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Outlier detection has been a topic in statistics for centuries.
Over mainly the last two decades, there was also an increas-
ing interest in the database and data mining community
to develop scalablemethods for outlier detection. Initially
based on statistical reasoning, however, thesemethods soon
lost the direct probabilistic interpretability of the derived
outlier scores. Here, we detail from a joint point of view of
data mining and statistics the roots and the path of develop-
ment of statistical outlier detection and of database-related
data mining methods for outlier detection. We discuss their
inherent meaning, review approaches to again find a statisti-
cally meaningful interpretation of outlier scores, and sketch
related current research topics.
K E YWORD S
outlier detection, anomaly detection, outlier model, statistics and
datamining

1 | INTRODUCTION
An outlier could be generally defined as being “an observation (or subset of observations) which appears to be inconsistent
with the remainder of that set of data” [20]. Finding outliers (i.e., data objects that do not fit well to the general data
distribution) is very important in many practical applications, including e.g. credit card abuse detection in financial
transactions data, the identification of measurement errors in scientific data, or the analysis of sports statistics data.
In the light of the commonmetaphor grasping the task of data mining like mining for nuggets of information, outlier
detection can be seen as being not merely interested in removing noise but also in finding interesting database objects
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deviating in their behavior considerably from themajority and, as such, providing new insights. Indeed, both aspects
of outlier detection are like two sides of a coin as one person’s noisemay be another person’s signal. The application
scenarios given above highlight both interests in outliers, as measurement errors in scientific data should possibly just
be removed [120] whereas a case of credit card abuse is the solely interesting fact among awealth of “just usual” data
(that, in turn, could of course be interesting itself as well, e.g., for modeling a customer’s interests and behavior — after
removing outliers).

In the remainder, wewill first give an overview on existing surveys and how this survey is taking a different point
(Section 2). Then wewill reason about the idea andmeaning of outlierness and about consequences of identifying some
entity as outlier (Section 3). We will give a short overview on different kind of categorizations of outlier detection
methods (Section 4), before we come to an overview of statistical methods (Section 5) and of database-oriented data
mining methods (Section 6). We round the survey up with a short discussion of evaluation methods (Section 7) and
a vision of possible directions of improvements based on the renewed statistical understanding and probabilistic
interpretation of outlier scores (Section 8). Finally, we give an overview on some software packages (Section 9) and
conclude the survey (Section 10).

2 | DIFFERENT POINTS OF VIEW TO SURVEY THE LITERATURE
In the past 10 to 15 years, quite a few surveys on outlier detection have been published, based in different research
areas. Alas, the field is that large any survey can only follow some selected path. One could get the impression that even
a survey on surveys could be of avail in order to identify the most helpful information required for a specific type of
question. Here, we only touch on some recent sources for an overview on the topic, before we point out our ownway of
seeing things in this area.

2.1 | Some Existing Surveys
Most surveys so far focused on specific techniques, a specific research area, or a specific application domain.

Markou and Singh provided a pair of surveys on outlier detection, specialized to statistical approaches [130] and
neural network based approaches [131]. They focus on novelty detection. A novelty can be considered as a specific
type of outliers that occur after the training phase is completed. The rational is that a novelty does not fit well to the
previously learned distributions. Although the survey does not clearly distinguish between supervised and unsupervised
methods, the numerous discussedmethods typically require a training phase of some sort. Overall, the techniques are
seen from the pattern recognition point of view.

Hodge and Austin[87] name different research areas that contributed outlier detectionmethods under different
names as, e.g., “novelty detection, anomaly detection, noise detection, deviation detection or exceptionmining”. (Time-honored
literature[16] reports yet other terms for outliers, e.g., “wild”, “straggler”, “sport”, “maverick”, “aberrant”, or “spurious”
observation. Most of these terms for outliers, however, are outlying terms in today’s literature on outliers.) Hodge
and Austin[87] give also, as an introduction, a coarse but extensive list of application problems. Methodologically, they
discern between unsupervised, supervised, and semi-supervisedmethods. For unsupervised techniques (where our
main interest is in this survey) they focus on clustering techniques and, hence, practically dismiss a huge bulk of work
provided in the data mining community. Instead, they cover approaches from the artificial intelligence and pattern
recognition community.

Agyemang et al.[5] are more interested in the data mining aspect of outlier detection as finding the rare, interesting
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pattern in a huge amount of data, based on a listing of interesting application examples. Their survey elaborates
the distinction between numeric and symbolic approaches and discerns different categories of algorithms in these
approaches. They also touch on cluster-based techniques. In each of these categories, they give an extensive review of a
multitude of existing approaches and sketch shortly themerits and shortcomings of the different categories.

Patcha and Park[150] are especially interested in network intrusion detection. Nevertheless they survey a couple
of general outlier detection methods as techniques that found use in network intrusion detection systems. Their
systematic overview is based on the distinction of communities contributing the basic techniques, namely statistics,
machine learning, and data mining. The interest of their survey, however, is more in the application of the basic
techniques in specialized systems than in the characteristics of the basic techniques themselves.

Hadi et al.[76] discuss thematter from a recent statistical point of view and describe a broad variety of statistical
approaches to outlier detection. They also discuss outlier detection as a statistical problem in amore general setting,
yet only touch on database-related datamining andmachine learning approaches. They had, of course, many precursors
in providing surveys and discussions of research on handling of outliers in statistics. As still interesting and inspiring
articles we recommend the works by Anscombe and Guttman[16], by Barnett[19], and by Beckman and Cook[24].
Among these, especially Beckman and Cook[24] provide a thorough history of the evolution of the statistical theories of
handling outliers. Gnanadesikan and Kettenring[75] include a discussion of (multivariate) outliers in their more general
overview.

Su and Tsai[197] give a coarse overview on some categories of unsupervised outlier detection and roughly name
some basic approaches to supervised and semi-supervised outlier detection.

Rousseeuw andHubert[171] focus on robust statistics for outlier detection. In this family of approaches, the basic
principle of outlier detection is to fit a model to the data majority, where the model-fitting should be robust against
outliers, and then to look for observations which significantly deviate from this model. In that way, these identified
outliers are always related to an underlying model, such as a univariate location/scale model, a multivariate normal
model, a regressionmodel, a classificationmodel, etc.

The most extensive recent survey on outlier detection in data mining has been provided by Chandola et al.[37]
They discuss several interesting points. Besides discerning different techniques (as didmost of the previous surveys,
although Chandola et al. additionally discuss information-theoretic and spectral approaches as categories), they also
describe different application domains more thoroughly as previous surveys and list outlier detection approaches that
found use in the different application areas. Furthermore, they detail different types of outliers, namely point anomalies,
contextual anomalies, and collective anomalies. Often, a certain type of anomaly is typical for a certain application domain.

Similar to the survey of Chandola et al. in spirit but with a different background is the survey by Pimentel et al.[160]
They focus on novelty detection in the sense of semi-supervised learning (where examples for the normal class are given,
but not for the anomaly class; examples of that class thus appear as “novelty”) yet without a strict distinction against
other flavors of outliers and correspondingmethods.

Specialized surveys discuss methods for specific scenarios such as discrete sequences[38], graph-data[6], high-
dimensional data[228], or ensemblemethods for outlier detection.[225]

Among recent textbooks on data mining, especially Tan et al.[202] give a decent overview. Han et al.[77] survey
outlier analysis as part of cluster analysis yet discuss some genuine database-related outlier detectionmethods. In a
statistical context, the books by Rousseeuw and Leroy [172], by Hawkins[82], and by Barnett and Lewis[20] remain
classics.
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2.2 | Focus andOrganization of this Survey
Althoughwe are indebted to all these survey articles and textbook overviews as inspiring guides to the literature, here
we intend tomake a different point that has not beenmade by previous authors.

We are interested in the statistical meaning of the different methods and how they relate to each other and to the
original statistical intuition. While recent comprehensive surveys like the works by Chandola et al.[37] and by Pimentel
et al.[160] structure the literature according to specific techniques used (e.g., probabilistic, distance-based, clustering-
based, information theoretic), here we rather see this as a continuumwhere the connection of different techniques
to a probabilistic interpretation is tighter for some and looser for others. However, from an intuitive perspective (i.e.,
not focusing on the algorithmic techniques but rather on the goal that is to be achieved by using various algorithmic
techniques), the various approaches are not falling apart in strict categories. At the end of the day the central question
for any application of such outlier detectionmethods is how to statistically interpret the outlier score that has been
provided by some method. This interpretation and its relationship to outlier scores of different methods is usually
anything but obvious. Thus we aim at re-establishing the link between datamining and statistics.

3 | WHAT AN “OUTLIER” POSSIBLY MEANS
Reconsider the definition of an outlier we started with as “an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data”[20]. In about two decades of research in dataminingmanymethods
have been proposed to identify such outliers. Much attention has been spent on doing this ever faster, less attention has
been attributed to the description “appears to”.

In this section, wewould like to reason on the importance of this notion of outliers as apparently inconsistent data
objects. If somemethod identifies some data object as an outlier, this merely means, the data object is suspected to be
inconsistent.

3.1 | Correction of the Data or Correction of theModel?
Inconsistency canmean that the data object is a contaminant from a different distribution than themodel considered
to describe the data. This is also the intuition of the classical definition of outliers by Hawkins[82]: “An outlier is an
observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different
mechanism.” But inconsistency could alsomean that the presupposedmodel is not describing the data as well as was
assumedwhen selecting themodel. Both conclusions can bear rather significant repercussions on the interpretation of
the given observations.

Let us first consider themeaning of the first possibility implied by Hawkins’ definition. A quite plausible illustration
of themeaning of this definition can be found in Barnett’s [19] short discussion of the legal case of Hadlum vs. Hadlum,
held in 1949. Mr. Hadlum suspectedMrs. Hadlum of having committed adultery based on the evidence of the birth of a
child 349 days afterMr. Hadlum had left abroad for military service. Compared to an average human gestation period of
280 days, 349 days is an outlier arousing suspicions that it was generated by a different mechanism. However, the judges
decided that a gestation period of 349 days was, while very improbable, still scientifically possible.

While we do not know ifMr. andMrs. Hadlum lived happily ever after, what this example illustrates quite drastically
is the ambiguity of any decision concerning the outlierness of a data point. The probability of the data point being a
member of an unsuspicious distribution depends on certain assumptions on the generatingmechanism and it heavily
depends on the domain whether a very low probability is just a very low probability or strongly suggests a different
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F IGURE 1 The histogram (blue) of human gestation periods (based on 13,634 cases, as reported by Barnett[19])
with a fitted normal distribution (green), describing the hypothesis of the judges, and the alternative distribution (red)
according toMr. Hadlum’s conjecture, assuming not an unusual value of the normal distribution but just a different
distribution shifted by around 10weeks, i.e., a later start of the gestation period. This assumption of a totally different
“generatingmechanism” accommodates the alleged outlier perfectly.

generating mechanism since a deviation by a certain degree is impossible. Theremay serious consequences be involved
in such decisions. Accepting Mr. Hadlum’s conjecture would result in a high probability value for the birth of the
child with an average gestation period. The assignment of probabilities is only a first and presumptive step towards
deciding cases though. It should be noted that the high probability value according toMr. Hadlum’s conjecture involves
a fundamentally different interpretation of the data, as illustrated in Figure 1. The judges’ assumption was that a
gestation period with a very improbable duration may still be possible and the low probability of the event alone
(without further proof of adultery) does not justify a considerably different interpretation of the data including severe
legal consequences.

Nevertheless, assigning a probability value under certain assumptions is probably still the most viable way of
helping decide on the outlierness of a data point. The trouble is in sufficiently being aware of the “certain assumptions”
underlying any decision. One aspect relevant to this awareness is the specific domain of the data. As introduced above,
to decide that a data point is an outlier still leaves the domain expert with two general possibilities: (i) remove the
data point as a contaminant from a different generatingmechanism, or (ii) assume it is a genuinemember of the data
distribution anyway and conclude that the scientist’s assumptions concerning the distribution are flawed. This second
possibility relates to scientific progress according to Popper’s critical rationalism[162, 163] and, hence, is actually also a
very interesting possibility. Already Kruskal[113] stated such thoughts:

“An apparently wild (or otherwise anomalous) observation is a signal that says: ‘Here is something
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(a) Linear model and some outlier (b) More points and adapted (more complex) model

F IGURE 2 Is some data point an outlier or is themodel wrong?

fromwhichwemay learn a lesson, perhaps of a kind not anticipated beforehand, and perhapsmore
important than themain object of the study.’ Examples of such serendipity have been frequently
discussed— one of themost popular is Fleming’s recognition of the virtue of penicillium.”

Accordingly, it has been stated as a general recommendation by Beckman and Cook[24]: “outliers should be treated
generally as an indication that either themodel or the casesmay be in error, and they often provide useful diagnostic information.”
An early reference for rejection of outliers can be found in the work of Bernoulli.[25] Bernoulli’s comments suggest that
it was common practice to discard discordant observations in the 18th century. A practice, however, of which he does
not readily approve. Some illustrative remarks are, in Allens translation[26], as follows:

“[...] astronomers prefer to reject completely observations which they judge to be toowide of the
truth, while retaining the rest and, indeed, assigning to them the same reliability. This practicemakes
it more than clear that they are far from assigning to them the same validity to each of the observa-
tions they havemade, for they reject some in their entirety, while in the case of others they not only
retain them all but, moreover, treat them alike. I see noway of drawing a dividing line between those
that are to be utterly rejected and those that are to bewholly retained; it may even happen that the
rejected observation is the one that would have supplied the best correction to the others.”

Bernoulli’s subsequent reasoning is a treasure chest of arguments for supporting the discussion preeminently laid
out by Popper: whether or not discording observations should not rather help to correct the theory at stake instead of
being rejected. In the same spirit Bessel, a German astronomer, reasoned in a geodetic work published 1838[27] that it
was difficult (and seemed impractical in his ownwork) to define a criterionwhen to reject some observation. Instead,
all completed observations should contribute to the result equally weighted in order to avoid any arbitrariness of the
results.

A related consideration was presented by Faloutsos[60] to prove job security for dataminers. Faloutsos showed,
based on previouswork[61, 189], that it will never be known if a derivedmodel is ultimately valid. In an outlier detection
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scenario, we illustrate this phenomenon in Figure 2, where new points become known over time. Considering the first
bulk of points (Figure 2(a)), a linearmodel appears to bewell fitting the data, except, perhaps, one suspicious point. After
new data has become known, the deficiency of themodel is revealed, a more complex (polynomial) model is required
(Figure 2(b)). The previously suspicious point (i.e., an alleged outlier) has become the first hint to the requirement of a
better model.

3.2 | Consequences for the Application of Outlier DetectionMethods
If we let aside these problems for the time being, wewill assume to have an accurate (explicit or implicit) model for usual
data (inliers). Thenwewant to identify data objects not generated by the correspondingmechanism. There are however
still some issues to think about before we can sensibly talk about outlier detection.

First, there is some ambiguity in the use of terms. Collett and Lewis[42] discern between

• data objects appearing “in the eyes of the analyst” (i.e., according to subjective feeling) surprising or suspicious, and
• discordant data objects, i.e., an observation that is “on some objective statistical criterion inconsistent with the rest of the

sample”.

A slightly different flavor is in the distinction provided by Beckman and Cook[24] between

• a discordant observation, i.e., “any observation that appears surprising or discrepant to the investigator”;
• a contaminant, i.e., “any observation that is not a realization from the target distribution”;
• an outlier: “a collective to refer to either a contaminant or a discordant observation”.

In other words, we have different types of data objects occasionally termed “outliers” and it will be helpful to keep this
distinction inmind.

Let us, hence, designate, corresponding to Hawkins[82], those objects as “(true) outliers” that have been “generated
by a different mechanism” than the remainder ormajor part of the data or than thewhatsoever defined reference set.
Then there are different but possibly partly overlapping sets of objects:

• objects that appear to be outliers (independent of whether or not they actually are (true) outliers, i.e., ‘discordant
observations’ in the sense of Beckman and Cook[24]);

• objects that are actually (true) outliers (independent of whether or not they appear — according to some subjective
feeling, or according to some specific datamining algorithm, or according to some objective statistical criterion—
to be outliers, i.e., ‘contaminants’ in the sense of Beckman and Cook[24]).

As a typical application area, this principal problem of outlier detection can also be illustrated by the example of network
intrusion detection discussed by Patcha and Park.[150] Usually, intrusion detection systems are trained to detect
anomalous behavior. However, not every anomalous behavior is a malicious intrusive activity, and not every truly
intrusive activity comes along with anomalous behavior.

In more theoretical terms, we can figure this distinction as in Table 1 as the intersections of two partitions: true
inliers and true outliers as one partition, apparent inliers and apparent outliers as another partition. The recognition of
true outliers as apparent outliers relates to the set of true positives (TP), unrecognized true outliers are false negatives
(FN), true inliers that have not been recognized as outliers (apparent inliers) relate to the set of true negatives (TN), true
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TABLE 1 True inliers/outliers vs. apparent inliers/outliers.

apparent outliers apparent inliers
true outliers true positives (TP) false negatives (FN)
true inliers false positives (FP) true negatives (TN)

False Negatives

False Positives

Threshold

F IGURE 3 A simple outlier detection scenario: there is a maximum level of true positives any outlier detection can
possibly reach, dependent on the overlap of inlier- (here the blue uniform distribution) and outlier-distributions (here
the red Gaussian distribution).

inliers that have been tagged as apparent outliers are false positives (FP).
A relatively simple outlier detection scenario (cf. Figure 3) assumes a Gaussian process generating the normal

data (inliers) and a smaller but broader uniform distribution generating outliers (we could describe this distribution as
backgroundnoise). It can be expected that a certain amount of outlierswill be coveredby the inlier distribution (resulting
in false negatives) while there may be points in the tails of the Gaussian (i.e., true inliers) that are only recognizable
as outliers (resulting in false positives), depending on the choice of a rejection threshold (the “dividing line” critically
discussed by Bernoulli). If we insist, despite Bernoulli, in drawing a dividing line, a natural choice of this threshold could
be the left and the right intersection point of both density functions. Moving the threshold will either decrease the
number of false positives on the expense of increasing the number of false negatives or vice versa. Hence there is, in
general, a maximum level of true positives any outlier detection can sensibly reach, depending on the overlap of inlier-
and outlier-distributions. We can, however, assume that the confidence in rejecting observations as outliers (that is,
ideally, the probability of truly being an outlier) increases with the distance from themean of the Gaussian.

Thus, in the example of network intrusion detection, if the system reports anomalous behavior, the interpretation
and the final decision whether or not this is a network intrusion is still in the responsibility of the security administrator.
In general terms: the designation of any object by any outlier detection model as an outlier (perhaps with a certain
outlier score) always needs to be interpreted in the specific context of an application.

There are some important conclusions from these observations for research on outlier detectionmethods. First, it
will always be difficult to find reliably all outliers and to receive outlier signals only for outliers. Second, even if there is a
high score or some other strong signal for a data object being an outlier, it is up to the domain scientist to decide on the
actual outlierness. Third, having decided that an outlier is present, the question remains what tomake out of it: reject it
or accommodate it? What kind of error is responsible for the outlier? What costs are incurred with rejecting an inlier as
an outlier or with retaining an outlier as an inlier? In general, finally, we can conclude that there is no indisputable way of
evaluating outlier detectionmethods. And this is probably themost important observation for datamining researchers
when they attempt to evaluate a new outlier detection algorithm in comparison to existing approaches. There are, of
course, some disputable ways of evaluating outlier detectionmethods.[57, 135, 200] A thorough discussion of problems
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involved in such evaluations has been provided by Campos et al.[34]

4 | CATEGORIES OF OUTLIER DETECTION METHODS
Letting aside a categorization of methods by algorithmic techniques (as provided in most other surveys), from a system-
atic point of view approaches can be roughly classified along the following different axes.

4.1 | Global vs. Local Outliers
The distinction between global and local outliers (and correspondingly, between global and local outlier detection
methods, introduced by Breunig et al.[29]) refers to the scope of a database being considered when amethod decides
on the “outlierness” of a given object. While somemethods take always the complete database into account, others
consider only a local selection of database objects, e.g., the k nearest neighbors of a point. Schubert et al.[187] discussed
the aspect of locality in outlier detection in depth.

Chandola et al.[37] discern certain types of outliers as guiding categories, namely point anomalies, contextual
anomalies, and collective anomalies. While the former exhibit outlier characteristics individually, for the latter two, outlier
characteristics depend on the context, e.g., the spatial or temporal neighborhood, or on the collective appearance
of objects with corresponding characteristics, i.e., a single object is unsuspicious while a collection of similar objects
becomes spurious.

This distinction can also be seen as an instantiation of the ‘degree of locality’-categorization by Schubert et al.[187]
Independently, Schubert et al.[187] and Filzmoser et al.[66] extend the classic notion of the ‘locality’ (the spatial
relation between the observations) to other contexts such as temporal or spatial-temporal relations. This way, different
instantiations of ‘locality’ can also cover ‘contextual anomalies’ or ‘collective anomalies’ defining ‘context sets’ and
‘reference sets’[187] accordingly.

4.2 | Labeling vs. ScoringMethods
At a different axis, one can distinguish labeling versus scoring outlier detection methods. The former are leading to
a binary decision of whether or not a given object is an outlier whereas the latter are rather assigning a degree of
“outlierness” to each object characterizing “how much” this object is an outlier. Often the binary decision (deriving
a label) is implicitly or explicitly also based on scores or probability estimates and constitutes an attempt to “draw a
dividing line” (Bernoulli[25]). The statistical equivalent is a test, resulting in a decision onwhether or not to reject the
hypothesis that some observation is an outlier.

4.3 | Supervised vs. UnsupervisedMethods
Another classification of outlier approaches discerns between supervised and unsupervised approaches. A supervised
approach is based on a set of observations where the status of being an outlier or not is known and the differences
between those different types of observations are learned. Supervised approaches can be considered as very imbal-
anced classification problems (since the class of outliers has inherently relatively fewmembers only). Semi-supervised
approaches have attracted interest especially in outlier detection. The scenario here is that usual (normal) data are
available in abundance while unusual (outlying) data are rare. What is more, in many application scenarios, like network
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intrusion detection, fraud detection, or fault detection in sensitive machines like airplanes, a realistic method should be
able to detect new, unexpected, and unforeseen behavior, i.e., data it could never have been trained to recognize as a
specific class while anymethod could have been trained to recognize the normal data or behavior. This typification of
outlier detection approaches is nicely discussed by Hodge and Austin.[87] Since both, semi-supervised[217, 50, 49]
and supervised[159, 224, 195, 1, 85, 86] approaches, learn to discern the class of inliers vs. the class of outliers, these
methods often are also labelingmethods, while unsupervised approaches aremore often scoringmethods. Labeling
methods, however, could assign a confidence estimate to their decision, and scoringmethods could provide a thresh-
old which score is to be considered (heuristically) good enough to decide that the corresponding object is an outlier.
Labelingmethods classify data into two classes, outliers vs. inliers. Yet they can fall in either category unsupervised,
semi-supervised, or supervised.

Note that unsupervisedmethods can be applied in supervised scenarios, although the application requires careful
implementation following some principles to avoid certain pitfalls, as dicussed by Swersky et al.[200]

4.4 | Parametric vs. Non-parametricMethods
Finally, we can discern parametric from non-parametric approaches. Parametric methods assume a particular family of
distributions (e.g., Gaussian distributions) to describe the (normal) data and fit the presupposedmodel to the data by
learning the parameters of themodel (e.g., for a Gaussian distribution: mean and standard deviation). Non-parametric
approaches to outlier detection do not fit a presupposedmodel and do not assume a particular family of distributions.
It should be noted, though, that non-parametric methods are not necessarily (and typically are not) parameter-free.
Most non-parametric methods require the user to provide parameters. They are called non-parametric since they do
not learn the parameters of some specific distribution (i.e., they do not fit a particular distributional model). However,
non-parametric methods typically still have some implicit assumptions that might or might not be suitable to the data at
hand.

4.5 | Discussion
These categories (global vs. local, labeling vs. scoring, supervised vs. unsupervised vs. semi-supervised, parametric
vs. non-parametric) are categories regarding the general behavior or high-level properties. Often, basic techniques
(statistical tests, distance-based, density-based approaches and so on) are used for categorization of approaches. This is
again an orthogonal category, andmost techniques can be used to definemethods falling in any of the previously given
high-level categories. In the following, we survey outlier detection approaches according to the fundamental techniques
used and the scientific background, discussing methods from the area of statistics (Section 5) and from the area of
database and datamining research (Section 6), but putting these into relation to the high-level categories. Overall, we
focus on unsupervised approaches, i.e., the normal behavior is not known in advance but is considered to be represented
by themajor part of a database. Possibly there exist several different normal patterns and abnormality is attributed to
objects not belonging to anymajor group or pattern. Neither is a spuriousmechanism known producing outliers.

5 | STATISTICAL APPROACHES
In general, statistical research has been providing twomajor methodological approaches for dealing with the possible
presence of outliers in data. First, the outliers should be identified for further study. The identification can lead to (i)
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rejection (removal) of spurious data; (ii) recognition of important new information or even (iii) revision of themodel
describing the data by incorporating allegedly outlying elements; (iv) refinement of the experimental setup. Second,
modeling of the data is designed in amore robust way to deal with the possible presence of outliers without actually
being interested in the identification of specific outliers. The latter is an important aspect also for many datamining
approaches (robustness), the former is more directly themotivation of datamining research on outlier detection and,
hence, shall be in focus here. Both high-level approaches are however not always completely distinct since amethod of
robustification or of accommodation of outliers may provide amethod of identification of outliers as a by-product, or
vice versa.

The fundamental problem stated by Bernoulli as “I see no way of drawing a dividing line between those [observations]
that are to be utterly rejected and those that are to be wholly retained”[25, 26] has been themotivation for researchers in
statistics over decades, beginning with the first attempt to formalize a test by Peirce.[155]

5.1 | The StatisticalModel
In general, statistical methods to outlier detection (identification, rejection) are based on presumed distributions of
objects. The classical textbook of Barnett and Lewis[20] discusses numerous tests for different distributions. The tests
are optimized for each distribution dependent on the specific parameters of the corresponding distribution, the number
of expected outliers, and the space where to expect an outlier. A commonly used rule of thumb, known as the “3 · σ-rule”,
suggests that points deviatingmore than three times the standard deviation from themean of a normal distribution
may be considered outliers.[99]

Amajor problem of these classical approaches is obviously the required assumption of a specific distribution in
order to apply a specific test. There are tests for univariate as well as multivariate data distributions but all tests
assume a single, known data distribution to determine an outlier. A classical, simple approach is to fit a Gaussian
distribution to a data set, or, equivalently, to use theMahalanobis distance, also known as quadratic formdistance, based
on the covariancematrix Σ as ameasure of outlierness. Alternatively, the assumption of a mixturemodel consisting of
one Gaussian distribution (of non-outliers) and one uniform distribution (of outliers) facilitates a simple expectation-
maximization-procedure (as an example see thework of Eskin[58]). Sometimes, the data are assumed to consist of k
Gaussian distributions and themeans and standard deviations are computed data driven. A straightforward solution is
to apply e.g. the EM-clustering algorithm[127] to derivemodels for k clustersCi (i = 1, . . . , k ) and assign to each data
object x the value 1 −maxk

i=1 Pr(x |Ci ) as outlier score.
However, mean, standard deviation, or covariance are rather sensitive to outliers and the potential outliers are still

considered for the computation step.
Possible effects of including outliers in parameter estimation are known asmasking and swamping: Outliersmask

their own presence by influencing the values of parameters as mean or covariance (resulting in false negatives), or
swamp regular points to appear as outlying due to the influenced parameters (resulting in false positives). Figure 4 offers
a visual explanation.

5.2 | Robust Parameter Estimation
There are proposals of more robust estimations of themean and the standard deviation in order to tackle the problem
of outlier influencing the model estimation. Some of these still aim at identification (rejection) of outliers, others
are more interested in robustification of methods or accommodation of outliers. Early examples were published in
the late seventies and early eighties,[134, 31, 32] yet research on this topic is still an issue in statistics.[170, 79] A
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F IGURE 4 A distributionmodel (green density contours) computed for the inliers (green points) reveals the outlier
(red point) as far of. If the outlier, however, was taken into account when fitting the distributionmodel to the data (red
density contours), the outlier itself might be well covered by themodel (it is masked), while some inlier might now
appear as being too far off (the lower right inlier is swamped).

recent discussion of different techniques was presented by Rousseeuw andHubert.[171] Robust methods generally are
designed to be less influenced by potential outliers, e.g. by assigning different weights to different objects, emphasizing
near-by or central objects with a higher weight and limiting the influence of far-away or peripheral objects with smaller
weights. Problems remain there, too, as the robustification requires a clue on the closeness of points before the
distancemeasure (based e.g. on aMahalanobis distance) is available. Related discussions consider robustification of
PCA.[52, 106]

For multivariate outlier detection it is usually assumed that the data majority is generated from a multivariate
normal distribution with a certain mean and covariance. Outliers are assumed to follow a different process, and thus
they are supposed to be generated from a distribution which usually is not even specified. The observed data are then
originating from amixture of both distributions. This model is also called the ε-contaminationmodel, and it goes back to
the pioneering work of Peter Huber on robust location estimation[88], which can be considered as the starting point for
a formal approach to the theory of robust statistics. Such amodel might appear to be very specific, in particular because
multivariate normality is assumed for the datamajority, and this is not common in the area of computer science. It might
even be limiting for the application domain, and formore complex data structures onewould need to generalize the
model. However, having an underlyingmodel is convenient for defining an outlier cutoff value, since this can be based on
themodel distribution, and consequently also for the evaluation, because outliers are observations that do not originate
from themodel distribution. The evaluation needs to be carried out differently if no underlyingmodel is assumed.

When using the ε-contamination model, multivariate outlier detection methods are typically employing Maha-
lanobis distances. Clearly, the ingredients forMahalanobis distances, themultivariatemean and covariance, need to
be estimated robustly in order to avoid that these estimates are affected by the outliers themselves. In one of the
first papers devoted to this problem, the authors proposed either theMVE (MinimumVolume Ellipsoid) or theMCD
(MinimumCovariance Determinant) estimator for robust location and covariance estimation.[174] Nowadays, various
alternatives for robust location and covariance estimation are available.[132] Several aspects can be considered for
the selection of appropriate estimators, such as the (theoretical) robustness properties (e.g., the breakdown point), the
statistical efficiency (usually referring to an assumedmultivariate normal distribution), the computational complexity,
and of course the availability of an algorithm for the computation.

Assumingmultivariate normality, the squaredMahalanobis distances are approximately chi-square distributedwith
p degrees of freedom, where p is the number of variables of themultivariate data. This approximation is also employed if
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robust estimators are used to computeMahalanobis distances[174], although alsomore thorough investigations on the
distribution of the robust distances have been carried out[80]. An outlying observation leads to an exceptionally high
value of the (squared)Mahalanobis distance, and together with the assumed distribution of the squared distances one
typically uses a quantile (e.g., q0.975) of this distribution as outlier cutoff. More clearly, an observation is considered as
multivariate outlier if its squared robustMahalanobis distance exceeds the value of the quantile 0.975of the distribution
χ2p .

One could argue that using a quantile of the distribution as an outlier cutoff will still declare a small fraction (0.025)
of observations as outliers, although they originate from themodel distribution, and not from the distribution referring
to the outliers. In other words, observations which are in the extremes of themodel distribution should be distinguished
from ‘real’ outliers (contaminants) which are generated by an entirely different mechanism. This idea is the basis
for an adaptive outlier cutoff, which looks for the supremum of the difference between the empirical distribution
function of the squaredMahalanobis distances and the theoretical chi-square distribution in the upper tails of these
distributions.[63] In addition, the cutoff can be adjusted by the actual sample size and dimension of the data.

5.3 | Statistical Testing
Another approach for multivariate outlier identification is based on statistical testing. The principle behind these
multivariate outlier tests is to use high-breakdown estimators with good performance under the null hypothesis, stating
that no outliers are present in the data. The common assumption is that the data are generated from amultivariate
normal distribution, and the test is typically based on robustly estimated (squared)Mahalanobis distances[23]. The
test proposed in the work of Cerioli[35] achieves high power because of an improved outlier cutoff value which better
approximates the distribution of the robust distances, and an improvement of the robust covariance estimator based on
re-weighting.

5.4 | High-Dimensional, Low-Sample Size Data
The previously mentioned outlier detection procedures are not applicable for data with more variables than obser-
vations, typically high-dimensional data. Thesemethods are typically based on theMCD estimator (similar for other
affine equi-variant estimators), which cannot be computed in this case due to singularity of the covariance matrix.
Therefore, and according to the need of robust estimators for high-dimensional low-sample size data in particular
in applications of bioinformatics, different proposals of such robust covariance estimators and algorithms for their
computation have been developed, such as the orthogonalized Gnanadesikan-Kettenring (OGK) estimator,[133] the
Stahel-Donoho estimator,[194, 55] an estimator based on spatial signs,[125] or an estimator employing the kurtosis
as a measure for outlyingness.[156] These estimators (at least those which are computationally feasible) have been
compared for outlier detection in simulation studies, and a new proposal of a fast algorithm for outlier detection in
high-dimensional data has beenmade.[65]

Another class of covariance estimators can be used for high-dimensional outlier detection, namely those based
on regularization. Since outlier detectionmethods based on theMahalanobis distance involve the inverse covariance
matrix, the so-called precisionmatrix, it is desirable to directly estimate this matrix. A popular non-robust estimator
is the graphical lasso (GLASSO).[69] Its robust estimation leads to a different concept of robustness, namely the
concept of cell-wise contamination[8] in contrast to row-wise contamination. The idea is that down-weighting complete
rows (observations) in high-dimensional data would lead to a severe loss of information, and thus down-weighting
only single outlying cells of an observation is preferable. This concept has been used for robust precision matrix
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estimation.[205, 146] In the context of cell-wise outlier identification, progress has beenmade recently concerning a
fast algorithm and diagnostic tools to investigate the outliers available.[173]

5.5 | Non-parametric StatisticalMethods
Typically, statistical approaches are parametric approaches, assuming a specific family of distributions to describe
the normal data and estimating the parameters of this distribution. For two- or three-dimensional data, depth-based
approaches are a non-parametric alternative. Depth-based approaches organize data objects in convex hull layers,
expecting outliers from data objects with shallow depth values only.[211, 175, 96] These approaches do not require
assumptions on specific data distributions except that they assume the normal data to follow a single distribution. They
are, however, infeasible for data spaces of high dimensionality (in this case, “high” means roughly more than three
dimensions) due to the inherent exponential complexity of computing convex hulls. On the other hand, the concept of
matrix depth[41] seems promising also in the high-dimensional case.

Another related butmore generally applicable approach is SVDD (Support VectorDataDescription),[206] enclosing
normal data by a hyperplane, possibly working in a transformed data space using a kernel-function. This is however an
example of semi-supervisedmethods, that require normal data without contamination by outliers in order to fit amodel.

In both variants, parametric and non-parametric, statistical approaches are usually global methods, that is, they
compare the outlierness of an outlier candidate against all other objects.

6 | DATABASE-ORIENTED OUTLIER MODELS
Database-oriented research joinedmachine learning and statistical learning to shape the area of datamining with the
particular focus on efficiency and scalability. The seminal outlier detectionmethods in the database areawere therefore,
thoughmotivated by the statistical modeling of outliers as deviating from the rest of the data, shifting the focus from a
model-driven thinking about outlierness to an algorithm-driven thinking about the efficient identification of outliers.
Here, however, we are not interested in the algorithmic aspect but in the subsisting outlier models, that were often
substantially simplified compared to the statistical origin.

6.1 | Deviation-basedOutliers
Deviation-based outlier detection groups objects, captures some characteristics of the group, and considers those
objects outliers that deviate considerably from the general characteristics of the groups. Foundations to this reasoning
have been laid out by Thompson,[207] problems associated with this reasoning have been expounded by Pearson and
Chandra Sekar.[152]

The basic approachwas suitable for rejecting one outlier, but not several outliers. Hence, themore recent deviation-
based approaches propose heuristics to select groups of outliers, mostly based on random groupings.[17, 180, 36, 84]
The forming of groups at random is admittedly rather arbitrary and so are the results depending on the selected groups.
Forming groups at random, however, avoids exponential complexity. The commonly pursued greedy approachesmore
or less also rely on the assumption that there is one single usual distribution fromwhich the outliers can be found as
deviating. This is related to the problemof identifying several outliers simultaneously. While statistical tests for rejection
of outliers formerly have been applied consecutively in order to reject several outliers, approaches for simultaneous
rejection have also been proposed. The seminal paper by Rosner[169] proposed an approach technically similar to those
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pursued later by deviation-based outlier detection.
Another point of view, essentially equivalent to deviation-based approaches, has been brought forward based on

information theory. The complexity of a data set, as measured by entropy or some relatedmeasure of information, is
assumed to be increased by outliers. Thus, for a data set D, theminimal subsetO ⊆ D is sought that maximally reduces
the data complexity ofD\O . Since there is not necessarily a unique optimum to this problem, different solutions pursue
different optimizationmethods and use different measures of complexity (such as Kolmogorov complexity, entropy,
relative uncertainty).[37, 192]

6.2 | Density-basedOutliers
Density-estimation[191, 188] is the major non-parametric counterpart to the statistical approach of fitting a model
of density distribution to some data set. Given a data sample, the underlying density distribution is estimated locally,
basically by counting howmany data objects are present in the sample in some local volume. Themost basic form of a
density estimate is a histogram, a technique that is useful in statistics for univariate data but becomes quickly infeasible
for an increasing number of variables (dimensions). For higher dimensional (multivariate) data, the basic variants are to
either check how large the volumeV is that is required to cover k nearest neighbors around some given estimation
point p or to fix a volumeV (typically by fixing the radius of a ball, in database terminology: by ε-range queries), centered
at p , and count how many points are present in this volume. In both cases, number of pointsV is an estimate of the local
density, where either the number of points is fixed (= k ) or the volumeV is fixed to allow comparison of different density
estimates. Further variants can assign different weights to neighbors depending on their distance to p (e.g., by choosing
different kernels for a kernel density estimation, KDE). Selecting values for k orV remains a challenge.

In the literature, often “distance-based” and “density-based” methods are distinguished. This can be seen as an
artifact due to the algorithmic design but the distinction is misleading whenwe consider themodels: outlier models
from both pseudo categories are based on density estimates.

One could argue that, while we canmeaningfully assess distances onmany kind of non-Euclidean data, it might not
be in all cases necessarily clear how to interpret density estimates derived from non-Euclidean data. However: firstly,
“density-based” methods have been successfully applied in non-Euclidean data [187], and secondly, the usemade from
the distance assessment in “distance-based” methods is effectively not different in any way from a density estimate, as
we detail below. We thus subsume both here under the category “density-based”.

The misconception is perhaps a consequence of the naming of the seminal method in the database literature.
Knorr andNg called their methodDB-outlier (“DB” for: distance-based).[99, 100, 102] Their method is motivated by
distribution-based approaches but uses a quite simplifiedmodel that can be understood as using local density-estimates,
centered around points. This model relies on the choice of two thresholds, ε and π . In a database D, an object x ∈ D
is an outlier if at least a fraction π of all data objects in D has a distance above ε from x . A meaningful value for the
minimum distance ε depends on the range of attribute values in the data space, on applied normalization procedures,
and on the dimensionality of the data. For the threshold π , a meaningful value depends on the size of the database and
assumptions on distributions of database objects.

Originally, the distance-based outlier model is a labeling approach, just deciding whether or not the threshold
is exceeded. Omitting the threshold π and reporting the fraction πx of data objects o ∈ D where distance(x , o) > ε
results in an outlier score for x in the range [0, 1]:

score(o) = | {x ∈ D : distance(x , o) > ε } ||D | . (1)
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Wecan interpret this as the curried formof the original DB-outliermethod.[187] The additional parameter π can then be
seen as fixing a decision threshold for the score. Scores that are larger than the threshold are qualifying the associated
object as outlier.

Instead of this fraction, we could equivalently use the number of points within the ε-range:

score(o) = | {x ∈ D : distance(x , o) ≤ ε)} |
Vε

. (2)

The resulting ranking would be inverted but otherwise equivalent. This way it becomes quite obvious that this consti-
tutes a density-estimate centered at o . The lower this estimated density, themore we consider o being an outlier. (And
we can drop the denominator if we are only interested in the ranking and not in the density-estimate as such, as the
volumeVε is always the same.)

The alternative formulation of a density-estimate would be to drop the parameter ε and to report the distance
required to include a certain amount of points. This is the essence of the notion of knn-outliers (k th nearest neighbor),
that have been introduced in the database literature by Ramaswamy et al.[166] For each object o , the distance to its k th
nearest neighbor (let us denote this distance as k-dist) is used as an outlier score and the objects are ranked according to
these scores, i.e., objects with a larger distance to their k -th nearest neighbor are more prominent outliers. As a variant,
formulated by Angiulli and Pizzuti[14], the sum of distances to all points within the set of k nearest neighbors (called the
‘weight’) is proposed as an outlier degree. In both cases, the inverse of the (average of) distances constitutes a proper
density-estimate, andwould deliver the same (though inverted) ranking:

score(o) = k

k-dist(o) (3)

or

score(o) = k
1
k

∑k
i=1 k-distk=i (o)

. (4)

Variants of this global comparison of variations in local density take reverse neighborhood into account.[81, 165]
Angle-based outlier detection (ABOD)[112] takes the distances as weight into account. The outlier degree for each
point is based on the angles to all other pairs of points. The variance of these angles, weighted by the involved distances,
is the outlier factor.

Thesemethods have in common that they use local density estimates but are not interested in the actual family
of the density-distribution. They are thus non-parametric approaches. Despite the locality of density estimates, they
share with the statistical approaches the property of being global in the sense that the outlierness of some given object
is evaluated in direct comparison to all other objects: all local density estimates are compared with each other on a
global scale.

This property was challenged as being not sufficiently adaptive tomore complex data that might comprise clusters
of different local density. This is the motivation for the so-called ‘local’ outlier detection methods, with the seminal
method LOF (Local Outlier Factor) by Breunig et al.[29] The LOF compares the density (as estimated by a value called
the local reachability density, lrd) of each object o of a database D with the density of the k nearest neighbors of o .

The density estimate lrd is defined as the inverse average reachability distance from the neighbors

lrd(p) := 1

/ ∑
o∈kNN(p) reach-distk (p,o)

| kNN(p)| , (5)
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where the (asymmetric) reachability distance is given by:

reach-distk (p, o) = max{k-dist(o), d (p, o)}. (6)

The effect of this definition of a local density estimate is a certain smoothing to reduce variability. The final LOF score
for some point p is the comparison of the locally relevant lrd values, i.e., the density estimate of the neighbors of p in
relation to the density estimate of p :

LOFk (p) = 1

| kNN(p) |
∑

o∈kNN(p)
lrdk (o)
lrdk (p) (7)

A LOF value of approximately 1 indicates that the corresponding object is located within a region of homogeneous
density (i.e., a cluster). The LOF score achieves its highest values when the local density estimate (lrd) of the test point
is small relative to the estimates of its nearest neighbors. Thus, the higher the LOF value of an object o is, the more
distinctly is o considered an outlier.

We can nowwith Schubert et al.[187] identify several ingredients or building blocks of outlier detectionmethods
based on density estimates: (i) the density estimationmethod or kernel (i.e., themethod to build a local model), (ii) the
assessment of the neighborhood or distance (the context or considered information for building a local model), and (iii)
the comparison of the local density estimate to other density estimates that can differ both in the comparisonmethod
(i.e., how to compare the local model to other models) and in the reference set used for the comparison.

Several extensions and refinements of the basic LOFmodel have been proposed in the literature. They can typ-
ically be put into relation to LOF by identifying in which of these ingredients they vary and how. For example the
connectivity-based outlier factor (COF)[204] and INFLO (InfluencedOutlierness)[95] are both changing the definition
of neighborhood to be taken into account for the density estimate and the comparison of local density estimates (i.e.,
they change both context and reference). In these both as well as in many other variants, the lrd is replaced by simpler
(or sometimesmore complex) variants of density estimation. Using just the k-dist as density estimate instead of lrd has
been defined as an explicit method ‘SimplifiedLOF’ by Schubert et al.[187], but has been used as such implicitly (and
probably unintentionally and unaware of the simplification of LOF) several times before in various papers. LDF (Local
Density Factor)[116] and KDEOS (Kernel Density EstimationOutlier Score)[186] replace the lrd explicitly by kernel
density estimation (KDE) in different formulations.

Papadimitriou et al.[149] propose another local outlier detection schema named Local Outlier Integral (LOCI) based
on the concept of a multi-granularity deviation factor (MDEF). The main difference between the LOF and the LOCI
outlier model is that theMDEF of LOCI uses ε-neighborhoods rather than k nearest neighbors. The authors propose an
approximative algorithm computing the LOCI values of each database object for any ε value. The results are displayed as
an outlier plot per object, i.e., they observe essentially for each object how its density estimates behave when changing
the kernel bandwidth.

Many variants of local outlier detection and their relationship to LOF as well as an adaptive interpretation of the
concept of locality have been discussed by Schubert et al.[187]

LOF and its variants can find local outliers, that exhibit a lower density than their neighbors (as opposed to the global
outliers, that need to be prominent when compared to all objects). While global outliers typically would also be local
outliers (and thus would also be ranked prominently by LOF), the reverse does not necessarily hold. By using density-
estimation techniques, these methods are not assuming particular families of distributions and are altogether non-
parametric approaches. They assume however that normal data follow somehow homogeneous density-distributions,
that could be grasped as clusters. Yet the clustering structure of the dataset is not modeled explicitly.
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6.3 | Cluster-basedOutliers
Cluster-based outlier detectionmethods define outliers based on an explicit clustering of a data set. Objects that are
not covered by the clusters (or by a sufficient number of clusters in case of applyingmultiple clustering procedures or
a clustering ensemble) are then deemed outliers. The density-basedmethods (Section 6.2) rely at most on an implicit
cluster-assumption: the fact that outliers are assumed where the local density is smaller than other local density
estimates couldmean that higher local densities are encountered where we have clusters in the data set. This remains
a relative notion of clustering though, while cluster-based outlier detection relies on some explicit clustering-step
and therefore binds the notion of outlierness to some specific clustering model. So could the clustering method
DBSCAN[59], that allows explicitly for noise objects that do not belong to any cluster, be used as an outlier detection
method. Regarding those noise objects as outliers would be equivalent to defining an absolute density threshold to
distinguish between inliers and outliers. Objects that exhibit a local density below that threshold are outliers. Thus in
this model, outliers are global, and we have a binary decision (label). Themethod GLOSH[33] relates potential outliers
to a hierarchy of density estimates, thus dropping the strict global threshold and retrieving a ranking of outliers that
exhibits both global and local properties and is adaptive to local variations in the density. As density-based clustering is
non-parametric, also the outlier model based on such clustering approaches is non-parametric.

If the clustering model is parametric, such as in using EM clustering for outlier detection [58] or an adapted version
of k -means (k -means--[39]), we get a stronger connection to statistical approaches (Section 5). Themethod k -means--
[39], for example, would roughly relate to a repeated, iterative, and somehow robustified estimate of standard normal
distributions.

Also themethod of Paulheim andMeusel[151] models the data explicitly andmeasures the deviation of each point
from its expected location (as predicted by some regression learning algorithm). They do not allow for different clusters,
though, but assume a single (i.e., global) normal pattern. Thus their method is suitable to identify global outliers.

Cluster-based outlier detection has been extended to the notion of outliers in subspaces, where subspace clustering
algorithms are applied several times. The identification of outliers is then based on ranking the points according to the
number of times they do not belong to any cluster in the different subspace-clustering results.[139, 138]

6.4 | Adaptations to Special Types of Data
As data mining often has to deal with data of particular characteristics, many specialized outlier detection methods
have been proposed.

• Fundamental challenges of high dimensional data for outlier detection have been discussed by Zimek et al.[228],
and variousmethods dedicated to outlier detection in high dimensional data have been proposed.[112, 108, 140,
141, 144, 51, 158, 97, 110, 46]

• Another large subtopic is outlier detection in spatial data, trajectory data, or some other notion of separating
context and indicator variables.[190, 126, 105, 199, 40, 193, 119, 124, 91, 118, 83, 121] The spatial neighborhood
can be interpreted as a special case of locality for local outlier detection. We refer to Schubert et al.[187] for further
discussion.

• Outlier detection in graph data[215, 179, 178, 157] includes, for example, community outliers.[70] A recent survey
on this area has been provided by Akoglu et al.[6] Also the context considered in a graph can be seen as a special
case of locality for local outlier detection.[187]

• Detecting outliers in time series has also foundmuch interest[67, 2, 210, 201, 90] and comeswith special challenges.
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Further discussion can be found in the survey by Chandola et al.[37]
• Generalizing from time series to sequences can again take very different flavors of outlierness.[21, 177] A dedicated

survey on outlier detection in sequence data has been provided by Chandola et al.[38]
• Also related and in a sense evenmore general is the problem of outlier detection in streaming data.[218, 219, 161,

10, 68, 18, 104] Sadik andGruenwald[176] give an overview on research issues in this challenging setting for outlier
detection.

• A further specific data structure are directional or circular data. Examples are wind directions of arrival times (on a
24-hour clock). Different models are used for circular data, such as the VonMises distribution, the wrapped normal
or wrapped Cauchy distribution, or the Cardioid distribution.[129] In order to identify outliers, weighted likelihood
estimation can be used, which is a modified form of maximum likelihood estimation, where each score is associated
a weight. The weight can be derived from aminimum distance estimator like the Power DivergenceMeasure.[45]
Details to this approach are provided by Agostinelli.[4]

Many other areas with special requirements could bementioned, such as categorical or ordinal data,[7, 148, 48,
220, 192, 203] binary data,[192] or uncertain data.[93, 122] Also mining events or trends can be seen as variant of
mining anomalies.[183, 184] The amount of literature is growing fast, and to cover such specialized areas would require
dedicated specialized surveys. However, just as different categories of clustering can be seen as being actually closely
related to each other and even to different data mining tasks such as frequent patternmining,[229] also these different
scenarios for outlier detection could be seen as variants or different flavors of the same fundamental problem. As
pointed out by Schubert et al.[187], instantiating the essential building blocks of a general algorithmic approach (e.g.,
by dedicated distancemeasures or by a specific notion of locality to grasp context and reference sets for the outlier
definitions) can relate well understood models, such as the LOF model, to very different problems such as spatial
outliers, outliers in video streams, or graph outliers—a point of view that can probably also be extended to time series,
to sequences, to streaming data, or to other special cases.

6.5 | Algorithmic Variants for Improving Efficiency
Aswe have seen (Section 6.2), the work of Knorr and Ng[99, 100] was originally motivated by statistical reasoning but
simplifies the approach to outlier detection considerably. Such simplifications aremotivated by the need for scalable
methods for large data sets. Their simplification and efficient algorithmic design, in turn, inspired many new outlier
detection methods within the database and data mining community over the last two decades. For most of these
approaches, however, the connection to a statistical reasoning is not obvious anymore.

Discussing such variants and efficiency techniques would take a survey in its own andwould deviate toomuch from
the focus we chose for this article. A selection of prominent general examples could be a long list of references[102,
166, 94, 14, 22, 103, 15, 154, 62, 84, 73, 9, 143, 216, 28, 51, 198] and yet would be a close to arbitrary selection from
the literature. Some discussion of efficiency issues in outlier detection can be found elsewhere, though. Zimek et
al.[228] describe some such approximation techniques (e.g., different kinds of projections) for the special challenges of
high-dimensional data. A helpful more general categorization of fundamental techniques for such approximations (in
database-terminology: filter-refinement-techniques) is given byOrair et al.[147]

Manyof these variants target the problemof delivering the top-n outliers,[166, 94, 22, 103, 15, 112, 73, 143, 9, 147]
where the user should specify in advance some number n of outliers to retrieve. The algorithms then use typically filter-
refinement approaches[114], looking for candidate outliers by some approximation of the outlierness characteristic
(e.g., using an approximate distance) and refining only those candidates that still have a chance to be placed among the
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top-n exact outliers in the final ranking of outlier scores.
A problem for the usability of these approaches could be that the user in many applications does not know in

advance howmany outliers should be retrieved. But even if there is some estimate (or upper bound) on the expected
number |O | of outliers in some application, the rankings are typically not good enough to report all |O | outliers in the
top |O | positions. So n should be chosen larger than |O |. Howmuch larger depends on the dataset, on the suitability of
the outlier model used for this dataset, and on the importance of finding all or at least most of the outliers. If finding
all outliers is important, it does not seem uncommon that n must be amultiple of |O | in the order of 10 · |O |.[34] (This
problem also has repercussions for the evaluation of outlier detection results, wewill therefore come back to this in
Section 7.)

Relating these approaches to the point we are taking in this survey, we could say that the community was focusing
on computing some property (‘outlier score’) ever more efficiently but lost a clear connection to a statistical notion
of this property. Database-oriented solutions model the original statistical meaning only approximately, and many
efficiency-tuned variants are based on approximations of such database-orientedmodels being in turn approximations
(often vague ones) of the original statistical meaning of outlierness. From this observation, we do not conclude that
such ‘approximations of approximations’ are meaningless. But it should be acknowledged that it is not necessarily of the
utmost importance to approximate approximations as good as possible. Rather, an approximate solution can help to
emphasize certain characteristics just as the copy of a copy would typically give a weaker impression of all the details of
the original picture butmight actually increase the contrast of themost striking patterns. If these are the important
characteristics for outlier detection, an approximation can be better than the ‘original’ (‘exact’) outlier score. This has
been discussed and exemplified by Kirner et al.[98]

In conclusion, rather than tuning for efficiency some algorithmic approaches to outlier detection while losing the
connection to a solid statistical notion of outlierness ever more, we suggest to take the original statistical notion of
outliers again and again as the target for approximate and efficiently tuned database-oriented methods for outlier
detection.

7 | EVALUATION OF OUTLIER DETECTION RESULTS
Most of the outlier detectionmethods thatwe discussed deliver as a result a complete ranking of the database according
to the method’s measure of outlierness or could be used that way. For example, if a method is based on a statistical
test, the significance level could be used as ameasure of outlierness to define a ranking. Methods that are based on a
classifier’s decision could often also deliver the classifier’s confidence or class probability estimate. Methods that focus
on the top-n outliers only would typically also deliver a complete ranking where however the ranking below rank n is
not reliable (as themeasure of outlierness has not necessarily been refined).

Rankings of outlier scores, in turn, can be translated into hard decisions only if we have thresholds available, which
outlier score is high enough to ‘really’ signify outlierness. This is rarely possible. Recall the discussion of themeaning
of outlierness in Section 3: outlier detectionmethods are supposed to report objects that are suspicious. Manymore
objects can be expected to look suspicious that eventually do not qualify as actually being outliers while some ‘real’
outliers might not look suspicious enough. For any realistic problem, we can therefore not expect to have all ‘real’
outliers and no actual inliers reported on the top positions of the ranking.

If we set these considerations aside for a moment, let us assume that a target number of outlier candidates n
is specified in advance. Then perhaps the seemingly most natural evaluation measure for the outlier ranking is the
precision at n (P@n), defined as the proportion of correct results in the top n ranks.[43] Let us assumewehave a database
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D, containing N objects, namely |O | outliers O ⊂ D and |I | inliers I ⊆ D (D = O ∪ I , O ∩ I = ∅). Then a formal
definition of P@n is given by:

P@n = | {o ∈ O | rank(o) ≤ n } |
n

, (8)

assuming that the outlier ranking is unique (otherwise, ties have to be broken arbitrarily but consistently).
Although seemingly a natural choice for an evaluationmeasure, P@n and relatedmeasures such as recall, accuracy,

and F1 are actually quite problematic if we take again into account the above considerations. On top of that it is rather
unclear how to fairly choose the parameter n—or some cut-off value to decide where in the ranking to distinguish
between outliers (ranked higher) and inliers (ranked lower).

Choosing n equal to the number of outliers in the ground truth, n = |O |, results in the R-Precisionmeasure.[44]
However, when the number of outliers n = |O | is very small relatively to N , typical values of P@n can be deceptively
low even for reasonably good rankings, and thus not very informative as such. This is often the case, since outliers are
supposed to be rare. In a typical scenario, we have |O | � |I |, |I | ≈ N , and no guarantee that |O | > 0. Let us assume, for
example, a dataset with 10 outliers and 1million inliers. An algorithm that assigns the true outliers to the (quite high)
ranks 11–20 will nevertheless have a P@10 of 0, but a P@20 of 0.5 (which is deceptively low despite the rather good
ranking). Note that, in such a case, 0.5 is already themaximum P@n for all n . Furthermore, we could not distinguish the
quality in terms of P@20 between this result, ranking all 10 outliers on ranks 11 to 20, and a perfect result, ranking all
outliers on ranks 1 to 10.

It is thereforemoremeaningful to usemeasures that average across different values of n . One possibility is to use
the average precision:[221]

AP = 1

|O |
∑
o∈O

P@rank(o). (9)

The values of P@n are averaged over the ranks of all outlier objects o ∈ |O |, thus one has not to choose a particular
value for n . Note that, this way, we can also distinguish the two scenarios (rank 1 to 10 vs. rank 11 to 20). However,
this measure does not seem to be used quite frequently, perhaps because it is hard to interpret in absolute terms as its
behavior still depends strongly on the number of outliers in a dataset.

For both, precision at n and average precision, Campos et al.[34] suggested adjustments for chance. An adjustment
for chance is helpful if a measure is to be interpreted in absolute terms. If the performance of methods is compared over
different datasets with different proportions of outliers, without such an adjustment the comparison can bemisleading.

However, themost popular andmeaningful evaluationmeasure in the literature on unsupervised outlier detection
is based on a curve known as the Receiver Operating Characteristic (ROC). This measure also avoids the choice of
n , as the curve is obtained by plotting, for all possible choices of n , the true positive rate (the proportion of outliers
correctly ranked among the top n) versus the false positive rate (the proportion of inliers ranked among the top n). If
the evaluated ranking was random, the curve can be expected to remain close to the diagonal. A perfect ranking (i.e.,
all outliers are ranked ahead of any inliers) produces a curve consisting of a vertical line at false positive rate 0 and a
horizontal line at the top of the plot (indicating a true positive rate of 1 for every false positive rate > 0). This measure
nicely addresses the problem that renders other measures problematic: the problem of imbalance between the amount
of outliers (positive class) and inliers (negative class) ( |I | � |O |).

Using the ROC,we interpret the outlier detection result as not reporting any inliers but only outliers, yet in a certain
order (i.e., we do not have true or false negatives, we are only encountering objects for the first column of Table 1). Each
step further down in the ranking contributes therefore either a true positive (an outlier, according to ground truth) or a
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false positive (an inlier, according to ground truth). The false positive rate is normalized by themaximal number of false
positives (i.e., the number of inliers), and the true positive rate is normalized by themaximal number of true positives
(i.e., the number of outliers).

For the comparison on a larger amount of datasets and parameter settings, the visual comparison of curves can be
avoided by summarizing each ROC curve by a single value, the area under the ROC curve (thus called ROCAUC). The
ROCAUC value ranges between 0 and 1. A perfect ranking of the database objects would result in a ROCAUC value of
1, whereas an inverted perfect ranking would result in a ROCAUC value of 0. A random ranking of the database objects
would result in a ROCAUC value close to 0.5.

The ROC AUC value can be interpreted as the average of the recall at n (i.e., the true positive rate over the n
top-ranked objects), where n is taken over the ranks of all inlier objects in |I |.

There is also a probabilistic interpretation:[78] If we choose a pair (o, i ) at random fromO × I , the ROCAUC value
of a ranking is the probability that o and i are ranked in the correct order (i.e., o appears in the ranking before i ).

Note that these evaluationmeasures require the availability of external ground truth (i.e., labels identifying outliers
vs. inliers). They are therefore useful only for the evaluation of outlier detectionmethods on benchmark data (such as
provided by Campos et al.[34]) or in supervised learning scenarios where also labeling approaches are used and could
be evaluated with techniques as in classification.

In a real application on unknown data without labeled examples, internal evaluationmeasures (i.e., measures that
rely only on the data and do not take external knowledge into account) would be useful. So far, however, only one
internal evaluation measure for outlier rankings is known, IREOS[135], that is restricted to the evaluation of top-n
results (i.e., we have to give the parameter n). IREOS assesses the separability or classification-hardness of the detected
outliers. This measure is computationally quite expensive, as it trains classifiers with varying parameters to separate
each outlier individually from the rest of the database.

8 | BACK TO THE FUTURE: OUTLIER SCORES AS PROBABILITY ESTIMATES
So far, we followed the path of ongoing research from the statistical roots to efficient database solutions and observed
the loss of connection between the two fields. Is there a way back to the roots that simultaneously is promising for
future development? Canmodern efficient databasemethods be reintegrated into statistically soundmodels?

By design most outlier detection models make explicit or implicit assumptions. Eventually, any outlier score
provided by an outlier model should help the user to decide on the actual outlierness. For most approaches, however,
the outlier score does not translate easily to an outlier probability. Indeed, the scores provided by varying methods
differ widely in their scale, their range, and their meaning. In some cases, high values of an outlier scoremean that the
corresponding database object is not at all an outlier. In other cases a higher value indicates more ‘outlierness’. In some
cases theminimum occurring outlier score is around 1, in other cases 1 is themaximum value. Formanymethods the
scaling of occurring values of the outlier score even differs within the samemethod from data set to data set, i.e., outlier
score x in one data set means, we have an outlier, in another data set x is not at all an extraordinary score. Obviously
this makes the comparison of different outlier detectionmodels easily leading astray both the data miner whowants to
evaluate the performance of a newly proposedmethod and the non-expert user whowants to knowwhichmethod is
best suited for a given application.

However, the ranges and scales of outlier scores are usually just side products of some formula used in the specific
approach to assign an outlier score and, hence, are not necessarily properties of themethod.

There have been some attempts to provide outlier scores with a clearer statistical meaning. LoOP[107] (an
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adaptation of LOF), SOS[92] (using reverse neighborhood relationships), and COP [110] (using subspace projections)
are examples formethods that aim to deliver not just outlier scores without a clear interpretation but to provide, as
scores, probability estimates (based on different model assumptions). An alternative is to relate the outlier score to the
number of standard deviations.[149, 151] Other approaches[71, 109, 181] aim at converting outlier scores (produced
by some outlier detection method) into outlier probabilities. Such meta-methods typically take some outlier score
distribution (the outlier scores provided by some previously applied outlier detectionmethod) as input and fit some
distributionmodel to the distribution of outlier scores.

Although this fistful of methods can only be seen as first steps in the direction of providing probabilistically
interpretable outlier scores and thus leading the efficient database solutions back to their statistical roots, the direction
is interesting and important, as it might be useful in various potential applications, that we sketch in the following.

8.1 | Score-based Evaluation
Probably themain reason why there has been little attention to the outlier scores as such is that they – so far – have not
been usedmuch. Common evaluationmeasures such as Precision at n and the area under the ROC curve (ROCAUC)
(see Section 7) do not evaluate the scores, but only the ranking of the objects. This also reflects a usage scenario for
outlier detection, where the systemwould rank the objects by outlierness and the operator then – as time permits –
inspects the top ranked anomalies manually.

However, there are clear requirements for such outlier scores from a statistical point of view, as formulated by
Hawkins[82]:

“A sample containing outliers would show up such characteristics as large gaps between ‘outlying’
and ‘inlying’ observations and the deviation between outliers and the group of inliers, as measured on
some suitably standardized scale.”

The question is therefore how to achieve “a suitably standardized scale” for measuring outlierness and how to quantify
“large gaps” in the context of efficient, database-oriented, multi-variate unsupervised outlier detectionmethods. Proce-
dures for normalization, standardization, or probabilistic interpretation of outlier scores[71, 109, 181] are tackling this
aspect. The related question of how to evaluate outlier scores rather than just outlier rankings has been brought forward
and discussed by Schubert et al.[185] Their solution is basically a similarity measure for score vectors that takes into
account the class imbalance between outliers and inliers. It has been used for the improvement of outlier ensembles
(see Section 8.2) rather than for themere evaluation. For (supervised) evaluation, such an approachwould be useful
if the ground truth would not only provide labels (outlier vs. inlier) but that would also ascribe how prominent some
outlier is or that would even annotate something like ‘true’ outlier probabilities. This is rarely the case in such purity.
However, themethod of Schubert et al.[185] could also find use in cost-based evaluation, e.g., to put more emphasis on
important outliers that might, however, be hard to detect—a scenario that remains to be studied.

8.2 | Ensembles for Outlier Detection
Ensemble learning, i.e., the combination of several learners or models to somemeta-learner, meta-predictor, or meta-
model, has a rich tradition and solid theory in the context of classification[54, 212, 30, 115, 168] and has also been
transfered to the area of unsupervised learning. Many studies discuss ensemble clustering.[196, 74, 145, 72, 89] For
outlier detection, moremethods than theory are available, although the idea has been already present almost half a
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century ago[53, 75], when Gnanadesikan and Kettenring[75] stated (p. 109):

“The complexity of themultivariate case suggests that it would be fruitless to search for a truly om-
nibus outlier protection procedure. Amore reasonable approach seems to be to tailor detection
procedures to protect against specific types of situations, e.g., correlation distortion, thus building
up an arsenal of techniques with different sensitivities. This approach recognizes that an outlier for
one purposemay not necessarily be one for another purpose! However, if several analyses are to
be performed on the same sample, the result of selective segregation or outliers should be amore
efficient and effective use of the available data.”

Primarily, this is an argument in favor of having various techniques instead of aiming to develop the one and only,
one-size-fits-all technique, and to value different techniques for their diversity, which will also mean that they will
perform differently well on different data.

The next step, however, would be to combine different techniques to an ensemble. In the datamining literature,
ensemble techniques for outlier detection have been explicitly studied formore than a decade by now.[117, 71, 142,
123, 109, 185, 227, 167, 98, 223] Only to a minor part, these studies were looking into combining actually different
techniques (algorithms) for outlier detection, to a major part they were studying other sources of diversity such
as different subspaces, subsamples, noise, approximations, parameters, or randomized procedures. Fundamental
challenges and patterns have been discussed in, position papers.[3, 226]

If outlier scores are combined, some form of normalization is essential.[109] However, some of these methods
use the outlier scores explicitly to improve the construction of ensembles.[185] This relates to combining not only the
prediction but also the confidence, as it has been recommended for ensemble classification.[208]

8.3 | Statistical Test on the Score Distribution
If the distribution of outlier scores is interpretable as an outlier probability distributionwe are back to the statistical
standard approach of applying a statistical test on the scores. This requires a good transformation of outlier scores to
outlier probabilities, though, and themethods discussed above can only be seen as first steps in this direction.

8.4 | Explanation of Outliers
Recently, there is a growing interest in methods for deriving explanations of outliers, that is, to give the users of some
outlier detectionmethod further aid in understanding and evaluating the result with respect to their domain.

Irrespective of whether it is being tackled as an add-on to some particular outlier detectionmethod, as a by-product
of someoutlier detectionmethod, or independently of anyoutlier detectionmethod, theproblemof explaining outliershas
been treated with similar solutions in the literature under different names. The problem has been named, e.g., “finding
intensional knowledge”[101], “detection of outlying subspaces”[222], “outlier explanation”[137, 151], “interpreting
outliers”[47, 46], “outlying aspect mining” (or “outlying aspect discovery”)[56, 213, 214], “outlying properties”[12, 11],
or “characterizations”[13].

Although the terms “explanation”, “interpretation”, “intensional knowledge” are more general, all approaches in the
literature so far deliver essentially subspaces as explanations—be it subsets of attributes (i.e., axis-parallel subspaces)
or combinations of attributes (i.e., arbitrarily-oriented subspaces), or error vectors (i.e., a weighted combination of
attributes, where the weights are part of the ‘explanation’), where again all attributes or just some attributes could
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contribute to the error vector. This direction of researchmight also benefit from a renewed statistical interpretability
of outlier scores and vice versa.

9 | SOFTWARE
Most outlier detectionmethodsmentioned in Section 5 are implemented in the statistical software environment R,[164]
freely available at https://cran.r-project.org/, for example in the add-on packages robustbase[128], rrcov[209],
or mvoutlier.[64]

More andmore authors provide individual implementations of their ownmethods (such as some of themethods
discussed in Sections 6-8). Some provide also implementations of competitors or test beds involving several methods.
Prominent languages are Python (esp. scikit-learn[153]) and Java. GLOSH [33], for example, is provided byMcInnes
et al.[136], as part of the HDBSCAN scikit-learn contribution. Some very popular algorithms are available in various
implementations and languages that come effectively with different efficiency, see, e.g., the overview and experimental
comparison of LOF implementations by Kriegel et al.[111]

The ELKI framework[182] (https://elki-project.github.io/) provides efficient[111] implementations for
many outlier detection methods from a database background, including ensemble methods and meta-methods for
the normalization of outlier scores. A list of algorithms implemented in ELKI is available at https://elki-project.
github.io/algorithms/.

10 | CONCLUSIONS
In this survey, we gave an overview on statistical methods and on dataminingmethods for outlier detection. Based on
reflections on themeaning of outlierness, we discussed their relationships and differences. We could summarize the
literature that statistical methods are typically model-driven while data mining methods are typically algorithm-driven,
focusing on efficiency. Model-drivenmethods are straightforward to evaluate using statistical tests but require the
assumedmodel to fit the data which restricts the applicability if the data are not yet well understood. Algorithm-driven
method development, oriented towards efficiency and applicability on large datasets and various data types, lost the
connection with the original statistical notion and a probabilistic interpretability of their models and results. They are
more flexible in their applicability. At the same time, however, this makes the evaluation of thesemethods challenging
which, in turn, puts the usefulness of their broad applicability in doubt.

That much about the “there”. Regarding the “...and back again” we reasoned on the interdisciplinary vision, and
pointed out some first steps taken in the literature, to gain a renewed statistical notion of efficient dataminingmeth-
ods for outlier detection. We outlined potential lines of development based on such a reunion and on the resulting
probabilistic interpretability of outlier detection results.
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