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Abstract

Tree codes, introduced in the seminal works of Schulman (STOC 93’, IEEE Transactions on
Information Theory 96’) are codes designed for interactive communication. Encoding in a tree
code is done in an online manner: the i-th codeword symbol depends only on the first i message
symbols. Codewords should have good tree distance meaning that for any two codewords,
starting at the first point of divergence, they should have large Hamming distance.

We investigate whether tree codes can be made to be locally testable. That is, can a tester,
which is given oracle access to an alleged codeword w of the tree code, decide whether w is
indeed a codeword or far from such, while only reading a sub-linear number of symbols from w.

As the main result of this work, we construct, for any r ≥ 3, a probabilistic tree code that is
locally testable using Õ(n2/r) queries. The tester accepts any codeword with probability 1 and
rejects strings that are δr-far from the code with high probability, where δr < 1 degrades with
r. Our probabilistic notion of a tree code is a relaxation of the standard notion and allows the
encoder to toss random coins. We require that encoded messages are far (in tree distance) from
any possible encoding of any other message.
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1 Introduction

Suppose we wish to encode a huge amount of data that is created across multiple generations.
Each generation creates new information and we would like to encode it in an online manner into
a repository. Naturally, we want the encoding to be such that in case a few errors happen we can
still decode and retrieve the information. A solution to this problem is offered by the beautiful
notion of a tree code, proposed by Schulman [Sch93, Sch96].

Tree codes, originally designed for encoding interactive communication, have two distinctive
features:

1. The encoding is done in an online manner. This means that the i-th symbol ci of the codeword,
can depend only on the first i symbols of the message (and not on future message symbols,
that in our context will be created by a future generation).

2. Given that codeword symbols cannot depend on future message symbols, one cannot hope to
achieve the standard notion of large Hamming distance between distinct codewords. Rather,
in tree codes we aim to have the property that once two codewords diverge, they should be
distinct on many coordinates. This guarantees that once an error happens, hereon, unless a
very large number of errors should happen, we can still recover the data.

In his seminal work, Schulman [Sch93, Sch96] showed that tree codes exist, albeit non-explicitly.
Specifically, based on a probabilistic argument, he proved that there exist tree codes with constant
rate and constant distance. In a following postscript [Sch94], he additionally describes an explicit
construction of a tree code that has inverse logarithmic rate. A recent exciting work by Cohen,
Haupler and Schulman [CHS18] gives an explicit construction with an exponential improvement in
the rate, i.e. with rate Θ(1/ log log(n)).

Returning to our cross generational encoding scheme, given the huge size of the database, we
want to enable testing that the stored data is still properly encoded. That is, to very efficiently
test that not too many errors occurred. In the standard coding setting, this can be achieved via
locally testable codes (LTCs). An LTC is a standard error-correcting code (i.e., distance is measured
according to standard Hamming distance), which additionally offers a method to efficiently detect
whether a given string is far from the code, while reading only a few of the bits. To the best of
our knowledge, no tree code in the literature is known to be locally testable.

LTCs grew out of the PCP literature, and indeed form the heart of many PCP constructions.
The notion originates in the works of Blum, Luby and Rubinfeld [BLR93] on linearity testing and
Rubinfeld and Sudan [RS96] on low degree testing. LTCs were fully formulated by Goldreich and
Sudan [GS06]. Following a long body of work [GS06, BSVW03, BGH+06, BS08, Din07, KMRS17],
in a recent exciting breakthrough, Dinur et al. [DEL+22] constructed an LTC with constant rate,
constant relative distance and constant query complexity. Still, all existing constructions of LTCs
are with respect to the Hamming distance metric, and in particular do not allow for an online
encoding as in tree codes. As such, they are unsuitable for our application.

1.1 Locally Testable Tree Codes

Our main result is a construction of a variant of tree codes, which is locally testable. In our variant,
and in contrast to the usual setting in tree codes, the encoding function can be randomized. Before
defining the precise model, we need to introduce the notion of tree distance and the corresponding
notion of a (standard) tree code.
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Channel C(n) Randomness Source

ρi ← R

mi,m
′
i ∈ Σin

Figure 1: The channel model for Definition 1.3.

Definition 1.1 (Tree Distance). Let Σ be an alphabet and n ∈ N. Let w,w′ ∈ Σn and let i∗ =
min{i : wi ̸= w′i} (and i∗ = 0 when w = w′). We define the tree distance between w and w′ as

∆T(w,w
′) = ∆H(w≥i∗ , w

′
≥i∗),

where ∆H denotes the relative Hamming distance and w≥i∗ the suffix of w starting at position i∗.

Definition 1.2 (Tree Code). A tree code is an injective function C =
{
Cn : (Σin)

n → Σout

}
n∈N

which, on input m = (m1, . . . ,mn) ∈ (Σin)
n, outputs

C(m) =
(
C1(m1), C2(m1,m2), . . . , Cn(m)

)
∈ (Σout)

n.

We say that C has distance δ if for every distinct c, c′ ∈ C of the same length, it holds that
∆T(c, c

′) ≥ δ.

Here and throughout, we allow the output alphabet to grow as a function of n. In such a case,

Σout may be viewed as an ensemble Σout =
{
Σ
(n)
out

}
n∈N, where Σ

(n)
out is the alphabet for the nth

codeword symbol, output by Cn. The rate of the code is then defined as log(|Σin|)/ log(|Σ
(n)
out|).

As mentioned above, we allow the encoding function to be probabilistic. Similarly to a tree
code, our code works in an online manner – in each round we are given a new message symbol and
in addition some new randomness, and we output a single codeword symbol (that may additionally
depend on the prior message and randomness symbols but not on the future ones).

We require encodings of distinct messages to be far from one another, under the tree distance,
even under a very strong adversarial model. The adversary, which we think of as a “channel”,
can select the message bits as a function of all previously generated random bits, including ones
generated for the current symbol.

Thus, we consider a channel C that operates as follows. In round i, a random symbol ρi is
selected (from some randomness space R) and seen by the channel. Then, the channel selects
two message symbols mi,m

′
i (which are not necessarily distinct). The channel terminates after

n rounds and so, overall, we obtain (ρ,m,m′), where ρ = (ρ1, . . . , ρn), m = (m1, . . . ,mn) and
m′ = (m′1, . . . ,m

′
n). We further require the channel to be such that the two generated messages m

and m′ are distinct. A depiction of the channel interaction is provided in Fig. 1.

Definition 1.3 (Probabilistic Tree Code). A probabilistic tree code C = {Cn : Σn
in ×Rn → Σout}

is a tree code where the encoding function takes in randomness. Specifically, the encoding of the
message m = (m1, . . . ,mn) ∈ Σn

in under randomness ρ = (ρ1, . . . , ρn) ∈ Rn, is defined as

C(m; ρ) =
(
C1(m1; ρ1), C2(m1,m1; ρ1, ρ2), . . . , Cn(m; ρ)

)
.

2



We say that C has tree distance δ : N → [0, 1], denoted ∆T(C), if for any channel C that always
outputs distinct messages m ̸= m′, it hold that

Pr
(m,m′,ρ)←C(n)

[
∃ρ′ ∈ Rn s.t. ∆T

(
C(m; ρ), C(m′; ρ′)

)
< δ(n)

]
is a negligible function in n.

In our constructions we have that Σout = (Σin)
ℓ for some parameter ℓ = ℓ(n). In such a case

notice that the rate is 1/ℓ.
Note that our notion of distance for a probabilistic tree code is that the encoding, under ran-

domness ρ of the message m, should be far (in tree distance) from the encoding of m′ under any
possible randomness ρ′. This means that once a message is encoded, as long as few errors occur, it
is close in tree distance to a unique codeword defined under any randomness.

We say that a (possibly, probabilistic) tree code C is locally testable with q queries for distance
δ, if there exists a randomized algorithm that makes at most q queries, accepts any string c ∈ C
with probability 1, and rejects any string that is δ-far from C, in tree distance, with probability at
least 1/2.

1.2 Main Result

Our main result, stated in the theorem below, is the construction of a locally testable probabilistic
tree code. We refer the reader to Corollary 7.5 for a more detailed statement.

Theorem 1.4 (Main Result). For any r ≥ 3, there exists a locally testable probabilistic tree code
C with rate 1/polylog(n) and distance 1− o(1). Specifically, there exists a tester for C that makes
Õ(n2/r) queries and rejects any word that is (1−Hr/r + o(1))-far from the code.

Here, Hr =
∑r

i=1 1/i is the rth harmonic number, which satisfies that Hr → ln(r) + γ, where
γ ≈ 0.577 is the Euler-Mascheroni constant. In particular, an instantiation of the theorem with
r = 3 gives a local test that rejects words that are far from the code yet are close enough to be in
the unique-decoding radius of some codeword (this is because 1−H3/3 = 14/36 < 1/2− o(1)). As
r increases, the query complexity of the tester improves, but the “testing radius” (i.e., the distance
in which the tester is guaranteed to reject) degrades and, in fact, approaches 1. An intriguing
question that we leave open is whether we can build a tree code that is a strong LTC; namely,
where the test rejects any δ-far word with probability Ω(δ).

Theorem 1.4 is proved by developing a generic transformation that takes any tree code, satis-
fying a certain linear structure, and transforms it into a (probabilistic) locally testable tree code.
We instantiate our transformation with the tree code constructed by Evans, Klugerman and Schul-
man [Sch94], specifically, a variant thereof that is presented in [Gel17, Section 3.1.1]. Their con-
struction is explicit and yields a tree code with constant distance and polylogarithmic rate, using
an error-correcting block code1 with constant distance and constant (or even polylogarithmic) rate,
e.g., Reed-Solomon. In addition, and crucially to us, their code satisfies our special notion of
linearity whenever the underlying block code is linear.

Since the introduction of tree codes and their first constructions [Sch93, Sch94, Sch96], the
tree code literature is mainly interested in minimizing the rate of tree codes, namely the size

1Recall a block code is the “standard” notion of an error correcting code, in particular where the length of
codewords is apriori fixed.
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of their output alphabets. The “holy grail” is building tree codes with constant distance over
constant-size alphabets, with the state-of-the-art consisting of non-explicit tree codes that achieve
constant rate [Sch96], or explicit tree codes that have rate Θ(1/ log log(n)) (with n being the length
of the encoded message thusfar) [CHS18]. Notably, the latter construction builds on a “rate-
1/2” construction over the integers. However, constructions with infinite alphabets are practically
incomparable to the setting where the alphabets are limited to be finite.

In contrast, our focus is to achieve tree codes that are locally testable. When local testability
is not required, there is a simple and generic construction of tree code from good error-correcting
codes that has rate 1/ log(n) (i.e. polynomial-size alphabet) [Sch94]. As far as we know, however,
this construction does not preserve local testability. In particular, we are not aware of any direct
or indirect construction of a locally testable tree code with any non-trivial rate.

Remark 1.5. One can instantiate our transformation using the non-explicit constant-rate tree code
from [Sch96]. However, the resulting code will still have rate 1/polylog(n) due to an overhead in-
curred by our transformation. We also remark that the code from [CHS18] with rate Θ(1/ log log(n))
is not linear and is therefore inapplicable to our purpose.

1.3 Towards Tree PCPs?

Our question of encoding information across generations stems from a more complex question
of similarly encoding computations. We think of an enormous computational task carried over
centuries by different generations. We would like to be able to encode the computation that was
performed so far in such a way that it is always possible to quickly check that it was performed
correctly.

We envision a construction of a tree PCP : a proof of correctness that can be generated in an
online manner and verified using a few queries. Given that LTCs form the heart of many PCP
constructions, we view our construction of a (probabilistic) locally testable tree code, as the first
step in such a construction.

We remark that this notion of a tree PCP, is related to, but distinct from, incremental PCPs
proposed by Naor, Paneth and Rothblum [NPR19]. In an incremental PCP, the PCPs symbols
all change as the computation evolves but they do so separately. That is, each symbol “updates
itself” without looking at any of the other symbols. In contrast, in a tree PCP whatever part of
the proof has already been generated becomes canon and any newly generated proof is appended
to the existing proof (and is therefore amenable to being constructed on, say, a blockchain).

A different approach for verifying an extremely long computation is via incrementally verifi-
able computations (IVC) proposed by Valiant [Val08] (see also [BCCT13, PP22]). An IVC is a
cryptographic proof-system in which one can prove, via a succinct proof, that a long computation
was done correctly. Moreover, IVCs require that the proof can be very efficiently updated as the
computation proceeds (in time independent in the length of the computation thusfar). In contrast,
we seek an information theoretic analog of tree codes for PCPs, where soundness is statistical but
we allow the update time to grow with the length of computation.

1.4 Techniques and Ideas

Here, we give a bird’s eye view of the technical contributions of this work. A more detailed overview
is provided in Section 2.
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The starting point for our construction is code tensoring, which has proven to be an extremely
effective tool to obtain local testability in the standard setting [BS04, Mei09, Vid15, KMRS17].
Most importantly for our purpose, Viderman [Vid15] shows that, for r ≥ 3, the r-fold tensor of any
code with good distance is locally testable.

Similarly to the standard notion (i.e. tensor of a block code), we define the r-fold tensor of a
tree code C, which we denote by Cr, to be the code that consists of all r-dimensional tensors where
every (axis-parallel) line is a codeword. While tensor tree codes do not immediately give locally
testable tree codes (as we discuss later on), they already give us meaningful properties. (i) First,
just by definition, they guarantee tree distance at any restriction to a line. (ii) Second, it turns
out that when the base code C is a special case of a linear tree code, namely a linear vector tree
code, then there exists an encoding function for Cr that is “online in r dimensions”.2 Specifically,
the codeword symbol at location i = (i1, . . . , ir) can be computed given all message symbols at
locations i′ = (i′1, . . . , i

′
r) where i′j ≤ ij for all j (in such a case we say that i′ ≤ i). (iii) Lastly, by

adapting the proof from [Vid15] to our setting, we show that tensor tree codes are locally testable
for tree distance at all lines. We elaborate on this below.

Roughly speaking, the test from [Vid15], which originates in [BS04], tests tensor codes for Ham-
ming distance by checking the codeword at a uniformly random (r−1)-dimensional hyperplane. In
the context of tree distance, the uniform distribution is unsuitable (indeed, it will not place enough
weight on the suffix) and so we modify the distribution by which the test samples the hyperplane to
give more weight to hyperplanes closer to the end. Intuitively speaking, since tree distance counts
the fraction of disagreements only in the suffix starting at the divergence, hyperplanes that are
closer to the end have more impact on tree distance simply because they appear in more suffixes
(in contrast to Hamming distance, where all hyperplanes have equal impact).

We show that such a test gives local testability even for a weaker notion of distance, which we
call suffix distance. At a high level, suffix distance between two words is defined as the probability
of disagreement when sampling a random point according to a distribution that is skewed towards
the end, similarly to what is described above.

So far we have described how to build tensor tree codes and identified their potentially useful
features. Unlike the standard setting, however, more work is needed to obtain tree LTCs. Recall
that tensors of block codes are useful since, in particular, they immediately convert into block
codes; Any embedding of the high-dimensional codewords into one dimension (which we hereby
refer to as flattening) preserves the Hamming distance. Further, the encoding function (when the
base code is linear) translates into an encoding function for the flattened code, and so does the
local test. In contrast, it is not clear whether a tensor tree code can be flattened to build a tree
code.

To begin with, in order to get the online encoding aspect in our tree code, the embedding of
the r-dimensional coordinate space into one dimension must be monotone. That is, a coordinate i
must be embedded after all coordinates i′ ≤ i to allow for online encoding. While there are plenty
of ways to define such a monotone embedding, we must be careful that our embedding preserves
the distance and local testability of the tensor tree code.

To that end, we devise an embedding that follows a traversal of the r-dimensional space, such
that the nth coordinate that is reached by the traversal is embedded at location t on the one-
dimensional line. At a high-level, our traversal proceeds in layers where, at the tth layer, it covers

2Recall that, even in the case of block codes, it is unclear how to encode a message under a tensor code unless the
base code is linear. In fact, the tensor of non-linear block codes might be empty.
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all coordinates i such that L∞(i) = t. That is, by the end of the tth layer, the traversal covers all
coordinates in the sub-cube ending at coordinate t = (t, . . . , t). Inside each of these layers, which
can be decomposed into segments of lower dimension, the traversal behaves recursively.

The key feature of our traversal is the following: The set of coordinates that the traversal
reaches up to any point can be covered by the union of a constant number of rectangular tensors.
In other words, the embedding of any (one-dimensional) codeword back to the r-dimensional space
produces a partial tensor that has a constant number of endpoints, i.e. maximal coordinates.3

Roughly speaking, such a bound is crucial to us since these endpoints essentially correspond to
parts of our flattened codeword (or, the partial tensor it embeds to) where we expect to have
codewords of the tensor tree code (recall codewords in the tensor tree code are, by definition,
rectangular). We elaborate below.

First, we show that the flattened code can be locally tested by applying the local test for the
tensor tree code at a randomly selected endpoint; By thorough analysis, we show that if the partial
tensor is far from the tensor tree code in tree distance, then there must exist an endpoint where
the corresponding rectangle is far from the code in suffix distance. This implies local testability
due to the local testability of the tensor tree code to suffix distance.

Second, we show that tree distance at all lines, guaranteed by the tensor code, can be boot-
strapped to tree distance of the flattened code using randomness. Specifically, we build a probabilis-
tic tree code using the tensor tree code that, when encoding the nth codeword symbol, additionally
samples a bunch of prior symbols and duplicates them, with the goal of “dragging past errors”.
The symbols that are sampled at time n concentrate around the endpoints of the partial tensor of
size n; We show that, although tree distance at all lines in the tensor code does not necessarily
imply tree distance in its flattening, it does imply suffix distance at one of the endpoints. Hence,
when properly sampling random symbols around the endpoint, we expect to amplify the distance
and produce many disagreements after the first divergence (with overwhelming probability).

1.5 On the Probabilistic Model

As noted above, our construction achieves a probabilistic notion of tree distance. Recall that a
probabilistic tree code is a tree code that guarantees distance in an adversarial noisy channel. Our
probabilistic model differs from the standard model of tree codes in the following two aspects.
First, we allow the online encoding algorithm to use randomness. Notice this randomness does not
play any part in the decoding and, therefore, should be thought of as local randomness and need
not be communicated. Second, we limit the adversarial channel to choose its corruptions in an
online manner; That is, the noise at any point in time cannot depend on the randomness sampled
for encoding symbols in the future. In an intuitive sense, we impose a “fair game” between the
communicating parties (the encoder and decoder) and the adversarial channel: On the one hand,
similarly to the standard notion, the encoder must encode any symbol independently of future
symbols and future noise. On the other hand, the channel must choose its corruption of any
symbol independently of future encoding randomness.

Consequently, we believe that probabilistic tree codes are a natural relaxation of tree codes, that
can be used to replace the standard notion in any natural application where local randomness is
allowed. In particular, similarly to the standard notion [Sch93, BR14], probabilistic tree codes can

3More formally, we say that a coordinate e is an endpoint of a partial tensor if, for any coordinate i populated by
the partial tensor, it holds i ̸≥ e.
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be also used to construct interactive encoding schemes whenever the adversarial channel is assumed
to act in the above online manner. For instance, this aligns with the natural real-life scenario where
the channel may be arbitrarily noisy, yet once a message that is sent by Alice reaches Bob, it is
recorded and is no longer corruptible by the channel. Further, only after recording Alice’s message,
Bob sends the next message in the protocol (and encodes it using fresh randomness).

2 Technical Overview

Our goal is to construct locally testable probabilistic tree codes. These are codes that (i) can be
encoded in an online fashion, (ii) exhibit good tree distance, and (iii) are accompanied with a tester
that, by looking at few locations in a word, is able to test its proximity to the code.

2.1 Local Testability via Tensoring

An important tool for generically constructing locally testable codes is the tensoring operation (see,
e.g., [BS04, Mei09, Vid15, KMRS17]). Let F be a field. The tensor product of two codes C1 ⊆ Fn1

and C2 ⊆ Fn2 , denoted C1⊗C2 ⊆ Fn1×n2 , consists of all n1×n2 dimensional matrices where every
column is a codeword of C1 and every row is a codeword of C2. In this work, we will always tensor
a code C with itself, possibly r > 2 times, which results in the r-fold tensor Cr = C ⊗ · · · ⊗ C.

While tensoring incurs a tolerable loss in distance (when C has relative distance δ, Cr guarantees
distance δr), it grants us the local testability we seek. Due to the strong structural properties of
tensor codes, it turns out that one can look at very few locations in a tensor to determine, with
good probability, whether it is in the code or whether it is far from it. A typical tester for a
tensor code is in fact very simple. In particular, a natural tester for the 2-fold tensor product C2

simply consists of sampling a line over the coordinates of the input matrix and checking whether
the restriction of the input codeword to the line belongs to the base code C.

Somewhat surprisingly, Valiant [Val05] (see also [GM12]) showed the above test does not always
work but an analogous test for dimension r ≥ 3 does work. Indeed, Viderman [Vid15] gave a general
local testability theorem for tensor codes. He showed that, for r ≥ 3, the r-fold tensor of any code
C (with good distance) is locally testable. For the sake of this outline, let us therefore fix r = 3.
The test is a generalization of the test sketched above to 3 dimensions: To test a three-dimensional
tensor, sample a random two-dimensional plane4 and test its membership in C2. The power of
Viderman’s result stems from its generality: his analysis works for any tensor code. Thus, given
an arbitrary code, using Viderman’s result, we can compose it with itself and derive an LTC.

2.2 Tensoring Tree Codes

A natural approach would be to try and achieve local testability for tree codes via tensoring.
Towards this end, we think of a tree code C as an infinite collection of block codes {Cn}n∈N, where,
for any n ∈ N, Cn is a block code with block-length n, in which any codeword has an (n− 1)-prefix
from Cn−1. Given a tree code C, with its corresponding collection of block codes {Cn}n∈N, we
may define the tensor code C2 = C ⊗C to consist of all codewords that are in Cn1 ⊗Cn2 for some
n1, n2 ∈ N. In other words, C2 is the infinite collection of tensor block codes {Cn1 ⊗ Cn2}n1,n2∈N.

4While such a tester has query complexity n2/3, in the general case where r > 3, one can generically reduce the
complexity of the test to n2/r via recursion (see Proposition 3.11).
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This, in turn, can be generalized to any order r > 2 to capture the r-fold tensor of of a tree code
C, which we denote by Cr.

It is not at all clear whether tensor tree codes give us anything meaningful, let alone whether
they correspond to the standard notion of a tree code. To gain better intuition, let us take a
closer look on the properties of such a tensor code Cr for r = 2, ignoring for the moment the
aforementioned limitations on this case in the standard setting [Val05, GM12].

Online Encoding in Two-dimensions. First, observe that by our definition, any codeword c
of length n1 × n2 in the tensor code Cr consists of a shorter codeword of length n1 × (n2 − 1) and,
simultaneously, a shorter codeword of length (n1−2)×n2 (obtained by removing the last column or,
resp., last row). In fact, the restriction of c to all coordinates except for the furthest corner, namely
([n1]× [n2])\{(n1, n2)}, is a codeword in the corresponding restriction of the code. This gives hope
for some notion of online encoding since a similar structure, though over the one-dimensional line,
is essentially what allows for a tree code to be encoded in an online manner.

Even in the standard setting, it is generally not clear how to build an encoding function for a
tensor C2 given an encoding function of C. Fortunately, however, when we assume that the base
code C is linear, then this task is much simpler thanks to the algebraic structure of linear codes
and their tensor products. More specifically, letting C : Fk → Fn be a linear code,5 a possible
encoding function of the tensor C2 takes as input a matrix m ∈ Fk×k, applies C over its rows to
obtain an k×n matrix c′ over F, then applies C over the columns of c′ to obtain the final codeword
c = C2(m) ∈ Fn×n. In particular, it holds that such an encoding function corresponds to the linear
map C ⊗ C (here, ⊗ is the tensor product operation over linear maps).

We propose a notion of linear vector tree codes that enables us to follow an outline similar to
the above. Specifically, we require that the linear tree code takes as input message symbols from
a field F and that any codeword symbol is a vector over F obtained as a linear transformation on
the message thusfar. Thus, the output alphabet is a vector space over the input alphabet, which
is itself a field. While this is often regarded as the standard notion of linear block codes, things
are different in the tree code literature (e.g. [CHS18]). Specifically, since, by syntax, a tree code
inherently maps n input symbols to n output symbols, the output alphabet must be larger than the
input alphabet to obtain redundancy. Therefore, linear tree codes are generally defined as mapping
one ring to another. Our definition of linear vector tree codes further imposes the above vector-
space structure, which does not necessarily hold in general linear tree codes. A similar definition
to ours is made in [Pud13], though it considers the less general case of finite tree codes.

The linear vector notion essentially means that the message space and codeword space, for any
fixed length n ∈ N, are both vector spaces over the same field. Consequently, any linear vector tree
code C can be viewed as a collection of linear block codes {Cn : Fn → Fℓ·n} for some ℓ ∈ N, which
possibly grows with n.

An example of such a linear vector tree code is in one of Schulman’s [Sch96] original (non-
explicit) tree code construction (as presented in [Gel17, Section 2.1]). That construction encodes
binary messages while utilizing a random polynomial, which can be fixed non-uniformly (and is
the reason the construction is non-explicit). If that polynomial is over an extension field of the
binary field (i.e., it has characteristic 2) then the resulting construction is a linear vector tree code.
Similarly, one of the main constructions in [CHS18] (namely, the one directly based on Newton

5Note we overload notation and use C to denote both the code and the encoding function.
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polynomials) has similar structure, albeit over the integers. Thus, in the sequel, we will assume
that our base tree code is indeed a linear vector tree code.

Interpreting any linear vector tree code C as a collection of (standard) linear codes that have an
online encoding function, we are able to identify an encoding function for the tensor C2 (and, more
generally, for Cr for any r > 1). The encoding function takes as input a matrix m ∈ Fn1×n2 and
outputs a codeword c ∈ Fℓn1×ℓn2 . The “online-ness” of the encoding of C translates to the following
notion of online encoding for C2: To encode the symbol at location i = (i1, i2) in c, it is sufficient
to look only at the input symbols at coordinates i′ = (i′1, i

′
2) such that i′1 ≤ i and i′2 ≤ i2. Thus,

one can think of this encoding function as an online function with respect to a “two-dimensional
time”, where only a partial order between coordinates exist. More specifically, letting i′ ≤ i denote
the case where i′1 ≤ i1 and i′2 ≤ i2, then our encoding function outputs the “next symbol” at time
i ∈ N2 (i.e. the symbol at location i in the codeword) given all message symbols from time i′ ≤ i –
intuitively speaking, all symbols from the “two-dimensional past”.

We refer to a code that satisfies the above online encoding notion as a two-dimensional tree
code. In the general case, we use the term high-dimensional tree code.

Keep in mind that, while we have identified an encoding function for tensor tree codes that
satisfies a meaningful “online-ness” notion, it is not clear how to convert such an encoding function
to a properly-online encoding function as required by a tree code; Say we want to build a tree code
given a high-dimensional tree code. It is not even clear what constitutes the encoding of the ith

codeword symbol given i input symbols, under such a transformation.6 Let us put this issue aside
for now and continue our investigation in the other desired properties in tensor tree codes, namely
distance and local testability.

Distance at all Lines. When it comes to distance, it is immediate by definition that any re-
striction of C2 to a line (either a row or a column) yields a tree code (which is in fact C). Hence,
for any two codewords c, c′ ∈ C2 of length n1 × n2, and any line ℓ (of length n1 or n2), it holds
that, if c and c′ disagree at some point on ℓ, then their respective restrictions to ℓ must be far in
tree distance. A high-dimensional code that satisfies this property and, in particular, any Cr for
any r > 1, is said to have tree distance at all lines. Following up on the intuition from above, one
can think of this distance notion as the analog of tree distance in the imagined high-dimensional
time, where tree distance holds across any one-dimensional timeline.

2.3 Testing Tensored Tree Codes

Recall that Viderman [Vid15] showed that any tensor code Cr is an LTC given C has good Hamming
distance and r ≥ 3. It would be useful if we could prove an analogous theorem for tensor tree
codes. Specifically, local testability with respect to the distance notion they guarantee, namely tree
distance at all lines.

The tester from [Vid15] for, say, the 3-dimensional tensor C3, samples a uniformly random two-
dimensional (axis-orthogonal) plane and checks whether it is in C2. Such a test cannot possibly

6Note that the notion of a block code generalizes naturally to include codes over high-dimensional spaces; An
r-dimensional block code C is a subset of codewords over some Σ of length N = n1 × · · · × nr, i.e. C ⊆ ΣN . This
generalization is immaterial to the standard distance metric in code theory, namely the Hamming distance, as the
latter is oblivious to the number of dimensions in a code’s domain; the codewords of any high-dimensional code
can be “flattened” to one dimension preserving the Hamming distance. As demonstrated, however, there is a more
substantial gap between the notion of a tree code and its high-dimensional variant.
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be useful to detect high tree distance at all lines; For simplicity, assume we have a code with tree
distance 1/2 at all lines and that we want to test for distance 1/3. Consider a word w ∈ Σn×n×n

where the only non-zero value is at coordinate (n−2, n−2, n−2). Such a word cannot possibly be a
codeword since it is 1/3-close to the all zero string (recall the code is linear and so the all zero string
is always a codeword). However, the test will sample a non-zero plane only with probability only
1/n2. Hence, roughly put, the uniform distribution over planes is simply not suitable for detecting
tree distance.

The above observation leads us to identify a distribution over the planes that suits our purpose.
Along the way and, in particular, to facilitate our analysis, we define a new notion of distance called
suffix distance.

The Suffix Distribution. Let us look again at the toy example from above. For simplicity,
let us consider a simpler variant, where the goal is to “catch” a non-zero in a one-dimensional
codeword w with tree weight δ (i.e. tree distance δ from the zeros string). Intuitively, sampling a
uniformly random point is natural for testing Hamming distance since, if w had Hamming weight
δ, then a uniformly random point is a non-zero with probability δ. Let us try, then, the following
naive solution for detecting tree weight: First, “guess” a location j at which we suspect the first
disagreement occurs. Second, sample a uniformly random point in the suffix starting at j. Since
tree distance is essentially the Hamming weight after the first disagreement, this test will catch a
non-zero with probability at least δ/n. Unfortunately, this is also (almost) the best we can do using
such a test, with the worst case being when the first disagreement happens almost at the very end
(in which case the gap between tree weight and Hamming weight is the largest).

A better idea that avoids the linear loss is to try to guess where the first non-zero occurs up
to a factor 2 multiplicative approximation. That is, sample j ∈ [log(n)] uniformly at random, and
observe that, with probability at least 1/ log(n), the first non-zero falls in the interval [n− 2j , n−
2j−1+1]. Notice that if we guessed correctly, then, due to the tree distance, the interval [n− 2j , n]
must contain at least a δ/2 fraction of non-zeros. Thus, by sampling i ∈ [n − 2j , n] uniformly at
random, with probability at least δ/2 we will find a non-zero. Overall, we catch a non-zero with
probability at least δ

2 logn .
Notice that the distribution described above for sampling an index i is heavily skewed towards

the end of the string. Indeed, a simple calculation shows that a particular index i is sampled with
probability roughly

1

log n
·

log(n)∑
ℓ=log(n−i)

1

2ℓ
≈ 1

log(n)
· 2

n− i
.

The above gives us an inspiration to define a “nicer” distribution, that can be thought of as a
“smoothening” of the test above. We define the suffix distribution over a range [n], to sample an
integer i ∈ [n] with probability

σn(i) =
1

Hn
· 1

n− i
, (1)

where Hn is the nth harmonic number7 and its inverse is used for normalization (i.e., so that σn
indeed specifies a distribution over [n]).

7Hn =
∑n

i=1 1/i. It holds that Hn = lnn−O(1)
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(1, 1)

(n, n)

Figure 2: The suffix distribution over two dimensions.

The Test. It turns out that the suffix distribution is a key to converting the usefulness of tensors
in standard LTCs to the tree code settings. We propose the following test for a 3-dimensional
tensor tree code C3: Given a word w ∈ Nn1×n2×n3 as input,

(1) Sample an axis d ∈ [3].

(2) Sample a two-dimensional plane pl that is orthogonal to axis d, where the plane that is at
location i on d is sampled with probability σnd

(i).

(3) Accept if and only if the restriction of w to pl is in C2.

Using the insight that tree weight can be “measured” by the suffix distribution we are able to
adapt the analysis of Viderman [Vid15] to obtain a local testability theorem for tensor tree codes.
Specifically, we prove that r-fold tree tensors are locally testable with respect to tree distance at all
lines, assuming the base code has such a distance guarantee. In fact, we show local testability for
a strictly weaker notion of distance, namely suffix distance, which tightly matches our test; Suffix
distance between two words w,w′ ∈ Σn1×n2×n3 is defined as the expected disagreement between
the words at a point i = (i1, i2, i3) sampled randomly with probability

σn1×n2×n3 = σn1(i1) · σn2(i2) · σn3(i3). (2)

In particular, the above is an extension of the suffix distribution to 3 dimensions, and can be
extended to general r-dimensional tensors. A visualization of the two-dimensional suffix distribution
as a “heatmap” is given in Figure 2.

2.4 Flattening Tensors

A standard tensor code that is an LTC immediately gives a (one-dimensional) block code: We can
“flatten” any high-dimensional tensor w via any arbitrary embedding of of the high-dimensional
space of coordinates to one dimension; Hamming distance is still preserved and there are no struc-
tural requirement over the encoding function (see Footnote 6).
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We aim for a similar solution in the context of tree codes. In general, to “flatten” a tensor code
C and obtain a regular tree code C in one dimension, we must specify a way to traverse over the
high-dimensional space Nr, virtually defining a 1-1 mapping between any integer i ∈ N and the
ith r-dimensional coordinate to be reached by the walk, which we denote by i ∈ Nr. Given such a
traversal, to encode the ith codeword symbol given the ith message symbol, one simply computes
Ci(m≤i). A careful reader may already notice that, unlike in the standard setting, the flattening
for tensor tree codes cannot be performed via an arbitrary traversal. Indeed, to obtain an online
encoding function under this outline, our traversal over Nr must be monotone. That is, by the time
the walk reaches coordinate i ∈ Nr, it must have visited all coordinates i′ ≤ i, i′ ̸= i.

Things get more complicated, however, when we think of the other two properties that we would
like to preserve under the flattening, namely distance and local testability.

The Distance Problem. To begin with, tree distance is highly order-sensitive by the simple
fact that permutations do not preserve it (as opposed to Hamming distance, for instance). Thus,
different choices of traversal might give different distance between codewords. It is not even clear
whether it is possible to turn tree distance at all lines in a high-dimensional tensor to tree distance in
one-dimension. To see why this can be an issue, imagine, for instance, that the first disagreement
between two 2-dimensional codewords occurs at location i = (i1, i2). It can be the case that
all other disagreements occur in the 2-dimensional suffix after i, namely at coordinates i′ ≥ i.
Therefore, intuitively speaking, for the distance to be preserved to some extent, the traversal
must “concentrate” in this 2-dimensional suffix right after it reaches the coordinate i. This is
virtually impossible since, on the one hand, the encoding procedure (and, therefore, the traversal)
is independent in i and, on the other hand, a “symmetric” traversal that advances somewhat evenly
throughout the space, will enter the suffix of errors too infrequently (roughly speaking, once every√
n steps, or n(r−1)/r in the general case).

Local Testability. Local testability does not convert smoothly either. Imagine a word w of
length n. To test whether w is in the flattened code C, it is natural to look at its “lifting” back to
the high-dimensional space of coordinates. The lifting, which we denote by w, is an r-dimensional
object. However, for most values of n, w is not a “full” tensor, namely it does not populate a full
r-dimensional rectangle, but rather only a partial tensor. It is not clear, then, how to test such
an object since we are equipped only with a local test for tensors, which we cannot apply over w
directly.

Another obvious gap is that the tester we have for C is with respect to tree distance at all lines
(and, in particular, w.r.t suffix distance), while the tester we seek for C is w.r.t. tree distance over
the one-dimensional space that accommodates the flattened tensor.

Despite its incompatibility, we can still think of a tester T for the flattened code C that utilizes
a tester T for the tensor code C w.r.t. suffix distance. On input a word w, our tester applies T
over maximal full sub-tensors inside the lifting w: define the set of endpoints in w to be the set of
all maximal coordinates in w (i.e. any e such that w does not populate coordinates i ≥ e). Our
tester T , then, samples a random such endpoint e and applies T to the (full) tensor ending at e.

Such a test makes sense on the intuitive level for the following reason. When w is far from
the code C in tree distance, there exists a suffix in w where many errors occur. By the presumed
monotonicity of our encoding function (see above), the embedding of such a suffix of errors in high
dimensions must induce errors in the range of at least one of the endpoints which, in turn, results
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in high suffix distance in the corresponding sub-tensor. Formalizing this intuition turns out to be
highly non-trivial and requires careful technical analysis. This is because, potentially, the closest
codeword to the restriction to any sub-tensor might not be consistent with the closest codeword to
w. It might be the case, for example, that any sub-tensor is close enough to its closest codeword,
yet none of these closest codewords are equal, and the word w as a whole is far from the code. We
refer the reader to Section 6.2 for further elaboration and a full proof.

Even with the above argument being proven – that high tree distance of w translates to high
suffix distance in one of the endpoints of w – the local testability of a flattened code is not yet
confirmed. Notice that, since our tester T samples a uniformly random endpoint, it is crucial that
the number of endpoints is small for soundness to be reasonable. Hence, even the local testability
of C, similarly to its distance, heavily relies on the design of our traversal (at least according to
this outline).

With the above observations in mind, we proceed to describe the traversal which, as described
above, immediately defines the flattened code C.

The Traversal. Our traversal over N3 is a recursive procedure, which “hops” between different
parts in N3 of lower dimensions, i.e. 2-dimensional rectangles, 1-dimensional segments, and 0-
dimensional points, and traverses over them recursively. Traversing a one-dimensional segment is
straight-forward given the traversal has to be monotone. We now describe our traversal over three
dimensions. The traversal over two dimensions follows the same abstract logic. We complement
our description with helpful visualizations in Figs. 3 and 4.

The traversal is performed in layers, where by the end of every layer we have traversed all
coordinates in a slightly larger cube. In more details, the first layer consists simply of the coordinate
(1,1,1). In the second layer, we traverse all additional points in the cube ending at (2,2,2). At the
end of the third layer we reach (3,3,3), and so on. It remains, then, to determine the order among
the coordinates in each such layer, keeping in mind that the order has to be monotone. At a high
level, observe that each layer consists of the following parts that “wrap around” the cube from the
previous layer: First, there are the three faces corresponding to each of the 3 directions in which we
can “inflate” the cube further; at layer t these correspond to all coordinates that have t at one of the
dimensions (and only one). Second, there are the pairwise intersections between the continuation
of these faces, namely the three segments corresponding to coordinates where the value t is found
in two out of the three dimensions. Lastly, there is the point where all the continuation of the three
segments intersect, namely the furthest corner in the layer, (t, t, t). Given this partitioning, our
strategy, as mentioned above, is to recursively traverse each of these objects (the faces, segments
and corner), which are of lower dimensionality.

In the general case of r-dimensions, any layer consists of r (r− 1)-dimensional “faces”, between
which there are

(
r
2

)
“intersections” of dimension r − 2 and, in general,

(
r
d

)
subspaces of dimension

r − d, each corresponding to inflating the cube from the previous layer in d different directions.
Notice that such a traversal is monotone as long as we are careful to make these recursive calls
in a descending order in their size, starting with the 2-dimensional faces and ending up with the
“0-dimensional” corner.

A formal description of the traversal can be found in Fig. 6.
As hinted above, we can show that our traversal exhibits a small number of endpoints at every

step. In fact, there are always at most r · 2r endpoints. This allows us to carry out the above
outline for local testability and obtain a locally testable flattened tensor. That is, a locally testable
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Figure 3: The ninth layer in the traversal over N2. In orange are the recursive calls to the traversal
over one-dimensional lines and a zero-dimensional point, ordered from left to right. The choice to
traverse the column before the row is arbitrary.

Figure 4: The ninth layer in the traversal over N3. In orange are the recursive calls to the traversal
over segments of lower dimensionality, ordered from left to right. The order between calls to the
different segments in each step of the illustration is determined arbitrarily.

tree code! We should not declare victory yet, however, since the distance issue remains: While our
flattened code is a tree code, it does not guarantee tree distance between its codewords.

We proceed to present the last step in our work, where we bootstrap our flattened code to a tree
code that actually satisfies tree distance, while preserving local testability. Since our bootstrapping
uses randomness, we obtain a probabilistic tree code (see Definition 1.3).

Bootstrapping Suffix Distance to Tree Distance. At the heart of our transformation is a
simple idea for generically bootstrapping suffix distance to tree distance in the probabilistic setting.
Given that tree distance is a stronger notion than suffix distance in the deterministic setting, such
a bootstrapping implies that the notions are in fact equivalent in the probabilistic setting.

Assume we have a tree code CS that satisfies suffix distance. For simplicity, let us assume it is
a one-dimensional tree code. Recall the probabilistic definition of tree code, where the goal is to
create large tree distance between the encodings of two distinct messages m and m′ that are chosen
interactively by a channel C as depicted in Fig. 1.

Our high level idea is to copy, when encoding the ith symbol of the message, randomly chosen
codeword symbols from the past, hoping to “catch” a coordinate where a disagreement between
CS(m) and CS(m

′) has already occurred. Assuming m and m′ already exhibit a disagreement before
time i, it holds by the assumed distance of CS that the encodings c = CS(m<i) and c′ = CS(m<i′)
are far in suffix distance. What this means is that c and c′ are expected to disagree, with good
probability, over a random point i′, sampled from the suffix distribution σi−1 (defined in Eq. (1)).
Consequently, we sample sufficiently many such previous coordinates i′ < i, according to the
suffix distribution, and copy (i′, ci′) to the ith symbol. Notice that, since the randomness used at
coordinate i is sampled after m<i and m<i′ are fixed, an error will be caught with high probability,
regardless of the choice of C for the messages m<i and m′<i.

Overall, our probabilistic code, which we denote by CT, consists of three parallel tapes: (i) An
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encoding tape where the message is encoded under CS, (ii) a sample tape that, at coordinate i,
contains a polylogarithmic number of samples from previous coordinates in the encoding tape, and
(iii) a randomness tape where the random bits used for the sampling are registered.

The argument for tree distance of CT is as follows. Let m, m′ and ρ be the two messages and
randomness obtained from the interaction with C after n rounds. Following the above reasoning,
we prove that c = C(m; ρ) and c′ = C(m′; ρ) must be far; again, by the way ρ is sampled, it must
“catch” disagreements between apriori fixed codeword symbols. We argue that this already implies
that c is far from any encoding of m′ under any randomness ρ′. To see this, observe that in any
attempt to “fix” a symbol in c′ to match the value in c is doomed to fail; in particular, to fix a
pair (i′, c′i′) in the sample tape, one must change the value of c′i′ (i′ is equal in both codewords
since they use the same randomness). This is impossible to do unless one changes the value of i′,
in which case the codewords remain in disagreement.

We stress that, fortunately, the transformation from CS to CT preserves local testability. A
tester for CT applies the tester for CS, over the encoding tape, and performs consistency checks of
the sample tape with the encoding and randomness. The consistency checks consist of standard
sub-sampling, yet, not surprisingly, must use the suffix distribution. For more details, we refer the
reader to the description of the test in Figure 7.

Collecting Errors from All Endpoints. Lastly, we generalize the above transformation to
high-dimensional tree codes. We generalize the above in a most straight-forward way: Suffix
distribution is replaced with its high-dimensional extension (see Eq. (2)) and, more importantly,
at coordinate i ∈ Nr, we collect samples from any maximal sub-tensor, namely from the range
of any endpoint (in the one-dimensional case there is only one endpoint – the last coordinate i).
Tree distance follows since, if m and m′ diverge, they must disagree at least in one of the maximal
sub-tensors, in over which their encodings must exhibit large suffix distance (by the assumption
on CS). Further, since the number of endpoints is bound by constant, the transformation still
introduces only a polylogarithmic blow-up in the rate of the code.

3 Preliminaries

Basic Notation. For a string w ∈ Σn, we use w≤i to denote its prefix of length i and by w≥i its
suffix starting at position i (of length n− i+ 1). For Q ⊆ [n], we use wQ to denote the projection
of the string to coordinates in Q. We denote by 0 the all-zero tensor (where size is always clear
from context), by 1j the jth unit vector, and by 1 =

∑
j 1j the all-ones tensor.

High-dimensional Notation. We typically use boldface to denote high-dimensional objects,
e.g. w. We use an r-tuple of integers N = (n1, . . . , nr) ∈ Nr to denote the size of a rect-
angular r-dimensional tensor that has length nd at dimension d = 1, . . . , r. We sometimes write
N = n1 × · · · × nr to implicitly specify thatN is such a size parameter, and denote the r-dimensional
space by ΣN = Σn1×···×nr . For any high-dimensional size parameters N1 ∈ Nr1 and N2 ∈ Nr2 , we
let N1×N2 denote their concatenation, namely the size of the corresponding (r1+ r2)-dimensional
product space. We use the notation [N ] = [n1]× · · · × [nr] to denote the range of coordinates of a
tensor of size N and, consequently, |[N ]| =

∏
i ni. We write w ∈ ΣI , for a subset I ⊆ Nr (that is

not necessarily a rectangle), to refer to a partial tensor that is defined only over the coordinates in
I (observe that such a partial tensor can be viewed as a function w : I → Σ).
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We additionally use boldface to denote coordinates in high-dimensional spaces. For any two
such coordinates i, j ∈ [N ], letting i = (i1, . . . , ir) and j = (j1, . . . , jr), we say that i < j, or i ≤ j,
if and only if ik < jk or, resp., ik ≤ jk, for all k = 1, . . . , r. Note that this induces a partial order
relation over the space of coordinates. In particular, we use ̸< and, respectively, ̸≤ to denote the
complements of the aforementioned relations (these are not equivalent to ≥ or >).

3.1 Codes in High Dimension

Definition 3.1 (Monotone Set of Coordinates). We say that I ⊂ Nr is monotone if i ∈ I and
j ≤ i implies j ∈ I for any i, j ∈ Nr.

Definition 3.2 (Code). Let r ∈ N. An r-dimensional code C over an alphabet Σ is simply a subset
C ⊆

⋃
N∈Nr ΣN . A codeword in C is any w ∈ C.

We sometimes overload notation and use C to refer also to an injective encoding function that
maps a message space to codewords in C (in cases where the encoding function will be clear from
context).

For a set Q ⊆ Nr, we use CQ to denote the restriction of the code C to the coordinates Q,
Namely, CQ = {wQ | w ∈ C}.

Definition 3.3 (Code Distance). Let r ∈ N. Let ∆ = {∆N : ΣN ×ΣN → [0, 1]}N∈Nr be a distance
metric. For any N ∈ Nr such that C ∩ ΣN ̸= ∅, we denote

∆N (C) = min
w,w′∈C∩ΣN

w ̸=w′

∆(w,w′),

and say that an (r-dimensional) code C has ∆-distance δ : Nr → [0, 1] if ∆N (C) ≥ δ(N) for all
such N ∈ Nr.

We define the distance between any w ∈ ΣN and a code C (such that C∩ΣN ̸= ∅) as ∆(w, C) =
minw′∈C∩ΣN ∆(w,w′).

3.2 Local Testing of Codes

In the task of locally testing a code C, a tester is a randomized algorithm that is given oracle access
to a word w ∈ ΣN , and its goal is to correctly determine whether w is a codeword in C with good
probability, by looking only at a bounded number of locations in w.

In this work, and following standard literature,8 we will consider the special case of testers that
make non-adaptive queries to w and have perfect completeness (i.e. accept a codeword w ∈ C with
probability 1). Without loss of generality, one may assume that the tester computes a (randomized)
query set Q ⊆ [N ], queries w at the locations specified by Q to obtain wQ, then outputs 1 if and
only if wQ ∈ CQ. Note that such a canonical tester has perfect completeness, and soundness error
may be calculated as Pr[wQ /∈ CQ].

Thus, it is possible to reduce the tester to the randomized algorithm that outputs the query set
Q, as we do in the definition below. Further, since our general construction relies on composing a
sequence of testers, we define stronger notions of local testing.

8We generalize standard LTC notions to fit in our high-dimensional perspective.
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Definition 3.4 (Locally Testable Codes). Let r ∈ N and q : Nr → N. A q-query tester (for
r-dimensional codes) is an ensemble T = {TN}N∈Nr where, for any N ∈ Nr, TN is a distribution
over subsets Q ⊆ [N ] of size |Q| ≤ q(N).

• For q : Nr → N, ϵ, δ : Nr → [0, 1], we say that an r-dimensional code C is a (∆, q, ϵ, δ)-locally
testable code (or (∆, q, ϵ, δ)-LTC for short) if there exists a q-query tester such that, for any
N ∈ Nr and w ∈ ΣN , if ∆(w,C) ≥ δ(N) then PrQ←TN

[wQ /∈ CQ] ≥ ϵ(N).

• For q : Nr → N, ϵ : Nr → [0, 1], we say that C is a (∆, q, ϵ)-strong LTC if there exists a
q-query tester such that, for any N ∈ Nr and w ∈ ΣN it holds that PrQ←TN

[wQ /∈ CQ] ≥
ϵ(N) ·∆(w,C).

• For q : Nr → N, ϵ, ρ : Nr → [0, 1], we say that C is a (∆, q, ρ)-robust LTC if there exists a
q-query tester such that, for any N ∈ Nr and w ∈ ΣN it holds that EQ←TN

[∆(wQ, CQ)] ≥
ρ(N) ·∆(w,C).

We say that C is simply (∆, q, δ)-LTC if there exists a constant ϵ > 0 such that C is (∆, q, δ, ϵ)-
LTC.

The following proposition follows from straight-forward amplification.

Proposition 3.5. If C is a (∆, q, ϵ, δ)-LTC then it is (∆, s · q, 1− e−ϵ·s, δ)-LTC for any s ∈ N.

3.3 Tensoring Block Codes

Definition 3.6 (Block Code). A (one-dimensional) block code C over Σ with block-length n ∈ N
is a subset of codewords of fixed length n, namely a code C ⊆ Σn.

More generally, an r-dimensional block code C with block-length N ∈ Nr is a subset C ⊆ ΣN .

Definition 3.7 (Linear Block Code). Let F be a field and r ∈ N. We say that an r-dimensional
block code C over F is a linear (block) code if the linear combination of any two codewords in C is
also a codeword in C. In particular, C is a vector space over F.

We say that such a linear code C is an [N, k]F-code, for N ∈ Nr and k ∈ N, if it has block-length
N and dimFC = k.

We say that a linear transformation C : FK → FN is a generator for an [N, k]F-code C if and
only if |[K]| = k and C = {C(m) |m ∈ FK}.

Definition 3.8 (Tensor Product of Block Codes). Let C1 and C2 be (possibly high-dimensional)
block codes over ΣN1 and, respectively, ΣN2. The tensor product of C1 and C2, denoted by C1⊗C2,
consists of all codewords w ∈ ΣN1×N2, such that any column9 in w is a codeword in C1 and any
row in w is a codeword in C2.

Further, we define C1 = C and Cr = Cr−1 ⊗ C for any r > 1.

Proposition 3.9. If C1 ⊂ FN1 , C2 ⊂ FN2 are linear codes of dimensions r1 and, resp., r2, then it
holds that their tensor product code (see Definition 3.8) is

C1 ⊗ C2 = Span({c1 ⊗ c2}c1∈C1
c2∈C2

),

9In the general case with more than two dimensions, “columns” of w are elements in ΣN1 and are indexed by
N2-coordinates, while “rows” are in ΣN2 and have N1-coordinates.
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where c1 ⊗ c2 ∈ FN1×N2 is the (r1 + r2)-dimensional tensor where the ith entry, for i = (i1, i2) ∈
[N1]× [N2], is equal to c1[i1] · c2[i2].

Further, if C1 : FK1 → FN1 and C2 : FK2 → FN2 are generators of C1 and, resp., C2, then
it holds that C1 ⊗ C2 : w 7→ C1wC

T
2 is a generator for C1 ⊗ C2, where CT

2 is the linear map
f 7→ f ◦C2.

Definition 3.10 (Plane Tester). Let r ∈ N and N = (n1, . . . , nr) ∈ Nr. We denote by PL(N) the
set of all (r − 1)-dimensional subspaces in [N ]. Namely,

PL(N) = {pl(d,i) : d ∈ [r], i ∈ [nd]},
where pl(d,i) =

{
(i1, . . . , id−1, i, id+1, . . . , ir) : id′ ∈ [nd′ ], ∀d′ ̸= d

}
.

When N is clear from context, we use PL as a shorthand for PL(N).
A plane tester for an r-dimensional code is a tester T = {TN}N∈Nr (see Definition 3.4)10 where,

for any N ∈ Nr, TN always outputs an (r − 1)-dimensional plane pl ∈ PL(N).

Note that plane tester merely needs to specify a distribution over d (which in our case will be
uniform) and over i (which will not be uniform, but will be independent of d).

Proposition 3.11. Let F be a field and ∆ = {∆N : FN → [0, 1]}N∈N∗ be any distance metric
(defined over any number of dimensions). Let C be a block code and let Cr be its r-fold tensor (see
Definition 3.8). Assume Cr is a (∆, nr−1, αr)-robust LTC (see Definition 3.4) via a plane tester (see
Definition 3.10) for any r ≥ r0, where n = L∞(N). Then it is also a (∆, nr0−1,

∏r
d=r0

αd)-robust
LTC and, in particular, a (∆, nr0−1,

∏r
d=r0

αd)-strong LTC.

Proof. For any d ≥ r0, let T (d) be the plane tester for Cd that makes it a (∆, nd−1, αd)-robust
LTC. Given r > 2, consider the tester T ∗ which at the beginning invokes T (r) to obtain an (r− 1)-
dimensional plane Q(r − 1) ∈ PL(N) then proceed recursively; At iteration i = 1, . . . , r − r0, it
invokes tester T (r−i) on the view Q(r− i) sampled by the previous tester (recall this is a an (r− i)-
dimensional plane and, therefore, corresponds to an underlying candidate codeword in Cr−i) to
obtain a view Q(r− i−1) with one dimension less. The tester T ∗ eventually outputs a query set of
size nr0−1; this is the (r0− 1)-dimensional plane Q(r0− 1) sampled at the last step of the recursion
by T (r0). To analyze the robustness of T ∗, fix w ∈ FN . Then, it holds

EQ(r0−1)[∆(w[Q(r0 − 1)], Cr0−1)] ≥ αr0 · EQ(r0)[∆(w[Q(r0 − 1)], Cr0)]

≥ αr0 · αr0+1 · EQ(r0+1)[∆(w[Q(r0 − 1)], Cr0+1)]

≥ . . .

≥
r∏

d=r0

αd ·∆(w, Cr),

where Q(r0 − 1), Q(r0), . . . are as sampled by T ∗. Further,

Pr
Q(r0−1)

[w[Q(r0 − 1)] /∈ Cr0−1] = Pr[∆(w[Q(r0 − 1)], Cr0−1) > 0]

≥ EQ(r0−1)[∆(w[Q(r0 − 1)], Cr0−1)]

(the last inequality is by the fact that ∆(·, ·) has maximal value 1) and, therefore, we get the strong
LTC property as well.

10Although we define testers for one-dimensional codes, the generalization to high-dimensional codes is straight-
forward.
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4 Tensor Tree Codes

In this section, we define a tensor product of tree codes and lay down the formal framework that
enables us to leverage its features. The framework rests on two main components: We define a
high-dimensional analog of tree codes through which we identify a notion of online encoding in high
dimensions that exists in tensor tree codes. Additionally, we propose a meaningful adaptation of
tree distance to the high-dimensional setting that is achievable by a tensor product and is useful
to our purpose (as will be shown in later sections).

4.1 High-Dimensional Tree Codes

An r-dimensional tree code takes as input an r-dimensional messagem ∈ ΣN
in , of some r-dimensional

size N ∈ Nr, and outputs a codeword w ∈ ΣN
out. This new notion is a generalization of (one-

dimensional) tree codes in the sense that its encoding can be done in an online fashion; such a
code is defined by an ensemble of functions {CN}N∈Nr where, on input m ∈ ΣN , the function
CN outputs the “last” symbol in the (high-dimensional) codeword w = C(m) ∈ ΣN . Here, we
naturally think of the last symbol to be the one at the coordinate taking maximal values in all
dimensions, e.g. the corner at (n1, n2) in a rectangle of size n1 × n2. This is consistent with the
partial order over the space Nr that we have defined in Section 3.

Definition 4.1 (High-Dimensional Tree Code). Let r ∈ N. An r-dimensional tree code is a
function ensemble C = {CN : ΣN

in → Σout}N∈Nr that defines an encoding function which on input
m ∈ ΣN

in outputs

w = C(m) ∈ ΣN
out where wi = Ci(m≤i), for every i ∈ [N ].

4.2 The Tensor Product of Tree Codes

We define tensor products for a special case of tree codes, namely linear vector tree codes. Linear
vector tree codes are linear tree codes where the output alphabet is not any arbitrary ring, but
rather is a vector space of the input alphabet (which, consequently, must be a field). Such codes have
the special property that a vector of codeword symbols can be parsed as an input message to the
encoding function. This property is what essentially allows us to apply a tensor product over such
codes and obtain a well-defined encoding function satisfying the notion required in Definition 4.1.

In the definition below, we extend the notion of linear codes to high dimensions and define the
special case of linear vector tree codes.

Definition 4.2 (Linear Vector Tree Codes). We say that an r-dimensional tree code C = {CN :
ΣN
in → Σout}N∈Nr is linear if Σin and Σout are both rings and, for every N ∈ Nr, CN is a linear

function (and, therefore, so is the encoding function C), i.e. CN (u + v) = CN (u) + CN (v) and
CN (−u) = −CN (u) for any u, v ∈ ΣN

in .
Let F be a field and let ℓ : Nr → N. We say that C = {CN : ΣN

in → Σout}N∈Nr is a linear vector
(r-dimensional) tree code over F with rate 1/ℓ if it is a linear tree code with Σin = F and, for every
N ∈ Nr, the alphabet for N th codeword symbols comes from a vector space of dimension ℓ(N) over
F (namely, CN : F→ FL for some L ∈ Nr such that |[L]| = ℓ(N)).

In general, one can think of a tree code C as an infinite collection of block codes, each corre-
sponding to a different input length; For any length n ∈ N, we can look at the block code of all

19



codewords in C that are of length n, i.e C ∩ Σn
out. In particular, it holds that a linear vector tree

code can be viewed as a collection of linear block codes.

Remark 4.3. Let ℓ : N→ N and let C be a one-dimensional rate-(1/ℓ) linear vector tree code over
a field F. Then, for any n ∈ N, letting n′ =

∑n
i=1 ℓ(i), the restriction of C to to messages of length

n is a linear [n′, n]F-code with a lower-triangular generator matrix Cn ∈ Fn′×n where

Cn =


C1 0ℓ(1)×(n−1)

C2 0ℓ(2)×(n−2)

...
...

Cn

 .

More generally, for an r-dimensional rate-(1/ℓ) linear vector tree code C = {CN : F →
Fℓ1(N)×···×ℓr(N)},11 the restriction of C to messages of length N = n1×· · ·×nr is a linear [N ′, |[N ]|]F-
code with a generator CN : FN → FN ′

, where N ′ = n′1 × · · · × n′r for n′d =
∑nd

i=1 ℓd(i), and

CN : m 7→ (Ci(m≤i))i∈[N ].

The above gives a characterization of linear vector tree codes as an infinite collection of linear
block codes of increasing block-length.

We are now prepared to define the tensor product of linear vector codes. Our definition is
straight-forward given the definition of tensor product for (linear) block codes (given in Defini-
tion 3.8 and Proposition 3.9) and the analogy made in Remark 4.3 between linear vector tree codes
and infinite collections of linear block codes. The idea is very simple: The tensor product of one-
dimensional tree codes C1 and C2 is defined by the online function (online in the “high-dimensional
sense” as in Definition 4.1) that, to output the N th codeword symbol given an input message m of
length N = n1 × n2, applies the tensor product of the linear transformation corresponding to the
nth
1 encoding function from C1 with the nth

2 encoding function from C2.
Note that, to allow for recursive tensoring, we define tensor product for tree codes that, possibly,

are already high-dimensional.

Definition 4.4 (Tensor Product of Tree Codes). Let C1 = {C1,N1 : FN1 → FL1(N1)}N∈Nr1 and
C2 = {C2,N2 : FN2 → FL2(N2)}N∈Nr2 be r1- and, resp., r2-dimensional linear vector tree codes (see
Definition 4.2). We define the tensor product of C1 with C2, denoted by

C1 ⊗ C2 =
{
(C1 ⊗ C2)N : FN → FL(N)

}
N∈Nr1+r2

as the (r1 + r2)-dimensional tree code where, for every N = (N1, N2) ∈ Nr1 × Nr2, we define
L(N) = L1(N1)× L2(N2), and

(C1 ⊗ C2)N = C1,N1 ⊗ C2,N2

(see Proposition 3.9 for definition of ⊗ over linear maps).
Letting C1 = C, we denote Cr = Cr−1 ⊗ C for any r > 1.

11It holds ℓ(N) =
∏

d ℓd(N) for all N .
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In the following proposition, we confirm that the tensor product operation over tree codes
essentially corresponds to applying the tensor product over their associated collections of block
codes. This gives us a strong characterization of tensor tree codes as collections of tensor block
codes. This is useful since the structure of tensors for block codes and their features are well
understood.

Proposition 4.5. Let C1 = {C1,N1 : FN → FL1(N1)}N∈Nr1 and C2 = {C2,N2 : FN → FL2(N2)}N∈Nr2

be linear vector tree codes. Let {C1,N1}N1∈Nr1 and {C2,N2}N2∈Nr2 be the infinite collections of linear
block codes that correspond to the codes C1 and C2 due to Remark 4.3. Then, it holds that

C1 ⊗ C2 =
⋃

N1∈Nr1

N2∈Nr2

C1,N1 ⊗C2,N2 .

Proof. To see why the equivalence holds, let us fix N1 and N2 and show C1,N1 ⊗C2,N2 is the set
of all codewords in C1 ⊗ C2 corresponding to messages of size N = N1 ×N2. Observe that, since
FN is spanned by {m ⊗m′} for all m ∈ FN1 and m′ ∈ FN2 , it holds that N -size codewords in
(C1 ⊗ C2) are spanned by {(C1 ⊗ C2)(m ⊗m′) = C1(m) ⊗ C2(m

′)}. By Proposition 3.9, this is
exactly C1,N1 ⊗C2,N2 .

4.3 Distance of The Tensor Code

So far we have defined a notion of high-dimensional tree codes that, in particular, captures the
“online-ness” of the encoding function of a tensor tree code. We proceed to define a notion of tree
distance that captures the distance guarantee that we obtain from our tensors. Notice that, by our
definition, online encoding in high dimensions is substantially different from the standard online
notion. Intuitively speaking, this online encoding is with respect to a high-dimensional notion of
time, that consists of a multitude of intersecting lines, each defining a distinct “timeline”.

Looking back at our tensor code and its structural properties (see Definition 3.8), we observe
that it inherits the tree distance of the base code over any such timeline! More formally, any
restriction of the code Cr over a line in the space satisfies the tree distance of C.

Definition 4.6 (Distance at Any Line). Let r ∈ N and let C be a high-dimensional code. Let ∆
be any one-dimensional distance metric. We say that C has ∆-distance δ at any line if, for any
distinct w,w′ ∈ C, it holds, that

min
ℓ∈L:wℓ ̸=w′

ℓ

∆(wℓ,w
′
ℓ) ≥ δ(|ℓ|),

where L is the set of lines in [N ], i.e. contains any subset of coordinates ℓ = {(i1, . . . , id−1, i, id+1, . . . , ir) |
i ∈ [nd]} for d ∈ [r] and id′ ∈ [nd′ ] for d′ ̸= d.

Remark 4.7. For any metric ∆, any r-dimensional code C, and any subset of lines L′ ⊆ L
(possibly forming a hyperplane), it holds that if C has ∆-distance at any line, then so does CL′.

We finish this section with the following corollary that is immediately implied by Definition 3.8.

Corollary 4.8. Let r ∈ N and let C be an r-dimensional tree code with tree distance δ. Then, the
tensor product Cr has tree distance δ at any line.
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5 Testing Tensor Tree Codes

In this section, we show that, similar to the case of standard tensor codes, tensor products of tree
codes possess powerful local testability properties due to their combinatorial structure. We do so
by generalizing the proof of Viderman [Vid15], who showed that the r-fold tensor product of any
(standard) code, for r ≥ 3, are locally testable w.r.t. Hamming distance. Specifically, we show
that tensors of (possibly high-dimensional) tree codes, which themselves are high-dimensional tree
codes as shown in the previous section, are locally testable w.r.t distance at any line. In fact, we
show that they are locally testable w.r.t. a weaker notion of distance, which we call suffix distance.

5.1 Suffix Distance

We define suffix distance between two words of length n via a distribution σ over the locations 1
to n. Roughly speaking, σ samples location i with probability inverse-proportional to its distance
from the end, i.e. proportional to 1/(n − i). Intuitively, this captures the impact a location i has
on the tree distance between these two words. Suffix distance is then defined to be the expected
disagreement between the two words for a symbol at location sampled from σ. Since we consider
notions of tree distance in high dimensions as well, we also generalize suffix distance for high-
dimensional tensors of length N = n1 × · · · × nr in the natural way; we define it to correspond to
the distribution obtained by the product σN = σn1 ⊗ · · · ⊗ σnr .

Definition 5.1 (Suffix Distance). Let Σ be an alphabet. Define Hn =
∑n

j=1 1/j for any n ∈ N
and HN =

∏
n∈N Hn for any N ∈ Nr. For any r ∈ N, N = (n1, . . . , nr) ∈ Nr and coordinate

i = (i1, . . . , ir) ∈ [N ], we define

σN (i) =
1

HN
·

r∏
j=1

1

nj − ij + 1
.

Notice that σN =
⊗m

j=1 σnj and therefore σN is a probability density function. We sometimes
override notation and use σN to denote the corresponding distribution over [N ].

Let w,w′ ∈ ΣN . We define the suffix distance between w and w′ as

∆S(w,w′) = Pr
i←σN

[wi ̸= w′i].

We further define ωS(w) = ∆S(w, 0) to be the suffix weight of w.

In the following lemma, we give a lower bound on the suffix distance between any two (possibly
high-dimensional) words by the hamming distance in any of its (resp., high-dimensional) suffixes.
This lower bound is crucial to establish the connection between suffix distance and tree distance at
all lines (and immediately implies it in the one-dimensional case).

Lemma 5.2. Let r ∈ N and N ∈ Nr. Let w,w′ ∈ ΣN and assume there exists i∗ ∈ [N ] such that
∆H(w≥i∗ ,w

′
≥i∗) ≥ δ. Then, it holds that12

∆S(w,w′) ≥ 1

HN
· δ − o(1),

where HN is as defined in Definition 5.1.
12Asymptotic notation is with respect to N , specifically L−∞(N).
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Proof. Note that it is sufficient to give a lower bound on the suffix distance between w≥i∗ and w′≥i∗
since, by definition, it holds that

∆S(w,w′) ≥ HN−i∗+1

HN
·∆S(w≥i∗ ,w

′
≥i∗). (3)

We start by proving the inequality for one dimension. In fact, we prove the following more
general statement. Let x1, . . . , xn be such that 0 ≤ xi ≤ 1 for all i ∈ [n]. We argue that

Ei←σn [xi] ≥
1

Hn
·
(
Ei←[n][xi]− o(1)

)
. (4)

To see this, let Ei←[n][xi] = µ. Under the constraint that
∑n

i=1 xi = µ · n and xi ∈ [0, 1], the sum∑n
i=1

1
n−i+1 ·xi takes its smallest possible value when all of the weight is “concentrated” in the first

xi’s, i.e. when xi = 1 for all 1 ≤ i ≤ µn and xi = 0 for all µn < i ≤ n. In such a case, the sum
may be bound as follows

n∑
i=1

1

n− i+ 1
· xi =

µn∑
i=1

1

n− i+ 1
= Hn −H⌈(1−µ)·n⌉ = ln(n)− ln

(
(1− µ)n

)
− o(1) ≥ µ− o(1).

This proves (4) and, in particular, the inequality in the lemma for r = 1; Let n ∈ N, w,w′ ∈ Σn

and i∗ ∈ [n]. Let xi, for i ∈ [i∗], be the binary variable that takes 1 if and only if wi ̸= w′i. Then,
it holds, by (3) and (4), that

∆S(w,w′) ≥ Hn−i∗

Hn
·∆S(w≥i∗ ,w

′
≥i∗) ≥

1

Hn
·∆H(w≥i∗ ,w

′
≥i∗)− o(1).

We finish by showing the lemma holds for any r > 1 by induction. Let N = n1 × · · · × nr,
w,w′ ∈ ΣN and i∗ = (i∗1, . . . , i

∗
r) ∈ [N ] be such that ∆H(w≥i∗ ,w

′
≥i∗) = δ. Then, by definition,

Ei1←[n1−i∗1+1][∆H(w≥i∗ [pl(1,i1)],w
′
≥i∗ [pl(1,i1)])] = δ,

(recall Definition 3.10) and, by the inductive hypothesis, it holds that

Ei1←[n1−i∗1+1][∆S(w≥i∗ [pl(1,i1)],w
′
≥i∗ [pl(1,i1)])] ≥

1

H(n2−i2+1)×···×(nr−ir+1)
· δ − o(1).

We apply (4) with the variables xi1 = {∆S(w≥i∗ [pl(1,i1)],w
′
≥i∗ [pl(1,i1)])} to obtain

Ei1←σn1−i∗+1
[∆S(w≥i∗ [pl(1,i1)],w

′
≥i∗ [pl(1,i1)])] ≥

1

HN−i∗+1
· δ − o(1),

and, by the definition of ∆S and (3), finish the proof of the lemma.

Next, we utilize the bound from above, in fact its special case with r = 1, to prove that high
tree distance at any line (recall Definition 4.6) translates to high suffix distance. As a corollary, this
shows that our tensor codes from Section 4 guarantee high suffix distance between the codewords.

Lemma 5.3. Let r ∈ N. If an r-dimensional code C has ∆T-distance δ : N → [0, 1] at any line,
then it has ∆S-distance δr : (n1, . . . , nr) 7→ H−1N ·

∏r
d=1 δ(nd)− o(1).
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Proof. For ease of notation, let us assume δ is constant. The proof is identical in the general case.
Let w and w′ ∈ C be two distinct codewords of size N . We prove by induction, that tree distance
at all lines means that suffix distance at all (k − 1)-dimensional hyperplanes where disagreement
occurs translates into suffix distance over any k-dimensional hyperplanes containing a disagreement.

More formally, for any k ∈ [r], let PLk denote the set of all planes of the form plk(ik+1, . . . , ir) =
{(x1, . . . , xk, ik+1, . . . , ir) | xd ∈ [nd]} over which w and w′ disagree. Then, we argue

∀ pl′ ∈ PLk−1 : ∆S(wpl′ ,w
′
pl′) ≥ δ′ =⇒ ∀ pl ∈ PLk : ∆S(wpl,w

′
pl) ≥ δ′ · δ/Hnk

− o(1). (5)

This is sufficient to derive the lemma since suffix distance is δ in any ℓ ∈ PL1 by assumption, and
PLr = [N ].

Now, let pl ∈ PLk. By the tree distance δ at any line in Cpl (which is inherited by the distance
at any line in C by Remark 4.7), any line ℓ that passes through i∗ along the kth dimension k,13

that wℓ and w′ℓ have at least δ tree distance. Let P be the set of points on ℓ on which wℓ and
w′ℓ disagree. By Lemma 5.2, it holds that

∑
p∈P σ|ℓ|(p) ≥ δ/Hnk

− o(1). Additionally, for any

p ∈ P , let pl′p be the (k − 1)-dimensional hyperplane that is orthogonal to the kth dimension and
intersects with ℓ at the point p.14 By definition, pl′p ∈ PLk−1 By the inductive hypothesis, it holds
that w′ and w′ have tree distance at least δ′ at any such pl′p. Hence, the tree distance between the
codewords at pl may be bound as follows

∆S(wpl,w
′
pl) =

∑
p∈P

σ|ℓ|(p) ·∆S(w[pl′p],w
′[pl′p]) ≥ δ′ · δ/Hnk

− o(1)

(recall Definition 5.1).

5.2 The Local Test

Equipped with the new notion of suffix distance, we state our theorem regarding the local testability
of tensor tree codes. To prove the theorem, we follow the lines of the proof from Viderman [Vid15],
who shows a similar result for the standard notion of local testability of tensor codes. More
specifically, he relies on the fact that the tensor product of a code with Hamming distance δ satisfies
Hamming distance δ at any line to derive the local testability of tensor codes of order r ≥ 3. We
are interested in showing an analogous statement for suffix distance; Since our tensors satisfy good
tree distance at any line, they have good suffix distance at any line as well (by Lemma 5.2). We use
the algebraic nature of suffix distance, which is shared by Hamming distance, to apply the same
ideas and prove our version of the theorem presented below.

Theorem 5.4 (Local Testability for Suffix Distance). Let r ≥ 3. Let C be a tree code with distance
∆T(C) = δ and let Cr be its r-fold tensor from Definition 4.4. Then, Cr is a (∆S, n

r−1, δr−1/2r2HN )-
robust LTC via a plane tester, where n = L∞(N).

While the theorem above gives a plane tester with complexity n(r−1)/r (see Definition 3.10), one
can bootstrap this test to a test of complexity merely n2/r since it satisfies the powerful notion of
robust LTC (see Definition 3.4 and Proposition 3.11).

Corollary 5.5. Let r ≥ 3. Let C be a tree code with distance ∆T(C) = δ and let Cr be its r-fold
tensor. Then, Cr is a (∆S, n

2, (δr−1/2r2HN )r)-robust LTC, where n = L∞(N).
13Meaning that all coordinates in ℓ share the same value at all dimensions except the kth

14All coordinates in pl′p share the same value at the dth dimension which is equal to the value in p.
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TN (w):

1. Sample d← [r]

2. Output pl← PLd, sampled with probability σ(pl)

Figure 5: The tester T

Proof of Theorem 5.4 Let N = n1 × · · · × nr. We define, for any plane pl ∈ PL(N) (see
Definition 3.10), the sum σ(pl) =

∑
p∈pl σ(p) (see Definition 5.1). Notice that σ is a probability

density function over PLd = {pl(d,i) | i ∈ [nd]} for any d ∈ [r]. In particular, it holds that
σ(pl(d,i)) = σnd

(i).
We define the plane tester T = {TN} in Figure 5 and show that it satisfies the desired robustness.
Fix a word w ∈ ΣN . For any plane pl ∈ PL, let w∗pl ∈ Cr−1 be the closest codeword to wpl in

∆S-distance.
We define the disagreement matrix E ∈ {0, 1}N as follows. For any point p ∈ [N ],

E[p] = 1 ⇐⇒ ∃pl1, pl2 ∈ PL : p ∈ pl1 ∩ pl2 and w∗pl1 [p] ̸= w∗pl2 [p].

Additionally, we define the fix matrix F ∈ {0, 1}N at any point p ∈ [N ] by

F [p] = 1 ⇐⇒ E[p] = 0 ∧w[p] ̸= ap,

where ap = w∗pl for any pl ∈ PL that contain p (notice that ap is immaterial to pl when E[p] = 0).

Claim 5.6. It holds, for pl← T , that

Epl[∆S(wpl, C
r−1)] ≥ 1

r
· ωS(E) + ωS(F ).

Proof. By the definition of ∆S (Definition 5.1),

Epl[∆S(wpl, C
r−1)] = Pr

pl,p←σ|pl|

[
w∗pl[p] ̸= w[p]

]
.

We can therefore think of the expected distance between wpl and the corresponding restricted
code as the probability of disagreement between w∗pl and w at a random point p ← σ|pl|, for a
random plane pl chosen by the tester. By construction and definition of σ, it is not hard to see
that this is equivalent to sampling a point p ← σN , then sampling a uniformly random plane pl
from the set of r planes that contain p (the probability of getting any pl given p can be calculated
as Pr[pl | p] = Pr[pl] · Pr[p | pl]/Pr[p] = 1/r). Hence, for pl← T ,

Epl[∆S(wpl, C
r−1)] = Pr

p←σN ,d←[r]

[
w∗pl′ [p] ̸= w[p]

]
, where pl′ = pl(d,pd).

Let us split the probability space by the following two disjoint cases: (i) We sample p such that
E[p] = 1, in which case the event holds whenever we choose the plane that does not agree with
w at p (there must exist such a plane since there are at least two planes that do not agree at p).
Recall such a plane is sampled uniformly at random and, therefore, the probability to “catch the
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error” in this case is at least 1/r. (ii) We sample p such that E[p = 0]. For such a point p, all
planes pl agree on the same value for w∗pl[p] and, therefore, the event occurs if and only if this value
is different from w[p], namely if F [p] = 1. The proof of the claim is then complete by law of total
probability.

Our strategy at this point is two-fold: First, we argue that, by the high tree distance of C,
the weight in E must be concentrated in few “heavy” planes and that, by removing these planes,
one ends up with an all-zero E. Second, we leverage this concentration property of E to derive
a correlation between the weight of disagreements ωS(E) and the weight ωS(F ) (which bounds
robustness due to Claim 5.6), and the distance of w from the code Cr. Intuitively speaking, when
all disagreements are concentrated in few planes, then there is a proportionally big subspace inside
w where all planes agree on a “global” closest codeword in the corresponding subcode. Then, all
is required to make w a codeword, is to fix this subspace (this corresponds to points in F ) then
change the values in the disagreements (i.e. E) accordingly.

Let us begin with the following bound on ωS(F ).

Claim 5.7. Let S1, . . . , Sr be subsets of planes where, for all d ∈ [r], Sd ⊆ PLd and ES1×···×Sr = 0.
Then, it holds that

ωS(F ) ≥ ∆S(w, Cr)−
r∑

d=1

σN (Sd)

where, for any d ∈ [r], σN (Sd) =
∑

pl∈PLd\Sd
σN (pl).

Proof. Denote S = S1 × · · · × Sr. For any p ∈ S, let ap be the value such that w∗pl[p] = ap for all
plane pl that contains p (recall all planes agree at p). Observe that AS = {ap}p∈S is a codeword in
CS1 ⊗ · · · ⊗CSr . Therefore, one can “fix” w to be a codeword by changing the values in any point
p ∈ F to take wS to AS and, then, changing the values in any point p /∈ S accordingly to match a
codeword that extends AS (there always exist such since CS1 ⊗ · · · ⊗ CSr = Cr

S). Therefore,

∆S(w, Cr) ≤ ωS(F ) +
∑
p/∈S

σN (p) ≤ ωS(F ) +
r∑

d=1

∑
p/∈Sd

σN (p) = ωS(F ) +
r∑

d=1

∑
pl∈PLd\Sd

σN (pl).

It remains to show that E is indeed concentrated. Let us first formalize the notion of a heavy
plane.

Definition 5.8. We say that a plane pl ∈ PLd is heavy if ωS(Epl) ≥ (Hnd
/HN ) · δr−1/2.

In the next key lemma, we prove that the heavy planes contain all points of disagreement.

Lemma 5.9. For any point p ∈ [N ], if E[p] = 1 then p is on a heavy a plane.

Proof. Let pl1 = pl(1,i1) and pl2 = pl(2,i2) be, without loss of generality, the two planes that
do not agree at p (see Definition 5.8). Let pl′ = pl1 ∩ pl2 be the (r − 2)-dimensional plane in
their intersection. Recall Cr and, in particular, Cr−2, satisfy tree distance δ at any line (see
Corollary 4.8). Since w∗pl1 ̸= w∗pl2 , and by Lemma 5.3, this implies suffix distance η · δr−2 − o(1)

between w∗pl1 and w∗pl2 at pl′, where η = Hn1Hn2/HN . That is, letting

B = {p′ ∈ pl′ | w∗pl1 [p
′] ̸= w∗pl2 [p

′]},
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it holds that σ|pl′|(B) =
∑

p′∈B σ|pl′|(p
′
−1,2) ≥ η · δr−2, where p′−1,2 is the (r − 2)-dimensional

coordinate that is the projection of p′ on pl′ (i.e. obtained by removing the first two dimensions).
For any p′ ∈ B, let pl3(p

′) = pl3,i3 be the unique such plane that contains p′, i.e. p′ ∈ pl3(p
′).

For b ∈ {1, 2}, let
Bb = {p′ ∈ B | w∗plb [p

′] ̸= w∗pl3(p′)[p
′]},

and assume, w.l.o.g., that σ|pl′|(B1) ≥ σ|pl′|(B)/2 ≥ η · δr−2/2 − o(1) (it holds that σ|pl′|(B) ≤
σ|pl′|(B1) + σ|pl′|(B2)).

Denote by ℓ(p′), for any p′ ∈ B1, the one-dimensional line in the intersection pl1∩pl′3(p′) that is
orthogonal to pl2. Namely, letting p′ = (i1, i2, p

′
3, . . . , p

′
r), we define ℓ(p′) = {(i1, i, p′3, . . . , p′r) | i ∈

[n2]}. Again, by the tree distance of C at any line, it holds that ∆S(w
∗
pl1

[ℓ(p′)],w∗pl3(p′)
[ℓ(p′)]) ≥

η2 · δ − o(1) for any p′ ∈ B1, where η2 = 1/Hn2 . Hence, letting

Bp′ =
{
p′′ ∈ ℓ(p′) | w∗pl1 [p

′′] ̸= w∗pl3(p′)[p
′′]
}
,

it holds that σ|ℓ(p′)|(Bp′) =
∑

p′′∈Bp′
σ|ℓ(p′)|(p

′′
2) ≥ η2 · δ, where p′′2 is the projection of p′′ to the

second dimension, i.e. the position of p′′ in ℓ(p′).
Now, since any point in any Bp′ is a point of disagreement, that is a point where E has 1, we

obtain that

ωS(Epl1) =
∑

p′:E[p′]=1

σ|pl1|(p
′) ≥

∑
p′∈B1

∑
p′′∈Bp′

σ|pl1|(p
′′) =

∑
p′∈B1

∑
p′′∈Bp′

σ|pl′|(p
′′
−1,2) · σ|ℓ(p′)|(p′′2)

Next, observe that any p′ and p′′ ∈ Bp′ are equal at all dimensions but the second (by definition of
ℓ(p′)). Therefore,

ωS(Epl1) ≥
∑
p′∈B1

σ|pl′|(p
′
−1,2) ·

∑
p′′∈Bp′

σ|ℓ(p′)|(p
′′
2) ≥

∑
p′∈B1

σ|pl′|(p
′
−1,2) · η2δ ≥ η1η2 ·

δr−1

2
=

Hn1

HN
· δ

r−1

2
,

and pl1 is heavy.

Lemma 5.9 immediately gives the following corollary.

Corollary 5.10. There exist subsets of planes S1, . . . , Sr where Sd ⊆ PLd for all d ∈ [r], such that
ES1×···×Sr = 0 and

r∑
d=1

σN (Sb) ≤
2r ·HN

δr−1
· ωS(E)

.

Proof. For any d ∈ [r], let Sd = {pl ∈ PLd | pl is not a heavy plane}. By Lemma 5.9, it holds that
ES1×···×Sr = 0. Additionally, since any point p ∈ [N ] resides on at most r planes in PL (one in
each direction), then

ωS(E) ≥ 1

r
·

r∑
d=1

∑
pl∈PLd\Sd

σN (pl) · ωS(pl) ≥
δr−1

2r ·HN
·

r∑
d=1

σN (Sb).
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Now, by plugging Corollary 5.10 in Claim 5.7, we obtain

∆S(w, Cr) ≤ 2r ·HN

δr−1
· ωS(E) + ωS(F ) ≤ 2r2 ·HN

δr−1
·
(
1

r
· ωS(E) + ωS(F )

)
.

By further plugging in Claim 5.6, we complete the proof of Theorem 5.4.

6 Flattening Tensors to One Dimension

In the previous section, we have presented a construction of tensor tree codes. These codes are de-
fined through an encoding function that is online in the high-dimensional sense (see Definition 4.1).
Additionally, we have demonstrated they satisfy meaningful notions of distance: tree distance at
all lines, which is an adaptation of tree distance to the high-dimensionality of time underlying the
online encoding of tensors, and, as a consequence, the weaker notion of suffix distance. Further, by
generalizing the analysis from [Vid15], we have shown that these codes are locally testable w.r.t.
suffix distance and, therefore, w.r.t. to tree distance at all lines.

Recall, however, that our ultimate goal is to construct a tree code that is locally testable. While
tensor codes alone give a solution to the problem of local testability in the standard setting, what
we have achieved so far using tensors does not entirely fulfill our ambitions for tree codes. Despite
being a promising first step, it is not clear how to turn online encoding over the high-dimensional
space to online encoding in the standard tree-code sense and, at the same time, to convert the
high-dimensional distance and local testability properties to their standard counterparts (namely
tree distance and LTC with respect to it).

With this goal in mind, we propose a method to transform the tensor tree code (in fact, any
high-dimensional tree code) to a standard tree code. The main component in our scheme is a
traversal procedure over the high-dimensional space of coordinates Nr. Through the traversal, we
define an order over the coordinates in Nr and, consequently, derive an embedding of their space
to the one-dimensional space N (where in the ith location we embed the ith coordinate reached by
the traversal). We then use the embedding in hand to produce an online encoding function which,
at time i ∈ N, produces the encoding, under the high-dimensional code, that corresponds to the
high-dimensional coordinate embedded at i. We refer to the resulted code by the flattened code.

In the latter part of this section, we show that not only our traversal enables us to flatten tensor
tree codes and achieve the desired notion of online encoding, but that, additionally, the flattened
code also turns out to be locally testable w.r.t. standard tree distance! Specifically, via thorough
analysis, we show that the code can be locally tested by applying the local test for the underlying
the high-dimensional code (from Section 4) over random parts of the flattened codeword.

6.1 Traversing the High-Dimensional Space

We begin with describing the traversal over the high-dimensional space Nr that stands at the heart
of our flattening transformation.

For the traversal to fit into the outline described above, it has to satisfy a crucial property;
Namely, that it reaches coordinate i ∈ Nr only after it has reached any coordinate i′ ≤ i (recall the
partial order presumed over Nr). Notice that this is important to ensure that when the (flattened)
encoding function will arrive at the ith coordinate it is able to call the underlying high-dimensional
encoder, which presumes all values in the sub-cube [i] = {i′ | i′ ≤ i} are available for encoding the
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ith codeword symbol. Briefly put, we require the traversal to be monotone w.r.t. the partial order
over Nr.

Before we present our traversal, let us suggest a new useful way for representing coordinates
in high dimensions. We will use this representation in the construction and in many parts of its
analysis. As we will see throughout the section, it facilitates the understanding of how our traversal
behaves since it is strongly connected to the order it defines.

Definition 6.1 (Histogram Representation of Coordinates). Let r ∈ N and let i = (i1, . . . , ir) ∈ Nr

be a coordinate. Let t1 > t2 > · · · > tℓ be the list of distinct integers in (i1, . . . , ir) in descending
order. For any k ∈ [ℓ], let Jk = {j ∈ [r] | ij = tk}. We refer to

(
(t1, J1), . . . , (tℓ, Jℓ)

)
as the

histogram representation of i. For simplicity, since Jℓ is determined by J1, . . . , Jℓ−1, we sometimes
write

(
(t1, J1), . . . , (tℓ−1, Jℓ−1), (tℓ, ∗)

)
.

The Traversal. We define our traversal over the r-dimensional coordinate space via the recursive
procedure in Fig. 6. We refer the reader to the overview in Section 2 for an intuitive description of
the traversal.

The Traversal Πr(t), from 1r to tr

For d = 0, . . . , r,

For all J ∈
(
r
d

)
in lexicographic ordera,

1. Let t
(0)
J = ((t, J), (1, ∗)).

2. Let t
(1)
J = ((t, J), (t− 1, ∗)).

3. Walk recursively via Πr−d(t−1), on the (r−d)-dimensional

subspace consisting of all dimensions [r] \ J , from i
(0)
J to

i
(1)
J .

aWe require that the order satisfies Postulate 6.2 but is otherwise arbitrary.

Figure 6: Traversal over Nr.

Observe that the first recursive call in Πr(t) is made to Πr(t− 1). Consequently, the procedure
above defines an infinite traversal over Nr where, for any t ∈ N, the first tr steps constitute the
traversal Πr(t). We denote the infinite traversal simply by Πr. Regardless, any coordinate i ∈ Nr

is reached by the finite traversal Πr(L∞(i)).
We define the function πr : N→ Nr that maps any n to the nth coordinate in the order induced

by the walk Πr (i.e. πr(n) is the nth coordinate that the walk reaches). We omit r when it is
unambiguous by context. Further, we denote by π−1 : N∗ → N the inverse function, that takes any
coordinate N ∈ Nr and maps it to its order in the walk Πr.

Lastly, the traversal Πr defines an order over P([r]): For any two subsets J, J ′ ⊆ [r], we denote
J ≺ J ′ if and only if the loop in Πr (see Fig. 6) iterates over J before it does over J ′, namely if
and only if |J | < |J ′| or |J | = |J ′| and J precedes J ′ in the arbitrary lexicographic order chosen

29



in the walk. We assume the following regarding the lexicographic order over P([r]) defined by the
traversal.

Postulate 6.2. For any J, J ′ and j′ ∈ J ′, if J ≻ J ′, then there exists j ∈ J such that either
J \ {j} ≻ J ′ \ {j′}, or J \ {j} = J ′ \ {j′} and {j} ≻ {j′}.

Observe that many natural lexicographic orders over P([r]) (e.g. standard lexicographic order
over strings representing the sorted sets) satisfy Postulate 6.2.

Given the above lexicographic order over subsets of dimensions, we make the following obser-
vation, which connects the order obtained by the traversal Πr to a lexicographic order over the
histogram representation of the coordinates of Nr.

Proposition 6.3. Let i, i′ ∈ Nr be two coordinates and let ((t1, J1), . . . , (tℓ, Jℓ)), ((t
′
1, J
′
1), . . . , (t

′
ℓ′ , J

′
ℓ′))

be their respective histogram representations (see Definition 6.1). It holds that π−1(i) < π−1(i′) if
and only if ((t1, J1), . . . , (tℓ, Jℓ)) is smaller than ((t′1, J

′
1), . . . , (t

′
ℓ, J
′
ℓ)) in an element-by-element com-

parison, where the “most significant bit” corresponds to (t1, J1), and (t, J) is smaller than (t′, J ′)
if and only if t < t′, or t = t′ and J ≺ J ′.

With the above proposition, it immediately follows that our traversal is monotone.

Proposition 6.4. For any r ∈ N, the function π−1 is monotone. Namely, for any i, i′ ∈ Nr, it
holds that if i ≤ i′ then π−1(i) ≤ π−1(i′).

Equipped with the traversal, we are prepared to define the flattened code. For any string x ∈ Σn,
we denote by liftr(x) the lifting of x to r dimensions, namely the (possibly partial) r-dimensional
tensor where, for any i ∈ Nr such that π−1(i) ≤ n, the ith symbol is equal to xπ−1(i). Note that
liftr(x) is partial unless n = tr for some t ∈ N. However, by Proposition 6.4, liftr(x) is defined at
all i ≤ πr(|x|). Our construction is as follows.

Construction 6.5. Let C = {CN : ΣN
in → Σout}N∈Nr be an r-dimensional tree code. The flattening

of C, denoted by C = {Cn}n∈N, is the function ensemble where, for any n ∈ N, Cn : Σn
in → Σout is

defined as follows
Cn(m) = Cn(m≤n),

where n = πr(n) and m = liftr(m).

6.2 Local Testability of the Flattened Code

In this section we prove a local testability theorem for our flattened code from Construction 6.5.
We show that, if the base code C is locally testable w.r.t. suffix distance, then the flattened code
satisfies our sought local testability notion, that is, local testability w.r.t. tree distance.

Theorem 6.6 (From ∆S-LTC to ∆T-LTC). Let C be an r-dimensional tree code that has ∆S-
distance δC and is (∆S, q, ϵ)-strong LTC. Then, C is (∆T, (ϵ · δC)−1 · log3 n · q(N), 1−Hr/r)-LTC,
where N = (n1/r + 1, . . . , n1/r + 1).
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The Tester. Let T = {TN}N∈Nr be the q-query tester for C that gives the strong LTC property
of the code (see Definition 3.4). Our goal is to construct a tester T which, given a word w ∈ Σn, is
able to detect whether its lifting to r dimensions, i.e. w = liftr(w) ∈ ΣI , is in the code CI (here,
I = {πr(i) | i ∈ [n]}). While we are equipped with a tester for C, it expects as input a rectangular
(i.e. non-partial) tensor and, therefore, we cannot apply it directly over w, which is partial unless
n is an integral rth power.

Our idea is to apply the tester T over a random maximal sub-cube of w; We consider the set
of endpoints of w, namely all maximal coordinates in I, and let the tester T apply T over the
sub-cube w[e] for a uniformly random endpoint e. To prove that this gives local testability, we

show that if w is far from the code C in tree distance, then there exists at least one endpoint e
such that w[e] is far from C in suffix distance. This is sufficient given we additionally bound the
number of endpoints by r · 2r.

We begin by defining the set of endpoints corresponding to the coordinates of a partial tensor.

Definition 6.7 (Endpoints of a Partial Tensor). Let r ∈ N and let I ⊆ Nr be a monotone set of
coordinates (see Definition 3.1). We define the set of endpoints of I as follows

E(I) = {e ∈ Nr | e ∈ I, ∀ i ≥ e, i ̸= e : i /∈ I}.

We now define the tester T = {Tn}n∈N for C in Fig. 7.

Tn(w ∈ Σn):

1. Let w = liftr(w) and let I = {πr(i) | i ∈ [n]}

2. Sample endpoint e← E(I) uniformly at random and output Te(w[e]).

Figure 7: The tester Tn

Proof of Theorem 6.6. As mentioned above, to argue soundness of the test T , we show that if
w is far from C in tree distance, then there must exist an endpoint that gives high suffix distance
over the induced sub-cube. For such an argument not to incur an undesirable loss in soundness,
we must additionally bound the number of endpoints.

As a first step, let us take a closer look at the set of endpoints and its structure. Let n ∈ N and
n = πr(n), and let ((t1, J1), . . . , (tr′ , Jr′)) be the histogram representation of n (see Definition 6.1).
Recall that the point n is reached throughout the traversal Πr(t1) (see Fig. 6). The histogram
representation tells us that, at the point the traversal procedure reaches n, it is inside the recursive
call Πr−|J1|(t1−1) corresponding to J1 and that it has had already returned from all recursive calls
corresponding to subsets J ⊆ [r] such that J ≺ J1 (recall the lexicographic order induced by Πr over
such subsets). The last coordinate to be reached at a completed recursive branch corresponding to
such a J is

e1,J = ((t1, J), (t1 − 1, ∗)).

The next recursive call within the “current” recursive branch, corresponding to J1, that is
completed before reaching n corresponds to input t = t2. In fact, the traversal must have had
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completed all recursive calls with input t2 that correspond to subsets J ≺ J2. Similarly to above, the
last coordinate to be reached upon the completion of such a “depth-2” recursive call, corresponding
to a subset J , is

e2,J = ((t1, J1), (t2, J), (t2 − 1, ∗)).

In general, the last coordinate reached by a recursive call of depth ℓ, that is completed by the
time the traversal reaches n, is of the form

eℓ,J = ((t1, J1), . . . , (tℓ−1, Jℓ−1), (tℓ, J), (tℓ − 1, ∗)), (6)

for some J ≺ Jℓ (which is possibly the empty set). In the following claim, we formally argue
that these coordinates, corresponding to the maximal subsets J ≺ Jℓ at any level of (non-trivial)15

recursion, constitute the set of endpoints E(I).

Claim 6.8. Let n ∈ N, n = πr(n), I = {πr(i) | i ∈ [n]}, and let ((t1, J1), . . . , (tr′ , Jr′)) be the

histogram of n (see Definition 6.1). For any 1 ≤ ℓ < r′, letting J≥ℓ =
⋃r′

i=ℓ Ji, let us define the set
of depth-ℓ endpoints as follows

Eℓ = {eℓ,J | J ⊆ J≥ℓ, J ≺ Jℓ, and ∀J ′ ⊆ J≥ℓ s.t J ′ ≺ Jℓ, J
′ ̸= J : J ̸⊂ J ′},

where eℓ,J is as defined in Eq. (6), and
Er′ = {n}.

Then, it holds that

E(I) ⊆
r′⋃
ℓ=1

Eℓ ⊆ I(n).

Proof. The fact that for any eℓ,J ∈
⋃

Eℓ it holds that π−1(e) ≤ n follows immediately from
Proposition 6.3. To prove that all endpoints are contained in

⋃
Eℓ, we show that for any i such

that π−1(i) ≤ n, there exists e ∈
⋃
Eℓ such that i ≤ e.

Let ((t′1, J
′
1), . . . , (t

′
r′′ , J

′
r′′)) be the histogram representation of i. Let ℓ be the smallest integer

such that (t′ℓ, J
′
ℓ) is smaller than (tℓ, Jℓ) by the lexicographic order defined in Proposition 6.3 (if no

such ℓ exists then i = n and we finish). If t′ℓ < tℓ then i ≤ e for any e ∈ Eℓ (the (ℓ + 1)th biggest
value in i is at most tℓ − 1). If tℓ = t′ℓ then it must be the case that J ′ℓ ≺ Jℓ. Letting J ′′ be the
maximal subset such that J ′′ ≺ Jℓ and J ′ℓ ⊆ J ′′, it holds that eℓ,J ′′ ∈ Eℓ and i ≤ eℓ,J ′′ , hence we
finish.

As a corollary to Claim 6.8, we have shown a bound on the number of endpoints:

|E(I)| ≤ r · 2r. (7)

In a second preliminary step that is crucial to our proof, we establish a connection between the
tree distance between strings and the suffix distance between their lifting to r dimensions. Since we
will be working with tensors that are partial, we start by generalizing these metrics to the setting
of partial tensors (to generalize the notion of tree distance to “flattened” partial tensors it suffices
to say how to flatten such tensors).

15Where a trivial recursive call corresponds to J = ∅.
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Definition 6.9 (Flattening of (Partial) Tensors). Let r ∈ N and let I ⊂ Nr be a finite subset of
coordinates. We denote by Πr

I the restriction of the traversal Πr from Fig. 6 to coordinates in I
(i.e. Πr

I traverses I in the order induced by Πr). We subsequently define the function πr
I : [|I|]→ I

that maps any integer 1 ≤ i ≤ |I| to the ith coordinate in the walk Πr
I (namely, the ith coordinate

that is reached by Πr among the coordinates in I) and its inverse π−1I : I → [|I|].
Let w ∈ ΣI be a (possibly partial) r-dimensional tensor. We denote by w = w the flattening of

w to one dimension and define it as the string of length |I| where w[i] = w[πr
I (i)] for all 1 ≤ i ≤ |I|.

Lastly, let C ⊂ Σ∗ be an r-dimensional code and let CI be its restriction to a subset I ⊂ Nr.
We denote CI = {w | w ∈ CI}.16

Definition 6.10 (Average Suffix Distance for Partial Tensors). Let r ∈ N and let w,w′ ∈ ΣI be
two (possibly partial) r-dimensional tensors. We define the average suffix distance between w and
w′ as

∆avg
S (w,w′) = Ee←E(I)

[
∆S(w[e],w

′
[e])
]
.

where E(I) is the set of endpoints defined in Definition 6.7.

Claim 6.11. Let I1, . . . , Im ⊂ Nr be monotone and let I =
⋃m

j=1 Ij. For any w,w′ ∈ ΣI , letting
wj = w[Ij ] and w′j = w′[Ij ], there exists j ∈ [m] such that

∆T(wj , w
′
j) ≥

1

m
·∆T(w,w

′),

where w,w′, wj , w
′
j are the flattening of the respective tensors (see Definition 6.9).

Proof. Let i∗ be the smallest integer such that wi∗ ̸= w′i∗ . Let S = {i ∈ N | i ≥ i∗, πr(i) ∈ I} and
D = {i ∈ S | wi ̸= w′i} and, for any j ∈ [m], let Sj = S∩Ij and Dj = D∩Ij . Denote δ = ∆T(w,w

′).
By definition, it holds that δ = |D|/|S| and ∆T(wj , w

′
j) ≥ |Dj |/|Sj | (equality occurs only when the

smallest element in Sj is also in Dj). Now, by averaging, since
∑

j |Dj | ≥ |D|, there must exist
j ∈ [m] such that |Dj | ≥ |D|/m. For that j, it holds that |Dj |/|Sj | ≥ |D|/m|Sj | ≥ |D|/m|S| =
δ/m.

Proposition 6.12. Let C be an r-dimensional code with ∆S-distance δ (see Definition 3.3).
Then, for any monotone I ⊂ Nr (see Definition 3.1) and any distinct w,w′ ∈ CI , it holds that
∆avg

S (w,w′) ≥ mine∈E(I) δ(e)/|E(I)|.

Proof. Let w,w′ ∈ CI be two distinct codewords, and let e ∈ E(I) be such that w[e] ̸= w′[e]. Then,

since w[e],w
′
[e] ∈ C it holds that ∆S(w[e],w

′
[e]) ≥ δ(e) and the proposition follows by definition of

∆avg
S .

Lemma 6.13. Let I ⊂ Nr be monotone (see Definition 3.1) and let m = maxi∈I L∞(i). Then, for
any w,w′ ∈ ΣI , it holds that

∆avg
S (w,w′) ≥ 1

r · (2Hm)r · |E(I)|2
·∆T(w,w

′)− o(1),

where w = w and w′ = w′.

16Note this is consistent with the notation used in Construction 6.5 and therefore introduces no ambiguity.
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Proof. Let i∗ ∈ [|I|] be the smallest integer such that wi∗ ̸= w′i∗ . Let i∗ = πr
I (i
∗) and let S = {i ∈

I | π−1I (i) ≥ i∗}. Let S∗ = {s ∈ S | ∀i ∈ S, i ̸≤ s}. In other words, S∗ are the start points of all
maximal r-dimensional suffixes that are contained in the one-dimensional suffix starting at the first
disagreement between w and w′.

We argue that |S∗| ≤ r · 2r. To see this, let ((t∗1, J
∗
1 ), . . . , (t

∗
ℓ∗ , J

∗
ℓ∗)) be the histogram represen-

tation of i∗ (see Definition 6.1), and let us define the following two sets of coordinates (via their
histogram representations):

S∗≺ =
ℓ∗⋃
k=1

{(
(t∗1, J

∗
1 ), . . . , (t

∗
k−1, J

∗
k−1), (t

∗
k + 1, J ′k), (1, ∗)

)
| J ′k ≺ J∗k

}
and

S∗≻ =

ℓ∗⋃
k=1

{(
(t∗1, J

∗
1 ), . . . , (t

∗
k−1, J

∗
k−1), (t

∗
k, J

′
k), (1, ∗)

)
| J ′k ≻ J∗k

}
.

It is evident that |S∗≺ ∪ S∗≻ ∪ {i∗}| ≤ r · 2r. We now show that this union must contain all
coordinates in S∗. To that end, it suffices to show that any coordinate in S is contained in a suffix
that starts at some s ∈ S∗≺ ∪ S∗≻.

Let i ∈ S\{i∗} be such a coordinate and let ((t1, J1), . . . , (tℓ, Jℓ)) be its histogram representation.
Since π−1I (i) > π−1I (i∗) and, therefore, π−1(i) > π−1(i∗), then it holds by Proposition 6.3 that
the histogram of i is bigger than ((t∗1, J

∗
1 ), . . . , (t

∗
ℓ∗ , J

∗
ℓ∗)) in lexicographic order (that is defined in

Proposition 6.3). Let k be the first location where (tk, Jk) ̸= (t∗k, J
∗
k ). There are two possible cases:

– tk > t∗k and Jk ≺ J∗k : In which case the coordinate s ∈ S∗≺ represented by the histogram
((t∗1, J

∗
1 ), . . . , (t

∗
k + 1, Jk), (1, ∗)) satisfies s ≤ i.

– tk ≥ t∗k and Jk ≻ J∗k : Then, the coordinate s ∈ S∗≻ with the histogram ((t∗1, J
∗
1 ), . . . , (t

∗
k, Jk), (1, ∗))

satisfies s ≤ i.

Now, let ∆T(w,w
′) = δ. By definition, ∆H(wS ,w

′
S) ≥ δ. Denote, for any s, e ∈ Nr, Is,e =

{i | s ≤ i ≤ e}. Since S =
⋃

s∈S∗,e∈E(I) Is,e and since |S∗| ≤ r · 2r, a simple averaging argument
(similar to the one in the proof of Claim 6.11) implies that there must exist s ∈ S∗ and e ∈ E(I)
such that ∆H(w[Is,e],w

′[Is,e]) ≥ δ/(r ·2r · |E(I)|). By Lemma 5.2, this implies that ∆S(we,w
′
≤e) ≥

δ/(He·r·2r·|E(I)|)−o(1) and the lemma follows by definition of ∆avg
S and the fact thatHe ≤ Hr

m.

Having both identified the structure of the set of endpoints and established a connection between
tree distance and a notion of suffix distance for partial tensors, we are now prepared to address the
heart of our argument: That tree distance in a word w translates into suffix distance in one of the
maximal sub-cubes in its high-dimensional lifting.

Our strategy to prove this consists of two stages: First, given our division of endpoints into
“layers” by their depth in the recursion (see Claim 6.8), we show that there must exist a group of
adjacent layers that incurs a large (average) suffix distance from the code. We prove this via an
inductive argument where we “peel off” one group of adjacent layers (which we formally define in
Definition 6.14 below) at a time, starting from the deepest layer.

Second, we apply a different argument within each such group of layers to show that if the group
gives large suffix distance, then so must one of the endpoints that compose this group of layers.
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Figure 8: Endpoints of a partial tensor that corresponds to the lifting of a word of length n = 693.
There are two groups of adjacent layers of endpoints. The first consists of the first layer, which
in turn contains two endpoints: (9, 8, 8) and (8, 9, 8). The second consists of the second and third
layers, each containing a single endpoint: (7, 7, 9) and n = (4, 8, 9), respectively.

We refer the reader to Fig. 8 for a visual example of the endpoints in a partial tensor and their
organization in adjacent groups of layers.

Let us recall our setting and fix notation for the rest of the proof. Let n ∈ N and let n = πr(n)
and I = {i ∈ Nr | π−1(i) ≤ n}. Let ((t1, J1). . . . , (tr′ , Jr′)) be the histogram representation of n
(see Definition 6.1). Let w ∈ Σn be a word and let w = liftr(w) be its lifting to r dimensions. Let
r′ ≤ r be the size of the histogram representation of n and let E1, . . . , Er′ be the endpoint layers
as defined in Claim 6.8. For any ℓ ∈ [r′], let

Iℓ =
⋃

e∈Eℓ∩E(I)

[e], I≤ℓ =

ℓ⋃
k=1

Ik, I<ℓ = I≤ℓ−1, and I[ℓ1,ℓ2] =
⋃

ℓ1≤k≤ℓ2

Ik.

and denote

wℓ = w[I≤ℓ], w[ℓ1,ℓ2] = w[I[ℓ1,ℓ2]], and Cℓ = C[I≤ℓ], C[ℓ1,ℓ2] = C[I[ℓ1,ℓ2]].

Definition 6.14 (Adjacent Layers). A group of layers Iℓ1 , . . . , Iℓ2, for 1 ≤ ℓ1 ≤ ℓ2 ≤ r′′, is said to
be adjacent if tk = tk−1 − 1 for all ℓ1 < k ≤ ℓ2.

We now proceed with the first part of our argument, namely bounding the ∆avg
S -distance of

the any group of adjacent layers from the code. To that end, we first prove two useful statements
regarding the structure of the coordinate layers. In the first claim, we characterize the endpoints
of the intersection between the coordinates of a group of layers I[ℓ1,ℓ2] and all coordinates that were

added before the ℓth1 layer (namely I<ℓ1). Via this characterization we bound the number of these
endpoints and their distance from the endpoints of I[ℓ1,ℓ2].

Claim 6.15. Let 1 < ℓ1 ≤ ℓ2 ≤ r′. The endpoints of the intersection I[ℓ1,ℓ2] ∩ I<ℓ1 constitutes the
following disjoint union of equal-size subsets

E
(
I[ℓ1,ℓ2] ∩ I<ℓ1

)
=
⋃̇

ℓ1≤k≤ℓ2
e∈Ek∩E(I)

{e− 1j | j ∈ J<ℓ1},
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where J<ℓ1 =
⋃ℓ1−1

k=1 Jk and 1j is the jth unit vector.

Proof. Let e = ek,J ∈ Ek for some ℓ1 ≤ k ≤ ℓ2 (see definition in Eq. (6)) and denote Ze = {e′k,J,j =
ek,J − 1j | j ∈ J<ℓ1}. It is immediate that all Ze’s are of equal size and, by inspection, they are
all disjoint (see Eq. (6)). It remains to show that, indeed,

⋃
k,e∈Ek

Ze = E(I[ℓ1,ℓ2] ∩ I<ℓ1). Since
e′ ≤ e for any e′ ∈ Ze then any such e′ is in I[ℓ1,ℓ2]. Further, notice that for k′ < ℓ1 and j ∈ Jk′ , it
holds that e′k,J,j ≤ ek′,J\{j} and, therefore, any such e′ is also in Ik′ ⊂ I<ℓ1 . Next, any coordinate
i ∈ Ik ∩ Ik′ for ℓ1 ≤ k ≤ ℓ2 and k′ < ℓ1 satisfies i ∈ [e′k,J,j ] for some j ∈ Jk′ and, therefore,

⋃
Ze

covers the intersection I[ℓ1,ℓ2]∩I<ℓ1 . Lastly, to see why any e′k,J,j is maximal in I[ℓ1,ℓ2]∩I<ℓ1 , observe
that if we increase e′k,J,j by 1 at any dimension we find ourselves at a point outside I[ℓ1,ℓ2] ∩ I<ℓ1 :
If we do that at a dimension j ∈ Jk for k < ℓ1 then we are no longer in I<ℓ1 , whereas if we add 1
to any other dimension we will no longer be in I[ℓ1,ℓ2] (by maximality of J in our definition of Ek

in Claim 6.8).

In the next following claim, we argue that, whenever I[ℓ1,ℓ2] is a maximal group of adjacent
layers, the coordinates added by this group, namely I≤ℓ2 \ I<ℓ1 , constitute a small fraction of the
“flattened” suffix that starts right after the last point in the intersection I≤ℓ2 ∩ I<ℓ1 is reached.

Claim 6.16. Let 1 < ℓ1 ≤ ℓ2 ≤ r′ be such that tℓ1 < tℓ1−1 − 1. Let s = maxi′∈I≤ℓ2
∩I<ℓ1

π−1(i′) be
the index of the last coordinate in I≤ℓ2 ∩ I<ℓ1 to be reached by Πr. Then, it holds that |I≤ℓ2 \ I<ℓ1 | ≤
α · |{i ∈ I<ℓ1 | π−1(i) > s}| where α = 1/((r − 1)−

∑ℓ1−2
k=1 |Jk|).

Proof. By the monotonicity of Πr (Proposition 6.4), s = π−1(e∗) for some e∗ ∈ E(I≤ℓ2 ∩ I<ℓ1). By
Claim 6.15 and Proposition 6.3, e∗ has (tℓ1−1, Jℓ1−1 \ {j∗}) at the (ℓ1 − 1)th entry in its histogram
for some j∗ ∈ Jℓ1−1.

Denote S = {i ∈ I<ℓ1 | π−1(i) > s}. We prove the claim by showing there exist at least 1/α
disjoint subsets of S that are of size at least |I≤ℓ2 \ I<ℓ1 | each.

For any J ⊆ [r] \ (
⋃ℓ1−2

k=1 Jk) such that |J | = |Jℓ1−1| and J ≺ Jℓ1−1, we define

SJ = [eℓ1−1,J ] \

( ⋃
J ′⊂J

[eℓ1−1,J ′ ]

)
.

For any J ⊆ [r] \ (
⋃ℓ1−2

k=1 Jk) such that |J | = |Jℓ1−1| such and J ≻ Jℓ1−1, we define

SJ = [eℓ1−1,J ] \

( ⋃
J ′⊂J

[eℓ1−1,J ′ ]

)
− 1j(J),

where j(J) ∈ J is chosen such that J \ {j(J)} ⪰ Jℓ1−1 \ {j∗}. Such j(J) always exists due to
Postulate 6.2 and, in particular, if J \ {j(J)} = Jℓ1−1 \ {j∗} then {j(J)} ≻ {j∗}.

We have defined
([r]\(⋃ℓ1−2

k=1 Jk)

|Jℓ1−1|
)
− 1 ≥ |[r] \ (

⋃ℓ1−2
k=1 Jk)| − 1 = 1/α sets in total.

We now show that they are all disjoint subsets of S. Notice that any coordinate i ∈ SJ for
J ≺ Jℓ1−1 has value tℓ−1 at exactly |Jℓ1−1| locations (namely J), while any coordinate i ∈ SJ

for J ≻ Jℓ1−1 has value tℓ−1 at exactly |Jℓ1−1| − 1 (J \ {j(J)}). This, and the fact that for any
J1, J2 ⊆ [r], it holds that [eℓ1−1,J1 ] ∩ [eℓ1−1,J2 ] = [eℓ1−1,J1∩J2 ], implies that all SJ are disjoint.

Further, any i ∈ SJ for any J ≺ Jℓ1−1 satisfies π−1(i) > s, by Proposition 6.3, since Jℓ1−1 \{j∗}
is lexicographically smaller than any J of size |Jℓ1−1|. As for i ∈ SJ when J ≻ Jℓ−1, then by our
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choice of j(J), we know J \ {j(J)} ⪰ Jℓ−1 \ {j∗}. If J \ {j(J)} ≻ Jℓ−1 \ {j∗} then π−1(i) > s
immediately (again by Proposition 6.3). Otherwise, the ℓth1 entry in the histogram of i, which is
(tℓ1−1 − 1, J ′) for some J ′ ⊇ {j(J)} is lexicographically larger than the corresponding entry in
e∗, which contains (tℓ1−1 − 1, {j∗}) (recall the choice of j(J) and the fact that tℓ1 < tℓ1−1 − 1).

Therefore, π−1(i) > s for all i ∈
⋃
SJ . Hence,

⋃̇
SJ ⊆ S and |S| ≥

∑
SJ .

Lastly, observe that I≤ℓ2 \I<ℓ1 ⊆ [eℓ1−1,Jℓ1−1
]\(
⋃

J ′⊂Jℓ1−1
[eℓ1−1,J ′ ]) and, therefore, by symmetry,

|I≤ℓ2 \ I<ℓ1 | ≤ |SJ | for any J such that |J | = |Jℓ1−1|.

With the above two claims in hand, we prove the inductive step where we remove the deepest
maximal group of adjacent layers from I≤ℓ2 while incurring a reasonable loss in the distance, either
in the adjacent layers I[ℓ1,ℓ2] that we have removed, or in what remains after their removal, namely
I<ℓ1 .

Lemma 6.17. Let 1 < ℓ1 ≤ ℓ2 ≤ r′ be such that I[ℓ1,ℓ2] is a group of adjacent layers (see Defini-

tion 6.14) and tℓ1 < tℓ1 − 1. If ∆T(wℓ2 , Cℓ2) = δ, then either

∆T

(
wℓ1−1, Cℓ1−1

)
≥ min

(
δ/2,

rℓ1
rℓ1 − 1

· (δ − 1

rℓ1
)

)
, where rℓ1 =

r′∑
k=ℓ1−1

|Jk|,

or

∆avg
S

(
w[ℓ1,ℓ2], C[ℓ1,ℓ2]

)
≥ δ∗/(2r · |E(I≤ℓ2)|2), where δ∗ = min(δ/(2Hm)r, δC).

Proof. Let w∗ℓ2 = argminw∈Cℓ2
∆T(w,wℓ2), and w∗ℓ1−1 = argminw∈Cℓ1−1

∆T(w,wℓ1−1). Denote by
Q = I[ℓ1,ℓ2] ∩ I<ℓ1 the set of coordinates in the overlap between w[ℓ1,ℓ2] and wℓ1−1.

If w∗ℓ [Q] = w∗ℓ1−1[Q] then the lemma follows immediately by Claim 6.11 (showing w is close in
tree distance to the concatenation of w∗ℓ1−1 and w∗[ℓ1,ℓ2]) and Lemma 6.13.

Otherwise, then by the distance guaranteed by the code C and by Proposition 6.12, it holds
that ∆avg

S (w∗[ℓ1,ℓ2][Q],w∗ℓ1−1[Q]) ≥ mine∈E(Q) δC(e)/|E(Q)| ≥ mine∈E(Q) δC(e)/(r · |E[ℓ1,ℓ2]|) (where
E[ℓ1,ℓ2] =

⋃ℓ2
k=ℓ1

Ek and the last inequality follows from the bound on |E(Q)| implied by Claim 6.15).
We analyze two cases:

• w∗ℓ1−1[Q] = w[Q] and, therefore, ∆avg
S (w∗[ℓ2,ℓ1][Q],w[Q]) ≥ δC/(r · |E[ℓ1,ℓ2]|). We argue that,

in this case and by the structure of E(Q) shown in Claim 6.15, the disagreement over I[ℓ1.ℓ2]
must be large as well. Let, for any e ∈ E[ℓ1,ℓ2], Ze = {e′ ∈ E(Q) | e′ ≤ e}. By Claim 6.15,

Ze = {e−1j | j ∈ J<ℓ1} (where J<ℓ1 =
⋃ℓ1−1

k=1 Jk) and, further, the Ze’s are disjoint and have
equal size. Hence, short-handing w∗[ℓ1,ℓ2] = w∗, we may write

∆avg
S (w∗[ℓ1,ℓ2][Q],w[Q]) = Ee←E(Q)[∆S(w

∗
[e],w[e])] = Ee←E[ℓ1,ℓ2]

e′←Ze

[∆S(w
∗
[e′],w[e′])].

By definition of ∆S (Definition 5.1), we have

∆S(w
∗
[e′],w[e′]) =

∑
i∈[e′]

σe′(i) · γi,
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where γi = 1 if w∗i ̸= wi and 0 otherwise. Now, since e − e′ = 1j for some j ∈ [r], then it
holds that σe(i) ≥ σe′(i)/2 for any i ∈ [e′]. This is because the distance of i from the reference
endpoint increases by at most 1 in a single dimension, which leads to a multiplicative blow-up
of at most 2 in its weight under σ (the maximal blow-up of 2 occurs at one coordinate before
the last in [e] which becomes the last coordinate in [e′]). Hence, for e′ ∈ Ze, it holds that

∆S(w
∗
[e′],w[e′]) ≤ 2 ·

∑
i∈[e′]

σe(i) · γi ≤ 2 ·
∑
i∈[e]

σe(i) · γi = 2 ·∆S(w
∗
[e],w[e]),

and, therefore,

∆avg
S (w∗[ℓ1,ℓ2][Q],w[Q]) ≤ 2 · Ee←E[ℓ1,ℓ2]

[∆S(w
∗
[e],w[e])] = 2 ·∆avg

S (w∗[ℓ1,ℓ2],w[ℓ1,ℓ2]).

• w∗ℓ1−1[Q] ̸= w[Q]. Let w′ ∈ Cℓ1−1 be any codeword such that w′[I<ℓ1 ] = w∗ℓ1−1 (there must
exist such a codeword by definition of Cℓ1−1 and the fact that w∗ℓ1−1 ∈ Cℓ1−1). By the
assumption in the lemma, we know that ∆T(wℓ2 , w

′) ≥ δ. Let i∗ be the smallest integer such
that wℓ2 [i

∗] ̸= w′[i∗] and let S = {i ∈ I<ℓ1 | π
−1
I≤ℓ2

(i) ≥ i∗}. Let τ = |I≤ℓ2 \Q|/(|S|+ |I≤ℓ2 \Q|);
This is the fraction of the “tail” of coordinates that where added at layers ℓ1 to ℓ2, i.e.
I[ℓ1,ℓ2] \ I<ℓ1 = I≤ℓ2 \ I<ℓ1 , in the suffix of disagreements between w′ and wℓ2 . Then, since Πr

completes its traversal over I<ℓ1 before reaching I≤ℓ2 \Q, it holds that

∆T(wℓ2 , w
′) = (1− τ) ·∆H(w

′
S ,wS) + τ ·∆H(w

′
I≤ℓ2

\Q,wI≤ℓ2
\Q)

≤ (1− τ) ·∆H(w
′
S ,wS) + τ

≤ (1− τ) ·∆T(w
∗
ℓ1−1,wℓ1−1) + τ.

Lastly, by Claim 6.16, we have that τ ≤ 1/(r −
∑ℓ1−2

k=1 |Jk|) = 1/rℓ1 and, therefore, the proof
of the lemma is complete.

Looking ahead, using the above lemma we peel off one group of adjacent layers at a time from
our partial tensor, while preserving the distance to some extent either over the group or all other
layers. At the end of this decomposition process, we are left with separate groups of adjacent layers,
knowing that the distance in the partial tensor we started with is preserved in at least one of these
groups. In the last step of the proof, we show that if the partial tensor is far from the code when
restricted to a group of adjacent layers, then it must be far from the code over at least one maximal
sub-cube contained in this group, namely at least w.r.t one of the endpoints at which we perform
the test T . We prove this in the following lemma.

Lemma 6.18. Let 1 < ℓ1 < ℓ2 ≤ r′ be such that I[ℓ1,ℓ2] is a group of adjacent layers (see

Definition 6.14). If ∆avg
S (w[ℓ1,ℓ2], C[ℓ1,ℓ2]) = δ, then there exists e ∈

⋃ℓ2
k=ℓ1

Ek ∩ E(I) such that
∆S(w[e], C[e]) ≥ min(δ, (ℓ2 − ℓ1 + 1)−r · δc/2).

Proof. Let w∗e ∈ C[e] be the closest codeword to w in ∆S. If, for any e1, e2 ∈
⋃ℓ2

k=ℓ1
Ek ∩E(I), the

words w∗e1 and w∗e2 agree on the intersection [e1] ∩ [e2], then we can construct a word w′ ∈ C[ℓ1,ℓ2]

such that w′[e] = w∗e for all e, for which it holds that ∆avg
S (w′,w) = Ee[∆S(w

∗
e,w[e])] and, therefore,

the lemma follows.
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Otherwise, there must exist e1, e2 for which w∗1 = w∗e1 and w∗1 = w∗e2 disagree at their inter-
section. By the ∆S-distance guarantee of the code C, this implies that the two codewords must be
δC-far in the intersection and, therefore, one of them must be (δC/2)-far from w there.

Letting e1 = eℓ,J and e2 = eℓ′,J ′ (see Definition 6.7), observe that [e1] ∩ [e2] = [e′], where

e′ = ((t1, J1), . . . , (tℓ, Jℓ ∩ J), . . . , (tℓ′ , Jℓ′ ∩ J ′), (tℓ′ − 1, ∗))

(assuming, w.l.o.g., ℓ < ℓ′; In the case of equality there is J ∩ J ′ at the ℓth entry and the rest of
the argument follows similarly). In particular, since layers ℓ1 to ℓ2 are adjacent, L∞(eb − e′) =
(ℓ2− ℓ1+1) for b ∈ {1, 2}. Similarly to an argument made in the proof of Lemma 6.17, this implies
that σeb(i) ≥ (ℓ2−ℓ1+1)−r ·σe′(i) for any i ∈ [e′] since the distance of any such i from the endpoint
increases by at most (ℓ2 − ℓ1 + 1) in any direction (see Definition 5.1).

Now, assuming w.l.o.g. that ∆S(w
∗
1[[e
′]],w[[e′]]) > δC/2, we finish by

∆S(w
∗
1,w[[e1]]) =

∑
i∈[e1]

σe1(i) · γi where γi is 1 if and only if w∗1[i] ̸= w[i]

≥ (ℓ2 − ℓ1 + 1)−r ·
∑
i∈[e′]

σe′(i) · γi

= (ℓ2 − ℓ1 + 1)−r ·∆S(w
∗
1[[e
′]],w[[e′]]) > (ℓ2 − ℓ1 + 1)−r · δC/2.

Let us now combine Lemmas 6.17 and 6.18 to complete the proof of the theorem.
We partition the layers I1, . . . , Ir′ into groups of maximal adjacent layers I[1,ℓ1−1], I[ℓ1,ℓ2−1], . . . , I[ℓr′′ ,r′].

By maximality, it holds that tℓk < tℓk−1− 1 for all k ∈ [r′′]. We apply Lemma 6.17 on each of these
groups, starting from I[ℓr′′ ,r′]. We now bound the loss in distance incurred by this inductive process.

Let rk =
∑r′

k′=ℓk−1 |Jk′ | be as defined in Lemma 6.17 and note that 1 < rr′′ < rr′′−1 < · · · < r1 ≤ r.
Define δr′′ = δ and, for any 0 ≤ k < r′′,

δk =
rk

rk − 1
· (δk+1 −

1

rk
).

Then, it holds

δ0 =

(
r′′∏
i=1

rk
rk − 1

)
·

(
δr′′ −

r′′∑
k=1

1

rk
·

k∏
i=1

ri − 1

ri

)
≥ δr′′ −

r′′∑
k=1

1

rk
·

k∏
i=1

ri − 1

ri
.

By Claim A.1 proven in the appendix, we bound the above additive expression to obtain

δ0 ≥ δr′′ − (1−Hr/r).

Hence, after r′′ applications of Lemma 6.17, and of Lemma 6.13 over the last group of layers
(i.e. I[1,ℓ1−1]), we have decomposed the set of layers to groups of adjacent layers where there exists
at least one group, let us denote it by I[ℓ∗1,ℓ∗2], and constants c1, c2 > 0, where

∆S(w[I[ℓ∗1,ℓ∗2]], C[I[ℓ∗1,ℓ∗2]]) ≥ min

(
c1
Hr

m

· (δ − (1−Hr/r)) , c2 · δC
)
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(recall |E(I≤ℓ2)|2 ≤ r2 · 22r by Eq. (7)).
We apply Lemma 6.18 to infer that there exists an endpoint e such that ∆S(w[e], C[e]) is

similarly bound (with different constants c1, c2). This completes the proof of the theorem given
the strong local testability guaranteed by the test Te and the amplification from Proposition 3.5
(we obtain the desired complexity by the facts that any endpoint e is in [n1/r +1, . . . , n1/r +1] and
Hm = O(log n)).

7 Locally Testable Tree Codes

In this last section, we complete our efforts and prove the main result, which we formally state
below.

Theorem 7.1. Assume there exists a linear vector tree code C over alphabet Σ with constant tree
distance. Then, for any r ≥ 3 and any c > 0, there exists a probabilistic binary tree code Cltc

satisfying the following properties:

– Cltc has tree distance 1− 1/n1−c,

– Cltc is a (∆T, Õ(n2/r), 1−Hr/r +
1

n1/r )-LTC,

– the nth codeword symbol consists of less than log4+r(n) symbols in Σ.

In what follows, we present the last piece missing for proving Theorem 7.1. Then, in Section 7.2,
we connect everything together and derive the result stated in the theorem.

7.1 Randomized Flattening

Recall that, up to this point, we have built tensor tree codes and developed a framework through
which we were able to achieve meaningful notions of distance and local testability. Further, in the
previous section, we have demonstrated how one can utilize these tensor codes and flatten them
to obtain a code with an online encoding function in the standard sense, namely a tree code. We
have even shown that such a flattened code is locally testable w.r.t. tree distance.

Despite the substantial progress so far, one major issue still remains. The flattening of a tensor
code to one dimension does not preserve its distance. In fact, it can completely destroy it in the
worst case (see discussion in Section 2).

In the following theorem we show that, while distance is lost when we perform our flattening
deterministically, a randomized variant of the idea actually preserves distance and even amplifies
it! Additionally, the randomization can be done in a way that does not harm the local testability of
the code. Note, however, that the randomized transformation yields a probabilistic tree code (see
Definition 1.3).

Theorem 7.2 (Randomized Flattening). Let r ∈ N, s : N → N and let c, τ > 0 be any constants.
Assume there exists an r-dimensional tree code C = {Cn : Σn

in → Σout} that has ∆T-distance δ at
any line (see Definition 4.6). Let C be the flattening of the code from Construction 6.5. Then, for
any δ < 1, there exists a (one-dimensional) probabilistic tree code CR = {CR,n : Σn

in × R → Σ′out}
that satisfies the following properties

– CR has tree distance 1− 1/n1−c.
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– If C is a (∆T, q, δT , ϵ)-LTC, then CR is a (∆T, q + s, δT + τ, ϵ′)-LTC, where

ϵ′(n) = min(ϵ(n), 1− e−τs/3Hn).

– If C is explicit, then so is CR.

Further, the nth codeword symbol consists of k(n) symbols in Σout and k(n) · log n bits, and ran-
domness at time n consists of k(n) · log n bits, where

k(n) < 2 log3+r(n)/rδr.

Proof of Theorem 7.2. We prove the theorem via the following construction of a probabilistic
tree code from a given r-dimensional tree code C.

Construction 7.3. Let r ∈ N and let C be an r-dimensional tree code. For any n ∈ N, let
I(n) = {i ∈ Nr | π−1(i) ≤ n} and E(n) = E(I(n)). We construct the code CR as follows:

• Randomness: Let k(i) = log3(i) ·Hi/δ
r, where i = πr(i). The randomness that is sampled

at time i ∈ N, is
ρi = (p1, . . . ,pk(i)),

for i.i.d. pj ← σi.

• The Encoding Function: The randomness used at time n (i.e. by CR,n) consists of ρe for
any e ∈ [n] such e = πr(e) is in E(n). Let P (n) =

⋃
e∈E(n) ρe. Notice that all points in P (n)

must be already reached by the traversal Πr before n is (since E(n) ⊆ I(n)). For any n ∈ N
and m ∈ Σn

in, letting n = πr(n) and m = liftr(m), the nth encoding function is defined as

CR,n(m;P (n)) = (ρn, Cn(m), {(p, Cp(m≤p))}p∈P (n)).

Recall the definition of endpoints E(I) in Definition 6.7 and the distribution σ from Defini-
tion 5.1.

In what follows, we refer to the part of the codeword w = CR(m) that consists of all first entries
(ρi)i∈[n] as the randomness tape and denote it by wR; to the part consisting of all second entries,
corresponding to (Ci(m)), as the tensor tape and denote it by wC ; and to the part consisting of all
last entries, namely the samples from P (n), as the sample tape, and denote it by wP .

The construction above clearly satisfies the complexity stated in the theorem. Additionally, if
C is explicit then so is CR. The rest of the section is dedicated to showing CR satisfies distance (as
defined in Definition 1.3) and local testability (as defined in Definition 3.4).

Distance. Let m and m′ be two distinct messages of length n that are the outcome of the
interaction with C (see Fig. 1) when randomness ρ1, . . . , ρn is sampled. Our goal is to lower bound
the tree distance between w = CR(m; ρ) and w′ = CR(m

′; ρ′), for any ρ′ (rather, give a tail bound).
Let us start by bounding the distance between w and the encoding of m′ under the same

randomness ρ, namely w∗ = C(m′; ρ). Denote w = liftr(wC) and w∗ = liftr(w∗C). Let i∗ ∈ [n] be
the smallest such that mi∗ ̸= m′i∗ and let i∗ = πr(i∗). Denote S = {i ∈ [n] | max(i∗, nc) ≤ i ≤ n}.
By inspection, it holds that

∆T(w,w
∗) ≥

(
1− 1

n1−c

)
·∆H(wS , w

∗
S) ≥ ∆H(wS , w

∗
S)−

1

n1−c . (8)
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(note that the gap between the distances is biggest when i∗ = 1 and the second disagreement
appears after nc). In what follows, we aim to bound ∆H(wS , w

∗
S).

Fix some i ∈ S. By the definition of E(i), there exists e ∈ E(i) such that i∗ ∈ [e]. By
Lemma 5.3, since wC and w∗C encode messages that diverge starting i∗, we know that for such e it
holds that ∆S(w[e],w

∗
[e]) ≥ δr/He − o(1). Denote δ(e) = δr/He − o(1). It follows that

Ep←σe [wp ̸= w∗p] = ∆S(w[e],w
∗
[e]) ≥ δ(e).

Note that the values of wp,w
∗
p, for p ∈ σe, are fixed prior to the time ρe is sampled (recall Fig. 1),

which happens only when reaching e. Therefore, we can think of ρe as being sampled independently
in wp,w

∗
p. Thus, letting γp = 1 if wp ̸= w∗p and γp = 0 otherwise, it holds that

Eρe [
∑
p∈ρe

γp] = |ρe| · Ep←σe [γp] ≥ k(π−1(e)) · δ(e) > log2(π−1(e)).

Now, due to Claim 6.8, we know that for any e ∈ E(i), it holds that L∞(e) = L∞(i) = t, for
some t such that (t−1)r < i < tr. It therefore holds that e and i are both reached in the walk Πr(t)
in the last “layer”, namely after the recursive call to Πr(t − 1). Since Πr(t) appends tr − (t − 1)r

new coordinates after Πr(t − 1), the number of steps it takes the traversal to reach i after it has
reached e is at most tr − (t− 1)r < (t− 1)r/2 = i/2. Therefore, we infer π−1(e) > i/2 and

Eρe [
∑
p∈ρe

γp] > log2(i/2) > c2 · log2(n)/2.

Since
∑

γp is a sum of i.i.d. random variables, we may apply the Chernoff bound to obtain

Pr
ρe

[∑
p∈ρe

γp ≥ 1

]
> 1− e−c

2 log2 n/6. (9)

Recall that a disagreement between w and w∗ at some p ∈ ρe ⊆ P (i) implies a disagreement
between w and w∗ at i in the sample tape. Therefore, Eq. (9) implies

Pr
P (i)

[wP [i] ̸= w∗P [i]] > 1− e−c
2 log2 n/6,

for any i ∈ S. Letting D = {i ∈ S | wP [i] ̸= w∗P [i]}, we then have that Eρ[∆H(wP [S], w
∗
P [S])] =

Eρ[|D|/|S|] ≥ 1− e−c
2 log2 n/6 and, consequently,

Pr
ρ1,...,ρn

[∆H(wP [S], w
∗
P [S]) = 1] = Pr

ρ1,...,ρn
[∆H(wP [S], w

∗
P [S]) > 1− n−2]

≥ 1− e−c
2 log2 n/6 · n2

= 1− e−(c
2 log2 n/6)−2 ln(n).

Combining the above with Eq. (8), we have shown w is far from w∗ with overwhelming prob-
ability (specifically at the sample tape), it remains to show the same from w′ = C(m′; ρ′) for any
ρ′. To that end, we argue that w and w∗ disagree at a pair on their sample tape, then w disagrees
at p also with any w′ ∈ C(m′). To see this, observe that, by definition, the values of wP , w

∗
P and

w′P at p are of the form (p,w[p]), (p,w′[p]) and, resp., (p′,w′[p′]). Assume towards contradiction
that wP and w′P agree. By inspection, this immediately implies wP agrees with w∗P as well. To
conclude, any difference between w and w∗ on the sample tape incurs a difference between w and
any w′. This completes the argument.
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Local Testability. Lastly, we show that the code CR is locally testable w.r.t. tree distance
assuming C is. Assume T is a q-query tester for the code C. We propose a tester T ′ = {T ′n} which,
on input w ∈ Σn and randomness ρ1, . . . , ρn, performs the steps described in Fig. 9.17

T ′n(w ∈ Σn; ρ1, . . . , ρn):

1. Perform ConsistencyCheck(w) (see below).

2. Perform the test T over the word composed by all first Σout-symbols in the symbols
of w (i.e. the ones corresponding to the encoding Ci(m≤i) at any location i, see
Construction 7.3).

ConsistencyCheck(w):

1. Sample i.i.d. i = (i1, . . . , is), where ij ← σn (see Definition 5.1).

2. For any j ∈ [t], check consistency of the pair in wP [ij ] with the randomness and
tensor tapes.

Figure 9: The Tester T ’

To see why the tester T ′ is sound, let w be such that ∆T(w,CR) ≥ δT (n)+τ and letw = liftr(w).
Let w′ be the word that is obtained from w after correcting all inconsistencies. Namely, we correct
all symbols in the sample tape wP to contain the correct values taken from the randomness and
tensor tapes, as expected from a codeword. By the triangle inequality, it holds that

∆T(w
′, w) + ∆T(w

′, CR) ≥ δT + τ.

Hence, either ∆T(w
′, CR) ≥ δT or ∆T(w

′, w) ≥ τ . In the first case, and by the LTC guarantee
of C, the second step in the test T ′, i.e. the test T , will reject with probability at least ϵ. In what
follows we argue that, in the case where w′ and w are far in tree distance, the test ConsistencyCheck
(defined in Fig. 9) rejects with good probability.

To see why this is the case, we rely on Lemma 5.2 to translate the tree distance between w and
w′ into suffix distance; Letting γi = 1 if wi ̸= w′i and 0 otherwise, we obtain

Ei←σn [γi] = ∆S(w,w
′) ≥ ∆T(w,w

′)/Hn − o(1) ≥ τ/Hn − o(1).

Notice that ConsistencyCheck rejects when
∑s

j=1 γis ≥ 1. Since this is a sum of i.i.d. random
variables with mean s · (τ/Hn − o(1)), we may apply the Chernoff bound to obtain

Pr
i1,...,is←σn

 s∑
j=1

γis ≥ 1

 ≥ 1− e−τs/3Hn .

17Recall that by Definition 3.4, the tester T ′ must output a query set Q. For simplicity, we describe a tester that
either accepts or rejects its input word. The query set Q is implicit in our description and consists of any location in
the input word that T ′ reads.
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7.2 Putting it All Together

The first step for proving Theorem 7.1 is to apply an r-fold tensor over the code C to obtain Cr.
By Corollary 4.8, Cr guarantees some constant tree distance δ at any line. By Corollary 5.5, Cr is a
(∆S, n

2, (2r2HN ·δr)−r)-strong LTC, where n := n(N) = L∞(N). By Theorem 6.6 and Lemma 5.3,
the flattened code Cr (defined in Construction 6.5) is a (∆T, Õ(n2/r), 1−Hr/r)-LTC.

With the above distance and local testability properties of Cr and its flattening, our second
and final step is to apply Theorem 7.2 with δ, s = n2/r and τ = 1/n1/r to derive Theorem 7.1.

Lastly, to instantiate Theorem 7.1 and obtain a locally testable tree code, we recall the explicit
tree code construction from [Sch94], specifically, a variant thereof that is presented in [Gel17,
Theorem 3.1].18

Theorem 7.4 (Explicit Tree Codes [Sch94, Gel17]). For any constant α < 1, there exists a linear
vector tree code C = {Cn : {0, 1} → Σout} with tree distance α and rate Θ(1/ log n).

Consequently, we get the following corollary.

Corollary 7.5. For any r ≥ 3, there exists an explicit locally testable tree code C with rate
Θ(1/ log5+r(n)) and distance 1− 1/n1−c, that is (∆T, Õ(n2/r), 1−Hr/r + n−1/r)-LTC.
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A Auxiliary Proofs

Claim A.1. For any 1 < r1 < · · · < rm = r, it holds that

m∑
i=1

1

ri
·

m∏
j=i

rj − 1

rj
≤ 1− Hr

r
.
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Proof of Claim A.1. Let us denote

T (r1, . . . , rm) =
m∑
i=1

1

ri
·

m∏
j=i

rj − 1

rj
.

We prove that T (r1, . . . , rm) ≤ 1−Hr/r by induction on m.
For m = 1, we have T (r) = (r − 1)/r2 < (r − 1)/r.
Assume m > 1 and that the claim holds for any m′ < m. We first show that T takes its maximal

value when ri = i + 1 for any i ∈ [m] (and r = m + 1). To that end, we show that the derivative
at any of the variables is negative.

Claim A.2. Let T = T (r1, . . . , rm). Then, for any i and any {rj}j ̸=i it holds that

∂ T

∂ ri
< 0

when ri > 2.

Proof. It holds that

∂ T

∂ ri
=

1

r2i
·
i−1∑
i′=1

1

ri′
·

m∏
j=i′,j ̸=i

rj − 1

rj
+

(
2

r3i
− 1

r2i

)
·

m∏
j=i+1

rj − 1

rj
.

Letting X =
∏m

j=i+1
rj−1
rj

> 0,

∂ T

∂ ri
=

1

r2i
·X ·

i−1∑
i′=1

1

ri′
·
i−1∏
j=i′

rj − 1

rj
+

(
2

r3i
− 1

r2i

)
·X =

(
T (r1, . . . , ri−1) +

2

ri
− 1
)
· X
r2i

.

Now, by the inductive hypothesis we have T (r1, . . . , ri−1) ≤ 1−Hri−1/ri−1 and, therefore,

∂ T

∂ ri
≤
(
2− ri

ri−1
·Hri−1

)
· X
r3i
≤
(
2− ri−1 + 1

ri−1
·Hri−1

)
· X
r3i

(recall ri > ri−1). The claim follows from the above since Hx > 2x/(x+ 1) for all x > 1.

It immediately follows by Claim A.2 that T (r1, . . . , rm) takes its largest value when the r′is are
the smallest, namely ri = i+ 1. In such a case, it suffices to show the following bound

r∑
i=2

1

i
·

r∏
j=i

j − 1

j
≤ 1−Hr/r.

Observe that the product in the expression is telescopic and so it holds that

r∏
j=i

j − 1

j
=

i− 1

r
.

Hence,

r∑
i=2

1

i

r∏
j=i

j − 1

j
=

r∑
i=2

1

i
·
(
i− 1

r

)
=

1

r

r∑
i=2

(
1− 1

i

)
=

1

r
· (r − 1− (Hr − 1)) = 1− Hr

r
.
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