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Abstract—We study the use of symmetric cryptography in
the MTProto 2.0 protocol, Telegram’s equivalent of the TLS
record protocol. We give positive and negative results. On the
one hand, we formally and in detail model a slight variant
of Telegram’s “record protocol” and prove that it achieves
security in a suitable bidirectional secure channel model, albeit
under unstudied assumptions; this model itself advances the
state-of-the-art for secure channels. On the other hand, we first
motivate our modelling deviation from MTProto as deployed by
giving two attacks – one of practical, one of theoretical interest
– against MTProto without our modifications. We then also
give a third attack exploiting timing side channels, of varying
strength, in three official Telegram clients. On its own this
attack is thwarted by the secrecy of salt and id fields that are
established by Telegram’s key exchange protocol. We chain the
third attack with a fourth one against the implementation of the
key exchange protocol on Telegram’s servers. This fourth attack
breaks the authentication properties of Telegram’s key exchange,
allowing a MitM attack. More mundanely, it also recovers the
id field, reducing the cost of the plaintext recovery attack to
guessing the 64-bit salt field. In totality, our results provide
the first comprehensive study of MTProto’s use of symmetric
cryptography, as well as highlight weaknesses in its key exchange.

This is the full version of a work to appear at IEEE S&P 2022,
preparation date: 16 July 2021.
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I. Introduction
Telegram is a chat platform that, as of January 2021,

reportedly has 500M monthly users [1]. It provides a host
of multimedia and chat features, such as one-on-one chats,
public and private group chats for up to 200,000 users as well
as public channels with an unlimited number of subscribers.
Prior works establish the popularity of Telegram with higher-
risk users such as activists [2] and participants of protests [3].
In particular, it is reported in these works that these groups
of users shun Signal in favour of Telegram, partly due to
the absence of some key features, but mostly due to Signal’s
reliance on phone numbers as contact handles.

This heavy usage contrasts with the scant attention paid
to Telegram’s bespoke cryptographic design – MTProto – by
the cryptographic community. To date, only four works treat
Telegram. In [4] an attack against the IND-CCA security of
MTProto 1.0 was reported, in response to which the protocol
was updated. In [5] a replay attack based on improper validation
in the Android client was reported. Similarly, [6] reports input
validation bugs in Telegram’s Windows Phone client. Recently,
in [7] MTProto 2.0 (the current version) was proven secure
in a symbolic model, but assuming ideal building blocks and
abstracting away all implementation/primitive details. In short,
the security that Telegram offers is not well understood.

Telegram uses its MTProto “record layer” – offering protec-
tion based on symmetric cryptographic techniques – for two
different types of chats. By default, messages are encrypted
and authenticated between a client and a server, but not end-
to-end encrypted: such chats are referred to as cloud chats.
Here Telegram’s MTProto protocol plays the same role that
TLS plays in e.g. Facebook Messenger. In addition, Telegram
offers optional end-to-end encryption for one-on-one chats
which are referred to as secret chats (these are tunnelled over
cloud chats). So far, the focus in the cryptographic literature
has been on secret chats [4], [6] as opposed to cloud chats.
In contrast, in [3] it is established that the one-on-one chats
played only a minor role for the protest participants interviewed
in the study; significant activity was reportedly coordinated
using group chats secured by the MTProto protocol between
Telegram clients and the Telegram servers. For this reason,
we focus here on cloud chats. Given the similarities between
the cryptography used in secret and cloud chats, our positive
results can be modified to apply to the case of secret chats
(but we omit any detailed analysis).

A. Contributions
We provide an in-depth study of how Telegram uses

symmetric cryptography inside MTProto for cloud chats. We
give four distinctive contributions: our security model for secure
channels, the formal model of our variant of MTProto, our
attacks on the original protocol and our security proofs for the
formal model.

Security model: Starting from the observation that MTProto
entangles the keys of the two channel directions, we develop
in Section III a bidirectional security model for two-party secure

channels that allows an adversary full control over generating
and delivering ciphertexts from/to either party (client or server).
The model assumes that the two parties start with a shared key
and use stateful algorithms. Our security definitions come in
two flavours, one capturing confidentiality, the other integrity.
We also consider a combined security notion and its relationship
to the individual notions. Our formalisation is broad enough to
consider a variety of different styles of secure channels – for
example, allowing channels where messages can be delivered
out-of-order within some bounds, or where messages can be
dropped altogether (neither of which we consider appropriate
for secure messaging). This caters for situations where the
secure channel operates over an unreliable transport protocol
but where the channel is designed to recover from accidental
errors in how messages are delivered, as well as from certain
permitted adversarial behaviours.

This is done technically by introducing the concept of
support functions, inspired by the support predicates recently
introduced by [8] but extending them to cater for a wider range
of situations. Here the core idea is that a support function
operates on the transcript of messages and ciphertexts sent and
received (in both directions) and its output is used to decide
whether an adversarial behaviour – say, dropping or reordering
messages – counts as a “win” in the security games. It is also
used to define a suitable correctness notion with respect to
expected behaviours of the channel.

As a final feature, our secure channel definitions allow the
adversary complete control over all randomness used by the
two parties, since we can achieve security against such a strong
adversary in the stateful setting. This decision reflects a concern
about Telegram clients expressed by Telegram developers [9].
Formal model of MTProto: We then provide a formal
and detailed model for Telegram’s symmetric encryption in
Section IV. Our model is computational and does not abstract
away the building blocks used in Telegram. This in itself
is a non-trivial task as no formal specification exists and
behaviour can only be derived from official (but incomplete)
documentation and from observation, and different clients do
not implement the same behaviour.

Formally, we define an MTProto-based bidirectional channel
MTP-CH as a composition of multiple cryptographic primitives.
This allows us to then recover a variant of the real-world
MTProto protocol by instantiating these primitives with specific
constructions, and separately study whether each of them
satisfies the security notions that are required in order to
achieve the desired security of MTP-CH. This allows us to
work at two different levels of abstraction, and significantly
simplifies the analysis. However, we emphasise that our goal
is to be descriptive, not prescriptive, i.e. we do not suggest
alternative instantiations of MTP-CH.

To arrive at our model, we had to make several decisions
on what behaviour to model and where to draw the line of
abstraction. Notably, there are various behaviours exhibited by
(official) Telegram implementations that lead to attacks.

In particular, we verified in practice that current implementa-
tions allow an attacker on the network to reorder messages from
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a client to the server, with the transcript on the client being
updated to reflect the attacker-altered server’s view later. We
stress, though, that this trivial yet practical attack is not inherent
in MTProto and can be avoided by updating the processing of
message metadata in Telegram’s servers. The consequences of
such an attack can be quite severe, as we discuss further in
Appendix C.

Further, if a message is not acknowledged within a certain
time in MTProto, it is resent using the same metadata and with
fresh random padding. While this appears to be a useful feature
and a mitigation against message deletion, it would actually
enable an attack in our formal model if such retransmissions
were included. In particular, an adversary who also has control
over the randomness can break stateful IND-CPA security with
2 encryption queries, while an attacker without that control
could do so with about 264 encryption queries. We use these
more theoretical attacks to motivate our decision not to allow
re-encryption with fixed metadata in our formal model of
MTProto, i.e. we insist that the state is evolving.
Proof of security: We then prove in Section V that our slight
variant of MTProto can achieve channel confidentiality and
integrity in our model. While our proof does not carry over
to MTProto as currently deployed by Telegram (as explained
above), it shows that strong notions of channel security are
achievable with only minor alterations.

We use code-based game hopping proofs in which the
analysis is modularised into a sequence of small steps that can
be individually verified. As well as providing all details of the
proofs, we also give high-level intuitions. Significant complex-
ity arises in the proofs from two sources: the entanglement
of keys used in the two channel directions, and the detailed
nature of the model of MTProto that we use (so that our proof
rules out as many attacks as possible).

We eschew an asymptotic approach in favour of obtaining a
concrete security analysis. This results in security theorems that
tightly relate the confidentiality and integrity of MTProto as a
secure channel to the security of its underlying cryptographic
components. Our main security results, Theorems 1 and 2
and Corollaries 1 and 2, show that MTProto achieves security
of q/264 where q is the number of queries an attacker makes.
We discuss this further in Section V.

However, our security proofs rely on several assumptions
about cryptographic primitives that, while plausible, have not
been considered in the literature. In more detail, due to the
way Telegram makes use of SHA-256 as a MAC algorithm
and as a KDF, we have to rely on the novel assumption that
the SHA-256 compression function – based on SHACAL-2 –
is a leakage-resilient PRF under related-key attacks, where
“leakage-resilient” means that the adversary can choose a part
of the key. Our proofs rely on two distinct variants of such
an assumption. These assumptions hold in the ideal cipher
model, but further cryptanalysis is needed to validate them for
SHACAL-2. For similar reasons, we also require a dual-PRF
assumption of SHACAL-2. We stress that such assumptions are
likely necessary for our or any other computational security
proofs for MTProto. This is due to the specifics of how

MTProto uses SHA-256 and how it constructs keys and tags
from public inputs and overlapping key bits of a master secret.
Given the importance of Telegram, these assumptions provide
new, significant cryptanalysis targets as well as motivating
further research on related-key attacks. On the other hand, we
note that our proofs side-step concerns about length-extension
attacks by relying on the underlying payload format.

Attacks: We present further implementation attacks against
Telegram in Section VI and Appendix F. These attacks
highlight the limits of our formal modelling and the fragility
of MTProto implementations. The first of these, a timing
attack against Telegram’s use of IGE mode encryption, can
be avoided by careful implementation, but we found multiple
vulnerable clients.1 The attack takes inspiration from an attack
on SSH [12]. It exploits that Telegram encrypts a length field
and checks integrity of plaintexts rather than ciphertexts. If
this process is not implemented whilst taking care to avoid a
timing side channel, it can be turned into an attack recovering
up to 32 bits of plaintext. We give examples from the official
Desktop, Android and iOS Telegram clients, each exhibiting
a different timing side channel. However, we stress that the
conditions of this attack are difficult to meet in practice. In
particular, to recover bits from a plaintext message block mi

we assume knowledge of message block mi−1 (we consider this
a relatively mild assumption) and, critically, message block m1
which contains two 64-bit random values negotiated between
client and server. Thus, confidentiality hinges on the secrecy of
two random strings – a salt and an id. Notably, these fields were
not designated for this purpose in the Telegram documentation.

In order to enable our plaintext-recovery attack, i.e. to
recover m1, in Appendix F we chain it with another attack on
the implementation of Telegram’s server-side key exchange
protocol. This attack exploits how Telegram servers process
RSA ciphertexts. We note that while the exploited behaviour
was confirmed by the Telegram developers we did not verify it
with an experiment.2 It uses a combination of lattice reduction
and Bleichenbacher-like techniques [13]. This attack actually
breaks server authentication – allowing a MiTM attack –
assuming the attack can be completed before a session times
out. But, more germanely, it also allows us to recover the id
field. This reduces the overall security of Telegram, essentially,
to guessing the 64-bit salt field. Details can be found in
Appendix F. We stress, though, that even if all assumptions we
make in Appendix F are met, our exploit chain (Section VI,
Appendix F) – while being considerably cheaper than breaking
the underlying AES-256 encryption – is far from practical.
Yet, it demonstrates the fragility of MTProto, which could be
avoided – along with unstudied assumptions – by relying on
standard authenticated encryption or, indeed, just using TLS.

We conclude with a broader discussion of Telegram security
and with our recommendations in Section VII.

1We note that Telegram’s TDLib [10] library manages to avoid this leak [11].
2Verification would require sending a significant number of requests to the

Telegram servers from a geographically close host.

3



B. Disclosure
We notified Telegram’s developers about the vulnerabilities

that we found in MTProto on 16 April 2021. They acknow-
ledged receipt soon after and the behaviours we describe on
8 June 2021. They awarded a bug bounty for the timing side
channel and for the overall analysis. We were informed by
the Telegram developers that they do not do security or bugfix
releases except for immediate post-release crash fixes. The
development team also informed us that they did not wish to
issue security advisories at the time of patching nor commit
to release dates for specific fixes. As a consequence the fixes
were being rolled out as part of regular Telegram updates. The
Telegram developers informed us that as of version 7.8.1 for
Android, 7.8.3 for iOS and 2.8.8 for Telegram Desktop all
vulnerabilities reported here were addressed.

II. Preliminaries
A. Notational conventions
1) Basic notation: Let N = {1,2, . . .}. For i ∈ N let [i] be the
set {1, . . . , i}. We denote the empty string by ε, the empty set
by ∅, and the empty tuple by (). We let x1 ← x2 ← v denote
assigning the value v to both x1 and x2. Let x ∈ {0,1}∗ be any
string; then |x | denotes its bit-length, x[i] denotes its i-th bit for
0 ≤ i < |x |, and x[a : b] = x[a] . . . x[b−1] for 0 ≤ a < b ≤ |x |.
For any x ∈ {0,1}∗ and ` ∈ N such that |x | ≤ `, we write 〈x〉`
to denote the bit-string of length ` that is built by padding
x with leading zeros. For any two strings x, y ∈ {0,1}∗, x ‖ y
denotes their concatenation. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and
assigning it to x. If T is a table, T[i] denotes the element of the
table that is indexed by i. We use int64 as a shorthand for a 64-
bit integer data type. We use 0x to prefix a hexadecimal string
in big-endian order. All variables are represented in big-endian
unless specified otherwise. The symbol ⊥< {0,1}∗ denotes an
empty table position or an error code that indicates rejection,
such as invalid input to an algorithm. We may use subscripts
to indicate that ⊥0,⊥1, . . . denote distinct error codes.
2) Algorithms and adversaries: Algorithms may be random-
ised unless otherwise indicated. Running time is worst case.
If A is an algorithm, y ← A(x1, . . . ; r) denotes running A with
random coins r on inputs x1, . . . and assigning the output to
y. If any of inputs taken by A is ⊥, then all of its outputs are
⊥. We let y←$ A(x1, . . .) be the result of picking r at random
and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set
of all possible outputs of A when invoked with inputs x1, . . ..
The instruction abort(x1, . . . ) is used to immediately halt the
algorithm with output (x1, . . . ). Adversaries are algorithms. We
require that adversaries never pass ⊥ as input to their oracles.
3) Security games and reductions: We use the code-based
game-playing framework of [14]. (See Fig. 2 for an example.)
Pr [G ] denotes the probability that game G returns true.
Variables in each game are shared with its oracles. In the
security reductions, we omit specifying the running times of
the constructed adversaries when they are roughly the same as
the running time of the initial adversary. Let GD be any security

game defining a decision-based problem that requires an
adversary D to guess a challenge bit d; let d ′ denote the output
ofD, and let game GD return true iff d ′ = d. Depending on the
context, we interchangeably use the two equivalent advantage
definitions for such games: Adv(D) = 2 · Pr [GD ] − 1, and
Adv(D) = Pr [ d ′ = 1 | d = 1 ] − Pr [ d ′ = 1 | d = 0 ].

4) Implicit initialisation values: In algorithms and games,
uninitialised integers are assumed to be initialised to 0,
Booleans to false, strings to ε, sets to ∅, tuples to (), and
tables are initially empty.

B. Standard definitions

1) Collision-resistant functions: Let f : D f → R f be a
function. Consider game Gcr of Fig. 1, defined for f and
an adversary F . The advantage of F in breaking the CR-
security of f is defined as Advcrf (F ) = Pr

[
Gcr

f ,F

]
. To win the

game, adversary F has to find two distinct inputs x0, x1 ∈ D f

such that f (x0) = f (x1). Note that f is unkeyed, so there exists
a trivial adversary F with Advcrf (F ) = 1 whenever f is not
injective. We will use this notion in a constructive way, to build
a specific collision-resistance adversary F (for f = SHA-256
with a truncated output) in a security reduction.

Game Gcr
f ,F

(x0, x1) ←$ F ; Return (x0 , x1) ∧ ( f (x0) = f (x1))

Figure 1: Collision-resistance of function f .

2) Function families: A family of functions F specifies a
deterministic algorithm F.Ev, a key set F.Keys, an input set
F.In and an output length F.ol ∈ N. F.Ev takes a function
key fk ∈ F.Keys and an input x ∈ F.In to return an output
y ∈ {0,1}F.ol. We write y ← F.Ev(fk, x). The key length of F
is F.kl ∈ N if F.Keys = {0,1}F.kl.

3) Block ciphers: Let E be a function family. We say that
E is a block cipher if E.In = {0,1}E.ol, and if E specifies (in
addition to E.Ev) an inverse algorithm E.Inv : {0,1}E.ol → E.In
such that E.Inv(ek,E.Ev(ek, x)) = x for all ek ∈ E.Keys and all
x ∈ E.In. We refer to E.ol as the block length of E. Our pictures
and attacks use EK and E−1

K as a shorthand for E.Ev(ek, ·) and
E.Inv(ek, ·) respectively.

4) One-time pseudorandomness of function family: Con-
sider game Gotprf

F,D of Fig. 2, defined for a function family F and
an adversary D. The advantage of D in breaking the OTPRF-
security of F is defined as AdvotprfF (D) = 2 · Pr

[
Gotprf
F,D

]
− 1.

The game samples a uniformly random challenge bit b and
runs adversary D, providing it with access to oracle RoR. The
oracle takes x ∈ F.In as input, and the adversary is allowed
to query the oracle arbitrarily many times. Each time RoR is
queried on any x it samples a uniformly random key fk from
F.Keys and returns either F.Ev(fk, x) (if b = 1) or a uniformly
random element from {0,1}F.ol (if b = 0). D wins if it returns
a bit b′ that is equal to the challenge bit.
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Game GotprfF,D

b←$ {0,1} ; b′←$DRoR

Return b′ = b

RoR(x)
fk←$ F.Keys ; y1 ← F.Ev(fk, x)
y0←$ {0,1}F.ol ; Return yb

Figure 2: One-time pseudorandomness of function family F.

5) Symmetric encryption schemes: A symmetric encryption
scheme SE specifies algorithms SE.Enc and SE.Dec, where
SE.Dec is deterministic. Associated to SE is a key length
SE.kl ∈ N, a message space SE.MS ⊆ {0,1}∗ \ {ε}, and a
ciphertext length function SE.cl : N → N. The encryption
algorithm SE.Enc takes a key k ∈ {0,1}SE.kl and a message
m ∈ SE.MS to return a ciphertext c ∈ {0,1}SE.cl( |m |). We write
c←$ SE.Enc(k,m). The decryption algorithm SE.Dec takes
k, c to return message m ∈ SE.MS ∪ {⊥}, where ⊥ denotes
incorrect decryption. We write m← SE.Dec(k, c). Decryption
correctness requires that SE.Dec(k, c) = m for all k ∈ {0,1}SE.kl,
all m ∈ SE.MS, and all c ∈ [SE.Enc(k,m)]. We say that SE is
deterministic if SE.Enc is deterministic.
6) One-time indistinguishability of SE: Consider game
Gotind$ of Fig. 3, defined for a deterministic symmetric
encryption scheme SE and an adversary D. We define the
advantage of D in breaking the OTIND$-security of SE as
Advotind$

SE (D) = 2 · Pr
[
Gotind$
SE,D

]
− 1. The game proceeds as the

OTPRF game.

Game Gotind$
SE,D

b←$ {0,1} ; b′←$DRoR

Return b′ = b

RoR(m)

k←$ {0,1}SE.kl ; c1 ← SE.Enc(k,m)
c0←$ {0,1}SE.cl( |m |) ; Return cb

Figure 3: One-time real-or-random indistinguishability of
deterministic symmetric encryption scheme SE.

7) CBC block cipher mode of operation: Let E be a block
cipher. Define the Cipher Block Chaining (CBC) mode of
operation as a symmetric encryption scheme CBC[E] as shown
in Fig. 4, where key length is SE.kl = E.kl + E.ol, the message
space SE.MS =

⋃
t∈N{0,1}E.ol·t consists of messages whose

lengths are multiples of the block length, and the ciphertext
length function SE.cl is the identity function. Note that Fig. 4
gives a somewhat non-standard definition for CBC, as it
includes the IV (c0) as part of the key material. However,
in this work, we are only interested in one-time security of
SE, so keys and IVs are generated together and the IV is not
included as part of the ciphertext.
8) IGE block cipher mode of operation: Let E be a block
cipher. Define the Infinite Garble Extension (IGE) mode of
operation as IGE[E] as in Fig. 4, with parameters as in the
CBC mode except for key length SE.kl = E.kl + 2 · E.ol (since
IGE has two IV blocks which we again include as part of the
key). We depict IGE decryption in Fig. 5 as we rely on this
in Section VI. IGE was first defined in [15], which claims it
has infinite error propagation and thus can provide integrity.
This claim was disproved in an attack on Free-MAC [16],
which has the same specification as IGE. [16] shows that given

a plaintext-ciphertext pair it is possible to construct another
ciphertext that will correctly decrypt to a plaintext such that
only two of its blocks differ from the original plaintext, i.e. the
“errors” introduced in the ciphertext do not propagate forever.
IGE also appears as a special case of the Accumulated Block
Chaining (ABC) mode [17]. A chosen-plaintext attack on ABC
that relied on IV reuse between encryptions was described
in [18].

CBC[E].Enc(k,m)
K ← k[0 : E.kl]
c0 ← k[E.kl : SE.kl]
For i = 1, . . . , t do

ci ← E.Ev(K,mi ⊕ ci−1)
Return c1 ‖ . . . ‖ ct
CBC[E].Dec(k, c)
K ← k[0 : E.kl]
c0 ← k[E.kl : SE.kl]
For i = 1, . . . , t do

mi ← E.Inv(K, ci) ⊕ ci−1
Return m1 ‖ . . . ‖ mt

IGE[E].Enc(k,m)
K ← k[0 : E.kl]
c0 ← k[E.kl : E.kl + E.ol]
m0 ← k[E.kl + E.ol : SE.kl]
For i = 1, . . . , t do

ci ← E.Ev(K,mi ⊕ ci−1) ⊕ mi−1
Return c1 ‖ . . . ‖ ct
IGE[E].Dec(k, c)
K ← k[0 : E.kl]
c0 ← k[E.kl : E.kl + E.ol]
m0 ← k[E.kl + E.ol : SE.kl]
For i = 1, . . . , t do

mi ← E.Inv(K, ci ⊕ mi−1) ⊕ ci−1
Return m1 ‖ . . . ‖ mt

Figure 4: Constructions of deterministic symmetric encryption
schemes CBC[E] and IGE[E] from block cipher E. Consider t
as the number of blocks of m (or c), i.e. m = m1 ‖ . . . ‖ mt .

ct

E−1
K

mt

· · · · · ·

mt−1

ct−1

c2

E−1
K

m2

c1

E−1
K

m1

IVm

IVc

Figure 5: IGE mode decryption, where c0 = IVc and m0 =
IVm are the initial values so decryption can be expressed as
mi = E−1

K (ci ⊕ mi−1) ⊕ ci−1.

9) MD transform: Fig. 6 defines the Merkle-Damgård trans-
form as a function family MD[h] for a given compression
function h : {0,1}` × {0,1}`′ → {0,1}` , with MD.In =⋃

t∈N{0,1}`
′ ·t , MD.Keys = {0,1}` and MD.ol = `.3

10) SHA-1 and SHA-256: Let SHA-1 : {0,1}∗ → {0,1}160

and SHA-256 : {0,1}∗ → {0,1}256 be the hash func-
tions as defined in [19]. We will refer to their com-
pression functions as h160 : {0,1}160 × {0,1}512 →

3Traditionally, MD[h] is unkeyed, but it is convenient at points in our analysis
to think of it as being keyed. When creating a hash function like SHA-1 or
SHA-256 from MD[h], the key is fixed to a specific IV value.
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MD.Ev(k, x1 ‖ . . . ‖ xt )
H0 ← k
For i = 1, . . . , t do Hi ← h(Hi−1, xi)
Return Ht

SHA-pad(x) // |x | < 264

L ← (447 − |x |) mod 512
x′ ← x ‖ 1 ‖ 0L ‖ 〈|x |〉64
Return x′

Figure 6: Left pane: Construction of MD-transform MD =
MD[h] from compression function h. Right pane: SHA-pad
pads SHA-1 or SHA-256 input x to a length that is a multiple
of 512 bits.

{0,1}160 and h256 : {0,1}256 × {0,1}512 → {0,1}256, and
to their initial states as IV160 and IV256. We can write
SHA-1(x) = MD[h160].Ev(IV160,SHA-pad(x)) and SHA-256(x) =
MD[h256].Ev(IV256,SHA-pad(x)) where SHA-pad is defined in
Fig. 6.
11) SHACAL-1 and SHACAL-2: Let +̂ be an addition operator
over 32-bit words, meaning for any x, y ∈

⋃
t∈N{0,1}32·t

with |x | = |y | the instruction z ← x +̂ y splits x
and y into 32-bit words and independently adds together
words at the same positions, each modulo 232; it then
computes z by concatenating together the resulting 32-bit
words. Let SHACAL-1 [20] be the block cipher defined with
SHACAL-1.kl = 512, SHACAL-1.ol = 160 such that h160(k, x) =
k +̂ SHACAL-1.Ev(x, k). Similarly, let SHACAL-2 be the block
cipher defined with SHACAL-2.kl = 512, SHACAL-2.ol = 256
such that h256(k, x) = k +̂ SHACAL-2.Ev(x, k).

III. Bidirectional channels
A. Prior work

There is a significant body of prior work on modelling and
constructing secure channels. Relevant here are the early work
of [21] which introduced stateful security notions for symmetric
encryption and used them to analyse SSH; a follow-up [22]
which provided formal definitions for channels permitting
message replay, reordering and deletion; follow-up works in
this direction [23] and [8] (the latter introducing notions of
robustness via support predicates, which we extend); recent
work in the context of messaging protocols, e.g. [24], [25]; and
work treating the case of causality in bidirectional channels [26].
We draw on all of this work in this section to develop functional
and security definitions for bidirectional secure channels.

B. Definitions
A channel provides a method for two users to exchange

messages. We refer to the two users of a channel as the initiator
I and the receiver R. These will map to client and server in
the setting of MTProto. We use u as a variable to represent
an arbitrary user and u to represent the other user. We use stu
to represent the channel state of user u. We associate abstract
auxiliary information aux to each sent/received message. This
should not be thought of as additional data in an AEAD scheme
but rather a way to express e.g. time when message processing
may depend on it.

Definition 1. A channel CH specifies algorithms CH.Init,
CH.Send and CH.Recv, where CH.Recv is deterministic. Asso-
ciated to CH is a message space CH.MS and a randomness

(stI, stR ) ←$ CH.Init()
(stu, c) ← CH.Send(stu,m,aux; r)
(stu,m) ← CH.Recv(stu, c,aux ′)

Figure 7: Syntax of the constituent algorithms of channel CH.

space CH.SendRS of CH.Send. The initialisation algorithm
CH.Init returns I’s and R’s initial states stI and stR . The
sending algorithm CH.Send takes stu for some u ∈ {I,R}, a
plaintext m ∈ CH.MS, and auxiliary information aux to return
the updated state stu and a ciphertext c, where c =⊥ may be
used to indicates a failure to send. We may surface random
coins r ∈ CH.SendRS as an additional input to CH.Send. The
receiving algorithm takes stu, c, and auxiliary information aux ′

to return the updated state stu and a plaintext m ∈ CH.MS∪{⊥},
where ⊥ indicates a failure to recover a message. The syntax
used for the algorithms of CH is given in Fig. 7.

We use transcripts to represent a record of all messages sent
and received on the channel, indexed by an abstract label that
could be the ciphertext or a unique encoding of each message.4

Transcripts can include entries where the message m equals ⊥
to capture that a received ciphertext was rejected. This allows
us to model a range of channel behaviours in the event of an
error (from terminating after the first error to full recovery). A
label can also be equal to ⊥, e.g. to indicate that a message
could not be sent over a terminated channel.

Definition 2. A support transcript tru for user u ∈ {I,R} is
a list of entries of the form (op,m, label,aux), where op ∈
{sent, recv}. An entry with op = sent indicates that user u
attempted to send message m with auxiliary information aux,
encoded into label. An entry with op = recv indicates that user
u received label with auxiliary information aux, and decoded
it into message m.

We expand the definition of a support predicate from [8] to
a support function, so that instead of representing merely the
decision to accept/reject a given ciphertext, it either returns
the message corresponding to a given ciphertext (signifying
acceptance) or returns ⊥. This will simplify our security
definitions. To work in the bidirectional setting, the support
function takes transcripts of both users as input. Our transcripts
use abstract labels instead of ciphertexts, so we define a support
function to take a label as input. We also let the support function
take the auxiliary information as input so that timestamps can
be captured in our definitions.

Definition 3. A support function supp is a function with syntax
supp(u, tru, tru, label,aux) → m∗ where u ∈ {I,R}, and tru,
tru are support transcripts for users u and u. It indicates that,
according to the transcripts, user u is expected to decode
label,aux into message m∗.

In our games, a call to supp(u, tru, tru, label,aux) is used to
determine whether user u should accept an incoming message

4In the main channel security notions, this will be the ciphertext, but for
notions that only reason about the plaintext it will be a message encoding.
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Game GcorrCH,supp,F

win← false ; (stI, stR ) ←$ CH.Init()
F Send,Recv(stI, stR ) ; Return win

Send(u,m,aux,r)
(stu, c) ← CH.Send(stu,m,aux; r)
tru ← tru ‖ (sent,m, c,aux) ; Return c

Recv(u, c,aux)
m∗ ← supp(u, tru, tru, c,aux)
If m∗ = ⊥ then return ⊥
(stu,m) ← CH.Recv(stu, c,aux)
tru ← tru ‖ (recv,m, c,aux)
If m∗ , m then win← true
Return m

Game GintCH,supp,F
win← false ; (stI, stR ) ←$ CH.Init()
F Send,Recv ; Return win

Send(u,m,aux,r)
(stu, c) ← CH.Send(stu,m,aux; r)
tru ← tru ‖ (sent,m, c,aux) ; Return c

Recv(u, c,aux)
(stu,m) ← CH.Recv(stu, c,aux)
m∗ ← supp(u, tru, tru, c,aux)
tru ← tru ‖ (recv,m, c,aux)
If m , m∗ then win← true
Return m

Game GindCH,D
b←$ {0,1} ; (stI, stR ) ←$ CH.Init()
b′←$DCh,Recv ; Return b′ = b

Ch(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
(stu, c) ← CH.Send(stu,mb,aux; r)
Return c

Recv(u, c,aux)
(stu,m) ← CH.Recv(stu, c,aux)
Return ⊥

Figure 8: Correctness of channel CH; integrity of channel CH; indistinguishability of channel CH.

from u that is associated to label. We define two correctness
properties of a support function. First, supp always returns a
message that was honestly sent and delivered, i.e. it supports
in-order delivery as in [8].5 Second, supp always outputs ⊥
if the queried label does not appear in tru. Formal definitions
of both properties are in Fig. 35 and Fig. 36 in Appendix A.
We do not constrain the support function further so that a
range of channel behaviours such as strict in-order delivery
or out-of-order delivery within a given time window can be
captured.
C. Correctness and security of channels

For the following properties, consider the games in Fig. 8.
We allow the adversary to control the randomness used by
CH.Send since stateful encryption can achieve strong notions
of security even in this setting.
1) Correctness: Consider the adversary F in the Gcorr

CH,supp,F
game associated to a channel CH and a support function supp.
The advantage of F in breaking the correctness of CH with
respect to supp is defined as AdvcorrCH,supp(F ) = Pr

[
Gcorr
CH,supp,F

]
.

The game initialises users I and R. The adversary is given their
initial states and gets access to a sending oracle Send and to
a receiving oracle Recv. Calling Send(u,m,aux,r) encrypts
the message m with auxiliary data aux and randomness r from
user u to the other user u; the resulting tuple (sent,m, c,aux)
is added to the sender’s transcript tru. Recv can only be
called on honestly produced ciphertexts, meaning it exits
when supp returns m∗ ,⊥. Calling Recv(u, c,aux) thus
recovers the message m∗ from the support function, decrypts
the corresponding ciphertext c and adds (recv,m, c,aux) to the
receiver’s transcript tru; the game verifies that the recovered
message m is equal to the originally encrypted message m∗. If
the adversary can cause the channel to output a different m, the
adversary wins. This game captures the minimal requirement
one would expect from a communication channel: honestly
sent ciphertexts should decrypt to the correct message. It is
similar in spirit to the correctness game of [8].

5[8] defines this notion as part of the channel correctness game, but we
choose to surface it as a separate property since for instance non-robust
channels which output ⊥ once a number of errors occurs cannot meet it.

2) Integrity: Consider the adversary F in the Gint
CH,supp,F game

associated to a channel CH and a support function supp. The
advantage of F in breaking the integrity of CH with respect
to supp is defined as AdvintCH,supp(F ) = Pr

[
Gint
CH,supp,F

]
. The

adversary gets access to a Send and a Recv oracle (but not
to the users’ states). Both calls proceed as in the correctness
game except that Recv now does not limit F to only honestly
produced ciphertexts, to capture the intuition that the adversary
can manipulate ciphertexts on the network in an attempt to
create a forgery. For example, let CH be a channel that produces
unique ciphertexts. Take supp(u, tru, tru, c,aux) that returns
m∗ iff (sent,m∗, c,aux) ∈ tru, and returns ⊥ otherwise. Then
integrity of CH with respect supp implies the standard notions
of ciphertext integrity and plaintext integrity.
3) Privacy: Consider the adversary D in the Gind

CH,D game
associated to a channel CH. The advantage of D in breaking
the IND-CPA security of CH is defined as AdvindCH (D) = 2 ·
Pr

[
Gind
CH,D

]
− 1. The adversary can query the challenge oracle

Ch(u,m0,m1,aux,r) as an encryption oracle for user u with
two messages m0,m1 of the same size, auxiliary information
aux and randomness r , to obtain the ciphertext c that encrypts
mb . The adversary wins if it can guess the challenge bit b. The
game also contains a Recv oracle. This is needed to model
the feature that each user’s state stu may be updated every time
a ciphertext is processed, potentially influencing subsequent
encryption operations. However, the Recv oracle does not
return any information to D directly.
4) Authenticated encryption: Following the all-in-one defin-
itional style of [27], Appendix B defines a single authenticated
encryption game to capture both integrity and privacy, and
shows equivalence with the combination of Gind and Gint

games.

D. Message encoding
To help with separation of functions within the channel, we

define a primitive for message encoding such that CH.Send
and CH.Recv could call it as a subroutine.

Definition 4. A message encoding scheme ME specifies
algorithms ME.Init, ME.Encode and ME.Decode, where
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(stI, stR ) ←$ ME.Init()
(stu, p) ← ME.Encode(stu,m,aux; ν)
(stu,m) ← ME.Decode(stu, p,aux ′)

Figure 9: Syntax of message encoding scheme ME.

ME.Decode is deterministic. Associated to ME is a message
set ME.MS ⊆ {0,1}∗, a payload set ME.Out, a randomness
space ME.EncRS of ME.Encode, a payload length function
ME.pl : (N∪ {0}) ×ME.EncRS→ N, and the maximum number
of messages ME.T ∈ N the scheme can encode. The initialisation
algorithm ME.Init returns I’s and R’s initial states stI and stR .
The encoding algorithm ME.Encode takes stu for u ∈ {I,R}, a
message m ∈ ME.MS, and auxiliary information aux to return
the updated state stu and a payload p ∈ ME.Out. We may
surface random coins ν ∈ ME.EncRS as an additional input
to ME.Encode; then a message m should be encoded into a
payload of length |p| = ME.pl(|m| , ν). The decoding algorithm
ME.Decode takes stu, p, and auxiliary information aux ′ to
return the updated state stu and a message m ∈ ME.MS∪ {⊥}.
The syntax used for the algorithms of ME is given in Fig. 9.

This primitive allows us to reason more modularly about
security properties of the channel using an encoding integrity
notion defined in Fig. 10. The advantage of F in breaking
the EINT-security of ME with respect to supp is defined
as AdveintME,supp(F ) = Pr[Geint

ME,supp,F]. Both ME and supp are
concerned with whether or not a given payload (i.e. message
encoding) should be accepted, and satisfying this notion ensures
that the behaviour of ME matches the constraints specified
by supp. Since the notion only concerns honestly generated
messages, the support function can use plaintext payloads as
labels instead of ciphertexts.

Game GeintME,supp,F

win← false ; (stME,I, stME,R ) ←$ ME.Init()
F Send,Recv(stME,I, stME,R ) ; Return win

Send(u,m,aux,r)
(stME,u, p) ← ME.Encode(stME,u,m,aux; r)
tru ← tru ‖ (sent,m, p,aux) ; Return p

Recv(u, p,aux)

If �m′,aux ′ : (sent,m′, p,aux ′) ∈ tru then return ⊥
(stME,u,m) ← ME.Decode(stME,u, p,aux)
m∗ ← supp(u, tru, tru, p,aux) ; If m , m∗ then win← true
tru ← tru ‖ (recv,m, p,aux) ; Return m

Figure 10: Integrity of message encoding scheme ME with
respect to support function supp.

IV. Modelling MTProto 2.0
In this section, we describe our modelling of the MTProto

2.0 record protocol as a bidirectional channel. First, in Sec-
tion IV-A we give an informal description of MTProto based on
Telegram documentation and client implementations. Next, in
Section IV-B we outline attacks that motivate protocol changes

required to achieve security. We list further modelling issues
and points where we depart from Telegram documentation in
Section IV-C. We conclude with Section IV-D where we give
our formal model for a fixed version of the protocol.

A. Telegram description
We studied MTProto 2.0 as described in the online docu-

mentation [28] and as implemented in the official desktop6 and
Android clients.7 We focus on cloud chats, i.e. chats that are
only encrypted at the transport layer between the clients and
Telegram servers. The end-to-end encrypted secret chats are
implemented on top of this transport layer and only available
for one-on-one chats. Figures 11 and 12 give a visual summary
of the following description.
Key exchange: A Telegram client must first establish a
symmetric 2048-bit auth_key with the server via a version of
the Diffie-Hellman key exchange. We defer the details of the
key exchange to Appendix F. In practice, this key exchange
first results in a permanent auth_key for each of the Telegram
data centres the client connects to. Thereafter, the client runs
a new key exchange on a daily basis to establish a temporary
auth_key that is used instead of the permanent one.
“Record protocol”: Messages are protected as follows.
1) API calls are expressed as functions in the TL schema [29].
2) The API requests and responses are serialised according to
the type language (TL) [30] and embedded in the msg_data
field of a payload p, shown in Table I. The first two 128-bit
blocks of p have a fixed structure and contain various metadata.
The maximum length of msg_data is 224 bytes.
3) The payload is encrypted using AES-256-IGE. The
AES-256-IGE ciphertext c is a part of an MTProto ciphertext
auth_key_id ‖msg_key ‖ c, where (recalling that z[a : b]
denotes bits a to b − 1, inclusive, of string z):

auth_key_id := SHA-1 (auth_key) [96 : 160]
msg_key := SHA-256 (auth_key[704 + x : 960 + x] ‖ p) [64 : 192]

c := AES-256-IGE (key, iv, p)

Here, the first two fields form an external header. The
AES-256-IGE keys and IVs are computed via:

A := SHA-256 (msg_key ‖ auth_key[x : 288 + x])

B := SHA-256 (auth_key[320 + x : 608 + x] ‖msg_key)
key := A[0 : 64] ‖ B[64 : 192] ‖ A[192 : 256]
iv := B[0 : 64] ‖ A[64 : 192] ‖ B[192 : 256]

In the above steps, x = 0 for messages from the client and
x = 64 from the server. Telegram clients use the BoringSSL
implementation [31] of IGE, which has 2-block IVs.
4) MTProto ciphertexts are encapsulated in a “transport
protocol”. The MTProto documentation defines multiple such
protocols [32], but the default appears to be the abridged format
that begins the stream with a fixed value of 0xefefefef and
then wraps each MTProto ciphertext cMTP in a transport packet
as:
• length ‖ cMTP where 1-byte length contains the cMTP length
divided by 4, if the resulting packet length is < 127, or

6https://github.com/telegramdesktop/tdesktop/, versions 2.3.2 to 2.7.1
7https://github.com/DrKLO/Telegram/, versions 6.1.1 to 7.6.0
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Table I: MTProto payload format.

field type description

server_salt int64 Server-generated random num-
ber valid in a given time period.

session_id int64 Client-generated random identi-
fier of a session under the same
auth_key.

msg_id int64 Time-dependent identifier of a
message within a session.

msg_seq_no int32 Message sequence number.
msg_length int32 Length of msg_data in bytes.

msg_data bytes Actual body of the message.
padding bytes 12-1024B of random padding.

• 0x7f ‖ length ‖ cMTP where length is encoded in 3 bytes.
5) All the resulting packets are obfuscated by default using
AES-128-CTR encryption. The key and IV are transmitted at
the beginning of the stream, so the obfuscation provides no
cryptographic protection and we ignore it henceforth.8

6) Communication is over TCP (port 443) or HTTP. Clients
attempt to choose the best available connection. There is support
for TLS in the client code, but it does not seem to be used.

In combination, these operations mean that MTProto 2.0
at its core uses a “stateful Encrypt & MAC” construction, in
which the MAC tag msg_key is computed using SHA-256 with
a prepended key derived from (certain bits of) auth_key, and in
which the key and IV for IGE mode are derived using a KDF
based on SHA-256 on a per-message basis using msg_key as
a diversifier (also using certain bits of auth_key as the key-
deriving key). Note also that the bits from auth_key used
by client and server to derive keys in both the “Encrypt”
and “MAC” operations overlap with one another. Any formal
security analysis needs to take this into account.

B. Attacks against MTProto metadata validation
We describe adversarial behaviours that are permitted in

current Telegram implementations and that mostly depend on
how clients and servers validate metadata information in the
payload (especially the second 128-bit block containing msg_id,
msg_seq_no and msg_length).

1) Reordering and deletion: In what follows, we consider a
network attacker that sits between the client and the Telegram
servers, attempting to manipulate the conversation transcript.
We distinguish between two cases: when the client is the sender
of a message and when it is the receiver. By message we mean
any msg_data exchanged via MTProto, but we pay particular
attention to when it contains a chat message.
a) Reordering: By reordering we mean that an adversary can
swap messages sent by one party so that they are processed

8This feature is meant to prevent ISP blocking. In addition to this, clients
can route their connections through a Telegram proxy. The obfuscation key
is then derived from a shared secret (e.g. from proxy password) between the
client and the proxy.

in the wrong order by the receiving party. Preventing such
attacks is a basic property that one would expect in a secure
messaging protocol. The MTProto documentation mentions
reordering attacks as something to protect against in secret chats
but does not discuss it for cloud chats [33]. The implementation
of cloud chats provides some protection, but not fully:

• When the client is the receiver, the order of displayed chat
messages is determined by the date and time values within
the TL message object (which are set by the server), so
adversarial reordering of packets has no effect on the order
of chat messages as seen by the client. On mobile clients
messages are also delivered via push notification systems which
are typically secured with TLS. Note that service messages of
MTProto typically do not have such a timestamp so reordering
is theoretically possible, but it is unclear whether it would affect
the client’s state since such messages tend to be responses to
particular requests or notices of errors, which are not expected
to arrive in a given order.
• When the client is the sender, the order of chat messages can
be manipulated because the server sets the date and time value
for the Telegram user to whom the message was addressed
based on when the server itself receives the message, and
because the server will accept a message with a lower msg_id
than that of a previous message as long as its msg_seq_no is
also lower than that of a previous message. The server does
not take the timestamp implicit within msg_id into account
except to check whether it is at most 300s in the past or 30s
in the future, so within this time interval reordering is possible.
A message outside of this time interval is not ignored, but a
request for time synchronisation is triggered, after receipt of
which the client sends the message again with a fresh msg_id.
So an attacker can also simply delay a chosen message to
cause messages to be accepted out of order. In Telegram, the
rotation of the server_salt every 30 to 60 minutes may be an
obstacle to carrying out this attack in longer time intervals.

We have verified that reordering between a sending client
and a receiving server is possible in practice using unmodified
Android clients (v6.2.0) and a malicious WiFi access point
running a TCP proxy [34] with custom rules to suppress and
later release certain packets. Suppose an attacker sits between
Alice and a server, and Alice is in a chat with Bob. The
attacker can reorder messages that Alice is sending, so the
server receives them in the wrong order and forwards them
in the wrong order to Bob. While Alice’s client will initially
display her sent messages in the order she sent them, once it
fetches history from the server it will update to display the
modified order that will match that of Bob.

A stronger form of reordering resistance can also be required
from a protocol if one considers the order in the transcript as
a whole, so that the order of sent messages with respect to
received messages has to be preserved. We discuss this further
and compare Telegram’s behaviour to other messenger systems
and protocols in Appendix C.
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auth_key
kk ‖r0‖mk ‖r1

server_salt session_id msg_id msg_seq_nomsg_length msg_data padding
auth_key

kk

mk

HASH
SHA-1

KDF
SHA-256

MAC
SHA-256

SE
AES-256-IGE

auth_key_id msg_key encrypted data

Figure 11: Overview of message processing in MTProto 2.0.

32 bits 96 bits 1088 bits

kkI,0 (288 bits) kkI,1 (288 bits) mkI (256 bits)

auth_key = raw gxy value (2048 bits)

kkR,0 (288 bits) kkR,1 (288 bits) mkR (256 bits)

64 bits 32 bits 96 bits 1024 bits

Figure 12: Parsing auth_key in MTProto 2.0. User u ∈ {I,R} derives a KDF key kku = (kku,0,kku,1) and a MAC key mku.

b) Deletion: MTProto makes it possible to silently drop a
message both when the client is the sender9 and when it is
the receiver, but it is difficult to exploit in practice. Clients
and the server attempt to resend messages they did not get
acknowledgement for. Such messages have the same msg_ids
but are enclosed in a fresh ciphertext with random padding so
the attacker must be able to distinguish the repeated encryptions
to continue dropping the same payload. This is possible
e.g. with the desktop client as sender, since padding length
is predictable based on the message length [35]. When the
client is a receiver, other message delivery mechanisms such
as batching of messages inside a container or API calls like
messages.getHistory make it hard for an attacker to identify
repeated encryptions. So although MTProto does not prevent
deletion in the latter case, there is likely no practical attack.

2) Re-encryption: If a message is not acknowledged within
a certain time in MTProto, it is re-encrypted using the same
msg_id and with fresh random padding. While this appears to
be a useful feature and a mitigation against message deletion,
it enables attacks in the IND-CPA setting, as we explain next.

As a motivation, consider a local passive adversary that
tries to establish whether R responded to I when looking
at a transcript of three ciphertexts (cI,0, cR, cI,1), where cu
represents a ciphertext sent from u. In particular, it aims

9There are scenarios where deletion can be impactful. Telegram offers its
users the ability to delete chat history for the other party (or all members
of a group) – if such a request is dropped, severing the connection, the chat
history will appear to be cleared in the user’s app even though the request
never made it to the Telegram servers (cf. [3] for the significance of history
deletion in some settings).

to establish whether cR encrypts an automatically generated
acknowledgement, we will use “X” below to denote this, or
a new message from R. If cI,1 is a re-encryption of the
same message as cI,0, re-using the state, this leaks that bit of
information about cR .10

Adversary DCh,Recv
IND,q

Let aux = ε. Choose any m0,m1 ∈ CH.MS \ {X}.
Require ∀i ∈ N : rI,i,rR,i ∈ CH.SendRS.
For i = 1, . . . ,q do

cI,i ← Ch(I,m0,m0,aux,rI,i)
cR,i ← Ch(R,X,m1,aux,rR,i) ; Recv(I, cR,i,aux)

If ∃ j , k : msg_keyj = msg_keyk then

If c(2)
I, j
= c(2)
I,k

then return 1 else return 0
Else return ⊥

Figure 13: Adversary against the IND-security of MTProto
(modelled as channel CH) when permitting re-encryption under
reused msg_id and msg_seq_no. If the adversary controls the
randomness, then set q = 2 and choose rI,0 = rI,1. Otherwise
(i.e. all rI,i,rR,i values are uniformly random) set q = 264. In
this figure, let msg_keyi be the msg_key for cI,i and let c(i)

be the i-th block of ciphertext c.

10Note that here we are breaking the confidentiality of the ciphertext carrying
“X”. In addition to these encrypted acknowledgement messages, the underlying
transport layer, e.g. TCP, may also issue unencrypted ACK messages or may
resend ciphertexts as is. The difference between these two cases is that in the
former case the acknowledgement message is encrypted, in the latter it is not.
For completeness, note that Telegram clients do not resend cached ciphertext
blobs when unacknowledged, but re-encrypt the underlying message under the
same state but with fresh random padding.
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Suppose we have a channel CH that models the MTProto
protocol as described in Section IV-A and uses the payload
format given in Table I.11 To sketch a model for acknowledge-
ment messages for the purposes of explaining this attack and as
mentioned above, we define a special plaintext symbol X that,
when received, indicates acknowledgement for the last sent
message. As in Telegram, X messages are encrypted. Further,
we model re-encryptions by insisting that if the CH.Send
algorithm is queried again on an unacknowledged message m
then CH.Send will produce another ciphertext c′ for m but
using the same headers, including msg_id and msg_seq_no,
as previously used. Critically, this means the same state in the
form of msg_id and msg_seq_no is used for two different
encryptions.

We use this behaviour to break the indistinguishability of
an encrypted X. Consider the adversary given in Fig. 13. In
that figure, if cR,i encrypts an X (i.e. case b = 0) then cI,i+1
will not be a re-encryption of m0 under the same msg_id and
msg_seq_no that were used for cI,i . In contrast, if b = 1, then
we have c(2)

I, j
= c(2)
I,k

, where c(i) denotes the i-th block of c, with
probability 1 whenever msg_keyk = msg_keyj . This is true
because the payloads of cI, j and cI,k share the same header
fields, in particular including the msg_id and msg_seq_no
in the second block, encrypted under the same key. In the
setting where the adversary controls the randomness of the
encryption, the condition msg_keyj = msg_keyk can be made
to always hold and thus c(2)

I, j
= c(2)
I,k

holds with probability 1.
As a consequence two queries to the oracle suffice. When the
adversary does not control the randomness (of the padding)
then we use the fact that msg_key is computed via SHA-256
truncated to 128 bits and the birthday bound applies for finding
collisions. Thus after 264 queries we expect a collision with
constant probability. We note that the adversary can check
when a collision is found. On the other hand, in either setting,
when b = 0 we have c(2)

I, j
= c(2)
I,k

with probability 0 since the
underlying payloads differ, the key is the same and AES is a
permutation for a fixed key.

C. Modelling differences
In general, we would like our formal model of MTProto 2.0

to stay as close as possible to the real protocol, so that when
we prove statements about the model, we obtain meaningful
assurances about the security of the real protocol. However,
as the previous section demonstrates, the current protocol has
flaws. These prevent meaningful security analysis and can be
removed by making small changes to the protocol’s handling
of metadata. Further, the protocol has certain features that
make it less amenable to formal analysis. Here we describe
the modelling decisions we have taken that depart from the
current version of MTProto 2.0 and justify each change.

1) Inconsistency: There is no authoritative specification of the
protocol. The Telegram documentation often differs from the
implementations and the clients are not consistent with each

11We give a formal definition of the channel in Section IV-D, but it is not
necessary to outline the attack.

other.12 Where possible, we chose a sensible “default” choice
from the observed set of possibilities, but we stress that it is in
general impossible to create a formal specification of MTProto
that would be valid for all current implementations. For instance,
the documentation defines server_salt as “A (random) 64-bit
number periodically (say, every 24 hours) changed (separately
for each session) at the request of the server” [36]. In practice
the clients receive salts that change every hour and which
overlap with each other. For client differences, consider padding
generation: on desktop [35], a given message length will always
result in the same padding length, whereas on Android [37],
the padding length is randomised.

2) Application layer: Similarly, there is no clear separation
between the cryptographic protocol of MTProto and the applica-
tion data processing (expressed using the TL schema). However,
to reason succinctly about the protocol we require a certain level
of abstraction. In concrete terms, this means that we consider
the msg_data field as “the message”, without interpreting its
contents and in particular without modelling TL constructors.
However, this separation does not exist in implementations of
MTProto – for instance, message encoding behaves differently
for some constructors (e.g. container messages) – and so our
model does not capture these details.

3) Client/server roles: The server and the client are not
considered equal in MTProto. For instance, the server is trusted
to timestamp TL messages for history, while the clients are
not, which is why our reordering attacks only work in the
client to server direction. The client chooses the session_id,
the server generates the server_salt. The server accepts any
session_id given in the first message and then expects that
value, while the client checks the session_id but may accept any
server_salt given.13 Clients do not check the msg_seq_no field.
The protocol implements elaborate measures to synchronise
“bad” client time with server time, which includes: checks on
the timestamp within msg_id as well as the salt, special service
messages [39] and the resending of messages with regenerated
headers. Since much of this behaviour is not critical for security,
we model both parties of the protocol as equals. Expanding our
model with this behaviour should be possible without affecting
most of the proofs.

4) Key exchange: We are concerned with the symmetric part
of the protocol, and thus assume that the shared auth_key is
a uniformly random string rather than of the form gab mod p
resulting from the actual key exchange.

5) Bit mixing: MTProto uses specific bit ranges of auth_key
as KDF and MAC inputs. These ranges do not overlap for
different primitives (i.e. the KDF key inputs are wholly distinct
from the MAC key inputs), and we model auth_key as a
random value, so without loss of generality our model generates

12Since the server code was not available, we inferred its behaviour from
observing the communication.

13The Android client accepts any value in the place of server_salt, and
the desktop client [38] compares it with a previously saved value and resends
the message if they do not match and if the timestamp within msg_id differs
from the acceptable time window.
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the KDF and MAC key inputs as separate random values. The
key input ranges for the client and the server do overlap for
KDF and MAC separately, however, so we model this in the
form of related-key-derivation functions.

Further, the KDF intermixes specific bit ranges of the outputs
of two SHA-256 calls to derive the encryption keys and IVs. We
argue that this is unnecessary – the intermixed KDF output is
indistinguishable from random (the usual security requirement
of a key derivation function) if and only if the concatenation
of the two SHA-256 outputs is indistinguishable from random.
Hence in our model the KDF just outputs the concatenation.
6) Order: Given that MTProto operates over reliable transport
channels, it is not necessary to allow messages arriving out
of order. Our model imposes stricter validation on metadata
upon decryption via a single sequence number that is checked
by both sides and only the next expected value is accepted.
Enforcing strict ordering also automatically rules out replay and
deletion attacks, which the current implementation of MTProto
avoids in some cases only due to application level processing.14

7) Re-encryption: Because of the attacks in Section IV-B2,
we insist in our formalisation that all sent messages include a
fresh value in the header. This is achieved via a stateful secure
channel definition in which either a client or server sequence
number is incremented on each call to the CH.Send oracle.
8) Message encoding: Some of the previous points outline
changes to message encoding. We simplify the scheme, keeping
to the format of Table I but not modelling diverging behaviours
upon decoding. The implemented MTProto message encoding
scheme behaves differently depending on whether the user is a
client or a server, but each of them checks a 64-bit value in the
first plaintext block, session_id and server_salt respectively.
To prove security of the channel, it is enough that there is
a single such value that both parties check, and it does not
need to be randomised, so we model a constant session_id
and we leave the salt as an empty field. We also merge the
msg_id and msg_seq_no fields into a single sequence number
field of corresponding size, reflecting that a simple counter
suffices in place of the original fields. Note that though we
only prove security with respect to this particular message
encoding scheme, our modelling approach is flexible and can
accommodate more complex message encoding schemes.

D. MTProto-based channel
Our model of the MTProto channel is given in Definition 5

and Fig. 14. The users I and R represent the client and the
server. We abstract the individual keyed primitives into function
families.15

CH.Init generates the keys for both users and initialises the
message encoding scheme. Note that auth_key as described
in Section IV-A does not appear in the code in Fig. 14, since

14Secret chats implement more elaborate measures against replay/reorder-
ing [33], however this complexity is not required when in-order delivery is
required for each direction separately.

15While the definition itself could admit many different implementations of
the primitives, we are interested in modelling MTProto and thus do not define
our channel in a fully general way, e.g. we fix some key sizes.

each part of auth_key that is used for keying the primitives
can be generated independently. These parts are denoted by
hk, kk and mk.16 The function φKDF (resp. φMAC) is then used
to derive the (related) keys for each user from kk (resp. mk).
CH.Send proceeds by first using ME to encode a message

m into a payload p. The MAC is computed on this payload to
produce a msg_key, and the KDF is called on the msg_key to
compute the key and IV for symmetric encryption SE, here
abstracted as k. The payload is encrypted with SE using this
key material, and the resulting ciphertext is called cse . The
CH ciphertext c consists of auth_key_id, msg_key and the
symmetric ciphertext cse .
CH.Recv reverses the steps by first computing k from the

msg_key parsed from c, then decrypting cse to the payload
p, and recomputing the MAC of p to check whether it equals
msg_key. If not, it returns ⊥ (without changing the state) to
signify failure. If the check passes, it uses ME to decode the
payload into a message m. It is important the MAC check is
performed before ME.Decode is called, otherwise this opens
the channel to attacks – as we show later in Section VI.

Definition 5. Let ME be a message encoding scheme. Let
HASH be a function family such that {0,1}992 ⊆ HASH.In.
Let MAC be a function family such that ME.Out ⊆ MAC.In.
Let KDF be a function family such that {0,1}MAC.ol ⊆
KDF.In. Let φMAC : {0,1}320 → MAC.Keys × MAC.Keys and
φKDF : {0,1}672 → KDF.Keys × KDF.Keys. Let SE be a de-
terministic symmetric encryption scheme with SE.kl = KDF.ol
and SE.MS = ME.Out. Then CH = MTP-CH[ME,HASH,MAC,
KDF, φMAC, φKDF,SE] is the channel as defined in Fig. 14, with
CH.MS = ME.MS and CH.SendRS = ME.EncRS.

The message encoding scheme MTP-ME is specified in
Definition 6 and Fig. 19. It is a simplified MTProto message
encoding scheme for strict in-order delivery without replays
(see Appendix D for the actual MTProto scheme that permits
reordering). As justified in Section IV-C, MTP-ME follows the
header format of Table I, but it does not use the server_salt
field (we define salt as filled with zeros to preserve the field
order) and we merge the 64-bit msg_id and 32-bit msg_seq_no
fields into a single 96-bit seq_no field. Note that its internal
counters wrap around when seq_no would “overflow”.

Definition 6. Let session_id ∈ {0,1}64 and pb,bl ∈ N. Then
ME = MTP-ME[session_id,pb,bl] is the message-encoding
scheme given in Fig. 19, with ME.MS =

⋃224

i=1{0,1}8·i ,
ME.Out =

⋃
i∈N{0,1}bl·i , ME.T = 296 − 1 and ME.pl(`, ν) =

256 + ` + |GenPadding(`; ν)|.17

The following SHA-1 and SHA-256 based function famil-
ies capture the MTProto primitives that are used to derive

16The comments in Fig. 15 show how the exact 2048-bit value of auth_key
can be reconstructed by combining bits of hk, kk, mk. Note that the key hk
used for HASH is deliberately chosen to contain all bits of auth_key that are
not used for KDF and MAC keys kk, mk.

17The definition of ME.pl assumes that GenPadding is invoked with the
random coins of the corresponding ME.Encode call. For simplicity, we chose
to not surface these coins in Fig. 19 and instead handle this implicitly.
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CH.Init()

hk←$ {0,1}HASH.kl
kk←$ {0,1}672 ; mk←$ {0,1}320

auth_key_id← HASH.Ev(hk,kk ‖mk)
(kkI,kkR ) ← φKDF(kk)
(mkI,mkR ) ← φMAC(mk)
keyI ← (kkI,mkI )
keyR ← (kkR,mkR )
(stME,I, stME,R ) ←$ ME.Init()
stI ← (auth_key_id,keyI,keyR, stME,I )
stR ← (auth_key_id,keyR,keyI, stME,R )
Return (stI, stR )

CH.Send(stu,m,aux; r)
(auth_key_id,keyu,keyu, stME) ← stu
(kku,mku) ← keyu
(stME, p) ← ME.Encode(stME,m,aux; r)
msg_key← MAC.Ev(mku, p)
k ← KDF.Ev(kku,msg_key)
cse ← SE.Enc(k, p)
c← (auth_key_id,msg_key, cse)
stu ← (auth_key_id,keyu,keyu, stME)
Return (stu, c)

CH.Recv(stu, c,aux)
(auth_key_id,keyu,keyu, stME) ← stu
(kku,mku) ← keyu
(auth_key_id′,msg_key, cse) ← c
If auth_key_id , auth_key_id′ then

Return (stu,⊥)
k ← KDF.Ev(kku,msg_key)
p← SE.Dec(k, cse)
msg_key′ ← MAC.Ev(mku, p)
If msg_key′ , msg_key then return (stu,⊥)
(stME,m) ← ME.Decode(stME, p,aux)
stu ← (auth_key_id,keyu,keyu, stME)
Return (stu,m)

Figure 14: The construction of MTProto-based channel CH = MTP-CH[ME,HASH,MAC,KDF, φMAC, φKDF,SE] from message
encoding scheme ME, function families HASH, MAC and KDF, related-key derivation functions φMAC and φKDF, and from
deterministic symmetric encryption scheme SE.

auth_key_id, the message key msg_key, and the symmetric
encryption key k.

Definition 7. MTP-HASH is the function family with
MTP-HASH.Keys = {0,1}1056, MTP-HASH.In = {0,1}992,
MTP-HASH.ol = 128 and MTP-HASH.Ev given in Fig. 15.

MTP-HASH.Ev(hk, x) // |hk | = 1056, |x | = 992
kk ← x[0 : 672] // auth_key[0 : 672]
r0 ← hk[0 : 32] // auth_key[672 : 704]
mk ← x[672 : 992] // auth_key[704 : 1024]
r1 ← hk[32 : 1056] // auth_key[1024 : 2048]
auth_key← kk ‖ r0 ‖mk ‖ r1
auth_key_id← SHA-1(auth_key)[96 : 160]
Return auth_key_id

Figure 15: Construction of MTP-HASH.

Definition 8. MTP-MAC is the function family with MAC.Keys =
{0,1}256, MAC.In = {0,1}∗, MAC.ol = 128 and MTP-MAC.Ev
given in Fig. 16.

MTP-MAC.Ev(mku, p) // |mku | = 256, p ∈ {0,1}∗

msg_key← SHA-256(mku ‖ p)[64 : 192]
Return msg_key

Figure 16: Construction of MTP-MAC.

Definition 9. MTP-KDF is the function family with
MTP-KDF.Keys = {0,1}288 × {0,1}288, MTP-KDF.In = {0,1}128,
MTP-KDF.ol = 2·SHA-256.ol and MTP-KDF.Ev given in Fig. 17.

MTP-KDF.Ev(kku,msg_key) // |msg_key| = 128
(kk0,kk1) ← kku ; k0 ← SHA-256(msg_key ‖ kk0)
k1 ← SHA-256(kk1 ‖msg_key) ; k ← k0 ‖ k1 ; Return k

Figure 17: Construction of MTP-KDF.

Since the keys for KDF and MAC in MTProto are not
independent for the two users, we have to work in a related-key

setting. We are inspired by the RKA framework of [40], but
define our related-key derivation function φKDF (resp. φMAC) to
output both keys at once, as a function of kk (resp. mk). See
Fig. 18 for precise details of φKDF and φMAC.

φKDF(kk) // |kk | = 672
kkI,0 ← kk[0 : 288]
kkR,0 ← kk[64 : 352]
kkI,1 ← kk[320 : 608]
kkR,1 ← kk[384 : 672]
kkI ← (kkI,0,kkI,1)
kkR ← (kkR,0,kkR,1)
Return (kkI,kkR )

φMAC(mk) // |mk | = 320
mkI ← mk[0 : 256]
mkR ← mk[64 : 320]
Return (mkI,mkR )

Figure 18: Related-key derivation functions φKDF : {0,1}672 →
KDF.Keys × KDF.Keys and φMAC : {0,1}320 → MAC.Keys ×
MAC.Keys.

Finally, we define the deterministic symmetric encryption
scheme.

Definition 10. Let AES-256 be the standard AES block cipher
with AES-256.kl = 256 and AES-256.ol = 128, and let IGE be
the block cipher mode in Fig. 4. Let MTP-SE = IGE[AES-256].

V. Formal security analysis
We first define the central security notions required from

each of the primitives used in MTP-CH. Then, we prove that
MTP-CH satisfies correctness, indistinguishability and integrity.
Our proofs use games and hops between them. In our games,
we annotate some lines with comments of the form “Gi–Gj”
to indicate that these lines belong only to games Gi through
Gj (inclusive). The lines not annotated with such comments
are shared by all of the games that are shown in the particular
figure.

A. Security requirements on standard primitives
1) MTP-HASH is a one-time indistinguishable function fam-
ily: We require that MTP-HASH meets the one-time weak
indistinguishability notion (OTWIND) defined in Fig. 20.
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ME.Init()
Nsent ← 0 ; Nrecv ← 0
stME,I ← (session_id,Nsent,Nrecv)
stME,R ← (session_id,Nsent,Nrecv)
Return (stME,I, stME,R )

GenPadding(`)
`′ ← bl − ` mod bl
bn←$ {1, · · · ,pb}
padding←$ {0,1}`′+bn∗bl

Return padding

ME.Encode(stME,u,m,aux)
(session_id,Nsent,Nrecv) ← stME,u
Nsent ← (Nsent + 1) mod 296

salt← 〈0〉64 ; seq_no← 〈Nsent〉96
length← 〈|m|/8〉32
padding←$ GenPadding(|m|)
p0 ← salt ‖ session_id
p1 ← seq_no ‖ length
p2 ← m ‖ padding ; p← p0 ‖ p1 ‖ p2
stME,u ← (session_id,Nsent,Nrecv)
Return (stME,u, p)

ME.Decode(stME,u, p,aux ′)
If |p| < 256 then return (stME,u,⊥)
(session_id,Nsent,Nrecv) ← stME,u ; ` ← |p| − 256
salt← p[0 : 64] ; session_id′ ← p[64 : 128]
seq_no← p[128 : 224] ; length← p[224 : 256]
If (session_id′ , session_id)∨
(seq_no , Nrecv + 1)∨
¬(0 < length ≤ |` | /8) then return (stME,u,⊥)

m← p[256 : 256 + length · 8]
Nrecv ← (Nrecv + 1) mod 296

stME,u ← (session_id,Nsent,Nrecv) ; Return (stME,u,m)

Figure 19: The construction of a simplified message encoding scheme for strict in-order delivery ME = MTP-ME[session_id,pb,bl]
for session identifier session_id, maximum padding length (in full blocks) pb, and output block length bl.

The security game Gotwind
HASH,D in Fig. 20 evaluates function

family HASH on a challenge input xb using a secret uniformly
random function key hk. Adversary D is given x0, x1 and
the output of the function family; it is required to guess
the challenge bit b ∈ {0,1}. The game samples inputs x0, x1
uniformly at random rather than allowing D to choose them,
so this security notion requires HASH to provide only a weak
form of one-time indistinguishability. The advantage of D
in breaking the OTWIND-security of HASH is defined as
AdvotwindHASH (D) = 2 · Pr

[
Gotwind
HASH,D

]
− 1. Appendix E1 provides

a formal reduction from the OTWIND-security of MTP-HASH
to the one-time PRF-security of SHACAL-1 (as defined in
Section II-B).

Game GotwindHASH,D

b←$ {0,1} ; hk←$ {0,1}HASH.kl ; x0←$ HASH.In
x1←$ HASH.In ; auth_key_id← HASH.Ev(hk, xb)
b′←$D(x0, x1,auth_key_id) ; Return b′ = b

Figure 20: One-time weak indistinguishability of function
family HASH.

2) MTP-KDF is a PRF under related-key attacks: We require
that MTP-KDF behaves like a pseudorandom function in the
RKA setting (RKPRF) as defined in Fig. 21. The security
game Grkprf

KDF,φKDF ,D
in Fig. 21 defines a variant of the standard

PRF notion, except it allows adversary D to use its RoR
oracle to evaluate function family KDF on either of the two
secret, related function keys kkI,kkR (both computed using
key-derivation function φKDF). The advantage of D in breaking
the RKPRF-security of KDF with respect to φKDF is defined as
AdvrkprfKDF,φKDF

(D) = 2 · Pr
[
Grkprf
KDF,φKDF ,D

]
− 1.

Appendix E2 provides a formal reduction from the RKPRF-
security of MTP-KDF to a novel security notion for SHACAL-2
that roughly requires it to be a leakage-resilient PRF under
related-key attacks. In this context, “leakage-resilience” means
that the adversary can adaptively choose a part of the SHACAL-2
key. However, we limit the adversary to being able to evaluate
SHACAL-2 only on a single known, constant input (which is
IV256, the initial state of SHA-256). The new security notion is
formalised as the LRKPRF-security of SHACAL-2 with respect

to a pair of key-derivation functions φKDF and φSHACAL-2 (as
defined in Appendix E2).

We stress that we have to assume a property of SHACAL-2
that has not been studied in the literature. Related-key attacks on
reduced-round SHACAL-2 have been considered [41], [42], but
they ordinarily work with a known difference relation between
unknown keys. In MTProto, the keys produced by φKDF and
φSHACAL-2 differ by random, unknown parts. However, 224 out
of 512 bits of each key produced by φSHACAL-2 are known to the
adversary, out of which 128 bits, corresponding to msg_key,
can be directly influenced by the adversary. It is straightforward
to show that the LRKPRF-security of SHACAL-2 holds in the
ideal cipher model (i.e. when SHACAL-2 is modelled as the
ideal cipher). However, we cannot rule out the possibility of
attacks on SHACAL-2 due to its internal structure in the setting
of related-key attacks combined with key leakage. We leave
this as an open question.

Game GrkprfKDF,φKDF ,D

b←$ {0,1} ; kk←$ {0,1}672

(kkI,kkR ) ← φKDF(kk)
b′←$DRoR ; Return b′ = b

RoR(u,msg_key)
k1 ← KDF.Ev(kku,msg_key)
If T[u,msg_key] =⊥ then
T[u,msg_key] ←$ {0,1}KDF.ol

k0 ← T[u,msg_key] ; Return kb

Figure 21: Related-key PRF-security of function family KDF
with respect to key-derivation function φKDF.

3) MTP-MAC is collision-resistant under RKA: We require
that collisions in the outputs of MTP-MAC under related keys are
hard to find (RKCR), as defined in Fig. 22. The security game
Grkcr
MAC,φMAC ,F

in Fig. 22 gives adversary F two related function
keys mkI,mkR (created by key-derivation function φMAC),
and requires it to produce two payloads p0, p1 (for either user
u) such that there is a collision in the corresponding outputs
msg_key0,msg_key1 of function family MAC. The advantage of
F in breaking the RKCR-security of MAC with respect to φMAC
is defined as AdvrkcrMAC,φMAC (F ) = Pr

[
Grkcr
MAC,φMAC ,F

]
. It is clear by

inspection that the RKCR-security of MTP-MAC.Ev(mku, p) =
SHA-256(mku ‖ p)[64 : 192] (with respect to φMAC from
Fig. 18) reduces to the collision resistance of truncated
SHA-256.
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Game GrkcrMAC,φMAC ,F

mk←$ {0,1}320 ; (mkI,mkR ) ← φMAC(mk)
(u, p0, p1) ←$ F (mkI,mkR ) ; msg_key0 ← MAC.Ev(mku, p0)
msg_key1 ← MAC.Ev(mku, p1) ; dist_inp← (p0 , p1)
eq_out← (msg_key0 = msg_key1) ; Return dist_inp ∧ eq_out

Figure 22: Related-key collision resistance of function family
MAC with respect to key-derivation function φMAC.

4) MTP-MAC is a PRF under RKA for inputs with unique
prefixes: We require that MTP-MAC behaves like a pseudor-
andom function in the RKA setting when it is evaluated on a
set of inputs that have unique 256-bit prefixes (UPRKPRF), as
defined in Fig. 23. The security game Guprkprf

MAC,φMAC ,D
in Fig. 23

extends the standard PRF notion to use two related φMAC-
derived function keys mkI,mkR for function family MAC
(similar to the RKPRF-security notion we defined above); but
it also enforces that adversary D cannot query its oracle RoR
on two inputs (u, p0) and (u, p1) for any u ∈ {I,R} such that
p0, p1 share the same 256-bit prefix. The unique prefix condition
means that the game does not need to maintain a PRF table to
achieve output consistency. Note that this security game only
allows to call oracle RoR with inputs of length |p| ≥ 256;
this is sufficient for our purposes, because in MTP-CH the
function family MTP-MAC is only used on payloads that are
longer than 256 bits. The advantage of D in breaking the
UPRKPRF-security of MAC with respect to φMAC is defined as
AdvuprkprfMAC,φMAC

(D) = 2 · Pr
[
Guprkprf
MAC,φMAC ,D

]
− 1.

Appendix E3 shows that the UPRKPRF-security of
MTP-MAC reduces to a novel assumption on SHACAL-2 as
a leakage-resilient PRF under related-key attacks (defined as
HRKPRF in Fig. 50), and to the one-time PRF-security of the
SHA-256 compression function h256. Analogously to RKPRF-
security of MTP-KDF we emphasise that, while this assumption
on SHACAL-2 holds in the ideal cipher model, it is unstudied
in the literature.

Game GuprkprfMAC,φMAC ,D

b←$ {0,1}
mk←$ {0,1}320

(mkI,mkR ) ← φMAC(mk)
XI ← XR ← ∅
b′←$DRoR

Return b′ = b

RoR(u, p)
If |p| < 256 then return ⊥
p0 ← p[0 : 256]
If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
msg_key1 ← MAC.Ev(mku, p)
msg_key0←$ {0,1}MAC.ol
Return msg_keyb

Figure 23: Related-key PRF-security of function family MAC
for inputs with unique 256-bit prefixes, with respect to key
derivation function φMAC.

5) MTP-SE is a one-time indistinguishable symmetric en-
cryption scheme: For any block cipher E, Appendix E4 shows
that IGE[E] as used in MTProto is OTIND$-secure (defined in
Fig. 3) if CBC[E] is OTIND$-secure. This enables us to use
standard results on CBC in our analysis of MTProto.

B. Security requirements on message encoding
1) Prefix uniqueness of MTP-ME: We require that payloads
produced by MTP-ME have distinct prefixes of size 256 bits, as
defined in Fig. 24. The advantage of F in breaking the UPREF-
security of ME is defined as AdvuprefME (F ) = Pr

[
Gupref
ME,F

]
. Given

the fixed prefix size, this notion cannot be satisfied against
unbounded adversaries. Our MTP-ME scheme ensures unique
prefixes using seq_no which is of size 96 bits, so we have
AdvuprefMTP-ME(F ) = 0 only for F making less than 296 queries,
and otherwise AdvuprefMTP-ME(F ) = 1. Note that MTP-ME always
has payloads larger than 256 bits. The current MTProto
implementation of message encoding is not UPREF-secure
as it allows repeated msg_id (cf. Section IV-C).

Game GuprefME,F

win← false
(stME,I, stME,R )
←$ ME.Init()

XI ← XR ← ∅
F Send ; Return win

Send(u,m,aux,r)
(stME,u, p) ← ME.Encode(stME,u,m,aux; r)
If |p| < 256 then return ⊥
p0 ← p[0 : 256]
If p0 ∈ Xu then win← true
Xu ← Xu ∪ {p0} ; Return p

Figure 24: Prefix uniqueness of message encoding scheme ME.

2) MTP-ME ensures in-order delivery: We require that
MTP-ME is EINT-secure (Fig. 10) with respect to the support
function SUPP defined in Fig. 25. SUPP enforces in-order
delivery for each user’s sent messages, thus preventing uni-
directional reordering attacks, replays and message deletion. It
is formalised using a function find(op, tr, label) which searches
a given transcript’s sent or received entries for the message
corresponding to label and also counts the number of valid
entries up to a successful find. Correctness is ensured by
the search of entries sent by the other user u so that valid
messages are returned, which holds as long as label serves
as a unique label. This is the case for SUPP and MTP-ME for
less than 296 queries.18 Replays are prevented by the search
of entries received by u. The count from both searches is
used to ensure that there are no gaps between the number
of sent and received ciphertexts, thus preventing deletion
and reordering.19 For reasons outlined in Section IV-B, the
current MTProto construction of ME (cf. Appendix D) is not
EINT-secure with respect to SUPP. Appendix E5 shows that
AdveintMTP-ME,SUPP(F ) = 0 for F making less than 296 queries to
Send.

3) Encoding robustness of MTP-ME: We require that de-
coding in MTP-ME should not affect the state in such a way
that would be visible in future encoded outputs, as defined
in Fig. 26. The advantage of D in breaking the ENCROB-
security of ME is defined as AdvencrobME (D) = 2 ·Pr

[
Gencrob
ME,D

]
−1.

This advantage is trivially zero both for MTP-ME and the

18A limitation on number of queries is inherent as long as fixed-length
sequence numbers are used.

19Note that aux is not used in SUPP or MTP-ME. It would be possible to
add time synchronisation using aux captured in a msg_id field just as the
current MTProto ME implementation does.
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SUPP(u, tru, tru, label,aux)
(Nrecv,mrecv) ←
find(recv, tru, label)

If mrecv ,⊥ then return ⊥
(Nsent,msent) ←
find(sent, tru, label)

If Nsent , Nrecv + 1 then
Return ⊥

Return msent

find(op, tr, label)
Nop ← 0
For (op,m, label′,aux) ∈ tr do

If (op = recv ∧ m ,⊥)∨
(op = sent ∧ label′ ,⊥) then

Nop ← Nop + 1
If label′ = label then

Return (Nop,m)
Return (Nop,⊥)

Figure 25: Support function SUPP for strict in-order delivery.

original MTProto message encoding scheme (cf. Appendix D).
Note, however, that this property is incompatible with stronger
notions of resistance against reordering attacks such as causality
preservation.

Game GencrobME,D

b←$ {0,1} ; (stME,I, stME,R ) ←$ ME.Init()
b′←$DSend,Recv ; Return b′ = b

Send(u,m,aux,r)
(stME,u, p) ← ME.Encode(stME,u,m,aux; r) ; Return p

Recv(u, p,aux)
If b = 1 then (stME,u,m) ← ME.Decode(stME,u, p,aux)
Return ⊥

Figure 26: Encoding robustness of message encoding scheme
ME.

4) Combined security of MTP-SE and MTP-ME: We require
that decryption in MTP-SE with random keys has unpredictable
outputs with respect to MTP-ME, as defined in Fig. 27. The
advantage of F in breaking the UNPRED-security of SE with
respect to ME is defined as AdvunpredSE,ME (F ) = Pr

[
Gunpred
SE,ME,F

]
.

F is given access to two oracles. For a given user u and
msg_key, Ch decrypts a given ciphertext cse under a random
key and then decodes it using the given message encoding
state stME, returning no output. Expose lets F learn the key
corresponding to the given u and msg_key, which disallows the
adversary from querying Ch with this u and msg_key. F wins
if it can cause ME.Decode to output a valid m , ⊥. Note that
msg_key in this game merely serves as a label for the tables.
Appendix E6 shows that AdvunpredMTP-SE,MTP-ME(F ) ≤ qCh/264 for
F making qCh queries.
C. Correctness of MTP-CH

Consider the correctness game Gcorr
CH,supp,F (Fig. 8) for chan-

nel CH = MTP-CH (Fig. 14) and support function supp = SUPP
(Fig. 25). We only consider Recv queries for c produced
by an honest Send query, since supp always outputs ⊥
otherwise (Fig. 36). Informally, we claim that F cannot win
because the primitives of MTP-CH satisfy perfect correctness
and because MTP-ME “matches” SUPP for less than 296 queries
(cf. Appendix E5).20 The latter is easy to see when comparing

20There are other ways to handle counters which could imply correctness
for unbounded adversaries – MTP-ME wraps its counters to stay close to the
actual MTProto implementations.

Game GunpredSE,ME,F

win← false ; FExpose,Ch ; Return win

Expose(u,msg_key)
S[u,msg_key] ← true ; Return T[u,msg_key]

Ch(u,msg_key, cse, stME,aux)
If ¬S[u,msg_key] then

If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}SE.kl
k ← T[u,msg_key] ; p← SE.Dec(k, cse)
(stME,m) ← ME.Decode(stME, p,aux)
If m , ⊥ then win← true

Return ⊥
Figure 27: Unpredictability of deterministic symmetric encryp-
tion scheme SE with respect to message encoding scheme
ME.

the correctness game with the EINT-security game (Fig. 10).
Given an adversary F for the former, we can build an adversary
FEINT for the latter: generate the initial states for F as
MTP-CH does and simulate its oracles until the ME.Encode
and ME.Decode calls, which are replaced with the oracles of
FEINT.

D. IND-security of MTP-CH
We begin our IND-security reduction by considering an

arbitrary adversary DIND playing in the IND-security game
against channel CH = MTP-CH (i.e. Gind

CH,DIND
in Fig. 8), and we

gradually change this game until we can show that DIND can
no longer win. To this end, we make three key observations.
(1) Recall that oracle Recv always returns ⊥, and the only
functionality of this oracle is to update the receiver’s channel
state by calling CH.Recv. We assume that calls to CH.Recv
never affect the ciphertexts that are returned by future calls
to CH.Send (more precisely, we use the ENCROB property of
ME that reasons about payloads rather than ciphertexts). This
allows us to completely disregard the Recv oracle, making
it immediately return ⊥ without calling CH.Recv. (2) We use
the UPRKPRF-security of MAC to show that the ciphertexts
returned by oracle Ch contain msg_key values that look
uniformly random and are independent of each other. Roughly,
this security notion requires that MAC can only be evaluated
on a set of inputs with unique prefixes. To ensure this, we
assume that the payloads produced by ME meet this requirement
(as formalised by the UPREF property of ME). (3) In order to
prove that oracle Ch does not leak the challenge bit, it remains
to show that ciphertexts returned by Ch contain cse values
that look uniformly random and independent of each other.
This follows from the OTIND$-security of SE. We invoke the
OTWIND-security of HASH to show that auth_key_id does
not leak any information about the KDF keys; we then use
the RKPRF-security of KDF to show that the keys used for
SE are uniformly random. Finally, we use the birthday bound
to argue that the uniformly random values of msg_key are
unlikely to collide, and hence the keys used for SE are also
one-time. Formally, we have:
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Theorem 1. Let ME, HASH, MAC, KDF, φMAC, φKDF, SE be any
primitives that meet the requirements stated in Definition 5
of channel MTP-CH. Let CH = MTP-CH[ME,HASH,MAC,KDF,
φMAC, φKDF,SE]. Let DIND be any adversary against the IND-
security of CH, making qCh queries to its Ch oracle. Then
there exist adversaries DOTWIND, DRKPRF, DENCROB, FUPREF,
DUPRKPRF, DOTIND$ such that

AdvindCH (DIND) ≤ 2 ·
(
AdvotwindHASH (DOTWIND) + Adv

rkprf
KDF,φKDF

(DRKPRF)

+ AdvencrobME (DENCROB) + Adv
upref
ME (FUPREF)

+ AdvuprkprfMAC,φMAC
(DUPRKPRF) +

qCh · (qCh − 1)
2 · 2MAC.ol

+ Advotind$
SE (DOTIND$)

)
.

Proof. This proof uses games G0–G8 in Fig. 28. The adversar-
ies for transitions between games are provided in Fig. 29.
G0: Game G0 is equivalent to game Gind

CH,DIND
. It expands

the code of algorithms CH.Init, CH.Send and CH.Send; the
expanded instructions are highlighted in gray. It follows that

AdvindCH (DIND) = 2 · Pr[G0] − 1.

G0 → G1: Note that adversary DIND can learn the value
of auth_key_id from any ciphertext returned by oracle Ch
which depends on the KDF and MAC keys. To invoke PRF-
style security notions for either primitive in later steps, we
appeal to the OTWIND-security of HASH (Fig. 20), which
essentially guarantees that auth_key_id leaks no information
about KDF and MAC keys. Game G1 is the same as game
G0, except auth_key_id ← HASH.Ev(hk, ·) is evaluated on a
uniformly random string x rather than on kk ‖mk. We claim
that DIND cannot distinguish between these two games. More
formally, given DIND, in Fig. 29a we define an adversary
DOTWIND attacking the OTWIND-security of HASH as follows.
According to the definition of game Gotwind

HASH,DOTWIND
, adversary

DOTWIND takes (x0, x1,auth_key_id) as input. We define
adversary DOTWIND to sample a challenge bit b, to parse
kk ‖mk ← x1, and to subsequently use the obtained values
of b,kk,mk,auth_key_id in order to simulate either of the
games G0, G1 for adversary DIND (both games are equivalent
from the moment these 4 values are chosen). If DIND guesses
the challenge bit b then we let adversary DOTWIND return 1;
otherwise we let it return 0. Now let d be the challenge bit
in game Gotwind

HASH,DOTWIND
, and let d ′ be the value returned by

DOTWIND. If d = 1 then DOTWIND simulates game G0 for
DIND, and otherwise it simulates game G1. It follows that
Pr[G0] = Pr [ d ′ = 1 | d = 1 ] and Pr[G1] = Pr [ d ′ = 1 | d = 0 ],
and hence

Pr[G0] − Pr[G1] = AdvotwindHASH (DOTWIND).

G1 → G2: In the transition between games G1 and G2, we
use the RKPRF-security of KDF (with respect to φKDF, Fig. 21)
in order to replace KDF.Ev(kku,msg_key) with a uniformly
random value from {0,1}KDF.ol (and for consistency store the
latter in T[u,msg_key]). Similarly to the above, in Fig. 29b we
build an adversary DRKPRF attacking the RKPRF-security of

KDF that simulates G1 or G2 for adversary DIND, depending
on the challenge bit in game Grkprf

KDF,φKDF ,DRKPRF
. We have

Pr[G1] − Pr[G2] = Adv
rkprf
KDF,φKDF

(DRKPRF).

G2 → G3: We invoke the ENCROB property of ME (Fig. 26)
to transition from G2 to G3. This property states that calls to
ME.Decode do not change ME’s state in a way that affects the
payloads returned by any future calls to ME.Encode, allowing
us to remove the ME.Decode call from inside the oracle Recv
in game G3. In Fig. 29c we build an adversary DENCROB
against ENCROB of ME that simulates either G2 or G3 for
DIND, depending on the challenge bit in game Gencrob

ME,DENCROB
,

such that

Pr[G2] − Pr[G3] = AdvencrobME (DENCROB).

G3 → G4: Game G4 differs from game G3 in the following
ways. (1) The KDF keys kk, kkI , kkR are no longer used in
our reduction games starting from G3, so they are not included
in game G4 and onwards. (2) The calls to oracle Recv in
game G3 no longer change the receiver’s channel state, so game
G4 immediately returns ⊥ on every call to Recv. (3) Game
G4 rewrites, in a functionally equivalent way, the initialisation
and usage of values from the PRF-table T inside oracle Ch.
(4) Game G4 adds a set Xu, for each u ∈ {I,R}, that stores
fixed-size prefixes of payloads that were produced by calling
the specific user’s Ch oracle. Every time a new payload p is
generated, the new code inside oracle Ch checks whether Xu

contains a prefix ω of a previously generated payload such
that it is the same as p[0 : 256], the prefix of p. Then the
new prefix is added to Xu. We note that the output of oracle
Ch in game G4 does not change depending on whether this
condition passes or fails. (5) Game G4 adds Boolean flags
bad0 and bad1 that are set to true when the corresponding
conditions inside oracle Ch are satisfied. These flags do not
affect the functionality of the games, and will only be used
for the formal analysis that we provide below. Both games are
functionally equivalent, so

Pr[G4] = Pr[G3].

G4 → G5: The transition from game G4 to G5 replaces the
value assigned to msg_key when the newly added unique-
prefixes condition (Fig. 24) is satisfied; the value of msg_key
changes from MAC.Ev(mku, p) to a uniformly random string
from {0,1}MAC.ol. Games G4 and G5 are identical until bad0
is set. According to the Fundamental Lemma of Game
Playing [14] we have

Pr[G4] − Pr[G5] ≤ Pr[badG4
0 ],

where Pr[badQ] denotes the probability of setting flag bad in
game Q. The UPREF property of ME states that it is hard to
find two payloads returned by ME.Encode such that their 256-
bit prefixes are the same; we use this property to upper-bound
the probability of setting bad0 in game G4. In Fig. 29d we
build an adversary FUPREF attacking the UPREF of ME that
simulates game G4 for adversary DIND. Every time bad0 is
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Games G0–G3

b←$ {0,1} ; hk←$ {0,1}HASH.kl ; kk←$ {0,1}672 ; mk←$ {0,1}320

x ← kk ‖mk // G0
x←$ {0,1}992 // G1–G3 (OTWIND of HASH)
auth_key_id← HASH.Ev(hk, x) ; (kkI,kkR ) ← φKDF(kk)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
b′←$D

Ch,Recv
IND ; Return b′ = b

Ch(u,m0,m1,aux,r)

If |m0 | , |m1 | then return ⊥
(stME,u, p) ← ME.Encode(stME,u,mb,aux; r)
msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← KDF.Ev(kku,msg_key) // G0–G1
k ← T[u,msg_key] // G2–G3 (RKPRF of KDF)
cse ← SE.Enc(k, p) ; c← (auth_key_id,msg_key, cse) ; Return c

Recv(u, c,aux)

(auth_key_id′,msg_key, cse) ← c
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← KDF.Ev(kku,msg_key) // G0–G1
k ← T[u,msg_key] // G2–G3 (RKPRF of KDF)
p← SE.Dec(k, cse) ; msg_key′ ← MAC.Ev(mku, p)
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then
(stME,u,m) ← ME.Decode(stME,u, p,aux) // G0–G2 (ENCROB of ME)

Return ⊥

Games G4–G8

b←$ {0,1} ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320

x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
XI ← XR ← ∅ ; b′←$D

Ch,Recv
IND ; Return b′ = b

Ch(u,m0,m1,aux,r)

If |m0 | , |m1 | then return ⊥
(stME,u, p) ← ME.Encode(stME,u,mb,aux; r)
If ∃ω ∈ Xu : ω = p[0 : 256] then
bad0 ← true
msg_key← MAC.Ev(mku, p) // G4
msg_key←$ {0,1}MAC.ol // G5–G8 (UPREF of ME)

Else
msg_key← MAC.Ev(mku, p) // G4–G5
msg_key←$ {0,1}MAC.ol // G6–G8 (UPRKPRF of MAC)

Xu ← Xu ∪ {p[0 : 256]} ; k←$ {0,1}KDF.ol
If T[u,msg_key] ,⊥ then
bad1 ← true
k ← T[u,msg_key] // G4–G6 (Birthday bound)

T[u,msg_key] ← k
cse ← SE.Enc(k, p) // G4–G7
cse ←$ {0,1}SE.cl(ME.pl( |mb |,r)) // G8 (OTIND$ of SE)
c← (auth_key_id,msg_key, cse) ; Return c

Recv(u, c,aux) : Return ⊥

Figure 28: Games G0–G8 for proof of Theorem 1. Left pane: The code added by expanding the algorithms of CH in game
Gind
CH,DIND

is highlighted in gray. Right pane: The code highlighted in gray was rewritten in a way that is functionally equivalent
to the corresponding code in G3. Both panes: The code added for the transitions between games is highlighted in green.

set in game G4, this corresponds to adversary FUPREF setting
flag win to true in its own game Gupref

ME,FUPREF
. It follows that

Pr[badG4
0 ] ≤ Adv

upref
ME (FUPREF).

G5 → G6: We use the UPRKPRF-security of MAC (with
respect to φMAC, Fig. 23) in order to replace the value of
msg_key from MAC.Ev(mku, p) to a uniformly random value
from {0,1}MAC.ol in the transition from G5 to G6. Note
that the notion of UPRKPRF-security only guarantees the
indistinguishability from random when MAC is evaluated on
inputs with unique prefixes, whereas games G5,G6 ensure
that this prerequisite is satisfied by only evaluating MAC if
p[0 : 256] < Xu has payloads with unique prefixes. In Fig. 29e
we build an adversary DUPRKPRF attacking the UPRKPRF-
security of MAC that simulates G5 or G6 for adversary DIND,
depending on the challenge bit in game Guprkprf

MAC,φMAC ,DUPRKPRF
. It

follows that

Pr[G5] − Pr[G6] = Adv
uprkprf
MAC,φMAC

(DUPRKPRF).

G6 → G7: Games G6 and G7 are identical until bad1 is set;
so, as above, we have

Pr[G6] − Pr[G7] ≤ Pr[badG6
1 ].

The values of msg_key ∈ {0,1}MAC.ol in game G6 are sampled
uniformly at random and independently across the qCh different
calls to oracle Send, so we can apply the birthday bound to

claim the following:

Pr[badG6
1 ] ≤

qCh · (qCh − 1)
2 · 2MAC.ol

.

G7 → G8: In the transition from G7 to G8, we replace the
value of ciphertext cse from SE.Enc(k, p) to a uniformly random
value from {0,1}SE.cl(ME.pl( |mb |,r)) by appealing to the OTIND$-
security of SE (Fig. 3). Recall that ME.pl(|mb | ,r) is the length
of the payload p that is produced by calling ME.Encode on
any message of length |mb | and on random coins r , whereas
SE.cl(·) maps the former to the resulting ciphertext length of
SE. In Fig. 29f we build an adversary DOTIND$ attacking the
OTIND$-security of SE that simulates G7 or G8 for adversary
DIND, depending on the challenge bit in game Gotind$

SE,DOTIND$
. It

follows that

Pr[G7] − Pr[G8] = Advotind$
SE (DOTIND$).

Finally, the output of oracle Ch in game G8 no longer depends
on the challenge bit b, so we have

Pr[G8] =
1
2
.

The theorem statement follows. �

E. INT-security of MTP-CH
Our integrity proof begins by showing that it is hard to

forge ciphertexts; in order to justify this, we rely on security
properties of the cryptographic primitives that are used to build

18



Adversary DOTWIND(x0, x1,auth_key_id)
kk ‖mk ← x1 // Such that |kk | = 672 and |mk | = 320.
b←$ {0,1} ; (kkI,kkR ) ← φKDF(kk) ; (mkI,mkR ) ← φMAC(mk)
(stME,I, stME,R ) ←$ ME.Init()
b′←$D

ChSim,RecvSim
IND ; If b′ = b then return 1 else return 0

ChSim(u,m0,m1,aux,r) and RecvSim(u, c,aux)
// Identical to oracles Ch and Recv in games G0, G1 of Fig. 28.

(a) Adversary DOTWIND against the OTWIND-security of HASH for
transition between games G0–G1.

Adversary DRoR
RKPRF

b←$ {0,1} ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320 ; x←$ {0,1}992

auth_key_id← HASH.Ev(hk, x) ; (mkI,mkR ) ← φMAC(mk)
(stME,I, stME,R ) ←$ ME.Init()
b′←$D

ChSim,RecvSim
IND ; If b′ = b then return 1 else return 0

ChSim(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
(stME,u, p) ← ME.Encode(stME,u,mb,aux; r)
msg_key← MAC.Ev(mku, p) ; k ← RoR(u,msg_key)
cse ← SE.Enc(k, p) ; c← (auth_key_id,msg_key, cse) ; Return c

RecvSim(u, c,aux)
(auth_key_id′,msg_key, cse) ← c ; k ← RoR(u,msg_key)
p← SE.Dec(k, cse) ; msg_key′ ← MAC.Ev(mku, p)
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then
(stME,u,m) ← ME.Decode(stME,u, p,aux)

Return ⊥
(b) Adversary DRKPRF against the RKPRF-security of KDF for trans-
ition between games G1–G2.

Adversary DSend,Recv
ENCROB

b←$ {0,1} ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320 ; x←$ {0,1}992

auth_key_id← HASH.Ev(hk, x) ; (mkI,mkR ) ← φMAC(mk)
b′←$D

ChSim,RecvSim
IND ; If b′ = b then return 1 else return 0

ChSim(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
p← Send(u,mb,aux,r) ; msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; cse ← SE.Enc(k, p)
c← (auth_key_id,msg_key, cse) ; Return c

RecvSim(u, c,aux)
(auth_key_id′,msg_key, cse) ← c
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; p← SE.Dec(k, cse)
msg_key′ ← MAC.Ev(mku, p)
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then

Recv(u, p,aux)
Return ⊥

(c) Adversary DENCROB against the ENCROB-security of ME for
transition between games G2–G3.

Adversary F Send
UPREF

b←$ {0,1} ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320

x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(mkI,mkR ) ← φMAC(mk) ; b′←$D

ChSim,RecvSim
IND

ChSim(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
p← Send(u,mb,aux,r)
msg_key← MAC.Ev(mku, p) ; k←$ {0,1}KDF.ol
If T[u,msg_key] ,⊥ then k ← T[u,msg_key]
T[u,msg_key] ← k ; cse ← SE.Enc(k, p)
c← (auth_key_id,msg_key, cse) ; Return c

RecvSim(u, c,aux) : Return ⊥

(d) Adversary FUPREF against the UPREF-security of
ME for transition between games G4–G5.

Adversary DRoR
UPRKPRF

b←$ {0,1} ; hk←$ {0,1}HASH.kl
x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(stME,I, stME,R ) ←$ ME.Init() ; b′←$D

ChSim,RecvSim
IND

If b′ = b then return 1 else return 0
ChSim(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
(stME,u, p) ← ME.Encode(stME,u,mb,aux; r)
msg_key← RoR(u, p)
If msg_key =⊥ then msg_key←$ {0,1}MAC.ol
k←$ {0,1}KDF.ol
If T[u,msg_key] ,⊥ then k ← T[u,msg_key]
T[u,msg_key] ← k ; cse ← SE.Enc(k, p)
c← (auth_key_id,msg_key, cse) ; Return c

RecvSim(u, c,aux) : Return ⊥

(e) Adversary DUPRKPRF against the UPRKPRF-
security of MAC for transition between games G5–G6.

Adversary DRoR
OTIND$

b←$ {0,1} ; hk←$ {0,1}HASH.kl
x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(stME,I, stME,R ) ←$ ME.Init() ; b′←$D

ChSim,RecvSim
IND

If b′ = b then return 1 else return 0
ChSim(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
(stME,u, p) ← ME.Encode(stME,u,mb,aux; r)
msg_key←$ {0,1}MAC.ol ; cse ← RoR(p)
c← (auth_key_id,msg_key, cse) ; Return c

RecvSim(u, c,aux) : Return ⊥

(f) Adversary DOTIND$ against the OTIND$-security
of SE for transition between games G7–G8.

Figure 29: Adversaries for proof of Theorem 1. The highlighted instructions mark the changes in the code of the simulated
games.
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the channel MTP-CH (i.e. HASH, KDF, SE, and MAC). Once
ciphertext forgery is ruled out, we are guaranteed that MTP-CH
broadly matches an intuition of an authenticated channel:
it prevents an attacker from modifying or creating its own
ciphertexts but still allows it to intercept and subsequently
drop, reorder, mirror, or replay honestly produced ciphertexts.
So it remains to show that the message encoding scheme ME
appropriately resolves all of the possible adversarial interaction
with an authenticated channel; formally, we require that it
behaves according to the requirements that are specified by
some support function supp. Our main result is then:

Theorem 2. Let session_id ∈ {0,1}64 and pb,bl ∈ N. Let
ME = MTP-ME[session_id,pb,bl] be the message encoding
scheme as defined in Definition 6. Let SE = MTP-SE be the
symmetric encryption scheme as defined in Definition 10. Let
HASH, MAC, KDF, φMAC, φKDF be any primitives that, together
with ME and SE, meet the requirements stated in Definition 5
of channel MTP-CH. Let CH = MTP-CH[ME,HASH,MAC,KDF,
φMAC, φKDF,SE]. Let supp = SUPP be the support function as
defined in Fig. 25. Let FINT be any adversary against the
INT-security of CH with respect to supp. Then there exist
adversaries DOTWIND, DRKPRF, FUNPRED, FRKCR, FEINT such
that

AdvintCH,supp(FINT) ≤ AdvotwindHASH (DOTWIND) + Adv
rkprf
KDF,φKDF

(DRKPRF)

+ AdvunpredSE,ME (FUNPRED) + AdvrkcrMAC,φMAC (FRKCR)

+ AdveintME,supp(FEINT).

Before providing the detailed proof, we provide some
discussion of our approach and a high-level overview of the
different parts of the proof.

1) Invisible terms based on correctness of ME, SE, supp:
We state and prove our INT-security claim for channel MTP-CH
with respect to fixed choices of MTProto-based constructions
ME = MTP-ME (Definition 6) and SE = MTP-SE (Definition 10),
and with respect to the support function supp = SUPP that
is defined in Fig. 25. Our security reduction relies on six
correctness-style properties of these primitives (one for ME,
two for SE, three for supp). Each of them can be observed to
be always true for the corresponding scheme, and hence does
not contribute an additional term to the advantage statement
in Theorem 2. These notions are also simple enough that we
choose not to define them in a game-based style. Our security
reduction nonetheless introduces and justifies a game hop for
each of the correctness notions. This necessitates the use of 14
security games to prove Theorem 2, including some that are
meant to be equivalent by observation (i.e. the corresponding
game transitions do not rely on any correctness or security
property). However, some of these reduction steps require a
detailed analysis.

Theorem 2 could be stated in a more general way, fully
formalising the aforementioned correctness notions and stating
our claims with respect to any SE, ME, supp. We lose this
generality by instantiating these primitives. Our motivation is
twofold. On the one hand, we state our claims in a way that
highlights the parts of MTProto (as captured by our model)
that are critical for its security analysis, and omit spending too

much attention on parts of the reduction that can be “taken
for granted”. On the other hand, our work studies MTProto
and the abstractions that we use are meant to simplify and aid
this analysis. We discourage the reader from treating MTP-CH
in a prescriptive way, e.g. from trying to instantiate it with
different primitives to build a secure channel since standard,
well-studied cryptographic protocols such as TLS already exist.
2) Proof phase I. Forging a ciphertext is hard: Let FINT
be an adversary playing in the INT-security game against
channel MTP-CH. Consider an arbitrary call made by FINT to its
oracle Recv on inputs u, c,aux such that c = (auth_key_id′,
msg_key, cse). The oracle evaluates MTP-CH.Recv(stu, c,aux).
Recall that MTP-CH.Recv attempts to validate msg_key by
checking whether msg_key = MAC.Ev(mku, p) for an appro-
priately recovered payload p (i.e. k ← KDF.Ev(kku,msg_key)
and p ← SE.Dec(k, cse)). If this msg_key verification passes
(and if auth_key_id′ = auth_key_id), then MTP-CH.Recv
attempts to decode the payload by computing (stME,u,m) ←
ME.Decode(stME,u, p,aux).

We consider two cases, and claim the following. (A) If
msg_key was not previously returned by oracle Send as a
part of any ciphertext sent by user u, then with high probability
an evaluation of ME.Decode(stME,u, p,aux) would return m =⊥
regardless of whether the msg_key verification passed or
failed; so in this case we are not concerned with assessing
the likelihood that the msg_key verification passes. (B) If
msg_key was previously returned by oracle Send as a part
of some ciphertext c′ = (auth_key_id,msg_key, c′se) sent by
user u, and if auth_key_id = auth_key_id′, then with high
probability cse = c′se (and hence c = c′) whenever the msg_key
verification passes. We now justify both claims.
Case A. Assume msg_key is fresh: Our analysis of this case
will rely on a property of the symmetric encryption scheme
SE, and will require that its key k is chosen uniformly at
random. Thus we begin by invoking the OTWIND-security of
HASH and the RKPRF-security of KDF in order to claim that
the output of KDF.Ev(kku,msg_key) is indistinguishable from
random; this mirrors the first two steps of the IND-security
reduction of MTP-CH. We formalise this by requiring that
KDF.Ev(kku,msg_key) is indistinguishable from a uniformly
random value stored in the PRF table’s entry T[u,msg_key].

Our analysis of Case A now reduces roughly to the following:
we need to show that it is hard to find any SE ciphertext cse such
that its decryption p under a uniformly random key k has a non-
negligible chance of being successfully decoded by ME.Decode
(i.e. returning m ,⊥). As a part of this experiment, the adversary
is allowed to query many different values of msg_key and cse
(recall that an MTP-CH ciphertext contains both). At this point
the msg_key is only used to select a uniformly random SE
key k from T[u,msg_key], but the adversary can reuse the
same key k in combination with many different choices of cse .
The Case A assumption that msg_key is “fresh” means that
the msg_key was not seen during previous calls to the Send
oracle, so the adversary has no additional leakage on key k.
All of the above is formalised by the UNPRED-security notion
of SE with respect to ME.
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The above security notion can be trivially broken if
ME.Decode is defined in a way that it successfully de-
codes every possible payload p ∈ ME.Out. It can also be
trivially broken for contrived examples of SE like the one
defining ∀k ∈ {0,1}SE.kl,∀x ∈ SE.MS : SE.Enc(k, x) = x ∧
SE.Dec(k, x) = x, assuming that ME.Decode can successfully
decode even a single payload p from SE.MS. But the more
structure ME.Decode requires from its input p, and the more
“unpredictable” is the function SE.Dec(k, ·) for a uniformly
random k, the harder it is to break the UNPRED-security of
SE,ME. We note that MTP-ME requires every p to contain a
constant session_id ∈ {0,1}64 in the second half of its 128-
bit block, whereas MTP-SE implements the IGE block cipher
mode of operation. In Appendix E6 we show that the output
p of MTP-SE.Dec is highly unlikely to contain session_id at
the necessary position, i.e. if FINT makes qSend queries to its
Send oracle then it can find such p with probability at most
qSend/264. In Appendix E6 we also discuss the possibility of
improving this bound.

Case B. Assume msg_key is reused: In this case, we
know that adversary FINT previously called its Send oracle
on inputs u,m′,aux ′,r ′ for some m′,aux ′,r ′, and received
back a ciphertext c′ = (auth_key_id,msg_key′, c′se) such that
msg_key′ = msg_key. Let p′ be the payload that was built
and used inside this oracle call. Recall that we are currently
considering FINT’s ongoing call to its oracle Recv on inputs
u, c,aux such that c = (auth_key_id′,msg_key, cse); we are
only interested in the event that the msg_key verification
passed (and that auth_key_id = auth_key_id′), meaning
that msg_key = MAC.Ev(mku, p) holds for an appropriately
recovered p.

It follows that MAC.Ev(mku, p′) = MAC.Ev(mku, p). If
p′ , p then this breaks the RKCR-security of MAC. Re-
call that MTProto instantiates MAC with MTP-MAC where
MTP-MAC.Ev(mku, p) = SHA-256(mku ‖ p)[64 : 192]. So this
attack against MAC reduces to breaking some variant of
SHA-256’s collision-resistance that restricts the set of allowed
inputs but only requires to find a collision in a 128-bit fragment
of the output.

Based on the the above, we obtain (msg_key′, p′) =
(msg_key, p). Let k = KDF.Ev(kku,msg_key). Note that
c′se ← SE.Enc(k, p′) was computed during the Send call, and
p← SE.Dec(k, cse) was computed during the ongoing Recv
call. The equality p′ = p implies c′se = cse if SE guarantees
that for any key k, the algorithms of SE match every plaintext
message p ∈ SE.MS with a unique ciphertext cse . When this
condition holds, we say that SE has unique ciphertexts. We note
that MTP-SE satisfies this property; it follows that c′se = cse and
therefore the MTP-CH ciphertext c that was queried to Recv
(for user u) is equal to the ciphertext c′ that was previously
returned by Send (by user u). Implicit in this argument is an
assumption that SE has the decryption correctness property;
MTP-ME satisfies this property as well.

3) Proof phase II: MTP-CH acts as an authenticated chan-
nel: We can rewrite the claims we stated and justified in

the first phase of the proof as follows. When adversary FINT
queries its oracle Recv on inputs u, c,aux, it gets back
m =⊥ with high probability, unless c was honestly returned
in response to FINT’s prior call to Send(u, . . .), meaning
∃m′,aux ′ : (sent,m′, c,aux ′) ∈ tru. Furthermore, we claim
that the channel state for user u does not change when FINT’s
queries to oracle Recv result in m =⊥. This could only happen
in Case A above, assuming that the msg_key verification
succeeds but then the ME.Decode call returns m =⊥ and
changes user u’s message encoder state stME,u. We note that
MTP-ME never updates stME,u when decoding fails, and hence
it satisfies this requirement.

We now know that oracle Recv accepts only honestly
forwarded ciphertexts from the opposite user, and that it never
changes the channel’s state otherwise. This allows us to rewrite
the INT-security game to ignore all cryptographic algorithms
in the Recv oracle. More specifically, oracle Send can use
the opposite user’s transcript to check which ciphertexts were
produced honestly, and simply reject the ones that are not on
this transcript. For each ciphertext c that is on the transcript,
the game can maintain a table that maps it to the payload p
that was used to generate it; oracle Recv can take this payload
and immediately call ME.Decode to decode it.
4) Proof phase III: Interaction between ME and supp: By
now, we have transformed our INT-security game to an extent
that it roughly captures the requirement that the behaviour
of ME should match that of supp (i.e. adversary FINT wins
the game iff the message m produced by ME.Decode inside
oracle Recv is not equal to the corresponding output m∗ of
supp). However, the support function supp uses the MTP-CH
encryption c of payload p as its label, and it is not necessarily
clear what information about c can or should be used to define
the behaviour of supp. In order the simplify the security game
we have arrived to, we will rely on three correctness-style
notions as follows. (1) Integrity of a support function requires
that the support function returns m∗ =⊥ when it is called
on a ciphertext that cannot be found in the opposite user’s
transcript tru. (2) Robustness of a support function requires
that adding failed decryption events (i.e. m =⊥) to a transcript
does not affect the future outputs supp on any inputs. (3) We
also rely on a property requiring that a support function uses
no information about its labels beyond their equality pattern,
separately for either direction of communication (u→ u and
u → u). For the last property, we observe that in our game
p0 = p1 iff the corresponding MTP-CH ciphertexts are also
equal. This allows us to switch from using ciphertexts to using
payloads as the labels for the supp, and simultaneously change
the transcripts to also store payloads instead of ciphertexts. Our
theorem is stated with respect to supp = SUPP that satisfies
all three of the above properties.

The introduced properties of a support function allow us
to further simplify the INT-security game. This helps us to
remove the corner case that deals with Recv being queried on
an invalid ciphertext (i.e. one that was not honestly forwarded).
And finally this lets us reduce our latest version of the INT-
security game for MTP-CH to the EINT property of ME, supp
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(see Fig. 10) that is defined to match ME against supp in the
presence of adversarial behaviour on an authenticated channel
that exchanges ME payloads between two users. In Appendix E5
we show that this notion holds for MTP-ME with respect to
SUPP.
5) Case A does not have to rely on ME.Decode: In the
earlier analysis of Case A, we relied on a certain property
of the message encoding scheme ME. Roughly speaking, we
reasoned that the algorithm ME.Decode should not be able to
successfully decode random-looking strings, meaning it should
require that decodable payloads are structured in a certain way.
We now briefly outline a proof strategy that might be applicable
if one could not rely on such properties of ME.

In Case A adversary FINT calls its oracle Recv(u, c,aux) on
c = (auth_key_id′,msg_key, cse) with a msg_key value that
was never previously returned by oracle Send as a part of a
ciphertext produced by user u. This, in particular, means that
k ← KDF.Ev(kku,msg_key) can be thought of as a uniformly
random key (due to the assumed OTWIND-security of HASH,
and RKPRF-security of KDF) that was never previously used
inside oracle Send but could have been used in previous
queries to oracle Recv. Let us modify our initial goal for Case
A (which required to show that ME.Decode will likely fail) as
follows: we want to show that evaluating p← SE.Dec(k, cse)
and msg_key′← MAC.Ev(mku, p) is very unlikely to result in
msg_key′ = msg_key.

A straightforward approach now is to assume that the
function family MAC satisfies some form of either PRF-
security or preimage-resistance. Then we would be able to
argue that it is hard to find any MAC.Ev(mku, ·) input p
that maps to a fixed target output msg_key that was never
seen before. The challenge here is that neither of the two
security assumptions holds for MAC = MTP-MAC, which
defines MTP-MAC.Ev(mku, p) = SHA-256(mku ‖ p)[64 : 192],
because it is based on SHA-256 and hence permits length
extension attacks. The length extension can be applied to known
input-output pairs of MAC.Ev(mku, ·) in order to derive new
valid input-output pairs, even without knowing the key mku.
Furthermore, in this case the length extension attack cannot be
ruled out by assuming that MAC.Ev(mku, ·) will be evaluated
on a prefix-free set of inputs, because one could query Recv
on cse and c∗se (with respect to the same key k) such that cse is
a prefix of c∗se . Since SE = MTP-SE is based on a block cipher
mode of operation, then p = SE.Dec(k, cse) will likewise be
a prefix of p∗ = SE.Dec(k, c∗se). However, as long as the SE
key k can be shown to be uniformly random and unknown
to the adversary, it should be hard to find the specific prefix
value x such that p ‖ x = p∗; this non-standard condition might
help to rule out the length extension attacks. One also has to
take care of the possibility that a future call to oracle Send
might hit the currently targeted challenge value of msg_key,
especially if this proof step relies on the hardness of a decision
problem (e.g. on a variant of PRF-security of MAC). Overall,
this seems to be a viable proof strategy, but it would be much
more involved than our approach that relies on the properties
of ME.

Proof of Theorem 2. This proof uses games G0–G2 in Fig. 30a,
and games G3–G14 in Fig. 31. The adversaries for transitions
between games are provided in Fig. 30, Fig. 32, and Fig. 33.

Games G0–G2 and the transitions between them (G0 →
G1 based on the OTWIND-security of HASH, and G1 → G2
based on the RKPRF-security of KDF) are very similar to
the corresponding games and transitions in our IND-security
reduction. We refer to the proof of Theorem 1 for a detailed
explanation of both transitions.
G0: Game G0 is equivalent to game Gint

CH,supp,FINT
. It expands

the code of algorithms CH.Init, CH.Send and CH.Send. The
expanded instructions are highlighted in gray. It follows that

AdvintCH,supp(FINT) = Pr[G0].

G0 → G1: The value of auth_key_id in game G0 depends
on the initial KDF key kk. In contrast, game G1 computes
auth_key_id by evaluating HASH on uniformly random inputs
that are independent of kk. We invoke the OTWIND-security
of HASH (Fig. 20) in order to claim that adversary FINT cannot
distinguish between playing in G0 and G1. In Fig. 30b we build
an adversary DOTWIND against the OTWIND-security of HASH.
When adversary DOTWIND plays in game Gotwind

HASH,DOTWIND
with

challenge bit d ∈ {0,1}, it simulates game G0 (when d = 1)
or game G1 (when d = 0) for adversary FINT. Adversary
DOTWIND returns d ′ = 1 iff FINT sets win, so we have

Pr[G0] − Pr[G1] = AdvotwindHASH (DOTWIND).

G1 → G2: Going from G1 to G2, we switch the outputs of
KDF.Ev to uniformly random values. Since the adversary can
call k ← KDF.Ev(kku,msg_key) on the same inputs multiple
times, we use the PRF table T to enforce the consistency
between calls; the output of KDF.Ev(kku,msg_key) in G1
corresponds to a uniformly random value that is sampled and
stored in the table entry T[u,msg_key]. In Fig. 30c we build
an adersary DRKPRF against the RKPRF-security of KDF (with
respect to φKDF, Fig. 21) with respect to φKDF. When adversary
DRKPRF plays in game Grkprf

KDF,φKDF ,DRKPRF
with challenge bit

d ∈ {0,1}, it simulates game G1 (when d = 1) or game G2
(when d = 0) for adversary FINT. Adversary DRKPRF returns
d ′ = 1 iff FINT sets win, so we have

Pr[G1] − Pr[G2] = Adv
rkprf
KDF,φKDF

(DRKPRF).

G2 → G3: Game G3 differs from game G2 in the following
ways. (1) The KDF keys kk, kkI , kkR are no longer used
in our reduction games starting from G2, so they are not
included in game G3 and onwards. (2) Game G3 adds a table
S that is updated during each call to oracle Send. We set
S[u,msg_key] ← (p, cse) to remember that user u produced
msg_key when sending (to user u) an SE ciphertext cse , that
encrypts payload p. (3) Oracle Recv in game G3, prior to
calling ME.Decode, now saves a backup copy of stME,u in
variable st∗ME,u. It then adds four new conditional statements
that do not serve any purpose in game G3. Four of the future
game transitions in our security reduction (G3 → G4, G4 → G5,
G5 → G6, G7 → G8) will do the following. Each of them

22



Games G0–G2

win← false ; hk←$ {0,1}HASH.kl
kk←$ {0,1}672 ; mk←$ {0,1}320

x ← kk ‖mk // G0
x←$ {0,1}992 // G1–G2 (OTWIND of HASH)
auth_key_id← HASH.Ev(hk, x) ; (kkI,kkR ) ← φKDF(kk)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
F

Send,Recv
INT ; Return win

Send(u,m,aux,r)

(stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← KDF.Ev(kku,msg_key) // G0–G1
k ← T[u,msg_key] // G2 (RKPRF of KDF)
cse ← SE.Enc(k, p) ; c← (auth_key_id,msg_key, cse)
tru ← tru ‖ (sent,m, c,aux) ; Return c

Recv(u, c,aux)

(auth_key_id′,msg_key, cse) ← c
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← KDF.Ev(kku,msg_key) // G0–G1
k ← T[u,msg_key] // G2 (RKPRF of KDF)
p← SE.Dec(k, cse) ; msg_key′ ← MAC.Ev(mku, p) ; m←⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then

(stME,u,m) ← ME.Decode(stME,u, p,aux)
m∗ ← supp(u, tru, tru, c,aux) ; If m , m∗ then win← true
tru ← tru ‖ (recv,m, c,aux) ; Return m

(a) Games G0–G2. The code added by expanding the algorithms
of CH in game Gint

CH,supp,FINT
is highlighted in gray. The code

added for the transitions between games is highlighted in green.

Adversary DOTWIND(x0, x1,auth_key_id)
kk ‖mk ← x1 // Such that |kk | = 672 and |mk | = 320.
win← false ; (kkI,kkR ) ← φKDF(kk)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
F

SendSim,RecvSim
INT ; If win then return 1 else return 0

SendSim(u,m,aux,r) and RecvSim(u, c,aux)
// Identical to oracles Send and Recv in games G0, G1.

(b) Adversary DOTWIND against the OTWIND-security of HASH
for transition between games G0–G1.

Adversary DRoR
RKPRF

win← false ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320

x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
F

SendSim,RecvSim
INT ; If win then return 1 else return 0

SendSim(u,m,aux,r)
(stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p) ; k ← RoR(u,msg_key)
cse ← SE.Enc(k, p) ; c← (auth_key_id,msg_key, cse)
tru ← tru ‖ (sent,m, c,aux) ; Return c

RecvSim(u, c,aux)
(auth_key_id′,msg_key, cse) ← c ; k ← RoR(u,msg_key)
p← SE.Dec(k, cse) ; msg_key′ ← MAC.Ev(mku, p) ; m←⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then
(stME,u,m) ← ME.Decode(stME,u, p,aux)

m∗ ← supp(u, tru, tru, c,aux) ; If m , m∗ then win← true
tru ← tru ‖ (recv,m, c,aux) ; Return m

(c) Adversary DRKPRF against the RKPRF-security of KDF for
transition between games G1–G2.

Figure 30: Games G0–G2 and the corresponding adversaries for proof of Theorem 2. The instructions that are highlighted
inside adversaries mark the changes in the code of the simulated security reduction games.

will add an instruction, inside the corresponding conditional
statement, that reverts the pair of variables (stME,u,m) to their
initial values (st∗ME,u,⊥) that they had at the beginning of
the ongoing Recv oracle call. Each of the new conditional
statements also contains its own bad flag; these flags are only
used for the formal analysis that we provide below. (4) Similar
to above, game G3 adds two conditional statements to the
Send oracle, and both serve no purpose in game G3. In future
games they will be used to roll back the message encoder’s
state stME,u to its initial value that it had at the beginning of the
ongoing Send oracle call, followed by exiting this oracle call
with ⊥ as output. Games G3 and G2 are functionally equivalent,
so

Pr[G3] = Pr[G2].

G3 → G4: Games G3 and G4 are identical until bad0 is set.
According to the Fundamental Lemma of Game Playing [14],

Pr[G3] − Pr[G4] ≤ Pr[badG3
0 ],

where Pr[badQ] denotes the probability of setting flag bad
in game Q. The bad0 flag can be set in G3 only when the
instruction (stME,u,m) ← ME.Decode(stME,u, p,aux) simultan-
eously changes the value of stME,u and returns m =⊥. Recall

that the statement of Theorem 2 restricts ME to an instantiation
of MTP-ME. But the latter never modifies its state stME,u when
the decoding fails (i.e. m =⊥), so

Pr[badG3
0 ] = 0.

G4 → G5: Games G4 and G5 are identical until bad1 is set.
According to the Fundamental Lemma of Game Playing [14],

Pr[G4] − Pr[G5] ≤ Pr[badG5
1 ].

When the bad1 flag is set in G5, we know that the SE
key k = T[u,msg_key] was sampled uniformly at random
and never used inside the Send oracle before (because
S[u,msg_key] =⊥). Yet the adversary FINT found an SE
ciphertext cse such that the payload p ← SE.Dec(k, cse) was
successfully decoded by ME.Decode (i.e. m ,⊥). We note that
FINT is allowed to query its Recv oracle on arbitrarily many
ciphertexts cse with respect to the same SE key k, by repeatedly
using the same pair of values for (u,msg_key). But it might
nonetheless be hard for FINT to obtain a decodable payload
p if (1) the outputs of function SE.Dec(k, ·) are sufficiently
“unpredictable” for an unknown uniformly random k, and (2) the
ME.Decode algorithm is sufficiently “restrictive” (e.g. designed
to run some sanity checks on its payloads, hence rejecting a
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Games G3–G8

win← false ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320

x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
F

Send,Recv
INT ; Return win

Send(u,m,aux,r)

st∗ME,u ← stME,u ; (stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; cse ← SE.Enc(k, p)
If S[u,msg_key] ,⊥ then
(p′, c′se) ← S[u,msg_key]
If p , p′ then
bad2 ← true
stME,u ← st∗ME,u ; Return ⊥ // G6–G8 (RKCR of MAC)

If SE.Dec(k, cse) , p then
bad3 ← true
stME,u ← st∗ME,u ; Return ⊥ // G7–G8 (SE = MTP-SE)

S[u,msg_key] ← (p, cse) ; c← (auth_key_id,msg_key, cse)
tru ← tru ‖ (sent,m, c,aux) ; Return c

Recv(u, c,aux)

(auth_key_id′,msg_key, cse) ← c
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; p← SE.Dec(k, cse)
msg_key′ ← MAC.Ev(mku, p) ; m←⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then

st∗ME,u ← stME,u ; (stME,u,m) ← ME.Decode(stME,u, p,aux)
If S[u,msg_key] =⊥ then

If (m =⊥) ∧ (stME,u , st∗ME,u) then
bad0 ← true
stME,u ← st∗ME,u // G4–G8 (ME = MTP-ME)

If m ,⊥ then
bad1 ← true
(stME,u,m) ← (st∗ME,u,⊥) // G5–G8 (UNPRED of SE,ME)

If S[u,msg_key] ,⊥ then
(p′, c′se) ← S[u,msg_key]
If p , p′ then
bad2 ← true
(stME,u,m) ← (st∗ME,u,⊥) // G6–G8 (RKCR of MAC)

Else if cse , c′se then
bad4 ← true
(stME,u,m) ← (st∗ME,u,⊥) // G8 (SE = MTP-SE)

m∗ ← supp(u, tru, tru, c,aux) ; If m , m∗ then win← true
tru ← tru ‖ (recv,m, c,aux) ; Return m

Games G9–G13

win← false ; hk←$ {0,1}HASH.kl ; mk←$ {0,1}320

x←$ {0,1}992 ; auth_key_id← HASH.Ev(hk, x)
(mkI,mkR ) ← φMAC(mk) ; (stME,I, stME,R ) ←$ ME.Init()
F

Send,Recv
INT ; Return win

Send(u,m,aux,r)

st∗ME,u ← stME,u ; (stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; cse ← SE.Enc(k, p)
If (S[u,msg_key] ,⊥) ∧ (S[u,msg_key] , (p, cse)) then

stME,u ← st∗ME,u ; Return ⊥
If SE.Dec(k, cse) , p then

stME,u ← st∗ME,u ; Return ⊥
S[u,msg_key] ← (p, cse) ; c← (auth_key_id,msg_key, cse)
tru ← tru ‖ (sent,m, c,aux) // G9–G11
tru ← tru ‖ (sent,m, p,aux) // G12–G13 (supp = SUPP)
P[u, c] ← p ; Return c

Recv(u, c,aux)

If P[u, c] ,⊥ then // ∃m′,aux ′ : (sent,m′, c,aux ′) ∈ tru
p← P[u, c] ; (stME,u,m) ← ME.Decode(stME,u, p,aux)
m∗ ← supp(u, tru, tru, c,aux)
tru ← tru ‖ (recv,m, c,aux)

}
// G9–G11

m∗ ← supp(u, tru, tru, p,aux)
tru ← tru ‖ (recv,m, p,aux)

}
// G12–G13 (supp = SUPP)

Else
m←⊥ ; m∗ ← supp(u, tru, tru, c,aux)
If m∗ ,⊥ then
bad5 ← true
m∗ ←⊥ // G10–G13 (supp = SUPP)

tru ← tru ‖ (recv,m, c,aux) // G9–G10 (supp = SUPP)
If m , m∗ then
bad6 ← true
win← true // G9–G12 (EINT of ME, supp)

Return m

Figure 31: Games G3–G13 for proof of Theorem 2. Right pane: The code highlighted in gray is functionally equivalent to the
corresponding code in G8. Both panes: The code added for the transitions between games is highlighted in green.

fraction of them). We use the unpredictability notion of SE with
respect to ME, which captures this intuition. In Fig. 32a we
build an adversary FUNPRED against the UNPRED-security of
SE,ME (Fig. 27) as follows. When adversary FUNPRED plays in
game Gunpred

SE,ME,FUNPRED
, it simulates game G5 for adversary FINT.

Adversary FUNPRED wins in its own game whenever FINT sets
bad1, so we have

Pr[badG5
1 ] ≤ Adv

unpred
SE,ME (FUNPRED).

First of all, adversary FUNPRED does not maintain its own
transcripts tru, tru, and hence does not evaluate the support
function supp at the end of the simulated Recv oracle.
This is because supp’s outputs do not affect the input-output
behaviour of the simulated oracles Send and Recv, and
because this reduction step does not rely on whether adversary
FINT succeeds to win in the simulated game (but rather only
whether it sets bad1). Some of the adversaries we construct
for the next reduction steps will likewise not maintain the
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Adversary FExpose,Ch
UNPRED

hk←$ {0,1}HASH.kl ; mk←$ {0,1}320 ; x←$ {0,1}992

auth_key_id← HASH.Ev(hk, x) ; (mkI,mkR ) ← φMAC(mk)
(stME,I, stME,R ) ←$ ME.Init() ; F SendSim,RecvSim

INT
SendSim(u,m,aux,r)
(stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p)
If S[u,msg_key] =⊥ then T[u,msg_key] ← Expose(u,msg_key)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; cse ← SE.Enc(k, p)
S[u,msg_key] ← (p, cse) ; c← (auth_key_id,msg_key, cse)
Return c

RecvSim(u, c,aux)
(auth_key_id′,msg_key, cse) ← c
If S[u,msg_key] ,⊥ then

If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; p← SE.Dec(k, cse)
msg_key′ ← MAC.Ev(mku, p) ; m←⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then
(stME,u,m) ← ME.Decode(stME,u, p,aux)

If S[u,msg_key] =⊥ then
m←⊥ ; Ch(u,msg_key, cse, stME,u,aux)

Return m
(a) Adversary FUNPRED against the UNPRED-security of SE,ME for
transition between games G4–G5.

Adversary FRKCR(mkI,mkR )

hk←$ {0,1}HASH.kl ; x←$ {0,1}992

auth_key_id← HASH.Ev(hk, x)
(stME,I, stME,R ) ←$ ME.Init() ; F SendSim,RecvSim

INT ; Return out

SendSim(u,m,aux,r)
(stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; cse ← SE.Enc(k, p)
If S[u,msg_key] ,⊥ then
(p′, c′se) ← S[u,msg_key] ; If p , p′ then out← (u, p, p′)

S[u,msg_key] ← (p, cse) ; c← (auth_key_id,msg_key, cse)
Return c

RecvSim(u, c,aux)
(auth_key_id′,msg_key, cse) ← c
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; p← SE.Dec(k, cse)
msg_key′ ← MAC.Ev(mku, p) ; m←⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then

st∗ME,u ← stME,u ; (stME,u,m) ← ME.Decode(stME,u, p,aux)
If S[u,msg_key] =⊥ then (stME,u,m) ← (st∗ME,u,⊥)
If S[u,msg_key] ,⊥ then
(p′, c′se) ← S[u,msg_key] ; If p , p′ then out← (u, p, p′)

Return m
(b) Adversary FRKCR against the RKCR-security of MAC for
transition between games G5–G6.

Figure 32: Adversaries for transitions between games G4–G6 in proof of Theorem 2. The highlighted instructions mark the
changes in the code of the simulated security reduction games.

transcripts.

Adversary FUNPRED splits the simulation of game G5’s
Recv oracle into two cases. (1) If S[u,msg_key] ,⊥, then
FUNPRED honestly simulates all instructions that would have
been evaluated by Recv. (2) If S[u,msg_key] =⊥, then
FUNPRED does not modify stME,u and always returns m =⊥;
this is consistent with the behaviour of oracle Recv in
game G5. In addition to the latter, adversary FUNPRED also
makes a call to its oracle Ch. This oracle simulates all
instructions that would have been evaluated by Recv when
S[u,msg_key] =⊥, except it omits the condition checking
(msg_key′ = msg_key)∧(auth_key_id = auth_key_id′). This
condition is a prerequisite to setting flag bad1 in game G5;
the change is fine because adversary FINT will set this flag
in the simulated game at least as often as in the real game.
Finally, adversary FUNPRED uses its Expose oracle to learn the
values from the PRF table that is maintained by the UNPRED-
security game, and synchronizes them with its own PRF table
T inside the simulated oracle Send (intuitively, this appears
unnecessary, but it helps us avoid further analysis to show that
FUNPRED perfectly simulates game G5).

G5 → G6: Games G5 and G6 are identical until bad2 is set.
According to the Fundamental Lemma of Game Playing [14],

Pr[G5] − Pr[G6] ≤ Pr[badG5
2 ].

Game G5 sets the bad2 flag in two different places: one inside
oracle Send, and one inside oracle Recv. In either case, this
happens when the table entry S[w,msg_key] = (p′, c′se), for
some w ∈ {I,R}, indicates that a prior call to oracle Send
obtained msg_key← MAC.Ev(mkw, p′), and now we found p
such that p , p′ and msg_key = MAC.Ev(mkw, p). This results
in a collision for MAC under related keys, and hence breaks its
RKCR-security (with respect to φMAC, Fig. 22). In Fig. 32b we
build an adversary FRKCR against the RKCR-security of MAC
with respect to φMAC as follows. When adversary FRKCR plays
in game Grkcr

MAC,φMAC ,FRKCR
, it simulates game G5 for adversary

FINT. Adversary FRKCR wins in its own game whenever FINT
sets bad2, so we have

Pr[badG5
2 ] ≤ Adv

rkcr
MAC,φMAC (FRKCR).

G6 → G7: Games G6 and G7 are identical until bad3 is set.
According to the Fundamental Lemma of Game Playing [14],

Pr[G6] − Pr[G7] ≤ Pr[badG6
3 ].

If bad3 is set in G6, it means that adversary FINT found
a payload p and an SE key k ∈ {0,1}SE.kl such that
SE.Dec(k,SE.Enc(k, p)) , p. This violates the decryption
correctness of SE. Recall that the statement of Theorem 2
considers SE = MTP-SE. The MTP-SE scheme satisfies decryp-
tion correctness, so

Pr[badG6
3 ] = 0.
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G7 → G8: Games G7 and G8 are identical until bad4 is set.
According to the Fundamental Lemma of Game Playing [14],

Pr[G7] − Pr[G8] ≤ Pr[badG7
4 ].

Whenever bad4 is set in game G7, we know that (1) p ←
SE.Dec(k, cse) was computed during the ongoing Recv call,
and (2) c′se ← SE.Enc(k, p) was computed during an earlier
call to Send, which also verified that SE.Dec(k, c′se) = p.
Importantly, we also know that cse , c′se . The statement of
Theorem 2 considers SE = MTP-SE. The latter is a deterministic
symmetric encryption scheme that is based on the IGE block
cipher mode of operation. For each key k ∈ {0,1}SE.kl and
each length ` ∈ N such that {0,1}` ⊆ SE.MS, this scheme
specifies a permutation between all plaintexts from {0,1}`
and all ciphertexts from {0,1}` . In particular, this means that
MTP-SE has unique ciphertexts, meaning it is impossible to
find cse , c′se that, under any fixed choice of key k, decrypt
to the same payload p. It follows that bad4 can never be set
when SE = MTP-SE, so we have

Pr[badG7
4 ] = 0.

G8 → G9: We say that a ciphertext c belongs to (or appears
in) a support transcript tr iff ∃m′,aux ′ : (sent,m′, c,aux ′) ∈ tr.

Let us start by showing that oracle Recv in game G8
evaluates (stME,u,m) ← ME.Decode(stME,u, p,aux) and does
not subsequently roll back the variables stME,u,m to the
initial values they had at the beginning of the ongoing
oracle call iff c belongs to tru. (1) If oracle Recv evaluates
(stME,u,m) ← ME.Decode(stME,u, p,aux) and does not restore
the values of stME,u,m, then auth_key_id = auth_key_id′

and S[u,msg_key] = (p, cse) (the latter implies msg_key′ =
msg_key). According to the construction of oracle Send, this
means that the ciphertext c′ = (auth_key_id′,msg_key, cse) ap-
pears in transcript tru. (2) Let c = (auth_key_id′,msg_key, cse)
be any MTP-CH ciphertext, and let u ∈ {I,R}. If c belongs
to tru, then by construction of oracle Send we know that
auth_key_id = auth_key_id′ and S[u,msg_key] = (p, cse)
for the payload p such that k = T[u,msg_key], and cse =
SE.Enc(k, p), and p = SE.Dec(k, cse). The latter equality is
guaranteed by the decryption correctness of SE = MTP-SE that
we used for transition G6 → G7. The RKCR-security of MAC
guarantees that once S[u,msg_key] is populated, a future call
to oracle Send cannot overwrite S[u,msg_key] with a different
pair of values. All of the above implies that if c belongs to
tru at the beginning of a call to oracle Recv, then this oracle
will successfully verify that auth_key_id = auth_key_id′ and
S[u,msg_key] = (p, cse) for p ← SE.Dec(k, cse) (whereas
msg_key′ = msg_key follows from S[u,msg_key] containing
the payload p). It means that the instruction (stME,u,m) ←
ME.Decode(stME,u, p,aux) will be evaluated, and the variables
stME,u,m will not be subsequently rolled back to their initial
values.

Game G9 differs from game G8 in the following ways. (1)
Game G9 adds a payload table P that is updated during each
call to oracle Send. We set P[u, c] ← p to indicate that the

MTP-CH ciphertext c, which was sent from user u to user u,
encrypts the payload p. Observe that any pair (u, c) with c =
(auth_key_id,msg_key, cse) corresponds to a unique payload
that can be recovered as p← SE.Dec(T[u,msg_key], cse). This
relies on decryption correctness of SE, which is guaranteed
to hold for ciphertexts inside table P due to the changes that
we introduced in the transition between games G6 → G7. (2)
Game G9 rewrites the code of game G8’s oracle Recv to
run ME.Decode iff the ciphertext c belongs to the transcript
tru; otherwise, the Recv oracle does not change stME,u and
simply sets m←⊥. This follows from the analysis of G8 that
we provided above. We note that checking whether c belongs
to tru is equivalent to checking P[u, c] ,⊥. For simplicity, we
do the latter; and if the condition is satisfied, then we set
p ← P[u, c] and run ME.Decode with this payload as input.
As discussed above, the MTP-CH ciphertext c that is issued by
user u always encrypts a unique payload p, and hence we can
rely that the table entry P[u, c] stores this unique payload value.
(3) Game G9 also rewrites one condition inside oracle Send,
in a more compact but equivalent way. It also adds one new
conditional statement to oracle Recv (checking m∗ ,⊥), but
it serves no purpose in G9. Games G9 and G8 are functionally
equivalent, so

Pr[G9] = Pr[G8].

G9 → G10: Game G10 enforces that m∗ =⊥ whenever its oracle
Recv is called on a ciphertext that cannot be found in the
appropriate user’s transcript. Games G9 and G10 are identical
until bad5 is set. According to the Fundamental Lemma of
Game Playing [14],

Pr[G9] − Pr[G10] ≤ Pr[badG9
5 ].

If bad5 is set in game G9 then the support function supp
returned m∗ ,⊥ in response to an MTP-CH ciphertext c that
does not belong to the opposite user’s transcript tru. The
statement of Theorem 2 considers supp = SUPP. The latter is
defined to always return m∗ =⊥ when its input label does not
appear in tru, so

Pr[badG9
5 ] = 0.

In Section III we refer to this property as the integrity of supp,
and we also formally define it in Fig. 36.
G10 → G11: Game G11 stops adding all entries of the form
(recv,⊥, c,aux) to the transcripts of both users. Once this
is done, it becomes pointless for adversary FINT to call its
Recv oracle on any ciphertext that does not appear in the
appropriate user’s transcript. This is because such a call will
never set the win flag (due to the change introduced in transition
G9 → G10) and will never affect the transcript of either user
(due to the change introduced in this transition). The statement
of Theorem 2 considers supp = SUPP. The latter is defined
to ignore all transcript entries of the form (recv,⊥, c,aux), so
removing the instruction tru ← tru ‖ (recv,m, c,aux) for m =⊥
will not affect the outputs of any future calls to this support
function. We have

Pr[G11] = Pr[G10].
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In Section III we refer to this property as the robustness of
supp.
G11 → G12: When discussing the differences between games
G9 and G8, we showed that for each pair of sender u ∈ {I,R}
and MTP-CH ciphertext c, the encrypted payload p is unique. It
is also true that for each pair of u ∈ {I,R} and payload
p, there is a unique MTP-CH ciphertext c that encrypts p
in the direction from u to u. It follows that in games G11
and G12 for any fixed user u ∈ {I,R} there is a 1-to-1
correspondence between payloads and MTP-CH ciphertexts
that could be successfully sent from u to u (i.e. this property
does not hold if SE does not have decryption correctness, but
the code added for the transition G6 → G7 already identifies
and discards the corresponding ciphertexts). The statement
of Theorem 2 considers supp = SUPP. Observe that for any
label z sent from u to u, the support function SUPP cheks
only its equality with every z∗ such that (sent,m, z∗,aux) ∈ tru
or (recv,m, z∗,aux) ∈ tru for any values of m,aux. In other
words, this support function only looks at the equality pattern
of the labels, and it does this independently in each of the
two directions between the users. The 1-to-1 correspondence
between c and p, with respect to any fixed user u, means we
can replace the labels used in transcripts from c to p, and
replace the label inputs to the support function SUPP in the
same way; the future outputs of the support function will
remain the same. We have

Pr[G12] = Pr[G11].

Adversary F Send,Recv
EINT (stME,I, stME,R )

hk←$ {0,1}HASH.kl ; mk←$ {0,1}320 ; x←$ {0,1}992

auth_key_id← HASH.Ev(hk, x)
(mkI,mkR ) ← φMAC(mk) ; F SendSim,RecvSim

INT
SendSim(u,m,aux,r)
st∗ME,u ← stME,u ; (stME,u, p) ← ME.Encode(stME,u,m,aux; r)
msg_key← MAC.Ev(mku, p)
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k ← T[u,msg_key] ; cse ← SE.Enc(k, p)
If (S[u,msg_key] ,⊥) ∧ (S[u,msg_key] , (p, cse)) then

stME,u ← st∗ME,u ; Return ⊥
If SE.Dec(k, cse) , p then

stME,u ← st∗ME,u ; Return ⊥
S[u,msg_key] ← (p, cse) ; c← (auth_key_id,msg_key, cse)
Send(u,m,aux,r) ; P[u, c] ← p ; Return c

RecvSim(u, c,aux)
If P[u, c] ,⊥ then

p← P[u, c] ; (stME,u,m) ← ME.Decode(stME,u, p,aux)
m← Recv(u, p,aux) ; Return m

Else return ⊥
Figure 33: Adversary FEINT against the EINT-security of
ME, supp for transition between games G12–G13 in proof of
Theorem 2. The highlighted instructions mark the locations in
the pseudocode of the simulated game G13 where adversary
FEINT uses its own oracles.

G12 → G13: Games G12 and G13 are identical until bad6 is set.
According to the Fundamental Lemma of Game Playing [14],

Pr[G12] − Pr[G13] ≤ Pr[badG13
6 ].

Games G12 and G13 can be thought of as simulating a
bidirectional authenticated channel that allows the two users
to exchange ME payloads. The adversary FINT is allowed to
forward, mirror, drop, and replay the payloads; but it is not
allowed to modify or forge them. This description roughly
corresponds to the definition of EINT-security of ME with
respect to supp (Fig. 10). In games G12–G13 the oracle Send
still runs cryptographic algorithms in order to generate and
output MTP-CH ciphertexts, but we will build an EINT-security
adversary that simulates these additional instructions for FINT.
In Fig. 33 we build an adversary FEINT against the EINT-
security of ME, supp as follows. When adversary FEINT plays
in game Geint

ME,supp,FEINT
, it simulates game G13 for adversary

FINT. Adversary FEINT wins in its own game whenever FINT
sets bad6, so we have

Pr[badG13
6 ] ≤ Adv

eint
ME,supp(FEINT).

Observe that FEINT takes I’s and R’s initial ME states as input,
and repeatedly calls the ME algorithms to manually update these
states (as opposed to relying on its Send and Recv oracles).
This allows FEINT to correctly identify the two conditional
statements inside the simulated oracle SendSim that require
to roll back the most recent update to stME,u and to exit the
oracle with ⊥ as output.

Adversary FINT can no longer win in game G13, because
the only instruction that sets the win flag in games G0–G12
was removed in transition to game G13. It follows that

Pr[G13] = 0.

The theorem statement follows. �

F. Instantiation and Interpretation

We are now ready to combine the theorems from the
previous two sections with the notions defined in Section V-A
and Section V-B and the proofs in Appendix E. This is
meant to allow interpretation of our main results: qualitatively
(what security assumptions are made) and quantitatively (what
security level is achieved). Note that in both of the following
corollaries, the adversary is limited to making 296 queries.
This is due to the wrapping of counters in MTP-ME, since
beyond this limit the advantage in breaking UPREF-security
and EINT-security of MTP-ME becomes 1.

Corollary 1. Let MTP-ME, MTP-HASH, MTP-MAC, MTP-KDF,
φMAC, φKDF, MTP-SE be the primitives of MTProto defined
in Section IV-D. Let φSHACAL-2 be the key-derivation function
defined in Appendix E2. Let h256 be the SHA-256 compression
function, and let H be the corresponding function family
with H.Ev = h256, H.kl = H.ol = 256, H.In = {0,1}512.
Let CH = MTP-CH[MTP-ME,MTP-HASH,MTP-MAC,MTP-KDF,
φMAC, φKDF,MTP-SE]. Let ` ∈ N. Let DIND be any adversary
against the IND-security of CH, making qCh < 296 queries
to its Ch oracle, each query made for messages of length
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at most ` ≤ 227 bits.21Then there exist adversaries DSHACAL-1
OTPRF ,

DLRKPRF, DHRKPRF, DH
OTPRF, DOTIND$ such that

AdvindCH (DIND) ≤ 4 ·
(
AdvotprfSHACAL-1(D

SHACAL-1
OTPRF )

+ AdvlrkprfSHACAL-2,φKDF ,φSHACAL-2
(DLRKPRF)

+ AdvhrkprfSHACAL-2,φMAC
(DHRKPRF)

+
`

512
· AdvotprfH (DH

OTPRF)
)

+
qCh · (qCh − 1)

2128

+ 2 · Advotind$
CBC[AES-256](DOTIND$).

Corollary 1 follows from Theorem 1 together with Pro-
position 3, Proposition 4, Proposition 5 with Lemma 1 and
Proposition 6. The two terms in Theorem 1 related to ME
are zero for ME = MTP-ME when an adversary is restricted to
making qCh < 296 queries. Qualitatively, Corollary 1 shows that
the privacy of the MTProto-based channel depends on whether
SHACAL-1 and SHACAL-2 can be considered as pseudorandom
functions in a variety of modes: with keys used only once,
related keys, partially chosen-keys when evaluated on fixed
inputs and when the key and input switch positions. Especially
the related-key assumptions (LRKPRF and HRKPRF) are
highly unusual; both assumptions hold in the ideal cipher model,
but require further study in the standard model. Quantitatively,
a limiting term in the advantage, which implies security only
if qCh < 264, is a result of the birthday bound on the MAC
output, though we note that we do not have a corresponding
attack in this setting and thus the bound may not be tight.

Corollary 2. Let MTP-ME, MTP-HASH, MTP-MAC, MTP-KDF,
φMAC, φKDF, MTP-SE be the primitives of MTProto defined
in Section IV-D. Let φSHACAL-2 be the key-derivation func-
tion defined in Appendix E2. Let SHA-256′ be SHA-256
with its output truncated to the middle 128 bits. Let
CH = MTP-CH[MTP-ME,MTP-HASH,MTP-MAC,MTP-KDF,
φMAC, φKDF,MTP-SE]. Let supp be the support function as
defined in Fig. 25. Let FINT be any adversary against the
INT-security of CH with respect to supp, making qSend < 296

queries to its Send oracle. Then there exist adversaries
DOTPRF, DLRKPRF, FCR such that

AdvintCH,supp(FINT) ≤ 2 ·
(
AdvotprfSHACAL-1(DOTPRF)

+ AdvlrkprfSHACAL-2,φKDF ,φSHACAL-2
(DLRKPRF)

)
+

qSend
264 + AdvcrSHA-256′(FCR).

Corollary 2 follows from Theorem 2 together with Pro-
position 3, Proposition 4 and Proposition 8. The term
AdveintMTP-ME,SUPP(FEINT) from Theorem 2 resolves to 0 for ad-
versaries making qSend < 296 queries. Qualitatively, Corollary 2
shows that also the integrity of the MTProto-based channel
depends on SHACAL-1 and SHACAL-2 behaving as PRFs. Due
to the way the MAC is constructed, the result also depends on
the collision resistance of truncated SHA-256. Quantitatively,
the advantage is again bounded by qSend < 264. This bound

21The maximum message length in MTProto is 227 bits.

follows from the fact that the first block of payload contains a
64-bit constant session_id which has to match upon decoding.
If the MTProto message encoding scheme consistently checked
more fields during decoding (especially in the first block), the
bound could be improved.

VI. Timing side-channel attack
We present a timing side-channel attack against implement-

ations of MTProto. The attack arises from MTProto’s reliance
on an Encrypt & MAC construction, the malleability of IGE
mode, and specific weaknesses in implementations. The attack
proceeds in the spirit of [12]: move a target ciphertext block
to a position where the underlying plaintext will be interpreted
as a length field and use the resulting behaviour to learn some
information. The attack is complicated by Telegram using
IGE mode instead of CBC mode analysed in [12]. We begin
by describing a generic way to overcome this obstacle in
Section VI-A. We describe the side channels found in the
implementations of several Telegram clients in Section VI-B
and experimentally demonstrate the existence of a timing side
channel in the desktop client in Section VI-G.
A. Manipulating IGE

Suppose we intercept an IGE ciphertext c consisting of t
blocks (for any block cipher E): c1 | c2 | . . . | ct where |
denotes a block boundary. Further, suppose we have a side
channel that enables us to learn some bits of m2, the second
plaintext block.22 In IGE mode, we have ci = EK (mi ⊕ ci−1) ⊕
mi−1 for i = 1,2, . . . , t (see Section II). Fix a target block
number i for which we are interested in learning a portion
of mi that is encrypted in ci . Assume we know the plaintext
blocks m1 and mi−1.

We construct a ciphertext c1 | c? where c? := ci ⊕mi−1 ⊕m1.
This is decrypted in IGE mode as follows:

m1 = E−1
K (c1 ⊕ IVm) ⊕ IVc

m? = E−1
K (c

? ⊕ m1) ⊕ c1 = E−1
K (ci ⊕ mi−1) ⊕ c1

= mi ⊕ ci−1 ⊕ c1

Since we know c1 and ci−1, we can recover some bits of mi

if we can obtain the corresponding bits of m? (e.g. through a
side channel leak).

To motivate our known plaintext assumption, consider a
message where mi−1 = “Today’s password” and mi = “is
SECRET”. Here mi−1 is known, while learning bytes of mi is
valuable. On another hand, the requirement of knowing m1 may
not be easy to fulfil in MTProto. The first plaintext block of
an MTProto payload always contains server_salt ‖ session_id,
both of which are random values. It is unclear whether they
were intended to be secret, but in effect they are, limiting
the applicability of this attack. Appendix F gives an attack to
recover these values. Note that these values are the same for all
ciphertexts within a single session, so if they were recovered,
then we could carry out the attack on each of the ciphertexts
in turn. This allows the basic attack above to be iterated when
the target mi is fixed across all the ciphertexts (cf. [12]).

22The attack is easy to adapt to a different block.
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B. Leaky length field
The preceding attack assumes we have a side channel that

enables us to learn part of the second plaintext block. We now
show how such side channels arise in implementations.

The msg_length field occupies the last four bytes of the
second block of every MTProto cloud message plaintext (see
Section IV-A). After decryption, the field is checked for validity
in Telegram clients. Crucially, in several implementations this
check is performed before the MAC check, i.e. before msg_key
is recomputed from the decrypted plaintext. If either of those
checks fails, the client closes the connection without outputting
a specific error message. However, if an implementation is not
constant time, an attacker who submits modified ciphertexts of
the form described above may be able to distinguish between
an error arising from validity checking of msg_length and a
MAC error, and thus learn something about the bits of plaintext
in the position of the msg_length field.

Since different Telegram clients implement different checks
on the msg_length field, we now proceed to a case-by-case
analysis, showing relevant code excerpts in each case.

C. Android
The field msg_length is referred to as messageLength

in this implementation. The check is performed in
decryptServerResponse of Datacenter.cpp [43], which
compares messageLength with another length field (see code
below). If the messageLength check fails, the MAC check
is still performed. The timing difference thus consists only
of two conditional jumps, which would be small in practice.
The length field is taken from the first four bytes of the
transport protocol format and is not checked against the actual
packet size, so an attacker can substitute arbitrary values. Using
multiple queries with different length values could thus enable
extraction of up to 32 bits of plaintext from the messageLength
field.
if (messageLength > length - 32) {

error = true;
} else if (paddingLength < 12 || paddingLength > 1024) {

error = true;
}
messageLength += 32;
if (messageLength > length) {

messageLength = length;
}
// compute messageKey [redacted due to space]
return memcmp(messageKey + 8, key , 16) == 0 && !error;

D. Desktop
Here the length check is performed in the method

handleReceived of session_private.cpp [44], which com-
pares the messageLength field with a fixed value of
kMaxMessageLength = 224. When this check fails, the connec-
tion is closed and no MAC check is performed, providing a
potentially large timing difference. Because of the fixed value
224, this check would leak the 8 most significant bits of the
target block mi with probability 2−8, allowing those bits to be
recovered with certainty after about 28 attempts on average.23

23Note that beats random guessing as the correct value can be recognised.

if (messageLength > kMaxMessageLength) {
LOG(("TCP Error: bad messageLength %1").arg(

messageLength ));
TCP_LOG (("TCP Error: bad message %1").arg(

Logs::mb(ints ,
intsCount * kIntSize ).str ()));

return restart ();
}
// ...
// MAC computation and check follow

E. iOS
The field msg_length is referred to as messageDataLength

here. The method _decryptIncomingTransportData of
MTProto.m [45] compares the messageDataLength field with
the length of the decrypted data first in a padding length check
and then directly, see code below. If either check fails, it hashes
the complete decrypted payload. A timing side channel arises
because sometimes this countermeasure hashes fewer bytes
than a genuine MAC check (the latter also hashes 32 bytes of
auth_key, here effectiveAuthKey.authKey; hence one more
512-bit block will be hashed unless the length of the decrypted
payload in bits modulo 512 is 184 or less24, this condition
being due to padding). If an attacker can change the value
of decryptedData.length directly or by attaching additional
ciphertext blocks, this could leak up to 32 bits of plaintext as
in the Android client.
int32_t paddingLength =

(( int32_t)decryptedData.length)
- messageDataLength;

if (paddingLength < 12 || paddingLength > 1024) {
__unused NSData *result = MTSha256(decryptedData );
return nil;

}

if (messageDataLength < 0 ||
messageDataLength > (int32_t)decryptedData.length) {

__unused NSData *result = MTSha256(decryptedData );
return nil;

}

int xValue = 8;
NSMutableData *msgKeyLargeData =

[[ NSMutableData alloc] init];
[msgKeyLargeData appendBytes:effectiveAuthKey.authKey.bytes

+ 88 + xValue length :32];
[msgKeyLargeData appendData:decryptedData ];

NSData *msgKeyLarge = MTSha256(msgKeyLargeData );
NSData *messageKey =

[msgKeyLarge subdataWithRange:NSMakeRange (8, 16)];

if (![ messageKey isEqualToData:embeddedMessageKey ])
return nil;

F. Discussion
Note that all three of the above implementations are in

violation of Telegram’s own security guidelines [46] which
state: “If an error is encountered before this check could be
performed, the client must perform the msg_key check anyway
before returning any result. Note that the response to any error
encountered before the msg_key check must be the same as the
response to a failed msg_key check.” Interestingly, TDLib [11],

24This condition holds for payloads of length 191 bits or less modulo 512,
but interface to hash functions in OpenSSL and derived libraries only accepts
inputs in multiples of bytes not bits.
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the cross-platform library for building Telegram clients, does
avoid timing leaks by running the MAC check first.

Remark 1. Recall that in Section IV-D, we define a simplified
message encoding scheme which uses a constant in place of
session_id and server_salt. This change would make the above
attack more practical. However, the attack is enabled by a
misplaced msg_key check and the mitigation offered by those
values being secret in the implementations is accidental. Put
differently, the attacks described in this section do not justify
their secrecy; our proofs of security do not rely on them being
secret.

G. Practical experiments
We ran experiments to verify whether the side channel

present in the desktop client code is exploitable. We measured
the time difference between processing a message with a
wrong msg_length and processing a message with a correct
msg_length but a wrong MAC. This was done using the Linux
desktop client, modified to process messages generated on the
client side without engaging the network. The code can be
found in Appendix H. We collected data for 108 trials for each
case under ideal conditions, i.e. with hyper-threading, Turbo
Boost etc. disabled. After removing outliers, the difference in
means was about 3 microseconds, see Fig. 34. This should
be sufficiently large for a remote attacker to detect, even
with network and other noise sources (cf. [47], where sub-
microsecond timing differences were successfully resolved
over a LAN).

Figure 34: Processing time of SessionPrivate::
handleReceived in microseconds.

29 30 31 32 33 34 35

0
20

00
00

0
40

00
00

0

length
MAC

error type # trials mean st. dev. median

msg_length 97820883 30.330652 0.267439 30.308
MAC 96908852 33.603296 0.190341 33.589

VII. Discussion
The central result of this work is a proof that the use

of symmetric encryption in Telegram’s MTProto 2.0 can
achieve the security of a robust bidirectional channel if small
modifications are made. Thus, when those changes are made
our work can give some assurance to those reliant on Telegram
providing confidential and integrity-protected cloud chats – at

a comparable level to chat protocols that run over TLS’s record
protocol. However, our work comes with a host of caveats.
Attacks: Our work also presents attacks against the symmetric
encryption in Telegram. These highlight the gap between
the variant of MTProto 2.0 that we model and Telegram’s
implementations. While the reordering attack in Section IV-B1
and the attack on IND-CPA security in Section IV-B2 are
possible against current implementations, they can easily be
avoided without making changes to the on-the-wire format
of MTProto, i.e. by only changing processing in clients and
servers. We recommend that Telegram adopts these changes.

Our attacks in Section VI are attacks on the implementation.
As such, they can be considered outside the model: our
model only shows that there can be secure instantiations of
MTProto but does not cover the actual implementations; in
particular, we do not model timing differences. That said,
protocol design has a significant impact on the ease with which
secure implementations can be achieved. Here, the decision in
MTProto to adopt Encrypt & MAC enables the potential for
a leak that we then exploit. This “brittleness” of MTProto is
of particular relevance due to the surfeit of implementations
of the protocol, and security advice may not be heeded by all
authors.25

Here Telegram’s apparent ambition to provide TDLib as
a one-stop solution for clients across platforms will allow
security researchers to focus their efforts. We thus recommend
that Telegram swaps out the low-level cryptographic processing
in all official clients by a carefully vetted library.
Tightness: On the other hand, our proofs are not necessarily
tight. That is, our theorem statements contain terms bounding
the advantage by q/264 where q is the number of queries sent by
the adversary. Yet, we have no attacks matching these bounds
(our attacks with complexity 264 are outside the model). Thus,
it is possible that a refined analysis would allow to tighten
these bounds.
Future work: Our attack in Appendix F is against the
implementation of Telegram’s key exchange and is thus outside
of our model for two reasons: as before, we do not consider
timing side channels in our model and, critically, we only
model the symmetric part of MTProto. This highlights a second
significant caveat for our results that large parts of Telegram’s
design remain unstudied: multi-user security, the key exchange,
the higher-level message processing, secret chats, forward
secrecy, control messages, bot APIs, CDNs, cloud storage,
the Passport feature; to name but a few. These are pressing
topics for future work.
Assumptions: In our proofs we are required to rely on
unstudied assumptions about the underlying primitives used
in MTProto. In particular, we have to make related-key

25Indeed, the Telegram developers rule out length-extension attacks in [48]
because the MAC is computed on the plaintext and because any change in
the MAC affects the decryption key and thus the decrypted plaintext, which
makes it unlikely that the integrity check passes. This is largely correct but
only under the assumption that msg_id is actually unique and re-encryption of
messages with the same msg_id is not allowed. That is, the condition given
by the developers in the FAQ is violated by several official Telegram clients.
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assumptions about the compression function of SHA-256 which
could be easily avoided by tweaking the use of these primitives
in MTProto. In the meantime, these assumptions represent
interesting targets for symmetric cryptography research. Sim-
ilarly, the complexity of our proofs and assumptions largely
derives from MTProto deploying hash functions in place of
(domain-separated) PRFs such as HMAC. We recommend the
Telegram adopts well-studied primitives for future versions of
MTProto to ease analysis and thus to increase confidence in
their design; or, indeed, adopt TLS.

Telegram: While we prove security of MTProto at a protocol
level, we recall that by default communication via Telegram
must trust the Telegram servers, i.e. end-to-end encryption
is optional and not available for group chats. We thus, on
the one hand, (a) recommend that Telegram open-sources the
cryptographic processing on their servers and (b) recommend to
avoid referencing Telegram as an “encrypted messenger” which
– post-Snowden – has come to mean end-to-end encryption. On
the other hand, discussions about end-to-end encryption aside,
echoing [2], [3] we note that many higher-risk users do rely
on MTProto and Telegram and shun Signal, which emphasises
the need to study these technologies and how they serve those
who rely on them.
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Appendix

A. Correctness of the support function
We present two correctness properties of a support function.

1) Order correctness of the support function: The game
in Fig. 35 captures the fact that the support function should
return m if m and label appear together in the transcript of the
sender and m was delivered in-order. To express this, we define
a function getPairs and we use 4 to denote when a list is a
prefix of another list. The advantage of F in breaking the ORD-
security of supp is defined as Advordsupp(F ) = Pr

[
Gord
supp,F

]
. We

have AdvordSUPP(F ) = 0 for SUPP in Fig. 25.
Note that the game requires the submitted labels to be unique.

For instance, if that was not so, F could win trivially against
a supp which rejects replays by querying Send with the same
label twice. Thus when supp is used in conjunction with some
labelling scheme, it is only “well-behaved” as long as the labels
are unique. (This becomes apparent in Section V-B2, where
we match a supp to a message encoding scheme which can
only produce a fixed number of unique payloads.)

Game Gordsupp,F
win← false ; X ← ∅ ; F Send,Recv ; Return win

Send(u,m, label,aux)
If label ∈ X then return ⊥
tru ← tru ‖ (sent,m, label,aux) ; X ← X ∪ {label} ; Return ⊥

Recv(u,m, label,aux)
m∗ ← supp(u, tru, tru, label,aux)
tru ← tru ‖ (recv,m, label,aux)
inOrder← getPairs(recv, tru) 4 getPairs(sent, tru)
If inOrder ∧ m , m∗ then win← true
Return ⊥

getPairs(op, tru)
pairs← []
For (op,m, label,aux) ∈ tru do pairs← pairs ‖ (m, label)
Return pairs

Figure 35: Game defining the order correctness of supp.

2) Integrity of the support function: The game in Fig. 36
captures the fact that the support function should return ⊥
if the given label does not appear in the transcript of the
sender. The advantage of F in breaking the SINT-security
of supp is defined as Advsintsupp(F ) = Pr

[
Gsint
supp,F

]
. We have

AdvsintSUPP(F ) = 0 for SUPP in Fig. 25.

Game Gsintsupp,F

(u, tru, tru, label,aux) ←$ F

m∗ ← supp(u, tru, tru, label,aux)
forge←

(
�m′,aux ′ : (sent,m′, label,aux ′) ∈ tru

)
Return forge ∧ (m∗ ,⊥)

Figure 36: Game defining the integrity of supp.

B. Combined security for bidirectional channels

Consider the authenticated encryption game for combining
privacy and integrity in Fig. 37. The advantage ofA in breaking
the AE-security of CH with respect to supp is defined as
AdvaeCH,supp(A) = 2 ·Pr

[
Gae
CH,supp,A

]
−1. The Ch oracle copies

the Send oracle of Gint
CH,supp,F (Fig. 8), but amends it for

the left-or-right setting. If Recv is queried on an honestly
produced and forwarded ciphertext which encrypts a challenge
message (i.e. for a Ch call with m0 , m1), then the adversaryA
is not allowed to learn its decryption, and otherwise (i.e. if Ch
was called with m0 = m1) the adversary knows the encrypted
message without the help of a decryption oracle, so Recv
returns ⊥0. If A calls Recv on a forged ciphertext that
decrypts correctly, then its output depends on the challenge
bit b: Recv returns the decryption of the forged ciphertext if
b = 1, and it returns ⊥1 otherwise. This ensures that breaking
the integrity of CH allows A to learn the challenge bit in
Gae
CH,supp,A . In the following two propositions, we show that

this combined notion is equivalent to the individual games
together.

Game GaeCH,supp,A
b←$ {0,1} ; (stI, stR ) ←$ CH.Init()
b′←$DCh,Recv ; Return b′ = b

Ch(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
(stu, c) ← CH.Send(stu,mb,aux; r)
tru ← tru ‖ (sent,mb, c,aux) ; Return c

Recv(u, c,aux)
(stu,m) ← CH.Recv(stu, c,aux)
m∗ ← supp(u, tru, tru, c,aux)
tru ← tru ‖ (recv,m, c,aux)
If m , m∗ then

If b = 1 then return m else return ⊥1
Return ⊥0

Figure 37: Game defining authenticated encryption security of
channel CH.

Proposition 1. Let CH be a channel. Let supp be a support
function. Let A be an adversary against the AE-security of
CH with respect to supp. Then we can build an adversary F
against the INT-security of CH with respect to supp, and an
adversary D against the IND-security of CH such that

AdvaeCH,supp(A) ≤ 2 · AdvintCH,supp(F ) + Adv
ind
CH (D).

Proof. We rewrite the Gae
CH,A,supp game as game G0 in Fig. 38,

so Pr [G0 ] =
1
2Adv

ae
CH,supp(A) −

1
2 by definition. We modify

this game to obtain G1 by removing the one before last line,
and denote this part of the code by setting bad← true.

Construct the adversaries F for Gint
CH,supp,F and D for Gind

CH,D
(both games in Fig. 8) as shown in Fig. 39. Consider D first.
By inspection, it simulates the oracles of G1 perfectly for A,
so we can write Pr [G1 ] = Pr

[
Gind
CH,D

]
= 1

2Adv
ind
CH (D) −

1
2 .
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Games G0–G1

b←$ {0,1} ; (stI, stR ) ←$ CH.Init() ; b′←$ACh,Recv

Return b′ = b

Ch(u,m0,m1,aux,r)

If |m0 | , |m1 | then return ⊥
(stu, c) ← CH.Send(stu,mb,aux; r)
tru ← tru ‖ (sent,mb, c,aux)
Return c

Recv(u, c,aux)

(stu,m) ← CH.Recv(stu, c,aux)
m∗ ← supp(u, tru, tru, c,aux)
tru ← tru ‖ (recv,m, c,aux)
If m , m∗ then
bad← true
If b = 1 then return m else return ⊥1 // G0

Return ⊥0

Figure 38: Games G0–G1 for proof of Proposition 1.

Second, according to the Fundamental Lemma of Game
Playing [14] we have

Pr [G0 ] − Pr [G1 ] ≤ Pr [ bad ] ,

where Pr [ bad ] denotes the probability of setting the bad flag
in games G0–G1. Finally, consider F , which simulates G0 for
A. If bad = true, then the Gint

CH,supp,F game sets win = true,

hence Pr [ bad ] ≤ Pr
[
Gint
CH,supp,F

]
= AdvintCH,supp(F ). Taken

together, we can write

1
2

(
AdvaeCH,supp(A) − Adv

ind
CH (D)

)
≤ AdvintCH,supp(F ),

which concludes the proof.

Adversary F Send,Recv

b←$ {0,1}
b′←$AChSim,RecvSim

ChSim(u,m0,m1,aux,r)
If |m0 | , |m1 | then return ⊥
c← Send(u,mb,aux,r)
tru ← tru ‖ (sent,mb, c,aux)
Return c

RecvSim(u, c,aux)
m← Recv(u, c,aux)
m∗ ← supp(u, tru, tru, c,aux)
tru ← tru ‖ (recv,m, c,aux)
If m , m∗ then

If b = 1 then return m
Else return ⊥1

Return ⊥0

Adversary DCh,Recv

b′←$AChSim,RecvSim

Return b′

ChSim(u,m0,m1,aux,r)
c← Ch(u,m0,m1,aux,r)
Return c

RecvSim(u, c,aux)
err← Recv(u, c,aux)
Return ⊥0

Figure 39: Adversaries F , D for proof of Proposition 1.

�

Proposition 2. Let CH be a channel. Let supp be a support
function. Let F be an adversary against the INT-security of
CH with respect to supp, and let D be an adversary against

the IND-security of CH. Then we can build adversaries AINT
and AIND against the AE-security of CH with respect to supp
such that

AdvaeCH,supp(AINT) ≥ AdvintCH,supp(F ) and

AdvaeCH,supp(AIND) ≥ AdvindCH (D).

Proof. Let F be the adversary in Gint
CH,supp,F (Fig. 8). Build the

adversary AINT as shown in Fig. 40. Note that it makes use of
the abort(x) instruction, which allows it to end the simulation
for F and return x to its own game. The reason for using this
instruction is that AINT could only simulate Recv perfectly if
its challenge bit b = 1, because then it can return the m value
that F is expecting. If b = 0, AINT does not get this value
from Recv, but it can win its game so the simulation can end.

We let AINT return 0 by default if one of the abort conditions
is not triggered during the run of F . By this construction, if
b = 0 then AINT never returns 1. If b = 1, then AINT wins if
F sets win = true during its run, because m , m∗ corresponds
to RecvSim returning err ,⊥0. Then we can write

AdvaeCH,supp(AINT) = Pr [ b′ = 1 | b = 1 ] − Pr [ b′ = 1 | b = 0 ]

≥ Pr
[
Gint
CH,supp,F

]
− 0 = AdvintCH,supp(F ).

LetD be the adversary in Gind
CH,D (Fig. 8). Build the adversary

AIND as shown in Fig. 40. Both simulated oracles run the same
code that D would be expecting, and the additional processing
with transcripts and the support function does not affect the
state of the channel or what is returned. AIND could parse
the err in RecvSim, but it is not necessary. If D returns the
correct challenge bit, then AIND does, so we can write

AdvaeCH,supp(AIND) = Pr
[
Gae
CH,supp,AIND

]
≥ Pr

[
Gind
CH,D

]
= AdvindCH (D).

Adversary ACh,Recv
INT

F SendSim,RecvSim

Return 0

SendSim(u,m,aux,r)
c← Ch(u,m,m,aux,r)
tru ← tru ‖ (sent,m, c,aux)
Return c

RecvSim(u, c,aux)
m∗ ← supp(u, tru, tru, c,aux)
err← Recv(u, c,aux)
If err ,⊥0 then

If err =⊥1 then abort(0)
Else abort(1)

m← m∗

tru ← tru ‖ (recv,m, c,aux)
Return m

Adversary ACh,Recv
IND

b′←$DChSim,RecvSim

Return b′

ChSim(u,m0,m1,aux,r)
c← Ch(u,m,aux,r)
Return c

RecvSim(u, c,aux)
err← Recv(u, c,aux)
Return ⊥

Figure 40: Adversaries AINT, AIND for proof of Proposition 2.

�
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ME.Init()
Nsent ← 0 ; session_id← 0 ; last_sent_msg_id← 0
S←$ GenerateSalts() ; M← ∅
For u ∈ {I,R} do

stME,u ← (Nsent, session_id, last_sent_msg_id,S,M)
Return (stME,I, stME,R )

ME.Encode(stME,u,m,aux)

(Nsent, session_id, last_sent_msg_id,S,M) ← stME,u
If u = I and Nsent = 0 then session_id←$ {0,1}64

server_salt← GetSalt(S,aux)
msg_id← GetMsgId(u,aux, last_sent_msg_id)
msg_seq_no← 〈2 · Nsent + 1〉32
msg_length← 〈|m|/8〉32
padding←$ GenPadding(|m|)
p0 ← server_salt ‖ session_id
p1 ← msg_id ‖msg_seq_no ‖msg_length
p2 ← m ‖ padding
p← p0 ‖ p1 ‖ p2
Nsent ← (Nsent + 1) mod 232

last_sent_msg_id← msg_id
stME,u ← (Nsent, session_id, last_sent_msg_id,S,M)
Return (stME,u, p)

GetMsgId(u,aux, last_sent_msg_id)
msg_id← aux � 32
If msg_id ≤ last_sent_msg_id then
msg_id← last_sent_msg_id + 1

iI ← 0 ; iR ← 1 ; t ← (iu −msg_id) mod 4
Return 〈msg_id + t〉64

GenPadding(`)
`′ ← 128 − ` mod 128 ; bn←$ {2,3, · · · ,63}
padding←$ {0,1}`′+bn∗128

Return padding

ME.Decode(stME,u, p,aux ′)

(Nsent, session_id, last_sent_msg_id,S,M) ← stME,u
server_salt← p[0 : 64] ; session_id′ ← p[64 : 128]
msg_id← p[128 : 192] ; msg_seq_no← p[192 : 224]
msg_length← p[224 : 256] ; ` ← |p| − 256
If u = R ∧ server_salt < ValidSalts(S,aux ′) then

Return (stME,u,⊥)
If u = R ∧ Nrecv = 0 then session_id← session_id′
Else if session_id′ , session_id then return (stME,u,⊥)
If ¬(aux ′ − tp ≤ (msg_id � 32) ≤ aux ′ + t f )∨
msg_id ∈ M.IDs ∨msg_id < min(M.IDs) then

Return (stME,u,⊥)
If u = R ∧ ∃(i, s) ∈ M :
(msg_seq_no ≤ s ∧msg_id > i)∨
(msg_seq_no ≥ s ∧msg_id < i) then

Return (stME,u,⊥)
If (u = I ∧msg_id mod 4 , 1)∨
(u = R ∧msg_id mod 4 , 0) then

Return (stME,u,⊥)
padding_length← `/8 −msg_length
If ¬(0 < msg_length ≤ `/8)∨
¬(12 ≤ padding_length ≤ 1024) then

Return (stME,u,⊥)
m← p[256 : 256 +msg_length · 8]
M← M.add(msg_id,msg_seq_no)
stME,u ← (Nsent, session_id, last_sent_msg_id,S,M)
Return (stME,u,m)

Figure 41: Construction of MTProto’s message encoding scheme ME where aux, aux ′ are 32-bit timestamps. Table S contains
64-bit server_salt values, each associated to some time period; algorithm GenerateSalts generates this table; algorithms GetSalt
and ValidSalts are used to choose and validate salt values depending on the current timestamp. M is a fixed-size set that stores
(msg_id,msg_seq_no) for each of recently received messages; when M reaches its maximum size, the entries with the smallest
msg_id are removed first. M.IDs is the set of msg_ids in M. Time constants tp and t f determine the range of timestamps (from
the past or future) that should be accepted; these constants are in the same encoding as aux,aux ′. We assume all strings are
byte-aligned.

C. Causality preservation
Recall that in Telegram as currently implemented, an

adversary on the network can reorder messages, e.g. changing
the role of pizza and crime in the sequence of messages
transmitted from a single client (“I say yes to”, “all the pizza”,
“I say no to”, “all the crimes”). This sort of reordering may be
particularly devastating when a protocol is used to transport
control messages – as is the case for MTProto which carries
control messages both for Telegram directly and to third-party
bots – but we know of no such exploitable example.

Such reordering attacks are not possible against e.g. Signal
or MTProto’s closest “competitor” TLS. TLS-like protocols
over UDP such as DTLS [49] or QUIC [50] either leave it to
the application to handle packet reordering (DTLS, i.e. they
are possible against DTLS itself) or have built-in mechanisms

to handle these (QUIC, i.e. they are not possible against QUIC
itself). As discussed in the main text, in the case of Telegram
higher levels of the application do not prevent packet reordering.

The prevention of reordering attacks in one direction can
be strengthened to also cover the order of packets flowing
in both directions. This is sometimes referred to as causality
preservation in the literature [26], and is generally considered
to be more complex to achieve. In particular, the following
is possible in both Telegram and e.g. Signal. Alice sends a
message “Let’s commit all the crimes”. Then, simultaneously
both Alice and Bob send a message. Alice: “Just kidding”;
Bob: “Okay”. Depending on the order in which these messages
arrive, the transcript on either side might be (Alice: “Let’s
commit all the crimes”, Alice:“Just kidding”, Bob: “Okay”) or
(Alice: “Let’s commit all the crimes”, Bob: “Okay”, Alice:“Just
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kidding”). That is, the transcript will have Bob acknowledging
a joke or criminal activity.

D. Message encoding scheme of MTProto
Figure 41 defines an approximation of the current ME

construction in MTProto, where header fields have encodings
of fixed size as in Section IV-A. Salt generation is modelled as
an abstract call within ME.Init. We omit modelling containers
or acknowledgement messages, though they are not properly
separated from the main protocol logic in implementations. We
stress that because implementations of MTProto differ even
in protocol details, it would be impossible to define a single
ME scheme, so Fig. 41 shows an approximation. For instance,
the GenPadding function in Android has randomised padding
length which is at most 240 bytes, whereas the same function
on desktop does not randomise the padding length. Different
client/server behaviour is captured by u = I representing the
client and u = R representing the server, and we assume that
I always sends the first message.

E. Games and proofs for standard primitives
Here we give the reductions referred to in Sections V-A

and V-B.

1) OTWIND of MTP-HASH: Proposition 3 shows that
MTP-HASH is a one-time weak indistinguishable function
(Fig. 20) if SHACAL-1 is a one-time pseudorandom function
(Fig. 2). At a high level, our proof uses that SHACAL-1
is called with random independent keys and thus produces
random outputs if it is a PRF. The final SHACAL-1 call on a
known constant (the padding) cannot improve the distinguishing
advantage; this is a special case of the processing inequality.

Proposition 3. Let DOTWIND be an adversary against the
OTWIND-security of MTP-HASH. Then we can build an
adversary DOTPRF against the OTPRF-security of SHACAL-1
such that

AdvotwindMTP-HASH(DOTWIND) ≤ 2 · AdvotprfSHACAL-1(DOTPRF).

Proof. Recall that SHA-1 operates on 512-bit input blocks.
Padding is appended at the end of the last input block. If the
message size is already a multiple of the block size (as it is
in MTP-HASH), a new input block is added, which we denote
by xp for a message of length 2048. Define P as the public
function P(H) B h160(H, xp), i.e. the last iteration of SHA-1
over the padding block.

Let DOTWIND be an adversary in the Gotwind
MTP-HASH,D game

(Fig. 20). Using the definition of SHA-1, we first rewrite the
game in a functionally equivalent way as G0 in Fig. 42. The two
last calls to the compression function h take as input two blocks
from the secret input of MTP-HASH.Ev, i.e. hk[32 : 1056], so
they can be rewritten to use two invocations of SHACAL-1.Ev
with random and independent keys. We then construct game G1
in which these calls are replaced with a random value. In this
game, DOTWIND is given auth_key_id = P(H3 +̂ r1)[96 : 160]
for a random value r1 which does not depend on the challenge
bit b, so it cannot have an advantage in winning the game.

Games G0–G1

b←$ {0,1} ; hk←$ {0,1}HASH.kl
x0←$ HASH.In ; x1←$ HASH.In
r0←$ {0,1}SHACAL-1.ol ; r1←$ {0,1}SHACAL-1.ol
H1 ← h160(IV160, xb[0 : 512])
H2 ← h160(H1, xb[512 : 672] ‖ hk[0 : 32] ‖ xb[672 : 992])
H3 ← H2 +̂ SHACAL-1.Ev(hk[32 : 544],H2) // G0
H4 ← H3 +̂ SHACAL-1.Ev(hk[544 : 1056],H3) // G0
H3 ← H2 +̂ r0 // G1
H4 ← H3 +̂ r1 // G1
auth_key_id← P(H4)[96 : 160]
b′←$DOTWIND(x0, x1,auth_key_id) ; Return b′ = b

Figure 42: Games for the proof of Proposition 3. In G0 =
Gotwind
MTP-HASH,DOTWIND

, auth_key_id ← MTP-HASH.Ev(hk, xb) is
expanded and the last two h160 calls are expressed using
SHACAL-1 (in gray). In G1, changes from G0 are in green.

We construct the adversary DOTPRF for Gotprf
SHACAL-1,D as shown

in Fig. 43 so that Pr [G0 ] − Pr [G1 ] = Adv
otprf
SHACAL-1(DOTPRF).

Let d be the challenge bit in Gotprf
SHACAL-1,DOTPRF

and d ′ be the
output of the adversary in that game. Then, if d = 1 in
Gotprf
SHACAL-1,DOTPRF

, calls to RoR made by DOTPRF are SHACAL-1
invocations with random keys. If d = 0, calls to RoR
both draw a random value and so y = P(H) for some
H←$ {0,1}SHACAL-1.ol.

Adversary DRoR
OTPRF

b←$ {0,1} ; hk ′←$ {0,1}32

x0←$ MTP-HASH.In ; x1←$ MTP-HASH.In
H1 ← h160(IV160, xb[0 : 512])
H2 ← h160(H1, xb[512 : 672] ‖ hk ′ ‖ xb[672 : 992])
H3 ← H2 +̂ RoR(H2)
H4 ← H3 +̂ RoR(H3)
auth_key_id← P(H4)[96 : 160]
b′←$DOTWIND(x0, x1,auth_key_id)
If b′ = b then return 1 else return 0

Figure 43: Adversary for the proof of Proposition 3.

We can write:

AdvotprfSHACAL-1(DOTPRF)

= Pr [ d ′ = 1 | d = 1 ] − Pr [ d ′ = 1 | d = 0 ]
= Pr [G0 ] − Pr [G1 ]

=
1
2
·

(
AdvotwindMTP-HASH(DOTWIND) + 1

)
−

1
2

=
1
2
· AdvotwindMTP-HASH(DOTWIND).

The inequality follows. �

2) RKPRF of MTP-KDF: What complicates the construction
of MTP-KDF, when expressed using calls to SHACAL-2, is the
fact that a part of the key input to SHACAL-2 is a known
constant (the SHA-256 padding) and a part of it is a variable
input that can be manipulated by the adversary (the msg_key
input to the MTP-KDF). This means that we can only prove
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security under a very strong assumption: in Proposition 4, we
show that KDF = MTP-KDF is a PRF under related-key attacks
(Fig. 21) restricted to φKDF (Fig. 18) if SHACAL-2 is a leakage-
resilient PRF under related-key attacks (Fig. 44) restricted to
φKDF composed with φSHACAL-2 (Fig. 45). The advantage of D
in breaking the LRKPRF-security of SHACAL-2 with respect to
φKDF and φSHACAL-2 is defined as AdvlrkprfSHACAL-2,φKDF ,φSHACAL-2 (D) =

2 · Pr
[
Glrkprf
SHACAL-2,φ,D

]
− 1. At a high level, our proof proceeds

analogously to the proof in Appendix E1.

Game GlrkprfSHACAL-2,φ,D

b←$ {0,1}
kk←$ {0,1}672

(kkI,kkR ) ←
φKDF(kk)

b′←$DRoR

Return b′ = b

RoR(u, i,msg_key) // |msg_key| = 128
(sk0, sk1) ← φSHACAL-2(kku,msg_key)
y1 ← SHACAL-2.Ev(ski, IV256)
If T[u, i,msg_key] =⊥ then
T[u, i,msg_key] ←$ {0,1}`

y0 ← T[u, i,msg_key]
Return yb

Figure 44: Leakage-resilient PRF under related-key attacks
with constant input IV for SHACAL-2, where i ∈ {0,1} and
msg_key is the chosen-key part. We abbreviate SHACAL-2.ol
by ` and φKDF and φSHACAL-2 by φ.

φSHACAL-2(kku,msg_key)
(kk0,kk1) ← kku
sk0 ← SHA-pad(msg_key ‖ kk0)
sk1 ← SHA-pad(kk1 ‖msg_key)
Return (sk0, sk1)

Figure 45: Related-key derivation function
φSHACAL-2 : KDF.Keys × KDF.In → SHACAL-2.Keys ×
SHACAL-2.Keys.

Proposition 4. Let DRKPRF be an adversary against the
RKPRF-security of KDF = MTP-KDF under the related-key-
deriving function φKDF from Fig. 18. Then we can build an
adversaryDLRKPRF against the LRKPRF-security of SHACAL-2
under φKDF and φSHACAL-2 (abbrev. with φ) such that

AdvrkprfKDF,φKDF
(DRKPRF) ≤ 2 · AdvlrkprfSHACAL-2,φ (DLRKPRF).

Proof. Let DRKPRF be an adversary in the Grkprf
KDF,φKDF ,D

game
(Fig. 21) against KDF. We first rewrite the game in a functionally
equivalent way as G0 in Fig. 46 using the definition of SHA-256
which is called twice on related input blocks, with padding.
Then G1 expresses this in terms of the related-key derivation
function φSHACAL-2 (Fig. 45) and calls to SHACAL-2 on fixed
input; game G1 is equivalent to game G0. Finally, the game G2
replaces these calls with random values that are independent
of the challenge bit, so DRKPRF can have no advantage better
than guessing in this game.

We construct the adversary DLRKPRF for Glrkprf
SHACAL-2,φ,D

as shown in Fig. 47 so that Pr [G1 ] − Pr [G2 ] =

AdvlrkprfSHACAL-2,φ (DLRKPRF). Let d be the challenge bit in

Glrkprf
SHACAL-2,φ,DLRKPRF

and d ′ be the output of the adversary in
that game. Then, if d = 1 calls to RoR made by DLRKPRF are

Games G0–G2

b←$ {0,1} ; kk←$ {0,1}672 ; (kkI,kkR ) ← φKDF(kk)
b′←$DRoR

RKPRF ; Return b′ = b

RoR(u,msg_key)
(kk0,kk1) ← kku // G0
k(0)1 ← h256(IV256,SHA-pad(msg_key ‖ kk0)) // G0
k(1)1 ← h256(IV256,SHA-pad(kk1 ‖msg_key)) // G0
(sk0, sk1) ← φSHACAL-2(kku,msg_key) // G1–G2
k(0)1 ← IV256 +̂ SHACAL-2.Ev(sk0, IV256) // G1
k(1)1 ← IV256 +̂ SHACAL-2.Ev(sk1, IV256) // G1
r0←$ {0,1}SHACAL-2.ol // G2
r1←$ {0,1}SHACAL-2.ol // G2
k(0)1 ← IV256 +̂ r0 ; k(1)1 ← IV256 +̂ r1 // G2
k1 ← k(0)1 ‖ k(1)1
If T[u,msg_key] =⊥ then T[u,msg_key] ←$ {0,1}KDF.ol
k0 ← T[u,msg_key]
Return kb

Figure 46: Games for the proof of Proposition 4. In G0 =

Grkprf
KDF,φKDF ,DRKPRF

, k1 ← KDF.Ev(kku,msg_key) is expanded. In
G1, calls to h256 are expressed using SHACAL-2 (shown in
gray). In G2, changes from G1 are in green.

Adversary DRoR
LRKPRF

b←$ {0,1}
b′←$DRoRSim

RKPRF
If b′ = b then return 1
Else return 0

RoRSim(u,msg_key)

k(0)1 ← IV256 +̂ RoR(u,0,msg_key)
k(1)1 ← IV256 +̂ RoR(u,1,msg_key)
k1 ← k(0) ‖ k(1)

If T[u,msg_key] =⊥ then
T[u,msg_key] ←$ {0,1}KDF.ol

k0 ← T[u,msg_key]
Return kb

Figure 47: Adversary for the proof of Proposition 4.

SHACAL-2 invocations with related and partially-chosen keys.
If d = 0, calls to RoR both draw a random value and so the
output k is random and independent of the challenge bit. We
write:

AdvlrkprfSHACAL-2,φ (DLRKPRF)

= Pr [ d ′ = 1 | d = 1 ] − Pr [ d ′ = 1 | d = 0 ]
= Pr [G0 ] − Pr [G2 ]

=
1
2

(
AdvrkprfKDF,φKDF

(DRKPRF) + 1
)
−

1
2

=
1
2
AdvrkprfKDF,φKDF

(DRKPRF).

The inequality follows. �

3) UPRKPRF of MTP-MAC: We reduce UPRKPRF of MAC
to the security of the Merkle-Damgård construction and
SHACAL-2. To this end, we first prove a result about the Merkle-
Damgård transform that is analogous to the basic cascade PRF
security proved in [51], except that we only prove one-time
security and hence we do not require prefix-free inputs.

37



Lemma 1. Let h256 be the SHA-256 compression function, and
let H be the corresponding function family with H.Ev = h256,
H.kl = H.ol = 256, H.In = {0,1}512. Let DMD be an adversary
against the OTPRF-security (Fig. 2) of the function family
MD = MD[h256] that makes queries of length at most T blocks
(i.e. at most T · 512 bits). Then we can build an adversary DH
against the OTPRF-security of H such that

AdvotprfMD (DMD) ≤ T · AdvotprfH (DH).

Proof. In the Gotprf
H,D game (Fig. 2), denote the oracle by RoRH

and the challenge bit by b, and in the Gotprf
MD,D game, denote by

RoRMD and d respectively. Construct the adversary DH as in
Fig. 48. We adopt the convention that x0 = xt+1 = ε, RoRH(ε)
returns H0←$ {0,1}H.kl and MD.Ev(Ht, ε) returns Ht . Consider
the oracles shown in Fig. 49 for i ∈ {0,1, . . . ,T}, which
correspond to a sequence of games Gi such that Pr [Gi ] =

Pr
[
D

RoRi

MD = 1
]
. In the edge cases, RoR0 behaves exactly

like RoRMD if d = 1, and RoRT behaves exactly like RoRMD

if d = 0. So we can write AdvotprfMD (DMD) = Pr [GT ] − Pr [G0 ].
Next, fix i ∈ {0,1, . . . ,T} and denote such DH by DH(i). Then

Pr
[
DRoRH

H (i) = 1 | b = 0
]
= Pr

[
D

RoRSimi

MD = 1 | b = 0
]

= Pr [Gi ]

since if t ≤ i − 1, both RoRSimi and RoRi return a random
value, and otherwise their code is the same. Similarly

Pr
[
DRoRH

H (i) = 1 | b = 1
]
= Pr

[
D

RoRSimi

MD = 1 | b = 1
]

= Pr [Gi−1 ]

since we have that MD.Ev(H.Ev(Hi−1, xi), xi+1 ‖ . . . ‖ xt ) =
MD.Ev(Hi−1, xi ‖ . . . ‖ xt ) by the construction of MD.

Putting it together, we can write

Pr
[
DRoRH

H = 1 | b = 0
]

= Pr


T∨
j=1
(i = j ∧ DRoRH

H ( j) = 1) | b = 0


=
1
T

T∑
j=1

Pr
[
Gj

]
and similarly

Pr
[
DRoRH

H = 1 | b = 1
]
=

1
T

T∑
j=1

Pr
[
Gj−1

]
so that

AdvotprfH (DH) =
1
T

©­«
T∑
j=1

Pr
[
Gj

]
−

T∑
j=1

Pr
[
Gj−1

]ª®¬
=

1
T
(Pr [GT ] − Pr [G0 ]) =

1
T
AdvotprfMD (DMD).

The inequality follows.

�

Adversary DRoRH

H
i←$ {0,1, . . . ,T}
b′←$D

RoRSimi

MD
Return b′

RoRSimi(x1 ‖ . . . ‖ xt )

If t ≤ i − 1 then y←$ {0,1}H.ol
Else

Hi ← RoRH(xi)
y ← MD.Ev(Hi, xi+1 ‖ . . . ‖ xt )

Return y

Figure 48: Adversary for the proof of Lemma 1.

Game Gi

d′←$D
RoRi

MD
Return d′

RoRi(x1 ‖ . . . ‖ xt )

Hi ←$ {0,1}H.kl
y ← MD.Ev(Hi, xi+1 ‖ . . . ‖ xt )
Return y

Figure 49: Intermediary games for the proof of Lemma 1.

We are ready to state the main result about the security of
MTP-MAC, which we reduce to two assumptions in Proposi-
tion 5. As in the case of MTP-KDF, we use an unusual assump-
tion on SHACAL-2 that involves related keys and the adversary’s
ability to choose a part of the key, but it is only evaluated on
a fixed input (see Fig. 50). The advantage of D in breaking
the HRKPRF-security of SHACAL-2 with respect to φMAC is
defined as AdvhrkprfSHACAL-2,φMAC (D) = 2 · Pr

[
Ghrkprf
SHACAL-2,φMAC ,D

]
− 1.

Overall, we require two assumptions: (a) that
SHACAL-2.Ev(k,m) is a PRF under known fixed m, partially
known k and key relations φMAC and (b) that h256(k, ·) is a
one-time PRF. Concretely, h256(a, b) B a +̂ SHACAL-2.Ev(b,a)
and thus we require both assumptions to hold for SHACAL-2.26

Game GhrkprfSHACAL-2,φMAC ,D

b←$ {0,1}
mk←$ {0,1}320

(mkI,mkR ) ← φMAC(mk)
b′←$DRoR

Return b′ = b

RoR(u, p) // |p| = 256
y1 ← SHACAL-2.Ev(mku ‖ p, IV256)
If T[u, p] = ⊥ then
T[u, p] ←$ {0,1}SHACAL-2.ol

y0 ← T[u, p]
Return yb

Figure 50: Leakage-resilient PRF security of SHACAL-2 under
related-key attacks with constant input IV256, where p is the
chosen-key part.

Proposition 5. Let DUPRKPRF be an adversary against the
UPRKPRF-security of MAC = MTP-MAC under the related-
key-deriving function φMAC for inputs whose 256-bit prefixes
are distinct from each other. Then we can build an adversary
DHRKPRF against the HRKPRF-security of SHACAL-2 under
φMAC and an adversary DOTPRF against the OTPRF-security of
the Merkle–Damgård transform of SHA-256, MD = MD[h256]
such that

AdvuprkprfMAC,φMAC
(DUPRKPRF) ≤ 2 · AdvhrkprfSHACAL-2,φMAC (DHRKPRF)

+ 2 · AdvotprfMD (DOTPRF).

26Note that SHACAL-2.Ev(m, k) for chosen m and random secret k is not
a PRF since it comes endowed with a decryption function revealing k given
y = SHACAL-2.Ev(m, k) and the chosen m. This does not rule out the “masked”
construction k +̂ SHACAL-2.Ev(m, k) being a PRF.
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Proof. Consider the Guprkprf
MAC,φMAC ,DUPRKPRF

game (Fig. 23). Recall
that MTP-MAC.Ev(mku, p) = SHA-256(mku ‖ p)[64 : 192] =
MD[h256].Ev(IV256,SHA-pad(mku ‖ p))[64 : 192]. We first re-
write the game in a functionally equivalent way as G0, splitting
the MD.Ev call based on what happens to the first block of
input. Since the first block contains a secret mku, it can be
interpreted as providing security guarantees for a SHACAL-2
call keyed with the first block. G1 thus captures that such a call
result should be indistinguishable from random if SHACAL-2
is a leakage-resilient PRF under related keys. Similarly, G2
replaces the MD call on the remaining input (if there is any)
with a random value. This final game returns a random value
regardless of the challenge bit, so DUPRKPRF cannot have a
better than guessing advantage to win.

We first build an adversary DHRKPRF for the Ghrkprf
SHACAL-2,φMAC ,D

game (Fig. 50) so that we obtain Pr [G0 ] − Pr [G1 ] =

AdvhrkprfSHACAL-2,φMAC (DHRKPRF), as shown in Fig. 51. The unique-
ness of prefixes of p is used to ensure that the RoR oracle
of Ghrkprf

SHACAL-2,φMAC ,D is never called on the same input twice.

Next, we build an adversary DOTPRF for the Gotprf
MD,D game

(Fig. 2) so that Pr [G1 ] − Pr [G2 ] = AdvotprfMD (DOTPRF), as
shown in Fig. 52. Note that the RoRotprf oracle is only called
if DRKPRF calls RoRSim on large enough inputs. However, if
this never happened, it could have no distinguishing advantage
better than guessing because we already swapped out the
first block at this point. Denote the advantages by ahrkprf =
AdvhrkprfSHACAL-2,φMAC (DHRKPRF) and aotprf = AdvotprfMD (DOTPRF).
Then using both adversaries we can write

AdvuprkprfMAC,φMAC
(DUPRKPRF) = 2 · ahrkprf − 1 + 2 · Pr [G1 ]

= 2 · ahrkprf + 2 · aotprf

by substituting Pr [G0 ] =
1
2

(
AdvuprkprfMAC,φMAC

(DUPRKPRF) + 1
)

in

ahrkprf = Pr [G0 ] − Pr [G1 ] and substituting Pr [G2 ] =
1
2 in

aotprf = Pr [G1 ] − Pr [G2 ]. The inequality follows.

Adversary DRoR
HRKPRF

b←$ {0,1}
XI ← XR ← ∅
b′←$DRoRSim

UPRKPRF
If b′ = b then return 1
Else return 0

RoRSim(u, p)
If |p| < 256 then return ⊥
p0 ← p[0 : 256]
If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
p← SHA-pad(p) ; p1 ← p[256 : |p|]
H ← IV256 +̂ RoR(u, p0)
If |p1 | > 0 then
msg_key1 ← MD.Ev(H, p1)

Else
msg_key1 ← H

msg_key0←$ {0,1}MAC.ol
Return msg_keyb[64 : 192]

Figure 51: First adversary for the proof of Proposition 5.

�

4) OTIND$ of IGE: We will show that IGE encryption can be
expressed in terms of CBC. Using this, Proposition 6 shows that
MTP-SE, which uses IGE mode, is one-time indistinguishable

Adversary DRoR
OTPRF

b←$ {0,1}
XI ← XR ← ∅
b′←$DRoRSim

UPRKPRF
If b′ = b then return 1
Else return 0

RoRSim(u, p)
If |p| < 256 then return ⊥
p0 ← p[0 : 256]
If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
p← SHA-pad(p) ; p1 ← p[256 : |p|]
H←$ {0,1}256

If |p1 | > 0 then
msg_key1 ← RoR(u, p1)

Else
msg_key1 ← H

msg_key0←$ {0,1}MAC.ol
Return msg_keyb[64 : 192]

Figure 52: Second adversary for the proof of Proposition 5.

Games G0–G2

b←$ {0,1} ; mk←$ {0,1}320 ; (mkI,mkR ) ← φMAC(mk)
XI ← XR ← ∅ ; b′←$DRoR

UPRKPRF
Return b′ = b

RoR(u, p)

If |p| < 256 then return ⊥
p0 ← p[0 : 256]
If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
p← SHA-pad(p) ; p1 ← p[256 : |p|]
H ← IV256 +̂ SHACAL-2.Ev(mku ‖ p0, IV256) // G0
H←$ {0,1}256 // G1
If |p1 | > 0 then
msg_key1 ← MD.Ev(H, p1) // G0–G1
msg_key1←$ {0,1}256 // G2

Else
msg_key1 ← H

msg_key0←$ {0,1}MAC.ol
Return msg_keyb[64 : 192]

Figure 53: Games for the proof of Proposition 5. G0 =

Guprkprf
MAC,φMAC ,DUPRKPRF

expands msg_key1 ← MAC.Ev(mku, p) into
two calls (in gray). The changes made to G1 and G2 are in
green.

if CBC mode is (game in Fig. 3). We refer to known CBC
bounds in the literature [52], [53] but note that, since we are
in the one-time setting, in which each key is used to encrypt
only a limited amount of data, we can obtain a sharper bound
for CBC mode than would be obtained if a single key were
used to encrypt all the messages.

Proposition 6. Let E be a block cipher. Consider the symmetric
encryption schemes SEIGE = IGE[E] and SECBC = CBC[E]. Let
DIGE be an adversary against the OTIND$-security of SEIGE.
Then we can build an adversary DCBC against the OTIND$-
security of SECBC such that

Advotind$
SEIGE
(DIGE) ≤ Advotind$

SECBC
(DCBC).

Proof. Construct the adversary DCBC as in Fig. 54. If b = 0 in
Gotind$
SECBC ,DCBC

, RoRSim(m) returns a random value as c′, which
is preserved under XOR. If b = 1, we get c′ = SECBC.Enc(k,m′)
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which implies that c′i = E.Ev(k[0 : E.kl],mi ⊕ mi−2 ⊕ c′
i−1)

for i ≥ 2. Since ci = c′i ⊕ mi−1, we get ci = E.Ev(k[0 :
E.kl],mi ⊕ ci−1)⊕mi−1 and so c = SEIGE.Enc(k ‖ m0,m). In both
cases RoRSim simulates RoR perfectly, so Advotind$

SECBC
(DCBC) =

Advotind$
SEIGE
(DIGE).

Adversary DRoR
CBC

b′←$DRoRSim
IGE

Return b′

RoRSim(m)

m0←$ {0,1}E.ol ; m′1 ← m1
For i = 2, . . . , t do

m′i ← mi ⊕ mi−2
c′ ← RoR(m′)
For i = 1, . . . , t do

ci ← c′i ⊕ mi−1
Return c

Figure 54: Adversary for the proof of Proposition 6.

�

5) EINT of MTP-ME with respect to SUPP: Here we prove
that MTP-ME matches SUPP for strict in-order delivery.

Proposition 7. Let ME = MTP-ME be the message encoding
defined in Fig. 19 and supp = SUPP be the support function
defined in Fig. 25. Then for all F against EINT-security of
ME with respect to supp making q < 296 Send queries, we
have

AdveintME,supp(F ) = 0.

Proof. Consider the Geint
ME,supp,F game (Fig. 10).

First, notice that p as produced by Send can act as a unique
label within each transcript tru. For sent entries, ME.Encode
ensures that every payload includes seq_no that is incremented
with every new message, which holds as long as less than 296

Send queries are made for the same message m. Assume that
this is the case. Then, Recv only adds recv entries for honestly
produced payloads. If ME.Decode is called twice on the same
p, it cannot output m ,⊥ more than once because we would
have to have seq_no = Nrecv + 1 = N ′recv + 1 for Nrecv , N ′recv
(since m , ⊥ implies that the counter was incremented). So
each p cannot appear in a recv entry in some tru more than
once. It is clear by inspection that ME.Encode never outputs
p = ⊥ and that ME.Decode only outputs a changed state if it
also outputs a message m , ⊥.

We examine what happens during a call to Recv(u, p,aux).
We can assume that there was a Send(u,m′,aux ′,r) →
p call in the past, otherwise there would be no
(sent,m′, p,aux ′) entry in tru and the win condition
could not be satisfied. From ME.Encode we get that
p = salt ‖ session_id ‖ seq_no ‖ length ‖ m′ ‖ padding. Let
stME,u = (session_id, ·,Nrecv,u) be the state before ME.Decode
is called on p:
• Suppose there was a Recv(u, p,aux ′′) call in the past such
that tru contains (recv,m, p,aux ′′) for some m , ⊥. As shown
earlier, ME.Decode does not output successfully more than
once on the same p, so in the current call it has to output ⊥.
The support function supp(u, tru, tru, p,aux) returns m∗ = ⊥,
because find(recv, tru, p) iterates over all recv entries in tru

and finds a match for p such that its m , ⊥. So we always
have m = m∗ and F cannot win in this case.
• Suppose there was no Recv(u, p, ·) call in the past, or for
all (recv,m, p, ·) in tru we have m = ⊥. The support function
supp(u, tru, tru, p,aux) first makes a call to find(recv, tru, p)
which outputs (nu,⊥) where nu is the number of entries of tru
of the form (recv,m, p′, ·) for m , ⊥ and p′ , p. Next, it calls
find(sent, tru, p) which outputs (nu,m′) because tru contains
the entry (sent,m′, p,aux ′), where nu is the number of entries
of tru that were sent before and including that entry. Then it
checks whether nu = nu + 1.

Let us compute both counts. Whenever an entry (recv,m, p′, ·)
for m , ⊥ is added to tru, it means that the output of
ME.Decode included a changed state that incremented the
number of received messages by one. Hence nu = Nrecv,u.
Similarly, an entry (sent,m, ·, ·) is only added to tru when
ME.Encode was called and its output included a changed state
that incremented the number of sent messages by one and saved
it in the sequence number field. We get that nu = seq_no as
long as nu < 296, which we assumed at the beginning. Then
the support function check is the same as the check performed
by ME.Decode(stME,u, p,aux), whether seq_no = Nrecv,u + 1.
Hence the support function outputs m′ if and only if ME.Decode
does, and F cannot win.

For completeness, let us now deal with the case of the
overflow and show that the adversary can win then. Sup-
pose that F repeatedly queries Send(u,m, ·) → pi for the
same m and i = 0,1, . . . ,296. Because seq_no is of fixed
size, p0 = p296 . The first Recv(u, p0, ·) call returns m as
expected since both ME.Decode and supp interpret it as the
honestly sent first message. Suppose that F then queries
Recv(u, pi, ·) for i = 1, . . . ,296 − 1. These will be honestly
processed. Then a Recv(u, p296, ·) query causes a mismatch:
in ME.Decode the seq_no check passes because the counter
wraps (Nrecv,u = seq_no = 1) and so it returns m, but in supp
we get find(recv, tru, p) → m , ⊥ so it returns ⊥ (despite it
being honestly produced, which violates a different property
which is defined in Fig. 35). �

6) UNPRED of MTP-SE and MTP-ME: In Proposition 8, we
consider MTP-SE without instantiating it with a particular
block cipher. We show that it is hard for F to find cse
such that its decryption under a random key begins with
p′ = salt ‖ session_id, where session_id is a value chosen
by the adversary via stME and salt is arbitrary. Note that the
proof is not tight, i.e. the advantage could potentially be lower if
we also considered the seq_no and length fields in the second
block. However, this would complicate analysis and possibly
overstate the security of MTProto as implemented, given that
we made the modelling choice to check more fields in MTP-ME
upon decoding. Note that the bound could easily be improved if
MTP-ME checked the salt in the first block, however this would
deviate even further from the current MTProto implementation
and so we did not include this in our definition.
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Proposition 8. Let F be an adversary against the UNPRED-
security of SE = MTP-SE and ME = MTP-ME which makes qCh

queries to Ch. Then

AdvunpredSE,ME (F ) ≤
qCh

264 .

Proof. We have that MTP-SE = IGE[AES-256], but for the
purposes of this proof we can treat AES-256 as an abstract
block cipher E. We rewrite the Gunpred

SE,ME,F game (Fig. 27) as G0
in Fig. 55 with the following relaxation on ME: we omit the
seq_no and length checks so that we can focus only on the
first plaintext block. This makes the game easier to win for
the adversary, but does not change it otherwise as Ch does
not return any output.

Game G0

win← false ; FExpose,Ch ; Return win

Expose(u,msg_key)
S[u,msg_key] ← true ; Return T[u,msg_key]

Ch(u,msg_key, cse, stME,aux)
If ¬S[u,msg_key] then

If T[u,msg_key] = ⊥ then T[u,msg_key] ←$ {0,1}SE.kl
k ← T[u,msg_key] ; (K, c0, p0) ← k
c1 ← cse[0 : 128]
p1 ← E.Inv(K, c1 ⊕ p0) ⊕ c0
(session_id,Nsent,Nrecv) ← stME
If p1[64 : 128] = session_id then
win← true

Return ⊥

Figure 55: Game G0 = Gunpred
SE,ME,F , where MTP-SE and MTP-ME

calls are expanded up to the first block of input in gray. Keys
k are parsed such that |K | = E.kl, |c0 | = |p0 | = E.ol.

The adversary F can only win in G0 if p1[64 : 128] =
session_id for some p1 that is defined by the equation p1 =
E.Inv(K, c1 ⊕ p0) ⊕ c0. We can rewrite this winning condition
as E.Inv(K, c1 ⊕ p0)[64 : 128] ⊕ session_id = c0[64 : 128].
Here c0[64 : 128] is a bit string that is sampled uniformly at
random for each pair (u,msg_key) and that is unknown to the
adversary.

Consider for a moment a particular pair (u,msg_key);
suppose that F makes qu,msg_key queries to Ch relating to
this pair. These queries result in some specific set of values
Xu,msg_key for E.Inv(K, c1 ⊕ p0)[64 : 128] ⊕ session_id arising
in the game. Moreover, F wins for one of these queries if and
only if some element of the set Xu,msg_key matches c0[64 : 128].
Note also that F learns nothing about c0[64 : 128] from each
such query (since the Ch oracle always returns ⊥). Combining
these facts, we see that F ’s winning probability for this set of
qu,msg_key queries is no larger than qu,msg_key/264 (in essence,
F can do no better than random guessing of distinct values for
the unknown 64 bits). Moreover, while the adversary can learn
c0 for any (u,msg_key) pair after-the-fact using Expose, it
cannot continue querying Ch for this value once the query is
made, which makes the output of that oracle useless in winning
the game.

Considering all pairs (u,msg_key) involved in F ’s queries
and using the union bound, we obtain that AdvunpredSE,ME (F ) ≤

Pr [G0 ] ≤ qCh · 2−64. �

Remark 2. We could formalise the above using an additional
hop to a game which should make it obvious that the adversary
can do nothing better than guessing. Consider the game G1
in Fig. 56. We claim that given F0 that wins in G0, we can
build an adversary F1 that wins in G1. This is because F1 can
simulate the original oracles of G0 by choosing all key material
except the second half of c0 (here c∗), which is chosen by its
Ch oracle and constitutes the challenge. Hence Pr [G0 ] ≤
Pr [G1 ] ≤ qCh · 2−64.

Game G1

win← false ; FExpose,Ch
1 ; Return win

Expose(i)
S[i] ← true ; Return T[i]

Ch(i,a)
If ¬S[i] then

If T[i] = ⊥ then T[i] ←$ {0,1}64

c∗ ← T[i]
If a = c∗ then
win← true

Return ⊥

F
Expose,Ch

1

F
ExposeSim,ChSim

0 ; Return

ExposeSim(u,msg_key)
i ← u ‖msg_key ; S[i] ← true
c∗ ← Expose(i) ; (K,C, p0) ← T[i] ; Return (K,C ‖ c∗, p0)

ChSim(u,msg_key, cse, stME,aux)
i ← u ‖msg_key
If ¬S[i] then

If T[i] = ⊥ then
K←$ {0,1}E.kl ; C←$ {0,1}E.ol/2 ; p0←$ {0,1}E.ol
T[i] ← (K,C, p0)

(K,C, p0) ← T[i]
c1 ← cse[0 : 128]
(session_id,Nsent,Nrecv) ← stME
a← E.Inv(K, c1 ⊕ p0)[64 : 128] ⊕ session_id
err← Ch(i,a)

Return ⊥
Figure 56: Game G1 and adversary F1.

F. Attacking the key exchange
Recall that our attack in Section VI relies on knowledge of

m1 which in MTProto contains a 64-bit salt and a 64-bit session
ID. In Appendix F1, we present a strategy for recovering the
64-bit salt. We then use it in a simple guess and confirm
approach to recover the session ID in Appendix F2.

We stress, however, that the attack in Appendix F1 only
applies in a short period after a key exchange between a
client and a server.27 Furthermore, the attack critically relies

27Telegram will perform roughly one key exchange per day, aiming for
forward secrecy.
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on observing small timing differences which is unrealistic
in practice, especially over a wide network. That is, our
attack relies on a timing side channel when Telegram’s servers
decrypt RSA ciphertexts and verify their integrity. While
– in response to our disclosure – the Telegram developers
confirmed the presence of non-constant code in that part of
their implementation and hence confirmed our attack, they
did not share source code or other details with us. That is,
since Telegram does not publish source code for its servers in
contrast to its clients the only option to verify the precise server
behaviour is to test it. This would entail sending millions if
not billions of requests to Telegram’s servers, from a host that
is geographically and topologically close to one of Telegram’s
data centres, observing the response time. Such an experiment
would have been at the edge of our capabilities but is clearly
feasible for a dedicated, well-resourced attacker.

In Appendix F3, we then discuss how the attack in Ap-
pendix F1 enables to break server authentication and thus
enables an attacker-in-the-middle (MitM) attack on the Diffie-
Hellman key exchange.

1) Recovering the salt: At a high level, our strategy exploits
the fact that during the initial key exchange, Telegram integrity-
protects RSA ciphertexts by including a hash of the underlying
message contents in the encrypted payload except for the
random padding which necessitates parsing the data which in
turn establishes the potential for a timing side-channel.28 In
what follows, we assume the presence of such a side channel
and show how it enables the recovery of the encrypted message,
solving noisy linear equations via lattice reduction. We refer
the reader to [54], [55] for an introduction to the application
of lattice reduction in side-channel attacks and the state of the
art respectively.

In Fig. 57 we display Telegram’s Diffie-Hellman key
exchange instantiation [56] at the level of detail required for
our attack, omitting TL schema encoding. In Fig. 57, we let
n B nonce, s B server_nonce, n′ B new_nonce be nonces;
S be the set of public server fingerprints, F ∈ S be the
fingerprint of the key selected by the client, ts B server_time
be a timestamp for the server; let F (·, ·) be some function
used to derive keys;29 let pr , ps, pc be random padding of
appropriate length; and ak B auth_key be the final key. The
initial salt used by Telegram is then computed as server_salt :=
n′[0 : 64] ⊕ s[0 : 64]. Since s is sent in the clear during the
key exchange protocol, recovering the salt is equivalent to
recovering n′[0 : 64]. We will let N ′, e denote the public RSA
key (modulus and exponent) used to perform RSA encryption
by the client in the key exchange and will let d denote the
private RSA exponent used by the server to perform RSA
decryption.30 We assume N ′ has exactly 2048 bits which holds
for the values used by Telegram.

28We note that this issue mirrors the one reported in [4].
29This consists of SHA-1 calls but we omit the details here.
30Note that N ′ is distinct from the proof-of-work value N that is sent by

the server during the protocol and whose factors p, q are returned by the
client.

Further, we have

hn′ B SHA-1 (n′‖0x0i‖SHA-1 (ak) [0 : 64]) [32 : 160]

in Fig. 57 where i = 1, 2 or 3 depending on whether the
key exchange terminated successfully and hr , hs, hc are SHA-1
hashes over the rest of the RSA payload except for the padding
pr , ps, pc . In particular, we have

hr B SHA-1 (N, p,q,n, s,n′) .

The critical observation in this section is that while n, s and
n′ have fixed lengths of 128, 128 and 256 bits respectively,
the same is not true for N , p and q. This implies that the
content to be fed to SHA-1 after RSA decryption and during
verification must first be parsed by the server. This opens up
the possibility of a timing side channel. In particular, at a byte
level SHA-1 is called on

hd ‖ L(N ) ‖N ‖P(N ) ‖ L(p) ‖p ‖P(p) ‖ L(q) ‖q ‖P(q) ‖ n‖s ‖n′

where L(x) encodes the length of x in one byte;31 x is stored in
big endian byte order and P(x) is up to three zero bytes so that
length of L(x)‖x‖P(x) is divisible by 4; hd = 0xec5ac983.

We verified the following behaviour of the Telegram server,
where “is checked” and “expects” means the key exchange
aborts if the payload deviates from the expectation.
• The header hd = 0xec5ac983 is checked;
• the server expects 1 ≤ L(N) ≤ 16 and L(p), L(q) = 4
(different valid encodings, e.g. by prefixing zeroes, of valid
values are not accepted);
• the value of N is not checked, p,q are checked against the
value of N stored on the server and the server expects p < q;
• the contents of P(·) are not checked;
• both n, s are checked.
While we do not know in what order the Telegram server
performs these checks, we recall that the payload must be
parsed before being integrity checked and that the number
of bytes being fed to SHA-1 depends on this parsing. This
is because the random padding must be removed from the
payload before calling SHA-1.

Recall that the Telegram developers acknowledged the attack
presented here but did not provide further details on their
implementation. Therefore, below we will assume that the
Telegram server code follows a similar pattern to Telegram’s
flagship TDLib library, which is used e.g. to implement the
Telegram Bot API [10]. While TDLib does not implement
RSA decryption, it does implement message parsing during
the handshake. In particular, the library returns early when
the header does not match its expected value. In our case the
header is 0xec5ac983 but we stress that this behaviour does
not seem to be problematic in TDLib and we do not know if
the Telegram servers follow the same pattern also for RSA
decryption. We will discuss other leakage patterns below, but
for now we will assume the Telegram servers return early

31Longer inputs are supported by L(·) but would not fit into ≤ 255 bytes
of RSA payload.
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client server

n←$ {0,1}128 n s←$ {0,1}128

n, s,N,S N ← p · q

n′←$ {0,1}256 n, s, p,q,F,RSA (hr ,N, p,q,n, s,n′, pr )

key, iv← F(n′, s) n, s,AES-256-IGE (key, iv, hs,n, s,g, p′,ga, ts, ps) key, iv← F(n′, s)

b←$ {0,1}2048 n, s,AES-256-IGE
(
key, iv, hc,n, s, retry_id,gb, pc

)
ak ← (ga)b ak ← (gb)a

n, s, hn′

Figure 57: Telegram Key Exchange.

whenever there is a header mismatch, skipping the SHA-1 call
in this case. This produces a timing side channel.

Thus, we consider a textbook RSA ciphertext c = me mod
N ′ with

m = hr ‖hd ‖L(N ) ‖N ‖P(N ) ‖L(p) ‖p ‖P(p) ‖L(q) ‖q ‖P(q) ‖n‖s ‖n
′ ‖pr

of length 255 bytes. First, observe that an attacker knows all
contents of the payload (including their encodings) except for
hr , n′ and pr and we can write:

x = 2`(pr ) · n′ + pr < 2256+`(pr )

m = (21880 · hr + 2256+`(pr ) · γ + x)

where γ is a known constant derived from n, s, p,q,N and
where `(pr ) is the known length of pr . This relies on knowing
that |n′ | = 256 and |m| − |hr | = 1880.

Under our assumption on header checking, we can de-
tect whether the bits in positions 8 · 255 − 160 − 32 to
8 · 255 − 160 − 1 (big endian, SHA-1 outputs 160 bits) of
m′ B (c′)d match 0xec5ac983 for any c′ we submit to the
Telegram servers. Thus, inspired by [13], we submit sei · c, for
several chosen si to the server and receive back an answer
whether the bits 1848 to 1879 of si · m match the expected
header. If the si are chosen sufficiently randomly, this event
will have probability ≈ 2−32. Writing ζ = 0xec5ac983, we
consider

ei =
( (
si · m mod N ′

)
− ζ · 21848

)
mod 21880

=
((
si ·

(
21880 · hr + 2256+`(pr ) · γ + x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(((

si · 21880 · hr + si · 2256+`(pr ) · γ + si · x
)

mod N ′
)
− ζ · 21848

)
mod 21880.

That is, we pick random si (we will discuss how to pick those
below) and submit sei · c to the Telegram servers. Using the
timing side channel we then detect when the bits in the header
position match ζ . When this happens, we store si . Overall, we
find µ such si (we discuss below how to pick µ) and suppose
the event happens for some set of si , with i = 0, . . . , µ − 1.
a) Recovering hr : Note that ei < 21880−32 by construction and
x < 2256+`(pr ) � 21848. Thus, picking sufficiently small si an

attacker can make e′i B (ei − si · x) mod 21880 < 21848, i.e.

e′i =
(((

si · 21880 · hr + si · 2256+`(pr ) · γ
)

mod N ′
)
− ζ · 21848

)
mod 21880 < 21848.

We rewrite e′i as

e′i =
(
si · 21880 · hr + si · 2256+`(pr ) · γ − ζ · 21848 − σi · 21880

)
mod N ′

for σi < 2160 and use lattice reduction to recover hr . Writing

ti =
(
si · 2256+`(pr ) · γ − ζ · 21848

)
mod N ′,

we consider the lattice spanned by the rows of L1 with

L1 B

©­­­­­­­­­­­­­­«

21688 0 0 0 21880 · s0 · · · 21880 · sµ−1 0
0 21688 0 0 21880 · · · 0 0

0 0
. . . 0 0

. . . 0 0
0 0 0 21688 0 · · · 21880 0
0 0 0 0 N ′ · · · 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 · · · N ′ 0
0 0 0 0 t0 · · · tµ−1 21848

ª®®®®®®®®®®®®®®¬
.

Multiplying L1 from the left by

(hr , −σ0, . . . , −σµ−1, ∗, . . . ,∗,1)

where ∗ stands for modular reduction by N ′, shows that this
lattice contains a vector

(21688 · hr , −21688 σ0, . . . , −21688 σµ−1, e′0, . . . , e′µ−1, 21848) (1)

where all entries are bounded by 21848 = 21688+160. Thus that
vector has Euclidean norm ≤

√
2 µ + 2 · 21848.32 On the other

hand, the Gaussian heuristic predicts the shortest vector in the
lattice to have norm

≈

√
2 µ + 2

2π e
·

(
21688·(µ+1) · (N ′)µ · 21848

)1/(2µ+2)
. (2)

32This estimate is pessimistic for the attacker. Applying the techniques
summarised in [55] for constructing such lattices, we can save a factor of
roughly two. We forgo these improvements here to keep the presentation
simple.
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Finding a shortest vector in the lattice spanned by the rows of
L1 is expected to recover our target vector and thus hr when
the norm of expression (1) is smaller than the expression (2)
which is satisfied for µ = 6.

We experimentally verified that LLL on a (2 · 6 + 2)-
dimensional lattice constructed as L1 indeed succeeds (cf. Ap-
pendix G). Thus, under our assumptions, recovering hr requires
about 6 · 232 queries to Telegram’s servers and a trivial amount
of computation.
b) Recovering n′: Once we have recovered hr , we can target
n′. Writing γ′ = 21880−256−`(pr ) · hr + γ, we obtain

di =
( (
s′i · m mod N ′

)
− ζ · 21848

)
mod 21880

=
((
s′i ·

(
2256+`(pr ) · γ′ + x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(((

s′i · 2
256+`(pr ) · γ′ + s′i · x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(((

s′i · 2
256+`(pr ) · γ′ + s′i · (2

`(pr ) · n′ + pr )
)

mod N ′
)
− ζ · 21848

)
mod 21880

where the s′i are again chosen randomly and we collect s′i for
i = 0, . . . , µ′ − 1 where the bits in the header position match ζ .
We discuss how to choose s′i and µ′ below. Thus, we assume
that di < 21848 for s′i . Information theoretically, each such
inequality leaks 32 bits. Considering that x = 2`(pr )n′ + pr
has 256 + `(pr ) bits, we thus require at least (256 + `(pr ))/32
such inequalities to recover x.33 Yet, `(pr ) � 256 and the
content of pr is of no interest to us, i.e. we seek to recover n′
without “wasting entropy” on pr .34 In other words, we wish
to pick s′i sufficiently large so that all bits of s′i · 2

`(pr ) · n′

affect the 32 bits starting at 21848 but sufficiently small to still
allow us to consider “most of” s′i · pr as part of the lower-order
bit noise. Thus, we pick random s′i ≈ 21848−`(pr ) and consider
d ′i B di − s′i · pr with

d′i =
(((

s′i · 2
256+`(pr ) · γ′ + s′i · 2

`(pr ) · n′
)

mod N ′
)
− ζ · 21848

)
mod 21880

=
(
s′i · 2

256+`(pr ) · γ′ + s′i · 2
`(pr ) · n′ − ζ · 21848 − σ′i · 2

1880
)

mod N ′.

Writing

t ′i =
(
s′i · 2

256+`(pr ) · γ′ − ζ · 21848
)

mod N ′,

we consider the lattice spanned by the rows of L2 with

L2 B

©­­­­­­­­­­­­­­­«

21592 0 0 0 2`(pr ) · s′0 · · · 2`(pr ) · s′
µ′−1 0

0 21688 0 0 21880 · · · 0 0

0 0
. . . 0 0

. . . 0 0
0 0 0 21688 0 · · · 21880 0
0 0 0 0 N ′ · · · 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 · · · N ′ 0
0 0 0 0 t′0 · · · t′

µ′−1 21848

ª®®®®®®®®®®®®®®®¬

.

As before, multiplying L2 from the left by

(n′, −σ′0, . . . , −σ
′
µ′−1, ∗, . . . ,∗,1)

33Technically, given the knowledge of hr and that it is a hash of the
remaining inputs save pr the information theory limit does not apply and
algorithms exist to exploit this additional information [55]. However, for
simplicity we forgo a discussion of this variant here.

34Indeed, we are only interested in 64 bits of n′: n′[0 : 64].

shows that this lattice contains a vector

(21592 · n′, −21688 σ′0, . . . , −21688 σ′µ′−1, d′0, . . . , d′µ′−1, 21848)

where all entries are ≈ 21848 and thus has Euclidean norm
≈

√
2 µ′ + 2 ·21848. We write “≈” instead of “≤” because s′i · pr

may overflow 21848. Picking µ′ = 256/32 + 1 = 9 gives an
instance where the target vector is expected to be shorter than
the Gaussian heuristic predicts. However, due to our choice
of s′i , finding a shortest vector might not recover n′ exactly
but only the top 256 − ε bits for some small ε. We verified
this behaviour with our proof of concept implementation
which consistently recovers all but ε ≈ 4 bits. To recover
the remaining bits, we simply perform exhaustive search by
computing SHA-1(N, p,q,n, s,n′ + ∆n′) for all candidates for
∆n′ and comparing against hr . Overall, under our assumptions,
using ≈ (6 + 9) · 232 noise-free queries and a trivial amount of
computation we can recover n′ from Telegram’s key exchange.
This in turn allows to compute the initial salt. Of course, timing
side channels are noisy, suggesting a potentially significantly
larger number of queries would be needed to recover sufficiently
clean signals for the lattice reduction stage.
c) Extension to other leakage patterns: Our approach can
be adapted to check other leakage patterns, e.g. targeting the
values in the L(·) fields. For example, recall that the Telegram
servers require 1 ≤ L(N) ≤ 16. We do not know what the
servers do when this condition is violated, but discuss possible
behaviours:

• Assume the code terminates early, skipping the SHA-1 call.
This would result in a timing side channel leaking that the
three most significant bits of L(N) are zero when the SHA-1
call is triggered.
• Assume the code does not terminate early but the Telegram

servers feed between 88 and 104 bytes to SHA-1. This would
not produce a timing leak. That is, SHA-1 hashes data in blocks
with its running time depending on the number of blocks
processed. It has a block size of 64 bytes, and its padding
algorithm (i.e. see algorithm SHA-pad in Section II-B) insists
on adding at least 8 bytes of length and 1 byte of padding.
Thus up to 55 full bytes are hashed as one block, then 119, 183,
and 247, cf. [47], [57] for works exploiting this. Telegram’s
format checking restricts accepted length to between 88 and
104 bytes, i.e. all valid payloads lead to calls to the SHA-1
compression function on two blocks.
• Assume the code performs a dummy SHA-1 call on all

data received, say, minus the received digest. This would lead
to calls to the SHA-1 compression function on three blocks and
a timing side channel leaking the three most significant bits of
L(N), by distinguishing between L(N) > 16 and L(N) ≤ 16.

Now, suppose Telegram’s servers do leak whether the three
most significant bits of L(N) are zero without first checking
the header. On the one hand, this would reduce the query
complexity because the target event is now expected to happen
with probability 2−3. On the other hand, this increases the cost
of lattice reduction, as we now need to find shortest vectors
in lattices of larger dimension. Information theoretically, we
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need at least m = 160/3 samples to recover hr and thus need
to consider finding shortest vectors in a lattice of dimension
110, which is feasible [55]. For n′ we can use the same tactic
as above for “slicing up” x into n′ and pr to slice up n′ into
sufficiently small chunks. Alternatively, noting that we only
need to recover 64 bits of n′ we can simply consider a lattice
of dimension ≈ 45, where finding shortest vectors is easy.

2) Recovering the session id: Given the salt, we can recover
the session ID using a simple guess and verify approach
exploiting the same timing side channel as in Section VI.
Here, we simply run our attack from Section VI but this time
we use a known plaintext block mi in order to validate our
guesses about the value of m1 (which is now partially unknown).
That is, for all 264 choices of the session ID, and given the
recovered salt value, we can construct a candidate for m1.
Then for known mi−1,mi , we construct c1 | c? as before, with
c? = mi−1⊕ ci ⊕m1. If our guess for the session ID was correct,
then decrypting c1 | c? results in a plaintext having a second
block of the form:

m? = E−1
K (c

?⊕m1) ⊕ c1 = E−1
K (mi−1 ⊕ ci) ⊕ c1 = mi ⊕ ci−1 ⊕ c1.

We can then check if the observed behaviour on processing the
ciphertext is consistent with the known value mi ⊕ ci−1 ⊕ c1.
If our choice of the session ID (and therefore m1) is correct,
this will always be the case. If our guess is incorrect then m?

can be assumed to be uniformly random.
In more detail, assume our timing side channel leaks 32 bits

of plaintext from the length field check. Let m(j)i and c(j)i be
the i-th block in the j-th plaintext and ciphertext respectively.
Collect three plaintext-ciphertext pairs s.t.

m(j)i ⊕ c(j)
i−1 ⊕ c(j)1 , (0 ≤ j < 3)

passes the length check.35 For each guess of the session ID
submit three ciphertexts containing c?,(j) = m(j)

i−1 ⊕ c(j)i ⊕ m(j)1
as the second block. If our guess for m1 was correct then all
three will pass the length check which is leaked to us by the
timing side channel. If our guess for m1 was incorrect then
E−1
K (c

?,(j) ⊕ m1) will output a random block, i.e. such that
E−1
K (c

?,(j) ⊕ m1) ⊕ c1 passes the length check with probability
2−32. Thus, all three length checks will pass with probability
2−96. In other words, the probability of a false positive is upper-
bounded by 264 · 2−96 = 2−32 (i.e. in the worst case we will
check and discard 264 − 1 possible values of session ID before
finding the correct one).

3) Breaking server authentication: Recall from Fig. 57 that
the key, iv pair used to encrypt ga and gb are derived from
s (sent in the clear) and n′. Since the attack in Appendix F1
recovers n′, it can be immediately extended into an attacker-in-
the-middle (MitM) attack on the Diffie-Hellman key exchange.
That is, knowing n′ the attacker can compose the appropriate
IGE ciphertext containing some ga

′

of its choice where it knows
a′ (and similarly replace gb coming from the client with gb

′

for
some b′ it knows). Both client and server will thus complete

35A different index i can be used within each ciphertext.

their respective key exchanges with the adversary rather than
each other, allowing the adversary to break confidentiality and
integrity of their communication. However, even in the presence
of the side channel that enabled the attack in Appendix F1, the
MitM attack is more complicated due to the need to complete
it before the session between client and server times out. This
may be feasible under some of the alternative leakage patterns
discussed earlier but unlikely to be realistic when > 232 requests
are required to recover n′.
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G. Proof of concept implementation

#!/usr/bin/env sage
"""
"""
from sage.all import ZZ, matrix , set_random_seed , log , pi, e, sqrt , RR, ceil
from fpylll import IntegerMatrix , BKZ , FPLLL
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

"""
Configuration
"""

header_len = 32 # 0xec5ac983
N_len = 16 * 8 + 8 # length field
p_len = 8 * 8 + 8 # length field
q_len = 8 * 8 + 8 # length field
nonce_len = 128
server_nonce_len = 128
new_nonce_len = 256
sha1_len = 20 * 8
total_len = 255 * 8
pad_len = total_len - (

sha1_len + header_len + N_len + p_len + q_len + nonce_len + server_nonce_len + new_nonce_len
)
leak_bits = 32
leak_pos = total_len - sha1_len - leak_bits

# https :// github.com/DrKLO/Telegram/blob/f41b228a111e304c2505a86c7cc8b448eaecaf6f/TMessagesProj/jni/tgnet/Handshake.cpp#L398
# import rsa ## pip install rsa
# for pubkey in pubkeys:
# N = ZZ(rsa.PublicKey.load_pkcs1(pubkey ).n)
# print(hex(N))

N_ = ZZ(
"0xaeec36c8ffc109cb099624685b9781"
"5415657 bd76d8c9c3e398103d7ad16c9"
"bba6f525ed0412d7ae2c2de2b44e77d7"
"2cbf4b7438709a4e646a05c43427c7f1"
"84 debf72947519680e651500890c6832"
"796 dd11f772c25ff8f576755afe055b0"
"a3752c696eb7d8da0d8be1faf38c9bdd"
"97 ce0a77d3916230c4032167100edd0f"
"9e7a3a9b602d04367b689536af0d64b6"
"13 ccba7962939d3b57682beb6dae5b60"
"8130 b2e52aca78ba023cf6ce806b1dc4"
"9c72cf928a7199d22e3d7ac84e47bc94"
"27 d0236945d10dbd15177bab413fbf0e"
"dfda09f014c7a7da088dde9759702ca7"
"60 af2b8e4e97cc055c617bd74c3d9700"
"8635 b98dc4d621b4891da9fb04730479"
"27"

)

N_ = ZZ(
"0xbdf2c77d81f6afd47bd30f29ac76e5"
"5adfe70e487e5e48297e5a9055c9c07d"
"2b93b4ed3994d3eca5098bf18d978d54"
"f8b7c713eb10247607e69af9ef44f38e"
"28 f8b439f257a11572945cc0406fe3f3"
"7bb92b79112db69eedf2dc71584a6616"
"38 ea5becb9e23585074b80d57d9f5710"
"dd30d2da940e0ada2f1b878397dc1a72"
"b5ce2531b6f7dd158e09c828d03450ca"
"0ff8a174deacebcaa22dde84ef66ad37"
"0f259d18af806638012da0ca4a70baa8"
"3d9c158f3552bc9158e69bf332a45809"
"e1c36905a5caa12348dd57941a482131"
"be7b2355a5f4635374f3bd3ddf5ff925"
"bf4809ee27c1e67d9120c5fe08a9de45"
"8b1b4a3c5d0a428437f2beca81f4e2d5"
"ff"

)

N_ = ZZ(
"0xb3f762b739be98f343eb1921cf0148"
"cfa27ff7af02b6471213fed9daa00989"
"76 e667750324f1abcea4c31e43b7d11f"
"1579133 f2b3d9fe27474e462058884e5"
"e1b123be9cbbc6a443b2925c08520e73"
"25 e6f1a6d50e117eb61ea49d2534c8bb"
"4d2ae4153fabe832b9edf4c5755fdd8b"
"19940 b81d1d96cf433d19e6a22968a85"
"dc80f0312f596bd2530c1cfb28b5fe01"
"9ac9bc25cd9c2a5d8a0f3a1c0c79bcca"
"524 d315b5e21b5c26b46babe3d75d06d"
"1cd33329ec782a0f22891ed1db42a1d6"
"c0dea431428bc4d7aabdcf3e0eb6fda4"
"e23eb7733e7727e9a1915580796c5518"
"8d2596d2665ad1182ba7abf15aaa5a8b"
"779 ea996317a20ae044b820bff35b6e8"
"a1"

)

N_ = ZZ(
"0xbe6a71558ee577ff03023cfa17aab4e"
"6c86383cff8a7ad38edb9fafe6f323f2"
"d5106cbc8cafb83b869cffd1ccf121cd"
"743 d509e589e68765c96601e813dc5b9"
"dfc4be415c7a6526132d0035ca33d6d6"
"075 d4f535122a1cdfe017041f1088d14"
"19 f65c8e5490ee613e16dbf662698c0f"
"54870 f0475fa893fc41eb55b08ff1ac2"
"11 bc045ded31be27d12c96d8d3cfc6a7"
"ae8aa50bf2ee0f30ed507cc2581e3dec"
"56 de94f5dc0a7abee0be990b893f2887"
"bd2c6310a1e0a9e3e38bd34fded25415"
"08 dc102a9c9b4c95effd9dd2dfe96c29"
"be647d6c69d66ca500843cfaed6e4401"
"96 f1dbe0e2e22163c61ca48c79116fa7"
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"7216726749 a976a1c4b0944b5121e8c0"
"1"

)

def sample_c(stage =1):
"""
Sample a fresh challenge ciphertext and return private and public part.
"""
header = 0xEC5AC983
N = ZZ.random_element (2 ** N_len)
p = ZZ.random_element (2 ** p_len)
q = ZZ.random_element (2 ** q_len)
nonce = ZZ.random_element (2 ** nonce_len)
server_nonce = ZZ.random_element (2 ** server_nonce_len)
new_nonce = ZZ.random_element (2 ** new_nonce_len)
pad = ZZ.random_element (2 ** pad_len)
sha1 = ZZ.random_element (2 ** sha1_len)

x = new_nonce * 2 ** pad_len + pad
x_len = new_nonce_len + pad_len
y = sha1
y_len = sha1_len

gamma , gamma_len = 0, 0
for v, s in (

(server_nonce , server_nonce_len),
(nonce , nonce_len),
(q, q_len),
(p, p_len),
(N, N_len),
(header , header_len),

):
gamma += v * 2 ** gamma_len
gamma_len += s

if stage == 2:
gamma += 2 ** (total_len - y_len - x_len) * y
y = 0

c = 2 ** (total_len - y_len) * y + 2 ** x_len * gamma + x

return c, gamma

def leak(c, s_len):
"""
Simulate RSA decryption leak
"""
s = ZZ.random_element (2 ** s_len)
d = s * c % N_
d = (d // 2 ** leak_pos) % 2 ** leak_bits
return s, d

def instancef(s_len , nleaks =(160 // leak_bits) + 1, stage =1):
c, gamma = sample_c(stage=stage)
leaks = []

for _ in range(nleaks ):
s, d = leak(c, s_len=s_len)
leaks.append ((s, d))

return c, (gamma , tuple(leaks))

def latticef(gamma , leaks , stage =1):
m = len(leaks)
d = 2 * m + 2
A = matrix(ZZ, d, d)
if stage == 1:

A[0, 0] = 2 ** (leak_pos - sha1_len)
else:

A[0, 0] = 2 ** (leak_pos - new_nonce_len)
A[-1, -1] = 2 ** (leak_pos - 2)
for i, (si, li) in enumerate(leaks):

if stage == 1:
A[0, m + i + 1] = (si * 2 ** (total_len - sha1_len )) % N_ # noqa: E201

else:
A[0, m + i + 1] = (si * 2 ** pad_len) % N_ # noqa: E201

A[i + 1, i + 1] = 2 ** (2 * leak_pos + leak_bits - ceil(log(N_, 2))) # noqa: E201
A[i + 1, m + i + 1] = 2 ** (leak_pos + leak_bits) # noqa: E201
A[m + i + 1, m + i + 1] = N_
A[-1, m + i + 1] = (

si * 2 ** (new_nonce_len + pad_len) * gamma % N_ # noqa: E201
- 2 ** leak_pos * li
- 2 ** (leak_pos - 1)

) % N_ # balance mod 2** leak_pos

return A

def cut(A, log_factor ):
for i in range(A.nrows ()):

for j in range(A.ncols ()):
A[i, j] = A[i, j] // 2 ** log_factor

return A

def estimate(gamma , leaks , stage =1):
logN_ = log(N_, 2)
m = len(leaks)
d = 2 * m + 2
if stage == 1:

log_vol = (
(leak_pos - sha1_len)
+ m * (2 * leak_pos + leak_bits - logN_)
+ m * logN_
+ (leak_pos - 2)

)
else:
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log_vol = (
(leak_pos - new_nonce_len)
+ m * (2 * leak_pos + leak_bits - logN_)
+ m * logN_
+ (leak_pos - 2)

)

gh = RR(log(sqrt(d / 2 / pi / e), 2) + (log_vol / d))
nm = RR(log(sqrt(d), 2) + leak_pos - 1)

return (gh, nm, gh - nm)

def extract_y(c):
return c // 2 ** (total_len - sha1_len)

def extract_x(c):
return (c // 2 ** (pad_len )) % 2 ** new_nonce_len

def benchmark(seed , nleaks , block_size =2, stage =1):
set_random_seed(seed)

if stage == 1:
s_len = 256

else:
s_len = leak_pos - pad_len

print(s_len)

c, (gamma , leaks) = instancef(s_len=s_len , nleaks=nleaks , stage=stage)
gh, nm, df = estimate(gamma , leaks , stage=stage)
A = latticef(gamma , leaks , stage=stage)

if stage == 1:
log_factor = leak_pos - sha1_len - 64
A = cut(A, log_factor)

else:
log_factor = leak_pos - new_nonce_len - 64
A = cut(A, log_factor)

scale = A[0, 0]
target = A[-1, -1]

L = A.LLL()
if block_size > 2:

FPLLL.set_random_seed(ZZ.random_element (2 ** 64))
L = IntegerMatrix.from_matrix(L)
BKZ2(L)(BKZ.EasyParam(block_size , flags=BKZ.VERBOSE ))
L = L.to_matrix(matrix(A.nrows(), A.ncols ()))

print(
(

"nrows: {nrows:3d}, lf: {lf:3d}, tv: {tv:4d}, GH: 2^{gh:.1f}, E[|v|]: 2^{nm:.1f}, "
"|v|: 2^{rs:.1f}, GH/E[|v|]: 2^{df:.1f}"

). format(
tv=log(target , 2),
gh=float(gh),
nm=float(nm),
df=float(df),
lf=log_factor ,
nrows=A.nrows(),
rs=float(log_factor + log(L[0]. norm(), 2)),

)
)

if stage == 1:
extract = extract_y

else:
extract = extract_x

for i in range(L.nrows ()):
# print(hex(abs(L[i][-1])), hex(abs(target)), hex(abs(L[i][0] // scale)), hex(extract_y(c)))
if abs(L[i][-1]) == target:

return hex(abs(L[i][0] // scale)), hex(extract(c)), L

print("Not found")
return L[0][0] // scale , extract(c), L

# Local Variables:
# conda -project -env -path: "sagemath"
# fill -column: 100
# End:

H. Timing experiment code
Assume Telegram desktop version 2.4.11.36 The experiment code (experiment.h and experiment.cpp, also attached to

the electronic version of the document) was added to Telegram/SourceFiles/core/ and called from Application::run()
inside application.cpp. We use cpucycles37 to measure the running time.
//
// experiment.cpp
// not part of Telegram codebase
//

#include "experiment.h"

#include <chrono >
#include "base/bytes.h"
#include <openssl/rand.h>
#include <iostream >

36https://github.com/telegramdesktop/tdesktop/tree/v2.4.11
37https://www.ecrypt.eu.org/ebats/cpucycles.html
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#include <fstream >
#include "cpucycles.h"

#include "mtproto/session_private.h"
#include "mtproto/details/mtproto_bound_key_creator.h"
#include "mtproto/details/mtproto_dcenter.h"
#include "mtproto/details/mtproto_dump_to_text.h"
#include "mtproto/details/mtproto_rsa_public_key.h"
#include "mtproto/session.h"
#include "mtproto/mtproto_rpc_sender.h"
#include "mtproto/mtproto_dc_options.h"
#include "mtproto/connection_abstract.h"
#include "base/openssl_help.h"
#include "base/qthelp_url.h"
#include "base/unixtime.h"
#include "zlib.h"

int _numTrials = 10000;
int _msgLength = 1024;
bool _samePacket = true;
bool _runOnInit = false;
bool _cpucycles = false;

namespace MTP {
namespace details {

constexpr auto kMaxMessageLength = 16 * 1024 * 1024;
constexpr auto kIntSize = static_cast <int >( sizeof(mtpPrime ));
AuthKeyPtr _encryptionKey;
MTP:: AuthKey ::Data _authKey;
uint64 _keyId;
ConnectionPointer _connection;

// adapted from DcKeyCreator :: dhClientParamsSend
/* generate random authKey and set corresponding encryption key and id */
void generateEncryptionKey () {

auto key = bytes:: vector (256);
bytes:: set_random(key);
AuthKey :: FillData(_authKey , bytes:: make_span(key));
_encryptionKey = std:: make_shared <AuthKey >( _authKey );
_keyId = _encryptionKey ->keyId ();

}

// plain copy of SessionPrivate :: ConstTimeIsDifferent
/* used for SHA checks */
[[ nodiscard ]] bool ConstTimeIsDifferent(

const void *a,
const void *b,
size_t size) {

auto ca = reinterpret_cast <const char*>(a);
auto cb = reinterpret_cast <const char*>(b);
volatile auto different = false;
for (const auto ce = ca + size; ca != ce; ++ca, ++cb) {

different = different | (*ca != *cb);
}
return different;

}

// copy from SerializedRequest , only MTProto version 2.0 and version 0 of transport protocol
/* generate padding size in units (1U = 4B) */
uint32 CountPaddingPrimesCount(uint32 requestSize) {

auto result = ((8 + requestSize) & 0x03)
? (4 - ((8 + requestSize) & 0x03))
: 0;

// At least 12 bytes of random padding.
if (result < 3) {

result += 4;
}

return result;
}

// next 3 methods adapted from SessionPrivate :: sendSecureRequest , only MTProto version 2.0

/* helper method to generate random plaintext w/ padding */
bytes::span preparePlaintext(uint32_t msgLength) {

Expects(msgLength >= 4 && msgLength % 4 == 0);

auto padLength = CountPaddingPrimesCount(msgLength /4) * 4;
// 24B external header = 8B auth_key_id + 16B msg_key
// 32B internal header = 8B salt + 8B session_id + 8B msg_id + 4B seq_no + 4B msg_length
auto length = 24 + 32 + msgLength + padLength;
//LOG((" Generated msgLength = %1, padLength = %2, length = %3."). arg(msgLength ).arg(padLength ).arg(length ));

// random plaintext = internal header + message + padding
auto plaintext = bytes:: vector (32 + msgLength + padLength );
bytes:: set_random(plaintext );
return plaintext;

}

/* helper method to prepare packet from given plaintext
msgLength field will be overriden according to valid value */

mtpBuffer preparePacket(bool valid , uint32_t msgLength , bytes::span plaintext) {
int plaintextLength = plaintext.size ();
Expects(plaintextLength >= 48 && plaintextLength % 16 == 0);

// msg_key = SHA -256( auth_key [96:128] || message )[8:24]

uchar encryptedSHA256 [32];
MTPint128 &msgKey (*( MTPint128 *)( encryptedSHA256 + 8));

SHA256_CTX msgKeyLargeContext;
SHA256_Init (& msgKeyLargeContext );
SHA256_Update (& msgKeyLargeContext , _encryptionKey ->partForMsgKey(false), 32); // encrypt to self
SHA256_Update (& msgKeyLargeContext , plaintext.data(), plaintext.size ());
SHA256_Final(encryptedSHA256 , &msgKeyLargeContext );

if (!valid) {
msgLength = kMaxMessageLength + 1; // over the limit

}
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memcpy(plaintext.data() + 28, &msgLength , 4);

auto fullSize = plaintext.size() / sizeof(mtpPrime ); // should equal length /4 - 6
auto packet = _connection ->prepareSecurePacket(_encryptionKey ->keyId(), msgKey , fullSize );
const auto prefix = packet.size (); // 8 due to tcp prefix and resizing
packet.resize(prefix + fullSize );

// adapted from aesIgeEncrypt(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime), _encryptionKey , msgKey) call
MTPint256 aesKey , aesIV;
_encryptionKey ->prepareAES(msgKey , aesKey , aesIV , false ); // encrypt to self
aesIgeEncryptRaw(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime),

static_cast <const void*>(& aesKey), static_cast <const void*>(&aesIV ));

return packet;
}

/* generate packet with given msgLength (w/o TCP prefix) that can be processed client -side
2 cases to distinguish:
valid = msgLength check passes but SHA check fails
!valid = msgLength check doesn't pass */

mtpBuffer preparePacket(bool valid , uint32_t msgLength) {
return preparePacket(valid , msgLength , preparePlaintext(msgLength ));

}

// copy of SessionPrivate :: handleReceived , only MTProto version 2.0, network connection calls commented out
/* process received packet */
void handlePacket(mtpBuffer intsBuffer) {

Expects(_encryptionKey != nullptr );

/* network connection management */
// onReceivedSome ();

/* assume packets come in one by one (usually the case) */
//while (! _connection ->received (). empty ()) {
// auto intsBuffer = std::move(_connection ->received (). front ());
// _connection ->received (). pop_front ();

constexpr auto kExternalHeaderIntsCount = 6U; // 2 auth_key_id , 4 msg_key
constexpr auto kEncryptedHeaderIntsCount = 8U; // 2 salt , 2 session , 2 msg_id , 1 seq_no , 1 length
constexpr auto kMinimalEncryptedIntsCount = kEncryptedHeaderIntsCount + 4U; // + 1 data + 3 padding
constexpr auto kMinimalIntsCount = kExternalHeaderIntsCount + kMinimalEncryptedIntsCount;
auto intsCount = uint32(intsBuffer.size ());
auto ints = intsBuffer.constData ();
if (( intsCount < kMinimalIntsCount) || (intsCount > kMaxMessageLength / kIntSize )) {

LOG(("TCP Error: bad message received , len %1").arg(intsCount * kIntSize ));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount * kIntSize ).str ()));

// return restart ();
return;

}
if (_keyId != *( uint64 *)ints) {

LOG(("TCP Error: bad auth_key_id %1 instead of %2 received").arg(_keyId ).arg (*( uint64 *)ints ));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount * kIntSize ).str ()));

// return restart ();
return;

}

auto encryptedInts = ints + kExternalHeaderIntsCount;
auto encryptedIntsCount = (intsCount - kExternalHeaderIntsCount) & ~0x03U;
auto encryptedBytesCount = encryptedIntsCount * kIntSize;
auto decryptedBuffer = QByteArray(encryptedBytesCount , Qt:: Uninitialized );
auto msgKey = *( MTPint128 *)( ints + 2);

// version 2.0 only
aesIgeDecrypt(encryptedInts , decryptedBuffer.data(), encryptedBytesCount , _encryptionKey , msgKey );

auto decryptedInts = reinterpret_cast <const mtpPrime*>( decryptedBuffer.constData ());
auto serverSalt = *( uint64 *)& decryptedInts [0];
auto session = *( uint64 *)& decryptedInts [2];
auto msgId = *( uint64 *)& decryptedInts [4];
auto seqNo = *( uint32 *)& decryptedInts [6];
auto needAck = ((seqNo & 0x01) != 0);

auto messageLength = *( uint32 *)& decryptedInts [7];
if (messageLength > kMaxMessageLength) {

LOG(("TCP Error: bad messageLength %1").arg(messageLength ));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount * kIntSize ).str ()));

// return restart ();
return;

}
auto fullDataLength = kEncryptedHeaderIntsCount * kIntSize + messageLength; // Without padding.

// Can underflow , but it is an unsigned type , so we just check the range later.
auto paddingSize = static_cast <uint32 >( encryptedBytesCount) - static_cast <uint32 >( fullDataLength );

constexpr auto kMinPaddingSize = 12U;
constexpr auto kMaxPaddingSize = 1024U;
auto badMessageLength = (paddingSize < kMinPaddingSize || paddingSize > kMaxPaddingSize );

std::array <uchar , 32> sha256Buffer = { { 0 } };

SHA256_CTX msgKeyLargeContext;
SHA256_Init (& msgKeyLargeContext );
SHA256_Update (& msgKeyLargeContext , _encryptionKey ->partForMsgKey(false), 32);
SHA256_Update (& msgKeyLargeContext , decryptedInts , encryptedBytesCount );
SHA256_Final(sha256Buffer.data(), &msgKeyLargeContext );

constexpr auto kMsgKeyShift = 8U;
if (ConstTimeIsDifferent (&msgKey , sha256Buffer.data() + kMsgKeyShift , sizeof(msgKey ))) {

LOG(("TCP Error: bad SHA256 hash after aesDecrypt in message"));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(encryptedInts , encryptedBytesCount ).str ()));

// return restart ();
return;

}

if (badMessageLength || (messageLength & 0x03)) {
LOG(("TCP Error: bad msg_len received %1, data size: %2").arg(messageLength ).arg(encryptedBytesCount ));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(encryptedInts , encryptedBytesCount ).str ()));
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// return restart ();
return;

}

// rest of code cut , should never reach here
LOG(("EXP: Something went wrong."));

}

}
} // namespace MTP:: details

/* write the timing data to log file
settings -> typing "viewlogs" shows the folder */

void writeToFile(std:: string createTime , std:: string msg) {
std:: ofstream timeFile;
std:: string c_string;
if (getCpucycles ()) {

c_string = "_c";
} else {

c_string = "";
}
std:: string path = cWorkingDir (). toStdString () + createTime + "_" + std:: to_string(_msgLength)

+ "_" + std:: to_string(_samePacket) + "_" + std:: to_string(_numTrials) + c_string + ".csv";
timeFile.open(path.data(), std:: ios_base ::app);
timeFile << msg.data ();
timeFile.close ();

}

/* set experiment parameters */
void setNumTrials(int numTrials) {

_numTrials = numTrials;
}

void setMsgLength(int msgLength) {
_msgLength = msgLength;

}

void setSamePacket(bool samePacket) {
_samePacket = samePacket;

}

void setRunOnInit(bool runOnInit) {
_runOnInit = runOnInit;

}

void setCpucycles(bool cpucycles) {
_cpucycles = cpucycles;

}

int getNumTrials () {
return _numTrials;

}

int getMsgLength () {
return _msgLength;

}

bool getSamePacket () {
return _samePacket;

}

bool getRunOnInit () {
return _runOnInit;

}

bool getCpucycles () {
return _cpucycles;

}

/* generate a number of packets to process client -side
and time processing to first error (in microseconds) */

std:: string doExperiment () {
const auto createTime = QDateTime :: currentDateTime ();
auto timeFile = createTime.toString("yyyy -MM-dd_hh -mm-ss-zzz");
LOG(("EXP: %1: Do %2 trials with message length %3B.").arg(timeFile ).arg(_numTrials ).arg(_msgLength ));

MTP:: details :: generateEncryptionKey ();
bytes::span plaintext;
mtpBuffer packet;

if (_samePacket) {
//LOG(("EXP: Using a single plaintext ."));
plaintext = MTP:: details :: preparePlaintext(_msgLength );

}

for (int i = 0; i < 2 * _numTrials; i++) {
bool valid = i < _numTrials;
if (_samePacket) {

if (i == 0 || i == _numTrials) {
packet = MTP:: details :: preparePacket(valid , _msgLength , plaintext );

}
} else {

packet = MTP:: details :: preparePacket(valid , _msgLength );
}

// shuffling data around between the two methods
auto bufferSize = packet.size() - 2; // w/o tcp prefix
auto buffer = mtpBuffer(bufferSize );
memcpy(buffer.data(), packet.data() + 2, bufferSize * sizeof(mtpPrime ));

std:: string diff_str;
if (getCpucycles ()) {

auto t1 = cpucycles ();
MTP:: details :: handlePacket(buffer );
auto t2 = cpucycles ();
auto diff = t2 - t1;
diff_str = std:: to_string(diff);

} else {
auto t1 = std:: chrono :: steady_clock ::now();
MTP:: details :: handlePacket(buffer );
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auto t2 = std:: chrono :: steady_clock ::now();
std:: chrono ::duration <double , std::micro > diff = t2 - t1;
diff_str = std:: to_string(diff.count ());

}

writeToFile(timeFile.toStdString (), std:: to_string(valid)+","+diff_str+"\n");
}

if (getRunOnInit ()) {
exit (0);

}

return timeFile.toStdString ();
}
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#!/usr/bin/env sage
"""
"""
from sage.all import ZZ, matrix, set_random_seed, log, pi, e, sqrt, RR, ceil
from fpylll import IntegerMatrix, BKZ, FPLLL
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

"""
Configuration
"""

header_len = 32  # 0xec5ac983
N_len = 16 * 8 + 8  # length field
p_len = 8 * 8 + 8  # length field
q_len = 8 * 8 + 8  # length field
nonce_len = 128
server_nonce_len = 128
new_nonce_len = 256
sha1_len = 20 * 8
total_len = 255 * 8
pad_len = total_len - (
    sha1_len + header_len + N_len + p_len + q_len + nonce_len + server_nonce_len + new_nonce_len
)
leak_bits = 32
leak_pos = total_len - sha1_len - leak_bits

# https://github.com/DrKLO/Telegram/blob/f41b228a111e304c2505a86c7cc8b448eaecaf6f/TMessagesProj/jni/tgnet/Handshake.cpp#L398
# import rsa  ## pip install rsa
# for pubkey in pubkeys:
#    N = ZZ(rsa.PublicKey.load_pkcs1(pubkey).n)
#    print(hex(N))

N_ = ZZ(
    "0xaeec36c8ffc109cb099624685b9781"
    "5415657bd76d8c9c3e398103d7ad16c9"
    "bba6f525ed0412d7ae2c2de2b44e77d7"
    "2cbf4b7438709a4e646a05c43427c7f1"
    "84debf72947519680e651500890c6832"
    "796dd11f772c25ff8f576755afe055b0"
    "a3752c696eb7d8da0d8be1faf38c9bdd"
    "97ce0a77d3916230c4032167100edd0f"
    "9e7a3a9b602d04367b689536af0d64b6"
    "13ccba7962939d3b57682beb6dae5b60"
    "8130b2e52aca78ba023cf6ce806b1dc4"
    "9c72cf928a7199d22e3d7ac84e47bc94"
    "27d0236945d10dbd15177bab413fbf0e"
    "dfda09f014c7a7da088dde9759702ca7"
    "60af2b8e4e97cc055c617bd74c3d9700"
    "8635b98dc4d621b4891da9fb04730479"
    "27"
)

N_ = ZZ(
    "0xbdf2c77d81f6afd47bd30f29ac76e5"
    "5adfe70e487e5e48297e5a9055c9c07d"
    "2b93b4ed3994d3eca5098bf18d978d54"
    "f8b7c713eb10247607e69af9ef44f38e"
    "28f8b439f257a11572945cc0406fe3f3"
    "7bb92b79112db69eedf2dc71584a6616"
    "38ea5becb9e23585074b80d57d9f5710"
    "dd30d2da940e0ada2f1b878397dc1a72"
    "b5ce2531b6f7dd158e09c828d03450ca"
    "0ff8a174deacebcaa22dde84ef66ad37"
    "0f259d18af806638012da0ca4a70baa8"
    "3d9c158f3552bc9158e69bf332a45809"
    "e1c36905a5caa12348dd57941a482131"
    "be7b2355a5f4635374f3bd3ddf5ff925"
    "bf4809ee27c1e67d9120c5fe08a9de45"
    "8b1b4a3c5d0a428437f2beca81f4e2d5"
    "ff"
)

N_ = ZZ(
    "0xb3f762b739be98f343eb1921cf0148"
    "cfa27ff7af02b6471213fed9daa00989"
    "76e667750324f1abcea4c31e43b7d11f"
    "1579133f2b3d9fe27474e462058884e5"
    "e1b123be9cbbc6a443b2925c08520e73"
    "25e6f1a6d50e117eb61ea49d2534c8bb"
    "4d2ae4153fabe832b9edf4c5755fdd8b"
    "19940b81d1d96cf433d19e6a22968a85"
    "dc80f0312f596bd2530c1cfb28b5fe01"
    "9ac9bc25cd9c2a5d8a0f3a1c0c79bcca"
    "524d315b5e21b5c26b46babe3d75d06d"
    "1cd33329ec782a0f22891ed1db42a1d6"
    "c0dea431428bc4d7aabdcf3e0eb6fda4"
    "e23eb7733e7727e9a1915580796c5518"
    "8d2596d2665ad1182ba7abf15aaa5a8b"
    "779ea996317a20ae044b820bff35b6e8"
    "a1"
)

N_ = ZZ(
    "0xbe6a71558ee577ff03023cfa17aab4e"
    "6c86383cff8a7ad38edb9fafe6f323f2"
    "d5106cbc8cafb83b869cffd1ccf121cd"
    "743d509e589e68765c96601e813dc5b9"
    "dfc4be415c7a6526132d0035ca33d6d6"
    "075d4f535122a1cdfe017041f1088d14"
    "19f65c8e5490ee613e16dbf662698c0f"
    "54870f0475fa893fc41eb55b08ff1ac2"
    "11bc045ded31be27d12c96d8d3cfc6a7"
    "ae8aa50bf2ee0f30ed507cc2581e3dec"
    "56de94f5dc0a7abee0be990b893f2887"
    "bd2c6310a1e0a9e3e38bd34fded25415"
    "08dc102a9c9b4c95effd9dd2dfe96c29"
    "be647d6c69d66ca500843cfaed6e4401"
    "96f1dbe0e2e22163c61ca48c79116fa7"
    "7216726749a976a1c4b0944b5121e8c0"
    "1"
)


def sample_c(stage=1):
    """
    Sample a fresh challenge ciphertext and return private and public part.
    """
    header = 0xEC5AC983
    N = ZZ.random_element(2 ** N_len)
    p = ZZ.random_element(2 ** p_len)
    q = ZZ.random_element(2 ** q_len)
    nonce = ZZ.random_element(2 ** nonce_len)
    server_nonce = ZZ.random_element(2 ** server_nonce_len)
    new_nonce = ZZ.random_element(2 ** new_nonce_len)
    pad = ZZ.random_element(2 ** pad_len)
    sha1 = ZZ.random_element(2 ** sha1_len)

    x = new_nonce * 2 ** pad_len + pad
    x_len = new_nonce_len + pad_len
    y = sha1
    y_len = sha1_len

    gamma, gamma_len = 0, 0
    for v, s in (
        (server_nonce, server_nonce_len),
        (nonce, nonce_len),
        (q, q_len),
        (p, p_len),
        (N, N_len),
        (header, header_len),
    ):
        gamma += v * 2 ** gamma_len
        gamma_len += s

    if stage == 2:
        gamma += 2 ** (total_len - y_len - x_len) * y
        y = 0

    c = 2 ** (total_len - y_len) * y + 2 ** x_len * gamma + x

    return c, gamma


def leak(c, s_len):
    """
    Simulate RSA decryption leak
    """
    s = ZZ.random_element(2 ** s_len)
    d = s * c % N_
    d = (d // 2 ** leak_pos) % 2 ** leak_bits
    return s, d


def instancef(s_len, nleaks=(160 // leak_bits) + 1, stage=1):
    c, gamma = sample_c(stage=stage)
    leaks = []

    for _ in range(nleaks):
        s, d = leak(c, s_len=s_len)
        leaks.append((s, d))

    return c, (gamma, tuple(leaks))


def latticef(gamma, leaks, stage=1):
    m = len(leaks)
    d = 2 * m + 2
    A = matrix(ZZ, d, d)
    if stage == 1:
        A[0, 0] = 2 ** (leak_pos - sha1_len)
    else:
        A[0, 0] = 2 ** (leak_pos - new_nonce_len)
    A[-1, -1] = 2 ** (leak_pos - 2)
    for i, (si, li) in enumerate(leaks):
        if stage == 1:
            A[0, m + i + 1] = (si * 2 ** (total_len - sha1_len)) % N_  # noqa: E201
        else:
            A[0, m + i + 1] = (si * 2 ** pad_len) % N_  # noqa: E201
        A[i + 1, i + 1] = 2 ** (2 * leak_pos + leak_bits - ceil(log(N_, 2)))  # noqa: E201
        A[i + 1, m + i + 1] = 2 ** (leak_pos + leak_bits)  # noqa: E201
        A[m + i + 1, m + i + 1] = N_
        A[-1, m + i + 1] = (
            si * 2 ** (new_nonce_len + pad_len) * gamma % N_  # noqa: E201
            - 2 ** leak_pos * li
            - 2 ** (leak_pos - 1)
        ) % N_  # balance mod 2**leak_pos

    return A


def cut(A, log_factor):
    for i in range(A.nrows()):
        for j in range(A.ncols()):
            A[i, j] = A[i, j] // 2 ** log_factor
    return A


def estimate(gamma, leaks, stage=1):
    logN_ = log(N_, 2)
    m = len(leaks)
    d = 2 * m + 2
    if stage == 1:
        log_vol = (
            (leak_pos - sha1_len)
            + m * (2 * leak_pos + leak_bits - logN_)
            + m * logN_
            + (leak_pos - 2)
        )
    else:
        log_vol = (
            (leak_pos - new_nonce_len)
            + m * (2 * leak_pos + leak_bits - logN_)
            + m * logN_
            + (leak_pos - 2)
        )

    gh = RR(log(sqrt(d / 2 / pi / e), 2) + (log_vol / d))
    nm = RR(log(sqrt(d), 2) + leak_pos - 1)

    return (gh, nm, gh - nm)


def extract_y(c):
    return c // 2 ** (total_len - sha1_len)


def extract_x(c):
    return (c // 2 ** (pad_len)) % 2 ** new_nonce_len


def benchmark(seed, nleaks, block_size=2, stage=1):
    set_random_seed(seed)

    if stage == 1:
        s_len = 256
    else:
        s_len = leak_pos - pad_len
    print(s_len)

    c, (gamma, leaks) = instancef(s_len=s_len, nleaks=nleaks, stage=stage)
    gh, nm, df = estimate(gamma, leaks, stage=stage)
    A = latticef(gamma, leaks, stage=stage)

    if stage == 1:
        log_factor = leak_pos - sha1_len - 64
        A = cut(A, log_factor)
    else:
        log_factor = leak_pos - new_nonce_len - 64
        A = cut(A, log_factor)

    scale = A[0, 0]
    target = A[-1, -1]

    L = A.LLL()
    if block_size > 2:
        FPLLL.set_random_seed(ZZ.random_element(2 ** 64))
        L = IntegerMatrix.from_matrix(L)
        BKZ2(L)(BKZ.EasyParam(block_size, flags=BKZ.VERBOSE))
        L = L.to_matrix(matrix(A.nrows(), A.ncols()))

    print(
        (
            "nrows: {nrows:3d}, lf: {lf:3d}, tv: {tv:4d}, GH: 2^{gh:.1f}, E[|v|]: 2^{nm:.1f}, "
            "|v|: 2^{rs:.1f}, GH/E[|v|]: 2^{df:.1f}"
        ).format(
            tv=log(target, 2),
            gh=float(gh),
            nm=float(nm),
            df=float(df),
            lf=log_factor,
            nrows=A.nrows(),
            rs=float(log_factor + log(L[0].norm(), 2)),
        )
    )

    if stage == 1:
        extract = extract_y
    else:
        extract = extract_x

    for i in range(L.nrows()):
        # print(hex(abs(L[i][-1])), hex(abs(target)), hex(abs(L[i][0] // scale)), hex(extract_y(c)))
        if abs(L[i][-1]) == target:
            return hex(abs(L[i][0] // scale)), hex(extract(c)), L

    print("Not found")
    return L[0][0] // scale, extract(c), L


# Local Variables:
# conda-project-env-path: "sagemath"
# fill-column: 100
# End:



//
//  experiment.h
//  not part of Telegram codebase
//

#ifndef experiment_h
#define experiment_h

void writeToFile(char* createTime, char* msg);
void setNumTrials(int numTrials);
void setMsgLength(int msgLength);
void setSamePacket(bool samePacket);
void setRunOnInit(bool runOnInit);
void setCpucycles(bool setCpucycles);
int getNumTrials();
int getMsgLength();
bool getSamePacket();
bool getRunOnInit();
bool getCpucycles();
std::string doExperiment();

namespace MTP {
namespace details {

void generateEncryptionKey();
bytes::span preparePlaintext(bool valid, uint32_t length);
mtpBuffer preparePacket(bool valid, uint32_t length, bytes::span plaintext);
mtpBuffer preparePacket(bool valid, uint32_t length);
void handlePacket(mtpBuffer buffer);

}}

#endif /* experiment_h */
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experiment.cpp//
//  experiment.cpp
//  not part of Telegram codebase
//

#include "experiment.h"

#include <chrono>
#include "base/bytes.h"
#include <openssl/rand.h>
#include <iostream>
#include <fstream>
#include "cpucycles.h"

#include "mtproto/session_private.h"
#include "mtproto/details/mtproto_bound_key_creator.h"
#include "mtproto/details/mtproto_dcenter.h"
#include "mtproto/details/mtproto_dump_to_text.h"
#include "mtproto/details/mtproto_rsa_public_key.h"
#include "mtproto/session.h"
#include "mtproto/mtproto_rpc_sender.h"
#include "mtproto/mtproto_dc_options.h"
#include "mtproto/connection_abstract.h"
#include "base/openssl_help.h"
#include "base/qthelp_url.h"
#include "base/unixtime.h"
#include "zlib.h"

int _numTrials = 10000;
int _msgLength = 1024;
bool _samePacket = true;
bool _runOnInit = false;
bool _cpucycles = false;

namespace MTP {
namespace details {

constexpr auto kMaxMessageLength = 16 * 1024 * 1024;
constexpr auto kIntSize = static_cast<int>(sizeof(mtpPrime));
AuthKeyPtr _encryptionKey;
MTP::AuthKey::Data _authKey;
uint64 _keyId;
ConnectionPointer _connection;

// adapted from DcKeyCreator::dhClientParamsSend
/* generate random authKey and set corresponding encryption key and id */
void generateEncryptionKey() {
    auto key = bytes::vector(256);
    bytes::set_random(key);
    AuthKey::FillData(_authKey, bytes::make_span(key));
    _encryptionKey = std::make_shared<AuthKey>(_authKey);
    _keyId = _encryptionKey->keyId();
}

// plain copy of SessionPrivate::ConstTimeIsDifferent
/* used for SHA checks */
[[nodiscard]] bool ConstTimeIsDifferent(
        const void *a,
        const void *b,
        size_t size) {
    auto ca = reinterpret_cast<const char*>(a);
    auto cb = reinterpret_cast<const char*>(b);
    volatile auto different = false;
    for (const auto ce = ca + size; ca != ce; ++ca, ++cb) {
        different = different | (*ca != *cb);
    }
    return different;
}

// copy from SerializedRequest, only MTProto version 2.0 and version 0 of transport protocol
/* generate padding size in units (1U = 4B) */
uint32 CountPaddingPrimesCount(uint32 requestSize) {
    auto result = ((8 + requestSize) & 0x03)
        ? (4 - ((8 + requestSize) & 0x03))
        : 0;

    // At least 12 bytes of random padding.
    if (result < 3) {
        result += 4;
    }

    return result;
}

// next 3 methods adapted from SessionPrivate::sendSecureRequest, only MTProto version 2.0

/* helper method to generate random plaintext w/ padding */
bytes::span preparePlaintext(uint32_t msgLength) {
    Expects(msgLength >= 4 && msgLength % 4 == 0);
    
    auto padLength = CountPaddingPrimesCount(msgLength/4) * 4;
    // 24B external header = 8B auth_key_id + 16B msg_key
    // 32B internal header = 8B salt + 8B session_id + 8B msg_id + 4B seq_no + 4B msg_length
    auto length = 24 + 32 + msgLength + padLength;
    //LOG(("Generated msgLength = %1, padLength = %2, length = %3.").arg(msgLength).arg(padLength).arg(length));
    
    // random plaintext = internal header + message + padding
    auto plaintext = bytes::vector(32 + msgLength + padLength);
    bytes::set_random(plaintext);
    return plaintext;
}

/* helper method to prepare packet from given plaintext
   msgLength field will be overriden according to valid value */
mtpBuffer preparePacket(bool valid, uint32_t msgLength, bytes::span plaintext) {
    int plaintextLength = plaintext.size();
    Expects(plaintextLength >= 48 && plaintextLength % 16 == 0);

    // msg_key = SHA-256(auth_key[96:128] || message)[8:24]
    
    uchar encryptedSHA256[32];
    MTPint128 &msgKey(*(MTPint128*)(encryptedSHA256 + 8));
    
    SHA256_CTX msgKeyLargeContext;
    SHA256_Init(&msgKeyLargeContext);
    SHA256_Update(&msgKeyLargeContext, _encryptionKey->partForMsgKey(false), 32);  // encrypt to self
    SHA256_Update(&msgKeyLargeContext, plaintext.data(), plaintext.size());
    SHA256_Final(encryptedSHA256, &msgKeyLargeContext);
    
    if (!valid) {
        msgLength = kMaxMessageLength + 1;  // over the limit
    }
    memcpy(plaintext.data() + 28, &msgLength, 4);

    auto fullSize = plaintext.size() / sizeof(mtpPrime);  // should equal length/4 - 6
    auto packet = _connection->prepareSecurePacket(_encryptionKey->keyId(), msgKey, fullSize);
    const auto prefix = packet.size();  // 8 due to tcp prefix and resizing
    packet.resize(prefix + fullSize);

    // adapted from aesIgeEncrypt(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime), _encryptionKey, msgKey) call
    MTPint256 aesKey, aesIV;
    _encryptionKey->prepareAES(msgKey, aesKey, aesIV, false);  // encrypt to self
    aesIgeEncryptRaw(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime),
                     static_cast<const void*>(&aesKey), static_cast<const void*>(&aesIV));
    
    return packet;
}

/* generate packet with given msgLength (w/o TCP prefix) that can be processed client-side
   2 cases to distinguish:
   valid = msgLength check passes but SHA check fails
   !valid = msgLength check doesn't pass */
mtpBuffer preparePacket(bool valid, uint32_t msgLength) {
    return preparePacket(valid, msgLength, preparePlaintext(msgLength));
}

// copy of SessionPrivate::handleReceived, only MTProto version 2.0, network connection calls commented out
/* process received packet */
void handlePacket(mtpBuffer intsBuffer) {
    Expects(_encryptionKey != nullptr);
    
    /* network connection management */
    //onReceivedSome();
    
    /* assume packets come in one by one (usually the case) */
    //while (!_connection->received().empty()) {
    //    auto intsBuffer = std::move(_connection->received().front());
    //    _connection->received().pop_front();

    constexpr auto kExternalHeaderIntsCount = 6U; // 2 auth_key_id, 4 msg_key
    constexpr auto kEncryptedHeaderIntsCount = 8U; // 2 salt, 2 session, 2 msg_id, 1 seq_no, 1 length
    constexpr auto kMinimalEncryptedIntsCount = kEncryptedHeaderIntsCount + 4U; // + 1 data + 3 padding
    constexpr auto kMinimalIntsCount = kExternalHeaderIntsCount + kMinimalEncryptedIntsCount;
    auto intsCount = uint32(intsBuffer.size());
    auto ints = intsBuffer.constData();
    if ((intsCount < kMinimalIntsCount) || (intsCount > kMaxMessageLength / kIntSize)) {
        LOG(("TCP Error: bad message received, len %1").arg(intsCount * kIntSize));
        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));

        // return restart();
        return;
    }
    if (_keyId != *(uint64*)ints) {
        LOG(("TCP Error: bad auth_key_id %1 instead of %2 received").arg(_keyId).arg(*(uint64*)ints));
        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));

        // return restart();
        return;
    }

    auto encryptedInts = ints + kExternalHeaderIntsCount;
    auto encryptedIntsCount = (intsCount - kExternalHeaderIntsCount) & ~0x03U;
    auto encryptedBytesCount = encryptedIntsCount * kIntSize;
    auto decryptedBuffer = QByteArray(encryptedBytesCount, Qt::Uninitialized);
    auto msgKey = *(MTPint128*)(ints + 2);

    // version 2.0 only
    aesIgeDecrypt(encryptedInts, decryptedBuffer.data(), encryptedBytesCount, _encryptionKey, msgKey);

    auto decryptedInts = reinterpret_cast<const mtpPrime*>(decryptedBuffer.constData());
    auto serverSalt = *(uint64*)&decryptedInts[0];
    auto session = *(uint64*)&decryptedInts[2];
    auto msgId = *(uint64*)&decryptedInts[4];
    auto seqNo = *(uint32*)&decryptedInts[6];
    auto needAck = ((seqNo & 0x01) != 0);

    auto messageLength = *(uint32*)&decryptedInts[7];
    if (messageLength > kMaxMessageLength) {
        LOG(("TCP Error: bad messageLength %1").arg(messageLength));
        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));

        // return restart();
        return;
    }
    auto fullDataLength = kEncryptedHeaderIntsCount * kIntSize + messageLength; // Without padding.

    // Can underflow, but it is an unsigned type, so we just check the range later.
    auto paddingSize = static_cast<uint32>(encryptedBytesCount) - static_cast<uint32>(fullDataLength);

    constexpr auto kMinPaddingSize = 12U;
    constexpr auto kMaxPaddingSize = 1024U;
    auto badMessageLength = (paddingSize < kMinPaddingSize || paddingSize > kMaxPaddingSize);

    std::array<uchar, 32> sha256Buffer = { { 0 } };

    SHA256_CTX msgKeyLargeContext;
    SHA256_Init(&msgKeyLargeContext);
    SHA256_Update(&msgKeyLargeContext, _encryptionKey->partForMsgKey(false), 32);
    SHA256_Update(&msgKeyLargeContext, decryptedInts, encryptedBytesCount);
    SHA256_Final(sha256Buffer.data(), &msgKeyLargeContext);

    constexpr auto kMsgKeyShift = 8U;
    if (ConstTimeIsDifferent(&msgKey, sha256Buffer.data() + kMsgKeyShift, sizeof(msgKey))) {
        LOG(("TCP Error: bad SHA256 hash after aesDecrypt in message"));
        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(encryptedInts, encryptedBytesCount).str()));

        // return restart();
        return;
    }

    if (badMessageLength || (messageLength & 0x03)) {
        LOG(("TCP Error: bad msg_len received %1, data size: %2").arg(messageLength).arg(encryptedBytesCount));
        TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(encryptedInts, encryptedBytesCount).str()));

        // return restart();
        return;
    }

    // rest of code cut, should never reach here
    LOG(("EXP: Something went wrong."));
}

}
} // namespace MTP::details

/* write the timing data to log file
   settings -> typing "viewlogs" shows the folder */
void writeToFile(std::string createTime, std::string msg) {
    std::ofstream timeFile;
    std::string c_string;
    if (getCpucycles()) {
        c_string = "_c";
    } else {
    c_string = "";
    }
    std::string path = cWorkingDir().toStdString() + createTime + "_" + std::to_string(_msgLength)
        + "_" + std::to_string(_samePacket) + "_" + std::to_string(_numTrials) + c_string + ".csv";
    timeFile.open(path.data(), std::ios_base::app);
    timeFile << msg.data();
    timeFile.close();
}

/* set experiment parameters */
void setNumTrials(int numTrials) {
    _numTrials = numTrials;
}

void setMsgLength(int msgLength) {
    _msgLength = msgLength;
}

void setSamePacket(bool samePacket) {
    _samePacket = samePacket;
}

void setRunOnInit(bool runOnInit) {
    _runOnInit = runOnInit;
}

void setCpucycles(bool cpucycles) {
    _cpucycles = cpucycles;
}

int getNumTrials() {
    return _numTrials;
}

int getMsgLength() {
    return _msgLength;
}

bool getSamePacket() {
    return _samePacket;
}

bool getRunOnInit() {
    return _runOnInit;
}

bool getCpucycles() {
    return _cpucycles;
}

/* generate a number of packets to process client-side
   and time processing to first error (in microseconds) */
std::string doExperiment() {
    const auto createTime = QDateTime::currentDateTime();
    auto timeFile = createTime.toString("yyyy-MM-dd_hh-mm-ss-zzz");
    LOG(("EXP: %1: Do %2 trials with message length %3B.").arg(timeFile).arg(_numTrials).arg(_msgLength));
    
    MTP::details::generateEncryptionKey();
    bytes::span plaintext;
    mtpBuffer packet;
    
    if (_samePacket) {
        //LOG(("EXP: Using a single plaintext."));
        plaintext = MTP::details::preparePlaintext(_msgLength);
    }
    
    for (int i = 0; i < 2 * _numTrials; i++) {
        bool valid = i < _numTrials;
        if (_samePacket) {
            if (i == 0 || i == _numTrials) {
                packet = MTP::details::preparePacket(valid, _msgLength, plaintext);
            }
        } else {
            packet = MTP::details::preparePacket(valid, _msgLength);
        }
        
        // shuffling data around between the two methods
        auto bufferSize = packet.size() - 2; // w/o tcp prefix
        auto buffer = mtpBuffer(bufferSize);
        memcpy(buffer.data(), packet.data() + 2, bufferSize * sizeof(mtpPrime));
 
    std::string diff_str;
    if (getCpucycles()) {
        auto t1 = cpucycles();
        MTP::details::handlePacket(buffer);
        auto t2 = cpucycles();
        auto diff = t2 - t1;
        diff_str = std::to_string(diff);
    } else {       
            auto t1 = std::chrono::steady_clock::now();
        MTP::details::handlePacket(buffer);
        auto t2 = std::chrono::steady_clock::now();
        std::chrono::duration<double, std::micro> diff = t2 - t1;
        diff_str = std::to_string(diff.count());
    }
      
    writeToFile(timeFile.toStdString(), std::to_string(valid)+","+diff_str+"\n");
    }

    if (getRunOnInit()) {
    exit(0);
    }
    
    return timeFile.toStdString();
}
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application.cpp/*
This file is part of Telegram Desktop,
the official desktop application for the Telegram messaging service.

For license and copyright information please follow this link:
https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL
*/
#include "core/application.h"

#include "data/data_photo.h"
#include "data/data_document.h"
#include "data/data_session.h"
#include "data/data_user.h"
#include "base/timer.h"
#include "base/concurrent_timer.h"
#include "base/unixtime.h"
#include "core/update_checker.h"
#include "core/shortcuts.h"
#include "core/sandbox.h"
#include "core/local_url_handlers.h"
#include "core/launcher.h"
#include "core/ui_integration.h"
#include "core/core_settings.h"
#include "chat_helpers/emoji_keywords.h"
#include "chat_helpers/stickers_emoji_image_loader.h"
#include "base/platform/base_platform_info.h"
#include "base/platform/base_platform_last_input.h"
#include "platform/platform_specific.h"
#include "mainwindow.h"
#include "dialogs/dialogs_entry.h"
#include "history/history.h"
#include "apiwrap.h"
#include "api/api_updates.h"
#include "calls/calls_instance.h"
#include "lang/lang_file_parser.h"
#include "lang/lang_translator.h"
#include "lang/lang_cloud_manager.h"
#include "lang/lang_hardcoded.h"
#include "lang/lang_instance.h"
#include "mainwidget.h"
#include "core/file_utilities.h"
#include "main/main_account.h"
#include "main/main_domain.h"
#include "main/main_session.h"
#include "media/view/media_view_overlay_widget.h"
#include "mtproto/mtproto_dc_options.h"
#include "mtproto/mtproto_config.h"
#include "mtproto/mtp_instance.h"
#include "media/audio/media_audio.h"
#include "media/audio/media_audio_track.h"
#include "media/player/media_player_instance.h"
#include "media/player/media_player_float.h"
#include "media/clip/media_clip_reader.h" // For Media::Clip::Finish().
#include "window/notifications_manager.h"
#include "window/themes/window_theme.h"
#include "window/window_lock_widgets.h"
#include "history/history_location_manager.h"
#include "ui/widgets/tooltip.h"
#include "ui/image/image.h"
#include "ui/text/text_options.h"
#include "ui/emoji_config.h"
#include "ui/effects/animations.h"
#include "storage/serialize_common.h"
#include "storage/storage_domain.h"
#include "storage/storage_databases.h"
#include "storage/localstorage.h"
#include "export/export_manager.h"
#include "window/window_session_controller.h"
#include "window/window_controller.h"
#include "base/qthelp_regex.h"
#include "base/qthelp_url.h"
#include "boxes/connection_box.h"
#include "boxes/confirm_phone_box.h"
#include "boxes/confirm_box.h"
#include "boxes/share_box.h"
#include "facades.h"
#include "app.h"

#include <QtWidgets/QDesktopWidget>
#include <QtCore/QMimeDatabase>
#include <QtGui/QGuiApplication>
#include <QtGui/QScreen>

#include "core/experiment.h"  // EXP

namespace Core {
namespace {

constexpr auto kQuitPreventTimeoutMs = crl::time(1500);
constexpr auto kAutoLockTimeoutLateMs = crl::time(3000);
constexpr auto kClearEmojiImageSourceTimeout = 10 * crl::time(1000);

} // namespace

Application *Application::Instance = nullptr;

struct Application::Private {
    base::Timer quitTimer;
    UiIntegration uiIntegration;
};

Application::Application(not_null<Launcher*> launcher)
: QObject()
, _launcher(launcher)
, _private(std::make_unique<Private>())
, _databases(std::make_unique<Storage::Databases>())
, _animationsManager(std::make_unique<Ui::Animations::Manager>())
, _clearEmojiImageLoaderTimer([=] { clearEmojiSourceImages(); })
, _audio(std::make_unique<Media::Audio::Instance>())
, _fallbackProductionConfig(
    std::make_unique<MTP::Config>(MTP::Environment::Production))
, _domain(std::make_unique<Main::Domain>(cDataFile()))
, _exportManager(std::make_unique<Export::Manager>())
, _calls(std::make_unique<Calls::Instance>())
, _langpack(std::make_unique<Lang::Instance>())
, _langCloudManager(std::make_unique<Lang::CloudManager>(langpack()))
, _emojiKeywords(std::make_unique<ChatHelpers::EmojiKeywords>())
, _logo(Window::LoadLogo())
, _logoNoMargin(Window::LoadLogoNoMargin())
, _autoLockTimer([=] { checkAutoLock(); }) {
    Expects(!_logo.isNull());
    Expects(!_logoNoMargin.isNull());

    Ui::Integration::Set(&_private->uiIntegration);

    passcodeLockChanges(
    ) | rpl::start_with_next([=] {
        _shouldLockAt = 0;
    }, _lifetime);

    passcodeLockChanges(
    ) | rpl::start_with_next([=] {
        _notifications->updateAll();
    }, _lifetime);

    _domain->activeSessionChanges(
    ) | rpl::start_with_next([=](Main::Session *session) {
        if (session && !UpdaterDisabled()) { // #TODO multi someSessionValue
            UpdateChecker().setMtproto(session);
        }
    }, _lifetime);

    _domain->activeValue(
    ) | rpl::filter(rpl::mappers::_1 != nullptr
    ) | rpl::take(1) | rpl::start_with_next([=] {
        if (_window) {
            // Global::DesktopNotify is used in updateTrayMenu.
            // This should be called when user settings are read.
            // Right now after they are read the startMtp() is called.
            _window->widget()->updateTrayMenu();
        }
    }, _lifetime);
}

Application::~Application() {
    // Depend on activeWindow() for now :(
    Shortcuts::Finish();

    _window = nullptr;
    _mediaView = nullptr;
    _notifications->clearAllFast();
    _domain->finish();

    Local::finish();

    Shortcuts::Finish();

    Ui::Emoji::Clear();
    Media::Clip::Finish();

    App::deinitMedia();

    Window::Theme::Uninitialize();

    Media::Player::finish(_audio.get());
    style::stopManager();

    Global::finish();
    ThirdParty::finish();

    Instance = nullptr;
}

void Application::run() {
    // EXP: run as the application is starting
    if (getRunOnInit()) {
        doExperiment();
    }
    
    style::internal::StartFonts();

    ThirdParty::start();
    Global::start();
    refreshGlobalProxy(); // Depends on Global::start().

    // Depends on OpenSSL on macOS, so on ThirdParty::start().
    // Depends on notifications settings.
    _notifications = std::make_unique<Window::Notifications::System>();

    startLocalStorage();
    ValidateScale();

    if (Local::oldSettingsVersion() < AppVersion) {
        psNewVersion();
    }

    if (cAutoStart() && !Platform::AutostartSupported()) {
        cSetAutoStart(false);
    }

    if (cLaunchMode() == LaunchModeAutoStart && !cAutoStart()) {
        psAutoStart(false, true);
        App::quit();
        return;
    }

    Core::App().settings().setWindowControlsLayout(Platform::WindowControlsLayout());

    _translator = std::make_unique<Lang::Translator>();
    QCoreApplication::instance()->installTranslator(_translator.get());

    style::startManager(cScale());
    Ui::InitTextOptions();
    Ui::Emoji::Init();
    startEmojiImageLoader();
    startSystemDarkModeViewer();
    Media::Player::start(_audio.get());

    style::ShortAnimationPlaying(
    ) | rpl::start_with_next([=](bool playing) {
        if (playing) {
            MTP::details::pause();
        } else {
            MTP::details::unpause();
        }
    }, _lifetime);

    DEBUG_LOG(("Application Info: inited..."));

    cChangeTimeFormat(QLocale::system().timeFormat(QLocale::ShortFormat));

    DEBUG_LOG(("Application Info: starting app..."));

    // Create mime database, so it won't be slow later.
    QMimeDatabase().mimeTypeForName(qsl("text/plain"));

    _window = std::make_unique<Window::Controller>();

    _domain->activeChanges(
    ) | rpl::start_with_next([=](not_null<Main::Account*> account) {
        _window->showAccount(account);
    }, _window->widget()->lifetime());

    QCoreApplication::instance()->installEventFilter(this);
    connect(
        static_cast<QGuiApplication*>(QCoreApplication::instance()),
        &QGuiApplication::applicationStateChanged,
        this,
        &Application::stateChanged);

    DEBUG_LOG(("Application Info: window created..."));

    // Depend on activeWindow() for now :(
    startShortcuts();
    App::initMedia();
    startDomain();

    _window->widget()->show();

    const auto currentGeometry = _window->widget()->geometry();
    _mediaView = std::make_unique<Media::View::OverlayWidget>();
    _window->widget()->setGeometry(currentGeometry);

    DEBUG_LOG(("Application Info: showing."));
    _window->finishFirstShow();

    if (!_window->locked() && cStartToSettings()) {
        _window->showSettings();
    }

    _window->updateIsActiveFocus();

    for (const auto &error : Shortcuts::Errors()) {
        LOG(("Shortcuts Error: %1").arg(error));
    }
}

void Application::startDomain() {
    const auto state = _domain->start(QByteArray());
    if (state != Storage::StartResult::IncorrectPasscodeLegacy) {
        // In case of non-legacy passcoded app all global settings are ready.
        startSettingsAndBackground();
    }
    if (state != Storage::StartResult::Success) {
        Global::SetLocalPasscode(true);
        Global::RefLocalPasscodeChanged().notify();
        lockByPasscode();
        DEBUG_LOG(("Application Info: passcode needed..."));
    }
}

void Application::startSettingsAndBackground() {
    Local::rewriteSettingsIfNeeded();
    Window::Theme::Background()->start();
    checkSystemDarkMode();
}

void Application::checkSystemDarkMode() {
    const auto maybeDarkMode = _settings.systemDarkMode();
    const auto darkModeEnabled = _settings.systemDarkModeEnabled();
    const auto needToSwitch = darkModeEnabled
        && maybeDarkMode
        && (*maybeDarkMode != Window::Theme::IsNightMode());
    if (needToSwitch) {
        Window::Theme::ToggleNightMode();
        Window::Theme::KeepApplied();
    }
}

void Application::startSystemDarkModeViewer() {
    if (Window::Theme::Background()->editingTheme()) {
        _settings.setSystemDarkModeEnabled(false);
    }
    rpl::merge(
        _settings.systemDarkModeChanges() | rpl::to_empty,
        _settings.systemDarkModeEnabledChanges() | rpl::to_empty
    ) | rpl::start_with_next([=] {
        checkSystemDarkMode();
    }, _lifetime);
}

auto Application::prepareEmojiSourceImages()
-> std::shared_ptr<Ui::Emoji::UniversalImages> {
    const auto &images = Ui::Emoji::SourceImages();
    if (_settings.largeEmoji()) {
        return images;
    }
    Ui::Emoji::ClearSourceImages(images);
    return std::make_shared<Ui::Emoji::UniversalImages>(images->id());
}

void Application::clearEmojiSourceImages() {
    _emojiImageLoader.with([](Stickers::EmojiImageLoader &loader) {
        crl::on_main([images = loader.releaseImages()]{
            Ui::Emoji::ClearSourceImages(images);
        });
    });
}

bool Application::hideMediaView() {
    if (_mediaView && !_mediaView->isHidden()) {
        _mediaView->hide();
        if (const auto window = activeWindow()) {
            window->reActivate();
        }
        return true;
    }
    return false;
}

void Application::showPhoto(not_null<const PhotoOpenClickHandler*> link) {
    const auto photo = link->photo();
    const auto peer = link->peer();
    const auto item = photo->owner().message(link->context());
    return (!item && peer)
        ? showPhoto(photo, peer)
        : showPhoto(photo, item);
}

void Application::showPhoto(not_null<PhotoData*> photo, HistoryItem *item) {
    Expects(_mediaView != nullptr);

    _mediaView->showPhoto(photo, item);
    _mediaView->activateWindow();
    _mediaView->setFocus();
}

void Application::showPhoto(
        not_null<PhotoData*> photo,
        not_null<PeerData*> peer) {
    Expects(_mediaView != nullptr);

    _mediaView->showPhoto(photo, peer);
    _mediaView->activateWindow();
    _mediaView->setFocus();
}

void Application::showDocument(not_null<DocumentData*> document, HistoryItem *item) {
    Expects(_mediaView != nullptr);

    if (cUseExternalVideoPlayer()
        && document->isVideoFile()
        && !document->filepath().isEmpty()) {
        File::Launch(document->location(false).fname);
    } else {
        _mediaView->showDocument(document, item);
        _mediaView->activateWindow();
        _mediaView->setFocus();
    }
}

void Application::showTheme(
        not_null<DocumentData*> document,
        const Data::CloudTheme &cloud) {
    Expects(_mediaView != nullptr);

    _mediaView->showTheme(document, cloud);
    _mediaView->activateWindow();
    _mediaView->setFocus();
}

PeerData *Application::ui_getPeerForMouseAction() {
    if (_mediaView && !_mediaView->isHidden()) {
        return _mediaView->ui_getPeerForMouseAction();
    } else if (const auto m = App::main()) { // multi good
        return m->ui_getPeerForMouseAction();
    }
    return nullptr;
}

bool Application::eventFilter(QObject *object, QEvent *e) {
    switch (e->type()) {
    case QEvent::KeyPress:
    case QEvent::MouseButtonPress:
    case QEvent::TouchBegin:
    case QEvent::Wheel: {
        updateNonIdle();
    } break;

    case QEvent::ShortcutOverride: {
        // handle shortcuts ourselves
        return true;
    } break;

    case QEvent::Shortcut: {
        const auto event = static_cast<QShortcutEvent*>(e);
        DEBUG_LOG(("Shortcut event caught: %1"
            ).arg(event->key().toString()));
        if (Shortcuts::HandleEvent(event)) {
            return true;
        }
    } break;

    case QEvent::ApplicationActivate: {
        if (object == QCoreApplication::instance()) {
            updateNonIdle();
        }
    } break;

    case QEvent::FileOpen: {
        if (object == QCoreApplication::instance()) {
            const auto event = static_cast<QFileOpenEvent*>(e);
            const auto url = QString::fromUtf8(
                event->url().toEncoded().trimmed());
            if (url.startsWith(qstr("tg://"), Qt::CaseInsensitive)) {
                cSetStartUrl(url.mid(0, 8192));
                checkStartUrl();
            }
            if (StartUrlRequiresActivate(url)) {
                _window->activate();
            }
        }
    } break;
    }

    return QObject::eventFilter(object, e);
}

void Application::saveSettingsDelayed(crl::time delay) {
    _saveSettingsTimer.callOnce(delay);
}

void Application::saveSettings() {
    Local::writeSettings();
}

MTP::Config &Application::fallbackProductionConfig() const {
    if (!_fallbackProductionConfig) {
        _fallbackProductionConfig = std::make_unique<MTP::Config>(
            MTP::Environment::Production);
    }
    return *_fallbackProductionConfig;
}

void Application::refreshFallbackProductionConfig(
        const MTP::Config &config) {
    if (config.environment() == MTP::Environment::Production) {
        _fallbackProductionConfig = std::make_unique<MTP::Config>(config);
    }
}

void Application::constructFallbackProductionConfig(
        const QByteArray &serialized) {
    if (auto config = MTP::Config::FromSerialized(serialized)) {
        if (config->environment() == MTP::Environment::Production) {
            _fallbackProductionConfig = std::move(config);
        }
    }
}

void Application::setCurrentProxy(
        const MTP::ProxyData &proxy,
        MTP::ProxyData::Settings settings) {
    const auto current = [&] {
        return (Global::ProxySettings() == MTP::ProxyData::Settings::Enabled)
            ? Global::SelectedProxy()
            : MTP::ProxyData();
    };
    const auto was = current();
    Global::SetSelectedProxy(proxy);
    Global::SetProxySettings(settings);
    const auto now = current();
    refreshGlobalProxy();
    _proxyChanges.fire({ was, now });
    Global::RefConnectionTypeChanged().notify();
}

auto Application::proxyChanges() const -> rpl::producer<ProxyChange> {
    return _proxyChanges.events();
}

void Application::badMtprotoConfigurationError() {
    if (Global::ProxySettings() == MTP::ProxyData::Settings::Enabled
        && !_badProxyDisableBox) {
        const auto disableCallback = [=] {
            setCurrentProxy(
                Global::SelectedProxy(),
                MTP::ProxyData::Settings::System);
        };
        _badProxyDisableBox = Ui::show(Box<InformBox>(
            Lang::Hard::ProxyConfigError(),
            disableCallback));
    }
}

void Application::startLocalStorage() {
    Local::start();
    _saveSettingsTimer.setCallback([=] { saveSettings(); });
}

void Application::startEmojiImageLoader() {
    _emojiImageLoader.with([
        source = prepareEmojiSourceImages(),
        large = _settings.largeEmoji()
    ](Stickers::EmojiImageLoader &loader) mutable {
        loader.init(std::move(source), large);
    });

    _settings.largeEmojiChanges(
    ) | rpl::start_with_next([=](bool large) {
        if (large) {
            _clearEmojiImageLoaderTimer.cancel();
        } else {
            _clearEmojiImageLoaderTimer.callOnce(
                kClearEmojiImageSourceTimeout);
        }
    }, _lifetime);

    Ui::Emoji::Updated(
    ) | rpl::start_with_next([=] {
        _emojiImageLoader.with([
            source = prepareEmojiSourceImages()
        ](Stickers::EmojiImageLoader &loader) mutable {
            loader.switchTo(std::move(source));
        });
    }, _lifetime);
}

void Application::setDefaultFloatPlayerDelegate(
        not_null<Media::Player::FloatDelegate*> delegate) {
    Expects(!_defaultFloatPlayerDelegate == !_floatPlayers);

    _defaultFloatPlayerDelegate = delegate;
    _replacementFloatPlayerDelegate = nullptr;
    if (_floatPlayers) {
        _floatPlayers->replaceDelegate(delegate);
    } else {
        _floatPlayers = std::make_unique<Media::Player::FloatController>(
            delegate);
    }
}

void Application::replaceFloatPlayerDelegate(
        not_null<Media::Player::FloatDelegate*> replacement) {
    Expects(_floatPlayers != nullptr);

    _replacementFloatPlayerDelegate = replacement;
    _floatPlayers->replaceDelegate(replacement);
}

void Application::restoreFloatPlayerDelegate(
        not_null<Media::Player::FloatDelegate*> replacement) {
    Expects(_floatPlayers != nullptr);

    if (_replacementFloatPlayerDelegate == replacement) {
        _replacementFloatPlayerDelegate = nullptr;
        _floatPlayers->replaceDelegate(_defaultFloatPlayerDelegate);
    }
}

rpl::producer<FullMsgId> Application::floatPlayerClosed() const {
    Expects(_floatPlayers != nullptr);

    return _floatPlayers->closeEvents();
}

void Application::logout(Main::Account *account) {
    if (account) {
        account->logOut();
    } else {
        _domain->resetWithForgottenPasscode();
    }
}

void Application::forceLogOut(
        not_null<Main::Account*> account,
        const TextWithEntities &explanation) {
    const auto box = Ui::show(Box<InformBox>(
        explanation,
        tr::lng_passcode_logout(tr::now)));
    box->setCloseByEscape(false);
    box->setCloseByOutsideClick(false);
    const auto weak = base::make_weak(account.get());
    connect(box, &QObject::destroyed, [=] {
        crl::on_main(weak, [=] {
            account->forcedLogOut();
        });
    });
}

void Application::checkLocalTime() {
    const auto adjusted = crl::adjust_time();
    if (adjusted) {
        base::Timer::Adjust();
        base::ConcurrentTimerEnvironment::Adjust();
        base::unixtime::http_invalidate();
    }
    if (const auto session = maybeActiveSession()) {
        session->updates().checkLastUpdate(adjusted);
    }
}

void Application::stateChanged(Qt::ApplicationState state) {
    if (state == Qt::ApplicationActive) {
        handleAppActivated();
    } else {
        handleAppDeactivated();
    }
}

void Application::handleAppActivated() {
    checkLocalTime();
    if (_window) {
        _window->updateIsActiveFocus();
    }
}

void Application::handleAppDeactivated() {
    if (_window) {
        _window->updateIsActiveBlur();
    }
    Ui::Tooltip::Hide();
}

void Application::call_handleObservables() {
    base::HandleObservables();
}

void Application::switchDebugMode() {
    if (Logs::DebugEnabled()) {
        Logs::SetDebugEnabled(false);
        _launcher->writeDebugModeSetting();
        App::restart();
    } else {
        Logs::SetDebugEnabled(true);
        _launcher->writeDebugModeSetting();
        DEBUG_LOG(("Debug logs started."));
        Ui::hideLayer();
    }
}

void Application::switchFreeType() {
    if (cUseFreeType()) {
        QFile(cWorkingDir() + qsl("tdata/withfreetype")).remove();
        cSetUseFreeType(false);
    } else {
        QFile f(cWorkingDir() + qsl("tdata/withfreetype"));
        if (f.open(QIODevice::WriteOnly)) {
            f.write("1");
            f.close();
        }
        cSetUseFreeType(true);
    }
    App::restart();
}

void Application::writeInstallBetaVersionsSetting() {
    _launcher->writeInstallBetaVersionsSetting();
}

Main::Account &Application::activeAccount() const {
    return _domain->active();
}

Main::Session *Application::maybeActiveSession() const {
    return _domain->started() ? activeAccount().maybeSession() : nullptr;
}

bool Application::exportPreventsQuit() {
    if (_exportManager->inProgress()) {
        _exportManager->stopWithConfirmation([] {
            App::quit();
        });
        return true;
    }
    return false;
}

int Application::unreadBadge() const {
    return _domain->unreadBadge();
}

bool Application::unreadBadgeMuted() const {
    return _domain->unreadBadgeMuted();
}

rpl::producer<> Application::unreadBadgeChanges() const {
    return _domain->unreadBadgeChanges();
}

bool Application::offerLegacyLangPackSwitch() const {
    return (_domain->accounts().size() == 1)
        && activeAccount().sessionExists();
}

bool Application::canApplyLangPackWithoutRestart() const {
    for (const auto &[index, account] : _domain->accounts()) {
        if (account->sessionExists()) {
            return false;
        }
    }
    return true;
}

void Application::checkStartUrl() {
    if (!cStartUrl().isEmpty() && _window && !_window->locked()) {
        const auto url = cStartUrl();
        cSetStartUrl(QString());
        if (!openLocalUrl(url, {})) {
            cSetStartUrl(url);
        }
    }
}

bool Application::openLocalUrl(const QString &url, QVariant context) {
    return openCustomUrl("tg://", LocalUrlHandlers(), url, context);
}

bool Application::openInternalUrl(const QString &url, QVariant context) {
    return openCustomUrl("internal:", InternalUrlHandlers(), url, context);
}

bool Application::openCustomUrl(
        const QString &protocol,
        const std::vector<LocalUrlHandler> &handlers,
        const QString &url,
        const QVariant &context) {
    const auto urlTrimmed = url.trimmed();
    if (!urlTrimmed.startsWith(protocol, Qt::CaseInsensitive)
        || passcodeLocked()) {
        return false;
    }
    const auto command = urlTrimmed.midRef(protocol.size(), 8192);
    const auto controller = _window ? _window->sessionController() : nullptr;

    using namespace qthelp;
    const auto options = RegExOption::CaseInsensitive;
    for (const auto &[expression, handler] : handlers) {
        const auto match = regex_match(expression, command, options);
        if (match) {
            return handler(controller, match, context);
        }
    }
    return false;

}

void Application::lockByPasscode() {
    _passcodeLock = true;
    _window->setupPasscodeLock();
}

void Application::unlockPasscode() {
    clearPasscodeLock();
    if (_window) {
        _window->clearPasscodeLock();
    }
}

void Application::clearPasscodeLock() {
    cSetPasscodeBadTries(0);
    _passcodeLock = false;
}

bool Application::passcodeLocked() const {
    return _passcodeLock.current();
}

void Application::updateNonIdle() {
    _lastNonIdleTime = crl::now();
    if (const auto session = maybeActiveSession()) {
        session->updates().checkIdleFinish();
    }
}

crl::time Application::lastNonIdleTime() const {
    return std::max(
        base::Platform::LastUserInputTime().value_or(0),
        _lastNonIdleTime);
}

rpl::producer<bool> Application::passcodeLockChanges() const {
    return _passcodeLock.changes();
}

rpl::producer<bool> Application::passcodeLockValue() const {
    return _passcodeLock.value();
}

bool Application::someSessionExists() const {
    for (const auto &[index, account] : _domain->accounts()) {
        if (account->sessionExists()) {
            return true;
        }
    }
    return false;
}

void Application::checkAutoLock() {
    if (!Global::LocalPasscode()
        || passcodeLocked()
        || !someSessionExists()) {
        _shouldLockAt = 0;
        _autoLockTimer.cancel();
        return;
    }

    checkLocalTime();
    const auto now = crl::now();
    const auto shouldLockInMs = _settings.autoLock() * 1000LL;
    const auto checkTimeMs = now - lastNonIdleTime();
    if (checkTimeMs >= shouldLockInMs || (_shouldLockAt > 0 && now > _shouldLockAt + kAutoLockTimeoutLateMs)) {
        _shouldLockAt = 0;
        _autoLockTimer.cancel();
        lockByPasscode();
    } else {
        _shouldLockAt = now + (shouldLockInMs - checkTimeMs);
        _autoLockTimer.callOnce(shouldLockInMs - checkTimeMs);
    }
}

void Application::checkAutoLockIn(crl::time time) {
    if (_autoLockTimer.isActive()) {
        auto remain = _autoLockTimer.remainingTime();
        if (remain > 0 && remain <= time) return;
    }
    _autoLockTimer.callOnce(time);
}

void Application::localPasscodeChanged() {
    _shouldLockAt = 0;
    _autoLockTimer.cancel();
    checkAutoLock();
}

bool Application::hasActiveWindow(not_null<Main::Session*> session) const {
    if (App::quitting() || !_window) {
        return false;
    } else if (const auto controller = _window->sessionController()) {
        if (&controller->session() == session) {
            return _window->widget()->isActive();
        }
    }
    return false;
}

void Application::saveCurrentDraftsToHistories() {
    if (!_window) {
        return;
    } else if (const auto controller = _window->sessionController()) {
        controller->content()->saveFieldToHistoryLocalDraft();
    }
}

Window::Controller *Application::activeWindow() const {
    return _window.get();
}

bool Application::closeActiveWindow() {
    if (hideMediaView()) {
        return true;
    }
    if (const auto window = activeWindow()) {
        window->close();
        return true;
    }
    return false;
}

bool Application::minimizeActiveWindow() {
    hideMediaView();
    if (const auto window = activeWindow()) {
        window->minimize();
        return true;
    }
    return false;
}

QWidget *Application::getFileDialogParent() {
    return (_mediaView && _mediaView->isVisible())
        ? (QWidget*)_mediaView.get()
        : activeWindow()
        ? (QWidget*)activeWindow()->widget()
        : nullptr;
}

void Application::notifyFileDialogShown(bool shown) {
    if (_mediaView) {
        _mediaView->notifyFileDialogShown(shown);
    }
}

QWidget *Application::getModalParent() {
    return (Platform::IsWayland() && activeWindow())
        ? activeWindow()->widget().get()
        : nullptr;
}


void Application::checkMediaViewActivation() {
    if (_mediaView && !_mediaView->isHidden()) {
        _mediaView->activateWindow();
        QApplication::setActiveWindow(_mediaView.get());
        _mediaView->setFocus();
    }
}

QPoint Application::getPointForCallPanelCenter() const {
    if (const auto window = activeWindow()) {
        return window->getPointForCallPanelCenter();
    }
    return QGuiApplication::primaryScreen()->geometry().center();
}

// macOS Qt bug workaround, sometimes no leaveEvent() gets to the nested widgets.
void Application::registerLeaveSubscription(not_null<QWidget*> widget) {
#ifdef Q_OS_MAC
    if (const auto topLevel = widget->window()) {
        if (topLevel == _window->widget()) {
            auto weak = Ui::MakeWeak(widget);
            auto subscription = _window->widget()->leaveEvents(
            ) | rpl::start_with_next([weak] {
                if (const auto window = weak.data()) {
                    QEvent ev(QEvent::Leave);
                    QGuiApplication::sendEvent(window, &ev);
                }
            });
            _leaveSubscriptions.emplace_back(weak, std::move(subscription));
        }
    }
#endif // Q_OS_MAC
}

void Application::unregisterLeaveSubscription(not_null<QWidget*> widget) {
#ifdef Q_OS_MAC
    _leaveSubscriptions = std::move(
        _leaveSubscriptions
    ) | ranges::action::remove_if([&](const LeaveSubscription &subscription) {
        auto pointer = subscription.pointer.data();
        return !pointer || (pointer == widget);
    });
#endif // Q_OS_MAC
}

void Application::postponeCall(FnMut<void()> &&callable) {
    Sandbox::Instance().postponeCall(std::move(callable));
}

void Application::refreshGlobalProxy() {
    Sandbox::Instance().refreshGlobalProxy();
}

void Application::QuitAttempt() {
    if (!IsAppLaunched()
        || Sandbox::Instance().isSavingSession()
        || App().readyToQuit()) {
        QApplication::quit();
    }
}

bool Application::readyToQuit() {
    auto prevented = false;
    if (_calls->isQuitPrevent()) {
        prevented = true;
    }
    if (_domain->started()) {
        for (const auto &[index, account] : _domain->accounts()) {
            if (const auto session = account->maybeSession()) {
                if (session->updates().isQuitPrevent()) {
                    prevented = true;
                }
                if (session->api().isQuitPrevent()) {
                    prevented = true;
                }
            }
        }
    }
    if (prevented) {
        quitDelayed();
        return false;
    }
    return true;
}

void Application::quitPreventFinished() {
    if (App::quitting()) {
        QuitAttempt();
    }
}

void Application::quitDelayed() {
    if (!_private->quitTimer.isActive()) {
        _private->quitTimer.setCallback([] { QApplication::quit(); });
        _private->quitTimer.callOnce(kQuitPreventTimeoutMs);
    }
}

void Application::startShortcuts() {
    Shortcuts::Start();

    _domain->activeSessionChanges(
    ) | rpl::start_with_next([=](Main::Session *session) {
        const auto support = session && session->supportMode();
        Shortcuts::ToggleSupportShortcuts(support);
        Platform::SetApplicationIcon(Window::CreateIcon(session));
    }, _lifetime);

    Shortcuts::Requests(
    ) | rpl::start_with_next([=](not_null<Shortcuts::Request*> request) {
        using Command = Shortcuts::Command;
        request->check(Command::Quit) && request->handle([] {
            App::quit();
            return true;
        });
        request->check(Command::Lock) && request->handle([=] {
            if (!passcodeLocked() && Global::LocalPasscode()) {
                lockByPasscode();
                return true;
            }
            return false;
        });
        request->check(Command::Minimize) && request->handle([=] {
            return minimizeActiveWindow();
        });
        request->check(Command::Close) && request->handle([=] {
            return closeActiveWindow();
        });
    }, _lifetime);
}

bool IsAppLaunched() {
    return (Application::Instance != nullptr);
}

Application &App() {
    Expects(Application::Instance != nullptr);

    return *Application::Instance;
}

} // namespace Core


