
HAL Id: inria-00614720
https://hal.inria.fr/inria-00614720

Submitted on 15 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Proxies in Smalltalk
Marcus Denker, Mariano Martinez Peck, Noury Bouraqadi, Luc Fabresse,

Stéphane Ducasse

To cite this version:
Marcus Denker, Mariano Martinez Peck, Noury Bouraqadi, Luc Fabresse, Stéphane Ducasse. Efficient
Proxies in Smalltalk. International Workshop on Smalltalk Technologies (IWST 2011), ESUG, Aug
2011, Edinburgh, United Kingdom. �inria-00614720�

https://hal.inria.fr/inria-00614720
https://hal.archives-ouvertes.fr

Efficient Proxies in Smalltalk

Mariano Martinez Peck12 Noury Bouraqadi2 Marcus Denker1

Stéphane Ducasse1 Luc Fabresse2

1RMoD Project-Team, Inria Lille–Nord Europe / Université de Lille 1
2Université Lille Nord de France, Ecole des Mines de Douai

marianopeck@gmail.com, {stephane.ducasse,marcus.denker}@inria.fr,

{noury.bouraqadi,luc.fabresse}@mines-douai.fr

Abstract

A proxy object is a surrogate or placeholder that con-

trols access to another target object. Proxy objects are a

widely used solution for different scenarios such as remote

method invocation, future objects, behavioral reflection, ob-

ject databases, inter-languages communications and bind-

ings, access control, lazy or parallel evaluation, security,

among others.

Most proxy implementations support proxies for regular

objects but they are unable to create proxies for classes or

methods. Proxies can be complex to install, have a signif-

icant overhead, be limited to certain type of classes, etc.

Moreover, most proxy implementations are not stratified at

all and there is no separation between proxies and handlers.

In this paper, we present Ghost, a uniform, light-weight

and stratified general purpose proxy model and its Smalltalk

implementation. Ghost supports proxies for classes or meth-

ods. When a proxy takes the place of a class it intercepts

both, messages received by the class and lookup of meth-

ods for messages received by instances. Similarly, if a proxy

takes the place of a method, then the method execution is

intercepted too.

Keywords Object-Oriented Programming and Design »

Message passing control » Proxy » Interception » Object

Swapping » Smalltalk

1. Introduction

A proxy object is a surrogate or placeholder that controls

access to another target object. A large number of scenarios

and applications [11] have embraced and used the Proxy

Design Pattern [12].

Proxy objects are a widely used solution for different sce-

narios such as remote method invocation [24, 25], distributed

[Copyright notice will appear here once ’preprint’ option is removed.]

systems [3, 20], future objects [23], behavioral reflection

[10, 15, 29], aspect-oriented programming [16], wrappers

[6], object databases [7, 19], inter-languages communica-

tions and bindings, access control and read-only execution

[1], lazy or parallel evaluation, middlewares like CORBA

[13, 17, 28], encapsulators [22], security [27], among oth-

ers.

Most proxy implementations support proxies for regular

objects (instances of common classes) only. Some of them,

e.g., Java Dynamic Proxies [11, 14] even requires that at

creation time the user provides a list of Java interfaces for

capturing the appropriate messages.

Creating uniform proxies for not only regular objects,

but also for classes and methods has not been considered.

In existing work, it is not possible for a proxy to take the

place of a class and a method and still intercept messages,

in order to perform operations such as logging, swapping or

remote class interaction. This weakness strongly limits the

applications of proxies.

In addition, traditional implementations (based on error

handling [22]) result in non stratified proxies: not all the

proxified API messages can be trapped leading to severe

limits, and there is no clear division between trapping a

message and handling it, i.e., there is no separation between

proxies and handlers. Trapping a message is intercepting it,

and handle a message means to do something in particular

with such interception. The handling actions depends on

the user needs, hence they are defined by the user of the

framework. Bracha et al. [5] defined stratification in the

field of reflection as the following statement: “meta-level

facilities must be separated from base-level functionality”.

The same applies for proxies, where instead of meta-level

facilities there are trapping or intercepting facilities [27].

Another interesting property of proxy implementations

is memory footprint. As any other object, proxies occupy

memory and there are cases in which the number of proxies

and their memory footprint becomes a problem.

In this paper, we present Ghost, a uniform, light-weight

and stratified general purpose proxy model and its imple-

mentation in Pharo Smalltalk [4]. In addition, Ghost sup-

ports proxies for classes or methods. This means that it is

not only possible to create a proxy for a class or a method

1 2011/8/14

but also that such proxy takes the place of the target orig-

inal class or method, intercepts messages without crashing

the system. If a proxy takes the place of a class it intercepts

both, messages received by the class and lookup of meth-

ods for messages received by instances. Similarly, if a proxy

takes the place of a method, then the method execution is in-

tercepted too. Ghost provides low memory consuming prox-

ies for regular objects as well as for classes and methods.

The contributions of this paper are:

• Describe and explain the common proxy implementation

in dynamic languages and specially in Smalltalk.

• Define a set of criteria to evaluate and compare proxies

implementations.

• Present Ghost, a new proxy model and implementation

which solves most of the proxy’s problems in a uniform,

light-weight and stratified way.

• Evaluate our solution with the defined criteria.

The remainder of the paper is structured as follows: Sec-

tion 2 defines and unifies the vocabulary and roles that are

used throughout the paper, and then it presents the list of

criteria used to compare different proxy implementations.

Section 3 describes the typical proxy implementation and

by evaluating it against the previously defined criteria, it

presents the problem. Section 4 introduces and discusses the

Ghost model, and then evaluates the needed language and

VM support. An introduction to Smalltalk reflective model

and its provided hooks is explained by Section 5. Ghost im-

plementation is presented in Section 6, which also provides

an evaluation of Ghost implementation based on the defined

criteria. Finally, in Section 7 related work is presented, be-

fore concluding in Section 8.

2. Vocabulary and Proxy Evaluation Criteria

2.1 Vocabulary and Roles

For sake of clarity, we define here the vocabulary used

throughout this paper. We hence make explicit entities in

play and their respective roles.

Target. It is the original object that we want to proxify, i.e.

the object that will be replaced by a proxy.

Client. This is an object which uses or holds a reference

on the target object.

Interceptor. It is an object whose responsibility is to in-

tercept messages that are sent to it. It may intercept some

messages or all of them.

Handler. The handler is responsible of handling messages

caught by the interceptor. By handling we refer to whatever

the user of the framework wants to do with the interceptions,

e.g., logging, forwarding the messages to the target, control

access, etc.

One implementation can use the same object for taking

the roles of interceptor and handler. Hence, the proxy plays

as interceptor and also as handler. In another solution such

roles can be achieve by different object where the proxy

usually takes the role of interceptor.

2.2 Proxies Implementation Criteria

From the implementation point of view, there are criteria

that can be taken into account to compare and characterize a

particular implementation [10]:

Stratification. Stratification means that there is a clear sep-

aration between the proxy support and application function-

alities. With a stratified approach, all messages sent by the

application’s business objects to the proxy are intercepted.

The proxy API should not pollute the application’s names-

pace. In a truly stratified proxy, all messages received by a

proxy should be intercepted. This means that the handler

itself cannot send messages to the proxy. Not only the

handler cannot do that, but none other object in the system.

Having this stratification is important to achieve security

and to fully support transparency of proxified object for the

end-programmers [5].

Stratification also covers the design of the proxy. There

are two responsibilities in a proxy toolbox: 1) trapping or in-

tercepting messages (interceptor role) and 2) managing the

interception (handler role), i.e., performing actions once the

message is intercepted. In a stratified proxy framework the

first responsibility can be covered by a proxy itself, and the

second one by a handler. This means that proxies are just

traps to intercept messages. When they intercept a message

they just delegate to a handler, which does something in

particular with it, e.g., logging, access control, etc. Conse-

quently, different proxies instances can use the same or dif-

ferent handler instance.

Interception granularity. There are the following possibil-

ities:

• Intercept all messages sent to an object, even messages

not defined in the object API.

• Intercept only user defined messages.

• Intercept only messages imposed by the system.

With the last two options, there are messages that are not

intercepted and hence answered by the proxy itself. This

can be a problem because it is not possible to distinguish

messages sent to the proxy to ones that should be trapped.

For example, when a proxy is asked its class it must answer

not its own class but the class of the target object. Otherwise,

this can cause errors difficult to manage.

Object replacement. Replacement is making client objects

to reference the proxy instead of referencing the target. Two

cases can be distinguished. On the one hand, there are sce-

narios where some objects become new clients. So, they will

get a reference to a proxy instead of the reference to the tar-

get object. For example, for remote method invocation, tar-

gets are located in a memory space different from the clients

one. Therefore, clients can only hold references on proxies

to interact with targets. Messages sent by clients to proxies

will be handled and forwarded to remote targets.

2 2011/8/14

On the other hand, sometimes the target is an already

existing object which is pointed to by other objects in the

system and it needs to be replaced by a proxy, i.e., all objects

in the system which have a reference on the target should be

updated so that they point to the proxy instead. For instance,

for a virtual memory management we need to swap out

objects and to replace them by proxies. In this case, we need

to retrieve all objects which were pointing to the existing

unused object to now point to the proxy. We refer to this

functionally as object replacement.

Uniformity. We refer to the ability of creating a proxy for

any object (regular object, method, class, block, process. . .)

and replacing the object by the proxy.

Most proxy implementations support proxies only for

regular objects and without object replacement, i.e., proxies

cannot replace a class, a method, a process, etc, without

crashing the system. There can be not only more classes that

require special management but also more special objects that

require so. For example objects like nil, true, false, etc.

This is an important criteria since there are scenarios

where being able to create proxies for living runtime entities

is mandatory.

Transparency. A proxy is fully transparent if client objects

have no mean to find out whether they reference the target

or the proxy. .

One of the typical problems related to transparency is the

identity issue in cases where the proxy and the target are lo-

cated in the same memory space. Given that different objects

have different identities, a proxy’s identity is different from

the target’s identity. The expression proxy == target will an-

swer false, revealing hence the existence of the proxy. This

can be temporary hidden if there is object replacement be-

tween the target object and the proxy. When we replace all

references to the target by references to the proxy, clients

will only see the proxy. However, this "illusion" will be bro-

ken as soon as the target provides its reference as an answer

to a message or a parameter.

Another common problem is asking the class or a type of

an object since most of the times the proxy answers its own

type or class instead of the target’s one. The same happens

if there is special syntax or operators in the language such

Javascript’s “+”, “/”, “=”, “>”, etc. In order to have the

most transparent possible proxy, these situations should be

handled in such a way that the proxy behaves like the target.

Now the question is whether the identity of an object

should be controlled similarly to central messages such as

class. We believe that most of the time it is important that the

identity is treated similarly to messages, since code working

based on object identity should work the same whether the

object has been proxified or not. Now depending on the

language or optimization in place, identity is not treated as

a message but provided as a built in primitive, which means

that it can be difficult to offer proper identity swapping.

Efficiency. Proxy handling must be efficient from both

points of view: performance and memory usage. In addi-

tion, we can distinguish between installation performance

and runtime performance. For example, for installation, it

is commonly evaluated if a proxy installation requires extra

overhead like recompiling.

Moreover, depending on the usage, the memory footprint

of the proxies can be fundamental. It is not only important

the size in memory of the proxies, but also the space analysis

i.e., how many objects are needed per target. Only a proxy

instance? A proxy instance and a handler instance?

Implementation complexity. Since at constant functional-

ity, a simpler implementation is better, this criteria evaluates

the complexity of the implementation. For example, if the

proposed solution is easy to implement or if it needs com-

plex mechanisms.

Ease of debugging. It is difficult to test and debug prox-

ies because the debugger or the test framework usually send

messages to the objects that are present in the current stack.

Those messages include, for example, printing an object, ac-

cessing its instance variables, etc. When the proxy receives

any of those messages it may intercept it (depending whether

the proxy understands that message or not). Hence, debug-

ging is usually complicated in the presence of proxies.

Constraints. The toolbox may require, e.g., that the target

implements certain interface or inherits from a specific class.

In addition, it is important that the user of the proxy toolbox

can easily extent or change the purpose of the proxy adapting

it to his own needs.

Portability. A proxy implementation can depend on the

VM or the language where it is developed which can be

different in other Virtual Machines or languages.

3. Common Proxy Implementations

Even if there are different proxy implementations and solu-

tions, there is one that is the most common among dynamic

programming languages: it is based on error raising and re-

sulting error handling. We briefly describe it and show that

it fails to fulfill important requirements.

3.1 Typical Proxy Implementation

In dynamic languages, the type of the message’s receiver is

resolved at runtime. When an unknown message is sent to an

object, an error exception is thrown. The basic idea is then to

create objects that raise errors for all the possible messages

(or a subset) and customize the error handling process.

In Smalltalk, for instance, the Virtual Machine sends the

message doesNotUnderstand: to the receiver object. To avoid

infinite recursion, all objects must understand the message

doesNotUnderstand:. That is the reason why such method is

implemented in the class Object, the root of the hierarchy

chain. In Smalltalk, the default implementation throws a

MessageNotUnderstood exception. Similar mechanisms exist

in dynamic languages like Ruby, Python, Objective-C, Perl,

etc.

Since doesNotUnderstand: is a normal method, it can be

overwritten in subclasses. Hence, if we can have a minimal

object and we override the doesNotUnderstand: method to

3 2011/8/14

do something special (like forwarding messages to a target

object), then we have a possible proxy implementation. This

technique has been used for a long time [20, 22] and it is

the most common proxy implementation. Readers knowing

this topic can directly jump to Section 3.2. Most dynamic

languages provide a mechanism for handling messages that

are not understood as shown in Section 7.

Obtaining a minimal object. A minimal object is that one

which understands none or only a few methods. In some pro-

gramming languages, the root class of the hierarchy chain

(usually called Object) already contains several methods 1. In

Pharo Smalltalk, Object inherits from a superclass called Pro-

toObject which inherits from nil. ProtoObject understands a few

messages2: the minimal amount of messages that are needed

by the system. Here is a simple Proxy implementation in

Pharo.

ProtoObject subclass: #Proxy

instanceVariableNames: ’targetObject’

classVariableNames: ’’

Proxy >> doesNotUnderstand: aMessage

|result|

..."Some application specific code"

result := aMessage sendTo: targetObject.

..."Other application specific code"

^result

Handling not understood methods. This is the part of the

code that is user-defined and not part of the Proxy frame-

work itself. Common behavior include logging before and

after the method, forwarding the message to a target object,

validating some access control, etc. In case it is needed, it

is perfectly valid to issue a super send to access the default

doesNotUnderstand: behavior.

To forward a message to a target object, we need the

message name and the list of parameters sent to it. The

Smalltalk Virtual Machine invokes the doesNotUnderstand:

aMessage with a message reification as argument. Such class

specifies the method selector, the list of arguments and the

lookup class (in normal messages it is the receiver’s class

and, for super sends, it is the superclass of the class where

the method is implemented. To forward a message to another

object, the class Message provides the method sendTo: anoth-

erObject which sends such message to another object.

Notice that this solution is not limited to Smalltalk.

For example, the Smalltalk’s doesNotUnderstand: is in Ruby

method_missing, in Python __getattr__, in Perl autoload, in

Objective-C forwardInvocation:, etc. As we explain in Section

7, Objective-C provides a minimal object class called NSInvo-

cation which understands the message invokeWithTarget:aTarget

and forwards a message to another object. Example:

- (void)forwardInvocation:(NSInvocation *)invocation

{

1 Object has 338 methods in PharoCore 1.3
2 ProtoObject has 40 methods in PharoCore 1.3

[invocation invokeWithTarget:delegate];

}

In Ruby we can do:

def method_missing(name, *args, &block)

target.send(name, *args, &block)

end

In Python:

def __getattr__(self, name):

return getattr(self.realObject, name)

3.2 Evaluation

In this section we evaluate the common proxy implemen-

tation based on the criteria we provided above (see sec-

tion 2.2).

Stratification. This solution is not stratified at all:

• The method doesNotUnderstand: cannot be trapped like a

regular message. Moreover, when such message is sent

to a proxy there is no efficient way to know whether

it was because of the regular error handling procedure

or because of a proxy trap that needs to be handled. In

other words, the doesNotUnderstand: occupies the same

namespace as application-level methods [27], hence this

solution is not stratified.

• There is no separation between proxies and handlers.

Interception granularity. It cannot intercept all messages

but instead only those that are not understood. As explained,

this generates method name collisions.

Object replacement. In the common proxy implementa-

tion object replacement is usually not supported. Neverthe-

less, Smalltalk implementations do support it but suffer the

problem of "reference leaks": the target might provide its

own reference as a result of a message or a parameter. This

way the client gets a reference to the target, and hence it can

by-pass the proxy.

Transparency. This solution is not transparent. Proxies do

understand some methods (those from its superclass) gen-

erating method name collisions. For instance, if we evaluate

“Proxy new pointersTo” (pointersTo is a method implemented

in ProtoObject) it answers the references to the proxy instead

of intercepting the message and forward it to a target. The

same happens with the identity comparison or asking the

class.

Efficiency. From the CPU point of view, this solution is

fast and it has low overhead. In contrast to other technolo-

gies, there is no need to recompile the application and the

system libraries or to modify their bytecode, or to do other

changes such as in Java modifying the environment variable

CLASSPATH, the class loader. Regarding the memory us-

age, there is no optimization. Efficiency is not normally ad-

dressed in typical proxy implementations.

4 2011/8/14

Implementation complexity. This solution is easy to im-

plement: it just needs the doesNotUnderstand:, a minimal ob-

ject, and be able to forward a message to another object.

Ease of debugging. It is not provided by this solution. The

debugger sends messages to the proxy which may not be

understood, and hence, delegated to a target object. This

makes it hard to debug, inspect and print Proxy instances.

Constraints. This solution is flexible since target objects

do not need to implement any interface or method, nor to

inherit from specific classes. The user can easily extent or

change the purpose of the proxy adapting it to his own needs

by just reimplementing the doesNotUnderstand:.

Uniformity. This implementation is not uniform since

proxies cannot be used as classes, methods, etc.

Portability. This approach impose few requirements for

the language and the VM that are provided by almost all

available dynamic languages. With the examples of the pre-

vious section we demonstrate that it is really easy to imple-

ment this approach in different dynamic languages.

4. The Ghost Model

This section describes and explains the Ghost proxy model.

This model fits better for dynamic programming languages

and it is intended to be a reference model, i.e., developers

from different dynamic languages can implement it. In addi-

tion, the model must clarify which are the expected require-

ments and hooks from the host language.

4.1 Proxies

Ghost model supports proxies for regular objects as well as

for classes, methods, and any other class that requires spe-

cial management. In addition, Ghost supports proxies for

classes or methods. Furthermore, Ghost model distinguishes

between interceptors and handlers. Proxies play solely the

role of interceptors. Since we are describing the model, the

design is abstract and general. The design of an implementa-

tion may look different from this model. Figure 1 shows the

proxies hierarchy and the following is a quick overview of

the responsibilities of each class:

ObjectProxy. This is the base class for all proxies of Ghost

model and provides proxies for regular objects, i.e., objects

that do not need any special management. Its responsibility,

as well as its subclasses, is to take care about the message

interception, which is represented in Figure 1 as the method

intercept(). In Ghost model, Proxies only play the role of

interceptors. Proxies are instances of ObjectProxy or any of its

subclasses and all they do is to forward intercepted messages

to handlers. Each proxy must have an associated handler.

Different proxies can use different handlers and vice versa.

Finally, note that since proxies just intercept messages

and forward them to handlers, it is unlikely that the user

of the framework needs to customize or subclass any of the

proxy classes. What the user needs to define is what to do in

the handler.

intercept()

ObjectProxy

intercept()

interceptMessageToInstance()

classVMRequiredState
ClassProxy

intercept()

interceptSpecial()

AnotherSpecialProxy

intercept()

interceptMethodExecution()

methodVMRequiredState

MethodProxy

handleInterception(anInterception)

AbstractProxyHandler

Figure 1. Proxies hierarchy in Ghost model.

ClassProxy. There are object-oriented programming lan-

guages that represent classes as first-class objects, i.e.,

classes are not more than just instances from another class

known as the Metaclass. ClassProxy provides proxies for

class objects.

ClassProxy is needed as a special class in the model be-

cause the VM might impose specific constraints on the mem-

ory layout of object representing classes. For example, the

Smalltalk VM expects the object to have three instance vari-

ables: format, methodDict, superclass. Since we are presenting

Ghost model, that shape is generic. Different implementa-

tions may require different attributes or none. This is the

reason why in Figure 1 the possible imposed memory layout

for ClassProxy is represented by the attribute classVMRequired-

State.

Frequently, the developer needs to be able to replace an

existing class by a proxy. In that case, we need that the

object replacement not only updates the references from

other objects, but also the class pointer in the instances of

the original class. For example, suppose there is an instance

of User called bestUser. There is also a SecurityManager class

that has a class variable called userClass which in this case

points to User.

ClassProxy has to intercept the following type of mes-

sages:

• Messages that are sent directly to the class as a regu-

lar object. To continue with our example, imagine the

method controlLogin in SecurityManager that sends the mes-

sage maxLoggedUsers to its userClass instance variable. In

Figure 1 this kind of interception is represented with the

method intercept().

• Messages that are sent to an instance of the original class,

i.e., objects whose class references are pointing to the

proxy (this happens as a consequence of replacing the

class with the proxy). In our example, we can send the

message username to the bestUser instance. In Figure 1

this kind of interception is represented with the method

interceptMessageToInstance(). Notice that this kind of mes-

sages are only necessary when there is an object replace-

5 2011/8/14

ment, i.e., the instances’ class pointers of the original

class were updated to reference the proxy.

MethodProxy. In some dynamic languages, not only classes

are first-class objects but also methods as well. In addition,

similarly to the case of ClassProxy, there are two kinds of

messages that MethodProxy needs to intercept:

• When sending messages to the method as a regular ob-

ject. For example, in Smalltalk when you search for

senders of a certain method, the system has to check

in the literals of the compiled method if it is sending such

message. To do this, the system searches all the literals

of the compiled methods of all classes. This means it

will send messages (sendsSelector: in this case) to the ob-

jects that are in the method dictionary. When creating a

proxy for a method we need to intercept such messages.

In Figure 1 this kind of interception is represented with

the method intercept().

• When the compiled method is executed. Suppose we

want to create a proxy for the method register of User

class. We need to intercept the method execution, for ex-

ample, when doing User new register. This kind of inter-

ception is represented in Figure 1 with the method inter-

ceptMethodExecution(). Note that this type of message exist

only if there is object replacement, i.e., when the original

method is replaced by a proxy.

The same way that the VM imposes an object shape on

classes, it may also do it on methods. This requirement is

represented in Figure 1 with the instance variable methodVM-

RequiredState which may vary from one implementation to

the other.

AnotherSpecialProxy. This class is just to document that

the model must support different classes that need special

management. In this paper, and in our implementation, we

concentrate on classes and methods, but there can be more.

4.2 Handlers

Figure 2 shows the handler hierarchy of the Ghost model.

Once again, note that this is an abstract model and a concrete

implementation can vary significantly. Handler’s responsi-

bility is to handle the method interceptions that the proxies

trap. It is not necessary to explain in details each handler,

since we think it is self explanatory.

The information passed from a proxy to a handler can

vary depending on the implementation. The typical passed

information is:

• The name of the message received and its arguments.

• The proxy.

• The proxy’s state. It can contain anything such as the

target object, a filename or a number. This is necessary

only if such state is in the proxy and not in the handler.

Indeed, the proxy is supposed to intercept messages even

if they are sent by the handler. So, the handler cannot

send a message to the proxy to get its state. This is why

it is the responsibility of the proxy to provide this state if

any.

All that information is reified in the model as an instance

of class Interception.

4.3 Discussions

Users can adapt and extend the Ghost framework accord-

ing to their own needs via inheritance. In Figure 2 Logger-

ClassProxyHandler a user-defined class logs every intercepted

messages and forwards them to the target object.

handleInterception()
ObjectProxyHandler

handleInterception()
handleInterceptionMessageToInstance()

ClassProxyHandler

handleInterception()
handleMethodExecution()

MethodProxyHandler

handleInterception()
handleInterceptionSpecial()

AnotherSpecialProxyHandler

handleInterception()
handleInterceptionMessageToInstance()
log()
forwardToTarget()

LoggerClassProxyHandler

Framework

User

handleInterception() {
log("Method was called");
forwardToTarget(); }

message
arguments
proxy
proxyState

Interception

Figure 2. Handlers hierarchy in Ghost model.

Normally, some information is needed to accomplish the

proxy process, for example, a target object, an address in

secondary memory, a filename, an identifier, etc. This infor-

mation can be stored in the proxies, in the handlers or else-

where. However, as explained, if the state is kept in the proxy

the handler cannot ask for it because such message sent will

be intercepted. Hence, if the desire is to store the state in the

proxy, such state must be included in the Interception object

that is passed to the handler. This is represented as the in-

stance variable proxyState in Figure 2. That instance variable

can represent a target object, an address in secondary mem-

ory, a filename, an identifier, etc. Where to put this state is

user’s application dependent and a matter of design regard-

ing the relationship between proxies and handlers.

Proxies delegates the interception to a handler. How the

proxy gets the reference to the handler depends on the imple-

mentation. For example, in one case the handler can be an in-

stance variable of the proxy that is provided when the proxy

is created. In another case, all proxies can use the same han-

dler, which in this case the previous instance variable may

not be necessary and instead they reference directly to the

handler class.

Notice that in the model we are modeling the intercep-

tion of messages. However, some languages do not threat

everything like a message sent, but instead they have special

operators or syntax as part of the language. To implement

Ghost, there must be a way to intercept such special syntax

or otherwise pay the cost of not being able to intercept them.

6 2011/8/14

5. Smalltalk Support for Proxies

Before presenting the Ghost implementation, we first ex-

plain the basis of the Pharo Smalltalk reflective model and

some provided hooks. We show that Smalltalk provides all

the necessary support for proxies i.e., object replacement, in-

terception of method execution and the reification of classes

and methods as first-class objects.

5.1 Pharo Reflective Model and VM Overview

Readers familiar with the Pharo reflective model please feel

free to skip this section. The reflective model of Smalltalk is

easy and elegant. There are two important rules [4]: 1) Ev-

erything is an object; 2) Every object is instance of a class.

Since classes are objects and every object is an instance of a

class, it follows that classes must also be instances of classes.

A class whose instances are classes is called a metaclass.

Whenever you create a class, the system automatically cre-

ates a metaclass. The metaclass defines the structure and be-

havior of the class that is its instance. Figure 3 shows a sim-

plified reflective model of Smalltalk.

new

compile:

addSelector:withMethod:

removeSelector:

addSubclass:

.....

superclass

methodDict

format

(subclasses)

(name)

Class

hasLiteral:

valueWithReceiver:arguments:

decompile

getSource

....

CompiledMethod

at:

at:put:

keys

removeKey:ifAbsent:

.....

MethodDictionary

*

methodDict

methodClass

Figure 3. The basic Smalltalk reflective model.

Figure 3 shows that a class contains a name, a format,

a method dictionary, its superclass, a list of instance vari-

ables, etc. The method dictionary is a map where keys are

the methods names (called selectors in Smalltalk) and the

values are the compiled methods which are instances of Com-

piledMethod.

5.2 Hooks and Features Provided by Pharo Smalltalk

Before explaining Ghost implementation on Pharo, we

present some of the Smalltalk reflective facilities and hooks

that can be used for implementing proxies.

Class with no method dictionary. The method dictio-

nary is just an instance variable of a class, hence it can be

changed. When an object receives a message and the VM

does the method lookup, if the method dictionary of the re-

ceiver class (or of any other class in the hierarchy chain) is

nil, then the VM directly sends the message cannotInterpret:

aMessage to the receiver. But, the lookup for method cannot-

Interpret: starts in the superclass of the class whose method

dictionary was nil.

Imagine the class MyClass which has its method dictio-

nary in nil, and its superclass MyClassSuperclass. There is also

an instance of MyClass called myInstance. Figure 4 shows how

the hook works when sending the message printString to the

object myInstance.

myInstance

myInstance name

1: #printString send

methodDict := nil

MyClass

cannotInterpret: aMessage

MyClassSuperclass

Object

2: #printString lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References

instance of

message send

lookup

subclass

Figure 4. Message handling when a method dictionary is

nil.

The cannotInterpret: is sent to the receiver but starting the

method lookup from the superclass. Otherwise there will be

an infinite loop. This hook is very powerful for proxies since

it let us intercept all messages that are sent to an object.

Objects as methods. This facility allows intercepting

method executions. It relies on replacing in a method dic-

tionary a method by an object that is not an instance of Com-

piledMethod. Interception occurs if the object does understand

the message run:with:in: as we explain below. Otherwise, we

get a MessageNotUnderstood exception.

To illustrate interception consider the following code:

MyClass methodDict at: #printString put: MethodProxy new.

MyClass new printString.

When the printString message is sent the VM does the

method lookup and finds an entry for #printString in the

method dictionary. If the retrieved object is actually an in-

stance of CompiledMethod (which is the case in the normal

scenario), then the VM executes it. Otherwise, the VM sends

a special message run: aSelector with: arguments in: aReceiver to

that object, i.e., the one that replaces a method in the method

dictionary.

This technique is used when implementing MethodWrap-

pers [6]. Using run:with:in is not the only possible technique to

implement MethodWrappers in Smalltalk. In fact, the origi-

nal implementation rely on subclassing CompiledMethod.

It is important to notice that the previous explanation

means that the Pharo VM does not impose any shape to

objects acting as methods such us having certain amount

of instance variables or certain format. This is because the

7 2011/8/14

VM checks whether the object in the MethodDictionary is

a CompiledMethod or not and if it is not it sends the mes-

sage run:with:in:. The only requirement is to implement that

method. Therefore, MethodProxy does not need to fulfill any

class shape in a Ghost implementation on Pharo Smalltalk.

Object replacement. The primitive become: anotherObject

is provided by the Pharo VM and it swaps the object refer-

ences of the receiver and the argument. All variables in the

entire system that used to point to the receiver now point to

the argument, and vice versa. In addition, there is also be-

comeForward: anotherObject which updates all variables in the

entire system that used to point to the receiver now point to

the argument, i.e., it is only one way.

Change the class of an object. Smalltalk provides a prim-

itive to change the class of an object. Although it has some

limitations, e.g., the object format and the class layout of

both classes need to be the same. These primitives are Ob-

ject»primitiveChangeClassTo: or Behavior»adoptInstance: .

6. Ghost Implementation

In this section, we present the Ghost implementation. Its

most important features are: to be stratified (i.e., clear sepa-

ration between proxies and handlers), to be able to intercept

all messages, and to be uniform. For this implementation we

use the previously mentioned Pharo Smalltalk reflective fa-

cilities: classes with no method dictionary, objects as meth-

ods, object replacement and the ability to change the class of

an object.

Regarding the discussions of Section 4.3, in this imple-

mentation we store the needed information, for example, the

target object, an identifier, a filename, etc, in the proxies.

Another possible implementation is to store the information

in the handler for example. In addition, in the following im-

plementation each proxy instance uses a particular handler

instance, hence the handler is represented as an instance vari-

able of the proxy.

To explain the implementation we use a SimpleForwarder-

Handler which just forwards the interceptions to a target ob-

ject. Therefore, the state stored in the proxy is a target object.

6.1 Kernel

Figure 5 shows the basic design of Ghost.

To explain the implementation we start with the following

simple test:

testSimpleForwarder

| proxy |

proxy := Proxy proxyFor: (Point x: 3 y: 4) handler: SimpleFor-

warderHandler new.

self assert: proxy x equals: 3.

self assert: proxy y equals: 4.

The class side method proxyFor:handler: creates a new in-

stance of Proxy, sets the handler, and finally changes the class

of the just created Proxy instance to ProxyTrap. The user of

the toolbox can specify which handler to use just by send-

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

handleInterception: anInterception
ProxyHandler

handleInterception: anInterception
SimpleForwarderHandler

message
proxy
proxyState

Interception

Figure 5. Ghost implementation’s basic design.

ing it as a parameter of the proxy creational message proxy-

For:handler:.

Proxy class >> proxyFor: anObject handler: aHandler

| aProxy |

aProxy := self new

initializeWith: anObject

handler: aHandler.

ProxyTrap adoptInstance: aProxy.

^ aProxy.

The class side method initialize is called right after loading

ProxyTrap into the system and it sets the method dictionary of

the class to nil. Notice that the system does not deal correctly

with classes whose method dictionary is nil. Hence, we need

to overwrite the method Behavior » methodDict to:

Behavior >> methodDict

methodDict == nil ifTrue: [^ MethodDictionary new].

^ methodDict

Since the system access the method dictionary with

methodDict it looks like if the class has an empty method

dictionary, but instead it has a nil. Since the VM access di-

rectly to the slow where the method dictionary is, i.e., the

VM does not use methodDict, it works for both things: the

interception and the system.

With the line ProxyTrap adoptInstance: aProxy we change

the class of aProxy to ProxyTrap, whose method dictionary

is nil. This means that for any message sent to aProxy, the

VM will finally send the message cannotInterpret: aMessage.

Remember that such message is sent to the receiver (in this

case aProxy) but starting the method lookup in the super

class, which in this case is Proxy. Hence, Proxy implements

the method cannotInterpret:

Proxy >> cannotInterpret: aMessage

| interception |

interception := Interception for: aMessage proxyState: tar-

get proxy: self.

^ handler handleInterception: interception.

8 2011/8/14

An Interception instance is created and passed to the han-

dler. In this example, the instance variable proxyState is the

target object.

Handler classes are user-defined and in this example we

use a simple forwarder handler, i.e., it logs and forwards the

received message to a target object. Users of the toolbox can

create their own handlers that achieve their requirements.

SimpleForwarderHandler >> handleInterception: anInterception

| answer |

self log: ’Message ’, anInterception message selector, ’ inter-

cepted’.

answer := anInterception message sendTo: anIntercep-

tion proxyState.

self log: ’The message was forwarded to the target object’.

^ answer

For the moment, we can say that the class Proxy can only

be used for regular objects (in the example we create a proxy

for Point instance). We see in the following sections how

Ghost handles objects that do require special management

like classes or methods.

6.2 Proxies for Methods

As we have already explained in Section 4, for methods there

are two kind of messages that we need to intercept:

• When the compiled method is executed.

• When sending messages to the compiled method object.

To clarify, imagine the following test:

testSimpleProxyForMethods

| aProxy kurt method |

kurt := User named: ’Kurt’.

method := User compiledMethodAt: #username.

aProxy := Proxy

createProxyAndReplace: method

handler: SimpleForwarderHandler new.

self assert: aProxy getSource equals: ’username ^ name’.

self assert: kurt username equals: ’Kurt’.

What the test does is to create an instance of a User and a

proxy for method username. Then, we replace the original

method username with the created proxy. Finally, we test

both type of messages: when sending a message to the proxy

(in this case aProxy getSource) and when sending message

username that leads to the execution of the proxified method.

With Ghost implementation, both kind of messages are

solved out of the box: the first case, i.e.,aProxy getSource

has nothing special and it behaves exactly the same way

we have explained so far. The second one, i.e.,kurt username,

also works without any special management by using the

explained hook of the method run:with:in:. However, this sec-

ond type of message is only captured if the original method

was replaced by the proxy. This is why in this test we use

the method createProxyAndReplace:handler: instead of proxy-

For:handler:, because we want to not only to create a proxy

for the method but instead replace it with the proxy. The fol-

lowing is the implementation of such method:

Proxy class >> createProxyAndReplace: aClass handler: aHandler

| aProxy newProxyRef newObjectRef|

aProxy := self new

initializeWith: anObject

handler: aHandler.

aProxy become: anObject.

"After the become is done, variable aProxy points to anObject

and variable anObject points to aProxy. We create two new

variables just to clarify the code"

newProxyRef := anObject.

newObjectRef := aProxy.

newProxyRef target: newObjectRef.

ProxyTrap adoptInstance: newProxyRef.

^ newProxyRef.

Notice that createProxyAndReplace:handler: is useful for

method proxies, as well as for regular objects. In the pre-

vious section where we used the method proxyOn: we could

perfectly have used createProxyAndReplace:handler: instead.

Coming back to the test of kurt username, when the VM

does the method lookup for the message username it notices

that in the method dictionary is not a CompiledMethod instance

but instead an instance from another class. Hence, it sends

the message run:with:in to such object. Since such object is a

proxy in this case, the message run:with:in: will be intercepted

and forwarded just like any other message. In the base Pharo

image, CompiledMethod does not implement such method, so

Ghost implements it as a method extension in the following

way:

CompiledMethod >> run: aSelector with: anArray in: aReceiver

^ self valueWithReceiver: aReceiver arguments: anArray

That method just executes the method (the receiver).

However, such change does not need to be necessary im-

plemented in CompiledMethod. As we will see later, Ghost

supports a way to define specific messages so that they are

treated and answered by the handler instead of being man-

aged as a normal interception. So we can tell the handler

to perform something in particular if the message run:with:in:

is intercepted (this information is available in the Message

instance referenced by the Interception object). In this case

we can directly use the method valueWithReceiver:arguments:

to execute the CompiledMethod.

The previous explanation demonstrates how Ghost can

create not only proxies for methods, but also how to replace

them by proxies. In contrast to what we defined in the model,

the Pharo Smalltalk VM does not impose any shape to meth-

ods. Therefore, we can use the same Proxy class that we use

for regular objects, i.e., the class MethodProxy defined in the

Ghost model does not exist in this concrete implementation

since we can directly use Proxy.

9 2011/8/14

6.3 Proxies for Classes

Implementing proxies for classes and also to be able to

replace and use a proxy as a class, has some important

constraints:

• Class proxies must fulfill the expected object shape

that the VM imposes in classes. In the case of Pharo

Smalltalk, the minimum amount of instance variables

that a class must have are: superclass, methodDict and for-

mat.

• Instances hold a reference to their class and the VM uses

this reference for the method lookup.

• A class is involved with two kinds of messages that need

to be intercepted as introduced in Section 4:

Messages that are sent directly to the class.

Messages that are sent to an instance of the class. Such

messages are intercepted only if the original class was

replaced by the proxy.

To explain class proxies, consider the following test:

testSimpleProxyForClasses

| aProxy kurt |

kurt := User named: ’Kurt’.

aProxy := ClassProxy

createProxyAndReplace: User

handler: SimpleForwarderHandler new.

self assert: User name equals: #User.

self assert: kurt username equals: ’Kurt’.

The test creates an instance of a user, and then with the

message createProxyAndReplace:handler: we create a proxy for

the User class and we replace it by the created proxy. Finally,

we test that we can intercept both messages: those which are

sent to the proxy (in this case User name) and those which

are sent to instances of the original class (kurt username in

this case).

The first message, User name, has nothing special and it

is handled the same way as any other message. The second

one is more complicated and it requires certain explanation.

Figure 6 shows the design of ClassProxy. First, notice that

we do not use the class Proxy but instead ClassProxy. This is

because proxies for classes need to fulfill the expected object

shape that the VM imposes in classes, i.e., the instance vari-

ables superclass, methodDict and format. Second, in the model

we showed that ClassProxy was a subclass of ObjectProxy but

in this case it is not. The reason is that the VM does not

only imposes the mentioned instance variables but also the

order: superclass at position 1, methodDict at 2 and format at

3. If ClassProxy is a subclass of ObjectProxy it inherits the two

instance variables target and handler and since they are de-

fined in the superclass they are “first” in the array of instance

variables of the object. So, superclass will be at position 3,

methodDict at 4 and format at 5. Therefore, we are not respect-

ing the expected shape.

The previous issue is not really a problem because Object-

Proxy implements only two methods and they are even dif-

ferent in ClassProxy. Hence, even if the limitation is real, we

are not duplicating code because of that.

Object

cannotInterpret:
createProxyAndReplace:

superclass
methodDict
format

ClassProxy

initialize
ClassProxyTrap

Figure 6. Class proxies in Ghost stratified implementation.

The method createProxyAndReplace:handler: is similar to

the one used in Proxy:

ClassProxy class >> createProxyAndReplace: aClass handler: aHandler

| aProxy newProxyRef newClassRef|

aProxy := self new

initializeWith: aHandler

methodDict: nil

superclass: ClassProxy

format: aClass format.

aProxy become: aClass.

"After the become is done, aProxy now points to aClass

and aClass points to aProxy. We create two new variables

just to clarify the code"

newProxyRef := aClass.

newClassRef := aProxy.

newProxyRef target: newClassRef.

ClassProxyTrap adoptInstance: newProxyRef.

^ newProxyRef.

The difference is that in addition to setting the handler

and the target, we also set the method dictionary, the su-

perclass and the format. This is because an instance of

ClassProxy must work as a class. Thus, we set its method

dictionary in nil, ClassProxy as the superclass and finally the

format (this is important so that the adoptInstance: does not

fail).

Coming back to the example, when we evaluate kurt user-

name this is what happens: the class reference of kurt is point-

ing to the created ClassProxy instance (as a result of the be-

come:), and this proxy object that acts as a class, has the

method dictionary instance variable in nil. Hence, the VM

sends the message cannotInterpret: to the receiver (kurt in this

case) but starting the method lookup in the superclass which

is ClassProxy (as set in method ClassProxy class » createProx-

yAndReplace:handler: defined above). The definition of the

cannotInterpret: of class ClassProxy is the following.

ClassProxy >> cannotInterpret: aMessage

| interception |

"The order of this expression is important

because a proxy intercepts all messages including =="

(ClassProxyTrap == aMessage lookupClass)

10 2011/8/14

ifTrue: [interception := Interception for: aMessage

proxyState: target proxy: self.

^ handler handleInterception: interception]

ifFalse: [interception := Interception for: aMessage

proxyState: target proxy: aMessage lookupClass.

^ handler handleInterception: interception toInstance: self]

It is important to notice the difference in this method

regarding the kind of message it is intercepting. On the one

hand, when we evaluate User name and the cannotInterpret: is

called, the receiver, i.e., what self is pointing to, is the proxy

itself. On the other hand, when we evaluate kurt userame

and cannotInterpret: is called, self points to kurt and not to the

proxy.

The method Message lookupClass answers the class where

lookup will start. If it is ClassProxyTrap it means the receiver

was proxy, and not an instance of the original class.

A problem is that the CompiledMethod of cannotInter-

pret: cannot be correctly executed with a receiver like kurt.

In fact, it can only be correctly executed with proxy in-

stances. The reason is that the method ClassProxy » cannot-

Interpret: access the instance variable handler. Hence the first

problem is that the class User does not define such instance

variable. The second problem is that CompiledMethod do

not store instance variable names but instead its offsets. So

when the CompiledMethod of cannotInterpret: is executed the

instructions (bytecodes) to access the instance variable han-

dler is just something like “access instance variable at posi-

tion 5”, which is correct in the class where it was defined

(ClassProxy). When evaluating the method with receivers of

other classes e.g.,User then the VM can crash because it is

accessing outside the object or just answer whatever is at

that place. For example, if a class defines only two instance

variables, the bytecode “accessing instance variable at po-

sition 5” means that the VM will access a memory address

outside the object. Whether the VM crashes or not depends

on the concrete VM implementation. In the case of Pharo

Smalltalk, the VM crash in such scenario so we cannot use

this solution.

Instead of directly accessing the instance variable handler

one may think why not to send a message handler. This is

not possible because since the proxy intercepts all messages,

such message sent will finally call cannotInterpret: generating

an infinite loop.

To that limitation, Ghost provides the following alter-

native. Instead of doing handler handleInterception: interception

toInstance: self we send a special message to the proxy, which

is accessible through aMessage lookupClass. Hence, we can do

aMessage lookupClass handleInterception: interception toInstance:

self. In the item Ease of debugging of the next section we

explain that we can define a list of specific messages in the

handler so that it does not manage such messages intercep-

tions as it is done with the regular ones, but instead those

messages are processed and answered by the handler itself.

The message handleInterception:toInstance: is one of those mes-

sages and it is managed by the handler. At that point the

handler has everything he needs e.g.,Interception object and

receiver, so it can perform its task.

Coming back to the implementation, the last missing ex-

planation is why we need ClassProxyTrap instead of reusing

ProxyTrap. The reason is that the message adoptInstance: re-

quires certain conditions, like having the same object format.

Since ClassProxy and Proxy have different amount of instance

variables and hence format, then we cannot reuse the same

ProxyTrap.

ProxyTrap class >> initialize

superclass := Proxy.

methodDict := nil.

format := Proxy format.

ClassProxyTrap class >> initialize

superclass := ClassProxy.

methodDict := nil.

format := ClassProxy format.

The Ghost implementation uses ProxyClass and ClassProx-

yTrap not only because it is cleaner from the design point of

view but also because of the memory footprint. Technically,

we can use ProxyClass and ClassProxyTrap also for regular ob-

jects and methods. But that implies that for every target to

proxify the size of the proxy can be unnecessary bigger in

memory footprint, because of the additional instance vari-

ables needed by ClassProxy.

To conclude, with this implementation we can success-

fully create proxies for classes, i.e., to be able to intercept

the two mentioned kind of messages and replace classes by

proxies.

6.4 Criteria Evaluation

Stratification. This solution is completely stratified. On

the one hand, there is a clear separation between proxies

and handlers. On the other hand, interception facilities are

separated from application functionality. Indeed, the appli-

cation can even send the cannotInterpret: message to the proxy.

Since, proxies do not understand any message, cannotInter-

pert: would be intercepted like any other message. Thus, the

proxy API does not pollute the application’s namespace.

Object replacement. This is provided by Ghost thanks to

the Smalltalk become: primitive.

Interception granularity. It intercepts all messages.

Transparency. The Pharo compiler associates special byte-

codes for the messages class and == (identity), i.e., even if

there is an implementation of those methods, they are ac-

tually never executed and, therefore, they cannot be inter-

cepted. Our solution is to modify the compiler so that it does

not associate a special bytecode for both methods. Such

modification is the following:

(ParseNode classVarNamed: ’StdSelectors’) removeKey: #class.

(ParseNode classVarNamed: ’StdSelectors’) removeKey: #==.

Compiler recompileAll.

11 2011/8/14

We did a benchmark to estimate the overhead impact of

such change. We run all the tests (8003 unit tests) present in

a PharoCore 1.3 - 13204 image, twice: once with the class

and == optimizations and once without them. The overhead

of removing those optimizations was only about 4%, which

means that it is only slightly perceptible in general system

interactions.

In the discussion of Section 4 we talk about the possibility

of some languages to have special syntax or operators in

addition to messages sent. These special selectors class and

== can be considered like that. However, Smalltalk allows us

to convert them into messages so we have an easy way to

deal with them. This way Ghost solution is fully transparent

and both messages are intercepted and handled as any other

message.

Efficiency. From the CPU point of view, this solution is

fast and it has low overhead.

This solution provides an efficient memory usage with the

following optimizations:

• Proxy and ClassProxy are “Compact Classes”. This means

that in a 32 bits system, their instances’ object header

are only 4 bytes long instead of 8 bytes for instances

of regular classes. For instances whose “body” part is

more than 255 bytes and whose class is compact, their

header will be 8 bytes instead of 12. The first word in the

header of regular objects contains flags for the Gargbage

Collector, the header type, format, hash, etc. The second

word is used to store a reference to the class. In compact

classes, the reference to the class is encoded in 5 free bits

in the first word of the header. These 5 bits represent the

index of a class in the compact classes array set by the

image3 and accessible to the VM. With these 5 bits, there

are 32 possible compact classes. This means that, from

the language side, the developer can determinate up to

32 classes as compact. Their instances’ object header are

only 4 bytes long as we said. Hence, declaring the proxy

classes as compact makes proxies to have smaller header

and then smaller memory footprint.

• Proxies only keep the minimal state they need. For exam-

ple, as we have already explained, we can use ClassProxy

for every type of object. However, the size of the prox-

ies would be unnecessary larger to store the additional

needed instance variables of ClassProxy.

• In proxy creation methods presented so far (proxyFor:handler:

and createProxyAndReplace:handler:) the last parameter is

an instance of the handler. This is because in our exam-

ples, each proxy holds a reference to handler. However,

this is only necessary when the user needs one handler in-

stance per target object, which is not often the case. The

handler is often stateless and can be shared and refer-

enced through a class variable or a global one. Hence, we

can avoid the memory cost of a handler instance variable

in the proxy. Instead, one possible solution is to reference

3 see methods SmalltalkImage»compactClassesArray and SmalltalkIm-

age»recreateSpecialObjectsArray

in the Proxy»cannotInterpret: method a handler class which

has a class side method handleInterception:. For example:

Proxy >> cannotInterpret: aMessage

| interception |

interception := Interception for: aMessage proxyState: tar-

get proxy: self.

^ SimpleForwarderHandler handleInterception: interception.

An alternative is to use a handler class with a singleton

or a default instance. For example:

Proxy >> cannotInterpret: aMessage

| interception |

interception := Interception for: aMessage proxyState: tar-

get proxy: self.

^ SimpleForwarderHandler uniqueInstance handleIntercep-

tion: interception.

In both cases we save the memory corresponding to the

instance variable to reference the handler plus the han-

dler instance itself. If we consider that the handler has no

instance variable, then it is 4 bytes for the instance vari-

able in the proxy and 8 bytes for the handler instance.

That gives a total of 12 bytes saved per proxy in a 32 bits

system.

Implementation complexity. This solution is easy to im-

plement: an approximation of 5 classes, with an average of

3.4 methods per class, and each method is of an average of 5

lines of code.

Ease of debugging. Ghost implementation supports spe-

cial messages that the handler must answer itself instead of

managing it as a regular interception. The handler can keep

a dictionary that maps selector of messages intercepted by

the proxy to selectors of messages to be performed by the

handler itself. This user-defined list of selectors can be used

for debugging purposes, i.e., those messages that are sent by

the debugger to the proxy are answered by the handler and

they are not managed as a regular interception. This signifi-

cantly ease the debugging of proxies. For example, the han-

dler’s dictionary of special messages for debugging can be

defined as following:

SimpleForwarderHandler >> debuggingMessagesToHandle

| dict |

dict := Dictionary new.

dict at: #basicInspect put:#handleBasicInspect:.

dict at: #inspect put:#handleInspect:.

dict at: #inspectorClass put:#handleInspectorClass:.

dict at: #printStringLimitedTo: put: #handlePrintStringLimitedTo:.

dict at: #printString put: #handlePrintString:.

^ dict

The keys of the dictionary are selectors of messages re-

ceived by the proxy and the values are selectors of messages

that the handler must send to itself. All the selectors of mes-

sages to be sent to the handler (i.e., the dictionary values)

12 2011/8/14

have a parameter which is an instance of Interception, which

contains the receiver, the message, the proxy and the target.

Therefore, all those methods have access to all the informa-

tion they need.

Moreover, these special messages are “pluggable” i.e.,

they can be easily enabled e.g., for debugging, and disabled

for production.

Constraints. The solution is flexible since target objects

can inherit from any class and they are free to implement or

not implement all the methods they want. There is not any

kind of restriction imposed by Ghost. In addition, the user

can easily extent or change the purpose of the proxy adapting

it to his own needs: he just needs to subclass a handler and

implement the necessary methods like handleInterception:.

Uniformity. This implementation is uniform since proxies

can be used for regular objects, as classes and as methods.

Moreover they all provide the same API and can be used

polymorphically. Nevertheless, there is still non-uniformity

regarding some other special classes and objects. Most of

them are those that are present in what is called the spe-

cial objects array (check method recreateSpecialObjectsArray)

in Pharo Smalltalk. Such array contain the list of special ob-

jects that are known by the VM. Examples are the objects

nil, true, false, etc. It is not possible to do a correct object re-

placement of those objects by proxies. The same happens

with immediate objects, i.e., objects that do not have object

header and are directly encoded in the memory address, like

SmallInteger.

The special object array contains not only regular objects

but also classes. Those classes are known and used by the

VM so it may impose certain shape, format or responsibili-

ties in their instances. For example, one of those classes in

Process. Once again, it is not possible to correctly replace

a Process instance by a proxy. The same limitation exists if

we want to create a proxy not for instances of those special

classes but for those classes.

The mentioned limitations occur only when object re-

placement is desired. Otherwise, there is no problem and

proxies can be created for those objects. In addition, we be-

lieve that creating proxies for methods and classes is useful

in several scenarios as we see in next section. The rest of the

mentioned limitations is not a common need. Hence, those

restrictions are not a real problem for Ghost users.

Portability. This is the bigger disadvantage of this ap-

proach. It requires the hook of setting nil to a method dic-

tionary and the VM sending the message cannotInterpret:.

In addition, it also requires object replacement (become:

primitive) and to be able to change the class of an object

(adoptInstance: primitive). However, without these reflective

facilities we cannot easily implement all the required fea-

tures of a good proxy library. In the best case, we can get

everything but with substantial development effort such as

modifying the VM or compiler, or even creating them from

scratch. Smalltalk provides all those features by default.

7. Related Work

7.1 Proxies in dynamic languages

Objective-C provides an out-of-the-box Proxy implementa-

tion called NSProxy [21]. This solution consists of an ab-

stract class NSProxy that implements the minimum number

of methods to be a root class. Indeed, this class is not a sub-

class of NSObject (the Objective-C root class in the hierar-

chy chain) but a separate root class (like subclassing from

nil in Smalltalk). The intention is to reduce method conflicts

between the proxified object and the proxy. Subclasses of

NSProxy can be used to implement distributed messaging, fu-

ture objects or other proxies usage. Typically, a message to

a proxy is forwarded to a profixied object which can be an

instance variable in a NSProxy subclass.

Since Objective-C is a dynamic language, it needs to pro-

vide a mechanism like the Smalltalk doesNotUnderstand: for

the cases where an object receives a message that cannot un-

derstand. When a message is not understood, the Objective-

C runtime will send methodSignatureForSelector: to see what

kind of argument and return types are present. If a method

signature is returned, the runtime creates a NSInvocation ob-

ject describing the message being sent and then sends for-

wardInvocation: to the object. If no method signature is found,

the runtime sends doesNotRecognizeSelector:.

NSProxy subclasses must override the forwardInvocation:

and methodSignatureForSelector: methods to handle messages

that they do not implement themselves. A subclass’s imple-

mentation of forwardInvocation: should do whatever is needed

to process the invocation such as forwarding the invocation

over the network or loading the real object and passing the

invocation. methodSignatureForSelector: is required to provide

argument type information for a given message. A subclass’

implementation should be able to determine the argument

types (note that ObjectiveC is not so dynamic from this re-

gard) for the messages it needs to forward and should con-

struct a NSMethodSignature object accordingly.

To sum up, the developer needs to subclass NSProxy and

implement the forwardInvocation: to handle messages that are

not understood by itself.

One of the drawbacks of this solution is that the developer

does not have control over the methods that are implemented

in NSProxy. For example, such class implements the methods

isEqual:, hash, class, etc. This is a problem because those

messages will be understood by the proxy instead of being

forwarded to the wrapped object producing different paths in

the code execution. This solution is similar to the common

solution in Smalltalk with doesNotUnderstand:. A possible,

yet tedious, solution may be to overwrite such methods in

the NSProxy subclass so that they delegate to the wrapped

object.

In Ruby, there is a proxy implementation which is called

Delegator. This is just a class included with Ruby stan-

dard library but it can be easily modified or implemented

from scratch. Similar to Objective-C and Smalltalk (in-

deed, similar to most dynamic languages), Ruby provides

a mechanism to handle the situation when an object receives

13 2011/8/14

a message that cannot understand. This method is called

method_missing(aSelector, *args). Moreover, since Ruby 1.9

Object is not the root of the hierarchy chain and Object is

a subclass of a new minimal class called BasicObject which

understands a few methods and is similar to ProtoObject in

Smalltalk.

The idea of Ruby proxies are similar to the Smalltalk

solution using doesNotUnderstand: and to NSProxy: have a

minimal object (subclass from BasicObject) and implement

method_missing(aSelector, *args) to intercept messages. In

Python, an analogous implementation can be done by over-

writing the __getattr__ method in a proxy. Such method is

called when an attribute lookup has not found the attribute

in the usual places.

Arnaud et al. [1] took a much deeper approach: internally,

an object X does not refer directly to another object Y, but

instead X has a reference to a special Handler object that refers

to Y. The handler object is fully invisible for the developer.

The idea is that different references to an object can use

different handlers. This can be used for several things, like

defining read-only references to an object. But the solution

is generic so for example a handler could be used as a proxy.

For example, a simple handler could be implemented so that

it does something in particular with the message interception

e.g., logging, and then forward it to the target object.

7.2 Proxies in static languages

Java, being a statically typed language, supports quite lim-

ited proxies called Dynamic Proxy Classes [14]. It relies on

the Proxy class from the java.lang.reflect package. “Proxy

provides static methods for creating dynamic proxy classes

and instances, and it is also the superclass of all dynamic

proxy classes created by those methods.”[14]. The creation

of a dynamic proxy class can only be done by providing a list

of java interfaces that should be implemented by the gener-

ated class. All messages corresponding to declarations in the

provided interfaces will be intercepted by a proxy instance

of the generated class and forwarded to a handler object.

“Each proxy instance has an associated invocation handler

object, which implements the interface InvocationHandler. A

method invocation on a proxy instance through one of its

proxy interfaces will be dispatched to the invoke method

of the instance’s invocation handler, passing the proxy in-

stance, a java.lang.reflect.Method object identifying the method

that was invoked, and an array of type Object containing the

arguments. The invocation handler processes the encoded

method invocation as appropriate and the result that it re-

turns will be returned as the result of the method invocation

on the proxy instance. ” [14].

Java proxies have the following limitations:

• You cannot create a proxy for instances of a class which

methods aren’t all declared in interfaces. This means

that, if you want to create a proxy for a domain class,

you are forced to create an interface for it. Eugster [11]

proposed a solution which provides proxies for classes.

There is also a third-party framework based on bytecode

manipulation called CGLib [9] which provides proxies

for classes.

• Only the methods defined in the interface will be inter-

cepted which is a big limitation.

• Java interfaces do not support private methods. Hence

since Java proxies require interfaces, private methods

cannot be intercepted either. Depending of the proxy

usage this can be a problem.

• Proxies are subclass from Object, forcing them to under-

stand several messages. When the messages hashCode,

equals or toString (declared in Object) are sent to a proxy

instance they are encoded and dispatched to the invoca-

tion handler’s invoke method, i.e., they are intercepted.

However, the same does not happen with the rest of the

public methods, e.g.,getClass. So a proxy answers its own

class instead of the target’s one. Therefore, the proxy is

not transparent and it is not fully stratified.

Microsoft’s .NET platform [26] proposes a closely related

concept of Java dynamic proxies with nearly the same limi-

tations as in Java. There are others third-party libraries like

Castle DynamicProxy [8] or LinFu [18]. DynamicProxy dif-

fers from the proxy implementation built into .NET which

requires the proxified class to extend MarshalByRefObject. Ex-

tending MashalByRefObject to proxy an object can be too in-

trusive because it does not allow the class to extend another

class and it does not allow transparent proxying of classes. In

LinFu, every generated proxy, dynamically overrides all of

its parent’s virtual methods. Each one of its respective over-

ridden method implementations delegates each method call

to the attached interceptor object. However, non of them can

intercept non-virtual methods.

7.3 Comparison

Statically typed languages, such as Java or .NET, support

quite limited proxies [2]. In Java the problem is that types are

bound to classes and in addition the lookup is done statically

i.e., at compile-time. There is also the replacement issue and

transparency. Another problem in Java is that one cannot

build a proxy with fields storing any specific data. Therefore,

one has to put everything in the handler, hence no handler

sharing is possible ending in a bigger memory footprint.

Proxies are far more powerful, flexible, transparent and

easy to implement in dynamic languages than static ones.

In dynamic languages, just two features are enough to

implement a naive Proxy solution: 1) a mechanism to handle

messages that are not understood by the receiver object and

2) a minimal object that understands a few or no messages

so that the rest are managed by the mentioned mechanism.

Objective-C NSProxy, Ruby Decorator, etc, all work that

way. Nevertheless, non of them solves all the problems men-

tioned in this paper:

Memory footprint. None of the solutions take special care

of the memory usage of proxies. This is a real limitation

when proxies are being used, e.g., to save memory.

14 2011/8/14

Object replacement. Most proxy solutions can create a

proxy for a particular object X. The user can then use

that proxy as the original object. The problem is that

there may be other objects in the system referencing to X.

Without object replacement, those references will still be

pointing to X instead of pointing to the proxy. Depending

on the proxies usage, this can be a drawback.

Proxies for classes and methods All the investigated so-

lutions create proxies for specific objects but none of

them are able to create proxies for class objects or com-

piled methods.

8. Conclusion

In this paper, we described the Proxy pattern, its differ-

ent usages and common problems while trying to imple-

ment them. We introduced Ghost, a generic, light-weight

and stratified Proxy model and its implementation on top of

Pharo Smalltalk.

Our solution provides uniform proxies not only for reg-

ular instances, but also for classes and methods. In addi-

tion, Ghost proxies can have a really small memory foot-

print. Proxies are powerful, easy to use and extend and its

overhead is low.

Ghost was easy to implement on Pharo Smalltalk because

the language and the VM provide unique reflective facilities

and hooks. Nevertheless, we believe that such specific fea-

tures, provided by Smalltalk and its VM, can also be ported

to other dynamic programming language.

Acknowledgements

This work is supported by Ministry of Higher Education and

Research, Nord-Pas de Calais Regional Council and FEDER

through the CPER 2007-2013.

References

[1] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel,

and M. Suen. Read-only execution for dynamic languages. In

TOOLS-Europe’10, June 2010.

[2] T. Barrett. Dynamic proxies in Java and .NET. Dr. Dobb’s

Journal of Software Tools, 28(7):18, 20, 22, 24, 26, July 2003.

[3] J. K. Bennett. The design and implementation of distributed

Smalltalk. In Proceedings OOPSLA ’87, volume 22, pp 318–

330, Dec. 1987.

[4] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,

and M. Denker. Pharo by Example. Square Bracket Asso-

ciates, 2009.

[5] G. Bracha and D. Ungar. Mirrors: design principles for meta-

level facilities of object-oriented programming languages. In

OOPSLA’04, pp 331–344, 2004. ACM Press.

[6] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers

to the rescue. In ECOOP’98, LNCS 1445, pp 396–417.

Springer-Verlag, 1998.

[7] P. Butterworth, A. Otis, and J. Stein. The GemStone object

database management system. Commun. ACM, 34(10):64–77,

1991.

[8] Castle dynamicproxy library. http://www.castleproject.org/

dynamicproxy/index.html.

[9] cglib code generation library. http://cglib.sourceforge.net.

[10] S. Ducasse. Evaluating message passing control techniques in

Smalltalk. Journal of Object-Oriented Programming (JOOP),

12(6):39–44, June 1999.

[11] P. Eugster. Uniform proxies for java. In OOPSLA’06, pp 139–

152, 2006.

[12] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson. Design

patterns: Abstraction and reuse of object-oriented design. In

Proceedings ECOOP ’93, LNCS 707, pp 406–431, 1993.

[13] Y. Hassoun, R. Johnson, and S. Counsell. Applications of dy-

namic proxies in distributed environments. Software Practice

and Experience, 35(1):75–99, Jan. 2005.

[14] Oracle. java dynamic proxies. the java platform 1.5 api specifi-

cation. hhttp://download.oracle.com/javase/1.5.0/docs/api/java/lang/

reflect/Proxy.html.

[15] G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, 1991.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming.

In Proceedings ECOOP ’97, LNCS 1241, pp 220–242, 1997.

[17] R. Koster and T. Kramp. Loadable smart proxies and native-

code shipping for CORBA. In USM, LNCS 1890 , pp 202–

213, 2000.

[18] Linfu proxies framework. http://www.codeproject.com/KB/cs/

LinFuPart1.aspx.

[19] P. Lipton. Java proxies for database objects. http://www.drdobbs.

com/windows/184410934, 1999.

[20] P. L. McCullough. Transparent forwarding: First steps. In

Proceedings OOPSLA ’87, volume 22, pp 331–341, Dec.

1987.

[21] Apple. developer library documentation. http:

//developer.apple.com/library/ios/#documentation/cocoa/reference/

foundation/Classes/NSProxy_Class/Reference/Reference.html.

[22] G. A. Pascoe. Encapsulators: A new software paradigm in

Smalltalk-80. In Proceedings OOPSLA ’86 , volume 21, pp

341–346, Nov. 1986.

[23] P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies

for java futures. In OOPSLA ’04, pp 206–223, 2004.

[24] N. Santos, P. Marques, and L. Silva. A framework for smart

proxies and interceptors in RMI, 2002.

[25] M. Shapiro. Structure and encapsulation in distributed sys-

tems: The proxy principle. In ICDCS’86, pp 198–205, 1986.

IEEE Computer Society.

[26] T. Thai and H. Q. Lam. .NET framework essentials / T. thai,

H.Q. lam., 2001.

[27] T. Van Cutsem and M. S. Miller. Proxies: design principles for

robust object-oriented intercession apis. Dynamic Language

Symposium, 45:59–72, 2010.

[28] N. Wang, K. Parameswaran, D. Schmidt, and O. Othman.

The design and performance of Meta-Programming mecha-

nisms for object request broker middleware. In COOTS’01

(USENIX), pp 103–118, 2001.

[29] I. Welch and R. Stroud. Dalang - A reflective extension for

java, OOPSLA99 Workshop on Reflection, 1999.

15 2011/8/14

http://www.castleproject.org/dynamicproxy/index.html
http://www.castleproject.org/dynamicproxy/index.html
http://cglib.sourceforge.net
hhttp://download.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Proxy.html
hhttp://download.oracle.com/javase/1.5.0/docs/api/java/lang/reflect/Proxy.html
http://www.codeproject.com/KB/cs/LinFuPart1.aspx
http://www.codeproject.com/KB/cs/LinFuPart1.aspx
http://www.drdobbs.com/windows/184410934
http://www.drdobbs.com/windows/184410934
http://developer.apple.com/library/ios/#documentation/cocoa/reference/foundation/Classes/NSProxy_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/cocoa/reference/foundation/Classes/NSProxy_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#documentation/cocoa/reference/foundation/Classes/NSProxy_Class/Reference/Reference.html

	Introduction
	Vocabulary and Proxy Evaluation Criteria
	Vocabulary and Roles
	Proxies Implementation Criteria

	Common Proxy Implementations
	Typical Proxy Implementation
	Evaluation

	The Ghost Model
	Proxies
	Handlers
	Discussions

	Smalltalk Support for Proxies
	Pharo Reflective Model and VM Overview
	Hooks and Features Provided by Pharo Smalltalk

	Ghost Implementation
	Kernel
	Proxies for Methods
	Proxies for Classes
	Criteria Evaluation

	Related Work
	Proxies in dynamic languages
	Proxies in static languages
	Comparison

	Conclusion

