
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Forensic Analysis of Secure Ephemeral Messaging

Applications on Android Platforms

M A Hannan Bin Azhar and Thomas Edward Allen Barton

Computing, Digital Forensics and Cybersecurity

Canterbury Christ Church University

Canterbury, United Kingdom

{hannan.azhar,tb1150}@canterbury.ac.uk

Abstract. Secure messaging applications have been used for the purposes of ma-

jor crime, creating the need for forensic research into the area. This paper foren-

sically analyses two secure messaging applications, Wickr and Telegram, to re-

cover artefacts from and then to compare them to reveal the differences between

the applications. The artefacts were created on Android platforms by using the

secure features of the applications, such as ephemeral messaging, the channel

function and encrypted conversations. The results of the experiments docu-

mented in this paper give insight into the organisation of the data structures by

both Wickr and Telegram, as well as the exploration of mobile digital forensics

techniques to recover artefacts removed by the ephemeral functions.

Keywords: Wickr, Telegram, Ephemeral Data, Secure Messaging Application,

Android, Forensic Analysis, Mobile Forensics.

1 Introduction

Wickr and Telegram are Secure Messaging Applications (SMAs), with an estimated 1-

5 and 100-500 million installs on Android Platforms respectively [1]. The popularity of

SMAs, while a great tool for change and communication for many, have also seen them

used for major crimes. In 2015, there was a huge spike in acts of terrorism in both

European countries and around the world [2, 3]. While terror attacks are not new, some

recent events have seen a new trend: the usage of social media and networking by ter-

rorist groups, for the proliferation of their causes [4, 5, 6]. Whether used for co-ordina-

tions, communications or recruitments, the need for forensic analysis and a greater un-

derstanding of the SMAs has never been more urgent.

The capitalization of mobile applications by markets such as Google Play [1] and

the iTunes App Store [7] has driven the advent of new functionality for all applications,

including SMAs. In this age of information, the demand for secure methods of com-

munication has increased. SMAs ensure privacy of communications, which regardless

of the implications, present a challenge to the digital forensic investigators because of

mailto:hannan.azhar@canterbury.ac.uk
mailto:tb1150%7d@canterbury.ac.uk

the intentional obfuscation and removal of artefacts, which hampers investigations, of-

ten by increasing the amount of time and money invested, eventually reducing the like-

lihood of a successful completion [8].

This paper will forensically analyse two secure messaging applications, Wickr [9]

and Telegram [10]. These applications were chosen with their features in mind. Both

apps have an ephemeral messaging function. Ephemeral messaging is a relatively novel

and popular way of social networking. Ephemeral messaging applications (EMA) use

transient data, data that are permitted to exist for a limited amount of time before they

become inaccessible, by obfuscation or deletion. An example of an EMA that rose to

huge popularity among the eighteen to thirty-four year old age range (which happens

to be statistically the largest demographic for smartphone ownership in the United

States [11]) was SnapChat [12], an application that allowed users to send photos and

images that would be deleted after opening. SnapChat brought EMAs into general

knowledge and since then, many other applications have adopted the ephemeral feature,

including SMAs.

The remainder of the paper is organised as follows: Section 2 describes related work,

similar forensic research into various types of secure and non-secure social media ap-

plications. Section 3 covers the experimental setup used, including acquisition types,

forensic tools and methods used, and the chosen Android test platforms. Sections 4 and

5 reports the experimental results, and finally Section 6 concludes the paper.

2 Related Work

Messaging applications on mobile platforms arose from the low-cost of mobile internet

compared to individual Short Message Service (SMS) messages [13]. Internet messag-

ing also allows for the easy transmission of multimedia messages. Adoption of security

measures such as encryption and ephemeral functions came from security concerns due

to hacking attacks and privacy issues [14, 15]. Mutawa et al. [16] conducted research

into three popular social networking applications: Facebook, Twitter and MySpace on

iOS, Android and Blackberry platforms. The applications were installed on the test

platforms and scenarios were created by logging in and using their features, inputting a

list of keywords that would later be used in searching for artefacts. The acquisition of

data was performed by rooting the device, which was necessary as without rooting,

areas of the device where some artifacts are stored cannot be accessed [16]. Wu et al.

[17] investigated two ephemeral messaging applications: SnapChat and Burner on iOS

and Android platforms. Physical acquisition of the platforms and subsequent analysis

revealed that the transient data from SnapChat, once expired, was not securely re-

moved, and in some cases only the filename had been changed, which lead to recovery

of artefacts. Since the release of SnapChat, ephemeral messaging applications have

adopted a focus on security. The latest includes applications such as Wickr and Tele-

gram, which function as a normal messaging application, but offer a heightened focus

on security.

Walnycky et al. [18] conducted investigations into a wide range of mobile messaging

applications. Using the recovery and analysis of the database file for each respective

app, a group of applications were analysed, including Wickr, which was identified as

having no vulnerabilities, as in no artefacts were recovered due to encryption. Another

investigation into Wickr carried out by Mehrotra et al. [19] using a pre-analysis scenario

creation method found no artefacts related to Wickr. The investigation employed a

backup of the Android platform and used string searches to analyse the acquired data.

The lack of results was caused by Wickr’s extensive use of encryption in its data storage

techniques.

Satrya et al. [20] analysed Telegram on Android devices, finding that the application

uses a database to store messages, as well as other storage locations for sent and re-

ceived files. The methodology used in [20] highlighted three areas of interest, including

the Telegram “.apk” installer package, the internal storage directory, and the

“cache4.db” database. The “cache4.db” database was SQLite formatted, and was logi-

cally acquired using a backup program before being analysed with SQLite Database

Browser.

3 Experimental Setup

The investigation reported in this paper focussed on the ephemeral messaging functions

on both Wickr and Telegram and also the channel feature of Telegram. As well as ex-

panding on the research carried out by Satyra et al. [20] by incorporating Telegram’s

Channel, the experiments were conducted using physical data acquisition and analysis,

which has not been previously carried out in the context of both applications. A variety

of different forensic analysis methods were used to recover artefacts from both Wickr

and Telegram. Due to the differences in the security measures taken by the applications,

such as encryption, the methods and artefacts for each vary. The flow of experimental

work started with the initial step of scenario creation, followed by logical analysis of

data. If data examined were encrypted, then the methodology focussed on the analysis

of the application itself and its ephemeral data. If plaintext data were recovered, analy-

sis of the artefacts and ephemeral data followed. In any case, Random Access Memory

(RAM) acquisition and analysis were completed to recover artefacts.

3.1 Data Acquisition

The acquisition methods used in this paper can be divided into two categories, logical

and physical. Logical data acquisition in this context refers to the use of the device’s

filesystem to recover files. In this case, the chosen method of logical acquisition was

ADB pull, a command from the Android Debug Bridge [21], a set of tools used for

development and testing of Android applications.

The physical acquisition method used in this context was to create a bit-for-bit copy

of the target platforms’ “user” partition, which on Android stores all files related to user

activity, including both application information and personal files. To create the copy,

the tool Data Dump (dd) [22] was used. Other Android partitions, including the cache

and the system partition were also acquired and analysed using a string search, however

in this case no related artefacts were recovered, so these partitions were not included in

the scope of the investigation.

In addition to the recovery of data from the Android platform’s secondary storage,

the Random Access Memory (RAM) of the device was also acquired. An application

for android called Memory Dump [23] was used for this purpose. Memory Dump al-

lows the user to choose an application running on the platform and acquire the memory

associated with that application. This is useful in cases of encryption, as encrypted data

may be stored in plaintext format in RAM when in use, for ease of access by the appli-

cation.

3.2 Wickr

Wickr is a highly secure messaging application. Offering “privacy by design” [9], its

simple easy to use interface hides an array of anti-forensics techniques, such as encryp-

tion of local data and network traffic [18], as well as ephemeral messaging features. In

the face of such features, forensics techniques such as pre-analysis scenario creation

and string searching acquired data fall down [18, 19]. Instead of recovering artefacts,

the application and its effect on the Android platform, were analysed for a greater un-

derstanding in a forensic context.

The Wickr application itself is stored on the Android platform in the form of an

“.apk” installer package. Inside this package is a file called “classes.dex”, which is a

file containing all the definitions for the functions of the application. To extract the

“classes.dex” file, the “.apk” was opened using the archive extraction utility in Win-

dows, and the file was extracted. To analyse the file, it was converted to a Java archive.

A specialised tool exists for this purpose, called “dex2jar” [24]. The output from this

tool is a Java archive that was analysed using another tool, Java Decompiler [25]. When

analysed, the file revealed all the class definitions for Wickr, which gives an insight

into how it operates.

To analyse the files associated with Wickr, the application’s data directory

(“/data/data/com.mywickr.wickr2”) was logically acquired. To find out how the

ephemeral data function works in Wickr, the data directory was acquired multiple times

at different stages of the test scenario. These were: before messages were received, after

messages had been received, after messages had been removed by the ephemeral func-

tion and after the “secure shredder” had been run. The “secure shredder” offers the

shredding of deleted data. The various acquired versions of the directories were ana-

lysed and compared to look for any changes in files as well as the size of Wickr’s da-

tabase “wickr_db”.

The physically acquired image was analysed in Autopsy 3.0.8 [26]. Autopsy is the

graphical frontend for a set of Linux forensics tools called the Sleuthkit. This contains

tools that allow for the recovery of deleted data. Autopsy also allows for the processing

of unallocated space, which is an important part of the analysis as ephemeral messaging

functions rely on the deletion of data. Artefacts such as files sent as attachments to

messages that had been deleted via the ephemeral messaging function were recovered

using Autopsy.

3.3 Telegram

Telegram is a feature-rich messaging application that also incorporates security into its

operation, by adding end-to-end encryption as well as ephemeral messaging. Telegram

offers a unique way of communication called the channel feature. Introduced in 2015

with the version 3.2.1 [27], this feature allows any user to start a channel which can

either be public or private. Any other Telegram user can locate public channels using

the search function, whereas private channel rely on an invite-only URL based system.

Once the channel is established, owners and admins broadcast material to all subscrib-

ers. Telegram’s channel feature was used by an active terrorist organisation to dissem-

inate propaganda [28], which highlights the potential for the features use in major

crime, and creates the need for forensic analysis.

The work carried out by Satrya et al. [20] established methods of recovering mes-

sages sent via Telegram, recovering artefacts by logically acquiring the “cache4.db”

database file from the platform, which was analysed using SQLite Database Browser

[29]. In our work, the channel feature was analysed using this methodology to reveal

additional artefacts related to channels. In addition to this, artefacts related to the

ephemeral messaging function were recovered by analysing the physically acquired

image using Autopsy, as mentioned in section 3.2.

To locate where remnant channel messages may be stored on the test platform, the

filesystem clusters of the “cache4.db” database had to be identified. As Android uses a

UNIX-like filesystem, EXT4, this information is stored in a meta-structure known as

an “inode”. After identifying the “inode” of the “cache4.db” database by mounting the

physically acquired image and using the “ls” command, the tool “istat” from the Sleuth-

kit [26] was used to identify filesystem clusters. . The tool “istat” was used to print out

the “inode” statistics from the physically acquired image for examination of data. The

output of “istat” can be seen in Figure 1 - under “Direct Blocks”, importantly, the clus-

ters on which the file was stored can be seen.

Fig. 1. Output of the “istat” command for Telegram’s “cache4.db” database.

To examine the clusters, the physically acquired image was opened in the hex editor

WinHex [30]. To locate the data from the list of clusters, a simple calculation [31] was

made to find the byte offset of the clusters:

 B = C * SpC * S (1)

Where B is the byte offset in bytes, C is the cluster number, SpC is the sectors per

cluster and S is the sector size in bytes. In the case of the test platform, the SpC was 8

and S was 512, so the calculation was performed as per the chosen cluster. A specific

add-on for Telegram, offered by Oxygen Forensic Suite 2014 [32], was used to recover

encrypted messages. Oxygen Forensic Suite 2014 also provides a file browser for view-

ing and recovering files stored as attachments, however, Oxygen Forensic Suite 2014

is limited to active files, i.e. files that have not been deleted [33]. Later versions (2015

onwards) do support recovery of deleted files [32]; however, in this case, Autopsy 3.0.8

was used.

3.4 Linux Utilities

When examining data on a Linux forensic workstation, basic file utilities, such as “ls”,

“cat”, “strings” and “grep” were used to examine directory structures and files. The tool

“strings” extracts all string format data from a file. A bash script was created to perform

string searches on the output of the strings utility. The script is shown in Figure 2. The

first part of the script’s command, cat, sends the saved “strings” output to the second

part, grep, which searches for matches to a keyword dictionary, and saves the results to

a new file. This technique was used to search the physically acquired images for key-

words relating to the respective application, as well as the live memory acquisition files.

Fig. 2. String search bash script.

3.5 Platforms

A Samsung Galaxy S4 Mini [34] was the primary platform used for the experimental

setup. An AllWinner A13 Android tablet [35] was used as an alternate platform in order

to ensure the repeatability of all experiments performed, as well as sending and receiv-

ing messages to and from the test platform. The choice of test platform in this case, a

phone from Samsung’s flagship galaxy range, reflects the current state of the worldwide

smartphone market, which is dominated by Android [36], the market for which is in

turn dominated by Samsung [36]. Another reason for choosing Android was its large

online developer community, which stems from its open source status. The applications

were both installed on the platform using Android’s built-in app store, Google Play [1].

The test platforms and the application versions used are listed in Table 1.

Table 1. Android platforms and application versions.

Name

Specifications

Model

number

Android

version
Kernel version

Wickr

version

Telegram

version

Samsung

Galaxy S4

Mini [34]

GT-
I9195I 4.4.4 (KitKat) 3.10.28-5334500

2.6.4.1 3.10.1

AllWinner

A13 [35]
Q8 4.4.2 (KitKat) 3.4.39 2.6.4.1 N/A

Once the applications were installed on the test platform, scenarios were created by

creating accounts on the respective applications and using the features, to simulate a

suspect’s device. As the apps differ in their features somewhat, the artefacts creation

procedure also slightly differed. To test both the regular and ephemeral messaging

functions, messages were sent with identifiable text, as well as attachments, to the test

platform. For Wickr, these messages simulated a conversation which included an

attachment, a picture (.jpg) file, as well as some key words.

Fig. 3. Established scenario on Telegram.

For Telegram, the scenario creation involved both the creation of, and subscription

to channels. In addition to creating custom channels, a number of public channels were

subscribed to also, which meant that the messages recieved via these channels were

included in the list of potential artefacts. Unlike Wickr, in Telegram’s scenario more

messages were required to utilise the channel function. For this purpose, bulk text was

copied from the internet, as seen in Figure 3. The range of artefacts recovered from both

standard conversations and channels included message text, files (images and

documents) and usernames. Due to the inclusion of channel function in Telegram, the

number of artefacts incoroprated in the analysis was more than Wickr’s.

4 Results for Wickr

Analysis of the installer package for Wickr revealed the techniques it uses to store data.

When applications store data in databases, they sometimes use a programming object

called a “Database Helper”. In Wickr’s case, the class of functions called

“WickrDBAdapter.class” reveals the use of “SqlCipher”, a database encryption library

for SQLite. The use of such a library explains why any messages recieved by Wickr

were not stored in plain text. An extract from the “WickrDBAdapter.class” is shown in

Figure 4.

Fig. 4. Extract from “WickrDBAdapter.class”.

Acquisition and analysis of Wickr’s associated data as described in Section 3.2 re-

vealed how the ephemeral function of Wickr worked. The results of comparison of the

acquired data are shown in Table 2, which show that on a logical level, the presence of

encrypted “.wic” files correlates with the status of stored messages in Wickr. The

results in Table 2 reveal that the ephemeral function removed the data, at least logically.

The process of the ephemeral function caused the start of file decay: firstly the files

were logically deleted.

The proposed operation of Wickr’s file decay is shown in Table 3, which

demonstrates the varying levels of file storage and deletion in Wickr at the stages listed

in Table 2. As the results of Table 2 rely on logical acquisition, analysis of the

physically acquired images of the Android platform was required to further investigate

the deletion process and recover deleted artefacts. Navigating to the Wickr data

directory on the physically acquired image using Autopsy revealed filesystem

references to previously present “.wic” files. A screenshot of this is shown in Figure 5.

Table 2. Wickr data analysis results.

Stage of file

removal

(arbitrary)

Secure

shredder

 status

Copy taken Files directory and

further observations

1 Before Before images

were received

Only two “.wic” files, “pcc.wic” and

“pcd.wic” were present in the files di-

rectory.

2 Before After images

were re-

ceived

Two “.wic” files, each with 64 char-

acter string file names, were present in

the files directory. Their sizes were

47488 and 54136 bytes respectively.

3 Before After images

were removed

Two “.wic” files were not present.

4 After After images

were removed

Two “.wic” files were not present.

Table 3. Model of Wickr’s file decay.

Stage of file

removal

(arbitrary)

1 2 3 4

Status of re-

ceived file

N/A File present,

encrypted, stored

in .wic file

File present,

 encrypted, filesys-

tem header removed

File overwritten

with random or

null data

Process required

to recover file

N/A Logical level

acquisition, for

example copy.

Low level acquisi-

tion, such as device

data dump or chip-

off analysis

File

unrecoverable.

Fig. 5. Files subdirectory of Wickr’s data directory in Autopsy.

Finally, analysis of the RAM dump acquired using the method described in Section

3.1 revealed that, much like the other areas of storage, Wickr does not expose much

data and analysis found very few artefacts. Using the string search method described in

Section 3.4, the dumped RAM data was analysed. The results are shown in Table 4.

Any field within the “< … >” parenthesis represents information which was omitted

for privacy purposes.

Table 4. Results of Wickr’s RAM dump string search.

Search

expression

Reason Results

wickr Name of the App. Returned paths of files in the data

directory of Wickr, as well as extracts

from various core Wickr libraries.

<Hidden> Password used to register wickr account No Matches.

cccumobilef Username used to register wickr account Matching String found in

dumped__7428b000-7428e000_rw-p

dump file.

ocelotorus Username of account used in scenario No matches.

an.jpg Filename of picture uploaded – file

 extension added because “an” too ambigu-

ous

No matches

invicta See above No matches.

goods Excerpts from messages sent in

pre-analysis scenario creation

No pertinent matches.

Yes See above. No pertinent matches.

meet See above. No pertinent matches.

The results in Table 4 show that Wickr does not store information such as received

messages in plaintext in RAM. However, a single artefact, the name of the account used

to sign up to Wickr, was found. The account name could be used in co-operation with

Wickr and telecom services to locate the user that signed up using the captured device.

This artefact was not reported in the work carried out previously by Walnycky et al.

[18] and Mehrotra et al. [19], which used searching of Wickr’s stored data.

5 Results for Telegram

The standard messaging capabilities of Telegram are divided into two separate features:

normal and secret chats. Normal chats use a server to store messages and employ client-

server encryption, while during secret chats the involved platforms communicate with

each other directly and employ end-to-end encryption [10]. Upon analysis using SQLite

Database Browser, the messages received via channels were stored in the same way as

normal messages, established before by Satyra et al. [20], with an additional artefact,

the link to join a private channel. In the database, these artefacts was identified using

the UID column, which was unique to the conversation. Figure 6 shows the suspect

channel, “test channel (create)”, identified in the chats table of the “cache4.db”

database. The UID was captured from the selected entry as shown in Figure 6. Records

were retrieved from the messages table using this UID. The status of the out column in

the messages table identifies the suspect’s platform as being an owner or admin of the

suspect channel, as the value of “1” in the out column shown in Figure 6 denotes the

messages were sent. Corresponding entries in the chat settings table revealed the private

URL which was used to join the channel, as seen in Figure 7.

Fig. 6. Suspect channel in Chats Table of Telegram’s “cache4.db” database.

Fig. 7. Retrieval of channel join link in Telegram’s “cache4.db” database.

In a real world scenario, it is possible that channels are un-followed or other anti-

forensics measures are taken preceding the capture of the target platform. In order to

examine messages left over from un-followed or deleted channels, the “cache4.db” file

was examined on the imaged physical user partition. Using WinHex to examine the

data at the byte with the technique mentioned in Section 3.3 revealed artefacts from the

public Telegram channels subscribed to during the scenario creation. These messages

remained in the “cache4.db” database even though the channel had been unfollowed

and was no longer accessible via the normal interface. Figure 8 shows a message viewed

in WinHex at byte offset 274431264. Files received via channels were stored in the

“Telegram” directory on the internal storage, which has the absolute path of “/data/me-

dia/0/Telegram/” [20]. Upon unfollowing of channels, the files received from these

channels are still present, lacking signs of deletion.

Fig. 8. Messages from unfollowed channel.

Fig. 9. Recovery of expired image using Autopsy.

The secret chat in Telegram offers an ephemeral messaging function, the self-de-

struct timer, which allows users to set expiry dates for the conversation. Before the

message from the test scenario expired, examination of Telegram’s cache directory lo-

cated at “/data/media/0/Android/data/org.telegram.messenger/cache” [17] showed the

presence of the file, stored as “1052861977929449485_1299364215.jpg”, as well as

few accompanying thumbnails. Upon expiry, the message was no longer accessible

from the normal interface, and was no longer present in the cache. However, this ex-

pired image file was recovered in the cache directory on the physical image when Au-

topsy’s file browser tool was used, as shown in Figure 9. It was found that in this case,

the file system entry was removed after the expiry; however, the file was still present

in the device. These findings reveal that Telegram uses a logical deletion process to

handle ephemeral message attachments, allowing for the recovery of expired multime-

dia messages using physical acquisition and examination of the captured device.

Table 5. Results of Telegram’s RAM analysis.

Search Expression Reason Results

<First name> First name used to create

Telegram account, poten-

tially identifying artefact.

Matching string found in

dumped__78ea2000-78fd7000_rw-p and

dumped__7a993000-7a99c000_rw-p dump

files.

<Second Name> Surname name used to cre-

ate Telegram account, po-

tentially identifying arte-

fact.

Matching string found in

dumped__78ea2000-78fd7000_rw-p and

dumped__7a993000-7a99c000_rw-p dump

files.

<Phone Number> Phone number used to sign

up to Telegram account, po-

tentially identifying arte-

fact.

No matches found.

+44 National mobile telephony

prefix

A number of matches related to Graphical

User Interface (GUI), but no identifying arte-

facts.

magnetic Excerpts from messages

sent in pre-analysis scenario

creation

A number of matching strings found in

dumped__77cb0000-77cb9000_rw-p dump

file, among others.

overwrite See above A number of matching strings found in

dumped__77cb0000-77cb9000_rw-p dump

file, among others.

Table 5 reports the results of Telegram’s RAM analysis which was acquired using

the method described in Section 3.1 and analysed using the string search method de-

scribed in Section 3.4. Results revealed the recovery of many plaintext artefacts. Fields

within the “< … >” parenthesis represents confidential information which was omitted

due to privacy purposes.

6 Conclusions

The experiments in this paper provided understanding of the manner in which secure

messaging applications like Wickr and Telegrams store their data. Results revealed

that the Wickr stored it’s recieved messages in encrpyted “.wic” files in the data

directory. While the messages did cause the production of “.wic” files, they did not

affect the size of the application’s database. Unlike Wickr, in the case of Telegram, the

standard forensics tools had built-in modules to recover encrypted artefacts. Our

analyses documented these artefacts in geater detail, including information relating to

the joining of channels, and the recovery of messages after the channels had been

unfollowed. The RAM dump technique for Wickr recovered a plaintext account

username, which was valid only in the context of live analysis where the phone had not

been turned off since being captured. Like Wickr, The RAM dump was also succesful

in recovering Telegram’s plaintext artifacts, which shows the integrity of this method

in analysing similar applications. The direction of future research will focus on the

decryption techniques and also the application of proposed methods in analysing

similar SMAs on other popular platforms such as iOS and Windows Phones.

References

1. Google Play, https://play.google.com/store?hl=en_GB, [Accessed: September 2016]

2. Almasy, S., Meilhan P., Bittermann, J.: Paris Massacre: At least 128 killed in gunfire and

blasts, French officials say, http://edition.cnn.com/2015/11/13/world/paris-shooting/,

(2015), [Accessed: September 2016]

3. Madi, M., Ryder, S., Macfarlane, J., Beach, A., Park, V.:As it happened: Charlie Hebdo

attack, http://www.bbc.co.uk/news/live/world-europe-30710777, (2016), [Accessed: Sep-

tember 2016]

4. Roussinous, A.: The social media Accounts of British Jihadis in Syria just got a lot more

distressing, http://www.vice.com/en_uk/read/british-jihadis-beheading-prisoners-syria-isis-

terrorism, (2014), [Accessed: September 2016]

5. Torok, R., http://theconversation.com/how-social-media-was-key-to-islamic-states-attacks-

on-paris-50743, (2015), [Accessed: 20th July 2016]

6. Vidino, L., Hughes, S.: ISIS in America: From retweets to Raqqa, http://www.strat-

comcoe.org/download/file/fid/2828, (2015), [Accessed: September 2016]

7. Apple App Store, http://www.apple.com/uk/itunes/, [Accessed: September 2016]

8. Perklin, M., https://www.defcon.org/images/defcon-20/dc-20-presentations/Perklin/DEF

CON-20-Perklin-AntiForensics.pdf, (2012)

9. Wickr Official Website, https://www.wickr.com, [Accessed: September 2016].

10. Telegram Official Website, https://telegram.org, [Accessed: September 2016].

11. Anderson, M.:The demographics of device ownership, http://www.pewinter-

net.org/2015/10/29/the-demographics-of-device-ownership/, (2015), [Accessed: September

2016]

12. SnapChat, http:// mwpartners.com/snapchat-is-now-the-third-most-popular-social-network-

among-millennials/, (2014), [Accessed: September 2016]

13. Barot, T., Oren, E.: Guide to Chat Apps, http://towcenter.org/research/guide-to-chat-apps/,

(2015), [Accessed: September 2016]

14. Amir, W.: Viber to Put Full End-to-End Encryption on Their Messaging App,

https://www.hackread.com/viber-end-to-end-encryption-on-messaging-app/ (2016), [Ac-

cessed: September 2016]

15. Mathur, N.: Facebook Messenger joins WhatApp in end-to-end encryption, http://www.live-

mint.com/Consumer/llIJ9Est0ZZIYfmvRSsTZP/Facebook-Messenger-joins-WhatsApp-in-

endtoend-encryption.html , (2016), [Accessed: September 2016]

https://play.google.com/store?hl=en_GB
http://theconversation.com/how-social-media-was-key-to-islamic-states-attacks-on-paris-50743
http://theconversation.com/how-social-media-was-key-to-islamic-states-attacks-on-paris-50743
http://www.apple.com/uk/itunes/
https://www.defcon.org/images/defcon-20/dc-20-presentations/Perklin/DEF%20CON-20-Perklin-AntiForensics.pdf
https://www.defcon.org/images/defcon-20/dc-20-presentations/Perklin/DEF%20CON-20-Perklin-AntiForensics.pdf
https://telegram.org/
https://www.hackread.com/viber-end-to-end-encryption-on-messaging-app/

16. Mutawa, N. A., Baggili, I., Marrington, A.: Forensic Analysis of Social Networking Appli-

cations on Mobile Devices. Digital Investigation, vol. 9, pp. 24-33, (2012)

17. Wu, C., Vance, C., Boggs, R., Fenger, T.: Forensic Analysis of Data Transience Applica-

tions in iOS and Android, http://www.marshall.edu/forensics/files/Wu-Poster. pdf, (2013),

[Accessed: September 2016]

18. Walnycky, D., Baggili, I.,Marrington, A., Moore, J., Breitinger, F. :Network and device fo-

rensic analysis of Android social-messaging applications. Digital Investigation, vol. 14, pp.

77-84, (2015)

19. Mehrotra, T., Mehtre, B. M.:Forensic analysis of Wickr application on android devices.

IEEE International Conference on Computing Intelligence and Computing Research, pp. 1-

6, (2013)

20. Satrya, G. B., Daely, P. T., Nugroho, M. A.: Digital Forensic Analysis of Telegram Messen-

ger on Android Devices. 10th International Conference on Information and Communication

Technology and System, Indonesia, (2016)

21. ADB tool, https://developer.android.com/studio/command-line/adb.html, [Accessed: Sep-

tember 2016]

22. Linux Man Page, http://linux.die.net/man/1/dd, [Accessed: September 2016]

23. Memory Dump, https://play.google.com/store/apps/details?id=com.cert.memdump&hl=en,

[Accessed: September 2016]

24. Dex2Jar tool, https://github.com/pxb1988/dex2jar, [Accessed: September 2016]

25. Java Decompiler tool, http://jd.benow.ca, [Accessed: September 2016]

26. SleuthKit tool, http://www.sleuthkit.org, [Accessed: September 2016]

27. Telegram Channel, https://telegram.org/blog/channels, (2015), [Accessed: September 2016]

28. Cuthbertson, A., http://www.ibtimes.co.uk/isis-telegram-channel-doubles-followers-9000-

less-1-week-1523665, (2015), [Accessed: September 2016]

29. DB Browser for SQLite Official Website, http://sqlitebroswer.org, [Accessed: September

2016]

30. X-Ways Forensics: WinHex, https://www.x-ways.net/winhex/index-m.html, [Accessed:

September 2016]

31. Sedory, D. B.: Drive Offset and Sector Conversions, http://thestarman.pcminis-

try.com/asm/mbr/DriveOffsets.htm, (2012), [Accessed: September 2016]

32. Oxygen Forensics Official Website, http://www.oxygen-forensic.com, [Accessed: Septem-

ber 2016]

33. Shortall, A., Azhar, M. A. H. B.: Forensic acquisitions of WhatsApp data on popular mobile

platforms. Sixth International Conference on Emerging Security Technologies (EST), IEEE

Press, Technische Universitaet Braunschweig, Germany, pp.13-17, (2015)

34. Samsung Galaxy Mini Official Web Page, http://www.samsung.com/uk/consumer/mobile-

devices/smartphones/galaxy-s/GT-I9195ZKABTU, [Accessed: September 2016]

35. Allwinner A13 User Manual, http://linux-sunxi.org/A13, [Accessed: September 2016]

36. Woods, V., Meulen, R. V. D.: Gartner Says Worldwide Smartphone Sales Grew 3.9 Percent

in First Quarter of 2016, http://www.gartner.com/newsroom/id/3323017, (2016), [Accessed:

September 2016]

https://developer.android.com/studio/command-line/adb.html
http://linux.die.net/man/1/dd
https://play.google.com/store/apps/
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/
http://www.sleuthkit.org/
https://telegram.org/blog/channels
http://sqlitebroswer.org/
https://www.x-ways.net/winhex/index-m.html
http://www.oxygen-forensic.com/
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/galaxy-s/GT-I9195ZKABTU
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/galaxy-s/GT-I9195ZKABTU
http://www.gartner.com/newsroom/id/3323017

