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0 Introduction

After I was invited to participate in some research projects involving radar, it took me only
a little while to realize that I would need to know how to compute Fourier transforms. They
play a central role in signal processing generally and in the processing of radar signals in
particular. Several friends who are expert in the use of Fourier transforms reassured me that
the algorithms for computing them are “easy,” so I was relaxed and confident when I began
my casual study of the FFT.

The first book I consulted [10] gave a clear explanation of recursive decomposition (see
§5.1 of this paper), which is widely advertised as the basic idea underlying the FFT algorithm,
and then immediately presented an implementation in code that I found completely baffling.
I searched other books in hopes of finding a less magical or more complete explanation, but
I came across only one other numerical analysis text that discusses the topic at all [6] and
found it also too rabbit-out-of-a-hat for my taste.

Surprised by my inability to grasp an allegedly simple computational technique, I turned
more of my attention to the project and began this paper as a way of organizing my thoughts
and discoveries. One virtue of this approach is that it has let me adopt a consistent nota-
tion, eliminating one source of confusion I experienced in switching between references. A
textbook1 on digital signal processing [9] helped a great deal, but buried what I needed
amid related topics and analyzed the FFT algorithm in too much detail for my purposes.
Thinking that others might benefit from my experience in trying to master this material, I
continued writing with the aim of explaining the topic in a way that is useful to me, and
set the objective of understanding the algorithm well enough to be able to code my own
implementation.

Having now achieved that objective, I can state categorically that I find nothing about
this topic “easy” (except maybe typing the fft command into Matlab). Recursive de-
composition is not enough to reduce the complexity of the DFT calculation from N2 to
N log2 (N), and the code I examined first can be understood only with reference to a signal-
flow graph formulation of the problem. Rearranging the input data into bit-reversed-index
order is subtle and tricky, and numerous smaller details make understanding the innards of
the calculation “hard,” at least for me. Now I know why the topic is so seldom discussed in
textbooks about numerical methods, and why it was never mentioned in any of the numerical
methods courses I took!

I am hopeful that some readers really will find all of this easier than I do, and that they
will tell me where I have gotten things wrong or given a complicated explanation when a
simpler one would do. This is a work in progress, so corrections will be immediately useful
and most welcome. I apologize to any who find my baby steps too small or the level of detail
I have used too fine.

1Many thanks to Dr. Matt Ferrara for pointing this book out to me.
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1 The Fourier Transform

These notes adopt the convention2 that the Fourier transform F of a real or complex
scalar function f(x) is the complex scalar function

F{f(x)} = F (ν) =

∫ +∞

−∞

f(x)ei2πνxdx

where, here and throughout, i =
√
−1. In image-processing applications f(x) is often referred

to as a waveform or signal, the real scalar x typically represents a distance (measured in,
say, meters) and ν is spatial frequency (in cycles per meter). There are functions f(x) for
which this integral does not exist, but if the transform does exist then f(x) can be recovered
using the inverse operation,

F−1{F (ν)} = f(x) =

∫ +∞

−∞

F (ν)e−i2πνxdν.

The complex value F (ν) has a magnitude and a phase that are defined like this.

|F (ν)| =
√

Re{F (ν)}2 + Im{F (ν)}2

φ{F (ν)} = arctan

(
Im{F (ν)}
Re{F (ν)}

)

The Fourier transform is the limit of a sum of complex sinusoidal functions of x, so |F (ν)| is
the energy in each frequency component of f(x) per unit of frequency, and φ{F (ν)} is the
phase angle of each frequency component. Some functions have Fourier transforms that are
identically zero outside a finite range of frequencies, while others contain components at all
frequencies.

Here are some useful properties of the Fourier transform [3, page 472ff]. The symbol ∗
denotes convolution.

F{f(x− α)} = ei2πναF{f(x)}
F{f1(x) + f2(x)} = F{f1(x)}+ F{f2(x)}

F{αf(x)} = αF{f(x)}

F{f(αx)} =
1

α
F
( ν

α

)

F{f1(x) ∗ f2(x)} = F{f1(x)}F{f2(x)}
f(x) even ⇒ F real

f(x) odd ⇒ F imaginary

2These definitions of F and F−1 agree (after name changes) with those of [9], [10], and many other books
that discuss Fourier transforms in general. For good reasons specific to the radar application in particular,
[2, page xvi] uses the opposite convention that the forward transform has the negative exponent. I regret
any inconvenience arising from this difference, or from my use of i rather than j to represent

√
−1.
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The inverse transform has similar properties, leading to these additional relationships.

F{e−i2πναf(x)} = F (ν − α)

F{f1(x)f2(x)} = F1(ν) ∗ F2(ν)

f(x) real ⇒ Re{F (ν)} even, Im{F (ν)} odd

Here are the Fourier transforms of a few functions that are important in signal processing.
The sinc function is defined as sinc(x) = sin (x)/x.

function • Fourier transform F{•}

r(x; a) =

{
1
a
−a

2
≤ x ≤ +a

2

0 elsewhere
sinc(πaν)

sinc(x) r(ν; 1
π
)

δ(x) = lim
a→0

r(x; a) 1

1 δ(ν)

cos (x) 1
2
δ(ν + 1

2π
) + 1

2
δ(ν − 1

2π
)

sin (x) i1
2
δ(ν + 1

2π
)− i1

2
δ(ν − 1

2π
)

The rectangular pulse r(x; a) is pictured on the next page. As a is decreased, the pulse
described by r(x; a) gets narrower and taller, always with an area of 1. In the table, the
Dirac delta function or unit impulse δ(x) is defined as the limit of r(x; a) as a → 0, so
we are to imagine continuing the process shown in the picture until δ(x) is a pulse of zero
width and infinite height. That makes it not really a function at all but a “distribution” or
“singularity function” [3, pages 130-135] with the following properties [8, page 176].

δ(x) = 0 for x 6= 0

∫ 0+

0−
δ(x)dx = 1

∫ +∞

−∞

f(x)δ(x− b) dx = f(b)
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2 Evaluation by Calculus

When f(x) is defined by a formula it might be possible to evaluate the Fourier transform
integral in closed form. For example, consider the function on the left, which is graphed on
the right.

f(x) =







3x 0 ≤ x ≤ 1
6− 3x 1 ≤ x ≤ 2

0 elsewhere

f(x)

0

1

2

3

4

x
0 1 2 3 4

Using the definition of the Fourier transform, we find

F{f(x)} =

∫ +∞

−∞

f(x)ei2πνxdx

=

∫ 1

0

3xei2πνxdx+

∫ 2

1

(6− 3x)ei2πνxdx

= 3

∫ 1

0

xei2πνxdx+ 6

∫ 2

1

ei2πνxdx− 3

∫ 2

1

xei2πνxdx.

Each of these integrals can be evaluated analytically as follows.

∫ 1

0

xei2πνxdx =
1

(i2πν)2
[
ei2πν1(i2πν1− 1)− ei2πν0(i2πν0− 1)

]

=
1

(i2πν)2
[
ei2πν(i2πν − 1) + 1

]

∫ 2

1

ei2πνxdx =
1

i2πν

[
ei2πν2 − ei2πν1

]

=
1

(i2πν)2
[
ei4πν(i2πν)− ei2πν(i2πν)

]

∫ 2

1

xei2πνxdx =
1

(i2πν)2
[
ei2πν2(i2πν2− 1)− ei2πν1(i2πν1− 1)

]

=
1

(i2πν)2
[
ei4πν(i4πν − 1)− ei2πν(i2πν − 1)

]

These results are combined at the top of the next page.
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F{f(x)} =
1

(i2πν)2
[
3ei2πν(i2πν − 1) + 3 + 6ei2πν2(i2πν)− 6ei2πν(i2πν)

−3ei2πν2(i2πν2 − 1) + 3ei2πν(i2πν − 1)
]

=
1

(i2πν)2
[
3 + ei4πν(6(i2πν)− 3(i4πν − 1)) + ei2πν(−6(i2πν) + 6(i2πν − 1))

]

=
1

(i2πν)2
[
3 + 3ei4πν − 6ei2πν

]

=
1

(−4π2ν2)
[3 + 3 (cos (4πν) + i sin (4πν))− 6 (cos (2πν) + i sin (2πν))]

F (ν) = −3 + 3 cos (4πν)− 6 cos (2πν)

4π2ν2
− i× 3 sin (4πν)− 6 sin (2πν)

4π2ν2

Both fractions are 0/0 when ν = 0, but their values can be found using L’Hospital’s rule as
follows.

lim
ν→0

Re{F (ν)} = lim
ν→0
−−3 sin (4πν)4π + 6 sin (2πν)2π

8π2ν

= lim
ν→0
−−3 cos (4πν)(4π)

2 + 6 cos (2πν)(2π)2

8π2

= −−3(16π
2) + 6(4π2)

8π2
= −−24

8
= 3

lim
ν→0

Im{F (ν)} = lim
ν→0
−3 cos (4πν)4πν − 6 cos (2πν)2πν

8π2ν

= lim
ν→0
−−3 sin (4πν)(4π)

2 + 6 sin (2πν)(2π)2

8π2

= 0

Finally, we find that the Fourier transform of the given pulse is

F (ν) =

{
3 + i× 0 ν = 0

−3 + 3 cos (4πν)− 6 cos (2πν)

4π2ν2
− i× 3 sin (4πν)− 6 sin (2πν)

4π2ν2
otherwise.

The following page shows graphs of the real and imaginary parts of F (ν), and of its magnitude
and phase, as functions of ν.

I will use the pulse function that we have just transformed analytically to test the other
methods discussed in this paper for computing the Fourier transform, all of which do so
numerically.
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3 Evaluation by Numerical Quadrature

If f(x)ei2πνx has no antiderivative, we might consider approximating the definite integral

F (ν) =

∫ +∞

−∞

f(x)ei2πνxdx

at each value of ν by some standard algorithm for numerical quadrature, such as Simpson’s
Rule [1, page 200]:

∫ b

a

g(x)dx ≈ h

3
[g(a) + 4g(a+ h) + 2g(a+ 2h) + 4g(a+ 3h) + · · ·+ 4g(b− h) + g(b)].

The next page lists a Fortran subprogram that uses Simpson’s Rule to approximate the
integral of a complex function g(x). Of course we can also use it on functions g(x) that do
have closed-form integrals, and compare its results to those obtained analytically.
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C
FUNCTION ZIMPSN(G,A,B)

C This routine approximates the definite integral
C
C _B
C /
C ZIMPSN = / g(x) dx
C A_/
C
C using Simpson’s 1/3 rule.
C
C variable meaning
C -------- -------
C A lower limit of integration
C B upper limit of integration
C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
C DFLOAT Fortran function returns REAL*8 for INTEGER*4
C G function subprogram returns integrand value
C H step width
C L index on terms
C MOD Fortran function for remainder of INTEGER*4 division
C N number of steps
C SUM sum of coordinates in Simpson’s formula
C X variable of integration at a point in the sum
C Y value of integrand function at X
C
C formal parameters

COMPLEX*16 ZIMPSN
EXTERNAL G
REAL*8 A,B

C
C local variables

REAL*8 H,X
COMPLEX*16 Y,G,SUM
INTEGER*4 N/100/

C
C ------------------------------------------------------------------
C
C include the terms on the ends

SUM=G(A)+G(B)
C
C find the step length

H=(B-A)/DFLOAT(N)
C
C include the terms in the middle

DO 2 L=1,N-1
X=A+H*DFLOAT(L)
Y=G(X)
IF(MOD(L,2).EQ.0) THEN

C L is even
SUM=SUM+(2.D0,0.D0)*Y

ELSE
C L is odd

SUM=SUM+(4.D0,0.D0)*Y
ENDIF

2 CONTINUE
ZIMPSN=SUM*DCMPLX(H/3.D0,0.D0)
RETURN
END

12



Here is some code that invokes the integrator to approximate the Fourier transform of the
pulse function we considered in §2.

COMPLEX*16 F,ZIMPSN
EXTERNAL G
COMMON /DATA/ NU
REAL*8 NU

C OPEN(UNIT=1,FILE=’ft.real’)
C OPEN(UNIT=2,FILE=’ft.imag’)

DO 1 L=1,201
NU=0.04D0*DFLOAT(L-101)
F=ZIMPSN(G,0.D0,2.D0)
WRITE(1,901) NU,DREAL(F)
WRITE(2,901) NU,DIMAG(F)

901 FORMAT(2(1X,1PE13.6))
1 CONTINUE
STOP
END

C
FUNCTION G(X)
COMPLEX*16 G,I/(0.D0,1.D0)/
REAL*8 X
REAL*8 TWOPI/6.2831853071795865D0/
COMMON /DATA/ NU
REAL*8 NU
IF(X.LT.0.D0) THEN

G=(0.D0,0.D0)
RETURN

ENDIF
IF(X.GE.0.D0 .AND. X.LT.1.D0) THEN

G=DCMPLX(3.D0*X,0.D0)*CDEXP(I*DCMPLX(TWOPI*NU*X))
RETURN

ENDIF
IF(X.GE.1.D0 .AND. X.LT.2.D0) THEN

G=DCMPLX(6.D0-3.D0*X,0.D0)*CDEXP(I*DCMPLX(TWOPI*NU*X))
RETURN

ENDIF
IF(X.GE.2.D0) THEN

G=(0.D0,0.D0)
RETURN

ENDIF
END

The function ZIMPSN invokes the function G to compute the integrand at different values of
X. Because g(x) = f(x)ei2πνx also depends on ν, the value of NU at which the transform is
being evaluated is passed from the main program to G through common block /DATA/.

When the main and subprograms are compiled together and run, the output is two files
containing the numerical integrator’s approximations to Re{F (ν)}) and Im{F (ν)}) at the
201 values of ν produced by the main program. When these points are plotted on top of the
true curves for Re{F (ν)} and Im{F (ν)} displayed in §1, we get the graphs at the top of the
next page.
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The numerical approximations can be seen to agree quite well with the analytic results we
found earlier. When f(x) can be described by formulas (here coded into the function G) a
numerical integrator such as ZIMPSN can obtain values of the Fourier transform integrand at
arbitrary points x, and that makes it possible to evaluate F{f(x)} accurately.

Unfortunately, in image-processing applications f(x) is seldom described by formulas, so
its value might not be available at every x where an integrator like ZIMPSN would like to
know it. Also, it is sometimes necessary to compute the transform in nearly real time, and
that might rule out extravagant floating-point calculations like those we have used here.

4 Approximation by Discrete Fourier Transform

Often f(x) is known only at uniformly-spaced discrete values of x. As mentioned in §1,
F{f(x−α)} = ei2πναF{f(x)}, so we can assume the first discrete value of x to be zero and
afterwards multiply the transform by e−iνα if necessary. Then f(x) can be represented by the
N consecutive sampled function values fk = f(xk), where xk = k∆x and k = 0, . . . , N − 1.
The number ∆x has the same units as x and is called the sampling interval; its reciprocal
is the sampling rate. If x and ∆x are measured in, say, meters, then the sampling rate
1/∆x is a spatial frequency measured in samples per meter. The graph below shows the
pulse of §2 sampled at N = 8 points, with ∆x = (b− a)/(N − 1) = 31

2
/7 = 1

2
.

f(x)

0

1
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x
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•
x0
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•

x1
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x2
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x7

b

∆x
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In radar applications the function to be transformed is typically assumed to be zero outside
some fixed domain, such as x ∈ [a, b] in the graph above,3 so increasing the number of
samples makes them closer together rather than widening the domain. If we double the
number of samples we make ∆x = 31

2
/15 = 7

30
and increase the sampling rate from 2 to 30

7
.

4.1 The Forward DFT

The Fourier transform integral is the limit of a Riemann sum, so we can write F (ν) as

F (ν) =

∫ x=b

x=0

f(x)ei2πνxdx = lim
N→∞

∆x→0

N−1∑

k=0

fke
i2πνxk∆x where ∆x =

b

N − 1

and use the samples fk at the points xk in a finite sum to approximate the integral like this.

F (ν) ≈
N−1∑

k=0

fke
i2πνxk∆x =

N−1∑

k=0

g(xk)∆x where g(x) = f(x)ei2πνx

The real part of the integrand function g(x) is plotted below for four values of ν, along with
the rectangles of the finite-sum approximation for N = 8.
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3In the signal-processing literature one often finds jargon such as “f(x) is supported in [a, b]” or “f(x)
has support on [a, b]” which just means “f(x) is zero outside the interval [a, b].”

15



When ν = 0, g(x) = f(x)ei2π(0)x = f(x). The rectangle-rule approximation happens to equal
the exact area under the pulse, 1

2
× 2× 3 = 3, and the formula yields

F (0) ≈ 1
2

7∑

k=0

fk = 1
2
(0 + 11

2
+ 3 + 11

2
+ 0 + 0 + 0 + 0) = 3.

When ν = 0.1 symmetry suggests that the approximation is also exact, and adding up the
rectangle areas gives about 1.4×0.5+2.4×0.5+0.8×0.5 = 2.3. Using the formula confirms
that this rough graphical estimate is plausible.

ei2π(0.1)(0.5) = cos (0.1π) + i sin (0.1π) ≈ 0.95 + 0.31i

ei2π(0.1)(1.0) = cos (0.2π) + i sin (0.2π) ≈ 0.81 + 0.59i

ei2π(0.1)(1.5) = cos (0.3π) + i sin (0.3π) ≈ 0.59 + 0.81i

F (0.1) ≈ 1
2

(
1.5ei2π(.05) + 3.0ei2π(0.10) + 1.5ei2π(0.15)

)
≈ 2.37 + 1.72i

When ν = 1.0, it is not so easy to decide whether the area under the rectangles is equal to
the area under the curve, but if they differ it is not by much. (The sample dots are referred
to in §4.5.) When ν = 2.0, however, the rectangle-rule approximation clearly overestimates
the net area under the curve, which is by inspection about zero.

In the formula

F (ν) ≈ ∆x

N−1∑

k=0

fke
i2πνxk

it is the sum that is referred to as the discrete Fourier transform or DFT, so it is the DFT
multiplied by ∆x that we have been using to approximate the continuous Fourier transform
F (ν). The sum can be calculated for any value of ν, but it is convenient in defining the
inverse DFT to evaluate the forward DFT

Fn =

N−1∑

k=0

fke
i2πνnxk

at uniformly-spaced frequencies νn = n/(N∆x), where n = 0. . .N − 1. Sometimes that
whole set of Fn is referred to loosely as the DFT of the set of samples fk. The se-
quence f0 . . . f8 = [0, 1.5, 3, 1.5, 0, 0, 0, 0] that we considered above is said to have the DFT
F0 . . . F8 = [6 + 0i, 0 + 5.12i, −3 + 0i, 0− .879i, 0 + 0i, 0 + .879i, −3 + 0i, 0− 5.12i].

Using
νnxk =

n

N∆x
× k∆x =

nk

N

we can rewrite the definition of the DFT as
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Fn =
N−1∑

k=0

fke
i2πnk/N n = 0. . .N − 1.

In §2 and §3 we plotted F (ν) for negative as well as positive values of ν, but this set of Fn

includes values only at zero and positive frequencies. Notice, however, that

ei2πk(N−n)/N = ei2πk × e−i2πkn/N

= [cos (2πk) + i sin (2πk)]× e−i2πkn/N

= ei2πk(−n)/N

Thus Fn is periodic in n with period N and FN−n = F−n so we can get values of the
transform at negative frequencies from those we find at positive ones. For example, if N = 8
then F−4 = F+4 and F−3 = F+5 and F−2 = F+6 and F−1 = F+7. For the moment we will
view the results of the DFT calculation as being in order for the ν values in the top sequence
listed below.

F0 F1 F2 F3 F4 F5 F6 F7

0
+1

8∆x

+2

8∆x

+3

8∆x

+4

8∆x

+5

8∆x

+6

8∆x

+7

8∆x

0
+1

8∆x

+2

8∆x

+3

8∆x

±4
8∆x

−3
8∆x

−2
8∆x

−1
8∆x

F0 F1 F2 F3 F±4 F−3 F−2 F−1

However, in some settings it is useful to think of some of the Fn as corresponding to negative
frequencies, and then the results are in the order of the bottom sequence.

4.2 The Inverse DFT

The real part of the unshifted 8-point DFT of our pulse waveform is graphed at the top of
the next page. We can use the points (νn, Fn) in a Riemann sum to approximate the inverse
Fourier transform integral, like this.

f(x) =

∫ ν=+∞

ν=−∞

F (ν)e−i2πνxdν ≈
N−1∑

n=0

(∆xFn)e
−i2πνnx∆ν = ∆x∆ν

N−1∑

n=0

Fne
−i2πνnx

where ∆ν is the spacing in frequency between the points of the transform.

But ∆ν = 1/(N∆x), so fk =
1

N

N−1∑

n=0

Fne
−i2πνnxk k = 0. . .N − 1

or, again using the fact that νnxk = nk/N, fk =
1

N

N−1∑

n=0

Fne
−i2πnk/N k = 0. . .N − 1.
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Re{Fn}
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−2
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2
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6

8

ν
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•

•

•

• • •

•

•

∆ν

This is the inverse DFT. Unlike the direct DFT, the inverse recovers the given sampled
data without further scaling and exactly. For example,

f0 = 1
8

7∑

n=0

Fn

= 1
8 [(6 + 0− 3 + 0 + 0 + 0− 3 + 0) + i(0 + 5.12 + 0− .879 + 0 + .879 + 0− 5.12)]

= 0

f1 = 1
8

7∑

n=0

Fne
−i2πn/8

= 1
8 [F0 + F1e

−iπ/4 + F2e
−iπ/2 + F3e

−iπ3/4 + F4e
−iπ + F5e

−iπ5/4 + F6e
−iπ3/2 + F7e

−iπ7/4]

= 1
8 [6 + 5.12i(.707 − .707i) + (−3)(−i) + (−.879i)(−.707 − .707i) + (.879i)(−.707 + .707i)

+(−3)(i) + (−5.12i)(.707 + .707i)]

= 1
8 [12 + 0i] = 1.5

It is just because of algebra that the inverse transform restores the original sequence exactly,
but the effect is that the discretization error introduced by the Riemann-sum approximation
in the forward transform is undone. Of course, if the samples were taken far enough apart
to overlook interesting features of f(x), those features will be absent from even a perfect
reconstruction of the original samples. For example, if the dots in the picture of our triangular
pulse had actually been connected by curves rather than by straight line segments, we could
not tell that from the recovered sample points. Picking the points introduces a sampling

error that depends on f(x).

If we let the complex number W = ei2π/N , the formulas above can be rewritten as

Fn =
N−1∑

k=0

W nkfk fk =
1

N

N−1∑

n=0

W−nkFn.

After the powers ofW are computed once, it takes on the order ofN2 complex multiplications
and additions to compute either the direct or inverse transform for each set of data fk or Fn.
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4.3 Trigonometric Interpolation

Another way to think about the DFT is that it prescribes a trigonometric function interpo-
lating the given sequence of data values [5, §12.1] [6, §6.12]. For example, the sequence of
N = 8 values f0 . . . f7 = [1,−1, 1,−1, 1,−1, 1,−1] is plotted as points with spacing ∆x = 1

2

in the graph below, and the points are interpolated by the curve that is drawn through them.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3  3.5

f̂
(x
)

x

•

•

•

•

•

•

•

•

We can describe the sinusoidal interpolant as the real part of a finite sum of complex expo-
nentials having certain fixed frequencies νn, like this.

f̂(x) = Re{s(x)} where s(x) =
7∑

n=0

cne
−i2πνnx

To make the interpolant f̂(x) pass thru the given data points, we need only solve the algebraic
equations s(xk) = fk, k = 0. . .7 for the unknown weights cn. Using the fact that νnxk = nk/N
and the shorthand notation W = ei2π/N we can write

s(xk) =

7∑

n=0

cne
−i2πnk/N =

7∑

n=0

cnW
−nk

and then the equations we must solve are these.

c0 + c1 + c2 + c3 + c4 + c5 + c6 + c7 = 1

c0 + c1W
−1 + c2W

−2 + c3W
−3 + c4W

−4 + c5W
−5 + c6W

−6 + c7W
−7 = −1

c0 + c1W
−2 + c2W

−4 + c3W
−6 + c4W

−8 + c5W
−10 + c6W

−12 + c7W
−14 = 1

c0 + c1W
−3 + c2W

−6 + c3W
−9 + c4W

−12 + c5W
−15 + c6W

−18 + c7W
−21 = −1

c0 + c1W
−4 + c2W

−8 + c3W
−12 + c4W

−16 + c5W
−20 + c6W

−24 + c7W
−28 = 1

c0 + c1W
−5 + c2W

−10 + c3W
−15 + c4W

−20 + c5W
−25 + c6W

−30 + c7W
−35 = −1

c0 + c1W
−6 + c2W

−12 + c3W
−18 + c4W

−24 + c5W
−30 + c6W

−36 + c7W
−42 = 1

c0 + c1W
−7 + c2W

−14 + c3W
−21 + c4W

−28 + c5W
−35 + c6W

−42 + c7W
−49 = −1

In matrix form this linear system is

19

















1 1 1 1 1 1 1 1
1 W−1 W−2 W−3 W−4 W−5 W−6 W−7

1 W−2 W−4 W−6 W−8 W−10 W−12 W−14

1 W−3 W−6 W−9 W−12 W−15 W−18 W−21

1 W−4 W−8 W−12 W−16 W−20 W−24 W−28

1 W−5 W−10 W−15 W−20 W−25 W−30 W−35

1 W−6 W−12 W−18 W−24 W−30 W−36 W−42

1 W−7 W−14 W−21 W−28 W−35 W−42 W−49





























c0
c1
c2
c3
c4
c5
c6
c7















=















1
−1
1
−1
1
−1
1
−1















which looks daunting. Fortunately the properties of W allow the inverse of the coefficient
matrix to be written in the following simple form.

1

8















1 1 1 1 1 1 1 1
1 W+1 W+2 W+3 W+4 W+5 W+6 W+7

1 W+2 W+4 W+6 W+8 W+10 W+12 W+14

1 W+3 W+6 W+9 W+12 W+15 W+18 W+21

1 W+4 W+8 W+12 W+16 W+20 W+24 W+28

1 W+5 W+10 W+15 W+20 W+25 W+30 W+35

1 W+6 W+12 W+18 W+24 W+30 W+36 W+42

1 W+7 W+14 W+21 W+28 W+35 W+42 W+49















It is easy to show that the dot product of any column of the first matrix with the same row
of the second yields 1, and the dot product of any column of first matrix with a different row
of the second yields 0. For example, multiplying the second row of the coefficient matrix by
the third column of its inverse should yield zero as the (2,3) element of the identity.

I2,3 = 1
8
(1 +W +W 2 +W 3 +W 4 +W 5 +W 6 +W 7)

= 1
8
(1 + ei2π/8 + ei2π2/8 + ei2π3/8 + ei2π4/8 + ei2π5/8 + ei2π6/8 + ei2π7/8)

But ei2π/8 = −ei2π5/8 and ei2π2/8 = −ei2π6/8 and ei2π3/8 = −ei2π7/8, so
I2,3 =

1
8
(1 + ei2π4/8) = 1

8
(1 + eiπ) = 0

as expected. With the inverse of the coefficient matrix in hand, the weights ck can be
obtained by a matrix multiplication.















c0
c1
c2
c3
c4
c5
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c7















=
1
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1 1 1 1 1 1 1 1
1 W+1 W+2 W+3 W+4 W+5 W+6 W+7

1 W+2 W+4 W+6 W+8 W+10 W+12 W+14

1 W+3 W+6 W+9 W+12 W+15 W+18 W+21

1 W+4 W+8 W+12 W+16 W+20 W+24 W+28

1 W+5 W+10 W+15 W+20 W+25 W+30 W+35

1 W+6 W+12 W+18 W+24 W+30 W+36 W+42

1 W+7 W+14 W+21 W+28 W+35 W+42 W+49





























1
−1
1
−1
1
−1
1
−1















=















0
0
0
0
1
0
0
0
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In other words,

cn =
1

N

N−1∑

k=0

W nkfk

But the sum is just the definition of the forward DFT! What we have found is

1
8
DFT{[1,−1, 1,−1, 1,−1, 1,−1]} = 1

8
[0, 0, 0, 0, 8, 0, 0, 0]

and the weights cn in our definition of the sinusoidal interpolant are just the values Fn of
the forward transform scaled by the factor 1/N . The Fn found by the forward DFT are thus
scaled amplitudes of the corresponding frequency components νn = n/(N∆x) in the signal
whose samples are the fk. In this example the only frequency component that is nonzero is
ν4 = 1, so s(x) = e−i2π(1)x = cos (2πx)− i sin (2πx) and the sinusoid that interpolates the fk
is f̂(x) = cos (2πx). This is the curve drawn through the points in the graph above.

4.4 Errors in the Approximation

In §4.1 (on page 15) we examined some rectangles used in the DFT to approximate the area
under the Fourier transform integrand function g(x) for our pulse waveform. The Riemann
sum turned out to be exact when ν = 0, but with only N = 8 samples that result might
be dumb luck rather than a property of the method. When ν = 1.0 the approximation was
plausible, but when ν = 2.0 it was useless. How good is the DFT approximation at the
frequencies of the Fn if we use values of N larger than 8?

The program on the next page uses the definition of Fn to evaluate the DFT for a user-
chosen number of points. In reading the program it will be helpful to know that NN represents
N in the analysis, N represents n, FF represents Fn, and F represents fk. Subprogram FOFX,
listed below, returns values of f(x) for the triangular pulse of §2.

C
FUNCTION FOFX(XK)

C This routine returns the value of the Section 2 pulse.
C

REAL*8 FOFX,XK
C
C ------------------------------------------------------------------
C

IF(XK.LE.0.D0) THEN
FOFX=0.D0

ENDIF
IF(XK.GT.0.D0 .AND. XK.LE.1.D0) THEN

FOFX=3.D0*XK
ENDIF
IF(XK.GT.1.D0 .AND. XK.LE.2.D0) THEN

FOFX=6.D0-3.D0*XK
ENDIF
IF(XK.GT.2.D0) THEN

FOFX=0.D0
ENDIF
RETURN
END
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C
C This program computes the discrete Fourier transform of
C the pulse waveform using a given number of samples.
C
C variable meaning
C -------- -------
C CDEXP Fortran function returns exp(COMPLEX*16)
C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
C DELTA sampling interval
C DFLOAT Fortran function returns REAL*8 for INTEGER*4
C DIMAG Fortran function returns imag part of a COMPLEX*16
C DREAL Fortran function returns real part of COMPLEX*16
C F the input f_k’s as a COMPLEX*16s
C FF a point F_n in the transform
C FOFX function returns f(x) as a REAL*8
C I i, the square root of -1
C K index on input values
C N index on transform values
C NN number of samples
C NU freqency corresponding to a transform value
C PI the circle constant
C W exp(i*2*pi/N)
C XK a sample value of x as a REAL*8
C

REAL*8 DELTA,FOFX,NU,PI/3.1415926535897932D0/,XK
COMPLEX*16 F(0:63),FF,I/(0.D0,1.D0)/,W

C
C ------------------------------------------------------------------
C
C find out how many points to use

READ *,NN
DELTA=3.5D0/DFLOAT(NN-1)

C
C sample f(x)

DO 1 K=0,NN-1
XK=DELTA*DFLOAT(K)
F(K)=DCMPLX(FOFX(XK),0.D0)

1 CONTINUE
C
C find the complex constant whose powers appear in the series

W=CDEXP(I*DCMPLX(2.D0*PI/DFLOAT(NN),0.D0))
C
C compute each F_n from the DFT series

DO 2 N=0,NN-1
FF=(0.D0,0.D0)
DO 3 K=0,NN-1

FF=FF+W**(N*K)*F(K)
3 CONTINUE

NU=DFLOAT(N)/(DELTA*DFLOAT(NN))
WRITE(1,901) NU,DREAL(FF)
WRITE(2,901) NU,DIMAG(FF)

901 FORMAT(2(1X,1PE13.6))
2 CONTINUE
STOP
END
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Using this program to calculate the DFT of the pulse for several values of N yields the
results pictured at the bottom of the page. Each graph plots values of ∆xFn as points, along
with the exact transform curve we found in §2. Only the real parts of F (ν) and ∆xFn are
shown, but the agreement of their imaginary parts for different values of N follows a similar
pattern.

The Fn values are spaced apart in frequency by ∆ν = 1/(N∆x), and ∆x = b/(N − 1) so

∆ν =
1

N
(

b
N−1

) =

(
1

b

)(
N − 1

N

)

.

In our example this quantity increases from 0.25 to about 0.28 as N increases from 8 to 64,
so the points have almost the same spacing in all four graphs. To decrease it we would need
to increase the limit of integration b.
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When N = 8, the points for n = 0, 1, 3, 4, 5, and 7 fall near the curve but those for n = 2
(ν = 0.5) and 6 (ν = 1.5) do not; they are hard to see at all, because they are buried in
the horizontal axis. When N = 16 the points fall close to the curve until about n = 10
(ν ≈ 2.6) and the last two are noticeably wrong (the n = 15 point is slightly outside the
range of the graph, at ν ≈ 4.02). Increasing N further yields graphs in which the points
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accurately approximate F (ν) over the entire frequency range shown. The critical frequency
values νc listed in the graph legends are discussed in §4.5 below.

More samples yield narrower rectangles in the Riemann sum and more accurate ap-
proximations to the Fourier integral. The truncation error of rectangle-rule quadrature is
proportional to the first power of ∆x [4, equation 5.30b] so it might seem that the error
in the DFT approximation of the Fourier transform integral would also be first order in
∆x [10, page 577]. However, while increasing N decreases ∆x it also changes the summand
function fke

i2πnk/N (as is evident in the graphs of g(x) presented in §4.1) so the story is not
so simple.4

For our §2 pulse waveform it is possible at least to study the error in the DFT approxi-
mation experimentally. By evaluating the DFT and the exact formula for the transform we
can compute the absolute error over a given set V of frequencies as

E(N) = max
νn∈V
|∆xRe{Fn} − Re{F (νn)}|.

For frequencies νn = n/(N∆x) between zero and 4 (the range in the graphs on the previous
page) and N = 23. . .217 we get the graph below.
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Least-squares regression on these points yields

log10{E(N)} = 1.8− 0.68 log2(N).

Then

E = 101.8−0.68 log2(N) = (101.8)(10−0.68)log2(N)

≈ 63(2−2.26)log2(N) = 63(2log2(N))−2.26

≈ 63/N2.26

4Following the approach used in [4, §5.2-§5.3] to analyze the approximation, this effect intrudes at the
step of summing the errors committed in each subinterval to obtain a formula for the composite error. I will
be grateful to anyone who shows me how to complete that derivation and obtain a formula for the error in
the DFT approximation as a function of N .
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For our example ∆x = 3.5/(N − 1) ≈ 3.5/N , so N ≈ 3.5/∆x and

E ≈ (63/3.52.26)∆2.26
x ≈ 3.7∆2.26

x

For low enough frequencies, E ∝ ∆2.26
x rather than to ∆1

x, so the DFT approximation seems
quite a bit better than we expected from the properties of rectangle-rule quadrature.

Increasing N decreases both sampling error, which results from ignoring values of
f(x) between the xk, and truncation error, which results from approximating the Fourier
integral by a Riemann sum.5 In addition to those errors, DFT calculations are of course
also subject to ordinary roundoff errors such as those resulting from cancellation and
underflow [7, §4.3]. Roundoff errors accumulate as floating-point arithmetic is performed, so
if the E(N) graph were extended to large enough values of N the total error might begin
to go back up as increasing roundoff became more important than decreasing truncation
error. However, for our example it appears that roundoff is not a serious worry, and the
inherent stability of numerical quadrature [4, page 284] suggests that might be true of DFT
calculations generally.

We have just seen that if we pay attention to Fn values only up to ν = 4, the DFT
approximation quickly gets better as N increases. But in the graphs of Re{F} on page 23,
we noticed for small values of N that the error in the DFT approximation got bigger (though
in an irregular fashion) as ν increased. How good is the DFT approximation at different
frequencies for a fixed large value of N? To investigate that question we can think of the
error as a function of νmax, the highest frequency of the Fn we use, and find

E(νmax) = max
νn∈V
|∆xRe{Fn} − Re{F (νn)}|

where

V = {0 . . . νmax}

and νmax runs from 0 to (N − 1)/(N∆x). The graph on the next page shows E(ν) for
several different fixed values of N . To allow these curves to be compared on a single graph,
the horizontal axis shows the fraction of the Fn values considered in computing E(ν). For
example, when N = 128 the DFT yields F0 . . . F127 corresponding to frequency components
from ν = 0 to ν = 36. If we pay attention to only the frequency components between ν = 0
and ν = 4, say, we are using 1

9
≈ 0.11 of the Fn values. The dot marks that point on the

curve for N = 128, where the log of E(νmax) is −3.5; this is the same error we found earlier
at N = 128 when we plotted the log of E(N) for ν ∈ [0, 4].

5These errors are nonetheless different, because by using a higher-order quadrature (such as the trapezoid
rule) we could reduce the truncation error without changing the sampling error.
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From this graph we can see that the error of the DFT approximation is much bigger in the
Fn corresponding to high frequencies than it is in those corresponding to low ones. Although
the big errors that we noticed in the Re(F ) graphs at high frequencies appeared to go away
as we increased N , that’s only because we didn’t look beyond ν = 4. In fact, the error in
every DFT approximation becomes large at frequencies approaching νN = (N − 1)/(N∆x)
because of the phenomenon we first saw in the rectangle-rule pictures on page 15. The
Fourier integrand g(x) = f(x)ei2πνx oscillates faster and faster as ν increases, and no matter
how narrow we have made the Riemann sum rectangles (by choosing N) they end up being
too wide before we reach the highest frequency in the transform (which is also determined
by the N we chose). For each value of N there is a frequency beyond which the DFT
approximation is useless.

Each of the curves above is a roughly straight line with shallow slope6 for the first half of
the Fn values, corresponding to results that are accurate and get only slightly worse as the
frequency increases. Halfway to the highest frequency in each transform, near the critical

frequency νc =
1
2
/∆x ≈ 1

2
νN , the error curves turn up sharply.

The critical frequency is 1
2
/∆x because that allows 2 samples per cycle of the Fourier

integrand g(x) [10, page 494]. One of the rectangle-rule pictures on page 15 is for the critical
frequency νc = 1

2
/0.5 = 1, and as noted there the Riemann sum still provides a plausible

estimate of the area under the g(x) curve. Dots mark the samples so you can convince
yourself that there are 2 of them per cycle (e.g., rise from zero, fall through zero, and rise
back to zero) of that integrand. For an integrand at a higher frequency, such as the one
shown in the graph for ν = 2νc = 2 the Riemann sum approximation is grossly wrong
because the 8 samples we used are too few to capture the ups and downs in g(x). This is a
sort of sampling error, in which interesting things happen to the function being sampled, in
this case g(x), in between measurements.

What fraction of the Fn values we can use depends on how much error we can tolerate in

6The curve for N = 29 is flatter than the others, consistent with the small decrease in error between
N = 28 to N = 29 seen in the E(N) graph on page 24. These are experimental data for one particular
example, describing an algorithmic process in which circumstance plays a role, and apparently using 29

samples just happens to work well for our f(x) (the curve above is nearly flat up to the critical frequency).
I have omitted the first two data points from each curve because in two cases those points just happen to
fall far below the third, a chance effect that would obscure the real story.
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the DFT approximation. To get more accuracy we must throw away more high-frequency Fn

values and be content with a narrower frequency range, or increase N so that the frequency
range of the transform is wider to begin with. Doing either of those things is called over-

sampling. The Re{F} graphs on page 23 illustrate the effect of oversampling; increasing
N increases νc and moves the frequency window of interest (there ν ∈ [0, 4]) farther to the
left of the knee in the error curve, which improves accuracy.

4.5 Aliasing

In §4.1 we wrote the forward DFT as

Fn =

N−1∑

k=0

fke
i2πnk/N

for n = 0 . . .N − 1, each result corresponding to a frequency νn = n/(N∆x). However, the
sum can be calculated for any integer n. Another way of understanding the growth of error
in the DFT approximation as νn approaches νN = (N − 1)/(N∆x), the highest frequency in
the transform, is to examine Fn values for frequencies higher than that. The graph below
shows ∆xFn for our pulse waveform when N = 64 as n continues on past the vertical line
drawn at n = 63 (the point representing F63 is buried in that line).
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The Fn values repeat every N points (unlike the continuous transform F (ν), which is drawn
as a solid curve). As mentioned in §4.1, Fn is periodic in n with period N and we can
find Fn at negative frequencies from those at positive frequencies by using the fact that
F−n = FN−n. Because of this periodicity, the Fn values near νN are also values of the
transform at small negative frequencies. In the graph above we can see that F59 thru F63 are
the same as F64 through F68 or F−5 through F−1. It is as if the transform values F−5 through
F−1 adopted the false identities or aliases F59 through F63. This phenomenon is therefore
known as aliasing. At the critical frequency νc, the first cycle of the DFT (the one that is
useful for approximating F (ν)) starts running into the left-hand part of the second cycle (the
part that would be that repetition’s negative frequency components if the repetition were
centered at zero frequency). In this way the signal’s power outside of the frequency range
[−νc,+νc] gets moved by the sampling process into that frequency range [10, page 495].
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In theN = 64 transform of our pulse, most of the action seems to be over long before the DFT
repeats, so we could just ignore the high-frequency Fn and use the others in approximating
F (ν). Using fewer samples changes the DFT and reduces its period, as shown in the graphs
below.
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Continuing to reduce N will eventually make the big negative-frequency components of the
DFT’s second cycle overlap (and add to) the big positive-frequency components that we
want! The gory details of this collision are shown below with an enlarged frequency scale.
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Even with as few as 8 samples the DFT is of some use in approximating F (ν) below νc ≈ 1
2
νN ,

but when N = 4 essentially the whole transform is destroyed by aliasing.
For the pulse of §2, F (ν) gets small at high frequencies but there is no value of ν above

which it remains precisely zero. We must therefore expect that there is no value of n above
which Fn remains precisely zero, so the effects of aliasing extend forever to both positive
and negative frequencies. Thus every Fn for this pulse, including those corresponding to
frequencies less than ν = νc, can be regarded as contaminated to some extent by aliasing.
Many real signals have this property, so aliasing is often a useful way of understanding the
errors in the DFT approximation.

It is because our pulse f(x) is of finite duration that its transform F (ν) spans all fre-
quencies [3, §9.4]. A signal that is not of finite duration can be bandwidth limited, so
that its Fourier transform is identically zero outside some finite range of frequencies. In that
case, according to the sampling theorem [10, page 494], f(x) can be exactly reconstructed
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from its samples if the sampling rate is high enough so that the highest frequency in the
signal does not exceed the critical frequency. Then there will be no aliasing, and we can
think of representing the finite area under the transform by a Riemann sum. The Fourier
transform of the sinc function f(x) = sin (x)/x is a rectangular pulse; thus each rectangle
in the Riemann sum is the transform of a sinc function, and the waveform f(x) must be
exactly a weighted sum of sinc functions [9, equation 1.32]. This ideal result sheds some
additional light on aliasing and is useful as an aid to thinking about the DFT of signals
that are approximately bandwidth-limited, even though in practice we could never receive a
signal of infinite duration.
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5 DFT Evaluation by Fast Fourier Transform

The DFT is so useful that people have been working for many years on ways to speed up its
computation. The current state of the art is the fast Fourier transform or FFT.

Although zero subscripts can be used in modern programming languages (including Clas-
sical Fortran but not including Matlab) the FFT code I studied is typical of vintage-1965
programs in numbering the data xk, function values fk, frequencies νn, and transform values
Fn starting with 1, so that k and n both run from 1 to N rather than from 0 to N − 1.
Rewriting the formulas for the DFT and its inverse to follow this convention we get

Fn =

N∑

k=1

W (n−1)(k−1)fk fk =
1

N

N∑

n=1

W−(n−1)(k−1)Fn.

5.1 Recursive Decomposition

The sum for Fn can be separated into two parts, one composed of the odd-numbered terms
and the other composed of the even-numbered terms. Using W = ei2π/N we can write

Fn =
N∑

k=1

ei2π(n−1)(k−1)/Nfk

= ei2π(n−1)(0)/Nf1 + ei2π(n−1)(1)/Nf2 + ei2π(n−1)(2)/Nf3 + ei2π(n−1)(3)/Nf4 + · · ·

=

N/2
∑

k=1

ei2π(n−1)2(k−1)/Nf2k−1

︸ ︷︷ ︸

odd terms

+

N/2
∑

k=1

ei2π(n−1)(2k−1)/Nf2k

︸ ︷︷ ︸

even terms

=

N/2
∑

k=1

ei2π(n−1)2(k−1)/Nf2k−1 +

N/2
∑

k=1

ei2π(n−1)(1+2k−2)/Nf2k

=

N/2
∑

k=1

ei2π(n−1)(k−1)2/Nf2k−1 +

N/2
∑

k=1

ei2π(n−1)(1)/N ei2π(n−1)(2k−2)/Nf2k

=

N/2
∑

k=1

ei2π(n−1)(k−1)/(N/2)f2k−1 + ei2π(n−1)(1)/N

N/2
∑

k=1

ei2π(n−1)(k−1)/(N/2)f2k

Fn = F o
n +W (n−1)F e

n n = 1. . .N.

We could find Fn if we knew F o
n , the transform of just the odd-numbered fk’s in the data,

and F e
n, the transform of just the even-numbered ones. Similarly, we could find F o

n if we
knew F oo

n and F oe
n , and we could find F e

n if we knew F eo
n and F ee

n . If we continue applying
this idea, bisecting each subset of the data into odd-ordered and even-ordered terms at each
step, the calculations that we are promising to do when we unwind the recursion form a
binary tree. Assuming that N is a power of 2 (not just any multiple as we assumed earlier),
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the recursive subdivision ends with each leaf node being a single data element from the list
to be transformed. The transform of a single number is the number itself.

Fn =

1∑

k=1

ei2π(n−1)(k−1)/1f = f

To understand the recursive process it is helpful to consider an example, so suppose we
start with 8 data values fk for k = 1. . .8. Then, for n = 1. . .8,

Fn =
8∑

k=1

W
(n−1)(k−1)
8 fk = F o

n +W
(n−1)
8 F e

n where W8 = ei2π/8

F o
n =

8/2
∑

k=1

ei2π(n−1)(k−1)/(8/2)f2k−1 =

4∑

k=1

W
(n−1)(k−1)
4 f2k−1

F e
n =

8/2
∑

k=1

ei2π(n−1)(k−1)/(8/2)f2k =

4∑

k=1

W
(n−1)(k−1)
4 f2k







where W4 = ei2π/4

For example, when n = 2 we have from the formulas above

F o
2 = W 0

4 f1 +W 1
4 f3 +W 2

4 f5 +W 3
4 f7

F e
2 = W 0

4 f2 +W 1
4 f4 +W 2

4 f6 +W 3
4 f8

F2 = W 0
4 f1 +W 1

4 f3 +W 2
4 f5 +W 3

4 f7 +W8(W
0
4 f2 +W 1

4 f4 +W 2
4 f6 +W 3

4 f8)

= W 0
4 f1 +W8W

0
4 f2 +W 1

4 f3 +W8W
1
4 f4 +W 2

4 f5 +W8W
2
4 f6 +W 3

4 f7 +W8W
3
4 f8

= f1 +W8f2 +W 2
8 f3 +W 3

8 f4 +W 4
8 f5 +W 5

8 f6 +W 6
8 f7 +W 7

8 f8

=

8∑

k−1

W
(k−1)
8 fk

where line five uses the fact that W4 = ei2π/4 = (ei2π/8)2 = W 2
8 . The binary tree of calcula-

tions for this example is drawn on the next page and shows the recursive decomposition for
any single value of n. For example, when n = 7 we have from the binary tree

F7 =
(
(f1 +W 6

2 f5) +W 6
4 (f3 +W 6

2 f7)
)
+W 6

8

(
(f2 +W 6

2 f6) +W 6
4 (f4 +W 6

2 f8)
)

= f1 +W 6
2 f5 +W 6

4 f3 +W 6
4W

6
2 f7 +W 6

8 f2 +W 6
8W

6
2 f6 +W 6

8W
6
4 f4 +W 6

8W
6
4W

6
2 f8

= f1 +W 6
8 f2 +W 12

8 f3 +W 18
8 f4 +W 24

8 f5 +W 30
8 f6 +W 36

8 f7 +W 42
8 f8

=

8∑

k=1

W
6(k−1)
8 fk

where line three uses the observation that W2 = ei2π/2 = (ei2π/4)2 = W 2
4 .
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Fn = F o
n +W

(n−1)
8 F e

n

= F [f1f2f3f4f5f6f7f8]

F o
n = F oo

n +Wn−1
4 F oe

n

= F [f1f3f5f7]

F e
n = F eo

n +Wn−1
4 F ee

n

= F [f2f4f6f8]

F oo
n = F ooo

n +Wn−1
2 F ooe

n

= F [f1f5]

F oe
n = F oeo

n +Wn−1
2 F oee

n

= F [f3f7]

F eo
n = F eoo

n +Wn−1
2 F eoe

n

= F [f2f6]

F ee
n = F eeo

n +Wn−1
2 F eee

n

= F [f4f8]

F ooo
n = f1

= F [f1]

F ooe
n = f5

= F [f5]

F oeo
n = f3

= F [f3]

F oee
n = f7

= F [f7]

F eoo
n = f2

= F [f2]

F eoe
n = f6

= F [f6]

F eeo
n = f4

= F [f4]

F eee
n = f8

= F [f8]

If the tree were represented explicitly using a linked list, each Fn might be found by per-
forming a depth-first traversal sweeping from left to right, along the way doing the indicated
calculation at each node and saving the result. If there are N data values the tree has

1 + 2 + 4 + · · ·+N/2 =

log2 (N)
∑

m=1

2m−1 =
2log2 (N) − 1

2− 1
= N − 1

nodes at which a calculation must be done, so the work of doing N traversals to find the
whole DFT scales as N2 (just like the näıve evaluation of the DFT discussed in §4). The
storage needed for intermediate values (F o

n , F
e
n, and so on) could be reused for each new n,

so it scales as N , and because all of the fk are used in finding each Fn the input data cannot
be overwritten so another N locations would be needed to store the results.

5.2 Signal Flow Graphs

Fortunately, the special structure of the recursive decomposition can be exploited to speed
things up. Each traversal of the binary tree for a given n involves many calculations that are
also needed for other values of n. To take advantage of this fact we need a representation
of the process that reveals in a single picture how the input data get transformed into all N
output values Fn. Following [9, pages 294-297] I will use signal-flow graphs like the one
shown on the next page.
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f1 R1 = f1 + f5

f5 W2 R2 = f1 +W2f5

Here the input signals f1 and f5 are thought of as flowing from their nodes of origin on
the left to the result nodes R1 and R2 on the right. On its way to R2, f5 gets multiplied
by the gain W2; unmarked links have a gain of 1. Links are connected only where there is
a • dot; if they simply cross that does not interfere with either signal. At each result node
the incoming signals are added. Both R1 and R2 correspond to the F oo

n node in the binary
tree, but for different values of n. From the definition of W we find W2 = ei2π/2 = eiπ = −1.
Thus for odd values of n (even powers of W2) W

(n−1)
2 = +1 and F oo

n = R1, while for even

values of n (odd powers of W2) W
(n−1)
2 = −1 and F oo

n = R2.
A signal-flow graph is given on the next page for the whole computation of F1 thru F8.

To see how it specifies the calculation, consider finding F7 as we did using the binary tree.
In the signal-flow graph the node labeled F7 receives inputs of R3,3 and W 6

8 × R3,7. Those
nodes receive inputs from others, which in turn receive inputs from others, forming the tree
drawn in darker links. Traversing that tree we find

F7 = W 6
8R3,7 +R3,3

= W 6
8 (W

2
4R2,7 +R2,5) +W 2

4R2,3 +R2,1

= W 6
8

(
W 2

4 (W
0
2 f8 + f4) +W 0

2 f6 + f2
)
+W 2

4 (W
0
2 f7 + f3) +W 0

2 f5 + f1

= f1 +W 6
8 f2 +W 2

4 f3 +W 6
8W

2
4 f4 +W 0

2 f5 +W 6
8W

0
2 f6 +W 2

4W
0
2 f7 +W 6

8W
2
4W

0
2 f8

= f1 +W 6
8 f2 +W 4

8 f3 +W 10
8 f4 + f5 +W 6

8 f6 +W 4
8 f7 +W 10

8 f8

= f1 +W 6
8 f2 +W 12

8 f3 +W 18
8 f4 +W 24

8 f5 +W 30
8 f6 +W 36

8 f7 +W 42
8 f8

=
8∑

k=1

W
6(k−1)
8 fk

In the fifth line we used W 2
4 = e2i2π/4 = e4i2π/8 = W 4

8 , and in the sixth W 8
8 = e8i2π/8 =

(eiπ)2 = (−1)2 = 1. The tree drawn in darker links in the signal-flow graph is just the binary
tree when n = 7; the other instances of the binary tree are in the signal-flow graph too,
each rooted at the node where its Fn is delivered. This way of organizing the calculation is
advantageous in several important ways.

First, we can find all the Fn’s in parallel, and without traversing any trees. Starting with
the given values of the fk we can find R2,1 thru R2,8 in one stage of the calculation. I will
number the stages m = 1, 2, 3 from left to right. Once the stage-1 calculation is complete we
can use the R2,p values to find R3,1 thru R3,8 in stage 2. Finally, using those values we can
find F1 thru F8 in stage 3. Stage 1 is a stack of N/2 2-point FFTs like the one diagrammed
in the little network flow graph above; each has 2 inputs corresponding to leaf nodes of the
binary tree and 2 outputs corresponding to the possible values of W n−1

2 (above we saw that
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f1
R2,1

W 0
2

R2,2
f5 W 1

2

f3
R2,3W 0

2

R2,4

f7 W 1
2

f2
R2,5

W 0
2

R2,6
f6 W 1

2

f4
R2,7W 0

2

R2,8

f8 W 1
2

R3,1

R3,3

R3,2

R3,4

W 0
4

W 1
4

W 2
4

W 3
4

R3,5

R3,7

R3,6

R3,8

W 2
4

W 0
4

W 3
4

W 1
4

F1

F2

F3

F4

W 4
8 F5

W 5
8 F6

W 6
8 F7

W 7
8 F8

W 0
8

W 1
8

W 2
8

W 3
8

they are −1 and +1). Stage 2 is a stack of N/4 4-point FFTs, each with 4 inputs that are
outputs from the first stage and 4 outputs corresponding to the possible values of W n−1

4

(which happen to be 1, i, −1, and −i). Stage 3 is a single 8-point FFT (that is, a “stack” of
N/8 = 1 8-point FFTs) whose inputs are outputs from the second stage and whose outputs
correspond to the 8 possible values of W n−1

8 . The number of stages is log2 (N), and since
each stage has N nodes at which a calculation is required the work now scales as N log2 (N)
rather than as N2. This might seem a technical detail, but in practice it is what makes
evaluating the DFT computationally tractable for large values of N . The table on the top
of the next page compares log2 (N) to N2 for N equal to some small powers of 2.

The second big advantage of organizing the calculation according to the signal-flow graph
is that the input data for each stage are not needed by subsequent stages, so we can overwrite
them with results. This means we can perform the whole calculation in-place, without
needing any extra storage for the intermediate values Rm,p or outputs Fn.
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N N log2 (N) N2 (N log2 (N))/(N2)

2 2 4 0.500000
4 8 16 0.500000
8 24 64 0.375000

16 64 256 0.250000
32 160 1024 0.156250
64 384 4096 0.093750
128 896 16384 0.054688
256 2048 65536 0.031250
512 4608 262144 0.017578
1024 10240 1048576 0.009766
2048 22528 4194304 0.005371
4096 49152 16777216 0.002930
8192 106496 67108864 0.001587
16384 229376 268435456 0.000854
32768 491520 1073741824 0.000458

5.3 The Butterfly Calculation

In each stage, the calculation that we repeat N/2 times (using different numbers) is the same,

as illustrated by the representative examples drawn on the next page with heavy lines. Here
I have expressed all of the link gains as powers of W8. In the stage-1 example, to find R2,1

and R2,2 we use f1 and f5; both inputs are needed to find each result, and neither is needed
anywhere else in the calculation. Similarly in stage 2 we need R2,5 and R2,7 only to find R3,5

and R3,7, and in stage 3 we need R3,2 and R3,6 to find F2 and F6. Each such calculation
involves lines from the signal-flow graph that form the shape of a butterfly, like this.

Rm,p Rm+1,p

W s
N

Rm,q W
s+N/2
N Rm+1,q

In the stage-1 example we have m = 1, p = 1, and q = 2 with Rm,p = f1 and Rm,q = f5. The
gain W s

N = W 0
8 , so s = 0. In the stage-2 example, m = 2, p = 5, q = 7, and again s = 0.

In the stage-3 example, m = 3, p = 2, q = 6, and s = 2. Each butterfly calculation can be
expressed like this.

Rm+1,q = Rm,p +W
s+N/2
N Rm,q

Rm+1,p = Rm,p +W s
NRm,q

But W
N/2
N = e(N/2)i2π/N = eiπ = −1, so W

s+N/2
N = −W s

N and the calculation reduces to this.

Rm+1,q = Rm,p −W s
NRm,q

Rm+1,p = Rm,p +W s
NRm,q
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8
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8
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8
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8
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8
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Thus, the final virtue of the signal-flow formulation is that the butterfly calculation consists
simply of adding and subtracting the same product, so it is easy to program and fast to
perform.

Doing the calculation in-place means that Rm+1,q overwrites Rm,q, so a temporary variable
is needed to remember the product. In pseudocode, what we need to do is this.

temp ← W s
NRq

Rq ← Rp − temp

Rp ← Rp + temp

It is important to update Rp last, because its original value is needed in finding Rq. As we
work from left to right in the signal-flow graph from stage 1 thru stage log2 (N), we perform
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N/2 butterfly calculations in each stage working from top to bottom. When we begin, the
vector R contains the fk; it gets updated in the successive stages and contains the Fn when
the calculation is finished.

The program on the next page reads a sequence of 8 input values fk (in the order they
have from top to bottom in the signal-flow graph, or from left to right in the binary tree
of §5.1) and prints out the resulting Fn. The lines of the listing are numbered so that I
can refer to them in describing the code. Experiments confirm that this program produces
output identical (modulo roundoff) to that from the näıve DFT implementation of §4. The
pseudocode above translates directly into Fortran 56-58 but those three statements are
surrounded by code for indexing the appropriate elements of R and for computing the gains
W s

N . These operations can be related easily to the signal-flow graph, but they involve a lot
of arithmetic. In the next Section we will consider less-obvious coding solutions that save
on that work and allow for problems of arbitrary size.

The recursive decomposition of the DFT calculation that we have considered in this Sec-
tion is called decimation7 in time, because it forms subsequences of the input sequence
fk = f(xk) and x often represents time (though in image-processing applications it more
commonly represents distance). The calculation can also be recursively decomposed by
forming subsequences of the output sequence Fn, and that is called decimation in fre-

quency. As discussed in [9, §6.3], to each decimation-in-time algorithm there corresponds a
decimation-in-frequency algorithm obtained by interchanging the input and output sequences
and reversing the directions of flow in the signal-flow graph. Decimation in frequency is more
difficult to understand and provides no advantage in efficiency, so decimation in time seems
to be more commonly used.

7In ordinary usage to decimate means to reduce by one-tenth, but here it means to decompose thru
successive divisions by two.
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1 C
2 C This program implements the N=8 signal flow graph calculation.
3 C Refer to the second signal flow graph.
4 C
5 C variable meaning
6 C -------- -------
7 C CDEXP Fortran function returns exp(COMPLEX*16)
8 C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
9 C I i, the square root of -1
10 C K index on input f values
11 C L index on groups of butterflies within a stage
12 C M index on stages in the signal flow graph
13 C NB number of butterflies in each group
14 C NG number of groups in this stage
15 C P node index at top of a butterfly
16 C PI the circle constant
17 C Q node index at bottom of a butterfly
18 C R the f’s, then intermediate results, finally F’s
19 C S power of W in this butterfly
20 C SIGNAL f values read in
21 C T index on butterflies in a group
22 C TEMP the intermediate in each pairwise calculation
23 C W8 the constant whose powers are the link gains
24 C
25 REAL*8 PI/3.1415926535897932D0/,SIGNAL(8)
26 COMPLEX*16 I/(0.D0,1.D0)/,R(8),TEMP,W8
27 INTEGER*4 P,Q,S,T
28 C
29 C ------------------------------------------------------------------
30 C
31 C get the input f values
32 READ(5,*) SIGNAL
33 DO 1 K=1,8
34 R(K)=DCMPLX(SIGNAL(K),0.D0)
35 1 CONTINUE
36 C
37 C find the constant whose powers are the link gains
38 W8=CDEXP((I*2.D0*PI)/8.D0)
39 C
40 C consider each stage
41 DO 2 M=1,3
42 C in each stage consider each group of butterflies
43 NG=2**(3-M)
44 DO 3 L=1,NG
45 C in each group consider each butterfly
46 NB=2**(M-1)
47 DO 4 T=1,NB
48 C find the nodes involved in this butterfly
49 P=T+2*NB*(L-1)
50 Q=P+NB
51 C
52 C find the power of W to use in this butterfly
53 S=(T-1)*2**(3-M)
54 C
55 C perform the pairwise calculation
56 TEMP=(W8**S)*R(Q)
57 R(Q)=R(P)-TEMP
58 R(P)=R(P)+TEMP
59 4 CONTINUE
60 3 CONTINUE
61 2 CONTINUE
62 C
63 C report the transform values
64 WRITE(6,901) R
65 901 FORMAT(1PE13.6,1X,1PE13.6)
66 STOP
67 END
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6 FFT Implementation

The Fourier transform F (ν) is in general a complex function of the real scalar ν, so the Fn

found by the DFT are complex numbers and the data structure used throughout the signal-
flow graph calculation must accommodate numbers that have both a real and an imaginary
part. Although complex data types are native to both Classical Fortran and Matlab

(though not to C) the code I studied is typical of vintage-1965 programs in representing
complex numbers by adjacent real values. Thus we find the fk stored in a real vector of
length 2N elements, like this.

Re(f1) Im(f1) Re(f2) Im(f2)

DATA(1) DATA(2) DATA(3) DATA(4)

Gains W and other complex quantities are similarly represented by pairs of real values. To
compute the product of two complex numbers a+ bi and c+ di represented in this way, one
calculates the real and imaginary parts of the product separately like this.

Re{(a+ bi)× (c+ di)} = ac− bd

Im{(a+ bi)× (c+ di)} = ad+ bc

6.1 The Butterfly Calculation Revisited

There are not many ways to code the butterfly calculation itself, but one conspicuous inef-
ficiency in the code of §5.3 is that it computes the same powers of WN over and over. Some
work could be avoided if, within each stage, the butterflies using each power of WN were
all evaluated before the next power was found. More work could be avoided by using mul-
tiplications, rather than complex exponentiations, to find the successive powers of WN . A
final improvement would be to compute the various indices by multiplications and additions
rather than by integer exponentiations.

6.1.1 A Typical Butterfly Algorithm

The Fortran program listed on the following two pages incorporates those improvements.
This code is inspired by the butterfly part of the four1 subroutine from [10, page 501], but
I have altered the order of statements, made everything double precision, used the coding
style described in [7], and changed the names of several variables. Experiments confirm that
this program produces output identical to that from the näıve DFT implementation of §4.

Powers of W. Referring to the first signal-flow graph (on page 34) we see that the
gains there are powers of W2 in the first stage, powers of W4 in the second stage, and powers
of W8 in the third. In the program the variable LMAX takes on 47,59,77 the values 2, 4, and
8 to determine the W that is used in each stage. The real and imaginary parts of W can
then be found from
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1 C
2 C This program implements the signal flow graph calculation
3 C with some obvious improvements. Refer to the first signal
4 C flow graph.
5 C
6 C variable meaning
7 C -------- -------
8 C DATA the f’s, then intermediate results, finally F’s
9 C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
10 C DFLOAT Fortran function returns REAL*8 for INTEGER*4
11 C DSIN Fortran function returns sine of a REAL*8
12 C K index on input f values
13 C L index on powers of W
14 C LMAX in the current stage, W=e^(i * TWOPI/LMAX)
15 C N number of data values
16 C NN number of (real,complex) data pairs
17 C P odd index of (real,imag) at top of a butterfly
18 C PSTEP nodes between butterflies using the same power of W
19 C Q odd index of (real,imag) at bottom of a butterfly
20 C SIGNAL f values read in
21 C TEMPI imaginary part of WRq
22 C TEMPR real part of WRq
23 C THETA angle corresponding to W^s
24 C TWOPI twice the circle constant
25 C WI imaginary part of W
26 C WPI imaginary part of W multiplier
27 C WPR real part of W multiplier
28 C WR real part of W
29 C WTEMP saved value of WR
30 C
31 PARAMETER(NN=8,N=2*NN)
32 REAL*8 DATA(N)
33 REAL*8 SIGNAL(NN),TEMPI,TEMPR,THETA
34 REAL*8 TWOPI/6.2831853071795865D0/,WI,WPI,WPR,WR,WTEMP
35 INTEGER*4 P,PSTEP,Q
36 C
37 C ------------------------------------------------------------------
38 C

W = ei2π/LMAX = cos (2π/LMAX) + i sin (2π/LMAX)

Re(W ) = cos (2π/LMAX)

Im(W ) = sin (2π/LMAX)

The code sets θ to 2π/LMAX 54 and WPI to sin θ 56 so WPI is the imaginary part of WLMAX,
but for the real part of the W multiplier it uses 55

WPR = −2 sin2 (1
2
θ) = −2

(

±
√

1− cos (θ)

2

)2

= −|1− cos (θ)| = cos (θ)− 1.

When the next power of W is calculated 73-75 the real and imaginary parts of the product
are adjusted to account for the extra −1 in WPR, like this.

WR←WR ∗ WPR− WI ∗ WPI + WR

=WR× (cos (θ)− 1)− WI× sin (θ) + WR

=WR cos (θ)− WR− WI sin (θ) + WR

=WR cos (θ)− WI sin (θ)

WI←WI ∗ WPR + WR ∗ WPI + WI

=WI× (cos (θ)− 1) + WR× sin (θ) + WI

=WI cos (θ)− WI+ WR sin (θ) + WI

=WI cos (θ) + WR sin (θ)
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The new value of the complex gain represented by WR and WI is then

(WR cos (θ)− WI sin (θ)) + i (WI cos (θ) + WR sin (θ)) =

(WR+ iWI)× (cos (θ) + i sin (θ)) =

W s−1
LMAX × eiθ =

W s−1
LMAX × ei2π/LMAX =

W s−1
LMAX ×WLMAX = W s

LMAX.

39 C get the input f values
40 READ(5,*) SIGNAL
41 DO 1 K=1,NN
42 DATA(2*K-1)=SIGNAL(K)
43 DATA(2*K )=0.D0
44 1 CONTINUE
45 C
46 C consider each stage
47 LMAX=2
48 5 IF(LMAX.GE.N) GO TO 2
49 C set W^0=1
50 WR=1.D0
51 WI=0.D0
52 C
53 C compute the W for this stage
54 THETA=TWOPI/DFLOAT(LMAX)
55 WPR=-2.D0*(DSIN(0.5D0*THETA))**2
56 WPI=DSIN(THETA)
57 C
58 C consider each power of W used in this stage
59 PSTEP=2*LMAX
60 DO 3 L=1,LMAX,2
61 C do the butterflies with this power of W in all groups
62 DO 4 P=L,N,PSTEP
63 Q=P+LMAX
64 TEMPR=WR*DATA(Q)-WI*DATA(Q+1)
65 TEMPI=WR*DATA(Q+1)+WI*DATA(Q)
66 DATA(Q)=DATA(P)-TEMPR
67 DATA(Q+1)=DATA(P+1)-TEMPI
68 DATA(P)=DATA(P)+TEMPR
69 DATA(P+1)=DATA(P+1)+TEMPI
70 4 CONTINUE
71 C
72 C find the next power of W as W*WP
73 WTEMP=WR
74 WR=WR*WPR-WI*WPI+WR
75 WI=WI*WPR+WTEMP*WPI+WI
76 3 CONTINUE
77 LMAX=PSTEP
78 GO TO 5
79 C
80 C report the transform values
81 2 WRITE(6,901) DATA
82 901 FORMAT(1PE13.6,1X,1PE13.6)
83 STOP
84 END
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Indexing. There is no explicit index on the stages; when LMAX.GE.N we know that we are
done, and the loop 48-78 starting with the test and ending with GO TO 5 is free [7, page
275]. In our example, N = 2×N = 2 ∗ NN = 16 and LMAX takes on the values 2 for stage 1, 4
for stage 2, 8 for stage 3, and finally 16 which makes the test 48 succeed to end the process
with a branch to 81 statement 2 (LMAX never does get to be greater than N).

In each stage, WLMAX is set 50-51 to W 0
LMAX = 1 + 0i for the first pass thru the 3 loop

60-76 . In the first stage, that is the only value to consider so the 3 loop does only one pass.
(LMAX is 2 and the DO increment is 2, so L takes on only the value 1 [7, page 81].) At the
end of the 3 loop, LMAX is doubled 77 for the next stage.

In the first stage LMAX=2 47 so PSTEP is 4 59 . This is the number of data values
(twice the number of nodes vertically in the signal-flow graph) between the tops of adjacent
butterflies. In the first stage the 4 loop is performed for P values of 1, 5, 9, and 13 (13+4=17
would exceed the loop limit of N which is 16 31 ). Recall from the introduction to this Section
that each data item occupies two locations in DATA, so node R2,1 in the signal-flow graph
corresponds to DATA(1) and DATA(2), R2,2 to DATA(3) and DATA(4), and so on. The top of
the second butterfly, R2,3 thus has its real value at DATA(5), so that is the second value of P
produced by the 4 loop. The data element corresponding to the bottom node of the butterfly
is Q=P+LMAX 63 . In the first stage, for example, when P is 1 we find 63 that Q=P+LMAX=1+2=3
which is the real half of the data element corresponding to the bottom of the butterfly. In
the butterfly calculation 64-69 DATA(P+1) and DATA(Q+1) are the imaginary parts of the
numbers whose real parts are stored at DATA(P) and DATA(Q). The doubling of LMAX 77 and
PSTEP 59 as the 5 loop progresses from stage to stage ensures that the foregoing logic works
in each stage subsequent to the first.

6.1.2 A Little Improvement

Instead of using WPR = −2 sin2 (1
2
θ) 55 and including the terms +WR 74 and +WI 75 in

computing the next value of WLMAX, it would be more straightforward8 to use WPR = cos (θ)
and omit the corrections. This change saves some floating-point arithmetic, makes the code
easier to understand and explain, and produces the same results we got before.

6.2 Input Data Rearrangement

A consequence of the recursive decomposition described in §5.1 is that the input values need
to be arranged in DATA in a particular order. For our example with N = 8 data values
fk, k = 1. . .8, they must be in the order f1, f5, f3, f7, f2, f6, f4, f8 as shown in the binary
tree on page 32 and the signal-flow graph on pages 34 and 36. This ordering is of the indices,
and has nothing to do with the data values, so it would be misleading to call it sorting.

8The author of four1 is identified in [10, page 500] as N. M. Brenner, but no work of his is cited in
[10, page 504]. I can only speculate that he chose to use the half-angle formula because it affords some
advantage in the control of roundoff error or in the size of a statically-linked program (by avoiding reference
to the elementary function library routine for COS). I will be grateful to anyone who presents me with a
convincing argument why Brenner’s approach might be better for either of these or some other reason.
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If the indices went from 0 to N − 1 instead (as we originally had them in §4) each index
value would be one less so the corresponding order would be f0, f4, f2, f6, f1, f5, f3, f7.
These indices and their binary values are listed below in the first and second columns. The
third column is the binary value with the order of its bits reversed.

0 000 000
4 100 001
2 010 010
6 110 011
1 001 100
5 101 101
3 011 110
7 111 111

When the data are arranged in ascending order according to the bit-reversed values of their
original indices, they are in just the order we need! As explained in [10, page 499], this “is
because the successive subdivisions of the data into even and odd are tests of successive low-
order (least significant) bits” of N . If we can somehow arrange indices by their bit-reversed
values, we can arrange data indexed from 0 to N − 1 into the right order. How might such
an arrangement of indices be accomplished? Is there some way to make it work for our data,
which we decided for other reasons to index from 1 to N instead? What about arranging
real-imaginary number pairs stored in consecutive elements of DATA? To see how the basic
idea can be used in the presence of these complications we need some background in bit
manipulation.

6.2.1 Bit-Reversed-Index Order

A decimal integer is represented in the computer (e.g., as a Fortran INTEGER*4 variable
[7, page 55]) by a string of 32 bits like this one.

s 230 · · · · · · 8 4 2 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

The sign bit (marked s) is zero for positive values, and the other bit positions correspond to
powers of 2 in the positional notation for the number, so the integer represented is 16+2+1 =
1910 = 100112. The binary representation of 20 is the bits for 16 + 4 = 101002. Lining these
numbers up suggests an algorithm for finding the next binary value.9 There are many
methods by which a list of indices might be arranged in ascending bit-reversed-index order,
but the obscure algorithm I am about to describe is fast and widely used.

19 10011
20 10100

We can change the top bitstring into the bottom one by finding its least-significant or right-
most 0 (in the 4 = 22 spot), changing it to a 1, and making the bits to the right of it (they

9I am indebted to Dr. Daryn Ramsden for helping me to understand the algorithm implemented in
[10, page 501]. The code presented below is somewhat different, but it implements the same idea and my
explanation is therefore based on his.
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are both 1) into 0s. This always works, because

L∑

l=1

2l−1 + 1 = 2L

In our case there are L = 2 bits in the rightmost string of 1s, so the identity yields 20+21+1 =
22 = 4 and this is the same result we would get by addition: 0112 + 12 = 1002 = 4.

Similarly, to find the number that comes after a given number in the order they would
have if their bits were reversed (without actually reversing the bits) we can find the most

significant or leftmost 0 in the given number, change it to a 1, and make the 1s to the left

of it into 0s. The most significant 0 of 10011 is in the 23 bit position. Changing that bit to
a 1 and making the 1 to the left of it into 0 we get 01011 = 11. Thus, when the numbers in
a list are represented by 5 bits (i.e., they range from 0 thru 31) the number that follows 19
in bit-reversed ascending order is 11.

The FFT example we studied previously had 8 data values, but it will be easier to see
how the process just described can be used to rearrange data into bit-reversed-index order
if we consider indices larger than 8. Suppose now that we have N = 16 real-imaginary pairs
of values in which the individual numbers are indexed 1, 2 . . . 32. Then each pair can be
identified by the odd index value that names the real number of the pair, so in examining the
pairs we need consider only the index values 1, 3, . . . , 31. These numbers have the decimal
and binary values shown below, in natural order, on the left. Because they are odd they
all end with a 1 bit, which we can ignore in determining the bit-reversed ascending order
of the numbers, shown on the right along with the decimal numbers represented by their
unreversed bits.

1 00001 10000 1
3 00011 10001 17
5 00101 10010 9
7 00111 10011 25
9 01001 10100 5
11 01011 10101 21
13 01101 10110 13
15 01111 10111 29
17 10001 11000 3
19 10011 11001 19
21 10101 11010 11
23 10111 11011 27
25 11001 11100 7
27 11011 11101 23
29 11101 11110 15
31 11111 11111 31

If the data pairs are rearranged into the order shown on the right, their original indices will
be ascending in bit-reversed order. Each step in this rearrangement can be accomplished by
exchanging one data pair for another, and that puts both pairs in their right places. For
example, the data pair whose real value has original index 17 or 10001 can be exchanged
with the one whose real value has original index 3 or 00011, and that puts both data pairs
where they belong in the new arrangement. If we ignore the final 1 in each number of the
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left-hand list and reverse its remaining bits, we get the trailing bits of its partner in ascending
bit-reversed order. Of course, once data pair 3 has been exchanged for data pair 17, we must
not exchange 17 for 3 again later in the process.

6.2.2 A Typical Bit-Reversal Algorithm

How can we generate the sequence 1, 17, 9, . . . ? The little Fortran program below does
the job, its output reproducing the first and last columns of the table above. This code is
inspired by the bit-reversal logic of the four1 subroutine listed in [10, page 501], revised to
change some variable names and to conform with the coding style used in [7].

NN=2*16
J=1
DO 1 I=1,NN,2

PRINT *,I,J
MSZ=NN/2

3 IF((MSZ.LT.2) .OR. (J.LE.MSZ)) GO TO 2
J=J-MSZ
MSZ=MSZ/2

GO TO 3
2 J=J+MSZ
1 CONTINUE
STOP
END

Here NN stores the total number of data values in the list (twice the number of data pairs),
I is a member of the list that is arranged in increasing order (as on the left above), and J is
the corresponding index when the numbers are arranged in ascending bit-reversed order (as
on the right above). To understand how the algorithm works it is necessary to keep track of
the bit pattern in the auxiliary variable MSZ, which means “most significant zero.”

For each I, MSZ begins as NN/2 which for our example is 16 or the bit pattern 10000.
(The bit pattern for MSZ will always contain a single 1 if NN is a power of 2). Suppose
that I has just been incremented to 15 so that J contains, according to the table above,
29 (printed opposite 15 but actually found in the previous pass thru the 1 loop). In that
case the test fails because MSZ=16>2 and J=29>MSZ=16, and control enters the 3 loop. The
subtraction J=J-MSZ computes 11101-10000, removing the leftmost 1 from the bit pattern
for J. Then MSZ is divided by 2, which shifts the 1 bit it contains one place to the right
yielding 01000. Now J is 01101 or 13, but MSZ is now only 8 so the test fails again. The
subtraction 01101-01000 again removes the leftmost 1 bit from J, leaving J equal to 00101 or
5, and MSZ is divided again yielding 00100 or 4. The test fails yet again, and the subtraction
00101-00100 removes the leading 1 again, yielding 00001 for J. MSZ gets divided again to
00010 or 2. This time the test succeeds because J=1<MSZ=2, so the branch is taken to
statement 2 and J gets incremented by MSZ producing 00001+00010=00011 or 3 (which does
indeed follow 29 in the list above). The 3 loop and the statement following it perform the
task of finding the next J in ascending bit-reversed order.

The 3 loop found the most significant 0 in 11101, changing the 1s to the left of it into
0s along the way, and then the J=J+MSZ changed that most significant 0 to a 1. During the
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process of zeroing out the 1s to the left of the (originally) most significant 0 in J, the 1 bit
in MSZ also got shifted to the right, so J remained greater than MSZ until the final leading 1

in J got zeroed out. The next bit in J was then a 0 (the leading zero that we found), in the
bit position where MSZ now had its 1 bit, so the test for (J.LE.MSZ) succeeded. When the
process works that is how it stops, with J strictly less than MSZ.

6.2.3 A Little Improvement

For I=1 we want J=1, because that is also the first index in ascending bit-reversed order.
Each I and its corresponding J are available at the top of the 1 loop, so each pass computes
the value of J that will go with the next I. For I=NN-1 we report J=NN-1 (computed on
the previous pass thru the 1 loop) because 11111 is its own bit reversal and comes last in
ascending bit-reversed order. Unfortunately the flow of control then continues on down thru
the body of the 1 loop, uselessly trying to calculate the value of the next J even though
there won’t be another I to go along with it. This time J starts out as the bit string 11111,
in which there is no most significant 0 to find. J never gets to be less than MSZ, so if that
were the only test then in the final pass thru the 1 loop the 3 loop would go on forever. But
that is also the only time when MSZ gets divided down to 1, so the 3 loop can be stopped
by testing for (MSZ.LT.2). Thus the (MSZ.LT.2) test is needed only to make the 3 loop
terminate on the occasion when the 1 loop is finishing its last pass. But if the (MSZ.LT.2)

test were missing, the test (J.LE.MSZ) would still succeed, because when MSZ reaches 1 so
does J. So the (MSZ.LT.2) test is actually not needed so long as the other test is (J.LE.MSZ)
rather than (J.LT.MSZ). The code below produces the same output as the earlier version.

NN=2*16
J=1
DO 1 I=1,NN,2

PRINT *,I,J
MSZ=NN/2

3 IF(J.LE.MSZ) GO TO 2
J=J-MSZ
MSZ=MSZ/2

GO TO 3
2 J=J+MSZ
1 CONTINUE
STOP
END

6.2.4 A Bigger Improvement

Why do the extra work of completing the final pass thru the 1 loop at all, when the result will
just be thrown away? Instead, we can reorganize the calculation as shown in the left-hand
program on the next page.

In an FFT code the indices generated by this algorithm must be used to rearrange the
elements of DATA into bit-reversed-index order, so wherever we PRINT *, I,J in the program
above we would actually do a swap. But because the first and last data elements start out
in their bit-reversed locations they don’t actually need to be moved. No swap need replace
the first PRINT, and the 1 loop can skip the final data pair. Making these changes we get the
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program on the right, where comments indicate the data swapping. The test for (J.GT.I)
is to avoid swapping any pair of elements twice.

NN=2*16
J=1
I=1
PRINT *,I,J
DO 1 I=3,NN-1,2

MSZ=NN/2
3 IF(J.LT.MSZ) GO TO 2

J=J-MSZ
MSZ=MSZ/2

GO TO 3
2 J=J+MSZ

PRINT *,I,J
1 CONTINUE
STOP
END

NN=2*16
J=1
DO 1 I=3,NN-3,2

MSZ=NN/2
3 IF(J.LT.MSZ) GO TO 2

J=J-MSZ
MSZ=MSZ/2

GO TO 3
2 J=J+MSZ

C
IF(J.GT.I) THEN

C swap DATA(J ) with DATA(I )
C swap DATA(J+1) with DATA(I+1)

ENDIF
1 CONTINUE
STOP
END

6.3 Other Considerations

The input rearrangement and butterfly algorithms are key to any subroutine for computing
the FFT, but before we can complete such a code there are a few small details to consider.

6.3.1 Computing the Inverse Transform

The discussion of §6.2.1 and the test program listed there assume that we want to calculate
the direct transform, but by making only a small change to the code we can use it to find
the inverse transform as well. Recall that the direct and inverse transforms are defined like
this.

Fn =

N−1∑

k=0

W nkfk fk =
1

N

N−1∑

n=0

W−nkFn =
1

N

N−1∑

n=0

(W−1)nkFn.

These calculations are the same except for the sign of the exponent and the scaling of the
inverse transform by 1/N . The code that we settled on in §6.1.2 for calculating the real and
imaginary parts of W looks like this.

THETA=TWOPI/DFLOAT(LMAX)
WPR=DCOS(THETA)
WPI=DSIN(THETA)

To change the sign of the exponent we need to instead compute

W−1
LMAX =

(
ei2π/LMAX

)−1
= e−i2π/LMAX

= cos (−2π/LMAX) + i sin (−2π/LMAX)
= cos (−θ) + i sin (−θ)

47



Introducing an integer variable INVDIR10 that is set to +1 for the direct transform or -1 for
the inverse, the code segment for finding W can be rewritten like this.

THETA=TWOPI/DFLOAT(INVDIR*LMAX)
WPR=DCOS(THETA)
WPI=DSIN(THETA)

6.3.2 Checking for Legal Values of N

The FFT algorithm that we have considered works only if N is a positive power of 2, which
means that it has exactly one 1 bit. The program below checks that property to determine
whether a given N is suitable.

1 INTEGER*4 MZRO/Z’80000000’/
2 C
3 C get the integer to test
4 5 READ(5,901,END=1) N
5 901 FORMAT(Z8)
6 C
7 C find the positive power of 2 that N is, or that it is not one
8 NBITS=N
9 DO 2 NS=1,32
10 IF(NBITS.LT.0) THEN
11 IF(NBITS.NE.MZRO) GO TO 3
12 IF(NS.EQ.1 .OR. NS.EQ.32) GO TO 3
13 LGN=32-NS
14 GO TO 4
15 ENDIF
16 C
17 C left bit is not a 1 yet; shift left
18 NBITS=2*NBITS
19 2 CONTINUE
20 3 WRITE(6,902) N
21 902 FORMAT(I11,’ is not a positive power of +2’)
22 GO TO 5
23 C
24 C report the power of 2 that N is
25 4 WRITE(6,903) N,LGN
26 903 FORMAT(I11,’ = 2^[’,I2,’]’)
27 GO TO 5
28 1 STOP
29 END

The 2 loop uses integer multiplication 18 to shift the bits of NBITS left one bit at a time
until 10 the leading 1 is in the sign position; then it checks 11 whether all the other bits
are zeros. If 12 that happens before the first shift, then N was negative and illegal; if it
happens before the last shift, then N was 1 and illegal. If it happens after some intermediate
number of shifts, then 13 we get log2 (N), called LGN in the program, for free. If it never

happens (control falls through the bottom of the loop) then N was zero and illegal.
If an FFT routine is called repeatedly with the same value of N it is of course necessary

to check that N is legal only on the first call. In the test program of §6.2.1 the 5 loop is

10The four1 routine [10, page 501] uses isign, but that is the name of a Fortran built-in function.
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free and exits based on a test of LMAX. If we know LGN it should be possible to make this a
bounded loop [7, §13.3.5] that explicitly steps through the stages of the signal-flow graph.

6.3.3 Output Ordering and Shift

Recall from §4 that because Fn is periodic in n with period N , we can if we wish think of
some Fn as corresponding to negative frequencies. There we assumed that n runs from 0 to
N − 1, but ever since §5 we have numbered the results F1 through FN instead. This makes
it no longer true that F−n = FN−n, because the modulus arithmetic works only if zero is
allowed as a remainder of integer division. However, if N = 8 we can still think of the Fn as
being in order for either sequence of ν values listed below.

F1 F2 F3 F4 F5 F6 F7 F8

0
+1

8∆

+2

8∆

+3

8∆

+4

8∆

+5

8∆

+6

8∆

+7

8∆

0
+1

8∆

+2

8∆

+3

8∆

±4
8∆

−3
8∆

−2
8∆

−1
8∆

F1 F2 F3 F4 F±5 F−4 F−3 F−2

If we think of the Fn as having been delivered in the order shown at the bottom above, we
might like to rearrange them in increasing order of frequency like this.

−4
8∆

−3
8∆

−2
8∆

−1
8∆

0
+1

8∆

+2

8∆

+3

8∆

+4

8∆

F5 F6 F7 F8 F1 F2 F3 F4 F5

This operation is called a shift, because it amounts to a circular shift left by N/2 elements.
If we start with the top list of Fn and exchange F1 for F5, they will both be in the right
places for the bottom list; similarly for F2 and F6, for F3 and F7, and for F4 and F8. The 1

loop in the code below performs these four exchanges on a vector of integers to illustrate the
idea. Because F5 appears twice, the result vector has N + 1 elements and the code copies
F5 into the N + 1st location before doing the exchanges.

PARAMETER(NN=8)
INTEGER*4 FF(NN+1)/1,2,3,4,5,6,7,8,0/,TEMP
WRITE(6,901) FF

901 FORMAT(9I2)
FF(NN+1)=FF(1+NN/2)
DO 1 N=1,NN/2

TEMP=FF(N)
FF(N)=FF(N+NN/2)
FF(N+NN/2)=TEMP

1 CONTINUE
WRITE(6,901) FF
STOP
END

1 2 3 4 5 6 7 8 0
5 6 7 8 1 2 3 4 5

When it is compiled and run the program produces the output on the right. In an FFT
routine the results will of course be real-imaginary pairs rather than integers.
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Our algorithm will do the arithmetic to invert a direct transform that has been shifted
(ignoring its repeated N + 1st point) but it produces a result different from the inverse of
the unshifted forward transform. In our N = 8 example, with the Fn rearranged by shifting
we get for f2 the sum on top instead of the usual DFT sum on the bottom.

Nf2 = W 0F5 +W−1F6 +W−2F7 +W−3F8 +W−4F1 +W−5F2 +W−6F3 +W−7F4

Nf2 = W 0F1 +W−1F2 +W−2F3 +W−3F4 +W−4F5 +W−5F6 +W−6F7 +W−7F8

The results would be equal if the power of W multiplying each Fn in one sum evaluated to
the same number as the power of W multiplying the same Fn in the other. However, we find

W−4 = e−4i2π/8 = e−iπ = ei(−π) = cos (−π) + i sin (−π) = −W 0

W−5 = e−5i2π/8 = e−i2π/8e−iπ = −W−1

W−6 = e−6i2π/8 = e−2i2π/8e−iπ = −W−2

W−7 = e−7i2π/8 = e−3i2π/8e−iπ = −W−3

so f2 comes out with the right magnitude but the wrong sign. On the other hand, when we
compare the shifted and unshifted sums for f3,

Nf3 = W 0F5 +W−2F6 +W−4F7 +W−6F8 +W−8F1 +W−10F2 +W−12F3 +W−14F4

Nf3 = W 0F1 +W−2F2 +W−4F3 +W−6F4 +W−8F5 +W−10F6 +W−12F7 +W−14F8

we find that

W−8 = e−8i2π/8 = e−i2π = ei(−2π) = cos (−2π) + i sin (−2π) = W 0

W−10 = e−10i2π/8 = e−2i2π/8 = W−2

W−12 = e−12i2π/8 = e−3i2π/8 = W−3

W−14 = e−14i2π/8 = e−4i2π/8 = W−4

so f3 comes out right. For an N -point transform, the shifted and unshifted DFT sums for
fk are

Nfk= W 0FN/2+1+W−(k−1)FN/2+2+W−2(k−1)FN/2+3· · ·+W−(N/2−1)(k−1)FN +W−(N/2)(k−1)F1 · · ·
Nfk= W 0F1 +W−(k−1)F2 +W−2(k−1)F3 · · ·+W−(N/2−1)(k−1)FN/2+W−(N/2)(k−1)FN/2+1· · ·

so for the coefficients to agree we need

W−(N/2+n−1)(k−1) = W−(n−1)(k−1)

W−(N/2)(k−1)W−(n−1)(k−1) = W−(n−1)(k−1)

W−(N/2)(k−1) = 1

e−(N/2)(k−1)i2π/N = 1

e−i(k−1)π = 1

But eiθ = cos (θ) + i sin (θ) = 1 when θ is an even multiple of π, so if k − 1 is even the sums
agree and if it is odd they differ by a sign.
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Thus we can invert a direct transform that was shifted by treating it as though it were not
and then changing the sign of each even-indexed result fk.

6.3.4 Scaling, and Limits of Integration

As discussed in §6.3.1 the signal-flow graph algorithm computes, if we make the proper choice
of exponent sign, the sum for either the direct or the inverse DFT. The direct DFT is the
sum when the sign is positive, but the inverse DFT is the sum when the sign is negative,
multiplied by 1/N . It would be counterintuitive for any routine that computes the DFT to
omit this scaling, because then using the routine to transform a sequence and invert the
result would not recover the starting sequence. So this scaling should always be done.

Of course the DFT is not the Fourier transform, either. As discussed in §4.1, it is the
DFT multiplied by ∆x that approximates the continuous Fourier transform F (ν).

Thus, if the direct transform is being computed, we should be allowed to either scale the
result by ∆x or leave it alone. If the inverse transform is being computed, then if the input
direct transform was scaled we must scale the inverse by 1/(N∆x) = ∆ν and if the direct
transform was not scaled we must scale the inverse transform by 1/N .

The limits of integration used in the analysis of §4 do not enter into the numerical process
of finding the sum for the forward or the inverse DFT, but they are needed for finding ∆x

and ∆ν . In a more philosophical vein, the limits of integration determine the values of the
νn that go along with the Fn and of the xk that go along with the fk, and that information is
essential for interpreting the transform and its inverse. An FFT routine that permits scaling
must provide for the limits of integration to be supplied along with the fk or Fn input data,
and must replace limits on x with the corresponding limits on ν in producing the forward
transform or the limits on ν with the corresponding limits on x in producing the inverse.

We have assumed that the lower limit of integration for the forward transform is always
zero, so only the upper limit of integration b need be supplied. The lower limit on the inverse
transform is also zero if there is no shift, and is equal to minus the upper limit if there is a
shift. Providing only b is thus sufficient in both directions.

If x goes from 0 to b and there are N points, then ∆x = b/(N − 1). The frequency range
of the forward transform is from 0 to (N−1)/(N∆x) if unshifted, or from −(N/2)/(N∆x) =
−1/(2∆x) to +(N/2)/(N∆x) = +1/(2∆x) if shifted.

If ν goes from a = 0 to b = (N − 1)/(N∆x), then there are N points and

∆ν =
b

N − 1
=

(N − 1)/(N∆x)

N − 1
=

1

N∆x

so the x range of the inverse transform is from 0 to (N − 1)/(N∆ν) = (N − 1)∆x. If ν goes
from −b = −1/(2∆x) to b = +1/(2∆x), then there are N + 1 points and

∆ν =
b− (−b)

N
=

+1/(2∆x)− (−1/(2∆x))

N
=

1

N∆x

once again, so the x range of the inverse transform is still from 0 to (N − 1)/(N∆ν).
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6.3.5 User Interface

Because a primary motivation for using FFT in the first place is speed, a case can be made
for sacrificing safety and convenience to save computer time. This argues for trusting the
user to give N a sensible value, to scale the inverse transform by 1/N , to scale the forward
transform by ∆x if desired, and to frequency-shift the forward transform if desired.11 It is
not always necessary to do the scalings at all, and scaling by ∆ enlarges the parameter list
(to pass the upper limit of integration b). Checking the parameters inside a routine adds
code and takes cycles. Especially when FFT calls must be iterated in transforming data
with more than one dimension, as discussed in §7, it should be possible to avoid repetitive
or unnecessary work. This is true even though the convenience code accounts for only a
small fraction of the cycles consumed when a problem is big enough so that execution time
is a serious consideration. Scaling and shifting could be implemented in separate routines,
rather than in the same routine that computes the DFT sums.

On the other hand, it is expecting quite a lot for simpleton users (such as me) to get
subroutine parameters right on the first try, to code transform scalings outside the FFT
routine whenever they are necessary, and to remember how to shift the output if that is
desired. A library subprogram is supposed to encapsulate arcane technical details of that
kind so the user can instead focus on solving the application problem. Implementing closely-
related functionalities in separate routines increases cognitive load, coding effort, and the
chance of making a mistake when they are all needed, and a routine for shifting and scaling
could never justify its existence apart from being used with the DFT-sum calculator.

Given all of these considerations, I have included code for parameter checking, scaling,
and shifting in the (single) subroutine of the next Section. However, as a concession to
efficiency the routine checks that N is legal only once, and it lets the user specify with
parameter values whether the transform is to be scaled or shifted. This design results in the
calling sequence given on the next page. The parameters that come first are inputs, and do
not get changed by the routine; the parameters in the middle are both inputs and outputs;
and the return code is an output whose input value is ignored.

A main program for exercising FFT is given on page 54, which you can modify to suit your
needs (but please read the disclaimers and permissions tab of the website from which
you downloaded this paper12). The FUNCTION subprogram FOFX, which returns f(x) for our
triangular pulse, was listed in §4. The PROMPT and QUERY routines are given in [7, §10].

11In [10, page 500,501] all of these tasks are assigned to the user.
12You should also be aware that although the source code of four1 is listed in [10] it is copyrighted and

can be used legally only under license; see pages xvi-xvii of that book for stern legalese stating conditions
and prices. Although I got ideas from [10], as mentioned repeatedly above, I think the code presented
here is different enough not to infringe their copyright. The key algorithms in four1, for bit-reversed-
index rearrangement and the butterfly calculation, are not original with [10] either; see [9, page 331] for one
example. Many authors seem to have used the bit-reversed-index rearrangement, and as mentioned above
there are few ways to code the butterfly calculation. A source-code alternative to four1 is FFTPACK, which
is available free from the netlib repository and is apparently public-domain, but it is uncommented and
comes in many pieces so it is even more difficult to understand than four1. Matlab is proprietary like
four1, but its source code is not available even under license.
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CALL FFT(N,INVDIR,SCALE,SHIFT, DATA,B, RC)

N INTEGER*4 number of samples, equal to a positive power of 2
shifting adds an (N+1)st point but leaves N unchanged

INVDIR INTEGER*4 flag: +1 ⇒ direct transform, -1 ⇒ inverse transform
SCALE LOGICAL*4 flag: .FALSE. ⇒ no scaling by ∆; .TRUE. ⇒

if INVDIR=+1 scale Fn by ∆x to approximate F (ν)
if INVDIR=-1 assume the input Fn values were scaled by ∆x

SHIFT LOGICAL*4 flag: .FALSE. ⇒ no frequency shift; .TRUE. ⇒
if INVDIR=+1 rearrange Fn to center spectrum on ν = 0

and set DATA(N+1)
if INVDIR=-1 assume the input Fn values were rearranged

but ignore DATA(N+1)

DATA COMPLEX*16 vector of length N (N+1 if SHIFT=.TRUE.)
on input, N values of fk or N (N+1 for SHIFT=.TRUE.) values of Fn

on output, N (N+1 for SHIFT=.TRUE.) values of Fn or N values of fk
B REAL*8 scalar, the upper limit of integration

if INVDIR=+1, B is a value of x on input, a value of ν on output
if SHIFT=.FALSE. the spectrum goes from 0 to B

if SHIFT=.TRUE. the spectrum goes from -B to B

if INVDIR=-1, B is a value of ν on input, a value of x on output
if SCALE=.FALSE., B is neither used nor changed

RC INTEGER*4 return code; 0 if all went well, otherwise the sum of
1 ⇒ N is not a positive integer power of 2
2 ⇒ INVDIR is not +1 or -1
4 ⇒ B ≤ 0
if a parameter error occurs, DATA and B are left unchanged
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C This program exercises FFT.
C

REAL*8 B,DELTA,FOFX,NU,X
COMPLEX*16 DATA(257)
INTEGER*4 RC
LOGICAL*4 SCALE,SHIFT,QUERY

C
C ------------------------------------------------------------------
C
C find out how many points to use

CALL PROMPT(’N=’,2)
READ *,N
SCALE=QUERY(’scale?’,6)
SHIFT=QUERY(’shift?’,6)

C
C sample f(x)

B=3.5D0
DELTA=B/DFLOAT(N-1)
DO 1 K=1,N

X=DELTA*DFLOAT(K-1)
DATA(K)=DCMPLX(FOFX(X),0.D0)

1 CONTINUE
C
C transform the input waveform

INVDIR=+1
CALL FFT(N,INVDIR,SCALE,SHIFT, DATA,B, RC)
IF(SCALE) WRITE(6,901) B

901 FORMAT(’B=’,1PE13.6)
C
C report the transform

IF(.NOT.SHIFT) NLIM=N
IF( SHIFT) NLIM=N+1
DO 2 K=1,NLIM

IF(.NOT.SHIFT) NU=DFLOAT(K-1)*B/DFLOAT(NLIM-1)
IF( SHIFT) NU=-B+DFLOAT(K-1)*2.D0*B/DFLOAT(NLIM-1)
WRITE(1,902) NU,DREAL(DATA(K))
WRITE(2,902) NU,DIMAG(DATA(K))

902 FORMAT(2(1X,1PE13.6))
2 CONTINUE

C
C inverse transform the result

INVDIR=-1
CALL FFT(N,INVDIR,SCALE,SHIFT, DATA,B, RC)
IF(SCALE) WRITE(6,901) B

C
C report the recovered input waveform

DO 3 K=1,N
X=DFLOAT(K-1)*B/DFLOAT(N-1)
WRITE(3,902) X,DREAL(DATA(K))
WRITE(4,902) X,DIMAG(DATA(K))

3 CONTINUE
STOP
END
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6.4 A Library Routine

My implementation of the FFT algorithm is listed in the following pages. The routine begins
with a standard preamble [7, §12.3.2]. DATA is REAL*8 so its dimension is assumed twice that
of the corresponding COMPLEX*16 vector in the calling routine. NPREV, the value of N on the
previous call, is initialized at compile time 55 to the bit pattern for -0 (if N=-0 on input
NS=1 68 so the routine returns RC=1) and gets updated 76 each time N changes between
calls. MZRO has the same bit pattern for testing N, and it does not change.
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1 C
2 Code by Michael Kupferschmid
3 C
4 SUBROUTINE FFT(N,INVDIR,SCALE,SHIFT, DATA,B, RC)
5 C This routine computes in-place the direct or inverse fast
6 C Fourier transform of the sequence in DATA.
7 C
8 C variable meaning
9 C -------- -------
10 C B upper limit of integral for transform or inverse
11 C DATA input sequence, then its transform or inverse
12 C DCOS Fortran function returns cosine of REAL*8
13 C DELTA sampling interval or frequency interval
14 C DFLOAT Fortran function returns REAL*8 for INTEGER*4
15 C DSIN Fortran function returns sine of a REAL*8
16 C I index on DATA elements
17 C INVDIR +1 => direct transform, -1 => inverse transform
18 C J second index on DATA elements for rearrangement
19 C L index on powers of W
20 C LGN log_2(N) = number of stages in signal flow graph
21 C LMAX size of the transforms in this stage
22 C M index on stages in the signal flow graph
23 C MSZ bit position of most significant 0 in an index value
24 C MZRO bit pattern 10000000000000000000000000000000
25 C N number of input real-imaginary data pairs
26 C NBITS N bit pattern shifted left
27 C NN number of input data items = 2*N
28 C NPREV previous value of N
29 C NS number of shifts to put N 1 bit in sign position
30 C P odd index of data pair at top of a butterfly
31 C PSTEP DATA elements between butterflies using same W power
32 C Q odd index of data pair at bottom of a butterfly
33 C RC return code; 0 => parameters make sense
34 C SCALE T => scale output or assume that input is scaled
35 C SF scale factor
36 C SHIFT T => frequency-shift result
37 C TEMPI temporary storage for real part of a DATA element
38 C TEMPR temporary storage for imag part of a DATA element
39 C THETA angle in W
40 C TWOPI twice the circle constant
41 C WI imaginary part of W
42 C WPI imaginary part of W for this stage
43 C WPR real part of W for this stage
44 C WR real part of W
45 C WTEMP temporary in finding next power of W
46 C
47 C input parameters
48 LOGICAL*4 SCALE,SHIFT
49 REAL*8 DATA(*),B
50 INTEGER*4 RC
51 C
52 C local variables
53 REAL*8 DELTA,SF,TEMPI,TEMPR,THETA,WI,WPI,WPR,WR,WTEMP
54 REAL*8 TWOPI/6.2831853071795865D0/
55 INTEGER*4 MZRO/Z’80000000’/,NPREV/Z’80000000’/,P,PSTEP,Q
56 C
57 C ------------------------------------------------------------------
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58 C
59 C sanity-check the input parameters
60 RC=0
61 C the number of points must be a positive power of 2
62 IF(N.NE.NPREV) THEN
63 C this is a new N; check it and find its lg
64 NBITS=N
65 DO 2 NS=1,32
66 IF(NBITS.LT.0) THEN
67 IF(NBITS.NE.MZRO) GO TO 3
68 IF(NS.EQ.1 .OR. NS.EQ.32) GO TO 3
69 LGN=32-NS
70 GO TO 4
71 ENDIF
72 NBITS=2*NBITS
73 2 CONTINUE
74 3 RC=1
75 4 IF(RC.EQ.0) THEN
76 NPREV=N
77 ELSE
78 NPREV=MZRO
79 ENDIF
80 ENDIF
81 C
82 C the transform flag must denote either direct or inverse
83 IF(INVDIR.NE.+1 .AND. INVDIR.NE.-1) RC=RC+2
84 C
85 C the upper limit of integration was assumed positive
86 IF(B.LE.0.D0) RC=RC+4
87 IF(RC.NE.0) RETURN
88 NN=2*N
89 C
90 C arrange the input sequence by ascending bit-reversed index
91 J=1
92 DO 5 I=3,NN-3,2
93 MSZ=N
94 7 IF(J.LT.MSZ) GO TO 6
95 J=J-MSZ
96 MSZ=MSZ/2
97 GO TO 7
98 6 J=J+MSZ
99 IF(J.GT.I) THEN
100 TEMPR=DATA(J)
101 TEMPI=DATA(J+1)
102 DATA(J)=DATA(I)
103 DATA(J+1)=DATA(I+1)
104 DATA(I)=TEMPR
105 DATA(I+1)=TEMPI
106 ENDIF
107 5 CONTINUE

The test whether N is a positive power of 2 proceeds as described in §6.3.2, and if it fails 74

RC gets set to 1. In that case 78 NPREV is reset to MZRO so that the test will be performed
again on the next call. If N passes the test, LGN saves log2 (N) 69 and NPREV remembers N

76 so that the test can be skipped on the next call. INVDIR 83 and B 86 are checked for
sensible values on each call. If any of the tests fail, RC is nonzero and the routine returns
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87 without doing any calculations. Otherwise 88 NN is set to the total number of values,
real and imaginary, in DATA. (If this call is to invert and the input sequence was shifted, it
actually contains N+1 complex Fn values, so there are NN+2 numbers in DATA.)

Next 90-107 , the input data are rearranged using the algorithm of §6.2.4. Both real and
imaginary parts must be swapped 100-105 .

108 C
109 C use the butterfly algorithm to evaluate the signal flow graph
110 LMAX=2
111 DO 8 M=1,LGN
112 C set W^0=1
113 WR=1.D0
114 WI=0.D0
115 C
116 C compute the W for this stage
117 THETA=TWOPI/DFLOAT(INVDIR*LMAX)
118 WPR=DCOS(THETA)
119 WPI=DSIN(THETA)
120 C
121 C consider each power of W used in this stage
122 PSTEP=2*LMAX
123 DO 9 L=1,LMAX,2
124 C do the butterflies with this power of W in all groups
125 DO 10 P=L,NN,PSTEP
126 Q=P+LMAX
127 TEMPR=WR*DATA(Q)-WI*DATA(Q+1)
128 TEMPI=WR*DATA(Q+1)+WI*DATA(Q)
129 DATA(Q)=DATA(P)-TEMPR
130 DATA(Q+1)=DATA(P+1)-TEMPI
131 DATA(P)=DATA(P)+TEMPR
132 DATA(P+1)=DATA(P+1)+TEMPI
133 10 CONTINUE
134 C
135 C find the next power of W as W*WP
136 WTEMP=WR
137 WR=WR*WPR-WI*WPI
138 WI=WI*WPR+WTEMP*WPI
139 9 CONTINUE
140 LMAX=PSTEP
141 8 CONTINUE
142 C
143 C find sampling interval and new upper limit of integration
144 IF(SCALE) THEN
145 IF(INVDIR.EQ.+1) THEN
146 DELTA=B/DFLOAT(N-1)
147 IF( SHIFT) B=DFLOAT(N/2)/(DELTA*DFLOAT(N))
148 IF(.NOT.SHIFT) B=DFLOAT(N-1)/(DELTA*DFLOAT(N))
149 ELSE
150 IF( SHIFT) DELTA=2.D0*B/DFLOAT(N)
151 IF(.NOT.SHIFT) DELTA=B/DFLOAT(N-1)
152 B=DFLOAT(N-1)/(DELTA*DFLOAT(N))
153 ENDIF
154 SF=DELTA
155 ELSE
156 IF(INVDIR.EQ.+1) SF=1.D0
157 IF(INVDIR.EQ.-1) SF=1.D0/DFLOAT(N)
158 ENDIF
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With the data in ascending bit-reversed-index order the routine performs 109-141 the but-
terfly calculations described in §6.1.1, improved as described in §6.1.2. Since the number of
stages, log2 (N), is available 69 in the variable LGN, the 8 loop over stages is now a DO loop.

The next stanza 143-158 finds the scale factor SF by which the butterfly result must be
multiplied. If scaling has not been selected 156-157 this is 1 for the forward transform or
1/N for the inverse; in that case the upper limit of integration B is ignored and DELTA, the
sampling interval in x or ν, is not found. If scaling has been selected 145-154 DELTA and B

are calculated as discussed in §6.3.4, and SF is set 154 to DELTA so that the result will be
multiplied by ∆x if it is the forward transform or by ∆ν if it is the inverse.

159 C
160 C scale the output values
161 IF(SF.NE.1.D0) THEN
162 DO 11 I=1,NN,2
163 DATA(I)=SF*DATA(I)
164 DATA(I+1)=SF*DATA(I+1)
165 11 CONTINUE
166 ENDIF
167 C
168 C shift, or compensate for having shifted before
169 IF(SHIFT) THEN
170 IF(INVDIR.EQ.1) THEN
171 C frequency-shift the forward transform
172 DATA(NN+1)=DATA(N+1)
173 DATA(NN+2)=DATA(N+2)
174 DO 12 I=1,N,2
175 TEMPR=DATA(I)
176 TEMPI=DATA(I+1)
177 DATA(I)=DATA(I+N)
178 DATA(I+1)=DATA(I+1+N)
179 DATA(I+N)=TEMPR
180 DATA(I+1+N)=TEMPI
181 12 CONTINUE
182 ELSE
183 C fix up the inverse of the frequency-shifted transform
184 DO 13 I=3,NN-1,4
185 DATA(I)=-DATA(I)
186 DATA(I+1)=-DATA(I+1)
187 13 CONTINUE
188 ENDIF
189 ENDIF
190 RETURN
191 END

If the scale factor is 1 161 , either because we found an unscaled forward transform or
because DELTA turned out to be 1, the scaling loop is skipped. If scaling is required, the
11 loop 162-165 multiplies the real and imaginary parts of each result by the SF calculated
earlier.

Finally, if the forward transform just found is to be frequency-shifted or if the forward
transform just inverted began as frequency-shifted, result elements are rearranged 171-181

or changed in sign 183-187 as described in §6.3.3.
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6.5 FFT Performance

On the first call with a correct value of N, finding what power of 2 it is takes in the worst case
31 tests 66 , 31 integer multiplications 72 , 3 additional tests 67,68,75 , 1 integer subtract 69 ,
2 assignments 64,76 , and the overhead of the 2 loop. After the first call with a given value
of N, the run-time penalty for testing correct input parameters amounts to 1 assignment
60 and 4 tests 62,83,86,87 , each performed once per call. If SCALE=.FALSE., the run-
time penalty for having the scaling capability built into the code amounts to two tests
144,161 each performed once per call. If SHIFT=.FALSE., the run-time penalty for having
the shift capability built into the code amounts to a single test 169 performed once per
call. For problems of even modest size all of this overhead is negligible compared to the
work of computing the transform. For example, when N=256 we use 120 swaps 100-105 (720
assignments) to rearrange the data and 1024 butterfly calculations 111-141 (4128 floating-
point multiplies, 6168 floating-point adds or subtracts, 8 invocations of DSIN and DCOS, some
integer arithmetic, and the overhead for several loops). To measure the CPU time spent on
parameter checking, I used the program om the next page

The first set of initializations 3-5 are for the parameter-checking process 19-46 , which is
copied verbatim from FFT 59-86 . The loop over powers of 2 16-17,47 exercises the parameter-
checking code 31 times for different values of N. The remainder of the code performs the CPU
timing and reports the result.

TIMER is the CPU timing routine described in [7, §18.5.4]. It is enabled by setting
TIMING=.TRUE. 7,8,13 and making an initialization call 14 . Then CPU time is directed to
timing bin 1 15 and the algorithm is performed repeatedly by the 1 loop. At the conclusion
of the code segment under study 48 time is redirected to the bin for non-algorithm time and
49 the timing process is concluded. Then the CPU time in bin 1 is written from BINCPU

7,9,50-51 . This time erroneously includes the overhead of the 1 loop, but that is small
enough to neglect.

TIMER works by reading the cycle counter of an Intel Pentium processor, which has a
resolution of one clock cycle, but the time it measures is contaminated to some extent
by the cycle consumption of concurrently-executing processes (such as UNIX

TM background
processes13) and this introduces random variations in the measurements. Long calculations
tend to monopolize the processor, which reduces the importance of this noise relative to the
CPU time being measured, but the parameter-checking code sequence is fast so the cycle
counts for it vary quite a bit. Running the program 50 times with the processor clocking
798 MHz yielded the measurements plotted in the following histogram.

1.96E+04 .
2.76E+04 ......................................
3.56E+04 ..........
4.36E+04 .
5.16E+04

13The experiments reported here were conducted on an IBM T43p laptop computer running Ubuntu Linux,
and the programs were compiled without optimization using the gcc-4.3 version of gfortranwith the follow-
ing options: -g -ffixed-form -fdollar-ok -std=legacy -Wno-tabs -fno-automatic -fbounds-check

-fno-range-check.
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1 C This program times the checking of input parameters.
2 C
3 INTEGER*4 MZRO/Z’80000000’/,NPREV/Z’80000000’/
4 INTEGER*4 RC,INVDIR/1/,P
5 REAL*8 B/3.5D0/
6 C
7 COMMON /EXPT/ TIMING,NONALG,NBIN,TOPBIN,NTMEAS,TOH,BINCPU
8 LOGICAL*4 TIMING
9 INTEGER*4 TOPBIN,TOH,BINCPU(2,22)
10 C
11 C ------------------------------------------------------------------
12 C
13 TIMING=.TRUE.
14 CALL TIMER(-1,1)
15 CALL TIMER(1,2)
16 DO 1 P=0,30
17 N=2**P
18 C
19 C sanity-check the input parameters
20 RC=0
21 C the number of points must be a positive power of 2
22 IF(N.NE.NPREV) THEN
23 C this is a new N; check it and find its lg
24 NBITS=N
25 DO 2 NS=1,32
26 IF(NBITS.LT.0) THEN
27 IF(NBITS.NE.MZRO) GO TO 3
28 IF(NS.EQ.1 .OR. NS.EQ.32) GO TO 3
29 LGN=32-NS
30 GO TO 4
31 ENDIF
32 NBITS=2*NBITS
33 2 CONTINUE
34 3 RC=1
35 4 IF(RC.EQ.0) THEN
36 NPREV=N
37 ELSE
38 NPREV=MZRO
39 ENDIF
40 ENDIF
41 C
42 C the transform flag must denote either direct or inverse
43 IF(INVDIR.NE.+1 .AND. INVDIR.NE.-1) RC=RC+2
44 C
45 C the upper limit of integration was assumed positive
46 IF(B.LE.0.D0) RC=RC+4
47 1 CONTINUE
48 CALL TIMER(21,3)
49 CALL TIMER(0,4)
50 WRITE(6,901) BINCPU(1,1),BINCPU(2,1)
51 901 FORMAT(’CPU time = ’,I1,’ seconds and ’,I10,’ nanoseconds’)
52 STOP
53 END

Throwing out the smallest and largest observation, the remaining CPU time estimates for
the 31 repetitions ranged from 28823 ns to 37529 ns, with a median value of 34962 ns. To
check the parameters once (such as on the first call to FFT with a given N) thus takes about
34962/31 ≈ 1128 nanoseconds or roughly one microsecond on an 800 MHz computer.
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To assess the performance of the whole FFT implementation described in §6.4, I first
wrote a DFT implementation having a similar calling sequence. That library subroutine,
named DFT, is listed on the next two pages. In this code NN 22 corresponds to the number
of samples N in our analysis so that N 21 can represent the index n. The samples and
results are indexed internally starting with 0 33,38 in order to simplify the expression of
the DFT algorithm, and their indices go up to NN rather than NN-1 to allow (as in FFT) for
the repeated result that is returned when the output is shifted. This code uses the built-in
ability of Fortran to do complex arithmetic, so the data arrays and several other variables
are declared COMPLEX*16, and the variable I 18,41 is used for

√
−1.

The executable code begins by sanity-checking input parameters 46-56 but instead of
insisting that N be a power of 2 this routine only demands 49 that it be greater than 1.
Next it copies the input sequence from DATA to the vector F 37-38,59-61 because the näıve

DFT algorithm does not work in-place. Then 64 it finds W = ei2π/N , making the sign of
the exponent negative if INVDIR=-1 (we used the same approach in FFT 117 on page 58).
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1 C
2 Code by Michael Kupferschmid
3 C
4 SUBROUTINE DFT(NN,INVDIR,SCALE,SHIFT, DATA,B, RC)
5 C This routine returns in-place the direct or inverse discrete
6 C Fourier transform of the sequence in DATA.
7 C
8 C variable meaning
9 C -------- -------
10 C B upper limit of integral for transform or inverse
11 C CDEXP Fortran function returns exp(COMPLEX*16)
12 C DATA input sequence, then its transform or inverse
13 C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
14 C DELTA sampling interval
15 C DFLOAT Fortran function returns REAL*8 for INTEGER*4
16 C F the input f_k’s as a COMPLEX*16s
17 C FF a point F_n in the transform
18 C I i, the square root of -1
19 C INVDIR +1 => direct transform, -1 => inverse transform
20 C K index on input values
21 C N index on transform values
22 C NN number of samples
23 C PI the circle constant
24 C RC return code; 0 => parameters make sense
25 C SCALE T => scale output or assume that input is scaled
26 C SF scale factor
27 C SHIFT T => frequency-shift result
28 C TEMP temporary scalar used in shifting result
29 C W exp(i*2*pi/N)
30 C
31 C formal parameters
32 LOGICAL*4 SCALE,SHIFT
33 COMPLEX*16 DATA(0:NN)
34 REAL*8 B
35 INTEGER*4 RC
36 C
37 C automatic workspace
38 COMPLEX*16 F(0:NN)
39 C
40 C other local variables
41 COMPLEX*16 FF,I/(0.D0,1.D0)/,W,TEMP
42 REAL*8 DELTA,PI/3.1415926535897932D0/,SF
43 C
44 C ------------------------------------------------------------------
45 C
46 C sanity-check the input parameters
47 RC=0
48 C the number of points must be positive
49 IF(NN.LE.1) RC=1
50 C
51 C the transform flag must denote either direct or inverse
52 IF(INVDIR.NE.+1 .AND. INVDIR.NE.-1) RC=RC+2
53 C
54 C the upper limit of integration was assumed positive
55 IF(B.LE.0.D0) RC=RC+4
56 IF(RC.NE.0) RETURN
57 C
58 C save the input sequence
59 DO 1 K=0,NN-1
60 F(K)=DATA(K)
61 1 CONTINUE
62 C
63 C find the complex constant whose powers appear in the series
64 W=CDEXP(I*DCMPLX(2.D0*PI/DFLOAT(INVDIR*NN),0.D0))
65 C

63



66 C compute each F_n from the DFT series
67 DO 2 N=0,NN-1
68 FF=(0.D0,0.D0)
69 DO 3 K=0,NN-1
70 FF=FF+W**(N*K)*F(K)
71 3 CONTINUE
72 DATA(N)=FF
73 2 CONTINUE
74 C
75 C find sampling interval and new upper limit of integration
76 IF(SCALE) THEN
77 IF(INVDIR.EQ.+1) THEN
78 DELTA=B/DFLOAT(NN-1)
79 IF( SHIFT) B=DFLOAT(NN/2)/(DELTA*DFLOAT(NN))
80 IF(.NOT.SHIFT) B=DFLOAT(NN-1)/(DELTA*DFLOAT(NN))
81 ELSE
82 IF( SHIFT) DELTA=2.D0*B/DFLOAT(NN)
83 IF(.NOT.SHIFT) DELTA=B/DFLOAT(NN-1)
84 B=DFLOAT(NN-1)/(DELTA*DFLOAT(NN))
85 ENDIF
86 SF=DELTA
87 ELSE
88 IF(INVDIR.EQ.+1) SF=1.D0
89 IF(INVDIR.EQ.-1) SF=1.D0/DFLOAT(NN)
90 ENDIF
91 C
92 C scale the output values
93 IF(SF.NE.1.D0) THEN
94 DO 11 N=0,NN-1
95 DATA(N)=SF*DATA(N)
96 11 CONTINUE
97 ENDIF
98 C
99 C shift, or compensate for having shifted before
100 IF(SHIFT) THEN
101 IF(INVDIR.EQ.1) THEN
102 C frequency-shift the forward transform
103 DATA(NN)=DATA(NN/2)
104 DO 12 N=0,NN/2-1
105 TEMP=DATA(N)
106 DATA(N)=DATA(N+NN/2)
107 DATA(N+NN/2)=TEMP
108 12 CONTINUE
109 ELSE
110 C fix up the inverse of the frequency-shifted transform
111 DO 13 N=1,NN-1,2
112 DATA(N)=-DATA(N)
113 13 CONTINUE
114 ENDIF
115 ENDIF
116 RETURN
117 END

The core of the calculation is 66-73 the evaluation of the DFT series for each output fre-
quency. This code segment is identical to that used in the program of §4.4, except that
instead of being written out the results are returned 72 in DATA. This DFT subroutine pro-
duces the same results as the §6.4 FFT subroutine, within roundoff.14

14As N ranges from 29 to 213 the discrepancy between DFT and FFT ranges from 10−11 to 10−9 for ν < νc
and from 10−9 to 10−6 for ν > νc. Neither DFT nor FFT is consistently more accurate when compared to the
analytic transform.
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1 C
2 C This program compares the CPU time used by FFT() and DFT().
3 C
4 REAL*8 DB,FB,DELTA,FOFX,X,TPV2R8,DLOG2
5 PARAMETER(NMAX=16384)
6 COMPLEX*16 DDATA(NMAX+1),FDATA(NMAX+1)
7 LOGICAL*4 SCALE/.FALSE./,SHIFT/.FALSE./
8 INTEGER*4 P,RC,INVDIR/1/
9 C
10 C set up for timing
11 COMMON /EXPT/ TIMING,NONALG,NBIN,TOPBIN,NTMEAS,TOH,BINCPU
12 LOGICAL*4 TIMING
13 INTEGER*4 TOPBIN,TOH,BINCPU(2,22)
14 C
15 C ------------------------------------------------------------------
16 C
17 C open output files
18 OPEN(UNIT=1,FILE=’dfttimes’)
19 OPEN(UNIT=2,FILE=’ffttimes’)
20 C
21 C try different numbers of samples
22 DO 1 P=2,13
23 N=2**P
24 C
25 C sample f(x)
26 DB=3.5D0
27 FB=3.5D0
28 DELTA=DB/DFLOAT(N-1)
29 DO 3 K=1,N
30 X=DELTA*DFLOAT(K-1)
31 DDATA(K)=DCMPLX(FOFX(X),0.D0)
32 FDATA(K)=DCMPLX(FOFX(X),0.D0)
33 3 CONTINUE
34 C
35 C initiate to time the transforms
36 TIMING=.TRUE.
37 CALL TIMER(-1,1)
38 C
39 C compute the discrete Fourier transform
40 CALL TIMER(1,2)
41 CALL DFT(N,INVDIR,SCALE,SHIFT, DDATA,DB, RC)
42 C
43 C compute the fast Fourier transform
44 CALL TIMER(2,4)
45 CALL FFT(N,INVDIR,SCALE,SHIFT, FDATA,FB, RC)
46 C
47 C report the times
48 CALL TIMER(NONALG,5)
49 CALL TIMER(0,6)
50 WRITE(1,901) P,DLOG2(TPV2R8(BINCPU(1,1),1000000000))
51 WRITE(2,901) P,DLOG2(TPV2R8(BINCPU(1,2),1000000000))
52 901 FORMAT(I6,1X,1PE13.6)
53 C
54 C let the processor cool off
55 CALL WAIT(60,60)
56 1 CONTINUE
57 STOP

Then I used the program above to exercise DFT and FFT for different numbers of samples
and report the CPU times each routine consumed.
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The use of TIMER here is similar to what we saw above, but now bin 1 accumulates the time
used by DFT 40 and bin 2 is for FFT 44 . The measured times are stored as [second,nanosecond]
two-part values [7, §18.4] so TPV2R8 is used 50-51 to convert them to REAL*8 for output. The
call to WAIT suspends execution of the program for 60 seconds every time another 60 seconds
of CPU time has been consumed, but that does not affect the algorithm time measurements.
When this program is run with the processor clocking 1995 MHz it produces the results
plotted below.15
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In these graphs the + symbol denotes times t measured when the transforms are scaled and
shifted, and the × symbol times measured when they are not. Least-squares regression on
the DFT points yields log2 (t) = 2.22 log2 (N)−22.2 so t ∝ N2.22, which is slightly worse than
the arithmetic complexity of N2 (this might be because a practical DFT code cannot use
precomputed powers of W as suggested at the end of §4.2). Least-squares regression on the
final 7 FFT points yields log2 (t) = 1.10 log2 (N)− 22.6 so t ∝ N1.10. As we saw in §5.2 the
arithmetic complexity of the fast Fourier transform is N log2 (N), so it is not surprising16

that we observe something slightly faster than N . The breathtaking thing about these
graphs is the difference between their (logarithmic) vertical scales; when N = 213, DFT takes
about 26.32 ≈ 80 seconds but FFT is finished in just 2−8.15 ≈ 0.0035, and even for very small
problems FFT is much faster.

15The first point in each graph is omitted because TIMER reported the processor at 798 MHz; then the
automatic mechanism controlling processor frequency detected a compute-intensive job and increased the
clock rate to 1995 MHz.

16What is surprising is that the initial curve in this graph bends the wrong way for N log2 (N). This
might be an experimental artifact arising in the measurement of very brief times, but I will be grateful to
anyone who provides me with a more convincing explanation.
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Now we can calculate the impact on per-
formance of the parameter checking that is
done by FFT, which we estimated earlier takes
1128× 10−9 seconds on a 798 MHz processor.
At 1995 MHz the same number of cycles take
451.2×10−9 seconds, accounting for these per-
centages of execution time. Unless we need to
find a large number of small transforms, the
time spent checking parameters is negligible
as claimed at the beginning of this Section.

N FFT time, sec overhead, %

23 7.099014E-06 6.36

24 7.960994E-06 5.67

25 1.403404E-05 3.22

26 2.117395E-05 2.13

27 4.026400E-05 1.12

28 8.127099E-05 0.56

29 1.693716E-04 0.27

210 3.564531E-04 0.13

211 7.567425E-04 0.06

212 1.658639E-03 0.03

213 3.517685E-03 0.01
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7 FFTs in Two Dimensions

In image processing the input signal is often a scalar function f(x, y) of two variables, such
as the pulse pictured on the left. The top view on the bottom right shows the conditions
defining the faces of the pyramid, which lead to the function definition on the top right.

f(x, y)
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• I

II

III

IV

The integral we used in §1 for the Fourier transform of a function of one variable generalizes
to the case of two dimensions like this,

F{f(x, y)} = F (νx, νy) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)ei2πνxxei2πνyydx dy

and the DFT definition of §4.1 generalizes in a similar way. Sampling f(x, y) at points
[(kx − 1)∆x, (ky − 1)∆y]

⊤, kx = 1, . . . , N, ky = 1, . . . , N yields an N × N matrix of values
fkx,ky from which we can compute the two-dimensional DFT of the samples like this.

Fnx,ny
=

N∑

ky=1

N∑

kx=1

fkx,kyW
(nx−1)(kx−1)W (ny−1)(ky−1)

The outside sum doesn’t depend on kx, so we can insert parentheses like this.
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Fnx,ny
=

N∑

ky=1

(
N∑

kx=1

fkx,kyW
(nx−1)(kx−1)

)

W (ny−1)(ky−1)

If we call the sum in parentheses G(nx, ky) then we can find the two-dimensional DFT by
evaluating the following one-dimensional DFTs in sequence.

Gnx,ky =

N∑

kx=1

fkx,kyW
(nx−1)(kx−1) nx = 1 . . .N, ky = 1 . . .N

Fnx,ny
=

N∑

ky=1

Gnx,kyW
(ny−1)(ky−1) nx = 1 . . . N, ny = 1 . . .N

To find G we compute N one-dimensional transforms of the columns, and to find F we
compute N one-dimensional transforms of the resulting rows. If we take the upper limit
of integration to be 31

2
in each direction (as in the one-dimensional example of §4) then

sampling the pyramidal pulse pictured above with N = 4 yields the data matrix f on the
left below. The one nonzero sample, at x = 11

6
, y = 11

6
, is shown as a dot • in the view

looking down on the pyramid on the previous page, and has height f2,2 = 2.5. Following the
procedure outlined above to compute the transform yields the result matrix F on the right.
Each complex element is boxed with dark lines and contains the real part of the element in
the upper square and the imaginary part in the lower square.
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The axes bordering f give the coordinates of the samples in x−y space, and those bordering
F give the coordinates of the transform elements in νx− νy space, to show that distance and
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frequency increase with row or column index in the matrix (the origin of coordinates is at
the top left of the picture). With N = 4 and b = 3 we have

∆x =
b

N − 1
=

3.5

3
=

7

6
≈ 1.167

∆ν =
1

N∆x
=

1

4× 7
6

=
3

14
≈ 0.214

Although only f2,2 = (2.5 + 0i) is nonzero, each element of the transform is (2.5 + 0i),
(−2.5+0i), (0+2.5i), or (0−2.5i). In general each can have both real and imaginary parts.

7.1 DFT by Nested Sums

For simplicity I have assumed that the number of samples is the same in both directions,
but they might be different. If N x is the number of samples in the x direction and N y is the
number in the y direction, the algorithm described above for computing the two-dimensional
DFT looks like this in pseudocode.

do k_y = 1 ... N_y
transform the k_y’th column of f into the k_y’th column of G

enddo
do n_x = 1 ... N_x

transform the n_x’th row of G into the n_x’th row of F
enddo

A library routine to perform this calculation should of course also provide the amenities we
earlier built into the one-dimensional codes FFT and DFT. The DFT2 routine listed on the
following pages is a generalization of DFT (see pages 63-64).

The calling sequence 4 now includes the dimensions LX and LY of the data matrix F, the
sizes NNX and NNY of the transform in both directions, and the limits of integration BX and
BY in both directions. The data matrix F is now two-dimensional 43 and is accompanied by
a workspace matrix G of the same size 48 . There are now two constants WX and WY 51,72-73 ,
two sampling intervals DX and DY, and two scale factors SFX and SFY 52 . The parameter
checking is similar to that in DFT, but now we also make sure 67-68 that the dimensions of
F make sense for the numbers of rows and columns in use.

The pseudocode above is implemented by loops for transforming the columns 75-82 and
rows 84-91 , which evaluate the formulas given on page 69 in a straightforward way.

The scaling code 93-134 resembles that used in DFT, but if the result is to be frequency-
shifted that is done in both directions. Frequency-shifting the transforms of the columns
139-147 adds a row, which must be included in frequency-shifting the transforms of the
rows 148-156 . The inverse of a forward transform that was shifted needs to be fixed up
by changing the sign of every other term (they are the odd-numbered ones here because
the indices run from 0). Doing this down each column and across each row results in a
checkerboard pattern of sign changes that is performed by the nest of DO 10 loops 158-162 .
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1 C
2 Code by Michael Kupferschmid
3 C
4 SUBROUTINE DFT2(LX,LY,NNX,NNY,INVDIR,SCALE,SHIFT, F,BX,BY, RC)
5 C This routine returns in-place the direct or inverse discrete
6 C Fourier transform of the NX x NY array of numbers in the upper
7 C left corner of F(LX,LY) by evaluating the nested sum.
8 C
9 C variable meaning
10 C -------- -------
11 C BX limit of integration in the X direction
12 C BY limit of integration in the Y direction
13 C CDEXP Fortran function returns exp(COMPLEX*16)
14 C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
15 C DFLOAT Fortran function returns REAL*8 for INTEGER*4
16 C DX sampling interval in Y
17 C DY sampling interval in X
18 C F input data, then its transform or inverse
19 C G intermediate matrix
20 C I i, the square root of -1
21 C INVDIR +1 => direct transform, -1 => inverse transform
22 C KX index on input rows
23 C KY index on input columns
24 C LX first dimension of F in calling routine
25 C LY second dimension of F in calling routine
26 C MOD Fortran function for remainder of INTEGER*4 division
27 C NNX number of rows
28 C NNY number of columns
29 C NX index on output rows
30 C NY index on output columns
31 C PI the circle constant
32 C RC return code; 0 => parameters make sense
33 C SCALE T => scale output or assume that input is scaled
34 C SFX scale factor in X
35 C SFY scale factor in Y
36 C SHIFT T => frequency-shift result
37 C TEMP temporary used in shifting
38 C WX exp(i*2*pi/NNX)
39 C WY exp(i*2*pi/NNY)
40 C
41 C formal parameters
42 LOGICAL*4 SCALE,SHIFT
43 COMPLEX*16 F(0:LX-1,0:LY-1)
44 REAL*8 BX,BY
45 INTEGER*4 RC
46 C
47 C automatic workspace
48 COMPLEX*16 G(0:LX-1,0:LY-1)
49 C
50 C other local variables
51 COMPLEX*16 I/(0.D0,1.D0)/,TEMP,WX,WY
52 REAL*8 DX,DY,PI/3.1415926535897932D0/,SFX,SFY
53 C
54 C ------------------------------------------------------------------
55 C
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56 C sanity-check the input parameters
57 RC=0
58 C the numbers of points must be positive
59 IF(NNX.LE.1 .OR. NNY.LE.1) RC=1
60 C
61 C the transform flag must denote either direct or inverse
62 IF(INVDIR.NE.+1 .AND. INVDIR.NE.-1) RC=RC+2
63 C
64 C the upper limits of integration were assumed positive
65 IF(BX.LE.0.D0 .OR. BY.LE.0.D0) RC=RC+4
66 C
67 C the leading dimensions must be big enough
68 IF(LX-1.LT.NNX .OR. LY-1.LT.NNY) RC=RC+8
69 IF(RC.NE.0) RETURN
70 C
71 C find the complex constant whose powers appear in the series
72 WX=CDEXP(I*DCMPLX(2.D0*PI/DFLOAT(INVDIR*NNX),0.D0))
73 WY=CDEXP(I*DCMPLX(2.D0*PI/DFLOAT(INVDIR*NNY),0.D0))
74 C
75 C transform the columns
76 DO 1 KY=0,NNY-1
77 DO 1 NX=0,NNX-1
78 G(NX,KY)=(0.D0,0.D0)
79 DO 2 KX=0,NNX-1
80 G(NX,KY)=G(NX,KY)+F(KX,KY)*WX**(NX*KX)
81 2 CONTINUE
82 1 CONTINUE
83 C
84 C transform the rows
85 DO 3 NX=0,NNX-1
86 DO 3 NY=0,NNY-1
87 F(NX,NY)=(0.D0,0.D0)
88 DO 4 KY=0,NNY-1
89 F(NX,NY)=F(NX,NY)+G(NX,KY)*WY**(NY*KY)
90 4 CONTINUE
91 3 CONTINUE
92 C
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93 C find sampling interval and new upper limit of integration
94 IF(SCALE) THEN
95 IF(INVDIR.EQ.+1) THEN
96 DX=BX/DFLOAT(NNX-1)
97 DY=BY/DFLOAT(NNY-1)
98 IF(SHIFT) THEN
99 BX=DFLOAT(NNX/2)/(DX*DFLOAT(NNX))
100 BY=DFLOAT(NNY/2)/(DY*DFLOAT(NNY))
101 ELSE
102 BX=DFLOAT(NNX-1)/(DX*DFLOAT(NNX))
103 BY=DFLOAT(NNY-1)/(DY*DFLOAT(NNY))
104 ENDIF
105 ELSE
106 IF(SHIFT) THEN
107 DX=2.D0*BX/DFLOAT(NNX)
108 DY=2.D0*BY/DFLOAT(NNY)
109 ELSE
110 DX=BX/DFLOAT(NNX-1)
111 DY=BY/DFLOAT(NNY-1)
112 ENDIF
113 BX=DFLOAT(NNX-1)/(DX*DFLOAT(NNX))
114 BY=DFLOAT(NNY-1)/(DY*DFLOAT(NNY))
115 ENDIF
116 SFX=DX
117 SFY=DY
118 ELSE
119 IF(INVDIR.EQ.+1) THEN
120 SFX=1.D0
121 SFY=1.D0
122 ELSE
123 SFX=1.D0/DFLOAT(NNX)
124 SFY=1.D0/DFLOAT(NNY)
125 ENDIF
126 ENDIF
127 C
128 C scale the output values
129 IF(SFX.NE.1.D0 .OR. SFY.NE.1.D0) THEN
130 DO 5 NY=0,NNY-1
131 DO 5 NX=0,NNX-1
132 F(NX,NY)=DCMPLX(SFX*SFY,0.D0)*F(NX,NY)
133 5 CONTINUE
134 ENDIF
135 C
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136 C shift, or compensate for having shifted before
137 IF(SHIFT) THEN
138 IF(INVDIR.EQ.1) THEN
139 C frequency-shift forward transforms of columns
140 DO 6 NY=0,NNY-1
141 F(NNX,NY)=F(NNX/2,NY)
142 DO 7 NX=0,NNX/2-1
143 TEMP=F(NX,NY)
144 F(NX,NY)=F(NX+NNX/2,NY)
145 F(NX+NNX/2,NY)=TEMP
146 7 CONTINUE
147 6 CONTINUE
148 C frequency-shift forward transforms of rows
149 DO 8 NX=0,NNX
150 F(NX,NNY)=F(NX,NNY/2)
151 DO 9 NY=0,NNY/2-1
152 TEMP=F(NX,NY)
153 F(NX,NY)=F(NX,NY+NNY/2)
154 F(NX,NY+NNY/2)=TEMP
155 9 CONTINUE
156 8 CONTINUE
157 ELSE
158 C fix up the inverse of the frequency-shifted transform
159 DO 10 NY=0,NNY-1
160 DO 10 NX=0+MOD(NY+1,2),NNX-1,2
161 F(NX,NY)=-F(NX,NY)
162 10 CONTINUE
163 ENDIF
164 ENDIF
165 RETURN
166 END

The program on the next page uses the FOFX2 routine listed below to calculate values of the
function f(x, y), and then invokes DFT2 to compute the transform of our pyramidal pulse.

FUNCTION FOFX2(X,Y)
REAL*8 FOFX2,X,Y

C
C return zero outside the pulse

FOFX2=0.D0
IF(X.LE.0.D0 .OR. X.GE.2.D0) RETURN
IF(Y.LE.0.D0 .OR. Y.GE.2.D0) RETURN

C
C return the height of the pyramid inside the pulse

IF(Y.LE.X) THEN
IF(Y .LE. 2.D0-X) THEN

C on face III
FOFX2=3.D0*Y

ELSE
C on face II

FOFX2=6.D0-3.D0*X
ENDIF

ELSE
IF(Y .LE. 2.D0-X) THEN

C on face IV
FOFX2=3.D0*X

ELSE
C on face I

FOFX2=6.D0-3.D0*Y
ENDIF

ENDIF
RETURN
END
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C
C This program exercises DFT2.
C

REAL*8 BX/3.5D0/,BY/3.5D0/,DNUX,DNUY,DX,DY,NUX,NUY,X,Y,FOFX2
PARAMETER(LX=1024,LY=1024)
COMPLEX*16 F(LX,LY)
INTEGER*4 RC
LOGICAL*4 SCALE,SHIFT,QUERY

C
C ------------------------------------------------------------------
C
C find out how many points to use

CALL PROMPT(’NX=’,3)
READ(5,*,END=1) NX
DX=BX/DFLOAT(NX-1)
DNUX=1.D0/(DX*DFLOAT(NX))
CALL PROMPT(’NY=’,3)
READ(5,*,END=1) NY
DY=BY/DFLOAT(NY-1)
DNUY=1.D0/(DY*DFLOAT(NY))

C
C sample f(x,y)

DO 1 KX=1,NX
X=DX*DFLOAT(KX-1)
DO 2 KY=1,NY

Y=DY*DFLOAT(KY-1)
F(KX,KY)=DCMPLX(FOFX2(X,Y),0.D0)

2 CONTINUE
1 CONTINUE

C find out about scaling and shifting
SCALE=QUERY(’scale?’,6)
SHIFT=QUERY(’shift?’,6)

C
C direct transform

CALL DFT2(LX,LY,NX,NY,+1,SCALE,SHIFT, F,BX,BY, RC)
C
C report the result

IF(SHIFT) THEN
KXMAX=NX+1
KYMAX=NY+1

ELSE
KXMAX=NX
KYMAX=NY

ENDIF
DO 3 KX=1,KXMAX

NUX=DNUX*DFLOAT(KX-1)
IF(SHIFT) NUX=NUX-0.5D0*DNUX*DFLOAT(NX)
DO 4 KY=1,KYMAX

NUY=DNUY*DFLOAT(KY-1)
IF(SHIFT) NUY=NUY-0.5D0*DNUY*DFLOAT(NY)
WRITE(2,901) NUX,NUY,F(KX,KY)

901 FORMAT(4(1X,1PE13.6))
4 CONTINUE
3 CONTINUE
STOP
END
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When the three routines are compiled together and run, the result is a file of lines each
containing one point [νx, νy,Re(Fnx,ny

), Im(Fnx,ny
)] in the transform. If the prompts are

answered with NX=4, NY=4, and no shifting or scaling, this output agrees with the F matrix
pictured earlier.

If the prompts are answered with NX=128, NY=128, and yes to shifting and scaling, the
output file contains 129× 129 = 16641 points. Unshifted the transform would cover spatial
frequencies from 0 to (N − 1)/b = 127/3.5 ≈ 36.285 Hz, so frequency-shifted it covers
frequencies from about −18 to about +18 Hz in each direction. To interpret this data we
can show the undulations of Re(F) or Im(F) with νx and νy in a raster plot. In the raster
plot below, the gray scale of each pixel depends17 on the values of Re(F) inside that pixel’s
boundaries. Because we frequency-shifted the transform, (νx = 0, νy = 0) is in the middle
of the picture, and because we scaled it the values returned in matrix F are actually of
∆x∆yF ≈ F(f(x, y)).

-18 νx 18

-18

νy

18

The symmetry of the raster plot suggests that the behavior of the transform might also be
visualized by plotting Re(F) along the diagonals. The graph on the left at the top of the
next page is the transform along the cut νx = −νy; the one on the right is for the other
diagonal, where νx = νy.

17The values of Re(F ) span several orders of magnitude, so to enhance the contrast of the raster image I
compressed the vertical scale of the data using a log transformation of the form | loga (1 + | • | ) | × sgn(•),
where a was chosen to map the Re(F ) that is largest in absolute value to +1 or −1 according to its sign.
This scaling distorts the shape of the function but preserves its zeros.
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The points + in these plots are values from F and the solid curve is the continuous transform.
The double integral defining the continuous transform is tedious to evaluate by hand, but it
was straightforward using the symbolic algebra package Maple.18 From the agreement of the
points with the lines in these graphs, it appears the DFT provides a plausible approximation
to the continuous transform, at least along those two cuts.

In two dimensions it is still expensive to calculate the DFT by adding up the sums in its
definition. Now, if the number of samples in each direction is N we use N×N2 operations in
transforming the columns and N×N2 more for the rows, or 2N3 altogether. If instead we use
the FFT to transform each column and then each row, the complexity will be 2N2 log2 (N),
a big improvement. The ratios in the rightmost column below are the same as those in the
table on page 35 for the one-dimensional FFT, so now as then we have a strong incentive to
use the FFT.

N 2N2 log2 (N) 2N3 (2N2 log2 (N))/(2N3)

2 8 16 0.500000
4 64 128 0.500000
8 384 1024 0.375000
16 2048 8192 0.250000
32 10240 65536 0.156250
64 49152 524288 0.093750
128 229376 4194304 0.054688
256 1048576 33554432 0.031250
512 4718592 268435456 0.017578
1024 20971520 2147483648 0.009766
2048 92274688 17179869184 0.005371
4096 402653184 137438953472 0.002930
8192 1744830464 1099511627776 0.001587

16384 7516192768 8796093022208 0.000854
32768 32212254720 70368744177664 0.000458

18After Maple had found the double integral in terms of complex exponentials, F:=convert(F,trig)
followed by evalc(Re(F)) and evalc(Im(F)) yielded lengthy formulas for the real and imaginary parts as
functions of νx and νy. Reminiscent of §2, these formulas are 0/0 indeterminate along the diagonals and axes
of the raster plot, so I used Maple to apply L’Hospital’s Rule. From the resulting definition of F (νx, νy), I
wrote a Fortran program to compute the values plotted in the graphs.
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7.2 FFT by Transposition

We already have a library routine for computing one-dimensional FFTs, so the most obvious
approach for two dimensions is to use it somehow for finding the transforms of the columns
and rows in the matrix f .

Fortran stores arrays in column-major order [7, §11.1], so if f is N × N its elements
are arranged in adjacent blocks of memory as shown below. Here each box represents two

doublewords of memory, one for the real part of the array element and one for the imaginary
part.

f1,1 f2,1 · · ·

column 1

fN,1 f1,2 f2,2 · · ·

column 2

fN,2 f1,N f2,N · · ·

column N

fN,N

Fortran passes subprogram parameters by address [7, §6.2], so to pass a matrix column
for a vector parameter it is necessary only to supply the address of the first array element
in the column. The first loop in the pseudocode (on page 70) for calculating the DFT can
therefore be rendered into Fortran like this.

DO 1 KY=1,N
CALL FFT(N,INVDIR,SCALE,SHIFT, F(1,KY),B, RC)

1 CONTINUE

A Fortran variable is the name (which the compiler translates into the address) of a storage
location in memory, so the address of the first element in, say, the second column of f is
F(1,2). In the code above, when KY=2 the address of F(1,2) is passed for the address of
the data vector that FFT will transform in-place.

Passing rows is harder, because the consecutive elements in each row of f are spread
across the columns and are thus separated by N blocks in memory. For example, the first
and second elements of the second row are f2,1 and f2,2, which are separated by N boxes in
the picture. FFT assumes that consecutive elements of its input data vector are adjacent to
one another, not separated by N boxes. But if we transpose f its rows become the columns
of f⊤, and then we can pass those. After that loop of FFT calls it is necessary to transpose
again, to put the elements of the transform back into the same order as the input data.

These ideas are incorporated in the routine FFT2TR, which is listed on the following
pages. The argument list 4 is identical to that of DFT2, so the two routines can be used
interchangeably.

Most of the needed parameter checking is done by FFT each time it is called 66,84 , and
any errors that are detected in that way are acted upon when that routine returns 67-70,85-88

(see §6.5 for a discussion of the overhead incidental to this repeated parameter checking).
Because the transpositions are performed in-place, F must be big enough to hold either the
data matrix or its transpose, and this is verified in the first parameter-checking stanza 51-56

of this routine. The second parameter-checking stanza 58-62 ensures that if the result is to
be shifted there is enough room in F for the extra row and column. The new return code of
RC=8 means that F isn’t big enough.
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The in-place transpositions 64-71,82-89 work by exchanging off-diagonal elements across
the diagonal, so only the one COMPLEX*16 temporary TEMP is needed. In each row of the
matrix to be transposed, each element (I,J) before the diagonal is exchanged with its mirror
image element (J,I) on the other side of the diagonal. For example, in the second row I=2

and the single element to the left of the diagonal, at J=1, gets exchanged with element
(1,2), the first one to the right of the diagonal in the top row. This method moves the
fewest elements possible.

Scaling the column transforms in FFT would change the frequency content of the row
transforms, and scaling the row transforms in FFT would use the factor for one dimension
instead of two. Thus, if scaling is done it must be after the two-dimensional transform is
complete, and the calls to FFT pass .FALSE. for its SCALE parameter. The scaling part of
the code 99-141 differs slightly from that in DFT2 because FFT always does the scaling by
1/N when it computes an inverse transform.

Frequency-shifting the columns in the first loop of calls to FFT would add a row that
can’t be included in the second loop of calls to FFT, so if shifting is done that must also be
after the transform is complete. Thus the calls to FFT pass .FALSE. for its SHIFT parameter,
and FFT2TR includes frequency-shifting code 143-171 like that used in DFT2.

To test the FFT2TR routine we can use the same program we used to test DFT2, changing
only the name of the routine under test. When I compiled the resulting main program with
FFT2TR and FOFX2, the program produced results identical within roundoff to those found
by DFT2 for various sizes and shapes of input matrix and for all combinations of SCALE and
SHIFT values.
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1 C
2 Code by Michael Kupferschmid
3 C
4 SUBROUTINE FFT2TR(LX,LY,NX,NY,INVDIR,SCALE,SHIFT, F,BX,BY, RC)
5 C This routine computes in-place the direct or inverse fast
6 C Fourier transform of the NX x NY array of numbers in the upper
7 C left corner of F(LX,LY) by using calls to FFT and in-place
8 C transpositions.
9 C
10 C variable meaning
11 C -------- -------
12 C BX limit of integration in the X direction
13 C BY limit of integration in the Y direction
14 C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
15 C DFLOAT Fortran function returns REAL*8 for INTEGER*4
16 C DX sampling interval in X
17 C DY sampling interval in Y
18 C F data matrix
19 C FFT routine computes 1-dimensional FFT
20 C I index on rows of F
21 C INVDIR 1 => direct, -1 => inverse
22 C J index on columns of F
23 C LX first dimension of F in calling routine
24 C LY second dimension of F in calling routine
25 C MAX0 Fortran function returns larger of INTEGER*4s
26 C MOD Fortran function for remainder of INTEGER*4 division
27 C N size of transposition
28 C NX number of rows
29 C NY number of columns
30 C RC return code; 0 => all went well
31 C RCFFT FFT return code; 0 => all went well
32 C SCALE T => scale transform/transform was scaled
33 C SFX scale factor in X
34 C SFY scale factor in Y
35 C SHIFT T => frequency-shift transform/transform was shifted
36 C TEMP temporary for in-place transpositions
37 C
38 C formal parameters
39 LOGICAL*4 SCALE,SHIFT
40 COMPLEX*16 F(LX,LY)
41 REAL*8 BX,BY
42 INTEGER*4 RC
43 C
44 C local variables
45 REAL*8 DX,DY,SFX,SFY
46 INTEGER*4 RCFFT
47 COMPLEX*16 TEMP
48 C
49 C ------------------------------------------------------------------
50 C
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51 C check that there is enough space in F for the transposes
52 N=MAX0(NX,NY)
53 IF(NX.LE.0 .OR. NY.LE.0 .OR. N.GT.LX .OR. N.GT.LY) THEN
54 RC=8
55 RETURN
56 ENDIF
57 C
58 C check that there is enough space in F for the result
59 IF(SHIFT .AND. (NX+1.GT.LX .OR. NY+1.GT.LY)) THEN
60 RC=8
61 RETURN
62 ENDIF
63 C
64 C transform the columns
65 DO 1 J=1,NY
66 CALL FFT(NX,INVDIR,.FALSE.,.FALSE., F(1,J),BX, RCFFT)
67 IF(RCFFT.NE.0) THEN
68 RC=RCFFT
69 RETURN
70 ENDIF
71 1 CONTINUE
72 C
73 C transpose in-place
74 DO 2 I=1,N
75 DO 3 J=1,I-1
76 TEMP=F(I,J)
77 F(I,J)=F(J,I)
78 F(J,I)=TEMP
79 3 CONTINUE
80 2 CONTINUE
81 C
82 C transform the rows
83 DO 4 I=1,NX
84 CALL FFT(NY,INVDIR,.FALSE.,.FALSE., F(1,I),BY, RCFFT)
85 IF(RCFFT.NE.0) THEN
86 RC=RCFFT
87 RETURN
88 ENDIF
89 4 CONTINUE
90 C
91 C transpose in-place
92 DO 5 I=1,N
93 DO 6 J=1,I-1
94 TEMP=F(I,J)
95 F(I,J)=F(J,I)
96 F(J,I)=TEMP
97 6 CONTINUE
98 5 CONTINUE
99 C
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100 C find sampling intervals and new upper limits of integration
101 IF(SCALE) THEN
102 IF(INVDIR.EQ.+1) THEN
103 DX=BX/DFLOAT(NX-1)
104 DY=BY/DFLOAT(NY-1)
105 IF(SHIFT) THEN
106 BX=DFLOAT(NX/2)/(DX*DFLOAT(NX))
107 BY=DFLOAT(NY/2)/(DY*DFLOAT(NY))
108 ELSE
109 BX=DFLOAT(NX-1)/(DX*DFLOAT(NX))
110 BY=DFLOAT(NY-1)/(DY*DFLOAT(NY))
111 ENDIF
112 SFX=DX
113 SFY=DY
114 ELSE
115 IF(SHIFT) THEN
116 DX=2.D0*BX/DFLOAT(NX)
117 DY=2.D0*BY/DFLOAT(NY)
118 ELSE
119 DX=BX/DFLOAT(NX-1)
120 DY=BY/DFLOAT(NY-1)
121 ENDIF
122 BX=DFLOAT(NX-1)/(DX*DFLOAT(NX))
123 BY=DFLOAT(NY-1)/(DY*DFLOAT(NY))
124 C scaling for inverse is done inside FFT
125 SFX=DX*DFLOAT(NX)
126 SFY=DY*DFLOAT(NY)
127 ENDIF
128 ELSE
129 C forward transform is not to be scaled
130 C scaling for inverse is done inside FFT
131 SFX=1.D0
132 SFY=1.D0
133 ENDIF
134 C
135 C scale result to match Fourier transform if desired
136 IF(SFX.NE.1.D0 .OR. SFY.NE.1.D0) THEN
137 DO 7 I=1,NX
138 DO 7 J=1,NY
139 F(I,J)=DCMPLX(SFX*SFY,0.D0)*F(I,J)
140 7 CONTINUE
141 ENDIF
142 C
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143 C shift, or compensate for having shifted before
144 IF(SHIFT) THEN
145 IF(INVDIR.EQ.1) THEN
146 C frequency-shift forward transforms of columns
147 DO 8 J=1,NY
148 F(NX+1,J)=F(1+NX/2,J)
149 DO 9 I=1,NX/2
150 TEMP=F(I,J)
151 F(I,J)=F(I+NX/2,J)
152 F(I+NX/2,J)=TEMP
153 9 CONTINUE
154 8 CONTINUE
155 C frequency-shift forward transforms of rows
156 DO 10 I=1,NX+1
157 F(I,NY+1)=F(I,1+NY/2)
158 DO 11 J=1,NY/2
159 TEMP=F(I,J)
160 F(I,J)=F(I,J+NY/2)
161 F(I,J+NY/2)=TEMP
162 11 CONTINUE
163 10 CONTINUE
164 ELSE
165 C fix up the inverse of the frequency-shifted transform
166 DO 12 J=1,NY
167 DO 12 I=1+MOD(J,2),NX,2
168 F(I,J)=-F(I,J)
169 12 CONTINUE
170 ENDIF
171 ENDIF
172 RETURN
173 END
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7.3 FFT by Strides

The transpositions in the FFT2TR routine of §7.2 take extra time, and they are needed only
because FFT expects its input data to be in adjacent memory blocks (pairs of doublewords).
Accessing data in that way within FFT is convenient, and because that order makes minimal
use of the computer’s memory hierarchy [7, §15.2.7] FFT is fast. But the transpositions must
access data that are not consecutive in storage, and the work of doing them might be avoided
simply by accessing non-consecutive data in computing a two-dimensional transform. Let’s
call the routine that does that FFT2ST.

As explained in §7.2, if f is NX × NY the column-major array layout separates successive
elements of a row by NX memory blocks. The distance of NX blocks from f1,1 to f1,2 (or from
f2,1 to f2,2, etc.) is called the stride in memory between the elements of a row (i.e., between
columns). If the starting address of a two-dimensional array F is passed for the vector DATA
that we will use in FFT2ST, the elements of F will be arranged as shown in the picture on
page 78, and to figure out where they are in DATA all we need to know is the stride NX. For
example, the COMPLEX*16 data array might be F(4,8), in which case its elements will have
the indices in the REAL*8 vector DATA shown below. Each COMPLEX*16 element of F is boxed
with dark lines. Thus F(1,1) consists of DATA(1), containing the real part of the number,
and DATA(2) for the imaginary part.
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7.3.1 Input Data Rearrangement

Each column of F has elements that are contiguous in memory, so it is just a vector. We can
put the first column into bit-reversed-index order using the algorithm from FFT, repeating
each swap in the other columns to rearrange the rows of F. A similar process can then be
used to put the columns into bit-reversed-index order, but the elements in each row are not
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contiguous so in addressing them we must account for stride. The program at the top of the
next page implements this strategy. It stores NX and NY in the vector NN.

The bit-reversed reorderings of 4 and 8 indices shown on the left below (recall §6.2.1)
show that in the F given above the middle pairs of rows will be swapped, the second column
will be swapped with the fifth, and the fourth column will be swapped with the seventh. The
program produces the output on the right below, which lists the indices of the doublewords
in DATA that are swapped to rearrange the rows and columns in F. The first 8 lines swap the
middle pair of rows, the next 4 swap the second column with the fifth, and the final 4 swap
the fourth column with the seventh.

00 00

01 10

10 01

11 11

000 000

001 100

010 010

011 110

100 001

101 101

110 011

111 111

( 3, 4) <--> ( 5, 6)
(11,12) <--> (13,14)
(19,20) <--> (21,22)
(27,28) <--> (29,30)
(35,36) <--> (37,38)
(43,44) <--> (45,46)
(51,52) <--> (53,54)
(59,60) <--> (61,62)
( 9,10) <--> (33,34)
(11,12) <--> (35,36)
(13,14) <--> (37,38)
(15,16) <--> (39,40)
(25,26) <--> (49,50)
(27,28) <--> (51,52)
(29,30) <--> (53,54)
(31,32) <--> (55,56)
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1 C This program figures out the rearrangement of rows and then
2 C columns so the indices are in ascending bit-reversed order.
3 C
4 INTEGER*4 NN(2)/4,8/,T
5 C
6 C step by rows two at a time to go down a column
7 J=1
8 DO 1 I=3,2*NN(1)-3,2
9 MSZ=NN(1)
10 3 IF(J.LT.MSZ) GO TO 2
11 J=J-MSZ
12 MSZ=MSZ/2
13 GO TO 3
14 2 J=J+MSZ
15 IF(J.GT.I) THEN
16 C repeat row swaps for all columns
17 DO 4 K=I,I+2*NN(1)*NN(2)-2*NN(1),2*NN(1)
18 C repeat the pair of row swaps in each column
19 T=J+(K-I)
20 WRITE(6,991) K,K+1,T,T+1
21 991 FORMAT(’(’,I2,’,’,I2,’) <--> (’,I2,’,’,I2,’)’)
22 4 CONTINUE
23 ENDIF
24 1 CONTINUE
25 C
26 C step by columns to go across a row
27 J=1
28 DO 5 I=1+2*NN(1),2*NN(1)*NN(2)-4*NN(1)+1,2*NN(1)
29 MSZ=NN(1)*NN(2)
30 7 IF(J.LT.MSZ) GO TO 6
31 J=J-MSZ
32 MSZ=MSZ/2
33 GO TO 7
34 6 J=J+MSZ
35 IF(J.GT.I) THEN
36 C repeat column swap for all rows
37 DO 8 K=I,I+2*NN(1)-2,2
38 C repeat the column swap in each pair of rows
39 T=J+(K-I)
40 WRITE(6,991) K,K+1,T,T+1
41 8 CONTINUE
42 ENDIF
43 5 CONTINUE
44 STOP
45 END

Looking at the code reveals how the algorithm works in general. First consider the swapping
of rows, which is carried out by the top stanza of executable statements. It processes the
first column of F in the same way that the code we used in FFT processes its single column
of data (compare 7-15 here with 91-99 on page 57). The number of elements in a column
of F is NN(1), so that variable plays the role that NN does in FFT. When the time comes to
exchange rows I and I+1 with rows J and J+1 (as in 100-105 on page 57) we now need to
step across all the columns of F. To FFT2ST, F will look like one long vector DATA, so we
must do the row exchanges by indexing into that vector. The indices this code uses for that
purpose are K and T. In the first column of F, the first element to be exchanged is just I,
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so K starts 17 equal to I. In the second column of F, the element corresponding to element
I in the first column is I plus the stride between columns; thus, the increment of the loop
over K 17 is 2*NN(1). The last element in row I is NN(2)-1 columns away at the index
I+2*NN(1)*NN(2)-2*NN(1), so that is the limit on K. In the first column of F, the element
to exchange element K with is just element J, so 19 T starts out as J when K takes on its
first value of I. In the next column of F, T needs to be one stride farther along, which is just
what happens when K gets incremented by that amount.

Once the rows have been put into the right order, the second stanza of code rearranges the
columns. To see how it works, imagine the algorithm from FFT applied to the first row of F.
For our example I must take on index values in DATA that we find listed across the top row of
F on page 84. Those are 1, 9, 17, 25, 33, 41, 49, and 57, but since the first and last elements
are always in the right places I needs to take on only the other values. There are 2*NN(1)

doublewords in the first column of F, so the starting value of I is 1+2*NN(1) 28 which for
our example is 9. The stride between columns is 2*NN(1), so that is the increment of the
loop on I. The final value of I is the index in DATA of the top of the second-to-last column in
F, so the upper limit of the I loop is 2*NN(1)*NN(2)-4*NN(1)+1, which is 49 in our example.
Now the highest index to be considered in the reordering process is the number of columns
to be reordered times the stride (in COMPLEX*16 values or doubleword-pairs) between them,
or NN(1)*NN(2), so MSZ begins with that value 29 ; the remainder of the algorithm 30-35

is the same as before. When the time comes to exchange column I with column J we need
to step down the rows of F. In the first row of F, the first element to be exchanged is just
I, so K starts 37 equal to I. In the second row of F, the COMPLEX*16 element corresponding
to I in the first row has its first doubleword at DATA(I+2) because the elements of F are
in column-major order. Thus the increment of the K loop is 37 2 doublewords. The last
COMPLEX*16 row in the column of F with I at its top is the one whose first doubleword is
at index I+2*NN(1)-2, so that is the limit of the K loop 37 . In our example, if I=33 is the
index in DATA at the top of the column, the index in DATA of the first doubleword of the
bottom COMPLEX*16 in that column is 33+2*4-2=39.

The code segments we have been discussing differ only in starting values, increments,
and ending values of loops, and in their initial values of MSZ. The code at the top of the
next page introduces variables to represent those quantities and sets them according to the
dimension IDIM being processed, so that the same data rearrangement loops can be used for
columns and rows. This program produces the same output as the earlier one. Although it
is no shorter, it has the virtue that one instance of the data-rearrangement code is executed
repeatedly in a loop over the dimensions. This will allow us to insert code for the butterfly
calculation into that loop, in the place indicated, rather than having to repeat it after each
stanza of the earlier program.
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1 C This version merges the loops by setting the appropriate
2 C indexing parameters for each dimension.
3 C
4 INTEGER*4 NN(2)/4,8/,T
5 C
6 DO 1 IDIM=1,2
7 IF(IDIM.EQ.1) THEN
8 IST=3
9 ILIM=2*NN(1)-3
10 IINC=2
11 KLIM=2*NN(1)*NN(2)-2*NN(1)
12 KINC=2*NN(1)
13 MSZST=NN(1)
14 ELSE
15 IST=1+2*NN(1)
16 ILIM=2*NN(1)*NN(2)-4*NN(1)+1
17 IINC=2*NN(1)
18 KLIM=2*NN(1)-2
19 KINC=2
20 MSZST=NN(1)*NN(2)
21 ENDIF
22 J=1
23 DO 2 I=IST,ILIM,IINC
24 MSZ=MSZST
25 4 IF(J.LT.MSZ) GO TO 3
26 J=J-MSZ
27 MSZ=MSZ/2
28 GO TO 4
29 3 J=J+MSZ
30 IF(J.GT.I) THEN
31 C repeat for all rows or columns
32 DO 5 K=I,I+KLIM,KINC
33 T=J+(K-I)
34 WRITE(6,901) K,K+1,T,T+1
35 5 CONTINUE
36 ENDIF
37 2 CONTINUE
38 901 FORMAT(’(’,I2,’,’,I2,’) <--> (’,I2,’,’,I2,’)’)
39 C
40 C [butterfly calculation for dimension IDIM will go here]
41 C
42 1 CONTINUE
43 STOP
44 END

7.3.2 Butterfly Calculation

We can generalize the butterfly algorithm to two dimensions by taking the same approach
we used for the data rearrangement algorithm. Thinking of the first column of F as a vector
being processed by FFT, we can use the algorithm from that code and repeat each calculation
across all the columns. Then, thinking of the first row of F as the vector being processed,
we can revise the algorithm to take account of the stride between columns and repeat each
calculation down all the rows.

The code segment at the top of the next page uses the butterfly algorithm from FFT for
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going down the first column of F, and propagates the calculation across all the columns.
The number of stages in the signal-flow graph, LGN, is log2 (NN(1)) and will be found in the
process of checking whether NN(1) is a power of 2. In FFT the limit on the P loop is NN=2*N,
which corresponds to 2*NN(1) here, but the top of a butterfly could actually never be farther
down the column than 2*NN(1)-3. I have omitted from the listing statements that are the
same as in FFT.

C this code goes down the first column of F (IDIM=1)
LMAX=2
DO 1 M=1,LGN

:
PSTEP=2*LMAX*1
DO 2 L=1,LMAX,2

DO 3 P=(L-1)*1+1,2*NN(1)-3,PSTEP
Q=P+LMAX*1
DO 4 K=P,P+2*NN(1)*NN(2)-2*NN(1),2*NN(1)

T=Q+(K-P)
[butterfly calculation]

4 CONTINUE
3 CONTINUE

:
2 CONTINUE

LMAX=LMAX*2
1 CONTINUE

This code finds P and Q just like FFT does, but I have written the formulas for PSTEP and
P in a peculiar way, and I have separately doubled LMAX after the 2 loop rather than using
PSTEP to save a multiplication as in FFT. These typographical oddities facilitate comparison
with the code below for going across the first row of F. The butterfly calculation is repeated
across the columns of F by the 4 loop, in which DATA(K) and DATA(T) participate in the
butterfly. Elements in row P of F are separated by the column stride 2*NN(1), so that is
the increment of K. The last element in row P is NN(2)-1 columns away, so the limit on K is
P+2*NN(1)*NN(2)-2*NN(1). In the first column K=P and the bottom of the butterfly is at
T=Q; as K increases by one column-stride with each iteration, so does T.

The code segment below modifies the butterfly algorithm of FFT to go across the first
row of F, and repeats the calculation in all the rows.

C this code goes across the first row of F (IDIM=2)
LMAX=2
DO 1 M=1,LGN

C :
PSTEP=2*LMAX*NN(1)
DO 2 L=1,LMAX,2

DO 3 P=(L-1)*NN(1)+1,2*NN(1)*NN(2)-4*NN(1)+1,PSTEP
Q=P+LMAX*NN(1)
DO 4 K=P,P+2*NN(1)-2,2

T=Q+(K-P)
[butterfly calculation]

4 CONTINUE
3 CONTINUE

:
2 CONTINUE

LMAX=LMAX*2
1 CONTINUE
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Now LGN is the number of stages in the signal-flow graph for columns, log2 (NN(2)). The only
other change that is needed in applying the butterfly algorithm to the first row of F is that
stride must be taken into account in finding P and Q, the indices in DATA corresponding to
the tops and bottoms of the butterflies.

In each stage the distance between the tops of the butterflies is now PSTEP=LMAX*2*NN(1).
For example, in the signal-flow graph on page 34, in the first stage the butterflies involve
adjacent samples and their tops are spaced apart by LMAX=2 samples; along the first row of
F each sample heads a column, so the tops of the butterflies are spaced apart by LMAX=2

columns or LMAX*2*NN(1) elements in DATA. In the second stage the tops of the butterflies
for each power of W are spaced apart by LMAX=4 samples; along the first row of F the tops of
the butterflies are spaced apart by LMAX=4 columns or LMAX*2*NN(1) elements, and so on.
This is the increment of the P loop.

In each stage we evaluate all the butterflies involving the zero’th power of the W for that
stage (L=1), then all the butterflies with the first power of that W (L=3), and so on for all the
powers of that W used in that stage. The first butterfly involving each power of W starts at
index (L-1)*NN(1)+1 in DATA. For example, in the third stage of the signal-flow graph on
page 34, LMAX=8 so L takes on the values 1, 3, 5, and 7. When L=1, the butterflies involve
the zero’th power of W and the top of the first one is at DATA(1). When L=3, the butterflies
involve the first power of W and the top of the first butterfly is the second sample. Along
the first row of F the second sample is at the top of the second column, which has index
(3-1)*NN(1)+1 in DATA. When L=5 the butterflies involve the second power of W and the
top of the first butterfly is the third sample. Along the first row of F the third sample is
at the top of the third column, which has index (5-1)*NN(1)+1 in DATA, and so on. Thus
(L-1)*NN(1)+1 is the starting value of the P loop.

The biggest P can ever get is the index in DATA of the element at the top of the column
second to last, or 2*NN(1)*NN(2)-4*NN(1)+1 (element 2*4*8-4*4+1=49 in our example), so
this is the limit of the P loop.

The bottom of each butterfly is LMAX/2 samples away from its top. In the first stage
of the signal-flow graph, LMAX=2 and adjacent samples are involved in the butterflies; in
the second stage LMAX=4 and alternate samples are involved in the butterflies, and so on.
Along the first row of F, the bottom of a butterfly is LMAX/2 columns, or (LMAX/2)*2*NN(1)
elements in DATA, away from its top so Q=P+LMAX*NN(1).

The K loop propagates each butterfly calculation down all the rows. When we say that
P is the index in DATA of the top of a butterfly, we mean that DATA(P) is the real part
of that element of F and that DATA(P+1) is the imaginary part. Because the data are in
column-major order, the top of the corresponding butterfly in the second row of F will be at
DATA(P+2), and so on down the column, so the increment of the K loop is 2. The index of
the last doubleword-pair in column P is P+2*NN(1)-2, so that is the limit on K.
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The code segments we have been discussing differ only in starting values, incre-
ments, and ending values of loops, and in the multiplicative factor appearing
in the formula for Q. The code below introduces variables to represent those
quantities and sets them according to the dimension IDIM being processed, so
that the same butterfly loops can be used for columns and rows.

C This version merges the loops by setting the appropriate
C indexing parameters for each dimension.
C

INTEGER*4 NN(2)/4,8/,PLIM,PSTEP,P,Q,S,T
C

DO 1 IDIM=1,2
IF(IDIM.EQ.1) THEN

MLT=1
PLIM=2*NN(1)-3
KLIM=2*NN(1)*NN(2)-2*NN(1)
KINC=2*NN(1)
LGN=2

ELSE
MLT=NN(1)
PLIM=2*NN(1)*NN(2)-4*NN(1)+1
KLIM=2*NN(1)-2
KINC=2
LGN=3

ENDIF
C

LMAX=2
DO 2 M=1,LGN

PSTEP=2*LMAX*MLT
DO 3 L=1,LMAX,2

DO 4 P=(L-1)*MLT+1,PLIM,PSTEP
Q=P+LMAX*MLT
DO 5 K=P,P+KLIM,KINC

T=Q+(K-P)
WRITE(6,901) K,K+1,T,T+1

5 CONTINUE
4 CONTINUE
3 CONTINUE

LMAX=LMAX*2
2 CONTINUE
1 CONTINUE

901 FORMAT(’(’,I2,’,’,I2,’) >< (’,I2,’,’,I2,’)’)
STOP
END

When this program is run it produces the output shown to the right, which
can be verified correct for our example by looking at the signal-flow graph on
page 34 and the layout of DATA elements in F shown on page 84. The first
butterfly listed involves the signal in F(1,1) (the real and imaginary parts of
which are stored in DATA(1) and DATA(2)) and the signal in F(2,1) (stored
in DATA(3) and DATA(4)). Then the same calculation is repeated across the
columns of F. This pattern repeats for 3 more sets of 8 butterflies. Then,
starting with ( 1, 2) >< ( 9,10) and its propagation down 3 more rows,
there are a total of 12 sets of 4 butterflies for the columns.

( 1, 2) >< ( 3, 4)

( 9,10) >< (11,12)

(17,18) >< (19,20)

(25,26) >< (27,28)

(33,34) >< (35,36)

(41,42) >< (43,44)

(49,50) >< (51,52)

(57,58) >< (59,60)

( 5, 6) >< ( 7, 8)

(13,14) >< (15,16)

(21,22) >< (23,24)

(29,30) >< (31,32)

(37,38) >< (39,40)

(45,46) >< (47,48)

(53,54) >< (55,56)

(61,62) >< (63,64)

( 1, 2) >< ( 5, 6)

( 9,10) >< (13,14)

(17,18) >< (21,22)

(25,26) >< (29,30)

(33,34) >< (37,38)

(41,42) >< (45,46)

(49,50) >< (53,54)

(57,58) >< (61,62)

( 3, 4) >< ( 7, 8)

(11,12) >< (15,16)

(19,20) >< (23,24)

(27,28) >< (31,32)

(35,36) >< (39,40)

(43,44) >< (47,48)

(51,52) >< (55,56)

(59,60) >< (63,64)

( 1, 2) >< ( 9,10)

( 3, 4) >< (11,12)

( 5, 6) >< (13,14)

( 7, 8) >< (15,16)

(17,18) >< (25,26)

(19,20) >< (27,28)

(21,22) >< (29,30)

(23,24) >< (31,32)

(33,34) >< (41,42)

(35,36) >< (43,44)

(37,38) >< (45,46)

(39,40) >< (47,48)

(49,50) >< (57,58)

(51,52) >< (59,60)

(53,54) >< (61,62)

(55,56) >< (63,64)

( 1, 2) >< (17,18)

( 3, 4) >< (19,20)

( 5, 6) >< (21,22)

( 7, 8) >< (23,24)

(33,34) >< (49,50)

(35,36) >< (51,52)

(37,38) >< (53,54)

(39,40) >< (55,56)

( 9,10) >< (25,26)

(11,12) >< (27,28)

(13,14) >< (29,30)

(15,16) >< (31,32)

(41,42) >< (57,58)

(43,44) >< (59,60)

(45,46) >< (61,62)

(47,48) >< (63,64)

( 1, 2) >< (33,34)

( 3, 4) >< (35,36)

( 5, 6) >< (37,38)

( 7, 8) >< (39,40)

( 9,10) >< (41,42)

(11,12) >< (43,44)

(13,14) >< (45,46)

(15,16) >< (47,48)

(17,18) >< (49,50)

(19,20) >< (51,52)

(21,22) >< (53,54)

(23,24) >< (55,56)

(25,26) >< (57,58)

(27,28) >< (59,60)

(29,30) >< (61,62)

(31,32) >< (63,64)
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7.3.3 Underfull Data Arrays

So far in this Section I have assumed the two-dimensional19 COMPLEX*16 data matrix F has
exactly the right dimensions for the DFT we want to find. That way, when we pass its
starting address for the one-dimensional REAL*8 DATA vector in FFT2ST, the data will be laid
out in memory as described on page 78, with no gaps. This might seem natural, but in
practice demanding that F be precisely the right size will be an inconvenience to the user
when it is necessary to calculate two-dimensional DFTs of several sizes in one program, or
when the size of a DFT is specified interactively as the program is run.20 It would be handy
if FFT2ST were smart enough to just skip over any unused doubleword-pairs at the ends of
the columns. To make this possible we need only pass the leading dimension of F and use
it in the indexing calculations for the stride between columns.21 The array below is declared
COMPLEX*16 F(5,9), so its leading dimension is 5.

F =

1

2

3

4

5

6

7

8

11

12

13

14

15

16

17

18

21

22

23

24

25

26

27

28

31

32

33

34

35

36

37

38

41

42

43

44

45

46

47

48

51

52

53

54

55

56

57

58

61

62

63

64

65

66

67

68

71

72

73

74

75

76

77

78

19The fourn routine given in [10, pages 518-519] generates all the necessary index pairs for the exchanges
and butterflies in another order, by taking a fundamentally different approach that generalizes to any number
of dimensions. Although I am skeptical that FFTs in more than 2 dimensions are needed very often, I will
be grateful to anyone who explains to me how and why the indexing scheme used in fourn works.

20Dynamic memory allocation [7, §17.1.2] could be used to mitigate this problem, but it is bad for perfor-
mance and unavailable in the Classical Fortran we have been using.

21The DFT2 and FFT2TR routines receive and use the leading dimension (see [7, §7.1.2]) of F so that F(1,KY)
or F(1,NX) will be the address of the top of a column even if the calling routine dimensions F bigger than it
needs to be. But by always dealing with F as a two-dimensional array or always passing a single column at
a time to FFT, both routines avoid any need for explicit indexing calculations involving LX.
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But we are interested only in the upper-left 4 by 8 submatrix. The indices in DATA corre-
sponding to the elements of F are still column-major in the whole array, so they differ from
those on page 84. The final program in §7.3.1 and the final program in §7.3.2 each include an
IF-THEN-ELSE block that sets certain loop parameters depending on which dimension IDIM

is being processed. The code on the next page combines the two programs, merging their
parameter-setting segments.
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INTEGER*4 NN(2)/4,8/,PLIM,PSTEP,P,Q,S,T,LD/5/
C

DO 1 IDIM=1,2
IF(IDIM.EQ.1) THEN

IST=3
IPLIM=2*NN(1)-3
IINC=2
KLIM=2*LD*NN(2)-2*LD
KINC=2*LD
MSZST=NN(1)
MLT=1
LGN=2

ELSE
IST=1+2*LD
IPLIM=2*LD*NN(2)-4*LD+1
IINC=2*LD
KLIM=2*NN(1)-2
KINC=2
MSZST=LD*NN(2)
MLT=LD
LGN=3

ENDIF
C

J=1
DO 2 I=IST,IPLIM,IINC

MSZ=MSZST
4 IF(J.LT.MSZ) GO TO 3

J=J-MSZ
MSZ=MSZ/2

GO TO 4
3 J=J+MSZ

IF(J.GT.I) THEN
C repeat for all rows or columns

DO 5 K=I,I+KLIM,KINC
T=J+(K-I)
WRITE(6,901) K,K+1,T,T+1

5 CONTINUE
ENDIF

2 CONTINUE
901 FORMAT(’(’,I2,’,’,I2,’) <--> (’,I2,’,’,I2,’)’)

C
LMAX=2
DO 6 M=1,LGN

PSTEP=LMAX*2*MLT
DO 7 L=1,LMAX,2

DO 8 P=(L-1)*MLT+1,IPLIM,PSTEP
Q=P+LMAX*MLT
DO 9 K=P,P+KLIM,KINC

T=Q+(K-P)
WRITE(6,902) K,K+1,T,T+1

9 CONTINUE
8 CONTINUE
7 CONTINUE

LMAX=LMAX*2
6 CONTINUE
1 CONTINUE

902 FORMAT(’(’,I2,’,’,I2,’) >< (’,I2,’,’,I2,’)’)
C

STOP
END
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The formulas for ILIM and PLIM are the same, so I have replaced both of those variables
by IPLIM. I have also replaced some occurrences of NN(1) by the leading dimension LD, so
that F can have 5 rows as shown above (the fact that it also has an extra column does not
matter). This program reports the same exchanges and butterflies that we found separately
before, but now the indices in DATA come out right for the picture on page 92.

To see how LD enters into the indexing, consider first what happens when IDIM=1. Then
we are thinking of the first column of F as the data vector to be transformed, and the
presence of an unused memory block at the end of that column has no effect on either
the rearrangement or the butterfly calculation. Only when those calculations are replicated
across the other columns does the actual length of the columns in F matter, so only the
parameters of the K loops are affected. The largest K value of interest as the first element
of an exchange or the top of a butterfly, KLIM, is still NN(2)-1 columns away, but now each
column is LD long so KLIM=2*LD*NN(2)-2*LD. The stride KINC between columns is now the
actual column length of 2*LD doublewords.

When IDIM=2, so that we are thinking of the first row of F as the data vector to be
transformed, it is the indexing across the columns that is affected. Now the top of the
second column is at index 1+2*LD in DATA, so that is IST. The top of the second-to-last
column is at 2*LD*NN(2)-4*LD+1, so that is IPLIM (it comes out to 2*5*8-4*5+1=61 for
our example). The increment between the tops of the columns, IINC, is now 2*LD. The
propagation of the calculations down the rows of F does not depend on the length of the
columns, so the K loop parameters are unaffected, but the distance PSTEP between the tops
of butterflies gets multiplied by the actual column stride 2*LD as we progress from stage
to stage in the signal-flow graph, so MLT=LD. In finding the columns to exchange it is still
necessary to start with MSZ set to the number of columns to be rearranged times the stride
in COMPLEX*16 data elements between them, so MSZST=LD*NN(2).

7.3.4 Library Subroutine

The indexing kernel on the previous page is embedded in the library subroutine FFT2ST

that is listed on the next 6 pages (the DFT2 and FFT2TR routines are each less than 60% as
long, but of course FFT2TR uses FFT to do most of its work). The calling sequence 4 is the
same as that for DFT2 and FFT2TR, so this routine can be used in place of either of those,
and it can be tested using the same driver if only the routine name is changed. Doing that
produces results identical to those found using FFT2TR for the pulse of §7.2, because they
are ultimately obtained by identical arithmetic operations.

The parameter checking 81-109 resembles that in FFT, but now both NX and NY must
be powers of 2, and an added test 118 ensures that F in the calling routine is big enough
for the number of rows and columns in use. The scaling 207-247 is like that in DFT2, and
so is the frequency-shifting 249-292 except that it must index into DATA to manipulate the
COMPLEX*16 memory blocks of F one doubleword at a time.

Now we have three routines for computing the DFT of two-dimensional data, DFT2,
FFT2TR, and FFT2ST. All are used in the same way and produce the same results, but we
expect that FFT2TR and FFT2ST will both be faster than DFT2.
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1 C
2 Code by Michael Kupferschmid
3 C
4 SUBROUTINE FFT2ST(LX,LY,NX,NY,INVDIR,SCALE,SHIFT,
5 ; DATA,BX,BY, RC)
6 C This routine computes in-place the direct or inverse fast
7 C Fourier transform of the numbers in DATA, by using strides
8 C to address the appropriate elements. It assumes that DATA
9 C points to an LX x LY COMPLEX*16 array F whose upper-left
10 C corner contains the NX x NY matrix to be transformed.
11 C
12 C variable meaning
13 C -------- -------
14 C BX limit of integration in X
15 C BY limit of integration in Y
16 C DATA input array, then its transform or inverse
17 C DCOS Fortran function returns cosine of REAL*8
18 C DCMPLX Fortran function returns COMPLEX*16 for two REAL*8s
19 C DFLOAT Fortran function returns REAL*8 for INTEGER*4
20 C DSIN Fortran function returns sine of a REAL*8
21 C DX sampling interval in X
22 C DY sampling interval in Y
23 C I index on DATA elements
24 C IDIM index on dimensions
25 C IINC increment on I in data rearrangement
26 C INVDIR +1 => direct transform, -1 => inverse transform
27 C IPLIM limit on I in data rearrangement, P in butterflies
28 C IST starting value of I in data rearrangement
29 C J second index on DATA elements for rearrangement
30 C K index on rows or columns for repeating swaps
31 C KINC increment on K in data rearrangement
32 C KLIM limit on K in data rearrangement
33 C L index on powers of W
34 C LGN log_2(NS(IDIM)) = stages in signal flow graph
35 C LMAX size of the transforms at this stage
36 C LX first dimension of F passed for DATA
37 C LY first dimension of F passed for DATA
38 C M index on stages in the signal flow graph
39 C MLT multiplier in formula for Q, P start and increment
40 C MSZ bit position of most significant 0 in an index value
41 C MSZST starting value of MSZ for this dimension
42 C MZRO bit pattern 10000000000000000000000000000000
43 C NBITS NN(IDIM) bit pattern shifted left
44 C NN [NX,NY]
45 C NNPREV values of NN on the previous call
46 C NS shifts to put NN(IDIM) 1 bit in sign position
47 C NX number of samples in X
48 C NY number of samples in Y
49 C P odd index of data pair at top of a butterfly
50 C PSTEP nodes between butterflies using the same power of W
51 C Q odd index of data pair at bottom of a butterfly
52 C RC return code; 0 => parameters make sense
53 C SCALE T => scale output or assume that input is scaled
54 C SFX scale factor in X
55 C SFY scale factor in Y
56 C SHIFT T => frequency-shift output or assume input shifted
57 C T location in DATA of butterfly element Q
58 C TEMPI temporary storage for real part of a DATA element
59 C TEMPR temporary storage for imag part of a DATA element
60 C THETA angle in W
61 C TWOPI twice circle constant
62 C WI imaginary part of W
63 C WMI imaginary part of W for this stage
64 C WMR real part of W for this stage
65 C WR real part of W
66 C WTEMP temporary in finding next power of W
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67 C
68 C formal parameters
69 LOGICAL*4 SCALE,SHIFT
70 REAL*8 DATA(2*LX*LY),BX,BY
71 INTEGER*4 RC
72 C
73 C local variables
74 REAL*8 DX,DY,SFX,SFY,TEMPI,TEMPR,THETA,WI,WMI,WMR,WR,WTEMP
75 REAL*8 TWOPI/6.2831853071795865D0/
76 INTEGER*4 NN(2),NNPREV(2)/2*Z’80000000’/,LGN(2)
77 INTEGER*4 MZRO/Z’80000000’/,P,PSTEP,Q,T
78 C
79 C ------------------------------------------------------------------
80 C
81 C sanity-check the input parameters
82 RC=0
83 C each way the number of points must be a positive power of 2
84 NN(1)=NX
85 NN(2)=NY
86 DO 1 IDIM=1,2
87 IF(NN(IDIM).NE.NNPREV(IDIM)) THEN
88 C this is a new NN; check it and find its log_2
89 NBITS=NN(IDIM)
90 DO 2 NS=1,32
91 IF(NBITS.LT.0) THEN
92 IF(NBITS.NE.MZRO) GO TO 3
93 IF(NS.EQ.1 .OR. NS.EQ.32) GO TO 3
94 LGN(IDIM)=32-NS
95 GO TO 1
96 ENDIF
97 NBITS=2*NBITS
98 2 CONTINUE
99 3 RC=1
100 ENDIF
101 1 CONTINUE
102 IF(RC.EQ.0) THEN
103 C they were both positive powers of 2; remember them
104 NNPREV(1)=NX
105 NNPREV(2)=NY
106 ELSE
107 NNPREV(1)=MZRO
108 NNPREV(2)=MZRO
109 ENDIF
110 C
111 C the transform flag must denote either direct or inverse
112 IF(INVDIR.NE.+1 .AND. INVDIR.NE.-1) RC=RC+2
113 C
114 C the upper limit of integration was assumed positive
115 IF(BX.LE.0.D0 .OR. BY.LE.0.D0) RC=RC+4
116 C
117 C the adjustable dimensions must be big enough
118 IF(LX.LT.NX .OR. LY.LT.NY) RC=RC+8
119 IF(RC.NE.0) RETURN
120 C
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121 C step over the two dimensions
122 DO 5 IDIM=1,2
123 C set the parameters for this dimension
124 IF(IDIM.EQ.1) THEN
125 C going down the first column
126 IST=3
127 IPLIM=2*NX-3
128 IINC=2
129 KLIM=2*LX*NY-2*LX
130 KINC=2*LX
131 MSZST=NX
132 MLT=1
133 ELSE
134 C going across the first row
135 IST=1+2*LX
136 IPLIM=2*LX*NY-4*LX+1
137 IINC=2*LX
138 KLIM=2*NX-2
139 KINC=2
140 MSZST=LX*NY
141 MLT=LX
142 ENDIF
143 C
144 C arrange input sequence by ascending bit-reversed index
145 J=1
146 DO 6 I=IST,IPLIM,IINC
147 MSZ=MSZST
148 8 IF(J.LT.MSZ) GO TO 7
149 J=J-MSZ
150 MSZ=MSZ/2
151 GO TO 8
152 7 J=J+MSZ
153 IF(J.GT.I) THEN
154 C repeat row swaps for all columns
155 DO 9 K=I,I+KLIM,KINC
156 C repeat the pair of row swaps in each column
157 T=J+(K-I)
158 TEMPR=DATA(K)
159 TEMPI=DATA(K+1)
160 DATA(K)=DATA(T)
161 DATA(K+1)=DATA(T+1)
162 DATA(T)=TEMPR
163 DATA(T+1)=TEMPI
164 9 CONTINUE
165 ENDIF
166 6 CONTINUE
167 C

98



168 C use the butterfly algorithm to evaluate signal flow graph
169 LMAX=2
170 DO 10 M=1,LGN(IDIM)
171 C set W^0=1
172 WR=1.D0
173 WI=0.D0
174 C
175 C compute the W for this stage
176 THETA=TWOPI/DFLOAT(INVDIR*LMAX)
177 WMR=DCOS(THETA)
178 WMI=DSIN(THETA)
179 C
180 C consider each power of W used in this stage
181 PSTEP=2*LMAX*MLT
182 DO 11 L=1,LMAX,2
183 C butterflies for this power of W in all groups
184 DO 12 P=(L-1)*MLT+1,IPLIM,PSTEP
185 Q=P+LMAX*MLT
186 C repeat for all rows or columns
187 DO 13 K=P,P+KLIM,KINC
188 T=Q+(K-P)
189 TEMPR=WR*DATA(T)-WI*DATA(T+1)
190 TEMPI=WR*DATA(T+1)+WI*DATA(T)
191 DATA(T)=DATA(K)-TEMPR
192 DATA(T+1)=DATA(K+1)-TEMPI
193 DATA(K)=DATA(K)+TEMPR
194 DATA(K+1)=DATA(K+1)+TEMPI
195 13 CONTINUE
196 12 CONTINUE
197 C
198 C find the next power of W as W*WP
199 WTEMP=WR
200 WR=WR*WMR-WI*WMI
201 WI=WI*WMR+WTEMP*WMI
202 11 CONTINUE
203 LMAX=LMAX*2
204 10 CONTINUE
205 5 CONTINUE
206 C
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207 C find sampling intervals and new upper limits of integration
208 IF(SCALE) THEN
209 IF(INVDIR.EQ.+1) THEN
210 DX=BX/DFLOAT(NX-1)
211 DY=BY/DFLOAT(NY-1)
212 IF(SHIFT) THEN
213 BX=DFLOAT(NX/2)/(DX*DFLOAT(NX))
214 BY=DFLOAT(NY/2)/(DY*DFLOAT(NY))
215 ELSE
216 BX=DFLOAT(NX-1)/(DX*DFLOAT(NX))
217 BY=DFLOAT(NY-1)/(DY*DFLOAT(NY))
218 ENDIF
219 ELSE
220 IF(SHIFT) THEN
221 DX=2.D0*BX/DFLOAT(NX)
222 DY=2.D0*BY/DFLOAT(NY)
223 ELSE
224 DX=BX/DFLOAT(NX-1)
225 DY=BY/DFLOAT(NY-1)
226 ENDIF
227 BX=DFLOAT(NX-1)/(DX*DFLOAT(NX))
228 BY=DFLOAT(NY-1)/(DY*DFLOAT(NY))
229 ENDIF
230 SFX=DX
231 SFY=DY
232 ELSE
233 IF(INVDIR.EQ.+1) THEN
234 SFX=1.D0
235 SFY=1.D0
236 ELSE
237 SFX=1.D0/DFLOAT(NX)
238 SFY=1.D0/DFLOAT(NY)
239 ENDIF
240 ENDIF
241 C
242 C scale the output values
243 IF(SFX.NE.1.D0 .OR. SFY.NE.1.D0) THEN
244 DO 14 I=1,2*LX*LY
245 DATA(I)=DCMPLX(SFX*SFY,0.D0)*DATA(I)
246 14 CONTINUE
247 ENDIF
248 C
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249 C shift, or compensate for having shifted before
250 IF(SHIFT) THEN
251 IF(INVDIR.EQ.1) THEN
252 C frequency-shift forward transforms of columns
253 DO 15 I=1,2*LX*NY-2*LX+1,2*LX
254 DATA(I+2*NX )=DATA(I+NX )
255 DATA(I+2*NX+1)=DATA(I+NX+1)
256 DO 16 J=I,I+NX-1,2
257 TEMPR=DATA(J)
258 TEMPI=DATA(J+1)
259 DATA(J)=DATA(J+NX)
260 DATA(J+1)=DATA(J+1+NX)
261 DATA(J+NX)=TEMPR
262 DATA(J+1+NX)=TEMPI
263 16 CONTINUE
264 15 CONTINUE
265 C frequency-shift forward transforms of rows
266 DO 17 I=1,2*(NX+1)-1,2
267 DATA(2*LX*NY+I )=DATA(I+LX*NY )
268 DATA(2*LX*NY+I+1)=DATA(I+LX*NY+1)
269 DO 18 J=I,I+LX*(NY-1),2*LX
270 TEMPR=DATA(J)
271 TEMPI=DATA(J+1)
272 DATA(J)=DATA(J+LX*NY)
273 DATA(J+1)=DATA(J+LX*NY+1)
274 DATA(J+LX*NY)=TEMPR
275 DATA(J+LX*NY+1)=TEMPI
276 18 CONTINUE
277 17 CONTINUE
278 ELSE
279 C fix up the inverse of the frequency-shifted transform
280 DO 19 I=2*LX+1,2*LX*NY-NY+1,4*LX
281 DO 20 J=I,I+2*NX-2,2
282 DATA(J)=-DATA(J)
283 DATA(J+1)=-DATA(J+1)
284 20 CONTINUE
285 19 CONTINUE
286 DO 21 I=3,2*NX-1,4
287 DO 22 J=I,I+2*LX*(NY-1),2*LX
288 DATA(J)=-DATA(J)
289 DATA(J+1)=-DATA(J+1)
290 22 CONTINUE
291 21 CONTINUE
292 ENDIF
293 ENDIF
294 RETURN
295 END
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