
THE IBM 704

Programmer's

Reference Manual

October 15, 1956

THE FORTRAN
AUTOMATIC CODING SYSTEM
FOR THE
l B M 704 EDPM @

This manual supersedes all earlier information about the FORTRAN

system. It describes the system which will be made available during

late 1956, and is intended to permit planning and FORTRAN coding in

advance of that time. An Introductory Programmer's Manual and an

Operator's Manual will also be issued.

APPLIED SCIENCE DIVISION
AND PROGRAMMING RESERRCH DEPT.

lnternational Business Machines Corporation
590 Madison Ave., New York 22, N. Y.

WORKINQ COMMIlTEE

J. W. BACKUS
R. J. BEEBER

S. BEST
R. GOLDBERG

H. L. HERRICK
R. A. HUGHES

University of California
Radiation Laboratory,

Livermore, Calif.

L. B. MITCHELL
R. A. NELSON

R, NUTT
United Aircraft Corp.,
East Hartford, Corn.

D. SAYRE
P. B. SHERIDAN

H. STERN
I. ZILLER

THE FORTRAN SYSTEM

The IBM Mathematical Formula Translating System FORTRAN is an automatic

coding system for the IBM 704 EDPM. More precisely, it is a 704 program

which accepts a source program written in a language - the FORTRAN language

- closely resembling the ordinary language of mathematics, and which pro-

duces an object program in 704 machine language, ready to be run on a 704.

FORTRAN therefore in effect transforms the 704 into a machine with which

communication can be made in a language more concise and more familiar than

the 704 language itself. The result should be a considerable reduction in the

training required to program, as well as in the time consumed in writing pro-

grams and eliminating their errors.

Among the features which characterize the FORTRAN system are the following.

Size of Machine The system has been designed to operate on a "small" 704, but to write object
Required

programs for any 704. (For further details, see the section on Source and Object

Machines in Chapter 7.) I f an object program is produced which is too large

for the machine on which it is to be run, the programmer must subdivide the

program:

Efficiency of the Object programs produced by FORTRAN will be nearly as efficient as those
Object Program

written by good programmers.

Scope of The FORTRAN language is intended to be capable of expressing any problem of
Applicability numerical computation. In particular, it deals easily with problems containing

Inclusion of
Library
Routines

large sets of formulae and many variables, and it permits any variable to have

up to three independent subscripts.

However, for problems in which machine words have a logical rather than

a numerical meaning it is less satisfactory, and it may fail entirely to express

some such problems. Nevertheless, many logical operations not directly express-

ible in the FORTRAN language can be obtained by making use of the provisions

for incorporating library routines.

Pre-written routines to evaluate any single-valued functions of any number of

arguments can be made available for incorporation into object programs by

placing them on the master FORTRAN tape.

Provision for Certain statements in the FORTRAN language cause the object program to be
Input and Output

equipped with its necessary input and output programs. Those which deal with

decimal information include conversion to or from binary, and permit con-

siderable freedom of format in the external medium.

Nature of
Fortran
Arithmetic

Arithmetic in the object program will generally be performed with single-

precision 704 floating point numbers. These numbers provide 27 binary digits

(about 8 decimal digits) of precision, and may have magnitudes between approxi-

mately 10-38 and 1038, and zero. Fixed point arithmetic, but for integers only,

is also provided.

TABLE OF CONTENTS

page
THE FORTRAN SYSTEM . 2

CHAPTER 1 . GENERAL PROPERTIES OF A FORTRAN SOURCE PROGRAM . 7

2 . THE FORTRAN LANGUAGE:
Constants. Variables, and Subscripts . 9

3 . THE FORTRAN LANGUAGE:
Functions. Expressions. and Arithmetic Formulas .

4 . THE FORTRAN LANGUAGE:
ControlStatements . 17

S . THE FORTRAN LANGUAGE:
Input-Output Statements .

6 . THE FORTRAN LANGUAGE:
SpecifiwtionStatements . 35

7 . MISCELLANEOUS DETAILS ABOUT FORTRAN . 39

8 . EXAMPLES OF FORTRAN PROGRAMMING . 46

APPENDIX A . TABLE OF FORTRAN CHARACTERS .. 4 9

6 . TABLE OF FORTRAN STATEMENTS . 5 0

. INDEX 5 1

a CHAPTER I. GENERAL PROPERTIES
OFAFORTRANSOURCEPROGRAM

A FORTRAN source program consists of a sequence of FORTRAN statements.

There are 32 different types of statement, which are described in detail in the

chapters which follow.

Example of a The following brief program will serve to illustrate the general appearance and
'Ortran Program some of the properties of a FORTRAN program. It is shown as coded on a

standard FORTRAN coding sheet.

This program examines the set of n numbers a i (i= 1 , , n) and sets the
quantity BIGA to the largest value attained in the set. It begins (after a com-

ment describing the program) by setting BIGA equal to al. Next the DO

statement causes the succeeding statements to and including statement 20 to

be carried out repeatedly, first with i=2, then with i=3, etc., and finally with

i=n. During each repetition of this loop the IF statement compares BIGA with

ai; if BlGA is less than ai, statement 10, which replaces BIGA by ai, is executed

before continuing.

*comrmr FORTRAN STATEMENT

7 1

C I - PROGRAM FOR F I N D I N G THE LARGEST VALUE
ATTAINED BY A SET OF NUMBERS

1- - BIGA = A (1)
D O 2 0 I ' 2 . N -I- --

- 1 - _ I F (B I G A - A ! I)) l o , 2 0 . 2 0
BIGA = A (1) .-

-- CONTINUE

1

Keypunching Each statement is punched on a separate card. If a statement is too long to
the Program fit on a single card it can be continued over as many as 9 additional continuation

cards. For each statement the initial card must contain either a zero or a blank

in column 6; on continuation cards column 6 must not contain a zero or a blank,

and it should be used to number the continuation cards consecutively from 1 to 9.

If a statement is too long to fit on a single line of the coding form, the

programmer can signal to the keypuncher that he has continued on to the next

line by placing a mark in the column labeled CONTINUATION.

IDENTI.
FlClTlOW

73 80

The order of the statements is governed solely by the order of the cards.

However, any number less than 2'5 (=32768) may be associated with any

statement by punching it in columns 1-5 of the initial card bearing that state-

ment. Thereupon this number becomes the statement number of that statement.

Statement numbers, besides permitting cross-references within the source pro-

gram, also help the programmer to correlate the object program with his

source program.

Punching the character C in column 1 will cause the card to be ignored by

FORTRAN. Such cards may therefore be used to carry comments which will

appear when the deck is listed.

Columns 73-80 are not read by FORTRAN and may be punched with any

desired identifying information.

The statements themselves are punched in columns 7-72, both on iliitial

and continuation cards. Thus a statement consists of not more than 10 x 66=660

characters. A table of the admissible characters in FORTRAN is given in

Appendix A.

Blank characters, except in column 6, are simply ignored by FORTRAN,

and the programmer may use blanks freely to improve the readability of his

FORTRAN listing.

The actual input to FORTRAN is either this deck of cards or a BCD tape

written from it on the 704 peripheral card-to-tape equipment with the standard

SHARE 80 x 84 board. On the tape an End of File mark after the last card

is required.

Preview The 32 types of statement, of which every FORTRAN program is composed,
Of the 'Ortran may be classified as follows.
Statements

1. The arithmetic formula, which causes the object program to carry out a
numerical computation. Chapter 2 discusses the symbols available for refer-
ring to constants and variables, and Chapter 3 the combining of these into
arithmetic formulas.

2. The 15 control statements, which govern the flow of control in the object
program. These are discussed in Chapter 4.

3. The 13 input-output statements, which provide the object program with its
necessary input and output routines. These are discussed in Chapter 5.

4. Finally, the 3 specification statements, which provide various information
required or desirable to make the object program efficient, are discussed in
Chapter 6.

Chapters 7 and 8, which conclude the manual, give additional detail on various

topics and examples of FORTRAN programming.

CHAPTER 2. THE FORTRAN LANGUAGE:
Constants, Variables, and Subscripts

Constants

Any programming language must provide for expressing numerical constants and

variable quantities. FORTRAN also provides a subscript notation for expressing

1, 2, or 3-dimensional arrays of variables.

Two types of constant are permissible: fixed point (restricted to integers) and

floating point (characterized by being written with a decimal point).

Fixed Point Constants.

Any unsigned fixed point constant may be used as a statement number.

Floating Point Constants.

GENERAL FORM

1 to 5 decimal digits. A preceding + or -
sign is optional. The magnitude of the constant must
be less than 32768.

EXAMPLES

3
+ 1
- 28987

The magnitude of the number thus expressed must be zero, or must lie between

the approximate limits of 1 0 - 3 8 to 1 0 3 8 . The number will appear in the object

program as a normalised single-precision floating point number.

GENERAL CORM

Any number of decimal digits, with
a decimal point a t the beginning, at the end,
or between two digits.
A preceding + or - sign is optional.
A decimal exponent preceded by an E
may follow.

EXAMPLES

17.
5.0
-.0003
5.0E3 (= 5.0 x 103)
5.OE+3 (= 5.0 x 103)
5.OE-7 (= 5.0 x 10-7)

Variables Two types of variable are also permissible: fixed point (restricted to integral

values) and floating point. Fixed point variables are distinguished by the fact

that their first character is I, J, K, L, M, or N.

Fixed Point Variables.

A fixed point variable can assume any integral value whose magnitude is less

than 32768. However, see the section on Fixed Point Arithmetic in Chapter 7.

GENERAL FORM

1 to 6 alphabetic or numeric characters
(not special characters) of which the f irst is
I, J, K, L, M, or N.

WARNING. The name of a variable must not be the same as the name of any

function used in the program after the terminal F of the function name has been

removed. Also, if a subscripted variable has 4 or more characters in its name,

the last of these must not be an F. (For the meaning of "function" and "sub-

scripted" see Chapter 3 and the last section of this chapter.)

EXAMPLES

I
M2
JOBNO

Floating Point Variables.

A floating point variable can assume any value expressible as a normalised 704

floating point number; i.e. zero, or with magnitude between approximately

and 1038.

GENERAL FORM

1 to 6 alphabetic or numeric characters
(not special characters) of which the f irst is alphabetic
but not I, I, K, L, M, or N.

WARNING. The restrictions on naming fixed point variables also apply to floating

point variables.

EXAMPLES

A
87
DELTA

Subscripts and A variable can be made to represent any member of a 1, 2, or 3-dimensional
Subscripted array of quantities by appending to it 1, 2, or 3 subscripts; the variable is then a
Variables

subscripted variable. The subscripts are fixed point quantities whose values

determine which member of the array is being referred to.

Subscripts.

The symbol * denotes multiplication. The variable v must not itself be sub-

scripted.

GENERAL FORM

Let v represent any fixed point variable
and c (or c') any unsigned fixed point
constant. Then a subscript is
an expression of one of the forms: v

c
v+c or v-c
C * V
c*v+c f or c*v-c'

Subscripted Variables.

EXAMPLES

I
3
MU+2
MU-2
5 * J
5 * J + 2
5 * J-2

For each variable that appears in subscripted form the size of the array (i.e. the

maximum values which its subscripts can attain) must be stated in a DIMEN-
SION statement (see Chapter 6) preceding the first appearance of the variable.

GENERAL FORM

A fixed or floating point variable
followed by parentheses enclosing 1, 2, or 3
subscripts separated by commas.

The minimum value which a subscript may assume in the object program is + 1.

EXAMPLES

A(I)
K(3)
BETA(5 * J-2, K + 2,L)

Arrangement of Arrays in Storage.

A Zdimensional array A will, in the object program, be stored sequentially in

the order Al.1, AzTl,, A,,1, A ~ J , A2.2,, Arn.2, , Am,n. Thus
it is stored "columnwise", with the first of its subscripts varying most rapidly,

and the last varying least rapidly. The same is true of 3-dimensional arrays.

1-dimensional arrays are of course simply stored sequentially. All arrays are
stored backwards in storage; i.e. the above sequence is in the order of decreas-

ing absolute location.

CHAPTER 3. THE FORTRAN LANGUAGE:
Functions, Expressions, and Arithmetic Formulas

Of the various FORTRAN statements it is the arithmetic formula which defines

a numerical calculation which the object program is to do. A FORTRAN arith-

metic formula resembles very closely a conventional arithmetic formula; it

consists of the variable to be computed, followed by an = sign, followed by an

arithmetic expression. For example, the arithmetic formula

means "replace the value of y by the value of a-sin(b-c)".

Functions As in the above example, a FORTRAN expression may include the name of a

function (e.g. the sine function SINF) , provided that the routine for evaluating

the function is either built into FORTRAN or is accessible to it as a pre-written

subroutine in 704 language on the master FORTRAN tape.

Mode of a Function and its Arguments. Consider a function of a single argu-

ment. It may be desired to state the argument either in fixed or floating point;

similarly the function itself may be in either of these modes. Thus a function

of a single argument has 4 possible mode configurations; in general\a function

of n arguments will have 2n+l mode configurations.

GENERAL FORM

The name of the function is 4 to 7 alphabetic or numeric
characters (not special characters), of which the last must
be F and the f irst must be alphabetic. Also, the f irst must
be X i f and only if the value of the function is to be
fixed point. The name of the function is followed by
parentheses enclosing the arguments (which may be
expressions), separated by commas.

EXAMPLUT

SINF(A+B)
SOMEF!X,Y)
SQRTF(SINF0)
XTANF(3.*X)

A separate name must be given, and a separate routine must be available,

for each of the mode configurations which is used. Thus a complete set of

names for the sine function might be

SINOF Fixed argument, floating function
SlNlF Floating " , " 11

XSINOF Fixed " , fixed 11

XSlNlF Floating " , " 11

where the X's and F's are compulsory, but the remainder of the naming is

arbitrary.

Built-In Functions. The FORTRAN system has the routines for evaluating cer-

tain functions built in. The list is as follows.

NOTE. The function MODF (Arg,, Argz) is defined as Arg, - [Argl/Arg2]

Arg2, where [x] = integral part of x.
These 14 built-in subroutines are always compiled into the object program

as open subroutines.

Functions on the Library Tape. Besides the built-in routines, any single-

'valued function of any number of arguments can be made available to the

programmer by placing the appropriate routine on the master FORTRAN tape.

NAME

ABSF
XABSF

INTF
XlNTF

MODF
XMODF

MAXOF
MAXIF

XMAXOF
XMAXlF

MlNOF
MlNlF

XMINOF
XMlNlF

-PC OF FUNCTION

Absolute value

Truncation

Remaindering
(see note below)

Choosing
largest value

Choosing
smallest value

MOD=
ARQUMINT

Floating
Fixed

Floating
Floating

Floating
Fixed

Fixed
Floating
Fixed
Floating

Fixed
Floating
Fixed
Floating

OF
FUNCTION

Floating
Fixed

Floating
Fixed

Floating
Fixed

Floating
Floating
Fixed
Fixed

Floating
Floating
Fixed
Fixed

DEFINITION

IArgl

Sign of Arg times
largest integer

SIArgl

Arg, (mod Arg,)

Max (Arg,, Arg,, . .)

Min (Arg,, Arg,, . .)

zE
1

1

2

32

32

Any such routine will be compiled into the object program as a closed subrou-

tine. In the section on Writing Subroutines for the Master Tape in Chapter 7

are given the specifications which any such routine must meet.

Expressions An expression is any sequence of constants, variables (subscripted or not sub-

scripted), and functions, separated by operation symbols, commas, and paren-

theses so as to form a meaningful mathematical expression.

However, one special restriction does exist. A FORTRAN expression may

be either a fixed or a floating point expression, but it must not be a mixed

expression. This does not mean that a floating point quantity can not appear

in a fixed point expression, or vice versa, but rather that a quantity of one

mode can appear in an expression of the other mode only in certain ways.

Briefly, a floating point quantity can appear in a fixed point expression only

as an argument of a function; a fixed point quantity can appear in a floating

point expression only as an argument of a function, or as a subscript, or as

an exponent.

Formal Rules for Forming Expressions. By repeated use of the following

rules, all permissible expressions may be derived.

1. Any fixed point (floating point) constant, variable, or subscripted variable
is an expression of the same mode. Thus 3 and 1 are fixed point expressions,
and ALPHA and A(I,J,K) are floating point expressions.

2. If SOMEF is some function of n variables, and if E, F, , H are a set
of n expressions of the correct modes for SOMEF, then SOMEF (E, F,
. . . . , H) is an expression of the same mode as SOMEF.

3. If E is an expression, and if its first character is not + or -, then + E and
-E are expressions of the same mode as E. Thus -A is an expression, but
+-A is not.

4. If E is an expression, then (E) is an expression of the same mode as E.
Thus (A), ((A)), (((A))) , etc. are expressions.

5. If E and F are expressions of the same mode, and if the first character of
F is not + or -, then

E + F
E - F
E * F
E / F

are expressions of the same mode. Thus A-+B and A/+B are not expres-
sions. The characters +, -, *, and / denote addition, subtraction, multi-
plication, and division.

6. If E and F are expressions, and F is not floating point unless E is too, and
the first character of F is not + or -, and neither E nor F is of the form
A* * B, then

E**F

is an expression of the same mode as E. Thus A**(B**C) is an expression,
but I* * (B* *C) and A**B**C are not. The symbol * * denotes exponentia-
tion; i.e. A**B means AB.

Hierarchy o f Operations. When the hierarchy of operations in an expression

is not completely specified by parentheses, then it is understood to be in the

following order (from innermost operations to outermost) :

Exponentiation
Multiplication and Division

Addition and Subtraction

For example, the expression

A + B/C + D**E*F-G
will be taken to mean

A + (B/C) + (DE*F)-G.

Ordering within a Hierarchy. Parentheses which have been omitted from a

sequence of consecutive multiplications and divisions (or consecutive additions

and subtractions) will be understood to be grouped from the left. Thus, if . rep-

resents either * or / (or either + or -), then

A.B.C.D.E
will be taken to mean

((((A.B).C).D).E)

Verification of Correct Use o f Parentheses. The following procedure is sug-

gested for checking that the parentheses in a complicated expression correctly

express the desired operations.

Label the first open parenthesis "1"; thereafter, working from left to right,

increase the label by 1 for each open parenthesis and decrease it by 1 for each

closed parenthesis. The label of the last parenthesis should be 0; the mate of

an open parenthesis labeled n will. be the next parenthesis labeled n-1.

Arithmetic
Formulas

Optimisation of Arithmetic Expressions. The efficiency of the object program

into which an arithmetic expression is translated may depend upon how the

arithmetic expression is written. The section on Optimisation of Arithmetic

Expressions in Chapter 7 mentions some of the considerations which affect

object program efficiency.

The = sign in an arithmetic formula has the meaning "is to be replaced by".

An arithmetic formula is therefore a command to compute the value of the

right-hand side and to store that value in the storage location designated by the

left-hand side.

The result will be stored in fixed or floating point according as the variable
on the left-hand side is a fixed or floating point variable.

If the variable on the left is fixed point and the expression on the right is
floating point, the result will first be computed in floating point and then trun-

cated and converted to a fixed point integer. Thus, if the result is k3 .569 the

fixed point number stored will be t3, not -4.

GENERAL CORM

"a=bl' where a is a variable (subscripted or
not subscripted) and b is an expression.

Examples of Arithmetic Formulas.

EXAMPLLS

A(\) = B(I)+SINF(C (1))

CORMUIA

A= B

I = B

A= 1

1=1+1

A= MAXIF(SINF(B), COSF(B)

A=3.0*B

A=3*B

A= I*B

MEANING

Store the value of B in A.

Truncate B to an integer, convert to fixed point,
and store in I.

Convert I to floating point and store in A.

Add 1 to I and store in I. This example illustrates
the point that an arithmetic formula is not
an equation but a command to replace a value.

Replace A by the larger of the quantities
sinB and cosB. This example illustrates the use
of a function as an argument of a function.

Replace A by 38.

Not permitted. The expression is mixed.

Not permitted. The expression is mixed.

CHAPTER 4. THE FORTRAN LANGUAGE:
Control Statements

The second class of FORTRAN statements is the set of 15 control statements,

which enable the programmer to state the flow of his program.

Unconditional
GO TO

Assigned
GO TO

ASSIGN

This statement causes transfer of control to the statement with statement

number n.

QENCRAL FORM

"GO TO n" where n is a statement number.

EXAMPLES

GO TO 3

This statement causes transfer of control to the statement with statement num-

ber equal to the value of n last assigned by an ASSIGN statement. The nl, n,,

. . . . , nm are a list of the values which n may be assigned.

The assigned GO TO is used to obtain a pre-set many-way fork.

GENERAL FORM

"GO TO n, (n,, n,,, nm)" where n is a
non-subscripted fixed point variable appearing in a
previously executed ASSIGN statement, and
n,, n,,, n, are statement numbers.

NOTE: When an assigned GO TO exists in the range of a DO, there is a restric-

tion on the n,, n2, . . . , n,. (See the section on DOs in this chapter.)

EXAMPLES

GO TO N, (7, 12, 191

This statement causes a subsequent GO TO n, (nl, . . , i, . . , n,) to transfer

control to the statement'whose statement number is i.

The statement ASSIGN 12 TO N and the arithmetic formula N = 12 are

not the same. A variable which has been assigned can be used only for an

assigned GO TO until it is re-established as an ordinary variable.

17

GENERAL FORM

"ASSIGN i TO n" where i is a statement number and
n is a non-subscripted fixed point variable.

EXAMPTLO

ASSIGN 12 TO N

Computed
GO TO

SENSE LIGHT

IF (SENSE LIGHT)

IF
(SENSE SWITCH)

If at the time of execution the value of the variable i is j, then control is trans-

ferred to the statement with statement number nj. Thus, in the example, if I

has the value 3 at the time of execution, a transfer to statement 50 will occur.

This statement is used to obtain a computed many-way fork.

GENERAL FORM

"GO TO (nl, n,,, nm), i" where
n,, n,,, nm are statement numbers and
i is a non-subscripted fixed point variable.

EXAMPLES

GO TO (30, 40, 50, 601, 1

Control is transferred to the statement with statement number nl, n2, or n3

according as the value of a is less than, equal to, or greater than zero.

GENERAL FORM

"IF (a) n,, n,, nJ" where a is any expression
and n,, n,, n, are statement numbers.

EXAMPLES

IF (AU,K) -B) 10, 20, 30

If i is 0, all Sense Lights on the 704 console will be turned OFF; otherwise

Sense Light i will be turned ON.

GENERAL FORM

"SENSE LIGHT i" where i is 0, 1, 2, 3, or 4.

EXAMPLES

SENSE LIGHT 3

Control is transferred to the statement with statement number n, or n2 accord-

ing as Sense Light i is ON or OFF, and the Sense Light is turned OFF.

GENERAL FORM

"IF (SENSE LIGHT i) nl, n 2 " where
n1 and n, are statement numbers and i is 1, 2, 3, or 4.

EXAMPLES

IF (SENSE LIGHT 3) 30, 40

GENERAL FORM

"IF (SENSE SWITCH i) n,, n," where n, and n, are
statement numbers and i is 1, 2, 3, 4, 5, or 6.

EXAMPLES

IF (SENSE SWITCH 3) 30, 40

IF ACCUMULATOR
OVERFLOW

Control is transferred to the statement with statement number nl or n2 accord-

ing as Sense Switch i on the 704 console is DOWN or UP.

IF QUOTIENT
OVERFLOW

GENERAL FORM

"IF ACCUMULATOR OVERFLOW n,, n,"
where n1 and n, are statement numbers.

IF DIVIDE CHECK

EXAMPLES

I F ACCUMULATOR OVERFLOW 30,40

PAUSE

Control is transferred to the statement with statement number nl or n2 accord-

ing as the Accumulator Overflow trigger of the 704 is ON or OFF, and the

trigger is turned OFF.

Control is transferred to the statement with statement number nl or nz accord-

ing as the Multiplier-Quotient Overflow trigger of the 704 is ON or OFF, and

the trigger is turned OFF.

GENERAL FORM

"IF QUOTIENT OVERFLOW n,, n;
where n, and n, are statement numbers.

EXAMPLES

I F QUOTIENT OVERFLOW 3 0 , 4 0

Control is transferred to the statement with statement number n, or n2 accord-

ing as the Divide Check trigger of the 704 is ON or OFF, and the trigger is

turned OFF.

GENERAL FORM

"IF DIVIDE CHECK nl, n; where
n, and n2 are statement numbers.

EXAMPLES

IF DIVIDE CHECK 30, 4 0

The machine will HALT, with the octal number n displayed on the 704 con-

sole in the address field of the storage register. (If n is not stated it is taken

to be 0.) Pressing the START button causes the program to resume at the

next FORTRAN statement.

GENERAL FORM

"PAUSE or "PAUSE n" where n is an
unsigned octal fixed point constant.

EXAMPLES

PAUSE
PAUSE 77777

STOP

This statement causes the machine to HALT in such a way that pressing the

START button has no effect. Therefore, in contrast to the PAUSE, it is used

where a get-off-the-machine stop, rather than a temporary stop, is desired. The

octal number n is displayed on the 704 console in the address field of the

storage register. (If n is not stated it is taken to be 0.)

GENERAL CORM

"STOP" or "STOP n" where n is an
unsigned octal fixed point constant.

EXAMPLE(L

STOP
STOP 77777

The DO statement is a command to "DO the statements which follow, to and

including the statement with statement number n, repeatedly, the first time with

i = ml and with i increased by m3 for each succeeding time; after they have

been done with i equal to the highest of this sequence of values which does not

exceed m2 let control reach the statement following the statement with state-

ment number n".

The range of a DO is the set of statements which will be executed re-

peatedly; it is the sequence of consecutive statements immediately following

the DO, to and including the statement numbered n.

The index of a DO is the fixed point variable i, which is controlled by the

DO in such a way that its value begins at ml and is increased each time by

m3 until it is about to exceed ma. Throughout the range it is available for com-

putation, either as an ordinary fixed point variable or as the variable of a

subscript. During the last execution of the range, the DO is said to be satisfied.

Suppose, for example, that control has reached statement 10 of the

I GENERAL FORM EXAMPLES

program

"DO n i = m,, m," or "DO n i = m,, m2, m i '
where n is a statement number, i is a
non-subscripted fixed point variable, and
m,, m,, m, are each either an unsigned fixed point
constant or a non-subscripted fixed point variable.
I f m, is not stated it is taken to be 1.

DO 30 1 = 1,10
DO 30 1 = 1, M, 3

The range of the DO is statement 11, and the index is I. The DO sets I to 1

and control passes into the range. N (l) is computed, converted to floating

point, and stored in A(1). Now, since statement 11 is the last statement in the

range of the DO and the DO is unsatisfied, I is increased to 2 and control

returns to the beginning of the range, statement 11. 2N(2) is computed and

stored in A(2). This continues until statement 11 has been executed with I = 10.

Since the DO is satisfied, control now passes to statement 12.

DOs within DOs. Among the statements in the range of a DO may be other

DO statements. When this is so, the following rule must be observed.

Rule 1. If the range of a DO includes another DO, then all of the statements in the
range of the latter must also be in the range of the former.

A set of DOs satisfying this rule is called a nest of DOs.

Transfer of Control and DOs. Transfers of control by IF-type or GO TO-

type statements are subject to the following rule.

Rule 2. No transfer is permitted into the range of any DO from outside its range.
Thus, in the configuration below, 1, 2, and 3 are permitted transfers, but
4, 5, and 6 are not.

EXCEPTION. There is one situation in which control can be transferred into the

range of a DO from outside its range. Suppose control is somewhere in the

range of one or more DOs, and that it is transferred to a section of program,

completely outside the nest to which those DOs belong, which makes no change

in any of the indexes or indexing parameters (m's) in the nest. Then after the

execution of this section of program control can be transferred back to the same

part of the nest from which it originally came. This provision makes it possible

to exit temporarily from the range of a DO to execute a subroutine. An example

is given in Chapter 8.

CONTINUE

Restriction on Assigned GO TOs in the Range o f a DO. When an assigned

GO TO exists in the range of a DO, the statements to which it may transfer

must all lie in one single part of the nest, or must all be completely outside the

nest. If this condition cannot be met, a computed GO TO may be used.

Preservation of Index Values. When control leaves the range of a DO in the

ordinary way (i.e. by the DO becoming satisfied and control passing on to the

next statement after the range) the exit is said to be a normal exit. After a

normal exit from a DO occurs, the value of the index controlled by that DO

is not defined, and the index can not be used again until it is redefined. (See,

however, the section on Further Details about DO Statements in Chapter 7.)

However, if exit occurs by a transfer out of the range, the current value

of the index remains available for any subsequent use. If exit occurs by a trans-

fer which is in the ranges of several DOs, the current values of all the indexes

controlled by those DOs are preserved for any subsequent use.

Restriction on Calculations in the Range of a DO. Almost every'type of

calculation is permitted in the range of a DO. Only one type of statement is

not permitted, namely any statement which redefines the value of the index

or of any of the indexing parameters (m's). In other words, the indexing of a

DO loop must be completely set before the range is entered.

CONTINUE is a dummy statement which gives rise to no instructions in the

object program. Its most frequent use is as the last statement in the range of a

DO, where it provides a statement number which can be referred to in transfers

which are desired to become, in the object program, transfers to the indexing

instuctions at the end of the loop.

As an example of a program which requires a CONTINUE, consider the

table search program

10 DO 12 1 = 1,100

11 IF(ARG-VALUE(I)) 12, 20, 12

12 CONTINUE

13

GENERAL CORM

"CONTINUE"

EXAMPLES

CONTINUE

Summary of
Fortran
Sequencing

This program will examine the 100-entry VALUE table until it finds an entry

which equals ARG, whereupon it will exit to statement 20 with the successful

value of I available for fixed point use; if no entry in the table equals ARG
a normal exit to statement 13 will occur. The program

would not work since, as stated in the next section, DO-sequencing does not
occur if the last statement in the range of a DO is a transfer.

The precise laws which govern the order in which the statements of a FORTRAN

program will be executed, and which have been left unstated till now, may be

stated as follows.

1. Control begins at the first executable statement.

2. If control is in a statement S, then control will next go to the statement dic-
tated by the normal sequencing properties of S. (The normal sequencing
for each type of FORTRAN statement is given in Appendix B.)

3. EXCEPTION. If, however, S is the last statement in the range of one or
more DOs which are not yet satisfied, and if S is not a transfer (IF-type or
GO TO-type statement), then the normal sequencing of S is ignored and
DO-sequencing occurs; i.e. control will next go to the first statement of the
range of the nearest of the unsatisfied DOs, and the index of that DO will
be raised.

NOTE. The statements FORMAT, DIMENSION, EQUIVALENCE, and FRE-

QUENCY, which are discussed in the next two chapters, are non-executable

statements, and in any question of sequencing are simply to be ignored.

WARNING. Every executable statement in the source program (except the first)

must have some path of control leading to it; otherwise errors will occur in the

compilation of the object program.

CHAPTER 5. THE FORTRAN LANGUAGE:
Input-Output Statements

There are 13 FORTRAN statements available for specifying the transmission of

information, during the running of the object program, between core storage

on the one hand and tapes, drums, and attached card reader, card punch, and

printer on the other hand. These 13 statements may be grouped as follows.

1. Five statements (READ, PUNCH, PRINT, READ INPUT TAPE, and
WRITE OUTPUT TAPE) call for the transmission of a list of quantities
between cores and an external storage medium - cards, printed sheet, or
tape - in which information is expressed in Hollerith punch, decimal print,
or BCD code, respectively.

2. One statement (FORMAT) is a non-executed statement which defines the
information format in the external medium for the above 5 statements.

3. Four more statements (READ TAPE, READ DRUM, WRITE TAPE, and
WRITE DRUM) call for ordinary binary transmission of a list of quantities.

4. Finally, there are 3 statements (END FILE, REWIND, and BACKSPACE)
for manipulating tapes.

This chapter will first discuss the formation of a list of quantities for trans-

mission, since such a list must appear in each of the 9 statements in groups

1 and 3 above. Next the method of writing a FORMAT statement will be

described, and the format which input data to the object program must have.

Finally, the statements in groups 1, 3, and 4 will be discussed.

Specifying
Lists of
Quantities

Each of the 9 statements which call for the transmission of information includes

a list of the quantities to be transmitted. This list is ordered, and its order must

be the same as the order in which the words of information exist (for input),

or will exist (for output), in the external medium.

The formation and meaning of a list is best described by an example.

Al B(3I1 (C(lIl D(I1IOl I = 1110)1 ((E(IlJll 1 = 111011)1 F(Jl3)l J = 1,tO
Suppose that this list is used with an output statement. Then the information

will be written in the external medium in the order

A, 8(3), C(1), D(l,KI, C(21, D(2,K), :, C(101, D(lO,K),
E(1,1), E(2,1),, E(10,1), F(1,3),
E(1,2), E(2,2), , E(10,2), F(2,3), , F(K,3).

Similarly, if this list were used with an input statement, the successive words,

as they were read from the external medium, would be placed into the sequence

of storage locations just given.

Thus the list reads from left to right and with repetition of variables en-

closed within parentheses. Indeed the repetition is exactly that of DO-repetition,

as if each open parenthesis (except subscripting parentheses) were a DO, with

indexing given immediately before the mated closed parenthesis, and with

range extending up to that indexing information. Thus the order of the above

list is the same as of the "program"

1 A
2 B(3)
3 DO 5 1 = 1,10
4 C(I)
5 D(I,K)
6 D O 9 J = l 1 K
7 D O 8 1 = 1 , 1 0 , 1
8 E(I,J)
9 F(J,3)

Only variables, and not constants, may be listed.

Notice that indexing information, as in DOs, consists of 3 constants or

fixed point variables, and that the last of these may be omitted, in which case

it is taken to be 1.

For a list of the form K, A(K) or K, (A(I), I = 1,K), where an index

or indexing parameter itself appears earlier in the list of an input statement,

the indexing will be carried out with the newly read-in value.

When it is desired to transmit an entire array, and in its natural order (see

the section on Arrangement of Arrays in Storage in Chapter 2) , then an abbre-

viated notation may be used; only the name of the array need be given and

the indexing information may be omitted. FORTRAN will look to see if a

DIMENSION statement (see Chapter 6) has been made about that name;

if it has, indexing information to transmit the entire array in natural order

will be supplied automatically, while if it has not, only a single variable will be

transmitted. Thus,in the example, the entire A-array will be transmitted, includ-

ing the special case where the array consists of only a single quantity.

FORMAT

WARNING. The information given in this section applies in its full generality

only to lists which are given with the 5 decimal statements of group 1. For the

binary statements WRITE DRUM and READ DRUM only the abbreviated

notation mentioned immediately above is permitted; the restrictions which affect

lists for WRITE TAPE and READ TAPE are discussed in the section on Lists

for Binary Tape Operations in Chapter 7.

The 5 decimal input-output statements of group 1 contain, in addition t o the

list of quantities to be transmitted, the statement number of a FORMAT state-

ment, which describes the information format which exists, or is to be produced,

in the external medium. It also specifies the type of conversion between binary

and decimal which is to be performed. FORMAT statements are not executed, .
their function being merely to supply information in the object program. There-

fore they may be placed anywhere.in the source program.

GENERAL CORM

"FORMAT (Specification)" where Specification
is as described below.

The Specification. For the sake of definiteness the details of writing a FORMAT

Specification are given for use with a PRINT ttatement. However, the descrip-

tion is valid for any case simply by generalizing the concept of "printed line"

to that of unit record in the external medium. Thus a unit record may be

EXAMPLES

FORMAT (12/(E12.4, F10.4))

1. A printed line with a maximum of 120 characters.
2. A punched card with a maximum of 72 characters.
3. A BCD tape record with a maximum of 120 characters.

Three basic types of decimal-to-binary or binary-to-decimal conversion are

available:

The FORMAT specification describes the line to be printed by giving, for each

field in the line (from left to right, beginning with the first type wheel):

I INTERNAL TO OR FROM EXTERNAL

Floating point decimal
Fixed point decimal
Decimal integer

E
F
I

Floating point variable
Floating point variable
Fixed point variable

1. The type of conversion (E, F, or I) to be used;

2. The width (w) of the field; and

3. For E- and F-conversion, the number of places (d) after the decimal point
that are to be rounded and printed. If d is not less than 10 it is treated
mod 10.

These basic field speciiications are given in the forms

Iw, Ew.d, and Fw.d

with the specification for successive fields separated by commas. Thus the state-

ment FORMAT (12, E12.4, F10.4) might give the line

27 -0.9321E 02 -0.0076

As in this example the field widths may be made greater than necessary, so as

to ensure spacing blanks between numbers. In this case there is 1 blank follow-

ing the 27, 1 blank automatically supplied after the E, and 3 blanks after the

02. Within each field the printed output is always pushed to the extreme right.

It may be desired to print n successive fields in the same fashion. This may

be done by giving n before the E, F, or I. Thus the statement FORMAT (12,

3E12.4) might give

27 -0.9321E 02 -0.7580E-02 0.5536E 00

To permit the repetition of groups of field specifications a limited parenthetical

expression is permitted. Thus FORMAT (2(F10.6, E l 0.2), 14) is equivalent

to FORMAT (F10.6, E10.2, F10.6, E10.2, 14). No provision is made for

parentheses within parentheses.

To permit more general use of F-conversion, a scale factor followed by the

letter P may precede the specification. The scale factor is so defined that

Printed number = Internal number X 10Scale factor

Thus the statement FORMAT (12, lP3F11.3), used with the data of the

preceding example, would give

while FORMAT (12, -1P3F11.3) would give

A positive scale factor may also be used with E-conversion to increase the num-

ber and decrease the exponent. Thus FORMAT (12, 1P3E12.4) would give

with the same data

27 -9.3210E 01 -7.5804E-03 5.5361E-01

NOTE. The scale factor is assumed to be zero if no other value has been given.

However, once a value has been given it will hold for all F- and E-conversions

until a new one is given. The scale factor has no effect on I-conversion.

Hollerith Fields. A field may be designated as a Hollerith field, in which case

English text will be printed in it. The field width, followed by the desired

characters, should appear in the appropriate place in the specification. For

example, FORMAT (3HXY = F8.3, 4H Z = F6.2, 7H W/AF = F7.3)

would give with the same data

XY = -93.210 Z = -0.01 W/AF = 0.554
Notice that any Hollerith characters, including blanks, may be printed. This is

the sole exception to the statement made in Chapter 1 that FORTRAN ignores

blanks.

It is possible to print Hollerith information only, by giving no list with the

input-output statement and setting up no I, E, or F fields in the FORMAT

statement.

Consider a Hollerith field in a FORMAT statement at the time of execu-

tion of the object program. If the FORMAT statement is being used with an

input statement, the Hollerith text in the FORMAT statement will be replaced

with whatever text is read from the corresponding field in the external medium.

When the FORMAT statement is used with an output statement, whatever

text is currently in the FORMAT statement will be outputted. Thus text can

be originated either at source time or at object time by not using, or using, the

FORMAT statement with an input statement.

Multi-Record Formats. To deal with a block of printing a FORMAT speci-

fication may have several different line formats, separated by the slash /. Thus

FORMAT (3F9.2, 2F10.4/8E14.5) would specify a block in which lines

1, 3, 5, have format 3F9.2, 2F10.4 and lines 2, 4, 6, have format

8E14.5.

If a block format is desired having the first two lines of some special

formats and all the remaining lines of another format, the last line of the format

should be enclosed in parentheses; e.g. FORMAT (12, 3E12.4/2F10.3, 3F9.4/

(10F12.4)).

In general, if there are items in the list still remaining to be transmitted

after the format specification has been completely used, the format repeats

from the last open parenthesis or (if no parentheses are present) from the

beginning.

Blank lines may be introduced into a block by omitting format information;

thus // and /// will give 1 and 2 blank lines respectively.

Carriage Control. When WRITE OUTPUT TAPE is being used to write a

BCD tape for subsequent printing, the question of carriage control of the printer

must be considered. The peripheral printer can operate in 3 modes: single

space, double space, and Program Control, of which the last gives the greatest

flexibility.

Under Program Control the carriage is controlled by the first character

of each BCD record, and that character is not printed. The various control

characters and their effects are

Blank Single space before printing
0 Double space before printing
+ No space before printing
1-9 Skip to channels 1-9
J-R Short skip to channels 1-9

Thus a FORMAT Specification for WRITE OUTPUT TAPE for printing with

Program Control will usually begin with 1H followed by the appropriate control

character. The same is true of PRINT since in FORTRAN printing on the attached

printer simulates Program Control printing on the peripheral printer.

Data Input Decimal data to be read by a READ or READ INPUT TAPE at the time of
to the execution of the object program must be in essentially the same format as
Object Program

given in the examples of the preceding section. Thus a card to be read with

FORMAT (12, E12.4, F10.4) might be punched

Within each field all information must be pushed to the extreme right. Positive

signs may be indicated either by a blank or a + ; - signs may be punched with

an 11-punch or an 8-4 punch (see Appendix A) . Blanks in numeric fields are

regarded as zeroes. Numbers for E- and F-conversion may contain any number

of digits, but only 8 digits of accuracy will be retained. Numbers for I-conversion

will be treated mod 32768.
To permit economy in keypunching certain relaxations in input data

format are permitted.

1. Numbers for E-conversion need not have 4 columns devoted to the ex-
ponent field. The start of the exponent field must be marked by an E, or
if that is omitted, by a + or - (not a blank). Thus E2, E02, +2, +02,
E 02, and E+02 are all permissible exponent fields.

READ

2. Numbers for E- or F-conversion need not have the decimal point punched.
If it is not punched the FORMAT Specification sets its effective position;
for example, -09321 +2 with E12.4 will be treated as if the decimal point
had been punched 4 places before the start of the exponent field, that is

between the 0 and the 9. If the decimal point is punched, its position over-
rides the value of d given in the FORMAT Specification.

The READ statement causes the object program to read cards from the attached

card reader. Record after record (card after card) is read until the complete

list has been brought in, converted, and stored in the locations specified by the

list. The FORMAT statement describes the arrangement of information on the

cards and the type of conversion to be done.

If an End of File is encountered (the program attempts to read a card

and finds that there is none in the card reader) the object program HALTS.

Placing more cards in the card reader and pressing the START button causes

the program to continue the reading from the point in the list which it had

reached.

A partial check is made in the object program for incorrectly punched

columns. Such a column causes a HALT. Pressing the START button causes

the faulty column to be treated as a zero, and the program to continue.

GENERAL FORM

"READ n, List" where n is the
statement number of a FORMAT statement,
and List is as previously described.

READ INPUT
TAPE

EXAMPLES

READ 30, K, A(K)

The READ INPUT TAPE statement causes the object program to read BCD

information from tape unit i, where i = 1, 2, . . . , 10. Record after record

is brought in, in accordance with the FORMAT statement, until the complete

list has been placed in storage.

GENERAL FORM

"READ INPUT TAPE i, n, List" where i is
an unsigned fixed point constant
between 1 and 10 inclusive or a fixed point
variable, n is the statement number
of a FORMAT statement, and List is as
previously described.

.

EXAMPLES

READ INPUT TAPE 3, 30, K, A(K)
READ INPUT TAPE 1,30, K, A(K)

PUNCH

PRINT

WRITE
OUTPUT TAPE

An End of File causes a HALT in the object program. Pressing the START

button causes the program to continue the reading from the point in the list

which it had reached.

The object program redundancy checks the tape reading. If a record fails

twice the program HALTS. Pressing the START button causes the information

read on the second attempt to be accepted and the program to continue.

The PUNCH statement causes the object program to punch cards on the at-

tached card punch. Card after card is punched in accordance with the FORMAT

statement until the complete list has been punched.

No checking is done, and there are no HALTS in the object program.

GENERAL FORM

"PUNCH n, List" where n is the statement number of a
FORMAT statement and List is as previously described.

EXAMPLES

PUNCH 30, MU), J = 1, 10)

The PRINT statement causes the object program to print on the attached

printer. Line after line is printed in accordance with the FORMAT statement

until the complete list has been printed.

The printing is echo checked. A printing error so detected causes the

object program to HALT. Pressing the START button causes the program to

continue. Pressing the RESET button and then the START button causes the

line to be printed again and the program to continue.

GENERAL FORM

"PRINT n, List" where n is the statement number of a
FORMAT statement and List is as previously described.

EXAMPLES

PRINT 30, M(J), J = 1, 10)

GENERAL CORM

"WRITE OUTPUT TAPE i, n, List"
where i is an unsigned fixed
point constant between 1 and 10 inclusive
or a fixed point variable, n is the
statement number of a FORMAT statement,
and List is as previously described.

EXAMPLES

WRITE OUTPUT TAPE 3,30, MU), J = 1, 10)
WRITE OUTPUT TAPE 1,30, (AU), J = 1, 10)

READ TAPE

READ DRUM

The WRITE OUTPUT TAPE statement causes the object program to write

BCD information on tape unit i, where i = 1, 2, . . . , 10. Record after record

is written in accordance with the FORMAT statement until the complete list

has been written. No End of File is written after the last record.

No checking is done, and there are no HALTS in the object program.

The READ TAPE statement causes the object program to read binary informa-

tion from tape unit i, where i = l , 2,, 10. Only one record is read, and

it will be completely read only if the list contains as many words as the record.

The tape, however, always moves all the way to the next record.

If the list is longer than the record, the object program will stop with a

Read-Write Check, and the program will not be able to continue.

An End of File causes a HALT in the object program. Pressing the START

button causes the program to read the next record. A READ TAPE may,

however, be given without a list, in which case it will simply skip over a record

or an End of File.

For reasons of timing there are limitations on the complexity of the list.

See the section on Lists for Binary Tape Operations in Chapter 7.

The object program redundancy checks the tape reading. (The longitudinal

check is applied only if the whole record is read.) If a record fails twice the

program HALTS. Pressing the START button causes the information read on

the second attempt to be accepted and the program to continue.

GENERAL FORM

"READ TAPE i, List" where i is an
unsigned fixed point constant between
1 and 10 inclusive or a fixed
point variable, and List is as described
in Chapter 7.

DKAMPLES

READ TAPE 3, NU), J = 1,101
READ TAPE I, NU), J = 1,10)

GENERAL FORM

"READ DRUM i, j, List" where
i and j are each either an unsigned
fixed point constant or a fixed
point variable, with the value of i
between 1 and 8 inclusive, and
List is as described below.

EXAMPLLS

READ DRUM 2,1000, A, B, C, D
READ DRUM I, J, A, B, C, D

WRITE TAPE

WRITE DRUM

The READ DRUM statement causes the object program to read words of

binary information from consecutive locations on drum i, where i = 1, 2, ,
8, beginning with the word in drum location j, where j = 0, 1, , 2047.

(If j 2 2048 it is interpreted mod 2048.) Reading continues until the complete

list has been read in.

For reasons of timing there are stringent limitations on the complexity of

the list. In fact, the list can employ only the abbreviated notation described

earlier in this chapter; it may consist only of variables without subscripts, as

A, B, C, D, . . . Those variables which are simple will be read into storage in

the ordinary way; those which are arrays will be read with indexing obtained

from their DIMENSION statements (see Chapter 6). Thus with READ DRUM

the full array must be read in, and in natural order. For example, if there is a

DIMENSION statement saying that A is a Zdimensional array with maximum

indexes 5, 10, but no DIMENSION statements for B, C, D, the list above will

be treated as if it were written

((A(I,J), 1 = 1, 5), J = 1, lo), B, C, D
No checking is done and there are no HALTS in the object program.

The WRITE TAPE statement causes the object program to write binary infor-

mation on tape unit i, where i = 1, 2,, 10. Only one record is written;

its length will be that of the list.

For reasons of timing, there are limitations on the complexity of the list.

See the section on Lists for Binary Tape Operations in Chapter 7.

No checking is done, and there are no HALTS in the object program.

GENERAL FORM

"WRITE TAPE i, List" where i is an
unsigned fixed point constant between 1 and 10
inclusive or a fixed point variable,
and List is as described in Chapter 7.

EXAMPLES

WRITE TAPE 3, (AU), J = 1, 10)
WRITE TAPE I, (AU), J = 1,101

GENERAL FORM

"WRITE DRUM i, j, List" where i and j
are each either an unsigned fixed
point constant or a fixed point variable,
with the value of i between 1 and 8 inclusive,
and List is as described for READ DRUM.

E%AMPLPIS

WRITE DRUM 2, 1000, A, B, C, D
WRITE DRUM I, 1, A, 0, C, D

END FlLE

REWIND

BACKSPACE

The WRITE DRUM statement causes the object program to write words of

binary information into consecutive locations on drum i, where i = 1, 2, ,
8, beginning with drum location j, where j = 0, 1, , 2047. (If j 2 2048

it is interpreted mod 2048.) Writing continues until the complete list has been

written.

The list is subject to the same restrictions as for READ DRUM.

No checking is done and there are no HALTS in the object program.

The END FILE statement causes the object program to write End of File

on tape unit i, where i = 1, 2,, 10.

GENERAL FORM

"END FILE i" where i is an unsigned fixed
point constant between 1 and 10 inclusive
or a fixed point variable.

EXAMPLES

END FILE 3
END FILE I

The REWIND statement causes the object program to rewind tape unit i, where

i = l ,2 , , 10.

GENERAL FORM

"REWIND i" where i is an unsigned fixed
point constant between 1 and 10 inclusive
or a fixed point variable.

EXAMPLES

REWIND 3
REWIND I

The BACKSPACE statement causes the object program to backspace tape

unit i by one record, where i = 1, 2, , 10.

GENERAL FORM

"BACKSPACE i" where i is an unsigned fixed
point constant between 1 and 10 inclusive
or a fixed point variable.

Error Halts The several HALTS which can occur during input or output operation in the

object program can be identified by the contents of the storage register on the

704 console. The FORTRAN Operator's Manual contains a list of these HALTS

and their identifications.

EXAMPLES

BACKSPACE 3
BACKSPACE I

CHAPTER 6. THE FORTRAN LANGUAGE:
Specification Statements

The last class of FORTRAN statements is the set of 3 specification statements

DIMENSION, EQUIVALENCE, and FREQUENCY. These are statements

which are not executed, but which furnish information for use by FCMTRAN to

make the object program efficient.

DIMENSION

The DIMENSION statement provides the information necessary to allocate

storage in the object program for arrays of quantities.

Every variable which appears in the program in subscripted form must

appear in a DIMENSION statement, and the DIMENSION statement must

precede the first appearance of the variable. In the DIMENSION statement are

given the desired dimensions of the array; in the executed program the sub-

scripts of that variable must never take on values larger than those dimensions.

Thus the example states that B is a 2-dimensional array and that the sub-

scripts of B will never exceed 5 and 15; it causes 75 words of storage to be

set aside for the B array.

A single DIMENSION statement may be used to dimension any number

of arrays.

GENERAL FORM

"DIMENSION v, v, v, . . ." where each
v is a variable subscripted with 1, 2, or 3
unsigned fixed point constants.
Any number of v's may be given.

EXAMPLES

DIMENSION A(10), B(5, 15), C(3, 4, 5)

EQUIVALENCE

The EQUIVALENCE statement enables the programmer, if he wishes, to con-

trol the allocation of data storage in the object program. In particular, it permits

him to economise on data storage requirements by causing storage locations

to be shared by two or more quantities, when the logic of his program permits.

It also permits him, if he wishes, to call the same quantity by several different

names, and then ensure that those names are treated as equivalent.

An EQUIVALENCE statement may be placed anywhere in the source

program. Each pair of parentheses encloses the names of two or more &anti-

ties whose storage locations are to be made the same in the object program;

any number of equivalences (pairs of parentheses) may be given.

In an EQUIVALENCE statement the meaning of C (5) , for example,

is "the 4th storage location in the object program after the cell containing

C, or (if C is an array) after C(1) or C(1 , l) or C(1,1,1)". In general A(p)

is defined for p 2 1 and means the p-lth location after A or the beginning of the

A array; i.e. the pth location in the array. If p is not given, it is taken to be 1.

Thus the example statement causes A, B, and C (or the beginnings of

the A, B, and C arrays) to be so placed in storage that the location containing

A, the location containing B, and the 4th location after that containing C, are

the same location. Similarly, it causes the 16th location after D and the 2nd

after E both to be another location.

A quantity or array which does not appear in any EQUIVALENCE state-

ment will have storage exclusively to itself.

Locations can be shared only among variables, not among constants.

The sharing of storage locations cannot be planned safely without a

knowledge of which FORTRAN statements, when executed in the object pro-

gram, will cause a new value to be stored in a storage location. There are 7

such statements.

GENERAL CORM

"EQUIVALENCE (a, b, c, . . .), (d, e, f, . . .), . . "
where a, b, c, d, e, f , . . . are variables
optionally followed by a single unsigned
fixed point constant in parentheses.

1. Execution of an arithmetic formula stores a new value of the variable on its
left-hand side.

a M P L U

EQUIVALENCE (A, MI), C(5)), (D(17), E(3)

2. Execution of an ASSIGN i TO n stores a new value in n.

FREQUENCY

3. Execution of a DO will in general store a new value of the index. (It will
not always do so, however; see the section on Further Details about DO
Statements in Chapter 7.)

4. Execution of a READ, READ INPUT TAPE, READ TAPE, or READ
DRUM stores new values of the variables listed.

The FREQUENCY statement permits the programmer to give his estimate, for

each branch-point of control, of the frequencies with which the several branches

will actually be executed in the object program. This information is used to

optimise the use of index registers in the object program.

A FREQUENCY statement may be placed anywhere in the source pro-
gram, and may be used to give the frequency information about any number
of branch-points. For each branch-point the information consists of the state-
ment number of the statement causing the branch, followed by parenthesis en-
closing the estimated frequencies separated by commas.

Consider the example. This might be a FREQUENCY statement In a

program in which statement 30 is an IF, 40 is a DO, and 50 is a computed

G O TO. The programmer estimates that the argument of the I F is as likely to

be zero as non-zero, and when it is non-zero it is as likely to be negative as

positive. The DO statement at 40 is presumably one for which at least one of

the indexing parameters (m's) is not a constant but a variable, so that the num-

ber of times the loop must be executed to make a normal exit is not known in

advance; the programmer here estimates that 11 is a good average for that

number. The computed GO TO at 50 is estimated to transfer to its four branches

with frequencies 1, 7, 1, 1.

All frequency estimates, except those about DOs, are relative; thus they

can be multiplied by any constant. The example statement, for instance, could

equally well be given as FREQUENCY 30(2,4,2), 40(11), 50(3,21,3,3). A

frequency may be estimated as 0; this will be taken to mean that the frequency

is very small.

The following table lists the 8 types of statement about which frequency

information may be given.

GENLRAL CORM

"FREQUENCY n(i, j, . . .), m(k, I, . . .), . . ."
where n, m, . . . are statement numbers and
i, j, k, I, . . . are unsigned fixed point constants.

EXAMPLES

FREQUENCY 30(1, 2, l),
40(11), 50(1, 7, 1, 1)

It is not necessary to give frequency information about any branch-point. If

none is given, it will be taken that the probabilities of all branches are equal.

A frequency estimate concerning a DO will be ignored except when at

least one of the indexing parameters of that DO is variable. Moreover, the fre-

quency estimate should be based only on the expected values of those para-

meters; in other words, even if the range of the DO contains IFs or GO TOs

which may transfer outside the range, the frequency estimate should be the

number of times the range must be executed to cause a normal exit.

A DO for which the indexing parameters are variable and for which no

FREQUENCY statement is given will be treated as if a frequency of 5 had

been estimated.

TYPE

Computed GO TO
IF
IF (SENSE SWITCH)
IF ACCUMULATOR OVERFLOW
IF QUOTIENT OVERFLOW
IF DIVIDE CHECK
PAUSE

DO

NO OF
CREQS

32
3
2
2
2
2
2

1

REMARKS

Order of frequencies: same as order of branches
(4 I < 1, 1, I , (1 < I

8 1 11 11 ' I 11 I 8 $ 6

'1 ‘1 ' I 1, ' I ' I 'I

I 6 1 4 I 6 ' I 4 , (1 11

'1 ' I ' I ' 1 8 ' 11 , I

' I 11 number of times START
wil l be pressed, number
of times it will not.

To be given only when m,, m,, or m, is variable.

CHAPTER 7. MISCELLANEOUS DETAILS ABOUT FORTRAN

Source and The source machine is the 704 on which the source program is translated into the
Object Machines object program. The object machine is that on which the object program is run.

The source machine must be at least as large as a "small" 704; i.e. a 704 pos-

sessing 4096 words of core storage, floating point instructions, CPA (copy and add

logical) instruction, 1 drum unit, 4 tape units, attached card punch, attached or

peripheral card reader, and attached or peripheral printer.

The object machine may be of any size. Among the information produced by

FORTRAN is a count of the storage locations required by the object program, from
which it can be easily decided whether the object program is too large for any given

object machine.

Arrangement
of the
Object Program

Fixed Point
Arithmetic

The instructions and constants of the object program begin in lower memory and

extend upwards. Data and other storage locations required for the operation of the

program begin at location 77777, and extend downwards. Thus these latter locations

are always at the top of memory, regardless of the size of the object machine.
The topmost section of data storage is occupied by those variables which appear

in DIMENSION or EQUIVALENCE statements. The arrangement of this region

is such that two programs, whose DIMENSION and EQUIVALENCE statements

are identical, will have this region allocated identically. This fact makes it possible

to write families of programs which deal with the same data.

The successively lower sections of storage are occupied by variables not

mentioned in DIMENSION or EQUIVALENCE statements, then certain storage

locations required for the operation of the program, and finally a section of

erasable storage.

For each object program FORTRAN produces a printed description of the exact

arrangement of storage locations.

The use of fixed point arithmetic is governed by the following considerations.

1. Fixed point constants specified in the source program must have magnitudes
less than 215.

2. Fixed point data read in by the object ppmgramre*ssuCI*d.9H. MUIS OP. sl~(&fiw*~u* 2 IS

3. Fixed point arithmetic in the object program is arithmetic mod 215.

4. Indexing in the object program is mod (size of the object machine).

Writing
Subroutines
for the
Master Tape

Library subroutines exist on the master FORTRAN tape in relocatable binary form.

Placing a new subroutine on that tape involves (1) producing the routine in the
form of relocatable binary cards, and (2) transcribing those cards on to the master
tape by means of a program furnished for that purpose. Further details will be
found in the FORTRAN Operator's Manual.

In the object program transfer to the subroutine is by the sequence

TSX Subroutine, 4
Return

The subroutine itself and any constants that it requires should be located in relocat-
able locations 0, 1, 2, It may also make use of a common storage region of
any desired length n, beginning with relocatable location 77777,-(n-1) and ending
with relocatable location 77777,.

At the moment of transfer to the subroutine Arg, will have been'placed in the
AC, Argz (if it exists) in the MQ, Arg, (if it exists) in relocatable location 77775,
of the common storage region, Argl (if it exists) in relocatable location 77774,, etc.
The common storage region may also be used for erasable storage by the subroutine.

The output of the subroutine is to be left in the AC, and index registers 1 and 2
must be returned with their original contents.

Fixed point quantities in the object program exist in the following format: sign
in sign bit, magnitude in decrement field, remainder of word all zeroes.

It is suggested that error HALTS in subroutines be coded as HPR instructions,
permitting the tag and address fields to contain identifying numbers which can be
recognised at the console.

Optimisation of Considerable attention is paid in FORTRAN to ensure that the object program arising
Arithmetic from an arithmetic expression shall be efficient, regardless of how the expression has
Expressions been written. For example, a sequence of multiplications and divisions not grouped by

parentheses will automatically be reordered if necessary to minimise the number
of storage accesses in the object program.

However, one important type of optimisation, concerned with common sub-
expressions, takes place only if the expression has been suitably written. As an
example, consider the arithmetic formula.

An efficient object program would form the product A*B only once; yet if the

arithmetic formula is written as above, the multiplication of A by B will occur twice.
The correct way to write this arithmetic formula is

The common subexpression A*B has been displayed by the extra pair of parentheses,
and an object program will be formed which multiplies A by B only once.

In general, when common subexpressions exist in an expression, parentheses should

be used to display them.

There is one case where the programmer need not write the parentheses,

because FORTRAN will understand that they are there. The parentheses discussed in

the section Hierarchy of Operations in Chapter 3 are of this type, and need not be

given. Thus
Y = A*B+C+SINF(A*B)

is as suitable for optimisation as

Y = (A*B)+C+SINF(A*B)

However, the parentheses discussed in the section Ordering within a Hierarchy in

Chapter 3 must be supplied if common subexpression optimisation is to occur.

Further Details This section contains further details about DOs, which may be of interest to the
about DO advanced programmer.
Statements

Triangular Indexing. Indexing such as

DO 1 = 1,10
DO J = 1,10

or

DO 1 = 1,10
DO J = 1,l

is permitted and simplifies work with triangular arrays. These are simply special

cases of the fact that an index under control of a DO is available for general use as

a fixed point variable.
The diagonal elements of an array may be picked out by the following type of

indexing :
DO 1 = 1,10
A(I,I,I) = some expression

Status of the Cell Containing I. A DO loop with index I does not affect the contents

of the object program storage location for I except under certain circumstances,

namely if

1. An IF-type or GO TO-type transfer exit occurs from the range of the DO;

2. I is used as a variable in the range of the DO; or

3. I is used as a subscript in combination with a relative constant whose value changes
within the range of the DO. (A relative constant is a subscript the fixed point
variable of which is not currently under control of a DO.)

Therefore, if a norAal exit occurs from a DO to which cases 2 and 3 do not apply,

the I cell contains what it did before the DO was encountered. After normal exit

Lists for
Binary Tape
Operations

where 2 or 3 do apply, the I cell contains the first value of the I-sequence which

exceeds m 2 • After a transfer exit the I cell contains the current value of I.

There are restrictions on the complexity of thc parenthesised parts of lists for the

READ TAPE and WRITE TAPE statements which must be observed if the object

program indexing is not to exceed 288 microseconds, the maximum safe time for

calculation between CPY instructions on the 704.

Unfortunately this matter is exceedingly complicated and therefore no complete

discussion will be given. Instead, certain rules will be given which will permit the

construction of lists which can be relied upon to work; there will be other lists,

excluded by these rules, which would also work.

Define the term subscript combination as follows. Consider each subscript of

each subscripted variable to be specified by the four symbols, c, v, c' and d, where

d is the maximum value of the subscript as given in the DIMENSION statement

about the variable, and where c*v ± c' is the full form of the subscript. (The full

form of the subscript I would be 1*1+0; that of the subscript 3 would be 1*0+3,

etc.). Then the subscript combination of a subscripted variable is one of the

ordered sets

C], VI

C), V], C2, V2, dl

C), V), C2, V2, C3, V3, d), d2

depending upon whether the variable has 1, 2, or 3 subscripts. Thus A(I,J,K),

B (I,K,J), C(5 'd,J,K), and D(I,J) all have different subscript combinations, but

A(I,J,K) and B(I+5,J,K) have the same subscript combination if the first two

dimensions of A and B are the same.

Also, define as an element of a list a part bounded by principal commas in

the list.

Elements which Contain no Subscripted Variable. There are no restrictions on

such elements.

Elements which Contain no Variable with Three Subscripts. Let

NI = number of different I-dimensional subscript combinations
N2 = 2-
MI = 0 if NI = 0; otherwise MI = 1
M2 = 0 if N2 = 0; otherwise M2 = 5

Thcn the restriction is that 4Nl +6N2 +max(M j ,M 2) must not e.xceed 18.

For example, the element ((A(l,]), B(I,J), J = 1,10), C(I), 1= 1,10) has

N 1 =, 1, N 2 = 1 (provided that the first dimensions of A and B are the same);

hence 4N 1 +6N2 + max(M I,M2) = 15, and the element is permissible.

42

•

•

Elements which Contain Variables with Three Subscripts. Consider a variable A

whose three subscripts s,, s2, s, involve as variables v,, v2, v,. Then the skeleton

elements

(((, v , =) , v 2 =), , v , =

or

(((, V , =) , V , =) , , v z =)

or

(((, v , =) , v 3 =), , v , =

will work. The innermost parentheses (controlling v,, v,, v2 respectively) may
contain A(sl,s2,s3) and any number of other variables with the same subscript
combination; similarly the outermost parentheses may contain variables of any one

subscript combination. The middle parentheses may not contain any subscripted

variables. Thus for example

will work provided that the first two dimensions of A and B are the same. This

example makes use of the first of the skeleton elements just given.
In the special case where the next element in the list is neither subscripted nor

enclosed in controlling parentheses, the first of the above skeleton elements may

also contain variables of any one subscript combination in its middle parentheses.
Finally, the skeleton element

which unlike the others indexes in the natural order, will work. Notice, however,

that the indexing parameters for v, and v, must be such that the array is swept
through consecutively. The innermost parameters may contain A(sl,s2,s3) and any

number of other variables with the same subscript combination.

Variable Indexing Parameters and Relative Constants. Another restriction affect-

ing lists for binary tape operations concerns the use of relative constants and of

indexing parameters which are variables. (A relative constant is a subscript, the

variable of which is not currently under the control- of a DO or a controlling

parenthesis.)
The restriction is, that variables which have a subscript involving either a

relative constant or an index governed by variable indexing parameters may appear

only in the first element of a list. Furthermore, all such variables must also have
among their subscripts one whose index is controlled by the first parenthesis.

For example, in ((A(I,J) , I = l ,L), B(K,J), J = 1,M) both the subscripts of
A are governed by variable indexing parameters; for B the same is true of one of its

subscripts, while the other is a relative constant (unless the READ TAPE or WRITE

TAPE is itself in the range of a DO for K) . However, since J, which is the index

controlled by the first parenthesis, is a subscript of both A and B, this element will

work if it is the first element in the list.

Limits on the In performing the translation from source to object program, FORTRAN forms and
Size of the uses tables which summarise various aspects of the information contained in the
Source source program. These tables are limited in size, with corresponding limitations in

the amount of information which the source program may contain. If a table size

is exceeded the FORTRAN program will HALT a t one of a list of locations given in

the FORTRAN Operator's Manual.

In what follows, the phrase "literal appearance" means that if the same thing

appears more than once it must be counted more than once.

1. (TEIFNO Table). The number of FORTRAN statements which have statement
numbers must not exceed 1500. (An inpirt or output statement which has a

statement number and whose list contains controlling parentheses counts double.)

2. (FIXCON Table). The number of different fixed point constants must not exceed

100. (In this count constants which differ only in sign are not considered different.)

3. (FLOCON Table). The number of different floating point constants must not

exceed 450. (In this count constants which differ only in sign are not considered

different, nor are numbers such as 4., 4.0, 40.E-1, etc. which are really the

same number.)

4. (TDO Table). The number of DO statements must not exceed 150.

5. The number of DO statements in any one nest must not exceed 50.

6. (TIFGO Table). The total number of ASSIGNS plus IF-type and GO TO-type

statements must not exceed 300.

7. (TRAD Table). The total number of statement numbers mentioned in assigned

GO TO and computed GO TO statements must not exceed 250.

8. (FRET Table). The total number of numbers mentioned in FREQUENCY

statements must not exceed 750. (Such a statement as FREQUENCY 30(1,2,1)

has 4 numbers.)

9. (DIM Tables). The number of 1, 2, and 3-dimensional variables which appear in
DIMENSION statements must not exceed 100, 100, and 90 respectively.

10. (EQUIT Table). The number of literal appearances of variables in EQUIVAL-

ENCE statements must not exceed 750.

11. (LAMBDA Table). This table, and the BETA Table which follows, limit the

size of arithmetic expressions on the right-hand side of arithmetic formulas and
as the arguments of I F statements. In any one expression let

n=number of literal appearances of variables and constants, except those in
subscripts;

b=number of open parentheses, except those introducing subscripts;

p=number of appearances of + or -, except in subscripts or as unitary opera-
tors. (The + in A*(+B) is a unitary operator.);

t=number of appearances of * or /, except in subscripts;

e = number of appearances of * - :
f=number of literal appearances of function names; and

a=number of arguments of functions. (For SINF(SINF(X)), a=2.)

Then 1 , which equals n + 4b + 4a-3f + 3p + 2t + e + 3, must not exceed 400.

12. (BETA Table). With the same definitions, B=h+ 1-n-f must not exceed 300.

13. (CLOSUB Table). In the entire program the number of literal appearances of
functions must not exceed 1500.

14. (FORVAL Table). The number of arithmetic formulas whose left-hand sides
are non-subscripted fixed point variables must not exceed 500.

15. (FORVAR Table). The total number of literal appearances of non-subscripted
fixed point variables on the right-hand side of arithmetic formulas and in the
arguments of IFs must not exczed 750.

16. (FORTAG Table). The total number of literal appearances of subscripted vari-
ables must not exceed 1500.

17. (TAU Tables). The total number of different 1, 2, and 3-dimensional subscript
combinations must not exceed 100, 90, and 75 respectively. (See the preceding
section on Lists for Binary Tape Operations for the definition of subscript
combination.)

18. (SIGMA Tables). Consider a variable with 3 subscripts, and let the additive
parts of these subscripts (when written in full form) be c1',c2',c3'. Then the number
of distinct triples cl1,cr',cs' must not exceed 100. Similarly for 2- and 1-dimensional
variables, neither the number of distinct cl',czf nor of distinct clf may exceed 100.

19. There are a few more limitations on table sizes, which are too complicated to set
forth. In every case, however, a violation causes an identifiable HALT in the
FORTRAN program.

CHAPTER 8. EXAMPLES OF FORTRAN PROGRAMMING

A Complete
but Simple
Program

The example below is the same as that given in Chapter 1, but expanded into a

complete program. The purpose of the program is to discover the largest value

attained by a set of numbers A(1) and to print that number on the attached

printer. The numbers A(1) exist on punched cards, 12 to a card, each number

occupying a field of 6 columns. There are not more than 999 numbers; the

actual number N is punched on a lead card.

The first executable statement is the READ; therefore the program begins there.

The READ causes first N and then A(1) , A(2) , , A(N) to be brought

in from the card reader, in accordance with the FORMAT statement 1. Notice

that the indexing of the loop bringing in A will work correctly, since the

indexing parameter N occurs earlier in the list.

The FORMAT statement says that there is first a single card with format

13, followed by any number of cards with format 12F6.2. On the single card

N is punched as a decimal integer in columns 1-3 and is also to be converted

into a fixed point number. In the remainder of the deck the numbers A(1) are

punched 12 to a card in columns 1-6, 7-12, etc. Each number is presumably

10" CaollLII
srrrrwmr w m s r l

5 1
cl I--
- 1

I
-I--
- 1

I 1
- I
-1-

j 5
I
1 30

-1 1 0 I--
(20 -
1

-I-
1 2
I

-I-

=
g
:
5

-
X

-

-

-

-
-

-

-

FORTRAN STATEMENT

PROGRAM FOR FINDING THE LARGEST VALUE

ATTAINED BY A SET OF NUMBERS
DIMENSION A (9 9 9) -

FREQUENCY 3 0 (2 . 1 . 1 0) , 5 (1 0 0)

READ 1. N. (A (1) . I' 1,N)
FORMAT (13 / (12F6.2))
BIGA - A (1)

D O 2 0 I - 2 , N

I F (BIGA-A(1)) 10 .20 .20
B I G A - A (1)

CONTINUE

PRINT 2. N. BIGA

FORMAT (22HlTHE LARGEST OF THESE 13, 12H NUMBERS I S F7 .2)

STOP 77777

lDnlll. I I C L T I O I

w

punched as xxxxx or -xxxxx with the decimal point understood to precede the

last two digits. If, however, a column is used for a decimal point, its position

overrides this understanding.

After the READ is executed control moves to the next executable state-

ment, the arithmetic formula BIGA = A(1). The cell BIGA now contains A(1).

Next the DO statement sets I to 2 and creates a loop starting with the IF

and ending with the CONTINUE. The first time the IF is executed it transfers

control either to statement 10 or statement 20, according as A(2) > BIGA or

A(2),< BIGA. In the first case, therefore, BIGA becomes A(2) ; otherwise it

remains A (1) .
Control is now in the CONTINUE, which is the last statement in the range

of a DO which is still unsatisfied (provided that N > 2) , and which is not a
transfer. Therefore DO-sequencing occurs: I is increased to 3 and control goes

back to the IF. The comparison now is between BIGA and A(3) ; if A(3) is

the larger it becomes the new BIGA.

This process continues until control is in the CONTINUE with I = N.

The DO is satisfied; therefore normal sequencing occurs and control moves to

the PRINT. BIGA now contains the largest value in the set of A's; N and the

A-array have not been altered.

The PRINT statement causes N and BIGA to be printed on the attached

printer in accordance with the FORMAT statement 2. This statement causes

a line to be printed as follows. The carriage control character is a Hollerith "1"

which causes a skip to channel 1, bringing the paper to the top of a new sheet.

Type wheels 1-21 receive the text 'THE LARGEST OF THESE '; wheels 22-24

receive N converted back to decimal integer form; wheels 25-36 receive ' NUM-

BERS IS '; and wheels 37-43 receive BIGA converted into fixed decimal form,

with a decimal point preceding the last two digits. Notice that an extra column

is allotted to BIGA to allow for the decimal point, which was presumably

omitted in the data input.

The program ends with a HALT and 777778 in the address field of the

storage register on the console. Pressing the START button will have no effect.

The only subscripted variable used in the program is A. Hence DIMEN-

SION A(999) is the only dimension information required.

The only statements about which a FREQUENCY statement can be made

are the IF and the DO. The programmer anticipates that BIGA will usually be

greater than A(I) , a plausible guess if the A(1) are randomly arranged but

not if they tend to increase with increasing I. He also predicts for the DO that

100 is a reasonable average for N.

A DO Nest Given an N x N square matrix A, to find those off-diagonal elements which are
with Exit
and Return

symmetric and to write them on binary tape.

After rewinding tape 3, a nested pair of DO loops scans the entire matrix

for elements A(1,J) equal to A(J,I). Whenever such an element is found an
exit completely out of the nest is made to a routine which for off-diagonal

elements only writes a 3-word record (I, J, and A(1,J)) in binary on tape 3.

Both for on- and off-diagonal elements this routine makes no change in the

indexes or indexing parameters of the nest, and so it is permissible to re-enter

the nest and continue the scan.

This program actually finds each element twice. This could be avoided by

writing the second DO as DO 3 J = 1,N.

FORTRAN STATEMENT

72 73
y-

REWIND 3

-1-
-1-

I
-1-

3
1 -I--

_ I
I

_I___
I

1 20 --
I 21 - I

_ I
I

-
-

-

-

_
-
-
-
_

DO 3 I = 1,N
DO 3 J = 1,N
IF(A(1,J)-A(J, I)) 3,20,3 --

CONT INUE --
END FILE 3

MORE PROGRAM

IF(1-J) 21,3,21

WRITE TAPE 3,I,J. A(I,J)

GO TO 3

APPENDIX A. TABLE OF FORTRAN CHARACTERS

NOTE 1. There are two - signs. Only the 11-punch minus may be used in
source program cards., Either minus may be used in input data to the object
program; object program output has the 8-4 minus.

NOTE 2. The $ character can be used in FORTRAN only as Hollerith text in a
FORMAT statement.

/ 21 61

S 22 62

T 23 63

U 24 64

V 25 65

W 26 66

X 27 67

Y 30 70

Z 31 71

0 0 12 00

O 33 73 , 8-3

0
(8-4 34 74

J 41 41

K 42 42

L 43 43

M 44 44

N 45 45

0 I: 46 46

P 47 47

Q 50 50

R 51 51

- 11 40 40

l1 53 53 $ 8-3

l1 54 54 * 8-4

1 1 01 01

2 2 02 02

3 3 03 03

4 4 04 04

5 5 05 05

6 6 06 06

7 7 07 07

8 8 10 10

9 9 11 11

Blank 20 60

= 8-3 13 13

- 8-4 14 14

A 61 21

B 62 22

C 63 23

D 64 24

E 65 25
--

F I; 66 26

G 67 27

H 70 30

I 71 31

+ 12 60 20

73 33 . 8-3

l2 74 34) 8-4

APPENDIX B. TABLE OF FORTRAN STATEMENTS

STATEM-T NORMAL SEQUENCING

a = b Next executable statement

GO TO n Statement n

GO TO n, (nl,n2,. . .,nm) Statement last assigned
ASSIGN i TO n Next executable statement

GO TO (n1,n2,. . . ,n,), i Statement ni

IF (a) n1,n2,n3 Statement nl,n2,n3 as a less than, =, or greater than 0

SENSE LIGHT i Next executable statement

IF (SENSE LIGHT il nl,n2 Statement nl,n2 as Sense Light i ON or OFF

IF (SENSE SWITCH i) nl,n2 " " " as Sense Switch i DOWN or UP

IF ACCUMULATOR OVERFLOW nl,n2 " " " as Accumulator Overflow trigger ON or OFF

IF QUOTIENT OVERFLOW nl,n2 " " " as MQ Overflow trigger ON or OFF

IF DIVIDE CHECK nl,n2 " " " as Divide Check trigger ON or OFF

PAUSE or PAUSE n Next executable statement

STOP or STOP n Terminates program

DO n i = m1,m2 or DO n i = ml,m2,m3 Next executable statement

CONTINUE
FORMAT (Specification) Not executed

READ n, List Next executable statement

READ INPUT TAPE i, n, List

PUNCH n, List

PRINT n, List
WRITE OUTPUT TAPE i, n, List

READ TAPE i. List
READ DRUM i, j, List

WRITE TAPE i, List

WRITE DRUM i, j, List

END FILE i
REWIND i
BACKSPACE i
DIMENSION v, v, v, Not executed

EQUIVALENCE (a,b,c,. .), (d,e,f,. .), . . . I d $ 8

FREQUENCY n(i,j,. .), m(k,l,. .), . . . 6 ' $ 4

INDEX

Admissible characters 49
Arithmetic formulas 12, 16, 36

maximum length of 44
mode of result 16
not equivalent to ASSIGN 17
optimisation of 40

Arrays 9, 10
arrangement in storage 11
order of reading or writing
24.25, 33, 43
sizeof 11,35

Assigned GO TO in range of DO
17,22

Blank characters 7, 8, 28, 29

Carriage control 29, 47
Checking of reading 30, 3 1 , 32

of writing 3 1
Comment cards 8
Common storage region 40
Common subexpressions 40
Constants 9

maximum number of 44
Continuation cards 7

Data input to object program
29,46,49

DO-sequencing 23
examples of 7, 20,22,47,48

DO statements 20,41
and transfers 21, 23
exit and return 21,48
index of 20, 22, 23, 25,
37, 39, 41
maximum number of 44
nestof 21,44,48
normal exit from 22,41
permitted calculation in
range of 22
preservation of index 22, 37,41
range of 20,21

satisfied 20, 23,47
transfer exit from 22, 41
triangular indexing 41, 48
within DOs 21

Echo checking 31
End of File 8, 30, 31, 32, 34

skipping over 32
Exponents 9, 15,27,29
Expressions 14, 18

maximum length of 44
mixed 14,16
optimisation of 40
rules for forming 14

Format 26
examples of 46, 47
multi-record 28
of input data to object program
29, 46, 49
of fixed point quantities in
storage 40

Functions 3, 12
built-in 13
maximum number of 45
modes of 12
rules for writing 40

HALTS, identification of
19, 20, 34, 40, 44, 45

Hierarchy of operations 15,41
Hollerith fields 28,47, 49

Indexing parameters 21, 22,
25, 37, 38, 43, 46, 48

Input to FORTRAN 8,49

Keypunching 7

Library subroutines (see Functions)
Lists of quantities for transmission

24

abbreviated form 25, 33
for binary tape 26, 32, 33, 42
for drum 26,33,34

Non-executed statements
23, 26, 35, 50

Normal sequencing 23,50

Object program arrangement
in storage 39
Order of arrays 11

of hierarchy of operations 15
of operations within hierarchy 15
of quantities in lists 24, 25,
33,43
of statements 8

Parentheses 14, 15, 25, 27, 28,40
Precision 3, 9, 10, 39

Redundancy checking 3 1, 32
Relative constants 41, 43

Scale factors in input-output 27
Sequencing, summary of 23,50
Size of machine required 2.39
"Small" 704 2, 39
Statement numbers 8, 9
Statements 7, 8

maximum number of 44
summary of 8,50

Storage allocation 11, 35, 36, 39
Subscript combination 42, 43

maximum number of 45
Subscripts 9, 10, 14, 20, 42, 45

maximum value of 11,35,42
minimum value of 11

Table sizes 44

Variables 10
maximum number of 44,45
restrictions on naming 10

