1sonec atcusczzwas N1379

Working draft of ISO/IEC TR 15581, second edition

I nfor mation technology — Programming
languages — Fortran —
Enhanced data type facilities

This page to be supplied by 1SO. No changes from first edition, except for for mechanical things such as dates.



ISO/IEC PDTR 15581:1999(E)

Contents

1. GENERAL
1.1 Scope

1.2 Nor mative References

2. REQUIREMENTS
2.1 Allocatable Attribute Regularization
2.2 Allocatable Arrays as Dummy Arguments
2.3 Allocatable Array Function Results

2.4 Allocatable Array Components

3. REQUIRED EDITORIAL CHANGES TO ISO/IEC 1539-1 : 1997

© ISO/IEC



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

Foreword

[General part to be provided by ISO CS]

This technical report specifies an extension to the data type facilities of the programming language
Fortran. Fortran is specified by the internationa standard ISO/IEC 1539-1. This document has been
prepared by 1 SO/IEC JTC1/SC22/WGS5, the technical working group for the Fortran language

It is the intention of ISO/IEC JTCL/SC22/WG5 that the semantics and syntax specified by this
technical report be included in the next revision of the Fortran standard (ISO/IEC 1539-1) without
change unless experience in the implementation and use of this feature identifies any errors that need to
be corrected, or changes are required to achieve proper integration, in which case every reasonable
effort will be made to minimise the impact of such changes on existing commercia implementations.



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

I ntroduction

There are many situations when programming in Fortran where it is necessary to alocate and deallocate
arrays of variable size but the full power of pointer arrays is unnecessary and undesirable. In such
situations the abilities of a pointer array to alias other arrays and to have non-unit (and variable at
execution time) strides are unnecessary, and they are undesirable because this limits optimization,
increases the complexity of the program, and increases the likelihood of memory leakage. The
ALLOCATABLE attribute solves this problem but can currently only be used for locally stored arrays,
a very dignificant limitation. The most pressing need is for this to be extended to array components;
without allocatable array components it is overwhelmingly difficult to create opaque data types with a
sizethat varies at runtime without serious performance penalties and memory leaks.

A major reason for extending the ALLOCATABLE attribute to include dummy arguments and function
resultsis to avoid introducing further irregularities into the language. Furthermore, alocatable dummy
arguments improve the ability to hide inessentia details during problem decomposition by alowing the
allocation and deallocation to occur in called subprograms, which is often the most natural position.
Allocatable function results ease the task of creating array functions whose shape is not determined
initially on function entry, without negatively impacting performance.

This extension is being defined by means of a Technical Report in the first instance to allow early
publication of the proposed definition. This is to encourage early implementation of important extended
functiondlities in a consistent manner and will alow extensive testing of the design of the extended
functionality prior to itsincorporation into the language by way of the revision of ISO/IEC 1539-1.



TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 15581:1999(E)

| nfor mation technology - Programming languages - Fortran -
Enhanced data typefacilities

1 General
1.1 Scope

This Technical Report specifies an extension to the data-type facilities of the programming language
Fortran. The current Fortran language is specified by ISO/IEC 1539-1 : 1997. The proposed extension
allows dummy arguments, function results, and components of derived types to be allocatable arrays.

Clause 2 of this technical report contains a genera informal but precise description of the proposed
extended functionalities. Clause 3 contains detailed editorial changes which if applied to the current
International Standard would implement the revised language specification.

1.2 Normative References

The following standards contain provisions which, through reference in this text, congtitute provisions
of this Technical Report. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this Technica Report are
encouraged to investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative document
referred to applies. Members of IEC and SO maintain registers of currently valid Internationa
Standards.

ISO/IEC 1539-1 : 1997 Information technology - Programming languages - Fortran - Part 1: Base language.



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

2 Requirements

The following subclauses contain a general description of the extensions required to the syntax and
semantics of the current Fortran language to provide facilities for regularization of the
ALLOCATABLE attribute.

2.1 Allocatable Attribute Regularization

In order to avoid irregularities in the language, the ALLOCATABLE attribute needs to be allowed for
all data entities for which it makes sense. Thus, this attribute which was previoudy limited to locally
stored array variablesis now allowed on

+ array components of structures,

e dummy arrays, and

» array function results.

Allocatable entities remain forbidden from occurring in al places where they may be storage-associated
(COMMON blocks and EQUIVALENCE statements). Allocatable array components may appear in
SEQUENCE types, but objects of such types are then prohibited from COMMON and
EQUIVALENCE.

The semantics for the alocation status of an allocatable entity remain unchanged:

e If it isin a main program or has the SAVE attribute, it has an initia allocation status of not
currently alocated. Its allocation status changes only as a result of ALLOCATE and
DEALLOCATE statements.

« If it is a module variable without the SAVE attribute, the initia alocation status is not currently
allocated and the alocation status may become not currently alocated (by automatic deallocation)
whenever execution of aRETURN or END statement results in no active procedure having access to
the module.

e If itis alocal variable (not accessed by use or host association) and does not have the SAVE
attribute, the allocation status becomes not currently alocated on entry to the procedure. On exit
from this procedure, if it is currently alocated it is automatically dealocated and the allocation
status changes to not currently allocated.

Since an dlocatable entity cannot be an alias for an array section (unlike pointer arrays), it may aways
be stored contiguously.



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

2.2 Allocatable Arraysas Dummy Arguments

An allocatable dummy argument array shall have associated with it an actual argument which is aso an
allocatable array.

On procedure entry the alocation status of an allocatable dummy array becomes that of the associated
actual argument. If the dummy argument is INTENT(OUT) and the associated actual argument is
currently allocated, the actual argument is deallocated on procedure invocation so that the dummy
argument has an allocation status of not currently allocated. If the dummy argument is not
INTENT(OUT) and the actual argument is currently allocated, the value of the dummy argument is that
of the associated actual argument.

While the procedure is active, an alocatable dummy argument array that does not have INTENT(IN)
may be allocated, deallocated, defined, or become undefined. If any of these events occur no reference
to the associated actual argument via another diasis permitted .

On exit from the routine the actual argument has the alocation status of the allocatable dummy
argument (there is no change, of course, if the allocatable dummy argument has INTENT(IN)). The
usual rules apply for propagation of the value from the dummy argument to the actual argument.

No automatic deallocation of the allocatable dummy argument occurs as a result of execution of a
RETURN or END statement in the procedure of which it is a dummy argument.

Note that an INTENT(IN) allocatable dummy argument array cannot have its alocation status altered
within the caled procedure. Thus the main difference between such a dummy argument and a normal
dummy array isthat it might be unallocated on entry (and throughout execution of the procedure).

Example

SUBRQOUTI NE LOAD( ARRAY, FI LE)
REAL, ALLOCATABLE, | NTENT(QUT) :: ARRAY(:, :, :)
CHARACTER(LEN=*), INTENT(IN) :: FILE
INTEGER UNI T, N1, N2, N3
| NTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN() I Returns an unused unit nunber
OPEN(UNI T, FILE=FILE, FORM=" UNFORMATTED )
READ( UNI T) N1, N2, N3
ALLOCATE( ARRAY( N1, N2, N3))
READ( UNI T) ARRAY
CLOSE( UNI T)
END SUBROUTI NE LOAD



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

2.3 Allocatable Array Function Results
An allocatable array function shall have an explicit interface.

On entry to an allocatable array function, the allocation status of the result variable becomes not
currently allocated.

The function result variable may be alocated and deallocated any number of times during the execution
of the function; however, it shall be currently alocated and have a defined value on exit from the
function. Automatic deallocation of the result variable does not occur immediately on exit from the
function, but after execution of the statement in which the function reference occurs.*

Example

FUNCTI ON | NQUI RE_FI LES_OPEN() RESULT( OPENED_STATUS)
LOG CAL, ALLOCATABLE :: OPENED_STATUS(:)
I NTEGER 1, J
LOG CAL TEST
DO 1=1000, 0, - 1
| NQUI RE( UNI T=I , OPENED=TEST, ERR=100)
IF (TEST) EXIT
100 CONTI NUE

END DO
ALLOCATE( OPENED_STATUS(0: 1))
DO J=0, |
| NQUI RE( UNI T=J, OPENED=OPENED_STATUS( J) )
END DO

END FUNCTI ON | NQUI RE_FI LES_OPEN
2.4 Allocatable Array Components

Allocatable array components are defined to be ultimate components just as pointer components are,
because the value (if any) is stored separately from the rest of the structure and this storage does not
exist (because the array is unalocated) when the structure is created. As with ultimate pointer
components, variables containing ultimate allocatable array components are forbidden from appearing
directly in input/output lists - the user shall list any allocatable array or pointer component for i/o.

As per dlocatable arrays currently, they are forbidden from storage association contexts (so any
variable containing an ultimate allocatable array component cannot appear in COMMON or
EQUIVALENCE); this maintains the clarity and optimizability of alocatable arrays. However,
allocatable array components are permitted in SEQUENCE types, which allows the same type to be
defined separately in more than one scoping unit.

! This storage can thus be reclaimed at the same time as that of array temporaries and the results of explicit-
shape-spec functions referenced in the expression.



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

Deallocation of a variable containing an ultimate allocatable array component automatically deallocates
all such components of the variable that are currently allocated.

In astructure constructor for a derived type containing an alocatable array component, the expression

corresponding to the allocatable array component must be one of the following:

e an argumentless reference to the intrinsic function NULL( ) ; the allocatable array component
receives the allocation status of not currently allocated.

e avaiablethat isitself an allocatable array; the allocatable array component receives the alocation
status of the variable, and, if allocated, the bounds and value of the variable.

e any other array expression; the allocatable array component receives the alocation status of
currently allocated with the same bounds and value as the expression.

For intrinsic assignment of objects of a derived type containing an allocatable array component, the
allocatable array component of the variable on the |eft-hand-side receives the allocation status and, if
allocated, the bounds and value of the corresponding component of the expression. Thisoccurs asif the
following sequence of stepsis carried out:?
1. If thecomponent of thevariableis currently allocated, it is deallocated.
2. If the corresponding component of the expression is currently allocated, the component of the
variableis allocated with the same bounds. The value of the component of the expression isthen
assigned to the corresponding component of the variable using intrinsic assignment.

Note that this definition of assignment facilitates certain optimizations when the allocatable array component

of theexpressionis alocated. In particular:

1. If the corresponding component of the variable is allocated with the same (or larger) size, its storage can
be re-used without the overhead of an additional allocation or degllocation;

2. If the expression is a function reference, the processor can simply copy the descriptor instead of the
allocatable array contents and omit the deallocation of this component.

An adlocated ultimate allocatable array component of an actual argument that is associated with an
INTENT(OUT) dummy argument is deallocated on procedure entry so that the corresponding component of
the dummy argument has an allocation status of not currently allocated.

¢ This ensures that any pointers that point to the previous contents of the alocatable array component of the
variable become undefined. Implementations are thus free to skip the allocation-deallocation (or not) when the
component of the variable happens to be allocated with the same shape as the corresponding component of the
expression, whichever is most efficient.



|SO/IEC PDTR 15581:1999(E)

Example

MODULE REAL_POLYNOM AL_MODULE
TYPE REAL_POLYNOM AL~
REAL, ALLOCATABLE :: COEFF(:)
END TYPE
| NTERFACE OPERATOR( +)
MODULE PROCEDURE RP_ADD_RP, RP_ADD R
END | NTERFACE
CONTAI NS
FUNCTI ON RP_ADD R(P1, R)
TYPE( REAL_POLYNOM AL) RP_ADD R, P1
REAL R
I NTENT(IN) P1,R
ALLOCATE( RP_ADD_RUCOEFF( S| ZE( P1LY%COEFF) ) )
RP_ADD RUCOEFF = P1%COEFF
RP_ADD RUCOEFF(1) = P1UCOEFF(1) + R
END FUNCTI ON
FUNCTI ON RP_ADD_RP( P1, P2)
TYPE( REAL_POLYNOM AL) RP_ADD RP, P1, P2
I NTENT(IN) P1, P2
| NTEGER M

© ISO/IEC

ALLOCATE( RP_ADD_RPYCOEFF( MAX( S| ZE( PLUCOEFF) , S| ZE( P2%COEFF) ) ))

M = M N( S| ZE( PL%COEFF), S| ZE( P2%COEFF) )
RP_ADD_RPYUCOEFF(: M) = PLYUCOEFF(: M + P2UCOEFF(: M
| E (Sl ZE( PL%COEFF) >M) THEN

RP_ADD RPYCOEFF(M+1:) = PLUCOEFF( M#1:)
ELSE | F (S| ZE( P2%COEFF) >M) THEN
RP_ADD RPYCOEFF(M+1:) = P2UCOEFF(M#l:)
END TF
END FUNCTI ON
END MODULE

PROGRAM EXAMPLE
USE REAL_POLYNOM AL_MODULE
TYPE(REAL_POLYNOM AL) P, Q R

P = REAL_POLYNOM AL((/4 2,1/)) I Set P to (X**2+2X+4)
Q = REAL_POLYNOM AL( (/- 1/)) ! Set Qto (X-1)
R=P+0Q I Pol ynom al addition
PRINT *, 'Coefficients are: ', RUCOEFF

END



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

3 Required editorial changesto I SO/IEC 1539-1 : 1997

The following subclauses contain the editorial changes to ISO/IEC 1539-1 : 1997 required to include
these extensionsin arevised definition of the International Standard for the Fortran language.

Note, where new syntax rules are inserted they are numbered with a decimal addition to the rule number
that precedes them. In the actual document these will have to be properly numbered in the revised
Sequence.

Comments about each edit to the standard appear within braces{}.

{Page and line number references in these edits are to the Draft of ISO/IEC 1539-1:1997, ISO/IEC
JTCU/SC22/WG5/N1191.}

4.4, first paragraph, list item (2) [37:42]
Change “nonpointer component thet is of derived type”
To: “component that is of derived typeand is not a pointer or allocatable array,”
{Thedirect component tree stops at allocatable arrays, just as with pointers.}
4.4, second paragraph [38:2]
Insert “dlocatable arrays or” before” pointers’.

{This makes allocatable array components into ultimate components, just as pointer components.}

4.4.1, RA26 component-attr-spec [38:42+]
add new productiontorule “or ALLOCATABLE".
{Allow ALLOCATABLE attribute in component-def-stn.}

R427, sixth constraint [39:13]
change “the POINTER attributeis not”
to “ndther the POINTER attribute nor the ALLOCATABLE attributeis’

{ Do not require an explicit-shape-spec-list when ALLOCATABLE is specified.}

Two new condtraints at end of list [39:16+]
Add:
“Congtraint: If the ALLOCATABLE attributeis specified for a component, the component shall bea
deferred-shape array.

Congtraint: POINTER and ALLOCATABLE shall not both appear in the same component-def-stit.
{Require  ALLOCATABLE components to be ddeared-shape arrays.  Ensure POINTER and
ALLOCATABLE areexclusve}



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

R428 component-initialization [39:29+]
Add new constraint to end of list:
“Congraint: If the ALLOCATABLE attribute appears in the component-attr-spec-lit,
component-initialization shall not appear.”
{Forbid default initidization - allocatable array components are dready effectivdy default-initialized to “not
currently allocated” .}

4.4.1, paragraph beginning “If the SEQUENCE statement is’ [39:38-39]

add “or alocatable arrays’

after both occurrences of “are not pointers’.
{Allocatable array components, like pointer components, stop a SEQUENCE type from being a standard
(numeric or character) sequencetype}

4.4.1, after Note 4.25, [42:20+]
add new example:
“Note4.25.1
A derived type may have a component that is an allocatable array. For example
TYPE STACK
| NTEGER :: | NDEX

| NTEGER, ALLOCATABLE :: CONTENTS(:)
END TYPE STACK
For each scalar variable of type STACK, the shape of component CONTENTS is determined by
execution of an ALLOCATE statement or assignment statement, or by argument association.”
{ Example needed.}

4.4.4, add new paragraphs to end of clause [45:19+]

“1f a component of a derived typeis an alocatable array, the corresponding constructor expression shall either
bearderenceto theintrinsic function NULL () with no arguments, an allocatable array, or shall evaluateto an
array. If the expression is a reference to the intrinsic function NULL(), the corresponding component of the
constructor has a status of not currently allocated. |f theexpressionis an dlocatable array, the corresponding
component of the constructor has the same alocation status as that alocatable array and, if it is allocated, the
same bounds and value. With any other expression that evaluates to an array the corresponding component of
the congtructor has an alocation status of currently alocated with the same bounds and value as the
expression.

Note4.34.1:
When the constructor is an actual argument, the allocation status of the allocatable array component is
available through the associated dummy argument.

If aderived type contains an ultimate component that is an alocatable array, its constructor shall not appear
as adata-stmt-constant ina DATA statement (5.2.9), as an initialization-expr in an entity-decl (5.1), or asan
initialization-expr in a component-initialization (4.4.1).”

{Allow structure constructors for derived types with allocatable array components, and define thar
samantics.}

5.1, R501-R506, third constraint [48:1-2]
Ddete“that is not a dummy argument or function result”



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

5.1, eighth congtraint, begins “ The PARAMETER attribute shall not”: [48:12]
After “alocatable arrays,”
Add “ derived-type objects with an ultimate component thet is an allocatable array,”
{forbid such objects from having the PARAMETER attribute }

5.1, third-last congtraint, begins “initialization shall not appear”: [48:33]

after “an dlocatable array,”

add “ a derived-type object containing an ultimate component that is an alocatable array,”
{forbid such types from having =initialization.}

5.1.2.4.3, second paragraph [55:12]
After “Anallocatable array is’, change“anamed array” to “an array”.
{Do not ingst on allocatable arrays being smple names, i.e. alow components.}

5.1.2.4.3, third paragraph, begins“The ALLOCATABLE attribute may be': [55:15-19]
Replace paragraph with:

“The ALLOCATABLE attribute may be specified for an array in a type declaration statement, a component
definition statement, or an ALLOCATABLE satement (5.2.6). An array with the ALLOCATABLE
atribute shall be declared with a deferred-shape-spec-list in a type declaration statement, an
ALLOCATABLE datement, a component definition statement, a DIMENSION statement (5.2.5), or a
TARGET statement (5.2.8). The type and type parameters may be specified in a type declaration statement
or a component definition statement.”

5.2.10, R533-R537, following the third constraint [61:42+]
Add new congtraint:
“Condraint: A data-i-do-object, or avariable that appears as a data-stmt-object, shall not be of
a derived type containing an allocatable array as an ultimate component.”
{Forbidinitialization of allocatable arrays viathe DATA statement.}

5.4, R545 first congtraint [66:2-3]
After: “, apointer,”
Insart “an alocatable array, or”
After “isapointer”
Ddete*,".
{Do not alow derived types containing allocatable arrays in NAMELIST .}

5.5.1, R548 first constraint [66:40]

After “an alocatable array,”

Insert “an object of a derived type containing an alocatable array as an ultimate component,”
{Do not alow derived types containing allocatable arraysin EQUIVALENCE.}

5.5.2, R550 second congtraint [69:1]

After “alocatable array,”

Insert “an object of a derived type containing an alocatable array as an ultimate component,”
{Do noat allow derived types containing allocatable arraysin COMMON.}



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

6.1.2, R612-R613, fourth constraint [75:24]
Change“POINTER” to“ALLOCATABLE or POINTER”.

{Wedo not want to have arrays of allocatable array éements, one from each allocatable array component.}

6.3.1.1, new paragraph at end of clause [80:29+]

“If an object of derived type is created by an ALLOCATE statement, any ultimate allocatable components
have an allocation status of not currently allocated.”

{ Spexify allocation status of allocatable array components created by an ALLOCATE statement.}

6.3.1.2, new paragraph following the second paragraph [80:42+]

“An alocatable dummy array receives the allocation status of the actual argument with which it is associated
on entry to the procedure. An allocatable array that is an ultimate component of a dummy argument that is
not INTENT(OUT) receives the alocation status of the corresponding component of the actual argument on
entry to the procedure. An alocated actual argument thet is associated with an INTENT(OUT) allocatable
dummy array is deallocated on procedure entry and the dummy array has an alocation status of not currently
allocated. An alocated ultimate allocatable array component of an actual argument that is associated with an
INTENT(OUT) dummy argument is deallocated on procedure entry and the corresponding component of the
dummy argument has an alocation status of not currently allocated.”

{ Spexify initial status of allocatable dummy arrays and allocatable components of dummy arguments.}

6.3.1.2, third paragraph [80:43]

After “that isalocal variable of a procedure’

Insert “or an ultimate component thereof, that is not a dummy argument or a subobject thereof”
{ Exclude alocatable dummy arrays from the initial “not currently allocated” status, and also from automatic
dedllocation.}

6.3.1.2, third paragraph [81:1]
After “If thearray”
Add “is not the result variable of the procedure or a subobject thereof and’

{ Exclude alocatable function results from autometic deallocation.}

6.3.3.1, second paragraph [83:10-13]
After “hasthe SAVE attribute,”
Add new list items and renumber rest of list:
(2) It isadummy argument or an ultimate component thereof.
(3) It isafunction result variable or an ultimate component thereof.
{ Say that these cases retain thar allocation status (and thus are excluded from automatic deallocation).}

6.3.3.1, before Note 6.18, [83:18+]
Add new paragraph:
“When a variable of derived type is dedllocated, any ultimate component that is a currently allocated
allocatable array is dedllocated (asif by a DEALLOCATE statement).”
{ Prevent memory leaks from nested allocatable array components.}

10



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

6.3.3.1, before Note 6.18, after added paragraph above [83:18+]

Add another new paragraph:
“If a statement contains a reference to a function whose result is an alocatable array or a structure that
contains an ultimate component thet is an allocatable array, and the function reference is executed, an
allocatable array result and any allocated ultimate components that are alocatable arrays in the result
returned by the function are degllocated after execution of this statement.”
{ Specify when afunction result is dedllocated. Needed in case the function result has the TARGET attribute.
Also, prevents memory leaks.}

7.1.4.1, fifth paragraph [91:27]
After “returns a disassociated pointer”
Insert “or designates an unallocated allocatable array component of a structure constructor”
After “A disassociated pointer”
Insert “or unallocated allocatable array”
After “with theresult” [91:30]
Insert “or by the corresponding component in a structure constructor”

7.16.1 [94:6]
After “(3) A structure constructor where each component is an initialization expression”
Insert “and no component has the ALLOCATABLE attribute’

{ Exclude structure constructors containing allocatable components from initialization expressions.}

7.5.1.5, paragraph after Note 7.43 [109:35-38]

After “nonpointer components’ change“.” to
“that are not allocatable arrays. For allocatable array components the following sequence of operations is
applied:

1. If thecomponent of variableis currently allocated, it is deallocated.

2. If the component of expr is currently alocated, the corresponding component of variableis
allocated with the same bounds. The value of the component of expr is then assigned to the
corresponding component of variable using intrinsic assignment.”

{ Specify samantics to be used for assignment of derived types containing alocatable array components. Note
that because pointers to dedllocated objects become undefined, this definition does not rule out optimising
away the allocation-desllocation when the components are already allocated with the same shape}

7.5.15, After Note 7.44 [110:5+]
Add new note
“Note7.44.1:
If an alocatable array component of expr is not currently alocated, the corresponding component of variable
has an allocation status of not currently allocated after execution of the assignment.”
{Note that assignments containing unallocated components are allowed and have the expected effect.}

9.4.2, paragraph after Note 9.26 [149:6]
After “If aderived type ultimatdy contains a pointer component”
Insert “or an allocatable array component”
{ Exclude objects of derived type containing ultimate array components from appearing in i/o statements.}

11



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

12211 [192:14]
After “whether it is optional (5.1.2.6,5.2.2),”
Insert “whether it isan alocatable array (5.1.2.4.3),”

{ALLOCATABLE-ness of adummy argument is a characteristic.}

1222 [192:24-25]
After “whether it isa pointer”
Insert “or an alocatable array”
{ALLOCATABLE-ness of afunction result is a characteristic.}
After “isnot a pointer”
Insert “or an alocatable array”
{ shapeis not a characterigtic for an allocatable array.}

1231.1item(2) [193:18]
After “assumed-shape array,”
Insert “an dlocatable array,”

{Require explicit interfaceif thereis an alocatable dummy array.}

12411 [200:38]
Inthefirst paragraph beginning “If the dummy argument hasthe TARGET”,
After “dther ascalar”
Insert “, an alocatable array,”

{ Specify TARGET attribute interaction with allocatable dummy arrays.}

12411 [201:16+]
After the paragraph beginning “ If a dummy argument is an assumed-shape array”
Add a new paragraph:

“If adummy argument is an allocatable array, the actual argument shall be an alocatable array and the types,
type parameters, and ranks shall agree. It is permissible for the actual argument to have an allocation status
of not currently alocated.”

{ Requirements for arguments associated with an allocatable dummy array.}

12.4.1.6, item (1) of first paragraph [203:22]

Replace “ No action that affects the allocation status may be taken.”

With “ Action that affects the alocation status of the entity or an ultimate component thereof shall be
taken through the dummy argument.”
{Allow ALLOCATE/DEALLOCATE via the dummy whilst prohibiting it viaany other aias}

12.4.1.6, item (2) of first paragraph (after Noter12.23) [205:5]

Before“If thevalue’

Insert “If the alocation status of the entity or an ultimate component thereof is affected through the
dummy argument, then at any time during the execution of the procedure, either before or after the allocation
or deallocation, it may be referenced only through the dummy argument.”

12



© ISO/IEC ISO/IEC PDTR 15581:1999(E)

13.14.79,
After “adisassociated pointer” [259:26]
Insert “or unallocated allocatable array”
After “disassociated association status’ [259:33]

Insart “or, when corresponding to an allocatable array component in a structure constructor, an
unallocated allocatable array”

Annex A, entry “allocatable array” [293:12-13]

Change“A named array”

To“Anarray”

Add new sentence to end of entry “An dlocatable array may be a named array or a structure
component.”

Annex A, entry “direct component” [295:38]

Change “ nonpointer component that is of derived type’
To “component that is of derived typeand is not a pointer or alocatable array,”

Annex A, entry “ultimate component” [301:11-13]
After “isof intrinsic type’
Insert “, hasthe ALLOCATABLE attribute”
After “does not have the POINTER attribute’
Insert “or the ALLOCATABLE attribute’

13



ISO/IEC PDTR 15581:1999(E) © ISO/IEC

Annex A
Compatibility with the next revision of | SO/IEC 1539-1:1997

The differences between this Technical Report and its first edition arelisted in the document N1373 in the ftp

directory
ft p. nag. co. uk/ sc22wg5

The differences between the semantics and syntax described in this Technical Report and those incorporated
in the current draft of the next revision of ISO/IEC 1539-1:1997 are listed in Standing Document 8 (SD8),
which is accessible from the same directory.

These changes have proved necessary for the reasons explained in the final paragraph of the Foreword.

The documents are also accessible through the www address
htt p://anubi s. dkuug. dk/ JTC1/ SC22

14



