
TS 29113 Further
Interoperability of Fortran with C

WG5/N1917

7th May 2012 12:21

Draft document for DTS Ballot

(Blank page)

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

Contents

1 Scope . 1

2 Normative references . 3

3 Terms and definitions . 5

4 Compatibility . 7
4.1 New intrinsic procedures . 7
4.2 Fortran 2008 compatibility . 7

5 Type specifiers and attributes . 9
5.1 Assumed-type objects . 9
5.2 Assumed-rank objects . 9
5.3 ALLOCATABLE, OPTIONAL, and POINTER attributes . 10
5.4 ASYNCHRONOUS attribute . 11

5.4.1 Introduction . 11
5.4.2 Asynchronous communication . 11

6 Procedures . 13
6.1 Characteristics of dummy data objects . 13
6.2 Explicit interface . 13
6.3 Argument association . 13
6.4 Intrinsic procedures . 13

6.4.1 SHAPE . 13
6.4.2 SIZE . 13
6.4.3 UBOUND . 14

7 New intrinsic procedure . 15
7.1 General . 15
7.2 RANK (A) . 15

8 Interoperability with C . 17
8.1 Removed restrictions on ISO C BINDING module procedures . 17
8.2 C descriptors . 17
8.3 ISO Fortran binding.h . 17

8.3.1 Summary of contents . 17
8.3.2 CFI dim t . 18
8.3.3 CFI cdesc t . 18
8.3.4 Macros and typedefs . 19
8.3.5 Functions . 22

8.4 Restrictions on C descriptors . 29
8.5 Restrictions on formal parameters . 29
8.6 Restrictions on lifetimes . 30
8.7 Interoperability of procedures and procedure interfaces . 30

9 Required editorial changes to ISO/IEC 1539-1:2010(E) . 33
9.1 General . 33
9.2 Edits to Introduction . 33

i

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

9.3 Edits to clause 1 . 33
9.4 Edits to clause 4 . 34
9.5 Edits to clause 5 . 34
9.6 Edits to clause 6 . 35
9.7 Edits to clause 12 . 36
9.8 Edits to clause 13 . 37
9.9 Edits to clause 15 . 39
9.10 Edits to clause 16 . 41
9.11 Edits to annex A . 41
9.12 Edits to annex C . 42

Annex A (informative) Extended notes . 43
A.1 Clause 5 notes . 43

A.1.1 Using assumed type in the context of interoperation with C 43
A.1.2 Mapping of interfaces with void * C parameters to Fortran 43
A.1.3 Using assumed-type variables in Fortran . 45
A.1.4 Simplifying interfaces for arbitrary rank procedures . 46

A.2 Clause 8 notes . 46
A.2.1 Dummy arguments of any type and rank . 46
A.2.2 Creating a contiguous copy of an array . 48
A.2.3 Changing the attributes of an array . 49
A.2.4 Creating an array section in C using CFI section . 50
A.2.5 Use of CFI setpointer . 51
A.2.6 Mapping of MPI interfaces to Fortran . 52

ii

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

List of Tables

8.1 Macros specifying attribute codes . 20

8.2 Macros specifying type codes . 20

8.3 Macros specifying error codes . 21

iii

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint
technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS), which represents
an agreement between the members of the joint technical committee and is accepted for publication if it is
approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further three
years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed, it is reviewed
again after a further three years, at which time it must either be transformed into an International Standard or
be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 29113:2012 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

iv

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

Introduction

The system for interoperability between the C language, as standardized by ISO/IEC 9899:1999, and Fortran, as
standardized by ISO/IEC 1539-1:2010, provides for interoperability of procedure interfaces with arguments that
are non-optional scalars, explicit-shape arrays, or assumed-size arrays. These are the cases where the Fortran
and C data concepts directly correspond. Interoperability is not provided for important cases where there is not
a direct correspondence between C and Fortran.

The existing system for interoperability does not provide for interoperability of interfaces with Fortran dummy ar-
guments that are assumed-shape arrays, have assumed character length, or have the ALLOCATABLE, POINTER,
or OPTIONAL attributes. As a consequence, a significant class of Fortran subprograms is not portably accessible
from C, limiting the usefulness of the facility.

The provision in the existing system for interoperability with a C formal parameter that is a pointer to void is
inconvenient to use and error-prone. C functions with such parameters are widely used.

This Technical Specification extends the facility of Fortran for interoperating with C to provide for interoperability
of procedure interfaces that specify dummy arguments that are assumed-shape arrays, have assumed character
length, or have the ALLOCATABLE, POINTER, or OPTIONAL attributes. New Fortran concepts of assumed
type and assumed rank are introduced. The former simplifies interoperation with formal parameters of type
(void *). The latter facilitates interoperability with C functions that can accept arguments of arbitrary rank. An
intrinsic function, RANK, is specified to obtain the rank of an assumed-rank variable.

The facility specified in this Technical Specification is a compatible extension of Fortran as standardized by
ISO/IEC 1539-1:2010. It does not require that any changes be made to the C language as standardized by
ISO/IEC 9899:1999.

It is the intention of ISO/IEC JTC 1/SC22 that the semantics and syntax specified by this Technical Specification
be included in the next revision of ISO/IEC 1539-1 without change unless experience in the implementation
and use of this feature identifies errors that need to be corrected, or changes are needed to achieve proper
integration, in which case every reasonable effort will be made to minimize the impact of such changes on existing
implementations.

This Technical Specification is organized in 9 clauses:

Scope Clause 1
Normative references Clause 2
Terms and definitions Clause 3
Compatibility Clause 4
Type specifiers and attributes Clause 5
Procedures Clause 6
New intrinsic procedure Clause 7
Interoperability with C Clause 8
Required editorial changes to ISO/IEC 1539-1:2010(E) Clause 9

It also contains the following nonnormative material:

Extended notes Annex A

NOTE 0.1
ISO/IEC 1539-1:2010 references ISO/IEC 9899:1999. For consistency, this Technical Specification also
references ISO/IEC 9899:1999, not ISO/IEC 9899:2011.

v

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

vi

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

1 Scope

This Technical Specification specifies the form and establishes the interpretation of facilities that extend the
Fortran language defined by ISO/IEC 1539-1:2010. The purpose of this Technical Specification is to promote
portability, reliability, maintainability, and efficient execution of programs containing parts written in Fortran
and parts written in C, for use on a variety of computing systems.

1

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

2

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

2 Normative references

The following referenced standards are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran—Part 1:Base language

ISO/IEC 9899:1999, Programming languages—C

3

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

4

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 1539-1:2010 and the following
apply.

3.1
assumed-rank object
dummy variable whose rank is assumed from its effective argument

3.2
assumed-type object
dummy variable declared with the TYPE(*) type specifier

3.3
C descriptor
C structure of type CFI cdesc t

NOTE 3.1
A C descriptor is used to describe a Fortran object that has no exact analog in C.

5

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

6

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

4 Compatibility

4.1 New intrinsic procedures

This Technical Specification defines an intrinsic procedure in addition to those specified in ISO/IEC 1539-1:2010.
Therefore, a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under this
Technical Specification if it invokes an external procedure having the same name as the new intrinsic procedure,
unless that procedure is specified to have the EXTERNAL attribute.

4.2 Fortran 2008 compatibility

This Technical Specification specifies an upwardly compatible extension to ISO/IEC 1539-1:2010.

7

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

8

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

5 Type specifiers and attributes

5.1 Assumed-type objects

The syntax rule R403 declaration-type-spec in subclause 4.3.1.1 of ISO/IEC 1539-1:2010 is replaced by

R403 declaration-type-spec is intrinsic-type-spec
or TYPE (intrinsic-type-spec)
or TYPE (derived-type-spec)
or CLASS (derived-type-spec)
or CLASS (*)
or TYPE (*)

An entity declared with a declaration-type-spec of TYPE (*) is an assumed-type entity. It has no declared type
and its dynamic type and type parameters are assumed from its effective argument. An assumed-type object is
unlimited polymorphic.

C407a An assumed-type entity shall be a dummy variable that does not have the ALLOCATABLE, CODIMEN-
SION, INTENT(OUT), POINTER, or VALUE attribute and is not an explicit-shape array.

C407b An assumed-type variable name shall not appear in a designator or expression except as an actual
argument corresponding to a dummy argument that is assumed-type, or as the first argument to any of
the intrinsic and intrinsic module functions IS CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE,
SIZE, UBOUND, and C LOC.

C407c An assumed-type actual argument that corresponds to an assumed-rank dummy argument shall be
assumed-shape or assumed-rank.

NOTE 5.1
An assumed-type object that is not assumed-shape and not assumed-rank is intended to be passed as the
C address of the object. This means that there would be insufficient information passed for an assumed-
type explicit-shape array that is an actual argument corresponding to an assumed-shape dummy argument.
Therefore TYPE(*) explicit-shape is not permitted.

NOTE 5.2
This Technical Specification provides no mechanism for a Fortran procedure to determine the actual type
of an assumed-type argument.

5.2 Assumed-rank objects

The syntax rule R515 array-spec in subclause 5.3.8.1 of ISO/IEC 1539-1:2010 is replaced by

R515 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec
or implied-shape-spec-list
or assumed-rank-spec

An assumed-rank object is a dummy variable whose rank is assumed from its effective argument. An assumed-rank
object is declared with an array-spec that is an assumed-rank-spec.

9

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

R522a assumed-rank-spec is ..

C535a An assumed-rank entity shall be a dummy variable that does not have the CODIMENSION or VALUE
attribute.

An assumed-rank object may have the CONTIGUOUS attribute.

C535b An assumed-rank variable name shall not appear in a designator or expression except as an actual
argument corresponding to a dummy argument that is assumed-rank, the argument of the C LOC function
in the ISO C BINDING intrinsic module, or the first argument in a reference to an intrinsic inquiry
function.

The definition of TKR compatible in paragraph 2 of subclause 12.4.3.4.5 of ISO/IEC 1539-1:2010 is changed to:

A dummy argument is type, kind, and rank compatible, or TKR compatible, with another dummy
argument if the first is type compatible with the second, the kind type parameters of the first have
the same values as the corresponding kind type parameters of the second, and both have the same
rank or either is assumed-rank.

NOTE 5.3
The intrinsic inquiry function RANK can be used to inquire about the rank of a data object. The rank of
an assumed-rank object is zero if the rank of the corresponding actual argument is zero.

NOTE 5.4
Assumed rank is an attribute of a Fortran dummy argument. When a C function is invoked with an
actual argument that corresponds to an assumed-rank dummy argument in a Fortran interface for that C
function, the corresponding formal parameter is the address of a descriptor of type CFI cdesc t (8.7). The
rank member of the descriptor provides the rank of the actual argument. The C function should therefore
be able to handle any rank. On each invocation, the rank is available to it.

5.3 ALLOCATABLE, OPTIONAL, and POINTER attributes

The ALLOCATABLE, OPTIONAL, and POINTER attributes may be specified for a dummy argument in a
procedure interface that has the BIND attribute.

The constraint C1255 in subclause 12.6.2.2 of ISO/IEC 1539-1:2010 is replaced by the following three constraints.

C1255 (R1230) If proc-language-binding-spec is specified for a procedure, each dummy argument shall be an in-
teroperable procedure (15.3.7) or a variable that is interoperable (15.3.5, 15.3.6), assumed shape, assumed
rank, assumed type, of assumed character length, or has the ALLOCATABLE or POINTER attribute. If
proc-language-binding-spec is specified for a function, the function result shall be an interoperable scalar
variable.

C1255a (R1230) A dummy argument of a procedure that has a proc-language-binding-spec shall not have both
the OPTIONAL and VALUE attributes.

C1255b (R1230) A variable that is a dummy argument of a procedure that has a proc-language-binding-spec shall
be of interoperable type or assumed type.

The following constraint is added to subclause 5.3.6.1 of ISO/IEC 1539-1:2010.

C524a A coarray shall not be a dummy argument of a procedure that has a proc-language-binding-spec.

Constraint C516 in subclause 5.3.1 of ISO/IEC 1539-1:2010 says “The ALLOCATABLE, POINTER, or OP-
TIONAL attribute shall not be specified for a dummy argument of a procedure that has a proc-language-binding-

10

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

spec.” This is replaced by the following, less restrictive constraint.

C516 The ALLOCATABLE or POINTER attribute shall not be specified for a default-initialized dummy
argument of a procedure that has a proc-language-binding-spec.

NOTE 5.5
It would be a severe burden to implementors to require that CFI allocate initialize components of an object
of a derived type with default initialization. The alternative of not requiring initialization would have been
inconsistent with the effect of ALLOCATE in Fortran.

5.4 ASYNCHRONOUS attribute

5.4.1 Introduction

The ASYNCHRONOUS attribute is extended to apply to variables that are used for asynchronous communication.

5.4.2 Asynchronous communication

Asynchronous communication for a Fortran variable occurs through the action of procedures defined by means
other than Fortran. It is initiated by execution of an asynchronous communication initiation procedure and
completed by execution of an asynchronous communication completion procedure. Between the execution of the
initiation and completion procedures, any variable of which any part is associated with any part of the asyn-
chronous communication variable is a pending communication affector. Whether a procedure is an asynchronous
communication initiation or completion procedure is processor dependent.

Asynchronous communication is either input communication or output communication. For input communication,
a pending communication affector shall not be referenced, become defined, become undefined, become associated
with a dummy argument that has the VALUE attribute, or have its pointer association status changed. For
output communication, a pending communication affector shall not be redefined, become undefined, or have its
pointer association status changed.

NOTE 5.6
Asynchronous communication can be used for nonblocking MPI calls such as MPI IRECV and MPI ISEND.
For example,

REAL :: BUF(100,100)
... ! Code that involves BUF

BLOCK
ASYNCHRONOUS :: BUF
CALL MPI_IRECV(BUF,...REQ,...)

... ! Code that does not involve BUF
CALL MPI_WAIT(REQ,...)

END BLOCK
... ! Code that involves BUF

In this example, there is asynchronous input communication and BUF is a pending communication affector
between the two calls. MPI IRECV may return while the communication (reading values into BUF) is still
underway. The intent is that the code between MPI IRECV and MPI WAIT executes without waiting for
this communication to complete. The restrictions are the same as for asynchronous input data transfer.

Similar code with the call of MPI IRECV replaced by a call of MPI ISEND is asynchronous output com-
munication. The restrictions are the same as for asynchronous output data transfer.

11

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

12

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

6 Procedures

6.1 Characteristics of dummy data objects

Additionally to the characteristics listed in subclause 12.3.2.2 of ISO/IEC 1539-1:2010, whether the type or rank
of a dummy data object is assumed is a characteristic of the dummy data object.

6.2 Explicit interface

Additionally to the rules of subclause 12.4.2.2 of ISO/IEC 1539-1:2010, a procedure shall have an explicit interface
if it has a dummy argument that is assumed-rank.

NOTE 6.1
An explicit interface is also required for a procedure if it has a dummy argument that is assumed-type
because an assumed-type dummy argument is polymorphic.

6.3 Argument association

An assumed-rank dummy argument may correspond to an actual argument of any rank. If the actual argument
has rank zero, the dummy argument has rank zero; the shape is a zero-sized array and the LBOUND and
UBOUND intrinsic functions, with no DIM argument, return zero-sized arrays. If the actual argument has rank
greater than zero, the rank and extents of the dummy argument are assumed from the actual argument, including
the lack of a final extent in the case of an assumed-size array. If the actual argument is an array and the dummy
argument is allocatable or a pointer, the bounds of the dummy argument are assumed from the actual argument.

An assumed-type dummy argument shall not correspond to an actual argument that is of a derived type that has
type parameters, type-bound procedures, or final subroutines.

When a Fortran procedure that has an INTENT(OUT) allocatable dummy argument is invoked by a C function,
and the actual argument in the C function is the address of a C descriptor that describes an allocated allocatable
variable, the variable is deallocated on entry to the Fortran procedure.

When a C function is invoked from a Fortran procedure via an interface with an INTENT(OUT) allocatable
dummy argument, and the actual argument in the reference to the C function is an allocated allocatable variable,
the variable is deallocated on invocation (before execution of the C function begins).

6.4 Intrinsic procedures

6.4.1 SHAPE

The description of the intrinsic function SHAPE in ISO/IEC 1539-1:2010 is changed for an assumed-rank array
that is associated with an assumed-size array; an assumed-size array has no shape, but in this case the result has
a value equal to [(SIZE (ARRAY, I, KIND), I=1, RANK (ARRAY))] with KIND omitted from SIZE if it was
omitted from SHAPE.

6.4.2 SIZE

The description of the intrinsic function SIZE in ISO/IEC 1539-1:2010 is changed in the following cases:

13

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(1) for an assumed-rank object that is associated with an assumed-size array, the result has the value −1
if DIM is present and equal to the rank of ARRAY, and a negative value that is equal to PRODUCT
([(SIZE (ARRAY, I, KIND), I=1, RANK (ARRAY))]) if DIM is not present;

(2) for an assumed-rank object that is associated with a scalar, the result has the value 1.

6.4.3 UBOUND

The description of the intrinsic function UBOUND in ISO/IEC 1539-1:2010 is changed for an assumed-rank
object that is associated with an assumed-size array; the result of UBOUND (ARRAY, RANK(ARRAY), KIND)
has a value equal to LBOUND (ARRAY, RANK (ARRAY), KIND) −2 with KIND omitted from LBOUND if it
was omitted from UBOUND.

NOTE 6.2
If LBOUND or UBOUND is invoked for an assumed-rank object that is associated with a scalar and DIM
is absent, the result is a zero-sized array. LBOUND or UBOUND cannot be invoked for an assumed-rank
object that is associated with a scalar if DIM is present because the rank of a scalar is zero and DIM must
be ≥ 1.

14

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

7 New intrinsic procedure

7.1 General

Detailed specification of the generic intrinsic function RANK is provided in 7.2. The types and type parameters of
the RANK intrinsic procedure argument and function result are determined by this specification. The “Argument”
paragraph specifies requirements on the actual arguments of the procedure. The intrinsic function RANK is pure.

7.2 RANK (A)

Description. Rank of a data object.

Class. Inquiry function.

Argument.

A shall be a scalar or array of any type.

Result Characteristics. Default integer scalar.

Result Value. The result is the rank of A.

Example. If X is a dummy argument declared with REAL X(..) and is argument associated with an actual
argument that was declared REAL Y(:,:,:), RANK(X) has the value 3.

15

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

16

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

8 Interoperability with C

8.1 Removed restrictions on ISO C BINDING module procedures

The subroutine C F POINTER from the intrinsic module ISO C BINDING has the restriction in ISO/IEC 1539-
1:2010 that if FPTR is an array, it shall be of interoperable type.

The function C F PROCPOINTER from the intrinsic module ISO C BINDING has the restriction in ISO/IEC
1539-1:2010 that CPTR and FPTR shall not be the C address and interface of a noninteroperable Fortran
procedure.

The function C LOC from the intrinsic module ISO C BINDING has the restriction in ISO/IEC 1539-1:2010 that
if X is an array, it shall be of interoperable type.

The function C FUNLOC from the intrinsic module ISO C BINDING has the restriction in ISO/IEC 1539-1:2010
that its argument shall be interoperable.

These restrictions are removed.

If the value of a C function pointer will be the result of a reference to C FUNLOC with a noninteroperable
argument, it is recommended that the C function pointer be declared void(*)().

8.2 C descriptors

A C descriptor is a C structure of type CFI cdesc t. Together with library functions that have standard prototypes,
it provides a means for describing and manipulating Fortran data objects from within a C function. This C
structure is defined in the file ISO_Fortran_binding.h.

8.3 ISO Fortran binding.h

8.3.1 Summary of contents

The ISO_Fortran_binding.h header file shall contain the definitions of the C structures CFI cdesc t and CFI -
dim t, typedef definitions for CFI attribute t, CFI index t, CFI rank t, and CFI type t, the definition of the
macro CFI CDESC T, macro definitions that expand to integer constants, and C function prototypes or macro
definitions for CFI address, CFI allocate, CFI deallocate, CFI establish, CFI is contiguous, CFI section, CFI -
select part, and CFI setpointer. The types, macros, and functions declared in ISO_Fortran_binding.h can be
used by a C function to interpret a C descriptor and allocate and deallocate objects represented by a C descriptor.
These provide a means to specify a C prototype that interoperates with a Fortran interface that has an allocatable,
assumed character length, assumed-rank, assumed-shape, or data pointer dummy argument.

ISO_Fortran_binding.h may be included in any order relative to the standard C headers, and may be included
more than once in a given scope, with no effect different from being included only once, other than the effect on
line numbers.

A C source file that includes the ISO_Fortran_binding.h header file shall not use any names starting with
CFI that are not defined in the header, and shall not define any of the structure names defined in the header
as macro names. All names other than structure member names defined in the header begin with CFI or an
underscore character, or are defined by a standard C header that it includes.

17

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

8.3.2 CFI dim t

CFI dim t is a named C structure type defined by a typedef. It is used to represent lower bound, extent, and
memory stride information for one dimension of an array. The type CFI index t is described in 8.3.4. CFI dim t
contains at least the following members in any order.

CFI index t lower bound; The value is equal to the value of the lower bound for the dimension being de-
scribed.

CFI index t extent; The value is equal to the number of elements along the dimension being described, or the
value -1 for the final dimension of an assumed-size array.

CFI index t sm; The value is equal to the memory stride for a dimension. The value is the distance in bytes
between the beginnings of successive elements along the dimension being described.

8.3.3 CFI cdesc t

CFI cdesc t is a named C structure type defined by a typedef, containing a flexible array member. It shall contain
at least the members described in the list that follows this paragraph. The values of these members of a structure
of type CFI cdesc t that is produced by the functions and macros specified in this Technical Specification, or
received by a C function when invoked by a Fortran procedure, shall have the following properties. The first three
members of the structure shall be base_addr, elem_len, and version in that order. The final member shall be
dim, with the other members after version and before dim in any order. The types CFI attribute t, CFI rank t,
and CFI type t are described in 8.3.4. The type CFI dim t is described in 8.3.2.

void * base addr; If the object is an unallocated allocatable variable or a pointer that is disassociated, the
value is a null pointer. If the object has zero size, the value is not a null pointer but is otherwise processor-
dependent. Otherwise, the value is the base address of the object being described. The base address of a
scalar is its C address. The base address of an array is the C address of the first element in Fortran array
element order (6.5.3.2 of ISO/IEC 1539-1:2010).

size t elem len; If the object is scalar, the value is the storage size in bytes of the object; otherwise, the value
is the storage size in bytes of an element of the object.

int version; The value is equal to the value of CFI VERSION in the ISO_Fortran_binding.h header file that
defined the format and meaning of this C descriptor when the descriptor was established.

CFI rank t rank; The value is equal to the number of dimensions of the Fortran object being described. If the
object is a scalar, the value is zero.

CFI type t type; The value is equal to the specifier for the type of the object. Each interoperable intrinsic C
type has a specifier. Specifiers are also provided to indicate that the type of the object is an interoperable
structure, or is unknown. The macros listed in Table 8.2 provide values that correspond to each specifier.

CFI attribute t attribute; The value is equal to the value of an attribute code that indicates whether the
object described is allocatable, a data pointer, or a nonallocatable nonpointer data object. The macros
listed in Table 8.1 provide values that correspond to each code.

CFI dim t dim[]; The number of elements in the dim array is equal to the rank of the object. Each element of
the array contains the lower bound, extent, and memory stride information for the corresponding dimension
of the Fortran object.

For a C descriptor of an array pointer or allocatable array, the value of the lower_bound member of each element
of the dim member of the descriptor is determined by argument association, allocation, or pointer association.
For a C descriptor of a nonallocatable nonpointer object, the value of the lower_bound member of each element
of the dim member of the descriptor is zero.

18

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

There shall be an ordering of the dimensions such that the absolute value of the sm member of the first dimension
is not less than the elem_len member of the C descriptor and the absolute value of the sm member of each
subsequent dimension is not less than the absolute value of the sm member of the previous dimension multiplied
by the extent of the previous dimension.

In a C descriptor of an assumed-size array, the extent member of the last element of the dim member has the
value −1.

NOTE 8.1
The reason for the restriction on the absolute values of the sm members is to ensure that there is no overlap
between the elements of the array that is being described, while allowing for the reordering of subscripts.
Within Fortran, such a reordering can be achieved with the intrinsic function TRANSPOSE or the intrinsic
function RESHAPE with the optional argument ORDER, and an optimizing compiler can accommodate it
without making a copy by constructing the appropriate descriptor whenever it can determine that a copy
is not needed.

NOTE 8.2
The value of elem_len for a Fortran CHARACTER object is equal to the character length times the number
of bytes of a single character of that kind. If the kind is C CHAR, this value will be equal to the character
length.

8.3.4 Macros and typedefs

The macros and typedefs described in this subclause are defined in ISO_Fortran_binding.h. Except for CFI -
CDESC T, each macro expands to an integer constant expression that is either a single token or a parenthesized
expression that is suitable for use in #if preprocessing directives.

CFI CDESC T is a function-like macro that takes one argument, which is the rank of the C descriptor to create,
and evaluates to an unqualified type of suitable size and alignment for defining a variable to use as a C descriptor
of that rank. The argument shall be an integer constant expression with a value that is greater than or equal to
zero and less than or equal to CFI MAX RANK. A pointer to a variable declared using CFI CDESC T can be
cast to CFI cdesc t *. A variable declared using CFI CDESC T shall not have an initializer.

NOTE 8.3
The CFI CDESC T macro provides the memory for a C descriptor. The address of an entity declared using
the macro is not usable as an actual argument corresponding to a formal parameter of type CFI cdesc t *
without an explicit cast. For example, the following code uses CFI CDESC T to declare a C descriptor of
rank 5 and pass it to CFI deallocate (8.3.5.4).

CFI_CDESC_T(5) object;
int ind;
... code to define and use C descriptor ...
ind = CFI_deallocate((CFI_cdesc_t *) &object);

CFI index t is a typedef name for a standard signed integer type capable of representing the result of subtracting
two pointers.

The CFI MAX RANK macro has a processor-dependent value equal to the largest rank supported. The value
shall be greater than or equal to 15. CFI rank t is a typedef name for a standard integer type capable of
representing the largest supported rank.

The CFI VERSION macro has a processor-dependent value that encodes the version of the ISO_Fortran_-
binding.h header file containing this macro.

19

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

NOTE 8.4
The intent is that the version should be increased every time that the header is incompatibly changed, and
that the version in a C descriptor may be used to provide a level of upwards compatibility, by using means
not defined by this Technical Specification.

The macros in Table 8.1 are for use as attribute codes. The values shall be nonnegative and distinct. CFI -
attribute t is a typedef name for a standard integer type capable of representing the values of the attribute
codes.

Table 8.1: Macros specifying attribute codes

Macro Code
CFI attribute pointer data pointer
CFI attribute allocatable allocatable
CFI attribute other nonallocatable nonpointer

CFI attribute pointer specifies a data object with the Fortran POINTER attribute. CFI attribute allocatable
specifies an object with the Fortran ALLOCATABLE attribute. CFI attribute other specifies a nonallocatable
nonpointer object.

The macros in Table 8.2 are for use as type specifiers. The value for CFI type other shall be negative and distinct
from all other type specifiers. CFI type struct specifies a C structure that is interoperable with a Fortran derived
type; its value shall be positive and distinct from all other type specifiers. If a C type is not interoperable
with a Fortran type and kind supported by the Fortran processor, its macro shall evaluate to a negative value.
Otherwise, the value for an intrinsic type shall be positive.

Additional nonnegative processor-dependent type specifier values may be defined for Fortran intrinsic types
that are not represented by other type specifiers and noninteroperable Fortran derived types that do not have
type parameters, type-bound procedures, final subroutines, nor components that have the ALLOCATABLE or
POINTER attributes, or correspond to CFI type other.

CFI type t is a typedef name for a standard integer type capable of representing the values for the supported
type specifiers.

Table 8.2: Macros specifying type codes

Macro C Type
CFI type signed char signed char
CFI type short short int
CFI type int int
CFI type long long int
CFI type long long long long int
CFI type size t size t
CFI type int8 t int8 t
CFI type int16 t int16 t
CFI type int32 t int32 t
CFI type int64 t int64 t
CFI type int least8 t int least8 t
CFI type int least16 t int least16 t
CFI type int least32 t int least32 t
CFI type int least64 t int least64 t
CFI type int fast8 t int fast8 t
CFI type int fast16 t int fast16 t
CFI type int fast32 t int fast32 t
CFI type int fast64 t int fast64 t

20

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

Macros specifying type codes (cont.)

Macro C Type
CFI type intmax t intmax t
CFI type intptr t intptr t
CFI type ptrdiff t ptrdiff t
CFI type float float
CFI type double double
CFI type long double long double
CFI type float Complex float Complex
CFI type double Complex double Complex
CFI type long double Complex long double Complex
CFI type Bool Bool
CFI type char char
CFI type cptr void *
CFI type struct interoperable C structure
CFI type other Not otherwise specified

NOTE 8.5
The specifiers for two intrinsic types can have the same value. For example, CFI type int and CFI type -
int32 t might have the same value.

The macros in Table 8.3 are for use as error codes. The macro CFI SUCCESS shall be defined to be the integer
constant 0. The value of each macro other than CFI SUCCESS shall be nonzero and shall be different from the
values of the other macros specified in this subclause. Error conditions other than those listed in this subclause
should be indicated by error codes different from the values of the macros named in this subclause.

The error codes that indicate the following error conditions are named by the associated macro name.

Table 8.3: Macros specifying error codes

Macro Error
CFI SUCCESS No error detected.

CFI ERROR BASE ADDR NULL The base address member of a C descriptor is a null pointer
in a context that requires a non-null pointer value.

CFI ERROR BASE ADDR NOT NULL The base address member of a C descriptor is not a null pointer
in a context that requires a null pointer value.

CFI INVALID ELEM LEN The value supplied for the element length member of a
C descriptor is not valid.

CFI INVALID RANK The value supplied for the rank member of a C descriptor
is not valid.

CFI INVALID TYPE The value supplied for the type member of a C descriptor
is not valid.

CFI INVALID ATTRIBUTE The value supplied for the attribute member of a
C descriptor is not valid.

CFI INVALID EXTENT The value supplied for the extent member of a CFI dim t
structure is not valid.

21

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

Macros specifying error codes (cont.)

Macro Error
CFI INVALID DESCRIPTOR A general error condition for C descriptors.

CFI ERROR MEM ALLOCATION Memory allocation failed.

CFI ERROR OUT OF BOUNDS A reference is out of bounds.

8.3.5 Functions

8.3.5.1 General

The macros and functions described in subclause 8.3 and the structure of the C descriptor provide a C function
with the capability to interoperate with a Fortran procedure that has an allocatable, assumed character length,
assumed-rank, assumed-shape, or data pointer argument.

Some of the functions described in 8.3.5 return an integer value that indicates whether an error condition was
detected. A nonzero value is returned if an error condition was detected, and the value zero is returned otherwise.
A list of error conditions and macro names for the corresponding error codes is supplied in 8.3.4. A processor is
permitted to detect other error conditions. If an invocation of a function defined in 8.3.5 could detect more than
one error condition and an error condition is detected, which error condition is detected is processor dependent.

In function arguments representing subscripts, bounds, extents, or strides, the ordering of the elements is the
same as the ordering of the elements of the dim member of a C descriptor.

Prototypes for these functions, or equivalent macros, are provided in the ISO_Fortran_binding.h file as described
in the following subclauses of 8.3.5. It is unspecified whether the functions defined by this header are macros or
identifiers declared with external linkage. If a macro definition is suppressed in order to access an actual function,
the behavior is undefined.

NOTE 8.6
These functions are allowed to be macros to provide extra implementation flexibility. For example, CFI -
establish could include the value of CFI VERSION in the header used to compile the call to CFI establish
as an extra argument of the actual function used to establish the C descriptor.

8.3.5.2 void * CFI address (const CFI cdesc t * dv, const CFI index t subscripts[]);

Description. Compute the C address of an object described by a C descriptor.

Formal Parameters.

dv shall be the address of a C descriptor describing the object. The object shall not be an unallocated allocatable
variable or a pointer that is not associated.

subscripts is ignored if the object is scalar. If the object is an array, subscripts is the address of a subscripts
array. The number of elements shall be greater than or equal to the rank r of the object. The subscript
values shall be within the bounds specified by the corresponding elements of the dim member of the C
descriptor.

Result Value. If the object is an array of rank r, the result is the C address of the element of the object that
the first r elements of the subscripts argument would specify if used as subscripts. If the object is scalar, the
result is its C address.

22

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

NOTE 8.7
When the subscripts argument is ignored, its value may be either a null pointer or a valid pointer value,
but it need not be the address of an object.

Example. If dv is the address of a C descriptor for the Fortran array A declared as

real(C_float) :: A(100,100)

the following code returns the C address of A(5,10)

CFI_index_t subscripts[2];
float *address;
subscripts[0] = 4;
subscripts[1] = 9;
address = (float *) CFI_address(dv, subscripts);

8.3.5.3 int CFI allocate (CFI cdesc t * dv, const CFI index t lower bounds[],
const CFI index t upper bounds[], size t elem len) ;

Description. Allocate memory for an object described by a C descriptor.

Formal Parameters.

dv shall be the address of a C descriptor specifying the rank and type of the object. On entry, the base_addr
member of the C descriptor shall be a null pointer, and the elem_len member shall specify the element
length for the type unless the type is a character type. The attribute member of the C descriptor shall
have a value of CFI attribute allocatable or CFI attribute pointer.

lower_bounds is the address of a lower bounds array. The number of elements shall be greater than or equal to
the rank r specified in the C descriptor.

upper_bounds is the address of an upper bounds array. The number of elements shall be greater than or equal
to the rank r specified in the C descriptor.

elem_len is ignored unless the type specified in the C descriptor is a character type. If the object is of Fortran
character type, the value of elem_len shall be the storage size in bytes of an element of the object.

Successful execution of CFI allocate allocates memory for the object described by the C descriptor with the address
dv using the same mechanism as the Fortran ALLOCATE statement. The first r elements of the lower_bounds
and upper_bounds arguments provide the lower and upper Fortran bounds, respectively, for each corresponding
dimension of the object. The supplied lower and upper bounds override any current dimension information in
the C descriptor. If the rank is zero, the lower_bounds and upper_bounds arguments are ignored. If the type
specified in the C descriptor is a character type, the supplied element length overrides the current element-length
information in the descriptor.

If an error is detected, the C descriptor is not modified.

Result Value. The result is an error indicator.

Example. If dv is the address of a C descriptor for the Fortran array A declared as

real, allocatable :: A(:,:)

and the array is not allocated, the following code allocates it to be of shape [100, 500]

23

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

CFI_index_t lower[2], upper[2];
int ind;
size_t dummy = 0;
lower[0] = 1; lower[1] = 1;
upper[0] = 100; upper[1] = 500;
ind = CFI_allocate(dv, lower, upper, dummy);

8.3.5.4 int CFI deallocate (CFI cdesc t * dv);

Description. Deallocate memory for an object described by a C descriptor.

Formal Parameters.

dv shall be the address of a C descriptor describing the object. It shall have been allocated using the same
mechanism as the Fortran ALLOCATE statement. If the object is a pointer, it shall be associated with a
target satisfying the conditions for successful deallocation by the Fortran DEALLOCATE statement (6.7.3.3
of ISO/IEC 1539-1:2010).

Successful execution of CFI deallocate deallocates memory for the object using the same mechanism as the Fortran
DEALLOCATE statement. The base_addr member of the C descriptor becomes a null pointer.

If an error is detected, the C descriptor is not modified.

Result Value. The result is an error indicator.

Example. If dv is the address of a C descriptor for the Fortran array A declared as

real, allocatable :: A(:,:)

and the array is allocated, the following code deallocates it

int ind;
ind = CFI_deallocate(dv);

8.3.5.5 int CFI establish (CFI cdesc t * dv, void * base addr, CFI attribute t attribute,
CFI type t type, size t elem len, CFI rank t rank, const CFI index t extents[]);

Description. Establish a C descriptor.

Formal Parameters.

dv shall be the address of a C object large enough to hold a C descriptor of the rank specified by rank. It shall
not have the same value as either a C formal parameter that corresponds to a Fortran actual argument or
a C actual argument that corresponds to a Fortran dummy argument. It shall not be the address of a C
descriptor that describes an allocated allocatable object.

base_addr shall be a null pointer or the base address of the object to be described. If it is not a null pointer,
it shall be the address of a contiguous storage sequence that is appropriately aligned (ISO/IEC 9899:1999
3.2) for an object of the type specified by type.

attribute shall be one of the attribute codes in Table 8.1. If it is CFI attribute allocatable, base_addr shall be
a null pointer.

type shall be one of the type codes in Table 8.2.

elem_len is ignored unless type is CFI type struct, CFI type other, or a character type. If the type is CFI -
type struct, CFI type other, or a Fortran character type, elem_len shall be greater than zero and equal to
the storage size in bytes of an element of the object.

24

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

rank specifies the rank. It shall be between 0 and CFI MAX RANK inclusive.

extents is ignored if the rank r is zero or if base_addr is a null pointer. Otherwise, it shall be the address of
an array with r elements specifying the corresponding extents of the described array. These extents shall
all be nonnegative.

Successful execution of CFI establish updates the object with the address dv to be an established C descriptor
for a nonallocatable nonpointer data object of known shape, an unallocated allocatable object, or a data pointer.
If base_addr is not a null pointer, it is for a nonallocatable entity that is a scalar or a contiguous array; if
the attribute argument has the value CFI attribute pointer, the lower bounds of the object described by dv
are set to zero. If base_addr is a null pointer, the established C descriptor is for an unallocated allocatable, a
disassociated pointer, or is a C descriptor that has the attribute CFI attribute other but does not describe a
data object. If base_addr is the C address of a Fortran data object, the type and elem_len arguments shall be
consistent with the type and type parameters of the Fortran data object. The remaining properties of the object
are given by the other arguments.

If an error is detected, the object with the address dv is not modified.

Result Value. The function returns an error indicator.

NOTE 8.8
CFI establish is used to initialize a C descriptor declared in C with CFI CDESC T before passing it to any
other functions as an actual argument, in order to set the rank, attribute, type and element length.

NOTE 8.9
A C descriptor with attribute CFI attribute other and base_addr a null pointer can be used as the
argument result in calls to CFI section or CFI select part, which will produce a C descriptor for a nonal-
locatable nonpointer data object.

Example 1. The following code fragment establishes a C descriptor for an unallocated rank-one allocatable
array that can be passed to Fortran for allocation there.

CFI_rank_t rank;
CFI_CDESC_T(1) field;
int ind;
rank = 1;
ind = CFI_establish ((CFI_cdesc_t *) &field, NULL, CFI_attribute_allocatable,

CFI_type_double, 0, rank, NULL);

Example 2. Given the Fortran type definition

type, bind(c) :: t
real(c_double) :: x
complex(c_double_complex) :: y

end type

and a Fortran subprogram that has an assumed-shape dummy argument of type t, the following code fragment
creates a descriptor a_fortran for an array of size 100 which can be used as the actual argument in an invocation
of the subprogram from C:

typedef struct {double x; double _Complex y;} t;
t a_c[100];
CFI_CDESC_T(1) a_fortran;
int ind;
CFI_index_t extent[1];

25

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

extent[0] = 100;
ind = CFI_establish((CFI_cdesc_t *) &a_fortran, a_c, CFI_attribute_other,

CFI_type_struct, sizeof(t), 1, extent);

8.3.5.6 int CFI is contiguous (const CFI cdesc t * dv);

Description. Test contiguity of an array.

Formal Parameter.

dv shall be the address of a C descriptor describing an array. The base_addr member of the C descriptor shall
not be a null pointer.

Result Value. CFI is contiguous returns 1 if the array described is determined to be contiguous, and 0 otherwise.

NOTE 8.10
A C descriptor for an array describes a contiguous object if it has extent -1 in its final dim element or if its
attribute member indicates that the array is allocatable.

8.3.5.7 int CFI section (CFI cdesc t * result, const CFI cdesc t * source,
const CFI index t lower bounds[], const CFI index t upper bounds[], const CFI index t strides[]);

Description. Update a C descriptor for an array section for which each element is an element of a given array.

Formal Parameters.

result shall be the address of a C descriptor with rank equal to the rank of source minus the number of zero
strides. The attribute member shall have the value CFI attribute other or CFI attribute pointer. If the
value of result is the same as either a C formal parameter that corresponds to a Fortran actual argument
or a C actual argument that corresponds to a Fortran dummy argument, the attribute member shall have
the value CFI attribute pointer.

source shall be the address of a C descriptor that describes a nonallocatable nonpointer array, an allocated
allocatable array, or an associated array pointer. The corresponding values of the elem_len and type
members shall be the same in the C descriptors with the addresses source and result.

lower_bounds shall be a null pointer or the address of an array specifying the subscripts of the element in the
array described by the C descriptor with the address source that is the first element, in Fortran array
element order (6.5.3.2 of ISO/IEC 1539-1:2010), of the array section. If it is a null pointer, the subscripts
of the first element of the array described by the C descriptor with the address source are used; otherwise,
the number of elements shall be greater than or equal to source->rank.

upper_bounds shall be a null pointer or the address of an array specifying the subscripts of the element in the
array described by the C descriptor with the address source that is the last element, in Fortran array
element order (6.5.3.2 of ISO/IEC 1539-1:2010), of the array section. If it is a null pointer, the C descriptor
with the address source shall not describe an assumed-size array and the subscripts of the last element of
the array are used; otherwise, the number of elements shall be greater than or equal to source->rank.

strides shall be a null pointer or the address of an array specifying the strides of the array section in units of
elements of the array described by the C descriptor with the address source; if a stride is 0, the section
subscript for the dimension is a subscript and the corresponding elements of lower_bounds and upper_-
bounds shall be equal. If it is a null pointer, the strides are treated as being all 1; otherwise, the number
of elements shall be greater than or equal to source->rank.

26

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

Successful execution of CFI section updates the base_addr and dim members of the C descriptor with the address
result to describe a section of the array described by the C descriptor with the address source.

If an error is detected, the C descriptor with the address result is not modified.

Result Value. The function returns an error indicator.

Example 1. If source is already the address of a C descriptor for the rank-one Fortran array A declared as

real A(100)

the following code fragment establishes a C descriptor and updates it to describe the array section A(3::5).

CFI_index_t lower_bounds[] = {2}, strides[] = {5};
CFI_CDESC_T(1) section;
int ind;
CFI_rank_t rank = 1 ;
ind = CFI_establish ((CFI_cdesc_t *) §ion, NULL,

CFI_attribute_other, CFI_type_float, 0, rank, NULL);
ind = CFI_section ((CFI_cdesc_t *) §ion, source,

lower_bounds, NULL, strides);

Example 2. If source is already the address of a C descriptor for the rank-two assumed-shape array A declared
in Fortran as

real A(100,100)

the following code fragment establishes a C descriptor and updates it to describe the rank-one array section
A(:,42).

CFI_index_t lower_bounds[] = {source->dim[0].lower_bound,41},
upper_bounds[] = {source->dim[0].lower_bound+source->dim[0].extent-1,41},
strides[] = {1,0};

CFI_CDESC_T(1) section;
int ind;
CFI_rank_t rank = 1 ;
ind = CFI_establish ((CFI_cdesc_t *) §ion, NULL,

CFI_attribute_other, CFI_type_float, 0, rank, NULL);
ind = CFI_section ((CFI_cdesc_t *) §ion, source,

lower_bounds, upper_bounds, strides);

8.3.5.8 int CFI select part (CFI cdesc t * result, const CFI cdesc t * source, size t displacement, size t
elem len);

Description. Update a C descriptor for an array section for which each element is a part of the corresponding
element of an array.

Formal Parameters.

result shall be the address of a C descriptor. The type member of the C descriptor shall specify the type of the
array section. The attribute member shall have the value CFI attribute other or CFI attribute pointer.
If the address specified by result is the value of a C formal parameter that corresponds to a Fortran actual
argument or a C actual argument that corresponds to a Fortran dummy argument, the attribute member
shall have the value CFI attribute pointer. The rank member of the C descriptor shall have the same value
as the rank member of the C descriptor at the address specified by source.

27

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

source shall be the address of a C descriptor for a nonallocatable nonpointer array, an allocated allocatable
array, or an associated array pointer.

displacement is the value in bytes to be added to the base address of the array described by the C descriptor
with the address source to give the base address of the array section. The resulting base address shall be ap-
propriately aligned (ISO/IEC 9899:1999 3.2) for an object of the specified type. The value of displacement
shall be between 0 and source->elem_len - 1 inclusive.

elem_len is ignored unless type is a character type. If the array section is of Fortran character type, the value
of elem_len shall be the storage size in bytes of an element of the object. The value of elem_len shall be
between 1 and source->elem_len inclusive.

Successful execution of CFI select part updates the base_addr, dim, and elem_len members of the C descriptor
with the address result for an array section for which each element is a part of the corresponding element of
the array described by the C descriptor with the address source. The part may be a component of a structure,
a substring, or the real or imaginary part of a complex value.

If an error is detected, the C descriptor with the address result is not modified.

Result Value. The function returns an error indicator.

Example. If source is already the address of a C descriptor for the Fortran array A declared thus:

type,bind(c):: t
real(C_DOUBLE) :: x
complex(C_DOUBLE_COMPLEX) :: y

end type
type(t) A(100)

the following code fragment establishes a C descriptor for the array A(:)%y.

typedef struct { double x; double _Complex y;} t;
CFI_CDESC_T(1) component;
int ind;
CFI_cdesc_t * comp_cdesc = (CFI_cdesc_t *)&component;
CFI_index_t extent[] = {100};

ind = CFI_establish (comp_cdesc, NULL, CFI_attribute_other,
CFI_type_double_Complex, sizeof(double _Complex), 1, extent);

ind = CFI_select_part (comp_cdesc, source, offsetof(t,y), 0);

8.3.5.9 int CFI setpointer (CFI cdesc t * result, CFI cdesc t * source, const CFI index t lower bounds[]);

Description. Update a C descriptor for a Fortran pointer to be associated with the whole of a given object or
to be disassociated.

Formal Parameters.

result shall be the address of a C descriptor for a Fortran pointer. It is updated using information from the
source and lower_bounds arguments.

source shall be a null pointer or the address of a C descriptor for a nonallocatable nonpointer data object, an
allocated allocatable object, or a data pointer object. If source is not a null pointer, the corresponding
values of the elem_len, rank, and type members shall be the same in the C descriptors with the addresses
source and result.

28

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

lower_bounds is ignored if source is a null pointer or the rank specified by source is zero. Otherwise, the
number of elements in the array lower_bounds shall be greater than or equal to the rank specified in the
source C descriptor. The elements provide the lower bounds for each corresponding dimension of the
result C descriptor. The extents and memory strides are copied from the source C descriptor.

Successful execution of CFI setpointer updates the base_addr and dim members of the C descriptor with the
address result with information in the C descriptor with the address source and in lower_bounds.

If source is a null pointer or the address of a C descriptor for a disassociated pointer, the updated C descriptor
describes a disassociated pointer. Otherwise, the C descriptor with the address result becomes a C descriptor
for the object described by the C descriptor with the address source, except that the lower bounds are replaced
by the values of the lower_bounds array if the rank is greater than zero and lower_bounds is not a null pointer.

If an error is detected, the C descriptor with the address result is not modified.

Result Value. The function returns an error indicator.

Example. If ptr is already the address of a C descriptor for an array pointer of rank 1, the following code
updates it to be a C descriptor for a pointer to the same array with lower bound 0.

CFI_index_t lower_bounds[1];
int ind;
lower_bounds[0] = 0;
ind = CFI_setpointer (ptr, ptr, lower_bounds);

8.4 Restrictions on C descriptors

A C descriptor shall not be initialized, updated, or copied other than by calling the functions specified in 8.3.5.

If the address of a C descriptor is a formal parameter that corresponds to a Fortran actual argument or a C
actual argument that corresponds to a Fortran dummy argument,

• the C descriptor shall not be modified if either the corresponding dummy argument in the Fortran interface
has the INTENT(IN) attribute or the C descriptor is for a nonallocatable nonpointer object, and

• the base_addr member of the C descriptor shall not be accessed before it is given a value if the corresponding
dummy argument in the Fortran interface has the POINTER and INTENT(OUT) attributes.

NOTE 8.11
In this context, modification refers to any change to the location or contents of the C descriptor, including
establishment and update. The intent of these restrictions is that C descriptors remain intact at all times
they are accessible to an active Fortran procedure, so that the Fortran code is not required to copy them.

8.5 Restrictions on formal parameters

Within a C function, an allocatable object shall be allocated or deallocated only by execution of the CFI -
allocate and CFI deallocate functions. A Fortran pointer can become associated with a target by execution of
the CFI allocate function.

Calling CFI allocate or CFI deallocate for a C descriptor changes the allocation status of the Fortran variable it
describes and causes the allocation status of any associated allocatable variable to change accordingly (6.7.1.3 of
ISO/IEC 1539-1:2010).

If the address of an object is the value of a formal parameter that corresponds to a nonpointer dummy argument
in a BIND(C) interface, then

29

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

• if the dummy argument has the INTENT(IN) attribute, the object shall not be defined or become undefined,
and
• if the dummy argument has the INTENT(OUT) attribute, the object shall not be referenced before it is

defined.

8.6 Restrictions on lifetimes

When a Fortran object is deallocated, execution of its host instance is completed, or its association status becomes
undefined, all C descriptors and C pointers to any part of it become undefined, and any further use of them is
undefined behavior (ISO/IEC 9899:1999 3.4.3).

A C descriptor whose address is a formal parameter that corresponds to a Fortran dummy argument becomes
undefined on return from a call to the function from Fortran. If the dummy argument does not have either the
TARGET or ASYNCHRONOUS attribute, all C pointers to any part of the object described by the C descriptor
become undefined on return from the call, and any further use of them is undefined behavior.

If the address of a C descriptor is passed as an actual argument to a Fortran procedure, the lifetime (ISO/IEC
9899:1999 6.2.4) of the C descriptor shall not end before the return from the procedure call. If an object is passed
to a Fortran procedure as a nonallocatable, nonpointer dummy argument, its lifetime shall not end before the
return from the procedure call.

If the lifetime of a C descriptor for an allocatable object that was established by C ends before the program exits,
the object shall be unallocated at that time.

If a Fortran pointer becomes associated with a C object, the association status of the Fortran pointer becomes
undefined when the lifetime of the C object ends.

NOTE 8.12
The following example illustrates how a C descriptor becomes undefined upon returning from a call to a C
function.

real,target :: x(1000),b
interface

real function Cfun(array) bind(c, name="Cfun")
real array(:)

end function Cfun
end interface
b = Cfun(x)

Cfun is a C function. Before Cfun is invoked, the processor creates a C descriptor for the array x. On
return from Cfun, the C descriptor becomes undefined. In addition, because the dummy argument array
does not have the TARGET or ASYNCHRONOUS attribute, all C pointers whose values were set during
execution of Cfun to be the address of any part of x become undefined.

8.7 Interoperability of procedures and procedure interfaces

The rules in this subclause replace the contents of paragraphs one and two of subclause 15.3.7 of ISO/IEC
1539-1:2010 entirely.

A Fortran procedure is interoperable if it has the BIND attribute, that is, if its interface is specified with a
proc-language-binding-spec.

A Fortran procedure interface is interoperable with a C function prototype if

(1) the interface has the BIND attribute,
(2) either

30

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

(a) the interface describes a function whose result variable is a scalar that is interoperable with
the result of the prototype or

(b) the interface describes a subroutine and the prototype has a result type of void,

(3) the number of dummy arguments of the interface is equal to the number of formal parameters of the
prototype,

(4) the prototype does not have variable arguments as denoted by the ellipsis (...),
(5) any dummy argument with the VALUE attribute is interoperable with the corresponding formal

parameter of the prototype, and
(6) any dummy argument without the VALUE attribute corresponds to a formal parameter of the pro-

totype that is of a pointer type, and either

(a) the dummy argument is interoperable with an entity of the referenced type (ISO/IEC 9899:1999,
6.2.5, 7.17, and 7.18.1) of the formal parameter,

(b) the dummy argument is a nonallocatable, nonpointer variable of type CHARACTER with
assumed length, and corresponds to a formal parameter of the prototype that is a pointer to
CFI cdesc t,

(c) the dummy argument is allocatable, assumed-shape, assumed-rank, or a pointer without the
CONTIGUOUS attribute, and corresponds to a formal parameter of the prototype that is a
pointer to CFI cdesc t, or

(d) the dummy argument is assumed-type and not assumed-shape or assumed-rank, and corres-
ponds to a formal parameter of the prototype that is a pointer to void.

If a dummy argument in an interoperable interface is of type CHARACTER and is allocatable or a pointer, its
character length shall be deferred.

If a dummy argument in an interoperable interface is allocatable, assumed-shape, of assumed character length,
assumed-rank, or a data pointer, the corresponding formal parameter is interpreted as the address of a C descriptor
for the effective argument in a reference to the procedure. The value of the attribute member of the C descriptor
shall be compatible with the characteristics of the dummy argument. The members of the C descriptor other
than attribute and type shall describe an object with the same characteristics as the effective argument. The
type member shall have a value from Table 8.2 that depends on the effective argument as follows:

• if the dynamic type of the effective argument is an interoperable type listed in Table 8.2, the corresponding
value for that type;
• if the dynamic type of the effective argument is an intrinsic type with no corresponding type listed in Table

8.2, or a noninteroperable derived type that does not have type parameters, type-bound procedures, final
subroutines, nor components that have the ALLOCATABLE or POINTER attributes, or correspond to
CFI type other, one of the processor-dependent nonnegative type specifier values;
• otherwise, CFI type other.

In an invocation of an interoperable procedure whose Fortran interface has an assumed-shape or assumed-rank
dummy argument with the CONTIGUOUS attribute, the associated effective argument may be an array that is
not contiguous or the address of a C descriptor for such an array. If the procedure is invoked from Fortran or the
procedure is a Fortran procedure, the Fortran processor will handle the difference in contiguity. If the procedure
is invoked from C and the procedure is a C procedure, the C code within the procedure shall be prepared to
handle the situation of receiving a discontiguous argument.

A C function shall not invoke a function pointer whose value is the result of a reference to C FUNLOC with a
noninteroperable argument.

An absent actual argument in a reference to an interoperable procedure is indicated by a corresponding formal
parameter with the value of a null pointer. An absent optional dummy argument in a reference to an interoperable
procedure from a C function is indicated by a corresponding argument with the value of a null pointer.

31

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

(Blank page)

32

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

9 Required editorial changes to ISO/IEC 1539-1:2010(E)

9.1 General

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of this
Technical Specification. Descriptions of how and where to place the new material are enclosed in braces {}. Edits
to different places within the same clause are separated by horizontal lines.

In the edits, except as specified otherwise by the editorial instructions, underwave (
::::::::::
underwave) and strike-out

(strike-out) are used to indicate insertion and deletion of text.

9.2 Edits to Introduction

{In paragraph 1 of the Introduction }

After “informally known as Fortran 2008”
insert “, plus the facilities defined in ISO/IEC TS 29113:2012”.

{After paragraph 3 of the Introduction, insert new paragraph}

ISO/IEC TS 29113 provides additional facilities with the purpose of improving interoperability with the C pro-
gramming language:
• assumed-type objects provide more convenient interoperability with C pointers;
• assumed-rank objects provide more convenient interoperability with the C memory model;
• it is now possible for a C function to interoperate with a Fortran procedure that has an allocatable, assumed

character length, assumed-shape, optional, or pointer dummy data object.

9.3 Edits to clause 1

{Insert new term definitions before term 1.3.9 attribute}

1.3.8a
assumed rank
〈dummy variable〉 the property of assuming the rank from its effective argument (5.3.8.7, 12.5.2.4)

1.3.8b
assumed type
〈dummy variable〉 being declared as TYPE (*) and therefore assuming the type and type parameters from its
effective argument (4.3.1)

{Insert new term definition before 1.3.20 character context}

1.3.19a
C descriptor
C structure of type CFI cdesc t defined in the header ISO_Fortran_binding.h (15.5)

{Insert new subclause before 1.6.2 Fortran 2003 compatibility}

1.6.1a Fortran 2008 compatibility

This part of ISO/IEC 1539 is an upward compatible extension to the preceding Fortran International Standard,

33

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

ISO/IEC 1539-1:2010(E). Any standard-conforming Fortran 2008 program remains standard-conforming under
this part of ISO/IEC 1539.

9.4 Edits to clause 4

{In 4.3.1.1 Type specifier syntax, insert additional production for R403 declaration-type-spec after the one for
CLASS (*)}

or TYPE (*)

{In 4.3.1.2 TYPE, edit the first paragraph as follows}

A TYPE type specifier is used to declare entities
::::
that

::::
are

:::
of

::::::::
assumed

::::::
type,

:::
or of an intrinsic or derived type.

{In 4.3.1.2 TYPE, insert new paragraphs at the end of the subclause}

An entity that is declared using the TYPE(*) type specifier has assumed type and is an unlimited polymorphic
entity (4.3.1.3). Its dynamic type and type parameters are assumed from its associated effective argument.

C407a An assumed-type entity shall be a dummy variable that does not have the ALLOCATABLE, CODIMEN-
SION, INTENT(OUT), POINTER or VALUE attribute and is not an explicit-shape array.

C407b An assumed-type variable name shall not appear in a designator or expression except as an actual
argument corresponding to a dummy argument that is assumed-type, or as the first argument to any of
the intrinsic and intrinsic module functions IS CONTIGUOUS, LBOUND, PRESENT, RANK, SHAPE,
SIZE, UBOUND, and C LOC.

C407c An assumed-type actual argument that corresponds to an assumed-rank dummy argument shall be
assumed-shape or assumed-rank.

9.5 Edits to clause 5

{In 5.3.1 Constraints, replace C516 with}

C516 The ALLOCATABLE or POINTER attribute shall not be specified for a default-initialized dummy
argument of a procedure that has a proc-language-binding-spec.

{In 5.3.4 ASYNCHRONOUS attribute, edit paragraphs 1 and 2 as follows:}

An entity with the ASYNCHRONOUS attribute is a variable that may be subject to asynchronous input/output

::
or

:::::::::::::
asynchronous

::::::::::::::::
communication

::::::::
(15.6.4)

The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if

• the variable appears in an executable statement or specification expression in that scoping unit and
• any statement of the scoping unit is executed while the variable is a pending I/O storage sequence affector

(9.6.2.5)
::
or

:
a
:::::::::
pending

:::::::::::::::
communication

::::::::
affector

::::::::
(15.6.4).

{In 5.3.6.1 CODIMENSION attribute / General, insert new constraint}

C524a A coarray shall not be a dummy argument of a procedure that has a proc-language-binding-spec.

{In 5.3.7 CONTIGUOUS attribute, edit C530 as follows}

C530 An entity with the CONTIGUOUS attribute shall be an array pointer
:
, or an assumed-shape array,

:::
or

::::
have

:::::::::
assumed

:::::
rank.

34

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

{In 5.3.7 CONTIGUOUS attribute, edit paragraph 1 as follows}

The CONTIGUOUS attribute specifies that an assumed-shape array can only be argument associated with a
contiguous effective argument, or that an array pointer can only be pointer associated with a contiguous target,

::
or

:::::
that

:::
an

:::::::::::::
assumed-rank

:::::::
object

::::
can

:::::
only

:::
be

::::::::::
argument

::::::::::
associated

:::::
with

::
a

::::::
scalar

:::
or

::::::::::
contiguous

:::::::::
effective

::::::::::
argument.

{In 5.3.7 CONTIGUOUS attribute, paragraph 2, item (3)}

Change first “array” to “or assumed-rank dummy argument”,
change second “array” to “object”.

{In 5.3.8.1 General, edit paragraph 1 as follows}

The DIMENSION attribute specifies that an entity
:::
has

:::::::::
assumed

:::::
rank

:::
or is an array.

::
An

::::::::::::::
assumed-rank

::::::
entity

::::
has

:::
the

:::::
rank

::::
and

:::::::
shape

::
of

:::
its

:::::::::::
associated

::::::
actual

:::::::::::
argument;

::::::::::
otherwise,

::::
theThe rank or rank and shape is specified by

its array-spec.

{In 5.3.8.1 General, insert additional production for R515 array-spec, after implied-shape-spec-list}

or assumed-rank-spec

{At the end of 5.3.8, immediately before 5.3.9, insert new subclause}

5.3.8.7 Assumed-rank entity

An assumed-rank entity is a dummy variable whose rank is assumed from its effective argument; this rank may
be zero. An assumed-rank entity is declared with an array-spec that is an assumed-rank-spec.

R522a assumed-rank-spec is ..

C535a An assumed-rank entity shall be a dummy variable that does not have the CODIMENSION or VALUE
attribute.

C535b An assumed-rank variable name shall not appear in a designator or expression except as an actual
argument corresponding to a dummy argument that is assumed-rank, the argument of the C LOC function
in the ISO C BINDING intrinsic module, or the first argument in a reference to an intrinsic inquiry
function.

9.6 Edits to clause 6

{In 6.5.4 Simply contiguous array designators, paragraph 2, edit the second bullet item as follows}

• an object-name that is not a pointer,
::::
not or assumed-shape,

:::::
and

:::
not

::::::::::::::
assumed-rank,

{In 6.7.3.2 Deallocation of allocatable variables, append to paragraph 6}

If a Fortran procedure that has an INTENT (OUT) allocatable dummy argument is invoked by a C function
and the corresponding argument in the C function call is a C descriptor that describes an allocated allocatable
variable, the variable is deallocated on entry to the Fortran procedure. When a C function is invoked from a
Fortran procedure via an interface with an INTENT (OUT) allocatable dummy argument and the corresponding
actual argument in the reference of the C function is an allocated allocatable variable, the variable is deallocated
on invocation (before execution of the C function begins).

35

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

9.7 Edits to clause 12

{In 12.3.2.2, edit paragraph 1 as follows}

The characteristics of a dummy data object are its type, its type parameters (if any), its shape
::::::
(unless

:::
it

::
is

::::::::::::::
assumed-rank), its corank, its codimensions, its intent (5.3.10, 5.4.10), whether it is optional (5.3.12, 5.4.10),
whether it is allocatable (5.3.3), whether it has the ASYNCHRONOUS (5.3.4), CONTIGUOUS (5.3.7), VALUE
(5.3.18), or VOLATILE (5.3.19) attributes, whether it is polymorphic, and whether it is a pointer (5.3.14, 5.4.12)
or a target (5.3.17, 5.4.15). If a type parameter of an object or a bound of an array is not a constant expression,
the exact dependence on the entities in the expression is a characteristic. If a

:::::
rank, shape, size,

:::::
type, or type

parameter is assumed or deferred, it is a characteristic.

{In 12.4.2.2 Explicit interface, after item (2)(c) insert new item}

(c2) has assumed rank,

{Replace paragraph 2 of 12.4.3.4.5 with}

A dummy argument is type, kind, and rank compatible, or TKR compatible, with another dummy argument if
the first is type compatible with the second, the kind type parameters of the first have the same values as the
corresponding kind type parameters of the second, and both have the same rank or either is assumed-rank.

{In 12.5.2.4 Ordinary dummy variables, append to paragraph 2}

If the actual argument is of a derived type that has type parameters, type-bound procedures, or final subroutines,
the dummy argument shall not be of assumed type.

{In 12.5.2.4 Ordinary dummy variables, paragraphs 3 and 4}

Change “not assumed shape” to “explicit-shape or assumed-size” (twice).

{In 12.5.2.4 Ordinary dummy variables, paragraph 9}

After “dummy argument is a scalar”
Change “or” to “, has assumed rank, or is”.

{In 12.5.2.4 Ordinary dummy variables, paragraph 10}

After “the CONTIGUOUS attribute” insert “, an assumed-rank entity with the CONTIGUOUS attribute that
is associated with an array actual argument”.

{In 12.5.2.4 Ordinary dummy variables, insert new paragraph after paragraph 14}

An actual argument of any rank may correspond to an assumed-rank dummy argument. The rank and shape
of the dummy argument are the rank and shape of the corresponding actual argument. If the rank is nonzero,
the lower and upper bounds of the dummy argument are those that would be given by the intrinsic functions
LBOUND and UBOUND respectively if applied to the actual argument, except that when the actual argument
is assumed size, the upper bound of the last dimension of the dummy argument is 2 less than the lower bound of
that dimension.

{In 12.5.2.4 Ordinary dummy variables, paragraph 18, constraint C1239}

Change “or an assumed-shape ... attribute” to “, an assumed-shape array without the CONTIGUOUS attribute,
or an assumed-rank array without the CONTIGUOUS attribute”.

{In 12.5.2.4 Ordinary dummy variables, paragraph 18, constraint C1240}

Change “or an assumed-shape ... attribute” to “, an assumed-shape array without the CONTIGUOUS attribute,

36

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

or an assumed-rank array without the CONTIGUOUS attribute”.

{In 12.5.2.13 Restrictions on entities associated with dummy arguments, paragraph 1, item (3) (b)}

Change “or an assumed-shape array without the CONTIGUOUS attribute” to “, an assumed-rank entity that is
associated with a scalar actual argument, an assumed-rank entity without the CONTIGUOUS attribute, or an
assumed-shape array without the CONTIGUOUS attribute”.

{In 12.5.2.13 Restrictions on entities associated with dummy arguments, paragraph 1, item (4) (b)}

Change “or an assumed-shape array without the CONTIGUOUS attribute” to “, an assumed-rank entity that is
associated with a scalar actual argument, an assumed-rank entity without the CONTIGUOUS attribute, or an
assumed-shape array without the CONTIGUOUS attribute”.

{In 12.6.2.2 Function subprogram, replace C1255 with these three constraints}

C1255 (R1230) If proc-language-binding-spec is specified for a procedure, each dummy argument shall be an in-
teroperable procedure (15.3.7) or a variable that is interoperable (15.3.5, 15.3.6), assumed shape, assumed
rank, assumed type, of assumed character length, or has the ALLOCATABLE or POINTER attributes.
If proc-language-binding-spec is specified for a function, the function result shall be an interoperable scalar
variable.

C1255a (R1230) A dummy argument of a procedure that has a proc-language-binding-spec shall not have both
the OPTIONAL and VALUE attributes.

C1255b (R1230) A variable that is a dummy argument of a procedure that has a proc-language-binding-spec shall
be of interoperable type or assumed type.

9.8 Edits to clause 13

{In 13.5 Standard generic intrinsic procedures, Table 13.1, LBOUND and UBOUND intrinsic functions}

Delete “ of an array” (twice).

{In 13.5 Standard generic intrinsic procedures, Table 13.1}

Insert new entry into the table, alphabetically

RANK (A) I Rank of a data object.

{In 13.7.86, IS CONTIGUOUS, edit paragraph 3 as follows}

Argument. ARRAY may be of any type. It shall be an array
::
or

:::
an

::::::::::::::
assumed-rank

:::::::
object. If it is a pointer it

shall be associated.

{In 13.7.86, IS CONTIGUOUS, edit paragraph 5 as follows}

Result Value. The result has the value true if ARRAY
:::
has

:::::
rank

:::::
zero

::
or is contiguous, and false otherwise.

{In 13.7.90 LBOUND, edit paragraph 1 as follows}

Description. Lower bound(s) of an array.

{In 13.7.90 LBOUND, edit paragraph 3, ARRAY argument, as follows}
ARRAY shall be an array

::
or

::::::::::::::
assumed-rank

:::::::
object of any type. It shall not be an unallocated allocatable

variable or a pointer that is not associated.

37

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

{In 13.7.90 LBOUND, insert note after paragraph 3}

“NOTE 13.14a
If ARRAY is an assumed-rank object of rank zero, DIM cannot be present.”

{In 13.7.93 LEN, paragraph 3}

Change “a type character scalar or array”
to “of type character”.

{Immediately before subclause 13.8.138 REAL, insert new subclause}

13.7.137a RANK (A)

Description. Rank of a data object.

Class. Inquiry function.

Argument. A shall be a data object of any type.

Result Characteristics. Default integer scalar.

Result Value. The result is the rank of A.

Example. If X is a dummy argument declared with REAL X(..) and is argument associated with an actual
argument that was declared REAL Y(:,:,:), RANK(X) has the value 3.

{In 13.7.149 SHAPE, replace paragraph 5 with}

Result Value. The result has a value equal to [(SIZE(SOURCE, i, KIND), i=1, RANK(SOURCE))].

{In 13.7.156 SIZE, edit paragraph 3, argument ARRAY, as follows}
ARRAY shall be an array

::
or

::::::::::::::
assumed-rank

:::::::
object of any type. It shall not be an unallocated allocatable

variable or a pointer that is not associated. If ARRAY is an assumed-size array, DIM shall be
present with a value less than the rank of ARRAY.

{In 13.7.156 SIZE, insert note after paragraph 3}

“NOTE 13.21a
If ARRAY is an assumed-rank object of rank zero, DIM cannot be present.”

{In 13.7.156 SIZE, replace paragraph 5 with}

Result Value. If ARRAY is an assumed-rank object associated with an assumed-size array and DIM is present
with a value equal to the rank of ARRAY, the result is −1; otherwise, if DIM is present, the result has a
value equal to the extent of dimension DIM of ARRAY. If DIM is not present, the result has a value equal to
PRODUCT([(SIZE(ARRAY, i, KIND), i=1, RANK(ARRAY))]).

{In 13.7.160 STORAGE SIZE, paragraph 3}

Change “a scalar or array of any type”
to “a data object of any type”.

{In 13.7.171 UBOUND, paragraph 1}

Delete “ of an array”.

{In 13.7.171 UBOUND, paragraph 3, ARRAY argument}

38

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

After “shall be an array”
insert “or assumed-rank object”.

{In 13.7.171 UBOUND, insert note after paragraph 3}

“NOTE 13.24a
If ARRAY is an assumed-rank object of rank zero, DIM cannot be present.”

{In 13.7.171 UBOUND, edit paragraph 5 as follows}

Result Value.

Case (i): For an array section or for an array expression, other than a whole array, UBOUND (ARRAY, DIM)
has a value equal to the number of elements in the given dimension; otherwise,

:
.

Case (ii):
:::
For

:::
an

::::::::::::::
assumed-rank

:::::::
object

::::::::::
associated

:::::
with

:::
an

:::::::::::::
assumed-size

::::::
array,

::::::::::::::::::::
UBOUND(ARRAY,

:::
n,

:::::::
KIND)

::::::
where

::
n

::
is

::::
the

:::::
rank

::
of

:::::::::
ARRAY

::::
has

::
a

:::::
value

::::::
equal

:::
to

:::::::::::::::::::
LBOUND(ARRAY,

:::
n,

:::::::
KIND)

:::
−

::
2.

Case (iii):
::::::::::
Otherwise, UBOUND(ARRAY, DIM) has a value equal to the upper bound for subscript DIM of
ARRAY if dimension DIM of ARRAY does not have size zero and has the value zero if dimension
DIM has size zero.

Case (iv): UBOUND (ARRAY) has a value whose ith element is equal to UBOUND (ARRAY, i), for i = 1, 2,
. . . , n, where n is the rank of ARRAY.

9.9 Edits to clause 15

{In 15.1 General, at the end of the subclause, insert new paragraph}

The header ISO_Fortran_binding.h provides definitions and prototypes to enable a C function to interoperate
with a Fortran procedure with an allocatable, assumed character length, assumed-shape, assumed-rank, or pointer
dummy data object.

{In 15.2.3.3 C F POINTER (CPTR, FPTR [,SHAPE]), paragraph 3, append a new paragraph to the description
of FPTR:}

“If the value of CPTR is the C address of a storage sequence, FPTR becomes associated with that storage
sequence. If FPTR is an array, its shape is specified by SHAPE and each lower bound is 1. The storage sequence
shall be large enough to contain the target object described by FPTR, shall not be in use by another Fortran
entity, and shall satisfy any other processor-dependent requirements for association.”

{At the end of 15.2.3.3 C F POINTER (CPTR, FPTR [,SHAPE]), insert new note}

“NOTE 15.xx
In the case of associating FPTR with a storage sequence, there might be processor-dependent requirements such
as alignment of the memory address or placement in memory.”

{In 15.2.3.5 C FUNLOC(X), paragraph 3}

Delete “that is interoperable” and change “associated with an interoperable procedure” to “associated with a
procedure”.

{In 15.2.3.6 C LOC(X), paragraph 3}

Delete “scalar,”.

{In 15.3.2 Interoperability of intrinsic types, Table 15.2, add a new Named constant / C type pair in the Fortran
type = INTEGER block, following C INTPTR T | intptr t, as follows}

C PTRDIFF T | ptrdiff t

39

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

{In 15.2.3.4 C F PROCPOINTER, paragraph 3}

In the description of argument CPTR, after “ that is interoperable” insert “or the result of a reference to C -
FUNLOC with a noninteroperable argument”.

In the description of argument FPTR, replace

“The interface for FPTR shall be interoperable with the prototype that describes the target of CPTR.”

with

“If the target of CPTR is interoperable, the interface for FPTR shall be interoperable with the prototype that
describes that target. Otherwise, the interface for FPTR shall have the same characteristics as that target.”

{In 15.3.7 Interoperability of procedures and procedure interfaces, paragraph 2, edit item (5) as follows}

(5) any dummy argument without the VALUE attribute corresponds to a formal parameter of the pro-
totype that is of pointer type, and

:::::
either

(a) the dummy argument is interoperable with an entity of the referenced type (ISO/IEC 9899:1999,
6.25, 7.17, and 7.18.1) of the formal parameter,

(b)
:::
the

::::::::
dummy

::::::::::
argument

:::
is

::
a

:::::::::::::::
nonallocatable,

::::::::::::
nonpointer

::::::::
variable

:::
of

:::::
type

:::::::::::::::
CHARACTER

:::::
with

::::::::
assumed

:::::::
length,

:::::
and

::::::::::::
corresponds

::
to

::
a
:::::::
formal

:::::::::::
parameter

::
of

::::
the

::::::::::
prototype

:::::
that

::
is

::
a

::::::::
pointer

::
to

::::
CFI

:::::
desc

::
t,

(c)
:::
the

::::::::
dummy

::::::::::
argument

::
is

::::::::::::
allocatable,

:::::::::::::::
assumed-shape,

:::::::::::::::
assumed-rank,

:::
or

::
a

:::::::
pointer

:::::::::
without

:::
the

:::::::::::::::
CONTIGUOUS

::::::::::
attribute,

::::
and

:::::::::::::
corresponds

::
to

::
a
:::::::
formal

:::::::::::
parameter

::
of

::::
the

::::::::::
prototype

:::::
that

::
is

::
a

:::::::
pointer

::
to

:::::
CFI

::::::
cdesc

::
t,

:::
or

(d)
:::
the

::::::::
dummy

::::::::::
argument

::
is

::::::::::::::
assumed-type

::::
and

::::
not

::::::::::::
allocatable,

:::::::::::::::
assumed-shape,

:::::::::::::::
assumed-rank,

::
or

:
a

::::::::
pointer,

::::
and

::::::::::::
corresponds

:::
to

::
a

:::::::
formal

::::::::::
parameter

:::
of

:::
the

:::::::::::
prototype

::::
that

::
is

::
a
::::::::
pointer

::
to

::::::
void,

(5a)
::::
each

:::::::::::
allocatable

:::
or

::::::::
pointer

:::::::
dummy

::::::::::
argument

:::
of

:::::
type

:::::::::::::::
CHARACTER

::::
has

::::::::
deferred

::::::::::
character

:::::::
length,

and,

{In 15.3.7 Interoperability of procedures and procedure interfaces, insert new paragraphs at the end of the
subclause after replacing 8.2 in the new text with the Table number for the table “Macros specifying type
codes”}

If a dummy argument in an interoperable interface is allocatable, assumed-shape, assumed-rank, or a pointer,
the corresponding formal parameter is interpreted as the address of a C descriptor for the effective argument in
a reference to the procedure. The value of the attribute member of the C descriptor shall be compatible with
the characteristics of the dummy argument. The members of the C descriptor other than attribute and type
shall describe an object with the same characteristics as the effective argument. The type member shall have a
value from Table 8.2 that depends on the effective argument as follows:

• if the dynamic type of the effective argument is an interoperable type listed in Table 8.2, the corresponding
value for that type;
• if the dynamic type of the effective argument is an intrinsic type with no corresponding type listed in Table

8.2, or a noninteroperable derived type that does not have type parameters, type-bound procedures, final
subroutines, nor components that have the ALLOCATABLE or POINTER attributes, or correspond to
CFI type other, one of the processor-dependent nonnegative type specifier values;
• otherwise, CFI type other.

In an invocation of an interoperable procedure whose Fortran interface has an assumed-shape or assumed-rank
dummy argument with the CONTIGUOUS attribute, the associated effective argument may be an array that is
not contiguous or the address of a C descriptor for such an array. If the procedure is invoked from Fortran or the
procedure is a Fortran procedure, the Fortran processor will handle the difference in contiguity. If the procedure

40

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

is invoked from C and the procedure is a C procedure, the C code within the procedure shall be prepared to
handle the situation of receiving a discontiguous argument.

An absent actual argument in a reference to an interoperable procedure is indicated by a corresponding formal
parameter with the value of a null pointer. An absent optional dummy argument in a reference to an interoperable
procedure from a C function is indicated by a corresponding argument with the value of a null pointer.

{Before subclause 15.5}

Insert subclauses 8.2 to 8.6 of this Technical Specification as subclauses 15.5 to 15.9, including subclauses 8.3.1
to 8.3.5 as subclauses 15.6.1 to 15.6.5, with the existing 15.5 to be renumbered 15.10 and its subclauses to be
renumbered accordingly.

{In 15.5.1 Definition and reference of interoperable procedures, paragraph 4}

Append the sentence “A C function shall not invoke a a function pointer whose value is the result of a reference
to C FUNLOC with a noninteroperable argument.”.

{At the end of 15.5.1 Definition and reference of interoperable procedures, insert a new paragraph:}

“If the value of a C function pointer will be the result of a reference to C FUNLOC with a noninteroperable
argument, it is recommended that the C function pointer be declared void(*)().”

{At the end of subclause 15.5}

Insert subclause 5.4.2 of this Technical Specification at the very end of clause 15 where it will become 15.10.4.

9.10 Edits to clause 16

{In 16.5.2.4 Events that cause pointers to become disassociated, insert a new list item following list item (3)}

“(3a) the target of the pointer is a C object and the lifetime of the C object ends,”

9.11 Edits to annex A

{At the end of A.2 Processor dependencies, replace the final full stop with a semicolon and add new items as
follows}

• the value of CFI MAX RANK in the file CFI Fortran binding.h;
• the value of CFI VERSION in the file CFI Fortran binding.h;
• which error condition is detected if more than one error condition is detected for an invocation of one of

the functions specified in the file CFI Fortran binding.h;
• the values of the attribute specifier macros defined in the file CFI Fortran binding.h;
• the values of the type specifier macros defined in the file CFI Fortran binding.h;
• which additional type specifier values are defined in the file CFI Fortran binding.h;
• the values of the error code macros, except for CFI SUCCESS, defined in the file CFI Fortran binding.h;
• the base address of a zero-sized array;
• the requirements on the storage sequence to be associated with the pointer FPTR by the C F POINTER

subroutine;
• whether a procedure defined by means other than Fortran is an asynchronous communication initiation or

completion procedure.

41

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

9.12 Edits to annex C

{In C.11 Clause 15 notes, at the end of the subclause}

Insert subclauses A.1.1 to A.1.4 as subclauses C.11.6 to C.11.9.

Insert subclause A.2.1 as C.11.10 with the revised title “Processing assumed-shape arrays in C”.

Insert subclauses A.2.2 to A.2.6 as subclauses C.11.11 to C.11.15.

42

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

Annex A
(Informative)

Extended notes

A.1 Clause 5 notes

A.1.1 Using assumed type in the context of interoperation with C

The mechanism for handling unlimited polymorphic entities whose dynamic type is interoperable with C is
designed to handle the following two situations:

(1) A formal parameter that is a C pointer to void. This is an address, and no further information
about the entity is provided. The formal parameter corresponds to a dummy argument that is a
nonallocatable nonpointer scalar or is an array of assumed size.

(2) A formal parameter that is the address of a C descriptor. Additional information on the status, type,
size, and shape is implicitly provided. The formal parameter corresponds to a dummy argument that
is of assumed shape or assumed rank.

In the first situation, it is the programmer’s responsibility to explicitly provide any information needed on the
status, type, size, and shape of the entity.

The examples A.1.2 and A.1.3 illustrate some uses of assumed-type entities.

A.1.2 Mapping of interfaces with void * C parameters to Fortran

A C interface for message passing or I/O functionality could be provided in the form

int EXAMPLE_send(const void *buffer, size_t buffer_size, const HANDLE_t *handle);

where the buffer_size argument is given in units of bytes, and the handle argument (which is of a type aliased
to int) provides information about the target the buffer is to be transferred to. In this example, type resolution
is not required.

The first method provides a thin binding; a call to EXAMPLE_send from Fortran directly invokes the C function.

interface
integer(c_int) function EXAMPLE_send(buffer, buffer_size, handle) &

bind(c,name="EXAMPLE_send")
use,intrinsic :: iso_c_binding
type(*), dimension(*), intent(in) :: buffer
integer(c_size_t), value :: buffer_size
integer(c_int), intent(in) :: handle

end function EXAMPLE_send
end interface

It is assumed that this interface is declared in the specification part of a module mod_EXAMPLE_old. Example
invocations from Fortran then are

use, intrinsic :: iso_c_binding
use mod_EXAMPLE_old

43

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

real(c_float) :: x(100)
integer(c_int) :: y(10,10)
real(c_double) :: z
integer(c_int) :: status, handle
:
! assign values to x, y, z and initialize handle
:
! send values in x, y, and z using EXAMPLE_send:
status = EXAMPLE_send(x, c_sizeof(x), handle)
status = EXAMPLE_send(y, c_sizeof(y), handle)
status = EXAMPLE_send((/ z /), c_sizeof(z), handle)

In these invocations, x and y are passed by address, and for y the sequence association rules (12.5.2.11 of ISO/IEC
1539-1:2010) allow this. For z, it is necessary to explicitly create an array expression.

status = EXAMPLE_send(y, c_sizeof(y(:,1)), handle)

passes the first column of y (again by address).

status = EXAMPLE_send(y(1,5), c_sizeof(y(:,5)), handle)

passes the fifth column of y using the sequence association rules.

The second method provides a Fortran interface which is easier to use, but requires writing a separate C wrapper
routine; this is commonly called a “fat binding”. In this implementation, a C descriptor is created because the
buffer is declared with assumed rank in the Fortran interface; the use of an optional argument is also demonstrated.

interface
subroutine example_send(buffer, handle, status) &

BIND(C, name="EXAMPLE_send_fortran")
use,intrinsic :: iso_c_binding
type(*), dimension(..), contiguous, intent(in) :: buffer
integer(c_int), intent(in) :: handle
integer(c_int), intent(out), optional :: status

end subroutine example_send
end interface

It is assumed that this interface is declared in the specification part of a module mod_EXAMPLE_new. Example
invocations from Fortran then are

use, intrinsic :: iso_c_binding
use mod_EXAMPLE_new

type, bind(c) :: my_derived
integer(c_int) :: len_used
real(c_float) :: stuff(100)

end type
type(my_derived) :: w(3)
real(c_float) :: x(100)
integer(c_int) :: y(10,10)
real(c_double) :: z
integer(c_int) :: status, handle
:
! assign values to w, x, y, z and initialize handle
:

44

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

! send values in w, x, y, and z using EXAMPLE_send
call EXAMPLE_send(w, handle, status)
call EXAMPLE_send(x, handle)
call EXAMPLE_send(y, handle)
call EXAMPLE_send(z, handle)

call EXAMPLE_send(y(:,5), handle) ! fifth column of y
call EXAMPLE_send(y(1,5), handle) ! scalar y(1,5) passed by descriptor

However, the following call from Fortran is not allowed

type(*) :: d(*) ! is a dummy argument
:
call EXAMPLE_send(d(1:4), handle, status)

The wrapper routine implemented in C reads

#include "ISO_Fortran_binding.h"

void EXAMPLE_send_fortran(const CFI_cdesc_t *buffer,
const HANDLE_t *handle, int *status) {

int status_local;
size_t buffer_size;
int i;

buffer_size = buffer->elem_len;
for (i=0; i<buffer->rank; i++) {

buffer_size *= buffer->dim[i].extent;
}
status_local = EXAMPLE_send(buffer->base_addr,buffer_size, handle);
if (status != NULL) *status = status_local;

}

A.1.3 Using assumed-type variables in Fortran

An assumed-type dummy argument in a Fortran procedure can be used as an actual argument corresponding
to an assumed-type dummy in a call to another procedure. In the following example, the Fortran subroutine
SIMPLE_Send serves as a wrapper to hide complications associated with calls to a C function named ACTUAL_Send.
Module comm_info contains node and address information for the current data transfer operations.

subroutine SIMPLE_Send (buffer, nbytes)
use comm_info, only: my_node, r_node, r_addr
use,intrinsic :: iso_c_binding
implicit none

type(*),dimension(*),intent(in) :: buffer
integer :: nbytes
integer :: ierr

interface
subroutine ACTUAL_Send (buffer, nbytes, node, addr, ierr) &

bind(C, name="ACTUAL_Send")
import :: C_size_t, C_int, C_intptr_t
type(*),dimension(*),intent(in) :: buffer
integer(C_size_t),value :: nbytes

45

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

integer(C_int),value :: node
integer(C_intptr_t),value :: addr
integer(C_int),intent(out) :: ierr

end subroutine ACTUAL_Send
end interface

call ACTUAL_Send (buffer, int(nbytes, C_size_t), r_node, r_addr, ierr)

if (ierr /= 0) then
print *, "Error sending from node", my_node, "to node",r_node
print *, "Program Aborting" ! Or call a recovery procedure
error stop ! Omit in the recovery case

end if
end subroutine SIMPLE_Send

A.1.4 Simplifying interfaces for arbitrary rank procedures

Example of assumed-rank usage in Fortran

There are situations where an assumed-rank dummy argument can be useful in Fortran, although a Fortran
procedure cannot itself access its value. For example, the IEEE inquiry functions in Clause 14 of ISO/IEC 1539-
1:2010 could be written using an assumed-rank dummy argument instead of writing 16 separate specific routines,
one for each possible rank.

The specific procedures for the IEEE SUPPORT DIVIDE function might be implemented in Fortran as follows:

interface ieee_support_divide
module procedure ieee_support_divide_noarg
module procedure ieee_support_divide_onearg_r4
module procedure ieee_support_divide_onearg_r8

end interface ieee_support_divide

...

logical function ieee_support_divide_noarg ()
ieee_support_divide_noarg = .true.

end function ieee_support_divide_noarg

logical function ieee_support_divide_onearg_r4 (x)
real(4),dimension(..) :: x
ieee_support_divide_onearg_r4 = .true.

end function ieee_support_divide_onearg_r4

logical function ieee_support_divide_onearg_r8 (x)
real(8),dimension(..) :: x
ieee_support_divide_onearg_r8 = .true.

end function ieee_support_divide_onearg_r8

A.2 Clause 8 notes

A.2.1 Dummy arguments of any type and rank

The example shown below calculates the product of individual elements of arrays A and B and returns the result
in array C. The Fortran interface of elemental_mult will accept arguments of any type and rank. However, the

46

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

C function will return an error code if any argument is not a two-dimensional int array. Note that the arguments
are permitted to be array sections, so the C function does not assume that any argument is contiguous.

The Fortran interface is:

interface
function elemental_mult(A, B, C) bind(C,name="elemental_mult_c"), result(err)

use,intrinsic :: iso_c_binding
integer(c_int) :: err
type(*), dimension(..) :: A, B, C

end function elemental_mult
end interface

The definition of the C function is:

#include "ISO_Fortran_binding.h"

int elemental_mult_c(CFI_cdesc_t * a_desc,
CFI_cdesc_t * b_desc, CFI_cdesc_t * c_desc) {

size_t i, j, ni, nj;

int err = 1; /* this error code represents all errors */

char * a_col = (char*) a_desc->base_addr;
char * b_col = (char*) b_desc->base_addr;
char * c_col = (char*) c_desc->base_addr;
char *a_elt, *b_elt, *c_elt;

/* only support integers */
if (a_desc->type != CFI_type_int || b_desc->type != CFI_type_int ||

c_desc->type != CFI_type_int) {
return err;

}

/* only support two dimensions */
if (a_desc->rank != 2 || b_desc->rank != 2 || c_desc->rank != 2) {

return err;
}

ni = a_desc->dim[0].extent;
nj = a_desc->dim[1].extent;

/* ensure the shapes conform */
if (ni != b_desc->dim[0].extent || ni != c_desc->dim[0].extent) return err;
if (nj != b_desc->dim[1].extent || nj != c_desc->dim[1].extent) return err;

/* multiply the elements of the two arrays */
for (j = 0; j < nj; j++) {
a_elt = a_col;
b_elt = b_col;
c_elt = c_col;
for (i = 0; i < ni; i++) {
(int)a_elt = *(int*)b_elt * *(int*)c_elt;

47

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

a_elt += a_desc->dim[0].sm;
b_elt += b_desc->dim[0].sm;
c_elt += c_desc->dim[0].sm;

}
a_col += a_desc->dim[1].sm;
b_col += b_desc->dim[1].sm;
c_col += c_desc->dim[1].sm;

}
return 0;

}

A.2.2 Creating a contiguous copy of an array

A C function might need to create a contiguous copy of an array section, such as when the section is an actual
argument corresponding to a dummy argument with the CONTIGUOUS attribute. The following example
provides functions that can be used to copy an array described by a CFI cdesc t descriptor to a contiguous
buffer. The input array need not be contiguous.

The C functions are:

#include "ISO_Fortran_binding.h"
/* other necessary includes omitted */

/*
* Returns the number of elements in the object described by desc.
* If it is an array, it need not be contiguous.
* (The number of elements could be zero).
*/
size_t numElements(const CFI_cdesc_t * desc) {

CFI_rank_t r;
size_t num = 1;

for (r = 0; r < desc->rank; r++) {
num *= desc->dim[r].extent;

}
return num;

}

/*
* Auxiliary recursive function to copy an array of a given rank.
* Recursion is useful because an array of rank n is composed of an
* ordered set of arrays of rank n-1.
*/
static void * _copyToContiguous (const CFI_cdesc_t * vald,

void * output, const void * input, CFI_rank_t rank) {
CFI_index_t e;

if (rank == 0) {
/* copy scalar element */
memcpy (output, input, vald->elem_len);
output = (void *)((char *)output + vald->elem_len);

}
else {

for (e = 0; e < vald->dim[rank-1].extent; e++) {
/* recurse on subarrays of lesser rank */

48

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

output = _copyToContiguous (vald, output, input, rank-1);
input = (void *) ((char *)input + vald->dim[rank].sm);

}
}
return output;

}

/*
* General routine to copy the elements in the array described by vald
* to buffer, as done by sequence association. The array itself may
* be non-contiguous. This is not the most efficient approach.
*/
void copyToContiguous (void * buffer, const CFI_cdesc_t * vald) {

_copyToContiguous (vald, buffer, vald->base_addr, vald->rank);
}

A.2.3 Changing the attributes of an array

A C programmer might want to call more than one Fortran procedure and the attributes of an array involved
might differ between the procedures. In this case, it is necessary to set up more than one C descriptor for the
array. For example, this code fragment initializes the first C descriptor for an allocatable entity of rank 2, calls
a procedure that allocates the array described by the first C descriptor, constructs the second C descriptor by
invoking CFI section with the value CFI attribute other for the attribute parameter, then calls a procedure
that expects an assumed-shape array.

CFI_CDESC_T(2) loc_alloc, loc_assum;
CFI_cdesc_t * desc_alloc = (CFI_cdesc_t *)&loc_alloc,

* desc_assum = (CFI_cdesc_t *)&loc_assum;
CFI_index_t extents[2];
CFI_rank_t rank = 2;
int flag;

flag = CFI_establish(desc_alloc,
NULL,
CFI_attribute_allocatable,
CFI_type_double,
sizeof(double),
rank,
NULL);

Fortran_factor (desc_alloc, ...); /* Allocates array described by desc_alloc */

/* Extract extents from descriptor */
extents[0] = desc_alloc->dim[0].extent;
extents[1] = desc_alloc->dim[1].extent;

flag = CFI_establish(desc_assum,
desc_alloc->base_addr,
CFI_attribute_other,
CFI_type_double,
sizeof(double),
rank,
extents);

49

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

Fortran_solve (desc_assum, ...); /* Uses array allocated in Fortran_factor */

After invocation of the second CFI establish, the lower bounds stored in the dim member of desc_assum will
have the value 0 even if the corresponding entries in desc_alloc have different values.

A.2.4 Creating an array section in C using CFI section

Given the Fortran subprogram

subroutine set_all(int_array, val) bind(c)
integer(c_int) :: int_array(:)
integer(c_int), value :: val
int_array = val

end subroutine

that sets all the elements of an array and the Fortran interface

interface
subroutine set_odd(int_array, val) bind(c)
use, intrinsic :: iso_c_binding, only : c_int
integer(c_int) :: int_array(:)
integer(c_int), value :: val

end subroutine
end interface

for a C function that sets every second array element, beginning with the first one, the implementation in C reads

#include "ISO_Fortran_binding.h"

void set_odd(CFI_cdesc_t *int_array, int val) {
CFI_index_t lower_bound[1], upper_bound[1], stride[1];
CFI_CDESC_T(1) array;
int status;
/* Create a new descriptor which will contain the section */
status = CFI_establish((CFI_cdesc_t *) &array,

NULL,
CFI_attribute_other,
int_array->type,
int_array->elem_len,
/* rank */ 1,
/* extents is ignored */ NULL);

lower_bound[0] = int_array->dim[0].lower_bound;
upper_bound[0] = lower_bound[0] + (int_array->dim[0].extent - 1);
stride[0] = 2;

status = CFI_section((CFI_cdesc_t *) &array,
(CFI_cdesc_t *) &int_array,
lower_bound,
upper_bound,
stride);

set_all((CFI_cdesc_t *) &array, val);

/* here one could make use of int_array and access all its data */
}

50

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

Let invocation of set_odd() from a Fortran program be done as follows:

integer(c_int) :: d(5)
d = (/ 1, 2, 3, 4, 5 /)
call set_odd(d, -1)
write(*, *) d

Then, the program will print

-1 2 -1 4 -1

During execution of the subprogram set_all(), its dummy object int_array would appear to be an array of
size 3 with lower bound 1 and upper bound 3.

It is also possible to invoke set_odd() from C. However, it is the C programmer’s responsibility to make sure
that all members of the C descriptor have the correct value on entry to the function. Inserting additional checking
into the function’s implementation could alleviate this problem.

/* necessary includes omitted */
#define ARRAY_SIZE 5

CFI_CDESC_T(1) d;
CFI_index_t extent[1];
CFI_index_t subscripts[1];
void *base;
int i, status;

base = malloc(ARRAY_SIZE*sizeof(int));
extent[0] = ARRAY_SIZE;
status = CFI_establish((CFI_cdesc_t *) &d,

base,
CFI_attribute_other,
CFI_type_int,
/* element length is ignored */ 0,
/* rank */ 1,
extent);

set_odd((CFI_cdesc_t *) &d, -1);

for (i=0; i<ARRAY_SIZE; i++) {
subscripts[1] = i;
printf(" %d",*((int *)CFI_address((CFI_cdesc_t *) &d, subscripts)));

}
printf("\n");
free(base);

This C program will print (apart from formatting) the same output as the Fortran program above. It also
demonstrates how an assumed shape entity is dynamically generated within C.

A.2.5 Use of CFI setpointer

The following C function modifies a pointer to an integer variable to become associated with a global variable
defined inside C:

51

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

#include "ISO_Fortran_binding.h"

int y = 2;

void change_target(CFI_cdesc_t *ip) {
CFI_CDESC_T(0) yp;
int status;
/* make local yp point at y */
status = CFI_establish((CFI_cdesc_t *) &yp,

&y,
CFI_attribute_pointer,
CFI_type_int,
/* elem_len is ignored */ sizeof(int),
/* rank */ 0,
/* extents are ignored */ NULL);

/* Pointer association of ip with yp */
status = CFI_setpointer(ip, (CFI_cdesc_t *) &yp, NULL);
if (status != CFI_SUCCESS) {
/* handle run time error */
}

}

The restrictions on the use of CFI establish prohibit direct modification of the incoming pointer entity ip by
invoking that function on it.

The following Fortran code

use, intrinsic :: iso_c_binding

interface
subroutine change_target(ip) bind(c)
import :: c_int
integer(c_int), pointer :: ip

end subroutine
end interface

integer(c_int), target :: it = 1
integer(c_int), pointer :: it_ptr

it_ptr => it
write(*,*) it_ptr
call change_target(it_ptr)
write(*,*) it_ptr

will then print

1
2

A.2.6 Mapping of MPI interfaces to Fortran

The Message Passing Interface (MPI) specifies procedures for exchanging data between MPI processes. This
example shows the usage of MPI_Send and is similar to the second variant of EXAMPLE_Send in subclause A.1.2.
It also shows the usage of assumed-length character dummy arguments as well as optional dummy arguments.

MPI Send has the C prototype,

52

2012/5/7 TS 29113 Further Interoperability of Fortran with C WG5/N1917

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);

where MPI_Datatype and MPI_Comm are opaque handles. Most MPI C functions return an error code, which in
Fortran is the last dummy argument to the corresponding subroutine and can be made optional. Thus, the use
of a Fortran subroutine requires a wrapper function, declared as

void MPI_Send_f(CFI_cdesc_t *buf, int count, MPI_Datatype_f datatype,
int dest, int tag, MPI_Datatype_f comm, int *ierror);

where it is assumed that in C there is a conversion between the C handles of type MPI_Datatype and MPI_Comm
and their respective Fortran handles of type MPI_Datatype_f and MPI_Comm_f. Conversion of the CFI_cdesc_t
*buf argument to a contiguous void * buffer is also done in the wrapper function.

Similarly, the wrapper function for MPI_Comm_set_name could have the C prototype,

void MPI_Comm_set_name_f(MPI_Comm comm, CFI_cdesc_t *comm_name,
int *ierror);

The Fortran handle types and interfaces are defined in the module MPI_f08. For example,

module MPI_f08
...
type, bind(C) :: MPI_Comm

integer(c_int) :: MPI_VAL
end type MPI_Comm

interface
subroutine MPI_Send(buf,count,datatype,dest,tag,comm,ierror) &
bind(C, name="MPI_Send_f")
use, intrinsic :: iso_c_binding
import :: MPI_Datatype, MPI_Comm
type(*), dimension(..), intent(in) :: buf
integer(c_int), value, intent(in) :: count, dest, tag
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Comm), intent(in) :: comm
integer(c_int), optional, intent(out) :: ierror

end subroutine MPI_Send
end interface

interface
subroutine MPI_Comm_set_name(comm,comm_name,ierror) &
bind(C, name="MPI_Comm_set_name_f")
use, intrinsic :: iso_c_binding
import :: MPI_Comm
type(MPI_Comm), intent(in) :: comm
character(kind=c_char, len=*), intent(in) :: comm_name
integer(c_int), optional, intent(out) :: ierror

end subroutine MPI_Comm_set_name
end interface
...
end module MPI_f08

Example invocations from Fortran are

53

WG5/N1917 TS 29113 Further Interoperability of Fortran with C 2012/5/7

use, intrinsic :: iso_c_binding
use :: MPI_f08

type(MPI_Comm) :: comm
real :: x(100)
integer :: y(10,10)
real(kind(1.0d0)) :: z
integer :: dest, tag, ierror
...
! assign values to x, y, z and initialize MPI variables
...

! set the name of the communicator
call MPI_Comm_set_name(comm, "Communicator Name", ierror)

! send values in x, y, and z
call MPI_Send(x, 100, MPI_REAL, dest, tag, comm, ierror)
call MPI_Send(y(3,:), 10, MPI_INTEGER, dest, tag, comm)
call MPI_Send(z, 1, MPI_DOUBLE_PRECISION, dest, tag, comm)

The first example sends the entire array x and includes the optional error argument return value. The second
example sends a noncontiguous subarray (the third row of y) and the third example sends a scalar z. Note the
differences between the calls in this example and those in A.1.2.

54

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Compatibility
	4.1 New intrinsic procedures
	4.2 Fortran 2008 compatibility

	5 Type specifiers and attributes
	5.1 Assumed-type objects
	5.2 Assumed-rank objects
	5.3 ALLOCATABLE, OPTIONAL, and POINTER attributes
	5.4 ASYNCHRONOUS attribute
	5.4.1 Introduction
	5.4.2 Asynchronous communication

	6 Procedures
	6.1 Characteristics of dummy data objects
	6.2 Explicit interface
	6.3 Argument association
	6.4 Intrinsic procedures
	6.4.1 SHAPE
	6.4.2 SIZE
	6.4.3 UBOUND

	7 New intrinsic procedure
	7.1 General
	7.2 RANK (A)

	8 Interoperability with C
	8.1 Removed restrictions on ISO_C_BINDING module procedures
	8.2 C descriptors
	8.3 ISO_Fortran_binding.h
	8.3.1 Summary of contents
	8.3.2 CFI_dim_t
	8.3.3 CFI_cdesc_t
	8.3.4 Macros and typedefs
	8.3.5 Functions

	8.4 Restrictions on C descriptors
	8.5 Restrictions on formal parameters
	8.6 Restrictions on lifetimes
	8.7 Interoperability of procedures and procedure interfaces

	9 Required editorial changes to ISO/IEC 1539-1:2010(E)
	9.1 General
	9.2 Edits to Introduction
	9.3 Edits to clause 1
	9.4 Edits to clause 4
	9.5 Edits to clause 5
	9.6 Edits to clause 6
	9.7 Edits to clause 12
	9.8 Edits to clause 13
	9.9 Edits to clause 15
	9.10 Edits to clause 16
	9.11 Edits to annex A
	9.12 Edits to annex C

	Annex A (informative) Extended notes
	A.1 Clause 5 notes
	A.1.1 Using assumed type in the context of interoperation with C
	A.1.2 Mapping of interfaces with void * C parameters to Fortran
	A.1.3 Using assumed-type variables in Fortran
	A.1.4 Simplifying interfaces for arbitrary rank procedures

	A.2 Clause 8 notes
	A.2.1 Dummy arguments of any type and rank
	A.2.2 Creating a contiguous copy of an array
	A.2.3 Changing the attributes of an array
	A.2.4 Creating an array section in C using CFI_section
	A.2.5 Use of CFI_setpointer
	A.2.6 Mapping of MPI interfaces to Fortran

