost
certainly yield an xtrust = xk+1 different from xnewt = xk + r(dk/||dk||). It is after all the full step
dk that minimizes q(x) in the Newton descent direction, so if r < ||dk|| then xnewt does not
minimize q(x). If the steplength is limited to r < ||dk|| the minimizing point of q(x) over the
trust region is some other point in its boundary, and if ||dk|| < r then the minimizing point is
interior to the trust region. To find xk+1 = xk + p⋆ as the (boundary or interior) point in the
trust region having the lowest value of q(x), we must solve the trust-region subproblem:

minimize
p

q(xk + p) = f0(x
k) + ∇f0(xk)⊤p + 1

2
p⊤H(xk)p

subject to ||p|| ≤ r.

This inequality-constrained nonlinear program has differentiable functions and the linear
independence constraint qualification, so p⋆ will be among the points that satisfy its KKT
conditions.

L = f0(x
k) + ∇f0(xk)⊤p +

1
2
p⊤H(xk)p + λ(||p|| − r)

a ∇pL = 0 + ∇f0(xk) + H(xk)p + λ∇p(||p||) = 0

b ||p|| ≤ r

c λ(||p|| − r) = 0

d λ ≥ 0

The lettered lines are respectively the stationarity, feasibility, orthogonality, and nonnega-
tivity conditions. Recalling from §10.6.3 or §28.1.3 that ∇p||p|| = p/||p||,

a ⇒ ∇f0(xk) +H(xk)p +
λ

||p||p = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.3.1 Solving the Subproblem Exactly 559

Letting u = λ/||p|| we can rewrite this equation as

H(xk)p + up = −∇f0(xk)

or
(

H(xk) + uI
)

p = −∇f0(xk).

If xk is not already stationary we take a step, so ||p|| , 0 and

c ⇒ λ

||p|| (||p|| − r) = 0

or u(||p|| − r) = 0.

If r is big enough so that p is inside the trust region then the constraint is slack, λ = 0, u = 0,
and the first boxed equation says

H(xk)p = −∇f0(xk)

so p = −H−1(xk)∇f0(xk) is the full Newton step. If the constraint is tight the equation says
that (H(xk) + uI)p = −∇f0(xk), so

p = −
(

H(xk) + uI
)−1
∇f0(xk)

||p|| = r.

Substituting the first of these formulas into the second we find that u⋆ is a root of

ϕ(u) =
∣
∣
∣
∣

∣
∣
∣
∣

(

H(xk) + uI
)−1
∇f0(xk)

∣
∣
∣
∣

∣
∣
∣
∣ − r = 0.

In general this nonlinear algebraic equation has 2n roots, which we probably cannot find
analytically. The one we want makes u ≥ 0 as required by the KKT conditions, and makes
the matrix (H(xk) + uI) positive definite so that p is a descent direction.

17.3.1 Solving the Subproblem Exactly

To find the best point xtrust = xk + p⋆ in the trust-region boundary when the full New-
ton step is longer than r, we can solve ϕ(u) = 0 for u⋆ numerically and then compute
p⋆ = −(H(xk) + u⋆I)−1∇f0(xk). To see what is involved in doing that consider this problem,
which I will call bss1 (see §28.7.19).

minimize
x∈R2

f0(x) = (x1 − 2)4 + (x1 − 2x2)2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

560 Trust-Region Algorithms

The program that begins below declares 6-7 the optimal and starting points for this problem.
Then 10-16 it finds the first Newton descent step d0 and 19-21 moves in that direction a
distance r chosen 20 to be less than ||d0||. That ensures the optimal point of the trust-region
subproblem will be in the boundary of the trust region. The routines bss1.m, bss1g.m,
bss1h.m, and truste.m that are used in the program are listed to the right.

1 % bss1trust.m: study the first step in solving bss1
2 clear;clf
3 global r=0 g=zeros(2,1) H=zeros(2,2);
4 xl=[-2;0];
5 xh=[2;4];
6 xstar=[2;1];
7 xzero=[0;3];
8 diary
9
10 % find the first Newton descent step
11 H=bss1h(xzero);
12 [U,tp]=chol(H);
13 tp
14 g=bss1g(xzero);
15 y=U’\(-g);
16 d0=U\y;
17 nd0=norm(d0)
18
19 % step in that direction a distance r
20 r=0.5*norm(xstar-xzero)
21 xnewt=xzero+r*(d0/norm(d0));
22 fnewt=bss1(xnewt)
23
24 % plot the trust-region error function
25 for t=1:101
26 u=-100+0.01*(t-1)*140;
27 xt(t)=u;
28 yt(t)=truste(u);
29 end
30 figure(1); set(gca,’FontSize’,30)
31 hold on
32 axis([-100,40,-1,2])
33 plot(xt,yt)
34 plot([-100;40],[0;0])
35 hold off
36 print -deps -solid bss1phi.eps
37
38 % solve the trust region subproblem exactly
39 uzero=[0,20];
40 ustar=fzero(@truste,uzero);
41 Hstar=H+ustar*eye(2);
42 eigs=eig(Hstar)
43 [err,p]=truste(ustar);
44 xtrust=xzero+p;
45 ftrust=bss1(xtrust)

function f=bss1(x)
f=(x(1)-2)^4+(x(1)-2*x(2))^2;

end

function g=bss1g(x)
g=[4*(x(1)-2)^3+2*(x(1)-2*x(2));

2*(x(1)-2*x(2))*(-2)];
end

function h=bss1h(x)
h=[12*(x(1)-2)^2+2, -4;

-4, 8];
end

function [err,p]=truste(u)
% find trust region subproblem error

global r g H;
p=-inv(H+u*eye(2))*g;
err=norm(p)-r;

end

-1

-0.5

0

0.5

1

1.5

2

-100 -80 -60 -40 -20 0 20 40

su
b
p
ro
b
le
m

er
ro
r
ϕ
(u
)

u
tp = 0
nd0 = 2.7487
r = 1.4142
fnewt = 16.024
eigs =

16.700
59.456

ftrust = 11.280

Then 24-36 the program plots ϕ as a function of u. Based on the graph, shown to the
right, we can see that the solution we want is between u = 0 and u = 20, so using that
search interval 39 the MATLAB function fzero is invoked 40 to find u⋆ > 0 (see §15.0 for

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.3.1 Solving the Subproblem Exactly 561

a description of fzero). The resulting H + u⋆I is found 41 and the eigenvalues 42 of this
matrix confirm that it is positive definite. The output below the graph also shows that H is
positive definite (tp=0) and that r is indeed less than nd0 = ||d0|| 17 .

47 % plot the trust region over contours of q(x)
48 figure(2); set(gca,’FontSize’,30)
49 hold on
50 axis([xl(1),xh(1),xl(2),xh(2)],"equal")
51 [xt,yt]=circle(xzero(1),xzero(2),r,101);
52 plot(xt,yt)
53 [xc,yc,zc,zmin,zmax]=gridcntr(@qbss1,xl,xh,50);
54 vc=[7,10,qbss1(xtrust),qbss1(xnewt),qbss1(xzero)];
55 contour(xc,yc,zc,vc)
56 plot([xzero(1);xnewt(1)],[xzero(2);xnewt(2)])
57 plot([xzero(1);xtrust(1)],[xzero(2);xtrust(2)])
58 hold off
59 print -deps -solid bss1q.eps
60
61 % plot the trust region over contours of f(x)
62 figure(3); set(gca,’FontSize’,30)
63 hold on
64 axis([xl(1),xh(1),xl(2),xh(2)],’equal’)
65 [xt,yt]=circle(xzero(1),xzero(2),r,101);
66 plot(xt,yt)
67 [xc,yc,zc,zmin,zmax]=gridcntr(@bss1,xl,xh,50);
68 vc=[0.05,0.25,2,5,bss1(xtrust),bss1(xnewt),bss1(xzero)];
69 contour(xc,yc,zc,vc)
70 plot([xzero(1);xnewt(1)],[xzero(2);xnewt(2)])
71 plot([xzero(1);xtrust(1)],[xzero(2);xtrust(2)])
72 hold off
73 print -deps -solid bss1f.eps

% compute a q(x) value for bss1
function f=qbss1(x)

xz=[0;3];
fx=bss1(xz);
gx=bss1g(xz);
hx=bss1h(xz);
p=x-xz;
f=fx+gx’*p+0.5*p’*hx*p;

end

The Newton descent step bounded by steplength r is called xnewt in the program 21 , while
the point having lowest objective value in the boundary of the trust region, x0 + p⋆ 44 , is
called xtrust. The final two stanzas of the program, listed on the left above, plot xnewt and
xtrust over contours of 47-59 the quadratic model function listed on the right and 61-73 the
objective function; in both pictures the circle is the trust region. On the left it is clear that
xtrust is on a lower contour of the model function than is xnewt. In fact it is on the lowest
contour of q(x) that is in the boundary of the trust region, confirming that the u⋆ we found
really does solve the trust-region subproblem.

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

•x0

•
xnewt

•xtrust

q(x)
0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

•x0

•
xnewt

•xtrust

f0(x)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

562 Trust-Region Algorithms

The model function is a close approximation to f0(x) over this step, as can be seen by
comparing the two contour diagrams, so it is not surprising that on the right xtrust is also
on a lower contour of f0(x) than is xnewt (though not quite on the lowest contour, which
would be tangent to the trust region). To be precise, the program’s output shows that
xtrust yields an objective value of ftrust ≈ 11.280 while xnewt yields a noticeably higher
objective value of fnewt ≈ 16.024.

17.3.2 Solving the Subproblem Quickly

Letting xk+1 be the solution of the trust-region subproblem can speed convergence, but finding
that point precisely is hard. The error function ϕ(u) depends on H(xk) and ∇f0(xk) in such a
way that an algorithm to find the root we want ends up being complicated if it is going to
work in every case. The CPU time required for these calculations might be more than we
save by using xtrust instead of xnewt. Thus, although the approach illustrated in §17.3.1 can
be generalized [5, §4.3 and p170-171] I will not describe the myriad details here.

Instead, we will study a much simpler way of approximating the solution to the trust-
region subproblem. To see where this idea comes from we need to consider a still simpler
example, so suppose now that in minimizing some objective we start at x0 = [0, 0]⊤ and

q(x) = (x1 − 2)2 + 10(x2 + 1)2

is the quadratic model function that matches f0(x) at that point. Because q(x) agrees with
f0(x) at x

0 in gradient and Hessian as well as in value,

∇f0(x0) = ∇q(x0) =
[

2(x01 − 2)
20(x02 + 1)

]

=

[

2(0 − 2)
20(0 + 1)

]

=

[

−4
20

]

H(x0) = Hq(x
0) =

[

2 0

0 20

]

and the full Newton descent step from x0 is

dN
= −H−1(x0)∇f0(x0) = −

[

2 0

0 20

]−1 [−4
20

]

=

[
1
2

0

0 1
20

] [

4

−20

]

=

[

2

−1

]

.

The picture on the next page shows contours of q(x), its minimizing point xN = [2,−1]⊤, and
the full Newton step dN leading from x0 to xN.

If we draw a trust region about x0 having radius

r ≤ ||dN|| =
√
22 + 12 =

√
5 ≈ 2.23

then the solution of the trust-region subproblem will be in the boundary of the trust region
rather than its interior. For any such r we can find p⋆ graphically as the point where the
trust region boundary is tangent to a contour of q(x); there is no way to make q(x) lower
than that contour value without leaving that trust region.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.3.2 Solving the Subproblem Quickly 563

The picture below shows the graphical solution of the subproblem for our example at several
values of r between 0 and ||dN||.

-2

-1

0

1

2

-2 -1 0 1 2 3 4

x2

x1

x0

xN

dN

trust region boundaries

contours of q(x)

We can find these points ◦ exactly by reasoning as follows.

H(xk) + uI =

[

2 + u 0

0 20 + u

]

(

H(xk) + uI
)−1
=

[
1

2+u
0

0 1
20+u

]

(

H(xk) + uI
)−1
∇f0(xk) =





1
2+u

0

0 1
20+u









−4
20



 =





−4
2+u

20
20+u



 = −p

||p|| =

√
(

−4
2 + u

)2

+

(

20

20 + u

)2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

564 Trust-Region Algorithms

Thus for each value of r we can solve

ϕ(u) =

√
(

−4
2 + u

)2

+

(

20

20 + u

)2

− r = 0 or

(

−4
2 + u

)2

+

(

20

20 + u

)2

= r2

for u⋆(r) and then find

p⋆(r) =





4

2 + u⋆(r)

−20
20 + u⋆(r)





.

To carry out the calculation exactly for an arbitrary value of r we must use a numerical root
finder just as we did for the example of §17.3.1, but for the extreme values of r we can find
p⋆ analytically.

When r = ||p|| = 0 any trust-region subproblem is solved by the u⋆ that makes (see §17.3.1
and Exercise 17.6.27) ∣

∣
∣
∣

∣
∣
∣
∣

(

H(xk) + u⋆I
)−1∣∣

∣
∣

∣
∣
∣
∣ = 0.

Notice that

lim
u→∞

(

H(xk) + uI
)−1
= lim

u→∞
(uI)−1 = lim

u→∞

(

1

u

)

I = [0] .

The norm of the zero matrix is zero, so u(r) = ∞ solves the trust-region subproblem at r = 0,
and u⋆(r = 0) = ∞. We can find the direction of the corresponding p⋆(0) by reasoning in a
similar way.

lim
u→∞

p

||p|| = lim
u→∞





−
(

H(xk) + uI
)−1
∇f0(xk)

∣
∣
∣

∣
∣
∣− (

H(xk) + uI
)−1 ∇f0(xk)

∣
∣
∣

∣
∣
∣




= lim

u→∞





−1
u
∇f0(xk)

∣
∣
∣

∣
∣
∣−1

u
∇f0(xk)

∣
∣
∣

∣
∣
∣



 =
−∇f0(xk)
||∇f0(xk)||

This shows that the limiting direction of p as r → 0 is the direction of steepest descent.
The largest value of r for which the Newton descent step is in the boundary of the trust

region is the length of the full Newton step, dN
= −[H(xk)]−1∇f0(xk), and this corresponds to

u = 0 so u⋆(r = ||dN||) = 0. There we find

lim
u→0

p

||p|| = lim
u→0





−
(

H(xk) + uI
)−1
∇f0(xk)

∣
∣
∣

∣
∣
∣− (

H(xk) + uI
)−1 ∇f0(xk)

∣
∣
∣

∣
∣
∣




=

−
(

H(xk)
)−1
∇f0(xk)

∣
∣
∣

∣
∣
∣− (

H(xk)
)−1 ∇f0(xk)

∣
∣
∣

∣
∣
∣

=
dN

||dN||

so the limiting direction of p as r → ||dN|| is the direction of Newton descent.
We have shown that when r is close to zero p⋆(r) is close to the direction of steepest

descent, and when r is close to the length of the full Newton step p⋆(r) is close to the
direction of Newton descent. This suggests approximating p⋆(r) by the piecewise linear
dogleg drawn with thick lines in the picture on the following page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.3.2 Solving the Subproblem Quickly 565

-1.5

-1

-0.5

0

0.5

-0.5 0 0.5 1 1.5 2 2.5

x2

x1

xk

dS

xS

dN

xN

r = r̂

•x
tru
st (r̂
)

•

x
do
g (r̂)

p(τ̂
)

p
⋆ (r̂
)

The first edge of the dogleg is the full steepest-descent step dS from xk, minimizing q(x) in
that direction at xS (in our example we assumed we are taking the first step, so xk = x0). The
second edge of the dogleg connects xS to xN. The point xN is the full Newton-descent step
dN from xk, and minimizes q(x) in that direction. The point where the dogleg intersects each
trust-region boundary is the approximation that we will use in place of the exact solution
for that radius; here both are plotted as points. The points representing the exact solution
and dogleg solution at r = r̂ are solid, and they are labeled xtrust(r̂) and xdog(r̂) respectively.
There is nothing special about the triangle whose vertices are xk, xS, and xN; in general it is
scalene and can be oriented at any angle to the coordinate axes.

The dogleg approximation is exact at both ends and not too bad in the middle. If we did
not solve the trust-region subproblem but merely restricted the steplength taken by Newton
descent to the trust-region radius, then for a given radius our next iterate would be the
intersection of that trust region with the line from xk to xN. For any trust-region radius less
than the full Newton step, the dogleg approximation comes closer than that to the exact
subproblem solution. The dogleg solution is always between dS and dN.

The point where the dogleg intersects each trust-region boundary can be found alge-
braically, using a formula that depends on which part of the dogleg crosses the circle. Any
point xk + p(τ) on the dogleg can be described using the parameterization [5, p74] at the top
of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

566 Trust-Region Algorithms

p(τ) =

{

τdS 0 ≤ τ ≤ 1 steepest-descent edge
dS
+ (τ − 1)(dN − dS) 1 ≤ τ ≤ 2 connecting edge

If r ≤ ||dS|| then the steepest-descent edge of the dogleg crosses the trust-region boundary at
a point

p(τ) = τdS where τ =
r

||dS|| .

This is just a restricted step in the steepest-descent direction.
If r ≥ ||dS|| then it is the connecting edge of the dogleg that crosses the trust-region

boundary, at a point xk + p(τ) where the vector p(τ) has length r. We can find the τ where
that happens as follows.

∣
∣
∣

∣
∣
∣ p(τ)

∣
∣
∣

∣
∣
∣ =

∣
∣
∣

∣
∣
∣dS
+ (τ − 1)(dN − dS)

∣
∣
∣

∣
∣
∣ = r

n∑

j=1

[

dSj + (τ − 1)(dNj − dSj)
]2
= r2

∑[

(dSj)
2
+ 2(τ − 1)(dSj)(dNj − dSj) + (τ − 1)2(dNj − dSj)2

]

= r2

∑

(dS)2 + 2(τ − 1)
∑

(dSj)(d
N
j − dSj) + (τ − 1)2

∑

(dNj − dSj)2 − r2 = 0

(τ − 1)2
[∑

(dNj − dSj)2
]

+ (τ − 1)
[∑

2(dSj)(d
N
j − dSj)

]

+

[∑

(dSj)
2 − r2

]

= 0

This is a quadratic a(τ − 1)2 + b(τ − 1) + c = 0 with coefficients

a =
∑

(dNj − dSj)2 = (dN − dS)⊤(dN − dS)

b =
∑

2(dSj)(d
N
j − dSj) = 2(dS)⊤(dN − dS)

c =
∑

(dSj)
2 − r2 = (dS)⊤dS − r2

so we can solve it analytically to find

τ = 1 +
−b ±

√
b2 − 4ac
2a

provided the discriminant is nonnegative. That is certainly true if c ≤ 0, which holds if
(dS)⊤dS − r2 ≤ 0 or r ≥ ||dS|| as we assumed. To ensure that τ ≥ 1 so we are on the
connecting part of the dogleg, we should take the positive square root. Then we can find
p(τ) = dS

+ (τ − 1)(dN − dS).
I implemented these calculations in the MATLAB routine dogsub.m, which is listed on

the next page. Its inputs are the Hessian H and gradient g at xk and the radius r of the
trust region; it returns the dogleg step p and a return code rcs to inform the caller if the
factorization of H fails.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.3.2 Solving the Subproblem Quickly 567

1 function [p,rcs]=dogsub(H,g,r)
2 % solve the trust-region subproblem approximately
3
4 [U,pz]=chol(H); % find dn, the full Newton step
5 if(pz~=0) % H positive definite?
6 rcs=1; % report failure
7 return % and give up
8 end % now Hd=U’Ud=-g
9 y=U’\(-g); % solve U’y=-g for y
10 dn=U\y; % solve Ud=y for dn
11
12 if(norm(dn) <= r) % inside trust region?
13 p=dn; % yes; take full Newton step
14 else % otherwise
15 ds=-((g’*g)/(g’*H*g))*g; % find steepest descent full step
16 if(r <= norm(ds)); % on steepest-descent dogleg part
17 tau=r/norm(ds); % find where on the dogleg
18 p=tau*ds; % and the step to there
19 else; % on connecting dogleg part
20 a=(dn-ds)’*(dn-ds); % find
21 b=2*ds’*(dn-ds); % coefficients
22 c=ds’*ds-r^2; % of quadratic
23
24 tau=1+(-b+sqrt(b^2-4*a*c))/(2*a); % find where on dogleg
25
26 p=ds+(tau-1)*(dn-ds); % and the step to there
27 end % finished finding dogleg part
28 end % finished solving subproblem
29
30 rcs=0; % report success
31 end

The routine begins 4-10 by finding the full Newton step dn. If that falls within the trust
region 12 it is used 13 as the dogleg step p. Otherwise 15 the formula we derived in §10.5
is used to find the full steepest-descent step ds. If r is no more than the length of that step
16 then the trust-region boundary intersects the steepest-descent part of the dogleg, so the
first formula on the previous page is used 17-18 to find p. Otherwise 20-22 the Newton
and steepest-descent steps dN and dS are used to compute the coefficients a, b, and c, the
quadratic formula is used 24 to find τ, and the second formula on the previous page is used
26 to find p. I tested dogsub.m by finding p(τ̂) and hence xdog(r̂) for our example, as shown
below (r̂ can be found by counting contour lines in the picture).

octave:1> H=[2,0;0,20];
octave:2> g=[-4;20];
octave:3> rhat=(12/21)*sqrt(5)
rhat = 1.2778
octave:4> [p,rcs]=dogsub(H,g,rhat)
p =

0.76326
-1.02473

rcs = 0
octave:5> norm(p)
ans = 1.2778
octave:6> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

568 Trust-Region Methods

I did not specify an f0(x) for this example so we can’t compute the objective reduction
achieved by moving to xdog. But I did modify the bss1trust.m program of §17.3.1 to use
dogsub.m and to plot the step to xdog for that example along with the steps to xnewt and xtrust

(see Exercise 17.6.32). In the contour diagrams below, q(xdog) is not as low as q(xtrust) but
f0(x

dog) = 9.9546 happens to be lower than f0(x
trust) = 11.280.

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

• x0

•
xnewt

•
xtrust

• xdog

q(x) contours
0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

• x0

•
xnewt

•
xtrust

•xdog

f0(x) contours

bss1

17.4 An Adaptive Dogleg Newton Algorithm

To implement the trust-region idea I wrote the MATLAB function trust.m listed on the next
page. It begins 4-7 by finding the function value, gradient, and Hessian at the starting
point and 9-16 initializing the trust-region radius r to the length of a full Newton step
from there. Then 19-53 it performs up to kmax optimization iterations. The first stanza in
the optimization loop 20-24 tests for convergence. The second stanza 26-47 is our familiar
radius-adjustment scheme, but now 27 it calculates a new step p for each trial radius.
This new p in turn affects the value of ρ and hence the determination of whether the trial
radius provides sufficient objective decrease, so at the conclusion of the process r does provide
sufficient decrease and p is the dogleg solution of the trust-region subproblem for that radius.
This simultaneous determination of r and p is essential for achieving the advantage of using
a solution to the trust-region subproblem, and is the defining characteristic of the trust-
region approach. The third stanza 49-52 performs the move to the new point and updates
the function value, gradient, and Hessian so that the quadratic model 33 will be evaluated
correctly in the next iteration.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.4 An Adaptive Dogleg Newton Algorithm 569

1 function [xstar,kp,rc]=trust(xzero,kmax,epz,fcn,grd,hsn)
2 % adaptive dogleg Newton algorithm
3
4 x=xzero; % set starting point
5 f=fcn(x); % construct
6 g=grd(x); % quadratic
7 H=hsn(x); % model
8
9 [U,pz]=chol(H); % find dn, full Newton step
10 if(pz~=0) % is H positive definite?
11 rc=3; % no; report error
12 return % and give up
13 end % done checking factorization
14 y=U’\(-g); % solve U’y=-g for y
15 dn=U\y; % solve Ud=y for dn
16 r=norm(dn); % its length is initial r
17 mu=0.25; eta=0.75; tmax=52; % set r adjustment parameters
18
19 for kp=1:kmax % up to kmax optimization steps
20 if(norm(g) <= epz) % is x close to stationary?
21 xstar=x; % yes; declare x optimal
22 rc=0; % report convergence
23 return % and return
24 end % not done yet
25
26 for t=1:tmax % find best p for a suitable r
27 [p,rcs]=dogsub(H,g,r); % p from trust region subproblem
28 if(rcs~=0) % is H positive definite?
29 r=r/2; % no; reduce r
30 continue % and try again
31 end % done checking subproblem
32 xtry=x+p; % trial point
33 qtry=f+g’*p+0.5*p’*H*p; % quadratic model value there
34 ftry=fcn(xtry); % actual objective value there
35 rho=(f-ftry)/(f-qtry); % reduction ratio
36 if(rho > mu) % accept trial step?
37 if(rho >= eta) r=2*r; end % yes; increase r if possible
38 break % found suitable r and best p
39 else % model is untrustworthy
40 r=r/2; % reduce trust region radius
41 end % finished testing trial step
42 end % finished adjusting radius
43 if(rho <= mu) % did radius adjustment succeed?
44 rc=2; % no; report failure
45 xstar=xtry; % return the trial point
46 return % and give up
47 end % finished checking success
48
49 x=xtry; % move to the accepted point
50 f=fcn(x); % update
51 g=grd(x); % quadratic
52 H=hsn(x); % model
53 end % continue optimization steps
54 rc=1; % report out of iterations
55 xstar=x; % return the current solution
56
57 end

If the Hessian is not positive definite at the starting point 10-13 the routine reports that
fact and resigns, but if it becomes non-positive-definite later then dogsub returns rcs=1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

570 Trust-Region Methods

In that case, in the hope that we have merely stepped too far, r is reduced 28-31 and the
radius-adjustment process continues. If at the end of tmax radius-adjustment iterations no
satisfactory r has been found 43-47 the routine reports that and resigns, but the reason
could be either that the ρ test failed or that H could not be made non-positive-definite.

To test trust.m I used it to solve bss1 and h35. Because the new algorithm is based on
plain Newton descent I compared its behavior to that of ntplain.m.

octave:1> kmax=100;
octave:2> epz=1e-6;
octave:3> xzero=[0;3];
octave:4> [xstar,kp,rc]=trust(xzero,kmax,epz,@bss1,@bss1g,@bss1h)
xstar =

1.99543
0.99772

kp = 16
rc = 0
octave:5> [xstar,kp]=ntplain(xzero,kmax,epz,@bss1g,@bss1h)
xstar =

1.99543
0.99772

kp = 16
octave:6> xzero=[1;0.6];
octave:7> [xstar,kp,rc]=trust(xzero,kmax,epz,@h35,@h35g,@h35h)
xstar =

3.00000
0.50000

kp = 8
rc = 0
octave:8> [xstar,kp]=ntplain(xzero,kmax,epz,@h35g,@h35h)
xstar =

2.9753e-14
1.0000e+00

kp = 79
octave:9> quit

The iterates generated by trust.m and ntplain.m are identical for bss1 because every full
Newton step falls within the trust region; in that case the algorithm reduces to Newton
descent. On h35 trust.m finds x⋆ in 7 iterations, one fewer than ntrs.m took from the same
starting r, while ntplain.m converges to the stationary but non-optimal point [0, 1]⊤.

When an objective is convex like that of bss1 it is not uncommon for its quadratic
model function to remain a good approximation even far from where it was constructed, and
then all the splendid machinery of the trust-region algorithm gains us nothing. When the
objective is nonconvex like that of h35 it is more likely that the quadratic model is a good
approximation only near where it is constructed, and then the radius-adjustment and dogleg
schemes can come into play.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.4 An Adaptive Dogleg Newton Algorithm 571

It is a tragic irony of nonlinear programming (and not the last we will encounter!) that
the trust-region algorithm can be frustrated by the same nonconvexity that affords it the
opportunity to speed convergence. There are two reasons for this. First, nonconvexity makes
it more likely that a subproblem solution xtrust will yield a higher objective value than xnewt.
If we take the first step in solving h35 with r = ||x⋆ − x0|| ≈ 2 and find the restricted Newton
and exact trust-region steps, we get the points plotted in the graphs below.

-1

-0.5

0

0.5

1

1.5

2

0.5 1 1.5 2 2.5 3 3.5

x2

x1

•x0

•x
newt

•xtrust

-1

-0.5

0

0.5

1

1.5

2

0.5 1 1.5 2 2.5 3 3.5

x2

x1

•x0

•x
newt

•xtrust

h35

The model function on the left looks like the objective on the right at x0, and ρ = 0.26 at xtrust

so no radius adjustment is called for. As expected, the subproblem solution xtrust does fall
on a lower contour of the model function than does xnewt. But on the right we see that xtrust

falls on a higher contour of the objective than does xnewt. It is the nonconvexity of f0 that
makes the value of µ = 1

4
not quite big enough in this case. We could increase µ, but that

would lead to shorter steps being taken in situations where longer ones could be used, also
slowing convergence. Fortunately, one misstep does not mean that the trust-region approach
will fail in subsequent iterations or be ineffective overall.

The second pernicious effect of nonconvexity is that encountering a Hessian which is
not positive definite forces trust.m to reduce the trust-region radius, resulting in slower
convergence. A small value of r condemns the algorithm to short steps, which are (adding
insult to injury) probably along the steepest-descent part of the dogleg. It might seem that
we could simply modify H when it is non-positive-definite, but when we derived the dogleg
approximation we assumed that dN is a full Newton step. If we use a modified Newton step
instead then xdog no longer approximates xtrust. When we solve the subproblem

∣
∣
∣
∣

∣
∣
∣
∣

(

H(xk) + uI
)−1
∇f0(xk)

∣
∣
∣
∣

∣
∣
∣
∣ = r > 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

572 Trust-Region Method

we are in effect modifying the Hessian to require that H(xk) + uI be positive definite, but
to do that by using the dogleg scheme we need to first find dN and that requires H(xk) to
be positive definite. It is because of this snag in using the dogleg approximation that some
authors [5, p76] advocate more sophisticated approaches for solving the subproblem when
f0(x) is nonconvex (see Exercise 17.6.40). As mentioned at the beginning of this Section, those
techniques significantly increase the complexity of the algorithm and might not decrease the
CPU time it consumes even if they do save iterations. Experiments have shown [4, p394]
that trust-region methods are comparable in performance to descent methods using a line
search, though one approach or the other might work better on a particular problem.

The Levenberg-Marquardt algorithm was the first trust-region method proposed
[104] [111] and solves problems of the form

minimize
x∈Rn

f0(x) =

T∑

t=1

[wt(x)]
2.

In that special case it is possible to use an approximate Hessian that is positive definite
(except at x⋆) even if the wt are nonconvex functions, and to solve the subproblem by
techniques that exploit the special structure of the approximate Hessian. Introduced at the
dawn of nonlinear programming, this method was once almost universally used for parameter-
estimation problems [132, p678-679] like the first one described in §8.5. Its technical details
[5, p259-261] are also beyond the scope of this text.

17.5 Bounding Loops

Algorithms that are infinitely convergent, including many used in numerical optimization,
are typically implemented in procedural programming languages by using a loop. Ideally
some sequence of numerical calculations is repeated until the result changes by less than
a convergence tolerance. Unfortunately, even if an algorithm can be proved to converge in
exact arithmetic it is possible for roundoff errors to prevent the stopping test from ever being
satisfied. A loop that terminates based on any condition other than a count of its iterations is
a free loop [100, §13.3.5] and is at risk of never terminating at all, but it is often impossible to
determine based simply on the rules of the algorithm how many repetitions might be needed
to reach a given tolerance. In the case of nonlinear (and especially nonconvex) programming,
the actual behavior of an algorithm also depends on the problem being solved. Fortunately,
the same properties of floating-point numbers that prevent the exact analysis of an algorithm
sometimes permit us to deduce an ultimate limit on the number of iterations that can usefully
be performed.

When I described in §13.2 how ntfs.m modifies the Hessian, I blithely remarked that
“the process continues until H is close enough to the identity that it is positive definite,” but
when we used the routine to solve h35 in §17.1 it entered an endless loop of unsuccessful
modifications. In ntrs.m I bounded the loop so it will end instead, but are 1022 Hessian
modifications enough? How did I choose that rather peculiar limit?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.5 Bounding Loops 573

In either ntrs.m or ntfs.m, if chol() finds that H is not positive definite we update the
Hessian to

H← γH + (1 − γ)I

where γ ∈ [0, 1). If a0 is a diagonal element of H and b0 is an off-diagonal element, repeating
this process produces new values of those elements as follows.

a1 = γ · a0 + (1 − γ) · 1 = γ(a0 − 1) + 1 b1 = γ · b0 + (1 − γ) · 0 = γb0
a2 = γ(γ(a0 − 1) + 1) + (1 − γ) = γ2(a0 − 1) + 1 b2 = γ(γb0) = γ

2b0
...

...

at = γ
t(a0 − 1) + 1 bt = γ

tb0

lim
t→∞

at = 0 · (a0 − 1) + 1 = 1 lim
t→∞

bt = 0 · b0 = 0

In practice H typically becomes positive definite after only one or a few modifications, but
we can establish an upper bound on t by assuming that we really want to replace H by I.
In that case it is pointless to continue past the first modification that yields a bt smaller
than the smallest floating-point number and an at that is indistinguishable from 1. In other
words, we are sure to have done enough modifications if

at = γ
t| a0 − 1| + 1 ≤ eps + 1 and bt = γ

t| b0| ≤ realmin

Here eps is MATLAB’s name for machine epsilon (about 2 × 10−16) and realmin is the
smallest normalized number (about 2 × 10−308) [50, §3.1.1]. These machine constants are
special binary numbers [100, §4.7] so I used base-2 logarithms to solve for t.

t lg (γ) + lg | a0 − 1| ≤ lg(eps) and t lg (γ) + lg | b0| ≤ lg(realmin)

t = max

{

0,
lg(eps) − lg | a0 − 1|

lg (γ)
,
lg(realmin) − lg | b0|

lg (γ)

}

.

To find this limit on Hessian modifications for some typical situations we can compute
lg(eps) = −52 and lg(realmin) = −1022, and let γ = 1

2
so that lg(γ) = −1 (these values are

all exact). If H = I then a0 = 1 and b0 = 0 so we have

t = max

{

0,
−52 − (−∞)
−1 ,

−1022 − (−∞)
−1

}

= max{0,−∞,−∞} = 0

because the identity requires no modification. If we have a0 = 0 and b0 = 1, then

t = max

{

0,
−52 − (0)
−1 ,

−1022 − (0)
−1

}

= 1022.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

574 Trust-Region Methods

Turning a Hessian with zeros on the diagonal and ones everywhere else into the identity
seemed to me the most extreme situation that ntrs.mmight encounter, so I chose tmax=1022.
It would be nice to have a sharper bound on the number of modifications required, but this
extravagant bound is far better than none at all! By changing the assumptions in the analysis
above you can find a value for tmax that reflects your own most pessimistic expectations.
To be sure of not understating t it is necessary to select the diagonal element a0 and the
off-diagonal element b0 from H so that the numbers lg | a0 − 1| and lg | b0| have their highest
values. The logarithm is an increasing function, so to maximize these quantities you can use
the highest values you expect for |Hi i − 1| and for |Hi j| when i , j. Of course no entry can be
bigger than realmax, the highest floating-point value (about 2 × 10+308).

I used a slightly different argument in §12.2 to set a limit on the number of bisections in
bls.m, our first line search routine. If the starting interval of uncertainty has length 1, how
many times t can we divide it in half before the result is so small that compared to 1 it is
invisible? That would be the smallest value of t such that 1 × (1

2
) t ≤ eps or

t =
lg(eps)

lg(1
2
)
=
−52
−1 = 52.

Because of the way floating-point numbers are represented and machine epsilon is defined,
this is the number of fraction bits in an 8-byte floating-point number [100, p58]. I have used
the same limit wherever repeated bisections are performed, most recently in implementing
the steplength adjustment algorithm of §17.2 in ntrs.m and trust.m. Here too you might
think I have misjudged the perversity of numerical calculations and decide to argue for a
limit that is higher or lower. As in all aspects of algorithm design, you should have a rational
basis for your decision rather than picking a number arbitrarily.

17.6 Exercises

17.6.1[E] Most applications of nonlinear programming give rise to problems that have
constraints, but algorithms for solving unconstrained problems are still important. Give two
reasons why.

17.6.2[E] How do trust-region methods differ from descent methods that use a line search?

17.6.3[E] At each iteration, Newton descent minimizes a quadratic model function q(x).
(a) Give a formula for q(x). (b) In what attributes does q(x) match the objective f0(x)?

17.6.4[E] If a quadratic model function q(x) is constructed at xk, how far from xk does it
remain a faithful representation of f0(x)? Explain.

17.6.5[E] Why is it that the performance of a descent method can sometimes be improved
by restricting the length of the steps that it takes? Why is it undesirable to take many short
steps?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.7 Exercises 575

17.6.6[H] In a restricted-steplength algorithm, why is it desirable to continuously adjust
the steplength as the problem is solved? Explain how to calculate pk, a step of length no
greater than r in the direction dk.

17.6.7[E] State two reasons why ntfs.m might fail.

17.6.8[E] The objective reduction ratio

ρ =
f0(x

k) − f0(x
k
+ pk)

f0(xk) − q(xk + pk)

measures the trustworthiness of the quadratic model q(x). (a) For what values of ρ is the
quadratic model a trustworthy representation of f0(x)? (b) For what values of ρ does the
steplength adjustment algorithm of §17.2 accept the trial steplength? (c) When does it make
sense to increase the steplength? (d) When should the steplength be decreased?

17.6.9[E] The ntrs.m routine of §17.2 returns a parameter rc. (a) What does the value
of this parameter indicate? (b) Make a table showing the various values that it can take on
and what they mean.

17.6.10[P] Write a MATLAB program that invokes ntrs.m to solve a problem one iteration
at a time. Use this code to solve the rb and gpr problems, which are described in §28.7. For
each problem, plot the steplength r as a function of iteration k and explain why it changes
when it does.

17.6.11[P] Plot the error curve of ntrs.m when it is used to solve the h35 problem, and
estimate the algorithm’s order of convergence.

17.6.12[H] Steepest descent, Newton descent, and conjugate gradient methods are each
based on a model function. On what model is each of these algorithms based?

17.6.13[P] Using the steplength-adjustment idea of §17.2, revise sdfs.m to produce sdrs.m,
an adaptive-steplength steepest-descent algorithm. Compare the behavior of your routine
to that of sdfs.m when they are both used to solve h35. Does using an adaptive steplength
appear, based on this one experiment, to make steepest descent more robust?

17.6.14[E] Would it make sense to use the steplength-adjustment idea of §17.2 in the
conjugate-gradient routine plrb.m? Explain your answer.

17.6.15[E] What is a trust region?

17.6.16[H] Show that q(xk + p) = f0(x
k) + ∇f0(xk)⊤p + 1

2
p⊤H(xk)p.

17.6.17[P] In §17.3.1, the first iteration in solving the bss1 problem gives rise to a particular
trust region. Write a MATLAB program that computes the objective reduction ratio ρ at
points distributed throughout the trust region and draws a contour diagram showing how ρ
varies. Does this example conform to the assumption that if q(x) is a good approximation
to f0(x) over the restricted Newton step then it is also a good approximation throughout the
trust region?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

576 Trust-Region Methods

17.6.18[E] Why does minimizing the quadratic model function q(x) over a trust region
usually yield a point different from the restricted Newton step? Write an optimization
problem whose solution is the minimizing point of q(x) over a trust region of radius r.

17.6.19[E] In a trust-region algorithm, what is the optimal step if the radius of the trust
region is greater than the length of the full Newton step? What equations must be solved
to find the optimal step if the radius of the trust region is less than the length of the full
Newton step?

17.6.20[H] Show that in general the nonlinear algebraic equation ϕ(u) = 0 derived in §17.3
has 2n roots. (Here n is the number of variables x j in the optimization problem.)

17.6.21[E] If in a trust-region algorithm we solve the equation ϕ(u) = 0, why is it necessary
to choose the root u⋆ that makes the matrix [H(xk) + u⋆I] positive definite? Why is it
necessary that u⋆ be nonnegative?

17.6.22[E] The exact solution of a trust-region subproblem minimizes the quadratic model
function q(x) over the trust region. (a) Why doesn’t that necessarily minimize f0(x) over the
trust region? (b) Under what circumstances are the two minima exactly the same? (c) Can
f0(x

trust) ever be less than q(xtrust)? Explain.

17.6.23[H] Write down two functions fa(x) and fb(x), different from one another by more
than just an additive constant, for which the quadratic model constructed at x0 = [0, 0]⊤ is
q(x) = (x1 − 2)2 + 10(x2 + 1)2.

17.6.24[E] If we know the quadratic model function q(x) that matches a certain function
f0(x) at x̂, but we don’t know an equation for f0(x), how can we find ∇f0(x̂) and H(x̂)?

17.6.25[E] Under what circumstances is the solution of a trust-region subproblem (a) in
the boundary of the trust region; (b) in the interior of the trust region?

17.6.26[E] In §17.3.2 the second picture shows the graphical solution of a trust-region
subproblem for several values of r between 0 and ||dN||. Plot the solution of the subproblem
for values of r bigger than ||dN||.

17.6.27[H] Show that when r = 0 the trust-region subproblem is solved by u⋆ if
∣
∣
∣
∣

∣
∣
∣
∣

(

H(xk) + u⋆I
)−1∣∣

∣
∣

∣
∣
∣
∣ = 0.

17.6.28[E] If the radius r of a trust region is very small, what is the direction of the step
p⋆ that solves the trust-region subproblem? If r = ||dN||, what is the direction of p⋆?

17.6.29[E] If p⋆ is the optimal solution of a trust-region subproblem when the trust re-
gion has radius r, describe the dogleg that approximates p⋆(r). Once a dogleg has been
constructed, how is it used?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.7 Exercises 577

17.6.30[H] If in constructing the dogleg approximation to p⋆(r) the Hessian is the identity
matrix, what does the dogleg look like?

17.6.31[E] Explain what dogsub.m does, and how it works.

17.6.32[P] Modify the bss1trust.m program of §17.3.1 to use dogsub.m and to plot the
step to xdog for that example along with the steps to xnewt and xtrust, and confirm that you
obtain the pictures given in §17.3.2.

17.6.33[P] The trust region approach is an alternative to descent methods that use a
line search, so the algorithms we have developed in this Chapter do not enforce bounds
on the variables even though it is sometimes desirable to do so. Modify the steplength-
adjustment scheme to ensure that each step remains within bounds on the variables, and
revise (a) ntrs.m and (b) trust.m to incorporate this feature. Test your code by imposing
bounds on the variables in h35.

17.6.34[E] Suppose that in solving a trust-region subproblem, the restricted Newton step
goes to xnewt, the exact subproblem solution is xtrust, and the dogleg solution is xdog. (a) Arrange
q(xtrust), q(xnewt), and q(xdog) in ascending order. (b) Say everything you know about the
relative values of f0(x

trust), f0(x
newt), and f0(x

dog).

17.6.35[E] How does the radius-adjustment part of a trust-region algorithm such as
trust.m work differently from the radius-adjustment part of a restricted-steplength algo-
rithm such as ntrs.m?

17.6.36[P] Plot the convergence trajectory of trust.m over contours of the objective when
the algorithm is used to solve the h35 problem.

17.6.37[P] Plot the error curve of trust.m when it is used to solve the h35 problem, and
estimate the algorithm’s order of convergence.

17.6.38[P] Solve bss1 from x0 = [2, 5]⊤ using ntrs.m and trust.m, and explain your results.

17.6.39[H] Show that x = [0, 1]⊤ is a stationary point, but not a minimizing point, of h35.

17.6.40[P] Study the advice given in [5, §4.3] about solving the trust-region subproblem
exactly, and write a MATLAB routine [p,rcs]=trustsub(H,g,r,tol) that returns the sub-
problem solution correct to within tol. Revise trust.m to invoke this routine in place of
dogsub.m, and compare the performance of the new version to that of the old when both are
used to solve h35. The MATLAB tic and toc commands can be used to measure the time
that a calculation uses.

17.6.41[P] In ntrs.m 60-61 I was careful to guard against dividing by zero if f (xk) ≡
q(xk + p), but to keep trust.m simple I took no such precaution there. (a) Explain how it
might happen that the quadratic model function does not decrease in stepping from xk to
xk + p. (b) Modify trust.m to incorporate the safeguard. (c) Is it always desirable to test
the denominator before attempting a division?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

578 Trust-Region Methods

17.6.42[E] Explain why the trust-region approach might not be faster than Newton descent
for minimizing a nearly-quadratic convex function. Describe two ways in which the trust-
region algorithm can be frustrated if the function being minimized is not convex.

17.6.43[H] The Levenberg-Marquardt algorithm minimizes an objective of the form

f0(x) =

T∑

t=1

[wt(x)]
2

and uses the approximation H(x) ≈ J(x)⊤J(x), where J(x) is a Jacobian matrix whose rows are
the gradients of the functions wt [59, p92]. For (a) bss1 and (b) h35 write the objective as a
sum of squares, find J as a function of x, write a MATLAB function to return the approximate
Hessian for a given x, and compare the approximation to the true value of the Hessian at
some points of interest for the problem. (c) Write down a function that cannot be expressed
as a sum of squares.

17.6.44[E] What role does the Levenberg-Marquardt algorithm play in the glorious history
of numerical optimization?

17.6.45[E] What is a free loop? Code in MATLAB an example of a free loop and an example
of a bounded loop. Why might an algorithm that has an analytic proof of convergence
continue forever anyway if it is implemented using a free loop?

17.6.46[E] Define the following MATLAB quantities: (a) eps; (b) realmin; (c) realmax.
What are their approximate values?

17.6.47[H] In ntrs.m the Hessian modification loop is bounded, but in three §13 routines
it is not! Revise each of the following codes to bound that loop: (a) ntfs.m; (b) nt.m;
(c) ntw.m.

17.6.48[H] The code in this book places an upper limit on the iterations of every algo-
rithm that repeatedly divides a number by two. What is that limit, and why? Propose an
alternative, and explain its rational basis.

17.6.49[P] The steplength adjustment scheme of §17.2 doubles r whenever a step reduces
the objective by enough. How many such doublings can be performed before r exceeds
realmax? When that happens r acquires the special byte code for Inf [100, §4.7], and any
subsequent attempts to divide it by two just yield Inf again. Revise ntrs.m to guard against
this by increasing r more slowly (when an increase is permitted) rather than by doubling
it. Ideally r should get big enough to permit the use of full Newton steps when the model
is good, but remain small enough that it can be reduced quickly if the model becomes bad.
However your scheme works, it should ensure that no matter how many times r is increased
it always remains less than realmax.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

17.7 Exercises 579

17.6.50[H] In §17.5, I assumed that our calculations are performed using 8-byte numbers
conforming to the IEEE floating-point standard [84] because that is the precision used by
MATLAB. How do the iteration limits we found change if instead the calculations are per-
formed using 4-byte reals [100, §4.2]?

17.6.51[P] Write a MATLAB program that averages H with I repeatedly using γ = 1
2
, and

perform 1022 iterations to transform





0 1 1

1 0 1

1 1 0




into





1 0 0

0 1 0

0 0 1




.

(a) Confirm that the diagonal elements of the result are within eps of 1 and that the off-
diagonal elements of the result are less than realmin. (b) Explain why the diagonal elements
remain not precisely 1 and the off-diagonal elements remain not precisely 0 (Hint: IEEE
floating-point arithmetic supports subnormal numbers [125, p20-21]). (c) How many iter-
ations are needed to obtain diagonal elements that are precisely 1 and off-diagonal elements
that are precisely 0? Can you explain why based on the kind of analysis we did in §17.5?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18

The Quadratic Penalty Method

Consider this equality-constrained nonlinear pro-
gram, which I will call p1 (it is Example 16.5 of
[5]; see §28.7.20).

minimize
x∈R2

f0(x) = −x1x2 = z

subject to f1(x) = x1 + 2x2 − 4 = 0

x 0
= [4,4]⊤

x⋆ = [2,1]⊤

z⋆ = -2

We can solve this problem analytically by using the
Lagrange method of §15.3 as follows.

L(x, λ) = −x1x2 + λ(x1 + 2x2 − 4) 0

1

2

3

4

5

0 1 2 3 4 5

x1

x2

•x
⋆

f0 (x
)
=
−
2

f1 (x) = 0

∂L
∂x1

= −x2 + λ = 0

∂L
∂x2

= −x1 + 2λ = 0

x1 + 2x2 − 4 = 0

These conditions are satisfied at x⋆ with λ⋆ = 1. Problem p1 is related to the unconstrained
nonlinear program below.

minimize
x∈R2

π(x; µ) = f0(x) + µ[f1(x)]
2
= −x1x2 + µ(x1 + 2x2 − 4)2

Because f1(x
⋆) = 0 the optimal values of the two problems are equal, so π(x⋆) = f0(x

⋆).
The quantity µ[f1(x)]

2 is called a penalty term, and the parameter µ ≥ 0 is the penalty

multiplier. If µ = 0 this penalty problem of p1 is unbounded; if µ > 0 then minimizing
π(x) yields a compromise between minimizing f0(x) and satisfying the constraint. We can
solve this problem analytically by finding the stationary points of π(x).

∂π

∂x1
= −x2 + 2µ(x1 + 2x2 − 4) = 0

∂π

∂x2
= −x1 + 4µ(x1 + 2x2 − 4) = 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

582 The Quadratic Penalty Method

These conditions are satisfied by

x1 =
16µ

8µ − 1 x2 =
8µ

8µ − 1

and in the limit as µ→ ∞ we find for the original problem that x⋆1 = 2 and x⋆2 = 1. We can
also deduce λ⋆, by comparing the stationarity conditions for the two problems.

π(x; µ) = f0(x) + µ[f1(x)]
2

so at optimality ∇π(x; µ) = ∇f0(x) + 2µ f1(x)∇f1(x) = 0

L(x, λ) = f0(x) + λ f1(x)

so at optimality ∇L(x, λ) = ∇f0(x) + λ∇f1(x) = 0

Thus λ(µ) = 2µ f1[x(µ)]. For our example, using the expressions we found above for x1(µ) and
x2(µ),

λ(µ) = 2µ(x1 + 2x2 − 4)

= 2µ

(

16µ

8µ − 1 + 2
8µ

8µ − 1 − 4
)

=
8µ

8µ − 1 .

Taking the limit as µ→ ∞ we find for the original problem that λ⋆ = 1.
It was Richard Courant who first suggested [32] (in a quite different context) studying the

stationarity conditions of π(x; µ) as µ → ∞. That idea led subsequently to the development
of the penalty and barrier methods [57] that are our topic in this Chapter and the next.

18.1 The Quadratic Penalty Function

The analytic approach we used above suggests a numerical method for solving equality-
constrained nonlinear programs.

1. Form the quadratic penalty function π(x; µ) = f0(x) + µ

m∑

i=1

[fi(x)]
2.

2. Set µ to a large value.

3. Solve the unconstrained penalty problem.

We have already developed a suite of routines for solving unconstrained problems, and it
would be convenient to use them for minimizing the quadratic penalty function. To do that it
will be necessary to provide MATLAB routines that compute the value, gradient, and Hessian
of π(x; µ). In specifying an equality-constrained nonlinear program such as p1, on the other
hand, it would be easiest to code MATLAB routines that compute the value, gradient, and
Hessian of fi(x), where i = 1 . . .m, in the standard way that I described in §15.5.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.1 The Quadratic Penalty Function 583

Above we found the gradient of π(x; µ) in terms of the fi(x) for p1 by an application of
the chain rule; the gradient of [f1(x)]

2 is twice the quantity in brackets times the gradient of
what’s inside.

π(x; µ) = f0(x) + µ[f1(x)]
2

∇π(x; µ) = ∇f0(x) + 2µ[f1(x)]1∇f1(x)

These are the scalar components of ∇π(x; µ).

∂π

∂x1
=
∂ f0

∂x1
+ 2µ f1

∂ f1

∂x1

∂π

∂x2
=
∂ f0

∂x2
+ 2µ f1

∂ f1

∂x2

To find the Hessian we differentiate again using the chain and product rules.

Hπ(x; µ) =





∂2 f0

∂x12
+ 2µ

(

f1
∂2 f1

∂x12
+
∂ f1

∂x1

∂ f1

∂x1

)

∂2 f0

∂x1∂x2
+ 2µ

(

f1
∂2 f1

∂x1∂x2
+
∂ f1

∂x2

∂ f1

∂x1

)

∂2 f0

∂x2∂x1
+ 2µ

(

f1
∂2 f1

∂x2∂x1
+
∂ f1

∂x1

∂ f1

∂x2

)

∂2 f0

∂x22
+ 2µ

(

f1
∂2 f1

∂x22
+
∂ f1

∂x2

∂ f1

∂x2

)





=





∂2 f0

∂x12
∂2 f0

∂x1∂x2

∂2 f0

∂x2∂x1

∂2 f0

∂x22





+ 2µ f1





∂2 f1

∂x12
∂2 f1

∂x1∂x2

∂2 f1

∂x2∂x1

∂2 f1

∂x22





+ 2µ





∂ f1

∂x1

∂ f1

∂x2





[

∂ f1

∂x1

∂ f1

∂x2

]

= H f0(x) + 2µ f1(x)H f1(x) + 2µ∇f1(x)∇f1(x)⊤

To compute these quantities I wrote the p1pi.m, p1pig.m, and p1pih.m routines listed below.

function f=p1pi(x)
global mu
f=p1(x,0)+mu*(p1(x,1))^2;

end

function g=p1pig(x)
global mu
g=p1g(x,0);
g=g+2*mu*p1(x,1)*p1g(x,1);

end

function H=p1pih(x)
global mu
H=p1h(x,0);
H=H+2*mu*p1(x,1)*p1h(x,1);
H=H+2*mu*p1g(x,1)*p1g(x,1)’;

end

Each of these routines can have only the single formal parameter x, because our unconstrained
minimization codes will invoke them as fcn(x), grd(x), and hsn(x). To compute the value
and derivatives of π it is necessary also to know µ, so that number must be passed as a global
parameter.

The values, gradients, and Hessians of the functions defining problem p1 are computed
by the routines p1.m, p1g.m, and p1h.m listed on the next page. Recall that i=0 refers to
the objective function f0(x) and i=1 refers to the constraint function f1(x).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

584 The Quadratic Penalty Method

function f=p1(x,i)
switch(i)

case 0
f=-x(1)*x(2);

case 1
f=(x(1)+2*x(2)-4);

end
end

function g=p1g(x,i)
switch(i)
case 0
g=[-x(2);

-x(1)];
case 1
g=[1;

2];
end

end

function H=p1h(x,i)
switch(i)
case 0
H=[0,-1;

-1, 0];
case 1
H=[0,0;

0,0];
end

end

Using these six routines to define the quadratic penalty function for the p1 problem, I tried
ntchol.m for several values of µ. Recall from §13.1 that ntchol.m implements the plain
full-step Newton algorithm, finding the descent direction by the factor-and-solve approach.

octave:1> format long
octave:2> xzero=[4;4];
octave:3> kmax=100;
octave:4> epz=1e-6;
octave:5> global mu=1
octave:6> [xstar,kp]=ntchol(xzero,kmax,epz,@p1pig,@p1pih)
ans =

2.28571428571429
1.14285714285714

kp = 2
octave:7> mu=100;
octave:8> [xstar,kp]=ntchol(xzero,kmax,epz,@p1pig,@p1pih)
ans =

2.00250312891095
1.00125156445565

kp = 2
octave:9> mu=1e11
mu = 100000000000
octave:10> [xstar,kp]=ntchol(xzero,kmax,epz,@p1pig,@p1pih)
ans =

2.00000000000250
1.00000000000125

kp = 100
octave:11> quit

According to the analytic results we derived above we should find for µ = 1011

x1 =
16µ

8µ − 1 =
16 × 1011

8 × 1011 − 1 = 2.00000000000250

x2 =
8µ

8µ − 1 =
8 × 1011

8 × 1011 − 1 = 1.00000000000125

and that is what we found. Further increasing µ pushes the trailing nonzero digits off to the
right until, within machine precision, we get x⋆ exactly.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.1 The Quadratic Penalty Function 585

In p1 the objective f0 is not convex but the equality constraint f1 is linear so it is convex.
At some value of µ (see Exercise 18.5.11) the penalty problem becomes a convex program
and thus easy for ntchol.m to solve. What happens if we try a problem in which f0 is
convex but f1 is a nonlinear equality, which makes the problem not convex? To find out I
experimented with this problem, which I will call p2 (it is Example 9.2.4 of [1]; see §28.7.21).

minimize f0(x) = (x1 − 2)4 + (x1 − 2x2)2 = z

subject to f1(x) = x21 − x2 = 0

x0 = [1,2]⊤

x⋆ = [0.945582993415968,0.894127197437503]⊤

z⋆ = 1.94618371044280

This problem is just bss1 with an added constraint; I used the constraint to eliminate x2 and
solved the resulting cubic numerically to find x⋆. The problem has the function, gradient,
and Hessian routines listed below.

function f=p2(x,i)
switch(i)

case 0
f=(x(1)-2)^4+(x(1)-2*x(2))^2;

case 1
f=x(1)^2-x(2);

end
end

function g=p2g(x,i)
switch(i)
case 0
g=[4*(x(1)-2)^3+2*(x(1)-2*x(2));

2*(x(1)-2*x(2))*(-2)];
case 1
g=[2*x(1);

-1];
end

end

function H=p2h(x,i)
switch(i)
case 0
H=[12*(x(1)-2)^2+2,-4;

-4,8];
case 1
H=[2,0;

0,0];
end

end

We could code the calculation of π(x; µ) and its derivatives for this problem by writing
routines like p1pi.m, p1pig.m, and p1pih.m, but with only slightly more work I wrote these
routines instead (both pi and pie are reserved words in MATLAB so I used pye).

1 function f=pye(x)
2 global prob m mu
3 fcn=str2func(prob);
4 f=fcn(x,0);
5 for i=1:m
6 f=f+mu*(fcn(x,i))^2;
7 end
8 end
9
10
11

function g=pyeg(x)
global prob m mu
fcn=str2func(prob);
grd=str2func([prob,’g’]);
g=grd(x,0);
for i=1:m
g=g+2*mu*fcn(x,i)*grd(x,i);

end
end

function H=pyeh(x)
global prob m mu
fcn=str2func(prob);
grd=str2func([prob,’g’]);
hsn=str2func([prob,’h’]);
H=hsn(x,0);
for i=1:m
H=H+2*mu*fcn(x,i)*hsn(x,i);
H=H+2*mu*grd(x,i)*grd(x,i)’;

end
end

These three routines work for any problem. To see how, first consider pye.m. It begins
2 by receiving µ and two other global parameters. The variable prob contains a character
string naming the problem we want to solve (e.g., p2), and m is the number of constraints
in the problem. To invoke the routine that returns function values for the problem prob

we need a function handle or pointer to the appropriate file (e.g., p2.m) so I used 3

the MATLAB built-in function str2func [50, §11.10] to obtain it as fcn. Then π(x; µ) is
accumulated in f one term at a time. The first term 4 is the objective, to which we add

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

586 The Quadratic Penalty Method

5-7 µ times each constraint. The pyeg.m and pyeh.m routines are similar to pye.m, but they
calculate respectively the gradient and the Hessian of π(x; µ) by generalizing on the formulas
we derived above. In pyeg.m string concatenation is used 4 to manufacture the name of a
gradient routine (e.g., p2g) so that it can be used in str2func to find the function handle
grd, and in pyeh.m the same technique is used 5 to find the function handle hsn.

Using these six routines I tried to solve p2, as shown in the Octave session below. With
µ = 0 the constraint is out of the problem, so ntchol.m returns the same unconstrained
minimum that it finds for bss1. Increasing µ as we did in solving p1 does move the optimal
point of the p2 penalty problem closer to x⋆, but soon chol() reports that Hπ is no longer
positive definite. Only a small amount of penalty for violating the nonlinear equality f1(x) = 0

can be added into π before the penalty problem becomes too nonconvex to solve using full-
step Newton descent.

octave:1> format long
octave:2> xzero=[1;2];
octave:3> kmax=100;
octave:4> epz=1e-6;
octave:5> [xstar,kp]=ntchol(xzero,kmax,epz,@bss1g,@bss1h)
xstar =

1.994861768913827
0.997430884456914

kp = 14
octave:6> global prob=’p2’ m=1 mu=0
octave:7> [xpi,kp]=ntchol(xzero,kmax,epz,@pyeg,@pyeh)
xpi =

1.994861768913827
0.997430884456914

kp = 14
octave:8> mu=4;
octave:9> [xpi,kp]=ntchol(xzero,kmax,epz,@pyeg,@pyeh)
xpi =

1.039593971730643
0.800276298664026

kp = 5
octave:10> mu=16;
octave:11> [xpi,kp]=ntchol(xzero,kmax,epz,@pyeg,@pyeh)
error: chol: matrix not positive definite
error: called from:
error: /home/mike/Texts/IMP/ntchol.m at line 10, column 8
octave:12> quit

To investigate the causes of this failure I wrote the p2nonpd.m program on the next page. It
plots for p2 the same contours of π(x; µ) at four values of µ, and uses the plotpd.m routine
of §13.2 to draw plus signs where Hπ is positive definite. The output of the program consists
of the four graphs on the page after the listing.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.1 The Quadratic Penalty Function 587

1 % p2nonpd.m: study the nonconvexity of the p2 problem
2 clear;clf
3
4 global prob=’p2’ m=1 mu=0 % specify the problem
5 xl=[0;0]; xh=[3;3]; % bounds for plots
6 xstar=[0.945582993415968;0.894127197437503]; % optimal point of p2
7 vc=[40,25,14,7,5,pye(xstar),1,.25,.05]; % fix contour levels
8 mus=[0,4,16,1000]; % multiplier values
9
10 for t=1:4 % consider 4 cases
11 mu=mus(t); % set multiplier value
12 figure(t); set(gca,’FontSize’,20) % separate pictures
13 axis([xl(1),xh(1),xl(2),xh(2)],’square’) % scale graph axes
14 hold on % start plot
15 [xc,yc,zc]=gridcntr(@pye,xl,xh,200); % grid penalty function
16 contour(xc,yc,zc,vc) % plot penalty contours
17 plotpd(xl,xh,20,@pyeh) % plot pd points
18 plot(1,2,’o’) % plot starting point
19 plot(xstar(1),xstar(2),’o’) % plot optimal point
20 hold off % done with plot
21 switch(t) % print the picture
22 case 1; print -deps p2nonpd1.eps % mu=1
23 case 2; print -deps p2nonpd2.eps % mu=8
24 case 3; print -deps p2nonpd3.eps % mu=16
25 case 4; print -deps p2nonpd4.eps % mu=1000
26 end % done printing
27 end % done with cases

The program begins by 4 giving values to the global parameters that will be needed by
pye.m and pyeh.m. Pointers to those routines are passed to gridcntr 15 and plotpd 17 .
Next it sets 5 bounds and 6-7 contour levels for the graphs and 8 the four values of µ
that will be used. Then, for each value of µ 11 it 15-16 plots the contours of π(x; µ) and
17 marks points where Hπ is positive definite. The program also plots 18 x0 = [1, 2]⊤ and
19 x⋆ for the p2 problem.

When µ = 0 the constraint is out of the problem, so the top left panel on the next page
shows the contours of the p2 objective. That is the same as the bss1 objective, so this
picture looks like the one we drew for bss1 at the end of §17.3.2. The starting and optimal
points for p2 are marked with closed circles • and are labeled x0 and x⋆ respectively. The
minimizing point xπ of π(x; 0), which is at [2, 1]⊤, is marked with an open circle ◦.

Increasing µ squeezes the contour lines together, moving xπ closer to x⋆. At µ = 1000, in
the bottom right panel, xπ is indistinguishable from x⋆, and the banana shape of the contours
clearly reveals the nonconvexity of the penalty function. As µ → ∞, xπ approaches x⋆ and
the contours of π(x; µ) approach the zero contour of f1(x), which is just the curve x2 = x21.

In the upper left panel the field of plus signs covers the whole graph, showing that
Hπ(x; 0) = H f0(x) is positive definite everywhere. Letting µ = 4 in the upper right panel
produces a region of R2 over which Hπ is not positive definite, and in the bottom panels
we see that increasing µ makes the clear region grow. If the path taken by Newton descent
from x0 includes an iterate where the Hessian is not positive definite, then ntchol.m will fail
as we observed in the Octave session above. As µ → ∞, the boundary of this toxic region
approaches the constraint contour, so that Newton descent is possible only from its right.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

588 The Quadratic Penalty Method

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 0
x2

x1

•x0

•x⋆
◦xπ

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 4
x2

x1

•x0

•x⋆ ◦
xπ

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 16
x2

x1

•x0

•x⋆◦xπ

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 1000
x2

x1

•x0

• x⋆≈xπ

This experiment reveals two reasons why p2 is hard to solve using Newton descent. First,
in this problem the penalty function is nonconvex, and it becomes more nonconvex as µ is
increased. Second, the region in which Hπ is not positive definite grows as µ is increased,
eventually engulfing x0 and in the limit touching x⋆.

Now that we understand this problem it is obvious that we could make our method
work by choosing a starting point in the region of R2 where Hπ is positive definite, but for
an arbitrary problem in Rn we don’t know where that region is. We could also make our
method work by using modified Newton descent, but only by accepting slower convergence.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.2 Minimizing the Quadratic Penalty Function 589

18.2 Minimizing the Quadratic Penalty Function

Suppose that in solving the p2 problem we had begun by minimizing π(x; µ) with µ = 0.
Then, starting from the xπ in the top left panel on the previous page, we could have used
a larger µ without making Hπ non-positive-definite (in fact, proceeding from that starting
point in that problem, we could have made µ as big as we liked).

If in solving an equality-constrained nonlinear program that has the penalty function
π(x; µ) there is some path of iterates

xk = argmin
x

π(x; µk)

leading from x0 to x⋆ along which each Hπ(x
k; µk) is positive definite for some µk, then we can

solve the original problem by doing a sequence of full-step Newton descent minimizations of
π using a suitably chosen multiplier µk at each step. In general there is no way of knowing
beforehand what sequence of multipliers will ensure that Hπ(x

k; µk) remains positive definite,
but if Hπ(x

0; 0) is positive definite then a reasonable heuristic [1, p484] is to start with a
small value of µ0 and increase it at every step. This leads to the following refinement of our
earlier method.

1. Form the quadratic penalty function as usual.

2. Set µ to a small value.

3. Starting from x0 solve the unconstrained penalty problem to get xπ.

4. Replace x0 by xπ and increase µ.

5. If more accuracy is desired GO TO step 3.

To try this idea I wrote the program p2pen.m listed on the next page. The program begins
5-7 by describing the problem and 9-18 plotting contours of the objective and constraint
functions; because µ is initialized to zero 5 , pye.m returns values of f0(x) to gridcntr.m.
Then, starting with a small positive value of µ 21 p2pen.m does 59 iterations (this is just
enough to get the exact answer) of 28 solving the penalty problem, 29 using the result as
the next starting point, and 30 increasing µ. When it is run it produces the output shown
below, which is x⋆ for the p2 problem.

octave:1> p2pen
xpi =

0.945582993415968
0.894127197437503

The p2pen.m program also 23-26 captures the iterates of the algorithm so that it can plot
the 34-37 convergence trajectory and 38-43 error curve shown below the listing.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

590 The Quadratic Penalty Method

1 % p2pen.m: solve p2 by a sequence of penalty problems
2 clear;clf
3 format long
4
5 global prob=’p2’ m=1 mu=0 % specify the problem
6 xl=[0;0]; xh=[3;3]; % bounds for graph
7 xstar=[0.945582993415968;0.894127197437503]; % optimal point of p2
8 vc=[40,25,14,7,5,pye(xstar),1,.25]; % fix contour levels
9 figure(1); set(gca,’FontSize’,30) % first picture

10 axis([xl(1),xh(1),xl(2),xh(2)],’square’) % scale graph axes
11 hold on % start plot
12 [xc,yc,zc]=gridcntr(@pye,xl,xh,200); % grid p2 objective
13 contour(xc,yc,zc,vc) % plot the contours
14 for p=1:200 % compute
15 xp(p)=2*(p-1)/(200-1); % points on
16 yp(p)=xp(p)^2; % the equality
17 end % constraint
18 plot(xp,yp) % and plot them
19
20 xzero=[1;2]; % starting point
21 mu=0.05; % starting multiplier
22 for k=1:59 % do the sequence
23 xk(k)=xzero(1); % for plotting later
24 yk(k)=xzero(2); % save current point
25 muk(k)=mu; % and current multiplier
26 err(k)=norm(xstar-xzero); % and solution error
27
28 xpi=ntchol(xzero,10,1e-6,@pyeg,@pyeh); % solve penalty problem
29 xzero=xpi; % start from there
30 mu=2*mu; % with higher multiplier
31 end % end of sequence
32 xpi % report final point
33
34 plot(xk,yk,’o’) % penalty solutions
35 plot(xk,yk) % connected by lines
36 hold off % done with plot
37 print -deps -solid p2pen.eps % print the plot
38 figure(2); set(gca,’FontSize’,30) % second picture
39 axis([0.05,1e16,1e-16,1]) % scale graph axes
40 hold on % start error plot
41 loglog(muk,err) % log(err) vs log(mu)
42 hold off % is like log(err) vs k
43 print -deps -solid p2err.eps % print the plot

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

x1

x2

x0

x⋆

f 1
(x
)
=
0

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

||x⋆ − xk ||

µk

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.3 A Quadratic Penalty Algorithm 591

The first step of the algorithm, with µ = 0.05, is in a direction close to that of Newton
descent for minimizing the objective. As µ increases the trajectory turns toward satisfying
the constraint, and as x⋆ is approached the steps get shorter.

Although Newton descent has second-order convergence in solving each penalty problem,
the error curve shows that the convergence of the overall quadratic penalty algorithm is only
linear (see Exercise 18.5.20).

18.3 A Quadratic Penalty Algorithm

Unfortunately, depending on the original problem it might be that no matter how we choose
the µk there is no sequence of penalty problems leading from x0 to x⋆ in which each Hπ(x

k; µk)

is positive definite. If such a sequence does exist, our heuristic for generating the µk might not
produce it, because we just double µ at each step without paying any attention to Hπ(x; µ).
In §18.1 we solved the penalty problem for p1 with µ = 1, µ = 100, and µ = 1011, but
the approach we used in p2pen.m would fail for that problem on the first iteration because
Hπ(x

0; 0.05) is not positive definite.

octave:1> format long
octave:2> xzero=[4;4];
octave:3> kmax=100;
octave:4> epz=1e-6;
octave:5> global prob=’p1’ m=1 mu=0.05
octave:6> [xstar,kp]=ntchol(xzero,kmax,epz,@pyeg,@pyeh)
error: chol: matrix not positive definite
error: called from:
error: /home/mike/Texts/IMP/ntchol.m at line 10, column 8
octave:7> quit

To be practical, an implementation of the quadratic penalty method must be robust against
nonconvexity. That means using modified Newton to solve the penalty problems, even as we
earnestly hope that solving them in sequence as we gradually increase µk will avoid or reduce
the need for Hessian modifications and the resulting dilution of second-order convergence. I
therefore used the ntrs.m routine of §17.2 in place of ntchol.m in the penalty.m routine
on the next page.

This routine begins by copying 3 the input parameter for the name of the problem into
the global variable prob, 4 the input number meq of equality constraints into the global
variable m, and 5 the input value of µ0 into the global variable mu. Then 6 it starts the
solution process at the given starting point x0 and 9-19 solves a sequence of no more than
kmax penalty problems using the same approach as in p2pen.m: the optimal solution is found
10 at the current µ, that point is used 17 as the starting point for the next iteration, and
18 the multiplier is increased. Testing showed 10 iterations of ntrs.m to be sufficient.

The performance of the algorithm depends on the proportion of penalty problem solutions
that require Hπ to be modified, so this routine 11-13 counts those iterations for 1 return to
the caller as nm. The return code rc from ntrs.m and the multiplier µ are also passed back.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

592 The Quadratic Penalty Method

1 function [xstar,kp,rc,mu,nm]=penalty(name,meq,xzero,muzero,epz)
2 global prob m mu % for pye, pyeg, pyeh
3 prob=name; % specify the problem
4 m=meq; % and the constraint count
5 mu=muzero; % and the starting multiplier
6 xpi=xzero; % starting point
7 nm=0; % no Hessian adjustments yet
8 kmax=1029; % keep mu < realmax
9 for kp=1:kmax
10 [xstar,kpp,nmp,rc]=ntrs(xpi,0,10,epz,@pye,@pyeg,@pyeh,0.5);
11 if(nmp > 0)
12 nm=nm+1; % count iterations modifying H
13 end % in the hope there will be few
14 if(norm(xstar-xpi) <= epz) % close enough?
15 return % yes; return
16 end % no; continue
17 xpi=xstar; % optimal point is new start
18 mu=2*mu; % increase the multiplier
19 end % end of penalty problem sequence
20 end

Unlike p2pen.m this routine includes a convergence test 14 , so 8 I set kmax to its largest
possible value rather than requiring the user to specify it as an input parameter. There is no
point in making mu higher than the highest floating-point number, so kmax should be chosen
so that

µ0 × 2kmax-1 < realmax

lg(µ0) + (kmax-1) lg(2) < lg(realmax)

kmax-1 < lg(realmax) − lg(0.05)
kmax = ⌊1024 − (−4.319+) + 1⌋ = 1029.

Here I have used base-2 logarithms as in §17.5, and the floor function (see §14.7.2).
To test penalty.m I used it to solve both of our test problems.

octave:1> format long
octave:2> [xstar,kp,rc,mu,nm]=penalty(’p1’,1,[4;4],0.05,1e-16)
xstar =

2.00000000000000
1.00000000000000

kp = 56
rc = 1
mu = 1.80143985094820e+15
nm = 2
octave:3> [xstar,kp,rc,mu,nm]=penalty(’p2’,1,[1;2],0.05,1e-16)
xstar =

0.945582993415968
0.894127197437503

kp = 59
rc = 4
mu = 14411518807585588
nm = 0
octave:4> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.4.1 A Numerical Autopsy 593

In solving the p1 problem, ntrs.m finds Hπ non-positive-definite in each of the first two
penalty function minimizations (when I looked into this I found that 70 averagings with the
identity were required in each case) so penalty.m returns nm=2. Thus, of the 56 iterations
it used to find x⋆, 54 used plain Newton descent and the others essentially steepest descent.

Exact solutions were found for both p1 and p2 in far fewer penalty-algorithm iterations
than the 1029 allowed, but for neither problem did penalty.m return rc=0. In solving
the final penalty problem ntrs.m failed to achieve the specified convergence criterion of
||∇π|| ≤ 10−16, in the case of p1 using all 1029 of the iterations it was allowed and in the case
of p2 resigning with a Newton step too small to change xk. Because of the way in which
Hπ(x; µ) depends on µ and the relentless growth of µ as the optimal point is approached,
numerical difficulties inevitably arise in the use of this algorithm even when it succeeds. We
will examine these in detail for problem p2 in the next Section.

In penalty.m I used the same epz value to control both the quadratic penalty algorithm
and the solution by ntrs.m of each penalty problem, but a more sophisticated implementa-
tion might pass a different tolerance to ntrs.m (see Exercise 18.5.21) or make its iteration
limit depend on the number of variables n. The algorithm might also be improved by making
the increase of µ depend upon the Hessian that we are trying to keep positive definite, or
[5, p501] on the difficulty of minimizing the penalty function.

18.4 The Awkward Endgame

It is a cliché of nonlinear programming [1, p481-482] [4, §16.3-4] [5, p505-506] that the
quadratic penalty method runs into trouble just as it is about to solve the problem. We saw
evidence of this in §18.3, where ntrs.m failed to achieve the specified convergence criterion
in solving the final penalty problem of p2 even though the constrained minimizing point of
p2 been found by then. Alas, difficulties in minimizing π(x; µ) for large values of µ can easily
result in getting the wrong answer to the original nonlinear program.

18.4.1 A Numerical Autopsy

To study this phenomenon I wrote the ill.m program listed on the next page. Like p2pen.m
this program solves the p2 problem by the quadratic penalty algorithm, but here we save
11 the norm of ∇π(xk; µk), and 13 the condition number of Hπ(x

k; µk) at each iteration, and
22-34 plot them versus 10 the penalty multiplier.

The left-hand graph below the listing shows that ntrs.m was able to find a very precise
answer to the penalty problem when µ was small, but returned progressively less-stationary
approximations to xπ as µ increased. The ntrs.m stopping condition of ||∇π|| ≤ 10−16 was
actually violated for every iteration performed by penalty.m. Fortunately the answers
produced by ntrs.m were good enough for long enough that the quadratic penalty algorithm
found a very precise solution to the original problem anyway.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

594 The Awkward Endgame

1 % ill.m: monitor the penalty algorithm solution of p2
2 clear;clf
3 format long
4
5 global prob=’p2’ m=1 mu=0 % specify the problem
6 xzero=[1;2]; % starting point
7 mu=0.05; % starting multiplier
8 for k=1:59 % do the sequence
9 xpi=ntrs(xzero,0,1029,1e-16,@pye,@pyeg,@pyeh,0.5); % solve
10 mus(k)=mu; % remember the multiplier
11 g(k)=norm(pyeg(xpi)); % remember the gradient
12 H=pyeh(xpi); % get the Hessian of pi
13 kpa(k)=cond(H); % and remember its condition
14 if(k==58) % at this iteration
15 x58=xpi; % save the current point
16 mu58=mu; % and the current multiplier
17 end % for study later
18 xzero=xpi; % restart from the solution
19 mu=2*mu; % with higher multiplier
20 end % end of sequence
21
22 figure(1); set(gca,’FontSize’,25) % separate the picture
23 hold on % start the picture
24 axis([1e-2,1e17,1e-17,1e1]) % set axes
25 loglog(mus,g) % plot norm(g) vs mu
26 plot([1e-2,1e17],[1e-16,1e-16]) % draw a line at 1e-16
27 hold off % end the picture
28 print -deps -solid illg.eps % and print it
29 figure(2); set(gca,’FontSize’,25) % separate the picture
30 hold on % start the picture
31 axis([1e-2,1e17,1e0,1e17]) % set axes
32 loglog(mus,kpa) % plot kappa(H) vs mu
33 hold off % end the picture
34 print -deps -solid illk.eps % and print it
35
36 mu=mu58; % this was the multiplier just before the end
37 x58 % this was the iterate
38 f58=pye(x58) % get the penalty function value there
39 g58=pyeg(x58) % and the gradient
40 H58=pyeh(x58) % and the Hessian
41 d=-inv(H58)*g58 % find the Newton descent direction
42 x59=x58+d % take a full step in that direction
43 f59=pye(x59) % and find the penalty function value there

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

||∇π||

µ

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

κ(Hπ)

µ

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.4.1 A Numerical Autopsy 595

To illuminate why Newton descent yields such rough answers when µ is large, the program
also 14-17 saves x58 and µ58, and 36-43 performs the final step of Newton descent one
calculation at a time. The Octave session below shows those results.

octave:1> format long
octave:2> ill

x58 =

0.945582993415968
0.894127197437503

f58 = 1.94618371044279
g58 =

-3.34866039113023
1.77068560583615

H58 =

51542923688977504 -27254574187494620
-27254574187494620 14411518807585596

d =

8.59026933787421e-17
-5.17706537361828e-18

x59 =

0.945582993415969
0.894127197437503

f59 = 1.94618371044279
octave:3> inv(H58)
warning: inverse: matrix singular to machine precision, rcond = 6.78774e-17
ans =

0.0341947606913586 0.0646679683473550
0.0646679683473550 0.1222978621760420

octave:4> quit

The gradient g58 = ∇π(x58; µ58) is far from zero, but that turns out not to matter very much
because the Hessian H58 = Hπ(x

58; µ58) is so huge that when it is inverted to find the full
Newton step, d comes out tiny. In fact, taking the full Newton step from x58 to x59 changes
only the last digit in x1, and f59 = π(x59; µ59) is the same as f58 = π(x58; µ58) to machine
precision so this tiny move made no difference at all in the value of π. It is hard for Newton
descent to make much progress at getting ∇π to be zero when it has to take steps like this!

The bad news is that d is wrong even for many of the iterations when it is not tiny. The
reason for this is that when µ is high, Hπ(x; µ) is close enough to singular that its inverse (or
factors) cannot be found precisely using floating-point arithmetic. It is easy to see how Hπ
can approach singularity if we examine the p1 problem, because that penalty Hessian is a
function only of µ.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

596 The Awkward Endgame

Recall that for p1

∂π

∂x1
= −x2 + 2µ(x1 + 2x2 − 4) = 0

∂π

∂x2
= −x1 + 4µ(x1 + 2x2 − 4) = 0.

Computing second derivatives we find that

Hπ =

[

2µ −1 + 4µ
−1 + 4µ 8µ

]

is the matrix we must invert or factor. How accurately that can be done depends on its
condition number, which was defined in §10.6.2 as

κ(Hπ) =
∣
∣
∣

∣
∣
∣Hπ

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣H−1π

∣
∣
∣

∣
∣
∣.

Ideally (see §18.4.2) we want the condition number of the Hessian to be 1, but as µ increases
we find that

lim
µ→∞

Hπ = µH where H =

[

2 4

4 8

]

lim
µ→∞
κ(Hπ) = lim

µ→∞
κ(µH)

= lim
µ→∞
||µH|| ||(µH)−1||

= lim
µ→∞
||H|| ||H−1||

= κ(H).

Unfortunately the matrix H above has determinant zero so it is singular, and [67, §2.7.2]
the condition number of a singular matrix is +∞. For p2 the penalty Hessian is a function
of x as well as of µ so it is harder to study analytically, but ill.m computes its condition
number numerically and the right-hand graph below that listing shows its growth with µ.

In §10 and §14 we encountered the condition number of the Hessian in the context of
its influence on the convergence constant for the steepest descent and conjugate gradient
algorithms, which are always first-order. In contrast, Newton descent is always second-
order, and as I mentioned in §13 its convergence constant does not depend on the condition
number of the Hessian. These attributes make it the method of choice for minimizing the
penalty function at each iteration of the quadratic penalty algorithm [5, p501]. However,
as we have seen in the p2 example, ill-conditioning of the Hessian does have a pronounced
effect on the accuracy with which the Newton descent direction can be found. It is a tragic
irony of nonlinear programming that as µ goes to infinity, so that xπ → x⋆, inevitably also
κ(Hπ(x; µ)) → ∞ so that the penalty problem solutions become more and more imprecise.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.4.2 The Condition Number of a Matrix 597

The relative speeds of these limiting processes determine how close the algorithm can get to
x⋆, and often that turns out to be not very.

The fact that the quadratic penalty method requires µ to approach infinity, driving Hπ
towards singularity, is a big drawback of the algorithm and provides strong motivation for
the more sophisticated penalty methods that we will take up in §20.

18.4.2 The Condition Number of a Matrix

I have claimed several times that it is hard to solve Ax = b precisely when A has a high
condition number, but why is that? To study this question we will consider these systems
of linear equations, which both have the solution x = [1, 2]⊤ at the intersections of the solid
lines in the graphs below.

x2 = −x1 + 3
x2 = x1 + 1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

•
◦

δb

δx

x2 = −0.1x1 + 2.1
x2 = 0.1x1 + 1.9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

•
◦δb

δx

Adding 0.5 to the y–intercept of the first equation in each system produces the dashed lines
and changes the solutions to [1.25, 2.25]⊤ on the left and [3.5, 2.25]⊤ on the right.

On the left the intercept change δb = [0.5, 0]⊤ results in a change in the solution of
δx = [0.25, 0.25]⊤. Comparing the lengths of these vectors we find

||δb|| =
√
0.52 + 02 = 0.5

||δx|| =
√
0.252 + 0.252 ≈ 0.354

so the change in x is a little less than the change in b. On the right the same δb produces a
much bigger change in x, δx = [2.5, 0.25]⊤, with length

||δx|| =
√
2.52 + 0.252 ≈ 2.512

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

598 The Awkward Endgame

The linear systems above can be written as

[

1 1

−1 1

] [

x1
x2

]

=

[

3

1

] [

0.1 1

−0.1 1

] [

x1
x2

]

=

[

2.1

1.9

]

or as

Ax =

[

p 1

−p 1

] [

x1
x2

]

=

[

2 + p

2 − p

]

= b

where p = 1 on the left and p = 0.1 on the right. The matrix A(p) is singular in the limit as
p → 0, but it has leading principal minors p and 2p so it is positive definite for all p > 0.
As p → 0 the angle between the solid lines in the graphical solution approaches zero for a
fixed δb, and δx consequently grows without bound.

For the linear system Ax = b, the sensitivity s of the solution x to a small change in b

is the relative change in x divided by the relative change in b [147, §7.2].

s =

(

||δx||
||x||

)/(||δb||
||b||

)

The left system above, with p = 1, has sensitivity s = 1; the right system, with p = 0.1, has
sensitivity s ≈ 6.364. The sensitivity of a linear system depends on b and δb as well as on
A, but it is bounded by the condition number κ [150, §III.12] of the coefficient matrix.

s ≤ κ(A) = ||A||2||A−1||2

The 2-norm of a matrix is ||A||2 = +
√
λmax where λmax is the maximum eigenvalue (always

real) of A⊤A (see §10.6.3). The condition number of a matrix is never less than 1, and a
matrix A having κ(A) = 1 is said to be perfectly conditioned. The graph below shows s and
κ as functions of p for our matrix A(p). The vertical axis has a logarithmic scale.

10
0

10
1

10
2

0 0.5 1 1.5 2 2.5 3

κ(p)

s(p)

p

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.4.2 The Condition Number of a Matrix 599

From this picture it is clear that κ(p) is an upper bound on s(p), that they are equal only
when the matrix is perfectly conditioned, and that

lim
p→0

s(p) = lim
p→0
κ(p) = +∞.

This analysis shows that if the coefficient matrix of a linear system is badly conditioned then
small changes in the right-hand side can produce large changes in the solution. It can also
be shown that the solution has the same sensitivity to small changes in the elements of the
coefficient matrix.

Why does it matter how sensitive the solution ofAx = b is to the data of the problem? If A
is positive definite and we know exactly what A and b are, can’t we solve the system for x?
Well, not exactly, at least not if we are using a computer to do the arithmetic [154, §3].
Because of the way floating-point numbers are represented and stored, computed results are
always contaminated by roundoff error, and if the system is badly conditioned even tiny
errors can be magnified enough to make the answer too imprecise to be useful.

Suppose we want to solve the systems considered above, but the computer stores the
numbers in such a way that all we know is an interval (min,max) in which each coefficient
must fall [134]. For example, if the value of each coefficient is known to within ±0.01 the
systems could be described by these equations.

[

(0.99, 1.01) (0.99, 1.01)
(−1.01,−0.99) (0.99, 1.01)

] [

x1
x2

]

=

[

(2.99, 3.01)
(0.99, 1.01)

] [

(0.09, 0.11) (0.99, 1.01)
(−0.11,−0.09) (0.99, 1.01)

] [

x1
x2

]

=

[

(2.09, 2.11)
(1.89, 1.91)

]

For what values of x are these equations satisfied? In each equation each of the six coefficients
has a minimum and maximum value, so if we want to examine all of the possible solutions we
need to consider 26 = 64 combinations of the extreme parameter values. I wrote a program
to do that and plotted all of the solutions to each system, obtaining the graphs below.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

600 The Quadratic Penalty Method

The result of our uncertainty about the true values of the coefficients is that the line repre-
senting each equation, rather than being of zero width, is a thick wedge. Instead of being a
single point, each intersection of two wedges is a diamond-shaped region. These regions of
uncertainty for the two systems are enlarged below for comparison.

1.85

1.9

1.95

2

2.05

2.1

2.15

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

x2

x1

The true solution to the well-conditioned system could be anywhere inside the small diamond,
and the true solution to the ill-conditioned one could be anywhere inside the much larger
diamond. Of course the computer will return a single answer for each calculation, but if the
data are represented with the limited precision we have assumed then we have no basis for
preferring that result to any of the others in the region of uncertainty.

In actual floating-point calculations roundoff is even more pernicious than this picture
suggests, because it is not just the problem data that are stored imprecisely; each interme-
diate result that is generated in the process of solving the equations is also computed and
stored imprecisely. A more realistic simulation would thus produce an even larger region of
uncertainty around the true solution of these systems.

In real problems the data are typically known (and stored by a computer) much more
precisely than we have assumed. Floating-point calculations are usually carried out at a
precision of 52 fraction bits, equivalent to 15–17 decimal digits. On the other hand, round-
off accumulates with the number of calculations performed and often we must solve linear
systems having n ≫ 2 variables, so the difficulty illustrated by our simple example is often
encountered in practice. A widely-used rule of thumb is that in finding x one must expect
to lose log10 (κ) of the digits that are correct in b. The p = 0.1 example above has κ(A) = 10

so the last digit in each component of x might be wrong; in solving the p2 problem ill.m

found κ(Hπ) ≈ 1016 at the end of the solution process, so by then all 16 of the digits in d had
probably entered the realm of fiction.

18.5 Exercises

18.5.1[E] Can the quadratic penalty method be used to solve nonlinear programs having
inequality constraints? Explain.

18.5.2[E] If π(x; µ) is the penalty function corresponding to a nonlinear program whose
objective is f0(x), why is π(x⋆; µ) = f0(x

⋆) for all values of µ?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.5 Exercises 601

18.5.3[E] Suppose that a nonlinear program has the form

minimize
x∈Rn

f0(x)

subject to fi(x) = 0, i = 1 . . .m.

(a) Write a formula for the associated quadratic penalty function π(x; µ). (b) Write a formula
for ∇π(x; µ). (c) Write a formula for Hπ(x; µ).

18.5.4[E] For the p1 problem, we found that λ(µ) = 2µ f1(x). Give a detailed explanation
of that derivation. Why is it based on a correspondence between ∇L and ∇π?

18.5.5[E] How is the p2 problem related to the bss1 problem?

18.5.6[H] Solve the p2 problem of §18.1 by analytically finding the stationary points of
π(x; µ) and taking limits as µ→ ∞. How practical do you think this approach is?

18.5.7[P] In §18.1 we solved the p1 problem for three values of µ by using ntchol.m,
which takes full Newton steps. (a) Repeat the experiment using ntw.m, which uses a Wolfe
line search. (b) Repeat the experiment using plrb.m, which implements the Polak-Ribière
algorithm. In both parts use variable bounds of xH = [5, 5]⊤ and xL = [0, 0]⊤. To get accurate
results you might need to reduce the value of epz.

18.5.8[H] In §15.5, I described the standard way in which this text writes function, gra-
dient, and Hessian routines to specify a nonlinear program with constraints. (a) Explain
how the MATLAB routines pye.m, pyeg.m, and pyeh.m work with those problem-specifying
routines to compute the quadratic penalty function of the nonlinear program. (b) Why is
it necessary to pass the parameters prob, m, and mu as global variables? What do these
variables represent?

18.5.9[E] What does the MATLAB function str2func() do? What is the result of the
string concatenation operation [’p1’,’g’]?

18.5.10[P] In §18.1 we tried to solve the p2 problem for three values of µ by using ntchol.m,
which takes full Newton steps. (a) Repeat the experiment using ntw.m, which uses a Wolfe
line search. (b) Repeat the experiment using plrb.m, which implements the Polak-Ribière
algorithm. In both parts use variable bounds of xH = [3, 3]⊤ and xL = [0, 0]⊤. Do these
unconstrained minimization routines work better than ntchol.m for solving this problem?

18.5.11[H] In §18.1, I claimed that for the p1 problem π(x; µ) is convex above a certain
value of µ and therefore easy for ntchol.m to solve. (a) Derive a formula for Hπ(x; µ) for
the p1 problem. (b) Find the values of µ for which the matrix is positive definite. (c) A
nondecreasing convex function of a convex function is convex [1, Exercise 3.10], but the
square is not a nondecreasing function. What must be true of f1(x) in order for the penalty
term [f1(x)]

2 to be a convex function of x? Show that [x1 + 2x2 − 4]2 is a convex function.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

602 The Quadratic Penalty Method

18.5.12[E] Give two reasons why plain Newton descent might fail to solve a quadratic
penalty problem.

18.5.13[E] Describe in words the quadratic penalty algorithm. Why does it increase the
penalty multiplier gradually? What order of convergence does it have?

18.5.14[E] Why does the penalty.m routine of §18.3 use modified Newton descent rather
than plain Newton descent? If we are going to use modified Newton descent to solve the
quadratic penalty problem, why bother to increase µ gradually?

18.5.15[E] Why does penalty.m use an iteration limit of kmax=1029? Evaluate the ex-
pressions ⌊−5.3⌋ and ⌊5.3⌋.
18.5.16[P] In penalty.m, I chose kmax=1029 based on the assumption that µ0 = 0.05, but
then I made muzero an input parameter so that it can be given a higher value. If the routine
is invoked with muzero set to a lower value than 0.05, kp should be allowed to get higher
than 1029. Modify the code to calculate kmax from muzero, but don’t let kmax exceed the
highest value allowed for a MATLAB loop limit (see §4.1).

18.5.17[P] In the Chapter introduction we derived for problem p1 expressions for x1 and
x2 that satisfy the Lagrange conditions for a stationary point of π(x). (a) Write a MATLAB

program that plots, over contours of the p1 problem, the trajectory of xπ(µ) as µ increases
from 0 to a large value. (b) Write a MATLAB program that uses penalty.m to solve p1

one iteration at a time, starting from x0 = [0, 0]⊤, and plots the convergence trajectory over
contours of p1. (c) How should these two trajectories be related? Explain any differences
between them.

18.5.18[P] Use penalty.m to solve the following problem, which was first presented in
Exercise 15.6.36.

minimize
x∈R3

f0(x) = −3x1x3 − 4x2x3
subject to f1(x) = x22 + x23 − 4 = 0

f2(x) = x1x3 − 3 = 0

18.5.19[P] Use penalty.m to solve the following problem, which was first presented in
Exercise 15.6.42.

minimize
x∈R3

f0(x) = 1000 − x21 − 2x22 − x23 − x1x2 − x1x3

subject to f1(x) = x21 + x22 + x23 − 25 = 0

f2(x) = 8x1 + 14x2 + 7x3 − 56 = 0

18.5.20[P] The quadratic penalty algorithm has linear convergence, but the convergence
constant (affecting the slope of the error curve) depends on the speed of the method used
to minimize π(x; µ) at each step of the algorithm. (a) Revise p2pen.m to use sdfs.m rather
than ntrs.m and compare its error curve to that presented in §18.2. (b) What happens to
the performance of penalty.m if ntrs.m finds it necessary to modify Hπ at every step?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

18.5 Exercises 603

18.5.21[P] In implementing the quadratic penalty algorithm it is wasteful of effort to solve
the penalty problem precisely while its solution is still far from x⋆ for the original equality-
constrained nonlinear program. Modify penalty.m to make the tolerance used by ntrs.m

depend on ||xk+1 − xk||. How does this change affect the performance of the algorithm in
solving problems p1 and p2?

18.5.22[P] Consider the following nonlinear program [5, p500].

minimize
x∈R2

−5x21 + x22

subject to x1 = 1.

(a) Solve the problem by inspection. (b) Write the corresponding quadratic penalty function.
(c) Use ntchol.m to minimize the quadratic penalty function, starting from x0 = [2, 2]⊤.

(d) Use penalty.m to solve the problem. (e) Explain why the penalty problem cannot be
solved for certain values of µ.

18.5.23[H] Consider the following nonlinear program [1, Exercise 9.7].

minimize
x∈R2

x3
1
+ x3

2

subject to x1 + x2 = 1.

(a) Solve the problem analytically. (b) Explain why the corresponding penalty problem can-
not be solved for any value of µ. (c) Is this problem ill-posed in the sense of §16.8.3?

18.5.24[E] State two significant drawbacks of the quadratic penalty algorithm.

18.5.25[E] Why is Newton descent the method of choice for minimizing the quadratic
penalty function? When is it possible to find the Newton descent direction d accurately?

18.5.26[H] Explain why, in solving the p2 problem with penalty.m, the final quadratic
penalty problem could not be solved precisely by ntrs.m.

18.5.27[H] When using Newton descent to minimize a quadratic penalty function, it is
necessary to solve the equation [Hπ(x; µ)]d = −g for the descent direction d. Why is it hard
to find d precisely when µ has a high value? What determines how close the quadratic
penalty algorithm can get to x⋆?

18.5.28[E] What is the condition number of an identity matrix, κ(I)? What is κ(2I)? What
is the condition number of a singular matrix?

18.5.29[H] Compute by hand the condition number of the matrix

A =

[

7 5

5 3

]

.

18.5.30[E] What MATLAB function returns the condition number of a matrix?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

604 The Quadratic Penalty Method

18.5.31[E] In solving the linear system Ax = b, how is the sensitivity s of the solution x to
a small change in b related to the condition number κ of the matrix A? When are s and κ
equal?

18.5.32[P] In §18.4.2 the sensitivity s of the solution x to a small change in b is graphed
as a function of p for the linear system in the example, using the solution x = [1, 2]⊤ and
the fixed intercept change δb = [0.5, 0]⊤. For a given value of p, δx = x̄ − x where x̄ solves
A(p)x̄ = b(p)+ δb. (a) Write a MATLAB program to calculate s(p) for p = 0.015, 0.030, . . . , 3

and reproduce the graph. (b) On the same axes plot the condition number κ(p) of A(p).

18.5.33[E] What role does roundoff error play in frustrating the accurate solution of a
linear system Ax = b whose coefficient matrix A is badly conditioned? How much of the
precision present in b is typically lost if A has condition number κ?

18.5.34[H] Consider the following dual pair [161, §12.2.1], in which π(x; µ) is the quadratic
penalty function corresponding to an equality-constrained nonlinear program.

P : minimize
x

{

sup
µ

π(x; µ)

}

D : maximize
µ

{

inf
x
π(x; µ)

}

(a) Show that the solution to D is µ = +∞ at the point xπ(µ) obtained by solving the penalty
problem. (b) Show that the solution to P is the optimal solution x⋆ of the original equality-
constrained nonlinear program. (c) Under what conditions does the solution to the penalty
problem equal x⋆?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19

The Logarithmic Barrier Method

Consider this inequality-constrained nonlinear pro-
gram, which I will call b1 (it is Example 16.1 of [4];
see §28.7.22).

minimize
x∈R2

f0(x) = x1 − 2x2 = z

subject to f1(x) = −x1 + x22 − 1 ≤ 0

f2(x) = −x2 ≤ 0

x 0
= [0.5,0.5]⊤

x⋆ = [0,1]⊤

z⋆ = -2

We can solve this problem analytically by using the
KKT method of §16.5 as follows.

L(x, λ) = x1 − 2x2 + λ1(−x1 + x22 − 1) + λ2(−x2)
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

•x⋆

f0(x
) =
−2

f1 (x) = 0

f2(x) = 0

X

∂L
∂x1

= 1 − λ1 = 0

∂L
∂x2

= −2 + 2x2λ1 − λ2 = 0

∂L
∂λ1

= −x1 + x22 − 1 ≤ 0

∂L
∂λ2

= −x2 ≤ 0

λ1 f1(x) = λ1(−x1 + x22 − 1) = 0

λ2 f2(x) = λ2(−x2) = 0

λ1 ≥ 0

λ2 ≥ 0

These conditions are satisfied at x⋆ with λλλ⋆ = [1, 0]⊤. Problem b1 is related to the uncon-
strained barrier problem below,

minimize
x∈R2

+

β(x; µ) = f0(x) − µ ln[− f1(x)] − µ ln[− f2(x)]

= (x1 − 2x2) − µ ln(1 + x1 − x22) − µ ln(x2)

in which the logarithmic barrier terms involving the natural logarithm function ln(•)
and the nonnegative barrier multiplier µ are defined only for points x that are strictly

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

606 The Logarithmic Barrier Method

interior to the feasible set X. If µ = 0 this barrier problem of b1 is unbounded; if µ > 0 then
minimizing β(x; µ) yields a compromise between minimizing f0(x) and staying away from the
boundary of X. We can solve the barrier problem analytically by finding the stationary
points of β(x; µ).

∂β

∂x1
= 1 − µ

1 + x1 − x22
= 0 a

∂β

∂x2
= −2 − µ(−2x2)

1 + x1 − x22
− µ

x2
= 0 b

a ⇒ x1 = x22 + µ − 1 c

b ⇒ −2 − µ(−2x2)
1 + (x22 + µ − 1) − x22

− µ
x2
= −2 + 2x2µ

µ
− µ

x2
= 0

−2x2 + 2x22 − µ = 0

x22 − x2 − 1
2
µ = 0

x2(µ) =
1 +

√

1 + 2µ

2

Because x2 ≥ 0 we must use the positive square root. Then we can find

c ⇒ x1 = x22 − 1 + µ

x1 =





1 +
√

1 + 2µ

2





2

− 1 + µ

x1 =
1
4
[1 + 2

√

1 + 2µ + (1 + 2µ)] − 1 + µ

x1(µ) =

√

1 + 2µ + 3µ − 1
2

The boxed equations specify the point x(µ) that minimizes β(x; µ) for a given value of the
barrier multiplier. At high values of µ that point turns out to be deep in the interior of the
feasible set, because the logarithmic barrier terms in β impose a high cost for being close to
the boundary. Imagine what happens if we hold µ constant at some large value and move x

toward the upper boundary of X. The value of f1(x) approaches 0 from below, so ln[− f1(x)]
approaches −∞ (see the top left graph on the next page). That would increase β, so for this
value of µ the minimizing point of β must be far from the boundary.

Decreasing µ makes the logarithmic barrier terms count for less in β(x; µ) and thus allows
x(µ) (points in the top right graph on the next page) to get closer to the boundary and hence
to the optimal point. Taking the limits of the boxed expressions as µ→ 0 we find x⋆ = [0, 1]⊤.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19 Introduction 607

-4

-3

-2

-1

0

1

2

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

ln
(−

f)

f
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

µ = 1
1
2

1
4

1
8

x⋆

By comparing the analytic solutions of b1 and its barrier problem we can also deduce λλλ⋆ as
a function of µ.

β(x; µ) = f0(x) − µ ln[− f1(x)] − µ ln[− f2(x)]

so at optimality ∇β(x; µ) = ∇f0(x) −
µ(−1)
− f1(x)

∇f1(x) −
µ(−1)
− f2(x)

∇f2(x) = 0

L(x,λλλ) = f0(x) + λ1 f1(x) + λ2 f2(x)

so at optimality ∇L(x,λλλ) = ∇f0(x) + λ1∇f1(x) + λ2∇f2(x) = 0

Using the formulas we found above for x1(µ) and x2(µ),

λ1 =
−µ

x2
2
− x1 − 1

=
−µ





1 +
√

1 + 2µ

2





2

−




√

1 + 2µ + 3µ − 1
2



 − 1

=
−µ

1
4

[

1 + 2
√

1 + 2µ + (1 + 2µ)
]

− 1
2

[√

1 + 2µ + 3µ − 1
]

− 1

=
−µ
−µ = 1

λ2 =
µ

x2
=

µ

1 +
√

1 + 2µ

2

=
2µ

1 +
√

1 + 2µ
.

Taking limits of the final expressions for λ1 and λ2 as µ → 0 we find λλλ⋆ = [1, 0]⊤. In general
[5, §19.6] a nonlinear program in standard form has the barrier problem

minimize
x∈Rn

+

f0(x) − µ
m∑

i=1

ln[− fi(x)] which yields λi(µ) =
µ

− fi[x(µ)]
≥ 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

608 The Logarithmic Barrier Method

Writing x and λλλ as functions of µ in the stationarity condition for the original nonlinear
program, and rearranging the above formula for λi(µ), we find

∇f0[x(µ)] +
m∑

i=1

λi(µ)∇fi[x(µ)] = 0

λi(µ) fi[x(µ)] = −µ

λi(µ) ≥ 0.

The last two lines and µ > 0 imply feasibility, so the three together are equivalent to the
KKT conditions for the original nonlinear program except that in place of orthogonality we
have λi fi(x) = −µ. If x̄ is a local minimum for the original problem, and if λ̄i > 0 for each
constraint that is active at x̄, and if every neighborhood about x̄ contains some points at
which the constraints are strictly satisfied, then it can be shown [57, §3.1] [4, §16.2] that in
the limit as µ→ 0 the barrier problem has a solution that approaches x̄.

Notice also that if the original problem is a convex program then β(x; µ), at points strictly
interior to X, is a convex function of x. If the constraint function fi(x) is convex then − fi(x)
is concave. The logarithm is a nondecreasing concave function, and a nondecreasing concave
function of a concave function is concave (see Exercise 19.6.8). Thus ln[− fi(x)] is concave
and − ln[− fi(x)] is convex. The barrier multiplier µ is nonnegative and we assumed f0(x) is
convex, so

β(x; µ) = f0(x) +

m∑

i=1

−µ ln[− fi(x)]

is the sum of convex functions and therefore must be convex. Problem b1 is a convex
program, so its barrier function is convex and should thus be easy to minimize (also see
[57, p65-66]).

19.1 The Logarithmic Barrier Function

The analytic approach we used above suggests a numerical method for solving inequality-
constrained nonlinear programs.

1. Form the logarithmic barrier function β(x; µ) = f0(x) − µ
m∑

i=1

ln[− fi(x)].
2. Set µ to a small positive value.

3. Solve the unconstrained barrier problem, starting from a strictly feasible point x0 and
generating only iterates xk that are strictly feasible.

We will specify inequality-constrained nonlinear programs in the standard way that I de-
scribed in §15.5, by writing MATLAB routines to compute the values, gradients, and Hessians
of the fi(x). For b1 these routines are listed at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.1 The Logarithmic Barrier Function 609

function f=b1(x,i)
switch(i)

case 0
f=x(1)-2*x(2);

case 1
f=-x(1)+x(2)^2-1;

case 2
f=-x(2);

end
end

function g=b1g(x,i)
switch(i)
case 0
g=[1;-2];

case 1
g=[-1;2*x(2)];

case 2
g=[0;-1];

end
end

function H=b1h(x,i)
switch(i)
case 0
H=[0,0;

0,0];
case 1
H=[0,0;

0,2];
case 2
H=[0,0;

0,0];
end

end

The value, gradient, and Hessian of the barrier function are given by these formulas,

β(x; µ) = f0(x) − µ
m∑

i=1

ln[− fi(x)]

∇β(x; µ) = ∇f0(x) − µ
m∑

i=1

1

fi(x)
∇fi(x)

Hβ(x; µ) = H f0(x) − µ
m∑

i=1

(

1

fi(x)
H fi(x) +

−1
fi(x)2

∇fi(x)∇fi(x)⊤
)

which we can evaluate using routines similar to the pye.m, pyeg.m, and pyeh.m routines that
we wrote in §18.1 to find the value, gradient, and Hessian of the quadratic penalty function.
Here I used bta.m for the name of the routine that computes the value of β(x; µ), because
beta is a reserved word in MATLAB.

function f=bta(x)
global prob m mu
fcn=str2func(prob);
f=fcn(x,0);
for i=1:m

f=f-mu*log(-fcn(x,i));
end

end

function g=btag(x)
global prob m mu
fcn=str2func(prob);
grd=str2func([prob,’g’]);
g=grd(x,0);
for i=1:m

g=g-mu*grd(x,i)/fcn(x,i);
end

end

function H=btah(x)
global prob m mu
fcn=str2func(prob);
grd=str2func([prob,’g’]);
hsn=str2func([prob,’h’]);
H=hsn(x,0);
for i=1:m

f=fcn(x,i);
g=grd(x,i);
H=H-mu*hsn(x,i)/f+mu*g*g’/(f^2);

end
end

In §18 we were able to minimize π(x; µ) by using unconstrained minimization routines
we had already written, but it would be sheer luck if any of them succeeded in minimizing
β(x; µ). Those routines, knowing nothing about inequality-constrained nonlinear programs
like b1, are almost certain to generate some iterates xk that are not strictly feasible. For the
logarithm of a negative number MATLAB returns a complex value, so an infeasible xk yields
a complex β(xk; µ) for any µ > 0. In the example on the next page, xoops is infeasible for b1
and yields a complex value of bta(x).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

610 The Logarithmic Barrier Method

octave:1> global prob=’b1’ m=2 mu=1e-16
octave:2> xzero=[0.5;0.5];
octave:3> kmax=100;
octave:4> epz=1e-16;
octave:5> [xoops,kp,nm,rc]=ntfs(xzero,kmax,epz,@btag,@btah,0.5)
xoops =

-1.3839e+16
1.7857e+15

kp = 100
nm = 99
rc = 1
octave:6> f=bta(xoops)
f = -1.7411e+16 - 3.1416e-16i

Only function values that are real numbers are meaningful in an optimization problem. Of
course some minimizers use just gradients and Hessians, and the formulas given earlier for
those quantities do not involve logarithms, but where β(x; µ) is undefined its derivatives
are also undefined [148, p144]. As shown above, stepping to an infeasible point does not
interrupt ntfs.m, but does render its output useless.

To make use of the barrier method we clearly need a different unconstrained optimization
routine that can minimize β(x; µ) along a trajectory of strictly feasible points [1, §9.4]. To
meet this need I wrote the ntfeas.m function listed on the next page. The routine begins
each descent iteration by 7-12 testing convergence, 13-19 factoring Hβ, and 20-21 finding
the full Newton step d. Next it checks 24-29 whether the resulting trial point xtry 23 is
strictly feasible for the original inequality constraints. If it is not, xtry would step too far, so
d is halved 33 and the feasibility test is repeated. This backtracking line search [4, p378]
is reminiscent of the steplength adaptation we used in §17.2, but now instead of adjusting
the step based on the fidelity of a quadratic model we shorten it until xtry is strictly feasible.
The calculations below show that this strategy is effective for solving problem b1, producing
a point xβ that is close to x⋆ and to our analytic solution of the barrier problem. There were
nr=11 iterations in which ntfeas.m found it necessary to restrict the length of the step it
took. Allowing the routine to use more iterations changes the trailing 4 digits in the first
component of xβ, but roundoff prevents them from ever being found exactly.

octave:7> format long
octave:8> [xbeta,kp,rc,nr]=ntfeas(xzero,kmax,epz,@b1,2)
xbeta =

1.99999975004497e-06
1.00000049999975e+00

kp = 100
rc = 1
nr = 11
octave:9> x1=(sqrt(1+2*mu)+3*mu-1)/2
x1 = 1.99999975003529e-06
octave:10> x2=(1+sqrt(1+2*mu))/2
x2 = 1.00000049999975
octave:11> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.1 The Logarithmic Barrier Function 611

1 function [xbeta,kp,rc,nr]=ntfeas(xzero,kmax,epz,fcn,m)
2 % interior-point plain Newton to minimize beta(x;mu)
3
4 xk=xzero; % start from given point
5 nr=0; % no steplength restrictions yet
6 for kp=1:kmax % do up to kmax descent steps
7 g=btag(xk); % gradient of beta
8 if(norm(g) <= epz) % close enough to stationary?
9 xbeta=xk; % yes; take the current iterate
10 rc=0; % flag convergence
11 return % and return
12 end % done checking convergence
13 H=btah(xk); % Hessian of beta
14 [U,p]=chol(H); % factor it
15 if(p ~= 0) % is it non-pd?
16 xbeta=xk; % yes; take the current iterate
17 rc=2; % flag nonconvergence
18 return % and return
19 end % done checking H pd
20 y=U’\(-g); % solve for
21 d=U\y; % full Newton step
22 for t=1:52 % make sure step stays in S
23 xtry=xk+d; % compute trial step
24 ok=true; % assume xtry feasible
25 for i=1:m % check each inequality
26 if(fcn(xtry,i) >= 0) % is constraint i violated?
27 ok=false; % yes
28 end % stepped outside of S
29 end % done checking feasibility
30 if(ok) % if xtry is feasible
31 break % accept it
32 else % otherwise
33 d=d/2; % decrease steplength
34 end % and try again
35 end % finished restricting step
36 if(ok) % did we find one that works?
37 xk=xtry; % yes; accept it
38 else % otherwise
39 xbeta=xk; % no Newton step stays in S
40 rc=3; % flag nonconvergence
41 return % and return
42 end % the step is inside S
43 if(t > 1) nr=nr+1; end % count steplength restrictions
44 end % continue Newton descent
45 xbeta=xk; % take the current iterate
46 rc=1; % and flag out of iterations
47
48 end

Here is another problem, which I will call b2 (it is Example 9.4.4 of [1]; see §28.7.23). It
is identical to problem p2 of §18.1 except that the constraint is now an inequality.

minimize f0(x) = (x1 − 2)4 + (x1 − 2x2)2 = z

subject to f1(x) = x21 − x2 ≤ 0

x0 = [1,2]⊤

x⋆ = [0.945582993415968,0.894127197437503]⊤

z⋆ = 1.94618371044280

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

612 The Logarithmic Barrier Method

Because the inequality constraint of this problem is active at optimality, b2 has the same
solution as p2. The functions f0(x) and f1(x) are the same in b2 and p2, so the function,
gradient, and Hessian calculations for the two problems are also identical, and to compute
those quantities for b2 we can just use the p2.m, p2g.m, and p2h.m routines of §18.1. Of
course bta.m, btag.m, and btah.m will use the function values, gradients, and Hessians
differently from the way that pye.m, pyeg.m, and pyeh.m did. In b2 the constraint is an
inequality, so like b1 this problem is a convex program. As we noticed in §19.0 a convex
program has a barrier function that is convex, so we might expect to minimize it easily. Here
is what happened when I tried.

octave:1> global prob=’p2’ m=1 mu=20
octave:2> format long
octave:3> xzero=[1;2];
octave:4> epz=1e-16;
octave:5> kmax=100;
octave:6> [xbeta,kp,rc,nr]=ntfeas(xzero,kmax,epz,@p2,1)
xbeta =

0.638265583994080
1.945012286792191

kp = 7
rc = 0
nr = 0
octave:7> mu=1;
octave:8> [xbeta,kp,rc,nr]=ntfeas(xzero,kmax,epz,@p2,1)
xbeta =

0.879760693576738
0.997960886231180

kp = 100
rc = 1
nr = 1
octave:9> mu=0.5;
octave:10> [xbeta,kp,rc,nr]=ntfeas(xzero,kmax,epz,@p2,1)
xbeta =

0.907484329825742
0.949577675539676

kp = 100
rc = 1
nr = 1
octave:11> mu=1e-16
mu = 1.00000000000000e-16
octave:12> [xbar,kp,rc,nr]=ntfeas(xzero,kmax,epz,@p2,1)
xbar =

1.17606481226886
1.38312844265700

kp = 100
rc = 1
nr = 100
octave:13> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.2 Minimizing the Barrier Function 613

As I decreased µ from 20 to 1 to 1
2
, ntfeas.m successfully minimized the barrier function

so that xβ moved closer to x⋆, but setting µ = 10−16 (as we did above to solve b1) yielded
xβ ≈ [1.18, 1.38]⊤, which is far from optimal. In the cases where ntfeas.m returned rc=1, I
tried increasing kmax, but stationarity to within the very tight tolerance of epz = 10−16 was
never achieved and the optimal points changed very little from those printed above.

To investigate the behavior of β(x; µ) for b2 I plotted its contours (§19.5 explains how)
for µ = 20, µ = 1, and µ = 1

2
, as shown in the first three pictures on the next page. Each of

the minimizing points xβ shown in these graphs was correctly located by ntfeas.m, whose
first step in each case was in the Newton descent direction labeled d. The feasible set X of
this problem is the region above the zero contour of the constraint, and β is defined only
at points strictly interior to X. In the top left picture, when µ = 20, the contours of β
are closed curves entirely within X, so ntfeas.m can take full Newton steps (in the Octave
session it reports nr=0). When µ = 1, five of the six contours shown end at the boundary
of X, and in order to stay within X ntfeas.m is obliged to shorten its first step (it reports
nr=1). However, the contour shown about xβ is still a closed curve inside X so there are still
Newton directions pointing inward. Further reducing µ decreases the size of this level set
that is entirely contained in X, at the same time it deflects d away from xβ.

The bottom right picture shows the convergence trajectory that ntfeas.m follows in
computing the final result xbar printed above. Each of the 100 iterations is plotted as a
separate point, but they accumulate at x̄ so only the first few are distinct. The first full
Newton step again goes outside X, so the algorithm 22-35 repeatedly bisects it until x1 is
feasible. Now, however, µ is so small that there are no Newton directions pointing inward.
The contours of β are essentially straight lines parallel to the constraint contour at x⋆, so
for clarity I have not shown them. The only direction that ntfeas.m can move from x1 or
any of the subsequent iterates is toward the boundary of X, but it can’t pass the boundary
so d approaches zero. This phenomenon is called jamming [1, p560], and we will encounter
it again in §23.

To avoid the risk of jamming at a suboptimal boundary point of X, a barrier algorithm
must stay far enough inside the feasible set for long enough to get close enough to x⋆ before
µ gets so small that the only direction left to go is out. Such an algorithm is called an
interior-point method.

19.2 Minimizing the Barrier Function

If in minimizing β with µ = 10−16 we had started not from x0 but from the xβ we found for
µ = 1

2
, it seems plausible from the contour diagrams on the next page that we would have

reached x⋆ instead of stalling at x̄. This suggests that instead of solving a single barrier
problem with µ set very small we should instead solve a sequence of barrier problems, each
starting from the solution of the previous one, for values of µ that decrease gradually toward
zero. This idea is described beneath the pictures on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

614 The Logarithmic Barrier Method

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 20
x2

x1

f 1
(x
)
=
x
2 1
−
x 2
=
0

•x0

•x⋆

•x
β

6.85

10

18.9

30.9

d

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 1
x2

x1

•x0

•
x⋆

•xβ

34.3 24.5

16.8

10.8

7.18

4.68

d

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 1
2

x2

x1

•x0

•
x⋆
•xβ

31.7

20.7

12.5

7.46

4.88

3.54

d

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

µ = 10−16
x2

x1

•x0

•x⋆

x1

x̄

1. Form the logarithmic barrier function as usual.

2. Set µ to a high value.

3. Starting from a strictly feasible x0 solve the unconstrained barrier problem with a
method that generates only strictly feasible iterates xk, to get xβ.

4. Replace x0 by xβ and decrease µ.

5. If more accuracy is desired GO TO step 3.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.2 Minimizing the Barrier Function 615

To try this idea I wrote the program b2bar.m listed
on the next page. This code is like the p2pen.m pro-
gram of §18.2, but it 28 uses ntfeas.m rather than
ntchol.m to stay strictly feasible, 21 initializes mu to
20 rather than to 0.05, and 30 halves the value of mu
on each iteration rather than doubling it.

The convergence trajectory of the algorithm, shown
to the right, resembles that of the quadratic penalty
algorithm, but this program uses 22 only 55 iterations
because that happens to be enough to produce the ex-
act answer. Its first step is from x0 to the xβ that we
found earlier for µ = 20, pictured in the top left graph
on the previous page.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

x1

x2

x0

x⋆

The first few iterations are strongly deflected away from the boundary of the feasible set,
so x⋆ is approached from the inside. By the time µ gets to be small, so that steps away
from or parallel to the boundary are no longer possible, the optimal point has been found.
In addition to the zero contour of the constraint, this convergence graph includes contours
of the original objective to show graphically that x⋆ is indeed optimal.

The algorithm’s error curve, shown on the left below, descends as µ decreases (from right
to left) and because of steplength restrictions to avoid going infeasible it has more bumps
than the one we plotted for the quadratic penalty method, but it reveals that this method
also has linear convergence even though each step uses Newton descent.

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||x
⋆
−
x
k
||

µk
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

κ(
H
β
(x

k
;µ
))

µk

The accuracy of the barrier method is limited by ill-conditioning ofHβ just as the accuracy
of the penalty method was limited by ill-conditioning of Hπ. The graph on the right above
shows how the condition number of the barrier Hessian grows as µ decreases for b2. Because
of the huge condition number reached at the end of the solution process the final Newton
directions d are probably very inaccurate, but by then the steps are too tiny for that to
matter.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

616 The Logarithmic Barrier Method

1 % b2bar.m: solve b2 by a sequence of barrier problems
2 clear;clf
3 format long
4
5 global prob=’p2’ m=1 mu=0 % specify the problem
6 xl=[0;0]; xh=[3;3]; % bounds for graph
7 xstar=[0.945582993415968;0.894127197437503]; % optimal point of p2
8 vc=[40,25,14,7,5,bta(xstar),1,.25]; % fix contour levels
9 figure(1); set(gca,’FontSize’,25) % first picture
10 hold on % start plot
11 axis([xl(1),xh(1),xl(2),xh(2)],’square’) % scale graph axes
12 [xc,yc,zc]=gridcntr(@bta,xl,xh,200); % grid b1 objective
13 contour(xc,yc,zc,vc) % plot the contours
14 for p=1:200 % compute
15 xp(p)=2*(p-1)/(200-1); % points on
16 yp(p)=xp(p)^2; % the equality
17 end % constraint
18 plot(xp,yp) % and plot them
19
20 xzero=[1;2]; % starting point
21 mu=20; % starting multiplier
22 for k=1:55 % do the sequence
23 xk(k)=xzero(1); % for plotting later
24 yk(k)=xzero(2); % save current point
25 muk(k)=mu; % and current multiplier
26 err(k)=norm(xstar-xzero); % and solution error
27 kappa(k)=cond(btah(xzero)); % and Hessian condition
28 xbeta=ntfeas(xzero,10,1e-6,@p2,1); % solve barrier problem
29 xzero=xbeta; % start from there
30 mu=mu/2; % with lower multiplier
31 end % end of sequence
32 xbeta % report final point
33
34 plot(xk,yk,’o’) % barrier solutions
35 plot(xk,yk) % connected by lines
36 hold off % done with plot
37 print -deps -solid b2bar.eps % print the plot
38 figure(2); set(gca,’FontSize’,25) % second picture
39 hold on % start error plot
40 axis([1e-16,20,1e-16,1]) % scale graph axes
41 loglog(muk,err) % log(err) vs log(mu)
42 hold off % like log(err) vs k
43 print -deps -solid b2err.eps % print the plot
44 figure(3); set(gca,’FontSize’,25) % third picture
45 hold on % start condition plot
46 axis([1e-16,20,1,1e18]) % scale graph axes
47 loglog(muk,kappa) % log(kappa) vs log(mu)
48 hold off % like log(kappa) vs k
49 print -deps -solid b2kappa.eps % print the plot

19.3 A Barrier Algorithm

Problems b1 and b2 are both convex programs, but many applications give rise to inequality-
constrained nonlinear programs that are not convex. A practical implementation of the
barrier method must allow for the possibility that Hβ(x

k; µ) will be non-positive-definite at

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.3 A Barrier Algorithm 617

some points, by using modified rather than plain Newton descent. Of course we hope that
starting each iteration from the optimal point of the previous one as we gradually decrease
µ will allow full Newton steps to be used most of the time.

In nt.m, ntw.m, ntfs.m, and ntrs.m we wrote code to factor a Hessian that might not
be positive definite, so that process should now be familiar enough that we can encapsulate
it in a separate MATLAB function. The hfact.m routine listed below performs the ntrs.m

version of Hessian factorization.

1 function [U,rc,nm]=hfact(H,gama)
2 % factor H, modifying it if necessary
3
4 nm=0; % prepare to count modifications
5 [U,pz]=chol(H); % try to factor H
6 if(pz~=0) % is it positive definite?
7 if(gama >= 1 || gama < 0) % no; is modification possible?
8 rc=1; % no; gama value prevents that
9 return % resign
10 end % yes; modification possible
11 n=size(H,1); % find number of variables
12 tmax=1022; % limit modifications
13 for t=1:tmax % repeat until limit or success
14 H=gama*H+(1-gama)*eye(n); % average with identity
15 nm=nm+1; % count the modification
16 [U,pt]=chol(H); % try again to factor
17 if(pt==0) break; end % positive definite now?
18 end % no; continue modifications
19 if(pt~=0) % was modification successful?
20 rc=2; % no; factorization still fails
21 return % resign
22 end % yes; modification succeeded
23 end % factorization complete
24 rc=0; % signal success
25
26 end

This function delivers 1 the Cholesky factor U, a return code rc to indicate what happened,
and a count nm of the Hessian modifications performed. If 24 rc=0, the matrix was factored
after nm modifications; if 8 rc=1, modification was required but was not allowed; and if
20 rc=2, tmax modifications did not succeed in making the matrix positive definite. This
routine interprets the parameter gama in the standard way first described in §13.2. Below,
the positive semidefinite matrix of §11.4.2 is averaged with the identity once and the positive
definite result is successfully factored.

octave:1> H=[10,5,0;5,15,5;0,5,2];
octave:2> [U,rc,nm]=hfact(H,0.5)
U =

2.34521 1.06600 0.00000
0.00000 2.61985 0.95425
0.00000 0.00000 0.76773

rc = 0
nm = 1
octave:3> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

618 The Logarithmic Barrier Method

I revised ntfeas.m to factor Hβ using hfact.m instead of the chol() function, producing
the routine ntin.m listed below. It returns 11 rc=0 if the convergence criterion is satisfied,
or 48 rc=1 if convergence is not achieved in kmax iterations, or 18 rc=2 if hfact.m fails.
This routine 21 counts and 1 returns as nm the descent iterations in which the Hessian
required modification.

1 function [xbeta,kp,rc,nr,nm]=ntin(xzero,kmax,epz,fcn,m)
2 % interior-point modified Newton to minimize beta(x;mu)
3
4 xk=xzero; % start from given point
5 nr=0; % no steplength restrictions yet
6 nm=0; % no Hessian modifications yet
7 for kp=1:kmax % do up to kmax descent steps
8 g=btag(xk); % gradient of beta
9 if(norm(g) <= epz) % close enough to stationary?
10 xbeta=xk; % yes; take the current iterate
11 rc=0; % flag convergence
12 return % and return
13 end % done checking convergence
14 H=btah(xk); % Hessian of beta
15 [U,rcf,nmf]=hfact(H,0.5); % factor it
16 if(rcf ~= 0) % did the factoring fail?
17 xbeta=xk; % yes; take the current iterate
18 rc=2; % flag nonconvergence
19 return % and return
20 end % done factoring H
21 if(nmf > 0) nm=nm+1; end % count iterations modifying H
22 y=U’\(-g); % solve for
23 d=U\y; % full Newton step
24 for t=1:52 % make sure step stays in S
25 xtry=xk+d; % compute trial step
26 ok=true; % assume xtry feasible
27 for i=1:m % check each inequality
28 if(fcn(xtry,i) >= 0) % is constraint i violated?
29 ok=false; % yes
30 end % stepped outside of S
31 end % done checking feasibility
32 if(ok) % if xtry is feasible
33 break % accept it
34 else % otherwise
35 d=d/2; % decrease steplength
36 end % and try again
37 end % finished restricting step
38 if(ok) % did we find one that works?
39 xk=xtry; % yes; accept it
40 else % otherwise
41 xbeta=xk; % no Newton step stays in S
42 rc=3; % flag nonconvergence
43 return % and return
44 end % the step is inside S
45 if(t > 1) nr=nr+1; end % count steplength restrictions
46 end % continue Newton descent
47 xbeta=xk; % take the current iterate
48 rc=1; % and flag out of iterations
49
50 end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.3 A Barrier Algorithm 619

Then I wrote the barrier.m code below, which is similar to the penalty.m routine of
§18.3. Instead of ntrs.m, this routine uses ntin.m to minimize the barrier function, so it
is necessary to 11 pass it a function handle fcn 6 of the routine that computes function
values for problem prob.

1 function [xstar,kp,rc,mu,nm]=barrier(name,mineq,xzero,muzero,epz)
2 global prob m mu % for bta, btag, btah
3 prob=name; % specify the problem
4 m=mineq; % and the constraint count
5 mu=muzero; % and the starting multiplier
6 fcn=str2func(prob); % get function routine handle
7 xbeta=xzero; % starting point
8 nm=0; % no Hessian adjustments yet
9 kmax=1023; % keep mu > realmin
10 for kp=1:kmax
11 [xstar,kpb,rc,nr,nmb]=ntin(xbeta,10,epz,fcn,m);
12 if(nmb > 0)
13 nm=nm+1; % count iterations modifying H
14 end % in the hope there will be few
15 if(norm(xstar-xbeta) <= epz) % close enough?
16 return % yes; return
17 end % no; continue
18 xbeta=xstar; % optimal point is new start
19 mu=mu/2; % decrease the multiplier
20 end % end of barrier problem sequence
21 end

Now µ is 19 decreased at each iteration, and there is no point in making it smaller than the
smallest floating-point value so I chose kmax like this.

µ0 × (12)
kmax-1 ≥ realmin

lg(µ0) + (kmax-1) lg(
1
2
) ≥ lg(realmin)

(kmax-1)(−1) ≥ lg(realmin) − lg(1)
(kmax-1) ≤ − lg(realmin) = 1022

kmax = 1023

To test barrier.m I used it to solve b1 and b2, obtaining the results shown at the
top of the next page. Exact solutions were found for both problems, but for neither did
barrier.m return rc=0; this algorithm exhibits the same sort of endgame behavior we ob-
served for penalty.m, and for the same reasons (see §18.4). Both problems have convex
barrier functions, so the mystery presented by these results is why it was necessary to mod-
ify Hβ (resulting in nm > 0). To investigate this I had ntin.m report the first H that hfact.m
found to be numerically non-positive-definite in solving b1, and discovered that its second
leading principal minor comes out exactly zero (see Exercise 19.6.22). Earlier we observed
that as µ decreases, Hβ becomes more and more ill-conditioned, and in this case that process
culminates in a Hessian that is precisely singular. Using an epz value of 10−9 rather than
10−16 makes the non-positive-definite Hessians go away, which suggests that they are yet
another phantom of floating point arithmetic in extremis.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

620 The Logarithmic Barrier Method

octave:1> format long
octave:2> [xstar,kp,rc,mu,nm]=barrier(’b1’,2,[0.5;0.5],1,1e-16)
xstar =

1.33253925708181e-16
1.00000000000000e+00

kp = 56
rc = 1
mu = 2.77555756156289e-17
nm = 10
octave:3> [xstar,kp,rc,mu,nm]=barrier(’p2’,1,[1;2],20,1e-16)
xstar =

0.945582993415968
0.894127197437503

kp = 56
rc = 1
mu = 5.55111512312578e-16
nm = 4
octave:4> quit

19.4 Comparison of Penalty and Barrier Methods

Although the quadratic penalty method of §18 and the logarithmic barrier method of this
Chapter differ significantly in the details of their implementation, they are closely related
in underlying philosophy and share many general attributes. Both treat constraints by
incorporating them into an objective function and both solve a sequence of unconstrained
optimizations, each starting at the optimal point of the previous one, as µ approaches an
extreme value. In both algorithms the Hessian of the penalty or barrier objective becomes
badly conditioned as that happens, making Newton descent the preferred algorithm for
solving the unconstrained problems. Both algorithms exhibit only linear convergence, and
the ill-conditioning of the Hessian as the optimal point is approached results in roundoff
errors that limit the accuracy that can be attained by either.

The attributes in which the methods differer show a charming symmetry, making it useful
to think of the relationship between them as a sort of duality. Here is a comparison of the
two particular algorithms we have studied.

quadratic penalty method logarithmic barrier method
for = constraints for ≤ constraints
π(x; µ) = f0(x) + µ

∑m
i=1[fi(x)]

2 β(x; µ) = f0(x) − µ
∑m

i=1 ln[− fi(x)]
µ→ ∞ µ→ 0

xk approach x⋆ from outside of X xk approach x⋆ from inside of X
x0 and all xk infeasible x0 and all xk feasible
λi(µ) = 2µ fi[x(µ)] λi(µ) = −µ/ fi[x(µ)]
basis of exact penalty methods §20 basis of interior point methods §21

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.5 Plotting Contours of the Barrier Function 621

There are [1, §9.4] variants of the barrier method that use β(x; µ) = f0(x)− µ
∑m

i=1[1/ fi(x)]

instead of logarithms, variants of the barrier method that can handle equality constraints
along with inequalities [1, §9.2], and variants of the penalty method [1, §9.1] [124, p509-510]
that can handle inequality constraints along with equalities (see §25.2). The classical penalty
and barrier methods that we have glimpsed in §18 and this Chapter are actually part of a
single larger subject with a long and complicated history [57]. Rather than exploring that
subject in greater breadth, we will take up in §20 and §21 faster and more robust algorithms
that are based on the classical methods but avoid their numerical pitfalls.

19.5 Plotting Contours of the Barrier Function

Since §9.1 we have drawn contour diagrams by using gridcntr.m to compute values of
the function on a rectangular grid of points and then the MATLAB contour command to
make the picture. The line segments that contour plots to approximate each level curve are
actually found by the contourc command [50, p248] using grid interpolation, an algorithm
that needs all of the function values on the grid. In the contour diagrams of §19.2 the grid
unavoidably includes some points where β(x; µ) is undefined because x is infeasible, so I had
to use a different approach.

Suppose that we have found points x0, x1 . . . xp, each a distance r from the previous one,
along the curve where β(x) = h. If we draw a circle of radius r centered at xp then the curve
will cross it at xp−1 and xp+1 as shown in the picture on the next page. To find xp+1 from
xp we can search the thick semicircle, facing away from xp−1, between the direction of the
gradient vector g = ∇f (x) (where α = 0) and the opposite direction (where α = π). If the
contour were a straight line then xp+1 would be at the center of this arc, but in general we
must examine trial points

xα = xp
+

[

r cos(α − φ)
r sin(α − φ)

]

where φ = − arctan
(

g2

g1

)

in a zero-finding algorithm to determine the α where f = β(xα) − h = 0. Then we can
construct a new circle about xp+1 and continue the process. This approach to plotting a
contour is called curve following. Using the chkfea.m routine below to avoid infeasible
points, I wrote the curve.m routine listed on the next two pages.

function [nofea]=chkfea(xp,fcn,m)
% return true if xp is infeasible, false if feasible
nofea=false;
for i=1:m

f=fcn(xp,i);
if(f >= 0)

nofea=true;
return

end
end

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

622 The Logarithmic Barrier Method

f (x)
= h

•
xp−1

•
xp

•xp+1

•xα
r

φ
α

g/||g||

1 function [h,rc,npt]=curve(name,mineq,muin,xstart,r,mxpt,dir)
2 % draw a single beta contour containing xstart
3
4 global prob m mu % prepare to use bta() and btag()
5 prob=name; % by filling in
6 m=mineq; % the global
7 mu=muin; % variables
8
9 xp=xstart; % start drawing a contour at xstart
10 fcn=str2func(prob); % pointer to function routine
11 nofea=chkfea(xp,fcn,m); % starting point feasible?
12 if(nofea) % if not then
13 h=realmax; % beta=infinity
14 rc=8; % signal failure
15 npt=0; % without drawing any points
16 return % and resign
17 end % starting point is feasible
18 h=bta(xp); % it is on this contour
19 xc=zeros(1,mxpt); % initialize x coordinates of contour
20 yc=zeros(1,mxpt); % initialize y coordinates of contour
21 left=0; % the first search spans from 0
22 right=dir*pi; % to +180 degrees or -180 degrees
23 tol=1e-6; % set tolerance for finding the curve
24 rc=0; % assume we will succeed in drawing the contour
25 closed=false; % assume the contour will not be closed

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.5 Plotting Contours of the Barrier Function 623

27 for p=1:mxpt % find points on contour
28 nozro=false; % assume we will find this point
29 nofea=false; % assume the point will be feasible
30 xc(p)=xp(1); % x-coordinate to plot
31 yc(p)=xp(2); % y-coordinate to plot
32 npt=p; % number of points successfully found
33 if(p > 2) % if far enough from start
34 if(norm(xp-xstart) < r) % check whether we have returned there
35 closed=true; % if so we have plotted a closed curve
36 break % so this contour is done
37 end % otherwise we can continue
38 end % done checking for a closed curve
39 g=btag(xp); % gradient at current point
40 phi=-sign(g(2))*atan2(g(2),g(1)); % angle it is above x(1) axis
41 al=left; % search from this angle
42 xl=xp+[r*cos(al-phi);r*sin(al-phi)]; % which yields this point
43 nofea=chkfea(xl,fcn,m); % is it feasible?
44 if(nofea) break; end % if not give up
45 fl=bta(xl)-h; % else it has this bta error
46 ar=right; % search to this angle
47 xr=xp+[r*cos(ar-phi);r*sin(ar-phi)]; % which yields this point
48 nofea=chkfea(xr,fcn,m); % is it feasible?
49 if(nofea) break; end % if not give up
50 fr=bta(xr)-h; % else it has this bta error
51 for t=1:52 % do up to 52 bisections
52 alpha=(al+ar)/2; % try the midpoint angle
53 xa=xp+[r*cos(alpha-phi);r*sin(alpha-phi)]; % point at new angle
54 nofea=chkfea(xa,fcn,m); % is it feasible?
55 if(nofea) break; end % if not give up
56 if(norm(xr-xl) < tol) % close enough?
57 xp=xa; % yes; this is the root
58 break % save it to plot
59 end % done testing convergence
60 f=bta(xa)-h; % not done; find bta error at new root guess
61 if(f*fl < 0) % sign change from left to center?
62 ar=alpha; % yes
63 xr=xa; % move right end of interval to center
64 fr=f; % update that function value
65 continue % and keep bisecting
66 end % done testing
67 if(f*fr < 0) % sign change from center to right end?
68 al=alpha; % yes
69 xl=xa; % move left end of interval to center
70 fl=f; % update that function value
71 continue % and keep bisecting
72 end % done testing
73 nozro=true % no sign change; declare failure
74 break % and give up
75 end % done accumulating points on contour
76 if(nofea || nozro) break; end % if no root was found contour is done
77 left=alpha-pi/2; % otherwise next search interval
78 right=alpha+pi/2; % is semicircle centered on this angle
79 end % this contour is finished
80
81 plot(xc(1:npt),yc(1:npt)) % plot the curve and report what happened
82 if(nozro) rc=rc+1; end % bisection failed
83 if(nofea) rc=rc+2; end % contour encountered boundary of S
84 if(closed) rc=rc+4; end % contour is a closed curve
85 end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

624 The Logarithmic Barrier Method

The routine begins 4-7 by giving values to the global variables prob, m, and mu so that we
can compute β(x; µ) and its gradient. Next 9-17 it checks the starting point of the contour
for feasibility, 18 finds the contour level h at that point, and 19-25 does some initializations.
The variable dir, which is 1 an input parameter, is +1 or −1 to indicate the direction in
which the contour is to be traced.

Next 27-79 up to mxpt points xp are found on the contour. The coordinates of the current
point (for p=1 the starting point) are saved 30-31 for plotting later. If the point we just
found is not the first or second but it is back where we began 33-38 then the curve must be
closed so 36 the contour is finished. Otherwise 39-40 we find the gradient of the function
and, using the formula given above, its angle φ below the horizontal. Then bisection (see
§28.3.1) is used 41-75 to find the angle α where 60 f = β(xα) − h = 0. The range of angles
bracketing the curve, initially 21-22 [left, right] = [0,±180◦], is used to set the starting
limits al 41 and ar 46 of the bisection search. The point on the circle at each of these
angles is 42,47 found and 43-44,48-49 checked for feasibility. If the endpoints are feasible
the function error is found 45,50 at each. Then 51-75 the interval is bisected up to 52
times. Each iteration begins by 52 finding the midpoint of the angle interval, 53 finding
the corresponding point on the circle, and 54-55 checking it for feasibility. If convergence is
achieved 56-59 the point is 57 accepted. Otherwise one half 61-66 or the other 67-72 of
the angle interval is discarded if the other half contains the root, and the t loop continues.
If the sign of the function error does not change over either interval there is no root, so 73

we declare failure and 74,76 end the contour. If the bisection process succeeds in finding
this point on the contour, the angle interval to search for the next point is 77-78 set to the
semicircle straddling the angle α of the current point. Thus the search-interval determination
described and pictured earlier is actually used only for the first point.

When all of the points that are going to be found have been found, the curve is 81

plotted as a sequence of npt line segments. Finally 82-84 rc is set to tell the caller what
happened. If rc=0 on return, npt = mxpt points were found and plotted; if rc=4 the contour
was a closed curve so probably npt < mxpt. The other return codes indicate that a boundary
of the feasible set was encountered or that the algorithm failed. The value of r determines
how close to the boundary a contour can be drawn, and how sharp a turn in the contour
the algorithm can follow, so to get an accurate picture it might be necessary to use a small
radius and to allow a correspondingly large number of points. Using more points increases
the work performed by the routine and thus the CPU time required to draw the contour.

The graph on the next page shows one contour in the µ = 1 picture of §19.2, which was
drawn using two curve.m invocations. Each uses xstart = [0.25, 0.55]⊤, which is marked
by a dot • in the picture. The top invocation, using dir=-1, follows the curve in the
clockwise direction from that point to the boundary of the feasible set, while the bottom
invocation using dir=+1 follows the curve in the counterclockwise direction from xstart to
the boundary (I added the arrows). Each invocation of curve.m returned the contour level
h=10.8198712385442, rc=2 because the curve stopped at a boundary of the feasible set, and
npt=25 showing that fewer points were necessary than the mxpt=200 that were allowed.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.6 Exercises 625

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

•
[h,rc,npt]=curve(’p2’,1,1,[0.25;0.55],0.02,200,-1)

[h,rc,npt]=curve(’p2’,1,1,[0.25;0.55],0.02,200,+1)

19.6 Exercises

19.6.1[E] If the barrier problem corresponding to a certain nonlinear program is

minimize
x∈Rn

f0(x) − µ
m∑

i=1

ln[− fi(x)]

write down the nonlinear program.

19.6.2[E] For what values of x is the logarithmic barrier function defined if µ > 0? What
is the logarithmic barrier function if µ = 0? If µ has a high value, what is likely to be true
of a point xβ that minimizes the barrier function?

19.6.3[E] In using the logarithmic barrier method, what must happen to µ in order for xβ

to approach x⋆?

19.6.4[P] Consider the following nonlinear program, which is an inequality-constrained
version of problem p1. minimize

x∈R2
−x1x2

subject to x1 + 2x2 − 4 ≤ 0

(a) Write the corresponding barrier function β(x; µ) and minimize it analytically to obtain
formulas for xβ

1
and x

β

2
as functions of µ. (b) Show that β has a local minimum that approaches

x⋆ = [2, 1]⊤ as µ→ 0. (c) Show that β has another stationary point that approaches [0, 0]⊤ as
µ→ 0, and classify it. (d) Starting from [1, 1]⊤, use ntin.m to minimize β numerically as you
reduce µ. (e) Starting from [0, 0]⊤, use ntin.m to minimize β numerically as you reduce µ.
(f) Can every inequality-constrained nonlinear program be solved by the barrier algorithm?
The discussion in [4, p610] sheds some light on this question.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

626 The Logarithmic Barrier Method

19.6.5[P] If a nonlinear program in standard form is solved using the logarithmic barrier
method, the KKT multiplier λ⋆

i
associated with constraint i can be approximated at each

value of µ by a simple formula. (a) Write down the formula. (b) Use the mults.m pro-
gram of §16.10 to find the KKT multiplier corresponding to the catalog x⋆ for problem b2.
(c) Confirm that, in the limit as µ → 0, the formula for λ(µ) produces that value. (d) Use
mults.m to show that the point x̄ where our näıve solution of b2 in §19.2 jammed, is not a
KKT point.

19.6.6[E] Show that under suitable conditions the solution to a barrier problem ap-
proaches the solution of the KKT conditions for the corresponding nonlinear program.

19.6.7[E] When is a logarithmic barrier function convex?

19.6.8[H] The logarithmic barrier function involves a sum of logarithms. (a) Prove that a
nondecreasing concave function of a concave function is concave. (b) Prove that the logarithm
is a nondecreasing concave function.

19.6.9[E] Show that if y = ln[− f (x)] then dy/dx = +[1/ f (x)] d f /dx. What happened to
the minus sign?

19.6.10[H] Derive formulas for the gradient and Hessian of the barrier function correspond-
ing to a standard-form nonlinear program. For what values of x are these quantities defined?

19.6.11[E] Why are general-purpose unconstrained minimization routines likely to fail
when solving a barrier problem? What must be true of an unconstrained minimization
routine in order for it to succeed in solving a barrier problem? Explain how ntfeas.m

works.

19.6.12[H] For ln(−1) MATLAB returns log(-1)=0.00000+3.14159i. (a) Explain where
this result comes from. How can a logarithm be complex? (b) Are complex numbers meaning-
ful in the optimization models we study in this book? (c) If complex numbers are produced
in the course of a calculation but the end result is real, does MATLAB give any indication?
Is such an end result useful in solving an optimization problem?

19.6.13[E] Our example problem p2, which is an equality-constrained nonlinear program,
is defined by the MATLAB routines p2.m, p2g.m, and p2h.m. (a) How can these same routines
be used to define the example problem b2, in which the constraints are inequalities? (b) If
the functions that define these two problems are the same, why is it that b2 is a convex
program while p2 is not?

19.6.14[E] What is jamming? How can it be prevented in minimizing β(x; µ)?

19.6.15[E] Explain in detail how ntfeas.m fails to solve problem b2 when mu=1e-16.

19.6.16[E] Explain the basic idea of the barrier algorithm. What is its order of conver-
gence? What happens to Hβ(x; µ) as µ decreases?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.6 Exercises 627

19.6.17[P] In §19.3 the MATLAB routine hfact.m is introduced. (a) What does it do?
(b) Its return code rc can be 0, 1, or 2. What do these return codes mean? (c) If hfact.m
is invoked with gama=1, what happens if H is positive definite? (d) Use MATLAB to confirm
that if

H =





10 5 0

5 15 5

0 5 2




and γ = 1

2

the U returned by hfact.m is indeed a Cholesky factor of the matrix as modified.

19.6.18[P] Revise the following routines to use hfact.m rather than the chol() command
to factor the Hessian: (a) nt.m (§13.3.1); (b) ntw.m (§13.3.2); (c) ntfs.m (§13.2); (d) ntrs.m
(§17.2).

19.6.19[E] The MATLAB routine ntin.m is described in its title as implementing an interior-
point modified Newton algorithm. (a) What makes it an interior-point algorithm? (b) What
makes it a modified Newton algorithm?

19.6.20[E] If µ0 = 1 and µk=µk−1/2, what is the maximum value of k that we need to
consider if we are computing with 8-byte floating-point numbers (which MATLAB uses by
default)? Why?

19.6.21[P] In barrier.m, I chose kmax=1023 based on the assumption that µ0 = 1, but
then I made muzero an input parameter so that it can be given a lower value. If the routine
is invoked with muzero set to a higher value than 1, kp should be allowed to get higher than
1023. Modify the code to calculate kmax from muzero, but don’t let kmax exceed the highest
value allowed for a MATLAB loop limit (see §4.1).

19.6.22[P] When barrier.m is used to solve a problem with epz set too small, Hβ typi-
cally becomes numerically non-positive-definite near the end of the solution process, so that
nm > 0 is reported, even if the original problem is a convex program. (a) Modify ntin.m to
report the first H that hfact.m finds to be non-positive definite. (b) Repeat the solution of
b1 by barrier.m reported in §19.3, and show that the first non-positive-definite H has its
second leading principal minor equal to zero as claimed. (c) Hessians that are numerically
non-positive-definite are also encountered by barrier.m in solving b2. Repeat the experi-
ment reported in §19.3 and show that the first non-positive-definite H has its second leading
principal minor negative. How can that happen?

19.6.23[P] By construction, the logarithmic barrier function β(x; µ) has its minimizing point
(or points) strictly inside the feasible set. If β(x; µ) can be accurately approximated by a
quadratic, then full Newton steps should remain inside the feasible set and it might not be
necessary to guard against generating infeasible points. (a) Construct the quadratic function
q(x) that Newton descent uses to model β(x0; 1

2
) for the b2 problem, and show that the first

Newton step based on it is to an infeasible point. (b) Plot contours of q(x) and β(x; 1
2
) to

illustrate the mismatch between the model and the function.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

628 The Logarithmic Barrier Method

19.6.24[P] Consider the following problem [5, Example 19.1]

minimize
x∈R2

(x1 +
1
2
)2 + (x2 − 1

2
)2

subject to x1 ∈ [0, 1]
x2 ∈ [0, 1]

(a) Solve the problem graphically. (b) Use barrier.m to solve the problem numerically.

19.6.25[P] Consider the following problem [1, Exercise 9.18].

minimize
x∈R2

(x1 − 5)2 + (x2 − 3)2

subject to 2x1 + 2x2 ≤ 6

−4x1 + 2x2 ≤ 4

(a) Solve the problem graphically. (b) Use barrier.m to solve the problem numerically.

19.6.26[P] Use barrier.m to solve the following inequality-constrained nonlinear pro-
grams: (a) the arch2 problem of §16.0; (b) the arch4 problem of §16.2; (c) the moon prob-
lem of §16.3; (d) the cq1 problem of §16.7; (e) the cq3 problem of §16.7; (f) the problem of
Exercise 16.11.21.

19.6.27[P] We solved the b1 problem numerically in §19.3, and in §19.0 we plotted points
representing its analytic solution xβ(µ) for a few values of µ. (a) Modify barrier.m so that
it can be used to solve a problem one iteration at a time. (b) Write a program that uses your
modified barrier.m to solve the b1 problem one iteration at a time starting from x0 = [1

2
, 1
2
]⊤,

and plot its convergence trajectory along with the zero contours of its constraints. (c) How
is this convergence trajectory related to the points we plotted from the analytic solution?
(d) Use the curve.m contour plotter of §19.5 to add contours of β(x; µ) to your convergence
trajectory plot.

19.6.28[E] Write down all the ways you can think of in which barrier and penalty methods
differ. Write down all the ways you can think of in which they are similar.

19.6.29[E] Explain how MATLAB can be used to plot the contours of a function by using
the grid interpolation algorithm. Is it ever impossible to use this approach? Explain.

19.6.30[E] Describe the basic idea of the curve-following algorithm for plotting a contour.
What are the advantages and drawbacks of this approach?

19.6.31[E] What does chkfea.m return? What role does it play in the curve.m routine?

19.6.32[E] Answer the following questions about the curve.m routine. (a) How does the
user select the function value of the contour to be plotted? (b) What does the input param-
eter dir control? (c) How does the routine know if the contour is a closed curve? (d) What
determines how close a contour can be drawn to a boundary of the feasible set? (e) What
happens if mxpt is set too low? Too high?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

19.6 Exercises 629

19.6.33[P] Modify the b2bar.m program of §19.2 to plot the b2 objective contours by using
curve.m rather than gridcntr.m and the MATLAB contour command. Which approach is
easier?

19.6.34[P] The curve.m routine draws a single contour of the function β(x; µ) for a given
value of µ. Generalize it to plot a single contour of an arbitrary function f (x). How can you
use the new routine to plot a contour of β(x; µ)?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20

Exact Penalty Methods

When the classical penalty method of §18 works at all it converges only linearly, and it has
limited accuracy because Hπ becomes badly conditioned as µ → ∞ and that degrades the
precision with which Newton descent directions can be computed near the optimal point.
Although we were able to find x⋆ exactly for the simple demonstration problems we con-
sidered, the algorithm is of limited use for the larger and more difficult optimizations that
typically arise in practical applications.

In the classical algorithm the exact solution xπ(µ) to the penalty problem approaches x⋆

only in the limit as µ→ ∞. This drawback has inspired the development of algorithms that
can find x⋆ exactly without passing to a limit. Instead of minimizing the classical penalty
function these methods minimize an exact penalty function having xπ(µ) = x⋆ at a finite
value of µ.

20.1 The Max Penalty Method

To see how it is possible for a penalty function to have the miraculous property of being
exact, consider the following inequality-constrained nonlinear program in one dimension,
which I will call ep1 (see §28.7.24).

minimize
x∈R1

f0(x) = x2

subject to f1(x) = 1 − x ≤ 0

We can solve this problem using the KKT
method, as follows.

L(x, λ) = x2 + λ(1 − x)

∂L
∂x

= 2x − λ = 0

∂L
∂λ

= 1 − x ≤ 0

λ(1 − x) = 0

λ ≥ 0 -1

0

1

2

3

4

-2 -1 0 1 2 3

f0(x)

x

f 1
(x
)
=
0

feasible set

•(x⋆, f0(x⋆)
)

The optimality conditions are satisfied at x⋆ = 1 with λ⋆ = 2. This problem is related to the
following unconstrained minimization [1, §9.3] [5, §17.2] [2, §5.3.1] [4, §16.5] [57, §4.1]:

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

632 Exact Penalty Methods

minimize
x∈R1

π(x; µ) = f0(x) + µ max
[

0, f1(x)
]

= x2 + µ max [0, (1 − x)] .

The penalty term

µ max [0, (1 − x)] =

{

µ(1 − x) if x ≤ 1

0 if x ≥ 1

is always nonnegative, but it adds nothing to π unless x is infeasible. We can solve the max

penalty problem above graphically for given values of µ, as shown below.

-1

0

1

2

3

4

-2 -1 0 1 2 3

π(x; µ)

x

µ
=
0 µ
=
0
.5

µ
=
1

µ
=
1
.5

µ
=
2

µ
=
3

x
π(.5

)
=
.2
5

x
π(1

)
=
.5

x
π(1
.5
)
=
.7
5

x
π(≥

2
)
=
1

If x ≤ 1 then 1 − x ≥ 0 and f1(x) ≥ 0, so xπ minimizes π(x; µ) = x2 + µ(1 − x) where

dπ

dx
= 2x − µ = 0 ⇒ xπ = µ/2 ≤ 1.

If x ≥ 1 then 1 − x ≤ 0 and f1(x) ≤ 0, so π(x; µ) = x2 and xπ solves

minimize
x∈R1

x2

subject to x ≥ 1





⇒ xπ = 1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.1 The Max Penalty Method 633

Approaching x⋆ = 1 from below, x ≤ 1 so xπ(µ) = µ/2. When xπ reaches x⋆ we have
µ/2 = 1 or µ = 2; we will call this inflection value µ̄. Notice in the picture that when µ = 2

the curve of π(x; 2) has a horizontal tangent among its subgradients, and thus its minimum,
at x⋆. At x⋆ each curve has a left-handed [146, Exercise 2.1.49] slope of 2x⋆ − µ = 2 − µ, but
the right-handed slope is 2 so only the curve for µ = 0 has a continuous derivative there.

Approaching x⋆ = 1 from above, x ≥ 1 so xπ(µ) = 1. In other words, for all µ ≥ µ̄

minimize
x∈R1

π(x; µ) = x2 + µmax [0, (1 − x)]





solves






minimize
x∈R1

x2

subject to x ≥ 1

which is ep1. If µ is given a finite value that is high enough (in this case at least µ̄ = 2) then
the solution to the penalty problem is exactly the solution of the original nonlinear program.
The µ̄ we found for this example is equal to λ⋆ = 2, and it can be shown [5, Theorem 17.3]
that in general

µ̄ = max
i
|λ⋆i |.

The nonsmoothness of the max penalty function becomes more obvious if we generalize
ep1 to two dimensions, yielding the following problem which I will call ep2 (see §28.7.25).

minimize
x∈R2

f0(x) = x21 + x22

subject to f1(x) = 2 − x1 − x2 ≤ 0

L(x, λ) = x21 + x22 + λ(2 − x1 − x2)

The KKT conditions for this problem are

∂L
∂x1

= 2x1 − λ = 0

∂L
∂x2

= 2x2 − λ = 0

∂L
∂λ

= 2 − x1 − x2 ≤ 0

λ(2 − x1 − x2) = 0

λ ≥ 0 -2

-1

0

1

2

3

-2 -1 0 1 2 3

x2

2

1

x11

2

•x
⋆
= [1, 1]⊤

•
x0 = [2, 2]⊤

f1 (x)
=
0

f0(x) = 2

and they are satisfied at x⋆ = [1, 1]⊤ with λ⋆ = 2. The corresponding max penalty function
is

π(x; µ) = x21 + x22 + µ max [0, (2 − x1 − x2)]

whose contours are plotted for several values of µ on the next page. Each graph shows the
same set of contours for π(x; µ), which have cusps where they meet the constraint contour
f1(x) = 0. At these cusps (i.e., at every point on the constraint contour) ∇π(x) is discontin-
uous.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

634 Exact Penalty Methods

0

0.5

1

1.5

2

0 0.5 1 1.5 2

x2

x1

µ = 1
2

•x⋆

•
xµ

0

0.5

1

1.5

2

0 0.5 1 1.5 2

x2

x1

µ = 1 1
2

•x⋆

•
xµ

0

0.5

1

1.5

2

0 0.5 1 1.5 2

x2

x1

µ = 2

• xµ = x⋆

0

0.5

1

1.5

2

0 0.5 1 1.5 2

x2

x1

µ = 3

• xµ = x⋆

When x is infeasible π(x; µ) = x21 + x
2
2 + µ(2− x1 − x2) and this looks like L(x; λ) so µ̄ = λ⋆ = 2.

We find analytically, by reasoning as we did for ep1, that

xπ(µ) =






[µ/2, µ/2]⊤ µ ≤ µ̄
[1, 1]⊤ µ ≥ µ̄

and this is confirmed by the graphs. In the bottom two panels, where µ ≥ µ̄, the contours
change shape as µ increases but the minimizing point of π(x; µ) is always x⋆ = [1, 1]⊤.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.1 The Max Penalty Method 635

To compute the value, gradient, and Hessian of the max penalty function I wrote the
MATLAB routines listed here.

function f=epy(x)
global prob m mu
fcn=str2func(prob);
f=fcn(x,0);
for i=1:m

if(fcn(x,i) > 0)
f=f+mu*fcn(x,i);

end
end

end

function g=epyg(x)
global prob m mu
fcn=str2func(prob);
grd=str2func([prob,’g’]);
g=grd(x,0);
for i=1:m
if(fcn(x,i) > 0)
g=g+mu*grd(x,i);

end
end

end

function H=epyh(x)
global prob m mu
fcn=str2func(prob);
hsn=str2func([prob,’h’]);
H=hsn(x,0);
for i=1:m
if(fcn(x,i) > 0)
H=H+mu*hsn(x,i);

end
end

end

These resemble the pye.m, pyeg.m, and pyeh.m routines of §18.1, and assume as they do that
the MATLAB functions specifying the original nonlinear program are coded in the standard
way described in §15.5. These routines compute the function, gradient, and Hessian for ep2
in that way.

function f=ep2(x,i)
switch(i)

case 0
f=x(1)^2+x(2)^2;

case 1
f=2-x(1)-x(2);

end
end

function g=ep2g(x,i)
switch(i)
case 0
g=[2*x(1);2*x(2)];

case 1
g=[-1;-1];

end
end

function H=ep2h(x,i)
switch(i)
case 0
H=[2,0;0,2];

case 1
H=[0,0;0,0];

end
end

Using the six routines listed above I tried to solve ep2 with ntfs.m, producing the results
shown at the top of the next page. In each experiment the routine returned nm=0, so it used
full-step Newton descent.

For µ ≤ 2 1>-4> the algorithm finds xπ(µ) = [µ/2, µ/2]⊤ as expected. Because the penalty
function has its minimum at points xµ that are infeasible, all of the xk except x0 fall on that
side of the constraint and π(x; µ) = x21+ x

2
2+µ(2− x1− x2) for every step in the solution process

except the first. (The first step minimizes π(x; µ) = x21 + x22, essentially resetting the starting
point to the origin.)

However, for µ = 3 5>-8> the algorithm bounces back and forth between x̄(µ) = [µ/2, µ/2]⊤

and x̂(µ) = [0, 0]⊤ and never converges. At xk = [1.5, 1.5]⊤ the constraint is satisfied, so
π(x; µ) = x21 + x22 has its minimum at [0, 0]⊤ and the algorithm moves there; at xk+1 = [0, 0]⊤

the constraint is violated, so π(x; µ) = x21+ x
2
2+3(2− x1− x2) has its minimum at [1.5, 1.5]⊤ and

the algorithm moves there; this process repeats until the iteration limit is met. For µ > 2

the penalty function is minimized on precisely the zero contour of the constraint, so Newton
descent generates iterates on both sides, the formula for π(x; µ) changes during the solution
process, and the quadratic model

q(x) = π(xk) + ∇π(xk)⊤(x − xk) + 1
2
(x − xk)⊤Hπ(xk)(x − xk)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

636 Exact Penalty Methods

octave:1> global prob=’ep2’ m=1 mu=1
octave:2> [xpi,kp,nm]=ntfs([2;2],10,1e-6,@epyg,@epyh,0.5)
xpi =

0.50000
0.50000

kp = 3
nm = 0
octave:3> mu=2;
octave:4> [xpi,kp,nm]=ntfs([2;2],10,1e-6,@epyg,@epyh,0.5)
xpi =

1.00000
1.00000

kp = 3
nm = 0
octave:5> mu=3;
octave:6> [xbar,kp,nm]=ntfs([2;2],10,1e-6,@epyg,@epyh,0.5)
xbar =

1.5000
1.5000

kp = 10
nm = 0
octave:7> [xhat,kp,nm]=ntfs([2;2],11,1e-6,@epyg,@epyh,0.5)
xhat =

4.4409e-16
4.4409e-16

kp = 11
nm = 0
octave:8> [xbar,kp,nm]=ntfs([2;2],12,1e-6,@epyg,@epyh,0.5)
xbar =

1.5000
1.5000

kp = 12
nm = 0
octave:9> quit

that is assumed by Newton descent is a different function from one iteration to the next.

At xk = [3
2
, 3
2
]⊤ q̄(x) ≡ x21 + x22 ∇q̄(x) = [2x1, 2x2]

⊤

but at xk+1 = [0, 0]⊤ q̂(x) ≡ x21 + x22 + µ(2 − x1 − x2) ∇q̂(x) = [2x1 − µ, 2x2 − µ]⊤.

Because the gradient ∇π(x; µ) of the max penalty function for ep2 is discontinuous, the
gradients ∇q̄(x) and ∇q̂(x), which are actually used by Newton descent, differ unless µ = 0.

Newton descent assumes [5, Theorem 3.5] [4, Theorem 2.6] that the function being min-
imized will have continuous first and second derivatives at every xk, including x⋆. At x⋆ the
max penalty function for ep2 does have continuous second derivatives, with

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.1 The Max Penalty Method 637

Hπ(x) =

[

2 0

0 2

]

but its first derivatives are discontinuous so it is not surprising that ntfs.m is unable to
minimize it for µ > µ̄ [4, p625]. Using a bisection line search rather than full steps results in
an implementation of Newton descent that is somewhat more robust against discontinuities
in the gradient. Here nt.m solves ep2, producing the expected results for µ lower than µ̄,
equal to µ̄, slightly higher than µ̄, and much higher than µ̄.

octave:1> global prob=’ep2’ m=1 mu=1
octave:2> [xstar,kp,nm,rc]=nt([2;2],[-2;-2],[3;3],100,1e-16,@epyg,@epyh,0.5)
xstar =

0.50000
0.50000

kp = 2
nm = 0
rc = 0
octave:3> mu=2
mu = 2
octave:4> [xstar,kp,nm,rc]=nt([2;2],[-2;-2],[3;3],100,1e-16,@epyg,@epyh,0.5)
xstar =

0.98828
0.98828

kp = 100
nm = 0
rc = 1
octave:5> mu=2.01
mu = 2.0100
octave:6> [xstar,kp,nm,rc]=nt([2;2],[-2;-2],[3;3],100,1e-16,@epyg,@epyh,0.5)
xstar =

1.00000
1.00000

kp = 100
nm = 0
rc = 1
octave:7> mu=3
mu = 3
octave:8> [xstar,kp,nm,rc]=nt([2;2],[-2;-2],[3;3],100,1e-16,@epyg,@epyh,0.5)
xstar =

1.00000
1.00000

kp = 100
nm = 0
rc = 1
octave:9> quit

Alas, nt.m fails to minimize the max penalty function for other problems (see Exercise
20.4.10), and the other unconstrained minimizers we have studied enjoy only mixed success

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

638 Exact Penalty Methods

in solving ep2 (see Exercise 20.4.11) and other problems. Subgradient optimization

methods [1, §8.9] are designed to minimize a nonsmooth function that is convex (like the
max penalty function for ep2) but applying one successfully to a particular problem requires
fine-tuning of algorithm parameters and careful attention to numerous other implementation
details, so the approach is difficult to use in practice and beyond the scope of this text. Of
course we could always resort to an algorithm that uses only function values, such as pattern
search, but those methods are typically very slow.

Using the trick of §1.5.1 we can instead reformulate the max penalty problem on the left
as the smooth optimization on the right.

minimize
x∈Rn

f0(x) + µ

m∑

i=1

max[0, fi(x)] ←→
minimize
x∈Rn t∈Rm

f0(x) + µ

m∑

i=1

ti

subject to ti ≥ 0,

ti ≥ fi(x), i = 1 . . .m

We initially introduced a penalty function to move the constraints into the objective and in
this reformulation inequalities reappear, so it might seem that we are back where we began;
instead of finding a way to solve an inequality-constrained problem we have just rewritten
it as another inequality-constrained problem. However, the new problem is not quite the
standard-form nonlinear program we started with. If at each step xk of a penalty algorithm
that increases µ we [5, p511-513] [2, §5.31] replace the objective in this reformulation by a
quadratic approximation to the Lagrangian at xk and each constraint by its linear approx-
imation there, we get a subproblem that might be much easier to solve than the original
optimization. We will return to this rather complicated idea in §23.2.4, after we have studied
algorithms for solving linearly-constrained quadratic programs.

The max penalty method discussed above can be modified to handle equality constraints
instead of or in addition to inequalities, by using one of the following (also nonsmooth)
penalty terms

µ
∑

equalities

| fi(x)| [1, §9.3]

µ max
equalities

| fi(x)| [2, §5.3.1]

but instead of investigating that variation we will now turn our attention to a different
penalty function which, in addition to being exact, is also smooth.

20.2 The Augmented Lagrangian Method

Consider the equality-constrained nonlinear program on the next page, which I will call al2
(it resembles [5, Example 17.1]; see §28.7.26). The equality constraint is nonlinear so it is
nonconvex, but for λ > 0 the Lagrangian is a strictly convex function of x.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.2.1 Minimizing a Nonconvex Lagrangian 639

minimize
x∈R2

f0(x) = −x1 − x2

subject to f1(x) = x21 + x22 − 2 = 0

x0 = [2, 2]⊤

L(x, λ) = −x1 − x2 + λ(x
2
1 + x22 − 2)

The Lagrange conditions for this problem

∂L
∂x1

= −1 + 2λx1 = 0

∂L
∂x2

= −1 + 2λx2 = 0

∂L
∂λ

= x21 + x22 − 2 = 0

are satisfied by x⋆
1
= 1, x⋆

2
= 1 with λ⋆ = 1

2
.

x11 2

x2

1

2

feasible
set

•x
0

•x
⋆

20.2.1 Minimizing a Convex Lagrangian

The optimal point (x⋆, λ⋆) =
(

[1, 1]⊤, 1
2

)

of al2 satisfies ∇xL = 0 and ∇λL = 0, so it is a
stationary point of L(x, λ). Also, f1(x

⋆) = 0 so L(x⋆, λ) = f0(x
⋆). Thus we could find x⋆ by

solving the nonlinear program on the right below in place of the one on the left [4, §16.6].

minimize
x∈R2

f0(x)

subject to f1(x) = 0
←→

minimize
x∈R2 λ∈R1

L(x, λ)
subject to f1(x) = 0

If somehow we knew ahead of time that λ⋆ = 1
2
then we could find x⋆ for al2 by minimizing

L(x, λ⋆) without enforcing the constraint. Because (x⋆, λ⋆) is a stationary point of L(x, λ),
it must be that ∇λL(x⋆, λ⋆) = f1(x

⋆) = 0. Thus the x⋆ we find by minimizing L(x, λ⋆) is sure
to satisfy the constraint.

∂L(x, λ⋆)
∂x1

= −1 + 2(1
2
)x1 = 0 ⇒ x⋆1 = 1

∂L(x, λ⋆)
∂x2

= −1 + 2(1
2
)x2 = 0 ⇒ x⋆2 = 1

f1(x
⋆) = 12 + 12 − 2 = 0 X

The picture on the next page shows the graphical solution of the right-hand problem above
for λ = λ⋆, from which it is clear that L(x, λ⋆) has a unique minimizing point at x⋆. Because
the constraint is satisfied, L(x⋆, λ⋆) = f0(x

⋆) and the unconstrained minimizing point of
L(x, λ⋆) is the same as the constrained minimizing point of f0(x) subject to f1(x) = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

640 The Augmented Lagrangian Method

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4

x2

x1

•
x⋆

f1(x) = 0

f0 (x)
=
f0 (x ⋆

)

L(x, λ⋆) = −x1 − x2 +
1
2 (x

2
1
+ x2

2
− 2) = +1.0

L = +0.5

L = 0.0

L = −0.5
L = −1.0

L = −1.5
L⋆ = −2.0

When is it true that given λλλ⋆ we can find x⋆ for an equality-constrained NLP by min-
imizing L(x,λλλ⋆) over x while ignoring the constraints? It is certainly true if L(x,λλλ⋆) has
a unique minimizing point x⋆, because such a point must satisfy ∇λλλL(x⋆,λλλ⋆) = 0 and that
means the constraints are satisfied. The Lagrangian certainly has a unique minimizing point
if its Hessian matrix is positive definite. That is true for al2, which has

∂ 2L
∂x12

= 2λ
∂ 2L
∂x1∂x2

= 0

∂ 2L
∂x2∂x1

= 0
∂ 2L
∂x22

= 2λ

so that at λ⋆ = 1
2

HL(x) =

[

1 0

0 1

]

.

It is true in general that if HL(x,λλλ
⋆) is positive definite and we know λλλ⋆, then we can find

x⋆ by ignoring the equalities and simply minimizing L(x,λλλ⋆).

20.2.2 Minimizing a Nonconvex Lagrangian

Now consider the equality-constrained nonlinear program on the next page, which I will call
al1 (see §28.7.27). Notice that it has only one variable and that x⋆ = 1 is the only feasible
point. For λ = λ⋆ = −1 its Lagrangian is not a convex function of x.

d2L
dx2
=

2λ

x3
so at λ⋆ = −1, HL(x, λ

⋆) =

[

−2
x3

]

.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.2.2 Minimizing a Nonconvex Lagrangian 641

minimize
x∈R1

f0(x) = −x

subject to f1(x) =
1

x
− 1 = 0

x0 = 1
2

L(x, λ) = −x + λ
(

1

x
− 1

)

The Lagrange conditions for this problem

∂L
∂x

= −1 + λ
(

−1
x2

)

= 0

∂L
∂λ

=
1

x
− 1 = 0

are satisfied at x⋆ = 1 with λ⋆ = −1. 0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

x

y

y
=
1
/
x

y = 1•
x0

•x
⋆

It is still true that we can solve the nonlinear program on the right below in place of the
one on the left.

minimize
x∈R1

f0(x)

subject to f1(x) = 0
←→

minimize
x∈R1 λ∈R1

L(x, λ)
subject to f1(x) = 0

Now, however, knowing λ⋆ ahead of time does not let us ignore the constraint. In the graph-
ical solution of the right-hand problem, shown to the left below, L(x, λ⋆) = −x − [(1/x) − 1]

-4

-2

0

2

4

-4 -2 0 2 4

L
(x
,λ
⋆
)

x

f 1
(x
)
=
0

•(x
⋆,L(x⋆, λ⋆))

has stationary points at x = ±1. The con-
straint requires x = +1 so the local minimum
at x = −1 is infeasible, and L has no global
minimum value because.

lim
x→0+
L(x, λ⋆) = lim

x→+∞
L(x, λ⋆) = −∞.

When we enforce the constraint it is the other
stationary point of L(x, λ⋆), the local maxi-
mum, that turns out to be optimal for the
right-hand problem.

This example illustrates that when
L(x, λ⋆) is not strictly convex, minimizing it
is equivalent to minimizing f0(x, λ

⋆) subject
to the constraints only if we actually enforce
the constraints. Of course it is also still nec-
essary to know λ⋆.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

642 The Augmented Lagrangian Method

20.2.3 The Augmented Lagrangian Function

When minimizing L(x,λλλ⋆) one way of enforcing the constraints is to move them into the
objective by using a classical penalty term, to form the augmented Lagrangian penalty

function

π(x,λλλ; µ) = f0(x) +

m∑

i=1

λi fi(x) + µ

m∑

i=1

[fi(x)]
2.

For al1, we find

π(x, λ; µ) = −x + λ
(

1

x
− 1

)

+ µ

(

1

x
− 1

)2

dπ

dx
= −1 + λ

(

−1
x2

)

+ 2µ

(

1

x
− 1

)1 (−1
x2

)

d2π

dx2
=

2λ

x3
+ 2µ

[(

1

x
− 1

) (

2

x3

)

+

(

−1
x2

) (

−1
x2

)]

=
2λ

x3
+ 2µ

[

2(1 − x)

x4
+

1

x4

]

=
2λ

x3
+ 2µ

[

3 − 2x
x4

]

.

If λ = λ⋆ = −1 and x = x⋆ = 1 then

dπ

dx
= −1 + (−1)

(

−1
12

)

+ 2µ

(

1

1
− 1

) (

−1
12

)

= 0

so (x⋆, λ⋆) is a stationary point of π(x, λ; µ) no matter what value µ has. Whether that point
is a minimum, a maximum, or an inflection point of π(x, λ; µ) depends on the sign of

d2π

dx2
=

2(−1)
13
+ 2µ

[

3 − 2(1)
14

]

= −2 + 2µ.

If µ̄ = 1 then

µ > µ̄ ⇒ −2 + 2µ > 0 ⇒ (x⋆, λ⋆) is a minimizing point of π;
µ = µ̄ ⇒ −2 + 2µ = 0 ⇒ (x⋆, λ⋆) is an inflection point of π;
µ < µ̄ ⇒ −2 + 2µ < 0 ⇒ (x⋆, λ⋆) is a maximizing point of π.

To study the behavior of the augmented Lagrangian for al1, I plotted, at the top of the
next page, π(x, λ⋆; µ) as a function of x for several values of µ. This picture confirms that
when λ = λ⋆ = −1, x⋆ = 1 is a minimizing point for µ > µ̄ = 1, an inflection point for µ = µ̄,
and a maximizing point for µ < µ̄. It is true in general that the augmented Lagrangian is an
exact penalty function [1, Theorem 9.3.3] [5, Theorem 17.5] and that it works, as shown in
this example, by changing its shape.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.2.3 The Augmented Lagrangian Function 643

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2 2.5

π
(x
,λ
⋆
;µ
) µ = 8

µ = 4

µ = 1

µ = 0.3

µ = 0.1

µ = 0

µ = 4

µ = 8

µ = 1
µ = 0.3
µ = 0.1
µ = 0

x

Unfortunately, if L(x,λλλ⋆) is not a strictly convex function of x then π(x,λλλ⋆; µ) is not
necessarily a convex function of x for all x even if µ > µ̄. In this example, if λ = λ⋆ = −1
then π is convex between x = 0 (to which all of the curves shown above are asymptotic) and
the value x = x̂ at which its Hessian is zero. Using the formula we derived above,

d2π

dx2
=
−2
x3
+ 2µ

[

3 − 2x
x4

]

= 0

−2x + 2µ(3 − 2x) = 0

x(−2 − 4µ) = −6µ

x̂ =
6µ

2 + 4µ
lim
µ→∞

x̂ =
6

4
=

3

2
.

In the picture above the inflection point x̂ is plotted as an open circle ◦ for each value of
µ > 0. When µ = µ̄ = 1 the penalty function is convex only between x = 0 and x = x̂ = x⋆ = 1;
for higher values of µ it is convex between x = 0 and x = x̂ < 3

2
. This limited region of local

convexity makes π(x,λλλ; µ) hard to minimize even though it is smooth on the interior of its
domain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

644 The Augmented Lagrangian Method

Rearranging the terms in the formula given above for the augmented Lagrangian reveals
that it is just the quadratic penalty function of §18 plus the constraint part of the Lagrangian.

π(x,λλλ; µ) = f0(x) + µ

m∑

i=1

[fi(x)]
2

︸ ︷︷ ︸

quadratic penalty function

+

m∑

i=1

λi fi(x)

The value, gradient, and Hessian of the augmented Lagrangian are therefore respectively the
value, gradient, and Hessian of the quadratic penalty function plus the Lagrange-multiplier-
weighted sum of the values, gradients, and Hessians of the constraints, which I coded in the
following MATLAB routines.

function f=aug(x)
global prob m mu lambda
fcn=str2func(prob);
f=pye(x);
for i=1:m

f=f+lambda(i)*fcn(x,i);
end

end

function g=augg(x)
global prob m mu lambda
grd=str2func([prob,’g’]);
g=pyeg(x);
for i=1:m

g=g+lambda(i)*grd(x,i);
end

end

function H=augh(x)
global prob m mu lambda
hsn=str2func([prob,’h’]);
H=pyeh(x);
for i=1:m

H=H+lambda(i)*hsn(x,i);
end

end

The Lagrangian for problem al2 is strictly convex, so the augmented Lagrangian is also
strictly convex even without a penalty term and its minimizing point x⋆ = [1, 1]⊤ can be
found exactly with µ = 0.

octave:1> global prob=’al2’ m=1 mu=0 lambda=0.5
octave:2> [xstar,kp]=ntplain([2;2],20,1e-6,@augg,@augh)
xstar =

1
1

kp = 2
octave:3> quit

The Lagrangian for problem al1 is not convex, but the augmented Lagrangian is locally
convex over an interval that depends on µ. That interval includes x0 = 1

2
, and for µ > µ̄ = 1

it also includes x⋆ = 1.

octave:1> global prob=’al1’ m=1 mu=1 lambda=-1
octave:2> [xstar,kp]=ntplain(0.5,20,1e-6,@augg,@augh)
xstar = 0.99966
kp = 14
octave:3> mu=1.01;
octave:4> [xstar,kp]=ntplain(0.5,20,1e-6,@augg,@augh)
xstar = 1.00000
kp = 13
octave:5> mu=8;
octave:6> [xstar,kp]=ntplain(0.5,20,1e-6,@augg,@augh)
xstar = 1.00000
kp = 8
octave:7> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.2.4 An Augmented Lagrangian Algorithm 645

20.2.4 An Augmented Lagrangian Algorithm

When we solved al1 and al2 in §20.2.3 we used the following approach.

1. Form the penalty function π(x,λλλ; µ) = f0(x) +

m∑

i=1

λi fi(x) + µ

m∑

i=1

[fi(x)]
2.

2. Set λλλ = λλλ⋆.

3. Set µ > µ̄ so that π is locally convex at x⋆.

4. Solve the resulting unconstrained penalty problem for x⋆.

Of course this is not a practical strategy for solving arbitrary equality-constrained nonlinear
programs, because for most problems we initially know nothing about λλλ⋆. Also, unless L(x,λλλ⋆)
is strictly convex so that µ̄ = 0, all we know about µ̄ is that it must be positive. Fortunately
it is possible to estimate λλλ⋆ by minimizing π and to find a value of µ that is greater than µ̄
without knowing what µ̄ is.

Given any vector λλλ and scalar µ, if x̄ is a stationary point of the augmented Lagrangian
then

∇xπ(x̄,λλλ; µ) = ∇x f0(x̄) +
m∑

i=1

λi∇x fi(x̄) + 2µ
m∑

i=1

fi(x̄)∇x fi(x̄)

= ∇x f0(x̄) +
m∑

i=1

[

λi + 2µ fi(x̄)
]∇x fi(x̄) = 0.

If (x̄,λλλ) were optimal it would satisfy the equality constraints, so it would also be a stationary
point of the Lagrangian and satisfy

∇xL(x̄,λλλ⋆) = ∇x f0(x̄) +
m∑

i=1

λ⋆i ∇x fi(x̄) = 0

with λ⋆
i
= λi + 2µ fi(x̄).

If (x̄,λλλ) is not optimal it turns out [5, §17.3] [4, §16.6] that our estimate of λλλ can be
improved by using this formula in the method of multipliers algorithm flowcharted on
the next page. In the flowchart, f(xk) is the vector whose elements are the function values
fi(x

k), i = 1 . . .m. At each iteration k the method of multipliers finds xk and λλλk+1 to minimize
π and thus make ∇xL(xk,λλλk+1) = 0. Thus the stationarity conditions for the original problem
are satisfied at every iteration. As λk+1

i
−λk

i
→ 0, also 2µ fi(x

k)→ 0 so fi(x
k)→ 0 and feasibility

is gradually attained. If the algorithm converges to produce λλλk+1 = λλλk then xk+1 = x⋆ and
fi(x

k) = fi(x
⋆) = 0 for i = 1 . . .m so that ∇λL = 0. In that case the method of multipliers

yields a point (x⋆,λλλ⋆) that minimizes the augmented Lagrangian for the given value of µ.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

646 The Augmented Lagrangian Method

ENTER method of multipliers

guess λλλ0

k ← 0

xk = argmin
x∈Rn

π(x,λλλk; µ)

λλλk+1 = λλλk + 2µf(xk)

?
NO ||λλλk+1 − λλλk|| < ǫ

YES

k ← k + 1

λλλ⋆ = λλλk+1

x⋆ = xk

EXIT

The method of multipliers can be thought of [17, §2] [4, §16.6.1] as a gradient ascent
algorithm for solving the dual of the following equality-constrained nonlinear program.

P : minimize
x∈Rn

f0(x) + µ

m∑

i=1

[fi(x]
2

subject to fi(x) = 0, i = 1 . . .m

This problem’s Lagrangian is just π(x,λλλ; µ), so its Lagrangian dual is (see Exercise §20.4.38)

D : maximize
λλλ∈Rm

g(λλλ) where g(λλλ) = argmin
x∈Rn

π(x,λλλ; µ).

To maximize g(λλλ) we can take steps in the direction of its gradient

∇λλλg(λλλk) = argmin
x∈Rn

∇λλλπ(x,λλλk; µ) = f

(

argmin
x∈Rn

π(x,λλλk; µ)

)

= f(xk)

and that is just what the flowchart above does, with a steplength of 2µ. Because of this
interpretation, the method of multipliers is sometimes referred to as a dual ascent algorithm.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.2.4 An Augmented Lagrangian Algorithm 647

In order for the argmin box in the flowchart to succeed, π(x,λλλ; µ) must actually have
a minimizing point xk for each λλλk generated by the algorithm, not just for λλλ⋆. That will
be assured if Hπ(x

k,λλλk; µ) is positive definite at every iterate. As we discovered in §20.2.3,
the region of Rn in which that is true depends on µ. Increasing µ enlarges the region of
local convexity, at least up to some maximum size, so if Hπ becomes non-positive-definite at
some iteration it makes sense to increase µ, and that is what I have done in the MATLAB

implementation auglag.m listed below.

1 function [xstar,lambda,kl,rc,mu]=auglag(name,meq,xzero,epz,kmax)
2 % solve an equality-constrained nonlinear program by augmented Lagrangian
3
4 global prob m mu lambda % to aug.m, augg.m, and augh.m
5 prob=name; % pass the problem name
6 m=meq; % the number of equality constraints
7 mu=1; % the initial value of mu
8 lambda=zeros(1,m); % and the initial value of lambda
9 fcn=str2func(prob); % get a pointer to the function routine
10 xstar=xzero; % start at the starting point
11 rc=1; % default rc to indicate nonconvergence
12
13 for kl=1:kmax
14 % minimize the penalty function
15 [xnew,kn,nm]=ntrs(xstar,0,kmax,epz,@aug,@augg,@augh,0.5);
16 for kx=1:10
17 if(nm > 0)
18 mu=2*mu;
19 [xnew,kn,nm]=ntrs(xstar,0,kmax,epz,@aug,@augg,@augh,0.5);
20 else
21 break
22 end
23 end
24 xstar=xnew;
25
26 % update the multipliers
27 esq=0;
28 for i=1:m
29 delta=2*mu*fcn(xstar,i);
30 lambda(i)=lambda(i)+delta;
31 esq=esq+delta^2;
32 end
33
34 % test convergence
35 if(sqrt(esq) <= epz)
36 rc=0;
37 return
38 end
39 end
40 end

This routine begins by 4-8 sharing the problem data with aug.m, augg.m, and augh.m,
which will be used to compute the value and derivatives of π. The multiplier µ will later be
increased if necessary by 18 successive doublings, so it is 7 arbitrarily given the positive
starting value of 1. The unknown vector of Lagrange multipliers is initialized 8 to zero (this
is sure to be wrong, because equality constraints must be tight at optimality). The routine

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

648 The Augmented Lagrangian Method

that computes function values for the original problem will be needed later 29 so 9 the
pointer fcn to it is found here. Then the solution is initialized 10 to the starting point and
11 the return code is set to 1 in case convergence is not achieved.

The method of multipliers is implemented in the loop 13-39 over kl. Its first stanza
14-24 solves the penalty problem for the current estimate of λλλ; this is the argmin box of the
flowchart. If in the first attempt 15 at minimizing π ntrs.m generates one or more iterates
at which Hπ(x

kn) is not positive definite then nm, the number of Hessian modifications it
performed, is 17 greater than zero. In that case µ is 18 doubled and 19 the minimization
is attempted again. If the Hessian is still not positive definite µ is doubled again, and so on
up to 10 times in the kx loop.

When the minimization of π is successful with nm=0 20-21 or the kx loop completes
because Hπ(x

kn) is non-positive-definite at the final value of µ, the last point returned by
ntrs.m is 24 taken as optimal for this value of λλλ and the method of multipliers continues to
the next box of the flowchart. Here 26-32 each λi is incremented 30 by 29 δ = 2µ fi(x

kl).
This loop 27-31 also computes the square e2 =

∑m
i=1 δ

2 of the error in the estimate of λλλ.
The decision box of the flowchart is implemented next 34-38 . If it finds 35 that

e = ||λλλk+1 − λλλk|| < ǫ it sets rc=0 to indicate success and returns 37 the current values 1

of xstar and lambda, which are now presumably optimal.
I tested auglag.m on five of the equality-constrained examples we have considered, and

the Octave session on the next page shows that it found (x⋆,λλλ⋆) for each of them. The al2, p1,
and p2 problems have strictly convex Lagrangians and hence µ̄ = 0, so it is not surprising
that auglag.m leaves µ at its initial value of 1 in solving them. The al1 problem has a
nonconvex Lagrangian and we found analytically that µ > 1 is required to make π(x,λλλ; µ)
strictly convex at x⋆, so in solving that problem auglag.m increases µ from its initial value.
In its travels from x0 to x⋆ ntrs.m must have visited two points at which Hπ(x

kn) was not
positive definite, because the starting value µ = 1 was doubled twice to reach µ = 4. The
one23 problem has a nonconvex objective, and auglag.m finds an optimal point different
from those reported in §15.5 (see Exercise 20.4.40). Each of these problems has only one
constraint, but some examples having more are suggested in the Exercises so you can confirm
that the algorithm works for m > 1.

20.2.5 Conclusion

The augmented Lagrangian algorithm discussed in §20.2.4 has several important virtues.

• It is exact; modulo roundoff it can find, at a finite value of µ, solutions (x⋆,λλλ⋆) that
are precise and that precisely satisfy the equality constraints.

• It is numerically stable; because µ need not get very big, the condition number of Hπ
need not get very bad.

• It might be faster than the classical penalty method; see Exercise 20.4.34.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.2.5 Conclusion 649

octave:1> format long
octave:2> [xstar,lambda,kp,rc,mu]=auglag(’al1’,1,0.5,1e-14,40)
xstar = 1.00000000000000
lambda = -1.00000000000000
kp = 31
rc = 0
mu = 4
octave:3> [xstar,lambda,kp,rc,mu]=auglag(’al2’,1,[2;2],1e-14,20)
xstar =

1
1

lambda = 0.500000000000000
kp = 13
rc = 0
mu = 1
octave:4> [xstar,lambda,kp,rc,mu]=auglag(’p1’,1,[4;4],1e-15,20)
xstar =

2.00000000000000
1.00000000000000

lambda = 1
kp = 20
rc = 0
mu = 1
octave:5> [xstar,lambda,kp,rc,mu]=auglag(’p2’,1,[1;2],1e-15,100)
xstar =

0.945582993415969
0.894127197437503

lambda = 3.37068560583615
kp = 96
rc = 0
mu = 1
octave:6> [xstar,lambda,kp,rc,mu]=auglag(’one23’,1,[0;0;0],1e-15,10)
xstar =

-0.0773502691896258
0.5000000000000000
0.5773502691896257

lambda = -1
kp = 2
rc = 0
mu = 1024
octave:7> quit

Many refinements are possible [5, §17.4] to our simple implementation. The multiplier µ
can be increased if an iteration of the method of multipliers produces too small a decrease in
|| f(x)||, or even at every iteration, rather than only when Hπ is non-positive-definite. I used
the same tolerance epz everywhere, but the performance of the algorithm can be improved
by making the tolerance for minimizing π different from the tolerance for the method of
multipliers; then the tolerance for minimizing π can be made to depend on || f(xkl)|| so that
xkl is found more precisely as λλλ⋆ is approached. I have used the same iteration limit kmax

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

650 Exact Penalty Methods

everywhere but it might also be better to use different limits for ntrs.m and the kl loop.
Production codes typically use more sophisticated methods to minimize π. By using the
dual it is possible [1, p497-499] to derive a different formula for λλλk+1, which leads to a more
complicated version of the algorithm having faster convergence.

The augmented Lagrangian method can be modified to handle inequality constraints by
introducing nonnegative slack variables [1, p499-501] as in this example.

minimize
x∈Rn

f0(x)

subject to f1(x) ≤ 0 ←→
minimize

x∈Rn
f0(x)

subject to f1(x) + s = 0

s ≥ 0

The penalty problem of the reformulation,

minimize
x∈Rn λ∈R1 s∈R1

π(x, s,λλλ; µ) = f0(x) + λ1[f1(x) + s] + µ[f1(x) + s]2

subject to s ≥ 0

can be solved using an algorithm (such as a descent method with a restricted line search)
that enforces the bound on s.

20.3 Alternating Direction Methods of Multipliers

An equality-constrained nonlinear program that has certain special properties can be solved
by the alternating direction method of multipliers or ADMM [17, §3] [2, §7.4], a
modification of the method of multipliers that facilitates the use of parallel processing

[100, §16.2]. Performing several parts of the calculation concurrently on different processors
can reduce the wall-clock time required to complete an optimization. It can sometimes also
permit the solution of large problems (see §25.7) by distributing among several computers a
matrix that is too big to store on any one of them.

A separable function is a sum of terms each involving a different subset of the variables.
If a partitioning of variables that makes the functions of a nonlinear program separable is
the same for each function, then the variables are said to be separable variables. This
problem, which I will call admm (see §28.7.28), has a separable objective function.

minimize
x∈R4

f0(x) = x21 + x22 + x23 + x24

subject to Ax =

[

3x1 − x2 − 2x3 − x4
−4x1 + x2 + 5x3 + 2x4

]

=

[

−1
3

]

= b

It also has two other properties that are necessary for ADMM: the objective is convex and
the constraints are linear.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.3.1 Serial ADMM 651

If we solve the admm problem using the augmented Lagrangian algorithm, the method of
multipliers iteration consists of these two updates (see the flowchart in §20.2.4).

xk = argmin
x∈R4

π(x,λλλk; µ)

λλλk+1 = λλλk + 2µ
(

Axk − b
)

Here π(x,λλλk; µ) is minimized with respect to x1, x2, x3, and x4 jointly. Now suppose we
partition the variables by letting

y1 =

[

x1
x2

]

y2 =

[

x3
x4

]

A1 =

[

3 −1
−4 1

]

A2 =

[

−2 −1
5 2

]

In terms of the new variables the problem becomes

minimize
y1 y2

f0(y) = y1
⊤y1 + y2

⊤y2

subject to A1y1 + A2y2 = b

20.3.1 Serial ADMM

ADMM solves the partitioned version of the admm problem by enlarging the method of
multipliers iteration to consist of these three updates, in which µ is now a fixed stepsize for
dual ascent.

yk+11 = argmin
y1

π(y1, y
k
2,λλλ

k; µ)

yk+12 = argmin
y2

π(yk+11 , y2,λλλ
k; µ)

λλλk+1 = λλλk + 2µ
(

A1y
k+1
1 + A2y

k+1
2 − b

)

Now the augmented Lagrangian penalty function is

π(y1, y2,λλλ; µ) = y1
⊤y1 + y2

⊤y2 + λλλ
⊤(A1y1 + A2y2 − b) + µ(A1y1 + A2y2 − b)⊤(A1y1 + A2y2 − b).

Letting v2 = A2y
k
2 − b the objective of the first subproblem reduces to

π(y1, y
k
2,λλλ; µ) = y1

⊤y1 + y
k
2
⊤yk2 + λλλ

⊤(A1y1 + v2) + µ(A1y1 + v2)
⊤(A1y1 + v2)

= y1
⊤y1 + λλλ

⊤A1y1 + µ(A1y1 + v2)
⊤(A1y1 + v2) + [y

k
2
⊤yk2 + λλλ

⊤v2].

Letting v1 = A1y
k
1 − b the objective of the second subproblem reduces to

π(yk+11 , y2,λλλ; µ) = y
(k+1)

1
⊤yk+11 + y2

⊤y2 + λλλ
⊤(A2y2 + v1) + µ(A2y2 + v1)

⊤(A2y2 + v1)

= y2
⊤y2 + λλλ

⊤A2y2 + µ(A2y2 + v1)
⊤(A2y2 + v1) + [y

(k+1)
1

⊤yk+11 + λλλ⊤v1].

In each subproblem objective the term in square brackets is held constant during that min-
imization and can therefore be ignored. To solve admm using this algorithm I wrote the
MATLAB program and subroutines listed on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

652 Alternating Direction Methods of Multipliers

1 % admm.m: serial ADMM with immediate updates
2 clear; format long; clf
3 global mu=1 A=zeros(2,2) lambda=ones(2,1) v=zeros(2,1)
4
5 xzero=[0;0;0;0]; % unconstrained optimum
6 y1=xzero(1:2); y2=xzero(3:4); % partition variables
7 A1=[3,-1;-4,1]; A2=[-2,-1;5,2]; b=[-1;3]; % partition constraints
8
9 x1k(1)=y1(1); x2k(1)=y1(2); % save y1 coordinates
10 delta=2*mu*(A1*y1+A2*y2-b); % feasiblity correction
11 ezero=delta’*delta; % starting error
12 err(1)=1; its(1)=0; % prepare to plot error
13
14 for k=1:200 % do method-of-multiplier iterations
15 v=A2*y2-b; % constraint terms fixed while optimizing over y1
16 A=A1; % y1 partition of constraints
17
18 y1new=ntrs(y1,0,10,1e-12,@admmf,@admmg,@admmh);
19
20 y1=y1new; % update y1 as soon as possible
21 v=A1*y1-b; % constraint terms fixed while optimizing over y2
22 A=A2; % y2 partition of constraints
23
24 y2new=ntrs(y2,0,10,1e-12,@admmf,@admmg,@admmh);
25
26 y2=y2new; % update y2 as soon as possible
27 delta=2*mu*(A1*y1+A2*y2-b); % feasibility correction
28 lambda=lambda+delta; % update lambda
29
30 x1k(k+1)=y1(1); x2k(k+1)=y1(2); % save y1 coordinates
31 err(k+1)=delta’*delta/ezero; its(k+1)=k; % save error
32 end
33
34 xstar=[y1;y2] % report optimal point
35 lambda % and optimal multipliers
36
37 figure(1) % plot convergence
38 set(gca,’FontSize’,25); hold on
39 axis([-0.8,0.4,-0.8,0.4],’square’)
40 plot(x1k,x2k)
41 plot([0,0],[-0.8,0.4])
42 plot([-0.8,0.4],[0,0])
43 hold off
44 print -deps -solid admmcnv.eps
45
46 figure(2) % plot error curve
47 set(gca,’FontSize’,25); hold on
48 axis([0,200,1e-20,1e0],’square’)
49 semilogy(its,err)
50 hold off
51 print -deps -solid admmerr.eps

function f=admmf(y)
global mu A lambda v
f=y’*y+lambda’*A*y+mu*(A*y+v)’*(A*y+v);

end

function g=admmg(y)
global mu A lambda v
g=2*y+A’*lambda+2*mu*A’*(A*y+v);

end

function H=admmh(y)
global mu A
n=size(y,1);
H=2*eye(n)+2*mu*A’*A;

end

The program includes many lines for saving and plotting results, but the implementation of
the algorithm itself is very simple. It begins by 6 initializing y1 and y2 and 7 defining the
problem data. Then 14-32 the loop over k cycles through the three ADMM updates. Each
iteration performs 15-20 the argmin over y1, then 21-26 the argmin over y2, and finally
27-28 the update to the Lagrange multipliers. The minimizations of π are carried out 18,24

by ntrs.m, which invokes the routines admmf.m, admmg.m, and admmh.m listed on the right.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.3.2 Parallel ADMM 653

The Octave session below shows 1> the output from the program and 2> that the point is
feasible for the equality constraints. It is not hard to show (see Exercise 20.4.43) that this
x⋆ and λλλ⋆ satisfy the Lagrange conditions for the original problem.

octave:1> admm
xstar =

0.107692308873322
-0.138461536641094
0.646153846017645
0.169230771097437

lambda =

-0.892307673096215
-0.615384607645544

octave:2> [A1,A2]*xstar-b
ans =

1.28333454973983e-10
1.48717482773009e-10

octave:3> xstar’*xstar
ans = 0.476923077129108

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x1

x2

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 50 100 150 200

fe
as
ib
il
it
y
er
ro
r

iteration

The program also plots the convergence trajectory of y1 (the convergence trajectory of y2
is very similar) and the error curve. ADMM clearly has [54] linear convergence; the bumps
result from the alternation between optimizing in the y1 direction and optimizing in the y2
direction.

20.3.2 Parallel ADMM

As I mentioned in §20.3.0 an important motivation for ADMM is that it can facilitate the
use of parallel processing. If we partition the variables of a problem into 2 subsets as we
did above, then we can perform each argmin operation on a different processor. In the
simplest parallel computing configuration processor 1 is assigned to finding yk+11 , processor 2
is assigned to finding yk+12 , and processor 0 is assigned to finding λλλk+1 and carrying out the
other steps of the algorithm. To solve a problem with many variables we could partition
them into p subsets, enlarge the method of multipliers iteration to include p argmin updates
yielding yk+11 . . . y

k+1
p , and use a different processor to do each minimization.

Unfortunately, if the updates of the yi are like those we used in solving admm above,

yk+11 = argmin
y1

π(y1, y
k
2,λλλ

k; µ)

yk+12 = argmin
y2

π(yk+11 , y2,λλλ
k; µ),

they cannot be done at the same time; before we can start finding yk+12 we need to know yk+11 .

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

654 Alternating Direction Methods of Multipliers

ADMM is sometimes described [17, p14] as a version of the method of multipliers in which
each cycle of updates is similar to an iteration of the Gauss-Seidel algorithm for solving
a system of linear algebraic equations [20, p386-387]. In an iterative method for solving
Ax = b, each new approximation xk+1

j
to a solution component is calculated from a formula

involving the other components xi, i , j. In the Gauss-Seidel method the values assumed
for i = 1 . . . j − 1 are the most recently calculated ones, xk+1

i
, while the values assumed for

i = j + 1 . . . n are the values obtained in the previous iteration, xk
i
. This is an improvement

over the Jacobi algorithm, in which the formula for xk+1
j

involves only the xk
i
, because

always using the latest information speeds convergence.
One way to parallelize ADMM is to use the yk

i
from the previous iteration to find each

yk+1
i

, as in the Jacobi algorithm. Then the argmin updates for the admm problem look like
this.

yk+11 = argmin
y1

π(y1, y
k
2,λλλ

k; µ)

yk+12 = argmin
y2

π(yk1, y2,λλλ
k; µ)

Because each uses quantities that are already known at the beginning of iteration k+1, these
minimizations can be performed concurrently on different processors. At the beginning of
each iteration the master program running on processor 0 computes the quantity we have
called v2 and sends it along with λλλk and the submatrix A1 to processor 1. It also computes v1
and sends it along with λλλk and the submatrix A2 to processor 2. Then processor 0 waits as
the worker programs on processors 1 and 2 solve their respective optimization problems
and transmit the results yk+11 and yk+12 back. When both subproblem solutions have arrived,
processor 0 uses them to compute λλλk+1 and the iteration is complete. The data transmissions
that I have just described are typically accomplished [100, §16.2.2] by calling the subroutines
of a message passing library such as MPI [118].

To simulate this process in MATLAB, I wrote the program padmm.m listed on the next
page. It is identical to admm.m except that the updates of y1 and y2 are now delayed until the
end of each iteration. That way the y1 used in finding y1new 18 and the y2 used in finding
y2new 23 were both found in the previous iteration, and the updates are parallelizable as
described above. When the program is run it produces the output below, which is in good
agreement with what we found using admm.m above. ADMM still works if we use Jacobi-style
updates so that they can be computed in parallel.

octave:2> padmm
xstar =

0.107692324821060
-0.138461540054718
0.646153833238240
0.169230760918215

lambda =

-0.892307817274887
-0.615384398445065

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.3.2 Parallel ADMM 655

1 % padmm.m: parallel ADMM with delayed updates
2 clear; format long; clf
3 global mu=1 A=zeros(2,2) lambda=ones(2,1) v=zeros(2,1)
4
5 xzero=[0;0;0;0]; % unconstrained optimum
6 y1=xzero(1:2); y2=xzero(3:4); % partition variables
7 A1=[3,-1;-4,1]; A2=[-2,-1;5,2]; b=[-1;3]; % partition constraints
8
9 x1k(1)=y1(1); x2k(1)=y1(2); % save y1 coordinates
10 delta=2*mu*(A1*y1+A2*y2-b); % feasiblity correction
11 ezero=delta’*delta; % starting error
12 err(1)=1; its(1)=0; % prepare to plot error
13
14 for k=1:1000 % do method-of-multiplier iterations
15 v=A2*y2-b; % constraint terms fixed while optimizing over y1
16 A=A1; % y1 partition of constraints
17
18 y1new=ntrs(y1,0,10,1e-12,@admmf,@admmg,@admmh);
19
20 v=A1*y1-b; % constraint terms fixed while optimizing over y2
21 A=A2; % y2 partition of constraints
22
23 y2new=ntrs(y2,0,10,1e-12,@admmf,@admmg,@admmh);
24
25 delta=2*mu*(A1*y1+A2*y2-b); % feasibility correction
26 lambda=lambda+delta; % update lambda
27
28 y1=y1new; % wait to update y1 and y2
29 y2=y2new; % until the end of the iteration
30
31 x1k(k+1)=y1(1); x2k(k+1)=y1(2); % save y1 coordinates
32 err(k+1)=delta’*delta/ezero; its(k+1)=k; % save error
33 end
34
35 xstar=[y1;y2] % report optimal point
36 lambda % and optimal multipliers
37
38 figure(1) % plot convergence
39 set(gca,’FontSize’,25); hold on
40 axis([-0.8,0.4,-0.8,0.4],’square’)
41 plot(x1k,x2k)
42 plot([0,0],[-0.8,0.4])
43 plot([-0.8,0.4],[0,0])
44 hold off
45 print -deps -solid padmmcnv.eps
46
47 figure(2) % plot error curve
48 set(gca,’FontSize’,25); hold on
49 axis([0,1000,1e-20,1e0],’square’)
50 semilogy(its,err)
51 hold off
52 print -deps -solid padmmerr.eps

Alas, as shown by the error curve on the next page it takes padmm.m more than 1000 iterations
to reach a feasibility error comparable to that achieved by admm.m in 200. The parallel
algorithm converges much more slowly than the serial one, perhaps because the trajectory
of its iterates is chaotic. Using ADMM in this way is worthwhile only if there are enough
subproblems that solving them in parallel more than makes up for this slow convergence.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

656 Exact Penalty Methods

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x1

x2

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 200 400 600 800 1000

fe
as
ib
il
it
y
er
ro
r

iteration

ADMM plays an important role in big data applications and is routinely used to solve very
large problems (see §25.7) but [17, §3.2.2] its slow rate of convergence makes it most useful
in settings where only modest accuracy is required. Finding ways to parallelize its Gauss-
Seidel-style updates is an active area of research [129, §2.6].

20.4 Exercises

20.4.1[E] What makes a penalty function exact? Give formulas for two penalty functions
that are exact.

20.4.2[E] Write down the max penalty problem corresponding to the standard-form non-
linear program. At what points is the max penalty function nondifferentiable?

20.4.3[E] The solution of a max penalty problem is characterized by an inflection value
of the multiplier, which we called µ̄. (a) What is its significance? (b) How is it related to the
values of the Lagrange multipliers in the optimal solution of the original nonlinear program?

20.4.4[H] Explain why, for problem ep2,

xπ(µ) =






[µ/2, µ/2]⊤ µ ≤ µ̄
[1, 1]⊤ µ ≥ µ̄

20.4.5[E] What do these MATLAB routines compute, and how do they work? (a) epy.m,
(b) epyg.m, and (c) epyh.m.

20.4.6[H] Newton descent might get lucky and find the minimum of a max penalty func-
tion, but it is not sure to work and often it fails. (a) Describe one way in which the full-step
algorithm can fail. (b) Explain why the version of the algorithm that uses a bisection line
search is more robust against discontinuities in the gradient. (c) Present an example to show
how the line search version can also fail.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.4 Exercises 657

20.4.7[H] When we try to minimize the max penalty function for ep2 with ntfs.m,
for µ > µ̄ the algorithm generates iterates that alternate between x̄(µ) = [µ/2, µ/2]⊤ and
x̂(µ) = [0, 0]⊤. Explain why this behavior could not happen if ∇π(x; µ) were continuous.

20.4.8[P] When we used Newton descent to minimize the max penalty function for ep2 in
§20.1, its first step was based on the quadratic model function q(x) = x21 + x22 that describes
π(x; µ) at the feasible starting point x0 = [2, 2]⊤. That step yields x1 = [0, 0]⊤, where the penalty
function and its quadratic model abruptly change to q(x) = π(x; µ) = x21 + x22 + µ(2 − x1 − x2),
leading to x2 = [3

2
, 3
2
]⊤ and the cycling nonconvergence we observed. It is possible by using

the ntrs.m routine of §17.2 to instead approach x⋆ by generating only iterates at which our
initial q(x) remains a good approximation to the function. (a) Show by using MATLAB that
ntrs.m can solve ep2. (b) Does the max penalty function play any role when this approach
is used? Explain.

20.4.9[H] Give an example of a scalar function y = f (x) of x ∈ R1 having a discontinuous
first derivative but a continuous second derivative.

20.4.10[P] In §20.1 we found that nt.m successfully minimizes the max penalty function
for the ep2 problem. Try nt.m on each of the following inequality-constrained problems:
(a) ep1; (b) b1; (c) b2.

20.4.11[P] In §20.1 we found that ntfs.m fails to minimize the max penalty function for
the ep2 problem. Try each of the following unconstrained minimizers on that problem:
(a) ntw.m; (b) sdfs.m; (c) sdw.m; (d) plrb.m. Do any of them return the correct xµ for
values of µ ∈ [0, 10]?
20.4.12[E] Describe three different ways of reliably minimizing the max penalty function
even though it has a discontinuous gradient.

20.4.13[H] In §20.1, I claimed that the nonlinear program on the right is equivalent to the
one on the left.

minimize
x∈Rn

f0(x) + µ

m∑

i=1

max[0, fi(x)] ←→
minimize

x∈Rn
f0(x) + µ

m∑

i=1

ti

subject to ti ≥ 0

ti ≥ fi(x),

(a) Explain why the two are equivalent. (b) Reformulate the max penalty problem for ep2
and write the KKT conditions for the resulting constrained problem. Are they satisfied by
the optimal solution to ep2?

20.4.14[E] How can the max penalty method described in §20.1 be modified to handle
equality constraints?

20.4.15[H] Show that for λ > 0 the Lagrangian for al2, L(x, λ) = −x1 − x2 + λ(x
2
1 + x22 − 2),

is a strictly convex function of x.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

658 Exact Penalty Methods

20.4.16[H] Explain why the nonlinear program on the right below has the same optimal
point as the nonlinear program on the left.

minimize
x∈Rn

f0(x)

subject to fi(x) = 0, i = 1 . . .m

minimize
x∈Rn λλλ∈Rm

L(x, λ)
subject to fi(x) = 0, i = 1 . . .m

Do the two problems have the same optimal value?

20.4.17[E] Suppose we know λλλ⋆ for an equality-constrained nonlinear program, and that
we solve ∇L(x,λλλ⋆) = 0 for x̄. Is it ever true that x̄ = x⋆? If so, explain how that can happen.

20.4.18[E] When is the unconstrained minimizing point of L(x,λλλ⋆) the same as the con-
strained minimizing point of f0(x) subject to fi(x) = 0, i = 1 . . .m? Explain why this is true
of al2.

20.4.19[H] Problem al1 can be reformulated in a way that makes L a convex function of
x. (a) Rewrite the constraint to make it linear. (b) Use the Lagrange method to solve the
resulting problem for (x⋆, λ⋆). (c) Graphically minimize L(x, λ⋆) subject to the constraint.
(d) Is it possible to find x⋆ by minimizing L(x, λ⋆) without enforcing the constraint? Explain
why or why not.

20.4.20[E] Write down the augmented Lagrangian penalty function corresponding to this
nonlinear program.

minimize
x∈Rn

f0(x)

subject to fi(x) = 0, i = 1 . . .m

20.4.21[E] The augmented Lagrangian for al1 has a stationary point at (x⋆, λ⋆). (a) Does
this point depend on the value of µ? (b) What determines whether this point is a minimizing
point, and inflection point, or a maximizing point? In the graph of π(x, λ⋆; µ) given in §20.2.1,
on which of the curves is x⋆ a minimizing point? On which is it an inflection point? On
which is it a maximizing point? (c) Explain why this augmented Lagrangian is an exact
penalty function, and describe how it works.

20.4.22[E] Suppose that µ is chosen so that an augmented Lagrangian has a minimizing
point at x⋆. What determines the region of Rn over which π is a convex function of x?

20.4.23[P] We saw in §18.4 that the classical penalty method suffers from the drawback
that Hπ becomes badly conditioned as µ → ∞. An exact penalty function is minimized at
xπ(µ) = x⋆ for a finite (and usually small) positive value of µ, so this difficulty does not
arise. But what would happen if µ did (e.g., in the augmented Lagrangian algorithm) reach
a high positive value? Determine experimentally how the condition number of Hπ(x

0,λλλ⋆; µ)

varies with µ for (a) al1; (b) al2. (c) Analytically compute Hπ for al2, and show that your
formula explains what you observed in part b.

20.4.24[E] The MATLAB routines aug.m, augg.m and augh.m compute respectively the
value, gradient, and Hessian of the augmented Lagrangian for a nonlinear program. Explain
how these routines work. Why do they invoke pye.m, pyeg.m, and pyeh.m?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.4 Exercises 659

20.4.25[E] In §20.2.3 we solved the al2 and al1 problems numerically by minimizing the
augmented Lagrangian function. (a) Why is µ̄ = 0 for al2? (b) Why is µ̄ = 1 for al1? (c) In
finding x⋆ in this way, why is it necessary for µ to be strictly greater than µ̄?

20.4.26[E] One strategy for solving an equality-constrained nonlinear program is to form
the augmented Lagrangian function π(x,λλλ⋆; µ), set µ > µ̄, and minimize π. Why is this
approach seldom practical?

20.4.27[E] In the augmented Lagrangian algorithm of §20.2.4 we use the update formula
λλλk+1 = λλλk + 2µf(xk) to refine our estimate of the Lagrange multiplier vector. Explain where
this formula comes from.

20.4.28[E] Describe the method of multipliers algorithm. Do its iterates satisfy the station-
arity conditions of the original nonlinear program? Do they satisfy the feasibility conditions?
Explain.

20.4.29[E] In our implementation auglag.m of the augmented Lagrangian algorithm, what
strategy is used for setting the value of the multiplier µ? What is the highest possible value
that µ can attain?

20.4.30[P] Use auglag.m to solve the following problem [4, Example 16.12]

minimize
x∈R3

f0(x) = e3x1 + e−4x2

subject to f1(x) = x21 + x22 − 1 = 0

starting from x0 = [−1, 1]⊤.
20.4.31[P] Use auglag.m to solve the following problem, which was first presented in
Exercise 15.6.36,

minimize
x∈R3

f0(x) = −3x1x3 − 4x2x3
subject to f1(x) = x22 + x23 − 4 = 0

f2(x) = x1x3 − 3 = 0

starting from x0 = [1, 1, 2]. Are there other starting points from which the algorithm finds
x⋆? Are there starting points from which the algorithm fails?

20.4.32[P] Use auglag.m to solve the following problem, which was first presented in
Exercise 15.6.42.

minimize
x∈R3

f0(x) = 1000 − x21 − 2x22 − x23 − x1x2 − x1x3

subject to f1(x) = x21 + x22 + x23 − 25 = 0

f2(x) = 8x1 + 14x2 + 7x3 − 56 = 0

20.4.33[E] List three virtues of the augmented Lagrangian algorithm. Does it have any
drawbacks?

20.4.34[P] Because each iteration of the augmented Lagrangian algorithm involves the
solution of the subproblem to minimize π(x,λλλk; µ), the convergence behavior of the overall

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

660 Exact Penalty Methods

algorithm is difficult to characterize analytically. However, an error curve can be measured
experimentally. (a) Revise auglag.m to make it serially reusable (see §10.6.1). (b) Write a
MATLAB program that invokes your revised version of the routine one iteration at a time,
remembering at the end of each iteration the error in the current xk and the total number of
ntrs.m iterations ktot consumed so far in the solution process. This requires adding up the
number of iterations that ntrs.m uses each time it is invoked. (c) In your program plot the
common logarithm of the solution error versus ktot. (d) Run your program on the al1 test
problem. (e) By inspection of the resulting error curve estimate the order of convergence of
the algorithm.

20.4.35[P] Using the serially reusable version of auglag.m that you wrote for Exercise
20.4.34, plot the convergence trajectory of the algorithm as it solves the ep2 problem of
§20.1.

20.4.36[P] Some implementations of the augmented Lagrangian algorithm increase µ if
an iteration of the method of multipliers produces too small a decrease in || f(x)||. Revise
auglag.m to incorporate this refinement. How much decrease in infeasibility should be
required? Should this amount of decrease change as the optimal point is approached?

20.4.37[P] Some implementations of the augmented Lagrangian algorithm make the toler-
ance for minimizing π depend on || f(x)|| so that xkl is found more precisely as λλλ⋆ is approached.
Revise auglag.m to incorporate this refinement, and conduct experiments to investigate its
effect on the performance of the algorithm.

20.4.38[H] In §20.2.4 we saw that the method of multipliers can be thought of as using
gradient ascent to solve the dual of a certain equality-constrained nonlinear program. Show
that the dual of the problem P is D as claimed.

20.4.39[H] In §20.2.4 we saw that the method of multipliers can be thought of as using
gradient ascent to solve the dual of a certain equality-constrained nonlinear program. The
argument presented there implicitly contains several assumptions concerning the functions
involved. For example, it assumes that the inf of π is actually attained. (a) List all of the
unspoken assumptions that must be true in order for this derivation to work, and state
conditions on the fi(x) that must be satisfied to ensure that it does work. (b) Identify one
of the assumptions which, if it is not true, leads to failure of the method of multipliers.

20.4.40[P] In §20.2.4, auglag.m finds a solution to the one23 problem different from those
reported in §15.5. Do numerical calculations to show that it is an alternate optimal point.

20.4.41[E] If a nonlinear program has certain properties it can be solved by the alternating
direction method of multipliers. What are those properties? If a problem has them, why
might ADMM be preferable to some other algorithm for solving it?

20.4.42[E] What is a separable function? When does a nonlinear program have separable
variables?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

20.4 Exercises 661

20.4.43[P] Use the Lagrange method to solve admm analytically, and confirm that the result
given in §20.3.1 is correct. The Lagrange conditions for this problem are a system of linear
equations that you can solve easily using MATLAB.

20.4.44[E] Describe the ADMM algorithm in words. What role does the penalty multiplier
µ play in the algorithm? What is the algorithm’s order of convergence? Is this algorithm
ideally suited to producing extremely accurate results?

20.4.45[P] Simplify the admm.m program of §20.3.1 by removing all of the code that is
devoted to saving and plotting intermediate results. Show that the original and simplified
programs produce the same printed output.

20.4.46[P] Use the ADMM algorithm to solve the admm problem by partitioning the vari-
ables into the subsets {x1} and {x2, x3, x4}.
20.4.47[H] Partitioning the variables of a nonlinear program into p subsets for ADMM
enlarges the method of multipliers iteration to include p argmin updates yielding yk+11 . . . y

k+1
p .

(a) If Gauss-Seidel-style updates are used, write down the first, second, and last of them to
show the pattern of variable subsets that are held constant and allowed to vary during
each subproblem minimization. (b) Can these updates be performed in parallel? Explain.
(c) How do your answers change if Jacobi-style updates are used?

20.4.48[E] Suppose that the updates in an ADMM implementation are to be performed in
parallel. Describe a possible configuration of independent processors that could be used to
perform this calculation, and describe the flow of data between them as the iterations of the
algorithm progress. How are these data transmissions typically accomplished?

20.4.49[E] Describe the advantages and drawbacks of the serial and parallel ADMM algo-
rithms. When is it worthwhile to use the parallel approach?

20.4.50[P] Write a program in FORTRAN, C, or C++ that implements the ADMM algo-
rithm and uses MPI subroutine calls for message passing to solve the admm problem on 3
processors of a parallel computer. Does performing two updates concurrently result in a net
speedup of the calculation?

20.4.51[H] Several of the programs available on the NEOS web server (see §8.3.1) are based
on the algorithms discussed in this Chapter [5, §17.5]. By searching the web, find out which
of the programs are based on which of the algorithms.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21

Interior-Point Methods

When the classical barrier method of §19 works at all it converges only linearly, and it has
limited accuracy because Hβ becomes badly conditioned as µ → 0 and that degrades the
precision with which Newton descent directions can be computed near the optimal point.
Although we were able to find x⋆ exactly for the simple demonstration problems we con-
sidered, the algorithm is of limited use for the larger and more difficult optimizations that
typically arise in practical applications.

It has, however, inspired the development of more effective algorithms for solving inequal-
ity-constrained mathematical programs from inside the feasible set. These interior-point
methods move the nonnegativity constraints of the original problem into a barrier function
and numerically solve the Lagrange conditions for the resulting constrained barrier problem.

21.1 Interior-Point Methods for LP

We will begin our exploration of interior-point methods by examining one that is an alterna-
tive to the simplex method for solving certain linear programs [4, §10] [5, §14] [2, §5.1.1-5.1.2].
Consider this problem, which I will call in1 (see §28.5.15).

minimize
x∈R2

x1 + x2 = z

subject to −x1 + x2 ≤ 1

x1 ≤ 1

x ≥ 0

If we incorporate the nonnegativity constraints
into this barrier function

β(x; µ) = x1 + x2 − µ ln(x1) − µ ln(x2)
then problem in1 is related to the following
inequality-constrained barrier problem.

minimize
x∈R2

+

β(x; µ)

subject to −x1 + x2 ≤ 1

x1 ≤ 1

x2

1

2

x1
−1 1

•
x⋆

z
=
z ⋆
=
0

•x∞

In each contour diagram on the next page I have plotted the xβ that solves this barrier
problem for the given value of µ. Starting from the analytic center x∞ = [1, 1]⊤, as µ → 0

these solutions approach x⋆ = [0, 0]⊤ along the central path drawn as a thick line above.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

664 Interior-Point Methods

-0.5

0

0.5

1

1.5

2

2.5

-0.5 0 0.5 1 1.5 2 2.5

µ = 1

xβ

•
x⋆

x2

x1

2.05
2.25

2.5

3

4
5

-0.5

0

0.5

1

1.5

2

2.5

-0.5 0 0.5 1 1.5 2 2.5

µ = 1
2

xβ

•
x⋆

x2

x1

1.75

2

2.5

3

3.5

-0.5

0

0.5

1

1.5

2

2.5

-0.5 0 0.5 1 1.5 2 2.5

µ = 1
4

xβ

•
x⋆

x2

x1

1.25

1.5

2

2.5

3 3.5

-0.5

0

0.5

1

1.5

2

2.5

-0.5 0 0.5 1 1.5 2 2.5

µ = 1
10

xβ

•
x⋆

x2

x1

0.75 1 1.5 2 2.5

3

3.5

Interior to the feasible set the inequality constraints are slack, so we can find the central
path analytically by minimizing β(x; µ) over x.

∂β

∂x1
= 1 − µ

x1
= 0 ⇒ x1(µ) = µ

∂β

∂x2
= 1 − µ

x2
= 0 ⇒ x2(µ) = µ

Then as µ → 0 we get x(µ) → [0, 0]⊤ = x⋆. Of course this is not a very practical way of

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.1.1 A Primal-Dual Formulation 665

solving linear programs. A barrier algorithm must gradually approach the zero hyperplanes
of the slack and coordinate variables that define the optimal vertex even if that vertex is not
the origin. Also, unless we can draw a graph we need some way of explicitly enforcing the
inequalities that are not nonnegativities, because we left them out of the barrier function.

21.1.1 A Primal-Dual Formulation

For the slack variables to come into play we need to start with a problem in which they
actually appear, so on the left below I reformulated in1 into standard form. According to
§5.2.1 the dual of this problem is the inequality-constrained linear program on the right,
which I put into standard form below the primal.

P : minimize
x∈R4

x1 +x2

subject to −x1 +x2 +x3 = 1

x1 +x4 = 1

x1 x2 x3 x4 ≥ 0

x⋆ = [0, 0, 1, 1]⊤

maximize
y∈R2

y1 +y2

subject to −y1 +y2 ≤ 1

y1 ≤ 1

y1 ≤ 0

y2 ≤ 0

y1 y2 free

D : minimize
y∈R2

−y1 −y2 = w

subject to −y1 +y2 +s1 = 1

y1 +s2 = 1

y1 +s3 = 0

y2 +s4 = 0

y1 y2 free
s1 s2 s3 s4 ≥ 0

y⋆ = [0, 0]⊤

s⋆ = [1, 1, 0, 0]⊤

y2

y1

1

−1 • y
⋆

w
=
w ⋆
=
0

In general the standard-form linear program and its standard-form dual are

P : minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

D : minimize
y∈Rm, s∈Rn

−b⊤y
subject to A⊤y + s = c

y free, s ≥ 0

where for in1 we have

Am×n =

[

−1 1 1 0

1 0 0 1

]

bm×1 =

[

1

1

]

cn×1 =





1

1

0

0





.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

666 Interior-Point Methods for LP

We can form a barrier problem for P by including the nonnegativity constraints in β as we
did for the inequality-constrained in1. Here I will use the approach and notation of [4, §10.6
and §10.2]; for a quite different derivation see [2, §5.1].

minimize
x∈Rn

+

β(x; µ) = c⊤x − µ
n∑

j=1

ln(x j)

subject to Ax = b

This is an equality-constrained nonlinear program, which we can solve analytically by the
Lagrange method. If we let y be the vector of m Lagrange multipliers associated with the
rows of the equality constraint, then L(x, y) = β(x; µ)+y⊤(b−Ax) and the Lagrange conditions
are

∇xL = ∇β − A⊤y = 0

∇yL = b − Ax = 0.

The gradient of this barrier function is

∇β = c − µ





1

x1
...
1

xn





= c − µ[X−11]

where X is a diagonal matrix whose diagonals are the x j and 1 is a vector of n 1’s. Then we
can write the first Lagrange condition as

c − µX−11 − A⊤y = 0.

But if we let s = c − A⊤y as in the constraint of D , this is just

s − µX−11 = 0 so sX = µ1 or s jx j = µ, j = 1 . . . n.

Thus the barrier problem above is solved by the vectors x, y, and s, all functions of µ,
that satisfy this Lagrange system of equations and inequalities.

Ax = b primal feasibility

A⊤y + s = c dual feasibility

s jx j = µ, j = 1 . . . n interiority

y free, x ≥ 0, s ≥ 0 nonnegativity

The interiority condition ensures, because µ > 0, that x j > 0 and s j > 0 and therefore
that both x and y are strictly feasible. In the limit as µ → 0 this condition approaches the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.1.2 Solving the Lagrange System 667

complementary slackness condition of §5.1.5. There we saw that if x is feasible for P and y

is feasible for D and complementary slackness holds, then the vectors are optimal for their
respective problems. Thus as µ→ 0, x and y approach optimality for P and D .

Sometimes it is easy to find vectors x0, y0, and s0 that satisfy the feasibility conditions
exactly. For in1, the graphical solution of the primal shows that x1 =

1
2
, x2 =

1
2
is interior to

the feasible set for the original problem, and we can satisfy Ax = b by adjusting the slacks
in its P to be x3 = 1 and x4 =

1
2
. From the graphical solution of the dual we see that

y = [−1
2
,−1

2
]⊤ is interior to the feasible set of that problem, and we can satisfy A⊤y+ s = c by

adjusting the slacks in its D to be s = [1, 3
2
, 1
2
, 1
2
]⊤. Unfortunately, vectors x0 and s0 constructed

in this way usually do not have the property that s jx j = µ, j = 1 . . . n for a given µ (or for
any µ).

21.1.2 Solving the Lagrange System

To find vectors xβ, yβ, and sβ that satisfy all of the conditions we must use an algorithm
for solving simultaneous nonlinear algebraic equations. One approach is to think of moving
from a trial point (x, y, s) to a new point (x + ∆x, y + ∆y, s + ∆s) where, for j = 1 . . . n, the
corrections ∆x j and ∆s j are chosen so that the interiority condition is satisfied exactly at the
new point.

(x j + ∆x j)(s j + ∆s j) = µ

s jx j + s j∆x j + x j∆s j + ∆x j∆s j = µ

Near the solution ∆x j and ∆s j will both be small, so we will assume that their product is
exactly zero (see [4, §10.2.2] for a way to avoid making this simplification). Then

s j∆x j + x j∆s j = µ − x js j

and the interiority requirement for j = 1 . . . n can be expressed like this





s1
. . .

sn









∆x1
...

∆xn





+





x1
. . .

xn









∆s1
...

∆sn





=





µ
...

µ





−





x1
. . .

xn









s1
. . .

sn









1
...

1





or in more compact form as S∆x + X∆s = µ1 − XS1 where S is a diagonal matrix whose
diagonal elements are the s j.

To preserve primal feasibility we must choose ∆x so that A(x + ∆x) = b, but A(x) = b

so it must be that A∆x = 0. To preserve dual feasibility we must choose ∆y and ∆s so that
A⊤(y + ∆y) + (s + ∆s) = c, but A⊤y + s = c so it must be that A⊤∆y + ∆s = 0.

We now have three conditions which, if they are satisfied by ∆x, ∆y, and ∆s, ensure that
the new point will preserve primal and dual feasibility and come closer to satisfying the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

668 Interior-Point Methods for LP

interiority condition:

a S∆x + X∆s = µ1 − XS1
b A∆x = 0

c A⊤∆y + ∆s = 0.

These equations can be solved analytically by reasoning as follows.

c ⇒ ∆s = −A⊤∆y
a ⇒ S∆x + X(−A⊤∆y) = µ1 − XS1

Premultiplying the second of these equations by the conformable product AS−1 we get

AS−1S∆x + AS−1X(−A⊤∆y) = AS−1(µ1 − XS1)

In this equation the first term AS−1S∆x = A∆x = 0. In the second term let Dn×n = S−1X, and
in the last term let vn×1 = (µ1 − XS1). Then

AD(−A⊤∆y) = AS−1v

−(ADA⊤)∆y = AS−1v

∆y = −(ADA⊤)−1AS−1v
Finally,

a ⇒ S∆x = v − X∆s
∆x = S−1v − S−1X∆s
∆x = S−1v − D∆s

Using the boxed formulas we can calculate the corrections ∆y, ∆s, and ∆x in that order.
Then moving from (x, y, s) to (x + ∆x, y + ∆y, s + ∆s) should solve the barrier problem for a
given µ. However, in our analysis we assumed that ∆x j∆s j = 0 and far from optimality that
is not quite true, so interiority might not hold exactly at the first point we generate. The
deltas.m routine listed on the next page therefore repeats the correction process to ensure
that the Lagrange system is solved precisely. The code begins by 2-5 defining the data for
our example problem. Then, starting 6-8 from the x0, y0, and s0 provided by the user it
9-20 performs ten iterations (that turns out to be more than enough). In each iteration
it is necessary to 10-12 construct the diagonal matrices X and S and compute D = S−1X.
Because X changes at each iteration so does 13 v. The MATLAB locution ones(n,1) 13

produces 1, the vector of n 1’s. Then 14-16 we can evaluate ∆y, ∆s, and ∆x and 17-19

move to the next point. When the solution of the nonlinear equations has been found, the
routine checks 21 primal feasibility, 22 dual feasibility, and 23 the interiority condition.
The MATLAB locution s.*x 23 computes the n-vector whose j’th element is s jx j.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.1.2 Solving the Lagrange System 669

1 function [x,y,s]=deltas(xzero,yzero,szero,mu)
2 n=4;
3 A=[-1,1,1,0;1,0,0,1];
4 b=[1;1];
5 c=[1;1;0;0];
6 x=xzero;
7 y=yzero;
8 s=szero;
9 for k=1:10

10 X=diag(x);
11 S=diag(s);
12 D=inv(S)*X;
13 v=mu*ones(n,1)-X*S*ones(n,1);
14 dy=-inv(A*D*A’)*A*inv(S)*v;
15 ds=-A’*dy;
16 dx=inv(S)*v-D*ds;
17 x=x+dx;
18 s=s+ds;
19 y=y+dy;
20 end
21 primal=A*x-b
22 dual=A’*y+s-c
23 interior=s.*x
24 end

octave:1> format long
octave:2> yzero=[-0.5;-0.5];
octave:3> szero=[1;1.5;0.5;0.5];
octave:4> xzero=[0.5;0.5;1;0.5];
octave:5> mu=0.5;
octave:6> interior=xzero.*szero
interior =

0.500000000000000
0.750000000000000
0.500000000000000
0.250000000000000

octave:7> [x,y,s]=deltas(xzero,yzero,szero,mu)
primal =

2.22044604925031e-16
-4.44089209850063e-16

dual =

2.22044604925031e-16
0.00000000000000e+00
0.00000000000000e+00
0.00000000000000e+00

interior =

0.500000000000000
0.500000000000000
0.500000000000000
0.500000000000000

x =

0.377908041731624
0.337685765339289
1.040222276392335
0.622091958268375

y =

-0.480666499215998
-0.803739693713089

s =

1.323073194497091
1.480666499215998
0.480666499215998
0.803739693713089

The Octave session on the right shows
that the feasible (x0, s0) we chose earlier has
x02s

0
2 = 0.75 and x04s

0
4 = 0.25, both far from

µ = 0.5, but the new point produced by ten
correction iterations satisfies primal feasibil-
ity, dual feasibility, and interiority to within
machine precision. The first two components
of this xβ differ from the x1(

1
2
) = x2(

1
2
) = 1

2

that we found for our initial formulation using
the inequality-constrained in1, because the
central path is now in R10. Thus, although
the inequality-constrained and standard-form
linear programs are intimately related, the
corresponding barrier problems behave some-
what differently.

The output on the next page uses an-
other x0 strictly feasible for P and another µ,
both just as plausible as the values we chose above. Once again we find a solution to
the Lagrange system that precisely satisfies primal and dual feasibility and the interiority
requirement. However, this point violates the nonnegativity condition because x4 and s4 are
both less than zero! Our derivation of the formulas for ∆x, ∆y, and ∆s assumed that x and
s would remain strictly positive, so in solving the Lagrange system we must explicitly guard
against any component becoming negative.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

670 Interior-Point Methods for LP

octave:1> format long
octave:2> yzero=[-0.5;-0.5];
octave:3> szero=[1;1.5;0.5;0.5];
octave:4> xzero=[0.9;0.9;1;0.1];
octave:5> mu=0.1;
octave:6> interior=xzero.*szero
interior =

0.9000000000000000
1.3500000000000001
0.5000000000000000
0.0500000000000000

octave:7> [x,y,s]=deltas(xzero,yzero,szero,mu)
primal =

3.55271367880050e-15
6.66133814775094e-16

dual =

0
0
0
0

interior =

0.100000000000000
0.100000000000000
0.100000000000000
0.100000000000000

x =

1.1161544051135346
0.0952849525989713
2.0208694525145670

-0.1161544051135338

y =

-0.0494836516409163
0.8609230093534216

s =

0.0895933390056621
1.0494836516409163
0.0494836516409163

-0.8609230093534216

☞violates nonnegativity

☞violates nonnegativity

21.1.3 Solving the Linear Program

To keep from violating nonnegativity when solving the Lagrange system of our barrier prob-
lem we can restrict the corrections to α∆x, α∆y, and α∆s, where α > 0 is chosen to keep
x and s strictly positive. A new coordinate value such as x4 + α∆x4 runs the risk of being

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.1.3 Solving the Linear Program 671

negative only if ∆x4 < 0. In that case to avoid stepping too far we need

x4 + α∆x4 > 0

α∆x4 > −x4
α < −x4/∆x4.

In the last step dividing by ∆x4 < 0 changes the sense of the inequality. To keep every x j

and s j strictly positive we can use

α < min

{

min
∆x j<0

−x j

∆x j

, min
∆s j<0

−s j
∆s j

}

.

In solving our barrier problem with an algorithm that gradually reduces µ, it is fortunately
not necessary at each step to solve the Lagrange system precisely as we did with deltas.m

in §21.1.2; one correction is enough. Each barrier problem solution (xβ, yβ, sβ) is only an
approximation to (x⋆, y⋆, s⋆) anyway, and as µ→ 0 each s jx j → 0 so ∆x j∆s j → 0, our formula
a becomes exact, and the barrier problem can be solved precisely in one step.

To implement the algorithm that we have developed I wrote the MATLAB routine lpin.m
listed below.

1 function [xstar,ystar]=lpin(A,b,c,xzero,yzero)
2 % minimize c’x subject to Ax=b and x nonnegative
3 % by a primal-dual interior point algorithm
4
5 x=xzero;
6 y=yzero;
7 s=c-A’*yzero;
8 epz=1e-9;
9 mu=1;
10 n=size(xzero,1);
11 for k=1:52
12 X=diag(x);
13 S=diag(s);
14 D=inv(S)*X;
15 v=mu*ones(n,1)-X*S*ones(n,1);
16 dy=-inv(A*D*A’)*A*inv(S)*v;
17 ds=-A’*dy;
18 dx=inv(S)*v-D*ds;
19 if(norm(dy)<epz && norm(ds)<epz && norm(dx)<epz) break; end
20 alpha=1;
21 for j=1:n
22 if(dx(j) < 0) alpha=min(alpha,0.99999*(-x(j)/dx(j))); end
23 if(ds(j) < 0) alpha=min(alpha,0.99999*(-s(j)/ds(j))); end
24 end
25 y=y+alpha*dy;
26 s=s+alpha*ds;
27 x=x+alpha*dx;
28 mu=mu/2;
29 end
30 xstar=x;
31 ystar=y;
32
33 end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

672 Interior-Point Methods for LP

The routine begins 5-6 by initializing x and y to the starting vectors 1 provided, assuming
that x0 is strictly feasible for P and y0 is an interior point of D . Next 7 it sets s0 = c−A⊤y0
to establish dual feasibility, and sets 8 a convergence tolerance and 9 a starting value for
µ. The number n of x j variables 10 is needed to construct 1 15 . Then 11-29 a sequence
of up to 52 barrier problems are solved. The part of this code 12-18 that computes ∆y, ∆s,
and ∆x is familiar from deltas.m, but here 19 these quantities are also used to test for
convergence. At any iteration of the algorithm it is possible for one or two of these vectors
to be very small, so it is necessary to test all three. The steplength α is determined 20-24

using the formula above. The strictness of the inequality is enforced by using only 0.99999

of the smallest permissible step; this is called a fraction to the boundary rule [5, p567].
The current yβ, sβ, and xβ are used 25-27 as the starting point for the next iteration, and 28

µ is reduced. When convergence is achieved or the iteration limit is met 30-31 the current
primal and dual solutions are returned 1 in xstar and ystar.

The Octave session on the next page illustrates the use of this code to solve the standard-
form versions of in1 and the brewery problem of §1.3.1. For both problems the answers
that lpin.m finds differ from the true vertex solutions by only on the order of epz.

I used a modified version of lpin.m to plot the coordinates x1(µ) and x2(µ) generated by
the algorithm in solving the standard-form version of the in1 problem, obtaining the picture
below. The dashed line is the central path that we found in §21.1.1 for the inequality-
constrained problem.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x2

x1

On the first iteration our solution of the Lagrange system generates a step ∆x that would
cause the new point to have a negative x1 coordinate, so the code finds α ≈ 0.513 and steps
to just short of the x2 axis. The other iterates were all able to use α = 1, and demonstrate
that when that is possible they tend to follow the central path. The primal-dual algorithm
is thus a path-following method [4, p346] [5, p399].

The numerical stability of the calculations performed by lpin.m depends on the condition
number κ(ADA⊤), so I plotted κ − 1 as a function of µ for both in1 and brewery to the right
of the output on the next page. As µ decreases, for in1 the condition number approaches 1
and for brewery it approaches only 2453, so this algorithm does not suffer from the terminal
ill-conditioning we observed for the barrier algorithm of §19.3.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.1.3 Solving the Linear Program 673

octave:1> format long
octave:2> A=[-1,1,1,0;1,0,0,1];
octave:3> b=[1;1];
octave:4> c=[1;1;0;0];
octave:5> xzero=[0.5;0.5;1;0.5];
octave:6> yzero=[-0.5;-0.5];
octave:7> [xstar,ystar]=lpin(A,b,c,xzero,yzero)
xstar =

9.31322574615479e-10
9.31322574615479e-10
1.00000000000000e+00
9.99999999068677e-01

ystar =

-9.31322574615479e-10
-9.31322574615479e-10

octave:8> A=[7,10,8,12,1,0,0;1,3,1,1,0,1,0;2,4,1,3,0,0,1];
octave:9> b=[160;50;60];
octave:10> c=[-90;-150;-60;-70;0;0;0];
octave:11> xzero=[1;1;1;1;123;44;50];
octave:12> yzero=[-1;-1;-52];
octave:13> [xstar,ystar]=lpin(A,b,c,xzero,yzero)
xstar =

5.00000006881941e+00
1.24999999717530e+01
9.93410746256510e-11
2.44281331046683e-11
2.48352686564128e-10
7.50000004087680e+00
9.93410746256510e-11

ystar =

-7.50000000021110e+00
-2.48352685207770e-10
-1.87499999993232e+01

octave:14> quit

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

κ(
A
D
A
⊤)
−
1

µ

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

κ(
A
D
A
⊤)
−
1

µ

The simplex method uses pivots to move along the edges of the feasible set while interior-
point methods use more expensive iterations, but hopefully fewer of them, to cross its interior.
If the optimal point is unique and nondegenerate the primal-dual algorithm approaches a
vertex solution in the limit, but if not it can converge to an interior point of the optimal
set (see Exercise 21.4.15) so production codes use a basis recovery procedure to find the
nearest vertex exactly. Unlike the simplex algorithm, interior-point methods do not stall
doing degenerate pivots and they are insensitive to the number of vertices between x0 and
x⋆. Interior-point methods can (and some even do) have polynomial worst-case complexity
[5, §14.1] in stark contrast to the exponential worst-case complexity of the simplex method
(see §7.9). In practice interior-point methods are said to perform better than the simplex
method on linear programs that are [5, p392] large and in which [4, p329] the matrix ADA⊤

is sparse with a pattern of nonzeros that makes it easy to factor.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

674 Newton’s Method for Systems of Equations

Many refinements and extensions have been made to the primal-dual interior-point method
for linear programming, including [4, §10.3] ways to deal with infeasible starting points and
diagnose infeasible problems and [5, p415] ways to solve convex quadratic programs. In addi-
tion to the primal-dual approach that we have studied, potential-reduction [5, §14.3] and
affine-scaling [4, §10.5] formulations have also been used to derive interior-point methods
for linear programming. All of these topics are beyond the scope of this text.

21.2 Newton’s Method for Systems of Equations

The iterative scheme that we used in §21.1.2 to solve the Lagrange system of the LP barrier
problem is a customization for that purpose of a more general algorithm called Newton’s

method for systems [20, §9.2] [30, §5.2] [4, §2.7.1] [5, §11.1]. The Newton descent al-
gorithm we studied in §13 is a different customization, to solve the particular system of
nonlinear equations represented by ∇f0(x) = 0. In §21.3 and §23.2 we will need Newton’s
method for systems again, in the more general form developed next.

21.2.1 From One Dimension to Several

Recall that if x ∈ R1 and f (x) is a scalar function that has the two-term Taylor’s series

f (xk + ∆) ≈ f (xk) + f ′(xk) · ∆,

where f ′(xk) means d f /dx evaluated at xk, then provided f ′(xk) , 0 we can make f (xk+∆) ≈ 0

by picking ∆ = − f (xk)/ f ′(xk). The algorithm below (see §28.3.2) repeats this process of
correcting the point, and if all goes well it converges to an x where f (x) = 0.

k = 0 start from x0

1 ∆ = − f (xk)/ f ′(xk) find the correction

xk+1 = xk + ∆ update the estimate of the root

k = k + 1 count the iteration

GO TO 1 and repeat

We can use a similar approach to solve a system of r equations fi(x) = 0 for a point
x ∈ Rr where they are all satisfied. Now each correction ∆ ∈ Rr is the vector that satisfies
the system of linear equations

f1(x
k
+ ∆) ≈ f1(x

k) + ∇f1(xk)⊤∆ = 0
...

fr(x
k
+ ∆) ≈ fr(x

k) + ∇fr(xk)⊤∆ = 0

or





f1(x
k)
...

fr(x
k)





+





∇f1(xk)⊤
...

∇fr(xk)⊤





∆ = 0.

We can call the vector whose elements are the function values f(xk) and the matrix whose
rows are the gradients of the functions J(x), and write these equations in the form

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.2.1 From One Dimension to Several 675

f(xk) + J(xk)∆ = 0.

Then if J has an inverse we can solve for

∆ = [J(xk)]−1[−f(xk)]

and generalize the scalar algorithm like this.

k = 0 start from x0

1 ∆ = [J(xk)]−1[−f(xk)] find the correction vector

xk+1 = xk + ∆ update the estimate of the root

k = k + 1 count the iteration

GO TO 1 and repeat

To try this algorithm on a set of nonlinear equations we need to know, for each element
of the Jacobian matrix

Ji j(x) = [∂ fi(x)/∂x j],

a formula from which we can compute its value at a given point xk. For example, the
nonlinear system on the left below has the Jacobian on the right.

f1(x) = x31 − x2 = 0

f2(x) = x1 + x22 − 2 = 0
J(x) =

[

3x21 −1
1 2x2

]

To use Newton’s method for systems I wrote the MATLAB routine nteg.m listed below.

function [x,k]=nteg(xzero)
% Newton’s method for systems example
x=xzero;
f=zeros(2,1);
epz=1e-12;
for k=1:20

f(1)=x(1)^3-x(2);
f(2)=x(1)+x(2)^2-2;
J(1,1)=3*x(1)^2;
J(1,2)=-1;
J(2,1)=1;
J(2,2)=2*x(2);
delta=inv(J)*(-f);
x=x+delta;
if(norm(delta) < epz) break; end

end
end

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

The Octave session on the next page shows that from x0 = [1
2
, 1
2
]⊤ the algorithm finds the

root at [1, 1]⊤ and from x0 = [−1,−1]⊤ it finds the root near [−1.21,−1.79]⊤. I wrote another
program to solve the problem starting from each point in the grid shown above, and marked

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

676 Newton’s Method for Systems of Equations

the point with a + or a o depending on which zero was returned. Nonlinear systems can
have multiple roots, and to find a particular one we must start close enough to it. In some
problems the algorithm diverges if the starting point is not close enough to a root.

octave:1> format long
octave:2> [x,k]=nteg([0.5;0.5])
x =

1
1

k = 7
octave:3> f1=x(1)^3-x(2)
f1 = 0
octave:4> f2=x(1)+x(2)^2-2
f2 = 0
octave:5> [x,k]=nteg([-1;-1])
x =

-1.21486232248842
-1.79300371513514

k = 6
octave:6> f1=x(1)^3-x(2)
f1 = 0
octave:7> f2=x(1)+x(2)^2-2
f2 = 4.44089209850063e-16
octave:8> quit

Steps 3>,4> and 6>,7> confirm that at each root both function values are zero.

21.2.2 Solving the LP Lagrange System Again

In §21.1 we could have used the general form of Newton’s method for systems to solve these
Lagrange conditions for the in1 problem [5, §14.1-14.2].

fp(x) = Ax − b = 0 primal feasibility, m rows

fd(y, s) = A⊤y + s − c = 0 dual feasibility, n rows

fc(x, s) = s jx j − µ = 0, j = 1 . . . n complementary slackness, n rows

The variables in this system are x ∈ Rn, y ∈ Rm, and s ∈ Rn. Its Jacobian therefore has 2n+m
rows, each corresponding to a row in these equations, and 2n + m columns corresponding to
the variables. We can describe the contents of this Jacobian succinctly by introducing the
notation

∇⊤f(x) =





∇f1(x)⊤
...

∇fr(x)⊤





to represent the matrix whose r rows are the gradients of the functions making up the vector f.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.2.2 Solving the LP Lagrange System Again 677

Using the definition given in §21.2.1, we can write the Jacobian for the Lagrange system as

x y s

J(x) =





∇⊤xfp(x) 0m×m 0m×n

0n×n ∇⊤yfd(y) ∇⊤sfd(s)
∇⊤xfc(x) 0n×m ∇⊤sfc(s)





primal feasibility

dual feasibility

complementary slackness

Each submatrix is easy to find if we examine a typical row in the corresponding matrix
equation. The primal feasibility condition Ax−b = 0 has m rows and its row i is the equation
on the left below, in which Ai = [ai1 . . . ain] is row i of A.

fi(x) = Aix − bi = ai1x1 + ai2x2 + · · · + ainxn − bi = 0 ∇x fi(x) =





∂ fi/∂x1
...

∂ fi/∂xn





=





ai1
...

ain





The gradient of this function is the column vector on the right, so ∇x fi(x)⊤ = Ai and

∇⊤xfp(x) =





∇x f1(x)⊤
...

∇x fn(x)⊤





=





A1

...

An





= A.

The dual feasibility condition A⊤y+ s− c = 0 has n rows, and its row i is the equation below.

fi(y, s) = a1iy1 + a2iy2 + · · · + amiym + si − ci = 0

The gradients of this function are

∇y fi(y) =





∂ fi/∂y1
...

∂ fi/∂ym





=





a1i
...

ami





∇s fi(s) =





∂ fi/∂s1
...

∂ fi/∂sn





where
∂ fi

∂s j
=

{

1 i = j

0 i , j

so

∇⊤yfd(y) =





∇y f1(y)⊤
...

∇y fn(y)⊤





=





a11 a21 · · · am1
...

...
...

...

a1n a2n · · · amn





= A⊤

and

∇⊤sfd(s) =





∇s f1(s)⊤
...

∇s fn(s)⊤





=





1
. . .

1





= In×n.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

678 Newton’s Method for Systems of Equations

The complementary slackness condition has n rows and its row i is the equation below.

fi(x, s) = sixi − µ = 0

The gradients of this function are

∇x fi(x) =





∂ fi/∂x1
...

∂ fi/∂xn





where
∂ fi

∂x j

=

{

si i = j

0 i , j

and

∇s fi(s) =





∂ fi/∂s1
...

∂ fi/∂sn





where
∂ fi

∂s j
=

{

xi i = j

0 i , j

so

∇⊤xfc(x) =





∇x f1(x)⊤
...

∇x fn(x)⊤





=





s1
. . .

sn





= S and ∇⊤sfc(s) =





∇s f1(s)⊤
...

∇s fn(s)⊤





=





x1
. . .

xn





= X.

Assembling the pieces we get the complete Jacobian

J(x, y, s) =





A 0 0

0 A⊤ I

S 0 X





from which we can compute





∆x

∆y

∆s




=





A 0 0

0 A⊤ I

S 0 X





−1 


−fp(x)
−fd(y, s)
−fc(x, s)




.

To compare this formula to the boxed equations of §21.1.2, I wrote the MATLAB program
ntdeltas.m listed on the next page. After 3-13 specifying the in1 problem data it finds the
corrections 15-19 in the sequential fashion and then by constructing 23-28 the Jacobian and
29-31 the vector of function values and 33 using the formula derived above for the general
form of the algorithm.

The Octave session below the listing shows that the two approaches do yield the same
first set of corrections in solving the in1 problem. If our lpin.m routine were revised to use
the general form of Newton’s method for systems (see Exercise 21.4.23) it would produce
the same results we found before.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.3 Interior-Point Methods for NLP 679

1 % ntdeltas.m: compare deltas found two ways
2 mu=0.5;
3 n=4;
4 m=2;
5 A=[-1,1,1,0;1,0,0,1];
6 b=[1;1];
7 c=[1;1;0;0];
8 x=[0.5;0.5;1;0.5];
9 y=[-0.5;-0.5];
10 s=[1;1.5;0.5;0.5];
11 X=diag(x);
12 S=diag(s);
13 D=inv(S)*X;
14
15 % use the boxed formulas of Section 21.1.2
16 v=mu*ones(n,1)-X*S*ones(n,1);
17 dy=-inv(A*D*A’)*A*inv(S)*v;
18 ds=-A’*dy;
19 dx=inv(S)*v-D*ds;
20 printf(’%8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f\n’,dx,dy,ds)
21
22 % use the general form of Newton’s method for systems
23 J=zeros(2*n+m,2*n+m);
24 J(1:m,1:n)=A;
25 J(m+1:m+n,n+1:n+m)=A’;
26 J(m+1:m+n,n+m+1:2*n+m)=eye(n,n);
27 J(m+n+1:2*n+m,1:n)=S;
28 J(m+n+1:2*n+m,n+m+1:2*n+m)=X;
29 fp=A*x-b;
30 fd=A’*y+s-c;
31 fc=S*X*ones(n,1)-mu*ones(n,1);
32 F=[fp;fd;fc];
33 du=inv(J)*(-F);
34 printf(’%8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f %8.5f\n’,du)

octave:1> ntdeltas
-0.16667 -0.16667 -0.00000 0.16667 -0.00000 -0.33333 0.33333 0.00000 0.00000 0.33333
-0.16667 -0.16667 0.00000 0.16667 0.00000 -0.33333 0.33333 0.00000 0.00000 0.33333
octave:2> quit

21.3 Interior-Point Methods for NLP

Several of the ideas we used in deriving an interior-point method for linear programming
generalize naturally to the case where the functions are nonlinear [4, §16.7] [5, §19]. Our
problem b1, which is restated on the left below, can be reformulated as shown on the right
by adding nonnegative slack variables s1 and s2.

minimize
x∈R2

x1 − 2x2
subject to −x1 + x22 − 1 ≤ 0

−x2 ≤ 0

minimize
x∈R2 s∈R2

x1 − 2x2
subject to −x1 + x22 − 1 + s1 = 0

−x2 + s2 = 0

s ≥ 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

680 Interior-Point Methods

Now we can form a barrier problem by moving the nonnegativities s ≥ 0 into the barrier
function.

minimize
x∈R2 s∈R2

+

β(x, s; µ) = x1 − 2x2 − µ[ln(s1) + ln(s2)]

subject to −x1 + x22 − 1 + s1 = 0

−x2 + s2 = 0

This is an equality-constrained nonlinear program that we can solve using the Lagrange
method. If we let λ1 and λ2 be the Lagrange multipliers associated with the equalities, then

L(x, s,λλλ) = x1 − 2x2 − µ[ln(s1) + ln(s2)] + λ1(−x1 + x22 − 1 + s1) + λ2(−x2 + s2)

and the Lagrange conditions are

∇xL =

[

1 − λ1
−2 + 2λ1x2 − λ2

]

= 0

∇sL =

[

−µ/s1 + λ1
−µ/s2 + λ2

]

= 0

∇λλλL =

[

−x1 + x22 − 1 + s1
−x2 + s2

]

= 0

For a given µ, we can solve these nonlinear algebraic equations numerically by using Newton’s
method for systems. If we multiply through by the denominators in the second set of
equations and let

v =





x

s

λλλ




or

[v1, v2, v3, v4, v5, v6]
⊤

= [x1, x2, s1, s2, λ1, λ2]
⊤

we can rewrite the Lagrange system like this.

f1(v) = 1 − v5 = 0

f2(v) = −2 + 2v5v2 − v6 = 0

f3(v) = −µ + v3v5 = 0

f4(v) = −µ + v4v6 = 0

f5(v) = −v1 + v22 − 1 + v3 = 0

f6(v) = −v2 + v4 = 0

Then using Ji j = ∂ fi/∂v j the Jacobian is

J(v) =





0 0 0 0 −1 0

0 2v5 0 0 2v2 −1
0 0 v5 0 v3 0

0 0 0 v6 0 v4
−1 2v2 1 0 0 0

0 −1 0 1 0 0





.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.3 Interior-Point Methods for NLP 681

To solve the b1 problem using this formulation I wrote the program b1in.m listed below
and on the next page. The starting point must be chosen so that the Jacobian there is not
singular, so for our problem we need

| J(v) | = 2v4v
2
5 + v5v6 , 0.

To satisfy this condition I set v4 = 0 and v5 = v6 = 1. To show that x0 need not be feasible
for the inequalities of the original problem I set v1 = x1 = −2 and v2 = x2 = 2, which violates
the first constraint. Finally, to show that the equality constraints in the barrier problem
need not be satisfied at the starting point I set v3 = s1 = 0 5 .

1 % b1in.m: interior-point solution of b1
2
3 clear; clf
4 xstar=[0;1]; % optimal x for finding error to plot
5 v=[-2;2;0;0;1;1]; % starting J must be nonsingular
6 mu=1; % starting barrier multiplier
7 for k=1:52 % solve a sequence of barrier problems
8 x(k)=v(1); % save each iterate
9 y(k)=v(2); % for plotting later
10 for t=1:10 % use Newton’s method for systems
11 J=zeros(6,6); % start with a zero Jacobian
12 J(1,5)=-1; % and fill in the nonzero elements
13 J(2,2)=2*v(5);
14 J(2,5)=2*v(2);
15 J(2,6)=-1;
16 J(3,3)=v(5);
17 J(3,5)=v(3);
18 J(4,4)=v(6);
19 J(4,6)=v(4);
20 J(5,1)=-1;
21 J(5,2)=2*v(2);
22 J(5,3)=1;
23 J(6,2)=-1;
24 J(6,4)=1;
25
26 F=zeros(6,1); % make F a column vector
27 F(1)=1-v(5); % and fill in the function values
28 F(2)=-2+2*v(5)*v(2)-v(6);
29 F(3)=-mu+v(3)*v(5);
30 F(4)=-mu+v(4)*v(6);
31 F(5)=-v(1)+v(2)^2-1+v(3);
32 F(6)=-v(2)+v(4);
33
34 d=inv(J)*(-F); % find the correction vector
35 alpha=1; % make sure s and lambda stay positive
36 for j=3:6
37 if(d(j) < 0) alpha=min(alpha,0.99999*(-v(j)/d(j))); end
38 end
39 v=v+alpha*d; % take the restricted step
40 end % Lagrange conditions solved for this mu
41 mus(k)=mu; % remember mu
42 xerr(k)=norm([v(1);v(2)]-xstar); % and the error in x
43 kappa(k)=cond(J); % and the condition of J
44 mu=mu/2; % decrease mu
45 end % and continue
46 v % write the answer

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

682 Interior-Point Methods

For each value of µ in the sequence 1, 1
2
, . . . , 1

251
7-45 the program does 10 iterations of

Newton’s method for systems 10-40 to solve the Lagrange conditions of the barrier problem.
Each iteration consists of 11-24 updating the Jacobian, 26-32 updating the function vector,
34 solving Jd = −F for the correction d, 35-38 restricting the steplength, and 39 updating
the estimate of the root. The x iterates 8-9 , the µ values 41 , the solution error 42 , and
the condition number of J 43 are all saved for plotting later.

Our formulation assumed that s > 0 so that x is strictly feasible, and the second Lagrange
condition requires that λi = µ/si > 0, so the root that we want will have both s and λλλ positive.
In the convergence trajectory on the right below 48-62 the first step from the infeasible start
[−2, 2]⊤ is to such a point, and the steplength restriction ensures that both s and λλλ remain
positive after that.

48 % plot the convergence trajectory
49 figure(1); set(gca,’FontSize’,25)
50 hold on
51 axis([-2,2,-2,2],’square’)
52 for p=1:101
53 xp(p)=-1+3*0.01*(p-1);
54 ypp(p)=sqrt(1+xp(p));
55 ypm(p)=-sqrt(1+xp(p));
56 end
57 plot(xp,ypp) % second constraint upper branch
58 plot(xp,ypm) % second constraint lower branch
59 plot(x,y,’o’) % iterates
60 plot(x,y) % connected by lines
61 hold off
62 print -deps -solid b1intrj.eps
63
64 % plot solution error
65 figure(2); set(gca,’FontSize’,25)
66 hold on
67 axis([1e-16,1,1e-16,10])
68 loglog(mus,xerr)
69 hold off
70 print -deps -solid b1inerr.eps
71
72 % plot condition number of J
73 figure(3); set(gca,’FontSize’,25)
74 hold on
75 axis([1e-16,1,10,22])
76 semilogx(mus,kappa)
77 hold off
78 print -deps -solid b1incnd.eps

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x0

x⋆

x2

x1

octave:2> b1in
v =

8.9638e-16
1.0000e+00
4.4409e-16
1.0000e+00
1.0000e+00
4.4409e-16

octave:3> quit

The Octave session below the graph reports 46 a minimizing point x = [v1, v2]
⊤ close to

x⋆ = [0, 1]⊤, positive slack variables s = [v3, v4]
⊤ ≈ [0, 1]⊤ satisfying the equality constraints of

the barrier problem, and λλλ = [v5, v6]
⊤ ≈ [1, 0]⊤ = λλλ⋆.

The error curve on the left at the top of the next page shows that this algorithm has
linear convergence like the classical barrier method of §19, but the graph on the right shows
that J, unlike the classical barrier Hessian, remains well-conditioned throughout the solution
process.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.3.1 A Primal-Dual Formulation 683

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

µ

||x
k
−
x
⋆
||

10

12

14

16

18

20

22

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

µ

κ(J)

21.3.1 A Primal-Dual Formulation

The same approach can be used to derive an interior-point algorithm for solving the standard-
form nonlinear program on the left below. We begin by adding slack variables to obtain the
equality-constrained problem on the right.

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m

minimize
x∈Rn s∈Rm

+

f0(x)

subject to fi(x) + si = 0, i = 1 . . .m

s ≥ 0
The corresponding barrier problem is

minimize
x∈Rn s∈Rm

+

β(x, s; µ) = f0(x) − µ
m∑

i=1

ln(si)

subject to fi(x) + si = 0, i = 1 . . .m

which has the Lagrangian

L(x, s,λλλ) = f0(x) − µ
m∑

i=1

ln(si) +

m∑

i=1

λi[fi(x) + si]

and thus the following Lagrange conditions.

fp(x,λλλ) = ∇xL = ∇f0(x) +
m∑

i=1

λi∇fi(x) = 0

∇sL = −µ





1/s1
...

1/sm





+





λ1
...

λm





=





0
...

0





or fc(s,λλλ) = −µ





1
...

1





+





s1λ1
...

smλm





=





0
...

0





fd(x, s) = ∇λλλL =





f1(x) + s1
...

fm(x) + sm





=





0
...

0





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

684 Interior-Point Methods for NLP

The Jacobian of this primal-dual system [5, p567] is

J(x, s,λλλ) =





∇⊤xfp(x) 0n×m ∇⊤λλλfp(λλλ)
0m×n ∇⊤sfc(s) ∇⊤λλλfc(λλλ)
∇⊤xfd(x) ∇⊤sfd(s) 0m×m





in which (see Exercise 21.4.28) if we let Λ be the diagonal matrix whose diagonal elements
are the λi,

∇⊤xfp(x) = H f0(x) +

m∑

i=1

λiH fi(x) = Jpx

∇⊤λλλfp(λλλ) =
[

∇f1(x) . . . ∇fm(x)
]

= Jplambda

∇⊤sfc(s) = Λ = Jcs

∇⊤λλλfc(λλλ) = S = Jclambda

∇⊤xfd(x) =





∇f1(x)⊤
...

∇fm(x)⊤





= Jdx

∇⊤sfd(s) = I = Jds.

To solve the standard-form nonlinear program using this primal-dual formulation I wrote
the MATLAB function nlpin.m listed on the next page. This routine uses v⊤ = [x⊤, s⊤,λλλ⊤] so
x = v(1:n), s = v(n+1:n+m), and λλλ = v(n+m+1:n+2*m). For a starting point it 6 sets x = x0

but 5 s = 1 and λλλ = 1 so that the S and Λ submatrices of J are identities. Then it does
up to 52 iterations 8-53 of the barrier algorithm, each of which uses just one iteration of
Newton’s method for systems to solve the Lagrange conditions. Each barrier iteration uses
the formulas we derived above to construct 9-29 the Jacobian J(v) and 31-42 the vector
F(v) of function values at the current point. Then 44 it solves Jd = −F for the direction
d, 45-48 restricts the step if that is necessary to keep s > 0 and λλλ > 0, and 49 updates
the estimate of the solution. If the restricted step is small enough 51 the current point is
returned 54 for xstar; otherwise 52 µ is decreased and the iterations continue.

To test the algorithm I solved our b1 and b2 example problems, obtaining the results
shown in the Octave session at the top of the page after the listing. Recall that b2 has the
same function, gradient, and Hessian routines as p2. These optimal points are exact, except
for xstar(1) in the solution of b1, which should be zero but is always on the order of epz
(I tried increasing the iteration limit beyond 52 but that made no difference).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.3.1 A Primal-Dual Formulation 685

1 function [xstar,k]=nlpin(xzero,m,epz,fcn,grd,hsn)
2 % solve a standard-form nonlinear program by a primal-dual interior point algorithm
3
4 n=size(xzero,1);
5 v=ones(n+2*m,1);
6 v(1:n)=xzero;
7 mu=1;
8 for k=1:52
9 Jpx=hsn(v(1:n),0);
10 for i=1:m
11 Jpx=Jpx+v(n+m+i)*hsn(v(1:n),i);
12 end
13 Jps=zeros(n,m);
14 for i=1:m
15 Jplambda(:,i)=grd(v(1:n),i);
16 end
17 Jcx=zeros(m,n);
18 Jcs=zeros(m,m);
19 for i=1:m
20 Jcs(i,i)=v(n+m+i);
21 end
22 Jclambda=zeros(m,m);
23 for i=1:m
24 Jclambda(i,i)=v(n+i);
25 end
26 Jdx=Jplambda’;
27 Jds=eye(m,m);
28 Jdlambda=zeros(m,m);
29 J=[Jpx,Jps,Jplambda;Jcx,Jcs,Jclambda;Jdx,Jds,Jdlambda];
30
31 F=zeros(2*m+n,1);
32 F(1:n)=grd(v(1:n),0);
33 for i=1:m
34 F(1:n)=F(1:n)+v(n+m+i)*grd(v(1:n),i);
35 end
36 F(n+1:n+m)=-mu*ones(m,1);
37 for i=1:m
38 F(n+i)=F(n+i)+v(n+i)*v(n+m+i);
39 end
40 for i=1:m
41 F(n+m+i)=fcn(v(1:n),i)+v(n+i);
42 end
43
44 d=inv(J)*(-F);
45 alpha=1;
46 for j=n+1:n+2*m
47 if(d(j) < 0) alpha=min(alpha,0.99999*(-v(j)/d(j))); end
48 end
49 v=v+alpha*d;
50
51 if(norm(d) <= epz) break; end
52 mu=mu/2;
53 end
54 xstar=v(1:n);
55
56 end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

686 Interior-Point Methods for NLP

octave:1> format long
octave:2> [xstar,k]=nlpin([-2;2],2,1e-15,@b1,@b1g,@b1h)
xstar =

9.32124747758204e-16
1.00000000000000e+00

k = 52
octave:3> [xstar,k]=nlpin([1;2],1,1e-15,@p2,@p2g,@p2h)
xstar =

0.945582993415968
0.894127197437503

k = 51
octave:4> quit

21.3.2 A Primal Formulation

In the Lagrange conditions that we derived above, the equation fc(s,λλλ) = 0 says that λisi = µ
for i = 1 . . .m, but the equation fd(x, s) = 0 says that si = − fi(x), so both of these conditions
can be replaced by λi fi(x) = −µ or λi = −µ/ fi(x). Substituting this expression into the
equation fp(x,λλλ) = 0, the Lagrange conditions simplify to the primal system

∇f0(x) +
m∑

i=1

(

−µ
fi(x)

)

∇fi(x) = 0.

These nonlinear algebraic equations have (see Exercise 21.4.33) the Jacobian

J(x) = H f0(x) − µ
m∑

i=1

(
fi(x)H fi(x) − ∇fi(x)∇fi(x)⊤

fi(x)2

)

which at n × n elements is smaller than the (n + 2m) × (n + 2m) one we found for the primal-
dual formulation. This Jacobian is also symmetric, so it can be stored in 1

2
n(n + 1) memory

locations rather than requiring even n2. Further, if the original problem is a convex program
then J is positive semidefinite, and if one or more of its functions happens to be strictly convex
then J is positive definite. If J is positive definite and symmetric then efficient methods can
be used to solve the linear system Jd = −F, such as Cholesky factorization if n is small or
the conjugate gradient algorithm (see §14.4 and [5, p571]) if n is large. Thus, eliminating s

and λλλ from the Lagrange system yields a formulation with some appealing properties.
Unfortunately it also introduces the complication that we can no longer keep x strictly

feasible by keeping s strictly positive with a simple ratio test. The nlpinp.m routine listed
on the next page instead uses a backtracking line search (see §19.1) to restrict the steplength.
A more serious drawback of this approach is that now the starting point x0 must be strictly
feasible, for only then can we be sure that the line search will keep each subsequent xk interior
to the feasible set.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.3.2 A Primal Formulation 687

1 function [xstar,k]=nlpinp(xzero,m,epz,fcn,grd,hsn)
2 % minimize f0(x) subject to fi(x)<=0 for i=1..m by a primal interior point algorithm
3
4 x=xzero;
5 mu=1;
6 for k=1:52
7 F=grd(x,0);
8 for i=1:m
9 F=F-mu*(grd(x,i)/fcn(x,i));
10 end
11 J=hsn(x,0);
12 for i=1:m
13 J=J-mu*(fcn(x,i)*hsn(x,i)-grd(x,i)*grd(x,i)’)/(fcn(x,i)^2);
14 end
15 d=inv(J)*(-F);
16 if(norm(d) <= epz) break; end
17 alpha=1;
18 for t=1:52
19 ok=true;
20 for i=1:m
21 if(fcn(x+alpha*d,i) < 0) continue; end
22 ok=false;
23 break
24 end
25 if(ok) break; end
26 alpha=alpha/2;
27 end
28 x=x+alpha*d;
29 mu=mu/2;
30 end
31 xstar=x;
32
33 end

To test nlpinp.m I used it to solve b1 and b2 with the results shown below.

octave:1> format long
octave:2> [xstar,k]=nlpinp([0.5;0.5],2,1e-14,@b1,@b1g,@b1h)
xstar =

2.81250581634848e-14
1.00000000000001e+00

k = 47
octave:3> [xstar,k]=nlpinp([1;2],1,1e-14,@p2,@p2g,@p2h)
xstar =

0.945582993415948
0.894127197437538

k = 43
octave:4> [xstar,k]=nlpinp([1;2],1,1e-15,@p2,@p2g,@p2h)
warning: inverse: matrix singular to machine precision, rcond = 5.09993e-17
xstar =

0.945582993415970
0.894127197437508

k = 45
octave:5> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

688 Interior-Point Methods for NLP

With epz = 10−14 the algorithm finds points that are very close to optimal for these problems,
but tightening the tolerance further provokes a complaint about J being numerically singular!
This formulation, because it eliminates the dual variables λ, results in a Jacobian that does
not remain well-conditioned as µ→ 0 [5, p571].

21.3.3 Accelerating Convergence

The barrier algorithms we have considered so far all have linear convergence. They set
µk+1 =

1
2
µk, and those that use a fraction-to-the-boundary rule restrict each step to go no

closer than σ = 0.99999 of the way. If the interior-point method of §21.3.1 is modified to
instead decrease µ towards 0 and increase σ towards 1 in a way that depends on the progress
of the iterations, it is possible to get quadratic convergence, at least near the optimal point.
Various complicated heuristics have been proposed [5, p572-573], but we will investigate a
simple one [4, §16.7.2] that depends on a merit function.

A merit function [4, p513] [5, p575] is a scalar function φ(v) that measures how far a
trial point v is from satisfying the optimality conditions. For example, in our primal-dual
formulation the Lagrange conditions for the barrier problem are

F(v) =





fp(v)

fc(v)

fd(v)




= 0.

One measure of how far a given v is from satisfying them is ||F(v)||, because that norm is
zero at a Lagrange point and increases if we move away. It is convenient for a merit function
to be 1 at the starting point, so we will use φ(vk) = ||F(vk)||/||F(v0)||.

If certain other conditions are satisfied [4, Theorem 16.17] we can get second-order con-
vergence by setting

σk = max
{
1
2
, 1 − φ(vk−1)

}

µk+1 = min
{
1
2
φ(vk), φ(vk)2

}

.

The prescription for σk ensures that x⋆ is approached from the interior of the feasible set,
but permits xk to get very close to the boundary when it is near x⋆. In the formula for µ
the first term is smaller near the starting point, when φ ≈ 1, but when φ < 1

2
the result

of the min operation becomes the second term, so that µ decreases quadratically as x⋆ is
approached.

To try this idea I revised the b1in.m program of §21.3.0 to produce b1inq.m, which
is listed on the next two pages. This program solves b1 twice, first (method=1) using
µk+1 =

1
2
µk and σ = 0.99999 10,36,54 and again (method=2) using the scheme described

above 10,38-41,56 . The same starting value of µ1 =
1
2
is used 10 in both cases so that they

can be compared. In each case the program does only one iteration of Newton’s method for
systems in each barrier iteration, which we found in nlpin.m is sufficient.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.3.3 Accelerating Convergence 689

1 % b1inq.m: accelerated interior-point solution of b1
2
3 clear; clf
4 xstar=[0;1];
5
6 for method=1:2 % try both strategies
7 v=[-2;2;0;0;1;1];
8 ks(1)=0; % starting point
9 xerr(1)=norm([v(1);v(2)]-xstar); % has this error
10 mu=0.5;
11 for k=1:52
12 J=zeros(6,6);
13 J(1,5)=-1;
14 J(2,2)=2*v(5);
15 J(2,5)=2*v(2);
16 J(2,6)=-1;
17 J(3,3)=v(5);
18 J(3,5)=v(3);
19 J(4,4)=v(6);
20 J(4,6)=v(4);
21 J(5,1)=-1;
22 J(5,2)=2*v(2);
23 J(5,3)=1;
24 J(6,2)=-1;
25 J(6,4)=1;
26
27 F=zeros(6,1);
28 F(1)=1-v(5);
29 F(2)=-2+2*v(5)*v(2)-v(6);
30 F(3)=-mu+v(3)*v(5);
31 F(4)=-mu+v(4)*v(6);
32 F(5)=-v(1)+v(2)^2-1+v(3);
33 F(6)=-v(2)+v(4);
34
35 if(method==1)
36 sigma=0.99999; % fixed fraction-to-boundary
37 else
38 phi=sqrt(F’*F); % merit function
39 if(k==1) mzero=phi; end % remember first value
40 phi=phi/mzero; % and use it to normalize each value
41 sigma=max(0.5,1-phi); % contingent fraction-to-boundary
42 end
43
44 d=inv(J)*(-F);
45 alpha=1;
46 for j=3:6
47 if(d(j) < 0) alpha=min(alpha,sigma*(-v(j)/d(j))); end
48 end
49 v=v+alpha*d;
50 ks(k+1)=k;
51 xerr(k+1)=norm([v(1);v(2)]-xstar);
52
53 if(method==1)
54 mu=mu/2; % fixed reduction in mu
55 else
56 mu=min(0.5*phi,phi^2); % contingent reduction in mu
57 end
58 end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

690 Interior-Point Methods

59 figure(method) % plot each error curve
60 axis([0,52,1e-16,1e1])
61 set(gca,’FontSize’,30)
62 hold on
63 semilogy(ks,xerr)
64 hold off
65 switch(method)
66 case 1; print -deps -solid b1inl.eps
67 case 2; print -deps -solid b1inq.eps
68 end

This final stanza of b1inq.m plots the error curves below. Here 8,50,63 I have used the
increasing iteration count k, rather than the decreasing multiplier value µ, as the independent
variable. On the left, when µk+1 =

1
2
µk, those quantities are related, but on the right, because

µk depends on the progress of the algorithm rather than simply on k, they are not. The
starting error is about 2.3; the lowest error achieved using the first method is on the order of
10−15, that of the second on the order of 10−16 (perhaps because it allows a closer approach
to the boundary).

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 10 20 30 40 50

k

||x
k
−
x
⋆
||

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 10 20 30 40 50

k

||x
k
−
x
⋆
||

The graph on the right clearly shows the superior performance of the method=2 scheme,
which could also be used to improve nlpin.m (see Exercise 21.4.35).

21.3.4 Other Variants

If J is a positive-definite matrix then d = J−1(−F) is a descent direction. For J to be positive
definite it is necessary that HL(x) be positive definite, but depending on the problem that
might not be true for some x. In that case it is possible [4, p644] to add a multiple of the
identity to that Hessian, as in the modified Newton algorithm, to make that submatrix of
H positive definite. Another approach [5, p575-576] is to use a quasi-Newton approximation
for HL, which is sure to be positive definite and might be easier to calculate.

A different way to ensure progress toward optimality is by enforcing an Armijo condition
(see §12.3.1) in the selection of α, so that each step achieves a sufficient decrease in the merit
function [5, §19.4].

It is possible to include equality constraints in the primal-dual formulation [5, §19.2], at
the price of losing its intuitive connection to the classical barrier algorithm (see §25.2).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.4 Exercises 691

21.4 Exercises

21.4.1[E] A linear program in standard form is (see §2.1)

minimize
x∈Rn

c⊤x

subject to Ax = b

x ≥ 0

What is its standard-form dual?

21.4.2[H] In §21.1.1 we defined the interiority condition. (a) What does it ensure? (b) In
§19.0 we derived from the classical barrier problem a set of conditions that look like the KKT
conditions for a nonlinear program, except that the condition corresponding to orthogonality
sets the product to −µ rather than to zero. Can this condition be regarded as an interiority
requirement? Explain.

21.4.3[H] How does Newton’s method for solving systems of nonlinear algebraic equations
differ from the Newton descent algorithm?

21.4.4[E] What MATLAB expression returns 1n×1, a vector of all 1’s? What does the
MATLAB expression s.*x compute, and how does this differ from s⊤x?

21.4.5[E] Tell the story of the interior-point method for linear programming, according
to §21.1. What barrier problem did we use? How did we solve that barrier problem? What
role is played by Newton’s method for systems? How do we ensure that the algorithm will
never generate an infeasible point? In your account try to convey the drama and suspense of
the adventure as well as the awe and delight you experienced at its triumphant conclusion.

21.4.6[E] In our interior-point algorithm for linear programming, what determines the
order in which ∆y, ∆s, and ∆x must be calculated?

21.4.7[H] As µ → 0 in our interior-point algorithm for linear programming, s jx j → 0 for
j = 1 . . . n. Show that this implies ∆x j∆s j → 0 for j = 1 . . . n.

21.4.8[E] The lpin.m routine of §21.1.3 is much simpler than the simplex method im-
plementation of §4.1 (which consists of simplex.m, phase0.m, phase1.m, phase2.m, and
minr.m), and it solves the dual at the same time it solves the primal. Why have interior-
point methods not completely displaced the simplex method for solving linear programs?

21.4.9[H] The linear algebra coded in lpin.m involves 4 explicit inverse calculations, which
for reasons explained in §8.6.1 we would always prefer to avoid. Recast these calculations
to use matrix factorizations and forward- and back-substitutions instead. Is it possible that
any of the matrix factorizations might fail? Explain.

21.4.10[H] If x solves a linear program P and y solves its dual D then c⊤x = b⊤y. Show
that if the interior-point method of §21.1 is used to solve the linear program, the duality gap
is given by c⊤x − b⊤y = nµ.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

692 Interior-Point Methods

21.4.11[P] In §21.1.3 I used a modified version of lpin.m to plot the coordinates x1(µ) and
x2(µ) generated by the algorithm in solving the standard-form version of the in1 problem,
obtaining a graph of the convergence trajectory. (a) Modify lpin.m to draw the graph.
What makes an interior-point method a path-following method? (b) Modify lpin.m to plot
κ(ADA⊤) as a function of µ, and obtain the condition-number graphs given for the in1 and
brewery problems.

21.4.12[P] Determine experimentally the order of convergence of the interior-point method
for linear programming.

21.4.13[H] When lpin.m is used to solve the brewery problem in §21.1.3, it reports
y⋆ ≈ [−7.5, 0,−18.75]⊤. In §5.1.4 we learned that the dual variables are the shadow prices
of the primal constraints, and for the brewery problem those are positive. What is the
relationship between the y variables of the interior-point formulation and the shadow prices
for malt, hops, and yeast? Explain.

21.4.14[P] Use lpin.m to solve the following linear program [4, Example 10.1].

minimize
x∈R2

−x1 − 2x2
subject to −2x1 + x2 ≤ 2

−x1 + 2x2 ≤ 7

x1 + 2x2 ≤ 3

x ≥ 0

21.4.15[P] If a linear program has multiple optimal solutions or is degenerate because its
dual has multiple optimal solutions, the primal-dual interior-point method can converge to
an interior point of the optimal set rather than to a vertex of the feasible set. (a) Show that
when lpin.m is used to solve the dp4 primal of §5.1.6, which has multiple optimal solutions,
it converges to x̄ = [2

3
, 2
3
, 2
3
]⊤. In solving this problem the matrix ADA⊤ becomes numerically

singular 16 before k reaches its limit of 52, so to verify that the iterates approach x̄ you
will need to modify the code to print out the iterates or to return the current iterate when
the matrix inversion fails. (b) Confirm that x̄ is interior to the optimal set of this problem.
(c) Why does ADA⊤ become badly conditioned? (d) As mentioned in §4.5.3 a degenerate
vertex can be made nondegenerate by perturbing the right-hand sides of the constraints
that intersect there. Does doing this to the dp4 problems prevent ADA⊤ from becoming
badly-conditioned when lpin.m is used to solve the primal? (e) Suggest an algorithm for
recovering the basic feasible solution (of the unperturbed constraints) that is closest to x̄.

21.4.16[P] The nonlinear algebraic equation sin(x) = 1
2
x has one root at zero and another

near x = 2. (a) Use Newton’s method to approximate the root near x = 2 by hand calcula-
tions. (b) Write a MATLAB program that uses Newton’s method to find that root precisely.
(c) Modify your program to find the root at x = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.4 Exercises 693

21.4.17[E] What problem does Newton’s method for systems of equations solve? Describe
the algorithm. Explain why the correction vector is the solution of a system of linear alge-
braic equations.

21.4.18[E] What is a Jacobian matrix? Give a formula for the (i, j)’th element of a Ja-
cobian. Is a Jacobian necessarily symmetric? Is it necessarily positive definite? Is it even
necessarily nonsingular?

21.4.19[P] This system of nonlinear algebraic equations [77, Example 5.11] has two real
solutions.

x21 − x2 =
1
2

−x1 + x22 =
1
2

(a) Write a MATLAB program that uses Newton’s method for systems to find both roots.
(b) Write a MATLAB program that produces for this problem a graph like the one in §21.2.1
showing for each point on a grid which zero Newton’s method converges to.

21.4.20[H] Show that Newton descent is a way of using Newton’s method for systems to
solve the system of equations represented by ∇f0(x) = 0.

21.4.21[E] In §21.2.2 I introduced the notation ∇⊤f(x). What does it mean?

21.4.22[E] In §21.2.2 two formulas are given for J(x). (a) Explain why the zero submatrices
are zero, and why they have the dimensions given for them in the first formula. (b) Explain
the general approach I used there to find the nonzero submatrices.

21.4.23[P] Revise the lpin.m routine to use the general form of Newton’s method for
systems as described in §21.2.2, and verify that your new version produces the same solutions
to the in1 and brewery problems that we found in §21.1.3.

21.4.24[E] In §21.3 we used an interior-point method to solve the b1 problem. (a) Why
was it necessary to add slacks? (b) Is the Jacobian that we found symmetric? (c) In using
Newton’s method for systems, what properties must the starting point have? (d) Why is
it necessary to restrict the steplength? (e) What order of convergence does the algorithm
have? (f) Does this algorithm have any advantages over the barrier method of §19?

21.4.25[P] In §21.3 we derived an interior-point formulation of the b1 problem. To obtain
the Lagrange system I multiplied the equations −µ/si + λi = 0 through by si and used
µ + siλi = 0 instead. Why did I do that? Hint: modify b1in.m to solve the problem using
the equations in their original form, and study its behavior.

21.4.26[H] In §21.3 we derived an interior-point formulation of the b1 problem, and chose
a starting point v0 such that | J(v) | = 2v4v

2
5 + v5v6 , 0. Compute the determinant of the

Jacobian using expansion by minors (see §11.4.1) to confirm that it is given by this formula.

21.4.27[E] Tell the story of the interior-point method for nonlinear programming according
to §21.3.1, outlining all of the steps in the derivation of the algorithm.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

694 Interior-Point Methods

21.4.28[H] In §21.3.1 we added slacks to the standard-form NLP, constructed a correspond-
ing barrier problem, and wrote its Lagrange system. Derive the formulas given there for the
elements of the Jacobian of that Lagrange system.

21.4.29[H] The nlpin.m routine of §21.3.1 uses the starting point v0 = [x0⊤, 1⊤, 1⊤]⊤, so that
the S and Λ submatrices of J are identities. Does this ensure that J is nonsingular? If not,
what would ensure that?

21.4.30[P] Use nlpin.m to solve the following problem, which I will call ek1 (see §28.7.29).

minimize
x∈R2

f0(x) = (x1 − 20)4 + (x2 − 12)4

subject to f1(x) = 8e(x1−12)/9 − x2 + 4 ≤ 0

f2(x) = 6(x1 − 12)2 + 25x2 − 600 ≤ 0

f3(x) = −x1 + 12 ≤ 0

We will encounter this example again in §24.

21.4.31[P] Use nlpin.m to solve the nonlinear programs of (a) Exercise 19.6.4; (b) Exercise
19.6.24; (c) Exercise 19.6.25.

21.4.32[P] Use nlpin.m to solve the following inequality-constrained nonlinear programs:
(a) the arch2 problem of §16.0; (b) the arch4 problem of §16.2; (c) the moon problem of
§16.3; (d) the cq1 problem of §16.7; (e) the cq3 problem of §16.7; (f) the problem of Exercise
16.11.21.

21.4.33[H] In §21.3.2, the Lagrange conditions derived in §21.3.1 are simplified to obtain
the smaller primal system. (a) Explain this simplification. (b) Derive the formula for the
Jacobian of the primal system. (c) Show that this Jacobian is symmetric. (d) List some
advantages and drawbacks of this formulation. (e) Explain how nlpinp.m keeps each xk

feasible.

21.4.34[E] What is a merit function? How does a merit function differ from a measure of
solution error such as ||xk − x⋆||/||x0 − x⋆||? Suggest two possible merit functions that could
be used to monitor the progress of an algorithm for nonlinear programming.

21.4.35[P] The interior-point method of §21.3.1 has linear convergence, but if it is mod-
ified slightly the resulting algorithm can achieve quadratic convergence. (a) Describe the
modifications that b1inq.m uses. Are these the only possible modifications that can lead
to quadratic convergence? (b) Write nlpinq.m by modifying nlpin.m in the same way, and
also to make it serially reusable (see §10.6.1). (c) Write a program that uses your nlpinq.m
routine to solve b1 one iteration at a time, and plot an error curve that agrees with the one
that b1inq.m produced. (d) Try your nlpinq.m routine on the ek1 problem described in
Exercise 21.4.30. (e) Can the ideas of §21.3.3 be used to get quadratic convergence in the
classical barrier algorithm of §19?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

21.4 Exercises 695

21.4.36[P] Write a MATLAB routine nlpinb.m by modifying nlpin.m to use a BFGS ap-
proximation (see §13.4.3) in place of HL(x). Does your routine solve b1 and b2?

21.4.37[P] Write a MATLAB routine nlpina.m by modifying nlpin.m to impose an Armijo
condition on α. Take the same approach that we used in imposing the sufficient decrease
condition in wolfe.m (see §12.3.2). Try your routine on the problem of Exercise 19.6.4.

21.4.38[H] Several of the programs available on the NEOS web server (see §8.3.1) are based
on the algorithms discussed in this Chapter [5, §19.9]. By searching the web, find out which
of the programs are based on which of the algorithms.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22

Quadratic Programming

In §14 we developed the conjugate gradient method for minimizing a quadratic objective, and
studied its generalization to the Fletcher-Reeves and Polak-Ribière algorithms for the uncon-
strained minimization of arbitrary functions. The parameter estimation model of §8.5 and
least-squares regression models of §8.6 are examples of unconstrained quadratic programs.

In general a quadratic program has a quadratic objective and linear constraints [5, §16.0]
[1, §11.2]. Constrained quadratic programs arise in many practical applications, such as the
SVM models of §8.7, and as subproblems in some methods for the constrained minimization
of arbitrary functions, such as the reduced-Newton algorithm of §22.3 and the sequential
quadratic programming and quadratic max penalty algorithms we will take up in §23.

Constrained quadratic programs are just nonlinear programs, so they can be solved by
using the methods of §18 and §20.2 when the constraints are equations or by the methods
of §19, §20.1, and §21 when they are inequalities. However, special-purpose algorithms have
been devised to exploit the structure of the problem [5, §16] and they are simpler, faster,
and more reliable than the general-purpose methods. Several of them, including Lemke’s

method [3, §9.8] [1, §11.2], the symmetric indefinite factorization method, and the
Shur-complement method, are based on directly solving the KKT conditions, but we will
consider a more general approach called the nullspace method.

22.1 Equality Constraints

The easiest constrained quadratic programs to solve are those in which the constraints are
equalities. Consider the following example, which I will call qp1 (see §28.7.30).

minimize
x∈R4

q(x) = x21 + x22 + 2x
2
3 + 2x

2
4 + x1x4 + x2x3

subject to Ax =

[

3x1 − x2 − 2x3 − x4
−4x1 + x2 + 5x3 + 2x4

]

=

[

−1
3

]

= b

The matrix A is the Jacobian of the constraints, and this one happens to have rows that
are linearly independent so we can get a feasible starting point by finding a basic solution to
Ax = b. To do that I used the pivot program, as shown at the top of the next page. The
final tableau corresponds to the basic solution x̄, shown below, so Ax̄ = b.

x̄ =





−2
−5
0

0





Ax̄ =

[

3 −1 −2 −1
−4 1 5 2

]





−2
−5
0

0





=

[

−1
3

]

= b X

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

698 Quadratic Programming

> This is PIVOT, Unix version 4.0
> For a list of commands, enter HELP.
>
< tableau 2 5
< names x1 x2 x3 x4

x1 x2 x3 x4
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

< insert
T(1, 1)... = -1 3 -1 -2 -1
T(2, 1)... = 3 -4 1 5 2

x1 x2 x3 x4
-1. 3. -1. -2. -1.
3. -4. 1. 5. 2.

< every
> Pivots will be allowed everywhere.
< pivot 1 2

x1 x2 x3 x4
-0.3333333 1. -.33333333 -0.6666667 -.33333333
1.6666667 0. -.33333333 2.3333333 0.66666667

< pivot 2 3

x1 x2 x3 x4
-2. 1. 0. -3. -1.
-5. 0. 1. -7. -2.

< quit
> STOP

If we let y = x − x̄ then Ay = Ax − Ax̄ = b − b = 0. The system Ay = 0 is said to be
homogeneous [87, p28] because it has a zero right-hand side. For reasons that will be
apparent shortly it is convenient if the constraint equations are homogeneous, so I used

x = y + x̄ or





x1
x2
x3
x4





=





y1 − 2
y2 − 5
y3
y4





to rewrite the x version of qp1 in terms of y, obtaining this version.

minimize
y∈R4

q(y) = y21 + y
2
2 + 2y

2
3 + 2y

2
4 + y1y4 + y2y3 − 4y1 − 10y2 − 5y3 − 2y4 + 29

subject to Ay =

[

3y1 − y2 − 2y3 − y4
−4y1 + y2 + 5y3 + 2y4

]

=

[

0

0

]

A quadratic program whose constraints are equalities can always be rewritten in this way if
it is feasible, because then some x̄ satisfies Ax̄ = b.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.1.1 Eliminating Variables 699

22.1.1 Eliminating Variables

We can reformulate the y version of qp1 as an unconstrained problem by using the constraint
equations to write any two of the variables in terms of the others. Here pivot finds a solution
to Ay = 0 in which y1 and y2 are basic (compare this session to the earlier one).

> This is PIVOT, Unix version 4.0
> For a list of commands, enter HELP.
>
< tableau 2 5
< names y1 y2 y3 y4

y1 y2 y3 y4
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

< insert
T(1, 1)... = 0 3 -1 -2 -1
T(2, 1)... = 0 -4 1 5 2

y1 y2 y3 y4
0. 3. -1. -2. -1.
0. -4. 1. 5. 2.

< every
> Pivots will be allowed everywhere.
< pivot 1 2

y1 y2 y3 y4
0. 1. -.33333333 -0.6666667 -.33333333
0. 0. -.33333333 2.3333333 0.66666667

< pivot 2 3

y1 y2 y3 y4
0. 1. 0. -3. -1.
0. 0. 1. -7. -2.

< quit
> STOP

The final tableau says that y1 = 3y3 + y4 and y2 = 7y3 + 2y4. Substituting these expressions
into the objective yields this unconstrained problem.

minimize
y3 y4

q(y3, y4) = 67y23 + 8y
2
4 + 39y3y4 − 87y3 − 26y4 + 29

Then we can find a stationary point, which happens to be a minimum.

∂q(y3, y4)

∂y3
= 134y3 + 39y4 − 87 = 0

∂q(y3, y4)

∂y4
= 39y3 + 16y4 − 26 = 0






⇒
y⋆3 =

54
89
≈ 0.60674

y⋆4 =
13
89
≈ 0.14607

y⋆1 = 3y⋆3 + y
⋆
4 =

175
89
≈ 1.96629

y⋆2 = 7y⋆3 + 2y
⋆
4 =

404
89
≈ 4.53933

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

700 Equality Constraints

That makes the optimal point for the x version of the problem

x⋆ = y⋆ + x̄ =





175
89

404
89

54
89

13
89





+





−2
−5
0

0





=





− 3
89

−41
89

54
89

13
89





≈





−0.03371
−0.46067
0.60674

0.14607





.

Substituting y1 = 3y3 + y4 and y2 = 7y3 + 2y4 confines the minimizing point of q(y) to the
flat defined by Ay = 0, because then

Ay =

[

3 −1 −2 −1
−4 1 5 2

]





3y3 + y4
7y3 + 2y4

y3
y4





=

[

0

0

]

= 0

no matter what values we pick for y3 and y4. That is why there is no need to explicitly
enforce the constraints. Every vector that satisfies Ay = 0 can be generated by assigning
suitable values to y3 and y4, either in the formula above or in the linear combination

y = y3





3

7

1

0





+ y4





1

2

0

1





= y3v + y4w where v =





3

7

1

0





and w =





1

2

0

1





.

The linearly independent vectors v and w form a basis for the nullspace of A, by which I
mean that every vector y such that Ay = 0 can be written as some linear combination of v
and w (this idea was introduced in §15.5).

Basis vectors for the nullspace of A naturally emerge from the process of using the equality
constraints to eliminate variables, as we just discovered, but they can also be calculated
directly from A. This procedure [147, §2.4.2N] yields the same v and w we found above.

Pivot in Ay = 0 to produce Uy = 0 where U has m identity columns (we did this
above to figure out the formulas for eliminating y1 and y2). Then, in turn, give
each nonbasic variable the value 1 while keeping the other nonbasic variables
zero, and solve Uy = 0 for the basic variables. The n−m vectors produced in this
way are a basis for the nullspace of A.

When we pivoted in A to find a basic solution we produced

U =

[

1 0 −3 −1
0 1 −7 −2

]

.

To follow the procedure, we let y3 = 1 and y4 = 0 and solve Uy = 0 for y1 and y2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.1.1 Eliminating Variables 701

Uy =

[

1 0 −3 −1
0 1 −7 −2

]





y1
y2
1

0





=

[

0

0

]

= 0
y1 − 3 = 0 ⇒ y1 = 3

y2 − 7 = 0 ⇒ y2 = 7
v =





3

7

1

0





Then we let y3 = 0 and y4 = 1 and solve Uy = 0 for y1 and y2.

Uy =

[

1 0 −3 −1
0 1 −7 −2

]





y1
y2
0

1





=

[

0

0

]

= 0
y1 − 1 = 0 ⇒ y1 = 1

y2 − 2 = 0 ⇒ y2 = 2
w =





1

2

0

1





These are the same basis vectors we found above by eliminating variables.
In §15.5 we used the MATLAB function null() to find a basis for the nullspace of a

matrix. The Octave session on the next page does that for this example, obtaining a result
Z whose n − m columns are the basis vectors. These basis vectors, which I called z1 and z2,
have different values from the v and w we found above and they are orthonormal; their
dot product is zero and they both have unit length so 5> Z⊤Z = I(n−m)×(n−m). Just as we
can write any vector that satisfies Ay = 0 as a linear combination of v and w, we can also
write any vector that satisfies Ay = 0 as a linear combination of z1 and z2. For example, we
know that y⋆ 6> is feasible so it must satisfy Ay = 0, and it can be written 7> as a linear
combination of z1 and z2 (see Exercise 22.4.22).

Because of the special structure of v and w we can deduce from them the formulas for
y1 and y2 that we used above to eliminate those variables from q(y). To use z1 and z2 to
transform the y version of qp1 into an unconstrained problem it is easier to use the fact, as
we did in §15.5, that if linearly-independent vectors zp ∈ Rn form a basis for the nullspace of
A then we can write any y that satisfies Ay = 0 as some combination t1z

1
+ . . . + tn−mz

n−m of
those basis vectors. Because the zp are the columns of the n× (n−m) matrix Z, every y that
is in the nullspace can be written as y = Zt for some t ∈ Rn−m.

If we use a more compact notation for the y version of qp1,

minimize
y∈R4

q(y) = 1
2
y⊤Qy + c⊤y + d

subject to Ay = 0
where Q =





2 0 0 1

0 2 1 0

0 1 4 0

1 0 0 4





c =





−4
−10
−5
−2





d = 29

then we can substitute y = Zt to obtain the unconstrained problem

minimize
t∈R2

q(t) = 1
2
[Zt]⊤Q[Zt] + c⊤[Zt] + d = 1

2
t⊤[Z⊤QZ]t + c⊤Zt + d.

Here Q is symmetric, t has dimension n − m = 4 − 2 = 2, the quantity Z⊤QZ is called the
reduced Hessian of q(y) [5, p452], and Ay = AZt = 0 is satisfied for all t so AZ = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

702 Equality Constraints

octave:1> A=[3,-1,-2,-1;-4,1,5,2];
octave:2> Z=null(A);
octave:3> z1=Z(:,1)
z1 =

0.34929
0.88961
0.19104

-0.22383

octave:4> z2=Z(:,2)
z2 =

0.21732
0.19840

-0.23625
0.92606

octave:5> Z’*Z
ans =

1.0000e+00 -4.4615e-17
-4.4615e-17 1.0000e+00

octave:6> ystar=[175/89;404/89;54/89;13/89]
ystar =

1.96629
4.53933
0.60674
0.14607

octave:7> 4.808244*z1+1.319865*z2
ans =

1.96629
4.53933
0.60674
0.14607

octave:8> quit

To solve this reduced problem numerically I wrote these routines to calculate the value and
derivatives of q(t)

function f=qp1t(t)
A=[3,-1,-2,-1;-4,1,5,2];
Z=null(A);
Q=[2,0,0,1;

0,2,1,0;
0,1,4,0;
1,0,0,4];

c=[-4;-10;-5;-2];
d=29;
f=0.5*t’*(Z’*Q*Z)*t+c’*Z*t+d;

end

function g=qp1tg(t)
A=[3,-1,-2,-1;-4,1,5,2];
Z=null(A);
Q=[2,0,0,1;

0,2,1,0;
0,1,4,0;
1,0,0,4];

c=[-4;-10;-5;-2];
g=zeros(2,1);
g=(Z’*Q*Z)*t+(c’*Z)’;

end

function H=qp1th(t)
A=[3,-1,-2,-1;-4,1,5,2];
Z=null(A);
Q=[2,0,0,1;

0,2,1,0;
0,1,4,0;
1,0,0,4];

H=Z’*Q*Z;
end

and used plain Newton descent starting (arbitrarily) from t0 = [0, 0]⊤.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.1.2 Solving the Reduced Problem 703

octave:1> [tstar,kp]=ntplain([0;0],10,1e-6,@qp1tg,@qp1th)
tstar =

4.8082
1.3199

kp = 2
octave:2> A=[3,-1,-2,-1;-4,1,5,2];
octave:3> Z=null(A);
octave:4> ystar=Z*tstar
ystar =

1.96629
4.53933
0.60674
0.14607

octave:5> xstar=ystar+[-2;-5;0;0]
xstar =

-0.03371
-0.46067
0.60674
0.14607

octave:6> quit

The reduced problem has a strictly convex objective and Newton descent minimizes a strictly
convex quadratic in a single step, so ntplain.m returns kp=2.

22.1.2 Solving the Reduced Problem

We performed a complicated sequence of calculations in §22.1.1 to solve qp1, but it is easy
to summarize what we did. First we found, by pivoting to a basic solution of Ax = b, a point
x̄ that is feasible for the equality constraints. Then we let y = x− x̄ and rewrote the original
quadratic program on the left as the one on the right.

minimize
x∈Rn

q(x) = 1
2
x⊤Qx + c⊤x + d

subject to Ax = b
−→

minimize
y∈Rn

q(y) = 1
2
(x̄ + y)⊤Q(x̄ + y) + c⊤(x̄ + y) + d

subject to Ay = 0

Then we found Z, whose columns are a basis for the nullspace of A, and made the substitution
y = Zt to obtain this unconstrained minimization.

minimize
t∈Rn−m

q(t) = 1
2
(x̄ + Zt)⊤Q(x̄ + Zt) + c⊤(x̄ + Zt) + d

Finally, we used ntplain.m to minimize q(t).

This process can be simplified by solving the unconstrained problem with a customized
version of Newton descent.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

704 Equality Constraints

At each iteration k we could find the gradient and Hessian of q(t),

∇tq(tk) = Z⊤Q(x̄ + Ztk) + Z⊤c

Hq(t
k) = Z⊤QZ,

and solve Hq(t
k) pk

= −∇tq(tk) or

Z⊤QZpk
= −Z⊤Q(x̄ + Ztk) − Z⊤c

for the direction pk of Newton descent in t-space,

pk
= −[Z⊤QZ]−1[Z⊤Q(x̄ + Ztk) + Z⊤c].

The direction in y-space, or in x-space, corresponding to pk is dk
= Zpk, and x̄ +Ztk = xk, so

in terms of xk this reduced-Newton direction [4, p550] is

dk
= −Z[Z⊤QZ]−1Z⊤[Qxk + c]

and by using it for the descent steps we can solve qp1 without introducing either y or t. To
implement this idea I wrote the qeplain.m routine listed below.

1 function [xstar,kp]=qeplain(Q,c,A,xzero,kmax,epz)
2 % solve an equality-constrained quadratic program
3 Z=null(A);
4 Hinv=Z*(inv(Z’*Q*Z))*Z’;
5 xk=xzero;
6 for kp=1:kmax
7 % find the full Newton step on the flat
8 d=-Hinv*(Q*xk+c);
9
10 % take the step
11 xk=xk+d;
12
13 % test for convergence
14 if(norm(d) <= epz) break; end
15 end
16 xstar=xk;
17 end

Here qeplain.m finds the same solution to qp1 that we got using ntplain.m, and once again
Newton descent requires only one iteration.

octave:1> xzero=[-2;-5;0;0];
octave:2> Q=[2,0,0,1;0,2,1,0;0,1,4,0;1,0,0,4];
octave:3> c=[0;0;0;0];
octave:4> A=[3,-1,-2,-1;-4,1,5,2];
octave:5> [xstar,kp]=qeplain(Q,c,A,xzero,10,1e-6)
xstar =

-0.033708
-0.460674
0.606742
0.146067

kp = 2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.1.2 Solving the Reduced Problem 705

Unfortunately qeplain.m has several conspicuous shortcomings. The first is that it 4

computes the explicit inverse of a matrix, which is on principle always undesirable. As I first
mentioned in §8.6.1, inverting a large matrix is expensive and likely imprecise. That is why,
ever since §13.1, we have preferred Gauss elimination for solving square linear systems, such
as Hd = −g in Newton descent. The reduced Hessian Z⊤QZ is (n −m) × (n −m), so in qp1 it
is only 2 × 2, but in a real application it might be much bigger and then it would be faster
and more accurate to carry out the calculation of Z[Z⊤QZ]−1Z⊤ by using the factor-and-solve
approach. If Z⊤QZ is positive definite we can find its Cholesky factors U⊤U and write

Z[Z⊤QZ]−1Z⊤ = Z[U⊤U]−1Z⊤ = ZU−1U−⊤Z⊤ = [ZU−1][ZU−1]⊤ = VV⊤

where V = ZU−1. Then to find V we can solve the matrix equation VU = Z, which is easy
because U is triangular. To see how, consider this example in which n = 4 and m = 1.

Vn×(n−m)U(n−m)×(n−m) =





v11 v12 v13
v21 v22 v23
v31 v32 v33
v41 v42 v43









3 2 5

0 1 4

0 0 6




=





2 4 8

5 3 2

1 7 4

3 2 1





= Zn×(n−m)

3v11 = 2 ⇒ v11 = 2/3

3v21 = 5 ⇒ v21 = 5/3

3v31 = 1 ⇒ v31 = 1/3

3v41 = 3 ⇒ v41 = 1

2v11 + 1v12 = 4 ⇒ v12 = (4 − 2v11)/1 = 8/3

2v21 + 1v22 = 3 ⇒ v22 = (3 − 2v21)/1 = −1/3
2v31 + 1v32 = 7 ⇒ v32 = (7 − 2v31)/1 = 19/3

2v41 + 1v42 = 2 ⇒ v42 = (2 − 2v41)/1 = 0

5v11 + 4v12 + 6v13 = 8 ⇒ v13 = (8 − 5v11 − 4v12)/6 = −1
5v21 + 4v22 + 6v23 = 2 ⇒ v23 = (2 − 5v21 − 4v22)/6 = −5/6
5v31 + 4v32 + 6v33 = 4 ⇒ v33 = (4 − 5v31 − 4v32)/6 = −23/6
5v41 + 4v42 + 6v43 = 1 ⇒ v43 = (1 − 5v41 − 4v42)/6 = −2/3

If we perform the calculations in this order then, in turn, each

vi j =

zi j −
j−1∑

k=1

uk jvik

u j j

where the summation is empty if j = 1. I wrote the trislv.m routine listed on the next
page to carry out the steps for matrices of arbitrary size (the k loop is not executed if
j is 1).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

706 Equality Constraints

function V=trislv(U,Z)
% solve VU=Z, where U is upper triangular, for V
n=size(Z,1);
m=n-size(Z,2)
V=zeros(n,n-m);
for j=1:n-m

for i=1:n
V(i,j)=Z(i,j);
for k=1:j-1

V(i,j)=V(i,j)-V(i,k)*U(k,j);
end
V(i,j)=V(i,j)/U(j,j);

end
end

end

This Octave session uses trislv.m and then the MATLAB / operator to produce the result
we found by hand.

octave:1> U=[3,2,5;0,1,4;0,0,6];
octave:2> Z=[2,4,8;5,3,2;1,7,4;3,2,1];
octave:3> V=trislv(U,Z)
V =

0.66667 2.66667 -1.00000
1.66667 -0.33333 -0.83333
0.33333 6.33333 -3.83333
1.00000 0.00000 -0.66667

octave:4> V=Z/U
V =

0.66667 2.66667 -1.00000
1.66667 -0.33333 -0.83333
0.33333 6.33333 -3.83333
1.00000 0.00000 -0.66667

octave:5> quit

It would not make sense to write V = Z/U as a mathematical equation because these are
matrices, but MATLAB carries out the command V=Z/U >4 by doing calculations like the
ones performed by trislv.m. Thus we can replace the calculation of Hinv in qeplain.m by
factoring Z’*Q*Z to get U, solving for V=Z/U, and finding Hinv=V*V’. If there are m = 0 rows
in A and b, so that we are seeking an unconstrained minimizing point of q(x), we can still
use this scheme by setting Z = In×n. Then we will be factoring Q and d=-Hinv*(Q*xk+c)

will be the unconstrained Newton descent step.
The second shortcoming of qeplain.m is that Z⊤QZ (or Q, if m = 0) might not be positive

definite; then it either has no inverse or the resulting d is not a descent direction. Here is an
example of a positive semidefinite quadratic program, which I will call qp2 (see 28.7.31).

minimize
x∈R2

x21

subject to x1 = 1
Q =

[

2 0

0 0

]

A =
[

1 0
]

Z =

[

0

1

]

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.1.2 Solving the Reduced Problem 707

This problem has Z⊤QZ = 0, but all points [1, x2]
⊤ are optimal and we need not give up on

trying to find one of them. If the matrix we must factor is negative definite or indefinite
(see Exercise 22.4.19) then the optimal value of the quadratic program is −∞, but if it is
positive semidefinite as in this case we might be able, by modifying it, to find a nonstrict
local minimum [5, p454].

It also might happen that an equality-constrained quadratic program is not really an
optimization problem at all. If the rows of A are linearly independent there can’t be more
than n of them, but there can be exactly n. Then the constraint equations are a square
system as in this example, which I will call qp3 (see 28.7.32). Now n − m = 0 so null()

returns an empty matrix for Z, and the scheme we used in qeplain.m cannot be made to
work.

minimize
x∈R2

x21 + 3x
2
2

subject to x1 + x2 = 4

2x1 − x2 = 2

x1 x2
0 0 0

4 1 1

2 2 −1

x1 x2
0 0 0

4 1 1

−6 0 −3

x1 x2
0 0 0

2 1 0

2 0 1

However, we can find x⋆ as the unique solution of Ax = b, which is also the only feasible
point, by pivoting as shown above. If we use the newseq.m routine of §4.1 to do that, it will
delete redundant rows and report if the equality constraints happen not to be consistent,
and if n > m it will yield a feasible starting point (in the same way that we found one by
using pivot in §22.1.1) to spare the user the trouble of finding one.

Using these ideas I wrote the routine qpeq.m listed on the next page. Its long second
stanza 10-40 finds a feasible starting point xzero and the inverse Hinv of the reduced
Hessian. If there are constraints, 13 A and b are inserted into a tableau T along with a
zero objective row and 14 newseq.m is used to find a feasible starting point. If newseq.m
reports the problem infeasible 15-18 qpeq.m sets rc=3 and resigns. If newseq.m succeeds,
then S(j) is zero if x j is nonbasic or the row index in T of the identity 1 for that column if
x j is basic. Using S the basic solution is extracted by 19-23 filling in its nonzero elements
from the b part of Tnew. If m = n 24-28 this starting point is returned as x⋆. Otherwise 30

Z is found to span the nullspace of A. If there are no constraints, xzero is the zero vector
11 and Z is 32 set to the identity as discussed above.

Next qpeq.m 34 invokes the hfact.m routine of §19.3 to factor the reduced Hessian,
after modifying it if necessary. If hfact.m fails 35-38 qpeq.m 36 sets rc=2 and 37 resigns.
Otherwise 39 it uses the MATLAB / operator discussed above to find V and 40 calculates
Z[Z⊤QZ]−1Z⊤ as Hinv=V’*V.

Then, starting from x0 43 the routine performs up to kmax iterations 44-52 of modified
Newton descent on the flat defined by Ax = b. If the step d becomes shorter than the
convergence tolerance 46-50 the current point xk is declared optimal 47 and the routine
returns with rc=0 48 to indicate success. If kmax iterations are consumed without satisfying
the convergence test, it 53 takes the current point as xstar and 54 sets rc=1 to indicate
that the iteration limit was met.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

708 Equality Constraints

1 function [xstar,kp,rc,nm]=qpeq(Q,c,A,b,kmax,epz)
2 % minimize (1/2)x’Qx+c’x subject to Ax=b
3
4 % size up the problem
5 n=size(Q,1); % number of variables
6 m=size(A,1); % number of equality constraints
7 kp=0; % no iterations yet
8 nm=0; % no modifications yet
9
10 % find a starting point and the inverse of the reduced Hessian
11 xzero=zeros(n,1); % use the origin if unconstrained
12 if(m > 0) % if there are constraints
13 T=[0,zeros(1,n);b,A]; % tableau
14 [Tnew,S,tr,mr,rc0]=newseq(T,m+1,n+1,[1:m+1],m+1); % seek basis
15 if(rc0 ~= 0) % success?
16 rc=3; % report constraints inconsistent
17 return % and give up
18 end
19 for j=1:n % extract
20 if(S(j) ~= 0) % the basic solution
21 xzero(j)=Tnew(S(j),1); % to use
22 end % as the starting point
23 end
24 if(mr-1 == n) % is the system square?
25 xstar=xzero; % if so this is the optimal point
26 rc=0; % report success
27 return % and return it
28 end
29 A=Tnew(2:mr,2:n+1); % A without redundant constraints
30 Z=null(A); % get a basis for the nullspace
31 else % no constraints
32 Z=eye(n); % Z=I makes Z’*Q*Z=Q
33 end
34 [U,rch,nm]=hfact(Z’*Q*Z,0.5); % factor the reduced Hessian
35 if(rch ~= 0) % success?
36 rc=2; % report modification failed
37 return % and give up
38 end
39 V=Z/U; % solve VU=Z
40 Hinv=V*V’; % find Z*inv(Z’QZ)*Z’
41
42 % do modified Newton descent in the flat defined by the constraints
43 xk=xzero; % start here
44 for kp=1:kmax % do up to kmax iterations
45 d=-Hinv*(Q*xk+c); % full reduced Newton step
46 if(norm(d) <= epz) % converged?
47 xstar=xk; % yes; save optimal point
48 rc=0; % report success
49 return % and return
50 end
51 xk=xk+d; % take the step
52 end % of reduced Newton steps
53 xstar=xk; % save the current point
54 rc=1; % report out of iterations
55
56 end

In the Octave session on the next page, qpeq.m finds optimal points for the x version of
qp1, the unconstrained objective of qp1 in terms of y3 and y4, the positive-semidefinite qp2

problem, and the qp3 problem in which A is square.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.1.2 Solving the Reduced Problem 709

octave;1> % qp1 x version
octave:1> Q=[2,0,0,1;0,2,1,0;0,1,4,0;1,0,0,4];
octave:2> c=[0;0;0;0];
octave:3> A=[3,-1,-2,-1;-4,1,5,2];
octave:4> b=[-1;3];
octave:5> [xstar,kp,rc,nm]=qpeq(Q,c,A,b,10,1e-6)
xstar =

-0.033708
-0.460674
0.606742
0.146067

kp = 2
rc = 0
nm = 0
octave:6> % qp1 unconstrained (y3,y4) version
octave:6> Q=[134,39;39,16];
octave:7> c=[-87;-26];
octave:8> A=[]; b=[];
octave:9> [ystar,kp,rc,nm]=qpeq(Q,c,A,b,10,1e-6)
ystar =

0.60674
0.14607

kp = 2
rc = 0
nm = 0
octave:10> % qp2
octave:10> Q=[2,0;0,0];
octave:11> c=[0;0];
octave:12> A=[1,0];
octave:13> b=[1];
octave:14> [xstar,kp,rc,nm]=qpeq(Q,c,A,b,10,1e-6)
xstar =

1
0

kp = 1
rc = 0
nm = 1
octave:15> % qp3
octave:15> Q=[2,0;0,6];
octave:16> A=[1,1;2,-1];
octave:17> b=[4;2];
octave:18> [xstar,kp,rc,nm]=qpeq(Q,c,A,b,10,1e-6)
xstar =

2
2

kp = 0
rc = 0
nm = 0

In the second solution >6->9 ystar = [y⋆
3
, y⋆

4
]⊤. In the solution of qp2 10>-14> one modification

is made to the reduced Hessian so nm=1 and the xzero found by newseq.m is optimal so kp=1.
In the solution of qp3 no minimization steps are needed so kp=0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

710 Quadratic Programming

22.2 Inequality Constraints

In qp1 the constraints are equalities so both are active at optimality. For that problem
we found in §22.1.2 the optimal point x= = [−0.033708,−0.460674, 0.606742, 0.146067]⊤, for
which q(x=) = 0.70787. If we make the constraints inequalities instead we get the following
problem, which I will call qp4 (see §28.7.33).

minimize
x∈R4

q(x) = x21 + x22 + 2x
2
3 + 2x

2
4 + x1x4 + x2x3

subject to Ax =

[

3x1 − x2 − 2x3 − x4
−4x1 + x2 + 5x3 + 2x4

]

≤
[

−1
3

]

= b

This problem has a different optimal point x≤, at which the first constraint is tight while
the second is slack. Knowing that the active set consists of only the first constraint, we
can find that point by using qpeq.m as shown below. Allowing the optimal point to come
unstuck from the boundary of the feasible set, which is now a polyhedron, and move interior
to the second constraint reduces the optimal objective value 6> to q(x≤) = 0.067308.

octave:1> Q=[2,0,0,1;0,2,1,0;0,1,4,0;1,0,0,4];
octave:2> c=zeros(4,1);
octave:3> Abar=[3,-1,-2,-1];
octave:4> bbar=[-1];
octave:5> [xineq,kp,rc,nm]=qpeq(Q,c,Abar,bbar,10,1e-6)
xineq =

-0.250000
0.038462
0.057692
0.096154

kp = 2
rc = 0
nm = 0
octave:6> q=0.5*xineq’*Q*xineq
q = 0.067308

In solving qp4 with qpeq.m I just left out the row of A and the row of b corresponding to
the constraint that is slack at optimality. We could solve any quadratic program with linear
inequality constraints in this way, if only we knew ahead of time what its active set was
going to be. There are m rows in A and b, so the number of possible active sets is [116,
A.2.4(18)]

m∑

k=0

(

m

k

)

= 2m.

Recall from §16.1 that the KKT orthogonality condition provides us with an automatic
way of figuring out, in the process of finding x⋆ analytically, whether an inequality con-
straint is active or inactive at the optimal point. Assuming that none of the constraints

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2 Inequality Constraints 711

are redundant, if λ⋆
i
> 0 then constraint i is tight and if λ⋆

i
= 0 then constraint i is slack.

In the KKT method we try all 2m possible ways of making some KKT multipliers zero
and the others nonzero. Here we will describe each such combination by its working set

W = [w1,w2, . . . ,wm], a vector of flags in which wi = 1 if constraint i is tight and wi = 0 if it
is slack. For qp4 (or any problem having m = 2 inequality constraints) these are the possible
working sets.

W0 = [0, 0] W1 = [0, 1] W2 = [1, 0] W3 = [1, 1]

The subscripts onW identifying these working sets are the decimal values of their bit strings
and are the case numbers that we would use in solving the problem by the KKT method.

If inequality i will be slack at x⋆ but, not knowing that ahead of time, we assume it is an
equality by insisting that λi , 0, then if we find a feasible stationary point the corresponding
λi comes out negative [5, p470] [4, p565]. In terms of the resource-allocation model of
optimization, the shadow price of such a constraint is negative because if we allow some of
the corresponding resource to not be used that permits a different feasible solution, which
uses more of some other resource and thereby yields higher revenue. We should remove this
sticking constraint from the working set so that the optimal point is allowed to move
interior to the feasible region rather than being stuck to its boundary.

If inequality i will be tight at x⋆ but we assume it is slack and take it out of the problem
by insisting that λi = 0, then the stationary point we find violates the ignored constraint.
This happened for case 2 of the moon problem solution in §16.3, where x = [−1, 0]⊤ violates
the second constraint. If this happens we should add that blocking constraint [5, p469]
to the working set so the optimal point is not allowed to move outside of the feasible region.

These observations suggest a strategy, outlined on the next page, for finding the active
set and in the process x⋆ and λλλ⋆.

The feasible starting point required by stanza 1 of the algorithm could be an interior
point, but it is easier to start at a boundary point (perhaps a vertex) as described in §22.2.1.
If upon entering stanza 2 there are n tight constraints then the equalities in the working set
are a square system whose solution is xk, and no Newton step can be taken. This cannot
happen at x0 because the working set is initialized to empty. In §22.2.2 we will derive a
steplength rule that keeps xk+1 feasible for the inactive inequalities. If q(x) is not strictly
convex on the flat defined by the working set, then more than one Newton descent step might
be needed to find a minimizing point precisely [4, p569-570]. However, it is often sufficient
to take a single step between updates ofW [5, p477-478] so for simplicity that is what we
will do (see Exercise 22.4.42). In stanza 3, if wi = 0 then λi = 0 but if wi = 1 then λi satisfies
the Lagrange conditions for the equality-constrained subproblem; in §22.2.3 we will derive
a formula for finding those nonzero λi. If there is a redundant constraint then it might be
that more than n inequalities are tight at a vertex. Including them all in the working set
would make the equality constraints of the subproblem an overdetermined system, greatly
complicating implementation, so when blocking constraints are activated in stanza 5 we will
take care not to end up with more than n of them.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

712 Inequality Constraints

1. Find a point x0 that satisfies Ax ≤ b.
InitializeW by setting wi = 0 for i = 1 . . .m.
set k = 0.

2. Find xk+1 by taking one Newton step toward minimizing q(x) subject to
x being in the flat defined by the tight constraints and
x remaining feasible for the slack constraints;

let k← k + 1.

3. Compute the Lagrange multipliers λλλk at xk.

4. Release sticking constraints by updatingW
for each i with wi = 1 and λi ≤ 0, let wi = 0.

5. Activate blocking constraints by updatingW
for each i with wi = 0, if the constraint is tight
and moving farther in the Newton direction would violate it,

let wi = 1.

6. Test for convergence: ifW changed go to 2;
otherwiseW is the active set,
x⋆ = xk is the optimal point, and
λλλ⋆ = λλλk is the vector of optimal KKT multipliers.

22.2.1 Finding a Feasible Starting Point

For the algorithm outlined above to work it is essential that its starting point be feasible. As
in qpeq.m we can use the machinery of linear programming to find such a point, but because
the constraints are now inequalities the process is quite a bit more complicated. Consider
the following example, which I will call qp5 (see §28.7.34) and whose graphical solution is
shown on the next page.

minimize
x∈R2

q(x) = 1
2
x⊤Qx + c⊤x

subject to Ax ≤ b

Q =

[

2 −1
−1 2

]

c =

[

−12
3

]

A =





−1 1

2 1
1
2
−1

−2
3
−1





b =





6

3

10

7





.

Now the x j, which are unrestricted in sign, must each be written as the difference between
nonnegative variables. Recall from §2.9.3 that this can be accomplished by introducing a
single new variable t ≥ 0 and using the substitution x = u − t1. Adding slack variables si to
make the constraints equalities, they become Au − tA1 + s = b.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.1 Finding a Feasible Starting Point 713

-10

-5

0

5

10

-10 -5 0 5 10

qp5

x1

x2

−x 1
+
x 2
≤ 6

1

− 2
3 x

1 −
x
2 ≤

7

4

1
2
x1
− x2
≤ 10

3

2
x
1
+
x
2 ≤

3

2
q(x⋆) = -20.893

-33

-38

•
x0

• x
1

•x⋆

•x̄
•x̂

These equalities are the constraint rows in this tableau for qp5.

T =

u1 · · · un t s1 · · · sm
0 0 · · · 0 0 0 · · · 0

b A −A1 I
=

u1 u2 t s1 s2 s3 s4
0 0 0 0 0 0 0 0

6 −1 1 0 1 0 0 0 1

3 2 1 −3 0 1 0 0 2

10 1
2
−1 1

2
0 0 1 0 3

7 −2
3
−1 1 2

3
0 0 0 1 4

The tableau has an objective row because one is expected by our linear programming rou-
tines, but we are concerned only with the constraints. Pivoting in T to a basic feasible
solution in which n = 2 slack variables are nonbasic yields a vertex of the feasible set.

T1 =

u1 u2 t s1 s2 s3 s4
0 0 0 0 0 0 0 0

11.28571 1 −1 0 0 0 1.42857 −0.42857
8.71429 0 −1 1 0 0 0.57143 0.42857

17.28571 0 0 0 1 0 1.42857 −0.42857
6.57143 0 0 0 0 1 −1.14286 2.14286

u1 = 11.28571

u2 = 0

t = 8.71429

x01 = u1 − t = 2.57143

x02 = u2 − t = −8.71429

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

714 Inequality Constraints

Tableau T1 delivers the starting point x0 = [2.57143,−8.71429]⊤, which is in exact arithmetic
x0 = [18

7
,−61

7
]⊤.

To automate these calculations I wrote the MATLAB routine feas.m listed below. It
begins 4-7 by constructing the tableau T according to the prescription given above. Next
it uses the 8-10 newseq.m and 15 phase1.m routines of §4.1 to produce T1, in which the
basis columns are as far left as possible. Then 20-21 it extracts the value of t from the
result. The basic sequence of T1 is returned in S1; its entry S1(j) is zero if the jth variable
is nonbasic or the row number in T1 of the 1 in that identity column if the variable is basic.
The added t is always the n + 1st variable, so S1(n+1) tells whether it is basic. In the final
qp5 tableau, t is basic with its identity column 1 in the second constraint row (S1(3)=3), so
its value is b2 or T1(3,1). This t is used to 22 initialize every x0

j
. Then 23-27 the values of

the basic u j are extracted from T1 and added to the x0
j
to produce x0 = −t1 + u for return.

1 function [xzero,rc]=feas(A,b)
2 % find a point that satisfies Ax <= b
3
4 m=size(A,1); % constraints
5 n=size(A,2); % variables
6 nc=1+n+1+m; % columns
7 T=[zeros(1,nc);b,A,-A*ones(n,1),eye(m)]; % form tableau
8 mr=1+m; % rows
9 tr=[1:mr]; % row indices
10 [T0,S0,trnew,mrnew,rc0]=newseq(T,mr,nc,tr,mr); % move basis left
11 if(rc0 ~= 0) % infeasible 1?
12 rc=1; % signal failure
13 return % and give up
14 end
15 [T1,S1,rc1]=phase1(T0,S0,mrnew,nc,trnew,mrnew); % find feasible
16 if(rc1 ~= 0) % infeasible 2?
17 rc=2; % signal failure
18 return % and give up
19 end
20 t=0; % zero if nonbasic
21 if(S1(n+1) ~= 0) t=T1(S1(n+1),1); end % this if basic
22 xzero=-t*ones(n,1); % x=-te
23 for j=1:n % decision vars
24 if(S1(j) ~= 0) % basic?
25 xzero(j)=xzero(j)+T1(S1(j),1); % x=-te+u
26 end
27 end
28 rc=0; % signal success
29
30 end

In the Octave session below I used feas.m to find xzero for qp5.

octave:1> A=[-1,1;2,1;1/2,-1;-2/3,-1];
octave:2> b=[6;3;10;7];
octave:3> xzero=feas(A,b)
xzero =

2.5714
-8.7143

octave:4> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.2 Respecting Inactive Inequalities 715

It is possible for the system of inequalities Ax ≤ b to be infeasible even though x is free,
so feas.m traps both 11-14 infeasible form 1 (see Exercise 22.4.32) and 16-19 infeasible
form 2. For example, these inconsistent inequalities

2x1 + 3x2 ≤ −5
−2x1 − 3x2 ≤ −5

cannot both be satisfied, and feas.m reports that fact by returning a nonzero rc value.

octave:1> A=[2,3;-2,-3];
octave:2> b=[-5;-5];
octave:3> [xzero,rc]=feas(A,b)
warning: feas: some elements in list of return values are undefined
xzero = [](0x0)
rc = 2
octave:4> quit

For qp5 we found x0 = [18
7
,−61

7
]⊤. That point is a vertex of the feasible set in R2, as shown

in the graphical solution of the problem. In tableau T1 the slacks s3 and s4 are zero because
they are nonbasic, so x0 is the intersection of the zero hyperplanes for constraints 3 and
4 in the picture. That point would be infeasible if we were solving a linear program, but
in qp5 the variables are not assumed to be nonnegative.

Other quadratic programs have constraint sets for which the process implemented in
feas.m yields a T1 in which fewer than n slack variables are nonbasic, and then the resulting
x0 is not a vertex in x–space. For example, we could delete constraints 1 , 3 , and 4

from qp5 without changing x⋆. Then feas.m finds a feasible starting point that is in the
boundary of constraint 2 .

octave:1> A=[2,1];
octave:2> b=[3];
octave:3> [xzero,rc]=feas(A,b)
xzero =

1.50000
-0.00000

rc = 0
octave:4> A*xzero-b
ans = 0
octave:5> quit

22.2.2 Respecting Inactive Inequalities

In §22.1 you learned how to minimize q(x) subject to x being in a flat that is defined by
equality constraints, but doing so here in the way that we did in qpeq.m might yield a point
that violates the inequalities we have ignored. Suppose that in solving qp5 from the vertex
x0 = [18

7
,−61

7
]⊤ the active set algorithm releases constraint 4 so thatW = [0, 0, 1, 0]. Then

the only active constraint is 3 which we can write as Āx = b̄ where

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

716 Inequality Constraints

Ā =
[

1
2
−1

]

and b̄ =
[

10
]

.

To take a full Newton descent step in the flat defined by this constraint (i.e., along its zero
hyperplane) we would perform the calculations shown below.

octave:1> Q=[2,-1;-1,2];
octave:2> c=[-12;3];
octave:3> xzero=[18/7;-61/7];
octave:4> Abar=[1/2,-1];
octave:5> Z=null(Abar);
octave:6> U=hfact(Z’*Q*Z,0.5);
octave:7> V=Z/U;
octave:8> Hinv=V*V’;
octave:9> d=-Hinv*(Q*xzero+c)
d =

4.4286
2.2143

octave:10> xbar=xzero+d
xbar =

7.0000
-6.5000

octave:11> A=[-1,1;2,1;1/2,-1;-2/3,-1];
octave:12> b=[6;3;10;7];
octave:13> A*xbar-b
ans =

-19.50000
4.50000
0.00000
-5.16667

octave:14> quit

The reduced-Newton direction vector 9> d = [4.4286, 2.2143]⊤, or in exact arithmetic
d = [31

7
, 31
14
]⊤, has slope 1

2
so it points along the edge corresponding to constraint 3 and thus

lies on the flat defined by W = [0, 0, 1, 0]. However, taking the full step in that direction
yields a point x̄ that violates the second inequality 13> and is thus outside of the feasible set
(see the picture). This is a disaster for the active set strategy, because if some xk violates any
constraint then the signs of the Lagrange multipliers tell us nothing and algorithm stanza 3
is likely not to identify the correct working set.

Taking the full step minimizes the objective in the direction dk, so it would never make
sense to take a step longer than that. But if the full step would violate an inequality we
must take a shorter step, to xk+1 = xk + αdk where α < 1. For xk+1 to remain feasible α must
be chosen so that

Axk+1 ≤ b

A(xk + αdk) ≤ b

Axk + αAdk ≤ b.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.2 Respecting Inactive Inequalities 717

At the first step in solving qp5 we have xk = x0 = [18
7
,−61

7
]⊤ and dk

= d0
= [31

7
, 31
14
]⊤ so this

system of inequalities is

Axk + αAdk
=





−1 1

2 1
1
2
−1

−2
3
−1









18
7

−61
7



 + α





−1 1

2 1
1
2
−1

−2
3
−1









31
7
31
14



 ≤





6

3

10

7





= b.

Computing the matrix-vector products we find

−79
7
−31

14
α ≤ 6 ⇒ α ≥ −242

31
≈ −7.8 1

−25
7
+

155
14
α ≤ 3 ⇒ α ≤ 92

155
≈ 0.59 2

10 +0 α ≤ 10 ⇒ α can be anything 3

7 −1519
294

α ≤ 7 ⇒ α ≥ 0. 4

Constraint 1 is slack at x0, and to violate it by sliding along the constraint 3 hy-
perplane we would have to go down and to the left 7.8 lengths of dk, to the vertex where
the constraint 3 hyperplane and the constraint 1 hyperplane cross. To move in that
direction, opposite of dk, it would be necessary to make α negative, and as long as α ≥ −7.8
the point xk + αdk satisfies constraint 1 . Of course in solving qp5 we do not intend to go
that way; to move in the descent direction dk we are interested only in values of α ≥ 0.

Constraint 2 is also slack at x0, but we could violate it by sliding along the constraint
3 hyperplane up and to the right past the vertex x̂ where the constraint 3 hyperplane
and the constraint 2 hyperplane cross. To remain feasible for constraint 2 we should stop
at x̂, where α ≈ +0.59.

Constraint 3 is tight at x0 and at all points x0 + αdk along its contour, so the third
inequality above does not limit α.

Constraint 4 is also tight at x0. Sliding down and to the left along the constraint 3

hyperplane (α < 0) would violate constraint 4 , but sliding up and to the right leaves it
satisfied; x̄, for example, is feasible for constraint 4 . Thus the bottom inequality permits
any α ≥ 0.

Now consider a different hypothetical situation in which we start the solution of qp5 with
W = [0, 0, 1, 0] as before, but from the point x̂ = [26

5
,−37

5
]⊤. The reduced Newton direction

vector still lies on the zero hyperplane of constraint 3 but now it turns out to be d̂ = [9
5
, 9
10
]⊤,

so for a step in that direction to remain feasible α must satisfy

Ax̂ + αAd̂ =





−1 1

2 1
1
2
−1

−2
3
−1









26
5

−37
5



 + α





−1 1

2 1
1
2
−1

−2
3
−1









9
5
9
10



 ≤





6

3

10

7





= b.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

718 Inequality Constraints

or −63
5
− 9

10
α ≤ 6 ⇒ α ≥ −62

3
≈ −20.7 1

3 +
9
2
α ≤ 3 ⇒ α ≤ 0 2

10 +0 α ≤ 10 ⇒ α can be anything 3

59
15
−21

10
α ≤ 7 ⇒ α ≥ −92

63
≈ −1.46 4

The first inequality once again shows that to violate constraint 1 by sliding along the
constraint 3 zero contour it is necessary to go down and to the left, this time past α = −62

3
.

The last inequality shows that to violate constraint 4 it is also necessary to go down and
to the left, past x0 which corresponds to α = −92

63
. The third inequality again says that we

cannot violate constraint 3 by sliding along its zero contour. Now, however, the second
inequality requires that α ≤ 0; from x̂ it is not possible to move in the +d direction without
leaving the feasible set.

This example shows (from inequality 3 for each starting point we considered) that α
is not limited by a constraint that is assumed to be active, because a constraint cannot be
violated by moving along its zero contour. In higher dimensions none of the constraints that
are assumed to be active can be violated by moving in the flat on which they are all satisfied.
It is the constraints that are assumed to be inactive (those having wi = 0) that determine
bounds on the steplength α [5, p469] [1, Exercise 11.19]. These inequalities fall into four
categories.

First, if a constraint i with wi = 0 has Aix
k < bi so that it is strictly satisfied, and if

Aid
k ≤ 0 so that moving in the +dk direction does not decrease the amount by which it is

satisfied, then this constraint does not prevent us from making α as high as we like. This is
what happened in the first and last inequalities we deduced for starting from x0 or x̂.

Second, if a constraint i with wi = 0 has Aix
k < bi so that it is strictly satisfied, but

Aid
k > 0 so that moving in the +dk direction does decrease the amount by which it is

satisfied, then to stay feasible we must have

Aix
k
+ αAid

k ≤ bi

αAid
k ≤ bi − Aix

k

α ≤ bi − Aix
k

Aidk
= r.

This is what happened in the second inequality we deduced for starting from x0 or x̂.
Third, if a constraint i with wi = 0 has Aix

k
= bi so that it is satisfied with equality, and

if Aid
k < 0 so that moving in the +dk direction increases the amount by which it is satisfied

(i.e., makes it slack) then this constraint only requires α ≥ 0. This is what happened in the
last inequality we deduced starting from x0.

Fourth, if a constraint i with wi = 0 has Aix
k
= bi so that it is satisfied with equality, but

Aid
k > 0 so that moving in the +dk direction decreases the amount by which it is satisfied

(i.e., violates it) then this constraint demands that α ≤ 0. Since we are interested only in

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.2 Respecting Inactive Inequalities 719

nonnegative steplengths, this means that α = 0 and no step can be taken with this active
set. This is what happened in the second inequality we deduced starting from x̂.

We hope to take the full reduced-Newton step at each iteration of the active set algorithm,
so we will initialize α to 1, but to avoid violating inactive inequalities we will examine each
constraint and use it to limit α as discussed above. The logic of this process is summarized
in the flowchart below.

ENTER limit α for constraint i

? wi = 0
no

yes; constraint is assumed inactive

? Aid
k ≤ 0

yes

no; move would decrease slack

?
yes

no; constraint is not tight

Aix
k
= biα = 0

r =
bi − Aix

k

Aidk

α = min(α, r)

EXIT

If wi , 0 the constraint is assumed to be active so it does not limit α. If wi = 0 the
constraint is assumed to be inactive and might limit α.

If Aid
k ≤ 0 then moving in the direction dk would not decrease the slack in the constraint,

so it does not limit α. If Aid
k > 0 then moving in the direction dk would decrease the slack

in the constraint and might limit α.
If Aix

k < bi then we can move a distance r in the direction dk without violating this
constraint; if r is less than the current value of α we must decrease α to this value of r. If
Aix

k
= bi then the constraint is tight and we cannot decrease its slack from zero, so α = 0.

(This is just a special case of limiting α to r, but in the code it will be necessary to handle
it separately so I indicated that here.)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

720 Inequality Constraints

When the process described by the flowchart has been applied to each constraint, the
resulting value of α is a steplength that will preserve the feasibility of xk+1 = xk + αdk for all
of the inequalities that are assumed to be inactive.

22.2.3 Computing the Lagrange Multipliers

Stanza 3 of the active set algorithm calls for computing the λλλk corresponding to each xk, and
we can do that by using the Lagrange conditions for the subproblem of stanza 2. In general
each equality-constrained subproblem has this form

minimize
x∈Rn

q(x) = 1
2
x⊤Qx + c⊤x

subject to Āx = b̄

where Ā and b̄ are the rows of Ax = b that are in the current working set. There are

m =
m∑

i=1

wi

such rows, so, m ≤ m. If the minimizing point of q(x) happens to be at a vertex of the
polyhedron defined by Ax ≤ b then m = n, but the minimizing point could be at some
non-vertex boundary point in which case m < n, or interior to the feasible set in which
case m = 0. Provided none of the constraints are redundant, no vertex is degenerate and m
can never exceed n. Thus 0 ≤ m ≤ min(m, n). A quadratic program whose constraints are
inequalities can have m < n (as in qp4) or m = n or m > n (as in qp5).

The Lagrangian for the equality-constrained subproblem is

L(x, λ̄λλ) = 1
2
x⊤Qx + c⊤x + λ̄λλ⊤[Āx − b̄],

where λ̄λλ is the rows of λλλ corresponding to the active constraints. From L we can write down
these Lagrange conditions for the subproblem.

Qx + c + Ā⊤λ̄λλ = 0 stationarity

Āx − b̄ = 0 feasibility

At each iteration k in the active set algorithm the KKT multipliers corresponding to the
inactive constraints of the original problem are zero, and we can find those corresponding to
the active constraints, which I will denote [λ̄λλ]k, by solving the Lagrange stationarity condition

Ā⊤[λ̄λλ]k = −[Qxk + c].

This linear system has n equations but only m variables, so it is probably overdetermined,
and if xk is not exactly equal to x⋆ it is probably also inconsistent. One way to find the λλλ
that comes closest to satisfying these equations is to minimize the sum of the squares of the
row deviations. This is the same calculation we performed in §8.6.1 to find the coefficients

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.3 Computing the Lagrange Multipliers 721

in a least-squares regression model. To recapitulate that analysis in this setting it will be
convenient to temporarily simplify our notation by letting

B = Ā⊤ u = [λ̄λλ]k g = Qxk + c

so that the linear system above is

Bu = −g.

Then the row deviations e j are elements of the vector

e = g + Bu

and the sum of their squares is

E = (g + Bu)⊤(g + Bu) = g⊤g + 2u⊤(B⊤g) + (Bu)⊤(Bu)

Setting the derivative with respect to u equal to zero,

∇uE = 2B⊤g + 2B⊤(Bu) = 0

B⊤g + (B⊤B)u = 0

If B⊤B is nonsingular, we can find the Lagrange multipliers like this.

(B⊤B)−1(B⊤g) + (B⊤B)−1(B⊤B)u = 0

(B⊤B)−1(B⊤g) = −u

In terms of the fussier notation we began with, we have shown that

[λ̄λλ]k = −(ĀĀ⊤)−1(Āg) = −A+[Qxk + c]

where A+ = (ĀĀ⊤)−1Ā is the (m × n) pseudoinverse of Ā [4, §15.3]. To calculate A+ in a
numerically stable way we can use the factor-and-solve approach. If we let ĀĀ⊤ = U⊤U, then
U⊤UA+ = Ā. If we let UA+ = V then U⊤V = Ā. Then we can solve the matrix equation
U⊤V = Ā for V and the matrix equation UA+ = V for A+.

To solve these matrix equations using MATLAB as in §22.1.2, we need the unknown matrix
in each case to appear on the left; thus we will actually solve V⊤U = Ā⊤ for V⊤ and then
[A+]⊤U⊤ = V⊤ for [A+]⊤, which we can transpose to get A+. To see how this works suppose that
in solving the first system we represent V⊤ by Vt, Ā by Abar, and U by U. Then the MATLAB

operation Vt=Abar’/U is [50, §8.3] conceptually equivalent to finding Abar’*inv(U), but it
is computed without forming the inverse of U.

To implement this plan I wrote the MATLAB routine getlgm.m listed below. Its in-
put parameters are m, the total number of constraints; Abar, the matrix whose rows are the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

722 Inequality Constraints

transposes of the gradients of the active inequalities; W, the current working set; and g, the
gradient of the objective (which is Qxk + c in the discussion above).

1 function [lambda,rc]=getlgm(m,Abar,W,g)
2 % compute Lagrange multipliers
3
4 lambda=zeros(m,1); % zero out multipliers
5 [U,rc]=hfact(Abar*Abar’,1); % factor and set return code
6 if(rc ~= 0) return; end % give up if factoring failed
7 Vt=Abar’/U; % solve
8 Aplus=(Vt/U’)’; % for pseudoinverse
9 ibar=0; % need to index rows of Abar
10 for i=1:m % fill in nonzero multipliers
11 if(W(i) == 1) % is this constraint tight?
12 ibar=ibar+1; % next row
13 lambda(i)=-Aplus(ibar,:)*g; % use formula
14 end % done with constraint
15 end % done with multipliers
16
17 end

The routine begins 4 by initializing λλλ to the zero vector in anticipation of filling in the
nonzero elements later. Then 5 it uses the hfact.m routine of §19.3 to factor ĀĀ⊤ and
get U. Here I set the second parameter of hfact.m to 1 rather than the value of 0.5 that
we typically use in factoring a Hessian matrix. Recall from §13.2 that this is the weighting
factor γ used in modifying the matrix if it is not positive definite. If ĀĀ⊤ is not positive
definite there is something wrong so it would not make sense to modify it, and using γ = 1

causes hfact.m to resign with rc=1 instead. If that happens the routine takes the 6 error
return.

Next 7-8 the calculations described above are used to find A+, which is used 10-15 to
calculate the λi. The elements of lambda are indexed by i, but the rows of Aplus are indexed
by ibar.

To test getlgm.m I used it to confirm numerically a calculation that we performed an-
alytically for the moon problem, whose function, gradient, and Hessian routines are listed
below.

function f=moon(x,i)
switch(i)

case 0
f=-(x(1)-3)^2-x(2)^2;

case 1
f=x(1)^2+x(2)^2-1;

case 2
f=-(x(1)+2)^2-x(2)^2+4;

end
end

function g=moong(x,i)
switch(i)
case 0

g=[-2*(x(1)-3);-2*x(2)];
case 1

g=[2*x(1);2*x(2)];
case 2

g=[-2*(x(1)+2);-2*x(2)];
end

end

function H=moonh(x,i)
switch(i)
case 0

H=[-2,0;0,-2];
case 1

H=[2,0;0,2];
case 2

H=[-2,0;0,-2];
end

end

In case 2 of the KKT solution in §16.3 we assumed the working set W=[1,0] at the point
x = [1, 0]⊤ and deduced analytically that λ1 = −2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.4 An Active Set Implementation 723

octave:1> x=[1;0];
octave:2> Abar=[moong(x,1)’];
octave:3> g=moong(x,0);
octave:4> W=[1;0];
octave:5> [lambda,rc]=getlgm(2,Abar,W,g)
lambda =

-2
0

rc = 0
octave:6> quit

22.2.4 An Active Set Implementation

Using the ideas discussed above I wrote the qpin.m routine listed on the next two pages.
Because of the logic of this routine, k counts iterations completed rather than that number
plus one.

In the first stanza 4-7 tol determines 76 how negative a Lagrange multiplier must be
before we consider its constraint to be sticking and 49,93 how close to zero a constraint
must be for us to consider it tight. This zero tolerance should be a small positive num-
ber so that slight imprecisions in the floating point calculations do not lead to constraint
misclassifications.

If 11 there are any constraints, the second stanza 12 uses feas.m as suggested in §22.2.1
to detect infeasibility 13-16 or set a feasible starting point. The active set starts empty 19-21

as explained in §22.2.0, without regard to which constraints are actually active at x0.
Then control enters a long loop 25-109 of up to kmax optimization iterations. Each

iteration begins 26-42 by finding the Newton descent direction in the flat defined by the
active constraints. If 27 there are exactly n active constraints then their intersection is
optimal so 28 rc=0 is set to signal convergence and 29 the iterations are interrupted. If 30

there are no active constraints then, as suggested in §22.1.2, 31 Z = I to do unconstrained
Newton descent. Otherwise the code proceeds 32-42 as in qpeq.m to find Hinv and d.

The next stanza 44-58 implements the process described by the flowchart of §22.2.2
to determine a step length alpha that does not violate any of the inactive inequalities.
Mathematically r ≥ 0, but roundoff errors in the floating-point calculations can give it a tiny
negative value so 54 in that case it is reset to zero.

Then, having determined a descent direction and step length, the routine 61 takes the
reduced-Newton step to complete stanza 2 of the algorithm we outlined.

Now, if any constraints are active 64 getlgm.m is used 67 to find the Lagrange multi-
pliers corresponding to the active constraints. The next stanza 73-82 checks the Lagrange
multiplier of each active constraint and 76-79 if λi is negative releases the constraint by
setting wi = 0. In that case a change has been made to W, so the logical variable OK is 78

set to false indicating that convergence has not yet been achieved.
Next 84-102 the routine rebuilds Abar from scratch and counts its rows to update mbar.

If a constraint is already in the working set 88-90 it is retained; otherwise 91-101 it might

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

724 Inequality Constraints

1 function [xstar,k,rc,W,lambda]=qpin(Q,c,A,b,kmax,epz)
2 % minimize (1/2)x’Qx+c’x subject to Ax<=b
3
4 % initialize
5 n=size(Q,1); % number of variables
6 m=size(A,1); % number of inequalities
7 tol=1e-6; % zero tolerance
8
9 % find a feasible starting point
10 xzero=zeros(n,1); % use origin if unconstrained
11 if(m > 0) % if there are constraints
12 [xzero,rcf]=feas(A,b); % get a feasible starting point
13 if(rcf ~= 0) % success?
14 rc=4; % no; signal failure
15 return % and give up
16 end % feasible point has been found
17 OK=false; % active set has not been found
18 end
19 W=zeros(1,m); OK=true; % working set starts empty
20 Abar=zeros(0,n); mbar=0; % active A starts empty
21 lambda=zeros(m,1); % multipliers start zero
22 xk=xzero; % now have initial xk, W, Abar
23
24 rc=1; % in case of nonconvergence
25 for k=1:kmax
26 % find reduced Newton direction
27 if(mbar == n) % if active constraints square
28 rc=0; % signal success
29 break % and return unique solution
30 elseif(mbar == 0) % subproblem is unconstrained
31 Z=eye(n); % Z=I makes Z’*Q*Z=Q
32 else % 0 < mbar < n
33 Z=null(Abar); % get a basis for the nullspace
34 end % now have Z
35 [U,rch]=hfact(Z’*Q*Z,0.5); % factor the reduced Hessian
36 if(rch ~= 0) % success?
37 rc=3; % report modification failed
38 break % and give up
39 end % now Z’QZ=U’U
40 V=Z/U; % solve VU=Z for V
41 Hinv=V*V’; % find Hinv=Z*inv(Z’QZ)*Z’
42 d=-Hinv*(Q*xk+c); % full reduced Newton step
43
44 % find step length
45 alpha=1; % full step if no constraints
46 for i=1:m % examine each constraint
47 if(W(i) == 0) % assumed inactive?
48 if(A(i,:)*d <= 0) continue; end % increasing slack OK
49 if(abs(A(i,:)*xk-b(i)) < tol) % if already tight
50 alpha=0; % cannot tighten
51 break % no move possible
52 else % move decreases slack
53 r=(b(i)-A(i,:)*xk)/(A(i,:)*d); % maximum step
54 r=max(r,0); % can’t be negative
55 alpha=min(alpha,r); % make alpha no more
56 end % this constraint done
57 end % ignored constraints checked
58 end % now have alpha
59

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.2.4 An Active Set Implementation 725

60 % take reduced Newton step
61 xk=xk+alpha*d; % take the step
62
63 OK=true; % assume W will not change
64 if(mbar > 0) % any constraints active?
65 % find Lagrange multipliers
66 g=Q*xk+c; % objective gradient
67 [lambda,rcg]=getlgm(m,Abar,W,g); % use formula
68 if(rcg ~= 0) % was there trouble?
69 rc=2; % report Abar*Abar’ not pd
70 break % and give up
71 end % now have multipliers
72
73 % release sticking constraints
74 for i=1:m % examine each constraint
75 if(W(i) == 1) % is it active?
76 if(lambda(i)<-tol) % yes; is it sticking?
77 W(i)=0; % sticking; make it inactive
78 OK=false; % not converged yet
79 end
80 end
81 end % sticking constraints released
82 end
83
84 % find constraint values and activate blocking constraints
85 Abar=zeros(0,n); % active A empty
86 mbar=0; % assume no active constraints
87 for i=1:m % examine each constraint
88 if(W(i) == 1) % is it in the working set?
89 Abar=[Abar;A(i,:)]; % already active; copy its A row
90 mbar=mbar+1; % and count it
91 else % not in working set
92 if(mbar == n) break; end % no more than n active
93 if(abs(A(i,:)*xk-b(i)) < tol) % if it is tight
94 if(A(i,:)*d > 0) % and move would violate
95 W(i)=1; % it is blocking; activate it
96 OK=false; % not converged yet
97 mbar=mbar+1; % increase the count
98 Abar=[Abar;A(i,:)]; % add the row to Abar
99 end
100 end
101 end
102 end % blocking constraints active
103
104 % test for convergence
105 if(OK && norm(d)<epz) % W unchanged and step small?
106 rc=0; % signal success
107 break % and return
108 end % convergence tested
109 end
110 xstar=xk; % return the current point
111
112 end

be blocking. As mentioned earlier it is inconvenient to have more than n constraints active,
so 92 if mbar reaches n no more are added to the working set. Otherwise, if the constraint is
tight 93 and moving in the direction dk would violate it 94 , then it is a blocking constraint.
It is 95 activated, 97 counted, and 98 appended to Abar. A change has been made to W,
so OK is 96 set to false indicating that convergence has not yet been achieved.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

726 Inequality Constraints

In the final stanza of the optimization loop 104-108 convergence is judged to have occurred
105 if W has stopped changing and xk is a stationary point in the flat of the active constraints.
Only then, or if mbar=n 29 , is the current iterate returned 110 as xstar with 106,28 rc=0 to
signal success. If kmax iterations are consumed without satisfying any convergence criterion
then 110 the current iterate is returned for xstar but with 24 rc=1.

To test qpin.m, I used it to solve qp5 in the Octave session below. With kmax=0 the rou-
tine returns 2> x0 = [2.5714,−8.7143]⊤, which is the same starting point we found in §22.2.1.
With kmax=1 one iteration of reduced-Newton descent is allowed. The active set starts out

octave:1> % qp5
octave:1> Q=[2,-1;-1,2];c=[-12;3];A=[-1,1;2,1;1/2,-1;-2/3,-1];b=[6;3;10;7];
octave:2> [xzero]=qpin(Q,c,A,b,0,1e-6)
xzero =

2.5714
-8.7143

octave:3> [x1,k,rc]=qpin(Q,c,A,b,1,1e-6)
x1 =

4.0584
-5.1168

k = 1
rc = 1
octave:4> [xstar,k,rc,W]=qpin(Q,c,A,b,3,1e-6)
xstar =

2.3571
-1.7143

k = 3
rc = 0
W =

0 1 0 0

octave:5> % qp4
octave:5> Q=[2,0,0,1;0,2,1,0;0,1,4,0;1,0,0,4];c=zeros(4,1);A=[3,-1,-2,-1;-4,1,5,2];b=[-1;3];
octave:6> [xstar,k,rc,W]=qpin(Q,c,A,b,3,1e-6)
xstar =

-0.250000
0.038462
0.057692
0.096154

k = 3
rc = 0
W =

1 0

octave:7> quit

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.3 A Reduced-Newton Algorithm 727

empty 19-21 so this descent step is unconstrained 30-31 except by the steplength limitation
47-57 that prevents any inequality from being violated. This results 3> in the step to
x1 = [4.0584,−5.1168]⊤ shown in the picture. That is as far as we can go in the unconstrained
Newton direction without violating constraint 2 . At x1 constraint 2 is 93-100 identified
as blocking.

With kmax=2 two iterations of reduced-Newton descent are allowed. In iteration 1 con-
straint 2 is found to be active, and iteration 2 does not release it, so the reduced Newton
direction is along its zero hyperplane. We can minimize q(x) on that flat without violating any
inequality, which results in the second and final (rc=0) step 4> to x⋆ = [2.3571,−1.7143]⊤.

Finally 5>-6> I used qpin.m to solve qp4 as an inequality-constrained problem, obtaining
the same result that we found, using qpeq.m with only the first constraint in the problem,
at the beginning of §22.2.

22.3 A Reduced-Newton Algorithm

In §14.5 we generalized the conjugate gradient algorithm for minimizing a quadratic objec-
tive, to derive the Fletcher-Reeves algorithm for minimizing an objective that need not be
quadratic. That involved replacing formulas by function calls to compute the value and
gradient of the objective.

We can generalize the nullspace and active set algorithms of §22.1 and §22.2 in a similar
way, to solve problems in which the constraints are still linear equalities or inequalities but
the objective is not necessarily quadratic, by using the gradient ∇f0(xk) in place of Qxk+c and
the Hessian H(xk) in place of Q. The methods that result are both called reduced-Newton

algorithms [4, p550-552]. Here we will study the one for equality constraints.
The rneq.m routine listed on the next page is qpeq.m modified as described above. In

place of Q and c the calling sequence 1 now includes the function pointers grd and hsn.
The number of variables is taken 5 to be the number of columns in A, so if there are no
constraints we must pass A=zeros(0,n) rather than A=[]. Now the Hessian depends on
x, so Hinv changes from one iteration to the next and must be recomputed 38-45 for each
descent step.

To test rneq.m, I used the following problem which I will call rnt (see §28.7.35).

minimize
x∈R4

f0(x) = (x1 + x4)
4
+ (x2 + x3)

2

subject to Ax =

[

3x1 − x2 − 2x3 − x4
−4x1 + x2 + 5x3 + 2x4

]

=

[

−1
3

]

= b

This problem has the same linear equality constraints as qp1 but its objective, while strictly
convex, is no longer quadratic.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

728 Quadratic Programming

1 function [xstar,k,rc,nm]=rneq(grd,hsn,A,b,kmax,epz)
2 % minimize f(x) subject to Ax=b
3
4 % size up the problem
5 n=size(A,2); % number of variables
6 m=size(A,1); % number of equality constraints
7 k=0; % no iterations yet
8 nm=0; % no modifications yet
9
10 % find a starting point and a basis for nullspace of A
11 xzero=zeros(n,1); % use the origin if unconstrained
12 if(m > 0) % if there are constraints
13 T=[0,zeros(1,n);b,A]; % tableau
14 [Tnew,S,tr,mr,rc0]=newseq(T,m+1,n+1,[1:m+1],m+1); % seek basis
15 if(rc0 ~= 0) % success?
16 rc=3; % report constraints inconsistent
17 return % and give up
18 end
19 for j=1:n % extract
20 if(S(j) ~= 0) % the basic solution
21 xzero(j)=Tnew(S(j),1); % to use
22 end % as the starting point
23 end
24 if(mr-1 == n) % is the system square?
25 xstar=xzero; % if so this is the optimal point
26 rc=0; % report success
27 return % and return it
28 end
29 A=Tnew(2:mr,2:n+1); % A without redundant constraints
30 Z=null(A); % get a basis for the nullspace
31 else % no constraints
32 Z=eye(n); % Z=I makes Z’*H*Z=H
33 end
34
35 % do modified Newton descent in the flat defined by the constraints
36 xk=xzero; % start here
37 for k=1:kmax % do up to kmax iterations
38 H=hsn(xk); % find the Hessian here
39 [U,rch,nm]=hfact(Z’*H*Z,0.5); % factor the reduced Hessian
40 if(rch ~= 0) % success?
41 rc=2; % report modification failed
42 return % and give up
43 end
44 V=Z/U; % solve VU=Z
45 Hinv=V*V’; % find Z*inv(Z’HZ)*Z’
46 d=-Hinv*grd(xk); % full reduced Newton step
47 xk=xk+d; % take the step
48 if(norm(d) <= epz) % converged?
49 xstar=xk; % yes; save optimal point
50 rc=0; % report success
51 return % and return
52 end
53 end % of reduced Newton steps
54 xstar=xk; % save the current point
55 rc=1; % report out of iterations
56
57 end

The routines rnt.m, rntg.m, and rnth.m listed at the top of the next page calculate the
value, gradient, and Hessian of f0(x).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.3 A Reduced-Newton Algorithm 729

function f=rnt(x)
f= (x(1)+x(4))^4;
f=f+(x(2)+x(3))^2;

end

function g=rntg(x)
g=[4*(x(1)+x(4))^3;

2*(x(2)+x(3));
2*(x(2)+x(3));
4*(x(1)+x(4))^3];

end

function H=rnth(x)
H=[12*(x(1)+x(4))^2, 0, 0, 12*(x(1)+x(4))^2;

0, 2, 2, 0;
0, 2, 2, 0;
12*(x(1)+x(4))^2, 0, 0, 12*(x(1)+x(4))^2];

end

In the Octave session below, rneq.m solves the rnt problem. In exact arithmetic the point
returned is x⋆ = [− 1

10
,− 6

10
, 6
10
, 1
10
]⊤, which yields an objective value of f0(x

⋆) = 0. Because
f0(x) must be nonnegative this is its minimum value, and because x⋆ is also feasible it is
optimal. The objective is not quadratic, so Newton descent does not minimize it in one step.

octave:1> A=[3,-1,-2,-1;-4,1,5,2];
octave:2> b=[-1;3];
octave:3> [xstar,k,rc,nm]=rneq(@rntg,@rnth,A,b,50,1e-6)
xstar =

-0.100000
-0.600000
0.600000
0.099998

k = 34
rc = 0
nm = 0
octave:4> A*xstar
ans =

-1.00000
3.00000

octave:5> rnt(xstar)
f = 1.8018e-23
octave:6> quit

To further investigate the behavior of rneq.m I wrote rneqplot.m, listed on the next
page, to plot its convergence trajectory in t1–t2 space.

In §22.1.1 we found that if the columns of Z span the nullspace of A then every vector
y in that nullspace can be written as Zt for some t ∈ Rn−m, and in §22.1.2 we used that fact
twice to find vectors in y–space corresponding to vectors in t–space. In rneqplot.m it is
necessary to find the vector in t–space that corresponds to a vector y that is in the nullspace
of A, and this can also be done using Z. Of course Z is never square so it has no inverse,
but if the basis it contains is orthonormal then t = Z⊤y, because

t = Z⊤y = Z⊤(Zt) = It = t.

Then

y = Zt = Z(Z⊤y) so ZZ⊤y = y

for every y that is in the nullspace of A, even though in general ZZ⊤ , I (this is another way

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

730 Quadratic Programming

1 % rneqplot.m: plot convergence trajectory of rneq.m solving rnt
2 clear; clf; set(gca,’FontSize’,20)
3
4 A=[3,-1,-2,-1;-4,1,5,2];
5 b=[-1;3];
6 xbar=[-2;-5;0;0];
7 Z=null(A);
8 for kmax=0:34
9 [xstar,k,rc,nm]=rneq(@rntg,@rnth,A,b,kmax,1e-6);
10 t=Z’*(xstar-xbar);
11 t1(kmax+1)=t(1);
12 t2(kmax+1)=t(2);
13 end
14
15 tl=[-1;-1];
16 th=[8; 3];
17 ng=50;
18 for i=1:ng;
19 t1i(i)=tl(1)+(th(1)-tl(1))*((i-1)/(ng-1));
20 for j=1:ng;
21 t2i(j)=tl(2)+(th(2)-tl(2))*((j-1)/(ng-1));
22 t=[t1i(i);t2i(j)];
23 x=Z*t+xbar;
24 zi(j,i)=rnt(x);
25 end
26 end
27 v=[0.1,1,2,4,8];
28
29 hold on
30 axis([tl(1),th(1),tl(2),th(2)],’equal’)
31 contour(t1i,t2i,zi,v)
32 plot(t1,t2)
33 plot(t1,t2,’o’)
34 hold off
35 print -deps -solid rneq.eps

of defining the nullspace of A). Recalling from §22.1.0 that x = y + x̄, where Ax̄ = b, we can
move back and forth between t–space and x–space by using the formulas

x = Zt + x̄

t = Z⊤(x − x̄).

This program begins 4-6 by stating the data for rnt and 7 finding an orthonormal
basis Z for the nullspace of A. Then 8-13 it solves the problem repeatedly, each time allowing
rneq.m to use only kmax iterations. To keep rneq.m simple I did not make it serially reusable,
so the only way we can capture the convergence trajectory is by using this approach even
though it is very inefficient (in §26.3 we shall see that it has other drawbacks as well). Each
point xstar returned by rneq.m is 10 transformed to t–space and its coordinates are 11-12

saved for plotting later. Next 15-27 the program generates coordinates on a grid of points
in t–space, 23 transforms each point to x–space, and 24 saves the function value there
for contouring later. The last stanza plots 31 contours of the objective and 32-33 the
convergence trajectory of the algorithm, producing the picture on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.4 Exercises 731

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1 0 1 2 3 4 5 6 7 8

t2

t1
•t

0

t⋆

f0(t) = 8
4

2
1

0.1

The starting point x0 = x̄ = [−2,−5, 0, 0]⊤ is the origin in the t1–t2 hyperplane. Notice that
the contours of f0(t) are not ellipses, and that reduced-Newton descent stutters its way from
t1 to t⋆ along a perfectly straight line.

22.4 Exercises

22.4.1[E] What properties make a nonlinear program a quadratic program? Why are
quadratic programs of special interest? Give an algebraic statement that can describe any
quadratic program.

22.4.2[P] In §22.1 and §22.2 we studied special-purpose algorithms for solving constrained
quadratic programs. These problems can also be solved by general-purpose nonlinear pro-
gramming methods introduced in earlier Chapters, and those methods can be specialized
to take advantage of the structure of quadratic programs. (a) Use the auglag.m routine of
§20.2.4 to solve the qp1 problem. (b) Use the nlpin.m routine of §21.3.1 to solve the qp4

problem. (c) How might these algorithms be specialized to exploit the special structure of a
quadratic program? Hint: see [5, §16.6]. (d) Why might the special algorithms work better
than the general ones for problems having linear constraints?

22.4.3[E] Name one method for quadratic programming that is not discussed in this
Chapter. The methods that are discussed in this Chapter are all based on the same general
approach; what is it called?

22.4.4[E] Is a quadratic program easier to solve when it has equality constraints, or when
it has inequality constraints? Why?

22.4.5[E] Suppose that x̄ is a feasible point for Ax = b. What substitution of variables
can be used to write these equations as a homogeneous system?

22.4.6[H] Suppose we have an m × n linear system Ay = 0, with m ≤ n. (a) How can we
deduce formulas giving m of the variables in terms of the others? (b) How can we use such
formulas to find m vectors, each of length n, that span the nullspace of A?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

732 Quadratic Programming

22.4.7[E] If A is a matrix with fewer rows than columns, describe the result Z of the
MATLAB statement Z=null(A).

22.4.8[E] What makes a set of vectors orthonormal?

22.4.9[H] If the columns of Z are basis vectors for the nullspace of a matrix A, explain
why any vector y that satisfies Ay = 0 can be written as y = Zt. How long is the vector t?

22.4.10[H] In §22.1.2 we derived a formula for the reduced-Newton direction dk. (a) What
is a reduced Hessian matrix? (b) Explain the derivation of pk, the direction of Newton
descent in t-space. (c) Why is Zpk the corresponding direction in y-space? (d) Why is this
also the corresponding direction in x-space? (e) State the formula for dk in terms of xk.

22.4.11[H] Suppose that VU = Z where V, U and Z are matrices and U is upper-triangular.
How can the matrix equation be solved for V (a) using elementary arithmetic operations;
(b) using the MATLAB division operator? (c) Explain the factor-and-solve approach that we
used to compute Z[Z⊤QZ]−1Z⊤.

22.4.12[H] Show that solving Z⊤QZpk
= −Z⊤Q(x̄+Ztk)−Z⊤c for pk in the reduced-Newton

algorithm is equivalent to applying Newton’s method for systems to the Lagrange conditions
for the original quadratic program.

22.4.13[H] An alternative to using the factor-and-solve approach to find Z[Z⊤QZ]−1Z⊤ is
to use the conjugate gradient algorithm of §14.4 to solve Z⊤QZpk

= −Z⊤Q(x̄ + Ztk) − Z⊤c for
pk. (a) Explain how to do this. (b) Are there any advantages to this approach?

22.4.14[E] In the active set algorithm, if m = n describe the feasible set of the equality-
constrained subproblem.

22.4.15[E] What are the return variables from the MATLAB routine qpeq.m, what do they
represent, and what values can they take on? Why does the routine use hfact.m?

22.4.16[P] Consider this equality-constrained quadratic program [4, Example 15.1].

minimize
x∈R3

q(x) = 1
2
x21 − 1

2
x23 + 4x1x2 + 3x1x3 − 2x2x3

subject to Ax = x1 − x2 − x3 = −1

(a) Use qpeq.m to find x⋆ = [−1
3
, 1
3
, 1
3
]⊤. (b) Show that Q is indefinite. (c) Is x⋆ a minimizing

point? Explain. (d) If in a quadratic program Q is positive definite, can the reduced Hessian
ever be non-positive-definite? If no, prove it; if yes, provide an example.

22.4.17[P] Consider the following problem [4, Exercise 2.1].

minimize
x∈R4

q(x) = 1
2
x⊤Qx

subject to Ax = b
Q =





0 −13 −6 −3
−13 23 −9 3

−6 −9 −12 1

−3 3 1 −1





A =

[

2 1 2 1

1 1 3 −1

]

b =

[

3

2

]

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.4 Exercises 733

(a) Apply qpeq.m to this problem. Is the point you found optimal? How do you know?
(b) Write a MATLAB program to plot an error curve showing the convergence of qpeq.m
when it used to solve this problem. What is the algorithm’s order of convergence?

22.4.18[P] Use qpeq.m to solve the following problem [5, Example 16.2].

minimize
x∈R3

3x21 + 2x1x2 + x1x3 +
5
2
x22 + 2x2x3 + 2x

2
3 − 8x1 − 3x2 − 3x3

subject to x1 + x3 = 3

x2 + x3 = 0

Show that the reduced Hessian is positive definite. Is x⋆ = [2,−1, 1]⊤ optimal?

22.4.19[H] Our study of equality-constrained quadratic programs in §22.1 was based on an
analysis of the example problem qp1. Suppose that instead of that problem we had begun
with this one, which has the same constraints but a different objective.

minimize
x∈R4

q(x) = x21 + 2x1x2 + 3x2x3 + 4x3x4 + x24

subject to Ax =

[

3x1 − x2 − 2x3 − x4
−4x1 + x2 + 5x3 + 2x4

]

=

[

−1
3

]

= b

(a) What parts of the development in §22.1 are affected by this change? (b) Show that the
problem can be recast as the following unconstrained optimization.

minimize
y3 y4

q(y3, y4) = 72y23 + 6y
2
4 + 42y3y4 − 85y3 − 22y4 + 24

(c) Find a stationary point ȳ of this function, and the corresponding x̄. (d) Characterize ȳ

by describing the behavior of the reduced objective. (e) Apply qpeq.m to the x version of
this problem. Does it find a minimizing point? Explain.

22.4.20[H] In §22.1.1 we found v and w, basis vectors spanning the nullspace of A, in two
ways. In the first approach we used substitution to eliminate two of the variables and saw
that basis vectors emerge naturally from that process. (a) Describe the second way in which
we found v and w. (b) Explain how it is possible to deduce the formulas y1 = 3y3 + y4 and
y2 = 7y3 + 2y4 from the basis vectors v and w.

22.4.21[P] In §22.1.1 we found v and w, basis vectors spanning the nullspace of A, in two
ways. In the second approach we calculated them directly from A by using a procedure that
involves solving Uy = 0 for different values of the basic variables. Write a MATLAB function
Z=strang(A) that implements this algorithm, and show that your code produces the basis
vectors v and w that we found by hand.

22.4.22[P] In §22.1.1 we used the MATLAB function null() to find basis vectors z1 and
z2 spanning the nullspace of A, and wrote y⋆ = [175

89
, 404

89
, 54
89
, 13
89
]⊤ ≈ 4.8082*z1+1.3199*z2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

734 Quadratic Programming

Show how multiple regression (see §8.6.2) can be used to find the coefficients of z1 and z2

in this formula.

22.4.23[E] In solving an equality-constrained quadratic program by the method of §22.1.2
each iterate xk satisfies Ax = b, yet b does not appear in the formula for the reduced-Newton
direction dk. How does the right-hand side vector of the equality constraints enter the
solution process, so that Ax⋆ = b at the end?

22.4.24[H] If Am×n has full row rank then what happens in solving the equality-constrained
quadratic program if (a) n > m; (b) n = m? (c) Is it possible to have n < m?

22.4.25[H] Show that in the reduced-Newton algorithm of §22.1.2 any nullspace basis Z

yields the same descent direction p.

22.4.26[H] (a) Find the dual of the equality-constrained quadratic program. (b) Find the
dual of the inequality-constrained quadratic program.

22.4.27[E] In §16.3 we developed a systematic method for finding all the solutions to a
set of KKT conditions. How is the working set W of §22.2 related to that method? What
values can the wi take on, and what do they mean?

22.4.28[E] What precisely is a sticking constraint? A blocking constraint? If a sticking
constraint is removed, could the objective function go up? Could it go down? If a blocking
constraint is activated, could the objective function go up? Could it go down?

22.4.29[H] Outline the steps of the active set algorithm presented in §22.2.0. Why is it
necessary to compute at each xk the corresponding Lagrange multipliers λλλk? What formula
can be used to do that? Why is it necessary to compute at each xk the values of the
constraints that are assumed to be inactive?

22.4.30[E] Explain the convergence trajectory of qpin.m when it is used to solve qp5.

22.4.31[E] In the qp5 problem of §22.2.1, x = 0 is feasible for Ax ≤ b and could be used
as a starting point. Why is the origin not necessarily feasible for an arbitrary quadratic
program?

22.4.32[H] The purpose of the feas.m routine in §22.2.1 is to find some point x0 that is in
X = {x ∈ Rn | Ax ≤ b}. (a) Describe in words the heuristic that the routine employs to do this.
(b) Explain the construction of the initial linear programming tableau T. How many rows
and columns are in each partition? (c) How many slack variables are basic in T? (d) How
many slack variables must be nonbasic in T1 for its basic feasible solution to correspond to
a vertex of X? (e) The feas.m routine transforms T into T1 by using newseq.m followed
by phase1.m. What is necessary to ensure that this approach produces a T1 having n slack
columns nonbasic? (f) What are the properties of the x0 returned by feas.m if T1 has fewer
than n slack columns nonbasic? (g) Can it ever happen that the x0 returned by feas.m is
not in X? (h) If the x0 returned by feas.m is in X, can it ever happen that it is not a vertex
of the polyhedron defined by Ax ≤ b?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.4 Exercises 735

22.4.33[H] In the active set algorithm of §22.2.2 the longest step we can take without
violating inequality constraint i is sometimes limited to

α ≤ bi − Aix
k

Aidk
.

(a) When must this limit be imposed on α? (b) How is this minimum-ratio rule related to the
one we used in §2.4.4 for selecting a pivot row in the simplex method for linear programming?

22.4.34[E] In §16.10 we solved the overdetermined stationarity conditions of a nonlinear
program for λλλ by using linear programming to minimize the sum of the absolute values of
the row deviations. Why can’t we take that approach in the active set algorithm of §22.2,
rather than using least squares to find λλλk?

22.4.35[E] Suppose that in solving an inequality-constrained quadratic program, we find a
point x̄ that minimizes q(x) on the flat defined by the current working set. If the Lagrange
multiplier corresponding to an active constraint turns out to be negative, can we drop that
constraint from the working set? Explain.

22.4.36[H] In §22.2.0, I claimed that “If inequality i will be slack at x⋆ but, not knowing
that ahead of time, we assume it is an equality by insisting that λi , 0, then if we find a
feasible stationary point the corresponding λi comes out negative.” It is also unfortunately
true that at a non-optimal KKT point λi might be negative for a constraint that we have
correctly assumed is active at optimality. (a) Show that this is true by solving the KKT
conditions for the following problem [4, Example 15.7] assumingW = [0, 1, 1].

minimize
x∈R2

q(x) = 1
2
(x1 − 3)2 + (x2 − 2)2

subject to −2x1 + x2 ≤ 0

x1 + x2 ≤ 4

−x2 ≤ 0

(b) What happens inside the active set algorithm if at some iteration we mistakenly release
a constraint that will actually turn out to be tight at optimality?

22.4.37[H] In §22.2.0 I claimed that “If inequality i will be tight at x⋆ but we assume it is
slack and take it out of the problem by insisting that λi = 0, then the stationary point we
find violates the ignored constraint. . . If this happens we should add that blocking constraint
to the working set. . . ” Yet when activating blocking constraints in qpin.m we 92 ignore
some blocking constraints if there are more than n of them. What happens inside qpin.m if
at some iteration we neglect to activate a constraint that will actually turn out to be tight
at optimality?

22.4.38[E] The getlgm.m routine of §22.2.3 uses the factor-and-solve approach to find
Aplus. This involves finding the Cholesky factors of the matrix Abar*Abar’, for which I
used the hfact.m routine. Why did I invoke hfact.m with γ = 1? What happens if ĀĀ⊤ is
not positive definite?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

736 Quadratic Programming

22.4.39[H] In §22.2.2 we derived rules for restricting the reduced-Newton steplength α in
the active set algorithm so as to avoid violating the inequality constraints that are not in the
current working set. The table below summarizes the four categories of constraint status that
affect how α must be restricted to prevent the contemplated step from violating constraint
i. For each cell of the table, specify the corresponding restriction on α.

Aid
k ≤ 0 Aid

k > 0

Aix
k
= bi (a) (b)

Aix
k < bi (c) (d)

22.4.40[H] The final paragraph in §22.2.3 discusses the use of the MATLAB “right division”
operator / to solve the matrix equations U⊤V = Ā and UA+ = V. The matrices involved
in these calculations differ in size, and some of them are not square. (a) Explain why
using MATLAB to solve these equations required first transposing both sides. (b) Find
the dimensions of Ā, ĀĀ⊤, (ĀĀ⊤)−1, U, U⊤, V, V⊤, and A+. (c) Show that all of the operations
described in the text are conformable. (d) What is required of the dimensions of matrices
E and F in order for the MATLAB operation G=E/F to be conformable, and what are the
resulting dimensions of G? (e) In [50, §8.3] the Octave manual says that “If the system is
not square. . . a minimum norm solution is computed.” In the context of qpin.m, does this
lead to a difference between the results that we get using the factor-and-solve approach and
those we would get by computing the inverse explicitly? Explain.

22.4.41[E] What is a zero tolerance, and why is it used?

22.4.42[P] Modify qpin.m to perform up to 10 iterations of Newton descent in minimizing
q(x) for each working setW. Why might this be necessary?

22.4.43[E] Explain how the simplex method for linear programming is an active set method.
How does it differ from our active set method for quadratic programming?

22.4.44[P] The active set implementation of §22.2.4 uses hfact.m to factor Z’*Q*Z so it
will modify the matrix if necessary and factor the positive definite result, but this might
not lead to the successful solution of a nonconvex problem [5, p467]. Devise an inequality-
constrained quadratic program having a nonconvex objective and report what happens when
you attempt to solve it using qpin.m.

22.4.45[E] How can the active set strategy be modified to solve quadratic programs that
have both inequality and equality constraints? Can it be used to solve problems that have
only equality constraints?

22.4.46[E] Explain how the reduced-Newton algorithm described in §22.3 differs from
(a) the nullspace quadratic programming algorithm implemented in qpeq.m; (b) the restricted-
steplength Newton algorithm described in §17.2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

22.4 Exercises 737

22.4.47[P] Our active set algorithm for solving inequality-constrained quadratic programs
can be generalized to solve problems in which the constraints are still linear inequalities but
the objective need not be quadratic. (a) Taking the same approach that we used to generalize
qpeq.m to produce rneq.m, modify qpin.m to produce rnin.m. (b) Show that your routine
solves the problem that results from changing the constraints of rnt from Ax = b to Ax ≤ b.
How do you know that your solution is correct?

22.4.48[E] What is the MATLAB locution for making A a matrix with zero rows but a
nonzero number of columns?

22.4.49[H] Show that the objective function of problem rnt is strictly convex. Why does
solving it with reduced-Newton descent require several iterations?

22.4.50[P] Try solving rnt with auglag.m, from [−2,−5, 0, 0]⊤, [−0.1,−0.6, 0.6, 0.1]⊤, and
other starting points, and explain your results.

22.4.51[P] The equality constraints of problem rnt can be used to eliminate the vari-
ables x1 and x2 from the problem, yielding a reduced problem in x3 and x4 that is un-
constrained. (a) Use this substitution of variables to derive the reduced problem. (b) Can
you solve this unconstrained minimization analytically? Explain. (b) Confirm numerically
that x⋆ = [−0.1,−0.6, 0.6, 0.1]⊤ is a stationary point for the reduced problem. (c) Confirm
numerically that x⋆ is a minimizing point of the reduced problem.

22.4.52[H] Show that if the orthonormal columns of Z span the nullspace of A then
ZZ⊤y = y if and only if y is a vector in the nullspace of A.

22.4.53[E] If a minimization routine is not serially reusable, how can the iterates xk that
it generates in the course of solving a problem be captured? What are the advantages and
drawbacks of the approach you propose, compared to making the routine serially reusable?

22.4.54[H] Several of the programs available on the NEOS web server (see §8.3.1) are based
on the algorithms discussed in this Chapter [5, §16.8]. By searching the web, find out which
of the programs are based on which of the algorithms.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23

Feasible-Point Methods

The classical barrier method of §19 and the interior-point algorithm of §21.3 solve general
inequality-constrained nonlinear programs by approaching x⋆ from the inside of a feasible
region that has positive volume in Rn. The classical penalty method of §18 and the aug-
mented Lagrangian algorithm of §20.2 solve general equality-constrained nonlinear programs
by approaching x⋆ from points that are infeasible, satisfying the constraint equations only
at optimality.

In §22 we studied several algorithms in which each iterate is confined to the hyperplane, of
dimension less than n, that is defined by a set of linear constraints. Because those algorithms
try to satisfy the constraints at each iteration they belong to a category called feasible-point

methods [4, §15] [1, §10]. The algorithms developed in this Chapter are also feasible-point
methods, but some of them can solve arbitrary nonlinear programs. In these algorithms each
iteration is confined at least approximately to a hypersurface of dimension less than n, but
the constraints of the original problem need not be linear.

23.1 Reduced-Gradient Methods

The reduced-Newton algorithm of §22.3, implemented in rneq.m, takes Newton descent
steps in the flat defined by linear equality constraints. Taking steepest descent steps instead
[4, p552-553] results in a reduced-gradient method, which can be generalized to solve prob-
lems having nonlinear equality constraints.

23.1.1 Linear Constraints

The original reduced-gradient method was proposed [158] [107, §11.6] [1, §10.6] as an
extension of the simplex algorithm, so the variables were assumed to be nonnegative and
the calculations were organized in a tableau. The approach suggested above, doing steepest
descent in the nullspace of the equalities, is equivalent but less restrictive and much simpler.
The rsdeq.m routine listed on the next page is the rneq.m routine of §22.3 modified to
take full steepest descent steps in the flat defined by the constraints. This code differs from
rneq.m only in its final stanza, so you might find it helpful to review §22.3 now.

In each iteration of steepest descent rsdeq finds 37 the reduced Hessian rH and 38

reduced gradient rg at the current iterate xk and 39 uses the formula from §10.5 to find
the length of the reduced full steepest-descent step. Next it finds 40 the projection tk of
xk, and 41 tk+1 as tk plus the full step in the negative reduced-gradient direction. Then 42 it

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

740 Reduced-Gradient Methods

1 function [xstar,k,rc]=rsdeq(grd,hsn,A,b,kmax,epz)
2 % minimize f(x) subject to Ax=b
3
4 % size up the problem
5 n=size(A,2); % number of variables
6 m=size(A,1); % number of equality constraints
7 k=0; % no iterations yet
8
9 % find a starting point and a basis for nullspace of A
10 xzero=zeros(n,1); % use the origin if unconstrained
11 if(m > 0) % if there are constraints
12 T=[0,zeros(1,n);b,A]; % tableau
13 [Tnew,S,tr,mr,rc0]=newseq(T,m+1,n+1,[1:m+1],m+1); % seek basis
14 if(rc0 ~= 0) % success?
15 rc=3; % report constraints inconsistent
16 return % and give up
17 end
18 for j=1:n % extract
19 if(S(j) ~= 0) % the basic solution
20 xzero(j)=Tnew(S(j),1); % to use
21 end % as the starting point
22 end
23 if(mr-1 == n) % is the system square?
24 xstar=xzero; % if so this is the optimal point
25 rc=0; % report success
26 return % and return it
27 end
28 A=Tnew(2:mr,2:n+1); % A without redundant constraints
29 Z=null(A); % get a basis for the nullspace
30 else % no constraints
31 Z=eye(n); % Z=I does sd unconstrained
32 end
33
34 % full-step steepest descent in the flat defined by the constraints
35 xk=xzero; % start here
36 for k=1:kmax % do up to kmax iterations
37 rH=Z’*hsn(xk)*Z; % Hessian in the flat
38 rg=Z’*grd(xk); % gradient in the flat
39 astar=(rg’*rg)/(rg’*rH*rg); % full step
40 tk=Z’*(xk-xzero); % current point in the flat
41 tkp=tk+astar*(-rg); % new point in the flat
42 xk=Z*tkp+xzero; % new point in R^n
43 if(norm(rg) <= epz) % converged?
44 xstar=xk; % yes; save optimal point
45 rc=0; % report success
46 return % and return
47 end
48 end % of reduced Newton steps
49 xstar=xk; % save the current point
50 rc=1; % report out of iterations
51 end

transforms tk+1 back to x–space as the updated xk. If 43-47 the reduced gradient is shorter
than epz the current iterate is 44 accepted as xstar and the routine returns with rc=0 to
signal success. If convergence is not achieved in kmax iterations 49 the current iterate is
also taken as xstar but the routine returns rc=1 to signal that the iteration limit was met.

To test rsdeq.m I used it to solve the rnt problem of §22.3 as shown in the Octave session
on the next page. Then, using a program similar to rneqplot.m, I plotted the algorithm’s

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.1.1 Linear Constraints 741

octave:1> A=[3,-1,-2,-1;-4,1,5,2];
octave:2> b=[-1;3];
octave:3> [x0]=rsdeq(@rntg,@rnth,A,b,0,1e-6)
x0 =

-2.00000
-5.00000
0.00000
0.00000

octave:4> f0=rnt(x0)
f0 = 41.000
octave:5> [x1]=rsdeq(@rntg,@rnth,A,b,1,1e-6)
x1 =

-1.778744
-4.654548
-0.097060
0.512438

octave:6> Z=null(A);
octave:7> t1=Z’*(x1-x0)
t1 =

0.25136
0.61410

octave:8> f1=rnt(x1)
f1 = 25.149
octave:9> [x2]=rsdeq(@rntg,@rnth,A,b,2,1e-6)
x2 =

-1.355805
-3.805254
-0.093644
0.925126

octave:10> t2=Z’*(x2-x0)
t2 =

1.0629
1.2559

octave:11> f2=rnt(x2)
f2 = 15.236
octave:12> [xstar,k,rc]=rsdeq(@rntg,@rnth,A,b,10000,1e-6)
xstar =

-0.098889
-0.598890
0.598889
0.104443

k = 3321
rc = 0
octave:13> quit

convergence trajectory as shown on the page after. Although rsdeq.m requires 3321 itera-
tions to meet the convergence criterion of norm(rg) ≤ 10−6 in solving rnt, it is clear from

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

742 Reduced-Gradient Methods

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-1 0 1 2 3 4 5 6 7 8

t2

t1
•

t0

t1

t2 t⋆

f0(t) = 41

25.149
15.236

8
4

2
1

0.1

the picture that t3 is already a good approximation to t⋆ (see Exercise 23.3.5). Because each
xk is feasible x3 might, depending on the application that gave rise to the rnt problem, be
close enough to use in place of x⋆.

23.1.2 Nonlinear Constraints

A differentiable function fi(x) can be approximated in the vicinity of xk by its first-order
Taylor’s series expansion about that point,

fi(x) ≈ fi(x
k) + ∇fi(xk)⊤(x − xk),

so a set of differentiable nonlinear constraints fi(x) = 0, i = 1 . . .m can be approximated near
xk by the linear constraints Ax = b where

A =





∇f1(xk)⊤
...

∇fm(xk)⊤





and b =





∇f1(xk)⊤xk − f1(x
k)

...

∇fm(xk)⊤xk − fm(x
k)





.

If in the reduced-gradient algorithm of §23.1.1 we used these formulas to recompute A

and b at each iteration, then each steepest-descent step would be confined to the flat that
approximates the nonlinear constraints at xk. Of course the resulting next point would
probably not fall precisely on the curved constraint surface, which it must do if the linear
approximation there is to represent the surface accurately. To restore feasibility we could
move from the new point on the flat, in a direction orthogonal to the flat, just far enough
to satisfy the original constraints. Then we could use that feasible point for xk+1. Updating
the linearization of the constraints at each iteration, taking one steepest descent step in
the resulting flat, and restoring feasibility by moving outside the flat, is the essence of the
generalized reduced-gradient algorithm or GRG [1, 612-613]. The idea is illustrated
in the graph on the next page, which shows the first GRG iteration in solving the problem
given below the picture.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.1.2 Nonlinear Constraints 743

-4

-2

0

2

4

6

0 2 4 6 8 10 12

x2

x1

•
x0

•x
SD

•x1
• x⋆

f0(x) = 1.89+

f0(x) = 12.46+

f1 (x) = 0

Ax = b

w

I will call this problem grg2 because it has n = 2 variables (see §28.7.36).

minimize
x∈R2

f0(x) = (x1 − 8)2 + x22

subject to f1(x) =
1
20
x21 + x2 − 5 = 0

At the feasible starting point x0 = [2, 24
5
]⊤, the nonlinear constraint f1(x) = 0 has the linear

approximation Ax = b where

A = ∇f1(x0)⊤ = [1
10
x01, 1] = [1

5
, 1]

b = ∇f1(x0)⊤x0 − f1(x
0) = [1

5
, 1]

[

2
24
5

]

−
(
1
20
22 + 24

5
− 5

)

=
26
5

or 1
5
x1 + x2 =

26
5
. This flat has dimension n − m = 2 − 1 = 1 so it is just the tangent line

drawn above. A single steepest-descent step minimizes f0(x) along that line to yield the point
xSD = [113

13
, 45
13
]⊤, at which the nonlinear equality is far from satisfied. Moving orthogonal to

the flat until touching the constraint produces the next iterate x1 ≈ [8.3095, 1.5476]⊤.

You should be aware that other authors use the name GRG to refer to algorithms that
are slightly different from the one pictured above. For example, the algorithm described in
[3, p311-315] omits the feasibility-restoration step and in fact generates infeasible iterates
when used to solve the example given there. The algorithm described in [4, §15.6] restores
feasibility, but it uses Newton descent rather than steepest descent and so might be described
more precisely as a generalized reduced Newton method (see Exercise 23.3.13).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

744 Reduced-Gradient Methods

In the graph above it is easy to see the orthogonal direction in which we must move to
restore feasibility, but how can this correction step be accomplished algebraically?

Points y = x − x0 that are on the tangent line are in the nullspace of A,

Z = {y ∈ Rn | Ay = 0}.

That means each row of A is orthogonal to y. In our example, A = [1
5
, 1] has only one row

and that row is orthogonal to every vector y in the tangent line. For example,

y = xSD − x0 = [113
13
, 45
13
]⊤ − [2, 24

5
]⊤ = [87

13
,−87

65
]⊤

is orthogonal to the row of A because

Ay = [1
5
, 1]





87
13

−87
65



 = 0.

In the picture the vector [1
5
, 1]⊤ would point up and to the right; to get from xSD to x1 we

moved in the opposite direction by the vector w as shown.
In general A has m rows, and each of them is orthogonal to every vector y that is in

the nullspace of A. In fact, every vector w in the space that is spanned by the rows of A
is orthogonal to the flat. In other words, every vector in the space that is spanned by the
columns of A⊤ is orthogonal to the flat. This set of vectors is called the column space or
range space of A⊤ [147, §2.4] [4, §3.2],

R = {w ∈ Rn | w = A⊤p for some p ∈ Rm}.

Just as we found an orthonormal basis for the nullspace of A by using the MATLAB com-
mand Z=null(A), we can find an orthonormal basis for the range space of A⊤ by using the
MATLAB command R=orth(A’). The Octave session on the next page performs these calcu-
lations for our example, and shows that the vector y we found above is a linear combination
of the one basis column in Z and our vector w is a linear combination of the one basis column
in R. In finding an orthonormal basis for the range space, just as in finding an orthonormal
basis for the nullspace, MATLAB uses the singular-value decomposition [150, §5].

Now we can confirm the claim that each vector in the nullspace of A is orthogonal to
every vector in the range space of A⊤ by computing the dot product

w⊤y = (A⊤p)⊤y = p⊤(Ay) = p⊤0 = 0.

This property makes Z and R orthogonal subspaces. Because Z contains all vectors y that
are in the nullspace and R contains all vectors w that are orthogonal to the nullspace, these
two subspaces account for all of Rn and each is said to be the orthogonal complement

of the other [147, §2.5]. That means that any vector x ∈ Rn can be written uniquely as the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.1.2 Nonlinear Constraints 745

octave:1> A=[1/5,1];
octave:2> Z=null(A)
Z =

-0.98058
0.19612

octave:3> y=[87/13;-87/65]
y =

6.6923
-1.3385

octave:4> -6.8248*Z
ans =

6.6923
-1.3385

octave:5> R=orth(A’)
R =

0.19612
0.98058

octave:6> w=[1/5;1]
w =

0.20000
1.00000

octave:7> 1.0198*R
ans =

0.20000
1.00000

sum of a nullspace component y ∈ Z and a range space component w ∈ R, or

x = y + w = Zn×(n−m)t(n−m)×1 + Rn×mpm×1.

The elements of t are as usual the coefficients in a linear combination of the columns of
Z, and the elements of p are the coefficients in a linear combination of the columns of the
range space basis matrix R. To decompose a vector x into its nullspace and range space
components, we can find these coefficients by solving the linear system,





...
Z
... R...









t

· · ·
p




=




x





which has a total of n variables and in which the basis matrix B = [Z : R] is n × n.
This matrix has columns that are orthonormal vectors so it is an orthogonal matrix

[147, p119-122] and has the inverse B−1 = B⊤. The Octave session below solves the linear
system above to find the nullspace and range space components of the vector d1

= x1 − x0 in
our grg2 example, and shows that they are equal to (xSD − x0) ∈ Z and (x1 − xSD) ∈ R.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

746 Reduced-Gradient Methods

octave:1> A=[1/5,1];
octave:2> x0=[2;24/5];
octave:3> xsd=[113/13;45/13];
octave:4> x1=[8.30951894845300;1.54759474226502];
octave:5> Z=null(A);
octave:6> R=orth(A’);
octave:7> B=[Z,R]
B =

-0.98058 0.19612
0.19612 0.98058

octave:8> d=x1-x0
d =

6.3095
-3.2524

octave:9> tp=B\d
tp =

-6.8248
-1.9518

octave:10> Z*tp(1)
ans =

6.6923
-1.3385

octave:11> xsd-x0
ans =

6.6923
-1.3385

octave:12> R*tp(2)
ans =

-0.38279
-1.91394

octave:13> x1-xsd
ans =

-0.38279
-1.91394

To complete the feasibility-restoration step in iteration k of the GRG algorithm [4, p583]
we need to find a point xk+1 = xSD + w in R where the nonlinear constraints are satisfied.
For w to be in the range space of A⊤ we must be able to write it as w = Rp, and for the
constraints to be satisfied we need

f1(x
SD
+ Rp) = 0

...

fm(x
SD
+ Rp) = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.1.2 Nonlinear Constraints 747

These m nonlinear algebraic equations in the m unknowns p1 . . . pm can be solved by using
Newton’s method for systems. Recall from §21.2 that given an estimate ps of the solution
we solve f(ps) + J(ps)∆ = 0 for the correction ∆ = [J(ps)]−1[−f(ps)], improve the estimate
to ps+1

= ps
+ ∆, let s ← s + 1, and repeat the process until the estimate stops changing.

The vector f(ps) contains the values of the nonlinear constraint functions at the current
estimate of the solution and the Jacobian matrix J(ps) has rows that are the transposes of
the constraint gradients there, as shown below.

f(ps) =





f1(x
SD
+ Rps)
...

fm(x
SD
+ Rps)





J(ps) =





∇p f1(xSD + Rps)⊤

...

∇p fm(xSD + Rps)⊤





To determine x1 in our example, we need to find p to make f1(x
SD
+Rp) = 0, so for the first

iteration of the GRG algorithm

f(ps) = f1(x
SD
+ Rps)

= f1









113
13

45
13



 + Rps





=
1
20

(
113
13
+ R1p

s
)2
+

(
45
13
+ R2p

s
)

− 5

J(ps) = ∇p f1(x
SD
+ Rps)⊤

=
d

dps

(

1
20

[
113
13
+ R1p

s
]2
+

[
45
13
+ R2p

s
]

− 5
)

=
1
10

[
113
13
+ R1p

s
]

R1 + R2.

Then at step s of Newton’s method for systems

∆ =

− 1
20

(
113
13
+ R1p

s
)2
−

(
45
13
+ R2p

s
)

+ 5

1
10

[
113
13
+ R1ps

]

R1 + R2

.

In the Octave session below, I used this formula to find x1 for our example.

octave:2> A=[1/5,1];
octave:3> R=orth(A’);
octave:4> p=0;
octave:5> for s=1:4
> delta=(-(1/20)*(113/13+R(1)*p)^2-(45/13+R(2)*p)+5)/((1/10)*(113/13+R(1)*p)*R(1)+R(2))
> p=p+delta;
> end
delta = -1.9455
delta = -0.0063649
delta = -6.8127e-08
delta = 0
octave:6> x1=[113/13;45/13]+R*p
x1 =

8.3095
1.5476

octave:7> f1=(1/20)*x1(1)^2+x1(2)-5
f1 = 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

748 Reduced-Gradient Methods

In computing J(p) above we found ∇p f1(x) by hand, but the gradient routine that we
write in defining a nonlinear program computes only ∇x fi(x). Here are MATLAB routines
that compute the values and derivatives of the functions for problem grg2.

function f=grg2(x,i)
switch(i)
case 0

f=(x(1)-8)^2+x(2)^2;
case 1

f=(1/20)*x(1)^2+x(2)-5;
end

end

function g=grg2g(x,i)
switch(i)
case 0

g=[2*(x(1)-8);2*x(2)];
case 1

g=[(1/10)*x(1);1];
end

end

function H=grg2h(x,i)
switch(i)

case 0
H=[2,0;0,2];

case 1
H=[(1/10),0;0,0];

end
end

Any vector in Rn can be decomposed into a component in the nullspace of Am×n and a
component in the range space of A⊤n×m. We can find those components of ∇x fi(x) like this.





∇t fi(x)
∇p fi(x)



 = B−1


 ∇x fi(x)


 = B⊤



 ∇x fi(x)


 =





Z⊤

· · · · · ·
R⊤








∇x fi(x)





∇t fi(x) = Z⊤∇x fi(x)
∇p fi(x) = R⊤∇x fi(x)

With the bottom formula we can calculate from ∇x f1(x) the gradient with respect to p that
we found earlier in computing the Jacobian by hand.

f1(x) =
1
20
x21 + x2 − 5

∇x f1(x) =
[

1
10
x1
1

]

∇x f1
(

xSD + Rps
)

=

[
1
10

(

xSD1 + R1p
s
)

1

]

∇p f1
(

xSD + Rps
)

= R⊤
[

1
10

(

xSD1 + R1p
s
)

1

]

= R1
1
10

(
113
13
+ R1p

s
)

+ R2(1) X

Using the ideas discussed above, I implemented the GRG algorithm in the MATLAB

routine grg.m that is listed on the next page. The routine performs up to kmax descent
iterations 7-38 , each of which begins by 8-11 linearizing the constraints and 12-13 finding
bases for the corresponding nullspace and range space. The second stanza of the descent loop
finds 15 the gradient of the objective at the current point and 16 its nullspace component. If
the reduced gradient is small enough 17-21 the current point is returned as xstar along with
rc=0 to signal convergence. Otherwise the reduced Hessian 22 is used 23 to compute the
length of a full reduced steepest-descent step, and the resulting point xsd is 24 found. Then
27-36 Newton’s method for systems of equations is used to restore feasibility. At each of up
to 27 20 trial points xtry 28 the function value vector 30 and Jacobian 31 are calculated,
the correction vector delta is found by solving J∆ = −F 33 , and the current estimate of the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.1.2 Nonlinear Constraints 749

1 function [xstar,k,rc]=grg(fcn,grd,hsn,n,m,xzero,kmax,epz)
2 % minimize f(x) subject to F(x)=0.
3
4 F=zeros(m,1); % declare sizes
5 A=zeros(m,n); J=zeros(m,n-m); % of built-up arrays
6 xk=xzero; % feasible starting point
7 for k=1:kmax % do up to kmax iterations
8 for i=1:m % for each constraint
9 g=grd(xk,i); % find its gradient
10 A(i,:)=g’; % construct its linear approximation
11 end % constraint linearization ready
12 Z=null(A); % get a basis for the nullspace
13 R=orth(A’); % get a basis for the range space
14
15 g=grd(xk,0); % objective gradient
16 rg=Z’*g; % reduced gradient
17 if(norm(rg) <= epz) % converged?
18 xstar=xk; % yes; save optimal point
19 rc=0; % report success
20 return % and return
21 end % done with convergence test
22 rH=Z’*hsn(xk,0)*Z; % reduced Hessian
23 astar=(rg’*rg)/(rg’*rH*rg); % length of full steepest descent
24 xsd=xk-Z*(astar*rg); % take the step in R^n
25
26 p=zeros(m,1); % initialize correction step
27 for s=1:20 % Newton’s method for systems
28 xtry=xsd+R*p; % trial point
29 for i=1:m % for each constraint
30 F(i)=fcn(xtry,i); % get function value
31 J(i,:)=(R’*grd(xtry,i))’; % get del p value
32 end % F and J updated for p
33 delta=J\(-F); % correction
34 p=p+delta; % update guess at p
35 if(norm(delta) <= epz) break; end % close enough?
36 end % Newton’s method done
37 xk=xsd+R*p; % restore feasibility
38 end % reduced gradient step done
39 xstar=xk; % save the current point
40 rc=1; % report out of iterations
41
42 end

range-space coefficient vector p is 34 updated. If the correction vector is short enough 35

the Newton’s method loop is interrupted, and 37 the current iterate is updated. If kmax
iterations are consumed without satisfying the convergence criterion 17 the routine returns
39 the current point as xstar along with rc=1 to signal nonconvergence.

To test grg.m I used it to solve the grg2 problem and the following problem from
[3, p311-315] (see §28.7.37), which I will call grg4.

minimize
x∈R4

f0(x) = x21 + x2 + x23 + x4

subject to f1(x) = x21 + x2 + 4x3 + 4x4 − 4 = 0

f2(x) = −x1 + x2 + 2x3 − 2x24 + 2 = 0

The Octave session on the next page shows the results, in which each coordinate is correct
through its last digit.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

750 Feasible-Point Methods

octave:1> format long
octave:2> [xstar,k,rc]=grg(@grg2,@grg2g,@grg2h,2,1,[2;24/5],100,1e-14)
xstar =

8.91488339968883
1.02624269849762

k = 14
rc = 0
octave:3> [xstar,k,rc]=grg(@grg4,@grg4g,@grg4h,4,2,[0;-8;3;0],100,1e-16)
xstar =

-0.500000000000000
-4.824791814486018
1.534057450405037
0.609640503216468

k = 71
rc = 0

23.2 Sequential Quadratic Programming

Consider the following equality-constrained nonlinear program, which I will call sqp1 (see
§28.7.38).

minimize
x∈R2

f0(x) = ex1−1 + ex2+1

subject to f1(x) = x21 + x22 − 1 = 0

The problem is strictly convex, so we can solve it by finding the unique point satisfying its
Lagrange conditions.

L = ex1−1 + ex2+1 + λ(x21 + x22 − 1)

∂L
∂x1

= ex1−1 + 2λx1 = 0

∂L
∂x2

= ex2+1 + 2λx2 = 0

∂L
∂λ

= x21 + x22 − 1 = 0

This system of nonlinear algebraic equations is analytically intractable but we can approxi-
mate its solution numerically by using Newton’s method for systems, in which

f(x, λ) =





ex1−1 + 2λx1
ex2+1 + 2λx2
x21 + x22 − 1




and J(x, λ) =





ex1−1 + 2λ 0 2x1
0 ex2+1 + 2λ 2x2
2x1 2x2 0




.

The MATLAB program on the next page implements Newton’s method for systems using these
formulas, and plots the resulting iterates over a contour diagram to show the convergence
trajectory of the algorithm.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2 Sequential Quadratic Programming 751

1 % sqp1plot.m: graphical solution of sqp1
2 clear; clf; set(gca,’FontSize’,15)
3 format long
4
5 xzero=[-1;1]; % starting point
6 xk(1)=xzero(1); % save coordinates
7 yk(1)=xzero(2); % for plotting
8 x=xzero; % start solution there
9 lambda=1; % guess starting lambda
10 for k=1:10 % Newton’s method for systems
11 f=[exp(x(1)-1)+2*lambda*x(1); % update function vector
12 exp(x(2)+1)+2*lambda*x(2);
13 x(1)^2+x(2)^2-1];
14 J=[exp(x(1)-1)+2*lambda,0,2*x(1); % update Jacobian
15 0,exp(x(2)+1)+2*lambda,2*x(2);
16 2*x(1),2*x(2),0];
17 delta=J\(-f); % find correction
18 x=x+delta(1:2); % update x part of solution
19 xk(k+1)=x(1); % save coordinates
20 yk(k+1)=x(2); % for ploting
21 lambda=lambda+delta(3); % update lambda of solution
22 end % of Newton’s method
23 xstar=x % report optimal point
24 lambda % report optimal lambda
25
26 xl=[-2.5;-2.5]; % lower limits for plot
27 xh=[1.5;1.5]; % upper limits for plot
28 ng=20; % grid points for contouring
29 [xc,yc,zc]=gridcntr(@sqp1c,xl,xh,ng); % function values on grid
30
31 hold on % start graph
32 axis([xl(1),xh(1),xl(2),xh(2)],’equal’) % set axes
33 v=[0.5,0.7,sqp1c(xstar)]; % contour levels
34 contour(xc,yc,zc,v) % contours of objective
35 for p=1:101 % find points
36 x(p)=-1+2*0.01*(p-1); % on zero contour
37 yp(p)=+sqrt(1-x(p)^2); % of the
38 ym(p)=-sqrt(1-x(p)^2); % constraint
39 end
40 plot(x,yp) % plot zero contour
41 plot(x,ym) % of the constraint
42 plot(xk,yk) % plot convergence trajectory
43 plot(xk,yk,’o’) % mark the iterates
44 hold off % done with plot
45 print -deps -solid sqp1.eps % print it

The loop 10-22 over k performs the iterations of Newton’s method for systems and 19-20

saves the coordinates of each iterate x for 42-43 plotting. The remaining calculations are
typical of those we have used in the past to study the behavior of other algorithms. The
sqp1c.m routine, which gridcntr.m uses to compute objective values, is listed here.

function f=sqp1c(x)
f=exp(x(1)-1)+exp(x(2)+1);

end

When the program is run it produces the picture and printed output shown on the next
page, which suggest that this Newton-Lagrange method [2, §5.4.2] [4, §15.5] might be a
good way to solve problems like sqp1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

752 Sequential Quadratic Programming

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

ntlg.m/sqp.m

x2

x1

f0(x) ≈ 1.32

f0(x) = 0.7

f0(x) = 0.5

f1(x) = 0•x
0

•x
⋆

octave:1> sqp1plot
xstar =

-0.263290964724888
-0.964716470209894

lambda = 0.536900432125476

23.2.1 A Newton-Lagrange Algorithm

The general equality-constrained nonlinear program

minimize
x∈Rn

f0(x)

subject to fi(x) = 0 i = 1 . . .m

has the Lagrangian L = f0(x) +

m∑

i=1

λi fi(x) and these optimality conditions.

∇xL =





∂ f0

∂x1
+ λ1

∂ f1

∂x1
+ · · · + λm

∂ fm

∂x1
...

...
...

∂ f0

∂xn
+ λ1

∂ f1

∂xn
+ · · · + λm

∂ fm

∂xn





∇λλλL =





f1
...

fm





=





f1

...

fn

fn+1
...

fn+m





=





0

...

0

0
...

0





Each boldface function represents the equation to its left; e.g., f1 =
∂ f0

∂x1
+

m∑

i=1

λi
∂ fi

∂x1
.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.1 A Newton-Lagrange Algorithm 753

To solve f = 0 using Newton’s method for systems, we must find the function vector

f(x,λλλ) =





∇x f0 +
m∑

i=1

λi∇x fi

f1
...

fm





and the Jacobian matrix J,

H f0 +

m∑

i=1

λiH fi = HL ∇x fm

J(x,λλλ) =





[∇xf1]
⊤ [∇λλλf1] ⊤

...
...

[∇xfn]
⊤ [∇λλλfn] ⊤

[∇xfn+1]
⊤ [∇λλλfn+1] ⊤

...
...

[∇xfn+m]
⊤ [∇λλλfn+m] ⊤





=





∂f1

∂x1
. . .

∂f1

∂xn

∂f1

∂λ1
. . .

∂f1

∂λm
...

...
...

...
∂fn

∂x1
. . .

∂fn

∂xn

∂fn

∂λ1
. . .

∂fn

∂λm
∂ f1

∂x1
. . .

∂ f1

∂xn
0 . . . 0

...
...

...
...

∂ fm

∂x1
. . .

∂ fm

∂xn
0 . . . 0





.

[∇x fm]⊤ 0m×m

Computing the gradients indicated on the left yields the matrix on the right. It can be viewed
as composed of submatrices, some of which I have boxed. Each submatrix can be calculated
from gradients and Hessians of the fi. The submatrix on the upper left has elements such as

∂f1

∂x1
=
∂

∂x1

(

∂ f0

∂x1
+ λ1
∂ f1

∂x1
+ · · · + λm

∂ fm

∂x1

)

=
∂2 f0

∂x12
+

m∑

i=1

λi
∂2 fi

∂x12

which is the (1, 1) element of HL. The submatrix in the upper right has elements such as

∂f1

∂λm
=
∂

∂λm

(

∂ f0

∂x1
+ λ1
∂ f1

∂x1
+ · · · + λm

∂ fm

∂x1

)

=
∂ fm

∂x1

so it is actually the gradient of fm with respect to x. Using these formulas for f and J, I
wrote the ntlg.m routine listed on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

754 Sequential Quadratic Programming

1 function [xstar,k,rc,lstar]=ntlg(fcn,grd,hsn,n,m,xzero,lzero,kmax,epz)
2 % Newton-Lagrange algorithm for equality-constrained problems
3
4 x=xzero; % starting point
5 lambda=lzero; % starting multipliers
6 rc=1; % in case of no convergence
7 for k=1:kmax % do Newton’s method for systems
8 f=zeros(n+m,1); % fill in function vector
9 f(1:n)=grd(x,0); % gradient of objective
10 for i=1:m % for each constraint
11 lamg=lambda(i)*grd(x,i); % weighted constraint gradient
12 f(1:n)=f(1:n)+lamg; % accumulate gradient of L
13 f(n+i)=fcn(x,i); % fill in function value
14 end % done with f
15 J=zeros(n+m,n+m); % fill in Jacobian matrix
16 J(1:n,1:n)=hsn(x,0); % Hessian of objective
17 for i=1:m % for each constraint
18 lamH=lambda(i)*hsn(x,i); % weighted constraint Hessian
19 J(1:n,1:n)=J(1:n,1:n)+lamH; % accumulate Hessian of L
20 J(1:n,n+i)=grd(x,i) ; % fill in constraint gradient
21 J(n+i,1:n)=grd(x,i)’; % and its transpose
22 end % done with J
23 delta=J\(-f); % find correction
24 x=x+delta(1:n); % adjust x
25 lambda=lambda+delta(n+1:n+m); % adjust lambda
26 if(norm(delta) <= epz) % close enough?
27 rc=0; % signal success
28 break % and return
29 end % done testing convergence
30 end; % Lagrange conditions solved
31 xstar=x; % return current iterate
32 lstar=lambda; % and current multipliers
33
34 end

This routine does 7-30 up to kmax iterations of Newton’s method for systems. Each iteration
begins by constructing 8-14 f(xk,λλλk) and 15-22 J(xk,λλλk). The gradient of the Lagrangian
11-12 and the Hessian of the Lagrangian 18-19 are built up by adding in one constraint
gradient or constraint Hessian at a time. Then the correction ∆ is found by 23 solving the
equation J∆+ f = 0, and the current estimates of the solution point and Lagrange multipliers
are 24-25 updated to

[

xk+1

λλλk+1

]

=

[

xk

λλλk

]

+ ∆.

If the correction is small enough 26 the routine 27 sets rc=0 and 28,31-32 returns the cur-
rent point and multipliers as the answer. If kmax iterations are consumed without satisfying
the convergence criterion the routine also returns 31-32 the current point and multipliers,
along with rc=1 6 to show that convergence was not achieved.

Routines sqp1.m, sqp1g.m, and sqp1h.m, which compute the values, gradients, and Hes-
sians for sqp1, are listed at the top of the next page. The Octave session below them shows
that ntlg.m delivers the same answer we found earlier for that problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.2 Equality Constraints 755

function f=sqp1(x,i)
switch(i)
case 0

f=exp(x(1)-1)+exp(x(2)+1);
case 1

f=x(1)^2+x(2)^2-1;
end

end

function g=sqp1g(x,i)
switch(i)
case 0

g=[exp(x(1)-1);
exp(x(2)+1)];

case 1
g=[2*x(1);2*x(2)];

end
end

function H=sqp1h(x,i)
switch(i)

case 0
H=[exp(x(1)-1),0;

0,exp(x(2)+1)];
case 1
H=[2,0;0,2];

end
end

octave:1> format long
octave:2> xzero=[-1;1];
octave:3> lzero=1;
octave:4> [xstar,k,rc,lstar]=ntlg(@sqp1,@sqp1g,@sqp1h,2,1,xzero,lzero,10,1e-14)
xstar =

-0.263290964724888
-0.964716470209894

k = 10
rc = 0
lstar = 0.536900432125476

23.2.2 Equality Constraints

In §23.2.1 we developed a Newton-Lagrange algorithm for solving the nonlinear program

minimize
x∈Rn

f0(x)

subject to fi(x) = 0, i = 1 . . .m.

At each step k that algorithm solves the linear system J∆ + f = 0 or





HL ∇f1 · · · ∇fm
∇f1⊤ 0 · · · 0
...

...
...

∇fm⊤ 0 · · · 0





∆ +





∇f0 +
∑m

i=1 λi∇fi
f1
...

fm





= 0

for the correction vector ∆. It is an interesting coincidence that this system of algebraic
equations is precisely the Lagrange conditions for the following quadratic program.

minimize
p∈Rn

q(p) = 1
2
p⊤[HL(x

k)]p + p⊤[∇L(xk)] = 1
2
p⊤Qp + p⊤c

subject to





∇f1(xk)⊤
...

∇fm(xk)⊤





p +





f1(x
k)
...

fm(x
k)





= Ap − b = 0

To prove the claim we can write down the Lagrange conditions for this problem, bearing in
mind that Q, c, A, and b are constants evaluated at the xk for which we are finding p. The
quadratic program above has this Lagrangian, in which the multipliers are called µµµ.

Lqp(p,µµµ) =
1
2
p⊤Qp + c⊤p + µµµ⊤[Ap − b]

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

756 Sequential Quadratic Programming

From it we find these optimality conditions.

∇pLqp= Qp + c + A⊤µµµ = 0

Qp + A⊤µµµ = −c
[HL(x

k)]p + [∇f1(xk) · · · ∇fm(xk)]µµµ = −[∇L(xk)]

1 [HL(x
k), ∇f1(xk) · · · ∇fm(xk)]

[

p

µµµ

]

= −


∇f0(xk) +
m∑

i=1

λi∇fi(xk)




∇µµµLqp= Ap − b = 0

Ap + 0µµµ = b

2





∇f1(xk)⊤ 0 · · · 0
...

...
...

∇fm(xk)⊤ 0 · · · 0





[

p

µµµ

]

= −





f1(x
k)
...

fm(x
k)





Combining the final version 1 of the first condition with the final version 2 of the second
and letting

∆ =

[

p

µµµ

]

yields J∆ = −f. This means that at each iteration of the Newton-Lagrange algorithm we
could find the p part of ∆ by solving the quadratic program instead of using Newton’s method
for systems. If we solve the quadratic program by using its optimality conditions above we
also get the µµµ part of ∆, but that is just the same as solving the Lagrange conditions for the
original problem so we are back to using Newton’s method for systems. If instead we solve
the quadratic program numerically, then it is necessary to compute µµµ separately using the
formula we derived in §22.2.3,

µµµk = −A+[Qxk + c] where A+ = [AA⊤]−1A.

If the original nonlinear program is convex like sqp1, then in finding ∆k it does not matter
whether we use Newton’s method for systems or solve the quadratic subproblem numerically
for pk and then find µµµk. However, if the problem is nonconvex then blindly solving the
Lagrange conditions might yield a stationary point that is not even a local minimum (see
§15.3). It is also possible that J(xk) will be singular at some iterate, in which case the
Newton-Lagrange algorithm fails entirely. Both these humiliations might be avoided by
using a quadratic program solver, which will actually try to minimize the Lagrangian of the
original problem and which can modify the Hessian of the Lagrangian if necessary to keep
it positive definite. This strategy leads to the simplest form of the sequential quadratic

programming or SQP algorithm [5, §18], which I implemented in the sqp.m routine on
the next page (not to be confused with Octave’s built-in function of the same name, which
we used in §8.3.1 and §8.7).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.2 Equality Constraints 757

1 function [xstar,k,rc,lstar]=sqp(fcn,grd,hsn,n,m,xzero,lzero,kmax,epz)
2 % SQP algorithm for equality-constrained problems
3
4 x=xzero; % starting point
5 lambda=lzero; % starting multipliers
6 A=zeros(m,n); b=zeros(m,1); % prepare A and b to be built up
7 rc=1; % in case of no convergence
8 for k=1:kmax % minimize the Lagrangian
9 Q=hsn(x,0); % objective Hessian
10 c=grd(x,0); % objective gradient
11 for i=1:m % for each constraint
12 Q=Q+lambda(i)*hsn(x,i); % find Lagrangian Hessian
13 g=grd(x,i); % constraint gradient
14 c=c+lambda(i)*g; % find Lagrangian gradient
15 A(i,:)=g’; % linearize constraint
16 b(i)=-fcn(x,i); % linearize constraint
17 end % done preparing qp subproblem
18
19 [p,kq,rcq,nm]=qpeq(Q,c,A,b,50,1e-16); % solve the qp subproblem
20 if(rcq > 1)
21 rc=2;
22 break
23 end
24
25 x=x+p; % update x
26 [U,rch,nm]=hfact(A*A’,1); % factor
27 Vt=A’/U; % and solve
28 Aplus=(Vt/U’)’; % to find the pseudoinverse
29 mu=-Aplus*(Q*p+c); % find the change in lambda
30 lambda=lambda+mu; % update lambda
31 if(norm(p) <= epz) % close enough?
32 rc=0; % signal success
33 break % and return
34 end % done testing convergence
35 end; % Lagrange conditions solved
36 xstar=x; % return current iterate
37 lstar=lambda; % and current multipliers
38 end

Like ntlg.m this routine finds a point (x⋆,λλλ⋆) that satisfies the Lagrange conditions of
the original nonlinear program, but instead of using Newton’s method for systems it solves
a sequence of up to kmax quadratic subproblems for the corrections p to x and separately
calculates the corresponding corrections µµµ to λλλ. Each iteration begins by finding the current
values of Q 9,12 , c 10,14 , A 6,15 , and b 6,16 defining the quadratic program. Then this
routine 19 invokes the qpeq.m routine of §22.1.2 to solve the subproblem and 25 uses the
result to find xk+1 = xk + p. To update the Lagrange multiplier estimates it 26-28 computes
A+, 29 uses the formula we derived in §22.2.3, and 30 adjusts lambda. If the x adjustment p
is short enough 31-34 it sets rc=0 and returns early. If kmax iterations are consumed without
achieving convergence, it 36-37 returns the current estimates xstar and lstar anyway, but
with rc=1 still set 7 . In the Octave session on the next page sqp.m finds exactly the same
answer to sqp1 that we found using ntlg.m in §23.2.1.

The Newton-Lagrange algorithm is not a feasible point method, as is clear from its
convergence trajectory graph in §23.2.0, and because our SQP algorithm generates the same

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

758 Sequential Quadratic Programming

octave:1> format long
octave:2> [xstar,k,rc,lstar]=sqp(@sqp1,@sqp1g,@sqp1h,2,1,[-1;1],1,10,1e-14)
xstar =

-0.263290964724888
-0.964716470209894

k = 10
rc = 0
lstar = 0.536900432125476

iterates for sqp1 it is not a feasible point method either. However, in our implementation
SQP does make use of a feasible point method, for solving the quadratic subproblems.

23.2.3 Inequality Constraints

In §23.2.2 we showed that solving each equality-constrained quadratic subproblem in the
SQP algorithm is equivalent to doing one iteration of Newton’s method for systems on the
Lagrange conditions for the original nonlinear program, but it can also be interpreted in
another way. The subproblem minimizes a quadratic approximation to the Lagrangian of
the original problem, subject to a linear approximation of the original problem’s constraints.
This suggests that if the original problem has inequality constraints we might use exactly
the same strategy, solving the resulting inequality-constrained quadratic subproblems with
an active-set algorithm such as the one we implemented in the qpin.m routine of §22.2.4.
This is referred to as the IQP approach [5, p530] to sequential quadratic programming. I
implemented this idea in the iqp.m routine listed on the next page.

The caller supplies 1 a starting point xzero, which is used 6-11 to guess starting La-
grange multipliers; µ0

i
is set to 0 if constraint i is satisfied or to 1 if the inequality is violated.

The routine does up to kmax optimization iterations 15-37 . Each iteration begins 16-24

with the construction of the subproblem, whose objective 16-21 is a quadratic approxi-
mation to the Lagrangian and whose constraints 22-23 are a linear approximation to the
original constraints. Then 26 the qpin.m routine of §22.2.4 is invoked to solve the quadratic
program and the step p that it returns is used 32 to update the current estimate xk of the
optimal point. The Lagrange multipliers mu are updated to those returned by qpin.m (as
in [5, Algorithm 18.1]). If 33 the step was short enough an early exit 35 is taken with 34

rc=0, but if kmax iterations are consumed without satisfying the convergence criterion 38

the current point is returned in xstar with 14 rc=1.
The final stanza 41-54 is needed because the multipliers µµµ returned by qpin.m, while

correct for the quadratic program, are not the same as the multipliers λλλ for the original
problem. According to the Lagrange conditions a solution (x⋆,λλλ⋆) to the original problem
satisfies

∇xL(x,λλλ) = ∇x f0(x) +
m∑

i=1

λi∇x fi(x) = ∇x f0(x) + Ā⊤λ̄λλ = 0.

where Ā is the matrix whose rows are the transposes of the gradients of the active constraints.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.3 Inequality Constraints 759

1 function [xstar,k,rc,lambda,mustar]=iqp(fcn,grd,hsn,m,xzero,kmax,epz)
2 % SQP algorithm for inequality-constrained problems
3
4 n=size(xzero,1); % variables
5 xk=xzero; % starting point
6 for i=1:m % consider each constraint
7 mu(i)=0; % assume its multiplier is 0
8 if(fcn(xk,i) > 0) % but if xzero violates it
9 mu(i)=1; % make its multiplier 1
10 end
11 end
12 A=zeros(m,n); % prepare A to be built up
13 b=zeros(m,1); % prepare b to be built up
14 rc=1; % anticipate nonconvergence
15 for k=1:kmax % minimize the Lagrangian
16 Q=hsn(xk,0); % objective Hessian
17 c=grd(xk,0); % objective gradient
18 for i=1:m % consider each constraint
19 Q=Q+mu(i)*hsn(xk,i); % find Lagrangian Hessian
20 g=grd(xk,i); % constraint gradient
21 c=c+mu(i)*g; % find Lagrangian gradient
22 A(i,:)=g’; % linearize constraint
23 b(i)=-fcn(xk,i); % linearize constraint
24 end % done preparing qp subproblem
25
26 [p,kq,rcq,W,mu]=qpin(Q,c,A,b,50,1e-14); % solve subproblem
27 if(rcq > 1)
28 rc=rcq;
29 return
30 end
31
32 xk=xk+p; % update xk
33 if(norm(p) <= epz) % close enough?
34 rc=0; % signal success
35 break % and return
36 end % done testing convergence
37 end; % Lagrange conditions solved
38 xstar=xk; % return current iterate
39 mustar=mu; % return current QP multipliers
40
41 % find multipliers corresponding to the original problem
42 Abar=zeros(0,n);
43 mbar=0;
44 for i=1:m
45 if(W(i) == 1)
46 mbar=mbar+1;
47 Abar(mbar,:)=grd(xk,i)’;
48 end
49 end
50 lambda=zeros(m,1);
51 if(mbar > 0)
52 g=grd(xk,0);
53 [lambda,rc]=getlgm(m,Abar,W,g);
54 end
55
56 end

This requires λ̄λλ
⋆
= −(ĀĀ⊤)−1Ā [∇x f0(x⋆)] but the multipliers returned by qpin.m for the prob-

lem of minimizing the Lagrangian are µµµ⋆ = −(ĀĀ⊤)−1Ā (Qx⋆+c). Because q(x) = 1
2
x⊤Qx+c⊤x

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

760 Sequential Quadratic Programming

is an approximation to L(x,λλλ), its gradient (Qx + c) is usually different from ∇x f0(x) even at
x⋆. The Octave session below shows the sqp1 problem being solved by iqp.m, which treats
the constraint as an inequality. The optimal point xstar and Lagrange multiplier lstar

that it reports are the same as those we found before, but mustar , lstar because 5>-6>

∇xq(x⋆) , ∇x f0(x⋆).
octave:1> format long
octave:2> [xstar,k,rc,lstar,mustar]=iqp(@sqp1,@sqp1g,@sqp1h,1,[-1;1],100,1e-15)
xstar =

-0.263290964724888
-0.964716470209894

k = 76
rc = 0
lstar = 0.536900432125476
mustar = 0.274477270192722
octave:3> Q=sqp1h(xstar,0)+mustar*sqp1h(xstar,1);
octave:4> c=sqp1g(xstar,0)+mustar*sqp1g(xstar,1);
octave:5> Q*xstar+c
ans =

-0.0807856409522170
-1.0226202924282342

octave:6> sqp1g(xstar,0)
ans =

0.282722065471052
1.035913379468513

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

iqp.m

x2

x1

f0(x) ≈ 1.32

f0(x) = 0.7

f0(x) = 0.5

f1(x) = 0•x
0

•x
⋆

Using a program like sqp1plot.m I
plotted the algorithm’s convergence
trajectory on the problem, shown to
the right. This is reminiscent of the
jagged curve we observed for ntlg.m
(and hence sqp.m).

I confirmed that iqp.m solves all
of the inequality-constrained exam-
ple problems we have considered so
far. The function value and deriva-
tive routines for arch4 are listed here.

function f=arch4(x,i)
switch(i)

case 0
f=(x(1)-1)^2+(x(2)-1)^2;

case 1
f=4-(x(1)-2)^2-x(2);

case 2
f=13/8+(1/4)*x(1)-x(2);

end
end

function g=arch4g(x,i)
switch(i)
case 0

g=[2*(x(1)-1);2*(x(2)-1)];
case 1

g=[-2*(x(1)-2);-1];
case 2

g=[1/4;-1];
end

end

function H=arch4h(x,i)
switch(i)
case 0

H=[2,0;0,2];
case 1

H=[-2,0;0,0];
case 2

H=[0,0;0,0];
end

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.3 Inequality Constraints 761

octave:1> format long
octave:2> [xstar,k,rc,lstar]=iqp(@p2,@p2g,@p2h,1,[1;2],30,1e-16)
xstar =

0.945582993415968
0.894127197437503

k = 25
rc = 0
lstar = 3.37068560583615
octave:3> [xstar,k,rc,lstar]=iqp(@b1,@b1g,@b1h,2,[-2;2],10,1e-6)
xstar =

4.44089209850062e-16
1.00000000000000e+00

k = 3
rc = 0
lstar =

1.000000000000000
0.000000000000000

octave:4> [xstar,k,rc,lstar]=iqp(@moon,@moong,@moonh,2,[-2;2],10,1e-6)
xstar =

-0.250000000000000
0.968245836551858

k = 6
rc = 0
lstar =

2.50000000000000
1.50000000000000

octave:5> x2=sqrt(15/16)
x2 = 0.968245836551854
octave:6> [xstar,k,rc,lstar]=iqp(@arch4,@arch4g,@arch4h,2,[1;1],20,1e-6)
xstar =

0.500000000000000
1.750000000000000

k = 13
rc = 0
lstar =

0.227272727272727
1.272727272727273

octave:7> lambda1=5/22
lambda1 = 0.227272727272727
octave:8> lambda2=14/11
lambda2 = 1.27272727272727

This Octave session shows some representative results. In a few cases (e.g., b1) it was
necessary to use a starting point other than the one given as part of the problem definition.
The moon problem and the arch4 problem (of §16.2) are both nonconvex.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

762 Sequential Quadratic Programming

23.2.4 A Quadratic Max Penalty Algorithm

The generalized reduced-gradient algorithm of §23.1.2 and the sequential quadratic program-
ming algorithms of §23.2.2 and §23.2.3 all blithely linearize nonlinear constraints. If we do
this at a point xk that is feasible for the nonlinear constraints then, at least at that point,
the resulting linear equations or inequalities will also be satisfied. If xk is infeasible, however,
the linearized constraints might not be satisfied anywhere. Consider the following problem,
which I will call incon (see §28.7.39).

minimize
x∈R2

f0(x) = x21 + x22

subject to f1(x) = x1 − 1 ≤ 0

f2(x) = −x21 + 4 ≤ 0

If x1 ≤ −2 both inequalities are satisfied, so these constraints are not inconsistent. Now sup-
pose that we linearize them about the infeasible point xk = [1, 0]⊤. Following the prescription
in §23.1.2 we find

A =

[

∇f1(xk)⊤
∇f2(xk)⊤

]

=

[

1 0

−2xk1 0

]

=

[

1 0

−2 0

]

b =

[

∇f1(xk)⊤xk − f1(x
k)

∇f2(xk)⊤xk − f2(x
k)

]

=

[

1 × 1 − (1 − 1)
−2 × 1 − (−[12] + 4)

]

=

[

1

−5

]

so the linearized constraints Ax ≤ b require

x1 ≤ 1

−2x1 ≤ −5 or
x1 ≤ 1

x1 ≥ 2 1
2

XX.

This happens only rarely, but it is lethal to the algorithms of this Chapter. If linearized
equality constraints are inconsistent then Ax = b has no nullspace and in grg.m the gradient
calculation rg=Z’*g at line 16 fails because Z is empty. In sqp.m and iqp.m inconsistent
linearized constraints make the subproblem an infeasible quadratic program.

To experiment with incon I used the routines below to compute the values and derivatives
of its functions.

function f=incon(x,i)
switch(i)

case 0
f=x(1)^2+x(2)^2;

case 1
f= x(1)-1;

case 2
f=-x(1)^2+4;

end
end

function g=incong(x,i)
switch(i)
case 0

g=[2*x(1);2*x(2)];
case 1

g=[1;0];
case 2

g=[-2*x(1);0];
end

end

function H=inconh(x,i)
switch(i)
case 0

H=[2,0;0,2];
case 1

H=[0,0;0,0];
case 2

H=[-2,0;0,0];
end

end

Here is what happens when iqp.m tries to solve the problem.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.4 A Quadratic Max Penalty Algorithm 763

octave:1> [xstar,k,rc]=iqp(@incon,@incong,@inconh,2,[1;0],1,1e-6)
warning: feas: some elements in list of return values are undefined
warning: qpin: some elements in list of return values are undefined
warning: iqp: some elements in list of return values are undefined
xstar = [](0x0)
k = 1
rc = 4
octave:2> quit

The return code rc=4 means the subproblem was infeasible; feas.m failed to find a starting
point, so qpin.m had to resign before taking its first step and that 27-30 stopped iqp.m.

The threat of inconsistent constraints can be removed [5, p536] by reformulating the
original nonlinear program as a penalty problem. In the case of inequality constraints this
yields the optimization on the right.

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1 . . .m
−→

minimize
x∈Rn t∈Rm

π(x, t; µ) = f0(x) + µ

m∑

i=1

ti

subject to −ti ≤ 0,

fi(x) − ti ≤ 0, i = 1 . . .m

If the original constraints are consistent, then solving a sequence of penalty problems with
increasing values of µ drives t to zero and yields x⋆ for the original problem. But the penalty
problem is feasible even if the original constraints are not consistent, so it is also feasible if
their linearizations are not consistent [5, p536]. This problem is sometimes referred to as the
elastic mode formulation of the standard-form nonlinear program on the left above. We
have encountered it twice before, in §8.7.4 as the soft-margin SVM model and in §20.1 as a
reformulation of the nonsmooth max penalty problem on the left below.

minimize
x∈Rn

f0(x) + µ

m∑

i=1

max[0, fi(x)] ←→
minimize
x∈Rn t∈Rm

π(x, t; µ) = f0(x) + µ

m∑

i=1

ti

subject to −ti ≤ 0,

fi(x) − ti ≤ 0, i = 1 . . .m

We found that the max penalty problem is, because of its nondifferentiability, very hard
for algorithms such as ntfs.m. To solve the smooth reformulation I proposed replacing its
objective by a quadratic approximation to its Lagrangian and each constraint by its linear
approximation, but of course this is just what iqp.m does. The quadratic max penalty

algorithm uses iqp.m to solve a sequence of penalty problems in which µ gradually increases.
To compute the values and derivatives of the objective and constraints in the smooth penalty
problem from the values and derivatives of the functions fi in the original problem, we can
use interface routines similar to the pye.m, pyeg.m, and pyeh.m routines of §18.1.

To implement this idea I wrote the emiqp.m routine listed on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

764 Sequential Quadratic Programming

1 function [xstar,k,rc,lstar,pn,tstar]=emiqp(name,mi,xzero,kmax,epz)
2 % solve elastic mode penalty problem using iqp
3
4 global prob m pn % share these with em.m, emg.m, emh.m
5 prob=name; % character name of original problem
6 m=mi; % constraints in original problem
7 pn=1; % starting penalty multiplier
8 n=size(xzero,1); % variables in original problem
9 yk=[xzero;zeros(mi,1)]; % starting [x;0]
10 fcn=str2func(prob); % get function handle
11 for i=1:mi
12 yk(n+i)=max(0,fcn(xzero,i)); % initialize t(i) for feasibility
13 end
14
15 rc=1;
16 for k=1:kmax
17 [ystar,ki,rci,lambda]=iqp(@em,@emg,@emh,2*mi,yk,100,epz);
18 if(rci > 2)
19 rc=rci;
20 break
21 end
22
23 if(norm(ystar-yk) < epz) % close enough?
24 rc=0; % signal success
25 if(rci == 2) rc=2; end % or that multipliers not found
26 break % and interrupt iterations
27 else
28 yk=ystar; % start at current point
29 pn=2*pn; % double the penalty multiplier
30 end
31 end
32 xstar=ystar(1:n); % best x so far
33 tstar=ystar(n+1:n+m); % best t so far
34 lstar=lambda(mi+1:2*mi); % multipliers of original constraints
35
36 end

This routine receives 1 in name the character string name of the problem to be solved,
and 4-7 passes it, the number of constraints m, and the penalty multiplier pn, as global
parameters to the em.m, emg.m, and emh.m routines listed on the next page. Then, collecting
the variables in one vector

y =

[

x

t

]

, it 9-13 initializes y0j =






x0
j

for j = 1 . . . n

max[0, f j−n(x
0)] for j = n + 1 . . . n + m.

This makes ti = 0 if constraint i is satisfied at x0 or ti = fi(x
0) if it is violated, so that

the constraints of the penalty problem are all satisfied at y0. Then the routine does up to
kmax optimization iterations 16-31 , each of which begins by invoking iqp.m 17 to solve the
penalty problem at the current value of pn (initially 7 pn=1). If the step is short enough 23

the iterations are interrupted 24-26 and 32-34 the current solution is returned. Otherwise
27-28 the current point is taken as the starting point for the next iteration, the penalty
multiplier is 29 doubled, and the iterations continue. If kmax iterations are consumed
without satisfying the convergence criterion the routine returns 32-34 the current solution

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.2.4 A Quadratic Max Penalty Algorithm 765

1 function f=em(y,i)
2 global prob m pn
3 fcn=str2func(prob);
4 n=size(y,1)-m;
5 x=y(1:n);
6 t=y(n+1:n+m);
7
8
9 if(i == 0)
10 f=fcn(x,0)+pn*t’*ones(m,1);
11 elseif(i <= m)
12 f=-t(i);
13 else
14 f=fcn(x,(i-m))-t(i-m);
15 end
16 end
17
18

function g=emg(y,i)
global prob m pn
grd=str2func([prob,’g’]);
n=size(y,1)-m;
x=y(1:n);
t=y(n+1:n+m);

g=zeros(n+m,1);
if(i == 0)

g(1:n)=grd(x,0);
g(n+1:n+m)=pn*ones(m,1);

elseif(i <= m)
g(n+i)=-1;

else
g(1:n)=grd(x,(i-m));
g(n+(i-m))=-1;

end
end

function H=emh(y,i)
global prob m
hsn=str2func([prob,’h’]);
n=size(y,1)-m;
x=y(1:n);

H=zeros(n+m,n+m);
if(i == 0)

H(1:n,1:n)=hsn(x,0);
elseif(i > m)

H(1:n,1:n)=hsn(x,(i-m));
end

end

with 15 rc=1. Otherwise the return code is 0 if both x⋆ and λλλ⋆ were found 24 or 2 if only
x⋆ was found 25 or 18-19 the return code from iqp.m if rci > 2.

Each of the interface routines, listed above, begins by 3 getting a pointer to the function,
gradient, or Hessian routine of the original problem, 4 deducing the number of variables n
in the original problem, and 5-6 extracting from y the vectors x and if needed t. Then,
based on the index i of the function in the penalty problem, it computes the value, gradient,
or Hessian of the i’th penalty problem function for return.

To test emiqp.m I used it to solve problems ep2, sqp1, and arch4. The output on the
next page shows the algorithm finding exact solutions to these problems at modest values of
the penalty multiplier pn. The max penalty problem ep2 that gave us so much trouble in
§20.1 is easy for this algorithm. In ep2 and sqp1 the single constraint can’t be inconsistent,
so in each case t⋆ = 0; in arch4 there are 2 original constraints and they are also consistent,
so t⋆ = 0.

What about the incon problem, for which the constraints linearized at x0 = [1, 0]⊤ are
inconsistent? To find out I used emiqp.m to attempt a solution of that problem.

octave:1> [xstar,k,rc]=emiqp(’incon’,2,[1;0],10,1e-6)
xstar =

1.0000e+00
-4.9304e-32

k = 1
rc = 0

Unlike iqp.m this routine makes no complaint about an infeasible quadratic subproblem, so
the elastic mode reformulation was successful. Unfortunately, emiqp.m makes no progress
from the starting point, reporting immediately (k=1) and with bravado (rc=0) an answer
that is not even feasible! Alas, in this problem the constraint f2(x) = −x21 + 4 is nonconvex,
and this leads to a nonconvex Lagrangian which qpin.m fails to correctly minimize on the flat
of the linearized constraints. Trying emiqp.m on the other inequality constrained examples

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

766 Sequential Quadratic Programming

octave:1> format long
octave:2> [xstar,k,rc,lstar,pn,tstar]=emiqp(’ep2’,1,[2;2],10,1e-6)
xstar =

1.00000000000000
1.00000000000000

k = 3
rc = 0
lstar = 2.00000000000000
pn = 4
tstar = 0
octave:3> [xstar,k,rc,lstar,pn,tstar]=emiqp(’sqp1’,1,[-1;1],10,1e-15)
xstar =

-0.263290964724888
-0.964716470209894

k = 2
rc = 0
lstar = 0.536900432125476
pn = 2
tstar = 0
octave:4> [xstar,k,rc,lstar,pn,tstar]=emiqp(’arch4’,2,[1;1],20,1e-6)
xstar =

0.500000000000000
1.750000000000000

k = 2
rc = 0
lstar =

0.227272727272727
1.272727272727273

pn = 2
tstar =

0
0

we have considered so far reveals it can solve only half of them. Some failures of emiqp.m
result from the penalty objective getting harder to minimize as the penalty multiplier is
increased (see §18.4) while others result from its use of iqp.m to solve the subproblems.

Our routines sqp.m and iqp.m work on the test problems that I tried, but they are less
likely than näıve realizations of other algorithms to work for problems that are badly behaved.
In sequential quadratic programming everything hinges on solving the subproblems. Because
the quadratic programs are manufactured by the SQP or IQP algorithm they are likely to
have various pathologies, so reliable performance demands that the subproblem solver be
extremely robust. The qpeq.m and qpin.m routines of §22 meet the pedagogical needs of this
introduction, but they are not sufficiently bulletproof to serve in production code. In addition
to solving subproblems that are nonconvex, a practical implementation of the sequential
quadratic programming idea must somehow deal with subproblems that are unbounded.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.4 Exercises 767

When iqp.m tries to solve b1 from its catalog starting point x0 = [1
2
, 1
2
]⊤, for example, it fails

because a subproblem is unbounded.
Nonconvexity can be somewhat mitigated by using a line search rather than taking full

steps [5, p534-535]. In deciding whether to accept a trial step or instead try a shorter one
it is common practice to insist that (xk+1,λλλk+1) be better than (xk,λλλk) in the sense that the
move decreases a merit function [4, p576-580]; recall from §21.3.3 that this ensures each step
reduces either the objective or the infeasibility or both. Merit functions have a theory of
their own and introduce numerous further complications [5, §15.4].

Sequential quadratic programming uses Hessians of the constraints as well as of the
objective, so unless n is small evaluating them requires a lot of arithmetic. Practical imple-
mentations therefore often use quasi-Newton approximations for either the Hessians of the
individual functions or the Hessian of the Lagrangian [4, p576] [5, p536-540], and this can
also make the algorithm more robust against nonconvexity.

Each quadratic program is supposed to approximate the Lagrangian and constraints of
the original problem in the neighborhood of xk, so in solving the subproblem we might use
a restricted-steplength algorithm (see §17.2) or trust-region approach (see §17.3) to ensure
that q(x) remains a good model of the original Lagrangian. If the subproblem is unbounded
it will fail this test, and in that case the step taken in sqp.m or iqp.m might be shortened
to produce a subproblem that is more useful.

23.3 Exercises

23.3.1[E] How are the classical barrier method and the interior-point algorithm for non-
linear programming similar to each other? How are the classical penalty method and the
augmented Lagrangian algorithm similar to each other? How do these two algorithm types
differ from each other, and from the quadratic programming methods discussed in §22? What
characterizes a feasible-point method? Are all of the algorithms described in this Chapter
feasible point methods? Do they all use some feasible point method?

23.3.2[E] How does a reduced-gradient method differ from a reduced-Newton method?
How does rsdeq.m differ from rneq.m?

23.3.3[P] Use rsdeq.m to solve the qp1 problem. How many steepest-descent iterations
are required to satisfy the convergence criterion norm(rg) ≤ 10−6?

23.3.4[E] In rsdeq.m, the vector tk is the projection of the iterate xk onto the flat defined
by the equality constraints. (a) Why is it necessary to project xk onto the flat? (b) Is tkp
also in the flat? If so, what causes it to be in the flat?

23.3.5[P] Continue the calculations illustrated in §23.1.1 to find the iterate t3 generated
by rsdeq.m in solving problem rnt. What is norm(rg) at the corresponding x3?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

768 Feasible-Point Methods

23.3.6[H] Show that a set of differentiable nonlinear constraints fi(x) = 0, i = 1 . . .m can
be approximated near xk by the linear constraints Ax = b where

A =





∇f1(xk)⊤
...

∇fm(xk)⊤





and b =





∇f1(xk)⊤xk − f1(x
k)

...

∇fm(xk)⊤xk − fm(x
k)





.

23.3.7[E] Describe in words the generalized reduced-gradient algorithm. What is the
dimension of the flat in which the steepest-descent step is taken? Why is it necessary to
restore feasibility after taking the steepest-descent step? In what direction does the algorithm
move to make this correction?

23.3.8[E] How are the nullspace of the m× n matrix A and the range space of A⊤ related?
What are their dimensions? What MATLAB command can be used to find a basis for each?
Show that each vector in the nullspace of A is orthogonal to every vector in the range space
of A⊤.

23.3.9[H] What makes two vector spaces orthogonal complements of each other? How
can a vector x be decomposed into components lying in the nullspace of a matrix A and the
range space of A⊤? What is a basis matrix, how can it be constructed, and what makes it an
orthogonal matrix? How can we find the inverse of a basis matrix?

23.3.10[H] In its feasibility-restoration step, how does the GRG algorithm determine how
far to move into the range space of A⊤? Explain the formulas used in §23.1.2 for the function
vector f(ps) and Jacobian matrix J(ps).

23.3.11[E] Suppose R contains a basis for the range space of an n×m matrix A⊤. (a) What
are the dimensions of R? (b) How can we compute the projection of a vector v ∈ Rn onto
the range space of A⊤?

23.3.12[H] Explain each multiplication by Z, Z’, R, or R’ in grg.m. What do they do?

23.3.13[P] In §23.1.2 we generalized the reduced-gradient algorithm for nonlinear con-
straints. In a similar way, generalize the reduced-Newton algorithm, as implemented in the
rneq.m routine of §22.3, for nonlinear constraints. Compare the performance of your routine
to that of grg.m when both are used to solve the grg4 problem.

23.3.14[H] The generalized reduced-gradient algorithm of §23.1.2 works for problems hav-
ing equality constraints fi(x) = 0. Suppose we add slack variables s to rewrite the constraints
of an inequality-constrained problem as equalities. If grg.m finds a solution (x⋆, s⋆) to the re-
formulated problem in which coincidentally s ≥ 0, is x⋆ optimal for the inequality-constrained
problem?

23.3.15[P] Can the generalized reduced-gradient idea be used for solving inequality-con-
strained problems by embedding it in an active-set algorithm such as the one we implemented
in qpin.m? Consider the following approach. Starting from a feasible x0, examine the values
of the constraint functions at xk to determine which are tight and which are slack. Linearize

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.4 Exercises 769

the tight constraints about that point and do one step of steepest descent in the flat defined
by the active constraints. Then use Newton’s method for systems to restore feasibility for
the original constraints and produce xk+1. Write a MATLAB routine to implement this idea,
and test it on the sqp1 and arch4 problems.

23.3.16[H] Show that problem sqp1 of §23.2.0 is strictly convex. Verify that its La-
grange conditions are satisfied at x⋆ = [−0.263290964724888;−0.964716470209894]⊤ with
λ⋆ = 0.536900432125477.

23.3.17[H] In §23.2.1 I derived the Jacobian matrix that must be used in Newton’s method
for systems to solve the Lagrange conditions of a general equality-constrained nonlinear
program. Explain in detail where the submatrices of this Jacobian come from.

23.3.18[P] When the Newton-Lagrange algorithm implemented in ntlg.m is used to solve
the sqp1 problem from (x0, λ0) = ([0, 1]⊤, 0), it does not find x⋆. Explain why.

23.3.19[E] Explain how solving a certain quadratic program is equivalent to taking one step
of Newton’s method for systems in the Newton-Lagrange algorithm. Why, if the quadratic
program is solved numerically, is it not completely equivalent?

23.3.20[E] The sequential quadratic programming algorithm implemented in sqp.m is like
the Newton-Lagrange algorithm implemented in ntlg.m except that it finds the p part of
each correction step ∆ in Newton’s method for systems by solving a quadratic program.
Then it has to find the µµµ part of ∆ separately. How is this an improvement over ntlg.m?

23.3.21[P] Use sqp.m to solve (a) the grg2 problem; (b) the grg4 problem.

23.3.22[P] Revise sqp.m to find mu by invoking the getlgm.m routine of §22.2.3 rather than
using the open code of 26-29 . Test for a nonzero return code from getlgm.m and if it fails
return rc=3 from sqp.m.

23.3.23[E] In §23.2.0 we used Newton’s method for systems of equations to solve the opti-
mality conditions for an equality-constrained nonlinear program. In the interior point algo-
rithm of §21.3 we used Newton’s method for systems to solve the optimality conditions for an
inequality-constrained nonlinear program. In what other ways are the resulting algorithms
similar but (quite) different?

23.3.24[E] Describe the IQP approach to sequential quadratic programming. How does
iqp.m differ from sqp.m, and why? In iqp.m, why is mustar , lambda?

23.3.25[H] Suppose that some nonlinear program has m inequality constraints fi(x) ≤ 0 and
that Ā is a matrix whose rows are the transposes of the gradients of the m̄ ≤ m constraints
that are active at xk. (a) What are the dimensions of Ā⊤? (b) If λ̄λλ is a vector of the Lagrange
multipliers corresponding to the active constraints, what is its length? (c) Show that

m∑

k=1

λi∇fi(xk) = Ā⊤λ̄λλ.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

770 Feasible-Point Methods

23.3.26[P] In §23.2.3 I explained why the Lagrange multipliers µµµ returned by qpin.m to
iqp.m are different from the Lagrange multipliers λλλ for the original nonlinear program, but
the reason I gave is not the only reason. Study the calculation of the Lagrange multipliers in
qpin.m and propose a reason why the multipliers it returns might be slightly wrong. Hint:
when is Abar updated?

23.3.27[P] In iqp.m, why is it necessary to initialize the Lagrange multipliers? How are
they initialized? Conduct experiments to determine how the performance of the algorithm
is affected by using µµµ0 = 0 or µµµ0 = 1 instead.

23.3.28[P] In §24 we will study the following convex inequality-constrained nonlinear pro-
gram, which was introduced in Exercise 21.4.30 as problem ek1.

minimize
x∈R2

f0(x) = (x1 − 20)4 + (x2 − 12)4

subject to f1(x) = 8e(x1−12)/9 − x2 + 4 ≤ 0

f2(x) = 6(x1 − 12)2 + 25x2 − 600 ≤ 0

f3(x) = −x1 + 12 ≤ 0

(a) Use iqp.m to solve ek1 from its catalog starting point x0 = [18, 21]⊤. (b) At each iteration
the algorithm computes xk+1 = xk + p, so p = xk+1 − xk. Show that its linear approximation
of the constraints can be written as Ap ≤ b, where

A =





∇f1(xk)⊤
∇f2(xk)⊤
∇f3(xk)⊤




and b =





− f1(xk)
− f2(xk)
− f3(xk)




.

(c) This problem has n = 2, so each constraint is approximated by a straight line, and the
equations of these straight lines are given by Axk+1 = b + Axk. Write a MATLAB program
that draws the zero contours of the three constraints, finds A and b at x0, and plots the
line approximating each constraint. These lines should form a polyhedral approximation to
the feasible set. (d) Run iqp.m for one iteration and plot the point x1. With reference to
the figure formed by the linear approximation of the constraints, explain why this point is
produced by the first iteration of iqp.m.

23.3.29[P] Use iqp.m solve the p2 problem of §18.1.

23.3.30[P] When iqp.m solves the moon problem of §16.3 from x0 = [−2, 2]⊤ it finds the
optimal point [−1

4
,+
√
15/16]⊤. Find a starting point from which iqp.m converges to the other

optimal point [−1
4
,−
√
15/16]⊤ instead.

23.3.31[P] The iqp.m routine of §23.2.3 is capable of solving the b1 problem of §19.0 if
x0 = [−2, 2]⊤, but not if x0 = [1

2
, 1
2
]⊤. Show that for this catalog starting point iqp.m fails

because its first quadratic subproblem is unbounded.

23.3.32[E] Show that if two nonlinear constraints f1(x) ≤ 0 and f2(x) ≤ 0 are linearized at
a point that satisfies them both, then the linear approximations are consistent at that point.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

23.4 Exercises 771

23.3.33[H] In the incon problem of §23.2.4, f2(x) is a nonconvex function and linearizing
the constraints at a point where x1 = 1 results in linear constraints that are inconsistent. If
a set of constraints fi(x) ≤ 0 are all convex functions, is it possible for their linearizations to
be inconsistent?

23.3.34[E] Why precisely do grg.m, sqp.m, and iqp.m fail if at some iterate xk the lin-
earized constraints are inconsistent? Describe a reformulation of the standard-form nonlinear
program that can be used to remove the threat of inconsistent constraint linearizations.

23.3.35[H] In the elastic mode formulation, what is t⋆ if the original constraints are (a) con-
sistent; (b) inconsistent?

23.3.36[H] The elastic mode formulation of a standard-form nonlinear program is feasible
even if the original constraints are not. The following problem has inconsistent constraints
and is therefore infeasible.

minimize
x∈R2

f0(x) = x1 + x2

subject to f1(x) = x1 + x2 ≤ 1

f2(x) = x1 + x2 ≥ 2

(a) Write down the elastic mode formulation of this problem and show that it is feasible.
(b) Use the KKT method and take a limit to solve the penalty problem analytically.

23.3.37[E] How are the soft-margin SVM model and the max penalty problem related to
the elastic mode formulation of a standard-form nonlinear program?

23.3.38[E] In §23.2.4 we implemented the quadratic max penalty algorithm in emiqp.m.
(a) Briefly describe the algorithm in words. (b) In emiqp.m, what does the vector yk repre-
sent? How is it initialized? (c) When emiqp.m invokes iqp.m it passes the function pointers
@em, @emg.m, and @emh.m. What do these routines compute? (d) How do em.m, emg.m, and
emh.m know the current value of the penalty multiplier? (e) List the possible return code
values rc from emiqp.m and explain what each signifies.

23.3.39[H] The interface routines em.m, emg.m, and emh.m compute the values and deriva-
tives of the functions in the elastic mode penalty problem. (a) Derive formulas for these
quantities in terms of the values and derivatives of the functions in the original nonlinear
program. (b) Explain how the code in these routines evaluates your formulas to compute f,
g, and H.

23.3.40[P] Use emiqp.m to solve the nset problem of §16.10.

23.3.41[P] The iqp.m and emiqp.m routines give different results for the incon problem.
(a) Why does iqp.m stop with rc=4 while emiqp.m returns rc=0? (b) Why does emiqp.m

return x⋆ = x0? (c) Investigate in detail the failure of iqp.m and qpin.m to solve this
problem.

23.3.42[P] The convergence criterion I used in iqp.m is that 33 norm(p) <= epz, but the
Lagrange multipliers mu returned by qpin.m are used 19,21 in constructing the quadratic

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

772 Feasible-Point Methods

approximation so an argument can be made that convergence has not been achieved unless
mu also stops changing. (a) Modify iqp.m to also enforce this requirement for convergence.
(b) Using this version of iqp.m, try solving the incon problem with emiqp.m. Does it solve
the problem now? Explain.

23.3.43[E] State three possible reasons why emiqp.m might fail.

23.3.44[E] How might qpeq.m and qpin.m (and hence sqp.m and iqp.m) be made more
robust? Describe strategies to deal with (a) nonconvexity of the Lagrangian; (b) unbounded
quadratic program subproblems. (c) How might the computational workload of the Hessian
evaluations in a sequential quadratic programming implementation be reduced?

23.3.45[P] If the quadratic subproblem that is constructed at iteration xk of a sequential
quadratic programming algorithm is unbounded, that suggests we have stepped too far.
(a) Outline modifications to iqp.m and qpin.m that will detect this condition and shorten
the step to try again. (b) Revise the code to implement your plan. (c) Test the new version
of iqp.m by using it to solve problem b1 from x0 = [1

2
, 1
2
]⊤. Do your modifications effectively

reject unbounded quadratic subproblems and thereby permit this problem to be solved?

23.3.46[H] The quadratic max penalty algorithm proposed in §23.2.4 constructs each sub-
problem (inside iqp.m) by making a quadratic approximation to the Lagrangian of the
penalty problem and a linear approximation to each of its constraints. A simpler algorithm
constructs the quadratic subproblems by making a quadratic approximation to the objective
of the penalty problem and a linear approximation to each of its constraints, and uses qpin.m
directly to solve each subproblem. Unfortunately this approach often converges to a point
that is not optimal. Why? Hint: if m > 1 that non-optimal point is typically an intersection
of zero contours of the constraints.

23.3.47[H] Several of the programs available on the NEOS web server (see §8.3.1) are based
on the algorithms discussed in this Chapter [5, §18.8]. By searching the web, find out which
of the programs are based on which of the algorithms.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24

Ellipsoid Algorithms

The story of nonlinear programming has led us from pure random search, the most prim-
itive and mindless numerical technique, to sequential quadratic programming, the most
sophisticated and complex. To conclude our study of methods we now return almost to the
beginning, with a simple approach whose haphazard meanderings, like those of pure random
search, appear almost aimless. Ellipsoid algorithms are effective only for problems having
no more than a few dozen variables, but they are robust and easy to use and have an elegant
theoretical basis that makes them quite different from the other methods we have studied.

24.1 Space Confinement

In implementing the algorithms of §10–§23 I have often taken full descent steps for simplicity,
so the role that variable bounds play in governing our search for x⋆ has not always been
obvious. But even if the bounds are not used explicitly in line searching they are implicitly
present whenever we select a plausible starting point, and in practical applications they are
essential for the other reasons outlined in §9.5.

If the bounds for a problem have been properly chosen, we can be sure that x⋆ ∈ [xL, xH]
as illustrated below. x2

x1
xL1 xH1

xH2

xL2

•x⋆

Suppose that it were possible, by performing some calculations involving the bounds and
the functions fi(x) that define the problem, to construct a smaller box that also encloses x⋆.
If by repeating the process we could produce a sequence of progressively smaller boxes each
containing x⋆, such as those drawn dashed in the figure, then in the limit we would know
the point exactly.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

774 Ellipsoid Algorithms

Although it is possible to realize this space-confinement idea by dicing the region
enclosed by the bounds into successively smaller hyperrectangles [1, p675-683], it is alge-
braically more convenient to use simpler geometric figures. The Nelder-Mead algorithm

[121] [120, §14], a venerable technique for unconstrained nonlinear programming, attempts
to envelop x⋆ in successively smaller simplices; ellipsoid algorithms are so called because
they attempt to envelop x⋆ in successively smaller ellipsoids.

One of the ellipsoid algorithm variants we will study also provides an easy way to pro-
gressively tighten the bounds, allowing us to carry out the process suggested by the picture.

24.2 Shor’s Algorithm for Inequality Constraints

The simplest ellipsoid method is due to Shor [143]. To illustrate the basic idea of Shor’s
algorithm I will graphically perform its first few steps in solving the ek1 problem below
(this problem [3, p315] was first introduced in Exercise 21.4.30; see §28.7.29).

minimize
x∈R2

f0(x) = (x1 − 20)4 + (x2 − 12)4

subject to f1(x) = 8e(x1−12)/9 − x2 + 4 ≤ 0

f2(x) = 6(x1 − 12)2 + 25x2 − 600 ≤ 0

f3(x) = −x1 + 12 ≤ 0

x⋆ ≈ [15.63, 15.97]⊤

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x2

x1

f 1
(x
)
=
0

f 2
(x
)
=
0

f3(x) = 0

•x
⋆

f0(x) ≈ 4.8

f0(x
⋆) ≈ 614.2

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.2 Shor’s Algorithm for Inequality Constraints 775

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x2

x1

xH

2

xL

2

xL

1 xH

1

the bounds contain x⋆

•x
⋆

E0 = the smallest ellipse

containing the bounds

•x
0
= center of E0

f2(x) ≤ 0
violated at x0

f0(x) = f0(x
⋆)

We begin with bounds [xL, xH] on the variables. These bounds contain the feasible set so
they must include x⋆, and the ellipse enclosing the bounds also contains x⋆. Many ellipses
can be found that pass through the corners of the box, and we pick the smallest of them to
be E0. The center x0 of E0 is the midpoint of the bounds. From the picture we can see that
x0 violates the constraint f2(x) ≤ 0; the other two constraints happen to be satisfied there.

On the next page I have drawn the contour f2(x) = f2(x
0) through x0 and a line H0

tangent to the contour at that point. This line divides E0 in half. All of the points in the
upper-right half of E0 are even more infeasible for f2(x) ≤ 0 than x0 is, so we can throw
that half of E0 away. To do that we translate H0 parallel to itself, in the direction of satis-
fying the constraint, until it is tangent to E0 at the point p

0. Then we construct a new ellipse

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

776 Ellipsoid Algorithms

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x2

x1

•x⋆

E0

•x0

E1 = smallest ellipse passing through p0

and the two points that are E0 ∩ H0

•x
1

f2 (x
)
=

f2 (x
0)

H0 = tangent line at x0H0 translated in feasible direction
until tangent to E0

p0

E1 as the smallest one passing through p0 and the two points that are the intersection of
E0 with H0. This is called a phase 1 iteration of the algorithm. As we shall see later,
the center x1 of E1 is on the line between x0 and p0 (in R2 it is one-third of the way).
The new point x1 happens to be feasible, so a violated constraint can’t be used to bisect E1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.2 Shor’s Algorithm for Inequality Constraints 777

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x2

x1

E1

E2

•x⋆

•x
1

• x2

f0(x) = f0(x
1)

H1

H1 translated in direction
of decreasing objective

p1

However, we can see from the contour of f0(x) passing through x1 that the top half of E1
contains only points having a higher objective value than f0(x

1) and can therefore be thrown
away. As before we translate H1 parallel to itself until it is tangent to E1 at p1 and then
construct E2 as the smallest ellipse passing through p1 and E1∩H1. This is called a phase 2

iteration of the algorithm.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

778 The Algebra of Shor’s Algorithm

Each bisection of an ellipse by a line through its center is called a center cut. When the
cutting line is tangent to the contour of a violated constraint (as is H0) the iteration is called
a feasibility cut; when it is tangent to a contour of the objective (as is H1) the iteration
is called an optimality cut. The new point x2 happens to violate the constraint f1(x) ≤ 0

so the next step in the algorithm will be another feasibility cut, but phase 1 and phase 2
iterations typically occur in an irregular sequence as the algorithm progresses. Each ellipse
Ek is smaller than the previous one Ek−1, and each contains x⋆, so for this problem the xk

converge to x⋆ as k → ∞.

24.3 The Algebra of Shor’s Algorithm

To complete the solution of a nonlinear program by carrying out Shor’s method graphically
would be impractical in R2 and hopeless in higher dimensions. Fortunately it is possible to
find Ek, Hk, p

k and xk by doing algebra rather than geometry, and then we will be able (in
§24.4) to implement the algorithm by doing numerical calculations.

24.3.1 Ellipsoids in Rn

In §14.7.2 I described an ellipsoid centered at the origin as the locus of points satisfying
x⊤�x = 1, where � is a positive-definite symmetric matrix. There it was convenient to
call the matrix Q, but in discussing the ellipsoid algorithm it is more convenient to call the
matrix Q−1 and describe the ellipsoid centered at the iterate xk as

Ek =
{

x ∈ Rn
∣
∣
∣ (x − xk)⊤Q−1k (x − xk) = 1

}

.

Then it will turn out that Qk+1 can be obtained from Qk by a simple rank-one update, while
Q−1

k+1 depends on Q−1
k

in a much more complicated way (the two updates are related by
the Sherman-Morrison-Woodbury formula of §13.4.4; see Exercise 24.10.22). The resulting
algorithm will manipulate only Q, so that Q−1 is never actually needed.

With the definition above we can use linear algebra to find the ellipsoid E0 passing through
the corners of the box B =

{

x ∈ Rn
∣
∣
∣ xL ≤ x ≤ xH

}

that is formed by the bounds. To touch

all of the corners E0 must be a right ellipsoid, so from symmetry x0 = 1
2
(xL + xH). To find

Q−10 it is helpful to make a transformation of coordinates that centers the box B at the origin
and scales its sides to unit length. To do this we can let z j = (x j − x0

j
)/(xH

j
− xL

j
), or

z =





1/(xH1 − xL1) 0 · · · 0

0 1/(xH2 − xL2) · · · 0

0 0 0
...

...
. . .

...

0 0 0

0 0 · · · 1/(xHn − xLn)









x1 − x01
...

xn − x0n





=W(x − x0).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.3.1 Ellipsoids in Rn 779

Then (x − x0) = W−1z. To find the z–space representation of the box B, we can reason as
follows. If x ∈ B then

xL ≤ x ≤ xH

xL − x0 ≤ x − x0 ≤ xH − x0

xL − 1
2
(xL + xH) ≤ W−1z ≤ xH − 1

2
(xL + xH)

−1
2
(xH − xL) ≤ W−1z ≤ +1

2
(xH − xL)

−1
2
W(xH − xL) ≤ z ≤ +1

2
W(xH − xL).

But W(xH − xL) = 1, so

B =
{

z
∣
∣
∣ − 1

2
1 ≤ z ≤ +1

2
1

}

.

The transformation to z–space has made B a hypercube of
side length 1 centered at the origin, so the smallest ellipsoid
passing through its corners is an n–dimensional hypersphere.
The picture to the right shows the box and its circumscribing
hypersphere for z ∈ R2, where the hypersphere is a circle of
radius

r =

√
(

1

2

)
2

+

(

1

2

)
2

=

√

2

(

1

2

)
2

=

√
2

2
.

z1

z2

r

1
2

1
2

B

E0

For z ∈ Rn, the hypersphere has radius

r =

√
(

1

2

)
2

+ · · · +
(

1

2

)
2

=

√

n

(

1

2

)
2

=

√
n

2
︸ ︷︷ ︸

n terms

so its equation is z⊤z = r2 = n/4 or z⊤(4/n)z = 1. Above we found that z = W(x − x0) so in
x–space the hypersphere is the ellipsoid whose equation is

[

W(x − x0)
] ⊤
(4/n)

[

W(x − x0)
]

= 1 or (x − x0)⊤ W⊤(4/n)W
︸ ︷︷ ︸

Q−10

(x − x0) = 1.

Thus

Q−10 =
4

n
W⊤W =

4

n





1/(xH1 − xL1)
2 0 · · · 0

0 1/(xH2 − xL2)
2 · · · 0

0 0 0
...

...
. . .

...

0 0 0

0 0 · · · 1/(xHn − xLn)
2





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

780 The Algebra of Shor’s Algorithm

and

Q0 =
n

4





(xH1 − xL1)
2 0 · · · 0

0 (xH2 − xL2)
2 · · · 0

0 0 0
...

...
. . .

...

0 0 0

0 0 · · · (xHn − xLn)
2





.

So from the bounds [xL, xH] we can easily find the x0 and Q0 defining the starting ellipsoid
E0. Here is a MATLAB function that performs the calculation.

function [xzero,Qzero]=eainit(xl,xh)
% find the smallest ellipsoid enclosing given bounds

xzero=(xl+xh)/2; % midpoint of bounds
n=size(xzero,1); % number of variables
Qzero=zeros(n,n); % zero matrix
for j=1:n % fill in

Qzero(j,j)=(n/4)*(xh(j)-xl(j))^2; % the diagonal
end % elements

end

To find the initial ellipsoid in solving ek1, illustrated above, I chose the bounds [3, p316]

xH =

[

18 + 9/
√
2, 21 + 13/

√
2
] ⊤

xL =
[

18 − 9/
√
2, 21 − 13/

√
2
] ⊤ so that

xH − xL =
[

18/
√
2, 26/

√
2
] ⊤

xH + xL = [36, 42]⊤.

They yield x0 = 1
2
(xH + xL) = [18, 21]⊤ and

Q0 =
2

4

[

(18/
√
2)2 0

0 (26/
√
2)2

]

=

[

81 0

0 169

]

.

The Octave session on the next page shows eainit.m finding these results 1>-3> .

Although the algorithm implementation will use and update Qk rather than its inverse,
to plot an ellipsoid Ek we need to use the matrix Q−1

k
that appears in its definition. For the

starting ellipse we found above,

Q−10 =

[
1
81

0

0 1
169

]

.

The Octave session shows 5>-7> how, using x0 and Q−10 , the ellipse.m routine of §14.7.3
can be used to draw the ellipse E0 in the first figure of the ek1 graphical solution.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.3.2 Hyperplanes in Rn 781

octave:1> xl=[18-9/sqrt(2);21-13/sqrt(2)]
xl =

11.636
11.808

octave:2> xh=[18+9/sqrt(2);21+13/sqrt(2)]
xh =

24.364
30.192

octave:3> [xzero,Qzero]=eainit(xl,xh)
xzero =

18
21

Qzero =

81.00000 0.00000
0.00000 169.00000

octave:4> Qinv=inv(Qzero)
Qinv =

0.012346 -0.000000
0.000000 0.005917

octave:5> [xt,yt,rc,tmax]=ellipse(xzero(1),xzero(2),Qinv,25);
octave:6> plot(xt,yt)
octave:7> axis(’equal’)
octave:8> quit

24.3.2 Hyperplanes in Rn

Each hyperplane generated by Shor’s algorithm is tangent to a contour of one of the functions
in the optimization problem. If Hk is tangent at x

k to the contour fi(x) = fi(x
k), it is said to

support the contour at xk (see §11.2) and it can be described as

Hk =

{

x ∈ Rn
∣
∣
∣ ∇fi(xk)⊤(x − xk) = 0

}

.

In our graphical solution of ek1 the hyperplane H0 supports the contour f2(x) = f2(x
0) at

x0 = [18, 21]⊤, and using the definition above we can find its equation.

f2(x) = 6(x1 − 12)2 + 25x2 − 600

∇f2(x0) =
[

12(x01 − 12)
25

]

=

[

72

25

]

On H0, ∇f2(x0)⊤x = ∇f2(x0)⊤x0 =
[

72 25
]
[

18

21

]

= 1821.

Thus the hyperplane is
72x1 + 25x2 = 1821.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

782 The Algebra of Shor’s Algorithm

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x0

f2 (x
)
=

f2 (x
0)

H0

∇f2(x0)

The graph above is an excerpt of the second picture in the §24.2 graphical solution of ek1,
showing part of the contour f2(x) = f2(x

0), its gradient ∇f2(x0), and the supporting hyperplane
H0. For every point x ∈ H0 the vector (x− x0) is orthogonal to ∇f2(x0), so ∇f2(x0)⊤(x− x0) = 0.

The gradient vector is about 76 units long so it can’t be drawn to scale in the frame of
the picture, but H0 is determined by the direction of the gradient rather than its length. In
the definition of Hk we could replace ∇fi(xk) by g = ∇fi(xk)/||∇fi(xk)||, the normalized gradient
or unit normal to the hyperplane, and we will also find other places where it is possible to
use g in place of ∇fi(x).

In finding H0 above I rearranged the equation in the definition as ∇fi(xk)⊤x = ∇fi(xk)⊤xk,
but ∇fi(xk)⊤xk is just a scalar constant (for this cut it came out 1821). Changing the constant
translates the hyperplane but does not affect its slope, so every hyperplane parallel to Hk

has the equation g⊤x = κ for some constant κ.

As we study ellipsoid algorithms it will often be helpful to plot some hyperplane in R2.
Given xk and ∇fi(xk), it is not difficult to find the equation as we did above and then to
work out the coordinates of the endpoints of the line to be drawn. Despite the fact that this
process is trivial (or perhaps because it is trivial) it is also tedious and easy to get wrong, so
I wrote the hplane.m routine listed on the next page to automate the calculations. Its input
parameters 1 are the gradient vector del, a point p on the hyperplane, and scalars a and b

specifying how far the line should extend on each side of that point. The code begins by 7

normalizing the gradient and 8-23 handling special cases. If the gradient is slanted 25-28 it
sets the endpoints of the line segment by using the formulas derived below the listing. These
Octave commands plot the H0 that is shown above and in §24.2.

octave:1> [xhp,yhp]=hplane([72;25],13.5,[18;21],18.3)
octave:2> plot(xhp,yhp)
octave:3> axis(’equal’)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.3.3 Finding the Next Ellipsoid 783

1 function [xt,yt]=hplane(del,a,p,b)
2 % return in xt and yt the endpoints of a line segment
3 % that is part of the hyperplane del’x=del’p
4 % and goes from a units on one side of p to b units on the other
5
6 xt=zeros(2,1); yt=zeros(2,1); % xt and yt are columns
7 g=del/norm(del); % unit normal to H
8 if(g(1) == 0 && g(2) == 0) return; end % if zero give up
9
10 if(g(1) == 0) % if gradient is vertical
11 yt(1)=p(2); % draw
12 xt(1)=p(1)-a; % a
13 yt(2)=p(2); % horizontal
14 xt(2)=p(1)+b; % line
15 return
16 end
17 if(g(2) == 0) % if gradient is horizontal
18 xt(1)=p(1); % draw
19 yt(1)=p(2)-a; % a
20 xt(2)=p(1); % vertical
21 yt(2)=p(2)+b; % line
22 return
23 end
24
25 xt(1)=p(1)-a*g(2); % gradient is slanted
26 yt(1)=p(2)+a*g(1); % draw a line
27 xt(2)=p(1)+b*g(2); % orthogonal to
28 yt(2)=p(2)-b*g(1); % the gradient
29
30 end

In the construction to the right the thick line
is part of the hyperplane orthogonal to g at
the point p. The gradient vector makes an
angle θ with the horizontal so the hyperplane
makes the angle φ = π/2− θ with the horizon-
tal. The projections of the a and b parts of
the line onto the coordinate directions are

a cos(φ) = a sin(θ) = ag2

a sin(φ) = a cos(θ) = ag1

b cos(φ) = b sin(θ) = bg2

b sin(φ) = b cos(θ) = bg1 x1

x2

(xt(1),yt(1))

a
si
n
(φ
)

a

φ
a cos(φ)

•
p

b cos(φ)

g

θ
g1

g21

b
si
n
(φ
)

b

(xt(2),yt(2))

so the endpoints of the line are given by the formulas 25-28 in the code.

24.3.3 Finding the Next Ellipsoid

Given xk and Qk defining the ellipsoid

Ek =
{

x
∣
∣
∣ (x − xk)⊤Q−1k (x − xk) = 1

}

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

784 The Algebra of Shor’s Algorithm

and the hyperplane
Hk =

{

x
∣
∣
∣ g⊤(x − xk) = 0

}

cutting Ek through its center, Shor’s algorithm finds xk+1 and Qk+1 defining an ellipsoid

Ek+1 =
{

x
∣
∣
∣ (x − xk+1)⊤Q−1k+1(x − xk+1) = 1

}

that is the smallest one passing through pk and Ek∩Hk. In this Section we will derive update
formulas [3, p318] that give xk+1 and Qk+1 in terms of xk, Qk, and g [98, §2.2].

To study the properties of Ek+1 it is again helpful to make a transformation of coordinates,
this time to a space in which Ek is shifted and scaled to be a hypersphere of radius 1 centered
at the origin. We can do this by writing Qk as the product of its Cholesky factors, Qk = U⊤U,
and letting w = U−⊤(x − xk). Then (x − xk) = U⊤w so

(x − xk)⊤Q−1k (x − xk) = [U⊤w]⊤[U⊤U]−1[U⊤w] = w⊤U[U−1U−⊤]U⊤w = w⊤w

and
Ek =

{

w
∣
∣
∣ w⊤w = 1

}

.

Making the same change of variables in the definition of Hk, g
⊤(x − xk) = g⊤U⊤w = (Ug)⊤w so

in w–space the gradient vector becomes v = Ug and

Hk =

{

w
∣
∣
∣ v⊤w = 0

}

.

The pictures on the next page show a typical iteration when w ∈ R2, in which Ek+1 is the
next ellipsoid that we are trying to find. (These ellipses and hyperplanes are actually those
of the first step in the §24.2 graphical solution of ek1, transformed to w–space).

The algorithm moves Hk parallel to itself in the −v direction until it is tangent to Ek at
pk. Because Ek is a hypersphere the point pk is in the direction −v from the center of Ek
(which we made the origin) and because Ek has unit radius pk is a distance of 1 from the
origin. Thus pk

= −v/||v||; in w–space, pk is just a unit normal to Hk.
We can also transform Ek+1 to w–space. First notice that

(x − xk+1) = (x − xk) + xk − xk+1

= U⊤w − (xk+1 − xk)
= U⊤

[

w − U−⊤
(

xk+1 − xk
)]

= U⊤
(

w − wk+1
)

.

Then we can write

(x − xk+1)⊤Q−1k+1(x − xk+1) =
[

U⊤(w − wk+1)
] ⊤
Q−1k+1

[

U⊤(w − wk+1)
]

= (w − wk+1)⊤
[

UQ−1k+1U
⊤
]

(w − wk+1)

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.3.3 Finding the Next Ellipsoid 785

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Ek

wk
= 0

pk

− v

||v||

Hk

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

EkEk+1

wk

pk

•
wk+1p

k
√ ρ

−
s √
σ

Hk

so the ellipsoid matrix Q−1
k+1 of Ek+1 is transformed to G−1 = UQ−1

k+1U
⊤ and in w–space

Ek+1 =
{

w
∣
∣
∣

(

w − wk+1
)
⊤G−1

(

w − wk+1
)

= 1
}

.

The geometry of the iteration in w–space makes the vector from wk+1 to pk collinear with
the vector from wk to pk, and this has three important consequences. First, wk+1 falls on that
line, so wk+1

= wk
+αpk

= αpk for some step α ∈ [0, 1]. Second, because the vector from wk+1

to pk points in the direction of the minor axis of Ek+1, the w–space matrix G−1 of Ek+1, and
hence also its inverse G, must by construction have −v/||v|| = pk as a unit eigenvector (see
§14.7.2). I will use ρ to denote the associated eigenvalue of G, so Gpk

= ρpk. Third, from
symmetry all the other axes of Ek+1 have the same length, so the unit eigenvectors of G in
those directions all have the same associated eigenvalue, which I will call σ. The eigenvalues
of G−1 are thus 1/ρ and 1/σ, so the half-axes of Ek+1 have lengths 1/

√
1/σ and 1/

√

1/ρ as
shown in the picture on the right. There I call the major-axis unit eigenvector s.

Many ellipsoids Ek+1 can be constructed passing through pk and Ek ∩ Hk. Each can be
characterized by the eigenvalues ρ and σ, which in turn depend on α. To investigate this
dependence it is helpful to do yet another transformation of coordinates that rotates the
picture to make Ek+1 a right ellipse centered at the origin of z–space, as shown on the next
page. Let S be a matrix whose columns are the unit eigenvectors of G, arranged so that pk

is its rightmost column, and let Λ be a diagonal matrix of the corresponding eigenvalues.

S =
[

s1 s2 · · · sn−1 pk
]

Λ =





σ
. . .

σ

ρ





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

786 The Algebra of Shor’s Algorithm

Then GS = SΛ so G = SΛS−1 and G−1 = SΛ−1S−1. But S is an orthogonal matrix because
its columns s j are mutually orthogonal, so S−1 = S⊤ and G−1 = SΛ−1S⊤. Substituting this
expression for G−1 into the definition of Ek+1 and letting S⊤(w − wk+1) = z we find

(w − wk+1)⊤SΛ−1S⊤(w − wk+1) =
[

S⊤(w − wk+1)
] ⊤
Λ
−1

[

S⊤(w − wk+1)
]

Ek+1 =
{

z
∣
∣
∣ z⊤Λ−1z = 1

}

.

Also, w − wk+1
= S−⊤z = Sz so w = wk+1

+ Sz. Then

w⊤w = (wk+1
+ Sz)⊤(wk+1

+ Sz) = (wk+1)⊤wk+1
+ 2z⊤S⊤wk+1

+ z⊤z = (z + S⊤wk+1)
⊤
(z + S⊤wk+1)

so
Ek =

{

z
∣
∣
∣

[

z + S⊤wk+1
] ⊤ [

z + S⊤wk+1
]

= 1
}

and v⊤w = v⊤(wk+1
+ Sz) so

Hk =

{

z
∣
∣
∣ v⊤Sz = −v⊤wk+1

}

.

I used the above definitions of Ek, Hk and Ek+1 in z–space to plot the graph below.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

z2

z1

pk

◦
Ek+1

Hk

Ek

1−α = √ρ

α
1 ◦

q

This picture makes it obvious that 1 − α = √ρ, so ρ = (1 − α)2. In R2 the ellipsoids
intersect at q = [1,−α]⊤, but because we arranged above for zn to be the direction of the
minor axis of Ek+1, in R

n that point is in the z1–zn plane and has these coordinates.

q = [1, 0, · · · , 0,
︸ ︷︷ ︸

n − 2 terms

−α]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.3.3 Finding the Next Ellipsoid 787

Points on Ek+1 satisfy

z⊤Λ−1z =
z21

σ
+
z22

σ
+ · · · +

z2
n−1
σ
+
z2n

ρ
= 1

and the point q is on Ek+1 so

1

σ
+

0

σ
+ · · · + 0

σ
+
α2

ρ
=

1

σ
+
α2

ρ
= 1.

Using ρ = (1 − α)2 and solving for σ,

1

σ
= 1 − α

2

ρ
= 1 − α2

(1 − α)2 =
(1 − α)2 − α2

(1 − α)2 =
(1 − 2α + α2) − α2

(1 − α)2 =
1 − 2α
(1 − α)2

σ =
(1 − α)2
1 − 2α

The formulas we have derived for ρ(α) and σ(α) define a family of ellipsoids Ek+1 passing
through pk and Ek ∩Hk, parameterized by the step length α, from which we are to select the
one having the smallest volume. Ratios of volumes are preserved by the transformations we
have made, so the smallest ellipsoid in z–space will also be the smallest ellipsoid in w–space
and in x–space. Using a formula we derived in §14.7.2, in z–space the volume of Ek+1 is

V = V1

√
∣
∣
∣Λ

∣
∣
∣

where V1 is the volume of a unit ball in Rn and the determinant is the product of the
diagonals of Λ. If we let

δ(α) =
∣
∣
∣Λ

∣
∣
∣ = ρσn−1

= (1 − α)2
[

(1 − α)2
1 − 2α

] n−1

= (1 − α)2n(1 − 2α)1−n

then to find the α that yields the ellipsoid of smallest volume we need only minimize δ(α).
Our analysis breaks down for n = 1 because δ(α) = (1−α)2 has its minimum at α = 1 and that
does not make sense when the ellipsoids are collinear line segments (the algorithm reduces
to bisection in that case). For n > 1, the formula yields δ(α) < 0 for α > 1

2
and a division

by zero for α = 1
2
. Because Ek+1 is symmetric about its major axes the requirement that it

pass through pk and also Ek ∩Hk can be met only if α < 1
2
. To study the behavior of δ(α) in

more detail I plotted the function for α ∈ [0, 1
2
) on the next page. It appears to be convex

(see Exercise 24.10.20) at least for the values of n that I tried, so I set the derivative to zero
and solved for α.

dδ

dα
= (1 − α)2n [(1 − n)(1 − 2α)−n(−2)] + (1 − 2α)1−n

[

(2n)(1 − α)2n−1(−1)
]

= 0

(1 − α)2n(1 − n)(1 − 2α)−n = −n(1 − α)2n−1(1 − 2α)1−n

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

788 The Algebra of Shor’s Algorithm

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5

δ(α)

α

•

n
=
16

•

n
=
8

•

n
=
4

•

n
=
2

Because α < 1
2
the terms (1− 2α)−n and (1−α)2n are positive, so we can divide both sides by

those factors.

(1 − n) = −n(1 − α)−1(1 − 2α)
(1 − α)(1 − n) = −n + 2nα
nα − α + 1 − n = 2nα − n

1 = nα + α = α(n + 1)

α = 1/(n + 1)

This minimizing value of α is shown as a point on each of the curves plotted above. Substi-
tuting in the formulas we found earlier,

ρ = (1 − α)2 =
(

1 − 1

n + 1

)2

=
n2

(n + 1)2
and 1 − 2α = 1 − 2

n + 1
=

n − 1
n + 1

σ =
(1 − α)2
1 − 2α =

n2

(n + 1)2
× n + 1

n − 1 =
n2

(n + 1)(n − 1) =
n2

n2 − 1 .

To see how these eigenvalues characterize Ek+1 we can write

Λ =





σ
. . .

σ

ρ





= σI − (σ − ρ)D where D =





0
. . .

0

1





.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.3.3 Finding the Next Ellipsoid 789

Then G = SΛS⊤ = S[σI−(σ−ρ)D]S⊤ = σSIS⊤−(σ−ρ)SDS⊤. Because S⊤ = S−1, the first matrix
product in the final expression is σSIS⊤ = σI. Because D is zero except for its bottom right
element which is 1, in the second matrix product SDS⊤ = pkpk⊤. Thus G = σI − (σ − ρ)pkpk⊤.

Using our earlier definitions of G−1 = UQ−1
k+1U

⊤ and U⊤U = Qk along with pk
= −Ug/||Ug||,

we can find Qk+1 in terms of ρ and σ.

G−1 = UQ−1k+1U
⊤

U−1G−1U−⊤ = Q−1k+1

Qk+1 = U⊤GU

= U⊤[σI − (σ − ρ) pkpk⊤]U

= σU⊤U − (σ − ρ) U⊤pkpk⊤U

= σU⊤U − (σ − ρ) U
⊤Ugg⊤U⊤U

[Ug]⊤[Ug]

= σU⊤U − (σ − ρ) U
⊤Ugg⊤U⊤U

g⊤U⊤Ug

= σ

(

Qk −
σ − ρ
σ

Qkgg
⊤Qk

g⊤Qkg

)

Then using the expressions we derived above for ρ and σ we find that

σ − ρ
σ
= 1 − ρ

σ
= 1 − n2

(n + 1)2
× n2 − 1

n2
= 1 − n − 1

n + 1
=

2

n + 1

Finally, letting

d =
−Qkg

√

g⊤Qkg
so that dd⊤ =

Qkgg
⊤Qk

g⊤Qkg

we get this Q update.

Qk+1 =
n2

n2 − 1

(

Qk −
2

n + 1
dd⊤

)

Above we found that wk+1
= αpk

= U−⊤(xk+1−xk), so using α = 1/(n+1) we get this x update.

αU⊤pk
= xk+1 − xk

xk+1 = xk + αU⊤pk
= xk + αU⊤

(

−Ug
||Ug||

)

= xk + α
−Qkg
√

g⊤Qkg

xk+1 = xk +
1

n + 1
d

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

790 Ellipsoid Algorithms

24.4 Implementing Shor’s Algorithm

The boxed updates on the previous page lead to the algorithm below for solving the standard-
form nonlinear program

minimize
x∈Rn

f0(x)

subject to fi(x) ≤ 0 i = 1 . . .m.

x0 = 1
2
(xH + xL) pick a starting point

Q0 = diag(xH − xL) pick a starting inverse matrix

for k = 0 . . . kmax do up to kmax iterations

select i index of a violated constraint, or 0 if xk is feasible

g = ∇fi(xk)/||∇fi(xk)|| find normalized gradient of constraint or objective

d = −Qkg
/√

g⊤Qkg find direction vector

xk+1 = xk +
1

n + 1
d take the step

if
(∣
∣
∣

∣
∣
∣xk+1 − xk

∣
∣
∣

∣
∣
∣ < tol

)

return test for convergence

Qk+1 =
n2

n2 − 1

(

Qk −
2

n + 1
dd⊤

)

update the ellipsoid inverse matrix

end

I implemented this idea in the ea.m routine that is listed on the following pages. The
routine requires as input 1 the center point x0 of E0 and the starting inverse Q0 of its
ellipsoid matrix. Recall that although the matrix in the definition of Ek is Q−1

k
we use and

update its inverse Qk, which is initially Q0. Bounds on the variables could be used to produce
xzero and Qzero, as suggested in the first two algorithm steps above and as implemented in
the eainit.m routine of §24.3.1. The other input parameters are the number of constraints
m, an iteration limit kmax, a convergence tolerance tol, and pointers fcn and grd to routines
that compute the values and gradients of the fi. In the ek1.m and ek1g.m routines listed
below the parameter i is the index of the function whose value or gradient is to be found.

function f=ek1(x,i)
switch(i)

case 0 % objective
f=(x(1)-20)^4+(x(2)-12)^4;

case 1
f=8*exp((x(1)-12)/9)-x(2)+4;

case 2
f=6*(x(1)-12)^2+25*x(2)-600;

case 3
f=-x(1)+12;

end
end

function g=ek1g(x,i)
switch(i)

case 0
g=[4*(x(1)-20)^3;4*(x(2)-12)^3];

case 1
g=[8*exp((x(1)-12)/9)*(1/9);-1];

case 2
g=[6*2*(x(1)-12);25];

case 3
g=[-1;0];

end
end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.4 Implementing Shor’s Algorithm 791

1 function [xstar,rc,k,Qstar]=ea(xzero,Qzero,m,kmax,tol,fcn,grd)
2 % do up to kmax iterations of the ellipsoid algorithm to solve
3 % minimize fcn(x,0) subject to fcn(x,i) <= 0, i=1..m
4
5 % compute constants used in the updates
6 n=size(xzero,1);
7 a=1/(n+1);
8 b=2*a;
9 c=n^2/(n^2-1);
10
11 x=xzero;
12 Q=Qzero;
13 rc=1;
14 for k=1:kmax
15 % find a function to use in making the cut
16 icut=0;
17 for i=1:m
18 if(fcn(x,i) > 0)
19 icut=i;
20 break
21 end
22 end
23
24 % find the gradient and normalize it
25 g=grd(x,icut);
26 ng=0;
27 for j=1:n
28 ng=max(ng,abs(g(j)));
29 end
30 if(ng == 0) % gradient zero
31 rc=3;
32 break
33 else
34 g=g/ng;
35 end

The return parameter xstar is the best point found so far, which might be far from
optimal if convergence has not yet been achieved. The return code rc reports what happened,
and Qstar is the inverse matrix of the ellipsoid whose center is xstar. This routine is
serially-reusable so it can be called again, passing xstar and Qstar for the starting ellipsoid,
to continue a solution process that was interrupted because the iteration limit was met.

The first stanza 5-9 finds the constants used in the update formulas. The second stanza
11-12 initializes the ellipsoid center and inverse matrix and 13 sets rc=1 in anticipation
that the iteration limit will be met. Then 14 begins a loop of up to kmax iterations. The
first step in each iteration 15-22 is to find the index icut of a violated constraint 18-21

or, if x is feasible, of the objective 16 . If m is zero MATLAB does not perform the loop so
icut=0 on every iteration and objective cuts are used to solve the unconstrained problem.

The third stanza 24-35 finds the gradient 25 of the function used for the cut and 26-29,34

normalizes it by its L∞ norm (this makes the gradient component that is largest in absolute
value equal to plus or minus 1). This scaling reduces roundoff error in the calculation of
d, but it does not affect the theoretical behavior of the algorithm so the more expensive L2

norm could be used instead. If 30 the gradient element largest in absolute value is zero then
the gradient is zero and the iterations cannot continue. This can happen even when xk , x⋆

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

792 Ellipsoid Algorithms

37 % find the direction in which to move the ellipsoid center
38 gqg=g’*Q*g;
39 if(gqg <= 0) % ellipsoid matrix not PD
40 rc=2;
41 break
42 else
43 d=-Q*g/sqrt(gqg);
44 end
45
46 % check for convergence
47 xnew=x+a*d;
48 if(norm(xnew-x) < tol) % close enough
49 rc=0;
50 break
51 else
52 Qnew=c*(Q-b*d*d’);
53 end
54
55 % update the ellipsoid for the next iteration
56 x=xnew;
57 Q=0.5*(Qnew+Qnew’);
58 end
59 xstar=x; % done or out of iterations
60 Qstar=Q;
61
62 end

if the function being used for the cut is a constraint that happens to be stationary at x. In
that case the routine 31-32 resigns with rc=3.

Next 38 the normalized gradient g is used to find gqg = g⊤Qkg. We have assumed that Q0

is a positive-definite matrix, and in perfect arithmetic the update formula ensures that every
Qk remains positive definite. However, as the algorithm proceeds the ellipsoids get smaller
so the elements of Q get smaller, and depending on the problem the ellipsoids can also get
long and thin or aspheric so that Q is badly conditioned. Eventually the resulting roundoff
errors make Q numerically non-positive-definite. so that gqg comes out nonpositive and
the calculations cannot continue. In that case the routine 40-41 resigns with rc=2. Until
that happens, gqg can be used 43 to compute the direction vector d.

The next iterate xk+1 is found 47 from the x update formula and 48 the length of the
step from xk to xk+1 is used to test for convergence. If the step is short enough, the routine
49-50 returns with rc=0 to signal success. If convergence has not been achieved 52 the Q

update is used to find Qnew = Qk+1.

Finally 56-57 the ellipsoid center and inverse matrix are updated and 58 the iterations
continue. As the iterations progress and the entries of Q become small, roundoff errors can
cause it to become slightly unsymmetric, so symmetry is restored 57 by making the new
matrix the average of Qk+1 with its transpose [53].

To test ea.m, I used it to solve the ek1 problem one iteration at a time with the results
shown on the next page. Panel A shows the feasible set for problem ek1, the optimal con-
tour of its objective function, and its optimal point x⋆. The given variable bounds define a
box, and ellipsoid E0 with center x0 is constructed as the smallest ellipsoid containing the box.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.4 Implementing Shor’s Algorithm 793

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x1

x2 A

x0

•
x⋆

f0(x) = f0(x
⋆)

E0

E1

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x1

x2 B

E1

E2

x1

x2

5

10

15

20

25

30

35

5 10 15 20 25 30 35

x1

x2 C

E2

x2

E3

x3

12

14

16

18

20

22

24

11 12 13 14 15 16 17 18

x1

x2 D

•

x0

A phase 1 cut is used to construct E1 as the smallest ellipsoid containing the feasible half
of E0. In Panel B a phase 2 cut has generated ellipsoid E2 with center x2, and in panel C
another phase 1 cut has generated ellipsoid E3 with center x3. Panel D shows, at enlarged
scale, the first 40 iterates in the convergence trajectory. The numerical coordinates of the
xk agree with those tabulated in [3, p320], ending with x40 = [15.661895, 16.015822]⊤. This
point is not very close to x⋆, but if the algorithm is allowed to use more iterations it gets
closer.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

794 Ellipsoid Algorithms

octave:1> format long
octave:2> xzero=[18;21];
octave:3> Qzero=[81,0;0,169];
octave:4> [xstar,rc,k]=ea(xzero,Qzero,3,200,1e-6,@ek1,@ek1g)
xstar =

15.6294920320109
15.9737701208319

rc = 0
k = 159
octave:5> [xstar,rc,k,Qstar]=ea(xzero,Qzero,3,300,1e-16,@ek1,@ek1g)
xstar =

15.6294908453665
15.9737685420984

rc = 2
k = 222
Qstar =

-3.32732478525693e-15 -4.42673506606062e-15
-4.42673506606062e-15 -5.88941104635132e-15

octave:6> quit

With tol = 10−6 the convergence criterion is satisfied after k=159 iterations. With tol = 10−16

gqg becomes nonpositive at iteration 222, so from the given xzero 2> and Qzero 3> the
final xstar 5> is the most accurate solution this algorithm can find.

24.5 Ellipsoid Algorithm Convergence

When we solve ek1 with ea.m each ellipsoid is smaller than its predecessor, x⋆ is inside all
of them, and ||xk+1 − xk|| → 0 as k → ∞. If we assume that we can do perfect arithmetic (so
that, for example, Qk never becomes non-positive-definite) then conditions can be established
[98, §2.3] [56] that guarantee this desirable behavior. To explain them it will be helpful to
restate the standard-form nonlinear program like this.

minimize
x∈X

f0(x)

where X = { x ∈ Rn
∣
∣
∣ fi(x) ≤ 0, i = 1 . . .m }

Then Shor’s ellipsoid algorithm is sure to converge if all of the following are true:

• x⋆ ∈ E0, the optimal point is inside the starting ellipsoid;

• fi(x) is a convex function for i = 0 . . .m, so that the problem is a convex program;

• E0 ∩ X has positive volume relative to Rn, which requires that X be of full dimension
rather than being flat.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.5 Ellipsoid Algorithm Convergence 795

The algorithm often works even if the first two conditions are not satisfied (especially of X is
a convex set) but it always fails if X is not of full dimension. Shor’s algorithm finds interior
points, so it is not surprising that it depends on X having an interior relative to Rn. This
rules out problems having equality constraints written as opposing inequalities.

When the algorithm converges its speed depends on how fast the ellipsoids shrink. We
found in 14.7.2 that the volume of an ellipsoid is proportional to the square root of the
determinant of its inverse matrix, and others [73] have found a formula for the ratio x(n) of
the volumes of successive ellipsoids in terms of n.

V(Ek+1)

V(Ek)
=

√
|Qk+1|√
|Qk|

= x(n) =

√

n − 1
n + 1

(

n
√
n2 − 1

)n

The volumes thus decrease in geometric progression with ratio x(n) < 1. If each Ek were a
hypersphere of radius rk then their volumes would be in the ratio rn

k+1
/rn

k
and we would have

rnk+1 = x(n)rnk or rk+1 = rk
n
√

x(n).

Because xk ∈ Ek and x⋆ ∈ Ek, the errors ek = ||xk−x⋆|| would decrease in geometric progression
along with the radii rk, so that

ek = e0
[

n
√

x(n)
]k

or
ek

e0
= ck with c =

n
√

x(n) < 1

This formula describes linear convergence (see §9.2) and that is the order that is typically
observed for Shor’s algorithm, but because the Ek are really not all hyperspheres but tend to
become aspheric the convergence constant c is almost always closer to 1 than this analysis
predicts.

To study the convergence of ea.m I plot-
ted the relative error in xk as a function of
k for problem ek1 in the graph to the right.
Both curves stop at k = 222, when the ellip-
soid matrix becomes numerically non-positive-
definite. The straight line plots the formula we
derived above and the wiggly line shows the
observed performance of the algorithm. The
actual convergence trajectory is roughly lin-
ear, as predicted, but it is not as steep as pre-
dicted; the theoretical slope is achieved only
initially, because in solving this problem the
ellipsoids become progressively more needle-
shaped. 10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 50 100 150 200 250

k

e k
/e

0
=
||x

k
−
x
0
||/
||x
⋆
−
x
0
||

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

796 Ellipsoid Algorithms

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

n

ra
ti
o

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50

n

it
er
at
io
n
s

The best-case convergence constant c that we found above depends on the ellipsoid

volume reduction ratio

x(n) =

√

n − 1
n + 1

(

n
√
n2 − 1

)n

≈ 1 − 1

2n

and hence strongly on the number n of variables in the problem. The graph on the left above
shows x(n) as points and the approximation as a solid curve. If n is big then x is close to 1
so the ellipsoid volumes decrease only slowly and the algorithm takes a long time to find a
precise answer. The graph on the right above shows as a function of n how many iterations
are needed in the best case to reduce the solution error to 0.000001 of its original value.

24.6 Recentering

When Shor’s algorithm fails to find an answer as precise as we would like to a problem it
should be able to solve, the reason is almost always that Qk has become numerically non-
positive-definite because repeated cuts have made Ek highly aspheric. When this happens a
more precise solution can often be obtained by restarting the algorithm using new bounds
centered on the best point found so far. This recentering strategy also has the virtue of
gradually tightening bounds on the coordinates of x⋆; that provides a measure of the precision
to which x⋆ is known, which is useful in many practical applications. To implement the idea
it is necessary to keep the record point and record value (see §9.1). This is itself a worthwhile
improvement to the basic algorithm in view of the wild excursions of its iterates.

The scheme is outlined in the flowchart on the next page. This is the algorithm we
implemented in ea.m except that it keeps xr and includes the blocks enclosed by the dashed
box. Now, instead of giving up when g⊤Qkg ≤ 0 we recenter. Since this shrinks the bounds
we can use their separation as the convergence criterion, so if ||xH − xL|| < tol this algorithm

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.6 Recentering 797

reports success and stops. Recentering is not possi-
ble until a feasible point has been found, so if the
starting ellipsoid becomes non-positive-definite be-
fore that happens the problem is reported to be in-
feasible. If recentering is possible, the distance w j

between the current bounds xL
j
and xH

j
in each coor-

dinate direction is reduced by the factor σand this
new width is used to center the bounds on xr

j
. Then

we find the smallest ellipsoid containing the reduced
bounds and replace xk and the defective Qk by the
center and inverse matrix of the new ellipsoid.

I implemented the algorithm in the wander.m

routine that is listed on the following pages. Now
in place of x0 and Q0 the starting bounds xl and xh

are input parameters, and instead of x⋆ and Q⋆ the
return parameters include the final bounds xlr and
xhr bracketing the record point xr. Unlike ea.m

this routine is not serially reusable.
Like ea.m this code begins 5-9 by computing

the constants used in the ellipsoid update formulas.
Then 10 it initializes the factor shr that will be
used in shrinking the variable bounds. I set this
parameter to

σ= 1
10

(

1 − 1

2n

)

but some other fraction of x(n) or its approximation
might work better in a particular case. Next 12-13

the eainit.m routine of §24.3.1 is used to find the
starting values of x and Q. The ellipsoid algorithm
iterations begin 15-25 as in ea.m, but then a stanza
27-34 is interposed to remember the objective value
fr and iterate xr at the feasible point having the
lowest objective value found so far. The next stanza
36-47 finds, just as in ea.m, the normalized gradient
to use in making the cut.

The flowchart blocks in the dashed box are im-
plemented by the next stanza 49-72 . We compute
and test gqg 50-51 as in ea.m and if it is still posi-
tive 68-72 update the ellipsoid as usual. Otherwise
52 the difference of the bounds is tested and if it
is small enough 53-54,78-79 the routine returns the

ENTER

k = 0

find xk, Qk from [xL, xH]

find i

update xr

g = ∇fi(xk)/||∇fi(xk)||

?

?

?

w = σ(xH − xL)
xL = xr − 1

2w

xH = xr + 1
2
w

find xk, Qk from [xL, xH]

d = −Qkg
/√

g⊤Qkg

xk ← xk + 1
n+1

d

Qk+1 =
n2

n2−1

(

Qk− 2
n+1

dd⊤
)

Qk =
1
2
(Qk+1 +Q

⊤
k+1)

?

EXIT 1

k ← k+1

EXIT 0

EXIT 2

g
⊤
Qkg ≤ 0

yes

no

||xH−xL|| < tol

yes

no

know xr

no

yes

k = kmax
no

yes

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

798 Ellipsoid Algorithms

1 function [xlr,xr,xhr,rc,k]=wander(xl,xh,m,kmax,tol,fcn,grd)
2 % do up to kmax iterations of the recentering ellipsoid algorithm
3 % to minimize fcn(x,0) subject to fcn(x,i) <= 0, i=1..m
4
5 % compute constants used in the updates
6 n=size(xl,1);
7 a=1/(n+1);
8 b=2*a;
9 c=n^2/(n^2-1);
10 shr=0.1*(1-1/(2*n));
11
12 % initialize the ellipsoid center and matrix
13 [x,Q]=eainit(xl,xh);
14
15 rc=1;
16 fr=realmax;
17 for k=1:kmax
18 % find a function to use in making the cut
19 icut=0;
20 for i=1:m
21 if(fcn(x,i) > 0)
22 icut=i;
23 break
24 end
25 end
26
27 % update the record point
28 if(icut == 0)
29 fobj=fcn(x,0);
30 if(fobj < fr)
31 fr=fobj;
32 xr=x;
33 end
34 end
35
36 % find the gradient and normalize it
37 g=grd(x,icut);
38 ng=0;
39 for j=1:n
40 ng=max(ng,abs(g(j)));
41 end
42 if(ng == 0)
43 rc=3;
44 break
45 else
46 g=g/ng;
47 end

current record point and bounds along with rc=0 to signal success. If 56 no feasible point
has yet been found, the routine returns 64-65 with the starting bounds 78-79 and rc=2 to
signal infeasibility. Otherwise 57-62 recentering is done before 74-77 the iterations continue.

I used wander.m to solve the ek1 problem in the Octave session on the next page. Setting
tol = 10−13 produced bounds equal to the record point, which yields the catalog optimal
objective value. In solving many problems wander.m can find xl = xr = xh = x⋆ to machine
precision, though at the cost of many iterations. This solution 5> took about half a second
on a 1 GHz processor, but problems having many variables run for much longer. When
implemented in FORTRAN the algorithm is useful for problems having n up to about 50 [52].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.6 Recentering 799

49 % recenter or take the next step
50 gqg=g’*Q*g;
51 if(gqg <= 0) % is Q non-pd?
52 if(norm(xh-xl) < tol) % yes; xr close enough?
53 rc=0; % yes; flag convergence
54 break % and return
55 else % not close enough
56 if(fr < realmax) % know a record point?
57 for j=1:n % yes
58 w=shr*(xh(j)-xl(j)); % new bound width
59 xl(j)=xr(j)-0.5*w; % new lower bound
60 xh(j)=xr(j)+0.5*w; % new upper bound
61 end % bounds now recentered
62 [xnew,Qnew]=eainit(xl,xh); % find a new ellipsoid
63 else % no record point
64 rc=2; % can’t recenter
65 break % so give up
66 end
67 end
68 else % Q is still pd
69 d=-Q*g/sqrt(gqg); % find direction vector
70 xnew=x+a*d; % find next center
71 Qnew=c*(Q-b*d*d’); % and ellipsoid matrix
72 end
73
74 % update the ellipsoid for the next iteration
75 x=xnew;
76 Q=0.5*(Qnew+Qnew’);
77 end
78 xlr=xl;
79 xhr=xh;
80
81 end

octave;1> format long
octave:2> xl=[18-9/sqrt(2);21-13/sqrt(2)];
octave:3> xh=[18+9/sqrt(2);21+13/sqrt(2)];
octave:4> [xlr,xr,xhr,rc,k]=wander(xl,xh,3,2000,1e-13,@ek1,@ek1g)
xlr =

15.6294909238917
15.9737686465698

xr =

15.6294909238917
15.9737686465698

xhr =

15.6294909238917
15.9737686465699

rc = 0
k = 1417
octave:5> tic;[xlr,xr,xhr,rc,k]=wander(xl,xh,3,2000,1e-13,@ek1,@ek1g);toc
Elapsed time is 0.47477 seconds.
octave:6> fr=ek1(xr,0)
fr = 614.212097203404

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

800 Ellipsoid Algorithms

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 200 400 600 800 1000 1200 1400

k

||xH−xL || at iteration k
||xH−xL || at start

||xr−x0 ||
||x⋆−x0 ||

| f0(xr)− f0(x0)|
| f0(x⋆)− f0(x0)|

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 10 20 30 40 50 60 70

k

| f0(xr)− f0(x0)|
| f0(x⋆)− f0(x0)|

To study the convergence of wander.m I plotted in the left graph above the relative error
in fr, the relative error in xr, and the relative width of the bounds, as functions of k. The
relative errors in fr and xr both decrease linearly until about k=200, when f0(x

k) = f0(x
⋆)

and the relative error in fr plunges to −∞. Shortly after that Qk becomes non-positive-
definite for the first time and a recentering occurs, narrowing the bounds. No better point is
found until the 7th recentering, about k=1100, when the error in xr decreases slightly. It is
only after the 15th recentering that iteration 1417 produces xk = x⋆ and the relative error in
xr plunges to −∞. Notice that as the recentered ellipsoids get smaller the interval between
resets decreases. In other problems the error curve for fr also plateaus so that the optimal
objective value is attained only after some recenterings. It can also happen that xk moves
outside of the original variable bounds; this is what makes it possible for the algorithm to
sometimes find x⋆ even if the original bounds do not contain it. In that case recentering can
produce new bounds that are not contained within the starting bounds.

The sudden decrease of relative errors in both fr and xr that is evident at the very
beginning of the curves in the left graph is typical of the algorithm. To make this phenomenon
easier to see I have enlarged that part of the fr convergence trajectory in the graph on the
right. Thanks to this behavior the ellipsoid algorithm might find a record point that is a
good approximate solution to a nonlinear program more quickly than a higher-order method
(see the example in §26.3).

24.7 Shah’s Algorithm for Equality Constraints

As I mentioned in §24.5, Shor’s algorithm always fails if the feasible set is not of full dimen-
sion, so it can’t be used to solve problems that have equality constraints. If the equality
constraints are linear, however, a different ellipsoid algorithm can be devised that keeps every
direction vector dk, and hence every iterate xk, in the flat of the equalities.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.8 Other Variants 801

Suppose that the equality constraints of the nonlinear program are Ax = b and that
at iteration k of the algorithm Ek has center xk ∈ F = {

x ∈ Rn
∣
∣
∣ Ax = b

}

and ellipsoid
inverse matrix Qk. If the normalized gradient g is used to make a center cut and the cutting
hyperplane is translated parallel to itself until it is tangent to Ek at xk + dk

= pk ∈ F, then
the vector dk is optimal for

minimize
d∈Rn

g⊤(xk + d)

subject to
(

(xk + d) − xk
)
⊤Q−1

k

(

(xk + d) − xk
)

= 1 or d⊤Q−1
k
d = 1

A
(

xk + d
)

= b or Ad = 0.

Solving this problem by the Lagrange method yields [141, §2.2]

d = −

(

Q −QA⊤(AQA⊤)−1AQ
)

g
√

g⊤
(

Q −QA⊤(AQA⊤)−1AQ
)

g
.

If this formula is used for the direction vector in the ellipsoid algorithm, then we have Shah’s
algorithm. Shah also solved some problems having nonlinear equality constraints [142] by
linearizing them at each xk. If that approach is accompanied by a feasibility-restoration step
it resembles the generalized reduced-gradient algorithm of §23.1.2, but using the ellipsoid
algorithm rather than steepest descent to minimize f0(x) on the flat allows the algorithm to
solve problems that have both equality and inequality constraints.

24.8 Other Variants

The most obvious refinement of Shor’s algorithm is to use deep cuts [56]. In the graphical
solution of §24.2 we constructed H0 to support the contour f2(x) = f2(x

0) of the violated
constraint at the center x0 of E0. If we had instead searched the line between x0 and p0

for its intersection with the contour f2(x) = 0, we could have constructed Hk tangent to
the feasible set at that point. It is also possible to make deep optimality cuts [98, p43-45].
Using a deep cut throws away more of the old ellipsoid and thereby speeds the reduction of
ellipsoid volume. In practice, although some ways of generating deep cuts slightly improve
on the efficiency of the center-cut version [47] they make the algorithm more complicated
and do nothing to address its fundamentally linear convergence. Using deep cuts also makes
the algorithm less likely to solve problems in which some or all of the fi are nonconvex.

An even faster reduction in the ellipsoid volumes can result from using wedge cuts [51].
If two constraints are violated we can construct a hyperplane supporting each and find the
smallest ellipsoid Ek+1 enclosing the wedge that they cut out of Ek. This strategy also reduces
the robustness of the algorithm, and its rank–2 updates are significantly more complex than
Shor’s rank–1 updates. Because of the extra calculations that wedge cuts require, they, like
deep cuts, turn out not to provide much improvement in efficiency.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

802 Ellipsoid Algorithms

If as Shor’s algorithm approaches x⋆ it could guess that some inequalities will be slack
at optimality, it could save work by no longer evaluating those functions in the search for
a violated constraint. If it could guess that some inequalities will be tight at optimality, it
could treat them as equalities in the manner of Shah’s algorithm, which effectively reduces
the dimensionality of the problem and thus accelerates convergence [141, §2.7]. An active set
strategy can be contrived that does both of these things [137] based on statistics about which
of the constraints were found to be violated during the previous iterations of the algorithm.
In solving a problem with many constraints, the resulting convergence can be superlinear as
constraints are ignored or made equalities.

The ability of the ellipsoid algorithm to identify the feasible set and find an approximate
solution early in its iterations suggests that it might be used to provide a good starting point
and active set estimate (a hot start) for algorithms that are less robust but have quadratic
convergence near the optimal point. When a second-order method cannot continue, as
for example when a sequential quadratic programming algorithm generates an infeasible
subproblem, the ellipsoid algorithm can be invoked to refine the solution or move to an xk

from which the more sophisticated algorithm can resume. These ideas have been used to
construct effective hybrid algorithms that combine SQP with the ellipsoid algorithm [128].

24.9 Summary

As we have seen, ellipsoid algorithms have only first order convergence, with a constant that
quickly approaches 1 as n increases, so they are too slow for problems having more than a
few dozen variables. For this reason they are certainly not practical, as people once hoped
they might be, for solving linear programming problems [37]. However, they do have some
endearing properties when they are used to solve nonlinear programs.

Although ellipsoid algorithms are sure to converge only if the fi(x) are all convex functions,
in practice they are much more likely to solve nonconvex programs than are other methods
of constrained optimization [52]. They are also relatively insensitive to imprecisions in the
function and gradient values [99]. This is an important advantage when those values must
be approximated by simulation and in on-line applications such as feedback control, when
they are the result of physical measurements. The robustness of ellipsoid methods makes
them ideal for small, highly-nonconvex type–2 problems such as parameter estimation (see
§8.5) and semi-infinite formulations of robot path planning [115].

Ellipsoid algorithms often find a good approximate solution very quickly, and they are
capable of finding very precise solutions. The record points they return are, modulo round-
off, strictly feasible, in contrast to the approximately feasible solutions produced by other
methods. When recentering is used, the optimal point is accompanied by a useful interval
of uncertainty in each coordinate direction.

Thus, despite their quirks and because of them, ellipsoid algorithms deserve a place in
our catalog of methods for nonlinear optimization.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.10 Exercises 803

24.10 Exercises

24.10.1[E] What is a space confinement algorithm, and how does it work? Name two
space confinement algorithms.

24.10.2[E] Describe in words the basic idea of Shor’s ellipsoid algorithm.

24.10.3[E] In Shor’s algorithm, (a) what is a center cut? A feasibility cut? An optimality
cut? (b) How is a phase 1 iteration different from a phase 2 iteration? What must be true
about xk for the next step in the algorithm to be a phase 1 iteration? For it to be a phase 2
iteration? (c) In what pattern do phase 1 and phase 2 iterations typically occur?

24.10.4[H] The nonlinear program [3, Exercise 9.50]

minimize
x∈R2

2x21 − x1 + x22

subject to 8x1 + 8x2 ≤ 1

has x⋆ ∈ E0 =
{

x ∈ R2 | x21+ x22 ≤ 1
}

. (a) Perform the first step of Shor’s algorithm graphically,
showing x0, E0, H0, p

0, x1, and an approximate sketch of E1. (b) Perform the second step
graphically.

24.10.5[H] The following equation describes an ellipse.

(x1 − 1)2
9

+
(x2 − 2)2

16
= 1

(a) Graph the ellipse. (b) Find a vector x0 and positive-definite symmetric matrix Q0 so that
the ellipse is described by

(x − x0)⊤Q−10 (x − x0) = 1.

24.10.6[E] Why in discussing the ellipsoid algorithm do we call the matrix that defines
an ellipsoid Q−1 rather than Q? Does Shor’s ellipsoid algorithm manipulate Q, or Q−1?

24.10.7[H] In §24.3.1, I claim that E0 must be a right ellipsoid if it is to touch all the
corners of the box that is formed by the variable bounds. (a) Explain why that is true.
(b) How did we find the smallest ellipsoid touching all the corners? (b) If the ellipsoid

E0 =
{

x
∣
∣
∣ (x − x0)⊤Q−10 (x − x0) = 1

}

, what formula can be used to find Q0 from the bounds

on the variables? (c) What routine can be used to compute xzero and Qzero? (d) If xzero
and Qzero define an ellipse, how can the ellipse.m routine of §14.7.3 be used to draw the
ellipse?

24.10.8[H] If eainit.m is used to find the center and inverse matrix defining an ellipsoid
and returns the values below, what must have been the bounds xh and xl on the variables?

x0 =





1

2

3




Q0 =





10 0 0

0 20 0

0 0 30





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

804 Ellipsoid Algorithms

24.10.9[E] What does it mean to say that a hyperplane supports the contour of a function?
How can such a supporting hyperplane be described algebraically?

24.10.10[E] What is the unit normal to a hyperplane? Why is it possible to describe the
hyperplane algebraically using its unit normal rather than its normal vector? What happens
to the hyperplane defined by g⊤x = κ if κ is changed?

24.10.11[E] Explain how to use the hplane.m routine of §24.3.2 to plot a hyperplane.

24.10.12[P] Constraint hyperplanes are important in the geometry of linear programming
so §3 discusses them in some detail, but it does not use the §24.3.2 definition of a hyperplane
or even mention the gradient of a linear function. (a) Show that the hyperplane correspond-
ing to the constraint x1+2x2 ≤ 4 can also be described as H =

{

x ∈ R2
∣
∣
∣ [1, 2]⊤(x−[0, 2]⊤) = 0

}

.
(b) Write a MATLAB program that uses hplane.m to draw the hyperplane.

24.10.13[H] In §24.3.3 we transformed Ek to w–space, where it becomes a hypersphere
of radius 1 centered at the origin. (a) Explain in detail how this transformation was ac-
complished. (b) Explain what happens to the hyperplane Hk under this transformation.
(c) Explain what happens to the next ellipsoid Ek+1 under this transformation.

24.10.14[H] In §24.3.3 the geometry of the update in w–space allowed us to write down a
formula for the point pk. Explain how.

24.10.15[H] In §24.3.3, we transformed Ek, Hk, and Ek+1 to z–space, where Ek+1 is a right
ellipsoid. (a) Explain in detail how this transformation was accomplished. (b) If the eigen-
values of G are ρ and σ, why are the axis half-lengths of Ek+1 given by

√
ρ and

√
σ? How

are the (unnormalized) eigenvectors of G and G−1 related? (c) Explain how we found ρ and
σ as functions of α. (d) Explain how we found the value of α that minimizes the volume of
Ek+1. Why must α be less than 1

2
if n > 1?

24.10.16[H] In §24.3.3 I claimed that “Many ellipsoids Ek+1 can be constructed passing
through pk and Ek ∩Hk. Each can be characterized by the eigenvalues ρ and σ. . . ” Explain
precisely how Ek+1 is characterized by ρ and σ.

24.10.17[E] Write down the updates for finding Qk+1 and xk+1 from Qk, x
k, and g in Shor’s

ellipsoid algorithm.

24.10.18[P] In §24.3.3 three graphs are used to explain the steps in the derivation. Write
a MATLAB program that reproduces these graphs.

24.10.19[H] Shor’s algorithm moves the hyperplane g⊤x = g⊤xk parallel to itself until it is
tangent to Ek at p

k, so the equation of the tangent hyperplane is g⊤x = g⊤pk. The point pk

can therefore be found as the optimal point of this nonlinear program.

minimize
x∈Rn

g⊤x

subject to (x − xk)⊤Q−1
k
(x − xk) = 1

Use the Lagrange method to show that pk
= xk −Qkg/

√

g⊤Qkg.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.10 Exercises 805

24.10.20[H] Show that the function δ(α) of §24.3.3 is convex on the interval α ∈ [0, 1
2
).

24.10.21[H] This optimization problem [3, Exercise 9.51] is a convex program.

minimize
x∈R2

(x1 − 2)2 + x22

subject to x21 + x22 ≤ 1

(a) Find x⋆. (b) Suppose that Shor’s algorithm is used to solve the problem, with the circle
defined by the constraint as E0. Find a formula giving the first component of iterate xk as a
function of k.

24.10.22[H] Shor’s algorithm is easy to describe as a rank-one update to Q, but it can
also be implemented by updating Q−1. (a) Show that if Ak+1 = Ak + vv⊤, then A−1

k+1 is not
necessarily a rank-one update of A−1

k
. (b) Use the Sherman-Morrison-Woodbury formula of

§13.4.4 to derive an update to Q−1
k

that yields Q−1
k+1.

24.10.23[E] Outline the steps in Shor’s algorithm. What sort of nonlinear program can
it solve? How does the ellipsoid matrix Qk that the algorithm manipulates enter into the
definition of the ellipsoid Ek? What routine can be used to find xzero and Qzero from
bounds on the variables?

24.10.24[E] The ek1.m and ek1g.m routines are listed in §24.4. What does g=ek1g(x,2)
return?

24.10.25[E] The ea.m routine is listed in §24.4. (a) How are the variables a, b, and c

calculated by that code 7-9 related to the variables α, σ, and ρ that we used to derive
the update formulas in §24.3.3? (b) In the code, what is the meaning of the variable icut?
What is its value if m=0? (c) How does the code normalize each gradient vector? (c) How is
convergence judged to have occurred? (d) Why does the code 57 update Q to the average
of Qnew and its transpose? Is the result always symmetric even if Q is not? (e) Why, after
computing xnew 47 and finding 48 that it is close enough to x, does the routine return x

59 as the optimal point rather than xnew? (f) What are the return parameters from the
routine if the iteration limit is met before convergence is achieved?

24.10.26[E] Describe the input and output parameters of ea.m. List the possible return
codes and explain what they mean. How can you tell whether the xstar that is returned
satisfied the convergence criterion?

24.10.27[P] Show how ea.m can be called repeatedly to continue a solution process that
was interrupted because the iteration limit was met.

24.10.28[P] Can ea.m be used to solve an unconstrained nonlinear program? If not, explain
why not. If so, use it to solve the rb problem of §9.1.

24.10.29[P] In each iteration of Shor’s algorithm, ea.m begins the search for a violated
constraint from i=1. This can result in the phase 1 cuts favoring one or a few constraints
having low indices. The ellipsoids are less likely to become long and thin if the phase 1 cuts

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

806 Ellipsoid Algorithms

are more evenly distributed over all of the constraints. Revise the code so that the search for
a violated constraint in each iteration begins with the next constraint after the one that was
most recently used for a phase 1 cut. In this constraint rotation scheme the constraint
after i = m is i = 1. How does the solution to ek1 found by your revised code compare to
that found by the original version?

24.10.30[P] The ea.m implementation of Shor’s algorithm fails if the violated constraint
chosen for a cut happens to have a zero gradient at xk. (a) Explain why the code must
resign in that case. (b) Does this indicate that there is something wrong with the nonlinear
program? Construct an example to illustrate the phenomenon. (c) Revise the code so that
if a violated constraint has a zero gradient the search continues in hopes of finding a violated
constraint that does not have a zero gradient at xk. Your code should resign only if every
constraint that is violated at xk has a zero gradient. (d) Test your code on the example you
devised and show that it works while the original version of ea.m fails with rc=3.

24.10.31[P] The ea.m implementation of Shor’s algorithm normalizes g by dividing each
element by the absolute value of its absolutely largest element. (a) Why is it necessary to
perform any normalization of the gradient vector? (b) Revise the code to divide g by its
Euclidean length instead. (c) Compare the behavior of your code to that of the original
ea.m. Does using the L2 norm to normalize g result in better performance? Does it use more
CPU time?

24.10.32[P] In the ea.m implementation of Shor’s algorithm, why does the quantity gqg

approach zero as xk → x⋆? Why might Q become ill-conditioned? To illustrate your ex-
planation, print the numerical values of relevant quantities in the code as the solution to a
problem is approached.

24.10.33[E] Give a qualitative description of the convergence trajectory of ea.m when it is
used to solve the ek1 problem.

24.10.34[P] Use ea.m to solve the following inequality-constrained nonlinear programs:
(a) the arch2 problem of §16.0; (b) the arch4 problem of §16.2; (c) the moon problem of
§16.3; (d) the cq1 problem of §16.7; (e) the cq3 problem of §16.7. In each case explain how
you chose E0 and, if the algorithm is unsuccessful, why it fails.

24.10.35[E] Is the ellipsoid algorithm a descent method? Explain.

24.10.36[E] State the conditions that must be satisfied to ensure that Shor’s algorithm will
converge. Might the algorithm work even if these conditions are not satisfied?

24.10.37[P] The convex set C of §16.6 is the intersection of two nonconvex inequality
constraints. (a) Is Shor’s algorithm sure to be able to solve a nonlinear program having
these constraints? (b) Apply Shor’s algorithm to the nset problem of §16.10. Is it successful
in finding the optimal point?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

24.10 Exercises 807

24.10.38[P] If Shor’s algorithm is applied to a nonconvex problem it can converge to a
point that is not a minimizing point, as shown by the following example [3, Exercise 9.55].

minimize
x∈R2

(x1 − 15)2 + x22

subject to x21 + x22 ≥ 25

(x1 − 3)2 + x22 ≤ 25

with E0 =

{

x ∈ R2
∣
∣
∣
∣

(x1 + 1)
2

100
+

x22

25
≤ 1

}

(a) Solve the problem graphically. (b) Verify graphically that x⋆ ∈ E0. (c) Perform the first
iteration of the algorithm graphically. Is x⋆ in the E1 you have sketched? (d) Use the update
formulas to find Q1 and show analytically that x⋆ < E1. (e) To what point does ea.m converge
when it is applied to this problem? (f) Can you find an E0 from which ea.m converges to
x⋆?

24.10.39[H] What does it mean to say that a set has positive volume relative to Rn? Give
an example of a set that has positive volume in R2, and show that it has zero volume in R3.

24.10.40[E] Can Shor’s algorithm solve a problem in which an equality constraint is written
as opposing inequalities?

24.10.41[E] What is x(n), the ratio of the volumes of successive ellipsoids in Shor’s algo-
rithm? This formula has a simple approximation that is quite accurate. What is it?

24.10.42[H] Show analytically that limn→∞ x(n) = 1 − 1
2n
. Hint: limy→∞(1 + 1/y)

y
= e.

24.10.43[E] Shor’s algorithm has linear convergence. Explain how the best-case relative
error ek/e0 after iteration k depends on k and on the number of variables n. Why does this
theoretical result typically underestimate the observed convergence constant?

24.10.44[P] The asphericity of an ellipse is the ratio of its longest axis to its shortest axis.
Write a MATLAB program based on ea.m that computes the asphericity of each Ek generated
in solving the ek1 problem with Shor’s algorithm, and plots that number as a function of k.

24.10.45[H] The ea.m implementation of Shor’s algorithm uses ||xk+1 − xk||2 as the criterion
for deciding whether convergence has been achieved. Suggest two different measures of
solution error that might be used instead.

24.10.46[E] Sometimes Shor’s algorithm stops before finding an answer as precise as we
would like, even though the conditions for convergence given in §24.5 are satisfied. When
this happens, what is the usual reason? What can be done to find a more precise answer?

24.10.47[E] Explain in words the recentering strategy described in §24.6. What are its
advantages? Why does it require the keeping of a record point?

24.10.48[E] If the recentering algorithm of §24.6 takes the error exit 2, what must have
happened during the calculations? What does it mean about the problem?

24.10.49[H] Is wander.m serially reusable? If yes, present computational evidence to prove
your claim; if not, explain why it is not.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

808 Ellipsoid Algorithms

24.10.50[E] What role is played in wander.m by the variable shr? What value does shr
have if n = 2? What convergence criterion does the routine use? List its possible return
codes and their meanings.

24.10.51[E] Explain how wander.m keeps the record value and record point. What are the
meanings of its input and return variables?

24.10.52[E] In MATLAB, how can you find out the elapsed time used by a calculation?

24.10.53[H] Is it possible in the ellipsoid algorithm for xk to move outside of the starting
bounds [xL, xH]? How far can it go?

24.10.54[P] Use wander.m to solve the following inequality-constrained nonlinear pro-
grams: (a) the arch2 problem of §16.0; (b) the arch4 problem of §16.2; (c) the moon problem
of §16.3; (d) the cq1 problem of §16.7; (e) the cq3 problem of §16.7. In each case explain
how you chose the starting bounds and, if the algorithm is unsuccessful, why it fails.

24.10.55[E] Describe in words how Shah’s algorithm works. What is its purpose?

24.10.56[H] Derive the formula for the direction d in Shah’s algorithm.

24.10.57[P] Write an implementation of Shah’s algorithm that solves problems having
(a) both inequality constraints and linear equality constraints; (b) both inequality constraints
and nonlinear equality constraints. To restore feasibility use Newton’s method for systems
as in §23.1.2.

24.10.58[E] Explain the following refinements of Shor’s algorithm, and describe their bene-
fits and drawbacks: (a) using deep cuts; (b) using wedge cuts; (c) using an active set strategy.
(d) Could these refinements also be applied to the recentering algorithm of §24.6?

24.10.59[E] What does it mean to provide a hot start for an algorithm? What is a hybrid
algorithm?

24.10.60[H] The center-cut ellipsoid algorithm is sometimes described as “bisection in n

dimensions.” (a) Show that the bisection line search can be regarded as an application of
Shor’s algorithm when n = 1. (b) What does ea.m do if n = 1? Revise the code to perform
bisection if n = 1.

24.10.61[E] Summarize the advantages and drawbacks of ellipsoid algorithms. For what
kinds of problems are they most suitable?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25

Solving Nonlinear Programs

Throughout our study of nonlinear programming I have tried to teach you practical al-
gorithms, but to keep the exposition simple and the MATLAB code short I have avoided
discussing certain issues that arise in solving real problems. The time has come to address
those issues, if only in the limited way permitted by the introductory character of this text.

25.1 Summary of Methods

The table on the next page catalogs the nonlinear program solvers we have developed. It
omits ntplain.m, ntchol.m, qeplain.m, and ntfeas.m because each of those routines was
used only to illustrate some difficulty that was then overcome by the routines that are listed.
It also omits bls.m and wolfe.m, which are of course solvers for unconstrained nonlinear
programs having n = 1. Some of the listed routines use these line search codes, and some of
the listed routines use other listed routines; for example, penalty.m uses ntrs.m.

When you have decided to attempt the numerical solution of a nonlinear program you
can begin by consulting this table. Trying one (or all) of the solvers that fit your problem
might turn up an optimal point without further ado. Alas, it is more likely that each
solver will fail for one reason or another. These simple routines were all written not as
industrial-strength code but merely to help you understand the algorithms they implement.
Production implementations, such as those discussed in §8.3.1, might work better for solving
your problem, and now that you understand the algorithms you can make effective use of
those black-box codes. But often they fail too. Then, instead of using software that someone
else wrote, the best approach is to use the ideas you have learned (and those discussed below)
to devise a custom algorithm or algorithm variant that is a perfect fit to your problem.

Some problems have both equality and inequality constraints, but no solver on our list
can handle both. Robustness against nonconvexity can be improved by using a line search or
restricted-step approach, but most of our codes take full steps instead. In a real problem the
components of x⋆ might differ by many orders of magnitude, but so far I have said nothing
about the effects of bad scaling or how to mitigate them. Depending on problem scaling, the
absolute tests for convergence that we have used might stop an algorithm too soon or not
at all. Many real problems involve functions that lack analytic derivatives, so their gradient
and Hessian components can’t be computed from formulas. Finally, some problems involve
so many variables or constraints that the classical algorithms we have studied are mostly
useless, and then we must resort to methods that are useless for solving classical nonlinear
programs. The rest of this Chapter is devoted to these important practical matters.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

810 Solving Nonlinear Programs
al
go
ri
th
m

fa
m
il
y

im
p
le
m
en
ta
ti
on

s
p
re
se
n
te
d
in

th
is

te
x
t

≤
=

n
ot
e

st
ee
p
es
t
d
es
ce
n
t

[
x
s
t
a
r
,
k
]
=
s
d
(
x
z
e
r
o
,
x
l
,
x
h
,
n
,
k
m
a
x
,
e
p
z
,
g
r
d
)

�
�

[
x
s
t
a
r
,
k
p
]
=
s
d
f
s
(
x
z
e
r
o
,
k
m
a
x
,
e
p
z
,
g
r
d
,
h
s
n
)

�
�

[
x
s
t
a
r
,
k
]
=
s
d
w
(
x
z
e
r
o
,
x
l
,
x
h
,
n
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)

�
�

N
ew

to
n
d
es
ce
n
t

[
x
s
t
a
r
,
k
p
,
n
m
,
r
c
]
=
n
t
(
x
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
g
r
d
,
h
s
n
,
g
a
m
a
)

�
�

[
x
s
t
a
r
,
k
p
,
n
m
,
r
c
]
=
n
t
f
s
(
x
z
e
r
o
,
k
m
a
x
,
e
p
z
,
g
r
d
,
h
s
n
,
g
a
m
a
)

�
�

[
x
s
t
a
r
,
k
p
,
n
m
,
r
c
]
=
n
t
w
(
x
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
,
h
s
n
,
g
a
m
a
)

�
�

q
u
as
i-
N
ew

to
n

[
x
s
t
a
r
,
G
s
t
a
r
,
k
p
,
r
c
]
=
d
f
p
(
x
z
e
r
o
,
G
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)

�
�

[
x
s
t
a
r
,
G
s
t
a
r
,
k
p
,
r
c
]
=
d
f
p
f
s
(
x
z
e
r
o
,
G
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)

�
�

[
x
s
t
a
r
,
G
s
t
a
r
,
k
p
,
r
c
]
=
b
f
g
s
(
x
z
e
r
o
,
G
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)

�
�

[
x
s
t
a
r
,
G
s
t
a
r
,
k
p
,
r
c
]
=
b
f
g
s
f
s
(
x
z
e
r
o
,
G
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)
�
�

co
n
ju
ga
te

[
x
s
t
a
r
,
k
p
,
b
e
t
a
]
=
c
g
(
x
z
e
r
o
,
k
m
a
x
,
e
p
z
,
Q
,
b
)

�
�

1
gr
d

[
x
s
t
a
r
,
k
p
,
r
c
]
=
f
l
r
v
(
x
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)

�
�

[
x
s
t
a
r
,
k
p
,
r
c
]
=
p
l
r
b
(
x
z
e
r
o
,
x
l
,
x
h
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
)

�
�

tr
u
st

re
gi
on

[
x
s
t
a
r
,
k
p
,
n
m
,
r
c
,
r
]
=
n
t
r
s
(
x
z
e
r
o
,
r
z
e
r
o
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
,
h
s
n
,
g
a
m
a
)
�
�

[
x
s
t
a
r
,
k
p
,
r
c
]
=
t
r
u
s
t
(
x
z
e
r
o
,
k
m
a
x
,
e
p
z
,
f
c
n
,
g
r
d
,
h
s
n
)

�
�

n
u
ll
sp
ac
e

[
x
s
t
a
r
,
k
p
,
r
c
,
n
m
]
=
q
p
e
q
(
Q
,
c
,
A
,
b
,
k
m
a
x
,
e
p
z
)

�
�

2
[
x
s
t
a
r
,
k
,
r
c
,
W
,
l
a
m
b
d
a
]
=
q
p
i
n
(
Q
,
c
,
A
,
b
,
k
m
a
x
,
e
p
z
)

�
�

2
[
x
s
t
a
r
,
k
,
r
c
]
=
r
s
d
e
q
(
g
r
d
,
h
s
n
,
A
,
b
,
k
m
a
x
,
e
p
z
)

�
�

3
[
x
s
t
a
r
,
k
,
r
c
,
n
m
]
=
r
n
e
q
(
g
r
d
,
h
s
n
,
A
,
b
,
k
m
a
x
,
e
p
z
)

�
�

3

p
en

al
ty

[
x
s
t
a
r
,
k
p
,
r
c
,
m
u
,
n
m
]
=
p
e
n
a
l
t
y
(
n
a
m
e
,
m
e
q
,
x
z
e
r
o
,
m
u
z
e
r
o
,
e
p
z
)

�
�

b
ar
ri
er

[
x
b
e
t
a
,
k
p
,
r
c
,
n
r
,
n
m
]
=
n
t
i
n
(
x
z
e
r
o
,
k
m
a
x
,
e
p
z
,
f
c
n
,
m
)

�
�

[
x
s
t
a
r
,
k
p
,
r
c
,
m
u
,
n
m
]
=
b
a
r
r
i
e
r
(
n
a
m
e
,
m
i
n
e
q
,
x
z
e
r
o
,
m
u
z
e
r
o
,
e
p
z
)

�
�

ex
ac
t
p
en

al
ty

[
x
s
t
a
r
,
k
,
r
c
,
l
s
t
a
r
,
p
n
,
t
s
t
a
r
]
=
e
m
i
q
p
(
n
a
m
e
,
m
i
,
x
z
e
r
o
,
k
m
a
x
,
e
p
z
)

�
�

[
x
s
t
a
r
,
l
a
m
b
d
a
,
k
l
,
r
c
,
m
u
]
=
a
u
g
l
a
g
(
n
a
m
e
,
m
e
q
,
x
z
e
r
o
,
e
p
z
,
k
m
a
x
)

�
�

in
te
ri
or

p
oi
n
t

[
x
s
t
a
r
,
k
]
=
n
l
p
i
n
(
x
z
e
r
o
,
m
,
e
p
z
,
f
c
n
,
g
r
d
,
h
s
n
)

�
�

[
x
s
t
a
r
,
k
]
=
n
l
p
i
n
p
(
x
z
e
r
o
,
m
,
e
p
z
,
f
c
n
,
g
r
d
,
h
s
n
)

�
�

fe
as
ib
le

p
oi
n
t

[
x
s
t
a
r
,
k
,
r
c
]
=
g
r
g
(
f
c
n
,
g
r
d
,
h
s
n
,
n
,
m
,
x
z
e
r
o
,
k
m
a
x
,
e
p
z
)

�
�

[
x
s
t
a
r
,
k
,
r
c
,
l
s
t
a
r
]
=
n
t
l
g
(
f
c
n
,
g
r
d
,
h
s
n
,
n
,
m
,
x
z
e
r
o
,
l
z
e
r
o
,
k
m
a
x
,
e
p
z
)

�
�

[
x
s
t
a
r
,
k
,
r
c
,
l
s
t
a
r
]
=
s
q
p
(
f
c
n
,
g
r
d
,
h
s
n
,
n
,
m
,
x
z
e
r
o
,
l
z
e
r
o
,
k
m
a
x
,
e
p
z
)

�
�

[
x
s
t
a
r
,
k
,
r
c
,
l
a
m
b
d
a
,
m
u
s
t
a
r
]
=
i
q
p
(
f
c
n
,
g
r
d
,
h
s
n
,
m
,
x
z
e
r
o
,
k
m
a
x
,
e
p
z
)

�
�

el
li
p
so
id

[
x
s
t
a
r
,
r
c
,
k
,
Q
s
t
a
r
]
=
e
a
(
x
z
e
r
o
,
Q
z
e
r
o
,
m
,
k
m
a
x
,
t
o
l
,
f
c
n
,
g
r
d
)

�
�

[
x
l
r
,
x
r
,
x
h
r
,
r
c
,
k
]
=
w
a
n
d
e
r
(
x
l
,
x
h
,
m
,
k
m
a
x
,
t
o
l
,
f
c
n
,
g
r
d
)

�
�

1. This routine minimizes a quadratic objective.
2. This routine minimizes a quadratic objective subject to linear constraints.
3. This routine minimizes a general objective subject to linear constraints.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.2.2 Extensions Beyond Constraint Affinity 811

25.2 Mixed Constraints

Many applications yield nonlinear programs that have a mixture of equality and inequality
constraints. The algorithm extensions required to handle mixed constraints are trivial
for some methods but intricate for others.

25.2.1 Natural Algorithm Extensions

In §19.4, I mentioned that the quadratic penalty and logarithmic barrier ideas have been
combined to produce hybrid algorithms capable of solving problems that include both equal-
ity and inequality constraints. Minimizing

Ω(x; µ) = f0(x) + µ

mi+me∑

i=mi+1

[fi(x)]
2 − 1

µ

mi∑

i=1

ln[− fi(x)]

in a sequence of unconstrained optimizations, each starting at the optimal point of the
previous one and using a value of µ greater than the previous value, yields an algorithm
that behaves like its parents. It requires a starting point that is strictly feasible for the
inequalities, converges linearly under the right conditions, and is prone to the numerical
woes discussed in §18.4.

In §20.1, I mentioned that the max penalty method can be used to solve problems that
include both inequality and equality constraints, if we minimize

Ω(x; µ) = f0(x) + µ

mi∑

i=1

max[0, fi(x] + µ

mi+me∑

i=mi+1

| fi(x)|

in a sequence of unconstrained optimizations each starting at the optimal point of the previ-
ous one and using a value of µ greater than the previous value. This objective, because it is
not smooth, is troublesome for the unconstrained minimization algorithms we have studied.

In §21.3.4, I mentioned that equality constraints can be included along with inequalities
in formulating the interior point method for nonlinear programming. This adds terms for
the equalities to the Lagrangian

L(x, s,λλλ) = f0(x) − µ
mi∑

i=1

ln(si) +

mi∑

i=1

λi[fi(x) + si] +

mi+me∑

i=mi+1

λi fi(x)

of §21.3.1, enlarging ∇λλλL and the Jacobian of the primal-dual system.

25.2.2 Extensions Beyond Constraint Affinity

Other algorithms for constrained nonlinear programming have a pronounced constraint

affinity for either equalities or inequalities. For example, the ellipsoid method has a simpler
realization for inequality constraints than for equalities, while sequential quadratic program-
ming is simpler if the constraints are equalities than if they are inequalities.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

812 Mixed Constraints

Some algorithms with an affinity for equality constraints can be made to work for prob-
lems that also have inequality constraints by adding slack variables to make the inequalities
into equalities and then using a bounded line search to keep the slack variables nonnegative.
This idea is discussed in §20.2.5.

Some algorithms with an affinity for equality constraints can be made to work for prob-
lems that also have inequality constraints by using an active-set strategy to ignore the slack
inequalities and treat the tight ones as equations. In §22.2.4 we used this idea to get from
qpeq.m to qpin.m, which could in turn be generalized to handle equality constraints too.
The resulting quadratic program solver could then be used to generalize iqp.m so that it
would handle equality and inequality constraints in the same problem. Active set strategies
have also been devised [137] for algorithms that solve problems in which the inequality con-
straints are not linear, but they are much more complicated than the one we developed for
linear inequalities.

Some algorithms with an affinity for inequality constraints can be made to work for
problems that also have equality constraints, by constructing a flat that supports the hy-
persurface of the equalities at xk, minimizing the objective within that flat subject only to
the inequalities, projecting the resulting point back onto the hypersurface, and repeating the
process. This is a generalization of the GRG algorithm we derived in §23.1.2.

25.2.3 Implementing Algorithm Extensions

Extending an algorithm to handle mixed constraints introduces complications to both the
theory of the method and its implementation. Of these the most obvious is the need to
distinguish between the me equality and mi inequality constraints. Both numbers must be
input parameters to the solver, so that it can invoke the value, gradient, and Hessian routines
that define the problem with the correct function index, i ∈ {1 . . .mi} for the inequalities or
i ∈ {mi + 1 . . .mi + me} for the equalities. Those routines must then be coded in a way that
puts the objective first, the inequalities next, and the equalities last.

Complex algorithm extensions, such as those described in §25.2.2, tend to be far less
robust than the algorithm they are extending. It must be an irresistible temptation for an
implementer, or for the architect of a scientific subprogram library, to provide a code that
can in principle solve problems having any mixture of constraints, but the result can be less
than completely satisfactory. When these methods for mixed constraints fail, practitioners
often resort to problem-specific ad hoc approaches. If the me equality constraints can be
used to analytically eliminate me of the variables, the remaining problem will have only
inequality constraints. If it is possible to make a good guess at which inequalities will be
active at optimality, or if the number of possible active sets is small enough that you can
try them all, then it is necessary to solve only problems having equality constraints. Some
problems are separable (see §25.7.1) in a way that permits their solution by alternately
solving subproblems that involve only the equalities or only the inequalities, and then a
separate solver can be used for each set of constraints.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.3.1 Finding a Minimizing Point 813

25.3 Global Optimization

Recall from §16.6 that a convex program is a standard-form NLP in which all of the functions
are convex. Every minimizing point of a convex program is a global minimizer, and if the
objective is strictly convex there is only one such point. These properties make convex
programs easy to solve using the algorithms we have studied. Unfortunately (or fortunately,
depending on your interests) most applications of nonlinear optimization give rise to problems
that are not convex programs.

25.3.1 Finding A Minimizing Point

A nonlinear program that is not a convex program can be hard to solve even if it has a unique
minimizing point, as we discovered in §17.1 when we studied h35. For that problem we found
that, compared to full-step modified Newton descent, a restricted-step method is more likely
to reach x⋆ from a distant starting point and takes fewer iterations when both work. Our
restricted-step method adjusts the steplength dynamically, accepting a trial step only if it
yields at least the objective decrease predicted by the quadratic model of the function. This
is somewhat analogous to enforcing the sufficient-decrease (Armijo) Wolfe condition in a
descent method that uses a line search, so it is not surprising that ntw.m also solves h35

quickly.

octave:1> xzero=[1;0.6];
octave:2> xl=[0;0];
octave:3> xh=[15;2];
octave:4> [xstar,kp,nm,rc]=ntw(xzero,xl,xh,100,1e-16,@h35,@h35g,@h35h,0.5)
xstar =

3.00000
0.50000

kp = 10
nm = 0
rc = 0
octave:5> quit

Using restricted-step methods and enforcing the Wolfe conditions are globalization

strategies [4, §11.5] [5, §3.2] that improve the robustness and performance of a nonlinear
programming algorithm. The simplest way to gain their benefit is by using a line search
to solve the unconstrained subproblems of an algorithm that has subproblems, rather than
taking full steps. We did that in penalty.m and auglag.m by using ntrs.m rather than
ntfs.m to minimize the penalty function at each value of µ. It is also possible in some
algorithms that do not explicitly solve unconstrained subproblems to insist that the step
from xk to xk+1 actually go downhill. The table on the next page summarizes the steps
that are taken by the constrained optimization routines listed in §25.1, and reveals many
opportunities to replace a full step by a restricted step or a Wolfe line search (some cases
are identified as “tricky” because taking less than the full step would affect other aspects of

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

814 Global Optimization

code step from xk to xk+1 globalizable?

qpeq.m full modified Newton on flat of = yes
qpin.m longest modified Newton in slack ≤ on flat of tight ≤ yes
rsdeq.m full steepest descent on flat of = yes
rneq.m full modified Newton on flat of = yes
penalty.m uses ntrs.m done
ntin.m longest reduced Newton interior to feasible set yes
barrier.m full to next point from ntin.m yes
emiqp.m full to next point from iqp.m yes
auglag.m uses ntrs.m done
nlpin.m longest primal-dual interior to feasible set yes
nlpinp.m full primal interior to feasible set yes
grg.m full steepest-descent on tangent hyperplane yes
ntlg.m full Newton-Lagrange tricky
sqp.m full to next point from qpeq.m tricky
iqp.m full to next point from qpin.m yes
ea.m full to next ellipsoid center tricky
wander.m full to next ellipsoid center, or recenter tricky

the algorithm). The use of line searches in interior point methods was mentioned in §21.3.4,
and their use in sequential quadratic programming algorithms was discussed at the end of
§23.2.4.

Globalizing a full-step algorithm by restricting the length of its steps or searching the line
between each xk and the proposed next point increases the complexity of the implementation
and might increase its running time on problems that it would have solved by taking full
steps. As I first mentioned in §9.4, there is usually a tradeoff between robustness and speed.

The trust-region idea can also be used to devise globalization strategies [4, §11.6] [5, §4.2].
Some authors refer to restricted-step methods as trust-region methods, but the algorithm
we developed in §17.3 does more than just limit the step length. In our trust-region method,
if the full modified Newton step is too long we instead move to a point that minimizes the
quadratic model of the function on the trust-region boundary, and this step will usually be in
a direction different from that of the Newton step. If the problem is unconstrained that does
not matter, so we can expect trust.m to be a robust method for unconstrained minimization.
But many algorithms for constrained nonlinear programming pick the direction of each step
in a way that preserves or leads to satisfaction of the constraints, and stepping in a different
direction might prevent the algorithm from achieving that goal. In the parlance of the table
above, this puts globalization by trust regions in the “tricky” category for several of our
methods (see Exercise 25.8.17). Using the trust-region idea for constrained minimization
is a research area involving the design of new algorithms that are based upon it from the
beginning. In this context the trust-region idea might be realized using a proposed direction
other than the Newton direction or a model function other than the quadratic approximation
to f0 [1, §10.3].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.4 Scaling 815

25.3.2 Finding The Best Minimizing Point

A nonlinear program that is not a convex program can have several local minima (see §9.3)
and finding one that is a global minimum is in general hard (see §7.9). Algorithms have been
proposed [126] [4, references listed in §2.8] for solving nonconvex programs in certain classes,
such as linearly-constrained indefinite quadratic programs [1, §11.2], but except for those
special cases all we can do is make the most artful possible use of algorithms for general
nonlinear programming and hope for the best.

We kept a record point in implementing only two of the methods we have studied, pure
random search and the ellipsoid algorithm, because in both it is likely that f0(x

k+1) > f0(x
k)

in some iterations even when the problem is convex. But if the problem is nonconvex
that can also happen when the other methods are used, so keeping a record point is an
important globalization strategy for all of them. This is especially true when there are
multiple local minima, because that introduces the possibility that an algorithm will visit
the global minimum but subsequently become trapped at a higher local minimum. Keeping
a record point makes any algorithm implementation more complicated, and if the feasibility
of the current point is not already known checking that also makes the code run slower, but
if you intend to solve problems that are not convex it is always worth the trouble.

The ellipsoid algorithm is more likely than other methods to find a global minimum of
a nonconvex problem, probably because its lunatic excursions sample widely-spaced points
early in the solution process. This behavior is especially desirable when there are multiple
local minima, so if n is small enough and the problem has only inequality constraints it
makes sense to try wander.m or a hybrid algorithm of the sort described in §24.8.

The idea of sampling widely-spaced points is often implemented in a more deliberate
way by using the multistart strategy, in which one or more algorithms are run from
randomly-selected starting points and the best solution is taken to be the global optimum.

25.4 Scaling

This harmless-looking unconstrained minimization [5, p26] has x⋆ = [0, 0]⊤ for any s ≥ 0.

minimize
x∈R2

f0(x) = sx21 + x22

To solve it numerically I wrote these routines to compute the value and derivatives of f0.

function f=scl(x)
global s
f=s*x(1)^2+x(2)^2;

end

function g=sclg(x)
global s
g=[2*s*x(1);2*x(2)];

end

function H=sclh(x)
global s
H=[2*s,0;0,2];

end

The Octave session on the next page shows our steepest-descent code sd.m, which uses the
bisection line search bls.m, solving the problem easily for s = 1 5>-6> but failing to solve it
at all for s = 1014 7>-8> . Increasing the iteration limit kmax does not help.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

816 Solving Nonlinear Programs

octave:1> xz=[1;1];
octave:2> xl=[-10;-10];
octave:3> xh=[10;10];
octave:4> kmax=1000;
octave:5> tol=1e-16;
octave:5> global s=1
octave:6> xsd=sd(xz,xl,xh,2,kmax,tol,@sclg)
xsd =

0
0

octave:7> s=1e14
s = 1.0000e+14
octave:8> xsd=sd(xz,xl,xh,2,kmax,tol,@sclg)
xsd =

-2.1803e-14
1.0000e+00

octave:8> kmax=1;
octave:9> xnt=nt(xz,xl,xh,1,tol,@sclg,@sclh,0.5)
xnt =

4.2188e-15
4.6629e-15

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x2

x1

s = 1014

f 0
(x
)
=

f 0
(x
s
d
)

f0(x) = f0(x
0)

•x0•xsd

• xnt ≈ x⋆

When s = 1 the contours of f0(x) are circles, so from x0 = [1, 1]⊤ the direction of steepest
descent points at x⋆ = [0, 0]⊤ and only one line search is needed to get there.

When s = 1014 the contours of f0(x) are right ellipses so tall compared to their width that
their sides appear to be vertical lines. The picture above shows two such contours, passing
through x0 = [1, 1]⊤ and xsd ≈ [−2×10−14, 1]⊤. At the starting point the normalized direction
of steepest descent g0 = −∇f0(x0)/||∇f0(x0)|| ≈ [−1,−10−14]⊤, and the first step that sd.m takes
is to x1 ≈ [4 × 10−15, 1]⊤. There the direction of steepest descent is g1 ≈ [−0.4,−0.9]⊤ but
the elliptical contours of f0 are so compressed that the minimum in that direction is found
only a tiny distance away, at x2 ≈ [−3 × 10−14, 1]⊤. Subsequent iterations alternate between
approximately these two points, so no progress is ever made in reducing x2 toward x⋆2 = 0.

An unconstrained optimization is said [5, p26] to be poorly scaled if there are indices
i and j and points x for which ∂ f0(x)/∂xi ≫ ∂ f0(x)/∂x j. In our example with s = 1014 this
condition is satisfied where sx1 ≫ x2 or x1 ≫ 10−14x2, which is almost everywhere that
x1 , 0 = x⋆1 .

The Octave session above shows 8>-9> that nt.m, which also uses the bls.m line search,
gets very close to x⋆ in a single step (in 4 iterations it gets within tol). Some algorithms
are more affected than others by poor scaling; steepest descent is sensitive [107, p222-225]
because scaling the variables changes the direction of search, while Newton descent is scale-
invariant [59, §3.3] (but see [5, Example 19.1]). Conjugate-gradient methods are sensitive
[5, p585], as are quasi-Newton methods [1, p420] except for those that are self-scaling

[107, §9.6] [59, p59]. Poor scaling can be mitigated in the trust-region method by using trust
regions that are ellipsoids rather than hyperspheres [5, p95-97].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.4.2 Scaling Constraints 817

Poor scaling can make a sensitive algorithm fail altogether, but even if it does not it can
cause problems by accelerating the growth of roundoff errors [2, p230] and by increasing the
condition number of the Hessian (see §18.4.2), which degrades the convergence constant for
steepest descent and conjugate gradient methods [2, p70-77].

25.4.1 Scaling Variables

Suppose that before attempting the solution of

minimize
x∈R2

f0(x) = sx21 + x22 = (
√
sx1)

2
+ x22

we had made the substitutions y1 =
√
sx1 and y2 = x2 or

y =

[

y1
y2

]

=

[√
s 0

0 1

] [

x1
x2

]

= Dx.

Then we could have used sd.m to solve

minimize
y∈R2

f0(y) = y21 + y
2
2,

obtaining y⋆ = [0, 0]⊤ easily, from which

x⋆ = D−1y⋆ =





1
√
s

0

0 1





[

y⋆1
y⋆2

]

=

[

0

0

]

.

This is called diagonal scaling [1, p29] because to scale x we find y = Dx where D is a
diagonal matrix.

Applications involving physical measurements sometimes give rise to optimizations that
are poorly scaled because of the units in which the data of the problem are expressed. In that
case the bounds xL and xH can be used to find a diagonal scaling of the variables according
to [2, p230]

y j =

x j − 1
2
(xH

j
+ xL

j
)

1
2
(xH

j
− xL

j
)
, j = 1 . . . n.

If xL ≤ x⋆ ≤ xH and the solution process can find the optimal point without exceeding those
bounds, then each y j that it generates will lie in the range [−1, 1]. Depending on the problem
this might help to ensure that the partials ∂f0/∂y j are not wildly different in magnitude.

25.4.2 Scaling Constraints

Our example of poorly scaled variables is difficult for sd.m when s = 1014 because then the
∂f0(x)/∂x j are almost everywhere vastly different from each other. In a constrained optimiza-
tion, the Lagrange multipliers depend on the scaling of the constraints [107, p402-403] and
trouble can arise whenever a λi = −∂f0/∂ fi is vastly different from 1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

818 Scaling

This problem has x⋆ = [1
2
, 1
2
]⊤ with λ⋆ = 1/s.

minimize
x∈R2

f0(x) = x21 + x22

subject to f1(x) = s(1 − x1 − x2) = 0

To solve it I wrote the MATLAB routines sclc.m, sclcg.m,
and sclch.m, and used auglag.m as shown in the Octave
session below the function listings. When s = 1 1> the
algorithm succeeds but when s is very big 3> or very small
5> it fails.

x1

x2

•

1
2

1

1
2

1

x⋆

f1 (x)
=
0

f0(x) = f0(x
⋆)

function f=sclc(x,i)
global s
switch(i)

case 0
f=x(1)^2+x(2)^2;

case 1
f=s*(1-x(1)-x(2));

end
end

function g=sclcg(x,i)
global s
switch(i)
case 0

g=[2*x(1);2*x(2)];
case 1

g=[-s;-s];
end

end

function H=sclch(x,i)
switch(i)
case 0

H=[2,0;0,2];
case 1

H=[0,0;0,0];
end

end

octave:1> global s=1
octave:2> [xstar,lambda]=auglag(’sclc’,1,[2;2],1e-16,40)
ans =

0.50000
0.50000

lambda = 1.0000
octave:3> s=1e14
s = 1.0000e+14
octave:4> [xstar,lambda]=auglag(’sclc’,1,[2;2],1e-16,40)
ans =

-1305.0
1306.0

lambda = 0
octave:5> s=1e-14
s = 1.0000e-14
octave:6> [xstar,lambda]=auglag(’sclc’,1,[2;2],1e-16,40)
ans =

1.0009e-28
1.0009e-28

lambda = 8.0000e-13

The precise mechanism by which failure can occur because of poorly scaled constraints differs
from one algorithm to another; in auglag.m the method of multipliers does not converge to
the optimal point. In this example H f1 does not depend on s, but in a problem where it does
poor scaling of the constraint could lead to that matrix being badly conditioned [4, 7.6.4].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.5 Convergence Testing 819

If there are m equality or inequality constraints we can use diagonal scaling to multiply
each by a constant, like this.

F =





f1(x)
...

fm(x)





−→ DF =





d11 f1(x)
...

dmm fm(x)





25.5 Convergence Testing

Algorithms for nonlinear optimization are infinitely convergent (see §9.2) so when they work
at all xk keeps getting closer to x⋆ as k increases, and in perfect arithmetic that process might
go on indefinitely. But floating-point numbers have finite precision, practical applications
do not require perfect results, and we can’t wait forever. How do we decide when an answer
is close enough? Various tests of the form

if(εk < ǫ) STOP

have been proposed [1, p323] [98, §2.4] in which εk is some measure of the error or uncertainty
in xk. In previous Chapters we have used several different absolute error measures for εk,
including the norm of a step length, the norm of a gradient, the absolute value of a directional
derivative, and the distance between shrinking variable bounds.

The trouble with using absolute measures of error for εk is that they are sensitive to
scaling. If every xk has components close to 1 then requiring ||xk+1 − xk|| < 0.01 stops the
algorithm when xk is known to within about 1%, but if some xk has components that are
10−6 or 10+6 the algorithm might stop long before finding a useful answer, or never.

We could instead use a relative error measure such as εk = ||xk+1 − xk||/||xk||, but this
fails if the xk approach 0 as k → ∞ or if xk = 0 for some finite k.

The more complicated measure of step length

εk =
||xk+1 − xk||
1 + ||xk||

tries to avoid the problems of the absolute and relative measures by behaving like relative
error when ||xk|| is large and like absolute error when ||xk|| is small.

A quite different approach to measuring the difference between two floating-point num-
bers is based on comparing their bit strings [100, p68-69]. According to the IEEE standard
[84] an 8-byte value (which MATLAB uses) is stored in a doubleword of 64 bits. The first bit
denotes the sign of the number, the next 11 bits the biased exponent, and the final 52 bits
the binary fraction. If the components xk+1

j
and xk

j
start to disagree at bit b then they are

different in e j = 64 − b + 1 bits and we could measure the difference between xk+1 and xk by

εk = max
j∈1...n

e j.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

820 Calculating Derivatives

25.6 Calculating Derivatives

Suppose we want to solve the following unconstrained convex minimization, which I will call
the egg problem (see §28.7.40).

minimize
x∈R2

f0(x) = e(x1−2)
2

Γ(x2) where Γ(t) =

∫ ∞

0

yt−1e−ydy

Here Γ(t) is the gamma function [116, §3.3]. To find the stationary points of f0(x) we need
only set its derivatives to zero and solve the resulting algebraic equations, in which Ψ(t) is
the digamma function [6, §6.3].

∂ f0

∂x1
= Γ(x2)e

(x1−2)2(2(x1 − 2)
)

= 0

∂ f0

∂x2
= e(x1−2)

2 dΓ(x2)

dx2
= e(x1−2)

2

Ψ(x2)Γ(x2) = 0

where Ψ(t) =

∫ ∞

0

(

e−y

y
− e−ty

1 − e−y

)

dy

The first stationarity condition is satisfied by x̄1 = 2, but it is far from obvious what x̄2
should be to satisfy the second so an analytic solution to this problem appears unlikely.
To minimize f0(x) using a gradient-based algorithm we need numerical values of its partial
derivatives, but Octave has no built-in function for Ψ(t).

Nonlinear programs often involve functions whose derivatives are inconvenient, expen-
sive, or impossible to calculate from a formula; I have referred to such problems as type–2.
If a function value is the numerical solution of a differential equation as in §8.5, or the out-
put of a simulation, or the result of a physical measurement, then there is no closed-form
expression for its derivative and to approximate its gradient or Hessian we must resort to
finite differencing [20, §4.1] [30, §7.1].

25.6.1 Forward-Difference Approximations

Finite-difference derivatives are based on the Taylor’s series approximation of the function
and on the definition of a derivative. Recall (see §28.1.2) that if x ∈ R1 and f (x) is sufficiently
smooth we can write

f (x + ∆) = f (x) + ∆ f ′(x) +
∆
2

2
f ′′(ξ)

where ξ is some point in the interval [x, x + ∆]. Solving for the derivative and assuming the
f ′′ term is relatively small,

f ′(x) =
f (x + ∆) − f (x)

∆
− ∆

2
f ′′(ξ) ≈ f (x + ∆) − f (x)

∆

and for x ∈ Rn we can approximate the partial derivatives of f (x) as

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.6.2 Central-Difference Approximations 821

∂ f

∂xi
(x) ≈ f (x + ∆ei) − f (x)

∆

where ei is as usual the unit vector having a 1 for its i th component and zeros elsewhere.
The error in this forward difference approximation is no greater than (∆/2) f ′′(ξ), which
is proportional to ∆, so it is said to be of order ∆ or O(∆) [5, p631]. To approximate a
single partial derivative in this way requires 2 function evaluations; to find a gradient vector
requires n + 1.

To approximate the second derivatives of f we can forward-difference our approximation
to ∂ f /∂xi in the j direction, like this.

∂ 2f

∂xi∂x j

(x) =
∂

∂x j

(

∂ f

∂xi
(x)

)

≈

∂ f

∂xi
(x + ∆e j) − ∂ f

∂xi
(x)

∆

We will use the approximation given at the top of the page for the right-hand term in the
numerator of this fraction, and the one below for the left-hand term.

∂ f

∂xi
(x + ∆e j) ≈ f ([x + ∆e j] + ∆ei) − f (x + ∆e j)

∆

Then

∂ 2f

∂xi∂x j

(x) ≈ 1

∆

(

f (x + ∆e j
+ ∆ei) − f (x + ∆e j)

∆
− f (x + ∆ei) − f (x)

∆

)

or [5, p202]

∂ 2f

∂xi∂x j

(x) ≈ f (x + ∆ei + ∆e j) − f (x + ∆ei) − f (x + ∆e j) + f (x)

∆2

The error in this approximation is also O(∆). To approximate a single second partial deriva-
tive in this way requires 4 function evaluations; to find a symmetric Hessian matrix requires
1
2
n(n + 1) + n + 1 = (1

2
n + 1)(n + 1) of them.

25.6.2 Central-Difference Approximations

Forward-differencing approximates the slope of the tangent line at x by the slope of a chord
between x and x + ∆, as shown in the left-hand picture at the top of the next page. It is
more accurate to use the chord between x − ∆ and x + ∆, as shown on the right, so that x

is the midpoint of the interval. This approximation is exact for a quadratic, and in these
pictures f (x) is a quadratic so on the right the chord is exactly parallel to the tangent line.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

822 Calculating Derivatives

y
=
f (x)

•
x ∆

f(
x
+
∆
)
−

f(
x)

tang
ent

ch
or
d

forward differencing

y
=
f (x)

•
x

∆

∆

f (x + ∆) − f (x − ∆)

tang
ent

chor
d

central differencing

To find a formula for the centered approximation to the derivative we again use the Taylor’s
series approximation of the function. Subtracting the approximation of the function at x−∆
from that at x + ∆, we get

f (x + ∆) = f (x) + ∆ f ′(x) +
(+∆)2

2
f ′′(x) + O(∆3)

− f (x − ∆) = f (x) − ∆ f ′(x) + (−∆)2
2

f ′′(x) + O(∆3)

f (x + ∆) − f (x − ∆) = 2∆ f ′(x) + O(∆3).

Here the error terms are different but of the same order, so I have denoted them all by O(∆3).
Solving for f ′, assuming that the error is small compared to the derivative, and generalizing
as we did before to the case of x ∈ Rn, we get this central difference approximation for
the first partial derivatives of f (x).

∂ f

∂xi
(x) ≈ f (x + ∆ei) − f (x − ∆ei)

2∆

The error in this approximation is O(∆3/∆) = O(∆2), and to approximate ∇f (x) using this
formula requires 2n function values.

To approximate the second derivatives of f we can central-difference the above approxi-
mation to ∂ f /∂xi as follows.

∂ 2f

∂xi∂x j

(x) =
∂

∂x j

(

∂ f

∂xi
(x)

)

≈

∂ f

∂xi
(x + ∆e j) − ∂ f

∂xi
(x − ∆e j)

2∆

Using the formula that is boxed above, we can approximate the terms in the numerator of
this fraction as shown on the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.6.3 Computational Costs 823

∂ f

∂xi
(x + ∆e j) ≈ f ([x + ∆e j] + ∆ei) − f ([x + ∆e j] − ∆ei)

2∆

∂ f

∂xi
(x − ∆e j) ≈ f ([x − ∆e j] + ∆ei) − f ([x − ∆e j] − ∆ei)

2∆

Then

∂ 2f

∂xi∂x j

(x) ≈ 1

2∆

(

f (x + ∆e j
+ ∆ei) − f (x + ∆e j − ∆ei)

2∆
− f (x − ∆e j

+ ∆ei) − f (x − ∆e j − ∆ei)
2∆

)

or

∂ 2f

∂xi∂x j

(x) ≈ f (x + ∆ei + ∆e j) − f (x − ∆ei + ∆e j) − f (x + ∆ei − ∆e j) + f (x − ∆ei − ∆e j)

4∆2

The error in this approximation is also O(∆2). To fill in a symmetric Hessian matrix using
this formula requires 4(1

2
n(n + 1)) = 2n(n + 1) function values.

25.6.3 Computational Costs

Central-difference derivative approximations are much more accurate than forward-difference
approximations, but they also take more work. The table below compares the number of
function values required to the number of gradient or Hessian elements being approximated.

to approximate a gradient to approximate a symmetric Hessian
variables f values elements ratio f values elements ratio

2 3 2 1.50 6 3 2.00
10 11 10 1.10 66 55 1.20
100 101 100 1.01 5151 5050 1.02
n n + 1 n (n + 1)/n (1

2
n + 1)(n + 1) 1

2
n(n + 1) (n + 2)/n

2 4 2 2 12 3 4
10 20 10 2 220 55 4
100 200 100 2 20200 5050 4
n 2n n 2 2n(n + 1) 1

2
n(n + 1) 4

ce
n
tr
al

fo
rw

ar
d

Many optimization algorithms can tolerate derivatives that are slightly imprecise, so if a
gradient component is more than twice as expensive to calculate as a function value, or if
a Hessian component is more than four times as expensive, then using a central difference
approximation might save CPU time; for forward differencing the ratios are even smaller.
Otherwise it is faster to evaluate gradients and Hessians using formulas, if they are available.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

824 Calculating Derivatives

25.6.4 Finding the Best ∆

In §25.6.1 and §25.6.2 we approximated derivatives by ignoring higher-order terms in the
Taylor’s series expansion of f (x), which introduces a truncation error t. In forward differ-
encing this error is O(∆), so in the worst case t ∝ ∆; in central differencing the error is O(∆2),
so we will assume that t ∝ ∆2. To minimize truncation error we should make ∆ small.

But the formulas we found all involve small differences between relatively large numbers,
so evaluating our approximations with floating-point arithmetic also introduces cancellation
error [100, §4.3]. In both forward and central differencing this error is r ∝ 1/∆ [5, p196]. To
minimize this roundoff error we should make ∆ big.

To find the best compromise between truncation error and roundoff error, we must mini-
mize the total error E = t + r in each approximation. Assuming constants of proportionality
a, b, c, and d we can use calculus to find the stationary points of E(∆) like this.

forward differencing

E = t + r = a∆ + b/∆
dE

d∆
= a − b

∆2
= 0

∆
2
= b/a

∆
⋆
=

2
√
b/a

central differencing

E = t + r = c∆2 + d/∆
dE

d∆
= 2∆c − d

∆2
= 0

∆
3
= d/(2c)

∆
⋆
=

3
√
d/(2c)

Each ∆⋆ is the unique minimizing point of the corresponding total error. The numbers a,
b, c, and d depend on which derivative we approximate and on the function f (x). These
values are hard to calculate from first principles, but they can sometimes be deduced from
experimental measurements as follows.

When ∆ is very small, t is negligible compared to r and E(∆) ≈ r; when ∆ is very big, r
is negligible compared to t and E(∆) ≈ t. Using these simplifications we can predict what a
graph of log(E) versus log(∆) might look like at the extreme values of ∆.

forward differencing

∆ small E ≈ b/∆

1 log(E) ≈ log(b) − log(∆)

∆ big E ≈ a∆

2 log(E) ≈ log(a) + log(∆)

central differencing

E ≈ d/∆

3 log(E) ≈ log(d) − log(∆)

E ≈ c∆2

4 log(E) ≈ log(c) + 2 log(∆)

The picture on the next page plots the straight lines that make up the graph in this highly
simplified error model, and from it we can see that a, b, c, and d are just the values of E
at the points where those lines intersect ∆ = 1. In drawing this illustration I assumed that
central differencing produces more accurate estimates than forward differencing at every ∆,
and that it achieves its highest accuracy at a larger value of ∆ than central differencing.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.6.4 Finding the Best ∆ 825

log(∆)

lo
g
(E

)

0

∆
=
1

0

1

2

fo
rw
ar
d

log(a)

log(b)

3

log(c)

4

ce
nt
ra
l

log(d)

Each line segment corresponds to the
equation having the same label. The
line segments labeled 1 and 3

have slope −1, the line segment la-
beled 2 has slope +1, and the line
segment labeled 4 has slope +2.

To study E(∆) experimentally, I
wrote the MATLAB programs listed
on the next page. They find the first
and second derivatives of f (x) = ex

exactly and by using the approxi-
mations we found earlier, and pro-
duce the plots shown below. These
graphs have the general appearance
predicted by the error model we
derived above, and the curves have
their minima at these approximate
values of ∆⋆:

derivative forward central
f ′(x) 9.0 × 10−9 5.8 × 10−6
f ′′(x) 7.3 × 10−6 1.1 × 10−4

We could also use graphs like these to estimate values for a, b, c, and d and then find the
values of ∆⋆ as the points where the line segments in the error model intersect.

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

∆

Ē(∆) = norm of error in first derivative

forward

central

◦

◦
10

-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

∆

Ē(∆) = norm of error in second derivative

forward

central

◦

◦

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

826 Calculating Derivatives

1 % first.m: approximate f’ for f(x)=exp(x)
2 clear;clf;set(gca,’FontSize’,25)
3 delta=1.25;
4 for i=1:100
5 delta=0.8*delta;
6 deltai(i)=delta;
7 dyfe=0;
8 dyce=0;
9
10 % first derivative of e^x
11 for j=1:101
12 x=.01*(j-1);
13 y=exp(x);
14 xpd=x+delta;
15 ypd=exp(xpd);
16 xmd=x-delta;
17 ymd=exp(xmd);
18
19
20
21
22
23 % forward differencing
24 dyf=(ypd-y)/delta;
25 dyfe=dyfe+(dyf-exp(x))^2;
26
27 % central differencing
28 dyc=(ypd-ymd)/(2*delta);
29 dyce=dyce+(dyc-exp(x))^2;
30 end
31
32 % find the norm of each set of errors
33 ndyfe(i)=sqrt(dyfe);
34 ndyce(i)=sqrt(dyce);
35 end
36
37 % plot the errors
38 hold on
39 axis(’square’)
40 loglog(deltai,ndyfe)
41 loglog(deltai,ndyce)
42 hold off
43 print -deps -solid first.eps

1 % second.m: approximate f’’ for f(x)=exp(x)
2 clear;clf;set(gca,’FontSize’,25)
3 delta=1.25;
4 for i=1:100
5 delta=0.8*delta;
6 deltai(i)=delta;
7 d2yfe=0;
8 d2yce=0;
9
10 % second derivative of e^x
11 for j=1:101
12 x=.01*(j-1);
13 y=exp(x);
14 xpd=x+delta;
15 ypd=exp(xpd);
16 xp2d=x+2*delta;
17 yp2d=exp(xp2d);
18 xmd=x-delta;
19 ymd=exp(xmd);
20 xm2d=x-2*delta;
21 ym2d=exp(xm2d);
22
23 % forward differencing
24 d2yf=(yp2d-2*ypd+y)/delta^2;
25 d2yfe=d2yfe+(d2yf-exp(x))^2;
26
27 % central differencing
28 d2yc=(yp2d-2*y+ym2d)/(2*delta)^2;
29 d2yce=d2yce+(d2yc-exp(x))^2;
30 end
31
32 % find the norm of each set of errors
33 nd2yfe(i)=sqrt(d2yfe);
34 nd2yce(i)=sqrt(d2yce);
35 end
36
37 % plot the errors
38 hold on
39 axis(’square’)
40 loglog(deltai,nd2yfe)
41 loglog(deltai,nd2yce)
42 hold off
43 print -deps -solid second.eps

In each program listed above, the loop over i 4-35 considers values of ∆ from 1.25 × 0.8 = 1

down to 1.25 × 0.8101 ≈ 1.6 × 10−10. For each value of delta the loop over j 11-30 considers
101 values of x equally spaced 12 on [0, 1]. At each value of x it computes the 24 forward
and 28 central difference approximations at that point, accumulates 25,29 the squares of
the errors in the approximations, and 33-34 saves the square root of each sum. Thus each
error curve plotted on the previous page actually shows the 2-norm of the error in the
approximation over the 101 values of x ∈ [0, 1], or

Ē(∆i) =

√√√
101∑

j=1

(error j)2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.6.5 Computing Finite-Difference Approximations 827

Theoretical arguments [4, §12.4.1] [5, §8.1] yield the following recommendations for ∆⋆,
which are marked on the graphs by small circles ◦ to show that they are close to the approx-
imate values we found experimentally.

derivative forward central

f ′(x) 2√u ≈ 1.1 × 10−8 3√u ≈ 4.8 × 10−6
f ′′(x) 3√u ≈ 4.8 × 10−6 4√u ≈ 1.0 × 10−4

Here u = 1.110223024625157 × 10−16 is the unit roundoff (see §28.3.3). Of course not all
functions are ex, and not every x is in [0, 1] (see Exercise 25.8.52) but most codes use fixed
values for ∆ anyway.

25.6.5 Computing Finite-Difference Approximations

Using the formulas we derived and the recommended values of ∆, I wrote the MATLAB

routines gradcd.m and hesscd.m listed on the next page; forward differencing can be im-
plemented in a similar way. To test these routines I used them in the eggg.m and eggh.m

routines listed below.

function f=egg(x)
f=exp((x(1)-2)^2)*gamma(x(2));

end

function g=eggg(x)
g=gradcd(@egg,x,2);

end

function h=eggh(x)
h=hesscd(@egg,x,2);

end

Then I used egg.m, eggg.m, and eggh.m to solve the problem of §25.6.0 with sd.m and
ntfs.m, whose convergence trajectories are plotted below over contours of the objective.
Here finite difference derivatives work well for both steepest descent and Newton descent.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

828 Calculating Derivatives

1 function g=gradcd(fcn,x,ii)
2 % approximate the gradient of function ii by central differencing
3
4 delta=4.80699951035563e-06; % u^(1/3)
5 n=size(x,1); % number of variables
6 e=zeros(n,1); % e is a column of zeros
7 g=zeros(n,1); % g is a column
8
9 for j=1:n % for each coordinate direction
10 e(j)=1; % make e the j’th unit vector
11 xpd=x+delta*e; % step forward by delta
12 ypd=fcn(xpd,ii); % find the function value there
13 xmd=x-delta*e; % step back by delta
14 ymd=fcn(xmd,ii); % find the function value there
15 g(j)=(ypd-ymd)/(2*delta); % find approximation
16 e(j)=0; % put e back to a zero vector
17 end % done with the directions
18
19 end

This routine estimates the partial derivatives ∂ fii/∂x j one at a time in the loop 9-17 over j.
First 10 the j’th 1 in the unit vector e is filled in. Then fcn is used to find the function
value at 12 x+∆e and 14 x−∆e, and 15 the formula of §25.6.2 is used to approximate the
gradient element. Finally 16 the 1 is removed from e, returning it to the zero vector.

1 function h=hesscd(fcn,x,ii)
2 % approximate the Hessian of function ii by central differencing
3
4 delta=1.02661016097495e-04; % u^(1/4)
5 n=size(x,1); % number of variables
6 ei=zeros(n,1); % ei is a column of zeros
7 ej=zeros(n,1); % ej is a column of zeros
8
9 for j=1:n % for each column
10 ej(j)=1; % make ej the j’th unit vector
11 for i=j:n % for each row in lower triangle
12 ei(i)=1; % make ei the i’th unit vector
13 xpp=x+delta*ei+delta*ej; % ++ step
14 fpp=fcn(xpp,ii); % function value
15 xmp=x-delta*ei+delta*ej; % -+ step
16 fmp=fcn(xmp,ii); % function value
17 xpm=x+delta*ei-delta*ej; % +- step
18 fpm=fcn(xpm,ii); % function value
19 xmm=x-delta*ei-delta*ej; % -- step
20 fmm=fcn(xmm,ii); % function value
21
22 h(i,j)=(fpp-fmp-fpm+fmm)/(4*delta^2); % find approximation
23
24 h(j,i)=h(i,j); % fill in the symmetric element
25 ei(i)=0; % put ei back to a zero vector
26 end % done with rows for this column
27 ej(j)=0; % put ej back to a zero vector
28 end % done with columns
29
30 end

This routine uses two unit vectors, ej 7,10,27 and ei 6,12,25 corresponding to the columns
and rows of the Hessian, and saves work 11 by exploiting Hessian symmetry 24 .

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.6.6 Checking Gradients and Hessians 829

25.6.6 Checking Gradients and Hessians

If the functions in the nonlinear program you want to solve have gradients and Hessians that
can be computed from formulas, you will almost certainly want to use those in preference
to finite-difference approximations. All you need to do is work out the formulas and code
MATLAB functions to evaluate them, as we have done for numerous examples in earlier
Chapters. Unfortunately, even for a problem in which the functions are very simple, it turns
out to be surprisingly difficult to get the analytic derivatives and the MATLAB code exactly
right. It is fortunate for me that, by comparing the output of my code to finite-difference
approximations, I can find most of my mistakes.

The gradtest.m routine listed below checks a gradient routine that is coded in the way
we have used for problems having constraints (the second argument of fcn or grd is the
index of the function whose value or gradient is to be computed).

1 function [reldif,mxdiff,mxdifx]=gradtest(fcn,grd,xl,xh,ii)
2 % compare analytic to finite-difference gradient for function ii
3
4 n=size(xh,1); % number of variables
5 x=zeros(n,1); % x is a column
6 mxdiff=0; % no maximum difference yet
7 for k=1:100 % try 100 points in [xl,xh]
8 for j=1:n % with
9 x(j)=xl(j)+rand()*(xh(j)-xl(j)); % random
10 end % components
11
12 ga=grd(x,ii); % analytic gradient
13 gf=gradcd(fcn,x,ii); % finite difference gradient
14 for j=1:n % compare each component
15 diff=abs(ga(j)-gf(j)); % difference between components
16 if(diff > mxdiff) % keep track of the
17 mxdiff=diff; % biggest difference
18 mxdifx=x; % and where it occurred
19 end % done with comparison
20 end % done with components
21 end % done with trial points
22
23 nrm=norm(gradcd(fcn,mxdifx,ii)); % size of approximate gradient
24 if(nrm < 1e-6) % if it is tiny
25 reldif=-1; % relative error is meaningless
26 else % norm is not tiny
27 reldif=mxdiff/nrm; % relative error is usefull
28 end
29
30 end

The routine works by repeatedly 7 generating a point at random within the variable bounds
[xL, xH] 8-10 , finding 12 the supposed gradient of function ii and 13 its central-difference
approximation at that point, and 14-20 remembering the absolutely largest difference be-
tween them. Then 23 it finds the norm of the approximate gradient at the point where the
difference is greatest. If this number is too small 24 to use in computing a relative difference
the routine 25 returns the meaningless value −1 for that quantity; otherwise 26-27 it re-

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

830 Calculating Derivatives

turns the relative difference between the analytic and finite-difference gradients, along with
the maximum absolute error and the point where it happened. If the differences are small
then grd is probably computing the gradient of function ii correctly (of course fcn and grd

can also be consistent if both are wrong). The Octave session below shows that the gradients
returned by ek1g.m for constraint 1 are close to those obtained by finite differencing function
values from ek1.m, but that the gradients returned by arch4g.m are not.

octave:1> xl=[18-9/sqrt(2);21-13/sqrt(2)];
octave:2> xh=[18+9/sqrt(2);21+13/sqrt(2)];
octave:3> reldif=gradtest(@ek1,@ek1g,xl,xh,1)
reldif = 2.4235e-10
octave:4> reldif=gradtest(@ek1,@arch4g,xl,xh,1)
reldif = 13.262

Because gradtest.m uses central differencing, a relative error larger than 10−6 suggests a
coding mistake in either the function routine or the gradient routine or both.

The hesstest.m routine listed below checks a Hessian routine in the same way that
gradtest.m checks a gradient routine.

function [reldif,mxdiff,mxdifx]=hesstest(fcn,hsn,xl,xh,ii)
% compare analytic to finite-difference Hessian for function ii

n=size(xh,1); % number of variables
x=zeros(n,1); % x is a column
mxdiff=0; % no maximum difference yet
mxdifx=x; % if none return origin
for k=1:100 % try 100 points in [xl,xh]

for j=1:n % with
x(j)=xl(j)+rand()*(xh(j)-xl(j)); % random

end % components

ha=hsn(x,ii); % analytic Hessian
hf=hesscd(fcn,x,ii); % finite difference Hessian
for i=1:n % compare
for j=1:n % each element

diff=abs(ha(i,j)-hf(i,j)); % difference between elements
if(diff > mxdiff) % keep track of the

mxdiff=diff; % biggest difference
mxdifx=x; % and where it occurred

end % done with comparison
end % done
end % with elements

end % done with trial points

nrm=norm(hesscd(fcn,mxdifx,ii)); % size of approximate Hessian
if(nrm < 1e-6) % if it is tiny

reldif=-1; % relative error is meaningless
else % norm is not tiny

reldif=mxdiff/nrm; % relative error is usefull
end

end

The Octave session on the next page illustrates its use.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.6.7 Automatic Differentiation 831

octave:1> xl=[0;0];
octave:2> xh=[3;3];
octave:3> reldif=hesstest(@p2,@p2h,xl,xh,1)
reldif = 3.1313e-08
octave:4> [reldif,mxdiff]=hesstest(@p1,@p2h,xl,xh,1)
reldif = -1
mxdiff = 2.0000
octave:5> quit

Here 3> I found that Hessian matrices returned for constraint 1 of problem p2 agree with
their central-difference approximations, but that they do not agree with central difference
approximations to the Hessian of the first constraint in p1. In that case 4> hesscd.m returns
−1 for reldif because the Hessian of p1 happens to be near zero, but the large value of
mxdiff reveals that p1.m and p2h.m do not describe the same problem. Because hesstest.m
uses central differencing, a relative difference greater than 10−4 suggests a coding mistake in
either the function routine or the Hessian routine or both.

Gradient and Hessian routines for which gradtest.m and hesstest.m report good agree-
ment with central difference approximations can still be wrong, but if the agreement is not
good then they are almost certainly wrong. However skilled you might be at finding deriva-
tives and implementing their calculation in MATLAB, it is a good policy to test every gradient
and Hessian routine you write. If your favorite minimization algorithm fails on a problem
you think it should be able to solve, the trouble is probably in the function, gradient, or
Hessian routine so your first step should be to test them for consistency.

25.6.7 Automatic Differentiation

When a computer program evaluates an arithmetic expression, it performs a sequence of
operations each having one output and either one or two inputs. If the program is running
on a single processor, these operations must be performed in order one at a time. For
example, f (x1, x2) = x2 + x2e

2x1 could be evaluated by the sequence of operations pictured
below.

f=x(2)+x(2)*exp(2*x(1))

x1 * y1

2

exp y2 * y3 + f

x2 •

This diagram is called a parse tree [21, §6.2.1]. A language compiler or a processor such
as MATLAB generates internally a tabular representation of the parse tree to determine the
sequence of machine instructions it will use in evaluating an expression. The operations
shown in this parse tree are * and +, each of which takes two inputs, and exp which takes
only one. The result of each operation except the last is an intermediate variable. In this
parse tree the intermediate variables are y1, y2, and y3.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

832 Calculating Derivatives

Each intermediate or final variable is the result of a single arithmetic operation or ele-
mentary function invocation. This makes it easy to write down analytic expressions for the
partial derivatives of an intermediate or final variable with respect to the one or two inputs
of the operation that produced it. For the parse tree above we get the following derivatives.

y1 = 2x1
∂y1

∂x1
= 2

y2 = ey1
∂y2

∂y1
= ey1

y3 = x2y2
∂y3

∂x2
= y2

∂y3

∂y2
= x2

f = x2 + y3
∂ f

∂x2
= 1 +

∂y3

∂x2

∂ f

∂y3
= 1

Then we can use the chain rule to find ∇f (x), like this.

∂ f

∂x1
=
∂y3

∂x1
=
∂y3

∂y2
× ∂y2
∂y1
× ∂y1
∂x1
= x2 × ey1 × 2 = 2x2e

2x1

∂ f

∂x2
= 1 +

∂y3

∂x2
= 1 + y2 = 1 + ey1 = 1 + e2x1

∇f (x) =
[

2x2e
2x1

1 + e2x1

]

The same techniques that a compiler uses to generate a parse tree can be used in a pro-
gram that does automatic differentiation [5, §8.2] [4, §12.4.2] by performing calculations
like the ones we did by hand above. The rules of differentiation that you learned in calculus
are used to find the partial derivatives of the intermediate variables in the parse tree, and
the chain rule is used to combine them and find the partial derivatives that make up the
gradient or Hessian of the function. Some implementations carry out this process symboli-
cally, so that the result is a formula for each partial derivative which we can then code into a
routine to calculate the gradient numerically. Other implementations carry out the process
numerically as part of a nonlinear program solver, producing each gradient or Hessian value
as it is needed by the minimization routine without ever explicitly displaying formulas for
the derivatives.

When the process is carried out symbolically it is conceptually equivalent to using a
computer algebra package such as Maple to find formulas for the partial derivatives. However,
some programs that have been developed for symbolic differentiation can read the computer
source code of a routine for calculating f (x) and generate computer source code for a routine
to calculate ∇f (x), so that no human intervention is required. This eliminates coding errors
as well as errors in calculus.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.7.1 Problem Characteristics 833

Automatic differentiation is most useful for problems in which the functions are too
complicated to easily differentiate by hand or the derivatives are too complicated to easily
code by hand. Unfortunately these are precisely the circumstances that yield a huge parse
tree, cumbersome to store and expensive to process, and this has led to the development
of an extensive body of theory and technique for managing the parse tree and constraining
its growth. Practical software tools have been developed for both symbolic and numerical
automatic differentiation [5, p217] of function routines coded in FORTRAN, C, C++, and
MATLAB, and this technology remains an active area of research in computer science so
future improvements are likely.

25.7 Large Problems

The table in §25.1 lists several routines for nonlinear optimization. Which would you use to
solve this problem? For reasons that will become clear its name is big (see §28.7.41).

minimize
x∈Rn

f0(x) =

n∑

j=1

a j(x j − 1)2

subject to min

(

1

a j

, a j

)

≤ x j ≤ max

(

1

a j

, a j

)

, j = 1 . . . n.

For a given vector of nonzero constants [a1, . . . , an]
⊤ the objective is quadratic and the con-

straints are simple bounds, so any of our routines that can handle inequalities would seem
suitable. But is that still true if the number of variables is, say, 1 million? In that case an
n × n matrix has 1012 elements, and to store them as floating-point numbers would require
some 8 terabytes of memory. This effectively rules out qpin.m, which uses an n× n matrix Q

to describe the quadratic objective and a matrix A, here 2n × n, to describe the linear con-
straints. It also rules out ntin.m, barrier.m, emiqp.m, and iqp.m, all of which use Hessian
matrices, as well as nlpin.m and nlpinp.m, which use Jacobians. The ellipsoid algorithm
routines ea.m and wander.m are out of the question too, because they store an ellipsoid
matrix and because their convergence constant would differ from 1 by only 5 × 10−13.

To solve problems that are large we need methods whose storage requirements and run-
ning times grow no faster than linearly with the number of variables and constraints. Meth-
ods like that are effective only for problems that also have special properties.

25.7.1 Problem Characteristics

A few of the applications of nonlinear programming listed in the table of §8.4 routinely have
very large instances, among them machine learning [7] [177] formulations such as these
three which we have studied: compressed sensing (§1.8), regression (§8.6), and classification
(§8.7). I contrived the big example to exhibit in a simplified way several characteristics that
are typical of such problems.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

834 Large Problems

• Simplicity. An instance of the big problem is completely characterized by the single
constant vector aaa, the functions are easy to compute, and finding a numerical solution
would be straightforward if n were small.

• Structure. This problem is component separable [17, §4.4.2] because each term
in the objective and each pair of constraints involves only a single variable. The
constraints all look alike, and the terms in the objective function all look alike.

• Convexity. If the a j are positive this is a convex program with a strictly convex
objective, and if the a j are neither very big nor very small it is well-scaled.

• Smoothness. The objective and constraints of big are continuous functions of x that
can be computed from formulas, as are all of their derivatives; in other problems from
this class the objective might include nonsmooth terms that can be handled by the
techniques described in §1.5.3.

The technical term-of-art for nonlinear programs having these attributes is that they are
nice [14]. The craft of solving a large application problem consists of formulating a model
that is as nice as possible without being completely unrealistic [2, §2.7] and then devising a
method that takes advantage of that niceness in such a way that it can work for large n.

25.7.2 Coordinate Descent

One way to exploit the nice attributes of our big problem is to start from a feasible point,
do a line search in the x1 direction between the given bounds on x1, then search from that
point in the x2 direction between the given bounds on x2, and so on (see Exercise 14.8.11).
This cyclic coordinate descent algorithm [5, §9.3] [1, §8.5] might not find x⋆ even if f0(x)

is strictly convex, and if it does that might be only after cycling through the coordinates
multiple times, but it does have the virtue of not needing to store an n × n matrix. Because
the problem is separable the directional derivative in iteration k is simply

∂ f0

∂x j

= 2a j(x
k
j − 1)

so we can use a bisection line search without ever having to compute or store a gradient
vector. To solve the problem using this idea I wrote the MATLAB program big.m listed
on the next page. It assumes that xL

j
corresponds to α = 0 in the line search and that xH

j

corresponds to α = 1.
This routine allows for the possibility of doing cmax cycles 5-22 through the coordinate

directions; in each cycle it 6-21 searches in each of the n coordinate directions. It begins
each search by 7 setting αL = 0 and αH = 1. Next it uses the formulas in the problem
statement to compute the bounds 8 xL

j
and 9 xH

j
, and finds 10 the α ∈ [0, 1] corresponding

to the given x0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.7.2 Coordinate Descent 835

1 function x=big(a,x,cmax,smax)
2 % solve the big problem using cyclic coordinate descent
3
4 n=size(x,1); % get number of variables
5 for c=1:cmax % do cmax cycles
6 for j=1:n % in each coordinate direction
7 al=0; ah=1; % search for alpha in [0,1]
8 xl=min(a(j),1/a(j)); % which keeps x between xl
9 xh=max(a(j),1/a(j)); % and xh
10 alpha=(x(j)-xl)/(xh-xl); % alpha at start for cycle c
11 for s=1:smax % do bisections
12 fp=2*a(j)*(x(j)-1); % directional derivative
13 if(fp < 0) % is min to the right?
14 al=alpha; % if so increase lower bound
15 else % no; min is to the left
16 ah=alpha; % decrease upper bound
17 end
18 alpha=(al+ah)/2; % bisect interval in alpha
19 x(j)=xl+alpha*(xh-xl); % find corresponding x(j)
20 end % bisections done
21 end % coordinates done
22 end % cycles done

Then it does exactly smax iterations of the bisection line search algorithm 11-20 using 12

the formula given above to find the directional derivative. Convergence tests could be used
in the loop over s, at the price of making the code more complicated. This routine does not
store any matrices, and the only vectors it uses are a and x (xl and xh are scalars).

To study the behavior of big.m, I solved two n = 2 instances
of the problem as shown in the Octave session to the right, and
with a different program I plotted the convergence trajectories
shown on the next page. Setting a=[2,3] 1> makes this the
first problem instance.

minimize
x∈Rn

f0(x) = 2(x1 − 1)2 + 3(x2 − 1)2

subject to 1
2
≤ x1 ≤ 2

1
3
≤ x2 ≤ 3

This convex program has x⋆ = [1, 1]⊤, interior to the bounds.
Setting a=[-3,3] 4> makes this the second problem instance.

minimize
x∈Rn

f0(x) = −3(x1 − 1)2 + 3(x2 − 1)2

subject to −3 ≤ x1 ≤ −1
3

1
3
≤ x2 ≤ 3

This objective is nonconvex but cyclic coordinate descent works
anyway, finding x⋆ = [−3, 1]⊤, in the boundary of the feasible
set. It is also possible to solve this problem with a rougher line
search 8>,10> but only if several cycles are used.

octave:1> a=[2,3];
octave:2> x=[5/4;5/3];
octave:3> x=big(a,x,1,20)
x =

1.00000
1.00000

octave:4> a=[-3,3];
octave:5> x=[-5/3;5/3];
octave:6> x=big(a,x,1,20)
x =

-3.00000
1.00000

octave:7> x=[-5/3;5/3];
octave:8> x=big(a,x,1,10)
x =

-2.99870
0.99870

octave:9> x=[-5/3;5/3];
octave:10> x=big(a,x,3,10)
x =

-3.0000
1.0000

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

836 Large Problems

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

x2

x1

•x0•

•x⋆

0

0.5

1

1.5

2

2.5

3

3.5

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

x2

x1

x0••

x⋆•

Next I tried solving progressively larger problem instances, as shown in the Octave ses-
sions below. On the left I chose each a j at random from the interval [2, 3] and used a starting
point having each element equal to 5

4
, the midpoint of the interval [1

2
, 2]. On the right I chose

each a j at random from the interval [−3, 3] and initialized each x j to the midpoint of the
resulting bounds on that variable.

octave:1> n=1e2;
octave:2> a=2+rand(n,1);
octave:3> x=(5/4)*ones(n,1);
octave:4> tic;x=big(a,x,1,30);toc
Elapsed time is 0.08875 seconds.
octave:5> n=1e3;
octave:6> a=2+rand(n,1);
octave:7> x=(5/4)*ones(n,1);
octave:8> tic;x=big(a,x,1,30);toc
Elapsed time is 0.87576 seconds.
octave:9> n=1e4;
octave:10> a=2+rand(n,1);
octave:11> x=(5/4)*ones(n,1);
octave:12> tic;x=big(a,x,1,30);toc
Elapsed time is 8.73533 seconds.
octave:13> x
x =

1.00000
1.00000
1.00000
1.00000
1.00000
:

octave:1> n=1e2;
octave:2> a=-3+6*rand(1,n);
octave:3> a=-3+6*rand(n,1);
octave:4> xl=min(1./a,a);
octave:5> xh=max(1./a,a);
octave:6> x=(xl+xh)/2;
octave:7> tic;x=big(a,x,1,30);toc
Elapsed time is 0.087055 seconds.
octave:8> n=1e3;
octave:9> a=-3+6*rand(n,1);
octave:10> xl=min(1./a,a);
octave:11> xh=max(1./a,a);
octave:12> x=(xl+xh)/2;
octave:13> tic;x=big(a,x,1,30);toc
Elapsed time is 0.865 seconds.
octave:14> n=1e4;
octave:15> a=-3+6*rand(n,1);
octave:16> xl=min(1./a,a);
octave:17> xh=max(1./a,a);
octave:18> x=(xl+xh)/2;
octave:19> tic;x=big(a,x,1,30);toc
Elapsed time is 8.645 seconds.
octave:20> [x,a,xl,xh]
ans =

1.0000e+00 2.6742e+00 3.7395e-01 2.6742e+00
-1.6120e+00 -1.6120e+00 -1.6120e+00 -6.2036e-01
1.0000e+00 6.3547e-01 6.3547e-01 1.5736e+00
1.0000e+00 1.0572e+00 9.4592e-01 1.0572e+00

-2.5717e+00 -2.5717e+00 -2.5717e+00 -3.8885e-01
:

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.7.3 Method Characteristics 837

In both experiments the execution time of big.m is proportional to n, so if we continue to
use MATLAB we can expect to solve the n = 106 case conjectured at the beginning of this
Section in about 15 minutes of CPU time. To store aaa and x for a problem of that size will
require only about 16 megabytes of memory, well within the capacity of modern computers.

Coordinate descent has several variants differing in the rule that is used to determine the
order in which the directions are searched [1, §8.5].

name order of search directions

cyclic 1, 2, . . . , n and repeat
Aitkin double sweep 1, 2, . . . , n, n − 1, n − 2, . . . , 1 and repeat

Gauss-Southwell search in the direction of the largest
∣
∣
∣ ∂f0(x

k)/∂xj
∣
∣
∣

random use a random permutation of the indices

25.7.3 Method Characteristics

To be tractable large problems must be nice, so they typically have the characteristics de-
scribed in §25.7.1. Methods that are practical for such problems must exploit those char-
acteristics, so they also tend to have stereotypical attributes. Our toy implementation of
cyclic coordinate descent is far from sophisticated, but even it exhibits the other properties
described below.

• Algorithms for big problems are usually based on simple ideas, and employ data struc-
tures that grow only linearly with n.

• They exploit the special structure of the model they are targeted to solve. This includes
the convexity or strict convexity of the functions, the nature of the constraints (simple
bounds, inequalities, equalities), the algebraic form of the objective function (e.g.,
quadratic) and of the constraint functions (e.g., linear), any variable bounds that can
be deduced in the formulation process, and any regularity or pattern in the coefficients
of the objective or constraints. Even if a problem is not component-separable like big it
might be block separable [17, §4.4.1] so that it has partially separable functions

[5, §7.4], permitting various economies such as replacing a large Hessian by several
much smaller sparse matrices.

• They are sophisticated in the details of their implementation, employing highly-efficient
algorithms for numerical linear algebra [17, §4.2] and, if matrices are involved at all,
sparse matrix techniques [87] [100, §11.6] to conserve memory and processor cycles.
They carefully coordinate the iteration limits, tolerances, and other parameters used
in their sub-algorithms, and [17, §3.4.4 & §4.3.2] adjust some tolerances as the iterations
of the main algorithm progress. They are invariably coded in a compiled language such
as FORTRAN, C, or C++ rather than in an interpreted one such as MATLAB or Python.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

838 Large Problems

• They use parallel processing if that is possible. If the problem is separable and the
computing environment supports the concurrent use of multiple processors [100, §16.2]
(e.g., in a distributed-computing cloud) a method might execute several parts of the
algorithm in parallel.

• Their goal is improvement, not perfection. Nice models often end up being only ap-
proximate anyway, so imprecise solutions are good enough and rough tolerances can
often be used in obtaining them [17, §3.2.2]. In most settings that give rise to large
problems, an optimization result that permits even a small improvement over current
practice might be considered a success.

Cyclic coordinate descent happened to work for our big problem, but it cannot be used
with equality constraints. The table below lists some other approaches whose memory re-
quirements scale in an approximately linear way with n. Some of these methods use Hessian
matrices that are sparse, or involve matrix-vector products that can be calculated without
storing the matrix (this idea was first mentioned in §14.4).

method ≤ = references

steepest descent � � §10.4
Fletcher-Reeves � � §14.5
Polak-Ribière � � §14.6
Hessian-free Newton � � [5, p170]
limited-memory quasi-Newton � � [5, §7.2] [4, §13.5]
sparse quasi-Newton � � [5, §7.3]
ADMM � � §20.3
gradient projection � � [5, §16.7]
block coordinate descent � � [2, §3.7]

The tail that is wagging the dog of mathematical programming at this moment in history
is machine learning, and it is constantly fueling the development of new algorithms for large
problems.

25.7.4 Semi-Analytic Results

Some nonlinear programs can be solved analytically, yielding x⋆ as a vector of numbers or as
a vector of algebraic expressions involving the problem data. Even when this is not possible,
if the problem is highly-structured (as many nice problems are) it might be possible to
construct its solution by applying some rules rather than by performing an explicit numerical
minimization. I mentioned in §1.8 that the compressed sensing problem has such a semi-

analytic solution, and the output from our §25.7.2 experiments with big.m suggests that a
set of rules might yield x⋆ for that problem too.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.7.5 Nasty Problems 839

You probably noticed that when I generated a j ∈ [2, 3] the answer big.m found with
n = 104 was x⋆ = [1, 1, . . . , 1]⊤, the unconstrained minimizing point for f0(x). Of course if
a j > 0 then the interval defined by the bounds always contains 1; this is illustrated for n = 2

by the left contour diagram of §25.7.2. If a j > 0, then x⋆
j
= 1.

When a j < 0 it appears that x⋆
j
= xLj , and of course this makes sense too. If, for example,

a j = −2 then x⋆
j
must be negative, because x j ∈ [−2,−1

2
]. The objective term we are trying

to minimize is −2(x j − 1)2, so we should make x j as negative as possible, which puts it at its
lower bound. If a j < 0, then x⋆

j
= min(a j, 1/a j).

Just by thinking about the problem we could (as perhaps you did from the beginning) de-
duce, without using the theory of nonlinear programming or doing any numerical calculations
at all, that

x⋆j =






1 if a j > 0

min
(

a j, 1/a j

)

if a j < 0.

Often a little insight can make a daunting but highly-structured problem trivial. No one
has yet succeeded in teaching me how to be clever, so I will not presume to teach that
to you. However, some authors who are clever have made the attempt; for example, the
great mathematician George Polya called the sort of argument we have just used plausible

reasoning. He claims [173, p vi] that one can learn how to use plausible reasoning only by
imitation and practice, but then he goes on to elaborate general theories of mathematical
insight and [174] discovery. If you are engaged in the search for clever reformulations of
highly-structured large problems you might enjoy reading what he has to say.

25.7.5 Nasty Problems

Earlier I claimed that for a large problem to be tractable it must be nice, but what if a large
problem whose solution would be valuable happens to be downright nasty? In practice people
try every algorithm that seems plausible, ignoring the warnings printed on the package, and
hope for the best [167]. This is what we did when we tried cyclic coordinate descent on the
big problem with some of the a j < 0, and found x⋆ anyway. Of course it is always less risky
to use a special-purpose method that is designed for the specific nastiness in question.

Nondifferentiability is a nastiness endemic to many important models. We have refor-
mulated our way around it on several occasions, but sometimes those tricks do not work.
The general-purpose classical subgradient methods for convex nonsmooth programming are
hard to use, as I mentioned in §20.1, so extravagant efforts have been (and are being) de-
voted to the construction of special-purpose algorithms for particular nonsmooth problems
that are otherwise nice. These include [17, §6] clever incarnations of the ADMM approach
discussed in §20.3, [2, §3.6] proximal algorithms such as [102] mirror descent, and [122]
smoothing methods. All of these ideas, and the interesting applications that motivate
their development, are, regrettably, beyond the scope of this introduction.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

840 Solving Nonlinear Programs

25.8 Exercises

25.8.1[E] This Chapter concerns various issues that arise in solving real nonlinear pro-
grams. What are some of these issues? Why did I put off discussing them until now?

25.8.2[E] Are the codes listed in §25.1 likely to solve any and all nonlinear programs you
might encounter? Are the black-box codes described in §8.3.1 likely to do so? Explain.

25.8.3[E] If you encounter a nonlinear program that cannot be solved by any code that
you know of or can find by diligently searching the internet, what should you do? (a) start
checking fortune cookies for the optimal point; (b) change your major to Art History; (c) use
everything you have learned to construct an algorithm that fits the problem.

25.8.4[E] Of the nonlinear programming codes that we have developed, which are made
to solve problems having equality constraints? Which are made to solve problems having
inequality constraints?

25.8.5[E] Some algorithms have a natural extension that permits them, at least in prin-
ciple, to handle both equality and inequality constraints. Give one example.

25.8.6[P] Write a MATLAB routine penbar.m to solve problems having both equality and
inequality constraints by minimizing

Ω(x; µ) = f0(x) + µ

mi+me∑

i=mi+1

[fi(x)]
2 − 1

µ

mi∑

i=1

[ln[− fi(x)]

in a sequence of unconstrained optimizations, each starting at the optimal point of the
previous one and using a value of µ twice the previous value. Test your code by using it to
solve this nonlinear program.

minimize
x∈R2

f0(x) = x21 + x22

subject to f1(x) = 1 − x1 − x2 ≤ 0

f2(x) = 1 + x1 − x2 = 0

25.8.7[E] What is constraint affinity?

25.8.8[E] Describe one way in which an algorithm with an affinity for equality constraints
might be extended to also handle inequality constraints. Describe one way in which an
algorithm with an affinity for inequality constraints might be extended to also handle equality
constraints. Are the resulting extended algorithms likely to be as robust as their unextended
progenitors? Explain.

25.8.9[P] Write a MATLAB routine sqpie.m that combines the ideas from sqp.m and
iqp.m to solve problems having both inequality and equality constraints. Test your code by
using it to solve the nonlinear program of Exercise 25.8.6.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.8 Exercises 841

25.8.10[E] If a nonlinear program has several equality constraints but only one inequality
constraint, suggest a way of solving the problem with a code that can handle only equality
constraints.

25.8.11[P] The diameter of a polygon is the greatest distance between two of its vertices.
Unit-diameter polygons with an odd number of sides have maximum area when they are
regular, but when the number of sides is even the largest polygon need not be the regular
one. The area of the largest unit-diameter octagon, approximately 0.7268684827517009,
is the optimal value of the following nonlinear program [9, §3], and the coordinates of the
irregular octagon’s vertices can be deduced from the elements of x⋆ and y⋆.

maximize
x∈R5, y∈R5

1
2

[

(x2 + x3 − 4x1)y1 + (3x1 − 2x3 + x5)y2 + (3x1 − 2x2 + x4)y3

+(x3 − 2x1)y4 + (x2 − 2x1)y5
]

+ x1

subject to (x1 − x2)
2
+ (y1 − y2)2 ≤ 1

(−x1 + x3 − x5)
2
+ (y1 − y3 + y5)2 ≤ 1

(x1 − x2 + x4)
2
+ (y1 − y2 + y4)2 ≤ 1

(x1 − x3)
2
+ (−y1 + y3)2 ≤ 1

(2x1 − x2 − x3 + x5)
2
+ (−y2 + y3 − y5)2 ≤ 1

(2x1 − x2)
2
+ y22 ≤ 1

(x1 − x2)
2
+ (y1 − y2 − 1)2 ≤ 1

(2x1 − x2 − x3)
2
+ (−y2 + y3)2 ≤ 1

(x3 − x5)
2
+ (−y3 + y5)2 ≤ 1

(−x1 + x3 − x5)
2
+ (y1 − y3 + y5 − 1)2 ≤ 1

(2x1 + x3 − x5)
2
+ (−y3 + y5)2 ≤ 1

(2x1 − x2 − x3 + x4 + x5)
2
+ (−y2 + y3 + y4 − y5)2 = 1

(−2x1 + x2 − x4)
2
+ (y2 − y4)2 ≤ 1

(x1 − x2 + x4)
2
+ (y1 − y2 + y4 − 1)2 ≤ 1

(x1 − x3)
2
+ (1 − y1 + y3)2 ≤ 1

(x2 − x4)
2
+ (y2 − y4)2 ≤ 1

(2x1 − x3)
2
+ y23 ≤ 1

(2x2 − x2 − x3 + x4)
2
+ (−y2 + y3 + y4)2 ≤ 1

x2 − x3 ≥ 0

x2j + y
2
j = 1 j = 1 . . . 5

0 ≤ x1 ≤ 1
2

0 ≤ x j ≤ 1 j = 2, 3, 4, 5

Notice that this problem has two equality constraints, one of which is difficult to remove
algebraically. (a) Using an algorithm of your choice, compute a numerical solution to this
problem. (b) What is the area of a regular unit octagon?

25.8.12[E] Does a convex program necessarily have a unique optimal point? Does a nonlin-
ear program that is not a convex program necessarily have multiple optimal points? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

842 Solving Nonlinear Programs

25.8.13[E] Why does ntrs.m work better than ntfs.m for solving the h35 problem? Why
does ntw.m work better than ntfs.m for solving that problem?

25.8.14[E] What is a globalization strategy and why might an algorithm designer wish to
use one? Name four globalization strategies.

25.8.15[P] One way to globalize an NLP solver is by searching the line between xk and
xk + dk, where dk is a full step, for an optimal step of length α⋆ < 1. Then the algorithm can
use xk+1 = xk + α⋆dk rather than taking the full step. (a) Modify grg.m to use a Wolfe line
search in this manner on the tangent hyperplane, rather than taking a full steepest-descent
step. (b) Use the resulting code to solve the grg2 and grg4 problems. How does this version
perform, compared to the original grg.m?

25.8.16[E] How does the trust-region algorithm described in §17.3 differ from the restricted-
step algorithm described in §17.1?

25.8.17[P] One way to globalize an NLP solver is by using the trust region idea. (a) Of
the NLP routines listed in the table of §25.3.1, which could be modified in a simple way to
use a trust region approach? (b) Modify penalty.m to use trust.m instead of ntrs.m for
solving the subproblems. (c) Use the resulting code to solve the p1 and p2 problems. How
does this version perform, compared to the original penalty.m?

25.8.18[H] In the trust-region algorithm of §17.3, if the full modified Newton step exceeds
the radius of the trust region we move to the point that minimizes the quadratic model of the
function over the trust-region boundary. (a) Could the trust-region idea be used in a setting
where the desired descent direction is instead the direction of steepest descent? (b) Could
the trust-region idea be used in a setting where the model used to approximate f0(x) near
xk is linear instead of quadratic? (c) If dk is the direction of steepest descent and the model
is q(xk + p) = f0(x

k)+∇f0(xk)⊤p, explain how the method would find p⋆. Would it be possible
to find p⋆ by using a dogleg approximation?

25.8.19[E] Explain in detail why sd.m fails to solve the unconstrained optimization of
§25.4 when s = 1014, making reference to the graph that is presented there to illustrate the
phenomenon.

25.8.20[P] In §25.4 we found that sd.m fails to solve this unconstrained optimization when
s = 1014. minimize

x∈R2
f0(x) = sx21 + x22

(a) By using sd.m to solve the problem for values of s ∈ [100 . . . 1014], find the smallest value
of s at which the algorithm fails. (b) Use sdfs.m to attempt the problem with s = 1014, and
explain the result.

25.8.21[E] What does it mean to say that an unconstrained optimization is poorly scaled?

25.8.22[E] Describe the sensitivity to variable scaling of the methods we have studied for
unconstrained optimization. What are some effects of poor scaling?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.8 Exercises 843

25.8.23[E] What is diagonal scaling? If we find the optimal point y⋆ for a problem that
has been diagonally scaled using the matrix D, how can we recover x⋆?

25.8.24[H] If it is known that the optimal point of an unconstrained optimization will have
components x⋆1 ∈ [1000, 2000] and x⋆2 ∈ [0.01, 0.1], find a diagonal matrix D that can be used
to compute scaled variables y1 and y2 each ranging from −1 to 1.

25.8.25[E] How can you tell whether the constraints of a problem are poorly scaled?

25.8.26[P] In §25.4.2 we studied a constrained optimization on which auglag.m fails if the
constraint is poorly scaled. Try solving the problem for s = 1, s = 1014, and s = 10−14 with
(a) grg.m; (b) ntlg.m; (c) sqp.m. (d) rsdeq.m; (e) rneq.m.

25.8.27[E] Find, among the routines that are listed in §25.1, one that returns when a step
length is small enough and one that returns when a gradient is small enough.

25.8.28[E] Explain the difference between an absolute and a relative measure of solution
error. What advantages and drawbacks does each have?

25.8.29[H] There is a measure of step length that avoids the problems associated with
using ||xk+1 − xk|| and ||xk+1 − xk||/||xk||. (a) What is it? (b) How can you use the same idea to
construct a measure of gradient norm that is neither absolute nor relative?

25.8.30[P] In §25.5, I described a way of measuring the difference between two floating-
point numbers by comparing their bit strings. How many bits must match if the two numbers
are to have (a) the same algebraic sign; (b) the same sign and biased exponent; (c) the same
sign and exponent and the same p leading fraction bits; (d) exactly the same value. (e) Using
MATLAB or another programming language of your choice, write a routine that returns e, the
number of least-significant bits in which two 8-byte values differ. (f) How can this routine be
used to find an error E that measures the difference between two vectors whose components
are floating-point numbers?

25.8.31[E] Why in solving a nonlinear program might it be desirable to approximate deriva-
tives by finite differencing? Write down all the reasons you can think of.

25.8.32[H] Suppose finite differencing is used to approximate the gradient of a function that
is not smooth. (a) How might the approximate gradient differ from the true one? Give an
example to illustrate your answer. (b) Do you think a gradient-based optimization method
is more likely to solve a problem that is not smooth if analytic derivatives are used, or if
finite difference approximations are used? Give an argument or example to support your
answer.

25.8.33[P] Write down the Taylor’s series expansion of f (x) = ex about the point x = 0, to
obtain

f (∆) = f (0) + ∆ f ′(0) +
∆
2

2
f ′′(ξ).

At what point ξ ∈ [0,∆] is this equation satisfied? Find ξ numerically if ∆ = 1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

844 Solving Nonlinear Programs

25.8.34[E] What assumptions did we make in deriving forward-difference formulas to ap-
proximate f ′(x) and f ′′(x)?

25.8.35[E] Write down the formula we derived for the forward-difference approximation of
(a) ∂ f /∂xi; (b) ∂

2 f /∂xi∂x j. (c) In the formulas of §25.6.1 what does the notation ei mean?
(d) Why are n + 1 function evaluations required to approximate a gradient using forward
differencing? (e) Why are (1

2
n + 1)(n + 1) function evaluations required to approximate a

Hessian using forward differencing?

25.8.36[E] When forward differencing is used to approximate a derivative, the truncation
error depends on the increment ∆. (a) If ∆ is doubled, what happens to the truncation error
in the approximation? (b) What does it mean to say that some quantity is “O(∆)?”
25.8.37[H] By using the Taylor’s series expansion for f (x), show that the worst-case trun-
cation error in a forward-difference approximation of f ′(x) is proportional to ∆. Can the
error ever be zero?

25.8.38[E] Why does central-differencing have a smaller truncation error than forward-
differencing, for the same increment ∆? Give a plausibility argument based on a picture,
rather than an abstract proof based on equations.

25.8.39[H] Show that a central-difference derivative approximation is exact if f (x) is a
quadratic function. Is a central-difference Hessian approximation also exact?

25.8.40[E] Write down the formula we derived for the central-difference approximation of
(a) ∂f /∂xi; (b) ∂

2f /∂xi∂y j. (c) Why are 2n function evaluations required to approximate a
gradient using central differencing? (d) Why are 2n(n + 1) function evaluations required to
approximate a Hessian using central differencing?

25.8.41[E] When central differencing is used to approximate a derivative, the truncation
error depends on the increment ∆. (a) If ∆ is doubled, what happens to the truncation error
in the approximation? (b) Of what order is the truncation error in this approximation?

25.8.42[H] By using the Taylor’s series expansion for f (x), show that the truncation error
in a central-difference approximation of f ′(x) is proportional to ∆2.

25.8.43[E] Is it ever faster to approximate a gradient or Hessian by finite differencing of
function values than it is to evaluate a formula for the elements of the gradient or Hessian?
If yes, when? If no, why not?

25.8.44[E] There are algorithms that can approximate the derivative of a function much
more accurately than central differencing does, by using more function evaluations. Why
are these methods seldom used in numerical optimization?

25.8.45[E] Finite-difference derivative approximations are inaccurate due to both trunca-
tion error and roundoff error. (a) Explain the difference between these errors. (b) How does
each depend on the finite-difference interval ∆? (c) How can we find the value of ∆ that
minimizes the total error in a derivative approximation?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.8 Exercises 845

25.8.46[H] In §25.6.4 we derived expressions for the stationary points of E(∆) in forward-
and central-difference derivative approximations. (a) Show that each ∆⋆ is a unique min-
imizing point of the corresponding total error. (b) The expressions for total error involve
constants a, b, c, and d. How can these numbers be found?

25.8.47[E] In §25.6.4 we derived a simple error model that accurately predicts the behav-
ior of forward-difference and central-difference derivative approximations. (a) Explain the
reasoning that we used and the piecewise-linear error curves that result. (b) The error in a
central-difference approximation grows faster as ∆ is increased beyond its optimal value than
does the error in a forward-difference approximation. Why? (c) According to this model,
can a forward-difference approximation ever be more accurate than a central-difference ap-
proximation, for the same ∆? Explain.

25.8.48[P] In §25.6.4 we used the MATLAB programs first.m and second.m to plot curves
of E(∆) versus ∆. (a) Modify each program to enlarge the vertical axis of the graph it
generates. (b) Use the enlarged graphs to estimate numerical values for the constants a, b,
c, and d in the error model we derived. (c) Use those numbers to estimate ∆⋆ for each of the
four cases shown, from the formulas we obtained by minimizing E(∆) analytically. (d) Use
those numbers to estimate ∆⋆ for each of the four cases shown, by calculating the intersection
points of the straight lines in the ideal graph of the error model. Are your estimates close
to the values of ∆⋆ we found experimentally?

25.8.49[E] Explain how the error Ē(∆) is determined in the first.m and second.m pro-
grams of §25.6.4.

25.8.50[E] In terms of the unit roundoff u, what values of ∆⋆ are recommended for approx-
imating f ′(x) and f ′′(x) by the forward and central difference formulas we derived?

25.8.51[P] Modify the first.m and second.m programs of §25.6.4 to approximate f ′(x)

and f ′′(x) for f (x) =
√
x. Do the curves of error versus ∆ look similar to those for f (x) = ex?

Do they have minima near the recommended values of ∆⋆?

25.8.52[P] If we knew the exact value of f ′(x) at a given point x̄, we could approximate f ′(x̄)

by forward differencing using various trial values of ∆ and thereby find ∆⋆ to minimize the
total error in the forward-difference approximation. The central-difference approximation of
f ′(x) is much more accurate than the forward-difference approximation, so for the purposes of
implementing this idea we can consider it exact. This scheme finds a ∆⋆ that is appropriate to
the shape of the function f (x) at the point x̄. We can then use that value of ∆⋆ to approximate
f ′(x) by forward differencing at other points sufficiently near x̄. (a) Write a MATLAB routine
fdints.m that uses this approach to find, for a given function f (x) and point x̄, the optimal
step ∆⋆

j
to use in each direction j for making forward-difference approximations of ∇f (x) near

x̄. Explain how you chose the interval to use in the central-difference approximation, and
how you search for the optimal ∆ j. (b) Is the ∆

⋆ returned by your routine for f (x) = ex and
x̄ = 1

2
close to the value we found in §25.6.4? Find an f (x) and an x̄ for which the ∆⋆ returned

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

846 Solving Nonlinear Programs

by your routine differs significantly from the value recommended in §25.6.4. (c) What would
be necessary to extend this idea to find optimal intervals for use in central differencing?

25.8.53[P] In §25.6.5, I used gradcd.m and hesscd.m to solve the egg problem. (a) Explain
how. (b) Use sd.m and ntfs.m to solve the problem as accurately as possible. What is x⋆?
(c) Write a MATLAB program to reproduce the convergence-trajectory graphs for sd.m and
ntfs.m when they are used to solve the problem.

25.8.54[P] Write MATLAB routines (a) gradfd.m and (b) hessfd.m to compute gradient
and Hessian approximations by forward differencing. Test them by using them to solve the
egg problem with sd.m and ntfs.m. Why might these routines sometimes be preferable to
gradcd.m and hesscd.m?

25.8.55[E] Suppose that you want to solve a nonlinear program by one of the algorithms
discussed in this book, and that you write three routines to compute respectively the values
of the objective and constraint functions, their gradients, and their Hessians. Is it possible,
even after you have carefully hand-checked your formulas and MATLAB coding, that these
routines are wrong? What more can you do to discover inconsistencies between them?

25.8.56[E] The MATLAB routines gradtest.m and hesstest.m are described in §25.6.6.
(a) Explain how they work. (b) What significance does a return value of reldif=-1 have?
(c) What values of reldif suggest that there is a mistake in coding a gradient routine?
(d) What values of reldif suggest that there is a mistake in coding a Hessian routine?
(e) How might a function, gradient, or Hessian routine be wrong even though gradtest.m

and hesstest.m report that all gradients and Hessians tested are very close to their central-
difference approximations?

25.8.57[E] What is the basic idea of automatic differentiation? Does it produce formulas,
or numbers? What is a parse tree? What is true of the operations that appear in a parse
tree? What is an intermediate variable of a parse tree?

25.8.58[H] Consider the function f (x) = x2(1 + e2x1). (a) Draw a parse tree for evaluating
the function. (b) Write down expressions for the partial derivative of each intermediate
variable with respect to the inputs of the operation that produced it. (c) Use the chain rule
to combine those partial derivatives and find ∇f (x).

25.8.59[E] When automatic differentiation is carried out symbolically, it is conceptually
equivalent to using a computer algebra package such as Maple to find formulas for the partial
derivatives. What additional capabilities do some programs for automatic differentiation
have? Why are they desirable?

25.8.60[P] Use qpin.m to solve the big problem with (a) a=[2,3]; (b) a=[-3,3]. (c) Find
by experiment the largest value of n for which you can solve the problem by using qpin.m,
generating coefficient vectors a and starting points x at random after the fashion of §25.7.2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

25.8 Exercises 847

25.8.61[E] If an algorithm is to be effective for solving large problems, how should its
storage requirements and running time grow as functions of n? Which of the routines listed
in the table of §25.1 satisfy that requirement?

25.8.62[E] Name three machine learning applications that we have studied.

25.8.63[E] Large optimization problems that are tractable typically have certain attributes.
What are they? What is the technical term for a problem that has them?

25.8.64[E] Explain the terms (a) component-separable; (b) block-separable; (c) partially-
separable. Why are these important attributes for a large nonlinear program to have?

25.8.65[E] What are the two steps involved in solving a large nonlinear program, according
to the glib description of that art given in §25.7.1?

25.8.66[E] Describe in words the cyclic coordinate descent algorithm. What are its advan-
tages and drawbacks?

25.8.67[H] In big.m, would it save time to use a convergence test in the line search?
Explain.

25.8.68[P] It was easy to use cyclic coordinate descent on big.m because the inequality
constraints of that problem are simple bounds on the variables. (a) Describe how the method
might be applied to an inequality-constrained nonlinear program whose constraints are not
simple bounds. (b) Write a MATLAB function to implement your idea, and use it to solve
the ek1 problem.

25.8.69[E] Explain what the MATLAB expression min(1./a,a) produces, when a is a
vector.

25.8.70[P] Modify big.m to use the random coordinate descent algorithm. How does this
affect the speed of the program? Does it affect the storage required?

25.8.71[H] In big.m we used a line search to find α. Modify the derivation in §10.5 to find
a formula for the full coordinate descent step. Would it be a useful alternative to searching
the line when n is large? Explain.

25.8.72[E] Describe the characteristics that are typical of effective methods for attempting
the solution of large nonlinear programs. What are some of the problem characteristics
that these methods exploit? Why is an approximate solution to a large problem often good
enough?

25.8.73[E] What must be true if parallel computing is to be used in solving a large nonlinear
program?

25.8.74[E] Explain why qpeq.m, rsdeq.m, rneq.m, penalty.m, auglag.m, grg.m, ntlg.m,
and sqp.m are not listed in the §25.7.3 table of methods suitable for large problems.

25.8.75[H] Find out about limited-memory quasi-Newton methods and explain how they
work.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

848 Solving Nonlinear Programs

25.8.76[E] What is a semi-analytic result, and how does it differ from an analytic solution
of a nonlinear program?

25.8.77[E] If in the big problem we admit the case where some a j = 0, how does this
change the rule for constructing x⋆?

25.8.78[H] List the places in this text where we have encountered nonlinear programs
having nondifferentiable functions, and describe the tricks we have used to solve them. Are
there nonsmooth nonlinear programs for which these tricks do not work?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26

Algorithm Performance Evaluation

In §9.4, I charted the space of nonlinear optimization methods on orthogonal axes of robust-
ness versus speed and described the history of the discipline as a search for some Northeast
Passage leading to an algorithm that solves every problem quickly. Since then we have seen
that there is no such method, and that two dimensions are not enough for a picture explain-
ing why. Each algorithm has its own personality, with a spectrum of important attributes.
What is its constraint affinity? How do its memory footprint and execution time scale with
problem size? Can it be implemented in a way that permits the use of parallel processing?
Does something limit the accuracy of the solutions it can find? How close to feasible are
they? It is silly to ask for a rank ordering of methods that differ in so many ways.

Yet performance does matter. Nonconvex optimization is hard, in the technical sense
of §7.9. In that context all of our methods are really just heuristics, reasonable strategies
that might or might not work on any given problem, and some are observed to work better
than others. Convex optimization is easy, because then the methods we have studied can
be proved to converge, but in this context also different methods do not work equally well.
Which algorithm will work best in practice for solving a particular class of problems? Which
problems are most likely to be solved by a particular algorithm? These questions are not
silly at all. Unfortunately, their answers are largely beyond the reach of theory.

In Chapters 10, 13, 14, and 17-24 we often dissected the progress of an algorithm in minute
detail to study the workings of its logic and numerics as it solved one particular problem.
Such an investigation can illustrate and explain how a method should ideally work on a
problem that perfectly fits its design, but cannot predict what the algorithm will do with the
more varied and realistic problems encountered in practice or how it will perform compared
to some other method. A more general analysis might allow predictions like those to be made,
but analyzing even a simple algorithm in general is usually mathematically intractable. In
the rare instance when the mathematical analysis of an algorithm succeeds it often yields only
asymptotic results [72, §4] or predicts worst-case performance, while it is average or typical
performance that is of interest for the evaluation and comparison of nonlinear programming
methods. In the analytic study of computational complexity, an algorithm is considered
“good” if the time and space it uses grow no faster than polynomial functions of problem
size [55], but this is not much help in distinguishing between heuristics when all of them (or
none of them) fit that description. A useful algorithm must be numerically stable and yield
accurate results, but only rarely (as in §25.6.4) is a floating-point calculation simple enough
that a realistic analytic model can be found for roundoff error.

To answer important practical questions that do not yield to analysis, algorithm devel-
opers and users frequently resort to numerical experiments, with goals including these:

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

850 Algorithm Performance Evaluation

• to find the best existing method for solving a certain problem or class of problems;

• to reveal possible improvements that might be made to an algorithm, or to determine
whether some change actually is an improvement;

• to discover what class of problems can be solved by a new algorithm;

• to demonstrate to others that a new algorithm actually works.

To study the performance of an algorithm experimentally we “just” need to try it on
some problems and see how quickly it solves them. People have been doing this since
the dawn of mathematical programming, so in addition to the many research papers that
incidentally include experimental results there is an extensive literature about how to conduct
experiments and report findings (e.g., [34] [42] [44] [48] [85] [139]).

Of course it is not the algorithm itself that we try in a computational experiment, but
a computer program that implements the algorithm, so to learn about the algorithm we
must make deductions from the behavior of the code. For example, if an evaluation that
is based on speed is to be unbiased, it must somehow control for any factors affecting the
running time of the program other than the algorithm itself, such as how the code is written
and compiled and the environment in which it is run. The logical basis of computational

testing is the assumption that there is some way to do that, or in other words that the
following proposition is true.

A computer program can be used as a laboratory instrument
for the experimental study of the algorithm it implements.

We can test using only a limited number of problems, so if our experiments are to
accurately predict how the algorithm will perform on average the problems must be carefully
chosen to represent the class of interest.

Some algorithms yield crude results very quickly while others produce more exact solu-
tions but only if we are willing to wait. To interpret the results of our experiments it will be
necessary to decide precisely what it means for an algorithm to have solved an optimization
problem.

Thus, computational testing turns out to be fraught with thorny philosophical issues and
subtle practical difficulties much like those that beset other experimental sciences. Just as it
is possible to conduct meaningful experiments in physics and biology despite imperfections
in apparatus, limitations of measuring equipment, and the foibles of human experimenters,
it is also possible to avoid many of the pitfalls of computational testing. The goal of this
Chapter is to address some of the issues that most commonly arise in the experimental study
of optimization methods.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.1.1 Specifying the Algorithm 851

26.1 Algorithm vs Implementation

An algorithm (see §9.0) is an abstract recipe for performing a computation, so it can be
stated using mathematical formulas or in pseudocode, or in a flowchart, or perhaps in other
ways similarly unrelated to any actual implementation. An algorithm is thus a special
sort of disembodied idea. In contrast, a program is a particular string of symbols in a
particular source language, precisely specifying a particular sequence of arithmetic and logical
operations to be performed by a real computer. Even after an algorithm is implemented
in a program, so that the two are now typographically inseparable, we can retain a clear
conceptual distinction between the idea and its realization. Properties that belong to the
algorithm should remain invariant across all possible implementations, while properties
belonging to the program might vary from one implementation to another. One ideal (though
tedious) way of specifying an algorithm would be to provide a collection of all its possible
implementations.

26.1.1 Specifying the Algorithm

Just where does the algorithm leave off and the program begin? That depends on the tradeoff
we make between the generality and the strength of the conclusions we hope to draw about
the algorithm from observations of the program. This is because the only observations of
the program that are helpful in understanding the algorithm are those that would be true
about any implementation of the algorithm as it is specified.

We might specify the algorithm in only a very general way, by describing the high-level
processes to be used and the effects to be achieved, omitting most details. A sorting algo-
rithm might be “exchange the elements of a list to put them in order.” An algorithm for
solving Ax = b might read “perform elementary row operations on A so that the compo-
nents of x can be found by successive divisions and back-substitutions.” An algorithm for
nonlinear optimization could require that we “generate a sequence of points in Rn such that
the objective is lower at each point than at the preceding one.” The vagueness of these
algorithm specifications prohibits us from reporting minute details we might notice about
the behavior of programs that implement them, because almost all such details are merely
the result of arbitrary choices in the particular way each program was written. We could
of course formulate general statements such as “sorting this way takes longer when the list
gets bigger,” or “solving Ax = b like this doesn’t work very well if A is large and sparse,”
or “this method of optimization sometimes gets stuck if the problem is nonconvex.” These
are true statements about the algorithms, but they are not very interesting; in fact, they are
platitudes that we could state without performing any experiments at all. A vague algorithm
specification leads to conclusions that have wide scope but are not very precise or specific.

At the opposite extreme we might take a particular computer program as the statement of
the algorithm it implements, so that every tiny coding detail is included in the specification.
The classic performance studies of Colville [28], Himmelblau [80] and Schittkowski [140],

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

852 Algorithm vs Implementation

among many others less famous, are fundamentally comparisons of computer programs rather
than of algorithms. The object of study (the algorithm) is the same as the instrument of
experimentation (the program) so the algorithm evaluation problem is reduced to describing
what the program does. If the algorithm is the program, we are still talking about the
algorithm if we report implementation-dependent specifics such as “the insertion sort ran in
0.1 seconds on my computer,” or “Gauss elimination failed when it encountered a zero pivot,”
or “the steepest-descent program reported x⋆ = [1.01, 0.99]⊤ for Rosenbrock’s problem.”
These statements are very definite and precise, but they are only very narrowly applicable.
We can report many details about exactly how a program works, but they probably won’t
describe the behavior of other programs implementing the same algorithm.

In physics, the motions of particular objects are of less interest than the laws govern-
ing the motions of objects generally. In a similar way particular codes, being ephemeral
things that seldom outlast even their authors, are of only limited or transient interest in
mathematical programming. The central problem of computational testing is the design of
experiments that reveal something about the intrinsic properties of algorithms rather than
merely the idiosyncrasies of computer programs. For experimentation to yield conclusions
that are both interesting and widely applicable, it is necessary to begin with an algorithm
description that is neither so vague that nothing useful can be deduced from observations of
any implementation, nor so precise that the conclusions we draw pertain to just one. The
algorithm should be specified just precisely enough so that measurements will be able to
reveal the intrinsic properties that are to be studied, and the experiments should ask only
questions relating to properties of the algorithm as it is specified.

26.1.2 Designing Experiments

The behavior of algorithms, like other scientific questions, can be studied by formulating
hypotheses that are testable by experiment. Once the algorithm has been specified in such
a way that useful conclusions about it can in principle be deduced from measurements
of a program, we need to design an experiment that permits such measurements to be
made. For example, the running time or efficiency of a numerical method depends on
both the algorithm and its implementation. A single absolute measurement of running
time contains both algorithm and implementation effects, so it doesn’t tell much about the
intrinsic efficiency of the algorithm. But if we compare two different algorithms (perhaps
choosing one of them as a standard) then implementation effects might be largely removed
in the comparison, allowing us to conclude that one algorithm is inherently more efficient
than the other. In order for the effects of coding details to cancel out, the programs must be
written in the most näıve and straightforward way permitted by the algorithm specifications,
so as to avoid inadvertently introducing refinements at the level of the coding. Any special
data structures, memory reference patterns, or coding techniques should be explicit in the
algorithm, not just hidden in the code. If several obvious implementations are possible they
can all be tested to reveal the implementation effects; in this case it is the algorithm effects

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.2 Test Problems 853

that cancel out in the comparison. Programs being compared must be compiled in the same
way, without allowing compiler optimization to rearrange the calculations.

Every program contains convenience code that has nothing to do with carrying out
the steps of the algorithm it implements, but which must be present if we are to conduct
experiments. Reading problem data, validating parameter values input by the experimenter,
and writing out intermediate results so that we can watch the progress of the calculation
are all things that we do not want to consider parts of the algorithm itself. In many testing
environments the computational effort used by convenience code is greater than that used
by algorithm code, so it cannot be neglected. It is essential to exclude from measurements
of computational effort any that is expended in executing convenience code.

Different strategies are called for in the design of experiments for measuring other algo-
rithm properties, such as accuracy, numerical stability, reliability (the proportion solved of
problems within the theoretical limits of the algorithm), robustness (the proportion solved
of problems outside the algorithm’s theoretical limits), and sensitivity to imprecise function
and derivative values [99]. Whatever is being measured, comparisons should be designed so
that algorithm and implementation effects can be separated.

Many optimization codes have adjustable parameters that control their behavior (thus
reducing the problem of solving a nonlinear program with n variables to the problem of tuning
a program that has p adjustable parameters). Unless tuning these parameters is an explicit
step in the algorithm specification, they should be fixed during the process of computational
experimentation, and the same values should be used for all of the test problems.

26.2 Test Problems

In a comparison of several methods for nonlinear programming, any desired outcome can
usually be achieved by judiciously selecting the test problems and their starting points.
This can lead to the subconscious (or intentional) introduction of bias in an experimental
study of algorithms, just as data censoring or lack of controls can bias experimental work
in other fields. The same principles of laboratory discipline and professional ethics that
prevail elsewhere in science must therefore be followed in computational testing. The most
fundamental of these principles is that others should be able to repeat the work and confirm
or deny the findings. This demands that the test problems you used and the programs
you tested be easily available to others. If you have inadvertently cooked the books maybe
someone will discover it by trying a different set of problems.

At least some of the test problems used in a computational study should be chosen
from standard collections (e.g., [28] [31] [80, §a] [81]; also see the references listed in §8.4)
rather than manufactured by the experimenter. If an algorithm has some particular special
property, at least some test problems should be chosen or constructed to reveal that property.

All of the algorithms in a computational comparison should be given the same infor-
mation about each test problem, unless the object of the experiment is simply to show the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

854 Test Problems

effect of the difference in information. For example, if an algorithm requiring only function
values is compared to one that also uses gradient information, the second algorithm ought to
approximate its gradients from function values rather than calculating them from formulas.
To see why this precaution is necessary, consider this algorithm: Get x⋆ from the problem
definition and print it out. It would not make sense to “provide each algorithm with the
information it needs” in comparing this method to one that finds x⋆ by actually solving the
nonlinear program. A similar objection could be raised to providing bounds on the variables
to an algorithm that can make use of them in a comparison to some method that cannot,
though in that case it is less obvious how the bias might be eliminated.

The starting point for a problem should be determined by the problem definition, so that
it isn’t subject to manipulation by the experimenter. If several different starting points are
of interest, they should be the fixed starting points of several different (though otherwise
identical) problems.

The literature on computational testing (e.g., [34] [42] [85]) discusses other more technical
considerations that can enter into the selection and description of test problems.

26.2.1 Defining the Problems

In §8.3.1 we used the file garden.mod to define the garden problem for submission to a NEOS
solver via AMPL. That file included x0 and formulas for the objective and constraint func-
tions. Elsewhere we have used MATLAB routines in the standard way that I first described
in §15.5. For a problem named prob they are as follows.

f=prob(x,i) returning the value f of function i at the point x
g=probg(x,i) returning the gradient g of function i at the point x
H=probh(x,i) returning the Hessian H of function i at the point x

We have used the convention that i=0 designates the objective, i=1...mi the inequality
constraints (if any), and i=mi+1...mi+me the equality constraints (if any).

In a typical testing environment (see §26.4) the algorithms of interest are implemented
in a compiled language, and then the function, gradient, and Hessian subprograms defining
each problem are coded that way too. If a large number of test problems are used it is helpful
for the files defining them to be named in a standard way and managed systematically, to
ensure that each experiment uses the intended function and derivative routines.

To facilitate the automation of a computational testing plan it is also helpful to catalog,
in some machine-readable way, complete information to identify and characterize each test
problem, including the items listed at the top of the next page.

For a problem to be useful in testing, its solution (x⋆,λλλ⋆) must be precisely known. Some
algorithms return λλλ⋆ as well as x⋆ but others do not. When x⋆ is known it is often possible to
determine λλλ⋆ from the KKT conditions, either analytically or by using the mults.m program
described in §16.10. The starting point is the midpoint of the bounds, x0 = 1

2
(xL + xH), so it

need not be separately cataloged.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.2.2 Constructing Bounds 855

prob prefix in the names of files defining functions and derivatives
n number of variables
mi number of inequality constraints
me number of equality constraints
xL lower bounds on the variables
xH upper bounds on the variables
x⋆ exact optimal point
λλλ⋆ exact KKT multipliers at the optimal point

provenance where the problem came from (e.g., literature citations)
aliases other names by which the problem is known

It is not uncommon for a published problem, whether it appears in a research article or in
a curated collection, to be defective. Some problems are infeasible, unbounded, or ill-posed
(see §16.8.3). Many problem statements contain typographical errors, ambiguities, imprecise
data, or wrong answers [33, §1.1.3]; many do not include KKT multipliers or variable bounds.
A handful of problems have been used repeatedly by the mathematical programming research
community over many years and appear in several collections with different names or aliases.
Occasionally a problem appearing in one collection is alleged to be the same as a problem
appearing in another while they are actually different because of a transcription error or
misidentification. Citations to original sources are also frequently garbled by misspellings,
incorrect page numbers, and other mistakes. Because of these potential pitfalls it is necessary
to validate each test problem you contemplate using. Whenever you publish a test problem
you should, as a courtesy to other experimenters, diligently ensure that it is correct.

26.2.2 Constructing Bounds

If bounds on the variables will be used by an algorithm for any of the purposes mentioned in
§9.5 they can be chosen in a way that biases the results of computational experiments. The
most obvious influence of the bounds is through the starting point, but many algorithms
are also affected by changing the width of the bounds even if their midpoint remains the
same. The catalog bounds for each test problem should therefore be determined in some
consistent mechanical way that gives them the properties listed below while preserving as
much of the original problem statement as possible. To have these desirable properties the
bounds we catalog might need to be wider than the limits on the variables that we obtain
from the problem statement.

• The catalog bounds [xl,xh] should contain as tightly as possible any bounds [xL, xH]
that are specified in the problem statement or implied by the constraints.

• The midpoint of the catalog bounds will be the starting point; this should be the given
starting point x0 if a starting point is given.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

856 Test Problems

• The catalog bounds should contain the optimal point;

• The midpoint of the catalog bounds should differ from the optimal point in all of its
components, unless the problem statement requires otherwise.

• The width of the catalog bounds xh(j)-xl(j) in any direction j should not be too
small compared to x⋆

j
.

How these complicated and interdependent requirements are met for a given problem will
depend on the information provided in its original statement. We must assume that x⋆ is
known. For each j ∈ {1 . . .n} the problem statement might or might not specify x0

j
, xLj , or

xHj , but for those quantities that are given we will insist that x0
j
, x⋆

j
, xLj , xHj , and that

xLj < xHj . If any of these inequalities are violated the problem is either defective or cannot be
used in testing unless the results are interpreted in a way that is unique to the problem.

The original problem statement might include a functional constraint that is a variable
bound; in the problem below x1 ≥ 3 so xL1 = 3. In solving this problem some algorithms might
be able to make use of the lower bound on x1, but all must enforce the explicit constraint.

minimize
x∈R2

x21 + x22 from x0 = [5, 5]⊤

subject to −x1 + 3 ≤ 0

The original problem statement might include a bound that is not a functional constraint;
in the problem below we are meant to avoid evaluating the square root where it is not defined,
so xL = 0 but there is no explicit nonnegativity constraint.

minimize
x

cos
(√

x
)

Often it is possible to deduce bounds on the variables from constraints that are more
complicated than simple variable bounds.

minimize
x∈R2

−(x1 − 1)2 − (x2 + 1)2

subject to x21 + x22 ≤ 4

x2 ≥ 0

Here the first constraint limits the extreme values that each variable can take on. Notice
that x21 + x22 ≤ 4 ⇒ x21 ≤ 4, so x1 ∈ [−2, 2]. Also, x21 + x22 ≤ 4 ⇒ x22 ≤ 4, so |x2| ≤ 2, but the
second constraint rules out negative values so x2 ∈ [0, 2]. Together these constraints imply
the variable limits xL1 = −2, xH1 = 2, xL2 = 0, and xH2 = 2.

The catalog bounds xl and xh that we adopt for each of these examples (see Exercise
26.6.17) must contain the variable limits xL

j
and xH

j
that we have deduced from the problem

statements, but to ensure that they also have the other properties listed above we must
pay attention to the optimal point for each problem and to the starting point when one is
specified. The formulas given on the next page show one way in which that can be done.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.2.2 Constructing Bounds 857

case xLj xHj x0
j

bounds calculation

0 � � � |x⋆j | ≥ 10−6||x⋆||





xl(j) = min
(

0.1x⋆
j
, 10x⋆

j

)

xh(j) = max
(

10x⋆
j
, 0.1x⋆

j

) else






xl(j) = −0.1
xh(j) = 10

1 � � �

∆ = |x0
j
− x⋆

j
|

xl(j) = x0
j
− 10∆

xh(j) = x0
j
+ 10∆

2 � � �

∆ = max
(

[xHj − x⋆
j
], 0.01× 1

2
[xHj + x⋆

j
]
)

xl(j) = x⋆
j
− 0.1∆

xh(j) = xH
j

3 � � �

∆ = xH
j
− x0

j

xl(j) = x0
j
− ∆

xh(j) = xH
j

4 � � �

∆ = max
(

[x⋆
j
− xL

j
], 0.01× 1

2
[x⋆

j
+ xL

j
]
)

xl(j) = xLj

xh(j) = x⋆
j
+ 10∆

5 � � �

∆ = x0
j
− xLj

xl(j) = xLj

xh(j) = x0
j
+ ∆

6 � � �

∆ =
1
2

(

xL
j
+ xH

j

)

xl(j) = xL
j

xh(j) = xH
j

7 � � �

∆ = max
(

x0
j
− xLj , x

H
j − x0

j

)

xl(j) = x0
j
− ∆

xh(j) = x0
j
+ ∆

These rules are regrettably arcane, but they do have the virtue of having been used
in successful computational studies [33, Appendix 2] [88, Appendix A]. They are of course
essentially arbitrary (that is the whole point) and different ones might make more sense to
you, but some rules must be used if the constructed bounds are to be unbiased.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

858 Algorithm Performance Evaluation

In case 7 a starting point and both limits are determined by the original problem state-
ment, so the catalog bounds are constructed as shown below; xh(j) > xHj to make the given

x0 the midpoint of the catalog bounds. The rationale for the formulas in cases 5 and 3 is
similar to that used here.

xL
j

xl(j)

∆ •
x0
j

xH
j

∆
xh(j)

In case 6 no starting point is specified, so the catalog bounds are the given limits and x0

is their midpoint.
In cases 4 and 2 only one limit is determined by the problem statement, so the catalog

bounds are based on its distance from the optimal point. However, if the distance between
the given limit and the optimal point is less than 1% of the average of their coordinate values,
∆ is taken to be that average instead.

xL
j

xl(j)

∆ •
x⋆
j

10∆

xh(j)

xHj

xl(j)

1
10
∆
•
x⋆
j

∆

xh(j)

In case 1 only a starting point is given, so its distance to the optimal point is used to
construct catalog bounds symmetric about the starting point.

In case 0 only the optimal point is known. If its jth coordinate is different enough from
zero, it is used to construct bounds asymmetric about x⋆

j
; if the solution coordinate is too

small to use in that way, the bounds are set to [−0.1, 10].
It is possible for the bounds produced by some of these rules to exclude the optimal

point; in each case they should be widened if that happens by repeatedly decreasing xl and
increasing xh by the ∆ for that case until x⋆ ∈ [xl, xh] (this is the only reason ∆ is computed
in case 6).

26.3 Error vs Effort

The algorithm implementations discussed in earlier Chapters typically test for convergence
by comparing a tolerance epz to some quantity that should approach zero as k → ∞. For
example, in unconstrained minimization the objective gradient g approaches zero so the test
usually looks like this.

if(norm(g) <= epz) break; end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3 Error vs Effort 859

Suppose that programs implementing algorithms A and B are used to solve the same problem,
and that each passes this test of gradient norm error upon completing the number of
iterations k shown in the table below. Which algorithm is the faster of the two?

epz A B

10−2 4 8

10−6 7 6

Method A satisfies the criterion ||∇f0(xk)|| ≤ ǫ in fewer iterations than B when ǫ = 10−2

but needs more when ǫ = 10−6, so the answer depends on how close to stationary our
approximation of x⋆ must be in order for the problem to be considered “solved.”

To gain a more complete understanding of how these algorithms behave we might replace
the table by the following error curves (see §9.1), which show how each method decreases
the relative distance error ek/e0 = ||xk − x⋆||/||x0 − x⋆|| as k increases.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 1 2 3 4 5 6 7 8

A

ek

e0

k
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 1 2 3 4 5 6 7 8

B

ek

e0

k

By the criterion ek/e0 ≤ ǫ, method A again converges in fewer iterations than B when ǫ = 10−2

and needs more when ǫ = 10−6. Now, however, we can see the relative error ek/e0 for every
value of k, and this lets us recognize algorithm A’s convergence as linear and algorithm B’s
as quadratic.

Unfortunately, graphs of solution error versus iteration count are not very useful for
comparing algorithms unless the only thing we care about is their order of convergence.
The amount of computation required to perform an iteration of B probably differs from the
amount needed for an iteration of A, and in either algorithm the work done in one iteration
might differ from the work done in another. It would therefore be misleading to plot the
curves above on the same set of axes, and they do not permit us to say which algorithm
takes less work to reach some level of error. To do that we must use a more meaningful
measure of computational effort; we will consider some possibilities below.

Using ek/e0 to measure solution error can also be misleading when comparing algorithms.
The distance in Rn between an iterate and an optimal point tells us nothing directly about
the objective value or feasibility of the iterate, and if there are multiple optima we need a

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

860 Error vs Effort

rule for deciding which one to use in computing ek = ||xk − x⋆||. In a constrained problem a
strictly feasible point x̂ and a grossly infeasible point x̄ can be the same distance from x⋆, but
they are not equally suitable as a solution to the problem! Even if none of these difficulties
arise in a particular algorithm comparison it does not make sense to ignore the value of the
objective, whose minimization is after all the immediate goal of the optimization. Thus we
would also prefer a more meaningful measure of solution error.

26.3.1 Measuring Solution Error

As we solve a problem the objective approaches its optimal value, so the function error

f0(x
k)− f0(x⋆) is as natural a measure of solution quality as the distance error ek. At infeasible

points the function error might be negative, so we had better use its absolute value. Now the
violation of a constraint can also contribute to the error of an iterate, if before combining
it with the function error we scale it to reflect its effect on the objective value. Recall from
§15.3 that perturbing a constraint that is tight at x⋆ changes the optimal objective value by
the shadow price

∂ f0

∂ fi
= −λ⋆i ,

where λ⋆
i
is the constraint’s KKT multiplier at x⋆. Using this scale factor leads to the

combined solution error

εk =
∣
∣
∣ f0(x

k) − f0(x
⋆)

∣
∣
∣ +

mi+me∑

i=1

∣
∣
∣λ⋆i fi(x

k)
∣
∣
∣ .

A problem with equality constraints can have KKT multipliers of either sign and fi(x
k) that

are nonzero for xk , x⋆ even if λ⋆
i
, 0, so it is necessary to take the absolute value of each

constraint-violation term. This measure has the highly desirable properties that

εk = 0 if xk = x⋆

εk > 0 if xk , x⋆

εk increases with objective error
εk increases with violations of constraints that are active at x⋆

εk = objective error if there are no constraints

Notice that it ignores violations of inequalities that are slack at optimality (for which λ⋆
i
= 0).

The MATLAB routine cse.m listed below returns εk at a given point xk.

function ek=cse(xk,fstar,lambda,fcn)
ek=abs(fcn(xk,0)-fstar);
m=size(lambda,1);
for i=1:m

ek=ek+abs(lambda(i)*fcn(xk,i));
end

end

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3.2 Counting Function Evaluations 861

If our algorithm evaluations based on one test problem are to be comparable to those
based on another, we must use an error measure that is insensitive to their starting points.
Therefore, as we did for ek in §9.1, we will normalize εk by its value at x0 and describe the
performance of an algorithm by plotting the log relative combined solution error

Ek = log10

(

εk

ε0

)

of its iterates, or LRCSE, as a function of computational effort. Each such curve begins at
E0 = log10(1) = 0. Because LRCSE uses λλλ⋆ it can’t be used in studying a problem that lacks a
constraint qualification.

26.3.2 Counting Function Evaluations

Above I argued that k is a bad measure of computational effort because an iteration of
one algorithm might take much more work than an iteration of another. For example, an
iteration of the ellipsoid algorithm requires on average 1

2
m function evaluations and a single

gradient calculation, while each iteration of the primal-dual interior point algorithm requires
m+1 Hessians, m+1 gradients, and m function values. An accurate comparison of the effort
used by these algorithms should somehow take into account this difference between them.

If a nonlinear program is big and complicated, most of the work required to solve it might
be in the NFE function evaluations, NGE gradient evaluations, and NHE Hessian evaluations
that are used by an algorithm. If finding each element of a gradient vector or symmetric
Hessian matrix takes about as much work as finding a single function value, then it seems
reasonable to use the equivalent function evaluations

EFE = NFE + n × NGE + 1
2
n(n + 1) × NHE

performed by an algorithm as a measure of the computational effort it expends.
The program listed on the next page uses the ea.m routine of §24.4 to solve the ek1

problem and plots, in the pictures below the listing, the LRCSE of each iterate versus the
EFEs consumed. The ek1efe.m and ek1gefe.m routines shown to the right of the program
are stub routines whose only purpose is to count a function or gradient evaluation 2-3

before invoking ek1.m or ek1g.m to perform it 4 .
The program begins 3 by initializing the global variables NFE and NGE to zero. Then it

sets 5 x0, 6 Q0, 7 n, and 8 m for the ek1 problem. Next 10-12 it finds the combined
solution error erz = εk when k = 0, 14 sets the starting relative error err(1) = εk/ε0 = 1,
and 15 sets the starting effort eff(1) = 0 EFEs.

The loop over k 17-28 invokes ea.m repeatedly 18 to solve the problem one iteration
at a time with a zero convergence tolerance. In each invocation the input value of xk is
the starting point xk−1 for iteration k and the output value of xk is the iterate xk generated
by the iteration; Qk is similarly updated. After each iteration the return code from ea.m is
tested 19 and the loop is exited prematurely if ea.m cannot continue.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

862 Error vs Effort

1 % eaefe.m: plot LRCSE versus EFE for the ellipsoid algorithm when it is used to solve ek1
2 clear; clf
3 global NFE=0 NGE=0
4
5 xk=[18;21];
6 Qk=[80,0;0,169];
7 n=2;
8 m=3;
9
10 fstar=614.21209720340380;
11 lambda=[250.99653438461144;0;0];
12 erz=cse(xk,fstar,lambda,@ek1);
13 ke=1;
14 err(ke)=1;
15 eff(ke)=0;
16
17 for k=1:300
18 [xk,rc,kused,Qk]=ea(xk,Qk,m,1,0,@ek1efe,@ek1gefe);
19 if(rc > 1) break; end
20
21 EFE=NFE+n*NGE;
22 ke=ke+1;
23 eff(ke)=EFE;
24 err(ke)=err(ke-1);
25 ke=ke+1;
26 eff(ke)=EFE;
27 err(ke)=cse(xk,fstar,lambda,@ek1)/erz;
28 end
29 rc
30 k
31
32 figure(1)
33 set(gca,’FontSize’,25)
34 semilogy(eff,err)
35 print -deps -solid eaefe.eps
36 figure(2)
37 hold on
38 set(gca,’FontSize’,25)
39 axis([100,230,1e-5,1e-2])
40 semilogy(eff(45:120),err(45:120))
41 hold off
42 print -deps -solid blowup.eps

1 function f=ek1efe(x,i)
2 global NFE
3 NFE=NFE+1;
4 f=ek1(x,i);
5 end

1 function g=ek1gefe(x,i)
2 global NGE
3 NGE=NGE+1;
4 g=ek1g(x,i);
5 end

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 200 400 600 800 1000

L
R
C
S
E

EFE

10
-5

10
-4

10
-3

10
-2

100 120 140 160 180 200 220

error changes at end

start of
iteration

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3.3 Measuring Processor Time 863

When the program is run it outputs 29-30 rc=2 indicating that Qk became computa-
tionally non-positive-definite at k=209. In finding each new iterate, ea.m invokes ek1efe.m
repeatedly and ek1gefe.m once, and they increment NFE and NGE. At the end of each it-
eration the program 21 updates EFE by using those numbers in the formula we derived
above, and remembers that measure of effort 26 for plotting along with 27 the relative
combined solution error of the current point. Statements 22-24 generate the square wave
curve discussed next. Finally 32-42 the program plots the graphs.

The error-vs-effort curve [48] [139] that results is a square wave, because each xk is
produced only at the end of iteration k; while the calculations for that iteration are being
performed ε remains what it was at the beginning of the iteration. The amount of work
required to perform iteration k is thus the width of the horizontal segment at error level εk−1.
Usually, as in this example, the iterations do not all take the same amount of work. The
linear order of the ellipsoid algorithm’s convergence is still evident in the left picture, despite
the fact that its horizontal axis is now EFE rather than k, but its convergence constant can
no longer be deduced from the slope. On these axes, however, we could plot LRCSE vs EFE
for another algorithm and make a valid comparison of the two (see Exercise 26.6.31).

In justifying the use of equivalent function evaluations to measure computational effort,
I argued that they account for most of the work required to solve a big and complicated
nonlinear program. If the functions and derivatives are very expensive to compute, as they
are in many type-2 problems, it is often true that those calculations dwarf the updates
that constitute the algorithm itself. But solving a hard problem takes a long time, so most
of the computational testing that is done to guide algorithm development (and choice) uses
problems that are more like ek1 and the other little examples we have considered in this book.
In solving them even a simple algorithm might do more work in the updates than it does in
evaluating functions, gradients, and Hessians. Often this other work is proportional to EFE

and then using EFE as an error measure might be reasonable anyway [98, p280-284]. But that
will not be true if the ratio of update work to EFE differs from one algorithm to another or if
any of the algorithms involve a significant amount of fixed overhead [112, p337-359]. There
are also situations in which it is not obvious what should count as a function evaluation; in
measuring the effort used by a sequential quadratic programming algorithm, for example,
how should we attribute the work that is done in solving the QP subproblems? Thus,
although EFE is widely used (e.g., [137]) and often useful, it is far from the ideal measure of
effort.

26.3.3 Measuring Processor Time

The work that an algorithm does in iteration k includes not only evaluating the functions,
gradients, and Hessians that it needs but also performing arithmetic and logical operations
on those quantities to find xk+1. For example, the ea.m routine, which we invoked in the
eaefe.m program of §26.3.2, normalizes the gradient that it will use to make the cut, finds
the direction in which to move the ellipsoid center, computes xk+1, and updates the ellipsoid

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

864 Error vs Effort

matrix. The simplest way to include these operations in our accounting of computational
effort is to measure CPU time instead of counting only EFEs.

The MATLAB tic and toc commands, which we used in §24.6 and §25.7.2, provide low-
resolution measurements of wallclock time. That includes keyboard interactions, system
background activities such as periodically checking for email, and time spent by other fore-
ground tasks that are sharing the processor and sometimes get their turn to run. An estimate
of the CPU time used by one program based on tic and toc is therefore not accurate enough
to be useful in most performance studies. Instead we will use the MATLAB function

[total,user,system]=cputime()

which returns only the processor time that has been consumed by the MATLAB session in
which it is invoked. The return value total is the sum of user and system, where system

tells the CPU seconds spent doing things like displaying the MATLAB command window. It
is user we want, because that tells the CPU seconds spent executing our commands.

Using EFE to measure computational effort ignores the work of an algorithm’s updates
and thereby underestimates the effort expended, but using all of the CPU time consumed
by the program produces a gross overestimate. The effort we want to measure is only that
which is used in performing the steps of the algorithm under test. As I mentioned in §26.1.2,
a test program that carries out our experiments always includes convenience code that is
not part of the algorithm and should therefore not be timed. To avoid timing convenience
code it is necessary to instrument the program by inserting statements to measure the
time spent performing different segments of the code. I instrumented the program eacpu.m,
listed on the next page, to segregate the time talg that it spends performing the steps of
the algorithm (boxed) from the time that it spends executing convenience code.

Most of the program has nothing to do with the algorithm. The second stanza 6-9

consists of necessary initializations, so it is bracketed by invocations of cputime(). The first
invocation 5 gets the user time u1 before the initializations are performed and the second
10 gets the user time u2 after; then talg can be incremented, from its initial value of zero
3 , by the difference u2-u1. The invocation of ea.m within the loop 22 is also necessary for
performing the algorithm, so it too is bracketed by cputime() invocations. The first 21 gets
u1 before ea is entered, and the second 23 gets u2 after ea returns, so that 25 talg can be
incremented by their difference (including the time ea.m spent in ek1.m and ek1g.m). The
rest of the program resembles eaefe.m except that the stub routines are no longer needed
and I have (for reasons that will be clear) simplified the plotting of error versus effort 36 .

I also 26 printed the value of talg after each iteration of the algorithm, as shown to
the right of the listing, and from this output it is obvious that this program is unsuccessful
in timing this algorithm. Often consecutive values of talg were identical, so in the output
I replaced them by a single vertical ellipsis. When talg did not change it was because the
cputime() invocations bracketing a code segment returned u1 and u2 values that were the
same. When talg did change it always increased by exactly one step of 0.004 seconds, and

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3.3 Measuring Processor Time 865

1 % eacpu.m: plot LRCSE versus CPU for the ellipsoid algorithm when it is used to solve ek1
2 clear;
3 talg=0;
4
5 [t1,u1,s1]=cputime();
6 xk=[18;21];
7 Qk=[80,0;0,169];
8 n=2;
9 m=3;
10 [t2,u2,s2]=cputime();
11
12 talg=talg+(u2-u1);
13 fstar=614.21209720340380;
14 lambda=[250.99653438461144;0;0];
15 erz=cse(xk,fstar,lambda,@ek1);
16 ke=1;
17 err(ke)=1;
18 eff(ke)=talg;
19
20 for k=1:300
21 [t1,u1,s1]=cputime();
22 [xk,rc,kused,Qk]=ea(xk,Qk,m,1,0,@ek1,@ek1g);
23 [t2,u2,s2]=cputime();
24
25 talg=talg+(u2-u1);
26 printf(’%3i %f\n’,k,talg)
27 if(rc > 1) break; end
28 ke=ke+1;
29 eff(ke)=talg;
30 err(ke)=err(ke-1);
31 ke=ke+1;
32 eff(ke)=talg;
33 err(ke)=cse(xk,fstar,lambda,@ek1)/erz;
34 end
35
36 semilogy(eff,err)

octave:1> eacpu

1 0.000000

2 0.000000

3 0.004001

:

11 0.004001

12 0.008001

:

16 0.008001

17 0.012001

:

30 0.012001

31 0.016001

:

44 0.016001

45 0.020001

:

49 0.020001

50 0.024001

:

58 0.024001

59 0.028002

:

63 0.028002

64 0.032002

:

72 0.032002

73 0.036002

:

77 0.036002

78 0.040003

:

86 0.040003

87 0.044003

:

91 0.044003

92 0.048003

:

105 0.048003

106 0.052003

:

119 0.052003

120 0.056003

:

133 0.056003

134 0.060004

:

138 0.060004

139 0.064004

:

147 0.064004

148 0.068004

:

152 0.068004

153 0.072005

:

161 0.072005

162 0.076005

:

164 0.076005

167 0.080005

:

180 0.080005

181 0.084005

:

194 0.084005

195 0.088005

:

197 0.088005

:

199 0.088005

200 0.092005

:

209 0.092005

octave:5> quit

running the program several times produced entirely different patterns of
repeated talg values, so they are all just useless instrumental noise.

On my computer the cputime() function has the standard Unix CPU
timing resolution of 0.01 seconds, which is longer than the time it takes
to execute either the initialization stanza 6-9 or a single one-iteration
invocation of ea.m 22 in solving ek1. Only much longer (or slower) code
segments can be accurately timed by using cputime() in MATLAB.

To use processor time as a measure of effort it is essential to exclude
convenience code; that often requires the timing of short code segments,
which is difficult to do accurately. By dint of certain low cunning it is
possible in Unix [100, §18.5.1] [88, §2.2.3.1] to indirectly make CPU time
measurements with a precision of 1 µs, and in the next Section we shall
see how to measure wallclock time with a precision even finer than that,
but these techniques can be used only if the algorithm under test is imple-
mented in a compiled language such as FORTRAN (see §26.4).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

866 Error vs Effort

CPU time measurements are intuitively appealing and often reported, but different pro-
cessors run at different speeds so times measured on one machine are (unlike EFEs) hard to
compare with times measured on another. Thus, even when they are accurate, CPU time
measurements are not always ideal for describing the results of computational experiments.

26.3.4 Counting Processor Cycles

Some processors admirably permit their cycle clock to be inspected by a running program,
and this information can be used to count the cycles that were used in carrying out a given
sequence of source code statements. To obtain the current cycle count it is necessary to
execute a machine-language instruction that reads the processor clock, and this is practical
only from a compiled programming language. To show how experiments can be conducted
using programs in a compiled language I will pick the simplest one, classical FORTRAN [100].
Even if you have never seen this language before you will probably be able to understand
the code discussed below. Classical FORTRAN does only scalar arithmetic and it requires
arrays and some scalar variables to be explicitly dimensioned and typed, but otherwise it is
quite similar to MATLAB. The suffix D0 (that’s a zero) indicates that a constant is REAL*8.

The program eacyc.f listed on the next page uses the ellipsoid algorithm to solve a
nonlinear program one iteration at a time, so in its broad outline it resembles the MATLAB

program eacpu.m of §26.3.3. It begins 3-5 by using COMMON (similar to the global statement
in MATLAB) to find out about the problem that is being solved. When this program is
compiled it will be linked with the function and gradient routines, always named FCN and
GRD, that define the problem, and the descriptors in COMMON will be given values there. The
second 7-9 and third 11-13 stanzas type and dimension variables that are used later.

The first stanza of executable code 15-22 uses the formulas in §24.3.1 to compute x0

and Q0 from the bounds xL and xH. The next stanza 24-30 initializes the performance
measurement process, so it is part of the code’s instrumentation. The combined solution
error depends on f0(x

⋆) so 25 FCN is invoked to find FSTAR at the optimal point XSTAR.
Then CSE, a FORTRAN equivalent of the MATLAB routine cse.m, is invoked 26 to find
the combined solution error ε0 = ERZ at the starting point. The LRCSE at that point is
E0 = log10(ε0/ε0) = 0 so 28 ERR(1) is set to 0. The starting effort CYALG is zero cycles 29

(an integer) so EFF(1) is also set 30 to zero (the corresponding real number).
Then 32-55 comes a loop of iterations over K. Each begins 34 by invoking the GETCYC

subroutine of [100, §18.5.3] to read the cycle clock, saving its value in CY1. Then subroutine
EA is invoked 35 to perform one iteration of the ellipsoid algorithm. The next stanza sets
39 xk = xk+1 and 41 Qk = Qk+1. Then 46 the cycle clock is read again and its value saved
in CY2. The EA routine sets the same return code values as ea.m, so if RC=1 more iterations
are possible. The cumulative cycles used by the algorithm, CYALG, is incremented 48 by the
difference (CY2-CY1) between the count after performing the iteration and the count before.
This effort value is 50,53 remembered along with 51 Ek−1 and 54 Ek to form the next step
in the square wave of error-vs-effort, and 55 the iterations continue.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3.4 Counting Processor Cycles 867

1 C eacyc.f: clock ea.f as it solves a problem
2 C
3 C access desciptors from the problem definition
4 COMMON /PROB/ NGC,N,MI,ME,XL,XH,XSTAR,LAMBDA
5 REAL*8 XL(50),XH(50),XSTAR(50),LAMBDA(50)
6 C
7 C type and dimension algorithm variables
8 REAL*8 XK(50),XKP(50),QK(50,50),QKP(50,50)
9 INTEGER*4 RC
10 C
11 C prepare to count processor cycles
12 INTEGER*8 CY1,CY2,CYALG
13 REAL*8 ERR(601),EFF(601),FCN,FSTAR,CSE,ERZ
14 C
15 C find starting point and ellipsoid matrix from bounds
16 DO 1 J=1,N
17 XK(J)=0.5D0*(XL(J)+XH(J))
18 DO 2 I=1,N
19 QK(I,J)=0.D0
20 2 CONTINUE
21 QK(J,J)=(DFLOAT(N)/4.D0)*(XH(J)-XL(J))**2
22 1 CONTINUE
23 C
24 C save starting error and effort
25 FSTAR=FCN(XSTAR,N,0)
26 ERZ=CSE(XK,N,FSTAR,LAMBDA,MI)
27 KE=1
28 ERR(KE)=0.D0
29 CYALG=0
30 EFF(KE)=DFLOAT(CYALG)
31 C
32 C do more than enough iterations, one at a time
33 DO 3 K=1,300
34 CALL GETCYC(CY1)
35 CALL EA(XK,N,QK,50,MI,1,0.D0, XKP,QKP,RC)
36 C
37 C result of this iteration is starting point for the next
38 DO 4 J=1,N
39 XK(J)=XKP(J)
40 DO 5 I=1,N
41 QK(I,J)=QKP(I,J)
42 5 CONTINUE
43 4 CONTINUE
44 C
45 C save error and effort at this point
46 CALL GETCYC(CY2)
47 IF(RC .GT. 1) GO TO 6
48 CYALG=CYALG+(CY2-CY1)
49 KE=KE+1
50 EFF(KE)=DFLOAT(CYALG)
51 ERR(KE)=ERR(KE-1)
52 KE=KE+1
53 EFF(KE)=DFLOAT(CYALG)
54 ERR(KE)=DLOG10(CSE(XKP,N,FSTAR,LAMBDA,MI)/ERZ)
55 3 CONTINUE
56 C
57 C write the (effort,error) coordinates to standard out
58 6 WRITE(6,901) (EFF(K),ERR(K),K=1,KE)
59 901 FORMAT(2(1X,1PE13.6))
60 STOP
61 END

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

868 Error vs Effort

The invocations of EA 35 all use a convergence tolerance of zero, so the ellipsoid algorithm
iterations continue until Qk becomes non-positive-definite or the function to be used for a
cut has a zero gradient at xk. When one of those things happens EA returns RC > 1 and
47 control transfers out of the iteration loop to statement 6 58 where the accumulated
(effort,error) coordinates are written out. The terminal session excerpt below shows how I
compiled the program to solve the ek1 problem and ran the resulting executable, redirecting
its output to the file ek1.e.

unix[1] ftn eacyc.f ea.f matmpy.f cse.f ek1.f getcyc.c
unix[2] a.out > ek1.e

FORTRAN does not have built-in graphics so I used gnuplot to graph the ek1.e data,
generating the error-vs-effort curve below.

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0 500000 1000000 1500000 2000000 2500000

E

processor cycles

The final data point in the file, for iteration 222, shows a cycle count of 2128548. Thus, on
average one EA iteration takes about 9600 clock cycles, or 9.6 µs on a 1 GHz processor. It
is not surprising that cputime(), with a resolution of 10000 µs, was unable to time single
iterations of ea.m (the compiled code of EA runs much faster than ea.m, but probably not
by a factor of 1000).

On the next page the listing of EA is too long for a single column so lines 75-103 are printed
to the right of lines 1-74 . EA is closely modeled on ea.m (as you should convince yourself
by comparing them) and it works the same way. In some places the two routines perform
arithmetic operations in a different order, so there are tiny differences in the accumulation
of roundoff error and the numbers they generate are not identical. However, throughout the
solution process the xk agree in at least the first 6 significant digits so for our purposes the
MATLAB and FORTRAN implementations are numerically equivalent.

MATMPY is a matrix multiplication routine that is invoked 57,58,79 by EA. The final
listing on the page is of CSE, a FORTRAN clone of the MATLAB cse.m routine. The GETCYC
subprogram that we used above to read the cycle clock is written in the C programming
language, and it is listed in [100, p501].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3.4 Counting Processor Cycles 869

1 C ea.f

2 C

3 SUBROUTINE EA(XZERO,N,QZERO,LDQ,M,KMAX,TOL, XSTAR,QSTAR,RC)

4 C do up to kmax iterations of the ellipsoid algorithm to solve

5 C minimize fcn(x,0) subject to fcn(x,ii) <= 0, ii=1..m

6 C

7 C declare formal parameters

8 REAL*8 XZERO(N),QZERO(LDQ,*),TOL,XSTAR(N),QSTAR(LDQ,*)

9 INTEGER*4 RC

10 C

11 C declare local variables

12 REAL*8 X(N),G(N),QG(N),D(N),XNEW(N)

13 REAL*8 DDT(LDQ,LDQ),Q(LDQ,LDQ),QNEW(LDQ,LDQ)

14 REAL*8 FN,A,B,C,FCN,NG,NSQ,GQG,DX

15 C

16 C compute constants used in the updates

17 FN=DFLOAT(N)

18 A=1.D0/(FN+1.D0)

19 B=2.D0*A

20 C=FN**2/(FN**2-1.D0)

21 C

22 C initialize current ellipsoid center and matrix

23 DO 1 J=1,N

24 X(J)=XZERO(J)

25 DO 2 I=1,N

26 Q(I,J)=QZERO(I,J)

27 2 CONTINUE

28 1 CONTINUE

29 RC=1

30 C

31 DO 3 K=1,KMAX

32 C find a function to use in making the cut

33 ICUT=0;

34 DO 4 II=1,M

35 IF(FCN(X,N,II) .GT. 0.D0) THEN

36 ICUT=II

37 GO TO 5

38 ENDIF

39 4 CONTINUE

40 C

41 C find the gradient and normalize it

42 5 CALL GRD(X,N,ICUT, G)

43 NG=0.D0

44 DO 6 J=1,N

45 NG=DMAX1(NG,DABS(G(J)))

46 6 CONTINUE

47 IF(NG .EQ. 0.D0) THEN

48 RC=3

49 GO TO 7

50 ELSE

51 DO 8 J=1,N

52 G(J)=G(J)/NG

53 8 CONTINUE

54 ENDIF

55 C

56 C find the direction in which to move the ellipsoid center

57 CALL MATMPY(Q,LDQ,G,N,N,N,1, QG,N)

58 CALL MATMPY(G,1,QG,N,1,N,1, GQG,1)

59 IF(GQG .LE. 0.D0) THEN

60 RC=2

61 GO TO 7

62 ELSE

63 DO 9 J=1,N

64 D(J)=-QG(J)/DSQRT(GQG)

65 9 CONTINUE

66 ENDIF

67 C

68 C check for convergence

69 NSQ=0.D0

70 DO 10 J=1,N

71 DX=A*D(J)

72 XNEW(J)=X(J)+DX

73 NSQ=NSQ+DX**2

74 10 CONTINUE

75 IF(DSQRT(NSQ) .LT. TOL) THEN

76 RC=0

77 GO TO 7

78 ELSE

79 CALL MATMPY(D,N,D,1,N,1,N, DDT,LDQ)

80 DO 11 J=1,N

81 DO 11 I=1,N

82 QNEW(I,J)=C*(Q(I,J)-B*DDT(I,J))

83 11 CONTINUE

84 ENDIF

85 C

86 C update the current ellipsoid center and matrix

87 DO 12 J=1,N

88 X(J)=XNEW(J)

89 DO 13 I=1,N

90 Q(I,J)=0.5D0*(QNEW(I,J)+QNEW(J,I))

91 13 CONTINUE

92 12 CONTINUE

93 3 CONTINUE

94 C

95 C return the current point as optimal

96 7 DO 14 J=1,N

97 XSTAR(J)=X(J)

98 DO 15 I=1,N

99 QSTAR(I,J)=Q(I,J)

100 15 CONTINUE

101 14 CONTINUE

102 RETURN

103 END

1 SUBROUTINE MATMPY(A,LDA,B,LDB,M,N,P, C,LDC)

2 C compute the matrix product C(MxP)=A(MxN)*B(NxP)

3 C

4 REAL*8 A(LDA,*),B(LDB,*),C(LDC,*)

5 INTEGER*4 P

6 C

7 DO 1 I=1,M

8 DO 1 J=1,P

9 C dot the Ith row of A with the Jth column of B

10 C(I,J)=0.D0

11 DO 2 K=1,N

12 C(I,J)=C(I,J)+A(I,K)*B(K,J)

13 2 CONTINUE

14 1 CONTINUE

15 RETURN

16 END

1 FUNCTION CSE(XK,N,FSTAR,LAMBDA,M)

2 REAL*8 CSE,XK(N),FSTAR,LAMBDA(M),FCN

3 CSE=DABS(FCN(XK,N,0)-FSTAR)

4 DO 1 II=1,M

5 CSE=CSE+DABS(LAMBDA(II)*FCN(XK,N,II))

6 1 CONTINUE

7 RETURN

8 END

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

870 Error vs Effort

The ek1 example shows that a resolution of 1 clock cycle is fine enough to permit accurate
measurements of effort to be made even for the short statement sequences that result from
excluding convenience code. Unfortunately, clock cycles elapse with wallclock time, so like
tic and toc (though much more accurately) they count everything the processor does. For
clock cycles to be a useful measure of the effort expended by an algorithm, it is necessary
to keep the operating system from interrupting the instrumented program while we are
conducting an experiment. In a Unix environment it is possible to do that (at least mostly)
by taking certain draconian precautions [100, §18.5.4]. Random leakage of non-algorithm
effort into cycle count measurements always makes the intervals look longer than they really
are, so the noise can also be removed by repeating an experiment several times, saving each
interval measurement, and combining the data to use the lowest cycle count observed for
each interval.

Some computers adjust the processor clock speed dynamically to conserve battery charge
or prevent chip overheating, but in a Unix environment it is possible to discover the current
speed from within a running program [100, §18.5.5]. This number can be used to convert
cycle counts into nanoseconds, and if only algorithm work is included the result is a very
precise measurement of CPU time.

26.3.5 Problem Definition Files

The only piece of our eacyc program that remains to be discussed is the problem definition

file ek1.f, which is listed on the next page. The FCN and GRD routines are straightforward
transliterations into FORTRAN of ek1.m and ek1g.m, which we wrote in §24.4. The HSN

routine computes Hessians for ek1 in case we want to solve the problem using an algorithm
that requires them.

The rest of the ek1 problem definition consists of the descriptors I suggested in §26.2.1:
n, mi, me, x

L, xH, x⋆, λλλ⋆, the provenance of the problem, aliases by which it is known, and
the prefix string used to identify it in filenames. The prefix string ek1 can be deduced
from the filename ek1.f. The BLOCK DATA subprogram 3-14 sets the values of the problem
descriptors that are numbers, and provides in the variable NGC a problem number that can be
used to access the appropriate record in a separate catalog file for the problem’s provenance
and aliases (and possibly other information). The problem number 29 refers to Subsection
29 in §28.7, which is our test problem catalog. Setting these quantities in code by initializing
variables in the COMMON block /PROB/ makes it possible to summarize in this single file all of
the problem information that we need in order to use it in testing. Our program eacyc.f

gets all of the ek1 problem descriptors it requires from /PROB/.
The vectors XL, XH, XSTAR, and LAMBDA are 6,8,10,12 each given 50 elements, more than

the 2 that are needed for ek1, and the unused elements are 7,9,11,13 initialized to zeros.
This is so that the same standard layout can be used for the COMMON block /PROB/ no matter
what problem we want to describe, provided n ≤ 50 and mi +me ≤ 50. Each of the nonlinear
programs we have considered in this book could be defined in this compact way.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.3.5 Problem Definition Files 871

1 C ek1.f
2 C
3 BLOCK DATA
4 COMMON /PROB/ NGC,N,MI,ME,XL,XH,XSTAR,LAMBDA
5 INTEGER*4 NGC/29/,N/2/,MI/3/,ME/0/
6 REAL*8 XL(50)/11.63603896932107D0,11.80761184457488D0,
7 ; 48*0.D0/
8 REAL*8 XH(50)/24.36396103067893D0,30.19238815542512D0,
9 ; 48*0.D0/
10 REAL*8 XSTAR(50)/15.62949090230634D0,15.97376861785225D0,
11 ; 48*0.D0/
12 REAL*8 LAMBDA(50)/250.9965343846114D0,0.D0,0.D0,
13 ; 47*0.D0/
14 END
15 C
16 FUNCTION FCN(X,N,II)
17 REAL*8 FCN,X(N)
18 IF(II.EQ.0) FCN=(X(1)-20.D0)**4+(X(2)-12.D0)**4
19 IF(II.EQ.1) FCN=8.D0*DEXP((X(1)-12.D0)/9.D0)-X(2)+4.D0
20 IF(II.EQ.2) FCN=6.D0*(X(1)-12.D0)**2+25.D0*X(2)-600.D0
21 IF(II.EQ.3) FCN=-X(1)+12.D0
22 RETURN
23 END
24 C
25 SUBROUTINE GRD(X,N,II, G)
26 REAL*8 X(N),G(N)
27 IF(II.EQ.0) THEN
28 G(1)=4.D0*(X(1)-20.D0)**3
29 G(2)=4.D0*(X(2)-12.D0)**3
30 ELSEIF(II.EQ.1) THEN
31 G(1)=8.D0*DEXP((X(1)-12.D0)/9.D0)*(1.D0/9.D0)
32 G(2)=-1.D0
33 ELSEIF(II.EQ.2) THEN
34 G(1)=6.D0*2.D0*(X(1)-12.D0)
35 G(2)=25.D0
36 ELSEIF(II.EQ.3) THEN
37 G(1)=-1.D0
38 G(2)= 0.D0
39 ENDIF
40 RETURN
41 END
42 C
43 SUBROUTINE HSN(X,N,II, H,LDH)
44 REAL*8 X(N),H(LDH,*)
45 H(1,1)=0.D0
46 H(2,1)=0.D0
47 H(1,2)=0.D0
48 H(2,2)=0.D0
49 IF(II.EQ.0) THEN
50 H(1,1)=12.D0*(X(1)-20.D0)**2
51 H(2,2)=12.D0*(X(2)-12.D0)**2
52 ELSEIF(II.EQ.1) THEN
53 H(1,1)=(8.D0/81.D0)*DEXP((X(1)-12.D0)/9.D0)
54 ELSEIF(II.EQ.2) THEN
55 H(1,1)=12.D0
56 ENDIF
57 RETURN
58 END

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

872 Error vs Effort

26.3.6 Practical Considerations

The programs eaefe.m, eacpu.m, and eacyc.f were easy to write, because both ea.m and
its FORTRAN equivalent ea.f can be invoked repeatedly to solve a problem one iteration
at a time. Often it is of interest to evaluate an algorithm whose implementation is not
serially reusable. Then the progress of the method from one iteration to the next can be
monitored only within the user-supplied routines that it invokes during each iteration to
compute function, gradient, and Hessian values. If CPU time or cycle count is being used
as the measure of effort, the timing or counting must be suspended in those routines while
the error and effort measures are updated and stored or written to a file; in that case stubs
must be used between the algorithm code and the routines that define the problem.

Both ea.m and ea.f also have the property that all of the computational effort they
expend can rightly be accounted to the algorithm they implement. That made it possible
for us to exclude all non-algorithm EFEs, CPU time, or processor cycles by instrumenting
only the test program and (via stubs) the problem-defining routines that we supplied. If an
implementation to be tested does things other than carry out the steps of the algorithm,
such as printing status reports, then it too must be instrumented so that those activities are
excluded from the measured effort. This is possible only if the source code can be modified.

In eacpu.m and eacyc.f we bracketed the code segments to be measured with invocations
of cputime() or GETCYC, and added statements to increment talg by u2-u1 or CYALG by
CY2-CY1. This way of instrumenting the code assumes that there are exactly two categories
of computational effort, algorithm and non-algorithm. In some performance evaluations it is
desirable to partition effort into more than two categories so that, for example, the work of
the updates can be compared to the work of evaluating functions, gradients, and Hessians.
We have also assumed that cputime() and GETCYC return their outputs instantaneously, but
executing either routine actually takes some computational effort. In practice it is both more
convenient and more accurate to encapsulate the effort-measurement process in a routine that
corrects for its own overhead and simplifies the accounting of effort to different categories.
For example, the TIMER routine described in [100, §15.1.4], which returns overhead-corrected
CPU times based on cycle counts, supports a simple conceptual model of computational
effort in which execution time flows continuously and is redirected by each TIMER call into a
specified timing bin.

In a MATLAB program our source code is interpreted one statement at a time, so the calcu-
lation that is performed is precisely the one we specified. When an algorithm is implemented
in a compiled language, hidden optimizations introduced by the compiler can rearrange the
calculations in such a way that the algorithm actually carried out by the executable is subtly
different from the one described by the source program. I mentioned in §26.1.2 that this
phenomenon can invalidate our definition of precisely what the algorithm is. It can also have
a disastrous effect on instrumented code, by changing what sequence of operations a mea-
surement includes or by “factoring out” the measurement altogether. Instrumented source
code must therefore be compiled using options that prevent code rearrangement.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.4 Testing Environment 873

In eaefe.m and eacpu.m we collected (effort,error) coordinates in arrays and graphed
them within the test program, but in conducting a real study it is more convenient to write
or redirect each set of performance results to a file. That way each algorithm can be tested
separately and a different program used afterward to read the files for the algorithms to be
compared and produce an error-vs-effort curve that includes them all. Sometimes a program
under test finds the optimal solution exactly, so that an iterate has εk = 0 and Ek = −∞;
that must be indicated somehow on the graph but not allowed to spoil its vertical scaling.

The measures of effort that we have considered all assume the simplest and most typical
computer architecture, in which a single processor is running a single program at any given
instant, in a single memory. Much current research (e.g., [129]) is focused on the development
of optimization algorithms that can exploit parallel processing and distributed memory. The
performance of each scalar process that makes up a parallel algorithm can be studied using
the techniques discussed above. When multiple processes are run in parallel, however, other
measures of algorithm quality must also be considered, including the wallclock time required
to solve a problem (reducing this time is the goal of parallel processing) and how that
measure of performance and the memory footprint of each process scale with the number of
processors used.

26.4 Testing Environment

Algorithm performance evaluation is based on measurements made during computational
experiments. The laboratory instrument that we use to make those measurements is an
instrumented computer program. In the examples we have studied the test program con-
sists of a main routine or driver, an algorithm implementation or solver subprogram that
is invoked by the driver, and a problem definition that is invoked by the solver. To make
accurate measurements of CPU time, or to measure cycle counts, all of this code must be
written in a compiled programming language such as FORTRAN, C, or C++ rather than in a
high-level package such as MATLAB, AMPL, or Maple. To be suitable for testing optimiza-
tion software, a computing environment must therefore support the writing, compilation,
and maintenance of computer programs. It needs at least a text editor, a language compiler,
and a program management utility such as make.

A serious computational study often uses several test programs to solve multiple test
problems, generating many sets of performance data to be analyzed using other programs.
The various pieces of code, the experimental data, and the results of the analyses are all stored
in files. To be practical a testing environment must therefore provide some way to automate
the uninterrupted running of the experiments and the manipulation of the associated files.

These requirements strongly favor the Unix operating system. It provides program de-
velopment tools and a way to write software for systematically managing experiments and
the files they produce and consume, and it can be made to surrender control of the processor
to a user program and thereby get out of the way for the duration of an experiment.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

874 Testing Environment

26.4.1 Automating Experiments

Suppose that three test programs are to be used to solve each of twenty test problems, and
that an error-vs-effort curve is to be produced comparing the performance of the algorithms
on each problem. The pieces that make up each test program are stored in separate FORTRAN

source code files. What must be done to carry out this computational testing plan? If you
were to do it by typing at the command prompt, your interactions with Unix might begin
something like this.

unix[1] ftn driver1.f alg1.f prob1.f
unix[2] a.out > p1a1.e
unix[3] ftn driver2.f alg2.f prob1.f
unix[4] a.out > p1a2.e
unix[5] ftn driver3.f alg3.f prob1.f
unix[6] a.out > p1a3.e
unix[7] perfplot p1a1.e p1a2.e p1a3.e
unix[8] echo ’load "p1.gnu"’ | gnuplot
:

Here I have assumed ftn is a compiler that translates each .f file named in its argument
list and links the resulting object modules to produce an executable named a.out. For
example, the first invocation [1] of ftn combines the driver routine for algorithm 1 with the
subprogram implementing algorithm 1 and the problem definition file for problem 1. Each
driver routine writes (effort,error) coordinates to its standard output, which is redirected to
a file whose name encodes the problem and algorithm that were used to generate it. For
example, the output of the executable that solves problem 1 using algorithm 1 is redirected
[2] to p1a1.e

I have also assumed [7] the existence of a program named perfplot, which reads error-
vs-effort data from the files given as its parameters and writes two output files. The first
of these is a set of plotting instructions similar to the rays.gnu file described in §3.6.1;
the second is a file similar to rays.dat containing the three sets of error-vs-effort data,
censored if necessary to deal with points having Ek = −∞ (in that case commands must be
added to the .gnu file for annotating the graph accordingly). Piping [8] the command load

"p1.gnu" into gnuplot causes it to generate an appropriately-named eps file containing the
error-vs-effort graph, which we could later print or include in a LATEX2ε document.

So far we have run experiments for only the first of the twenty problems, so there is a
lot of typing ahead. Fortunately, repetitive command sequences like this can be automated
in Unix by writing a shell script [96] such as the one on the next page. Entering the single
command expts at the Unix command prompt would run all of the experiments.

Depending on the computational testing plan, the shell script you write to run the exper-
iments might be much more complicated than this one. You might need to modify and test
the script repeatedly until you get it right, but because it is just text in a file that is much
easier than typing a long sequence of lines perfectly at the interactive command prompt.
Once the script is correct you can go to lunch while it executes, confident that the right
program, problem, and data files will be used in each step.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.4.2 Utility Programs 875

#! /bin/sh
expts: run programs 1-3 on problems 1-20
for pr in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
do

for ag in 1 2 3
do

ftn driver${ag}.f alg${ag}.f prob${pr}.f
a.out > p${pr}a${ag}.e

done
perfplot p${pr}a1.e p${pr}a2.e p${pr}a3.e
echo ’load "p${pr}.gnu"’ | gnuplot

done
exit 0

26.4.2 Utility Programs

In addition to running a series of experiments, many other tasks that frequently arise in
carrying out a performance evaluation project can be greatly simplified and speeded up by
writing and using your own collection of utility programs.

We used the eacyc.f program of §26.3.4 to generate an error-vs-effort curve for the
ek1 problem, but it could just as easily be used to study any other inequality-constrained
problem for which we have a problem definition file. All we need to do is replace ek1.f by
the other problem definition in the Unix command we use to compile the program.

We used ek1.f in preparing an executable of eacyc.f, but it could just as easily be linked
into programs that answer other questions about the problem. Is a certain point feasible?
Does it satisfy the KKT conditions? What is its objective value? We could also link ek1.f

with drivers and solvers implementing other algorithms. Of course the same programs that
do these calculations for ek1 can do them for any problem if we link in the right definition.
The task of building an executable that combines a given test problem with a given utility
or driver and algorithm implementation can itself be automated using a shell script.

In §26.2.2, I outlined some complicated rules for constructing bounds. These could be
used by a program that links to a problem definition but ignores the XL and XH vectors given
there. For each variable j it could ask the user whether xLj , xHj , or x0

j
is known, and use

whatever values are given to compute new bounds from the appropriate equation.
What is the lowest Ek achieved by a given algorithm on a given problem? This can be

discovered by examining the appropriate .e file produced in an experiment. Among these
lowest errors achieved by the given algorithm across the whole set of test problems, which
is the highest? The answers to statistical questions like this can be obtained by examining
all of the .e files with a program, written in a compiled language, that is run on each file in
turn by a shell script. The perfplot program that I envisioned for the example of §26.4.1
is another utility of this sort.

In reporting statistical results it is often appropriate to include tables of values (see
§26.5.1). These are tedious to typeset and to populate with the right numbers, so it can be
worth the trouble to write a program that gathers or calculates the entries and generates
LATEX source text for setting the tables.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

876 Reporting Experimental Results

26.5 Reporting Experimental Results

As Richard Hamming famously sermonized [166, p3], “The purpose of computing is insight,
not numbers.” When we use numerical optimization to study a practical problem, the
results we get are already once removed from the application; when we use computational
experiments to study the numerical algorithm itself, our measurements are separated from
reality by an additional layer of abstraction. How can we summarize and interpret a deluge
of observational data in ways that lead to useful insights about the algorithms we tried?

26.5.1 Tables

To compare the behavior of algorithms when they are used to solve a single problem, only an
error-vs-effort curve will do. But one such picture provides too little information to say which
method works best in general, and twenty such pictures (a lot for any journal to publish)
would provide too much information for a reader to assimilate just by looking at them. To
comprehend the whole portfolio of results from a computational study it is necessary to
summarize them. One way to do that is in tables; these are the standard types.

LRCSE level E
−2 −4 −8 −12

al
go
ri
th
m A 0.0 0.1 0.2 0.0

B 0.1 0.2 0.3 0.5

C 0.9 0.7 0.5 0.0

fraction of problems solved first

LRCSE level E
−2 −4 −8 −12

al
go
ri
th
m A 1.0 1.0 1.0 0.0

B 1.0 1.0 0.9 0.5

C 1.0 0.9 0.8 0.0

fraction of problems solved

The table on the left shows that algorithm C usually achieves error levels down to −8
more quickly than the other algorithms, but neither A nor C ever achieves an error level of
−12 while B reaches that level on half of the problems. These results suggest that C is most
efficient but B is most accurate.

The table on the right shows that A solves more of the problems to −8 than either of
the other algorithms. If all three should have been able to solve all of the problems that
were used in computing these statistics, this result suggests that A is the most reliable of the
algorithms down to that error level. If the problems lack some property necessary to prove
convergence of the algorithms (e.g., if these are ellipsoid algorithm variants but none of the
problems is a convex program) then the result suggests that A is the most robust.

Depending on the goals of the study it might be appropriate to table, for each algorithm,
other attributes such as

• its best possible accuracy, the lowest error level attained on any problem;
• its sensitivity to imprecisions in the calculation of function and derivative values;
• its stability, whether it stays at x⋆ if that is used as the starting point [98, p65].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.5.2 Performance Profiles 877

26.5.2 Performance Profiles

Another way to summarize results over the whole set of test problems is by using performance
profiles [44] [137, §5]. A performance profile is a cumulative distribution function ρs(τ)
for a performance metric fp,s of algorithm s over the problems p in the test set.

Above I suggested tabulating, for each algorithm, the lowest error level it attained on
any problem. A more complete picture of ultimate accuracy can be had by plotting ρs(τ)
for that performance metric (but see [68]). If we let

fp,s = lowest E attained by algorithm s on problem p

ρs(τ) =
number of problems having fp,s ≤ τ
number of problems in the test set

∈ [0, 1]

then we can plot ρ(τ) as a function of τ like this.

ρ(τ)

1.0

0.5

0.0 τ
−16 −12 −8 −4 −2

fr
ac
ti
on

of
p
ro
b
le
m
s better

worse
B

B

A

A

C

Algorithm B is most likely to work if we require E < −10; otherwise we should use A.
Other performance metrics require more subtle analysis. For example, if we let

fp,s = effort for algorithm s to reach its lowest E on problem p

f̂p,s = effort for algorithm s to reach reference error E = −3 on problem p

then the performance ratio

rp,s =
fp,s

min
s

f̂p,s

is a dimensionless number normalized for the difficulty of problem p, and the performance
profile is

ρs(τ) =
number of problems having log10(rp,s) ≤ τ

number of problems in the test set
.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

878 Reporting Experimental Results

26.5.3 Publication

In §26.2, I advocated sharing the test problems used in every study along with the algorithm
implementations that are tested. In order for other people to be able to confirm the results
through independent replication of the experiments, it is also necessary for them to know
the details of the computing environment that you used. This includes

• the processor chip,

• the operating system,

• the language compilers and options,

• the algorithm parameter settings, and

• if CPU time or cycle counts were the measure of effort, any precautions you took to
ensure that the measurements were accurate and free of noise.

For your experimental results to be publishable it should at least be possible for you yourself
to replicate them. If CPU time or processor cycles are the measure of effort, repeat the
experiments to provide an estimate of the variability in those measurements. If an algorithm
fails on some problems, explain why.

Computational studies are as difficult to publish as they are to conduct. Some journal
editors and many anonymous referees dismiss “experimental mathematics” as a last resort of
incompetents, and recoil from its unhygienic contact with actual computing; others have had
bitter experience with algorithm evaluations that were badly done, with which the literature
is unfortunately replete. If your paper is accepted it will probably be on condition that you
shorten it; there is never enough space to tell the whole story. Publish a summary of your
findings, citing an unabridged report that interested readers can easily obtain.

Computational comparisons are perilous when, in the process of drawing contrasts be-
tween algorithms, they reveal shortcomings of the implementations that are tested. An
algorithm might be public property, but every implementation has an author whose feelings
(and perhaps tenure case) are at stake. If you find some flaw in another person’s work report
it to the person privately, and when you cannot avoid printing bad news do so as gently as
possible. Science often progresses through public discussion, but argument should always be
for the sake of getting to the truth rather than for the sake of humiliating your competition
[178, §5:20]. Label your speculations to distinguish them from supported conclusions, and
remember that only very limited claims can be made about proprietary codes.

Performance (in all its aspects) is sufficiently important that I have devoted many pages
to techniques for evaluating it, but other factors also affect the utility of an algorithm.
A publication reporting your findings will be most useful to other practitioners if it also
mentions how to get the implementations you tested, how easy you found the software to
install and use, and any practical advice you can offer based on your experience.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.6 Exercises 879

26.6 Exercises

26.6.1[E] I claimed in §26.0 that the performance of nonlinear optimization algorithms
actually matters. (a) List the aspects of algorithm performance that are mentioned in this
Chapter. (b) Explain why performance matters. Is speed the only aspect that matters?

26.6.2[E] Why is it difficult to predict the performance of an optimization algorithm by
analyzing it mathematically?

26.6.3[E] (a) Developers and users of optimization algorithms often conduct informal
computational experiments. Why do they do that? (b) A few of them conduct compu-
tational studies that are much more formal, careful, and difficult. Why do they do that?

26.6.4[E] What is the logical basis or fundamental assumption of computational testing?
What role do computer programs play?

26.6.5[E] List three important issues that arise in the experimental study of optimization
methods.

26.6.6[E] Explain the difference between an algorithm and a computer program that
implements the algorithm. What are invariant properties, and how can they be used to
specify an algorithm?

26.6.7[E] Explain how the algorithm definition we adopt affects the tradeoff between the
generality and the strength of the conclusions that we can draw about the algorithm from
observations of an implementation. In how much detail should an algorithm be specified for
the purposes of computational testing?

26.6.8[P] Newton descent has second-order convergence, but computing Hessians and
finding the Newton direction take a lot of work. (a) Describe experiments whose results
can be used to determine whether Newton descent is really faster than steepest descent.
(b) Present a specification of each algorithm that is appropriate to this study. (c) Carry out
your test plan and explain your findings.

26.6.9[E] How can a computational experiment be structured to minimize the effects of
(a) differences in algorithm implementation; (b) differences in algorithms?

26.6.10[E] What is convenience code, and how can it be excluded from measurements of
computational effort?

26.6.11[E] How does the reliability of an algorithm differ from its robustness?

26.6.12[E] What role do the adjustable parameters of an algorithm implementation play
in computational testing?

26.6.13[E] How should the test problems be chosen for a computational study? How should
the starting points be determined?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

880 Algorithm Performance Evaluation

26.6.14[E] What is the function of a test problem catalog? What attributes of a test
problem should be cataloged? Which are best specified in a problem definition file, and
which in a separate catalog file?

26.6.15[E] Why is it necessary to validate test problems before using them in a computa-
tional study?

26.6.16[E] Why is it important for a test problem’s bounds to be determined in an unbiased
way? What requirements should be satisfied by a problem’s catalog bounds?

26.6.17[H] Three examples are used in §26.2.2 to illustrate how limits on the x j can be
deduced from a problem statement. Use the formulas given there to compute catalog bounds
for each problem.

26.6.18[H] In §24.3.1 we used these variable bounds for problem ek1.

xH =

[

18 + 9/
√
2, 21 + 13/

√
2
] ⊤

xL =
[

18 − 9/
√
2, 21 − 13/

√
2
] ⊤

Are these the tightest bounds you can deduce from the constraints of the problem? If not,
find tighter bounds.

26.6.19[H] Suppose that a nonlinear program includes the constraints

4t3t
−1
5 + 2t

−0.71
3 t−15 + 0.0588t

−1.3
3 t7 − 1 < 0

t j > 0, j = 1 . . . 8.

Show how these inequalities can be used to establish the lower bound t5 > 2.666975697132930.

26.6.20[P] Suppose that a nonlinear program includes the constraint

e−x1 + x21 + x22 ≤ 15.

Show how this inequality can be used to establish the upper bound x2 ≤ 3.764680062617868.

26.6.21[P] Write a program that gets x⋆ for a test problem, prompts the user for each
xLj , x

H
j , and x0

j
, and then uses the appropriate formula from §26.2.2 to find catalog bounds.

(a) Use MATLAB. (b) Use FORTRAN or another compiled language of your choice.

26.6.22[H] Of the eight formulas given in §26.2.2 for computing catalog bounds, which can
produce bounds that exclude the optimal point? If that happens, how can the bounds be
adjusted to include x⋆?

26.6.23[H] The catalog entry of §28.7.2 for rb and the catalog entry of §28.7.4 for gns each
specify a starting point x0 that is not the midpoint of the catalog bounds. I did this so that
I could use the bounds to delimit the contour plots in §9.1 and §10.4 with starting points
that are not centered in those pictures. (a) Use the appropriate algorithm from §26.2.2
to construct bounds symmetric about x0 for each of these problems. (b) Use the formula
x0 = 1

2
(xL + xH) to find a starting point x0 that is centered in the catalog bounds for each

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.6 Exercises 881

of these problems. (c) To ensure fairness in computational testing we have adopted the
convention that x0 should be the midpoint of the bounds. If each of these problems is to be
used in a test program, what should be changed, its starting point or its bounds?

26.6.24[H] In explaining the idea of a restricted-steplength algorithm in §17.1 I found it
convenient to use two different starting points x̄0 = [2.5, 0.3]⊤ and x̂0 = [1, 0.6]⊤ for h35 (see
§28.7.18), neither of which is the starting point x0 = [2, 0.2]⊤ given in the original problem
statement [80, p122,401]. (a) Which starting point is the midpoint of the catalog bounds
given in §28.7.18? (b) Use the appropriate algorithm from §26.2.2 to construct bounds
symmetric about x0. (c) If this problem is to be used in a test program, what starting point
and bounds should be used?

26.6.25[E] Research articles sometimes compare algorithms by stating the number of it-
erations each used to solve a particular problem or by plotting graphs of distance error ek
versus the iterations k they used in solving the problem. (a) Explain why neither of these
comparisons is very informative. (b) What interesting algorithm property can be deduced
from a graph of ek/e0 versus k? (c) Explain how ek/e0 can be misleading when used as a
measure of solution error in comparing algorithms. (d) What is the advantage of using an
error-vs-effort curve, rather than graphs of ek/e0 versus k, in comparing algorithms?

26.6.26[H] What is the definition of combined solution error ε, and what are its desirable
properties? Why can’t it be used in studying a problem that lacks a constraint qualification?
Does it have other drawbacks?

26.6.27[E] What is the definition of LRCSE? What is the numerical value of E0, and why?

26.6.28[E] In §26.3.2 we assumed that a gradient evaluation requires about n times as
much work as a function evaluation and a Hessian evaluation requires about 1

2
n(n+ 1) times

as much. (a) What rationale was given for using these multiples? (b) What multiples would
be appropriate if central difference approximations were used to compute gradients and
Hessians?

26.6.29[E] What is a stub routine, and why might we use one?

26.6.30[E] Why is an error-vs-effort curve always a square wave?

26.6.31[P] The eaefe.m program of §26.3.2 plots an error-vs-effort curve for ea.m when
it is used to solve the ek1 problem. (a) Revise the nlpin.m routine of §21.3.1 to make it
serially reusable. Hint: this involves making the starting value of mu an input parameter
and returning its final value as mustar, and making the loop limit an input parameter kmax
rather than the fixed number 52. (b) Enlarge the eaefe.m program to also plot, on the same
set of axes, an error-vs-effort curve for nlpin.m when it is used to solve the ek1 problem.
Hint: you will need to write a stub routine ek1hefe.m to update NHE before each Hessian
evaluation. (c) Run your program and interpret the error-vs-effort curve that it produces.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

882 Algorithm Performance Evaluation

26.6.32[H] In using EFE we assume that each function value, gradient component, or Hes-
sian component takes the same amount of work. Is this true for the ek1 problem? What are
the possible sequences of function and gradient evaluations that might be performed in an
iteration of the ellipsoid algorithm when solving that problem?

26.6.33[E] When is it reasonable to assume that most of the effort required to solve a
nonlinear program is spent in evaluating functions, gradients, and Hessians? Why is this
assumption often unreasonable?

26.6.34[E] (a) What is the difference between wallclock and CPU time? How is it possible
in MATLAB to measure (b) wallclock time; (c) CPU time. (d) With what precision can
MATLAB measure CPU time on your computer?

26.6.35[E] (a) Why does the number of EFEs used by an algorithm underestimate the
effort it requires to solve a problem? (b) Why does the CPU time used by a test program
overestimate the CPU time used by the algorithm under test?

26.6.36[E] How is it possible to avoid timing convenience code? Why is this difficult to do
in practice?

26.6.37[H] The GETCYC subroutine described in §26.3.4 returns the current cycle of the
processor clock. (a) Explain how it can be used to count the clock cycles that elapse in
performing a given sequence of program statements. (b) How is it possible for a compiler to
affect this measurement? (c) If the code is executing on a processor with a clock speed of
2 GHz, what interval of time corresponds to each clock cycle? (d) Is cycle counting a good
way to measure CPU time? Explain.

26.6.38[E] Describe the advantages and drawbacks of using the following measures for
computational effort; (a) iteration count k; (b) equivalent function evaluations EFE; (c) CPU
time; (d) processor cycle count.

26.6.39[P] Random leakage of non-algorithm effort into cycle count measurements always
makes the intervals look longer than they really are. (a) Describe in detail how this noise
could be filtered out of the measurements made in eacyc.f. (b) Revise eacyc.f to implement
your plan. (c) Run the resulting test program on a machine that you are also using for other
tasks, and show that the resulting contamination of the interval measurements is effectively
removed by your filtering scheme.

26.6.40[H] By instrumenting a program we can avoid timing (or counting the cycles used
by) convenience code. Would it be useful to adopt as a definition of what the algorithm is
that “the algorithm is what gets timed”? Explain.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

26.6 Exercises 883

26.6.41[H] In the early days of mathematical programming, to permit the comparison of
effort measurements made on different computers CPU times were sometimes expressed as
multiples of a standard timing unit [28, Appendix III], the time required to invert a
certain 40× 40 matrix ten times. This turned out not to work very well [80, p368-369]. Can
you think of some possible reasons why?

26.6.42[P] The problem definition file described in §26.3.5 identifies the ek1 test problem
NGC29. (a) Write a problem definition file for the test problem NGC35. (b) (historical research)
I named the variable containing a test problem’s number NGC, for New General Catalog. In
what field of science was this acronym originally used?

26.6.43[E] Why is it advantageous to define a nonlinear programming test problem by
constructing a problem definition file for it? In the problem definition file of §26.3.5, why
are the vectors XL, XH, XSTAR, and LAMBDA dimensioned 50 elements long, independent of the
number of variables or constraints in the problem?

26.6.44[E] What is involved in making CPU time or clock cycle measurements when testing
an algorithm whose implementation (a) is not serially reusable; (b) does things other than
perform the steps of the algorithm?

26.6.45[P] Each invocation of the MATLAB function cputime() itself consumes some CPU
time, though far less than its resolution. Write a MATLAB program to measure this overhead.

26.6.46[E] Describe two measures of quality that are important for a parallel algorithm.

26.6.47[E] What parts make up a test program for experimenting with a nonlinear pro-
gramming algorithm?

26.6.48[P] Write a perfplot program that reads (effort,error) coordinates from each of
several .e files and writes two output files. One output file should contain plotting instruc-
tions for gnuplot and the other should contain the multiple data sets separated by blank
lines. An input LRCSE value of −∞ should be modified by the program so that the graph
drawn by gnuplot descends to the bottom of the frame and is marked with an arrow to
show that it is a zero-error point. The resultant scaling of the vertical axis should be such
that most of the graph is filled by the parts of the curve that have nonzero error values.

26.6.49[E] In a Unix environment, how can a repetitive command sequence be automated?

26.6.50[E] Describe one utility program that might be handy in carrying out a performance
evaluation project.

26.6.51[E] Two standard types of summary table are described in §26.5.1. What are they?

26.6.52[P] (a) What is a performance profile? (b) Write a program that reads a .e file
of (effort,error) coordinates and writes out the coordinates of a performance profile for the
lowest error level attained, as described in §26.5.2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

884 Algorithm Performance Evaluation

26.6.53[E] List some details of the computing environment that should be mentioned in
reporting the results of computational experiments with algorithms for nonlinear program-
ming. Why can only very limited claims be made about codes that are proprietary?

26.6.54[H] Occasionally an algorithm developer finds a method whose implementation
turns out to be in some way superior to a widely-respected solver. Delighted by his sur-
prising good fortune, he might gratify his ego by presenting the results in a way that places
more emphasis on the shortcomings of the other code than on the merits of his own. Explain
why this is always a bad idea, and suggest an alternative way of reporting such a discovery.

26.6.55[P] In the eaefe.m and eacpu.m programs of §26.3.3, I initialized Qk=[80,0;0,169]

for the test problem ek1. But in §24.3.1 we found from the catalog bounds for that problem
a starting ellipsoid that has

Q0 =

[

81 0

0 169

]

so the results we obtained here are not precisely what they should have been. (a) Correct
the mistake and rerun the experiments. Do the detailed observations change? Do the
conclusions change? (b) In running computational experiments and reporting their results,
how important do you think it is to avoid little mistakes of this sort? Should the discovery of
such a mistake warrant the withdrawal of a research paper that has already been published?
(c) Is the initial Qk computed correctly in the eacyc.f program of §26.3.4? What object
lesson can you draw from that?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27

pivotpivotpivot: A Simplex Algorithm Workbench

In §2.7, I introduced the pivot utility as a hypothetical program defined abstractly by the
user’s manual in §27.1. It assumes that the standard-form linear program

minimize
x∈Rn

d + c⊤x

subject to A1x = b1
A2x = b2
...
...
...

Amx = bm
x ≥ 0

is represented by the (m + 1) × (n + 1) tableau

T =

x1 x2 x3 . . . xn

−d c⊤

b A

upon which we will perform various operations. Among these operations the most important
in applying the simplex method is the pivot, which I described in §2.3 like this.

• We are given h ∈ {1 . . .m}, the index in A of the pivot row, and p ∈ {1 . . . n},
the index in A of the pivot column, specifying a pivot element ahp , 0.

• We divide the pivot row of the tableau by the pivot element. This makes
the pivot element equal to 1.

• We add multiples of the resulting pivot row to the other rows of the
tableau to get zeros elsewhere in the pivot column.

Because the simplex method involves pivots only on elements of the constraint matrix A, the
indexing scheme used in this description makes the objective row correspond to h = 0 and
the constant column correspond to p = 0. In pivoting on a computer it is more convenient
to talk about the whole tableau T rather than just its A part, so here we will index the rows
by i = h+1 and the columns by j = p+1. Then the objective is row i = 1 and the constant
column is column j = 1. We will call the number of tableau columns n = n + 1 and the
number of tableau rows m = m + 1,

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

886 pivotpivotpivot: A Simplex Algorithm Workbench

27.1 Commands

Each command of the pivot program is described on a separate page of this Section, and
the pages are arranged in alphabetical order by command name.

Each page begins with a command prototype showing the full command name in
vertical typewriter font and the command’s parameters, if it has any, in slanting type-
writer font. The initial letter or letters of the command name are capitalized to show the
minimum unambiguous abbreviation that can be entered to give the command. Pa-
rameters appearing in brackets [℄ are omitted in some forms of the command; whether or
not the parameters are used, the brackets themselves should never be included in the com-
mand. After each command prototype comes a more thorough description of the command,
including any limits on the parameter values. Then there is a session excerpt illustrating
the use of the command. At the bottom of the page there might be further information or
advice about using the command.

The help and stop commands have aliases which are described on their own pages, each
of which also lists the other names for the command.

The names that are used in the command prototypes to represent parameters should be
replaced by either numerical or character values as appropriate. The multiplier s of the
scale command is a floating-point number, as are the link cost and supply-minus-demand
values that you are prompted to enter by gnf and the tableau elements that you are prompted
to enter by insert. The examples in the table below show some acceptable ways to specify
these floating-point values.

input value represented

0 0.0

-0. 0.0

0.0 0.0

-0.e0 0.0

+6 6.0

-6.023 −6.023
6.023E23 6.023 × 1023
-0.004 −0.004
4e-3 0.004

-4.0E+02 −400.0

The examples used in the command descriptions (like most of the linear programs discussed
elsewhere in the text) have starting data that happen to be small whole numbers, but all
REAL*8 values [100, §4] conforming to the IEEE floating-point standard [84] are acceptable
to the pivot program as real-number data.

All of the command parameters that are not floating-point numbers are either integers,
which should be entered without a decimal point, or character strings, which should be
entered verbatim, without quotation marks. A zero first tableau index denotes all of the
rows, a zero second index all of the columns.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 887

Append newrows new
ols

Resize the tableau by adding newrows rows at the bottom or new
ols columns at the right,
or both.

< list

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

< append 1

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

0. 0. 0. 0. 0. 0. 0. 0.

< append 0 1

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0. 0.

80. 0. 0. 4. 4. 1. -1. 1. 0.

110. 0. 1. -1. 1. 3. 1. 0. 0.

20. 1. 0. 2. 3. -4. 2. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0.

< append 2 3

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0. 0. 0. 0. 0.

80. 0. 0. 4. 4. 1. -1. 1. 0. 0. 0. 0.

110. 0. 1. -1. 1. 3. 1. 0. 0. 0. 0. 0.

20. 1. 0. 2. 3. -4. 2. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

The resulting tableau cannot have more than 30 rows or 40 columns.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

888 pivotpivotpivot: A Simplex Algorithm Workbench

Clear [i j℄

Set the tableau, or a row of entries, or a column of entries, or a single entry, to zero.

The row index i must be in the range [0...m] and the column index j must be in the range
[0...n]. If neither i nor j is 0, the (i, j)’th element is set to 0; if i is zero, the entire j’th
column is set to zero; if j is zero, the entire i’th row is set to zero. If both i and j are zero
or omitted, the entire tableau is set to zero.

< list

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

< clear 3 5

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 0. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

< clear 2 0

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

0. 0. 0. 0. 0. 0. 0. 0.

110. 0. 1. -1. 0. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

< clear 0 6

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 0. 5. 0.

0. 0. 0. 0. 0. 0. 0. 0.

110. 0. 1. -1. 0. 0. 1. 0.

20. 1. 0. 2. 3. 0. 2. 0.

< clear

> OK to zero out the entire tableau? yes

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 889

DElete i j

Resize the tableau by removing one row or one column.

The row index i must be in the range [0...m] and the column index j must be in the
range [0...n]. Either i or j must be zero, but not both. If j is zero the entire i’th row is
removed; if i is zero the entire j’th column is removed.

< list

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

< delete 2 0

x1 x2 x3 x4 x5 x6 x7

0. 0. 0. -2. 7. 2. 5. 0.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

< delete 0 3

x1 x3 x4 x5 x6 x7

0. 0. -2. 7. 2. 5. 0.

110. 0. -1. 1. 3. 1. 0.

20. 1. 2. 3. -4. 2. 0.

Permission is asked before deleting the objective row or the constant column. The result
tableau cannot have fewer than 2 rows or 2 columns.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

890 pivotpivotpivot: A Simplex Algorithm Workbench

DIgits [d℄

Report display precision, or reset display precision to d significant digits.

If the parameter is omitted, the current display precision is reported. If a new precision d

is specified it must be in the range [1...16], or *. If * is used the precision is reset to its
default value of 8 significant digits; otherwise it is reset to d significant digits.

< list

x1 x2 x3 x4 s1 s2 s3

2290.9091 -6.8181818 0. 0. 60.909091 4.0909091 0. 27.272727

1.8182 0.3636364 0. 1. 0.818182 0.1818182 0. -0.454545

4.5455 -0.5909091 0. 0. -1.454545 -0.0454545 1. -0.636364

14.5455 0.4090909 1. 0. 0.545455 -0.0454545 0. 0.363636

< digits

> Display precision is set to 8 digits.

< digits 6

> Display precision is set to 6 digits.

< list

x1 x2 x3 x4 s1 s2 s3

2290.91 -6.81818 0. 0. 60.9091 4.09091 0. 27.2727

1.82 0.36364 0. 1. 0.8182 0.18182 0. -0.4545

4.55 -0.59091 0. 0. -1.4545 -0.04545 1. -0.6364

14.55 0.40909 1. 0. 0.5455 -0.04545 0. 0.3636

< digits 12

> Display precision is set to 12 digits.

< list

x1 x2 x3 x4 s1 s2 s3

2290.90909091 -6.81818181818 0. 0. 60.9090909091 4.09090909091 0. 27.2727272727

1.81818182 0.36363636364 0. 1. 0.8181818182 0.18181818182 0. -0.4545454545

4.54545455 -0.59090909091 0. 0. -1.4545454545 -0.04545454545 1. -0.6363636364

14.54545455 0.40909090909 1. 0. 0.5454545455 -0.04545454545 0. 0.3636363636

This command sets the maximum precision used by list. If the current display width
(defaulted to the screen width or set using margin) is too narrow to fit the tableau at the
current precision (defaulted to 8 digits or set using digits) fewer digits are used so that the
tableau fits in that width without linewraps.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 891

DUal

Replace the current tableau by a tableau corresponding to the dual of the linear program
the current tableau represents.

The current tableau must have a basis. First its basic columns are moved to the right and
its constraint rows are rearranged, if necessary, to make those columns the m × m identity
matrix. This is the tableau that is saved for restoration by the undo command. Then A,
c⊤, and b are extracted from the tableau assuming it represents the primal problem of the
standard dual pair. Finally the dual tableau is constructed using A⊤, b⊤, and c. The row
dimension m of the tableau is changed from m+1 to n+1, and the column labels are changed
to y1. . . ym,w1. . . wn. Using the command twice to find the dual of the dual returns the
starting tableau only if its identity columns were in order on the right.

< read brewery.tab

Reading the tableau...

...done.

x1 x2 x3 x4 x5 x6 x7

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< dual

y1 y2 y3 w1 w2 w3 w4

0. 160. 50. 60. 0. 0. 0. 0.

-90. -7. -1. -2. 1. 0. 0. 0.

-150. -10. -3. -4. 0. 1. 0. 0.

-60. -8. -1. -1. 0. 0. 1. 0.

-70. -12. -1. -3. 0. 0. 0. 1.

< dual;

< names x1 x2 x3 x4 s1 s2 s3

x1 x2 x3 x4 s1 s2 33

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

Here the initial tableau represents standard form for the brewery problem, the dual tableau
the standard form of its dual, and the final tableau the dual of that dual. The program
has no way of knowing that the middle tableau is a dual, so the second invocation of dual
cannot by itself supply column labels appropriate to the primal.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

892 pivotpivotpivot: A Simplex Algorithm Workbench

Every

Toggle the switch that prohibits pivots in the constant column or objective row.

The simplex algorithm never pivots in the constant column or objective row of the tableau,
so by default the program prohibits pivots there. If the program is used for other purposes it
might make sense to pivot everywhere, so every is provided to enable or disable such pivots.

< tableau 3 6

< i

T(1, 1)... = 1 2 -1 1 0 0

T(2, 1)... = 2 1 0 0 1 0

T(3, 1)... = -1 1 2 0 0 1

1. 2. -1. 1. 0. 0.

2. 1. 0. 0. 1. 0.

-1. 1. 2. 0. 0. 1.

< pivot 1 1

> Cannot pivot in the constant column.

>

< every

> Pivots will be allowed everywhere.

< pivot 1 1

1. 2. -1. 1. 0. 0.

0. -3. 2. -2. 1. 0.

0. 3. 1. 1. 0. 1.

< pivot 2 2

1. 0. 0.3333333 -0.3333333 0.6666667 0.

0. 1. -0.6666667 0.6666667 -0.3333333 0.

0. 0. 3.0000000 -1.0000000 1.0000000 1.

< pivot 3 3

1. 0. 0. -.22222222 0.55555556 -.11111111

0. 1. 0. 0.44444444 -.11111111 0.22222222

0. 0. 1. -.33333333 0.33333333 0.33333333

Here pivot is used to invert a matrix by appending the identity and pivoting to make the
original matrix columns the identity columns (see [20, p280-281]).





1 2 −1
2 1 0

−1 1 2





−1

=





− 2
9

5
9
−1

9

4
9
−1

9
2
9

− 3
9

3
9

3
9





=





−0.22̄ 0.55̄ −0.11̄
0.44̄ −0.11̄ 0.22̄

−0.33̄ 0.33̄ 0.33̄





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 893

Gnf links nodes

Prompt for the data of a general network flow problem and construct the associated simplex
tableau.

The session below illustrates the use of gnf to construct a simplex tableau for the general
network flow problem pictured at the right. In doing this the program follows the sign
conventions of §6.0.

< gnf 4 4

link from-node to-node cost

---- --------- ------- ----

A 2 1 2

B 1 4 5

C 2 4 10

D 4 3 6

node supply-demand

---- -------------

1 25

2 5

3 -10

4 -20

x21 x14 x24 x43

0. 2. 5. 10. 6.

-25. 1. -1. 0. 0.

-5. -1. 0. -1. 0.

10. 0. 0. 0. 1.

20. 0. 1. 1. -1.

< solve

x21 x14 x24 x43

-220. 0. 0. 3. 0.

5. 1. 0. 1. 0.

30. 0. 1. 1. 0.

10. 0. 0. 0. 1.

0. 0. 0. 0. 0.

+25 1

A

2

+5 2

3 −10

D

6

4 −20

B

5

C
10

After constructing the simplex tableau I used solve to obtain the optimal shipping schedule
x21 = 5, x14 = 30, x24 = 0, and x43 = 10.

At any input prompt, insertion can be interrupted by replying with the end-of-file signal
“control-D,” which appears on the screen as ^D but is produced by holding down the cntl

key while pressing the d key. This causes the network problem to be abandoned, and the
current tableau is left unchanged.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

894 pivotpivotpivot: A Simplex Algorithm Workbench

Help [
ommand℄

alias: ?

If no parameter is given, list the commands; otherwise display the lines in the file pivot.help
describing the given command.

< help

> commands: STOP QUIT HELP ?

> commands: TABLEAU NAMES INSERT LIST APPEND DELETE SWAP

> EVERY PIVOT CLEAR WRITE READ UNDO MARGIN RATIOS

> GNF DIGITS SOLVE UNSOLVE SCALE ITERS DUAL

>

< help help

> Help [command]

> if no parameter is given, list the commands

> otherwise copy help file lines describing the given command

> [] denote optional parameters and should not be typed

> capital letters give minimum unambiguous abbreviation

> input lines beginning * are ignored as comments

> alias: ?

>

< help pivot

> Pivot i j

> pivots on tableau element (i,j)

> i must be an integer in the range 1...m

> j must be an integer in the range 1...n

> if a pivot on element (i,j) would cause an overflow, an

> error message is written and the pivot is not performed

> to pivot in column 1 or row 1, issue the Every command first

> the new tableau is listed after each pivot

>

The built-in help is meant to jog the user’s memory rather than to take the place of this
manual. In addition to telling how to use the help command, help help provides some
general advice about how to interact with the program. To explain a command, help just
copies lines from the file pivot.help (see §27.2).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 895

INsert [i j℄

Prompt for and read tableau element values.

The row index i must be in the range [0...m] and the column index j must be in the range
[0...n]. If neither i nor j is zero, the (i,j)’th element is read; if i is zero, the entire j’th
column is read; if j is zero, the entire i’th row is read; if both i and j are zero, or omitted,
the entire tableau is read row by row.

< t 4 8

< insert

T(1, 1)... = 0 0 0 -2 7 2 5 0 80 0 0 4 4 1

T(2, 7)... = -1 1

T(3, 1)... = 110 0 1 -1 1 3 1 0

T(4, 1)... = 20 1 0 2 3

T(4, 6) = ^D

> insertion interrupted

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. 0. 0. 0.

< in 0 6

(6)

(1) 2

(2) 1

(3) 3

(4) -4

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 0. 0.

< in 4 7

T(4, 7) = 2

0. 0. 0. -2. 7. 2. 5. 0.

80. 0. 0. 4. 4. 1. -1. 1.

110. 0. 1. -1. 1. 3. 1. 0.

20. 1. 0. 2. 3. -4. 2. 0.

The example shows that insertion can be interrupted by replying to the prompt with the
end-of-file signal “control-D,” which appears on the screen as ^D but is produced by holding
down the cntl key while pressing the d key.

If a tableau element you enter is not recognized as a number, your computer will signal
the error by beeping if it can.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

896 pivotpivotpivot: A Simplex Algorithm Workbench

ITers [kmax [kprint℄℄

Report or set options for the solve command.

Sometimes (as in studying degenerate problems) it is useful to limit the number of phase-2
pivots performed by the solve command in solving each phase-1 subproblem and in finding a
final form. Without parameters iters reports the current limit kmax. If a new value of kmax
is specified, it must be a positive integer. If a tableau has been defined, this routine also
reports the theoretical maximum number of iterations required by the simplex algorithm
for the given n and m. If that number is greater than the largest INTEGER*4, the largest
INTEGER*4 is printed for comparison; if it is less then the value set for kmax can be no larger
than the theoretical maximum. When the pivot program starts it sets kmax=60.

Sometimes it is interesting to know the pivot positions chosen by solve, though it is
seldom desirable to let this output fill the screen. Without parameters this command reports
the current limit kprint on pivot positions to be reported. If a new value of kprint is
specified it must be a nonnegative integer no larger than kmax. When the pivot program
starts it sets kprint=0 so that no pivot positions are reported.

In the session excerpted below, solve attempts the solution of a problem that cycles, so
convergence is never achieved. After the initial pivots at (2,2), (3,3), (4,4) the sequence
(2,5) (3,6) (2,7) (3,8) (2,2) (3,3) repeats until the iteration limit is met.

< read cycle.tab;

Reading the tableau...

...done.

< iters 300 12

> n!/(n-m)! possible bases: 210

> SOLVE iteration limit: 60

> now reset to: 210

> SOLVE reporting limit: 0

> now reset to: 12

>

< solve;

> pivoting at (2, 2)

> pivoting at (3, 3)

> pivoting at (4, 4)

> pivoting at (2, 5)

> pivoting at (3, 6)

> pivoting at (2, 7)

> pivoting at (3, 8)

> pivoting at (2, 2)

> pivoting at (3, 3)

> pivoting at (2, 5)

> pivoting at (3, 6)

> pivoting at (2, 7)

> pivot limit of 210 met

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 897

List [i j℄

Print tableau element values on the screen.

The row index i must be in the range [0...m] and the column index j must be in the range
[0...n]. If neither i nor j is zero, the (i,j)’th element is printed; if i is zero, the entire
j’th column is printed; if j is zero, the entire i’th row is printed; if both i and j are zero,
or omitted, the entire tableau is printed.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< list 0 3

x2

-150.

10.

3.

4.

< list 3 0

x1 x2 x3 x4 s1 s2 s3

50. 1. 3. 1. 1. 0. 1. 0.

< list 3 3

0.300000000000000D+01

A single element is printed with full precision. Otherwise the program tries to display only
as many digits as necessary, never more than the number set using digits, and never so
many that the lines of the tableau wrap in the display width set by margin.

Sometimes the result of a floating-point calculation is a very small number that is not
exactly zero. If a tableau entry is not exactly zero but is less than 10−6 times the largest
entry in the tableau, it is displayed as +0 or -0 to show its sign.

If the requested output cannot be made to fit when displayed in tableau form but the
display width is set to 75 or greater, the rows are printed at full REAL*8 precision, 3 values
to a line. If the display width is less than 75, the elements are printed at full precision in a
single column.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

898 pivotpivotpivot: A Simplex Algorithm Workbench

Margin [w℄

Report or set the display width used by list.

If w is omitted or zero, report the assumed display width. If w is greater than zero, reset
the assumed display width to w characters. If w is *, reset the assumed display width to the
actual screen width.

< digits 12

> Display precision is set to 12 digits.

< margin *

> Resetting display width to starting screen size of 114 columns.

< list

x1 x2 x3 x4 s1 s2 s3

2290.90909091 -6.81818181818 0. 0. 60.9090909091 4.09090909091 0. 27.2727272727

1.81818182 0.36363636364 0. 1. 0.8181818182 0.18181818182 0. -0.4545454545

4.54545455 -0.59090909091 0. 0. -1.4545454545 -0.04545454545 1. -0.6363636364

14.54545455 0.40909090909 1. 0. 0.5454545455 -0.04545454545 0. 0.3636363636

< margin 75

> Resetting display width to 75 columns.

< list

x1 x2 x3 x4 s1 s2 s3

2290.90909 -6.81818182 0. 0. 60.90909091 4.0909090909 0. 27.27272727

1.81818 0.36363636 0. 1. 0.81818182 0.1818181818 0. -0.45454545

4.54545 -0.59090909 0. 0. -1.45454545 -0.0454545455 1. -0.63636364

14.54545 0.40909091 1. 0. 0.54545455 -0.0454545455 0. 0.36363636

No tableau with n columns can be printed in less than 4n characters, so if you set a margin
narrower than that margin writes a warning. A margin of 4n characters is enough only if
each entry is in the interval (1

10
, 10) so a margin that does not elicit the warning still might

not be wide enough to allow printing the tableau with one row on each output line.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 899

Names [x1 x2 x3 ... ℄

Set or unset tableau column labels.

If no parameter is given, this command resets the tableau column labels to blank. If labels
are given they are used by list in displaying the tableau.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< names porter stout lager ipa

por sto lag ipa

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< names

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

Column labels may be 1, 2, or 3 characters wide; if a wider label is given only its first 3
characters are used. If more labels are given than there are variable columns in the tableau,
the trailing extra labels are ignored. The program does not provide any way to label the
constant column or the rows of the tableau.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

900 pivotpivotpivot: A Simplex Algorithm Workbench

Pivot i j

Pivot on tableau element (i,j).

The row index i must be in the range [1...m] and the column index j must be in the
range [1...n]. If element (i, j) is zero or small enough that pivoting there would cause an
overflow, an error message is written and the pivot is not performed; otherwise the pivot is
performed on the whole tableau. The new tableau is listed after each pivot.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< pivot 4 6

> Cannot pivot on a zero element.

>

< pivot 4 3

x1 x2 x3 x4 s1 s2 s3

2250. -15.0 0. -22.50 42.50 0. 0. 37.50

10. 2.0 0. 5.50 4.50 1. 0. -2.50

5. -0.5 0. 0.25 -1.25 0. 1. -0.75

15. 0.5 1. 0.25 0.75 0. 0. 0.25

< p 2 4

x1 x2 x3 x4 s1 s2 s3

2290.9091 -6.8181818 0. 0. 60.909091 4.0909091 0. 27.272727

1.8182 0.3636364 0. 1. 0.818182 0.1818182 0. -0.454545

4.5455 -0.5909091 0. 0. -1.454545 -0.0454545 1. -0.636364

14.5455 0.4090909 1. 0. 0.545455 -0.0454545 0. 0.363636

To pivot in column 1 or row 1, issue the Every command first.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 901

Quit

Stop the program, returning control to the operating system.

aliases: STop, ^D

> This is PIVOT, Unix version 4.4

> For a list of commands, enter HELP.

>

< quit

> STOP

In this example the user did no work, but the program quits the same way, without asking
for confirmation, even if you have done hours of work and stand to lose some precious result
by stopping the program. You can save the current tableau for future use by issuing a write

command before you quit.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

902 pivotpivotpivot: A Simplex Algorithm Workbench

RAtios i j

Report row or column ratios.

The row index i must be in the range [0...m] and the column index j must be in the range
[0...n]. Either i or j must be zero, but not both.

If i is zero, report the row ratios

Tk,1

Tk, j

, k = 1. . .m + 1.

If j is zero, report the column ratios

T1,k

Ti,k

, k = 1. . . n + 1.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< ratios 0 5

row ratio

1 -0.000000E+00

2 1.333333E+01

3 5.000000E+01

4 2.000000E+01

< ratios 3 0

col ratio

1 0.000000E+00

2 -9.000000E+01

3 -5.000000E+01

4 -6.000000E+01

5 -7.000000E+01

6 NaN

7 0.000000E+00

8 NaN

The command ratios 0 5 finds the row ratios for column 5 (the x4 column), which are
0
−70 ,

160
12
, 50

1
, and 60

3
. The command ratios 3 0 finds the column ratios for row 3 (the

second constraint row), which are 0
50
, −90

1
, −150

3
, −60

1
, −70

1
, 0

0
, 0

1
, and 0

0
. The divisions of zero

by zero yield the bit pattern for “not a number” as specified in the IEEE standard for
floating-point arithmetic (see [100, §4.3] and §28.3.3), which prints as NaN.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 903

REad filename

Read a new tableau from a specified file.

This command prompts for the name of a text file, opens the file, and reads the description
of a new tableau. The format of the file is illustrated by this example.

brewery problem

4 8

x1 x2 x3 x4 s1 s2 s3

0 -90 -150 -60 -70 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

The first line of this file is a comment and is ignored by the program. You can use comments
wherever you like; the first # or * on a line, and any text to its right, are ignored. The second
line says that the tableau has 4 rows and 8 columns. The third line says that the variable
columns (the rightmost 7 columns) have labels x1, x2, x3, x4, s1, s2, and s3. The last 4
lines of the file contain the tableau elements.

If you don’t want to specify any column labels, leave the second line blank (but don’t
leave it out). The row and column counts must be integers, but the tableau elements are
read in free format so any reasonable way of stating the values is acceptable (1.5E2 would
be as good as 150). In this example the numbers are neatly spaced so that it is easy to read
the tableau when looking in the file with an editor, but extra blanks are ignored in reading
the data so the spacing within a line does not matter to the program.

< read brewery.tab

> OK to abandon the previous tableau? yes

Reading the tableau...

...done.

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

If the input file does not exist or cannot be read, an error message is written and the previous
tableau is restored. If the input file is in a different directory you can give its full path name
(but the read command, including the file name, cannot be more than 80 characters long).
I have adopted the convention of giving tableau files a .tab extension, but the program does
not care how you name the file.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

904 pivotpivotpivot: A Simplex Algorithm Workbench

SCale i j s

The row index i must be in the range [0...m] and the column index j must be in the
range [0...n]; the scale factor s can be any floating-point value. If neither i nor j is
zero, the (i,j)’th tableau element is multiplied by the scale factor s. If i is zero, the entire
j’th column is scaled; if j is zero, the entire i’th row is scaled; if i and j are both zero or
omitted, the entire tableau is scaled.

< list

x1 x2 x3 x4 x5 x6 x7

0. -8. 6. 2. 0. -7. 5. 0.

-1. 0. -3. 0. 8. 6. -4. 3.

-2. -9. 7. 0. -5. 0. 0. -9.

3. -6. 0. 1. -7. 4. -6. 5.

4. 9. -5. 0. 0. 3. 9. 4.

1. 0. -1. 0. 3. 9. 5. -2.

< scale 2 0 -1

x1 x2 x3 x4 x5 x6 x7

0. -8. 6. 2. 0. -7. 5. 0.

1. 0. 3. 0. -8. -6. 4. -3.

-2. -9. 7. 0. -5. 0. 0. -9.

3. -6. 0. 1. -7. 4. -6. 5.

4. 9. -5. 0. 0. 3. 9. 4.

1. 0. -1. 0. 3. 9. 5. -2.

< scale 0 0 3.14159

x1 x2 x3 x4 x5 x6 x7

0.000000 -25.132720 18.849540 6.28318 0.000000 -21.991130 15.707950 0.000000

3.141590 0.000000 9.424770 0.00000 -25.132720 -18.849540 12.566360 -9.424770

-6.283180 -28.274310 21.991130 0.00000 -15.707950 0.000000 0.000000 -28.274310

9.424770 -18.849540 0.000000 3.14159 -21.991130 12.566360 -18.849540 15.707950

12.566360 28.274310 -15.707950 0.00000 0.000000 9.424770 28.274310 12.566360

3.141590 0.000000 -3.141590 0.00000 9.424770 28.274310 15.707950 -6.283180

First the second row of the tableau is multiplied through by −1, then the entire tableau is
multiplied by an approximation of π. If the scale factor s is zero, the clear command is
used to zero out the specified tableau elements.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 905

SOlve [filename℄

Use the simplex algorithm to pivot the current tableau, or the tableau specified in the file
filename, to a final form. If a tableau file is specified, it must conform to the format
described in the manual page for REad.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< solve

x1 x2 x3 x4 s1 s2 s3

2325.0 0. 0. 18.750 76.250 7.50 0. 18.750

5.0 1. 0. 2.750 2.250 0.50 0. -1.250

12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875

7.5 0. 0. 1.625 -0.125 0.25 1. -1.375

< solve brewery.tab

x1 x2 x3 x4 s1 s2 s3

2325.0 0. 0. 18.750 76.250 7.50 0. 18.750

5.0 1. 0. 2.750 2.250 0.50 0. -1.250

12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875

7.5 0. 0. 1.625 -0.125 0.25 1. -1.375

The first tableau is the same as T0 in §2.2 and the others are (except for a row permutation)
the same as T3c in §2.4.3.

The iters command can be used to change the limit on phase-2 pivots performed by
solve from its default value of 60 and to make it display the pivot positions that it uses. If
solve reaches its iteration limit without finding a final form (see §2.5) a message is written.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

906 pivotpivotpivot: A Simplex Algorithm Workbench

STop

Stop the program.

aliases: Quit, ^D

This command stops the program and returns control to the operating system.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< pivot 2 2

x1 x2 x3 x4 s1 s2 s3

2057.1429 0. -21.428571 42.857143 84.285714 12.857143 0. 0.

22.8571 1. 1.428571 1.142857 1.714286 0.142857 0. 0.

27.1429 0. 1.571429 -0.142857 -0.714286 -0.142857 1. 0.

14.2857 0. 1.142857 -1.285714 -0.428571 -0.285714 0. 1.

< stop

> STOP

unix[123]

If you want to save the current tableau so that you can resume working with it in a subsequent
session, use the write command before stop.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 907

SWap r1 r2 [
1
2℄

Exchange tableau row r1 with row r2 and/or tableau column
1 with column
2.

If only columns are to be exchanged, make r1 and r2 both zero; if only rows are to be
exchanged, omit
1 and
2 or make them both zero.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< swap 2 3

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

160. 7. 10. 8. 12. 1. 0. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< swap 0 0 3 4

x1 x3 x2 x4 s1 s2 s3

0. -90. -60. -150. -70. 0. 0. 0.

50. 1. 1. 3. 1. 0. 1. 0.

160. 7. 8. 10. 12. 1. 0. 0.

60. 2. 1. 4. 3. 0. 0. 1.

< swap 2 4 2 8

s3 x3 x2 x4 s1 s2 x1

0. 0. -60. -150. -70. 0. 0. -90.

60. 1. 1. 4. 3. 0. 0. 2.

160. 0. 8. 10. 12. 1. 0. 7.

50. 0. 1. 3. 1. 0. 1. 1.

When columns are swapped their labels are swapped too. Permission is asked before swap-
ping the objective row or the constant column.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

908 pivotpivotpivot: A Simplex Algorithm Workbench

Tableau m n

Define a new tableau having m rows and n columns. The number of rows m must be in the
range [2...30] and the number of columns n must be in the range [2...40]. All of the
entries in the new tableau are set to zero.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< tableau 3 4

> OK to abandon the previous tableau? yes

< list

0. 0. 0. 0.

0. 0. 0. 0.

0. 0. 0. 0.

< tableau 2 3

< list

0. 0. 0.

0. 0. 0.

Permission is asked before replacing a previous tableau, unless the previous tableau is all
zeros. Because a new tableau is all zeros it is seldom useful to see it, so tableau does not list
it. The limits of 30 rows and 40 columns are sufficient to define tableaus that are practical
to manipulate by hand or likely to be encountered in a course based on §1-§7 of this text.
Larger problems should be studied using production linear programming software.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 909

UNDo

Restore the tableau to its most recent previous state.

Before any operation that changes the numerical entries in the current tableau, it is saved
as the “previous” tableau, unless it is all zeros. The undo command exchanges the current
tableau for the previous tableau.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< pivot 3 5

x1 x2 x3 x4 s1 s2 s3

3500. -20. 60. 10. 0. 0. 70. 0.

-440. -5. -26. -4. 0. 1. -12. 0.

50. 1. 3. 1. 1. 0. 1. 0.

-90. -1. -5. -2. 0. 0. -3. 1.

< undo

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< undo

x1 x2 x3 x4 s1 s2 s3

3500. -20. 60. 10. 0. 0. 70. 0.

-440. -5. -26. -4. 0. 1. -12. 0.

50. 1. 3. 1. 1. 0. 1. 0.

-90. -1. -5. -2. 0. 0. -3. 1.

The undo command goes back one step, even if the operation being undone changed the
tableau very little (for example, if insert was used to change one element). Two consecutive
undo commands restore the tableau to what it was before the first undo, so this command
can undo only a single command. Undo can exactly reverse the effect of solve, while unsolve
might not.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

910 pivotpivotpivot: A Simplex Algorithm Workbench

UNSolve

Restore the tableau to a maximally suboptimal state.

A sequence of minimum-ratio pivots is performed, each in the column having the most
positive cost entry, until all of the cost entries are nonpositive.

< list

x1 x2 x3 x4 s1 s2 s3

0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

50. 1. 3. 1. 1. 0. 1. 0.

60. 2. 4. 1. 3. 0. 0. 1.

< solve

x1 x2 x3 x4 s1 s2 s3

2325.0 0. 0. 18.750 76.250 7.50 0. 18.750

5.0 1. 0. 2.750 2.250 0.50 0. -1.250

12.5 0. 1. -1.125 -0.375 -0.25 0. 0.875

7.5 0. 0. 1.625 -0.125 0.25 1. -1.375

< unsolve

x1 x2 x3 x4 s1 s2 s3

-0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.

60. 2. 4. 1. 3. 0. 0. 1.

50. 1. 3. 1. 1. 0. 1. 0.

If the starting tableau has some cost coefficients positive, as it will if it is in optimal form,
this command finds a tableau from which the simplex method might have started. That
tableau is not unique, so solve followed by unsolve does not necessarily yield the original
tableau (as in this example, where the final tableau has its rows permuted from the original).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.1 Commands 911

Write filename

Save a description of the current tableau in filename.

< list

x1 x2 s1 s2

0. 1. 1. 0. 0.

0. -1. 1. 1. 0.

-2. -1. -1. 0. 1.

< solve

x1 x2 s1 s2

-2. 0. 0. 0.0 1.0

1. 1. 0. -0.5 -0.5

1. 0. 1. 0.5 -0.5

< write mulopt.tab

Writing the tableau...

...done.

< read mulopt.tab

> OK to abandon the previous tableau? yes

Reading the tableau...

...done.

x1 x2 s1 s2

-2. 0. 0. 0.0 1.0

1. 1. 0. -0.5 -0.5

1. 0. 1. 0.5 -0.5

The file mulopt.tab, written and then read in the example, is listed below.

3 5

x1 x2 s1 s2

-2.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00 0.0000000000000000D+00 1.0000000000000000D+00

1.0000000000000000D+00 1.0000000000000000D+00 0.0000000000000000D+00 -5.0000000000000000D-01 -5.0000000000000000D-01

1.0000000000000000D+00 -0.0000000000000000D+00 1.0000000000000000D+00 5.0000000000000000D-01 -5.0000000000000000D-01

The first line says that the tableau has 3 rows and 5 columns. The second line says that
the variable columns have labels x1, x2, s1, and s2. The last 3 lines of the file contain the
tableau elements; because they are written at full precision, these lines and the labels line
are 24n characters long.

If the tableau has no column labels, write makes the second line of the file a blank line. If
the output file already exists, write asks permission before overwriting it. If the output file
is in a different directory you can give its full path name (but the write command, including
the file name, cannot be more than 80 characters long). I have adopted the convention of
giving tableau files a .tab extension, but the program does not care how you name the file.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

912 pivotpivotpivot: A Simplex Algorithm Workbench

? [
ommand℄

alias: help

If no parameter is given, list the commands; otherwise display the lines in the file pivot.help
describing the given command.

< ?

> commands: STOP QUIT HELP ?

> commands: TABLEAU NAMES INSERT LIST APPEND DELETE SWAP

> EVERY PIVOT CLEAR WRITE READ UNDO MARGIN RATIOS

> GNF DIGITS SOLVE UNSOLVE SCALE ITERS DUAL

>

< ? ?

? [command]

if no parameter is given, list the commands

otherwise copy help file lines describing the given command

[] denote optional parameters and should not be typed

capital letters give minimum unambiguous abbreviation

input lines beginning * are ignored as comments

alias: Help

>

< ? pivot

> Pivot i j

> pivots on tableau element (i,j)

> i must be an integer in the range 1...m

> j must be an integer in the range 1...n

> if a pivot on element (i,j) would cause an overflow, an

> error message is written and the pivot is not performed

> to pivot in column 1 or row 1, issue the Every command first

> the new tableau is listed after each pivot

>

The built-in help is meant to jog the user’s memory rather than to take the place of this
manual. In addition to telling how to use the ? command, ? ? provides some general advice
about how to interact with the program.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.2.1 Building the Executable 913

27.2 Installing the pivotpivotpivot Program

It is easy to perform one pivot on a small tableau by hand, but pivoting repeatedly or in
a large tableau is tedious and error-prone so it is very helpful to have a computer do the
arithmetic. I mentioned in §2.7 having written an implementation of the utility described in
the previous Section, and here when I refer to “the pivot program” I will mean that actual
code rather than the abstraction. This Section tells how you can download the actual code
and install it on your computer.

The pivot program is designed to be used in a Unix terminal window, so first you
will need access a computer that runs some version of the Unix operating system. If your
computer runs the Windows operating system you can install the cygwin Unix emulator as
an application. If your computer is an Apple running the Mac OS-X operating system you
can open a terminal window to get the command-line interface required for pivot. A third
possibility is to use a personal computer on which Linux is installed as the only operating
system, or as a virtual machine under Windows, or as an alternative to Windows that you
select when you boot the computer. Extensive tutorial information about Unix is available
on the web, and excellent introductory textbooks are published inexpensively by O’Reilly
(www.ora.com), but once the pivot program is installed most of its features can be used
without knowing anything about Unix.

The pivot program is written in Classical FORTRAN [100] and distributed as source code,
so on your Unix machine you will need to use a suitable compiler such as gfortran to build
an executable.

At the time you install cygwin or Linux it is possible to specify that gfortran be included.
To install a FORTRAN compiler on an Apple computer you can open a Unix terminal window,
install Homebrew, and then enter brew gcc to install Xcode, the command line tools, gcc,
and gfortran. These instructions are necessarily somewhat vague because the technical
details change from one platform to another and from moment to moment; if you need help
consult relevant web pages or an experienced colleague.

27.2.1 Building the Executable

During the five years that this book was
in preparation, the pivot program went
through several versions so that bugs could
be fixed and new features added in response
to feedback from users (this is evident from
the different version numbers appearing in
pivot sessions throughout the book). The
version described here has the attributes
listed in the table to the right.

version number 4.4

release date 24 Jul 18

source code pivot44.f
application-specific routines 33

general-purpose routines 29

non-comment lines 2864

comment lines 2964

file size in bytes 173412

executable program pivot44

file size in bytes 275743

virtual memory size in bytes 4120576

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

914 Running the pivotpivotpivot Program

A single file pivot44.f containing a concatenation of all the source routines can be down-
loaded free from the publisher’s web site and compiled using this Unix command.

gfortran -fno-automatic -fno-range-check -o pivot44 pivot44.f

In OS-X and Linux this produces an executable named pivot44; in cygwin the executable
is named pivot44.exe instead.

27.2.2 Other Files

You should consider also downloading a few other files from the publisher’s web site.
The pivot.help file, if it is present in your home directory, is used by the pivot program’s

help command to explain the program’s other commands.
The file named .bashrc, if it is present in your home directory, is used by Unix to put

the current directory in your path to executables and to export window dimensions as shell
variables that can be used by the pivot program in formatting its output. Having this file
will make your interactions with Unix and the pivot program slightly more graceful. If you
have already customized your .bashrc file you can modify it rather than replacing it.

The pivotprint shell script described in §27.3.3 can be used to simplify capturing your
conversation with the pivot program for printing or inclusion in a document. To use it you
must also install, by compiling from source, the utility program fixscript that it invokes.

27.3 Running the pivotpivotpivot Program

Once you have installed the pivot program on your computer, you can invoke it in a Unix
or cygwin terminal window by entering its name at the Unix command prompt and then
pressing enter.

unix[1] pivot
> This is PIVOT, Unix version 4.4
> For a list of commands, enter HELP.
>
<

In this example unix[1] is the Unix command prompt; the precise appearance of the com-
mand prompt might be different on your computer. If your current directory is not in your
path to executables, you might need to type ./pivot instead of pivot, to tell Unix that the
program is in this directory. When the program starts, it writes the greeting shown above to
tell you the version number and to remind you that you can find out about the commands
by using help (as described in §27.3.2 below).

27.3.1 Using the Command-Line Interface

The pivot program makes no use of the mouse or of the function keys on your computer;
you interact with the program by entering commands and responding to prompts.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.3.2 Using the Built-In Help 915

The program writes output on your screen in the Unix window. When it is ready for you to
enter a command, the prefix character appearing in the first column of the display changes
to the pivotpivotpivot command prompt <. Messages that are printed by the program are prefixed
by >, so when you look at the printout of a session you can tell what you typed and what the
program typed. Some outputs of the program, such as the current tableau that is written
by list, have no prefix character.

If you type a command the program doesn’t recognize, it will tell you and prompt for
another command.

< hello
> Ignored; unknown command.
<

You cannot damage the program or your computer by typing a wrong command. You can
put extra spaces at the beginning of a command if you like. The total length of a command
line, including any leading blanks, can’t be more than 80 characters. If you enter a * or #, it
and anything to its right are ignored by the program, so you can type comments to annotate
your session. You can insert blank lines by just pressing return at the pivot command
prompt. Entering an exclamation point ! repeats the previous command.

< * this is a comment
< quit # this is also a comment
> STOP
unix[2]

If a command normally prints the resulting tableau, you can suppress that output by ap-
pending ; to the command.

< pivot 2 3;
<

To stop the program enter quit or stop, or send the end-of-file signal “control-D,” which
appears on the screen as ^D but is produced by holding down the cntl key while pressing
the d key. Stopping the program discards any work you did and returns you to the Unix
command prompt. If you run the program again it will not remember that you ran it before.

27.3.2 Using the Built-In Help

A command that is often useful to beginning users is help. If entered without a parameter,
it produces a list of the command names.

< help
> commands: STOP QUIT HELP ?
> commands: TABLEAU NAMES INSERT LIST APPEND DELETE SWAP
> EVERY PIVOT CLEAR WRITE READ UNDO MARGIN RATIOS
> GNF DIGITS SOLVE UNSOLVE SCALE ITERS DUAL
>
<

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

916 Running the pivotpivotpivot Program

You can get a brief synopsis of a particular command once you know its name.

< help tableau
> Tableau m n
> defines a new tableau with m rows and n columns
> m must be an integer in the range 1...30
> n must be an integer in the range 1...40
> the new tableau is set to all zeros
>
<

The response gives a command prototype, tells what the command does, and provides
the minimum information you need to use the command. Here the command prototype
Tableau m n shows by the capitalization of its first letter that the shortest abbreviation you
can use for the command is the single letter t or T (the case of commands does not matter).
It also shows that the command requires two numerical parameters m and n, in that order.
The description explains what the parameters mean and what the command does. The help
command is meant only to jog your memory; for complete information about a command you
should consult the appropriate page in §27.1 of this manual (or examine the source code).

27.3.3 Printing the Screen

Students often want to print their interactions with the pivot program on paper or save
them in a file for inclusion in a document.

One way to capture the dialog is to cut it from the terminal screen after you have run
the program and paste the text into a file using an editor such as vi or Notepad. To use
cut-and-paste in cygwin you must be running the X-windows version, so select that version
when you start. In a real Unix environment you can use lpr to print the file, but in cygwin

you must use the print function of Notepad.
A more convenient way of capturing the dialog is to use the Unix script utility to

make a typescript of your terminal session (man script will show you all of its options).
Typing script -c pivot at the Unix command prompt will run the pivot program as
usual, but when you stop the program you will find that script has generated a new file
named typescript containing a transcript of your session. You can print typescript by
using lpr in Unix or by using Notepad in cygwin.

The script command includes in the typescript file everything that is input or output,
including linefeeds and backspaces. Before you can include the file in a document these
unprintable characters must be removed. You can clean up the typescript file by hand
using an editor, or use the fixscript program to do it. Typing

fixscript < typescript > session

at the Unix command prompt will generate a laundered version of typescript in session.
The shell script pivotprint, which is listed at the top of the next page, runs pivot under
the control of script and invokes fixscript on the output to produce a session file.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.4 Exercises 917

#! /bin/sh
pivotprint: run pivot, capturing the conversation in "session"

rm -f typescript
script -c pivot
rm -f session
fixscript < typescript > session
rm -f typescript
exit 0

In the terminal session below, I used pivotprint to run the pivot program and capture its
output (here all I did in pivot was issue the help command). Then I used the Unix more

program to copy the contents of the file session to the screen.

unix[3] pivotprint
Script started, file is typescript
> This is PIVOT, Unix version 4.0
> For a list of commands, enter HELP.
>
< help
> commands: STOP QUIT HELP ?
> commands: TABLEAU NAMES INSERT LIST APPEND DELETE SWAP
> EVERY PIVOT CLEAR WRITE READ UNDO MARGIN RATIOS
> GNF DIGITS SOLVE UNSOLVE SCALE ITERS DUAL
>
< quit
> STOP
Script done, file is typescript
unix[4] more session
Script started on Fri 29 May 2015 11:20:50 AM EDT
> This is PIVOT, Unix version 4.0
> For a list of commands, enter HELP.
>
< help
> commands: STOP QUIT HELP ?
> commands: TABLEAU NAMES INSERT LIST APPEND DELETE SWAP
> EVERY PIVOT CLEAR WRITE READ UNDO MARGIN RATIOS
> GNF DIGITS SOLVE UNSOLVE SCALE ITERS DUAL
>
< quit
> STOP

Script done on Fri 29 May 2015 11:20:53 AM EDT

27.4 Exercises

27.4.1[E] Can the pivot sessions that are shown throughout this book be understood
without installing and using the pivot program as described in §27.2? Explain.

27.4.2[E] The pivot utility described in §27.1 and the implementation described in §27.2
use m and n for the dimensions of the tableau and i and j for the indices of elements in
the tableau. How are these variables related to m, the number of constraints in the linear
program, n, the number of variables, h, the row index of an element in A, and p, the column
index of an element in A?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

918 pivotpivotpivot: A Simplex Algorithm Workbench

27.4.3[E] Where in this Chapter can you find a description of the digits command?
Describe the structure of its manual page.

27.4.4[E] In the manual of §27.1, some command prototypes show parameters enclosed in
square brackets. What does this indicate? In typing such a command at the pivot command
prompt, should the brackets be included?

27.4.5[E] Of what use is a command’s minimum unambiguous abbreviation? Which com-
mands of the pivot program have aliases?

27.4.6[E] In using pivot, instructions to the program and data about the problem under
study are provided by means of command parameters and responses to prompts. Which of
the command parameters and prompt responses accepted by the program are (a) floating-
point numbers; (b) integer numbers; (c) character strings? (d) When supplying a character-
string parameter to the program, should you enclose the string in single ‘’ or double ""

quotes? Explain.

27.4.7[H] Which commands of the pivot program require a tableau already to have been
defined?

27.4.8[P] Why does the command delete 1 2 elicit an error message from pivot?
What is the message?

27.4.9[E] In the pivot command di 5 what does the 5 mean?

27.4.10[E] If the command help list fails to elicit a description of the list command,
what might be the reason?

27.4.11[E] How can you limit the number of iterations that pivot performs in solving a
linear program? How can you find out what pivot positions the solve command chooses?

27.4.12[E] What is the effect of sending ^D in response to a prompt for tableau elements
from the insert command?

27.4.13[E] If a tableau element is printed as +0, what is its value?

27.4.14[E] Explain the difference between margin, margin *, and margin 75.

27.4.15[E] What effect does the command names have?

27.4.16[H] Give three possible reasons why the command pivot 4 6 might not cause a
pivot to be performed.

27.4.17[E] Normally the pivot program prevents you from pivoting in the first row or
column of the tableau. (a) Why does it do that? (b) How can you make it not do that?

27.4.18[E] If you are solving a linear program by using pivot to perform a sequence of
minimum-ratio pivots and you are about to pivot in column 4, how can you use the program
to find the row ratios bi/ai4?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

27.4 Exercises 919

27.4.19[E] If a row or column ratio is 0/0, what result does the pivot program report?

27.4.20[E] Describe the format that a tableau file must have if it is to be read by the read
command.

27.4.21[E] If you issue the command scale 2 3 4 what effect will it have on the current
tableau?

27.4.22[H] If the file problem.tab specifies a starting tableau in the format necessary for
read, how can you solve the linear program with the pivot program by using the smallest
number of commands?

27.4.23[E] Suppose you have been using the pivot program to study a linear program, but
now you want to go to lunch. How can you save the current tableau and resume your work
later?

27.4.24[P] In the following pivot session, what will be the tableau resulting from the swap
command? (a) Predict what will happen before you try it. (b) Use the program to confirm
your prediction.

< list

x1 x2 x3 x4 s1 s2 s3
0. -90. -150. -60. -70. 0. 0. 0.

160. 7. 10. 8. 12. 1. 0. 0.
50. 1. 3. 1. 1. 0. 1. 0.
60. 2. 4. 1. 3. 0. 0. 1.

< swap 1 2 3 4

27.4.25[H] What are the smallest and largest tableaus that can be stored by the pivot

program? How can you increase the limits this Classical FORTRAN program [100, §5.5]
imposes on the maximum size of a tableau?

27.4.26[E] If you make a mistake using the pivot program, how can you fix it?

27.4.27[E] What does the pivot program do to “unsolve” a linear program?

27.4.28[E] In naming a tableau file for use with the pivot program, what filename exten-
sion must you use?

27.4.29[E] What does the pivot command ? ? do?

27.4.30[E] Describe the computing environment that is needed to install and use the pivot
program.

27.4.31[E] What release of the pivot program is described in §27.2? Why do the pivot

sessions reproduced in this book show that different versions of the program were used?

27.4.32[E] What Unix command can be used to compile version 4.4 of the pivot program?
Where can you get the file pivot44.f?

27.4.33[E] Why might you want to place the file pivot.help in your home directory?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

920 pivotpivotpivot: A Simplex Algorithm Workbench

27.4.34[E] How does the pivot program interact with its user? How can you tell that it
is ready for you to enter a command? What alphabetic case must you use when you type a
command to the program? How can you repeat the previous command?

27.4.35[H] Which pivot commands print a result tableau? How can you keep that from
happening? Why might you want to keep that from happening?

27.4.36[P] Explain how to capture your pivot session in a file. Run the program in such
a way that you do that, and print the file that results.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28

Appendices

As I mentioned in §0.2.1, this book assumes that you already have some prior knowledge
of undergraduate mathematics, numerical methods, and computer programming. In each
of the few places where I worried that I had assumed too much, I referred you here for a
brief review of some particular topic. Sections 28.1–28.4 are specific to those needs and thus
far from exhaustive; if I have guessed wrong again and neglected to explain some idea that
is missing from your background, please accept my apology and consult other references
including [3], [20], [30], [50], [60], [67], [77], [87], [100], [110], [146], [147], [148], [149], and
[150].

Sections 28.5–28.8 catalog the named optimization problems used in the text.

28.1 Calculus

The calculus that I have assumed you know quite well includes the concept of a limit, the
definition of a derivative, and how to calculate the derivatives of functions of one or several
variables. The topics discussed in this Section are also essential background, about some of
which you might like to be reminded.

28.1.1 Extrema of a Function of One Variable

Elementary courses introduce the idea that
the local extrema of a differentiable function
occur where the slope of its graph is zero. In
the graph of this function [3, p265]

y = 13x6 + 14x5 − 70x4 − 90x3 + 250,

shown on the right, the derivative

y′ = 78x5 + 70x4 − 280x3 − 270x2

is zero in the indicated places. These points
can be classified [146, §4.4] by using the sign
of the second derivative

y′′ = 390x4 + 280x3 − 840x2 − 540x
as shown in the table on the next page. -400

-300

-200

-100

0

100

200

300

400

-3 -2 -1 0 1 2 3

y

x

•
a

•
b •

c

•
d

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

922 Calculus

If we think of increasing x to move along
the curve from left to right, the slope of the
tangent line is initially negative but increases
through zero at point a and then to a positive
value, so at the first local minimum the deriva-
tive is increasing and the second derivative is

p xp y′′(xp) classification

a −1.825 812.62 > 0 minimum
b −0.989 −185.45 < 0 maximum
c 0 0 = 0 inflection
d 1.917 3117.6 > 0 minimum

positive. Soon the slope decreases, reaching zero at point b and then becoming negative, so
at point b the second derivative is negative. At point c the slope is changing from increasing
to decreasing, so there the second derivative is zero.

28.1.2 Taylor’s Series for a Function of One Variable

The graph on the right shows the function
f (x) = 1/x, along with linear and quadratic
approximations at the point p = (a, 1/a) with
a = 3

10
. The linear function is the straight line

tangent to the curve at p,

T1(x; a) = f (a) + f ′(a)(x − a)

while the quadratic function,

T2(x; a) = f (a) + f ′(a)(x − a) + 1
2
f ′′(a)(x − a)2

matches both the slope and the curvature of
f (x) at that point. From the picture it is clear
that as we move away from p the error in the
linear approximation grows more quickly than
the error in the quadratic approximation.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

y

x

•
p

T
1 (x)

T 2
(x
)

f (x) = 1/x

We can make a more precise approximation by including more terms of the Taylor’s

series expansion [149, §10.9] [148, §5.2.2]

T∞(x; a) = f (a) + f ′(a)(x − a) + · · · =
∞∑

k=0

f (k)(a)(x − a)k
k!

where f (k) is the k’th derivative of f (x). In our example f (x) = 1/x so f (k)(x) = (−1)kk!x−(k+1)
and

T∞(x; a) =

∞∑

k=0

(−1)ka−(k+1)(x − a)k = 1

a
+
1

a

(

−(x − a)
a

)

+
1

a

(

−(x − a)
a

) (

−(x − a)
a

)

+ · · ·

This is a geometric series with first term 1/a and ratio r = −(x − a)/a, and if |r| < 1 or
0 < x < 2a it converges to T∞ = (1/a)/(1 − r) = 1/x.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.2 Linear Algebra 923

28.1.3 The Gradient of a Quadratic Form

Some properties of quadratic functions are discussed in §14.7; elsewhere we have had occasion
to compute the gradient. For example, if

f (x) = x⊤Qx

= [x1, x2]

[

q11 q12
q21 q22

] [

x1
x2

]

= x21q11 + x1x2q21 + x1x2q12 + x22q22

then we find





∂ f

∂x1
∂ f

∂x2





=

[

2x1q11 + x2q21 + x2q12
2x2q22 + x1q21 + x1q12

]

=

[

2q11 q12 + q21
q12 + q21 2q22

] [

x1
x2

]

=

([

q11 q12
q21 q22

]

+

[

q11 q21
q12 q22

]) [

x1
x2

]

and in general ∇f (x) = (Q +Q⊤)x where Q⊤ is the transpose (see §28.2.2) of Q.
If Q is symmetric so that qi j = q ji (as is always the case for the Hessian matrix of a

function with continuous second partials) then Q = Q⊤ and ∇f (x) = 2Qx. If in addition
Q = I, so that f (x) = x⊤x, then ∇f (x) = 2x.

If the quadratic form is a two-norm (see §10.6.3) then

f (x) = ||x|| = +
√
x⊤x = (x21 + · · · + x2n)

1
2

and if x⊤x , 0 we find using the chain rule that

∂ f

∂x j

=
1
2
(x21 + · · · + x2n)

− 1
2 (2x j) =

x j

(x2
1
+ · · · + x2n)

1
2

so ∇f (x) = x/||x||; the gradient of the two-norm of x is a unit vector in the direction of x.

28.2 Linear Algebra

The linear algebra that I have assumed you know quite well includes the definition of a
matrix as a rectangular array of numbers and of a vector as a matrix having one row or
one column, as illustrated below. The topics discussed in this Section are also essential
background, about some of which you might like to be reminded.

matrix A =





−3 2 1 7

9 5 4 −1
2 −6 8 3





︸ ︷︷ ︸

n = 4 columns






m = 3 rows

element a23 = 4 row vector r1 = [−3, 2, 1, 7]

column vector c3 =





1

4

8





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

924 Linear Algebra

28.2.1 Matrix Arithmetic

Matrices having dimensions that permit a given arithmetic operation to be performed upon
them are said to be conformable for that operation.

The sum or difference of two matrices A and B having the same dimensions is the matrix
C having those dimensions, each of whose elements ci j = ai j ± bi j is the sum or difference of
the corresponding elements in A and B, as illustrated by these examples.

[

4 6 1

5 2 3

]

+

[

1 2 3

4 5 6

]

=

[

5 8 4

9 7 9

] [

4 6 1

5 2 3

]

−
[

1 2 3

4 5 6

]

=

[

3 4 −2
1 −3 −3

]

The product AB = C of two matrices Am×n and Bn×p is the matrix Cm×p whose (i, j)’th
element is

ci j =

n∑

k=1

aikbk j.

In calculating the matrix product on the left below [3, p492-493] I have shown in the middle
matrix the expansion of this sum for each ci j.





1 3 1 0

−1 2 0 −1
3 5 −2 4









9 5

2 3

0 −5
6 1





=





1×9 + 3×2 + 1×0 + 0×6 1×5 + 3×3 + 1×(−5) + 0×1
−1×9 + 2×2 + 0×0 + (−1)×6 −1×5 + 2×3 + 0×(−5)+ (−1)×1
3×9 + 5×2 + (−2)×0+ 4×6 3×5 + 5×3 + (−2)×(−5)+ 4×1




=





15 9

−11 0

61 44





If you find it easier to remember words and pictures
than formulas, think of computing ci j by multiplying
each element in the i’th row of A by the corresponding
element in the j’th column of B and then adding up the
results. The calculation of c11 in the example by that
method looks like this.

1 3 1 0

× × × ×
9 2 0 6

= = = =

9 + 6 + 0 + 0 = 15

For the product AB to be conformable the number of columns in A and the number of rows
in B must both be n; for the product BA also to be conformable the number of columns in
B and the number of rows in A must be equal, so p = m. When the products AB and BA

are both defined, they are usually not equal; matrix multiplication is not commutative.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.2.2 The Transpose of a Matrix 925

Often in this book a system of linear algebraic equations is represented in matrix-vector
form. For example, the system on the left below can be written as Ax = b where A, x, and
b have the values shown on the right.

1x1 + 3x2 + 1x3 + 0x4 = 15

−1x1 + 2x2 + 0x3 − 1x4 = −11
3x1 + 5x2 − 2x3 + 4x4 = 61

A =





1 3 1 0

−1 2 0 −1
3 5 −2 4




x =





x1
x2
x3
x4





b =





15

−11
61





One solution to this system is x1 = 9, x2 = 2, x3 = 0, x4 = 6 because (as we found above)

Ax =





1 3 1 0

−1 2 0 −1
3 5 −2 4









9

2

0

6





=





15

−11
61




= b.

28.2.2 The Transpose of a Matrix

The transpose of a matrix Am×n having elements ai j is the matrix An×m
⊤ having elements

aji. Thus the rows of A⊤ are the columns of A and the rows of A are the columns of A⊤. For
example,





1 3 1 0

−1 2 0 −1
3 5 −2 4




has the transpose





1 −1 3

3 2 5

1 0 −2
0 −1 4





.

If a matrix is square then transposing it reflects its elements about the diagonal running
from the upper left corner to the lower right corner.





1 2 5

3 4 6

7 8 9





⊤

=





1 3 7

2 4 8

5 6 9





diagonal elements

A square matrix that is equal to its transpose is said to be symmetric. The matrices
below are symmetric, so each is its own transpose. The symmetric matrix on the right, the
3 × 3 identity matrix, is also a diagonal matrix.





1 2 4

2 3 5

4 5 6





⊤

=





1 2 4

2 3 5

4 5 6




I3 =





1 0 0

0 1 0

0 0 1




=





1 0 0

0 1 0

0 0 1





⊤

The transpose of a row vector is the column vector having the same elements, and the
transpose of a column vector is the row vector having the same elements;

if x =

[

1

2

]

then x⊤ =
[

1 2
]

and (x⊤)⊤ = x.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

926 Linear Algebra

28.2.3 Inner and Outer Products

Two special cases of matrix multiplication are of special interest.

If a and b are column vectors both of length n then a⊤ is a row vector, the product a⊤b
is conformable, and

a⊤b = a1b1 + · · · + anbn

is a scalar called the inner product or dot product of the two vectors. Here is an n = 2

example.

a =

[

12

16

]

b =

[

5

12

]

a⊤b =
[

12 16
]
[

5

12

]

= 12 × 5 + 16 × 12 = 252

The dot product can also be calculated from the lengths of the vectors and the angle between
them. The graph to the right [147, p98-99] shows a and b as arrows making angles α and
β with the x axis and separated by the angle θ = β − α. Using the law of cosines we find
[146, Theorem 11.14] for the triangle in the figure

||b − a||2 = ||b||2 + ||a||2 − 2 ||b|| ||a|| cos(θ)
(b − a)⊤(b − a) = b⊤b + a⊤a − 2 ||b|| ||a|| cos(θ)

b⊤b − 2a⊤b + a⊤a = b⊤b + a⊤a − 2 ||b|| ||a|| cos(θ)
a⊤b = ||a|| ||b|| cos(θ).

The vectors in the example given above have lengths
||b||=

√
52 + 122=13 and ||a||=

√
122 + 162=20, and

the angle between them is

θ = β − α = arccos

(

5

13

)

− arccos
(

12

20

)

= 0.24871 rad.

Then ||a|| ||b|| cos(θ) = 20 × 13 × 0.96923 = 252.

y

15

10

5

0 x
0 5 10

•

[

5

12

]

• [

12

16

]

||b
||

||b −
a||

||a
||

θ
β

α

The outer product of the vectors in the example is an n × n matrix.

ab⊤ =

[

12

16

]
[

5 12
]

=

[

12 × 5 12 × 12
16 × 5 16 × 12

]

=

[

60 144

80 192

]

An outer product matrix always has a rank of one [147, p70]; the first row of this result is
12 times b⊤ and the second row is 16 times b⊤, so the second row is 16

12
=

4
3
times the first

and the rows are not independent (see §28.2.4). The outer product of a vector with itself is
a symmetric rank-one matrix.

aa⊤ =

[

12

16

]
[

12 16
]

=

[

144 192

192 256

]

.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.2.5 Matrix Inversion 927

28.2.4 Linear Independence

The vectors vj ∈ Rn in a set V = {v1 . . . vp} are linearly independent if and only if

the sum c1v1 + · · · + cpvp is nonzero unless c1 = · · · = cp = 0.

In other words [147, §2.3] if every nontrivial linear combination of the vj is nonzero then
the vectors are linearly independent. If any of the vectors vj is zero then the set cannot be
linearly independent. If, say, v1 = 0 then we could choose c1 = 1 and set all the other c j = 0

so that c1v1 + · · · + cpvp = 0 even though not all of the coefficients are zero. If p > n so that
there are more vectors than there are coordinate directions, then at least one vector must
be a linear combination of the others and the set also cannot be linearly independent. The
rank of a matrix is the number of its rows that are linearly independent.

28.2.5 Matrix Inversion

If A is a square matrix and there exists a square matrix A−1 such that AA−1 = A−1A = I, then
A is said to be nonsingular and A−1 is called its inverse matrix. Matrix algebra often
involves the symbolic manipulation of inverses (see §28.2.6). Although it is never necessary
to evaluate a matrix inverse numerically [100, Exercise 6.8.6] [87, §1.14], it is sometimes
convenient to do so analytically by using this definition [147, p163].

A−1 =
adj(A)

det(A)

Here det(A) is the determinant (see §11.4.1) and adj(A) is the adjoint matrix. The adjoint
matrix can be found from the cofactors of A, which are signed minors. To see how, consider
the problem of finding A−1 when A is this nonsingular matrix [20, p278].

A =





1 2 −1
2 1 0

−1 1 2





If we construct a submatrix by deleting row r and column s from A, the determinant of that
submatrix is a minor that we will call δrs and the corresponding cofactor is ci j = (−1)r+sδrs.
For example, if r = 2 and s = 3 we have

δ23 =

∣
∣
∣
∣
∣
∣

1 2

−1 1

∣
∣
∣
∣
∣
∣
= 1 × 1 − (−1) × 2 = 3 and c23 = (−1)2+3δ23 = (−1) × 3 = −3.

Repeating the calculation for the other 8 pairs (r, s) yields this cofactor matrix.

C =





2 −4 3

−5 1 −3
1 −2 −3





Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

928 Linear Algebra

The adjoint matrix is the transpose of the cofactor matrix, and dividing it by det(A) = −9
yields the inverse.

adj(A) = C⊤
=





2 −5 1

−4 1 −2
3 −3 −3




A−1 = 1

−9





2 −5 1

−4 1 −2
3 −3 −3




=





−2
9

5
9
−1

9

4
9
−1

9
2
9

−1
3

1
3

1
3





To verify that this is the inverse we can show that AA−1 = A−1A = I.





1 2 −1
2 1 0

−1 1 2









−2
9

5
9
−1

9

4
9
−1

9
2
9

−1
3

1
3

1
3





=





−2
9

5
9
−1

9

4
9
−1

9
2
9

−1
3

1
3

1
3









1 2 −1
2 1 0

−1 1 2




=





1 0 0

0 1 0

0 0 1





Finding the adjoint analytically for an arbitrary 2× 2 matrix yields a convenient formula
for the inverse [147, p163].

if B =

[

b11 b12
b21 b22

]

is nonsingular then B−1 =

[

b22 −b12
−b21 b11

]

b11b22 − b21b12
.

28.2.6 Matrix Identities

In performing algebraic manipulations involving matrices and vectors it is essential that
the variables be conformable for the operations indicated; systematically check that each
expression you write describes a calculation that can actually be performed, and remember
that AB is almost never equal to BA. Often it is convenient to make use of the following
identities, each of which assumes that the indicated operations are possible.

A + B = B + A

C + (A + B) = (C + A) + B

C(A + B) = CA + CB

(A + B)C = AC + BC

A(BC) = (AB)C

(A⊤)⊤ = A

(A + B)⊤ = A⊤ + B⊤

(AB)⊤ = B⊤A⊤

AA−1 = A−1A = I

(A⊤)−1 = (A−1)⊤ = A−⊤

(AB)−1 = B−1A−1

(AB)−⊤ = A−⊤B−⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.3.1 Finding a Root with Bisection 929

28.3 Numerical Computing

The numerical computing that I have assumed you know quite well includes these ideas:

• many mathematical problems of practical importance have no closed-form analytic
solution;

• sometimes the answer to such a problem can be approximated with increasing accu-
racy by an algorithm that iteratively repeats a sequence of arithmetic and logical
operations;

• when a numerical algorithm is implemented in a computer program the iterative rep-
etition of its calculations is accomplished by using a loop to transfer control from the
end of the process back to the first step;

• computers represent real values by floating-point numbers that have limited range
and precision;

• for a given problem one algorithm might run faster than another or produce more
accurate results.

The topics discussed in this Section are also essential background, about some of which you
might like to be reminded.

28.3.1 Finding a Root with Bisection

The positive value of x for which sin(x) = 1
2
x is not given by any algebraic formula, but it can

be approximated numerically [100, §0.1]. In the graph of f (x) = sin(x) − 1
2
x below, f (1

2
) > 0

and f (2 1
2
) < 0 so f (x) crosses zero in the

interval [xL, xR] = [1
2
, 2 1

2
]. At the inter-

val midpoint x1 =
1
2
(xL + xR) the function

value is positive, so the zero must fall be-
tween x1 and xR. Letting xL ← x1 yields a
new interval, half as wide as the old one,
still containing the root. Repeating the
steps of finding the midpoint xk, finding
the sign of the function there, and replac-
ing the appropriate endpoint by the mid-
point leads to the sequence of xk listed
inside the graph; the first 5 iterates are
numbered on the curve. The algorithm
converges to the given x∞, at which point
f (x) ≈ 7.8 × 10−16 so that sin(x) is very
close to 1

2
x.

-0.6

-0.4

-0.2

0

0.2

0.4

0.5 1 1.5 2 2.5

f (x)

x

•
1

•
2

•
3
•
4 •
5k xk

1 1.5
2 2
3 1.75
4 1.875
5 1.9375
6 1.90625
7 1.890625
: :
∞ 1.89549426703398

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

930 Numerical Computing

A more precise definition of the algorithm is
given in this flowchart. An iteration begins in
the second box with finding xk and fk. Then two
convergence tests stop the calculations if the
interval becomes shorter than ǫx or the function
value gets within ǫ f of zero. The bottom test
uses the product fL × fk to determine if those
function values have the same sign, and directs
the flow of control to update the correct interval
endpoint. The arrow from the bottom of the
flowchart through incrementing k to the second
box is the loop that repeats the calculations.

format long; epsx=1e-16; epsf=1e-16;
xl=0.5; xr=2.5;
fl=sin(xl)-0.5*xl; fr=sin(xr)-0.5*xr;
for k=1:100

xk=0.5*(xl+xr)
fk=sin(xk)-0.5*xk;
if(abs(xr-xl) < epsx) break; end
if(abs(fk) < epsf) break; end
if(fl*fk < 0)

xr=xk;
fr=fk;

else
xl=xk;
fl=fk;

end
end

The MATLAB program is a verbatim translation
of the flowchart into code. It produces the xk
that I listed above, reaching x∞ at iteration 49.

ENTER

initialize [xL, xR]

fL = f (xL); fR = f (xR)

k = 1

xk =
1
2
(xL + xR)

fk = f (xk)

|xR − xL| < ǫx
yes?

no

yes

| fk| < ǫ f
?

no

EXIT

fL fk < 0
?yes no

xL ← xk

fL ← fk

xR ← xk

fR ← fk

k← k + 1

28.3.2 Finding a Root with Newton’s Method

Above we found, by inspection of the graph, a starting interval [1
2
, 2 1

2
] for bisection and

began that algorithm at the midpoint x1 = 1 1
2
. A first-order Taylor series approximation

(see §28.1.2) at x1 predicts that f (x) = sin(x) − 1
2
x will cross zero where

T1(x; x1) = f (x1) + f ′(x1)(x − x1) = 0

or x = x1 −
f (x1)

f ′(x1)
provided f ′(x1) , 0.

Thus, in the graph on the next page x2 = x1 −
sin(x1) − 1

2
x1

cos(x1) − 1
2

≈ 2.0766

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.3.2 Finding a Root with Newton’s Method 931

We can get a better approximation to
f (x) near the root by updating the
Taylor’s series to T1(x; x2). When we use
that tangent line to find x3, the point is
so close to the zero-crossing of the graph
that the error in the approximation to the
root is barely discernible. Repeating the
process yields the root estimates xk in the
table, which converge after only six itera-
tions to the same x∞ that we found using
bisection.

-0.6

-0.4

-0.2

0

0.2

0.4

0.5 1 1.5 2 2.5

f (x)

x

T
1 (x; x

1)

T
1 (x; x

2)

x1

•

x3

•

x2

•k xk
1 1.5
2 2.07655820063043
3 1.91050661565908
4 1.89562200298785
5 1.89549427647277
6 1.89549426703398
7 1.89549426703398

ENTER

determine [xL, xR]

x1 =
1
2
(xL + xR)

k = 1

fk = f (xk)

| fk| < ǫ f
yes?

no

EXIT

f ′
k
=

d f

dx
(xk)

∆ = fk/ f
′
k

|∆| < ǫx
yes?

no

EXIT

xk ← xk − ∆

k ← k + 1

The algorithm we have been using is called
Newton’s method [4, §2.7], which is de-
scribed more precisely by the flowchart on the
left and implemented in this MATLAB code.

format long; epsx=1e-16; epsf=1e-16;
xl=0.5; xr=2.5;
xk=0.5*(xl+xr)
for k=1:10

fk=sin(xk)-0.5*xk;
if(abs(fk) < epsf) break; end
fkp=cos(xk)-0.5;
delta=fk/fkp;
if(abs(delta) < epsx) break; end
xk=xk-delta

end

I found x1 as the midpoint of starting bounds,
but this algorithm does not update the bounds
and any x1 that is close enough to x∞ can
be used. Picking an x1 that is not close
enough to x∞, such as x1 =

1
2
, makes the

algorithm converge to the wrong root. Thus,
although Newton’s method is much faster
than bisection when it works, it fails more
often. To achieve second-order convergence
(see §9.2) Newton’s method uses both the
function value f (xk) and its derivative f ′(xk),
so while it usually takes far fewer iterations
than bisection each iteration usually takes
more work.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

932 Appendices

28.3.3 Floating Point Arithmetic

When we write a MATLAB program all of the values it computes (bizarrely including those
that should never have fractional parts, such as array indices and loop counters) are processed
as REAL*8 floating-point values [50]. The mathematical set of reals R1 has an infinity of
members including every whole number, every fraction, and every irrational including all of
the transcendentals. In dramatic contrast, the floating point numbers [100, §4.2] are a finite
set of rational fractions. By their construction they have limited range and represent most
real values only approximately, so that very small ones underflow to zero and common ones
like 0.1 cannot be represented exactly. Because of these properties of floating-point numbers,
almost all of the calculations we perform with them are at least slightly wrong; indeed, the
discipline of numerical analysis was in its early days devoted almost entirely to figuring out
just how wrong floating-point calculations are likely to be.

Whole books have been written [84] [125] about the floating-point number system, but
of the myriad technical details they discuss only two are of immediate concern in this book.

Models of roundoff error (see §25.6.4 for one example) often make use of a quantity called
the unit roundoff, which is u = 2−53 = 1.110223024625157 × 10−16. The unit roundoff is
the largest number which, when added to 1, is sure to produce a result that still rounds to 1

(depending on the rounding rule that is in effect it might be possible to add a slightly larger
number and still have the sum round to 1). Some authors [100, p436-437] [125, p14 note 7]
call the unit roundoff machine epsilon, while MATLAB and other authors [5, p614] call twice
the unit roundoff machine epsilon. In this book I have adopted the MATLAB convention that
machine epsilon is 2u.

In floating-point implementations that conform to the IEEE standard [84], the result
of an impossible calculation such as arcsin(2) is assigned a special bit pattern called not

a number [100, §4.7] [125]. This bit pattern does not represent a numerical value but is
reported by MATLAB as NaN to alert the user that an error has occurred. Graceful programs
issue meaningful diagnostics and resign, rather than attempting a meaningless calculation.

28.4 MatlabMatlabMatlab Programming Conventions

I have assumed that when you began reading this book you already knew at least a lit-
tle about computer programming in some procedural language, and that you had at least
observed others using base MATLAB (exclusive of optional components such as the optimiza-
tion toolbox). Numerical computation, mathematical analysis, and the organization of ideas
in prose are all important in solving optimization problems, so throughout I have tried to
encourage the development of your coding skills along with your knowledge of theory and
your eloquence in exposition. My goal of instilling technical fluency has been achieved if
after reading the book you find it natural to move between words, formulas, and code.

To make the example programs easy to understand and learn from, I adopted the coding
conventions described below.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.4.2 Variable Names 933

28.4.1 Control Structures

MATLAB provides terse constructs that maximize the efficiency of its vector and matrix
calculations, but I have instead used verbose constructs that maximize the obviousness and
simplicity of the code. In particular I have used for in preference to while so that the
loop iteration control mechanism is explicit [100, 13.5.4] and break or continue so that
transfers of control are as explicit as they can be (MATLAB has no command to branch).

for j=1:n
:
:
if(d(j) == 0) continue; end
:
:
:
if(norm(g) <= epz) break; end
:
:

end

for j=1:n
:
if(d(j) == 0)

continue
end
:
if(norm(g) <= epz)

break
end
:

end

Here continue means skip the rest of the loop body and advance to the next iteration, while
break means exit the loop through its end statement. The tests on the right above are
equivalent to those on the left, but to save space I usually used the short form except when
there was more than one alternative as on the left below. Sometimes I used switch.

% from em.m
if(i == 0)

f=fcn(x,0)+pn*t’*ones(m,1);
elseif(i == 1)

f=-t(i);
else

f=fcn(x,(i-m))-t(i-m);
end

% from sqp1.m
function f=sqp1(x,i)
switch(i) % prepare to distinguish cases

case 0 % do this if i=0
f=exp(x(1)-1)+exp(x(2)+1);

case 1 % do this if i=1
f=x(1)^2+x(2)^2-1;

end
end

These excerpts involve functions named fcn and sqp1. Many of the algorithm implemen-
tations discussed in the text find natural expression in terms of subprograms, and where
possible I used them to clarify the code.

28.4.2 Variable Names

It is good style to use descriptive names for variables and functions [100, §12.4.2] but this is
tricky in MATLAB because many of the names that might occur to you already have default
meanings, and changing those can have unexpected consequences. Before choosing a name
for a variable or function, you can see if it already means something to MATLAB by using
the help command. Here it shows that gama is a safe name for a function of your own.

octave:1> help gama
error: help: ‘gama’ not found
octave:1> help gamma
‘gamma’ is a built-in function
:

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

934 Matlab Programming Conventions

The table below lists a few examples, mostly selected from the index of the Octave manual
[50, p781-793], of names that might seem perfect for describing the variables and functions
in your program but which have already been preempted by MATLAB.

name default meaning in MATLAB

arg return the angle of a complex number
beta return a value of the β function
columns return the number of columns in a matrix
diff return a vector of first differences
eps return machine epsilon
flag create a colormap
gamma return a value of the Γ function
hess return the Hessenberg decomposition of a matrix

i,I return
√
−1 for mathematicians

j,J return
√
−1 for electrical engineers

kappa return Cohen’s kappa coefficient
length return the greater number of rows or columns in a matrix
mean return the algebraic average of data elements
nnz return the number of nonzero elements in a matrix
orth return an orthonormal basis
prod return the product of array elements along a dimension
quad return the value of a definite integral
rows return the number of rows in a matrix
sum return a sum of matrix elements
type display the definition of each name referring to a function
union return the union of two sets
var return the variance of a data set
which display the type of an object
xlim set the limits of the x-axis for a plot
ylim set the limits of the y-axis for a plot
zeta return a value of the Riemann zeta function

A name that MATLAB has already given a default meaning can be repurposed; in the pro-
grams that appear in this book I have always used i and j for array indices and loop
counters rather than for

√
−1, and I have occasionally used several other names to mean

something different from their preassigned meanings. If a function of your own has a name
that MATLAB has already used, you must set the program’s --path option to the directory
containing your definition and refrain from also using the built-in function in your program
(either explicitly, or implicitly by inadvertently invoking another MATLAB routine that uses
it). It can of course be confusing to have two functions with the same name, even if you are
sure that MATLAB is finding the one that you wrote.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.4.2 Variable Names 935

Some variable names that do not have a preassigned meaning in MATLAB I have usually
used to refer to particular things, and those appearing most frequently are listed below.

name usual meaning in this text

alpha a step length α (typically in a line search)
astar an optimal step length α⋆

d a direction vector d
err the amount by which an iterate is in error
f a function value
fcn a pointer to a function routine
fr a record objective value
g a gradient vector g
grd a pointer to a gradient routine
H a Hessian matrix H

hsn a pointer to a Hessian routine
i an index on functions or on matrix rows
ip the row index of a pivot
j an index on variables or matrix columns
jp the column index of a pivot
k an index on the iterations of an algorithm
kmax an iteration limit
kp k+1 for MATLAB, which does not permit 0 subscripts
m number of constraints
nm number of Hessian modifications performed
n number of variables
p, s, t indices
rc a subprogram return code
S an LP basis vector
T an LP tableau
tol a convergence tolerance
x a vector x of decision variables
xbar, xhat particular values x̄, x̂ of x
xh a vector of upper bounds xH

xk an iterate xk

xl a vector of lower bounds xL

xr a record point xr

xstar an optimal vector x⋆

xzero a starting point x0

z an objective value being minimized
Z a nullspace basis matrix Z

prob.m routine returns function values for problem prob

probg.m routine returns gradient vectors for problem prob

probh.m routine returns Hessian matrices for problem prob

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

936 Matlab Programming Conventions

28.4.3 Iteration Counting

The algorithms discussed in this book vary in detail, but they all have the same basic
structure: starting from x0 repeat some iterative calculation some maximum number of
times or until a convergence criterion is satisfied first. It is easy to implement this scheme in
MATLAB using a for loop and if-then-else. The code on the left illustrates one natural
approach.

function [xstar,k]=countk(xzero,kmax)
x=xzero;
for k=0:kmax

if(close enough)
break

else
x=update(x);

end
end
xstar=x;

end

In the countk.m routine, k is an index on the iterates x0, x1, . . . and kmax is the index of the
final iterate that will be generated if convergence is not attained. There is always one more
iterate (namely x0) than there are iterations, so kmax is also the number of iterations (updates
to x) that will be performed if convergence is not attained. Whether the routine returns
because the convergence criterion is met (which might happen at x=xzero) or because kmax
iterations have been completed, the xstar returned along with k is xk.

For our purposes this elegant way of counting the iterates and iterations of an algorithm
unfortunately has one little infelicity. Often we want to invoke a serially-reusable MATLAB

function repeatedly in a loop, having it perform a single iteration each time as described in
§10.6.1. That way we can study how the method works without cluttering up the algorithm
code with statements to save the iterates, draw graphs, and so on. To invoke countk.m in a
loop so that it performs one iteration at a time we need code like this.

x=xzero;
for p=1:pmax

[xstar,k]=countk(x,0);
x=xstar;

end

To get a single iteration it is necessary to pass kmax=0 to countk.m, so in this context kmax is
one fewer than the maximum number of iterations that are to be done. At each iteration of
the loop over p, countk.m returns k=0, which is likewise one fewer than the single iteration
(update to x) that it did if convergence was not attained.

The need to think of k and kmax differently in the algorithm code and in the driver
program is potentially quite confusing. In an effort to make the single-iteration use of
a routine like countk.m more intuitive, I have tried to consistently follow the alternative
indexing scheme illustrated at the top of the next page.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.4.3 Iteration Counting 937

1 function [xstar,kp]=countkp(xzero,kmax)
2 x=xzero;
3 for kp=1:kmax
4 if(close enough)
5 break
6 else
7 x=update(x);
8 end
9 end
10 xstar=x;
11 end

Here kmax is again the index of the final new iterate that will be generated if convergence
is not attained. Now, however, the index kp counts the iterations (updates to x) that are
performed if convergence is not attained, rather than the iterates (which start with x0, not
x1). If convergence is not attained this routine returns xstar = xkmax and kp=kmax, and the
iterates are x0, x1, . . . , xkmax.

If convergence is attained, then the number of updates that were made to x is kp-1 so
that is how many iterations were used. For example, if kmax=10 and the algorithm returns
with kp=3, the statements were executed in this sequence: 1 2 3(kp=1) 4 6 7(update x)

8 9 3(kp=2) 4 6 7(update x) 8 9 3(kp=3) 4 5 10 11. There were two updates to x,
so the xstar that is returned is x2, and the problem was solved in two iterations. If xzero
satisfies the convergence criterion, the routine returns xstar=xzero and kp=1 so the problem
was solved in kp-1=0 iterations. If k is the index of the iterate that is returned in xstar,
then if convergence is attained k = kp-1 or kp = k + 1 (the name kp is meant to suggest k

plus one).

In the program below we ask for kmax=1 more iteration to be performed in each invocation
of countkp, and each time countkp returns it reports that kp=1 iteration was performed.
When exercising a routine in this way we typically set the convergence tolerance so that
convergence is never attained, so kp=1 corresponds to one update of x.

x=xzero
xsave(1)=x
isave(1)=1
for p=1:pmax

[xstar,kp]=countkp(x,1)
xsave(p+1)=xstar
isave(p+1)=p
x=xstar

end
plot(psave,xsave)

Another potential source of confusion in the counting of iterations arises from the fact
that MATLAB unhelpfully prohibits zero array subscripts. The code above saves xzero in
xsave(1) rather than in xsave(0), and subsequent iterates in xsave(p+1) rather than in
xsave(p). Several mathematicians in my acquaintance covet the convenience of MATLAB

but use FORTRAN instead simply to avoid being confused by this trifling quirk. I myself
have better reasons (see §0.2.3) to prefer FORTRAN over MATLAB for production code.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

938 Linear Programs Used in the Text

28.5 Linear Programs Used in the Text

For each named linear programming example I have shown below an initial tableau for the
minimization and whatever primal and dual solutions the problem has.

28.5.1 twoexams
x1 x2 s1 s2 s3 s4 s5

40 −12 −10 0 0 0 0 0

−20 −12 0 1 0 0 0 0

−60 0 −10 0 1 0 0 0

12 1 1 0 0 1 0 0

60 12 0 0 0 0 1 0

100 0 10 0 0 0 0 1

[

x⋆
⊤ | s⋆

⊤
]

= [5, 7 | 40, 10, 0, 0, 30]
[

y⋆
⊤ | w⋆⊤

]

= [0, 0, 10, 1
6
, 0]

primal z⋆ = −170

28.5.2 brewery
x1 x2 x3 x4 s1 s2 s3

0 −90 −150 −60 −70 0 0 0

160 7 10 8 12 1 0 0

50 1 3 1 1 0 1 0

60 2 4 1 3 0 0 1

[

x⋆
⊤ ∣
∣
∣ s⋆

⊤
]

= [5, 12 1
2
, 0, 0

∣
∣
∣ 0, 7 1

2
, 0]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤
]

= [7 1
2
, 0, 18 3

4

∣
∣
∣ 0, 0, 18 3

4
, 76 1

4
]

primal z⋆ = −2325

This problem is modeled after, but different from, the brewery problem discussed in [3].

28.5.3 paint
x1 x2 s1 s2 s3 s4

0 −114 −162 0 0 0 0

1500 5 3 1 0 0 0

2520 7 9 0 1 0 0

1200 2 4 0 0 1 0

0 −2 3 0 0 0 1

[

x⋆
⊤ | s⋆

⊤]
= [193 11

13
, 129 3

13

∣
∣
∣ 143 1

13
, 0, 295 5

13
, 0]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
= [0, 17 1

13
, 0, 2 10

13

∣
∣
∣ 0, 0]

primal z⋆ = −43033 11
13

28.5.4 shift
x1 x2 x3 x4 x5 x6 x7 x8 s1 s2 s3 s4 s5 s6 s7 s8

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

−3 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

−6 −1 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−14 0 −1 −1 0 0 0 0 0 0 0 1 0 0 0 0 0

−18 0 0 −1 −1 0 0 0 0 0 0 0 1 0 0 0 0

−16 0 0 0 −1 −1 0 0 0 0 0 0 0 1 0 0 0

−14 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 0 0

−12 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1 0

−6 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1

[

x⋆
⊤ | s⋆

⊤]
= [3, 4, 10, 8, 8, 6, 6, 0 | 0, 1, 0, 0, 0, 0, 0, 0]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
= [1, 0, 1, 0, 1, 0, 1, 0 | 0, 0, 0, 0, 0, 0, 0]

primal z⋆ = 45

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.5.5 chairs 939

28.5.5 chairs

s1 s2 s3 a1 a2 a3 f1 f2 f3 u1 u2 u3 x1 x2 x3
0 0 −120 0 0 −120 −300 −300 −180 −120 −120 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 −50 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 −50 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −50
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 −1 0 0 0 0 0 1 0 0 1 0 0 0

200 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

200 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 1 0 −1 0 0 1 0 0 1 0 0 0 0 0

0 0 −1 1 0 −1 0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 −1 0 0 −1 0 0 0

y1 y2 y3 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

−25 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 −25 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 −25 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[

x⋆
⊤ | y⋆⊤ | u⋆⊤ | s⋆⊤ | a⋆⊤ | f⋆⊤

]

= [4, 4, 0 | 4, 8, 8 | 0, 0, 0 | 100, 200, 200 | 200, 200, 0 | 100, 200, 200]
[

y⋆
⊤ ∣
∣
∣ w

⊤⋆]
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 180, 0, 0, 0, 0, 0, 0, 0, 0 |

0, 0, 0, 0, 0, 0, 0, 0, 0, 300, 300, 300, 300, 300]

primal z⋆ = −150000

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

940 Linear Programs Used in the Text

28.5.6 pumps

t xA xB s1 s2 s3
1 0 0 0 0 0

0 −1 1 0 1 0 0

0 −1 0 1 0 1 0

16 0 2 8 0 0 1

60 0 12 20 0 0 0

[

t⋆
∣
∣
∣ x⋆

⊤ ∣
∣
∣ s⋆

⊤]
=

[
20
7
| 20

7
, 9
7
| 0, 11

7
, 0

]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
=

[

0, 0, 0, 0 | 1, 0, 5
14

]

primal z⋆ =
20
7

28.5.7 bulb

a+ a− b u2 v2 u3 v3 u4 v4 u5 v5
0 0 0 1 1 1 1 1 1 1 1

2.5 +10 −10 3.162277660168379 1 −1 0 0 0 0 0 0

5.3 +50 −50 7.071067811865475 0 0 1 −1 0 0 0 0

7.4 +90 −90 9.486832980505138 0 0 0 0 1 −1 0 0

8.5 +120 −120 10.95445115010332 0 0 0 0 0 0 1 −1
[

u⋆
⊤∣∣
∣ v⋆

⊤ ∣
∣
∣ a⋆

∣
∣
∣ b⋆

]

= [0, 0, 0.012644760248259, 0 | 0, 0.238279533746637, 0 |
−0.001877412670804 | 0.796506315189896]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤
]

= [0, 0, 0, 0 | 0, 0.450646905677266, 1.549353094322734, 2, 2,
1.379112757860228, 0.620887242139772]

primal z⋆ = −0.250924293994896

In the original formulation the variable a is unconstrained in sign so in standard form it is
represented as a = a+ − a− where a+ and a− are nonnegative (see §2.9.3).

28.5.8 unbd

x1 x2 x3 x4 x5
−9 0 0 −2 1 0

3 0 0 −1 2 1

1 1 0 0 1 0

5 0 1 −4 1 0

x⋆ = lim
t→∞

[1, 5 + 4t, t, 0, 3 + t]⊤

the dual is infeasible
primal z⋆ = lim

t→∞
(9 − 2t) = −∞

This problem is similar to, but different from, the one discussed in [3, p48-49].

28.5.9 infea

x1 x2 x3 x4
2 0 0 −3 8

1 0 1 5 −1
4 0 0 0 0

−7 1 0 2 6

the primal is infeasible
the dual is unbounded
primal z⋆ is not defined

This tableau is in both infeasible form 1 and infeasible form 2 (see §2.5.3).

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.5.14 cycle 941

28.5.10 sf1

x1 x2 x3 x4 x5 x6 x7
0 −8 6 2 0 −7 5 0

−1 0 −3 0 8 6 −4 3

−2 −9 7 0 −5 0 0 −9
3 −6 0 1 −7 4 −6 5

4 9 −5 0 0 3 9 4

1 0 −1 0 3 9 5 −2

x⋆
⊤
=

[
235
153
, 66
17
, 0, 0, 47

51
, 0, 29

17

]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤
]

=

[

0, 0, 0, 0
∣
∣
∣
13
15
, 998

45
, 284

45

]

primal z⋆ =
41
9

This tableau has a redundant row.

28.5.11 sf2

x1 x2 x3 x4 x5 x6
0 0 0 4 −1 2 0

−15 0 0 −1 1 −1 1

−8 1 0 0 −1 0 0

−5 0 1 −1 3 −2 0

x⋆
⊤
= [0, 17, 0, 8, 23, 0]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
=

[

0, 0, 0
∣
∣
∣ 1, 2, 2

]

primal z⋆ = −38

28.5.12 graph

x1 x2 s1 s2 s3 s4
0 −2 −1 0 0 0 0

6 1 6
5

1 0 0 0

2 1 −1 0 1 0 0

3 1 0 0 0 1 0

5 0 1 0 0 0 1

[

x⋆
⊤ | s⋆

⊤]
=

[

3, 5
2

∣
∣
∣ 0, 3

2
, 0, 5

2

]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
=

[

0, 0, 0, 0
∣
∣
∣
5
6
, 7
6

]

primal z⋆ =
17
2

This problem is modeled after the first example in [3, §4.1].

28.5.13 pm

x1 x2 x3 x4
−3 0 1 0 −2
3 1 1 0 1

2 0 −4 1 2

x⋆
⊤
=

[

0, 4
5
, 0, 11

5

]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
=

[

0, 0,
∣
∣
∣
4
5
, 3
5

]

primal z⋆ = − 3
5

28.5.14 cycle

x1 x2 x3 x4 x5 x6 x7

0 0 0 0 − 3
4

20 − 1
2

6

0 1 0 0 1
4

−8 −1 9

0 0 1 0 1
2
−12 − 1

2
3

1 0 0 1 0 0 1 0

x⋆
⊤
=

[
3
4
, 0, 0, 1, 0, 1, 0

]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
=

[

0, 3
2
, 5
4

∣
∣
∣ 0, 2, 0, 21

2

]

primal z⋆ = − 17
4

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

942 Appendices

28.5.15 in1

x1 x2 s1 s2
0 1 1 0 0

1 −1 1 1 0

1 1 0 0 1

[

x⋆
⊤ | s⋆

⊤]
= [0, 0 | 1, 1]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤
]

= [0, 0 | 1, 1]
primal z⋆ = 0

28.5.16 nf1

x1 x2 x3 x4 x5 x6 x7
0 −8 6 2 0 −7 5 0

−1 0 −3 0 8 6 −4 3

−2 −9 7 0 −5 0 0 −9
3 −6 0 1 −7 4 −6 5

4 9 −5 0 0 3 9 4

1 0 −1 0 3 9 5 −2

x⋆
⊤
= [20, 15, 15, 10, 0, 0, 0, 0, 15, 0]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤]
= [0, 0, 0, 0, 0 | 12, 18, 22, 35, 4]

primal z⋆ = 915

This tableau has a redundant row.

28.5.17 nf2

x14 x15 x16 x24 x25 x26 x34 x35 x36
0 2 4 3 1 5 2 1 1 6

20 1 1 1 0 0 0 0 0 0

20 0 0 0 1 1 1 0 0 0

20 0 0 0 0 0 0 1 1 1

10 1 0 0 1 0 0 1 0 0

25 0 1 0 0 1 0 0 1 0

25 0 0 1 0 0 1 0 0 1

x⋆
⊤
= [10, 5, 5, 0, 0, 20, 0, 20, 0]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤
]

= [0, 0, 0, 0, 0 | 0, 2, 2, 6]
primal z⋆ = 115

This tableau has a redundant row.

28.5.18 nf3

x14 x15 x16 x24 x25 x26 x34 x35 x36
0 9 3 1 2 3 7 3 1 1

10 1 1 1 0 0 0 0 0 0

15 0 0 0 1 1 1 0 0 0

10 0 0 0 0 0 0 1 1 1

10 1 0 0 1 0 0 1 0 0

5 0 1 0 0 1 0 0 1 0

20 0 0 1 0 0 1 0 0 1

x⋆
⊤
= [0, 0, 10, 10, 5, 0, 0, 0, 10]

[

y⋆
⊤ ∣
∣
∣ w⋆

⊤
]

= [0, 0, 0, 0, 0 | 9, 2, 4, 3]
primal z⋆ = 55

This tableau has a redundant row.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.6.4 bb2 943

28.6 Integer Linear Programs Used in the Text

For each named integer linear programming example I have repeated below the analytic
statement of the problem and given its solution.

28.6.1 brewip

minimize
x∈Z4

−90x1 − 150x2 − 60x3 − 70x4

subject to 7x1 + 10x2 + 8x3 + 12x4 ≤ 160

1x1 + 3x2 + 1x3 + 1x4 ≤ 50

2x1 + 4x2 + 1x3 + 3x4 ≤ 60

x j ≥ 0 and integer, j = 1 . . . 4

x⋆ = [4, 13, 0, 0]⊤

z⋆ = −2310
28.6.2 spear

minimize
x∈Z2

−x1 − x2

subject to −13x1 + 14x2 ≤ 14

15x1 − 14x2 ≤ 0

x j ≥ 0 and integer, j = 1 . . . 2

x⋆ = [0, 1]⊤

z⋆ = −1
This problem is modeled after the example in [3, §8.1].

28.6.3 bb1

minimize
x∈Z2

−x1 − 3x2
subject to −x1 + x2 ≤ 2

x1 + x2 ≤ 6 1
2

x j ≥ 0 and integer, j = 1 . . . 2

x⋆ = [2, 4]⊤

z⋆ = −14
28.6.4 bb2

minimize
x∈Z3

−4x1 − 5x2 − x3

subject to 3x1 + 2x2 ≤ 10

x1 + 4x2 ≤ 11

3x1 + 3x2 + x3 ≤ 13

x j ≥ 0 and integer, j = 1 . . . 3

x⋆ = [2, 2, 1]⊤

z⋆ = −19

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

944 Appendices

28.6.5 bb3

minimize
x∈R2

−x2
subject to −x1 + x2 ≤ 0

x1 + x2 ≤ 7

x j ≥ 0 and integer, j = 1 . . .2

x⋆1 = [3, 3]⊤

x⋆2 = [4, 3]⊤

z⋆ = −3

28.6.6 bb4

minimize
x∈Z2

−x1 + x2

subject to x1 − x2 ≤ 3

x2 ≤ 3 1
3

x j ≥ 0 and integer, j = 1 . . . 2

x⋆1 = [3, 0]⊤

x⋆2 = [4, 1]⊤

x⋆3 = [5, 2]⊤

x⋆4 = [6, 3]⊤

z⋆ = −3
The optima x⋆2 and x⋆3 are invisible to the branch-and-bound algorithm of §7.4.

28.6.7 bb5

minimize
x∈Z6

2x1 + 2x2 + 4x3 + 7x4 + 8x5 + 9x6 = z(x)

subject to −5x1 + 3x2 − 2x3 + 3x4 + x5 − 2x6 ≤ 5

x1 − 2x3 − x4 − 3x5 + 3x6 ≤ 1

−x1 − 2x2 + x3 − x4 + 5x5 + x6 ≤ −3
x1, x2, x3, x4, x5, x6 ∈ {0, 1}

x⋆ = [1, 1, 0, 0, 0, 0]⊤

z⋆ = 4

28.7 Nonlinear Programs Used in the Text

For each named nonlinear programming example I have given below an algebraic statement
of the standard-form problem, bounds xL and xH on the variables from which a starting
point x0 = 1

2
(xL + xH) can be computed if none is given, the optimal solution x⋆ and, if the

problem has constraints, its optimal KKT multipliers λλλ⋆.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.7.5 arch1 945

28.7.1 garden
minimize

x∈R2
f0(x) = −x1x2

subject to 2x1 + x2 − 40 ≤ 0

x2 − 30 ≤ 0

−x1 ≤ 0

−x2 ≤ 0

xL = [0, 0]⊤ x⋆ = [10, 20]⊤ xH = [40, 40]⊤ f0(x
⋆) = 200 λλλ⋆ = [10, 0, 0, 0]⊤

28.7.2 rb
minimize

x∈R2
f (x) = 100(x2 − x21)

2
+ (1 − x1)

2

xL = [−2,−1]⊤ x0 = [−1.2, 1]⊤ x⋆ = [1, 1]⊤ xH = [2, 2]⊤ f (x⋆) = 0

This problem is from [135].

28.7.3 gpr
minimize

x∈R2
f (x) = eu

2

+ sin4 (v) + 1
2
w2

where u = 1
2
(x21 + x22 − 25)

v = 4x1 − 3x2
w = 2x1 + x2 − 10

xL = [2, 3]⊤ x⋆ = [3, 4]⊤ xH = [4, 5]⊤ f (x⋆) = 1

This problem is from [66, p572-574].

28.7.4 gns

minimize
x∈R2

f (x) = 4x21 + 2x
2
2 + 4x1x2 − 3x1

xL = [−2,−2]⊤ x0 = [2, 2]⊤ x⋆ = [3
4
,−3

4
]⊤ xH = [3, 3]⊤ f (x⋆) = −9

8

This problem is from [4, Exercise 2.1].

28.7.5 arch1

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to 4 − (x1 − 2)2 − x2 = 0

xL = [0, 0]⊤ x⋆ = [0.327018352145058, 1.201132405940562]⊤ xH = [4, 4]

f0(x
⋆) = 0.493358543068992 λ⋆ = 0.402264811881125

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

946 Nonlinear Programs Used in the Text

28.7.6 hill

minimize
x∈R3

f0(x) = x21 + x22 + x23

subject to 4 − 1
9
x21 − x3 = 0

4 − 4
9
(4 − x2)

2 − x3 = 0

xL1 = [3, 2, 2]
⊤

x⋆1 = [+3.23137107379720, 2.38431446310140, 2.83980455371408]
⊤

xH1 = [4, 3, 3]
⊤

xL2 = [−4, 2, 2]⊤ x⋆2 = [−3.23137107379720, 2.38431446310140, 2.83980455371408]⊤ xH2 = [−3, 3, 3]⊤
f0(x

⋆1) = f0(x
⋆2) = 24.1912043788230 λλλ⋆ = [9,−3.32039089257184]⊤

28.7.7 one23

minimize
x∈R3

f0(x) = x1 + x22 + x3
3

subject to x1 + x2 + x3 − 1 = 0

xL =
[

−1
2
,−1, 0

] ⊤
x⋆ =

[

1
2
−
√

1
3
, 1

2
,

√

1
3

] ⊤
xH =

[
1
2
, 1, 1

] ⊤

f0(x
⋆) = 0.365099820540249 λ⋆ = −1

This problem’s other Lagrange point, x̄ =

[

1
2
+

√

1
3
, 1

2
, −

√

1
3

] ⊤
, is a maximizing point with

f0(x̄) = 1.13490017945975.

28.7.8 arch2

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to 4 − (x1 − 2)2 − x2 ≤ 0

xL = [0, 0]⊤ x⋆ = [0.327018352145058, 1.201132405940562]⊤ xH = [4, 4]

f0(x
⋆) = 0.493358543068992 λ⋆ = 0.402264811881125

28.7.9 arch3

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to 4 − (x1 − 2)2 − x2 ≥ 0

xL = [0, 0]⊤ x⋆ = [1, 1]⊤ xH = [4, 4]

f0(x
⋆) = 0 λ⋆ = 0

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.7.13 cq2 947

28.7.10 arch4

minimize
x∈R2

f0(x) = (x1 − 1)2 + (x2 − 1)2

subject to 4 − (x1 − 2)2 − x2 ≤ 0

13
8
+

1
4
x1 − x2 ≤ 0

xL = [0, 0]⊤ x⋆ = [1
2
, 7
4
]⊤ xH = [4, 4]

f0(x
⋆) = 13

16
λλλ⋆ =

[
5
22
, 14
11

] ⊤

28.7.11 moon

minimize
x∈R2

−(x1 − 3)2 − x22

subject to x21 + x22 − 1 ≤ 0

−(x1 + 2)2 − x22 + 4 ≤ 0

xL = [−6,−2]⊤ x⋆1 = [−1/4,+
√

15/16]⊤ x⋆2 = [−1/4,−
√

15/16]⊤ xH = [2, 6]⊤

f (x⋆) = −23
2
λλλ⋆ =

[
5
2
, 3
2

] ⊤

28.7.12 cq1

minimize
x∈R2

−x1
subject to x2 − (1 − x1)

3 ≤ 0

−x2 ≤ 0

xL = [−2,−2]⊤ x⋆ = [1, 0]⊤ xH = [2, 4] f0(x
⋆) = −1 λλλ⋆ is undefined

This problem has no constraint qualification.

28.7.13 cq2
minimize

x∈R2
(x1 − 1)2 + (x2 − 1)2

subject to x2 ≤ 0

−x2 ≤ 0

xL = [−2,−1]⊤ x⋆ = [1, 0] xH = [2, 3]⊤ f0(x
⋆) = 1 λ⋆1 ≥ 2; λ⋆2 = λ

⋆
1 − 2

The gradients of the active constraints are not linearly independent, so λ1 and λ2 are not
uniquely determined. However, the cone of tangents T is equal to the cone of feasible
directions F, so a constraint qualification is satisfied.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

948 Nonlinear Programs Used in the Text

28.7.14 cq3
minimize

x∈R2
x1

subject to x2 − 1
2
+ (x1 − 1)2 ≤ 0

−x2 − 1
2
+ (x1 − 1)2 ≤ 0

xL = [−1,−1]⊤ x⋆ = [1−1/
√
2, 0]⊤ xH = [3, 1]⊤

f0(x
⋆) = 1−1/

√
2 λλλ⋆ = [

√
2/4,

√
2/4]⊤

28.7.15 branin
minimize

x∈Rn
2x21 − 21

20
x41 +

1
6
x61 + x1x2 + x22

subject to −x1 + 1 ≤ 0

xL = [0, 0]⊤ x⋆ = [1.7475523472644516,−0.87377617567992016]⊤ xH = [2, 2]⊤

f0(x
⋆) = 0.29863844223685942 λ⋆ = 0

This is Branin’s three-hump camel-back problem from [19], but with an added constraint.
The objective has another local minimum at −x⋆ with f0(−x⋆) = f0(x

⋆), and a unique global
minimum at x̂ = [0, 0]⊤ with f0(x̂) = 0; both of these points violate the constraint, though it
is inactive at the optimal point.

28.7.16 hearn

minimize
x∈X

f0(x) =
(1 − x2)

2

2x1
+
(2 − x1)

2

2x2
+ 5x1 + 4x2 +

1

2

where X =
{

x ∈ R2
∣
∣
∣ x1 > 0, x2 > 0

}

∪ [0, 1]⊤ ∪ [2, 0]⊤

xL = [0, 0]⊤ x⋆ = [0, 1]⊤ xH = [0.05, 1.80]⊤ f0(x
⋆) = 13

2

The objective value cannot be calculated at x⋆, so the nonlinear programming model breaks
down at the optimal point and the problem is ill-posed.

28.7.17 nset
minimize

x∈R2
(x1 − 1

2
)2 + x22

subject to cos(x1) + x2 ≤ 0

1
2
(x1 − 1

4
)2 − x2 − 1 1

4
≤ 0

xL = [−2,−6]⊤ x⋆ = [0.967281605376012;−0.567539804600159]⊤ xH = [6, 2]⊤

f0(x
⋆) = 0.540453528528370 λλλ⋆ = [1.135079609200316, 0]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.7.22 b1 949

28.7.18 h35
minimize

x∈R2
f (x) = v21 + v

2
2 + v

2
3

where vt = ct − x1(1 − xt2), t = 1, 2, 3

c1 = 1.5

c2 = 2.25

c3 = 2.625

xL = [0, 0]⊤ x⋆ =
[

3, 1
2

]
⊤ xH =

[

5, 3
5

]
⊤ f (x⋆) = 0

This problem is adapted from [80, p122,431], which specifies a starting point x0 = [2, 0.2]⊤

different from the midpoint of these bounds.

28.7.19 bss1
minimize

x∈R2
f0(x) = (x1 − 2)4 + (x1 − 2x2)2

xL = [−2, 0]⊤ x⋆ = [2, 1]⊤ xH = [2, 6]⊤ f (x⋆) = 0

This problem is from [1, §8.6.4].

28.7.20 p1
minimize

x∈R2
f0(x) = −x1x2

subject to x1 + 2x2 − 4 = 0

xL = [0, 0]⊤ x⋆ = [2, 1]⊤ xH = [8, 8]⊤ z⋆ = −2 λ⋆ = 1

This problem is [5, Example 16.5].

28.7.21 p2
minimize f0(x) = (x1 − 2)4 + (x1 − 2x2)2

subject to x21 − x2 = 0

xL = [0, 0]⊤ x⋆ = [0.945582993415968, 0.894127197437503]⊤ xH = [2, 4]⊤

f0(x
⋆) = 1.94618371044280 λ⋆ = 3.37068560583616

This problem is [1, Example 9.2.3].

28.7.22 b1
minimize

x∈R2
f0(x) = x1 − 2x2

subject to −x1 + x22 − 1 ≤ 0

−x2 ≤ 0

xL = [−2,−2]⊤ x⋆ = [0, 1]⊤ xH = [3, 3]⊤ f0(x
⋆) = −2 λλλ⋆ = [1, 0]⊤

This problem is [4, Example 16.1].

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

950 Nonlinear Programs Used in the Text

28.7.23 b2

minimize f0(x) = (x1 − 2)4 + (x1 − 2x2)2

subject to x21 − x2 ≤ 0

xL = [0, 0]⊤ x⋆ = [0.945582993415968, 0.894127197437503]⊤ xH = [2, 4]⊤

f0(x
⋆) = 1.94618371044280 λ⋆ = 3.37068560583616

This problem is [1, Example 9.4.4].

28.7.24 ep1

minimize
x∈R1

f0(x) = x2

subject to 1 − x ≤ 0

xL = 0 x⋆ = 1 xH = 4 f0(x
⋆) = 1 λ⋆ = 2

28.7.25 ep2

minimize
x∈R2

f0(x) = x21 + x22

subject to 2 − x1 − x2 ≤ 0

xL = [0, 0]⊤ x⋆ = [1, 1]⊤ xH = [4, 4]⊤ f0(x
⋆) = 2 λ⋆ = 2

28.7.26 al2

minimize
x∈R2

f0(x) = −x1 − x2

subject to x21 + x22 − 2 = 0

xL = [0, 0]⊤ x⋆ = [1, 1]⊤ xH = [4, 4]⊤ f0(x
⋆) = −2 λ⋆ = 1

2

This problem is [5, Example 17.1].

28.7.27 al1

minimize
x∈R1

f0(x) = −x

subject to
1

x
− 1 = 0

xL = −1
2

x⋆ = 1 xH = 3
2

f0(x
⋆) = −1 λ⋆ = −1

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.7.30 qp1 951

28.7.28 admm

minimize
x∈R4

f0(x) = x21 + x22 + x23 + x24

subject to 3x1 − x2 − 2x3 − x4 + 1 = 0

−4x1 + x2 + 5x3 + 2x4 − 3 = 0

xL =
[

− 63
65 ,−

99
65 ,−

378
65 ,−

99
65

]⊤
x⋆ =

[
7
65 ,−

9
65 ,

42
65 ,

11
65

]⊤
xH =

[
77
65 ,

81
65 ,

462
65 ,

121
65

]⊤

f0(x
⋆) = 31

65 λλλ⋆ =
[

− 58
65 ,−

8
13

]⊤

Using x⋆ and the starting point x0 = [0, 0, 0, 0]⊤ given in §20.3, I found xL and xH by the
method described in §26.2.2 for case 1. Because the linear equations defining the feasible
set have whole-number coefficients and the optimal point is the feasible vertex nearest the
origin, its coordinates are rational fractions.

28.7.29 ek1

minimize
x∈R2

f0(x) = (x1 − 20)4 + (x2 − 12)4

subject to 8e(x1−12)/9 − x2 + 4 ≤ 0

6(x1 − 12)2 + 25x2 − 600 ≤ 0

−x1 + 12 ≤ 0

xL =

[

18− 9√
2
, 21− 13√

2

]⊤
x⋆ = [15.629490902306340, 15.973768617852247]

⊤
xH =

[

18+ 9√
2
, 21+ 13√

2

]⊤

f0(x
⋆) = 614.21209720340380 λλλ⋆ = [250.99653438461144, 0, 0]

⊤

This problem is from [3, p315-320].

28.7.30 qp1

minimize
x∈R4

f0(x) = x21 + x22 + 2x
2
3 + 2x

2
4 + x1x4 + x2x3

subject to 3x1 − x2 − 2x3 − x4 + 1 = 0

−4x1 + x2 + 5x3 + 2x4 − 3 = 0

xL =
[

−1928
89
,−4485

89
,−540

89
,−130

89

]⊤
x⋆ =

[

− 3
89
,−41

89
, 54
89
, 13
89

]⊤
xH =

[
1572
89
, 3595

89
, 540

89
, 130

89

]⊤

f0(x
⋆) = 63

89
λλλ⋆ =

[

−105
89
,−77

89

]⊤

The starting point x0 = [−2,−5, 0, 0]⊤ and exact optimal point are given in §22.1. Using them
I found xL and xH by the procedure described in §26.2.2 for case 1. To find λλλ⋆ I used the

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

952 Nonlinear Programs Used in the Text

KKT conditions for the problem, which reduce to the following system of linear algebraic
equations.





2 0 0 1 3 −4
0 2 1 0 −1 1

0 1 4 0 −2 5

1 0 0 4 −1 2

3 −1 −2 −1 0 0

−4 1 5 2 0 0









x1
x2
x3
x4
λ1
λ2





=





0

0

0

0

−1
3





This system also yields x⋆, and because the coefficients in the linear system are whole
numbers its solution components are rational fractions.

28.7.31 qp2
minimize

x1 , x2
f0(x) = x21

subject to x1 = 1

x⋆ = [1, x2]
⊤ for any x2 ∈ R1 f0(x

⋆) = 1 λ⋆ = −2

28.7.32 qp3

The feasible set for this problem is the single point x⋆.
I solved the KKT conditions analytically to find λλλ⋆.

minimize
x∈R2

f0(x) = x21 + 3x
2
2

subject to x1 + x2 − 4 = 0

2x1 − x2 − 2 = 0

xL = [−5,−5]⊤ x⋆ = [2, 2]⊤ xH = [5, 5]⊤

f0(x
⋆) = 16 λλλ⋆ =

[

−28
3
, 8
3

] ⊤ -4

-2

0

2

4

-4 -2 0 2 4

x2

x1

•x⋆

f0(x) = 16

x
1
+
x
2
=
4

2
x 1
−
x 2
=
2

28.7.33 qp4

minimize
x∈R4

f0(x) = x21 + x22 + 2x
2
3 + 2x

2
4 + x1x4 + x2x3

subject to 3x1 − x2 − 2x3 − x4 + 1 ≤ 0

−4x1 + x2 + 5x3 + 2x4 − 3 ≤ 0

xL =
[
1
40
, 1
260
, 3
520
, 5
520

]⊤
x⋆ =

[
1
4
, 1
26
, 3
52
, 5
52

]⊤
xH =

[
5
2
, 5
13
, 15
26
, 25
26

]⊤
f0(x

⋆) = 7
104

λλλ⋆ =
[
7
52
, 0

]⊤

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.7.34 qp5 953

This problem is identical to qp1 except that the constraints are inequalities. I used qpin.m

to find x⋆ and λλλ⋆, confirming that the first constraint is tight and the second is slack. The
optimal point and multipliers can also be found from the KKT conditions of the equality-
constrained problem, which reduce to the following system of linear algebraic equations.





2 0 0 1 3

0 2 1 0 −1
0 1 4 0 −2
1 0 0 4 −1
3 −1 −2 −1 0









x1
x2
x3
x4
λ1





=





0

0

0

0

−1





Because the coefficients in the linear system are whole numbers, the solution is rational
fractions. Using x⋆ I found xL and xH by the procedure described in §26.2.2 for case 0.

28.7.34 qp5

minimize
x∈R2

f0(x) = x21 + x22 − x1x2 − 12x1 + 3x2
subject to −x1 + x2 − 6 ≤ 0

2x1 + x2 − 3 ≤ 0
1
2
x1 − x2 − 10 ≤ 0

−2
3
x1 − x2 − 7 ≤ 0

xL =
[
3
7
,−472

7

]⊤
x⋆ =

[
33
14
,−12

7

]⊤
xH =

[
33
7
, 508

7

]⊤

f0(x
⋆) = −585

28
λλλ⋆ =

[

0, 39
14
, 0, 0

]⊤

I used qpin.m to find x⋆ and λλλ⋆, confirming that only the second constraint is tight. The
optimal point and multipliers can also be found from the KKT conditions of the equality-
constrained problem, which reduce to the following system of linear algebraic equations.





2 −1 2

−1 2 1

2 1 0









x1
x2
λ2




=





12

−3
3





Because the coefficients in the linear system are whole numbers, the solution is rational
fractions. Using x⋆ and the starting point x0 =

[
18
7
,−61

7

]⊤
given in §22.2.1, I found xL and xH

by the procedure described in §26.2.2 for case 1.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

954 Nonlinear Programs Used in the Text

28.7.35 rnt

minimize
x∈R4

f0(x) = (x1 + x4)
4
+ (x2 + x3)

2

subject to Ax =

[

3x1 − x2 − 2x3 − x4
−4x1 + x2 + 5x3 + 2x4

]

=

[

−1
3

]

= b

xL = [−21,−49,−6,−1]⊤ x⋆ =
[

− 1
10
,−3

5
, 3
5
, 1
10

]⊤
xH = [17, 39, 6, 1]⊤

f0(x
⋆) = 0 λλλ⋆ = [0, 0]⊤

This problem has the same constraints as qp1. Because of the form of its objective function,
x⋆4 = −x⋆1 , x⋆3 = −x⋆2 , and f0(x

⋆) = 0 for all right-hand side vectors b. This makes λλλ⋆ = 0

even though the constraints are both satisfied with equality. Using x⋆ and the starting point
x0 = [−2,−5, 0, 0]⊤ given in §22.3, I found xL and xH by the procedure described in §26.2.2
for case 1.

28.7.36 grg2

minimize
x∈R2

f0(x) = (x1 − 8)2 + x22

subject to 1
20
x21 + x2 − 5 = 0

xL = [−67.149,−32.938]⊤ x⋆ = [8.91488339968883, 1.02624269849762]⊤ xH = [71.149, 42.538]

f0(x
⋆) = 1.89018571124588 λ⋆ = −2.05248539699525

Using x⋆ and the starting point x0 = [2, 24
5
]⊤ given in §23.1.2, I found xL and xH by the

procedure described in §26.2.2 for case 1. The Lagrange conditions for the problem require
that λ3 + 50λ2 + 800λ + 1440 = 0, which I solved numerically for λ⋆.

28.7.37 grg4

minimize
x∈R4

f0(x) = x21 + x2 + x23 + x4

subject to x21 + x2 + 4x3 + 4x4 − 4 = 0

−x1 + x2 + 2x3 − 2x24 + 2 = 0

xL = [−5,−39.75208185513982,−11.65942549594963,−6.09640503216468]⊤
x⋆ = [−0.5,−4.824791814486018, 1.534057450405037, 0.609640503216468]⊤
xH = [5, 23.75208185513982, 17.65942549594963, 6.09640503216468]⊤

f0(x
⋆) = −1.61181905012635 λλλ⋆ = [−0.534057450405037,−0.465942549594963]⊤

The starting point x0 = [0,−8, 3, 0]⊤ given in §23.1.2, which comes from [3, p313], hap-
pens to satisfy the constraints. Using it and x⋆ I found xL and xH by the procedure

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.7.40 egg 955

described in §26.2.2 for case 1. The Lagrange conditions for this problem require that
16λ31 + 83λ

2
1 + 116λ1 + 41 = 0, which I solved numerically for λ⋆1 ; they also require λ2 = −λ1 − 1,

which I used to find λ⋆2 .

28.7.38 sqp1

minimize
x∈R2

f0(x) = ex1−1 + ex2+1

subject to x21 + x22 − 1 = 0

xL = [−8.36709035275112,−18.64716470209894]⊤
x⋆ = [−0.263290964724888,−0.964716470209894]⊤
xH = [6.36709035275112, 20.64716470209894]⊤

f0(x
⋆) = 1.31863544493956 λ⋆ = 0.536900432125476

Using x⋆ and the starting point x0 = [−1, 1]⊤ given in §23.2.0, I found xL and xH by the
procedure described in §26.2.2 for case 1.

28.7.39 incon

minimize
x∈R2

f0(x) = x21 + x22

subject to x1 − 1 ≤ 0

−x21 + 4 ≤ 0

xL = [−29,−20]⊤ x⋆ = [−2, 0]⊤ xH = [31, 20]⊤

f0(x
⋆) = 4 λλλ⋆ = [0, 1]⊤

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

x1

x2

•x
⋆

•x
0

The constraints of this problem come from [5, p535]. Using x⋆ and the starting point
x0 = [1, 0]⊤ given in §23.2.4, I found xL and xH by the procedure described in §26.2.2 for case
1. To find λλλ⋆ I solved the KKT conditions for the problem.

28.7.40 egg

minimize
x∈R2

f0(x) = e(x1−2)
2

Γ(x2) where Γ(t) =

∫ ∞

0

yt−1e−ydy

x⋆ = [2, 1.46163214498002]⊤ f ⋆0 = 0.885603194410889

To determine x⋆2 with x⋆1 ≡ 2, I used gradcd.m and bisection to find the zero of ∂Γ(2, x2)/∂x2.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

956 Appendices

28.7.41 big

minimize
x∈Rn

f0(x) =

n∑

j=1

a j(x j − 1)2

subject to min

(

1

a j

, a j

)

− x j ≤ 0, j = 1 . . . n

x j −max

(

1

a j

, a j

)

≤ 0, j = 1 . . . n.

for a = [2, 3]⊤ : xL =
[
1
2 ,

1
3

]⊤
x⋆ = [1, 1]⊤ xH = [2, 3]⊤ f0(x

⋆) = 0 λλλ⋆ = [0, 0, 0, 0]⊤

for a = [−3, 3]⊤ : xL =
[

−3, 1
3

]⊤
x⋆ = [−3, 1]⊤ xH =

[

− 1
3
, 3

] ⊤
f0(x

⋆) = −48 λλλ⋆ = [−16, 0, 0, 0]⊤

In general,

x⋆j =

{
1 if a j > 0

min
(

a j, 1/a j

)

if a j < 0.

28.8 Integer Nonlinear Program Used in the Text

For the single named integer nonlinear programming example, I have given below an algebraic
statement in standard form, bounds xL and xH on the variables, and the optimal integer
points.

28.8.1 inlp

minimize
x∈Z2

f0(x) = (x1 − 4)2 + (x2 − 2 1
2
)2

subject to (x1 − 2)2 + (x2 − 4) ≤ 0

−x1 ≤ 0 and integer
−x2 ≤ 0 and integer

xL = [0, 0]⊤ x⋆1IP = [3, 2]⊤ f0(x
⋆1
IP) =

5
4
= f0(x

⋆2
IP) x⋆2IP = [3, 3]⊤ xH = [4, 4]⊤

28.9 Exercises

A few of these problems assume a knowledge of material from other Chapters.

28.9.1[E] This Chapter includes some background information about undergraduate math-
ematics, numerical methods, and computer programming. (a) Is the survey that it provides
of these subjects exhaustive, superficial, or focused on specific needs? Explain. (b) Where
can you find additional background information on these subjects? (c) What else is in this
Chapter?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.9 Exercises 957

28.9.2[E] What topics in calculus have I assumed you know quite well, so that they do
not need to be reviewed in this Chapter?

28.9.3[E] Suppose that f (x) is a twice-differentiable scalar function of the scalar variable
x. (a) Where might we find its local minima? Why? (b) How can its second derivative be
used to classify the points where its first derivative is zero? (c) Show that in the example of
§28.1.1 y′(xd) = 0. (d) In the example we classified point d as a local minimum by computing
y′′(xd) ≈ 3117.6 > 0. Explain how inspection of the graph reveals that the slope of the curve
is increasing at that point.

28.9.4[P] The function f (x) = 3x3 + 2x2 − x + 1 is twice-differentiable. (a) Find its one
local minimum and its one local maximum. (b) Is x = −2

9
an inflection point?

28.9.5[P] Suppose we want to approximate the function f (x) = sin(x) in the vicinity of
x = π. (a) Construct a linear approximation T1(x; π). (b) Construct a quadratic approxima-
tion T2(x; π). (c) Write a MATLAB program that plots on one set of axes e1 = f (x)− T1(x; π)

and e2 = f (x) − T2(x; π) over the interval x ∈ [0, 2π]. (d) Compute the area between the
curves of f (x) and T1(x; π) and the area between the curves of f (x) and T2(x; π) over that
interval. Over what range of x do you think these approximations might actually be useful?
(e) Construct the Taylor series expansion T∞(x; π) of f (x). Do you recognize this as the
power series for sin(x)?

28.9.6[H] Suppose that f (x) = x⊤Qx where x ∈ R2 and

Q =

[

1 2

3 4

]

.

(a) Compute ∇f (x). (b) Verify that the components of your answer are the partial derivatives
of f (x) = x21 + 5x1x2 + 4x

2
2.

28.9.7[H] Show that ∇(x⊤x) = 2∇
(√
x⊤x

)

.

28.9.8[E] What topics in linear algebra have I assumed you know quite well, so that they
do not need to be reviewed in this Chapter?

28.9.9[E] What does it mean to say that two matrices are conformable (a) for addition?
(b) for multiplication?

28.9.10[H] For the matrices A and B below [147, p16] compute the matrix products (a) AB;
(b) BA.

A =





1 0 0

−2 1 0

0 0 1




B =





1 0 0

0 1 0

0 3 1





28.9.11[H] What properties of two matrices A and B are sufficient to ensure that AB = BA?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

958 Appendices

28.9.12[P] The following system of linear algebraic equations has a unique solution.

x1 + 3x2 + 5x3 = −2
2x1 − 4x3 = 7

−6x1 + x2 − 8x3 = 0

(a) Write the system in matrix-vector form. (b) Use matrix multiplication to prove that
x1 =

195
134

, x2 =
37
67
, and x3 = −137

134
solve the linear system. (c) Use the MATLAB backslash

operator \ to obtain this solution.

28.9.13[H] Compute the transpose of each matrix below.

(a)

[

4.2 −9.7 3.1 5.0

2.1 6.6 −1.7 8.3

]

(b)





2 4 6

4 5 1

6 1 7




(c) [1, 2, 3]⊤

28.9.14[E] What makes a matrix (a) symmetric? (b) diagonal? (c) the identity matrix?

28.9.15[H] If a⊤ = [1, 2, 3] and b⊤ = [4, 5, 6] compute (a) the inner product a⊤b; (b) the
inner product b⊤a; (c) the outer product ab⊤; (d) the outer product ba⊤. (d) What sort of
product is ab?

28.9.16[H] Why is the outer product of two vectors a matrix of rank one? Why is the outer
product of a vector with itself a symmetric matrix? When is it an identity matrix?

28.9.17[H] What is the dot product of two vectors a and b if the angle between them is
(a) 0◦; (b) 90◦.

28.9.18[H] If x ∈ R2 has length 3.5, y ∈ R2 has length 5.2, and x⊤y = 12, what must be the
angle θ between the two vectors?

28.9.19[H] Are the vectors v1 = [1, 2, 3]⊤ and v2 = [4, 5, 6]⊤ linearly independent? If so,
prove it; if not, what must c1 and c2 be so that c1v1 + c2v2 = 0?

28.9.20[E] Why can’t a set of vectors that includes the zero vector be linearly independent?

28.9.21[H] Show that if x, y, and z are any three vectors in R2, then scalars a and b can
be found such that ax + by = z. What does this imply about the linear independence of the
three vectors?

28.9.22[P] This matrix has three rows, but its rank is only 2.

A =





1 2 3

4 5 6

7 8 9





(a) Use the MATLAB command rank(A) to confirm that its rank is 2. (b) Find scalars a

and b such that a[1, 2, 3] + b[4, 5, 6] = [7, 8, 9]. (c) What is implied by the fact that this is
possible?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.9 Exercises 959

28.9.23[H] Prove that if AA−1 = I then A−1A = I.

28.9.24[H] Can a singular matrix have an inverse? If so, write down a singular matrix that
has an inverse; if not, write down a singular matrix and show that it cannot have an inverse.

28.9.25[P] Consider the following matrix.

A =





−2
9

5
9
−1

9

4
9
−1

9
2
9

−1
3

1
3

1
3





(a) Find the cofactor matrix C corresponding to A. (b) Find the adjoint matrix correspond-
ing to A. (c) Find the determinant of A. (d) Find the inverse A−1. (e) Confirm that you
have found the inverse by showing that AA−1 = A−1A = I. (f) Write a MATLAB routine
adj(A) that returns the adjoint matrix corresponding to A.

28.9.26[P] The inverse of a nonsingular 2×2 matrix B can be found from a simple formula.
(a) State the formula. (b) Use the formula to find the inverse of

B =

[

1 2

3 4

]

(c) Write a MATLAB routine twoinv(B) that uses the formula to compute the inverse of its
2 × 2 matrix argument B. What does your routine do if B is singular?

28.9.27[H] In §28.2.6 I stated several identities concerning matrix inverses, which assume
that each matrix being inverted is square and nonsingular. Which of them make sense only
if the matrices A and B are both square?

28.9.28[E] What notation is used in this book to represent the transpose of an inverse
matrix? Why can the same notation be used for the inverse of a matrix transpose?

28.9.29[P] In §28.2.6, I claimed that (A⊤)−1 = (A−1)⊤. (a) Use MATLAB to confirm this
claim for several random square matrices of different sizes. (b) Prove that the claim is true
in general.

28.9.30[P] In §28.2.6 I claimed that (AB)−⊤ = A−⊤B−⊤. (a) Use MATLAB to confirm this
claim for several random square matrices of different sizes. (b) Prove that the claim is true
in general.

28.9.31[H] Prove that (AB)⊤ = B⊤A⊤.

28.9.32[H] Prove that (AB)−1 = B−1A−1.

28.9.33[E] What ideas from numerical computing have I assumed you know quite well, so
that they do not need to be reviewed in this Chapter?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

960 Appendices

28.9.34[E] Describe one mathematical problem of practical importance that does not have
a closed-form analytic solution.

28.9.35[E] How does a computer program that implements an iterative algorithm repeat
the sequence of arithmetic and logical operations until a sufficiently precise answer is ob-
tained?

28.9.36[E] What are floating-point calculations? Are they exact?

28.9.37[E] Describe a class of problems that can be solved using more than one numerical
algorithm. Are the algorithms equally fast? Are they equally accurate? Are they equally
likely to give the right answer?

28.9.38[H] If f (a) < 0 and f (b) > 0, what property must f (x) have to ensure that its value
is zero at some x ∈ (a, b)? What property must f (x) have to ensure that its value is zero at
exactly one x ∈ (a, b)?

28.9.39[E] Describe in words the idea of the bisection algorithm for finding a root of
f (x) = 0.

28.9.40[E] What is a convergence test, and why might we use one?

28.9.41[E] The product fL × fk is negative if fL and fk are of opposite sign or positive if
they are of the same sign. What happens in the bisection algorithm if one or the other value
is exactly zero?

28.9.42[E] Describe in words the idea of Newton’s method for solving f (x) = 0. What are
its advantages over bisection? What are its drawbacks when compared to bisection?

28.9.43[E] What happens if you start Newton’s method too far from the root you are
trying to find?

28.9.44[E] How does MATLAB store integers such as loop counters and array indices?

28.9.45[E] Why are floating-point calculations usually not perfectly precise? What is the
definition of machine epsilon, and what is its numerical value? What is a NaN, and how can
they be avoided?

28.9.46[P] Write a MATLAB program that approximates the value of machine epsilon.

28.9.47[P] Write a MATLAB program that generates a NaN.

28.9.48[E] What experience with numerical computing did I assume you had as you began
reading this book? What level of fluency with numerical computation do I hope you will
have reached by the time you finish reading it?

28.9.49[E] What MATLAB control structures have I used in this book? Where are continue
and break useful, and what is the difference between them?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

28.9 Exercises 961

28.9.50[E] What are the two forms of the MATLAB if statement, and in what circum-
stances have I used each?

28.9.51[E] Explain how the MATLAB switch statement works. In the code excerpt from
sqp1.m reproduced in §28.4.1, what happens if the routine is entered with i=2?

28.9.52[H] Many programming environments provide a small number of functions that are
built-in and thus always present (such as square root) and expect other functions to be
accessed only after their individual definitions have been extracted from a library specified
by the programmer. In base MATLAB and its work-alike Octave, a vast legion of functions
are built-in. What are the advantages of this design choice? Does it have any drawbacks?

28.9.53[E] How can you tell whether a name is already in use for a MATLAB function or
variable? What happens if you use one of those many names to mean something else?

28.9.54[E] In the MATLAB programs listed in this book, what does the variable i usually
denote? What is its default meaning in MATLAB?

28.9.55[H] Two different schemes are described in §28.4.3 for coding the implementation
of an iterative algorithm. Explain how the first scheme works if (a) convergence is attained
at x0; (b) convergence is attained at a later iteration but before the iteration limit is met;
(c) the iteration limit is met without convergence being attained. What values are returned
for xstar and k in each case?

28.9.56[H] Two different schemes are described in §28.4.3 for coding the implementation of
an iterative algorithm. (a) Why is the first scheme ill-suited for repeated invocation in a loop
to perform one iteration at a time? Explain how the second scheme works if (b) convergence
is attained at x0; (c) convergence is attained at a later iteration but before the iteration limit
is met; (d) the iteration limit is met without convergence being attained. What values are
returned for xstar and k in each case?

28.9.57[P] The bisection algorithm described in §28.3.1 and the Newton’s method algo-
rithm described in §28.3.2 both increment k. (a) Do they count iterations in either of the
ways discussed in §28.4.3? (b) Reimplement the bisection algorithm as a serially-reusable
MATLAB function [xstar,kp]=bisect(fcn,xh,xl,epsx,epsf,kmax) that can be invoked
in a loop to perform one iteration of the algorithm at a time. (c) Write a program to invoke
bisect repeatedly in a loop and use it to print out each iterate xk produced by the algorithm.

28.9.58[E] Each linear program description in §28.5 gives the optimal objective value for
the primal problem. How can you get the optimal objective value for the dual?

28.9.59[H] If a nonsingular system of linear algebraic equations has coefficients that are
whole numbers, the components of its solution vector are rational fractions. (a) Why?
(b) Given the decimal expansion of a rational fraction, how can you find the rational fraction?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

962 Appendices

28.9.60[H] Explain why the rnt problem (see §28.7.35) has f0(x
⋆) = 0 for all right-hand

side vectors b. Why does this make λλλ⋆ = [0, 0]⊤?

28.9.61[P] The structure of the big problem allowed us to deduce in §25.7.4 that

x⋆j =

{
1 if a j > 0

min
(

a j, 1/a j

)

if a j < 0.

(a) What are the corresponding variable bounds? (b) What are the corresponding KKT
multipliers?

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29

Bibliography

If you encountered a citation in the text and want to look up the reference, find the entry
with the given number. For example, the citation [1] refers to the first entry below, the
textbook by Bazaraa et al.

If you have a particular work in mind and want to check whether it is used as a reference
or find the number by which it is cited, scan for its author or title. To make this easy,
the entries are sorted into three categories and are listed alphabetically by author’s name
within each category. Documents authored by an organization, or containing no attribution
of authorship, are alphabetized by the most significant words in the title.

Some of the entries include annotations in slanting type. The internet addresses that are
given in a few of the entries (and elsewhere in the book) were valid when I used them but
might have changed since then.

29.1 Suggested Reading

This category lists basic works that are relevant in a general way to mathematical program-
ming, and which I recommend in their entirety for further study.

[1] Bazaraa, Mokhtar S., Sherali, Hanif D., and Shetty, C. M., Nonlinear Pro-
gramming: Theory and Algorithms, Third Edition, John Wiley & Sons, 2006. The
indispensable reference on nonlinear programming theory, long on convex analysis and
thus not easy reading but well worth the effort of careful study. The typesetting of this
edition leaves much to be desired.

[2] Bertsekas, Dimitri P., Nonlinear Programming, Third Edition, Athena Scientific,
2016. A “comprehensive, and rigorous account of nonlinear programming. . . up to date
with recent research progress. . . ” Also not for the faint of heart, but breathtaking in
scope and informed by an awareness of engineering applications.

[3] Ecker, J. G. and Kupferschmid, Michael, Introduction to Operations Research,
Reprint Edition, Krieger Publishing Company, 2004. An easy introduction to Chapters
1-7, 11, 15-16, and 24 of the present book, plus chapters on queueing, inventory,
and simulation. The present book’s treatment of linear programming is based on the
approach taken in this book, which was originally developed by Joe Ecker.

[4] Griva, Igor, Nash, Stephen G., and Sofer, Ariela, Linear and Nonlinear Opti-
mization, Second Edition, SIAM, 2009. A thorough survey favored by students, acces-

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

964 Bibliography

sible and a pleasure to read, with many numerical examples. This edition has the best
cover art ever.

[5] Nocedal, Jorge and Wright, Stephen J., Numerical Optimization, Second Edi-
tion, Springer, 2006. A widely-taught and authoritative survey, also very thorough,
comparable in rigor to [2] but easier to read.

29.2 Technical References

This category lists other references about optimization and related technical subjects. Many
of these books and papers are also well worth reading in their entirety, but they are cited
in the text only as authority for specific claims made there or as sources of additional
information about particular topics.

[6] Abramowitz, Milton and Stegun, Irene A., Handbook of Mathematical Functions,
Dover, 1970.

[7] Abu-Mostafa, Yaser S., Magdon-Ismail, Malik, and Lin, Hsuan-Tien, Learn-
ing From Data: A Short Course, AMLbook.com, 2012.

[8] Apostol, Tom M., Mathematical Analysis, Second Edition, Addison-Wesley, 1975.

[9] Audet, Charles, Hansen, Pierre, and Messine, Frédéric, “The Largest Small
Octagon,” Journal of Combinatorial Theory, Series A, 98 46-59, 2002. Constraints 4
and 5 in the statement of the nonlinear program contain sign reversals in six terms,
which I have corrected in Exercise 25.8.11. For a class project in 2004, Zheng Yuan
used symmetry arguments to generalize the results of this paper and find the decagon
of maximum area.

[10] Balinski, M. L., “A Competitive (Dual) Simplex Method for the Assignment Prob-
lem,” Mathematical Programming 34: 125-141, 1986.

[11] Beale, E. M. L., “Cycling in the Dual Simplex Algorithm,” Naval Research Logisics
Quarterly 2:4 269-276, December 1955. The example discussed in §4.5 and attributed
by many authors to Beale is actually the dual of the problem he suggests in this paper.

[12] Beightler, Charles S. and Phillips, Donald T., Applied Geometric Programming,
John Wiley & Sons, 1976.

[13] Bellman, Richard, Dynamic Programming, Princeton University Press, 1957.

[14] Bennett, Kristin P., Classnotes, Computational Optimization MATP-4820/6610,
Rensselaer Polytechnic Institute, spring 2015.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.2 Technical References 965

[15] Bertsekas, Dimitri P. and Tseng, Paul, “The RELAX Codes for Linear Minimum
Cost Network Flow Problems,” Annals of Operations Research 13:1 125-190, December
1988.

[16] Bland, Robert G., “New Finite Pivoting Rules for the Simplex Method,” Mathe-
matics of Operations Research 2:2, May 1977.

[17] Boyd, Stephen, Parikh, Neal, Chu, Eric, Peleato, Borja, and Eckstein,

Jonathan, “Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers,” Foundations and Trends in Machine Learning 3:1
1-122, 2011.

[18] Bracken, Jerome and McCormick, Garth P., Selected Applications of Nonlinear
Programming, John Wiley & Sons, 1968.

[19] Branin, F. H., “Widely Convergent Method for Finding Multiple Solutions of Simul-
taneous Nonlinear Equations,” IBM Journal of Research and Development 16: 504-522,
1972.

[20] Burden, Richard L., Faires, J. Douglas, and Reynolds, Albert C., Numerical
Analysis, Second Edition, Prindle, Weber & Schmidt, 1981.

[21] Calingaert, Peter, Assemblers, Compilers, and Program Translation, Computer Sci-
ence Press, 1979.

[22] Cauchy, A., “Méthode générale pour la résolution des systèmes d’équations simul-
tanées,” Compte Rendu à l’Académie des Sciences 25 536-538, 18 October 1847.

[23] Cecchini, Mark, Ecker, Joseph, Kupferschmid, Michael, and Leitch, Robert,
“Solving Nonlinear Principal-Agent Problems using Bilevel Programming,” European
Journal of Operational Research 230:2 364-373, 2013.

[24] Chen, S., Donoho, D. L., and Saunders, M. A., “Atomic Decomposition by Basis
Pursuit,” SIAM Journal of Scientific Computing 20:1 33-61, 1999.

[25] Charnes, A. and Cooper, W. W., Management Models and Industrial Applications
of Linear Programming, two volumes, John Wiley & Sons, 1961. This iconic tome from
the dawn of mathematical programming could serve to define the term “venerable.”
Its gentle introduction, assuming only high-school algebra as prerequisite, might strike
the jaded modern as childlike in its earnest simplicity, but students who want to start
learning the subject at its very beginning will find here much more than charm.

[26] Chatterjee, Samprit and Price, Bertram, Regression Analysis by Example, John
Wiley, 1977. In their equation (8.12) the diagonal terms should be multiplied by
r11 . . . rpp. They assume regression data have been transformed to make β0 = 0.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

966 Bibliography

[27] Cheney, Margaret and Borden, Brett, Fundamentals of Radar Imaging, SIAM,
2009.

[28] Colville, A. R., A Comparative Study on Nonlinear Programming Codes, New York
Scientific Center Report 320-2949, International Business Machines, 1968.

[29] Conley, William, Computer Optimization Techniques, Petrocelli Books, 1980. A gal-
lant defense of Monte Carlo optimization.

[30] Conte, S. D. and de Boor, Carl, Elementary Numerical Analysis: An Algorithmic
Approach, Third Edition, McGraw-Hill, 1980.

[31] Cornwell, L. W., Hutchison, P. A., Minkoff, M., and Schultz, H. K., Test
Problems for Constrained Nonlinear Mathematical Programming Algorithms, Technical
Memorandum No. 320, Applied Mathematics Division, Argonne National Laboratory,
1978.

[32] Courant, R., “Variational methods for the solution of problems of equilibrium and
vibrations,” Bulletin of the American Mathematical Society 49: 1-23, 1943.

[33] Covey, David, Parallel Ellipsoid Methods for Nonlinear Programming, PhD Thesis,
Rensselaer Polytechnic Institute, May 1989.

[34] Crowder, Harlan, Dembo, Ron S., and Mulvey, John M., “On Reporting Com-
putational Experiments with Mathematical Software,” ACM Transactions on Mathe-
matical Software 5:2 192-203, June 1979.

[35] Dantzig, George B., Linear Programming and Extensions, Princeton University
Press, 1963. The foundational text of linear programming, including a detailed history
of the discipline.

[36] Dantzig, George B., “Remarks on the Occasion of the Bicentennial Conference on
Mathematical Programming,” NBS Special Publication 502: Computers and Mathe-
matical Programming 1-3, February 1978.

[37] Dantzig, George B., “Khachian’s Algorithm: a Comment,” SIAM News 13 1,4,
1980.

[38] Dantzig, George B., Orden, A., and Wolfe, Philip, “The Generalized Simplex
Method for Minimizing a Linear Form Under Linear Inequality Restraints,” Pacific
Journal of Mathematics 5 183-195, 1955.

[39] Davenport, Mark A., Duarte, Marco F., Eldar, Yonina C., and Kutyniok,

Gitta, “Introduction to Compressed Sensing,” Chapter 1 of Compressed Sensing: The-
ory and Applications, Cambridge University Press, 2012.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.2 Technical References 967

[40] Davidon, W. C., Variable metric method for minimization, Technical Report ANL-
5990 (revised), Argonne National Laboratory, 1959.

[41] Dembo, R. S., “GGP— A Program for Solving Generalized Geometric Programming
Problems — User’s Manual,” Chemical Engineering Report 72/59, Technion, 1972.

[42] Dembo, R. S. and Mulvey, J. M, On the Analysis and Comparison of Mathematical
Programming Algorithms and Software, Harvard Business School HBS 76-19, 1976,
later published in Computers and Mathematical Programming, Special Publication
#502, National Bureau of Standards, 1978.

[43] Dempe, S., Foundations of Bilevel Programming, Kluwer, 2002.

[44] Dolan, Elizabeth D. and Moré, Jorge J., “Benchmarking optimization software
with performance profiles,” Mathematical Programming A 91 201-213, 2002.

[45] Donoho, David L., “Compressed Sensing,” IEEE Transactions on Information The-
ory 52:4, April 2006.

[46] Duffin, Richard J., Peterson, Elmor L., and Zener, Clarence, Geometric Pro-
gramming — Theory and Application, John Wiley & Sons, 1967.

[47] Dziuban, Stephen T., Ellipsoid Algorithm Variants in Nonlinear Programming, PhD
Thesis, Rensselaer Polytechnic Institute, August 1983.

[48] Eason, E. D. and Fenton, R. G., Testing and Evaluation of Numerical Methods
for Design Optimization, Technical Publication 7204, Department of Mechanical En-
gineering, University of Toronto, September 1972.

[49] Eason, Ernest D. and Padmanaban, Jeya, “Engineering Problems for Evaluating
Nonlinear Programming Codes,” XI International Symposium on Mathematical Pro-
gramming, Bonn, Germany, 23-27 August 1982. They introduce the characterization of
problems as class–1 or class–2; to avoid confusion with other uses of the word “class”
I have referred to these categories as type–1 and type–2.

[50] Eaton, John W., Bateman, David, and Hauberg, Søren, GNU Octave, Edition 3
for Octave version 3.6.1, Free Software Foundation, 2011.

[51] Ech-cherif, A., Ecker, J. G., and Kupferschmid, Michael, “A Numerical Investi-
gation of Rank-Two Ellipsoid Algorithms for Nonlinear Programming,” Mathematical
Programming 43 87-95, 1989.

[52] Ecker, Joseph G. and Kupferschmid, Michael, “A computational comparison of
the ellipsoid algorithm with several nonlinear programming algorithms,” SIAM Journal
on Control and Optimization 23 657-674 1985.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

968 Bibliography

[53] Ecker, Joseph G., Classnotes, Computational Optimization MATP-4820/6610, Rens-
selaer Polytechnic Institute, spring 2005.

[54] Eckstein, J. and Bertsekas, D. P., “On the Douglas-Rachford Splitting Method
and the Proximal Point Algorithm for Maximal Monotone Operators,” Mathematical
Programming 55: 293-318, 1992.

[55] Edmonds, Jack, “Paths, Trees, and Flowers,” Canadian Journal of Mathematics
17 449-467, 1965; also “Optimum Branchings,” Journal of Research of the National
Bureau of Standards 71B 233-240, 1967.

[56] Fang, Shu-Chern and Puthenpura, Sarat, Linear Optimization and Extensions:
Theory and Algorithms, Prentice-Hall, 1993.

[57] Fiacco, Anthony V. and McCormick, Garth P., Nonlinear Programming: Se-
quential Unconstrained Minimization Techniques, John Wiley & Sons, 1968. This book
provides an extensive historical survey as its §1.2.

[58] Fisher, Marshall L., “The Lagrangian Relaxation Method for Solving Integer Pro-
gramming Problems,” Management Science 50:12 supplement 1861-1871, December
2004.

[59] Fletcher, R., Practical Methods of Optimization: Volume 1, Unconstrained Optimiza-
tion, John Wiley & Sons, 1980.

[60] Forsythe, George E., Malcolm, Michael A., and Moler, Cleve B., Computer
Methods for Mathematical Computations, Prentice-Hall, 1977.

[61] Fourer, Robert, Gay, David M., and Kernighan, Brian W., AMPL: A Modeling
Language for Mathematical Programming, www.ampl.com/BOOK/download.html, 2003.

[62] Garfinkel, Robert S. and Nemhauser, George L., Integer Programming, John
Wiley & Sons, 1972.

[63] Gass, Saul I., Linear Programming: Methods and Applications, Fifth Edition,
McGraw-Hill, 1985.

[64] Geoffrion, A. M., “Integer Programming by Implicit Enumeration and Balas’
Method,” SIAM Review 7:2 178-190, April 1967.

[65] Glassey, C. R. and Gupta, V. K., “A Linear Programming Analysis of Paper
Recycling,” Management Science 20: 392-408, 1974.

[66] Goldstein, A. A. and Price, J. F., “On Descent from Local Minima,” Mathematics
of Computation 25:115 569-574, July 1971.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.2 Technical References 969

[67] Golub, Gene H. andVan Loan, Charles F., Matrix Computations, Second Edition,
Johns Hopkins University Press, 1989.

[68] Gould, Nicholas and Scott, Jennifer, “A Note on Performance Profiles for Bench-
marking Software,” ACM Transactions on Mathematical Software 43:2, Article 15,
August 2016.

[69] Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products,
Academic Press, 1965.

[70] Greenberg, Harold, Integer Programming, Academic Press, 1971.

[71] Greenberg, Harvey J., Myths and Counterexamples in Linear Programming,
hjgreenberg@gmail.com, 20 Feb 2010.

[72] Greene, Daniel H., and Knuth, Donald E., Mathematics for the Analysis of
Algorithms, Second Edition, Birkhäuser, 1982.

[73] Grötschel, M., Lovász, L., and Schrijver, A., Geometric Algorithms and Combi-
natorial Optimization, Springer, 1985.

[74] Hadley, G., Nonlinear and Dynamic Programming, Addison-Wesley, 1964.

[75] Hayes, Brian, “The Best Bits,” Computing Science, American Scientist 97: 276-280,
July-August 2009.

[76] Hearn, Donald W. and Randolph, W. D., Dual Approaches to Quadratically Con-
strained Quadratic Programming, Research Report 73-15, Industrial and Systems En-
gineering Department, University of Florida, 1973.

[77] Heath, Michael T., Scientific Computing: An Introductory Survey, McGraw-Hill,
1996.

[78] Hestenes, Magnus R., Optimization Theory: The Finite Dimensional Case, John
Wiley, 1975. Hestenes was William Karush’s PhD thesis advisor.

[79] Hillier, Frederick S. and Lieberman, Gerald J., Introduction to Operations Re-
search, Holden-Day, 1980.

[80] Himmelblau, David M., Applied Nonlinear Programming, McGraw-Hill, 1972.

[81] Hock, W. and Schittkowski, K., Test Examples for Nonlinear Programming Codes,
Springer-Verlag, New York, 1981.

[82] Hoffman, A. J., “Cycling in the Simplex Algorithm,” Report No. 2974, National
Bureau of Standards, 1953.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

970 Bibliography

[83] Horowitz, Ellis and Sahni, Sartaj, Fundamentals of Data Structures, Computer
Science Press, 1976.

[84] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, The
Institute of Electrical and Electronics Engineers, 12 August 1985.

[85] Jackson, Richard H. F., Boggs, Paul T., Nash, Stephen G., and Powell,

Susan, “Guidelines for reporting results of computational experiments: report of the
ad hoc committee,” Mathematical Programming 49 413-426 1990/1991.

[86] Jaderberg, Max, Czarnecki, Wojciech M., Dunning, Iain, Marris, Luke,
Lever, Guy, Castañeda, Antonio Garcia, Beattie, Charles, Rabinowitz, Neil

C., Morcos, Ari S., Ruderman, Avraham, Sonnerat, Nicholas, Green, Tim,
Deason, Louise, Leibo, Joel Z., Silver, David, Hassabis, Demis, Kavukcuoglu,

Koray, and Graepel, Theore, “Human-level performance in 3D multiplayer games
with population-based reinforcement learning,” Science 364:6443 859-864, 31 May
2019.

[87] Jennings, Alan, Matrix Computation for Engineers and Scientists, John Wiley, 1977.

[88] Johnson, Eric C., A Parallel Decomposition Algorithm for Constrained Nonlinear
Optimization, PhD Thesis, Rensselaer Polytechnic Institute, July 2001.

[89] Karmarkar, N., “A New Polynomial-Time Algorithm for Linear Programming,”
Combinatorica 4: 373-395, 1984.

[90] Karush, William, Minima of Functions of Several Variables with Inequalities as
Side Conditions, S.M. Thesis, Department of Mathematics, University of Chicago,
December 1939.

[91] Kelly, Terrence K. and Kupferschmid, Michael, “Numerical Verification of
Second-Order Sufficiency Conditions for Nonlinear Programming,” Classroom Notes,
SIAM Review 40:2 310-314, June 1998.

[92] Khachiyan, L. G., “A Polynomial Algorithm in Linear Programming,” Doklady
Akademii Nauk SSSR 244 1093-1096, 1979 translated from the Russian in Soviet Math-
ematics Doklady 20 191-194, 1979.

[93] Klee, Victor and Minty, George J., “How Good is the Simplex Method?”
Inequalities-III 159-175, Academic Press, 1972.

[94] Knuth, Donald E., The Art of Computer Programming: Volume 1/Fundamental
Algorithms, Second Edition, Addison-Wesley, 1973.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.2 Technical References 971

[95] Knuth, Donald E., The Art of Computer Programming: Volume 3/Sorting and
Searching, Second Printing, Addison-Wesley, 1973.

[96] Kochan, Stephen G. and Wood, Patrick H., Unix Shell Programming, Revised
Edition, Hayden Books, 1990.

[97] Kuhn, H. W. and Tucker, A. W., “Nonlinear Programming,” Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability 481-492, Uni-
versity of California Press, 1951.

[98] Kupferschmid, Michael, An Ellipsoid Algorithm for Convex Programming, PhD
Thesis, Rensselaer Polytechnic Institute, July 1981. I apologize for the adolescent
pomposity, clumsy mechanics, and numerous typographical errors that pervade this
thesis.

[99] Kupferschmid, Michael and Ecker, J. G., “A Note on the Solution of Nonlinear
Programming Problems with Imprecise Function and Gradient Values,” Mathematical
Programming Study 31 129-138, 1987.

[100] Kupferschmid, Michael, Classical FORTRAN, Second Edition, CRC Press, 2009.

[101] Kupferschmid, Michael, Computing Fourier Transforms, Department of Mathe-
matical Sciences, Rensselaer Polytechnic Institute, 2012. This was the textbook for
the course Fast Fourier Transforms, MATH-4961, in spring 2013.

[102] Lan, G., “An optimal method for stochastic composite optimization,” Mathematical
Programming 133:1 365-397, 2012.

[103] Lasdon, Leon S., Optimization Theory for Large Systems, McMillan, 1970. A com-
prehensive exposition of techniques for large-scale mathematical (especially linear) pro-
grams, including appendices of more general interest about convex functions and their
conjugates and about subgradients and directional derivatives of convex functions.

[104] Levenberg, K., “A method for the solution of certain nonlinear problems in least
squares,” Quarterly of Applied Mathematics 2: 164-168, 1944.

[105] Lin, C. C. and Segal, L. A., Mathematics Applied to Deterministic Problems in the
Natural Sciences, Macmillan, 1974.

[106] Linz, Peter, Theoretical Numerical Analysis: An Introduction to Advanced Tech-
niques, John Wiley & Sons, 1979.

[107] Luenberger, David G., Introduction to Linear and Nonlinear Programming, Second
Edition, Addison-Wesley, 1989.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

972 Bibliography

[108] Mangasarian, Olvi L., Nonlinear Programming, McGraw-Hill, 1969.

[109] Mangasarian, Olvi L., “Duality in Nonlinear Programming,” Quarterly of Applied
Mathematics 20: 300-302, 1962. This article contains the converse duality theorem
rephrased in [5, Theorem 12.13].

[110] Marlow, W. H., Mathematics for Operations Research, John Wiley & Sons, 1978.

[111] Marquardt, Donald W., “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal 11:2, June 1963.

[112] Miele, A. and Gonzalez, S., “On the Comparative Evaluation of Algorithms for
Mathematical Programming Problems,” Nonlinear Programming 3, Olvi L. Magasar-
ian, Robert E. Meyer, and Stephen M. Robinson, Eds., Academic Press, 1978.

[113] Mitchell, John E., “Branch-and-Cut Algorithms for Combinatorial Optimization
Problems,” Handbook of Applied Optimization 65-77, 2002.

[114] Mitchell, John E., Classnotes, Linear and Conic Optimization MATP-6640/

ISYE-6770, Rensselaer Polytechnic Institute, spring 2018.

[115] Mohrmann, Kelly Bean, Algorithms for Hard Nonlinear Programs, PhD Thesis,
Rensselaer Polytechnic Institute, 1993.

[116] Mood, Alexander M., Graybill, Franklin A., and Boes, Duane C., Introduction
to the Theory of Statistics, Third Edition, McGraw-Hill, 1963.

[117] Moré, Jorge J. and Wright, Stephen J., Optimization Software Guide, SIAM,
1993. These are notes for a short course that was presented at two SIAM conferences
in 1992, so they reflect the state of numerical optimization software at that time.
The first Part distinguishes several types of optimization problem and for each type
lists several suitable packages. The second Part provides for each package a one-page
description of the areas covered, the basic algorithms employed, the computing environ-
ment required, a contact address for obtaining the software, and sometimes citations
to relevant literature. The algorithm descriptions are unfortunately very terse. Many
of the packages discussed appear to be research codes, while others are commercial
products.

[118] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum, Uni-
versity of Tennessee, 1994.

[119] Nagel, Ernest and Newman, James R., Gödel’s Proof, New York University Press,
1958.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.2 Technical References 973

[120] Nash, J. C., Compact Numerical Methods for Computers: Linear Algebra and Func-
tion Minimisation, John Wiley & Sons, 1979.

[121] Nelder, J. A. and Mead, R., “A simplex method for function minimization,” Com-
puter Journal 7 308-313, 1965. It is an unfortunate accident of history that this method
for unconstrained nonlinear optimization came to be known as “simplex search” even
though it has nothing to do with the simplex algorithm for linear programming.

[122] Nesterov, Y. E., “Smooth minimization of non-smooth functions,” Mathematical
Programming 103:1 127-152, 2015.

[123] Neter, John and Wasserman, William, Applied Linear Statistical Models: Regres-
sion, Analysis of Variance, and Experimental Designs, Irwin, 1974.

[124] Nocedal, Jorge and Wright, Stephen J., Numerical Optimization, Springer, 1999.
This is the first edition of [5].

[125] Overton, Michael L., Numerical Computing with IEEE Floating Point Arithmetic,
SIAM, 2001.

[126] Pardalos, P. M. and Rosen, J. B., Constrained Global Optimization: Algorithms
and Applications, Lecture Notes in Computer Science 268, Springer, 1987.

[127] Pedersen, Joseph, Transshipment in General Networks, independent project in
MATP-4700/ISYE-4770 Mathematical Models of Operations Research, Rensselaer Poly-
technic Institute, fall 2011.

[128] Pedroso, Moacir, Hybrid Ellipsoid-Sequential Quadratic Programming Algorithms,
PhD Thesis, Rensselaer Polytechnic Institute, August 1985.

[129] Peng, Zhimin, Xu, Yangyang, Yan, Ming, and Yin, Wotao, “ARock: an
Algorithmic Framework for Asynchronous Parallel Coordinate Updates,” arXiv:
1506.02396v5, 27 May 2016.

[130] Polak, E., Computational Methods in Optimization: A Unified Approach, Academic
Press, 1971.

[131] Powell, M. J. D., “Some global convergence properties of a variable metric algorithm
for minimization without exact line searches,” Nonlinear Programming, SIAM-AMS
Proceedings, Volume IX, SIAM, 1976.

[132] Press, William H., Teukolsky, Saul A., Vettering, William T., and Flannery,

Brian P., Numerical Recipes in FORTRAN: The Art of Scientific Computing, Second
Edition, Cambridge University Press, 1992.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

974 Bibliography

[133] Reinfeld, Nyles V. and Vogel, William R., Mathematical Programming, Prentice-
Hall, 1958.

[134] Rohn, J., “Solving Systems of Linear Interval Equations,” Reliability in Comput-
ing: The Role of Interval Methods in Scientific Computing, Ramon E. Moore, Ed.,
Academic Press, 1988.

[135] Rosenbrock, H. H., “An Automatic Method for Finding the Greatest and Least
Value of a Function,” Computer Journal 3 175, 1960.

[136] Rudin, Walter, Principles of Mathematical Analysis, Third Edition, McGraw-Hill,
1976.

[137] Rugenstein, Edgar K. and Kupferschmid, Michael, “Active set strategies in an
ellipsoid algorithm for nonlinear programming,” Computers & Operations Research 31
941-962, 2004.

[138] Russell, Edward J., “Extension of Dantzig’s Algorithm to Finding an Initial Near-
Optimal Basis for the Transportation Problem,” Operations Research 17 187-191, 1969.

[139] Sandgren, Eric, The Utility of Nonlinear Programming Algorithms, PhD Thesis,
Purdue University, 1977.

[140] Schittkowski, Klaus, Nonlinear Programming Codes: Information, Tests, Perfor-
mance, Lecture Notes in Economics and Mathematical Systems 183, Springer-Verlag,
1980.

[141] Shah, Sharmila, An Ellipsoid Algorithm for Equality-Constrained Nonlinear Pro-
grams, PhD Thesis, Rensselaer Polytechnic Institute, August 1998.

[142] Shah, Sharmila, Mitchell, John E., and Kupferschmid, Michael, “An ellip-
soid algorithm for equality-constrained nonlinear programs,” Computers & Operations
Research 28 85-92, 2001.

[143] Shor, N. Z., “Cut-Off Method With Space Extension in Convex Programming Prob-
lems,” Cybernetics 13 94-96, 1977.

[144] Sipser, Michael, Introduction to the Theory of Computation, PWS Publishing, 1997.
“What are the fundamental capabilities and limitations of computers?” This book is
a delightful introduction to the various answers that computer science provides.

[145] Spivey, W. Allen and Thrall, Robert M., Linear Optimization, Holt, Rinehart
and Winston, 1970.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.2 Technical References 975

[146] Stewart, James, Calculus: Early Transcendentals, Second Edition, Brooks/Cole,
1991.

[147] Strang, Gilbert, Linear Algebra and Its Applications, Academic Press, 1976.

[148] Strichartz, Robert S., The Way of Analysis, Jones and Bartlett, 2000.

[149] Thomas, George B., Weir, Maurice D., and Haas, Joel, Thomas’ Calculus:
Early Transcendentals, Pearson, 2011.

[150] Trefethen, Lloyd N. and Bau, David, Numerical Linear Algebra, SIAM, 1997.

[151] Wagner, Harvey M., Principles of Operations Research With Applications to Man-
agerial Decisions, Prentice-Hall, 1969.

[152] Wagner, Harvey M., “Linear Programming Techniques for Regression Analysis,”
Journal of the American Statistical Association 54:285 206-212, March 1959. This pa-
per popularized least absolute-value-regression, but it cites even earlier work suggesting
the idea.

[153] Walpole, Ronald E. and Myers, Raymond H., Probability and Statistics for En-
gineers and Scientists, Second Edition, Macmillian, 1978.

[154] Wilkinson, J. H., Rounding Errors in Algebraic Processes, Dover, 1994.

[155] Wilde, Douglass J., Optimum Seeking Methods, Prentice-Hall, 1964.

[156] Wilde, Douglass J. and Beightler, Charles S., Foundations of Optimization,
Prentice-Hall, 1967.

[157] Wolfe, Philip, “Convergence conditions for ascent methods,” SIAM Review 11 226-
235, 1969.

[158] Wolfe, Philip, “An extended simplex method,” Notices of the American Mathematical
Society 9:4 308, August 1962. This is the brief abstract of paper 592-78, which was
accepted to the Society’s Supplemental Program #12.

[159] Wolfe, Philip, “A Technique for Resolving Degeneracy in Linear Programming,”
Report RM-2995-PR, Rand Corporation, 1962.

[160] Xu, Yangyang, “Asynchronous parallel primal-dual block update methods,” arXiv:
1705.06391v1, 18 May 2017.

[161] Zangwill, Willard I., Nonlinear Programming: A Unified Approach, Prentice-Hall,
1969.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

976 Bibliography

[162] Zoutendijk, G., Methods of Feasible Directions: A Study in Linear and Non-linear
Programming, Elsevier, 1960.

29.3 Other References

This category lists publications whose nontechnical content is cited in the text as authority
for specific claims made there or to provide cultural context. Some of them also contain
interesting mathematics.

[163] Cardano, Gerolamo, Ars Magna: The Rules of Algebra, reprint edition translated
by T. Richard Witmer, Dover, 1993.

[164] Cottle, Richard W., “William Karush and the KKT Theorem,” Documenta Math-
ematica, Extra Volume ISMP 255-269, 2012.

[165] Ezrachi, Ariel and Stuke, Maurice E., Virtual Competition: The Promise and
Perils of the Algorithm-Based Economy, Harvard University Press, 2016.

[166] Hamming, R. W., Numerical Methods for Scientists and Engineers, Second Edition,
Dover, 1986.

[167] Hutson, Matthew, “Has artificial intelligence become alchemy?” Science 360:6388
478, 04 May 2018.

[168] Lemaréchal, Claude, “Cauchy and the Gradient Method,” Documenta Mathematica,
Extra Volume ISMP 251-254, 2012. As described by Lemaréchal, Cauchy’s original
paper [22] proposed using steepest descent to minimize a sum of squares, as a way of
solving simultaneous nonlinear algebraic equations arising in astronomical calculations.

[169] Macdiarmid, Jennie I., Kyle, Janet, Horgan, Graham W., Loe, Jennifer,
Fyfe, Claire, Johnstone, Alexandra, andMcNeill, Geraldine, “Sustainable diets
for the future: can we contribute to reducing greenhouse gas emissions by eating a
healthy diet?” The American Journal of Clinical Nutrition 96:3 632-639, 01 August
2012.

[170] McNutt, Marcia, “Taking on TOP,” Editorial, Science 352: 1147, 03 June 2016.TOP
is an acronym for Transparency and Openness Promotion, a set of eight standards
adopted by “more than 500 journals.” They require “the citation of all . . . program
code . . . used in a given study.”

[171] O’Neil, Cathy, Weapons of Math Destruction: How Big Data Increases Inequality
and Threatens Democracy, Crown, 2016.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

29.3 Other References 977

[172] O’Neil, Cathy, “Life in the age of the algorithm,” Book Review, Science 355: 137,
13 January 2017.

[173] Polya, G., Induction and Analogy in Mathematics, Princeton University Press, 1954.
The second volume of this delightful series is Patterns of Plausible Inference.

[174] Polya, G., Mathematical Discovery: On understanding, learning, and teaching prob-
lem solving, two volumes, John Wiley & Sons, 1962.

[175] Raymond, Eric, The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary, O’Reilly, 2001.

[176] Stodden, Victoria, McNutt, Marcia, Bailey, David H., Deelman, Ewa, Gil,

Yolanda, Hanson, Brooks, Heroux, Michael A., Ionnidis, John P. A., and
Taufer, Michela, “Enhancing reproducibility for computational methods,” Science
354:6317 09 December 2016. This article concedes that “It may not be possible to
fully disclose. . . proprietary software such as MATLAB” but advocates that wherever
possible authors “use Open Licensing when publishing digital scholarly objects.”

[177] Thomas, Philip S., Castro da Silva, Bruno, Barto, Andrew G., Giguere,

Stephen, Brun, Yuriy, and Brunskill, Emma, “Preventing undesirable behavior
of intelligent machines,” Science 366:6468 22 November 2019.

[178] Zlotowitz, Meir and Scherman, Nosson, Pirkei Avos: Ethics of the Fathers, Sec-
ond Edition, Mesorah Publications, February 2013.

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

978 Index

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30

Index

This book has three Indices that you can use to navigate the text, understand the notation,
and find the references. The Subject Index and Symbol Dictionary will be of special interest
if you are reading the Chapters out of order, while the Bibliography Citations might be
useful if you are further exploring some topic in the cited literature.

30.1 Subject Index

Key words in the text appear in bold type at their first or defining use. This Index lists
pages on which key words appear in the sense of their technical definitions, and also pages
on which the text mentions important ideas that are not described by a key word. Some
entries are shortened by using abbreviations from the table below.

abbreviation meaning

LP linear program[ming]
IP integer program[ming]
DP dynamic program[ming]
GRG generalized reduced gradient
QP quadratic program[ming]
SQP sequential quadratic program[ming]
NLP nonlinear program[ming]
PD positive definite
KKT Karush-Kuhn-Tucker
OLS ordinary-least-squares
LAV least-absolute-value
SVM support vector machine[s]

If you look for an Index entry but find that it is missing, please let me know so that I
can include it in a future edition of the book.

Abadie constraint qualification, 520
about this book

content summary, 1
audience and prerequisites, §0.2.1, 2
pedagogical approach, §0.2.2, 2–4
computing, §0.2.3, 5–7
coverage and organization, §0.2.4, 7–9
typographical conventions, §0.2.5, 9–11
author, §0.4, 13
history and motivation, 1–2

acknowledgements, 13–14
why it is so big, 2

absolute error measures, 819
properties desirable to have, 860

absolute value
as sum of nonnegative values, 37, 39, 46, 314
in compressed sensing, 45
in objective function, 36, 535
not differentiable, 378
vs norm, 364

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

980 Index

vs norm vs determinant, 380
active constraint

definition, 83
in KKT orthogonality condition, 506
in quadratic programming, 710
at a degenerate vertex, 108
redundant, 522
also, see complementary slackness

active set strategy, 710, 812
adaptive modified Newton algorithm

about, §17.2, 551–557
ntrs.m routine, 553–555
objective reduction ratio, 552
stepsize adaptation, 552

adj.m adjoint routine, Ex 28.9.25, 959
adjacent tableaus and vertices, 107
adjoint matrix, 927
ADMM, see alternating direction method
admm problem, 650
admm.m program, 652
admmf.m routine, 652
admmg.m routine, 652
admmh.m routine, 652
affine-scaling interior-point algorithm, 674
al1 problem, 640–641
al2 problem, 638–639
algorithm

iterative, 1, 335, 929
infinitely convergent, 339
prototypical, §9.6, 347–348
vs computer program, 851

algorithm code vs convenience code, 853
algorithm extensions, 811
algorithm performance evaluation

about, §26, 849–884
algorithm vs implementation, §26.1, 851–853
basic assumption, 850
error vs effort, §26.3, 858–873
goals, 850
literature, 850
professional ethics, 853
reporting experimental results, §26.5, 876–878
test problems, §26.2, 853–858
testing environment, §26.4, 873–875

algorithm vs implementation
algorithm specification, §26.1.1, 851–852
experiment design, §26.1.2, 852–853

aliases of test problems, 855
all-slack basis, 84
alternating direction method of multipliers

about, 650–656
serial, §20.3.1, 651–653
parallel, §20.3.2, 653–656
linear convergence, 653
nonsmooth problems, 839

AMPL
example of use, 298
limited role in this book, 6

analytic center, 663
anonymous function in Matlab, 480

apm.m routine finds all principal minors, 383
appendices

calculus, §28.1, 921–923
linear algebra, §28.2, 923–928
numerical computing, §28.3, 929–932
Matlab coding conventions, §28.4, 932–937
LPs used in the text, §28.5, 938–942
integer LPs used in the text, §28.6, 943–944
NLPs used in the text, §28.7, 944–956
integer NLP used in the text, §28.8, 956

application problems
LP overview, §1.7, 42–43
NLP overview, §8.4, 302–303
if they are your main interest, 298

approximate Hessian matrix
properties, 433
in quasi-Newton, §13.4.2, 434–435
in Levenberg-Marquardt, 572

approximate line search
about, §12.1, 395–396

approximating derivatives
about, §25.6, 820–831
forward-difference, §25.6.1, 820–821
central-difference, §25.6.2, 821–823
computational costs, §25.6.3, 823
finding the best ∆, §25.6.4, 824–827
gradcd.m and hesscd.m, §25.6.5, 827–828
checking gradients and Hessians, §25.6.6, 829–831

arange routine finds line search limits, 401–402
arch1 problem, 479–481
arch2 problem, 505
arch3 problem, 505
arch4 problem, 506
arch4.m routine, 760
arch4g.m routine, 760
arch4h.m routine, 760
argmin operator, 356
Armijo condition, 405, 690
artificial links in network, 239–240
artificial variables

method of, §2.8.2, 78–83
flowchart, 82–83
original problem, 78
artificial problem, 78
artificial objective, 78
example, 79–81
yi left in basis, 81

asphericity of an ellipsoid, 792, 807
assignment problem, 245
asym(A), asymmetry of a matrix A, 390
asymmetry of a matrix

asym.m routine, Ex 11.7.19, 390
removed in A + A⊤, 792

aug.m interface routine, 644
augg.m interface routine, 644
augh.m interface routine, 644
auglag.m routine, 647–648
augmented Lagrangian method

about, §20.2, 638–650
algorithm, §20.2.4, 645–648

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 981

convex Lagrangian, §20.2.1, 639–640
inequality constraints, 650
inflection value of multiplier, 642–643, 645
nonconvex Lagrangian, §20.2.2, 640–641
penalty function, §20.2.3, 642–644
properties, §20.2.5, 648–650
relation to quadratic penalty, 644
sensitive to problem scaling, 818

automatic differentiation, §25.6.7, 831–833
Ax = b, see linear system

b1 problem, 605
interior-point solution, 679–683

b1.m routine, 609
b1g.m routine, 609
b1h.m routine, 609
b1in.m program, 681–682
b1inq.m program, 688–690
b2 problem, 611–613

convergence trajectory, 615
error curve, 615

b2bar program, 615–616
backslash +\+Matlab operator, 309
backtracking line search, 610, 686
backward recursive relation, 278
badly-conditioned matrix, see ill-conditioned matrix
banana function

“valley of the shadow of death”, 364
contour diagram, 335

barrier multiplier, 605
barrier problem

in logarithmic barrier method, 605–608
equivalent to KKT conditions, 607–608
in interior-point method for LP, 663–664

barrier.m routine, 619
.bashrc file for pivot program, 914
basic feasible solution

of a linear program, §2.4.1, 62–63
at origin in view, 111

basic sequence
list of variables S , 62
row indices of identity 1s, S, 63

basic solution to Ax = b
feasible in LP, §2.4.1, 62–63
starting point in solving a QP, 697

basic spot in transportation tableau, 222
basic variables, 62
basis columns, 62
basis inverse matrix, 147
basis matrix, 143, 745
basis pursuit, 47
basis recovery procedure, 673
bb1 problem, 258, 272
bb2 problem, 261
bb3 problem, 263
bb4 problem, 264
bb5 problem, 266
Berra, Yogi, 345
best-z pivot selection strategy, 129
BFGS algorithm

update formula for B, §14.4.3, 435–438
update formula for B−1, 439
implementation, §13.4.5, 439–442
bfgs.m routine, 440
full-step, §13.4.6, 442–445
bfgsfs.m routine, 443
error curve, 442
history, 434

bias in computational testing, 853
bias parameter in ridge regression, 312
bibliography, §29, 963–977
big problem, 833

semi-analytic solution, 838–839
big data problems

fashionable at the moment, 301
coverage in this book, 7–9
regression, §8.6.5, 315
classification, §8.7.5, 329
compressed sensing, 46
solved by ADMM, 656

big.m routine uses coordinate descent, 834–835
bilevel programming, §1.6, 39–42
binary numbers

distinguish cases in KKT method, 510
distinguish working sets in QP, 711
in writing an IP as a 0-1 IP, 272

bisect.m routine for f (x) = 0, Ex 28.9.57, 961
bisection line search

about, §12.2, 396–403
flowchart, 397
bls.m routine, §12.2.3, 402–403
used in steepest descent, §12.4.1, 413–414
robust against discontinuities, 637

bisection for f (x) = 0, 929–930
also, see bisect.m

bitget Matlab function, 383
bitshift Matlab function, 383
black-box software, 298, 809

drawbacks, 301
block separable problem, 837
block-angular structure of LP data, 148
blocking constraint, 711
bold words (key words), 9, 16, 979
boundary of feasible set, 101
bounding step in integer programming, 260
bounding loops

about, §17.5, 572–574
in penalty.m, 592
in barrier.m, 619

bounds
on variables, see variable bounds
reformulating LP constraints, §2.9.5, 88–89

bounds specification
about, §26.2.2, 855–858
desirable properties, 855–856
formulas, 857

box formed by variable bounds, 778
boxes in text, 11
branch and bound algorithm

general integer programs, §7.3, 260–263

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

982 Index

master problem, 259
subproblems, 259
zero-one programs, §7.5.1, 268–269

branch-and-cut methods for IP, 276
branching in integer programming, 258, 260

breadth-first, 263
depth-first, 263
diagram, 259

branching in zero-one programming, 266
branin problem, 522
break Matlab statement, 933
brewery problem

formulation, §1.3.1, 24–25
algebraic statement, 25
catalog entry, §28.5.2, 938
standard form, 56
starting tableau, 57
solved using simplex.m, 137
all extreme points, 124–126
solved using subopt.m, 126
solved by matrix simplex method, 143–146
solved by interior-point method, 672–673
alternate solution path, 72
dual, 179, 191, 891
.tab file, 903
integer solution, 255

brewip problem, 255–256
bss1 problem, 559

with added constraint = p2, 585
bss1trust.m program, 560–561
bta.m interface routine, 609
btag.m interface routine, 609
btah.m interface routine, 609
buffer stock, 236
bulb problem

formulation, §1.5.2, 35–38
algebraic statement, 38
graphical solution, 37

cancellation error, 824
candidate list of pivot columns, 129, 153
canonical form of a linear program

about, §2.4, 61–68
characteristics, 61
getting, §2.8, 73–83
multiple, 81

capital budgeting problem, 274
cases in constructing bounds, 857
cases in solving KKT conditions, 510, 515

possible QP working sets, 711
catalog of test problems

in computational testing, 854–855
in this text, §28.5-28.8, 938–956

catalog bounds, 855–858
catalog starting point, 337, 944
center cut, 778
central path, 663
cfyrun.m program finds optimal classifier, 324
cfysrun.m program for soft-margin SVM, 327
cg.m conjugate gradient routine, 457

chain rule for derivatives, 484, 583, 832
chain-reaction solution, 222

failure due to degeneracy, 226
using Matlab, 223

chairs problem
formulation, §1.4.2, 30–32
algebraic statement, 32

characteristic equation of a matrix, 384
checkfea.m routine, 621–622
chkwlf.m routine checks Wolfe conditions, 443
chol Matlab function, 423, 425
Cholesky factorization, 309, 437, 705
choosing among tied min-ratio rows

by smallest row index, 160
minr.m allows cycling, 136–137
by smallest-leaving-index rule, 158
smind.m stops cycling, 160–161

classical NLP dual, see Wolfe dual
classification

about, §8.7, 315–329
measuring error, §8.7.1, 317–318
two predictor variables, §8.7.2, 318–321
support vector machines, 322–329
as a linear program, 320
big data, §8.7.5, 329

classifier
linear, 317, 323
nonlinear, 534

classifying Lagrange points
analytically, §15.4, 490–495
problem-specific arguments, §15.4.1, 490
testing reduced objective, §15.4.2, 490–491
second-order conditions, §15.4.3, 491–495
numerically, §15.5, 495–498

closed set, 294
coding conventions for Matlab, §28.4, 932–937
cofactor or signed minor, 927
column generation, 148–150
column space of a matrix, 744
combinations, ways to choose some from all, 45, 108, 157

sum of, 510, 710
combined solution error, 860
command file for AMPL, 298
comparison penalty vs barrier, §19.4, 620–621
complementary slackness

about, §5.1.5, 180–181
conditions in LP, 180
in interior-point method for LP, 666–667
condition in NLP, 506

completions of a zero-one solution, 266, 267
checking feasibility of, §7.5.2, 269–271

complex number
in Fourier transform, 44
meaningless for decision variable, 524
meaningless for function value, 610
β(xk; µ) if xk not strictly feasible, 609–610

component separable problem, 834
compressed sensing, §1.8, 43–47
compromise parameter in soft-margin SVM, 326
computational complexity

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 983

about, §7.9, 282–283
polynomial algorithm, 673
polynomial problem, 163, 282
exponential algorithm, 163, 282
exponential problem, 282
space and time, 283
formal tractability, 283
good algorithms, 849
heuristics for hard problems, 849

computational testing, §26, 849–884
computer program

black-box solvers, §8.3.1, 298–301
custom-written solvers, §8.3.2, 301
vs algorithm, §26.1-26.2, 851–853
vs subroutine vs Matlab function, 63
instrument for experimental study of algorithm, 850
for automatic differentiation, 832
looping, 572, 929
adjustable parameters, 853

computing
practical necessity for optimization, 1, 4, 242
role in this book, §0.2.3, 5–7
skills prerequisite for this book, 2, 5
parallel processing for ADMM, §20.3.2, 653–656
also, see Matlab

“concave” set, 376
concave function, 376

nondecreasing concave function of, 608, 626
“concave up” and “concave down” functions, 376
condition number of a matrix

about, §18.4.2, 597–600
never less than 1, 598
increased by bad scaling, 817, 818
+∞ if singular, 596
in convergence of steepest descent, 363–364
in convergence of Newton descent, 421, 427
in quadratic penalty method, 595–596
in logarithmic barrier method, 615–616

cone of feasible directions, 520
cone of tangents, 520
conformable operands, 56, 924
conjugate directions

about, §14.2, 450–453
Q-conjugate vectors, 451
finding by definition, 451
ways of generating, §14.3, 453–454

conjugate-gradient methods
about, §14, 449–477
cg.m QP solver, §14.4, 454–457
convergence, 456
for solving Ax = b, 315
sensitive to problem scaling, 816

connected set, 294
conservation law

in optimization model formulation, 28
in shift problem, 28
in chairs problem, 30
node equilibrium equation, 215

constant column, 55
constant of convergence

definition, 339
possible values, 341
upper bound for steepest descent, 363
upper bound for conjugate gradient, 456
quadratic penalty method, Ex 18.5.20, 602
lower bound for Shor’s algorithm, 795

constraint, 1, 18, 24
active, 83, 522
anti-subtour, 247
contour, 19, 22
convex, 516
enforced in prototypical algorithm, 347
inactive, 83, 522
nonlinear approximated by linear, 742
parameterization, 481–486
redundant, 19, 27, 133, 222, 522
respecting inactive in QP, 715–720
slack, 83, 522

constraint affinity, 811
constraint coefficient matrix, 55
constraint qualifications

about, §16.7, 518–521
Abadie, 520
when always satisfied, 521
in Lagrange multiplier theorem, 486
needed to find LRCSE, 861
none in cq1, 518

constraint rotation scheme, Ex 24.10.29, 806
constraint rows, 57
constraint violations

avoiding in QP, 715–720
penalized by regularization, 46
reduced in GRG, 742
forbidden in logarithmic barrier method, 610
in quadratic penalty method, 581
in max penalty function, 632
in augmented Lagrangian penalty function, 642
in ellipsoid algorithm, 775
in combined solution error, 860

continue Matlab statement, 933
contour Matlab function, 336
contour plot, 34, 37, 293, 335

curve following, 621
curve.m routine, 622–624
grid interpolation, 621
gridcntr.m routine, 336

contourc Matlab command, 621
convcheck.m routine tests convexity, 387
convenience code, 853, 864
converge.m plots error curve comparison, 343
convergence

of an algorithm, 339
rate=order, and constant, 339
linear=first-order, 341
quadratic=second-order, 341, 345
typical error curves, 341–342
slowed by bad scaling, 817
test, 347, 572, 930
simplex algorithm, §4.5.1, 157–158

convergence trajectory

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

984 Index

ADMM, 653
conjugate directions, 452–453
logarithmic barrier method, 615
modified Newton descent, 427
parallel ADMM, 656
quadratic penalty method, 590
restricted-step Newton descent, 551, 555
steepest descent, 357

convex combination, 116, 119, 376
from nonnegative linear combination, 507

convex conjugate function, [103, Appendix 1], 971
convex function

about, §11.1, 375–376
in a neighborhood, 388
continuous on interior of its domain, 378
chord above graph, 376
tangent below graph, 377
nondecreasing convex function of, Ex 18.5.11, 601
when quadratic penalty function is, 585
when logarithmic barrier function is, 608

convex hull, 119, 321
convex programs

about, §16.6, 516–517
equality constraints must be linear, 517
which NLPs are, 378, 490
when quadratic penalty problem is, 585
when logarithmic barrier problem is, 608
and ellipsoid algorithm convergence, 794
solved by ADMM, 650

convex set
about, §3.5, 115–118
definitions, 116
intersection is convex, 129, 516
epigraph of a convex function, 375

convexity
about, §11, 375–393
of LP feasible set, §3.5.1, 116–117
of LP optimal set, §3.5.2, 117–118
guarantees adjacency of optimal tableaus, 119
and definiteness of Hessian, 379
and minors of Hessian, 380
and eigenvalues of Hessian, 380
generalizations, §11.6, 388

corrections
please send to mnkupferschmid@gmail.com, 14
to text, 14
to pivot program, 6

counterexample function f (x) = x4, 367, 379
countk.m routine shows iteration counting, 936
countkp.m routine shows iteration counting, 937
coupling equations, 148
Courant, Richard, 582
covering of objective gradient by constraints, 538
CPLEX, 155, 276
CPU time measurement

about, §26.3.3, 863–866
cputime Matlab function, 864
timer.f Fortran routine, 872
accurate only in a compiled language, 865, 873
not comparable across processors, 866

cputime.m Matlab function, 864
limited resolution, 864–865

cq1 problem, 518
cq2 problem, 519
cq3 problem, 519
crosshatching, 11
cse.f routine finds combined solution error, 866, 868
cse.m routine finds combined solution error, 860
cubic interpolation line search, 396
cubslv.m program solves arch1, 480
cultural context references, §29.3, 976–977
curvature condition, 406
curve following, 621
curve.m routine, 622–624
cutting stock problem, 274
cutting-plane methods for IP, 276
cvrg.m plots one error curve comparison, 342
cycle problem, 156

catalog entry, §28.5.14, 941
solved by smallest-leaving-index rule, 158
solved by successive-ratio rule, 158

cycle counting, see processor cycle counting
cyclic coordinate descent, 834–837

variants, 837
vs conjugate gradient, Ex 14.8.11, 472

cycling
in simplex algorithm, 156
in transportation algorithm, 227
ways to prevent, §4.5.2, 158–159
in practice, §4.5.3, 160–164
Beale’s example problem, 964
in max penalty algorithm, 635

cygwin Unix emulator for Windows, 913, 916

data analytics, 7
decision variables, 17, 31

identification, 23, 28, 291
deep cuts, 801
defective

linear program, 93
ellipsoid matrix, 797
test problem specification, 855

definiteness of Hessian matrix
in second-derivative test, 367
from minors, 380
from eigenvalues, 380
numerical, 792
of Lagrangian, 494, 756

degeneracy
in LP, §4.5, 155–164
in LP subproblems, Ex 4.6.49, 169
graph problem, 158
degenerate pivot, 105
simplex algorithm convergence, §4.5.1, 157–158
preventing cycling, §4.5.2, 158–159
in practice, §4.5.3, 160–164
transportation problem, §6.1.3, 226–227
complications arising from, 228, 242
failure of chain-reaction solution, 226
with multiple optima, §5.1.6, 181–186

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 985

affects primal-dual interior-point method, 692
degenerate vertex, 105

also, see tie
number of different bases, 108
of Ax ≤ b in QP, 720

deltas.m solves Lagrange conditions for in1, 668–669
demand nodes, 217
depth-first branching, 263
descent direction

definition, 369
line search in, 395
Newton d = −H−1g might not be, 424
Polak-Ribière dk+1 might not be, 460

descent methods, 395
determinant of a matrix

how to find, §11.4.1, 381–382
in finding matrix inverse, 927
in finding volume of an ellipsoid, 467
Matlab det function, 380
zero if matrix is singular, 596

DFP algorithm
implementation, §13.4.5, 439–442
dfp.m routine, 440
error curve, 442
history, 434

diagonal matrix, 925
diagonal scaling, 817, 819
diagonalizing a matrix

by arbitrary conjugate directions, 450–451
by unit eigenvectors, 464–465

diagonally dominant matrix, 386
dichotomous line search, 396
differential equations, 303
digamma function Ψ(t), 820
“Dijkstra’s” algorithm, 279
directed link, 214
directional derivative

formula, 398
of f (α) in steepest descent, 354
of f (x) in line search, §12.2.1, 398–399

disclaimers, ii, 14
dogleg in trust region method, 564
dogsub solves trust-region subproblem, 566–567
dot product of vectors, see inner product
dp1 problem, 171
dp2 problem, 176
dp3 problem, 181
dp4 problem, 184
dp5 problem, 192
dp6 problem, 194
driver program, 873
dual ascent algorithm, 646
dual feasibility, 221, 223, 228, 666
dual linear program

of standard-form linear program, 187, 665
of transportation problem, 188, 221
also, see LP duality

dual nonlinear program
Lagrangian, 528–529
Wolfe or classical, 529–530

of quadratic program, 531–532
of SVM, 532–534

dual simplex method
about, §5.3.2, 194–196
idea, 194
pivot rule, 195
example, 196
in integer programming, 276

dual solutions to example LPs, §28.5, 938–942
dual tableaus, 194

pivot program DUal command, 891
duality

economic interpretation, 179
enchantment of, 171
gap in LP, 174–175, 691
gap in NLP, 529
symmetry of penalty and barrier methods, 620

duals.m routine solves primal and dual, 190–192
duct problem, §3.6.1, 118–123
dynamic programming

about, §7.8, 276–282
shortest-path problem, §7.8.1, 277–279
integer nonlinear programming, §7.8.2, 279–282

ea.f routine
Fortran source listing, 868–869
LRCSE-vs-cycle-count curve solving ek1, 866–869
Unix session, 868

ea.m routine, 790–792
LRCSE-vs-EFE curve solving ek1, 861–863

eacyc.f measures ea.f performance, 866–867
eainit.m finds starting ellipsoid, 780–781
easy.m program solves gns exactly, 452–453
Ecker, J. G., 13, 963
edge

line segment between vertices, 101
optimal, §3.4.2, 114
directions in steepest-edge pricing, 152
of QP feasible set, 716
of trust-region dogleg, 565

efficiency
of an algorithm, 852
choice to solve primal or dual, §5.3, 192–196
of matrix simplex method, 145
of subproblem technique, Ex 4.6.11, 165
improvements to ellipsoid algorithm, 801

egg problem, 820
egg.m function value routine, 827
eggg.m routine invokes gradcd.m, 827
eggh.m routine invokes hesscd.m, 827
eig Matlab function, 387, 497, 560
eigenvalues

and axis lengths of ellipsoid, 467, 785
and condition number of a matrix, 465–466
and definiteness of a matrix, 380
complex, Ex 11.7.18, 390
contained in Gerschgorin circles, 385
distinct, 464
of inverse matrix, 466
preserved in diagonalization, 467

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

986 Index

preserved in rotation, 465
real if matrix is symmetric, 365, 380
tested in convcheck.m routine, 387

ek1 problem
statement, 694
graphical solution, 774
initial ellipsoid, 780
solved by ea.m, 794
LRCSE-vs-EFE curve for ea.m, 861–863
solved by wander.m, 799
to solve using iqp.m, 770

ek1.f problem definition file, 870–872
ek1.m routine, 790
ek1efe.m stub routine, 861–863
ek1g.m routine, 790
ek1gefe.m stub routine, 861–863
ek1h.m routine, 790
elastic mode reformulation to smooth NLP

max penalty problem, 638
quadratic max penalty, 763
soft-margin SVM, 326

elimination of variables, 294–295, 481, 699–700, 812
ellipse.m plotting routine, 470–471

example of use, 781
ellipsoid

definition, 450, 778
in Rn, §24.3.1, 778–781
major and minor axes in R2, 463
plotting in R2, 468–471
right, 450, 463
rotating, 464, 785
smallest, 775, 779, 787
volume, 466–468

ellipsoid algorithms
about, §24, 773–808
space confinement, §24.1, 773–774
Shor’s algorithm, 774–794
convergence, §24.5, 794–796
volume reduction ratio, 796
recentering, §24.6, 796–800
Shah’s algorithm, §24.7, 800–801
other variants, §24.8, 801–802
properties, §24.9, 802
globalization strategy, 815
deep cuts, 801
wedge cuts, 801

ellipsx.m plotting routine, Ex 14.8.52, 477
em.m elastic mode interface routine, 765
emg.m elastic mode interface routine, 765
emh.m elastic mode interface routine, 765
emiqp.m solves elastic mode penalty problem, 764
enchantment

of mathematics, 2
of matrix arithmetic, 138
of duality, 171
symmetry of penalty and barrier methods, 620

entering variable in simplex method, 62, 144
enumeration of integer program lattice points

explicit, §7.1, 255–257
exhaustive, 256

partial, 257
random, 257
implicit, §7.2, 257–259

ep1 problem, 631
ep2 problem, 633–634
ep2.m routine, 635
ep2g.m routine, 635
ep2h.m routine, 635
epigraph of a function, 375

supported by tangent hyperplane, 378
epsilon-neighborhood, 344

radius 1, 468
where a function is locally convex, 388

epy.m max penalty interface routine, 635
epyg.m max penalty interface routine, 635
epyh.m max penalty interface routine, 635
equality constraints

in LP standard form, 55
in graphical LP solution, 34
as opposing inequalities, 187, 292, 517, 519, 795
about in NLP, §15, 479–504
enforced by method of Lagrange, 486–489
KKT conditions for, 517
in QP, §22.1, 697–709
in SQP, 755–758
also, see elimination of variables

equivalent function evaluations
definition, 861
when useful, 863

equivalent tableaus, 58
also, see dual tableaus

error of an iterate
distance, 339
function, 860
log relative combined, §26.3.1, 860–861
found at end of iteration, 863
cse.m routine, 860

error curve
defined, 338
shows order of convergence, 341–342, 859
comparing algorithms, 859–860

error vs effort
about, §26.3, 858–873
measuring solution error, §26.3.1, 860–861
counting function evaluations, §26.3.2, 861–863
measuring processor time, §26.3.3, 863–866
counting processor cycles, §26.3.4, 866–870
practical considerations in using, §26.3.6, 872–873
plotting curve, 863

essentially nonlinear optimization model, 291
Euclidean norm

definition, 364
properties, 365
gradient, 923
norm(x,2) Matlab function, 365

exact penalty methods
about, §20, 631–661
max penalty, §20.1, 631–638
augmented Lagrangian, §20.2, 638–650
ADMM, §20.3, 650–656

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 987

exact line search
about, §12.1, 395–396
analytic for strictly convex quadratic, 450
analytic for gns problem, §10.3, 354–355
numerical usually not possible, 406

example problems
catalog, §28.5-§28.8, 938–956
role in this book, 10

Excel, 155
exercises

E recall, 9
H comprehension, 9–10
P programming, 9–10
keywords in, 9

exhaustive enumeration
of LP basic solutions, 124–126
of IP lattice points, 256

expansion by minors to find determinant, 381
explicit enumeration, §7.1, 255–257
expts shell script, 874–875
exterior pivots, 105
extreme point

definition, 100
finding all, §3.6.2, 123–126
degenerate, 105

eye Matlab function, 190

facility location problem, 274
factor-and-solve approach for linear system, 147, 705
Farkas’ theorem

statement, Ex 5.5.30, 208
proving first KKT theorem, Ex 16.11.37, 542

fathoma.m routine checks completions, 270–271
fathomed node

in branch-and-bound, 261
conditions for general integer program, 260
conditions for zero-one program, 268

fdints.m routine, Ex 25.8.52, 845
feas.m finds starting point for QP, 714–715
feasibility cut, 778
feasibility Lagrange condition, 486
feasible point

definition, 19
checkfea.m routine, 621–622

feasible-point methods
about, §23, 739–772
reduced-gradient, §23.1, 739–750
GRG, 742
SQP, §23.2, 750–767

feasible ray, 112, 113
finding optimal, 120
signal column in tableau, 115

feasible set, 19
finding the inside, 23
flat relative to Rn, 521
in prototypical algorithm, 347
includes boundary, 55
intersection of halfspaces, 100
of LP is convex, §3.5.1, 116–117
of NLP can be nonconvex, 116, 516

unbounded, §3.3.3, 112–113
unconnected, 42

feelings, avoiding hurt, 878
Fibonacci line search

description, 396
implementation, Ex 12.5.5, 416

fictitious demand or supply, 233, 235
final forms of an LP tableau, §2.5, 68–70
finding LP duals

about, §5.2, 187–192
of standard form LP, §5.2.1, 187–188
standard form of, 665
transportation problem, §5.2.2, 188–190
numerically, §5.2.3, 190–192
pivot program DUal command, 891

finding NLP duals
linear program, 530–531
quadratic program, 531–532
support vector machine, 532–534

finite horizon model, 29
first-negative pricing rule, 151
first-order convergence, 341, 345
first-order necessary conditions

unconstrained, 366, 503, 529
constrained, 486, 503

first.m approximates f ′(x) for f (x) = ex, 826
fixed-charge problem, 287
fixscript program for pivotprint, 914, 916
flat subspace of Rn, 521, 700

Shor’s algorithm fails, 794
Fletcher-Reeves algorithm

about, §14.5, 458–459
Wolfe line search in, 458

floating-point
arithmetic, §28.3.3, 932
numbers, 572, 599
subnormal numbers, 579
finite precision, 819, 929
comparing bit strings, 819
operations in solving primal vs dual, 193

floor function, 256, 468, 592
flowchart

artificial variables, 82–83
bisection line search, 397
bisection root-finder, 930
method of multipliers, 646
Newton’s method root-finder, 931
prototypical algorithm, 348
QP step length, 719
recentering ellipsoid algorithm, 797
revised simplex, 141
step-length adaptation, 552
Wolfe line search, 407

flrv.m Fletcher-Reeves solver, 458
for Matlab construct, 933, 936
formulation tricks

elastic mode to minimize maximum, 638
enforcing logical conditions, 273
minimizing the absolute value, §1.5.2, 35–38
minimizing the maximum, §1.5.1, 33–35

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

988 Index

nonsmooth models, §1.5, 33–39
selecting from a list, 272–273
summary for nonsmooth problems, §1.5.3, 38–39
switched constraints, 273

Fortran

about, [100], 971
role in this book, 7
language in which pivot is written, 913
for production code, 301
for accurate CPU timing, 865
processor cycle counting, 866–869
D0 power-of-ten suffix, 866
COMMON statement, 866
BLOCK DATA subroutine, 870

forward problem, 303
Fourier transform, 43
fraction to the boundary rule, 672
free loop, 572, 933
free variables

definition, 38
assumed in nonlinear programming, 292
difference of nonnegative, §2.9.3, 85–87
in finding dual of an LP, 187
in dual of standard form LP, 188
in LAV regression, 313
in transportation problem dual, 189

ftn hypothetical Fortran compiler, 874
full pricing, 153
full-step

steepest descent, §10.5, 360–361
Newton descent, §13.1, 421–424
BFGS algorithm, §13.4.6, 442–445

function built into Matlab, 63
also, see Matlab

function error, 860
function handle or pointer in Matlab, 585
functional constraints, 55
fundamental theorem of algebra, 489
fzero Matlab function, 480, 560

gamma function Γ(t), 468, 820
garden problem

formulation, §8.1, 291–292
catalog entry, §28.7.1, 945
graphical solution, §8.2, 293–294
solution by calculus, §8.2.2, 294–295
solution by Lagrange method, §8.2.3, 295
solution by KKT method, §8.2.4, 295–297
solution by Octave, 300
solution by MINOS, 298

Gauss elimination
by matrix factorization, 309, 423, 425
preferable to matrix inversion, 308, 705
impractical for huge matrices, 315

Gauss-Seidel algorithm, 654
Gaussian probability distribution, 305
gcc gnu C compiler, 913
general network flows

about, §6.4, 237–242
finding a feasible solution, §6.4.1, 239–242

algorithm, §6.4.2, 242
nf1 problem, 216
sparse transshipment tableau, 237
pivot program Gnf command, 893

generalizations of convexity, §11.6, 388
generalized reduced-gradient, see GRG
geometric series, 340
geometry of simplex algorithm

about, §3, 99–130
higher dimensions, §3.6, 118–126

Gerschgorin circle theorem, 385
getcyc.c routine reads processor clock, 866
getlgm.m finds Lagrange multipliers for QP, 721–722
gfortran gnu Fortran compiler, 913
global parameters in Matlab, 583, 764
global minima

about, §11.3, 378–379
strict=unique, 343, 379
KKT points of a convex program, 490, 513

globalization strategies
ellipsoid algorithm, 815
line search, 813
multistart, 815
record point, 815
restricting steplength, 813
trust region, 813

gns problem
statement, 354–355
catalog entry, 945
x⋆ is a strict local minimum, 368
solved by steepest descent, 356–363, 413–415
solved by ntplain.m, 422
solved by nt.m, 429
solved by ntw.m, 430
as a quadratic program, 422, 449
conjugate directions, 451–453
solved by cg, 457
solved by flrv.m, 458

gnuplot
role in this book, 6
for error-vs-effort curves, 868, 874
for surface plot of Lagrangian, 526
for air duct problem, 121–123
for bb2 problem, 261

golden section line search
description, 396
implementation, Ex 12.5.4, 416

good algorithm
according to complexity theory, 849
according to computational experiment, 876–878
according to Yogi Berra, 345

gpr problem, 343
gradcd.m routine approximates gradient, 828

used in gradtest.m, 829
gradfd.m routine, Ex 25.8.54, 846
gradient methods of solving Ax = b, 315
gradient norm convergence test, 859
gradient projection, 532
gradient vector

definition, 353

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 989

points uphill, 356
zero at a stationary point, 367
normalized, 782, 792
linearly independent, 485, 486, 507, 513
of quadratic form, 923
of the Lagrangian, 491
of quadratic penalty function, 583
of logarithmic barrier function, 609
approximating, 828

gradtest.m routine tests grd.m, 829–830
Gram-Schmidt orthogonalization, 453
graph problem

graphical solution, §3.1, 99–101
guided tour, §3.2.2-3, 102–108
degeneracy, 158, 168

graphical solution
general technique, §1.2, 22–23
reading off slack variables, §3.3.1, 109
al1 problem, 641
al2 problem, 640
arch1 problem, 479
arch2 problem, 505
arch3 problem, 505
b1 problem, 605
bb1 problem, 258–259
bb2 problem, 261–262
bb3 problem, 264
bb4 problem, 264–265
branin problem, 523
bulb problem, 37
cq1 problem, 518
cq2 problem, 519
cq3 problem, 520
dp3 problem, 181
dp4 problem, 185
duct problem, 121–123
ek1 problem, 774
ep1 problem, 631–633
ep2 problem, 633
garden problem, §8.2, 293–294
graph problem, §3.1, 99–101
hearn problem, 525
in1 problem, 663
inlp problem, §7.8.2, 280
moon problem, 509
nset problem, 535
oil refinery problem, 41
p1 problem, 581
paint problem, 26–27
pumps problem, 34
qp5 problem, 713
spear problem, 257
twoexams problem, §1.1,2, 19–20

grd.m gradient routine
constrained, 497
unconstrained, 361

greater-than-or-equal inequality, 84
GRG algorithm

idea, 742
picture, 743

feasibility-restoration step, 746–748
variations in meaning of name, 743

grg.m routine, 748–749
grg2 problem, 743
grg2.m routine, 748
grg2g.m routine, 748
grg2h.m routine, 748
grg4 problem, 749–750
grid interpolation, 621
grid search

minimization in R1, 396
minimization in Rn, 337

gridcntr.m evaluates function at grid points, 336
guided tour in R2, §3.2.2-3, 102–108

h35 problem
statement, 547
starting bounds, 881
solved by restricting steplength, 550–557
solved by ntw.m, 813
solved by trust.m, 570

h35.m routine, 548
h35g.m routine, 548
h35h.m routine, 548
halfspace

definition, 99–100
intersection of feasible, 100
containing descent directions, 369

Hamming, Richard, 876
hearn problem, 525

approximate solution, Ex 16.11.45, 543
dual, Ex 16.11.54, 544

Hebrew letters, 11
hesscd.m routine approximates Hessian, 828

used in hesstest.m, 830
hessfd.m routine, Ex 25.8.54, 846
Hessian matrix

definition, 353
symmetric, 353
hfact.m factoring routine, 617
bounded modification loop, 554, 572–573
modification in Newton descent, §13.2, 424–425
modification in trust region method, 572
conditioning in steepest descent, 363–364
conditioning in Newton descent, 421, 427, 596
and convexity, 379
testing submatrices, §11.4, 379–384
testing eigenvalues, §11.5, 384–387
singular in rb problem, 424
of the Lagrangian, 494
of quadratic penalty function, 583, 587–588
of logarithmic barrier function, 609
reduced, 701, 739
iterative approximation, §13.4.2, 433–435
Levenberg-Marquardt approximation, 572

hesstest.m routine tests hsn.m, 830
heuristic, 337, 849
hfact.m routine

modifies a Hessian, 617
in ntin.m, 618

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

990 Index

in qpeq.m, 707
in getlgm.m, 722

Hilbert matrix, 475
hill problem, 498
Himmelblau 5 problem, 504
Himmelblau 28 problem, 371, 446, 475
Himmelblau 35 problem, see h35
Homebrew package manager, 913
homogeneous system Ax = 0, 698
hot start, 197, 802
hplane.m finds points on a hyperplane, 782–783
hsn.m Hessian routine

constrained, 497
unconstrained, 387

hurt feelings, avoiding, 878
hybrid algorithms

penalty+barrier, 811
ellipsoid+SQP, 802
for IP subproblem, 265

hyperplane
in Rn, §24.3.2, 781–783
coordinate, 450
where inequality satisfied as equality, 100
where slack variable is zero, 108
intersecting, 100, 665, 715
as a classifier, 323
cutting, 801
tangent to graph of function, 366
supporting, 378, 781
dg/dt, tangent to feasible set, 482
unit normal to, 782
drawing in R3, 121

hypersurface, 294
intersecting, 484
saddle-shaped of Lagrangian, 527

identity matrix
definition, 925
basis columns in a tableau, 61
pivoted-in by newseq.m, 132
in finding a pivot matrix, 139
averaged with Hessian to modify it, 425
Matlab eye function, 190

if-then-else Matlab construct, 936
ill-conditioned matrix

for definition, see condition number
numerically non-PD, 792
revised simplex basis, 153
due to multicollinearity in regression, 310, 315
degrades accuracy of Newton descent, 427
Hessian stalls steepest descent, 364
quadratic penalty Hessian, §18.4.1, 593–597
logarithmic barrier Hessian, 619
Jacobian in primal interior-point method, 688
ellipsoid Q, 792
rb problem Hessian, 364

ill.m studies endgame solving p2, 593–596
implicit enumeration, §7.2, 257–259
implicit function theorem, 485
in1 problem

statement, 663
standard form and standard-form dual, 665
graphical solution, 663
barrier formulation, 663
solved by interior-point method, 672–673
Lagrange conditions, 676–678

inactive constraint
definition, 83
necessary, 522–523
respecting in QP, §22.2.2, 715–720
zero Lagrange multiplier, 489

incon problem
statement, 762
linearized constraints inconsistent, 763
elastic mode reformulation, 765

incon.m routine, 762
incong.m routine, 762
inconh.m routine, 762
inconsistent inequalities

detected by feas.m, 715
resulting from linearization, 762

inconsistent linear equations
LAV solution, 52, 535
least-squares solution, 720

incumbent solution, 260, 266
indexing in fcn, grd, and hsn, 497, 582, 812, 854
inducible region, 42
inequality constraints

graphing, 100
reformulating LP, §2.9.1, 83–84
replace max, 34, 39
non-strict, 294
strict, 606
inconsistent, 715
about in NLP, §16, 505–545
in QP, §22.2, 710–727
in SQP, 758–761

Inf, name of IEEE byte code for +∞, 578
infea problem, 70, 137
infeasible forms of an LP

about, §2.5.3, 70
detected by artificial variables, 81
detected by subproblem technique, 73, 77
detected by simplex.m, 131

infeasible problem
definition, 21
detected by newseq.m, 707
general network flow, 242
in LP duality, §5.1, 172–176

infimum operator, 282, 294, 526
infinite horizon model, 32
infinitely convergent algorithm, 339, 572, 819
infinity-norm

definition, 364
in normalizing a vector, 791

inlp integer nonlinear program, 279
inner problem of bilevel program, 40
inner product of vectors

definition, 56
about, 926

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 991

in L2 norm, 364
in quasi-Newton updates, 434

inner-product norm, 364
insight

from graphical solutions, 22
from economic interpretation of dual, 179
theory of mathematical, 839
purpose of computing, 876

instrumenting code, 864–866
by stub routines, 872
multiple effort bins, 872

integer constraint, 255
integer LPs used in the text, §28.6, 943–944
integer NLP used in the text, §28.8, 956
integer programming

about, §7, 255–290
formulation techniques, §7.6.1, 272–273
applications, §7.6.2, 273–275
linear, 21, 27, 29
mixed, §7.7.1, 275–276
methods other than branch-and-bound, §7.7.2, 276
reformulated as zero-one, 272
software, §7.7.3, 276
nonlinear by DP, §7.8.2, 279–282
computational complexity, §7.9, 282–283

interface routines
quadratic penalty, 585–586
logarithmic barrier, 609
max penalty, 635
quadratic max penalty, 765
augmented Lagrangian, 644

interior-point methods for LP
about, §21.1, 663–674
primal-dual formulation, §21.1.1, 665–667
solving Lagrange system, 667–670, 676–679
solving the LP, §21.1.3, 670–674

interior-point methods for NLP
logarithmic barrier, §19, 605–629
about, §21.3, 679–690
primal-dual formulation, §21.3.1, 683–686
primal formulation, §21.3.2, 686–688
linear convergence, 682
accelerating convergence, §21.3.3, 688–690
quadratic convergence, 688
variants, §21.3.4, 690
mixed constraints, 811

interiority condition, 666
intermediate variable in a parse tree, 831
internet

humbug passing for wisdom, 3
NEOS web server, 6, 155, 243, 298

interval of uncertainty in line search, 395
intractable problems, 283
inv Matlab function, 309, 422
invariant algorithm properties, 851
inverse matrix

definition, 927
of a 2 × 2 matrix, 928
eigenvalues of, 466
basis, 147

inverse problem, 303
IQP approach to SQP, 758
iqp.m routine, 758–760
irony, tragic

constraints and tradeoffs in life, 1
no Northeast Passage to ideal NLP algorithm, 346
Nelder-Mead algorithm misnamed, 973
in quadratic penalty endgame, 593, 596
in logarithmic barrier endgame, 619
in dogleg trust-region algorithm, 571

iteration of an algorithm
idea, 930
in finding rate of convergence, §9.2, 339–343
counting, §28.4.3, 936–937
bad measure of computational effort, 859

iterative algorithm, 1, 335, 929
iterative Hessian approximation, §13.4.2, 433–435
iterative methods for solving Ax = b, 315, 456–457

Jacobi algorithm, 315, 654
Jacobian matrix

in Newton’s method for systems, 674–675
in quadratic programming, 697
in GRG feasibility restoration, 747
in Levenberg-Marquardt, 578

jamming in logarithmic barrier method, 613

Karush, William, 509, 970, 976
Karush-Kuhn-Tucker, see KKT
kernel methods in classification, 329, 534
key words, see bold words
KKT multipliers

existence of, 513
shadow prices, 529
satisfy KKT conditions, 509
not uniquely determined, 519
logarithmic barrier problem, 607
finding numerically, §16.10, 534–538
needed to find LRCSE, 860

KKT
theory of nonlinear optimization, §16, 505–545
orthogonality condition, §16.1, 506
nonnegativity condition, §16.2, 506–509
optimality conditions, §16.3, 509–512
theorems, §16.4, 513–514
method, 514–515
necessary conditions, 513
sufficient conditions, 513
one-way implications of theorems, 515
point, 509
in deriving trust region subproblem, 558–559
garden problem, 296

knapsack problem, 274
Kuhn, Harold W., 509, 971
Kupferschmid, Michael

author of this book, §0.4, 13
cited publications, 963, 965, 967, 970, 971, 974

Lagrange multipliers
dual variables, 488–489

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

992 Index

shadow prices, 860
quadratic penalty problem, 582
garden problem, 295
computing in QP, §22.2.3, 720–723
getlgm.m routine, 721–722

Lagrange
conditions, 295, 486, 517
method, see method of Lagrange
multiplier theorem, §15.2, 483–486
point classification, §15.4-§15.5, 490–498
system, 666

Lagrangian
in Lagrange method, 486
in KKT method, 296
gradient of, 489, 491, 752
Hessian of, 494, 753
projected Hessian of, 496
saddle point of, 526
dual nonlinear program, 528
in solving garden problem, 295
quadratic approximation of, 638
quadratic approximation minimized in IQP, 758
of primal-dual barrier problem for LP, 666
of primal-dual barrier problem for NLP, 683, 811
of QP subproblem, 720
minimized in SQP, 756
of Newton-Lagrange quadratic, 756
relaxation for IP, 276
augmented, see augmented Lagrangian

large linear programs
about, §4.3, 146–150
representing basis inverse, §4.3.1, 147
exploiting problem structure, §4.3.2, 147–148
decomposition, §4.3.3, 148–150
generating nearly-optimal vertices, 126
solved by interior-point methods, 673

large nonlinear programs
about, §25.7, 833–839
problem characteristics, §25.7.1, 833–834
coordinate descent, §25.7.2, 834–837
method characteristics, §25.7.3, 837–838
semi-analytic results, §25.7.4, 838–839
nasty problems, §25.7.5, 839
limited-memory methods, 838
solved by ADMM, 656

largest unit-diameter octagon, Ex 25.8.11, 841
lasso technique, 47
LATEX2ε typesetting language

used for this book, ii
reporting computational experiments, 874
code generated by utility program, 875

lattice points
exhaustive enumeration, 255–256
partial enumeration, 257
random enumeration, 257
implicit enumeration, §7.2, 257–259
feasible for bb2, 261
feasible for brewip, 256
feasible for inlp, 280
adjacent in 0-1 program, Ex 7.10.8, 284

LAV regression
about, §8.6.4, 313–315
as a linear program, 313
matrix formulation, 315
ignores outliers, 38, 313
multicollinearity, 315
bulb problem, 36
also, see regression

leading principal minor
definition, 380
found by lpm.m, 382
found by plotpd.m, 427–428
of rb Hessian, 424

least-squares estimate, 304, 310, 720
leaving variable, 62
Lemke’s method, 697
length of a vector, 119, 364

conformable operands, 56, 924
level set

definition, 516
of logarithmic barrier function β(x; µ), 613
of a quasiconvex function, Ex 11.7.3, 389

Levenberg-Marquardt algorithm, 572
Hessian approximation, Ex 17.6.43, 578

line search
about, §12, 395–415
exact vs approximate, §12.1, 395–396
analytic in steepest descent, §10.3, 354–355
exact for strictly convex quadratic, 450
bisection, §12.2, 396–403
Wolfe, 406–412, 458
in steepest descent, §12.4, 412–415
in Newton descent, §13.3, 428–431
backtracking, 610, 686
restricted to keep slack nonnegative, 650, 812
globalization strategy, 637, 813
tolerance, 395
secant method, Ex 13.5.21, 447

linear convergence
definition, 341
of steepest descent, 362
of Fletcher-Reeves algorithm, 458
of quadratic penalty algorithm, 591
of logarithmic barrier algorithm, 615
of interior-point algorithm, 682
of Shor’s algorithm, 795

linear approximation
in Armijo sufficient decrease condition, 405
of constraints in max penalty method, 638
of nonlinear constraints in GRG, 742
of nonlinear constraints in IQP, 758
can yield inconsistent constraints, 762, 770
vs quadratic approximation, 922
of constraints in IQP, 770

linear function
first-order Taylor’s series approximation, 922
change in output ∝ change in inputs, 21
both convex and concave, 376, 389, 517
in a linear program, 33
in simple regression, 306

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 993

linear independence constraint qualification
in Lagrange method, 486
in KKT method, 513
satisfied by a single constraint, 521
not satisfied by cq1, 518
not satisfied by cq2, 519

linear program
description, 18
modeling assumptions, 21
closed feasible set, 55
applications, §1.7, 42–43
why preferable to NLP, 33
formulation, 23–39
what it means to solve, 70
solution techniques, §1.1.4, 22
standard form, §2.1, 55–57
no solution, 23
infeasible form, 70
canonical form, §2.4, 61–68
basic feasible solution, 62
graphical solution, §3, 99–130
alternate views, §3.3.2, 110–111
unbounded, 112
optimal form, 68
multiple optimal solutions, §3.4, 113–115
degenerate, 105, 155–158
simplex solution, §4, 131–170
interior-point solution, §21.1, 663–674
polynomial problem complexity, 163
network flow models, §6, 213–254
primal, 171
dual, 171
dual as special case of NLP dual, 530–531
used in the text, §28.5, 938–942

linear programming relaxation, 255
linear programming software

about, §4.4, 151–155
pivot column selection, §4.4.1, 151–153
tolerances and scaling, §4.4.2, 153
preprocessing, §4.4.3, 154
black-box solvers, §4.4.4, 155

linear system Ax = b
matrix-vector form, 925
inconsistent, 52
overdetermined, 720
underdetermined, Ex 6.6.29, 251
solving numerically, 147, 705
conditioning, 599
sensitivity, 598–600
solved by conjugate gradient, 456
solved in ntchol.m, 423
in compressed sensing, 45
in revised simplex method, 146
in SQP, 755
in decomposing a vector, 745
augmented in finding dual vectors, 253
matrix normal equations, 309
secant equation, 433

linearly independent vectors
about, §28.2.4, 927

one is unless it is 0, Ex 15.6.20, 501
not more than n, 707
basis for a nullspace, 700
if Q–conjugate, 451
constraint qualification, 513
constraint gradients, 485, 507
rows of Jacobian, 697

linearly separable classes, 316
Lingo, 155, 276
link in a network

directed, 214
cost, 215, 230
flow, 215
basic, 219
artificial, 239, 241
in a loop, 224
in a path, 245
in a tour, 246
capacity constraint, 243

Linux implementation of Unix, 913, 977
literature citations

bibliography, §29, 963–977
form in the text, 9

local minima
properties, §10.7, 366–368
strict, 343, 344
nonstrict, 344
of a function of one variable, 921
example, §9.3, 343–344
rejecting unwanted, 410
satisfy Lagrange conditions, 490
satisfy KKT conditions, 515

locally convex function, 388
augmented Lagrangian, 644

log relative combined solution error, 861
log relative solution error, 362, 371
logarithmic barrier method

about, §19, 605–629
barrier terms, 605
barrier function, §19.1, 608–613
minimizing the barrier function, §19.2, 613–616
implementation, §19.3, 616–620
compared to quadratic penalty, §19.4, 620–621
plotting barrier function contours, §19.5, 621–625
näıve algorithm, 608
classical algorithm, 614
linear convergence, 615
jamming, 613
forbids constraint violations, 610
ill-conditioning of Hessian, 615, 619
variants, 621
+penalty hybrid algorithms, 811

looking ahead in zero-one bounding step, 269
loop

in a network diagram, 224
in a transportation tableau, 225, 243
in a computer program, 572, 929, 933

LP duality
about, §5, 171–212
finding duals, §5.2, 187–192

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

994 Index

efficiency considerations, §5.3, 192–196
dual simplex method, §5.3.2, 194–196
pivot program DUal command, 891

LP duality relations
structural, 171
algebraic, §5.1, 172–186
pictorial representation, 171
symbolic derivation, 174–175
both problems infeasible, §5.1.1, 172
both problems feasible, §5.1.2, 172–175
one problem feasible, §5.1.3, 176
shadow prices, §5.1.4, 177–180
complementary slackness, §5.1.5, 180–181
multiple optima and degeneracy, §5.1.6, 181–186

LP standard dual pair
definition, 172
derived using NLP duality, 530
example, 171
used by pivot DUal command, 891

lpin.m routine
code, 671–672
numerical stability, 672

lpm.m routine finds leading principal minors, 382
lpr Unix command, 916
LRCSE, log relative combined solution error, 861

machine epsilon eps, 573, 574, 932
machine learning, 7, 833, 838
major and minor axes of an ellipsoid in R2, 463
make Unix utility, 873
man Unix command, 916
Maple

role in this book, 6
solving linear programs, 155
solving KKT conditions, 296, 512

margin in classification
definition, 321
formula, 324
depends on compromise parameter, 328
also, see soft-margin SVM

margin command of pivot program, 898
master problem

in branch-and-bound, 259, 279
in linear program decomposition, 149

master program
in parallel ADMM, 654

Mathematica
role in this book, 6
solving linear programs, 155
solving KKT conditions, 512

mathematical model, 1, 21, 123
mathematical program

description, 18
origin of term, 22

mathematical symbols
typical uses in this text, 10–11
dictionary, §30.2, 1014–1018
also, see variable names

Matlab

simplex example, 137

while construct, 133, 425, 429, 430
zeros(0,n) locution, 727
anonymous function, 480
background required, 2
backslash +\+operator, 309
base, without toolboxes, 932
bitand function, 270
bitget function, 383
bitshift function, 383
break statement, 933
chol function, 423, 425
coding conventions, §28.4, 932–937
coding fcn, grd, hsn, 497, 582, 812, 854
continue statement, 933
contour function, 336
contourc command, 621
control structures, §28.4.1, 933
cputime function, 864
det function, 380
eig function, 387, 497, 560
ellipsis to continue line, 441
eps constant, 573
eye function, 190
for construct, 933, 936
function, 63
function handle, 585
global parameters, 583
highest for-loop limit allowed, 163
if-then-else construct, 936
indexing with a logical array, 271
inv function, 309, 422
iteration counting, §28.4.3, 936–937
listing line numbers, 63
logical function, 270
loop bounds, §17.5, 572–574
norm function, 365
null function, 496, 497, 701, 704
null array [], 300, 727
ones command, 160, 668
optimization toolbox, 300
orth function, 744, 749
output format, 64
--path option, 934
precision of floating-point values, 932
rand function, 338, 387, 829, 830
rank function, 958
realmax constant, 574, 592
realmin constant, 573, 619
right-division operator /, 706, 736
role in this book, 5
sign function, 624
str2func function, 585
string concatenation, 586
sum function, 270
svd function, Ex 14.8.20, 473
switch construct, 497, 933
tic command, 577, 864
toc command, 577, 864
uint32 function, 383
variable names, §28.4.2, 933–936

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 995

while construct, 933
x.*y command, 668
zero array subscripts forbidden, 937

matmpy.f routine multiplies matrices, 868
matrix arithmetic, §28.2.1, 924–925
matrix equation solution

analytic, 668, 704, 720–721
numeric, 676, 683–686, 721–723, 732, 747–754
one matrix triangular, 705–706, 721

matrix factorization
for solving Ax = b, 423, 705
by Matlab chol function, 309, 425, 554, 566
by hfact.m routine, 617
of simplex basis matrix, 147, 276
in finding determinant, 382

matrix identities, §28.2.6, 928
matrix inversion

desirability of avoiding, 308, 309, 705
explicit, §28.2.5, 927–928

matrix norm, 365
matrix normal equations

derived, 308
solved by Matlab, 310

matrix simplex method
about, §4.2.5, 143–146
exploiting simple bounds, 243
also, see revised simplex

max penalty method
about, §20.1, 631–638
quadratic, §23.4.2, 762–767
equality constraints, 638
mixed constraints, 811
nonconvergence of Newton descent, 635–637

max penalty problem
about, 632–638
graphical solution of ep1, 632–633
graphical solution of ep2, 633–634
inflection value of multiplier, 633
elastic mode reformulation, 638

max-inf problem, 526
max-min problem of calculus

one variable, §28.1.1, 921–922
garden example, 294

max-norm or L∞-norm, 364
maximization problem

reformulating LP, §2.9.2, 84
in LP dual, 171

maximum
finding in graphical solution of LP, 23
flow to shift around a loop, 232
in formulating objective function, 33
operator replaced by inequality, 34, 39, 319, 638
second-derivative test for, 922

merit function, 688, 767
message passing library, 654
method of artificial variables, see artificial variables
method of Lagrange

about, §15.3, 486–489
point classification, §15.4-§15.5, 490–498
solving barrier problem, 666, 680

solving garden problem, §8.2.3, 295
method of multipliers

theory, 645–646
implementation, 647–648
failure due to bad scaling, 818
also, see alternating direction method

min-sup problem, 526
minimizing absolute value

about, §1.5.2, 35–38
in compressed sensing, 45
in finding KKT multipliers, 535–536
sum for non-Gaussian errors, 305

minimizing maximum
reformulation technique, §1.5.1, 33–35
max penalty problem, 638
in classification, 319
in NLP duality, 526

minimizing-point taxonomy, 343–344
minimum successive-ratio row, 158
minimum-ratio

pivot in simplex method, 68
row found by minr.m, 137
pivot away from optimality, 124
rule in transportation problem, 217
rule in QP, 719
step in interior-point method, 671
tie in, 156, 158

minor
determinant of a submatrix, 380, 927
expansion of determinant by, 381
principal defined, 380
finding principal, §11.4.2, 382–384
all principal found by apm.m, 383
leading principal defined, 380
leading principal found by lpm.m, 382
order of checking, 380
signed, or cofactor, 927

MINOS
garden problem solution, 298
for linear programs, 155
for nonlinear programs, 298

minr.m Matlab routine, 136–137
use in phase2.m, 136

mirror descent, 839
mismatch.m program for study of h35, 549
MIX hypothetical programming language, 72
mixed constraints

in LP, 83–84
in NLP, 811–812
penalty and barrier methods, 621
max penalty method, 638
interior point method, 690

mixed-integer programs, §7.7.1, 275–276
model file for AMPL, 298
model formulation

garden problem, 291
books about, 302
brewery problem, §1.3.1, 24–25
bulb problem, §1.5.2, 35–38
chairs problem, §1.4.2, 30–32

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

996 Index

classification, §8.7, 315–329
distribution through Chapters, 7
dynamic LP, §1.4, 28–32
enforcing logical conditions, 273
linear regression, §8.6, 305–315
network flow problem, 213–216
nonsmooth, §1.5, 33–39
ODE parameter estimation, §8.5, 303–305
oil refinery problem, §1.6, 39–42
paint problem, §1.3.2, 25–27
pumps problem, §1.5.1, 33–35
selecting from a list, 272–273
sequential decisions, §1.4, 28–32
shift problem, §1.4.1, 28–30
static LP, §1.3, 23–27
switched constraints, 273
trust-region subproblem, §17.3.0, 557–559
twoexams problem, §1.1.1, 18

modeling assumptions
linear program, §1.1.3, 21
nonlinear program, 291–294
OLS regression, 306
ridge regression, §8.6.3, 310–313

modeling language, 298
modified Newton descent

about, §13.2, 424–428
hfact.m Hessian modification routine, 617–618
bounded modification loop, 554
ntfs.m routine, 425
nt.m routine, 429
ntw.m routine, 430–431
solving gns problem, 429–430
solving rb problem, 426–427, 429–431
in quadratic penalty method, §18.3, 591–593
in logarithmic barrier method, §19.3, 616–620
restricted-step, §17.2, 551–557
ntrs.m routine, 553–554
in flat defined by Ax = b, 707

modified simplex method avoids work, 138–142
moon problem, 509–512

moon.m routine, 722
moong.m routine, 722
moonh.m routine, 722
blocking constraint in KKT case 2, 711

most-negative pricing rule, 151
MPI, Message Passing Interface Library, 654
multicollinearity

in OLS regression, 310
mitigated by ridge regression, §8.6.3, 310–313
in LAV regression, 315

multiple optimal solutions
about, §3.4, 113–115
convexity of set, §3.5.2, 117–118
finding all, §3.6.1, 118–123
transportation problem, §6.1.6, 232
integer program, §7.4, 263–265
integer program subproblem, 264
and degeneracy, §5.1.6, 181–186
of artificial problem, 81
tableaus adjacent, 119

impossible if f (x) strictly convex, 379
moon problem, 512
one23 problem, Ex 20.4.40, 660
can make interior-point fail, 692
in computational testing, 859

multiple regression
OLS matrix formulation, 309–310
ridge regression formulation, 310–313
LAV matrix formulation, 315

multistart globalization strategy, 815
mults.m routine, 537–538

role in computational testing, 854

NaN, not a number, 457, 902, 932
natural constraints, 23
natural logarithm function ln(•)

in logarithmic barrier method, 605–607
nondecreasing and concave, 608

necessary conditions
first-order unconstrained, 366, 503, 529
first-order constrained, 486, 503
second-order unconstrained, 367, 503
second order constrained, Ex 15.6.37, 503
KKT, 513

negative definite matrix
contours of quadratic, 461
in quadratic program, 707

negative semidefinite matrix, 462
Nelder-Mead algorithm, 774, 973
NEOS web server

limited role in this book, 6
LP solvers, 155
NLP solvers, 298
network solvers, 243

net stock = supply minus demand, 214
network models

about, §6, 213–254
formulation, 213–216
diagram, 214
transportation problem, §6.1, 217–232
transportation problem dual, §5.2.1, 188–190
simplex algorithm, §6.1.4, 228–229
unequal supply and demand, §6.2, 232–235
transshipment, §6.3, 235–237
general network flows, §6.4, 237–242
capacity constraints, §6.5.2, 243–244
shortest-path problem, §7.8.1, 277–279
facility location problem, 274–275
computer solution, §6.5.1, 242–243
pivot program Gnf command, 893

newseq.m routine pivots-in identity, 132–133
in feas.m routine, 714
in qpeq.m routine, 707–708

newth35.m program restricts Newton step, 550
Newton descent

about, §13, 421–448
special case of method for systems, 674
plain full-step, §13.1, 421–424
modified full-step §13.2, 424–428
modified using bls.m, §13.3.1, 428–430

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 997

modified using wolfe.m, §13.3.2, 430–431
adaptive modified, §17.2, 551–557
customized for QP, 704
reduced, §22.3, 727–731
quadratic convergence, 421, 596, 620
fast but not robust, 345, 548
insensitive to problem scaling, 816
can go uphill, 410, 424
tiny steps in quadratic penalty method, 595
nonconvergence in max penalty method, 635–637
ppprole in trust-region algorithm, 564
finite-difference gradients, 827
also, see quasi-Newton

Newton’s method for f (x) = 0
pseudocode, 674
flowchart and code, 930–931
in line search, 396
hard to use for high-order polynomial, 385
approximated by secant method, Ex 13.5.21, 447

Newton’s method for systems
about, §21.2, 674–679
in GRG, 747–749
in interior point method for NLP, 680–682
in merit function algorithm, 688
in primal-dual algorithm, 684–685
in SQP, 750–755

nf1 problem
formulation, 215
sparse transshipment tableau, 237–238
link capacity constraint, 243

nf2 problem, 221, 223, 233
nf3 problem, 226, 229, 230
nice NLP problems, §25.7.1, 833–834
NLP duality

about, §16.9, 525–534
Lagrangian dual, §16.9.1, 528–529
Wolfe dual, §16.9.2, 529–530
relations, 529
gap, 529
basis of kernel methods for classification, 329
handy duals, 530–531

NLP solution phenomena
about, §16.8, 521–525
ill-posed problems, §16.8.3, 524–525
implicit variable bounds, §16.8.2, 523–524
necessary redundant constraints, §16.8.1, 522–523

nlpin.m routine, 684–685
nlpinp.m routine, 686–687
NLPs used in the text, §28.7, 944–956
node

in network diagram, 214, 277
in branch-and-bound diagram, 259
supply, demand, or transshipment, 214
ordering in sparse transshipment tableau, 237
equilibrium equation, 215
fathomed or unfathomed, 260
specifying to pivot Gnf command, 893

noise
numerical, 64, 135, 599, 723, 932
in measurement of CPU time, 865, 870

vector in compressed sensing, 46
nonbasic

variables, 62
point, 102
links in a network, 219
spots in a transportation tableau, 225
reduced cost vector, 144

nonconvex feasible set, 116, 287, 516
nondegenerate

vertex, 108, 163, 673
linear program, 158, 163, 168

nondifferentiability, 38, 529, 633, 763, 839
nonlinear classifier, 329, 534
nonlinear program

concise definition, 292
introductory example, §8.1, 291–292
standard form, 292
unconstrained, §15, 479–504
constrained, §16, 505–545
convex, 378
applications, §8.4, 302–303

nonlinear programming software
black-box solvers, §8.3.1, 298–301
custom, §8.3.2, 301
in this text, §25.1, 809–810
performance evaluation, §26, 849–884

nonlinearly separable classes, 329
nonnegative vector, 56
nonnegativity condition, §16.2, 506–509
nonnegativity constraints

example, 19
implicit in simplex tableau, 57
not assumed in nonlinear program, 292
moved into barrier function, 663
enforced by restricted line search, 650, 812
also, see free variables

nonpositive variables in an LP, §2.9.4, 87–88
nonsingular matrix, 927
nonsmooth formulations

about, §1.5, 33–39
minimizing maximum, §1.5.1, 33–35
minimizing absolute value, §1.5.2, 35–38
summary of techniques, §1.5.3, 38–39
max penalty problem, 633, 763
big problems, 834, 839

normal probability distribution, 305
normal equations

simple regression, 307
matrix, 308–310
ridge regression, 312

normalized gradient in ellipsoid algorithm, 782, 792, 797
norms

of vectors and matrices, §10.6.3, 364–365
properties, 364
zero- or || • ||0, 45
absolute-value, L1 or 1−, 364
Euclidean, inner product, L2 or 2−, 364, 598
max or L∞ or infinity-, 364, 791
relationships between, 365
of zero matrix are zero, 564

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

998 Index

never negative, 341
gradient of Euclidean, 923
Matlab norm function, 365

Northeast Passage to ideal algorithm, 346, 849
northwest corner rule

procedure, 219–220
in transshipment tableau, 240
yields suboptimal flows, 230
handling degeneracy, 227

notepad Widows utility, 916
nset problem, 535
nt.m routine, 429
ntchol.m routine

code, 423–424
solves p1 problem, 584
fails to solve p2 problem, 586–588

ntdeltas.m routine, 678–679
nteg.m routine, 675
ntfeas.m routine, 610–611
ntfs.m modified Newton descent routine

code, 425
solves the egg problem, 827
cycles in max penalty method, 635–637
diverges on h35, 548–549
useless for barrier problem, 610

ntin.m routine, 618
ntlg.m routine, 754
ntplain.m routine

code, 421–422
solving gns, 422
solving qp1t, 702–703
solving bss1, not solving h35, 570

ntrs.m adaptive modified Newton routine
code, 553–557
used in penalty.m, 591
behavior in penalty.m, §18.4.1, 593–597
used in auglag.m, 647–648
used in ADMM, 652
limit on Hessian modifications, 572

ntrsh35.m program tests ntrs.m, 555–557
ntw.m routine, 431

solves gns and rb, 431
solves h35, 813

null Matlab function, 496, 497, 701, 704
null array [] in Matlab, 300, 727
nullspace of a matrix

definition, 496
alternate definition, 729–730
basis vectors, 496, 700–702
transformations to and from, 729–730
empty if Ax = b inconsistent, 762
in GRG, 744–746

nullspace method for QP, §22, 697–737
numerical methods

definition, 335
needed for solving real problems, 22, 368, 489
main focus of this book, 335
efficiency, 852
for NLP, §25.1, 809–810
for Lagrangian dual problem, 529

for finding eigenvalues, 384–385
and ill-posed problems, 525
background assumed, §28.3, 929–932

numerically non-PD matrix
in barrier method, 616
in ellipsoid algorithm, 792, 795

objective contour
description, 20
plotting by hand, 23
plotted by Octave, 37
optimal, 20, 27, 34, 99, 506, 512
multiple optima, 113
hyperbola in garden problem, 294
corner in pumps problem, 34

objective cost coefficient vector, 55
shadow prices, 178

objective function
description, 18
contour, 20
nonlinear, 291
quadratic, 449
convex, 375
separable, 279, 650
reducing in LP, 63, 65–66, 75
absolute value in, 535
minimized in line search, 395
negative of T1,1, 62
index i=0 in fcn, 583
to be minimized if named z, 55, 292

objective reduction ratio
definition, 552
calculated in ntrs.m, 553
calculated in trust.m, 569
contour diagram, Ex 17.6.17, 575

objective row
of a simplex tableau, 57
in a subproblem, 75
in an artificial problem, 82
only of subproblem can be pivot row, 59
indexing, 885

obvious constraints, 23, 24, 29
octagon, largest unit-diameter, Ex 25.8.11, 841
Octave

free alternative to Matlab, 5
sqp nonlinear program solver, 300

Ohm’s law, 35
OLS regression

one predictor variable, §8.6.1, 306–308
multiple predictor variables, §8.6.2, 309–310
as a nonlinear program, 306, 310
big data, §8.6.5, 315
for finding Lagrange multipliers, 721
also, see regression

on-line applications, 802
one23 problem, 498

alternate optimum, Ex 20.4.40, 660
ones Matlab command, 160, 668
open-source software

vs proprietary software, 300

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 999

Octave, 5
Sage Math, 6
optimization problem solvers, 155

opposing inequalities, 187, 292, 517, 519
optimal pricing rule, 152
optimal edge

of an LP feasible set, §3.4.2, 114
invisible lattice points in, 265

optimal form
of a simplex tableau, §2.5.1, 68–69
of a subproblem, 77
restoring in sensitivity analysis, 197, 201
obtained by pivot SOlve command, 905

optimal ray
about, §3.4.1, 113
signal column in tableau, 115
in air duct problem, 120

optimal set
of LP is convex, §3.5.2, 117–118
finding all points in, §3.6.1, 118–123
primal-dual can find interior point, 673, 692

optimal vector
definition, 22
finding all of LP, §3.6.1, 118–123
naturally integers, 255
nonbasic, 114, 119
none if problem is unbounded, 69
of P is slack cost coefficients in D , 174
twoexams problem, 20

optimality cut
center in Shor’s algorithm, 778
deep, 801

optimization
in everyday life, 1, 337
example, 17
mathematical model, 23
prototypical algorithm, §9.6, 347–348
history of discipline, 22
toolbox in Matlab, 300

order of convergence, see rate
order-of notation O(•), 821
orth Matlab function, 744, 749
orthogonal

vectors have zero dot product, 449, 506
matrix, 745, 786
subspaces of a matrix, 744
complement of a subspace, 744
nullspace vector to row of matrix, 744
nullspace vectors to rangespace vectors, 744
direction vector to gradient vector, 409
residuals and directions in conjugate gradient, 454
vector to hyperplane, 323, 782
projection, 492
vectors in Lagrange multiplier derivation, 482–486
vectors in second order conditions, 491–494
steps in zigzagging, 359
feasibility restoration step in GRG, 742

orthogonality KKT condition, 506
orthonormal vectors

basis for nullspace from Matlab null, 701

basis for range space from Matlab orth, 744
Q-conjugate eigenvectors, Ex 14.8.20, 473

outer problem in a bilevel program, 40
outer product of vectors

about, 926
in quasi-Newton updates, 434
in rank-one matrix update, 439

outliers in data, 38, 313

p1 problem
about, 581–582
penalty formulation, 581
solved by penalty.m, 592–593
inequality-constrained, Ex 19.6.4, 625

p1pi.m routine, 583
p1pig.m routine, 583
p1pih.m routine, 583
p2 problem

about, 585
penalty formulation, 585–586
solved by p2pen.m, 589–591
solved by penalty.m, 592–593
not solved by ntchol.m, 586–588
endgame in quadratic penalty solution, 593–597

p2.m routine, 585
p2g.m routine, 585
p2h.m routine, 585
p2nonpd.m program, 586–588
packaged software

linear programming, 153, 155
linear integer programming, 276
nonlinear programming, §8.3.1, 298–301
Homebrew manager, 913
drawbacks, 301
circa 1992 [117], 972

padmm.m program, 654–655
page headers, 9
paint problem

formulation, §1.3.2, 25–27
algebraic statement, 26
ratio constraint, 26, 48
graphical solution, 26–27

parallel processing
in ADMM, §20.3.2, 653–656
block update methods [160], 975
for big problems, 838
measures of algorithm quality, 873

parameter estimation
linear regression model, §8.6, 305–315
differential equation model, §8.5, 303–305
in bulb problem, 36
via type–2 nonlinear program, 305
by Levenberg-Marquardt algorithm, 572

parameterization
explicit of constraints, §15.1, 481–483
implicit of constraints, §15.2, 483–486
of dogleg in trust region method, 565–566

parameters
of pivot program commands, 886
of Wolfe line search, §12.3.1, 405–406

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1000 Index

adjustable of a computer program, 638, 837, 853
global in Matlab, 583, 764

parse tree, 831
partial pricing, 153
partial enumeration of lattice points, 257
partial solution of a zero-one program, 266
partially separable functions, 837

also, see separable
partitioning of Rn

by constraint hyperplanes, 100
into orthogonal complement subspaces, 744

path in a network
definition, 245
finding the shortest, 245, 277–280

path-following method, 672
pattern search, 337, 395, 638
pedagogical approach of this book

about, §0.2.2, 2–4
importance of narrative, 2
discovery by the reader, 2–3
use of examples, 4
conversational style, 4
role of proof, 3–4
role of computing, 4–7, 766
pivot program, §2.7, 72
treatment of linear programming [3, §2,§3], 963

penalty
term in quadratic penalty function, 581
term in max penalty function, 632, 638
term in quadratic max penalty formulation, 763
term in augmented Langrangian, 642
parameter in compressed sensing, 46
+barrier hybrid algorithms, 811

penalty.m routine, 591–592
endgame behavior, §18.4.1, 593–597

penbar.m routine, Ex 25.8.6, 840
performance profiles, §26.5.2, 877
perfplot program plots error-vs-effort curves, 874
permutations, ways to order things, 157
personal pronouns in this book, 4
perturbation of constraints

shadow prices, 177, 488
to make a vertex nondegenerate, 163, 692

phase 0
definition, 71
getting standard form, §2.9, 83–89
hard to automate, 131

phase 1
of simplex method, 71
of revised simplex method, §4.2.4, 142
getting canonical form, §2.8, 73–83
must be automated, 131
phase1.m routine, 134–135
in solving transportation problem, 217, 230
iteration of Shor’s ellipsoid algorithm, 776

phase 2
of simplex method, 71
of revised simplex method, §4.2.3, 141
of dual simplex method, 195
must be automated, 131

phase2.m routine, 135–136
of Shor’s ellipsoid algorithm, 777

pivot matrices, §4.2.1, 138–139
pivot.m routine, §2.4.2, 63–65
pivot

definition, 59, 885
fundamental operation in simplex algorithm, 59
row & column, 59
example, 59–60
minimum-ratio, 68
degenerate, 105
exterior, 105
element circled in tableau, 59
arithmetic operations required, 138

pivoting
graphical interpretation, §3.2, 101–108
by substitution, 58
in a simplex tableau, 58–60
in slow motion, §3.2.1, 102
to a given vertex, 108
“I feel lucky” strategy, 95, 210

pivoting-in a basis, 73, 217
pivot program

about, §2.7, 72
operation, §27.3, 914–917
built-in help, §27.3.2, 915–916
indexing tableau rows and columns, 885
suppressing output, 915
stopping, 915
printing the screen, §27.3.3, 916–917
comments, 915
maximum tableau size, 908
indexing tableau rows and columns, 72
meaning of +0 and -0, 897
installation, §27.2, 913–914
.bashrc file, 914
pivot.help file, 914
pivotprint shell script, 914
role in this book, 6

pivot program commands
about, §27.1, 886–912
prototypes, 886
abbreviation, 886
aliases, 886
repetition, 915
parameters, 886
prompt, 915
zero index, 886
append, 887
clear, 888
delete, 889
digits, 890
dual, 891
every, 892
gnf, 893
help, 894
insert, 895
iters, 896
list, 897
margin, 898

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1001

names, 899
pivot, 900
quit, 901
ratios, 902
read, 903
scale, 904
solve, 905
stop, 906
swap, 907
tableau, 908
undo, 909
unsolve, 910
write, 911
?, 912

pivotprint shell script, 914, 916–917
plausible reasoning [173, p vi], 839
plotpd.m routine, 427–428, 586–587
plotrb.m plots contours of rb objective, 336
plotting ellipses

by hand, §14.7.2, 463–466
by using ellipse.m, §14.7.3, 468–471

plrb.m routine, 460
pm problem, 138
Polak-Ribière algorithm, §14.6, 459–461
Polya, George, 839
polyhedron

example in R2, 100
extreme points in Rn, 149
largest unit-diameter octagon, Ex 25.8.11, 841

poorly scaled optimization problem
definition, 816
due to units of measure, 817

positive definite matrix
definition, 367, 368
testing submatrices, §11.4, 379–381
testing eigenvalues, §11.5, 384–387
evidence from convcheck.m, 387
plotting points where with plotpd.m, 427, 586
factored by Matlab chol function, 423
maintained by BFGS update, 437
if and only if U⊤MU is, 436
inverse, Ex 11.7.29, 392
nonsymmetric, Ex 11.7.18, 390

positive semidefinite matrix
definition, 367
testing submatrices, §11.4, 379–381
testing eigenvalues, §11.5, 384–387
plotting points where with plotpd.m, 427

postoptimality analysis, see sensitivity
posynomial function, 385
potential-reduction interior-point algorithm, 674
precision of numbers

limited in floating point, 600, 819, 929
used by Matlab, 932
displayed by pivot program, 890, 897
stated in text, 10

predictor variable
single in regression, 306
single in classification, §8.7.1, 317–318
multiple in regression, §8.6.2, 309–310

multiple correlated, 310
multiple in classification, §8.7.2, 318–321

preprocessing
linear program, §4.4.3, 154
nonlinear program, by Minos, 299

pricing out
in simplex algorithm, 145, 151
in transportation algorithm, 223, 226

primal
linear program, 171
nonlinear program, 528
interior point system, 686
solutions to example LPs, §28.5, 938–942

primal-dual
interior-point formulation, §21.1.1, 665–667
interior-point system, 684

principal minor
definition, 380
finding, §11.4.2, 382–384
leading, 380, 424, 427

principal submatrix, 380
prior knowledge assumed, 2, 56–57, 353, 921–932
problem definition file, §26.3.5, 870–872
processor cycle counting, §26.3.4, 866–870
product rule for derivatives, 583, 787, 832
product-form inverse, 147
production activities, 47, 199–200
projected Hessian of the Lagrangian, 496
proof

role in this book, 3–4
algorithm convergence, 4, 572

proprietary software, 6, 155, 300, 878
prototypical algorithm, §9.6, 347–348
proximal algorithms, 839
prs.m solves rb by pure random search, 337–338
pseudoconvex function, 388
pseudoinverse, 308, 721–722, 756, 757
pseudorandom number, 338, 836
pumps problem, §1.5.1, 33–35
pure random search

about, §9.1, 335–338
in everyday life, 337
robust but slow, 345, 353
solves rb problem, 337–338

pye.m routine, 585–586
pyeg.m routine, 585–586
pyeh.m routine, 585–586

qeplain.m routine, 704
qp1 problem, 697

reduced, 699–703
qp1t.m routine, 702
qp1tg.m routine, 702
qp1th.m routine, 702
qp2 problem, 706–707
qp3 problem, 707
qp4 problem, 710
qp5 problem

statement, 712
starting point, 712–715

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1002 Index

graphical solution, 713
inactive inequalities, 715–720

qpeq.m routine, 707–708
in sqp.m, 757

qpin.m routine, 723–726
in iqp.m, 758

quadratic convergence
definition, 341
shape of error curve, 342
of Newton descent, 421
of quasi-Newton methods, 442
of modified interior-point method, 694

quadratic formula, 523, 566
in dogsub.m, 567

quadratic function
about, §14.7, 461–471
graphs and contours in R2, §14.7.1, 461–463
ellipse, §14.7.2, 463–468
minimized by Newton descent, 422
in trust region dogleg approximation, 566
central-difference derivative approximation, 821

quadratic interpolation line search, 396
quadratic model

definition, 360
of a quadratic function, 422
can be accurate far away, 570
can be worthless far away, 549
assessing trustworthiness, 552
minimized in Newton descent, 421
alternation in max penalty, 635–637

quadratic penalty method
about, §18, 581–604
penalty function, §18.1, 582–588
minimizing the penalty function, §18.2, 589–591
näıve algorithm, 582
classical algorithm, §18.3, 591–593
numerical difficulties, §18.4.1, 593–597
Hessian conditioning, §18.4.2, 597–600
linear convergence, 591
compared to logarithmic barrier, §19.4, 620–621
relation to augmented Lagrangian, 644
variants, 621
+barrier hybrid algorithms, 811
cannot solve Ex 18.5.23, 603
cannot solve Ex 18.5.22, 603
penalty function dual, Ex 18.5.34, 604

quadratic programming
about, §22, 697–737
unconstrained, §14.1, 449–450
conjugate-gradient algorithm, §14.4, 454–457
constrained, 697
equality constraints, §22.1, 697–709
eliminating variables, §22.1.1, 699–703
solving the reduced problem, §22.1.2, 703–709
inequality constraints, §22.2, 710–727
inequality-constrained algorithm, 712
finding a feasible x0, §22.2.1, 712–715
respecting inactive inequalities, §22.2.2, 715–720
computing Lagrange multipliers, §22.2.3, 720–723
active set implementation, §22.2.4, 723–727

reduced Newton algorithm, §22.3, 727–731
in SQP, 755–756
dual, 531–532
in compressed sensing, 46
interior-point method [5, p415], 674
indefinite [1, §11.2], 815

quasi-Newton algorithms
about, §13.4, 432–445
secant equation, §13.4.1, 432–433
iterative approximation of Hessian, §13.4.2, 433–435
update formulas, §13.4.3-4, 435–439
BFGS and DFP, §13.4.5-6, 439–445
alternative implementations, 444
in interior-point methods for NLP, 690
in SQP, 767
sensitivity to problem scaling, 816
limited memory and sparse, 838

quasiconvex function, 388
level sets, Ex 11.7.3, 389

radar imaging, 43
rand Matlab function, 338, 387, 829, 830
random enumeration, 257
random selection

of trial points in gradtest.m, 829
of trial points in hesstest.m, 830
of trial points in convcheck.m, 387
of trial points in pure random search, 337
of starting points in multistart strategy, 815
of search directions in coordinate descent, 837
between tied pivot rows, 163
of branch-and-bound subproblem to solve next, 263
of initial basic link in network, 230

range space of a matrix
definition, 744
orthonormal basis, 744
orthogonal to nullspace of transpose, 744

rank of a matrix, 926, 927
rank Matlab function, 958
rank-one update to a matrix, 439, 778
rate of convergence r

about, §9.2, 339–343
definition, 339
possible values, 341
ddd

and shape of error curve, 342
steepest descent, 362
Newton descent, 427
quasi-Newton methods, 442
conjugate gradient, 456
Fletcher-Reeves, 458
quadratic penalty, 591
logarithmic barrier, 615
interior-point, 682, 688
ADMM, 653
Shor’s algorithm, 795

ratio constraint, 26, 48, 50
ray

feasible, 101, 112
optimal, §3.4.1, 113

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1003

signal column in tableau, 115
convex hull, 120

rb problem
statement, 335
catalog entry, §28.7.2, 945
routine computes function value, 336
objective contours, 336
x⋆ is a strict local minimum, 368
bad conditioning of Hessian, 363–364
where Hessian is singular, 424
solved by sd.m, 414
solved by sdw.m, 415
solved by flrv.m, 458–459
solved by plrb.m, 460
not solved by ntplain.m, 422–423
not solved by ntchol.m, 423–424
not solved by ntfs.m, 426–427
solved by nt.m, 429–430
solved by ntw.m, 430–431
solved by dfp.m and bfgs.m, 441–442
solved by bfgsfs.m, 444

rbntfs.m program tests ntfs.m, 426
real number

as difference of nonnegative values, 37, 85, 86
part of complex Fourier transform value, 44
precision displayed by pivot program, 890, 897
precision stated in text, 10

realmax Matlab constant, 574, 592
realmin Matlab constant, 573, 619
recentering in Shor’s algorithm, §24.6, 796–800
record point

in prototypical optimization algorithm, 347
in pure random search, 338
in Wolfe line search, 408
in ellipsoid algorithm recentering, 796–798
globalization strategy, 815

record value
in prototypical optimization algorithm, 347
in pure random search, 337
in ellipsoid algorithms, 796

recursion in dynamic programming, 278
reduced cost

zero over basis columns, 61
negative over a pivot column, 63
in simplex method, 60
in matrix simplex method, 144
in sensitivity analysis, 200
in steepest-edge pricing, 153
in decomposition, 150
updating in transportation algorithm, 223

reduced Hessian matrix, 701, 739
reduced Newton direction, 704
reduced objective

how obtained, 294, 480
in classifying stationary points, 480
in classifying Lagrange points, §15.4.2, 490–491
testing Hessian of, 494

reduced-gradient method
about, §23.1, 739–750
linear constraints, §23.1.1, 739–742

nonlinear constraints, §23.1.2, 742–750
reduced gradient vector, 739

redundant constraint
definition, 19
makes vertex degenerate, 105, 182, 720
removed by newseq.m, 133, 154, 707
removed by preprocessor, 163
in subproblem technique, 73
in artificial variables technique, 81
in transportation problem, 222
in paint problem, 27
in QP, 711
can be necessary in NLP, §16.8.1, 522–523

reference error for performance profile, 877
references

bibliography, §29, 963–977
how cited in text, 9
on LP applications, 42–43
on NLP applications, 302–303
on prior knowledge assumed, 921

reformulation to standard form
maximization problems, §2.9.2, 84
inequality constraints, §2.9.1, 83–84
free variables, §2.9.3, 85–87
nonpositive variables, §2.9.4, 87–88
simple bounds, §2.9.5, 88–89
summary of easy, §2.9.6, 89
summary of nonsmooth, §1.5.3, 38–39
minimizing the absolute value, §1.5.2, 35–38
minimizing the maximum, §1.5.1, 33–35
elastic mode NLP, 638, 763

regression
about, §8.6, 305–315
OLS, 306
one predictor variable, §8.6.1, 306–308
multiple predictor variables, §8.6.2, 309–310
matrix formulation, 308–309
multicollinearity, 310, 315
ridge, §8.6.3, 310–313
LAV, §8.6.4, 313–315
LAV for bulb problem, 36
LAV for KKT multipliers, §16.10, 534–538
OLS for QP Lagrange multipliers, §22.2.3, 721–723
big data, §8.6.5, 315
multicollinearity, 315

regular point, 521
regularization

in compressed sensing, 46
in LAV regression, 315
in ridge regression, 312

relative error
distance, 338, 859
function, 800
normalized by value at x0, 861
plotting logarithm, 362, 371
in convergence test, 819
of central difference gradient, 830

RELAX-IV network optimization code, 243
reliability of an algorithm, 853
reporting experimental results

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1004 Index

about, §26.5, 876–878
tables, §26.5.1, 876
performance profiles, §26.5.2, 877
publication, §26.5.3, 878
politeness, 878

rescaling, see scaling
residual

in conjugate gradient algorithm, 454–456
loss of orthogonality, 456
of inconsistent equations, 536
of model fit to data, 304

resource allocation problem
twoexams, §1.1, 17–22
brewery, §1.3.1, 24–25
paint, §1.3.2, 25–27
pumps, §1.5.1, 33–35
garden, §8.1, 291–292

response variable, 306, 309, 315
restricted steplength algorithm

about, §17.1, 547–557
steplength adjustment algorithm, 552
adaptive modified Newton, §17.2, 551–557
ntrs.m routine, 553–555
solving h35, 550–557
in nlpin.m, 684
in qpin.m, 723
in SQP, 767
restricted line search, 650, 812
globalization strategy, 813

revised simplex method
about, §4.2, 137–146
avoiding unnecessary work, §4.2.2, 139–140
saving memory, §4.2.5, 143–146
phase 1, §4.2.4, 142
phase 2, §4.2.3, 141
representing basis inverse, §4.3.1, 147
upper bounding, 148
column generation, 148

ridge regression
about, §8.6.3, 310–313
as a nonlinear program, 311
bias parameter, 312

ridge trace, 312
ridge.m program plots ridge trace, 313
right ellipsoid

definition, 450
example, 463
rotation to obtain, 785
enclosing bounds, 778

right-division Matlab operator /
description, 706
example, 707
system not square, Ex 22.4.40, 736

right-hand side vector
in standard-form LP, 55
sensitivity to changes in, 599
zero in homogeneous system, 698

rneq.m routine, 727–730
rneqplot.m program, 729–731
rnt problem

statement, 727
solved by rsdeq.m, 740–742
solved by rneq.m, 728–730

robustness
of an algorithm defined, 345
of an algorithm measured, 853, 876
of an algorithm vs speed, §9.4, 344–346
of a line search vs speed, 396
against nonconvexity, §12.3, 403–412
of steepest descent, 415
of ellipsoid algorithms, 773, 802
diminished in extended algorithms, 812
improved by restricting steplength, §17.1, 547–551
improved by modifying direction, 425–428, 591
improved by using quasi-Newton method, 767
improved by using a line search, 637, 813
depends on enforcing Wolfe conditions, 413
needed of SQP subproblem solver, 766
of example programs insufficient, 4

Rosenbrock problem, 335–336
also, see rb problem

routine, a Matlab function we write, 63
row operations of linear algebra

preferable to substitution, 58
pivot the only sequence used here, 59
perils illustrated, Ex 2.10.21, 92

row singleton equality constraint, 154
rsdeq.m routine, 739–740

solves rnt problem, 740–742
Russell’s rule for initial transportation flows, 231

saddle point
contours of indefinite quadratic, 462–463
of Lagrangian, 526–527

Sage Math, 6
sampling variance, 310, 311
scalar product of vectors, see inner product
scale-invariant algorithms, 816
scaling

transformation of coordinates, 778, 784
diagonal, 817
of LP data, 153
of NLP variables, §25.4.1, 817
of NLP constraints, §25.4.2, 817–819
of gradient in Shor’s algorithm, 791
of a classification problem, 323
affect on Lagrange multipliers, 817
affect on Hessian condition number, 817
affect on convergence testing, 819

scl problem, 815
sclc problem, 818
sclc.m constraint-scaling function value routine, 818
sclcg.m constraint-scaling gradient routine, 818
sclch.m constraint-scaling Hessian routine, 818
script Unix utility, 916
sd.m steepest descent with bisection

code, 413
examples of use, 414
solves the egg problem, 827
failure due to bad scaling, 816

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1005

sdconv.m solves gns by steepest descent, 362–363
sdfs.m routine

code, 361
error curve, §10.6.1, 361–363
solves the rb problem, §10.6.2, 363

sdw.m Wolfe line search routine
code, 415
examples of use, 415

secant equation
about, §13.4.1, 432–433
satisfied by BFGS result, 436

secant method line search
linear interpolation, Ex 12.5.27, 418
Newton formula, Ex 13.5.21, 447

second-derivative test
one variable, 295, 490–491, 922
n variables, 367, 494

second-order convergence, see quadratic convergence
second-order necessary conditions

unconstrained, 367, 503
constrained, Ex 15.6.37, 503

second-order sufficient conditions
weak unconstrained, 368, 373
strong unconstrained, 367
in classifying Lagrange points, 494

second.m approximates f ′′(x) for f (x) = ex, 826
self-scaling quasi-Newton algorithms, 816
semi-analytic solution

in compressed sensing, 47
of special linear program, 97
of big problem, §25.7.4, 838–839

semimajor and semiminor ellipsoid axes
definition, 463
and eigenvalues of matrix, 464–465, 785
and ellipsoid volume, 467, 468, 787

sensitivity of Ax = b solution, 598–600
bounded above by condition number, 598

sensitivity to imprecise data, 853, 876
sensitivity analysis

about, §5.4, 196–204
changes to problem data, §5.4.1, 197–199
inserting or deleting columns, §5.4.2, 199–200
inserting or deleting rows, §5.4.3, 201–202
shadow price curves, §5.4.4, 203–204
increase a nonbasic variable, 177
increase a basic variable, 183

separable classes
by linear classifier, 316
by nonlinear classifier, 329

separable function, 279, 650
separable variables, 650
serially reusable routine

definition, 361
capturing convergence trajectory, 362
capturing convergence trajectory if not, 730
instrumenting if not, 872

setup cost, Ex 7.10.43, 287
sf1 problem

statement, 73
getting canonical form by subproblems, 73–76

getting canonical form by artificial variables, 79–81
simplex.m ignores redundant rows, 137

sf2 problem
statement, 76
getting canonical form by subproblems, 76–77

shadow price
about, §5.1.4, 177–180
curves, §5.4.4, 203–204
of slack resource is zero, 181, 523
optimal dual variable, 178, 534
Lagrange multiplier, 488–489
KKT multiplier, 529
negative for sticking QP constraint, 711
in combined solution error, 860

Shah’s ellipsoid algorithm, §24.7, 800–801
shell script in Unix

to automate building an executable, 875
to automate running experiments, 874–875
to automate analysis of results, 875
pivotprint, 914–917

Sherman-Morrison-Woodbury formula
statement, §13.4.4, 439
alternate Shor update, Ex 24.10.22, 805

shift workers problem
formulation, §1.4.1, 28–30
conservation law, 28
algebraic statement, 29
integer optimal solution, 29

shifting flow around a loop
in network diagram, 224
in transportation tableau, 224
corresponds to a pivot, 224
maximum amount, 225, 228, 244

shipping schedule
definition, 215
feasible, 215
optimal, 217
in facility location problem, 275
using pivot program Gnf command, 893

Shor’s ellipsoid algorithm
geometry, §24.2, 774–778
center cut, 778
algebra, §24.3, 778–789
update, §24.3.3, 783–789
implementation, §24.4, 790–794
convergence, §24.5, 794–796
recentering, §24.6, 796–800
variants, §24.8, 801–802
phase1, 776
feasibility cut, 778
phase2, 777
optimality cut, 778

shortest-path problem
equivalent to assignment, 245
IP formulation, 245
DP formulation, §7.8.1, 277–279
solving integer NLP by DP, 280

Shur-complement method for constrained QP, 697
sign Matlab function, 624
signal tableau columns, §3.4.3, 114–115

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1006 Index

signum function, 317, 624
simplex algorithm

how it works, 58, 66
theory, §2, 55–89
defined in terms of pivots, 59
generates sequence of views, 111
pivot rule, 68
solution process, §2.6, 70–71
phases, 71
pivot SOlve implementation, 905
Matlab implementation, §4.1, 131–137
black-box implementations, §4.4.4, 155
degeneracy, §4.5, 155–164
convergence, §4.5.1, 157–158
preventing cycling, §4.5.2-3, 158–164
number of phase-2 iterations needed, 163
dual, §5.3.2, 194–196
transportation, §6.1.4, 228–232
solves linear IP subproblems, 266
matrix, 146, 243
revised, see revised simplex method
large problems, §4.3, 146–150

simplex pivot rule
purpose, 65–68
algorithm, 68
dual, 195

simplex tableau
description, §2.2, 57–58
nonnegativities implicit, 57
equivalent, 58
adjacent, 107
canonical form, 61
final forms, §2.5, 68–70
signal columns, §3.4.3, 114–115
graphical interpretation, §3.3, 108–113
brewery problem, 57
dual, 190, 194
assumed by pivot program, 885
defined by pivot program Tableau command, 908
read by pivot from .tab file, 903
written by pivot to .tab file, 911

simplex.m routine
code, 131–132
solves brewery problem, 137
used in duals.m routine, 191
used in mults.m routine, 537

simulated annealing, 276
single-stepping an NLP solver

sdfs, 361
ntfs, 549
ea.m, 792, 861
ea.f, 866
counting iterations, 936–937
when not serially reusable, 872

singular-value decomposition, 496, 744
slack constraint, see inactive
slack variable

example, 83
added to make constraint an equality, 84
basic variable interpreted as, 110

zero on constraint hyperplane, 108
in LP graphical solution, §3.3.1, 109
coefficients in primal optimal for dual, 174
if positive shadow price is zero, 181
if zero shadow price might not be positive, 181
in interior-point algorithm, 665–667, 683–684
in finding QP starting point, 713, 715
nonnegative by restricted line search, 346, 650, 812

Slater’s condition
constraint qualification, 521
in NLP duality, 529, 530

smallest-cost rule, 230, 231
smallest-index rule, see choosing
smind.m finds pivot row to prevent cycling, 160–161
smneq.m solves matrix normal equations, 310
smooth

meaning in this book, 11
LP reformulations of nonsmooth, §1.5, 33–39
relaxation of an integer program, 255
convex function, 377, 378
locally convex function, 388
function stationary at a minimizing point, 366
optimization easier than nonsmooth, 38, 255
NLP by elastic mode reformulation, 638, 763

smoothing methods, 839
socheck.m routine, 496–497
soft thresholding, 47
soft-margin SVM

as a nonlinear program, 326
compromise parameter, 326
error graph, 329

solution vector
also, see optimal vector
in standard-form LP, 55

solver routine
for linear programs, 155
black-box for NLP, §8.3.1, 298–301
custom for NLP, §8.3.2, 301
summary of those in text, §25.1, 809–810
for QP used in SQP, 756, 766
typically in a compiled language, 7, 301
in a computational experiment, 873

solving Ax = b, see linear system
solving Lagrange system

analytically, §15.3, 486–489
of quadratic penalty method, 581–582
by successive corrections, §21.1.2, 667–670
by Newton’s method for systems, §21.2.2, 676–679
QP equivalent to 1 Newton iteration, 758

solving linear programs
simplex algorithm, §2.6, 70–71
simplex implementation, §4, 131–170
interior-point methods, §21.1, 663–674

solving nonlinear programs
about, §25, 809–848
summary of methods, §25.1, 809–810
mixed constraints, §25.2, 811–812
global optimization, §25.3, 813–815
scaling, §25.4, 815–819
convergence testing, §25.5, 819

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1007

calculating derivatives, §25.6, 820–833
large problems, §25.7, 833–839

space confinement, §24.1, 773–774
spanning tree

connects all nodes, 240
in sparse transshipment, Ex 6.6.43, 253

sparse Fourier transform, 44
sparse transshipment tableau

nf1 example, 237–238
nonblank cells, 243
ordering of nodes, 242

spear problem, 257
speed of an algorithm

vague definition, 345
vs robustness, §9.4, 344–346
for line search, 396
depends on condition number of QP matrix, 456
depends on ellipsoid dimension n, 795–796
measured by function evaluations, §26.3.2, 861–863
measured by processor time, §26.3.3, 863–866
measured by processor cycles, §26.3.4, 866–870

SQP
about, §23.2, 750–767
Newton-Lagrange algorithm, §23.2.1, 752–755
equality constraints, §23.2.2, 755–758
inequality constraints, §23.2.3, 758–761
quadratic max penalty algorithm, §23.2.4, 762–767
QP subproblems, 755–756, 766
IQP approach, 758
finding Lagrange multipliers, 756, 758
refinements, 767
hybrid with ellipsoid algorithm, 802

sqp Octave function
different from sqp.m routine, 756
solving perfect-separation SVM, 324–325
solving soft-margin SVM, 326–328
solving garden problem, 300–301

sqp.m routine
code, 757
solves sqp1, 758
inconsistent linearized constraints, 762
not robust enough for production use, 766

sqp1 problem
statement, 750
solution by Newton-Lagrange method, 750–752
solution by ntlg.m, 754–755
solution by sqp.m, 758
solution by iqp.m, 760
solution by emiqp.m, 766

sqp1.m routine, 755
sqp1c.m routine for contouring objective, 751
sqp1g.m routine, 755
sqp1h.m routine, 755
sqp1plot.m program plots convergence, 750–751
sqpie.m routine for mixed constraints, Ex 25.8.9, 840
square wave error-vs-effort curve, 861–863, 866
srr.m finds pivot row to prevent cycling, 161–162
stability of an algorithm

factor-and-solve solution of Ax = b, 721
numerical of auglag.m, 648

numerical of lpin.m, 672
staying at x0 = x⋆, 876

stage of a dynamic programming problem, 278, 280
stage in process modeling

by linear program, 28
cyclic indexing, 28
diagram, 30

stalling
in simplex algorithm, 163
in steepest descent, 364, 419
in quadratic penalty method, 595
in näıve logarithmic barrier method, 613
in trust region algorithm, 570–571
impossible in interior-point method for LP, 673

standard form of a linear program
characteristics, §2.1, 55–57
notation, §2.3.2, 60
represented by simplex tableau, 57, 885
getting, §2.9, 83–89
reformulations, §2.9.6, 89
dual of, §5.2.1, 187–188
of dual, 665
brewery problem, 56

standard form of a nonlinear program
definition, 292, 514, 794
quadratic penalty formulation, 582
logarithmic barrier formulation, 607
elastic mode formulation, 638, 763
augmented Lagrangian formulation, 642
interior-point formulations, §21.3, 679–688
equality constraints, 517
garden problem, 292

standard timing unit, 883
standard-form dual LP, 665
starting point

midpoint of bounds, 346, 854, 855
catalog, 337
published of rb problem, 413
for a transportation problem, 230
strictly feasible for logarithmic barrier, 608, 811
basic solution of Ax = b for QP, 697
randomly chosen in multistart, 815
ntfs.m sensitive to in newth35 problem, 548
in a computational experiment, 854

state equation, 31
state variable

significance, 32
twoexams problem, 18
chairs problem, 31
bulb problem, 38
in dynamic programming, 276

stationarity
first-order necessary conditions, 367
Lagrange condition, 486, 720
KKT condition, 509, 510, 535
in trust region subproblem, 558
of quadratic penalty function, 582
of logarithmic barrier function, 607
maintained by method of multipliers, 645

stationary methods of solving Ax = b, 315

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1008 Index

stationary point
definition, 367
no descent possible from, 410
classifying, 490, 495
of quadratic penalty function, 582
of logarithmic barrier function, 606

steep.m program solves gns, 358–359
steepest descent

about, §10, 353–373
direction, §10.2, 354
direction in trust-region algorithm, 564
Newton descent when H = I, 421
optimal step, §10.3, 354–355
optimal-step algorithm, §10.4, 356–359
full-step algorithm, §10.5, 360–361
zigzagging, 359, 449
linear convergence, §10.6, 361–365
error curve, §10.6.1, 361–363
bad conditioning of Hessian, §10.6.2, 363–364
in rsdeq.m, 739–740
in grg.m, 748–749
alternative implementations, 413
bisection line search, §12.4.1, 413–414
Wolfe line search, §12.4.1, 414–415
stalling, Ex 12.5.37, 419
sensitive to problem scaling, 816
finite-difference gradients, 827
large problems, 838

steepest-edge pricing rule, 152
step length adaptation

objective reduction ratio, 552
flowchart, 552
in ntrs.m, §17.2, 551–557
in trust.m, 568–570
backtracking line search, 610

step length determination in QP
cases, 716–718
flowchart, 719
code, 723–725

sticking constraint, 711
str2func Matlab function, 585
strict local and global minima

definitions, 343–344
graphs, 344
second-order sufficient conditions, 494
strong second-order sufficient conditions, 367
gns problem, 368
rb problem, 368

strictly concave function, 376
strictly convex function

definition, 376
has unique global minimum, 379
Hessian might not be positive definite, 379
quadratic, 422, 450
gns problem, 422, 449
Lagrangian in al2, 638
Lagrangian in NLP duality relation 6, 529

string concatenation Matlab construct, 586
strong second-order sufficient conditions, 367

satisfied by gns, 368

satisfied by rb, 368
strong Wolfe conditions, Ex 12.5.26, 418
strongly convex function, 388
structure

block-angular constraints, 148
exploited by dynamic programming, 277
exploiting in large linear programs, §4.3.2-3, 147–150
exploiting in large nonlinear programs, 837
exploiting to obtain semi-analytic result, 838
in assignment and shortest-path problems, 246
in network flow problems, 216
in nullspace basis, 701
in quadratic programs, 697
in shift problem, 29

stub routine for instrumenting code, 861, 872
subgradient optimization methods, 638, 839
subgradient of a function, 378
sublinear convergence, 339
subnormal floating-point numbers, 579
subopt.m routine finds all bases, 126, 167
suboptimal point

local minimum higher than global, 345
finding all, 124–126
generated by pivot program UNSolve command, 910
generated in sensitivity analysis, 203
generated by northwest corner rule, 230
generated by rounding to integer, 257
result of jamming, 613
ruled out by branch-and-bound, §7.2, 257–259

subproblem in branch-and-bound
construction, 258, 260, 266
tree, 259, 261
selection, 263
exclusion, 260, 268
multiple optimal solutions of, 264

subproblem in parallel ADMM, 651
subproblem in trust region method

formulation, 557–558
KKT conditions, 558–559
exact solution, §17.3.1, 559–562
dogleg solution, §17.3.2, 562–568
graphical solution, 562–564
equivalent to Hessian modification, 572

subproblem technique in simplex method
about, §2.8.1, 73–78
subproblem construction, 75–77
algorithm, 78
implementation, 134–135
unbounded subproblem, 75–76
in revised simplex, 142

subproblems in sequential quadratic programming
SQP approach, 755–757
IQP approach, 758–766
pathologies, 766–767

subtours in traveling salesman problem, 246–247
successive-ratio rule

how it works, 158–159
srr.m implementation, 161–162

sufficient conditions
weak second-order unconstrained, 368, 373

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1009

strong second-order unconstrained, 367, 503
second-order constrained, 494, 503
KKT, 514

sufficient decrease
of merit function, 690
of objective in restricted-steplength algorithm, 553
Wolfe condition, 405
Wolfe condition implementation, 407–410

suggested reading, §29.1, 963–964
sum of absolute values

L1 norm, 364
in LAV regression, §8.6.4, 313–315
in parameter estimation, 36, 305
in finding KKT multipliers, 535–536
in computing LRCSE, 860
in compressed sensing, 45

sum of squares
in Euclidean norm, 364, 827
in OLS regression, 306–310
in ridge regression, 311
in quadratic penalty function, 582
in augmented Lagrangian function, 642
in method of multipliers, 646
in Levenberg-Marquardt algorithm, 572
in finding Lagrange multipliers, 720
in ODE parameter estimation, 303–304

superlinear convergence
definition, 341
Newton descent, 421
modified Newton descent, 427
quasi-Newton methods, 432
interior-point method, 688
active-set ellipsoid algorithm, 802

supply node
in network model, 217
in pivot Gnf command, 893

support inequality, §11.2, 376–378
support vector machine

separable data, §8.7.3, 322–325
nonseparable data, §8.7.4, 325–329
soft-margin, 326
dual of, 532–534
as elastic mode formulation, 763

supporting hyperplane
to graph of function, 378
to contour of function, 781
horizontal, 378

supremum operator, 526, 604
svd Matlab function, Ex 14.8.20, 473
switch Matlab construct, 497, 933
switch variable, 273
symmetric matrix

definition, 925
A⊤A, 365
A + A⊤, 792
Q of a quadratic function, 449, 778
has real eigenvalues, 380
Hessian, 353
result of BFGS update, 435
rank-one, 926

finite-difference approximation, 821
symmetric indefinite factorization for QP, 697
synthetic test problems, 303

t–analysis
pivoting in slow motion, 66–67, 102
pivoting between knots in shadow-price curve, 203
in shifting flow around a loop, 224
unbounded objective, 69

tableau
simplex, see simplex
transportation, 219
transshipment, 236
sparse transshipment, 237

tables in reporting computational experiments
about, §26.5.1, 876
standard types, 876
other types, 876

tangent hyperplane
supporting a graph, 378
supporting a contour, 781
to feasible set, 482, 491, 495
horizontal, 366

taxonomy
of functions not quite convex, 388
of minimizing points, 343–344

Taylor’s series
in R1, §28.1.2, 922
in Rn, §10.1, 353
in linear model function, 742
in deriving steepest descent direction, 354
in Newton’s method for solving f (x) = 0, 674, 930
in deriving Newton descent direction, 421
in quadratic model function, 360
and convexity, 377
in Armijo condition, 405
in finite differencing, 820

Taylor’s theorem, Ex 10.9.37, 373
teaching from this book

possible approaches, §0.3, 11–12
sample course syllabi, 12
related courses, 12
getting the pivot program, 913–914
cleverness not covered, 839

technical references, §29.2, 964–976
technology table

1-predictor classification, 316
2-predictor classification, 319
brewery problem, 24
bulb problem, 35
nf1 problem, 214
nf2 problem, 217
paint problem, 25
pumps problem, 33
shift problem, 28
snow shoveling, 305
snow shoveling in wind, 309

test problems
about, §26.2, 853–858
specification, §26.2.1, 854–855

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1010 Index

bounds and starting point, §26.2.2, 855–858
definition files, §26.3.5, 870–872
application, 302
synthetic, 303
collections, 303, 853
catalog, §28.5-§28.8, 938–956

test program for a computational experiment, 873
testing convexity

w⊤Hw > 0 ∀w , 0, 368
Hessian minors, §11.4, 379–384
apm.m routine, 383
Hessian eigenvalues, §11.5, 384–387
Gerschgorin circles, 385–386
convcheck.m, 387

testing environment
about, §26.4, 873–875
automating experiments, §26.4.1, 874–875
utility programs, §26.4.2, 875

theorem
U⊤MU is PD ⇔M is PD, 436
BFGS result satisfies secant equation, 436
BFGS update maintains B PD, 437
BFGS update maintains symmetry of B, 435
classification of Lagrange points, 494
converse duality [109], 972
convex constraints have convex intersection, 516
existence of Lagrange multipliers, 486
Farkas’, Ex 5.5.30, 208
first-order necessary conditions, 366
fundamental of algebra [8, Exercise 16.15], 489
Gauss-Markov, 310
Gerschgorin circle, 385
global minimizers, 379
implicit function, 485
KKT necessary conditions, 513
KKT sufficient conditions, 513–514
list of those used in this book, 3–4
mean value, Ex 11.7.8, 389
role of proof in this book, 3
second-order necessary conditions, 367
Sherman-Morrison-Woodbury, §13.4.4, 439
strong second-order sufficient conditions, 367
Taylor’s, Ex 10.9.37, 373
unique global minimizer, 379
weak second-order sufficient conditions, 368
Zoutendijk [5, Theorem 3.2], 415

theorems of the alternative
charming but irrelevant, 4
Farkas’ result, Ex 5.5.30, 208

three-hump camel-back function, 522, 948
tic Matlab command, 577, 864
tie for minimum ratio row

in graph example, 104
in nf2 problem, 218
finding tied rows, 160
using smallest row index permits cycling, 156, 158
breaking by smallest-leaving-index rule, 160–161
breaking by successive-ratio rule, 161–162
breaking at random, 163
also, see degenerate

tight constraint
definition, 83
used to eliminate a variable, 295
assumed in solving KKT conditions, 510
discovered by active-set strategy, 710
revealed by Lagrange multiplier, 506, 529
in a dual pair, 181
in trust-region algorithm, 559
more than n, 711

timer.f routine, [100, §15.1.4], 872
toc Matlab command, 577, 864
tolerance

for close enough to zero, 153, 160, 723
convergence for Matlab sqp function, 301
line search, 395, 408
convergence in bls.m, 402
convergence set to zero, 937
convergence in ntfs.m, 426
convergence in ea.m, 790
convergence set to zero, 861, 868
coordinate line-search, descent, 413, 428, 447, 593
coordinate penalty, multiplier, 649
tighten as x⋆ is approached, 395, 415, 430, 603, 649
in linear programming, §4.4.2, 153

tour
of vertices in the graph problem, §3.2.2-3, 102–108
of a traveling salesperson, 246

toy problems, 42, 298
tractable problems

formal definition, 283
practically when large, 837

tradeoff
in life, 1
between robustness and speed, 345, 396, 814
between generality and strength of results, 851
between bias and sampling variance, 311
between scores in twoexams problem, 17
finding x0 for transportation problem, 230
in compressed sensing, 46

trajectory, see convergence trajectory
transportation problem

about, §6.1, 217–232
transportation tableau, 219
finding a feasible solution, §6.1.1, 217–220
improving the solution, §6.1.2, 221–226
finding dual, §5.2.2, 188–190
using dual, 221–222
degeneracy, §6.1.3, 226–227
simplex algorithm, §6.1.4, 228–229
starting methods, §6.1.5, 230–231
multiple optimal solutions, §6.1.6, 232
more supply than demand, §6.2.1, 233
less supply than demand, §6.2.2, 233–234
“at least this much” demands, §6.2.3, 234–235
transshipment, §6.3, 235–237

transpose of a vector or matrix, §28.2.2, 925
transshipment

about, §6.3, 235–237
point, 214
tableau, 236

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1011

buffer stock, 236
sparse problem, 237
capacitated, §6.5.2, 243–244

traveling salesman problem, 246–247
excluding subtours, 246–247

tricks, clever, see formulation tricks
trislv.m routine, 705–706
truncation error, 824
trust region methods

about, §17, 547–579
restricted steplength, §17.1, 547–551
adaptive modified Newton, §17.2, 551–557
trust region defined, 557
idea, §17.3.0, 557–559
defining characteristic, 568
subproblem derived, 558–559
exact subproblem solution, §17.3.1, 559–562
dogleg subproblem solution, §17.3.2, 562–568
adaptive dogleg Newton, §17.4, 568–572
frustrated by nonconvexity, 570–571
about as fast as descent methods, 572
sensitivity to problem scaling, 816
globalization strategy, 813
Levenberg-Marquardt, 572

trust.m routine, 568–570
tryqn.m program exercises dfp.m and bfgs.m, 441–442
Tucker, Albert W., 509, 971
twoexams problem

algebraic statement, 18
formulation, §1.1.1, 18
graphical solution, §1.1.2, 19–20

twoinv.m routine, Ex 28.9.26, 959
type 1 vs type 2 NLP, 305, 332, 396, 820, 863
typographical conventions, §0.2.5, 9–11

uint32 Matlab function, 383
unbd problem

tableau, 69
unbounded feasible set, 112
solved by simplex.m, 137
dual, Ex 5.5.13, 206

unbiased regression coefficients, 310
unbounded feasible set

about, §3.3.3, 112–113
unique optimal point, 113
multiple optima, 113
unbounded optimal value, 112
infimum, 294
duct problem, 121

unbounded form of an LP
about, §2.5.2, 69
ray with negative cost, 113
discovered in phase 2, 71
signal column, 115
reported by simplex.m, 131
dual is infeasible, 176

unconstrained quadratic program
about, §14.1, 449–450
examples, 697
conjugate gradient algorithm, §14.4, 454–458

Fletcher-Reeves algorithm, §14.5, 458–459
Polak-Ribière algorithm, §14.6, 459–461
solved by qpeq.m, 707
solved by qpin.m, 723

underflow in floating-point arithmetic, 579, 932
unfathomed node in branch-and-bound, 260, 263
unimodal function, 403
unique=strict global minimizer

definition, 343–344
theorem, 379
gns example, 422, 449
branin example, 948

unit ball
formula for volume of, 468
factor in volume of an ellipsoid, 467, 787

unit normal vector, 782
unit roundoff

definition, 932
in finite difference step, 827

unit vector
definition, 365
notation, 11
direction of steepest descent, 354
gradient of ||x||2, 923
in gradcd.m, 828
in hesscd.m, 828

univariate minimization, see line search
Unix

role in this book, 5
Linux implementation, 913
emulated by cygwin, 913
terminal window on Apple computer, 913
command prompt, 914
used to run pivot program, 913–914
used to run gnuplot, 122
used to run fixscript, 916
used to compile and run eacyc.f, 868
man command, 916
more program, 917
script utility, 916
lpr command, 916
.bashrc file, 914
make utility, 873
gfortran compiler, 913
ideal for computational testing, 873
shell script, 874–875
CPU timing, 865–870

update formula
full Newton step, 421
quasi-Newton Hessian approximations, 433
BFGS, §13.4.3-4, 435–439
Shor’s ellipsoid algorithm, §24.3.3, 783–789

upper bounding, 147–148

valley
“of the shadow of death” in rb contours, 364
multiple in gpr contours, 343

variable
artificial, 78
basic, 62

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1012 Index

decision, see decision variables
dual, 171
eliminate using equality, 294, 481, 699–700, 812
free, 38
global in Matlab, 583
integer, 255
intermediate in parse tree, 831
naming in Matlab, §28.4.2, 933–936
nonbasic, 62
nonnegative, 31
nonpositive, §2.9.4, 87–88
predictor and response in regression, 306
primal, 171
separable, 279
slack, 83
state, 18

variable bounds
about, §9.5, 346–347
constructing, §26.2.2, 855–858
deduced from constraints, 347
deduced in formulating a problem, 837
in catalog, 855, 944
not themselves constraints, 346
staying within, §12.2.2, 399–402
in prototypical NLP algorithm, 348
in space confinement, 773
in Shor’s algorithm, 775, 778–780
in ellipsoid algorithm recentering, 796–798
in bls.m, 402
in wolfe.m, 408
in plotpd.m, 427
in gradtest.m, 829
in hesstest.m, 830
in convcheck.m, 387
in diagonal scaling, 817
in capacitated flow problems, 244

variable metric algorithm, see quasi-Newton
vector

definition, 923
nonnegative, 56

vector product
about, §28.2.3, 926
inner=scalar=dot, 56, 354, 364, 434, 449, 506
outer, 434
in quasi-Newton updates, 434

vertex
intersection of constraint hyperplanes, 100
intersection of zero slacks, 108
adjacent, 107
pivoting to, 108
degenerate, 105, 108
optimal in graph problem, 103

view of a linear program
about, §3.3.2, 110–111
in air duct problem, 121

Vogel’s rule, 231
volume of an ellipsoid

calculating, 466–468
minimizing, 787
positive relative to Rn, 794

reduction ratio in Shor’s algorithm, 796

wander.m routine
flowchart, 796–797
code, 797–799
convergence, 800
solving ek1, 799

warranty, see disclaimers
weak second-order sufficient conditions, 368

proof, Ex 10.9.37, 373
weak Wolfe conditions, Ex 12.5.26, 418
wedge cuts in the ellipsoid algorithm, 801
well-conditioned matrix

definition, 364
vs ill-conditioned, §18.4.2, 597–600

while Matlab construct
in newseq.m, 133
in nt.m, 429
in ntfs.m, 425
in ntw.m, 430
why I tried to avoid it, 933

wiggly function
formula, 403
minimized by wolfe.m, 412
tangent line, 405

windowpanes in R2, 100
Wolfe conditions

about, §12.3.1, 405–406
sufficient decrease or Armijo, 405
curvature, 406
strong vs weak, Ex 12.5.26, 418
in quasi-Newton methods, 434–435, 440, 442
in Fletcher-Reeves algorithm, 458
globalization strategy, 813
chkwlf.m routine, 443

Wolfe dual
about, §16.9.2, 529–530
of LP, 530–531
of QP, 531–532
of SVM, 532–534
problem, 530

Wolfe point in line search, 408
wolfe.m line search routine

design, §12.3.2, 406–408
flowchart, 407
implementation, §12.3.3, 408–412
input and return parameters, 408
return codes, 410
minimizing wiggly function, 412
in sdw.m, §12.4.1, 414–415
in ntw.m, §13.3.2, 430–431
in flrv.m, §14.5, 458–459

worker program in parallel processing, 654
working set

definition, 711
case in solving KKT conditions, 711
no more than n constraints, 711, 725
in finding Lagrange multipliers, 720–722
removing sticking constraint, 711, 723
adding blocking constraint, 711, 725

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.1 Subject Index 1013

www.ora.com, 913

x problem in LP standard dual pair, 171
x.*y Matlab command, 668

y problem in LP standard dual pair, 171

zero completion of a partial solution
example, 267
in looking ahead, 269

zero norm of a vector, 45
zero tolerance, 153, 160, 163, 723
zero-one programs

about, §7.5, 266–271
nondescending objective costs, 267
branch-and-bound, §7.5.1, 268–269
partial solution, 266
completions, 266
zero completion, 267
fathoming conditions, 268
checking feasible completions, §7.5.2, 269–271
looking ahead, 269
changing to, 272
formulation, 272–273
applications, 273–275
assignment problem, 245
traveling salesman problem, 246

zigzagging, 359, 449
Zoutendijk’s Theorem [5, Theorem 3.2], 415

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.2 Symbol Dictionary

The undergraduate mathematics that I have assumed you already know includes the standard
notation of algebra and calculus, including the locutions shown below.

= equal
≡ equivalent
, unequal
≤ less or equal
≥ greater or equal
< less
> greater
≫ much greater
∝ proportional
δx small difference in x

⇒ implication
⇔ if and only if

(•), [•] grouping

{•} set
| such that
∈ membership
∩ intersection
∪ union
\ difference
⊆ subset
⊂ proper subset
∅ empty set
∂ set boundary
∞ infinity
∀ for all

lima→b limit

a + b add
a − b subtract
a ± b symmetric range

ab = a · b = a × b multiply
a ÷ b = a/b = a

b
divide

ab or ex power√
a = a

1
2 root

n! = 1 · 2 · · · · n factorial
ln(x) natural logarithm
lg(x) base-2 logarithm

log10(x) common logarithm
⌊•⌋ floor
⌈•⌉ ceiling

Other standard notations are reviewed or illustrated in §28.1 and §28.2.
Some standard notations are used in a consistent way throughout the book, and those

are listed in §0.2.5. For example, vectors are denoted by lower-case boldface letters such as
v and sets are named using an outline font as in Rn. The two Hebrew letters that I have
used, x and σ, are also mentioned there just because you might not have seen them before.

Some variable names and other symbols are used repeatedly to mean the same thing.
For example, x is almost always a vector of decision variables, X is almost always the set of
all feasible x vectors, and x⋆ is almost always an optimal point. Sometimes a name means,
depending on the context in which it used, one of only a few different things. For example,
G is an approximation to the Hessian inverse throughout Chapter 13 but a transformed
ellipsoid matrix throughout Chapter 24. This Index shows some of these usual meanings
along with the page on which each first appears.

1 , possible completion of x1 = 1 in Z6, 266
[a,b], line segment, 100
[a, b], closed interval of R1, 116
|| • ||0, zero norm, 45
|| • ||1, absolute-value norm, 45
|| • ||2, Euclidean norm, 119
c
xi j

i j
, link cost and flow in a transportation tableau, 219

⊥, orthogonality of vectors, 502

A, coefficient matrix of a linear system, 55
Ai j, submatrix of A, 148
α, step length, 354
asym(A), asymmetry of a matrix, 390

B, quasi-Newton approximation to Hessian, 433
b, right-hand-side vector of a linear system, 55
β, barrier function, 605

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.2 Symbol Dictionary 1015

c, convergence constant, 339

d, a descent direction, 369
d, limiting direction of a chord, 520
argmin f (α), value of α where f is minimized, 356
det(•), determinant of a scalar, 380

E, an ellipsoid, 775
ε, relative error, 819
E, log relative combined solution error, 861
E , expected value operator, 311
ξi, classification error, 326
ξξξ, subgradient vector, 378
ek, error in iterate k, 339
ǫ, descent method convergence tolerance, 356
epi (f), the epigraph of f , 375

F, cone of feasible directions, 520
fp,s, performance metric, 877

G, quasi-Newton approximation to Hessian inverse, 439
G, transformed ellipsoid matrix, 785
Γ, the gamma function, 820
γ, weighting factor in Hessian modification, 425

H, a hyperplane, 775
h, increment in definition of a derivative, 398
h, index of pivot row in A, 59

i, index on constraints, 56
i, index on tableau rows, 885

J, Jacobian matrix, 674
j, index on variables, 56
j, index on tableau columns, 885

k, iteration of an optimization method, 338
κ, condition number of a matrix, 363
κ, the constant determining a hyperplane, 782

L, Lagrangian, 295
λ, Lagrange multiplier, 485
λ, an eigenvalue, 384
λ, bias in ridge regression, 311
λλλ, KKT multiplier vector, 513, 944

m, number of constraints, 56
m, number of tableau rows, 885
min f (α), minimum value of f , 356
µ, barrier multiplier, 605
µ, penalty multiplier, 581
µ, sufficient decrease parameter in Wolfe line search, 405
µµµ, Lagrange multipliers in quadratic subproblem, 755

Nε(•), neighborhood, 344
n, number of variables, 56
n, number of tableau columns, 885
n-choose-m, combinations, 45
η, curvature condition parameter in Wolfe line search, 406

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1016 Index

p, index of pivot column in A, 59
ϕ, function whose zero solves trust-region subproblem, 559
π, penalty function, 581
Ψ, the digamma function, 820

Q, matrix of a quadratic function, 449
q(x), quadratic function, 360

R, range space, 744
R, range space basis matrix, 745
x, ellipsoid volume reduction ratio, 795
r, residual in conjugate gradient algorithm, 453
r, convergence rate=order, 339
r, radius of hypersphere in study of EA convergence, 795
r, steplength limit, 549
rp,s, performance ratio, 877
ρ, an eigenvalue of transformed ellipsoid matrix, 785
ρ, factor in quasi-Newton update formulas, 434
ρ, objective reduction ratio, 552
ρs, proportion of test problems having fp,s ≤ τ, 877

S, diagonalization matrix, 450
S , basic sequence, 62
S, vector describing basic sequence, 63
s, iteration of a line search, 398
s, sensitivity of a linear system, 598
si, slack variable, 84
σ, EA bounds reduction factor, 797
σ, an eigenvalue of transformed ellipsoid matrix, 785
sgn(•), signum function, 317

T1, Taylor’s series first order, 922
T2, Taylor’s series second order, 922
T∞, Taylor’s series expansion, 922
T, cone of tangents, 520
t, nullspace basis coefficients, 701
t, line search tolerance, 395, 398
t, loop bound based on realmin or realmax, 573
t, parameter in parameterization of constraints, 482
t, value of entering variable in slow-motion pivot, 66
τ, parameter in parameterization of trust region dogleg, 565
τ, value of a performance metric, 877

U, an upper-triangular matrix factor, 309
u, unit roundoff, 827
ui, Lagrange or KKT multiplier, 295

V, volume of an ellipsoid, 467
V , variance operator, 311

W, working set, 711
w, dual variable, 173

X, feasible set, 19
X+, pseudoinverse, 308
x, vector of decision variables, 21
x⋆, optimal point, 20

y, dual variable, 173

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.2 Symbol Dictionary 1017

Z, nullspace basis matrix, 496
Z, nullspace, 744
z, objective value being minimized, 55

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.3 Bibliography Citations

If you encounter a literature citation and find the reference helpful, you might like to know
where else in this book that reference is cited. Each entry in this Index shows a reference
number and the pages on which it is cited. For example, reference [1] is cited on each of
the pages listed after its number, while reference [6] is cited on page 820 only.

[1]: 2, 3, 119, 294, 302, 331, 346, 353, 366, 367, 375, 376, 378, 379, 388, 395, 403, 416, 449, 451, 453, 501, 506, 508,
513, 518, 520, 521, 527–529, 541, 585, 589, 593, 601, 603, 610, 611, 613, 621, 628, 631, 638, 642, 650, 697,
718, 739, 742, 774, 814–817, 819, 834, 837, 949, 950, 1002

[2]: 302, 345, 363, 388, 396, 525, 631, 638, 650, 663, 666, 751, 817, 834, 838, 839, 964
[3]: 2, 13, 43, 47, 48, 52, 70, 71, 73, 78, 90, 93, 94, 97, 107, 116, 117, 119, 138, 139, 155, 157, 158, 168, 172, 174,

188, 189, 192, 194, 201, 203, 210, 211, 217, 218, 222, 225, 228, 230–232, 240, 245, 246, 252, 253, 255, 263,
266, 269, 272, 276–279, 282, 289, 291, 302, 334, 367, 380, 385, 396, 479, 481, 494, 505, 539, 543, 697, 743,
749, 774, 780, 784, 793, 803, 805, 807, 921, 924, 938, 940, 941, 943, 951, 954, 1000

[4]: 2, 146–154, 162, 163, 302, 315, 322, 329, 337, 339, 343, 363, 366, 367, 376, 405, 418, 421, 447, 451, 456, 494,
503, 513, 521, 529, 534, 547, 557, 572, 593, 605, 608, 610, 625, 631, 636, 637, 639, 645, 646, 659, 663, 666,
667, 672–674, 679, 688, 690, 692, 704, 711, 721, 727, 732, 735, 739, 743, 744, 746, 751, 767, 813–815, 818,
827, 832, 838, 931, 945, 949

[5]: 2, 146, 147, 151, 154, 155, 163, 315, 337, 354, 366, 367, 405, 406, 415, 418, 421, 432, 434, 439, 440, 442, 449,
450, 453, 460, 461, 494, 496, 503, 513, 520, 521, 523, 528, 532, 541, 547, 557, 562, 565, 572, 577, 581, 593,
596, 603, 607, 628, 631, 633, 636, 638, 642, 645, 649, 661, 663, 672–674, 676, 679, 684, 686, 688, 690, 695,
697, 701, 707, 711, 718, 731, 733, 736, 737, 756, 758, 763, 767, 772, 813–816, 821, 824, 827, 832–834, 837,
838, 932, 949, 950, 955, 972, 973, 1002, 1010, 1013

[6]: 820
[7]: 833
[8]: 3, 364, 489, 1010
[9]: 841
[10]: 246
[11]: 155, 162
[12]: 302
[13]: 276, 279
[14]: 306, 324, 834
[15]: 243
[16]: 158
[17]: 47, 646, 650, 654, 656, 834, 837–839
[18]: 302
[19]: 948
[20]: 147, 363, 396, 418, 456, 474, 654, 674, 820, 892, 921, 927
[21]: 361, 831
[22]: 976
[23]: 42
[24]: 46
[25]: 43
[26]: 311
[27]: 43
[28]: 851, 853, 883
[29]: 257
[30]: 308, 674, 820, 921
[31]: 853
[32]: 582
[33]: 855, 857
[34]: 850, 854
[35]: 43, 55, 71, 147
[36]: 22
[37]: 802
[38]: 158

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.3 Bibliography Citations 1019

[39]: 45
[40]: 434
[42]: 850, 854
[43]: 40
[44]: 850, 877
[45]: 45
[46]: 302
[47]: 801
[48]: 850, 863
[50]: 5, 243, 271, 480, 496, 573, 585, 621, 721, 736, 921, 932, 934
[51]: 801
[52]: 798, 802
[53]: 435, 792
[54]: 653
[55]: 849
[56]: 794, 801
[57]: 582, 608, 621, 631
[58]: 276
[59]: 302, 549, 578, 816
[60]: 308, 385, 418, 921
[61]: 6, 298
[62]: 255, 259, 261, 267, 276
[63]: 163
[64]: 259
[65]: 42
[66]: 945
[67]: 223, 365, 367, 382, 454, 456, 596, 921
[68]: 877
[69]: 468
[70]: 259
[71]: 85, 186, 276
[72]: 849
[73]: 795
[74]: 276, 279, 282, 287, 302, 490, 539
[75]: 44
[76]: 524
[77]: 153, 693, 921
[78]: 486, 488, 492, 501, 505, 521
[79]: 43, 146, 217, 228, 231, 245, 255, 272, 276
[80]: 302, 371, 446, 475, 504, 851, 853, 881, 883, 949
[81]: 853
[82]: 162
[83]: 276
[84]: 579, 819, 886, 932
[85]: 850, 854
[86]: 42
[87]: 153, 315, 453, 456, 698, 837, 921, 927
[88]: 857, 865
[89]: 55
[90]: 509
[91]: 496
[92]: 163
[93]: 163
[94]: 72, 276, 335, 468
[95]: 160
[96]: 874
[97]: 509, 518
[98]: 13, 784, 794, 801, 819, 863, 876
[99]: 802, 853

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

1020 Index

[100]: 7, 9, 13, 60, 243, 301, 305, 456, 572–574, 578, 579, 650, 654, 819, 824, 837, 838, 865, 866, 868, 870, 872, 886,
902, 913, 919, 921, 927, 929, 932, 933, 988, 1010

[101]: 43
[102]: 839
[103]: 147–150, 984
[104]: 572
[105]: 304, 525
[106]: 303
[107]: 143, 146, 147, 158, 163, 195, 217, 396, 403, 421, 494, 503, 521, 739, 816, 817
[108]: 208, 521
[109]: 528, 1010
[110]: 116, 353, 373, 380, 461, 462, 485, 494, 921
[111]: 572
[112]: 863
[113]: 276
[114]: 184
[115]: 305, 802
[116]: 45, 468, 710, 820
[117]: 155, 243, 263, 276, 298, 300, 999
[118]: 654
[119]: 3
[120]: 774
[121]: 774
[122]: 839
[123]: 308–310
[124]: 621
[125]: 579, 932
[126]: 815
[127]: 242
[128]: 802
[129]: 656, 873
[130]: 459
[131]: 434
[132]: 276, 303, 572
[133]: 230, 231
[134]: 599
[135]: 945
[136]: 3, 344
[137]: 802, 812, 863, 877
[138]: 231
[139]: 850, 863
[140]: 851
[141]: 801, 802
[142]: 801
[143]: 774
[144]: 282
[145]: 43, 48, 73, 78, 138, 148, 155, 158, 163, 211, 244
[146]: 376, 466, 472, 633, 921, 926
[147]: 58, 365, 384, 385, 390, 449, 464, 496, 598, 700, 744, 745, 921, 926–928, 957
[148]: 3, 294, 364, 408, 485, 529, 610, 921, 922
[149]: 283, 450, 463, 921, 922
[150]: 308, 315, 385, 437, 453, 496, 598, 744, 921
[151]: 28, 43, 123, 211, 216, 217, 242, 243, 245–247, 255, 267, 272, 275, 276, 279, 302, 331, 334
[152]: 37
[153]: 108, 157, 311
[154]: 599
[155]: 337, 395
[156]: 302
[157]: 405
[158]: 739

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

30.3 Bibliography Citations 1021

[159]: 162
[160]: 344, 999
[161]: 302, 335, 367, 488, 526, 529, 604
[162]: 195
[163]: 499
[164]: 509
[165]: 334
[166]: 876
[167]: 839
[168]: 356
[169]: 42
[170]: 301
[171]: 334
[172]: 334
[173]: 839, 1001
[174]: 839
[175]: 300
[176]: 301
[177]: 833
[178]: 878

Introduction to Mathematical Programming first edition c©Michael Kupferschmid 31 Dec 23/cc-by 4.0

	Introduction
	Optimization
	About This Book
	Audience
	Pedagogical Approach
	Computing
	Coverage and Organization
	Typographical Conventions

	Teaching From This Book
	About The Author
	Acknowledgements
	Disclaimers
	Exercises

	Linear Programming Models
	Allocating a Limited Resource
	Formulating the Linear Program
	Finding the Optimal Point
	Modeling Assumptions
	Solution Techniques

	Solving a Linear Program Graphically
	Static Formulations
	Brewing Beer
	Coloring Paint

	Dynamic Formulations
	Scheduling Shift Work
	Making Furniture

	Nonsmooth Formulations
	Minimizing the Maximum
	Minimizing the Absolute Value
	Summary

	Bilevel Programming
	Applications Overview
	Compressed Sensing
	Perfect Data
	Regularization
	Related Problems

	Exercises

	The Simplex Algorithm
	Standard Form
	The Simplex Tableau
	Pivoting
	Performing a Pivot
	Describing Standard Forms

	Canonical Form
	Basic Feasible Solutions
	The pivot.m Routine
	Finding a Better Solution
	The Simplex Pivot Rule

	Final Forms
	Optimal Form
	Unbounded Form
	Infeasible Forms

	The Solution Process
	The pivot Program
	Getting Canonical Form
	The Subproblem Technique
	The Method of Artificial Variables

	Getting Standard Form
	Inequality Constraints
	Maximization Problems
	Free Variables
	Nonpositive Variables
	Variables Bounded Away from Zero
	Summary

	Exercises

	Geometry of the Simplex Algorithm
	A Graphical Solution in Detail
	Graphical Interpretation of Pivoting
	Pivoting in Slow Motion
	A Guided Tour in R2
	Observations From the Guided Tour

	Graphical Interpretation of Tableaus
	Slack Variables in the Graph
	Alternate Views of a Linear Program
	Unbounded Feasible Sets

	Multiple Optimal Solutions
	Optimal Rays
	Optimal Edges
	Signal Tableau Columns

	Convex Sets
	Convexity of the Feasible Set
	Convexity of the Optimal Set

	Higher Dimensions
	Finding All Optimal Solutions
	Finding All Extreme Points

	Exercises

	Solving Linear Programs
	Implementing the Simplex Algorithm
	The Revised Simplex Method
	Pivot Matrices
	Not Doing Unnecessary Work
	The Phase-2 Algorithm
	Phase-1 Algorithms
	Not Using Unnecessary Space

	Large Problems
	Representing the Basis Inverse
	Exploiting Problem Structure
	Decomposition

	Linear Programming Software
	Picking a Good Pivot Column
	Tolerances and Scaling
	Preprocessing
	Black-Box Solvers

	Degeneracy
	Simplex Algorithm Convergence
	Ways to Prevent Cycling
	Degeneracy and Convergence in Practice

	Exercises

	Duality and Sensitivity Analysis
	Algebraic Duality Relations
	Both Problems Infeasible
	Both Problems Feasible
	One Problem Feasible
	Shadow Prices
	Complementary Slackness
	Multiple Optima and Degeneracy

	Finding Duals
	The Standard Form Linear Program
	The Transportation Problem
	Finding Duals Numerically

	Efficiency Considerations
	Tall & Thin vs Short & Fat
	The Dual Simplex Method

	Sensitivity Analysis
	Changes to Problem Data
	Inserting or Deleting Columns
	Inserting or Deleting Rows
	Shadow-Price Curves

	Exercises

	Linear Programming Models of Network Flow
	The Transportation Problem
	Finding a Basic Feasible Solution
	Finding a Better Solution
	Degeneracy
	The Transportation Simplex Algorithm
	Other Starting Methods
	Multiple Optimal Solutions

	Unequal Supply and Demand
	More Supply Than Demand
	Less Supply Than Demand
	``At Least This Much'' Demands

	Transshipment
	General Network Flows
	Finding a Basic Feasible Solution
	The General Network Flow Algorithm

	Solving Network Models
	Computer Implementation
	Capacity Constraints
	Related Problems

	Exercises

	Integer Programming
	Explicit Enumeration
	Implicit Enumeration
	Branch-and-Bound for Integer Programs
	Multiple Optimal Points
	Zero-One Programs
	Branch-and-Bound for Zero-One Programs
	Checking Feasible Completions

	Integer Programming Formulations
	Techniques
	Applications

	Solving Integer Programs
	Mixed-Integer Programs
	Other Methods
	Integer Programming Software

	Dynamic Programming
	The Shortest-Path Problem
	Integer Nonlinear Programming

	Computational Complexity
	Exercises

	Nonlinear Programming Models
	Fencing the Garden
	Analytic Solution Techniques
	Graphing
	Calculus
	The Method of Lagrange
	The KKT Method

	Numerical Solution Techniques
	Black-Box Solvers
	Custom Software

	Applications Overview
	Parameter Estimation
	Regression
	One Predictor Variable
	Multiple Predictor Variables
	Ridge Regression
	Least-Absolute-Value Regression
	Regression on Big Data

	Classification
	Measuring Classification Error
	Two Predictor Variables
	Support Vector Machines
	Nonseparable Data
	Classification on Big Data

	Exercises

	Nonlinear Programming Algorithms
	Pure Random Search
	Rates of Convergence
	Local Minima
	Robustness versus Speed
	Variable Bounds
	The Prototypical Algorithm
	Exercises

	Steepest Descent
	The Taylor Series in Rn
	The Steepest Descent Direction
	The Optimal Step Length
	The Steepest Descent Algorithm
	The Full Step Length
	Convergence
	Error Curve
	Bad Conditioning
	Vector and Matrix Norms

	Local Minima
	Open Questions
	Exercises

	Convexity
	Convex Functions
	The Support Inequality
	Global Minima
	Testing Convexity Using Hessian Submatrices
	Finding the Determinant of a Matrix
	Finding the Principal Minors of a Matrix

	Testing Convexity Using Hessian Eigenvalues
	When the Hessian is Numbers
	When the Hessian is Formulas

	Generalizations of Convexity
	Exercises

	Line Search
	Exact and Approximate Line Searches
	Bisection
	The Directional Derivative
	Staying Within Variable Bounds
	A Simple Bisection Line Search

	Robustness Against Nonconvexity
	The Wolfe Conditions
	A Simple Wolfe Line Search
	MATLAB Implementation

	Line Search in Steepest Descent
	Steepest Descent Using bls.m
	Steepest Descent Using wolfe.m

	Exercises

	Newton Descent
	The Full-Step Newton Algorithm
	The Modified Newton Algorithm
	Line Search in Newton Descent
	Modified Newton Using bls.m
	Modified Newton Using wolfe.m

	Quasi-Newton Algorithms
	The Secant Equation
	Iterative Approximation of the Hessian
	The BFGS Update Formula
	Updating the Inverse Matrix
	The DFP and BFGS Algorithms
	The Full BFGS Step

	Exercises

	Conjugate-Gradient Methods
	Unconstrained Quadratic Programs
	Conjugate Directions
	Generating Conjugate Directions
	The Conjugate Gradient Algorithm
	The Fletcher-Reeves Algorithm
	The Polak-Ribière Algorithm
	Quadratic Functions
	Quadratic Forms in R2
	Ellipses
	Plotting Ellipses

	Exercises

	Equality Constraints
	Parameterization of Constraints
	The Lagrange Multiplier Theorem
	The Method of Lagrange
	Classifying Lagrange Points Analytically
	Problem-Specific Arguments
	Testing the Reduced Objective
	Second Order Conditions

	Classifying Lagrange Points Numerically
	Exercises

	Inequality Constraints
	Orthogonality
	Nonnegativity
	The Karush-Kuhn-Tucker Conditions
	The KKT Theorems
	The KKT Method
	Convex Programs
	Constraint Qualifications
	NLP Solution Phenomena
	Redundant and Necessary Constraints
	Implicit Variable Bounds
	Ill-Posed Problems

	Duality in Nonlinear Programming
	The Lagrangian Dual
	The Wolfe Dual
	Some Handy Duals

	Finding KKT Multipliers Numerically
	Exercises

	Trust-Region Methods
	Restricted-Steplength Algorithms
	An Adaptive Modified Newton Algorithm
	Trust-Region Algorithms
	Solving the Subproblem Exactly
	Solving the Subproblem Quickly

	An Adaptive Dogleg Newton Algorithm
	Bounding Loops
	Exercises

	The Quadratic Penalty Method
	The Quadratic Penalty Function
	Minimizing the Quadratic Penalty Function
	A Quadratic Penalty Algorithm
	The Awkward Endgame
	A Numerical Autopsy
	The Condition Number of a Matrix

	Exercises

	The Logarithmic Barrier Method
	The Logarithmic Barrier Function
	Minimizing the Barrier Function
	A Barrier Algorithm
	Comparison of Penalty and Barrier Methods
	Plotting Contours of the Barrier Function
	Exercises

	Exact Penalty Methods
	The Max Penalty Method
	The Augmented Lagrangian Method
	Minimizing a Convex Lagrangian
	Minimizing a Nonconvex Lagrangian
	The Augmented Lagrangian Function
	An Augmented Lagrangian Algorithm
	Conclusion

	Alternating Direction Methods of Multipliers
	Serial ADMM
	Parallel ADMM

	Exercises

	Interior-Point Methods
	Interior-Point Methods for LP
	A Primal-Dual Formulation
	Solving the Lagrange System
	Solving the Linear Program

	Newton's Method for Systems of Equations
	From One Dimension to Several
	Solving the LP Lagrange System Again

	Interior-Point Methods for NLP
	A Primal-Dual Formulation
	A Primal Formulation
	Accelerating Convergence
	Other Variants

	Exercises

	Quadratic Programming
	Equality Constraints
	Eliminating Variables
	Solving the Reduced Problem

	Inequality Constraints
	Finding a Feasible Starting Point
	Respecting Inactive Inequalities
	Computing the Lagrange Multipliers
	An Active Set Implementation

	A Reduced-Newton Algorithm
	Exercises

	Feasible-Point Methods
	Reduced-Gradient Methods
	Linear Constraints
	Nonlinear Constraints

	Sequential Quadratic Programming
	A Newton-Lagrange Algorithm
	Equality Constraints
	Inequality Constraints
	A Quadratic Max Penalty Algorithm

	Exercises

	Ellipsoid Algorithms
	Space Confinement
	Shor's Algorithm for Inequality Constraints
	The Algebra of Shor's Algorithm
	Ellipsoids in Rn
	Hyperplanes in Rn
	Finding the Next Ellipsoid

	Implementing Shor's Algorithm
	Ellipsoid Algorithm Convergence
	Recentering
	Shah's Algorithm for Equality Constraints
	Other Variants
	Summary
	Exercises

	Solving Nonlinear Programs
	Summary of Methods
	Mixed Constraints
	Natural Algorithm Extensions
	Extensions Beyond Constraint Affinity
	Implementing Algorithm Extensions

	Global Optimization
	Finding A Minimizing Point
	Finding The Best Minimizing Point

	Scaling
	Scaling Variables
	Scaling Constraints

	Convergence Testing
	Calculating Derivatives
	Forward-Difference Approximations
	Central-Difference Approximations
	Computational Costs
	Finding the Best
	Computing Finite-Difference Approximations
	Checking Gradients and Hessians
	Automatic Differentiation

	Large Problems
	Problem Characteristics
	Coordinate Descent
	Method Characteristics
	Semi-Analytic Results
	Nasty Problems

	Exercises

	Algorithm Performance Evaluation
	Algorithm vs Implementation
	Specifying the Algorithm
	Designing Experiments

	Test Problems
	Defining the Problems
	Constructing Bounds

	Error vs Effort
	Measuring Solution Error
	Counting Function Evaluations
	Measuring Processor Time
	Counting Processor Cycles
	Problem Definition Files
	Practical Considerations

	Testing Environment
	Automating Experiments
	Utility Programs

	Reporting Experimental Results
	Tables
	Performance Profiles
	Publication

	Exercises

	pivot-.4: A Simplex Algorithm Workbench
	Commands
	Installing the pivot Program
	Building the Executable
	Other Files

	Running the pivot Program
	Using the Command-Line Interface
	Using the Built-In Help
	Printing the Screen

	Exercises

	Appendices
	Calculus
	Extrema of a Function of One Variable
	Taylor's Series for a Function of One Variable
	The Gradient of a Quadratic Form

	Linear Algebra
	Matrix Arithmetic
	The Transpose of a Matrix
	Inner and Outer Products
	Linear Independence
	Matrix Inversion
	Matrix Identities

	Numerical Computing
	Finding a Root with Bisection
	Finding a Root with Newton's Method
	Floating Point Arithmetic

	Matlab Programming Conventions
	Control Structures
	Variable Names
	Iteration Counting

	Linear Programs Used in the Text
	twoexams
	brewery
	paint
	shift
	chairs
	pumps
	bulb
	unbd
	infea
	sf1
	sf2
	graph
	pm
	cycle
	in1
	nf1
	nf2
	nf3

	Integer Linear Programs Used in the Text
	brewip
	spear
	bb1
	bb2
	bb3
	bb4
	bb5

	Nonlinear Programs Used in the Text
	garden
	rb
	gpr
	gns
	arch1
	hill
	one23
	arch2
	arch3
	arch4
	moon
	cq1
	cq2
	cq3
	branin
	hearn
	nset
	h35
	bss1
	p1
	p2
	b1
	b2
	ep1
	ep2
	al2
	al1
	admm
	ek1
	qp1
	qp2
	qp3
	qp4
	qp5
	rnt
	grg2
	grg4
	sqp1
	incon
	egg
	big

	Integer Nonlinear Program Used in the Text
	inlp

	Exercises

	Bibliography
	Suggested Reading
	Technical References
	Other References

	Index
	Subject Index
	Symbol Dictionary
	Bibliography Citations

