
Homebrew Hebrew

by Michael Kupferschmid
August 22, 2023

Copyright c© 2023 Michael Kupferschmid. d

′′

a

All rights reserved. Except as permitted by the fair-use provisions in Sections 107 and 108 of the

1976 United States Copyright Act, no part of this document may be stored in a computer, repro-

duced, translated, or transmitted, in any form or by any means, without prior written permission

from the author.

This document, “Homebrew Hebrew” by Michael Kupferschmid, is licensed under cc-by 4.0.

Anyone who complies with the terms specified in

https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

1 Introduction

As a student and teacher of Hebrew I often need to prepare documents that contain text in that

alphabet. Fortunately, I was able to download free files defining the redis family of fonts for

LATEX2ε, and place them in the directory ${HOME}/texmf/fonts/. Using those fonts I have con-

structed a software system that lets me easily typeset letters, words, sentences, paragraphs, pages,

or whole documents consisting of pointed Hebrew text.

2 One Consonant at a Time

Here is a LATEX2ε document that uses one of the redis fonts.

% example1.tex
\documentclass[12pt]{article}
\font\ivrit=redis12
\begin{document}
\ivrit{‘}
\end{document}

When it is compiled and the resulting .dvi file is displayed, like this,

unix[1] latex example1.tex
unix[2] xdvi example1.dvi

the result is a single page containing the character `. Longer strings can obviously be
constructed one character at a time; \ivrit{m}\ivrit{e}\ivrit{l}\ivrit{y} produces
nely.

This approach is hard to use for several reasons. One must remember the encoding of
the consonants (e.g., y=y), and no way is provided to typeset vowels (which in Hebrew are
marks above and below the consonants).

3 One Letter at a Time

It would be more convenient to set Hebrew characters by using their names rather than
numerical codes, and for teaching it is important to be able to print vowel points. To
accomplish both objectives I wrote a set of LATEX2ε macros and collected them in a file
named bin/hebrew.tex, which can be \included at the beginning of a document. The
example listed at the top of the next page illustrates how to use hebrew.tex. The line
numbers on the left are present only so that I can refer to them, and are not part of the
document.

The file ${HOME}/bin/hebrew.tex must be \input 3 in the preamble, and \setivrit

must be used 8 to select a font size before any other hebrew.tex command is used. The
recognized font sizes are 7, 8, s8 (slanting), 9, s9, 10, bx10 (thick), s10, 12, s12, 17, 20, 24,
29, and 35.

This LATEX2ε document generates the output boxed at the bottom of the page, which
reproduces page v of The First Hebrew Primer (the Hebrew could instead be translated “In
the name of Heaven. . . He will make peace upon us and upon all Israel. . . ”).

3

1 % example2.tex
2 \documentclass[12pt]{article}
3 \input{/home/mike/bin/hebrew} % set up to point Hebrew letters
4 \pagestyle{empty}
5 \begin{document}
6
7 \Large
8 \setivrit{17} % initialize and set a font size
9 \centerline{%
10 \hebrew{endmem}\chiriq{yod}\patach{mem}\qamats{shin}~%
11 \hebrew{endmem}\tsere{shin}\sheva{lamed}%
12 }
13
14 \vspace{3ex}
15 \normalsize
16 \setivrit{12} % reset the font size
17 \centerline{%
18 \ldots~\hebrew{lamed}\tsere{aleph}\qamats{resh}\sheva{sin}\chiriq{yod}~%
19 \hebrew{lamed}\qamats{kaf}~%
20 \hebrew{lamed}\patach{ayin}\sheva{vav}~%
21 \hebrew{oovav}\hebrew{nun}\hebrew{yod}\tsere{lamed}\qamats{ayin}~%
22 \hebrew{endmem}\lcholam{vav}\hebrew{lamed}\qamats{shin}~%
23 \segol{sin}\halfpatach{ayin}\patach{yod}~%
24 \hebrew{aleph}\hebrew{oovav}\hebrew{hay}~\ldots%
25 }
26
27 \vspace{3ex}
28 \centerline{\rule{1in}{0.1pt}}
29
30 \vspace{5ex}
31 \centerline{\large\em for the G--d of Heaven}
32
33 \vspace{3ex}
34 \centerline{\ldots may He make peace for us and for all Israel \ldots}
35 \end{document}

m

m

mi

i

i.nnnyyy
.
m

m

my

y

y

.
.. lll..

. . . lll```..xxxyyy
.
.. iii. lllkkk

.
l

l

lr

r

re

e

e.. eee
.
p

p

pi

i

il

l

l..rrr m

m

me

e

e

.
l

l

ly

y

y

.
y

y

y

.
... rrr..iii ```eee

.
d

d

d . . .

for the G–d of Heaven

. . .may He make peace for us and for all Israel . . .

4

name consonant

aleph ` 01

bet a

. b 02

vet a v 03

gimel b g 04

dalet
 d 05

hay d h 06

vav e v 07

ohvav e

.
oh 08

oovav e

. oo 09

zayin f z 10

khet g kh 11

tet h t 12

yod i y 13

endcoph j ch 14

coph k ch 15

endcaf j

. c 16

caf k

. c 17

lamed l l 18

endmem m m 19

mem n m 20

endnun o n 21

nun p n 22

samech q s 23

ayin r 24

endfay s f 25

fay t f 26

endpay s

. p 27

pay t

. p 28

endtsade u tz 29

tsade v tz 30

kuf w k 31

resh x r 32

shin y

.
sh 33

sin y

.
s 34

sn y 35

taf z t 36

dash 37

space 38

hash `̀ 39

geresh ` 40

Each Hebrew letter in Example 2 is again set using a sepa-
rate command; thus 10 \hebrew{endmem} sets an ending mem
without any vowel and \chiriq{yod} sets a yod with a chiriq
vowel.

The names, glyphs, and transliterations of the consonants are
given in the table on the left. The transliteration c is a hard c,
and sometimes I use ts instead of tz for v or u. In Hebrew some
compound words contain a dash or space. The hash mark `̀ is
used to show that letters have been elided from acronyms such as
j`̀pz. The geresh is used in writing numbers with Hebrew conso-
nants. Later I will explain the numerical codes appearing in the
rightmost column. By default the Hebrew consonants are printed
in bold. To turn bold off use \renewcommand{\hbold}[1]{#1};
to turn it back on use \renewcommand{\hbold}[1]{\pmb{#1}}.
To bold a Hebrew string you can make it the argument of
\hbf{} (this is translated into renewcommand commands by the
hebunt.f program described later).

The names of the vowels are listed below; here � represents
any letter (Hebrew or not). Later I will explain the numerical
codes.

name vowel

\hebrew{letter} � 01

\chiriq{letter} �. 02

\tsere{letter} �.. 03

\segol{letter} �... 04

\halfsegol{letter} �..... 05

\patach{letter} � 06

\halfpatach{letter} �.. 07

\qamats{letter} � 08

\halfqamats{letter} �.. 09

\awe{letter} �. 10

\qubbuts{letter} �... 11

\sheva{letter} �.. 12

\lcholam{letter} �
.

13

\rcholam{letter} �
.

14

\dagesh{x}{y} �. 15

\meteg{x}{y} �- 16

\hebspc{L}{R} �� 17

5

Vowels appear above and below the consonants, so a line of Hebrew takes more vertical
space than a line of English at the same font size. If you will set more than one line, you
might want to adjust the baselineskip with \setlength{\baselineskip}{2.6\hex}. To
include Hebrew in a part command like \section{} you must \protect each vowel name.

4 Movable Points

Each sounding vowel (having code 01-14) in the table above is fixed in its location relative to
the letter on which it appears. The other “vowels” (codes 15-17) each have two arguments
and are coded after the consonant to which they are attached. Each argument is a positive
integer in [0,15]. When the arguments are denoted x and y the first tells how far the glyph
should be from the right edge of the letter and the second tells how far it should be from
the bottom edge of the letter; 0 corresponds to the right edge or the bottom and 15 to the
left edge or the top.

Consonants for which a point makes a difference in the sound (a. a, e
.
e

., jj. , k.k, s.s, t.t,
y

.
y

.
) are named separately with and without the point. If you want to set both a dagesh and

a vowel on another consonant, you can use a construct like \patach{gimel}\dagesh{10}{5}
which yields b. .

The \hebspc command inserts horizontal space to move the letter after it left (if L > 0)
or right (if R > 0). This is useful for kerning two letters together as shown in the example.

The file /home/mike/bin/hebrew.tex contains \usepackage commands for the LATEX2ε
packages ifthen, amsmath, and graphicx, all of which provide functionality that is needed
by some of its commands.

5 Flush Right Text and Punctuation

Hebrew is written from right to left, so lines of text begin at the right margin and if unad-
justed are ragged on the left. To simplify making lines of Hebrew text flush right, hebrew.tex
includes the macro \hebline{}, whose use is illustrated in this example.

1 % example3.tex
2 \documentclass[12pt]{article}
3 \input{/home/mike/bin/hebrew}
4 \renewcommand{\hbold}[1]{#1}
5 \pagestyle{empty}
6 \begin{document}
7
8 \setivrit{12}
9 \hebline{\hebpnk{,}\hebrew{endmem}\segol{coph}\hebrew{yod}\tsere{lamed}\halfpatach{ayin}
10 \hebrew{endmem}\hebrew{ohvav}\hebrew{lamed}\qamats{shin}}
11 \hebline{\hebpnk{,}\hebrew{taf}\tsere{resh}\qamats{shin}\patach{hay}
12 \hebrew{dash}\hebrew{yod}\tsere{coph}\halfpatach{aleph}\sheva{lamed}\patach{mem}}
13 \hebline{\hebrew{endnun}\hebrew{ohvav}\hebrew{yod}\sheva{lamed}\segol{ayin}
14 \hebrew{dash}\hebrew{yod}\tsere{coph}\halfpatach{aleph}\sheva{lamed}\patach{mem}}
15
16 \end{document}

6

This LATEX2ε document produces the output below, in which the first three phrases of the
song Shalom Aleikhem (page 722 in Siddur Sim Shalom or page 375 in the Sacks Koren
Shalem siddur) are right-justified on separate lines.

,mk... il..r.. me
.
ly

.

,zx..y
.
d ik..`..l..n

oe

.
il..r... ik..`..l..n

To print a right-to-left comma at the end of the first two lines I used the macro \hebpnk{},
which produces the mirror image of its argument.

6 Words and Transliterations

One thing that makes Hebrew hard to learn is that many vowel forms, word-pair forms, and
words having prefixes and suffixes do not appear in printed dictionaries. To facilitate my
study of vocabulary I constructed my own dictionary, which helps me look up and remember
these words. The dictionary is a plain text file that I named Hebrew/milon.dat (oe

.
ln. is the

Hebrew word for a dictionary). Each line of milon.dat contains a single Hebrew word, its
translation, and its transliteration; the line that contains the word oe

.
ln. looks like this:

\hebrew{endnun}\hebrew{ohvav}\hebrew{lamed}\chiriq{mem} (a) dictionary % milon

First comes the string of four LATEX2ε commands that set the letters of the word in right-to-
left order, then the translation, and finally, separated by a percent sign, the transliteration.

It is convenient for the lines of milon.dat to be in arbitrary order, so that they can be
arranged in groups that are related by meaning, or by sound, or by the occasion on which
they were added to the dictionary. To search for words it is better to have a file that is
in alphabetical order, so I wrote a program called hebsort.f (see its man page) to produce
from milon.dat a file Utility/hebrew.hsh that has its lines arranged in alphabetical order
of the transliterations. I call this file the hashed dictionary. Here is the hebrew.hsh line
for oe

.
ln. along with the lines that immediately precede and follow it (the vertical ellipses

indicate that there are other lines before and after these).

:
milmayl 4 02140C120314011200000000000000000000000000000000 mumble
milon 4 021401120108011500000000000000000000000000000000 (a) dictionary
milooy 5 0214011201091102010D0000000000000000000000000000 filling
:

The separate (decimal) numbers 4, 4, and 5 show that these words have respectively 4, 4,
and 5 Hebrew letters. A letter is a consonant with a vowel (in this scheme \hebrew is just
a “vowel” that has no points). To save space this file stores each LATEX2ε command for
the letters of a word as (hexadecimal) numbers, using the codes listed in the tables of §2.
The numbers or hash code describing the Hebrew for milon, which are 0214011201080115,
translate back to LATEX2ε commands like this:

7

02020216 = 2{14141416 = 20} 01010116 = 1{12121216 = 18} 01010116 = 1{08080816 = 8} 01010116 = 1{15151516 = 21}
\chiriq{mem} \hebrew{lamed} \hebrew{ohvav} \hebrew{endnun}

so in this file the Hebrew letters read from left to right (storing the letters in this order
facilitates sorting the dictionary into alephbetical order by the Hebrew, which hebsort.f

can also do). The hebsort.f program uses a subroutine named HB2HSH (see its man page)
to translate a string of LATEX2ε commands into their corresponding hash codes. In the
hashed dictionary a transliteration can be up to 18 characters long, the hash code for the
LATEX2ε commands that set the Hebrew can represent up to 12 Hebrew letters, and the
English translation can be up to 80 characters long. A transliteration that ends in A denotes
a word that is Aramaic and one that ends in Y denotes a word that is Yiddish (an Aramaic or
Yiddish word is included only if it differs from the Hebrew word having the same meaning).

7 Finding and Displaying Dictionary Words

To search the hashed dictionary I wrote the program hebcheck.f (see its man page) which
can find a word by either its translation or its transliteration. Below is the beginning of the
list it produces of translations best matching the English word even. Several translations
match exactly while others resemble even in spelling but miss the meaning. The numbers
at the left in the table are the line numbers of the words in hebrew.hsh; below I will
explain how they can be used. The percentage score for each dictionary word indicates how
closely it matches the query. Next comes the transliteration, and after the colon the English
translation. Parenthesized strings in the translations are ignored in finding a match.

unix[1] hebcheck even
4649 100% yashar : straight, even, right
0065 100% afeeloo : even, even though, even if
0007 100% aaf : also, though, even, surely; (a) nose; anger
3950 51% shivah : seven (m)
3907 51% sheva : seven (f)
0067 50% afpa’am : even once
0056 50% af-kee : indeed, even though
1082 44% esray : ten (f pausal); teen

If you want hebcheck to look for a transliteration, put an equals sign = before and after it.
Below is the beginning of the list the program produces of transliterations best matching
even.

unix[2] hebcheck =even=
1102 100% even : (a) stone
3692 67% seen : name of Hebrew letter
2693 67% meen : (a) kind, sort, variety; (a) sex, gender
1100 67% eved : (a) servant

One transliteration matches even exactly while the others resemble it. Slight variations are
often possible in how a word is transliterated, so showing imprecise matches helps to ensure
that you will find the word you are looking for even if your guess at its transliteration is not
exactly right.

8

To display the Hebrew of a word in the dictionary I wrote the shell script hebshow (see
its man page). It constructs a LATEX2ε source file with commands appropriate to display the
word or words that are requested, translates the LATEX2ε into Postscript, and invokes the
gv program to display it in a window.

unix[3] hebshow =afeeloo= 1102

afeeloo e

.
lit.`.. even, even though, even if

even oa...`... (a) stone

Here I specified two words to be displayed, the first by its transliteration and the second by
its line number in hebrew.hsh. The hebshow script invokes a program named hebxtr.f (see
its man page) to extract the hash code for a word from hebrew.hsh and translate the hash
code into LATEX2ε commands; hebxtr.f in turn invokes the subroutine HSH2HB (see its man
page).

8 Embedding Transliterations in Text

By using the LATEX2ε commands described in §2-§4 it is possible to typeset documents that
include arbitrary Hebrew words. But if you want to include words that are in hebrew.hsh

then it is possible to embed their transliterations in your document rather than spelling out
the words one letter at a time. The example below shows how this can be done.

1 % example4.heb
2 \documentclass[12pt]{article}
3 \input{/home/mike/bin/hebrew}
4 \renewcommand{\hbold}[1]{#1}
5 \pagestyle{empty}
6 \begin{document}
7
8 \setivrit{12}
9
10 \noindent The Tall Tale on page 68 of {\em The First Hebrew
11 Primer\/} is entitled\\
12
13 \hebline{\hebpnk{.}<khayah> <amar> <asher> <na’ar>\patach{hay}}
14
15 \end{document}

Now the \hebline command includes transliterations for the words xrp, xy
.
... `.. , xn`, and

dig, rather than strings of LATEX2ε commands to spell them out. Here each transliteration is
enclosed in <angle> brackets, rather than the equals signs we used in marking transliterations
for hebcheck and hebshow. Angle brackets denote input and output redirection on the Unix
command line so we couldn’t use them to delimit transliterations there, but they cause no
trouble here and using them instead makes the LATEX2ε code much easier to read. The first
word of the Hebrew, xrpd, is not a dictionary word, but xrp is so I simply 13 prepended

9

the d. Transliterations and LATEX2ε commands for setting Hebrew letters can be mixed
freely. I used \hebpnk to set the period at the end of the Hebrew, but because the period is
the same as its mirror image this does not change its appearance.

To translate input files like example4.heb into Postscript, I wrote the shell script hebtex
(see its man page) which invokes the program hebunt.f (see its man page). The hebunt.f

program reads a .heb input file containing transliterations, looks up each transliteration
in hebrew.hsh, and expands the corresponding hash code into LATEX2ε commands. Then
hebtex translates the resulting .tex file into Postscript. The terminal session below shows
how to use hebtex.

unix[4] hebtex example4.heb
unix[5] gv example4.ps

The gv command displays this window.

The Tall Tale on page 68 of The First Hebrew Primer is entitled

.dig xn` xy

.
... `.. xrpd

9 Typing Paragraphs Left to Right

Typing transliterations is much simpler than typing words letter by letter, but putting the
words in right-to-left order is a nuisance because editors such as vi type from left to right.
Rather than typing Hebrew words in their lexical order of right to left on the page, it is
faster and easier to type them in the temporal order that they are read, as in this example.

1 % example5.ltr
2 \documentclass[12pt]{article}
3 \input{/home/mike/bin/hebrew}
4 \pagestyle{empty}
5
6 \begin{document}
7 \setivrit{12}
8 \renewcommand{\hbold}[1]{#1} % turn off bold
9
10 % LTR
11 \qamats{hay}<av> <shel> <khanah> <kholeh>. <lak’khoo> <oto> <el>
12 <bayt-hakholim> \sheva{vav}<atsav> <gadol> <hayah>
13 \patach{bet}<bayit>.
14
15 \sheva{bet}<chol> <yom> <halchah> <khanah> <im> <imah> <el>
16 <bayt-hakholim> <l’vakayr> <et> <aba>. <yom> <ekhad>\hebpnk{,}
17 <ca’asher> <halchoo> <el> <bayt-hakholim>\hebpnk{,} <sha’alah>
18 <khanah> ‘‘<ima>\hebpnk{,} <madooa> <bara> <eloheem> <et>
19 \patach{hay}<ra> \qamats{bet}<olam>?’’
20 % LTR
21
22 \end{document}

10

The \setivrit{12} command 7 in this example sets the Hebrew type size to 12 points.
Then 11-19 we find two paragraphs of text, delimited by % LTR flags 10 20 to indicate
that the Hebrew between them (the first two sentences in the second chapter of Hannah
Senesh) has been entered left-to-right. The blank line 14 produces a paragraph break. The
% LTR flags must be entered exactly as shown, and any Hebrew appearing outside of them is
assumed to be right-to-left.

I wrote the program hebjst.f (see its man page) to read a file that contains left-to-right
text and reset it right-to-left within \hebline commands. In the terminal session below I
use hebjst to read example5.ltr and write example5.heb. This invocation of hebjst tells
that program to assume in right-justifying the left-to-right text that the typesize is 17.00
points rather than the 12 point size used for the Hebrew letters; I did this only so that the
resulting lines would be short enough to conveniently display below. Then I used hebtex to
produce example5.ps for display by gv.

unix[6] cat example5.ltr | hebjst 17.00 > example5.heb
unix[7] hebtex example5.heb
unix[8] gv example5.ps

The gv command displays a window like this.

avre.. mil. e
.
gd zia

... l`... e

.
z`

.
e

.
gw.. l .dl... e

.
g dpg ly

.
... a`d

.zi.a. a. did le

.

b

.

z`... xw..al.. mil. e
.
gd zia

... l`... dn`. mr. dpg dkl..d me

.
i lk

.
a

...
dl`..y

.
,mil. e

.
gd zia

... l`... e

.
kl..d xy

.
... `..k

. ,
g`... me

.
i .̀ a. `

’’ ?mle
.
ra

.
rxd z`... mid. l

.
`..... `xa

.
re

.

n ,̀ n`. ‘‘ dpg

10 Constructing a Vocabulary List

You can list the unique transliterations contained in a document, with their English equiv-
alents and optionally sorted, by using heblist.f (see its man page).

unix[9] cat example5.heb | heblist > list.heb
found 38 transliterations of which 30 are unique

Now list.heb contains LATEX2ε commands for setting a table whose first column contains
the transliterations in the order they were encountered and whose second column contains the
English translations of the corresponding Hebrew words. This source text can be included
in a LATEX2ε document (such as the one whose vocabulary is listed).

11

11 Constructing a Lexicon

In Hebrew stories printed for beginners, one often finds that a few of the words have been
footnoted on first appearance to give their English meanings. Unfortunately, when I read
such a story I often find that the footnoted words are familiar while no translation is provided
for others that are new. To make it easier for me to learn vocabulary by reading stories,
I wrote a program called heblex.f (see its man page) to construct a list of all the distinct
words in a page of text along with their meanings as given in Hebrew/milon.dat. The
program formats the text of a story on right-hand pages with the lexicon for all of the words
in that page on the facing left-hand page. That way, when I get stuck on a word I can easily
find its meaning and then continue reading the Hebrew.

I wrote heblex to process the individual chapter files of a story book, so it expects that its
input will not contain an \end{document} command. The Unix session below begins [10]
by copying example5.heb to example6.raw but omitting its \end{document} command.
Then [11] it uses heblex to produce the file example6.heb containing the Hebrew text
and a lexicon of its words. Because this is output from heblex it does not end in an
\end{document} command, so [12] one must be appended. Then hebunt can be used [13]

to expand the transliterations and [14] latex to translate the result to a dvi file. Finally
dvips can produce [15] example6a.ps containing the lexicon and [16] example6b.ps

containing the Hebrew text. It is these files that are printed on the facing pages 14 and 15
of this document (page 13 is a right-hand page so it is blank).

unix[10] cat example5.heb | sed -e"/enddocument/d" > example6.raw
unix[11] heblex 1=example6.raw 3=/dev/null 4=temp 2>&1 > example6.heb
unix[12] echo "\end{document}" >> example6.heb
unix[13] cat example6.heb | hebunt 2>&1 > example6.tex
unix[14] latex example6.tex
unix[15] dvips -p=1 -l=1 -o example6a.ps example6.dvi
unix[16] dvips -p=2 -l=2 -o example6b.ps example6.dvi

Normally heblex is used in a make file to manage the assembly of a book from chapters, and
then many of the complications required for this demonstration do not arise.

The first occurrence of each lexicon word is printed in boldface to show that it is new.
Because this example has only one page, all of its words are new so all of them are printed
in bold.

12

13

a

a

a`

`

` father; (month of) Av
l

l

ly

y

y

.
... of

d

d

dp

p

pg

g

g Hannah
d

d

dl

l

l...eee
.
g

g

g patient, sick man; sick (adj)
e

e

e

.
g

g

gw

w

w..lll they took

e

e

e

.
z

z

z`

`

`

.
him; same

l

l

l`

`

`... to

m

m

mi

i

il

l

l.eee
.
g

g

gd

d

d z

z

zi

i

ia

a

a

... (the) hospital
a

a

av

v

vr

r

r sadness
l

l

le

e

e

.

b

b

b

. big, great (ms)
d

d

di

i

id

d

d he was
z

z

zi

i

i.aaa. (a) house
l

l

lk

k

k

.
all, everything, whole (n)

m

m

me

e

e

.
i

i

i (a) day
d

d

dk

k

kl

l

l..ddd she walked, went

m

m

mr

r

r. with; while; beside
d

d

dn

n

n`

`

`. her mother
x

x

xw

w

w..aaalll.. to visit

z

z

z`

`

`... direct object marker; with
`

`

`a

a

a

.
`

`

` daddy

g

g

g`

`

`... one (m)

x

x

xy

y

y

.
... ```..kkk

. when, just as

e

e

e

.
k

k

kl

l

l..ddd they walked, went

d

d

dl

l

l`

`

`..yyy
.

she asked, questioned

`

`

`n

n

n`

`

`. mommy
r

r

re

e

e

.

n

n

n why
`

`

`x

x

xa

a

a

. he created
m

m

mi

i

id

d

d.lll
.
`

`

`..... God (of nature); judges

r

r

rx

x

x bad, evil (ms)
m

m

ml

l

le

e

e

.
r

r

r (a) world; forever

14

avre.. mil. e
.
gd zia

... l`... e

.
z`

.
e

.
gw.. l .dl... e

.
g dpg ly

.
... a`d

.zi.a. a. did le

.

b

.

z`... xw..al.. mil. e
.
gd zia

... l`... dn`. mr. dpg dkl..d me

.
i lk

.
a

...

dl`..y
.

,mil. e
.
gd zia

... l`... e

.
kl..d xy

.
... `..k

. ,
g`... me

.
i .̀ a. `

’’ ?mle
.
ra

.
rxd z`... mid. l

.
`..... `xa

.
re

.

n ,̀ n`. ‘‘ dpg

15

12 Printing Flashcards

Another way to learn vocabulary words is by using flashcards. A flashcard has a Hebrew
word (or words) printed on one side and the translation (or translations) on the other side.
To use a flashcard you look at one side and try to recall the other, then turn the card over to
check. If you do this many times eventually you will remember the English that goes along
with the Hebrew and the Hebrew that goes along with the English.

Flashcards are not hard to make by hand, and some learning does occur in the process
of doing that, but it is much easier and almost as good to generate them automatically by
using the program flashcards.f (see its man page). It reads an input file of transliterations
and generates a .heb file that can be processed by hebtex. When the resulting .ps file is
printed 2-sided each page contains three 3× 5 flashcards each with a Hebrew word or words
on one side and the corresponding English translations on the other. The cards can be cut
out for convenient handling for review as described above. Many printers will accommodate
card stock or paper heavy enough to serve that purpose, but you might find that flashcards
printed on ordinary 20-pound paper work well enough.

The terminal session below shows how to use the program. The lpr option you need for
two-sided printing depends on what kind of printer you have.

unix[17] more in.flash
<shalom>
<aba> <ima>
unix[18] cat in.flash | flashcards > out.heb
unix[19] hebtex out.heb
unix[20] lpr -o Duplex=DuplexTumble out.ps

I have printed the result out.ps on the following two pages back-to-back, so that you can
cut out the three flashcards (the bottom one is blank). If you imagine that the guide number
in the upper left corner of each card has an unshown leading decimal point, then filing the
cards in the order of those decimal fractions will put them into alephbetical order. In the
example the top card has guide number 0.33180819 while the middle one has guide number
0.010201012001, and filing them in the order of those numbers would put them in alephbetical
order.

If you want to make flashcards for all of the transliterations in a document you can use
heblist to produce a vocabulary list and use that as the input to flashcards.

16

m

m

me

e

e

.
l

l

ly

y

y

.

33180819

`

`

`a

a

a

.
`

`

`

`

`

`n

n

n`

`

`.

010201012001

17

peace; hello; good bye

daddy

mommy

18

