All data taken at Pacific Northwest National Laboratory (PNNL)

Operators: Jerome C. Birnbaum, Tyler O. Danby, Timothy J. Johnson, Molly Rose K. Kelly-Gorham, Rodica Lindenmaier, Tanya L. Myers

SAMPLE CONDITIONS & PHYSICAL PROPERTIES

Chemical name Aluminum fluoride

Chemical formula AlF₃

Synonyms Aluminum trifluoride; Trifluoroaluminum

CAS number 7784-18-1

Location of field sample n/a History of sample n/a

Molecular Weight 83.98 g/mol Melting Point 1290 °C Boiling Point ~ 1537 °C Density (25 °C) 3.1 g/cm³ Hardness, Mohs scale n/a

Crystallography:

Cell dimension a = Å b = Å c = Å

Crystal system

H-M symbol (point gr)

Space group

H-M symbol (space gr)

Crystal habit

Color White Diaphaneity Opaque Particle size $53 \pm 24 \mu m$

Particle size assessment Optical microscopy

Supplier Aldrich Stated purity $\geq 99.9\%$

Date packed 15 July 2016 Weight: 3.915 grams

Synthesis method n/a Synthesis reference n/a

Texture Fine powder that sticks to the spatula

Physical stateSolidSurface roughnessn/aElemental compositionn/aIsotopic compositionn/aMoisture contentn/aTemperature of sample 25 ± 2 °CSubstraten/a

INSTRUMENT PARAMETERS

Tensor 37 FT-IR manufactured by Bruker Optics

External diffuse reflectance accessory A 562-G integrating sphere

Sphere diameter 75 mm Angle to normal incidence 14.8°

Sphere opening diameter 19 mm (entrance port)

Spectral range 7,500 to 600 cm⁻¹ saved; 7500 to 600 cm⁻¹ reported

Beamsplitter Ge on KBr

Detector (dia. Det. Port in sphere) 2×2 mm, 60° field of view MCT (550; 0.9); 1 cm

Apodization function Blackman-Harris 3-term

Aperture 6 mm

Coadded scans 2048

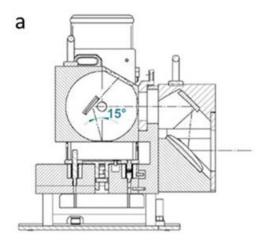
Scanner speed 40 kHz

Switch gain on 512 points

Low pass filter Open

Scan technique double-sided, forward-backward

Non-linear correction On


High and low folding limit 15800.54-0.00 cm⁻¹

Phase resolution 32.00Phase correction mode MertzZerofilling $4 \times$

Wavenumber accuracy $\pm 0.4 \text{ cm}^{-1}$ Spectral resolution 4 cm^{-1}

Accuracy verification 10/28/2015

Wavelength vetted on: ICL polystyrene standard #0009-7394-0025A, thin film Reflectance: ±2% using SRS reflectance standards 50-010-DH27B-4878

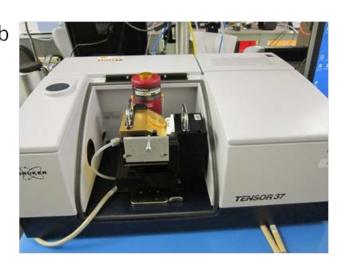


Figure 1: The Bruker 562-G integrating sphere (a) and Tensor 37 (b)

Photographs of sample Aluminum fluoride

Figure 2: Aluminum fluoride in Aldrich container.

Figure 3: Aluminum fluoride loaded in IR sample cup.

PARTICLE SIZE PREPARATION AND CHARACTERIZATION

Optical microscopy —

A Keyence VHX-1000 digital microscope with 16-bit resolution is used to provide photomicrographs of the various samples and particle sizes. Software included with the microscope differentiates the brightness and colors in the image and extracts the bright objects to produce a binary image. The software assumes all adjacent bright points are part of the same object then calculates the area for each of these objects. The area (A) is used to calculate the mean particle diameter (d) by assuming the particles are spherical and using the relationship $d=(4*A/\pi)1/2$. Although the assumption of spherical particles is clearly not always valid, this procedure provides a reasonable estimate of the mean particle size.

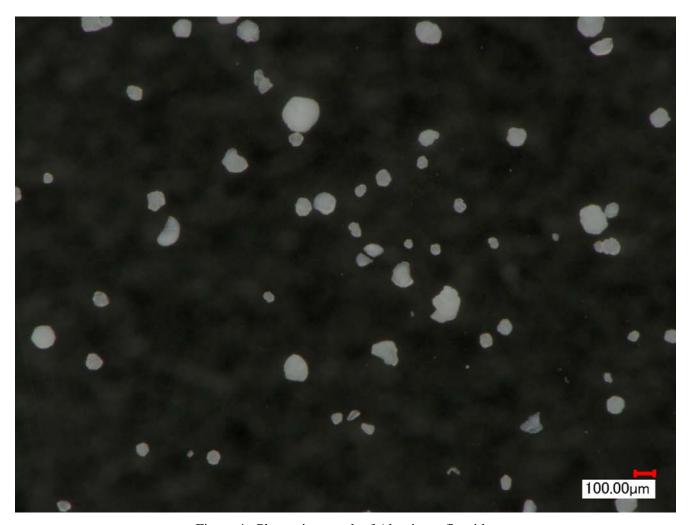


Figure 4: Photomicrograph of Aluminum fluoride.

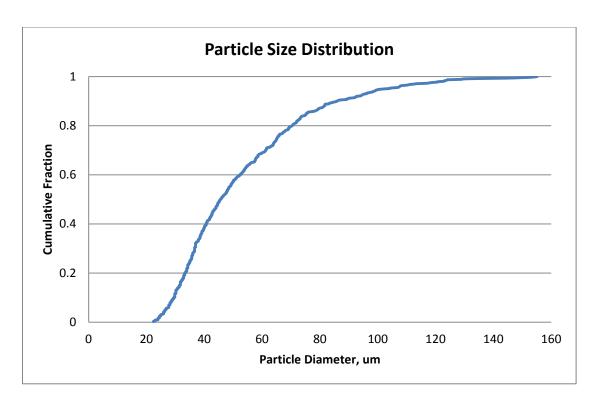


Figure 5: Particle size distribution of Aluminum Fluoride.