All data taken at Pacific Northwest National Laboratory (PNNL)
Operators: Jerome C. Birnbaum, Tyler O. Danby, Timothy J. Johnson, Molly Rose K. Kelly-Gorham, Rodica Lindenmaier, Tanya L. Myers

SAmple Conditions \& Physical Properties

Chemical name	Powdered Sugar
Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
Synonyms	Confectioner's sugar; 10-X sugar; Frosting sugar; Icing sugar
CAS number	n/a
Location of field sample	n/a
History of sample	n/a
Molecular Weight	$342.30 \mathrm{~g} / \mathrm{mole}$ (sucrose)
Melting Point	$170-186{ }^{\circ} \mathrm{C}$
Boiling Point	Decomposes
Density ($25^{\circ} \mathrm{C}$)	$1.58 \mathrm{~g} / \mathrm{cm}^{3}$
Hardness, Mohs scale	n/a
Crystallography:	
Cell dimension	$\mathrm{a}=\AA \mathrm{b}=\AA \mathrm{c}=\AA$
Crystal system	
H-M symbol (point gr)	
Space group	
H-M symbol (space gr)	
Crystal habit	
Color	White
Diaphaneity	Opaque
Particle size	$17 \pm 6 \mu \mathrm{~m}$
Particle size assessment	Optical microscopy
Supplier	Kroger
Stated purity	>95\% (3-5\% cornstarch)
Date packed	17 February 2016 Weight: 1.369 grams
Synthesis method	n/a
Synthesis reference	n/a
Texture	Fluffy hygroscopic powder
Physical state	Solid
Surface roughness	n/a
Elemental composition	n/a
Isotopic composition	n/a
Moisture content	n/a
Temperature of sample	$25 \pm 2^{\circ} \mathrm{C}$
Substrate	n/a

Instrument Parameters

Tensor 37 FT-IR manufactured by Bruker Optics

External diffuse reflectance accessory A 562-G integrating sphere

Sphere diameter
Angle to normal incidence
Sphere opening diameter
Spectral range
Beamsplitter
Detector (dia. Det. Port in sphere)
Apodization function
Aperture
Coadded scans
Scanner speed
Switch gain on
Low pass filter
Scan technique
Non-linear correction
High and low folding limit
Phase resolution
Phase correction mode
Zerofilling
Wavenumber accuracy
Spectral resolution
Accuracy verification
Wavelength vetted on:
Reflectance:

75 mm
14.8°
19 mm (entrance port)
7,500 to $600 \mathrm{~cm}^{-1}$ saved; 7500 to $600 \mathrm{~cm}^{-1}$ reported
Ge on KBr
$2 \times 2 \mathrm{~mm}, 60^{\circ}$ field of view MCT (550; 0.9); 1 cm
Blackman-Harris 3-term
6 mm
2048
40 kHz
512 points
Open
double-sided, forward-backward
On
$15800.54-0.00 \mathrm{~cm}^{-1}$
32.00

Mertz
$4 \times$
$\pm 0.4 \mathrm{~cm}^{-1}$
$4 \mathrm{~cm}^{-1}$
10/28/2015
ICL polystyrene standard \#0009-7394-0025A, thin film $\pm 2 \%$ using SRS reflectance standards 50-010-DH27B-4878

Figure 1: The Bruker 562-G integrating sphere (a) and Tensor 37 (b)

Figure 2: Powdered Sugar in Kroger container.

Figure 3: Powdered Sugar sample loaded in IR sample cup.

Particle Size Preparation and Characterization

Optical microscopy -

A Keyence VHX-1000 digital microscope with 16-bit resolution is used to provide photomicrographs of the various samples and particle sizes. Software included with the microscope differentiates the brightness and colors in the image and extracts the bright objects to produce a binary image. The software assumes all adjacent bright points are part of the same object then calculates the area for each of these objects. The area (A) is used to calculate the mean particle diameter (d) by assuming the particles are spherical and using the relationship $\mathrm{d}=\left(4^{*} \mathrm{~A} / \pi\right) 1 / 2$. Although the assumption of spherical particles is clearly not always valid, this procedure provides a reasonable estimate of the mean particle size.

Figure 4: Photomicrograph of Powdered Sugar.

Figure 5: Particle size distribution of Powdered Sugar.

