
IBM Informix
Version 11.50

IBM Informix Guide to SQL: Syntax

SC27-3611-01

���

IBM Informix
Version 11.50

IBM Informix Guide to SQL: Syntax

SC27-3611-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page D-1.

Edition

This edition replaces SC27-3611-00.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1996, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Introduction . xxi
In This Introduction . xxi
About This Publication . xxi

Types of Users . xxi
Software Dependencies . xxi
Assumptions About Your Locale . xxi
Demonstration Databases . xxii

What's New in SQL Syntax for Informix, Version 11.50 . xxii
Example code conventions . xxxii
Additional documentation . xxxiii
Compliance with industry standards . xxxiii
Syntax diagrams. xxxiii

How to read a command-line syntax diagram . xxxiv
Keywords and punctuation . xxxvi
Identifiers and names . xxxvi

How to provide documentation feedback . xxxvi

Chapter 1. Overview of SQL Syntax . 1-1
How to Enter SQL Statements . 1-1

Using Syntax Diagrams and Syntax Tables . 1-2
Using Examples . 1-2
Using Related Information . 1-3

How to Enter SQL Comments . 1-3
Examples of SQL Comments . 1-4
Non-ASCII Characters in SQL Comments . 1-5

Categories of SQL Statements . 1-5
Data Definition Language Statements . 1-6
Data Manipulation Language Statements . 1-8
Data Integrity Statements . 1-8
Cursor Manipulation Statements . 1-8
Dynamic Management Statements . 1-8
Data Access Statements . 1-9
Optimization Statements . 1-9
Routine Definition Statements . 1-9
Auxiliary Statements. 1-10
Client/Server Connection Statements . 1-10
Optical Subsystem Statements . 1-10

ANSI/ISO Compliance and Extensions . 1-10
ANSI/ISO-Compliant Statements . 1-10
ANSI/ISO-Compliant Statements with Informix Extensions. 1-10
Statements that are Extensions to the ANSI/ISO Standard 1-11

Chapter 2. SQL statements . 2-1
ALLOCATE COLLECTION statement . 2-1

Examples . 2-2
ALLOCATE DESCRIPTOR statement . 2-2

WITH MAX Clause . 2-3
ALLOCATE ROW statement . 2-4
ALTER ACCESS_METHOD statement . 2-5

Example . 2-6
ALTER FRAGMENT statement . 2-7

Restrictions on the ALTER FRAGMENT Statement . 2-9
ALTER FRAGMENT and Transaction Logging . 2-9
Determining the Number of Rows in the Fragment . 2-9
ATTACH Clause . 2-10

© Copyright IBM Corp. 1996, 2010 iii

DETACH Clause . 2-15
INIT Clause . 2-16
ADD Clause . 2-21
DROP Clause . 2-23
MODIFY Clause . 2-24
Examples of ALTER FRAGMENT ON INDEX statements 2-26

ALTER FUNCTION statement . 2-27
Keywords That Introduce Modifications . 2-28

ALTER INDEX statement . 2-28
TO CLUSTER Option . 2-29
TO NOT CLUSTER Option . 2-29

ALTER PROCEDURE statement . 2-30
ALTER ROUTINE statement . 2-31

Restrictions . 2-32
Keywords That Introduce Modifications . 2-33
Example of Altering Routine Modifiers . 2-33

ALTER SECURITY LABEL COMPONENT statement . 2-34
The ADD ARRAY Clause . 2-35
The ADD SET Clause . 2-36
The ADD TREE Clause . 2-36

ALTER SEQUENCE statement . 2-38
INCREMENT BY Option . 2-39
RESTART WITH Option . 2-39
MAXVALUE or NOMAXVALUE Option . 2-40
MINVALUE or NOMINVALUE Option . 2-40
CYCLE or NOCYCLE Option . 2-40
CACHE or NOCACHE Option . 2-40
ORDER or NOORDER Option . 2-40
Examples . 2-40

ALTER TABLE statement . 2-41
Logging TYPE Options . 2-43
Basic Table Options . 2-44
ADD Column Clause . 2-47
DEFAULT Clause . 2-49
Single-Column Constraint Format . 2-50
SECURITY POLICY Clause . 2-55
DROP Column Clause . 2-57
MODIFY Clause . 2-59
Using the MODIFY Clause. 2-60
ADD CONSTRAINT Clause . 2-66
Multiple-Column Constraint Format . 2-67
DROP CONSTRAINT Clause . 2-69
MODIFY EXTENT SIZE . 2-69
MODIFY NEXT SIZE Clause . 2-70
LOCK MODE Clause . 2-71
ADD TYPE Clause . 2-72
Options Valid on Typed Tables . 2-73

BEGIN WORK statement . 2-74
BEGIN WORK and ANSI-Compliant Databases. 2-75
BEGIN WORK WITHOUT REPLICATION (ESQL/C) . 2-75
Example of BEGIN WORK . 2-75

CLOSE statement . 2-76
Closing a Select or Function Cursor. 2-77
Closing an Insert Cursor . 2-77
Closing a Collection Cursor . 2-78
Using End of Transaction to Close a Cursor . 2-78
Examples . 2-79

CLOSE DATABASE statement . 2-80
COMMIT WORK statement . 2-81

Issuing COMMIT WORK in a Database That Is Not ANSI Compliant 2-82
Issuing COMMIT WORK in an ANSI-Compliant Database 2-82

iv IBM Informix Guide to SQL: Syntax

CONNECT statement . 2-83
Privileges for Executing the CONNECT Statement . 2-84
Connection Context . 2-84
Database Environment . 2-84
Declaring a Connection Name . 2-86
USER Validation Clause . 2-86
The DEFAULT Connection Specification . 2-88
WITH CONCURRENT TRANSACTION Option . 2-89

CREATE ACCESS_METHOD statement . 2-90
CREATE AGGREGATE statement . 2-92

Extending the Functionality of Aggregates . 2-93
Parallel Execution. 2-94

CREATE CAST statement . 2-95
Source and Target Data Types . 2-95
Explicit and Implicit Casts . 2-96
WITH Clause . 2-97

CREATE DATABASE statement . 2-97
Logging Options . 2-99
Specifying Buffered Logging . 2-99
ANSI-Compliant Databases . 2-99

CREATE DISTINCT TYPE statement . 2-100
Privileges on Distinct Types . 2-101
Support Functions and Casts . 2-102
Manipulating Distinct Types . 2-102

CREATE EXTERNAL TABLE Statement . 2-103
Column Definition . 2-104
DATAFILES Clause . 2-105
Table options . 2-107
Reject Files. 2-111
External Table Examples . 2-112
Restrictions on External Tables . 2-122

CREATE FUNCTION statement . 2-125
Privileges Necessary for Using CREATE FUNCTION 2-127
DBA Keyword and Privileges on the Created Function 2-127
The REFERENCING and FOR Clauses . 2-128
Overloading the Name of a Function . 2-130
DOCUMENT Clause . 2-130
WITH LISTING IN Clause . 2-130
SPL Functions . 2-131
External Procedures . 2-131

CREATE FUNCTION FROM statement . 2-134
CREATE INDEX statement . 2-135

Index-Type Options. 2-137
UNIQUE or DISTINCT Option . 2-137
CLUSTER option . 2-138
Index-Key Specification . 2-138
Using a Column or Column List as the Index Key . 2-139
Using a Function as an Index Key . 2-139
Creating Composite Indexes . 2-140
Using the ASC and DESC Sort-Order Options . 2-141
Using an Operator Class . 2-143
USING Access-Method Clause . 2-143
FILLFACTOR Option . 2-145
Providing a Low Percentage Value. 2-145
Providing a High Percentage Value . 2-145
Storage options . 2-146
IN Clause . 2-146
FRAGMENT BY Clause for Indexes . 2-148
Restrictions on fragmentation expressions . 2-148
Fragmentation of System Indexes . 2-149
Fragmentation of Unique Indexes . 2-149

Contents v

||
||
||
||
||
||
||

Fragmentation of Indexes on Temporary Tables . 2-149
Index Modes . 2-149
Specifying Modes for Unique Indexes . 2-150
Specifying Modes for Duplicate Indexes . 2-151
How the Database Server Treats Disabled Indexes . 2-151
The ONLINE keyword of CREATE INDEX . 2-151
Automatic Calculation of Distribution Statistics . 2-152

CREATE OPAQUE TYPE statement . 2-154
Declaring a Name for an Opaque Type . 2-155
INTERNALLENGTH Modifier . 2-155
Opaque-Type Modifier. 2-155
Defining an Opaque Type . 2-156

CREATE OPCLASS statement . 2-158
STRATEGIES Clause . 2-160
Strategy Specification . 2-160
Indexes on Side-Effect Data . 2-161
SUPPORT Clause . 2-161
Default Operator Classes . 2-161

CREATE PROCEDURE statement . 2-162
Using CREATE PROCEDURE Versus CREATE FUNCTION 2-164
Relationship Between Routines, Functions, and Procedures 2-164
Privileges Necessary for Using CREATE PROCEDURE 2-164
DBA Keyword and Privileges on the Procedure . 2-165
The REFERENCING and FOR Clauses . 2-165
Procedure Names in Informix . 2-167
DOCUMENT Clause . 2-168
Using the WITH LISTING IN Option . 2-168
SPL Procedures . 2-169
External Procedures . 2-169

CREATE PROCEDURE FROM statement . 2-171
Default Directory That Holds the File. 2-172

CREATE ROLE statement. 2-173
CREATE ROUTINE FROM statement. 2-175

Examples . 2-176
CREATE ROW TYPE statement. 2-176

Privileges on Named Row Data Types . 2-177
Inheritance and Named ROW Types . 2-178
Creating a Subtype . 2-178
Type Hierarchies. 2-178
Procedure for Creating a Subtype . 2-179
Field Definition . 2-179
Restrictions on Serial and Simple-Large-Object Data Types. 2-180

CREATE SCHEMA statement . 2-180
Creating Database Objects Within CREATE SCHEMA 2-182

CREATE SECURITY LABEL statement . 2-183
Components and Elements of a Security Label. 2-183

CREATE SECURITY LABEL COMPONENT statement . 2-184
Types and Elements of Security Label Components . 2-186
ARRAY Components . 2-187
SET Components . 2-187
TREE Components . 2-188

CREATE SECURITY POLICY statement . 2-189
Security Label Components of a Security Policy . 2-190
Rules Associated with a Security Policy . 2-190

CREATE SEQUENCE statement . 2-191
INCREMENT BY Option . 2-193
START WITH Option . 2-193
MAXVALUE or NOMAXVALUE Option. 2-193
MINVALUE or NOMINVALUE Option . 2-194
CYCLE or NOCYCLE Option . 2-194
CACHE or NOCACHE Option . 2-194

vi IBM Informix Guide to SQL: Syntax

ORDER or NOORDER Option . 2-194
Examples . 2-194

CREATE SYNONYM statement. 2-195
Synonyms for objects outside the current database . 2-196
PUBLIC and PRIVATE Synonyms . 2-197
Synonyms with the Same Name . 2-197
Chaining Synonyms . 2-197

CREATE TABLE statement . 2-198
Logging Options. 2-201
Column Definition . 2-201
DEFAULT Clause . 2-203
Single-Column Constraint Format . 2-205
REFERENCES Clause . 2-208
CHECK Clause . 2-211
Constraint Definition . 2-212
Multiple-Column Constraint Format . 2-214
Options clauses . 2-217
Storage Options . 2-221
FRAGMENT BY clause . 2-222
Expression Fragment Clause . 2-225
PUT Clause . 2-225
EXTENT SIZE Options . 2-227
USING Access-Method Clause . 2-228
LOCK MODE Options. 2-229
OF TYPE Clause. 2-230

CREATE TEMP TABLE statement . 2-234
Using the TEMP Option . 2-235
Naming a Temporary Table . 2-235
Using the WITH NO LOG Option . 2-235
Column Definition . 2-235
Single-Column Constraint Format . 2-236
Multiple-Column Constraint Format . 2-237
Temporary Table Options . 2-238
Storage Options . 2-238
Where Temporary Tables are Stored . 2-239
Differences between temporary and permanent tables 2-240
Duration of temporary tables . 2-240

CREATE TRIGGER statement . 2-241
Defining a Trigger Event and Action . 2-243
Restrictions on Triggers . 2-245
Trigger Modes . 2-245
Trigger Inheritance in a Table Hierarchy . 2-246
Triggers and SPL Routines . 2-246
Trigger Events . 2-247
INSERT Events and DELETE Events . 2-248
UPDATE Event . 2-249
Defining Multiple Update Triggers . 2-250
SELECT Event . 2-250
Circumstances When a Select Trigger Is Activated . 2-251
Stand-alone SELECT Statements . 2-252
SELECT Statements Within UDRs in the Select List . 2-252
UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION Call 2-252
Subqueries in the Select List . 2-252
Subqueries in the FROM Clause of SELECT . 2-253
Subqueries in the WHERE Clause of DELETE or UPDATE 2-253
Select Triggers in Table Hierarchies . 2-253
Circumstances When a Select Trigger Is Not Activated 2-254
Action Clause . 2-254
Guaranteeing Row-Order Independence . 2-256
REFERENCING Clauses . 2-257
Correlated Table Action . 2-260

Contents vii

Triggered Action. 2-260
Using Correlation Names in Triggered Actions . 2-263
Re-Entrancy of Triggers . 2-265
Rules for SPL Routines . 2-268
Privileges to Execute Trigger Actions . 2-269
Cascading Triggers . 2-270
Tables in Remote Databases . 2-272
Logging and Recovery. 2-273
INSTEAD OF Triggers on Views . 2-274

CREATE VIEW statement. 2-277
Typed Views . 2-279
Subset of SELECT Statements Valid in View Definitions 2-279
Union Views . 2-280
Naming View Columns . 2-280
Using a View in the SELECT Statement . 2-281
WITH CHECK OPTION Keywords . 2-281
Updating Through Views . 2-282

CREATE XADATASOURCE statement . 2-282
CREATE XADATASOURCE TYPE statement . 2-284
DATABASE statement . 2-285

SQLCA.SQLWARN Settings Immediately after DATABASE Executes (ESQL/C). 2-286
EXCLUSIVE keyword . 2-286

DEALLOCATE COLLECTION statement . 2-287
DEALLOCATE DESCRIPTOR statement . 2-288
DEALLOCATE ROW statement. 2-289
DECLARE statement . 2-290

Overview of Cursor Types . 2-292
Select Cursor or Function Cursor . 2-293
Cursor Characteristics . 2-298
Associating a Cursor with a Prepared Statement . 2-301
Using Cursors with Transactions . 2-304
Declaring a Dynamic Cursor in an SPL Routine . 2-305
Syntax . 2-305
Usage . 2-306

DELETE statement . 2-307
Using the ONLY Keyword . 2-309
Considerations When Tables Have Cascading Deletes 2-309
Using the WHERE Keyword to Specify a Condition . 2-310
Subqueries in the WHERE Clause of DELETE . 2-310
Using the WHERE CURRENT OF Keywords (ESQL/C, SPL) 2-311
Deleting Rows That Contain Opaque Data Types . 2-312
Deleting Rows That Contain Collection Data Types . 2-312
Data Types in Distributed DELETE Operations . 2-312
SQLSTATE Values in an ANSI-Compliant Database . 2-313
SQLSTATE Values in a Database That Is Not ANSI-Compliant 2-313

DESCRIBE statement . 2-314
The OUTPUT Keyword . 2-315
Describing the Statement Type . 2-315
Checking for the Existence of a WHERE Clause . 2-315
Describing a Statement with Runtime Parameters. 2-315
Using the SQL DESCRIPTOR Keywords . 2-316
Using the INTO sqlda Pointer Clause. 2-317
Describing a Collection Variable . 2-317

DESCRIBE INPUT statement . 2-318
Describing the Statement Type . 2-319
Checking for Existence of a WHERE Clause . 2-320
Describing a Statement with Dynamic Runtime Parameters 2-320
Using the SQL DESCRIPTOR Keywords . 2-320
Using the INTO sqlda Pointer Clause. 2-321
Describing a Collection Variable . 2-322

DISCONNECT statement . 2-323

viii IBM Informix Guide to SQL: Syntax

DEFAULT Option . 2-323
Specifying the CURRENT Keyword . 2-324
When a Transaction is Active . 2-324
Disconnecting in a Thread-Safe Environment . 2-324
Specifying the ALL Option . 2-325

DROP ACCESS_METHOD statement . 2-325
Examples . 2-325

DROP AGGREGATE statement . 2-326
DROP CAST statement . 2-327

Examples . 2-328
DROP DATABASE statement . 2-328
DROP FUNCTION statement . 2-329

Dropping External Functions . 2-331
Examples . 2-331

DROP INDEX statement . 2-332
The ONLINE keyword of DROP INDEX. 2-333
Examples . 2-334

DROP OPCLASS statement . 2-334
DROP PROCEDURE statement . 2-335

Dropping an External Procedure . 2-337
DROP ROLE statement . 2-338
DROP ROUTINE statement . 2-339

Restrictions . 2-339
Dropping an External Routine . 2-340

DROP ROW TYPE statement . 2-341
The RESTRICT Keyword . 2-341

DROP SECURITY statement . 2-342
Restrictions on Dropping Security Objects . 2-343
Examples of Dropping Security Objects . 2-344

DROP SEQUENCE statement . 2-344
Examples . 2-345

DROP SYNONYM statement . 2-346
DROP TABLE statement . 2-347

Effects of the DROP TABLE Statement . 2-347
Specifying CASCADE Mode . 2-347
Specifying RESTRICT Mode . 2-348
Dropping a Table That Contains Opaque Data Types 2-348
Tables That Cannot Be Dropped . 2-348

DROP TRIGGER statement . 2-349
DROP TYPE statement . 2-350
DROP VIEW statement . 2-351
DROP XADATASOURCE statement . 2-352
DROP XADATASOURCE TYPE statement . 2-352
EXECUTE statement . 2-353

Scope of Statement Identifiers . 2-354
Restrictions with the INTO Clause. 2-356
Replacing Placeholders with Parameters . 2-356
Saving Values In Host or Program Variables . 2-356
Saving Values in a System-Descriptor Area . 2-356
Saving Values in an sqlda Structure (ESQL/C). 2-357
The sqlca Record and EXECUTE . 2-358
Returned SQLCODE Values with EXECUTE . 2-358
Supplying Parameters Through Host or Program Variables 2-359
Supplying Parameters Through a System Descriptor . 2-360
Supplying Parameters Through an sqlda Structure (ESQL/C). 2-360

EXECUTE FUNCTION statement . 2-361
Negator Functions and Their Companions . 2-362
How the EXECUTE FUNCTION Statement Works . 2-362
Data Variables . 2-363
INTO Clause with Indicator Variables (ESQL/C) . 2-363
INTO Clause with Cursors . 2-364

Contents ix

Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO 2-364
Dynamic Routine-Name Specification of SPL Functions 2-365

EXECUTE IMMEDIATE statement . 2-365
EXECUTE IMMEDIATE and Restricted Statements . 2-366
Restrictions on Valid Statements . 2-367
Handling Exceptions from EXECUTE IMMEDIATE Statements 2-368
Examples of the EXECUTE IMMEDIATE Statement . 2-368

EXECUTE PROCEDURE statement . 2-369
Causes of Errors . 2-370
Using the INTO Clause . 2-370
The WITH TRIGGER REFERENCES Keywords . 2-370
Dynamic Routine-Name Specification of SPL Procedures 2-372

FETCH statement . 2-372
FETCH with a Sequential Cursor . 2-374
FETCH with a Scroll Cursor . 2-374
How the Database Server Implements Scroll Cursors 2-375
Specifying Where Values Go in Memory. 2-375
Using the INTO Clause . 2-375
Using Indicator Variables . 2-376
When the INTO Clause of FETCH is Required. 2-376
Using a System-Descriptor Area (X/Open) . 2-377
Using sqlda Structures. 2-378
Fetching a Row for Update . 2-378
Fetching from a Collection Cursor . 2-379
Checking the Result of FETCH . 2-380

FLUSH statement . 2-382
Error Checking FLUSH Statements . 2-382
Examples . 2-383

FREE statement . 2-384
GET DESCRIPTOR statement . 2-385

Using the COUNT Keyword. 2-387
Using the VALUE Clause . 2-387
Using LENGTH or ILENGTH . 2-388
Describing an Opaque-Type Column . 2-389
Describing a Distinct-Type Column . 2-389
Examples . 2-390

GET DIAGNOSTICS statement . 2-391
Using the SQLSTATE Error Status Code . 2-391
Statement Clause . 2-395
EXCEPTION Clause . 2-396
The Contents of the SERVER_NAME Field . 2-398
The Contents of the CONNECTION_NAME Field . 2-399
Using GET DIAGNOSTICS for Error Checking . 2-400

GRANT statement . 2-401
Database-Level Privileges. 2-403
Table-Level Privileges . 2-405
Table Reference . 2-407
Type-Level Privileges . 2-409
Routine-Level Privileges . 2-410
Language-Level Privileges . 2-412
Sequence-Level Privileges . 2-412
Role Name . 2-414
WITH GRANT OPTION Keywords . 2-417
AS grantor Clause . 2-418
Security Administration Options . 2-419

GRANT FRAGMENT statement . 2-428
Fragment-Level Privileges . 2-429
Granting Privileges to One User or a List of Users . 2-432
Granting One Privilege or a List of Privileges . 2-432
WITH GRANT OPTION Clause . 2-432
AS grantor Clause . 2-432

x IBM Informix Guide to SQL: Syntax

INFO statement . 2-433
Examples . 2-435

INSERT statement . 2-435
Specifying Columns . 2-437
Using the AT Clause (ESQL/C, SPL) . 2-437
Inserting Rows Through a View . 2-437
Inserting Rows with a Cursor . 2-438
Inserting Rows into a Database Without Transactions 2-438
Inserting Rows into a Database with Transactions . 2-439
VALUES Clause . 2-439
Execute Routine Clause . 2-446

LOAD statement . 2-448
LOAD FROM File . 2-448
Loading Simple Large Objects . 2-451
Loading Smart Large Objects . 2-451
Loading Complex Data Types . 2-452
Loading Opaque-Type Columns . 2-452
DELIMITER Clause. 2-453
INSERT INTO Clause . 2-453

LOCK TABLE statement . 2-454
Concurrent Access to Tables with Shared Locks . 2-455
Concurrent Access to Tables with Exclusive Locks . 2-455
Databases with transaction logging . 2-456
Databases without transaction logging . 2-457
Locking Granularity . 2-457

MERGE statement . 2-458
Restrictions on Source and Target Tables. 2-463
Handling Duplicate Rows . 2-465
Examples of MERGE Statements . 2-466

OPEN statement. 2-469
Opening a Select Cursor . 2-470
Opening an Update Cursor Inside a Transaction . 2-470
Opening a Function Cursor . 2-470
Reopening a Select or Function Cursor . 2-471
Errors Associated with Select and Function Cursors . 2-471
Opening an Insert Cursor (ESQL/C) . 2-472
Opening a Collection Cursor (ESQL/C) . 2-472
USING Clause . 2-472
Specifying a System Descriptor Area (ESQL/C) . 2-473
Specifying a Pointer to an sqlda Structure (ESQL/C) 2-474
Using the WITH REOPTIMIZATION Option (ESQL/C) 2-474
Relationship Between OPEN and FREE . 2-475
DDL Operations on Tables Referenced by Cursors . 2-475

OUTPUT statement. 2-476
Sending Query Results to a File . 2-476
Displaying Query Results Without Column Headings 2-477
Sending Query Results to Another Program . 2-477

PREPARE statement . 2-477
Restrictions . 2-478
Declaring a Statement Identifier . 2-478
Releasing a Statement Identifier . 2-479
Statement Text . 2-479
Preparing and Executing User-Defined Routines . 2-480
Restricted Statements in Single-Statement Prepares . 2-481
Preparing Statements When Parameters Are Known . 2-482
Preparing Statements That Receive Parameters . 2-482
Preparing Statements with SQL Identifiers . 2-483
Preparing Multiple SQL Statements . 2-485
Using Prepared Statements for Efficiency . 2-486

PUT statement . 2-487
Supplying Inserted Values . 2-488

Contents xi

||

Using the USING Clause . 2-490
Inserting into a Collection Cursor . 2-491
Writing Buffered Rows . 2-492
Error Checking . 2-493

RELEASE SAVEPOINT statement . 2-494
RENAME COLUMN statement . 2-495

How Views and Check Constraints Are Affected . 2-496
How Triggers Are Affected . 2-496
Example of RENAME COLUMN . 2-496

RENAME DATABASE statement . 2-496
RENAME INDEX statement . 2-497
RENAME SECURITY statement . 2-498
RENAME SEQUENCE statement . 2-500
RENAME TABLE statement . 2-500
REVOKE statement . 2-502

Database-Level Privileges. 2-504
Table-Level Privileges . 2-506
Effect of Uncommitted Transactions . 2-509
Type-Level Privileges . 2-509
Routine-Level Privileges . 2-510
Language-Level Privileges . 2-511
Sequence-Level Privileges . 2-512
User List . 2-513
Role Name . 2-514
Revoking Privileges Granted WITH GRANT OPTION 2-515
The AS Clause . 2-516
Controlling the Scope of REVOKE with the RESTRICT Option 2-517
Security Administration Options . 2-517

REVOKE FRAGMENT statement . 2-525
Specifying Fragments . 2-526
The FROM Clause . 2-526
Fragment-Level Privileges . 2-526
The AS Clause . 2-527
Examples of the REVOKE FRAGMENT Statement . 2-527

ROLLBACK WORK statement . 2-528
WORK Keyword . 2-529
TO SAVEPOINT Clause . 2-529

SAVE EXTERNAL DIRECTIVES statement . 2-531
External optimizer directives . 2-531
Enabling or disabling external directives for a session 2-531
The directive Specification . 2-532
The ACTIVE, INACTIVE, and TEST ONLY Keywords 2-533
The query Specification . 2-533

SAVEPOINT statement . 2-534
SELECT statement . 2-536

Projection Clause . 2-539
INTO Clause . 2-549
FROM Clause . 2-551
WHERE Clause of SELECT . 2-566
Hierarchical Clause . 2-572
GROUP BY Clause . 2-584
HAVING Clause. 2-585
ORDER BY Clause . 2-586
FOR UPDATE Clause . 2-591
FOR READ ONLY Clause . 2-592
INTO Table Clauses . 2-593
UNION Operator . 2-597

SET Database Object Mode statement. 2-599
Privileges Required for Changing Database Object Modes 2-600
Object-List Format . 2-600
Table Format . 2-601

xii IBM Informix Guide to SQL: Syntax

Modes for Constraints and Unique Indexes . 2-602
Definitions of Database Object Modes . 2-603

SET AUTOFREE statement . 2-606
Globally Affecting Cursors with SET AUTOFREE. 2-606
Using the FOR Clause to Specify a Specific Cursor . 2-607
Associated and Detached Statements . 2-607
Closing Cursors Implicitly . 2-607

SET COLLATION statement . 2-608
Specifying a Collating Order with SET COLLATION 2-609
Restrictions on SET COLLATION . 2-609
Collation Performed by Database Objects . 2-609

SET CONNECTION statement . 2-610
Making a dormant connection as the current connection 2-611
Making a current connection as the dormant connection 2-612
Dormant Connections in a Single-Threaded Environment 2-612
Dormant Connections in a Thread-Safe Environment 2-612
Identifying the Connection . 2-613
DEFAULT Option . 2-613
CURRENT Keyword . 2-613
When a Transaction is Active . 2-614

SET CONSTRAINTS statement . 2-614
SET DATASKIP statement . 2-615

Circumstances When a Dbspace Cannot Be Skipped . 2-616
Examples . 2-617

SET DEBUG FILE statement . 2-617
Using the WITH APPEND Option . 2-617
Closing the Output File . 2-618
Redirecting Trace Output . 2-618
Location of the Output File . 2-618

SET DEFERRED_PREPARE statement . 2-618
Example of SET DEFERRED_PREPARE . 2-619
Using Deferred-Prepare with OPTOFC . 2-620

SET DESCRIPTOR statement . 2-620
Using the COUNT Clause . 2-621
Using the VALUE Clause . 2-622
Item Descriptor . 2-622
Modifying Values Set by the DESCRIBE Statement . 2-626

SET ENCRYPTION PASSWORD statement . 2-626
Storage Requirements for Encryption . 2-627
Specifying a Session Password and Hint . 2-628
Levels of Encryption . 2-628
Protecting Passwords . 2-629

SET ENVIRONMENT statement . 2-630
EXTDIRECTIVES Environment Option . 2-631
FORCE_DDL_EXEC Environment Option . 2-632
IFX_AUTO_REPREPARE Environment Option. 2-633
IFX_BATCHEDREAD_TABLE Environment Option . 2-634
OPTCOMPIND Environment Option . 2-634
RETAINUPDATELOCKS Environment Option. 2-635
USELASTCOMMITTED Environment Option . 2-638

SET EXPLAIN statement . 2-640
Using the AVOID_EXECUTE Option . 2-641
Using the FILE TO Option . 2-642
Default Name and Location of the Output File on UNIX 2-642
Default Name and Location of the Output File on Windows 2-643
SET EXPLAIN output . 2-643

SET INDEXES statement . 2-647
SET ISOLATION statement . 2-648

Complete-Connection Level Settings . 2-650
Informix Isolation Levels . 2-650
Effects of Isolation Levels. 2-654

Contents xiii

||

||

||

Isolation Levels for Secondary Data Replication Servers 2-655
SET LOCK MODE statement . 2-655

WAIT Clause . 2-656
SET LOG statement. 2-657
SET OPTIMIZATION statement . 2-659

HIGH and LOW Options . 2-659
FIRST_ROWS and ALL_ROWS Options . 2-659
Optimizing SPL Routines . 2-660
Examples . 2-660

SET PDQPRIORITY statement . 2-661
Allocating Database Server Resources . 2-662

SET ROLE statement . 2-662
Setting the Default Role . 2-664

SET SESSION AUTHORIZATION statement . 2-664
SET SESSION AUTHORIZATION and Transactions . 2-666

SET STATEMENT CACHE statement . 2-666
Precedence and Default Behavior . 2-667
Turning the Cache ON. 2-667
Turning the Cache OFF . 2-668
Statement Qualification . 2-668

SET TRANSACTION statement. 2-670
Comparing SET TRANSACTION with SET ISOLATION 2-670
Informix Isolation Levels . 2-671
Default Isolation Levels . 2-673
Access Modes . 2-673
Effects of Isolation Levels. 2-674

SET Transaction Mode statement . 2-674
Statement-Level Checking . 2-675
Transaction-Level Checking . 2-675
Duration of Transaction Modes . 2-675
Specifying All Constraints or a List of Constraints . 2-675
Specifying Remote Constraints . 2-676
Examples of Setting the Transaction Mode for Constraints 2-676

SET TRIGGERS statement . 2-676
START VIOLATIONS TABLE statement . 2-677

Relationship to the SET Database Object Mode statement 2-678
Effect on concurrent transactions . 2-679
Stopping the Violations and Diagnostics Tables . 2-679
USING Clause . 2-679
Using the MAX ROWS clause . 2-680
Specifying the maximum number of rows in the diagnostics table 2-680
Privileges required for starting violations or diagnostics tables 2-680
Structure of the violations table. 2-680
Examples of START VIOLATIONS TABLE Statements 2-681
Relationships Among the Target, Violations, and Diagnostics Tables 2-681
Initial Privileges on the Violations Table . 2-682
Example of Privileges on the Violations Table . 2-683
Using the Violations Table . 2-684
Example of a Violations Table . 2-685
Structure of the diagnostics table . 2-685
Initial privileges on the diagnostics table . 2-686
Using the Diagnostics Table . 2-688

STOP VIOLATIONS TABLE statement . 2-689
Example of Stopping the Violations and Diagnostics Tables 2-689
Example of Dropping the Violations and Diagnostics Tables 2-690
Privileges Required for Stopping a Violations Table . 2-690

TRUNCATE statement. 2-690
The TABLE Keyword . 2-692
The Table Specification . 2-692
The Storage Specification . 2-692
The AM_TRUNCATE Purpose Function . 2-693

xiv IBM Informix Guide to SQL: Syntax

Performance Advantages of TRUNCATE . 2-693
Restrictions . 2-694

UNLOAD statement . 2-695
UNLOAD TO File . 2-696
DELIMITER Clause. 2-699

UNLOCK TABLE statement . 2-699
UPDATE statement . 2-700

Using the ONLY Keyword . 2-702
Updating Rows Through a View . 2-702
Updating Rows in a Database Without Transactions . 2-703
Updating Rows in a Database with Transactions . 2-703
Locking Considerations . 2-703
SET Clause . 2-704

UPDATE STATISTICS statement . 2-715
Scope of UPDATE STATISTICS . 2-717
Updating Statistics for Tables . 2-717
Updating Statistics for Columns of User-Defined Types. 2-719
Using the LOW Mode Option . 2-720
Using the MEDIUM Mode Option . 2-721
Using the HIGH Mode Option . 2-722
Resolution Clause . 2-722
Routine Statistics . 2-725
Updating Statistics When You Upgrade the Database Server 2-728
Performance . 2-728

WHENEVER statement . 2-729
The Scope of WHENEVER . 2-730
SQLERROR Keyword . 2-731
ERROR Keyword . 2-731
SQLWARNING Keyword . 2-731
NOT FOUND Keywords . 2-732
CONTINUE Keyword . 2-732
STOP Keyword . 2-732
GOTO Keyword . 2-732
CALL Clause . 2-733

Chapter 3. SPL Statements . 3-1
<< Label >> . 3-1

Examples of Labels . 3-2
CALL . 3-3

Receiving Input from the Called UDR . 3-4
Receiving Input from the Called UDR . 3-4

CONTINUE . 3-5
DEFINE . 3-6

Referencing TEXT and BYTE Variables . 3-7
Redeclaration or Redefinition . 3-7
Declaring Global Variables . 3-7
Declaring Local Variables . 3-10

EXIT . 3-16
EXIT From FOREACH Statements . 3-16

FOR . 3-18
Using the TO Keyword to Define a Range . 3-19
Using an Expression List as the Range. 3-20
Mixing Range and Expression Lists in the Same FOR Statement 3-20
Specifying a Labelled FOR Loop . 3-21

FOREACH . 3-22
Using a SELECT ... INTO Statement . 3-23
Using the ORDER BY Clause of the SELECT Statement 3-24
Using Hold Cursors . 3-24
Updating or Deleting Rows Identified by Cursor Name 3-24
Using Collection Variables . 3-24
Using Select Cursors with FOREACH . 3-25

Contents xv

Calling a UDR in the FOREACH Loop . 3-26
GOTO . 3-26
IF . 3-27

ELIF Clause . 3-28
ELSE Clause . 3-28
Conditions in an IF Statement . 3-29
Subset of SPL Statements Allowed in the IF Statement List 3-29
SQL Statements Not Valid in an IF Statement . 3-30

LET . 3-31
Using a SELECT Statement in a LET Statement . 3-32
Calling a Function in a LET Statement . 3-32

LOOP . 3-33
Simple LOOP Statements . 3-34
FOR LOOP Statements . 3-35
WHILE LOOP Statements . 3-35
Labeled LOOP Statements . 3-35

ON EXCEPTION . 3-37
Placement of the ON EXCEPTION statement . 3-38
Using the IN Clause to Trap Specific Exceptions . 3-39
Receiving Error Information in the SET Clause . 3-40
Forcing Continuation of the Routine . 3-40

RAISE EXCEPTION . 3-40
Special Error Number -746. 3-41

RETURN . 3-42
WITH RESUME Keyword . 3-43

SYSTEM . 3-44
Executing the SYSTEM statement on UNIX . 3-45
Executing the SYSTEM statement on Windows . 3-46
Setting Environment Variables in SYSTEM Commands 3-46

TRACE . 3-47
TRACE ON. 3-47
TRACE OFF . 3-47
TRACE PROCEDURE . 3-47
Displaying Expressions . 3-48
Example Showing Different Forms of TRACE . 3-48
Looking at the Traced Output . 3-49

WHILE . 3-49
Example of WHILE Loops in an SPL Routine . 3-49
Labeled WHILE Loops . 3-50

Chapter 4. Data Types and Expressions . 4-1
Scope of Segment Descriptions. 4-1
Use of Segment Descriptions . 4-1
Segments in This Chapter . 4-2
Collection Subquery . 4-3

Table Expressions in the FROM Clause . 4-5
Condition. 4-5

Comparison Conditions (Boolean Expressions) . 4-6
Column Name . 4-8
Quotation Marks in Conditions . 4-8
Relational-Operator Condition . 4-9
BETWEEN Condition . 4-9
IN Condition . 4-10
IS NULL and IS NOT NULL Conditions . 4-12
Trigger-Type Boolean Operator . 4-12
LIKE and MATCHES Condition . 4-13
Stand-Alone Condition . 4-15
Condition with Subquery . 4-16
NOT Operator . 4-20
Conditions with AND or OR . 4-20

Data Type . 4-21

xvi IBM Informix Guide to SQL: Syntax

Built-In Data Types . 4-21
User-Defined Data Type . 4-32
Complex Data Type . 4-34

DATETIME Field Qualifier. 4-38
Expression . 4-40

Syntax of SQL Expressions. 4-41
Usage. 4-42
List of Expressions . 4-42
Arithmetic Operators . 4-51
Bitwise Logical Functions . 4-52
Concatenation Operator . 4-56
Cast Expressions . 4-58
Column Expressions . 4-59
Conditional Expressions . 4-65
Constant Expressions . 4-70
Constructor Expressions . 4-81
NULL Keyword . 4-84
Function Expressions . 4-86
Statement-Local Variable Expressions . 4-163
Aggregate Expressions. 4-164

INTERVAL Field Qualifier . 4-175
Literal Collection . 4-177

Element Literal Value . 4-178
Nested Quotation Marks . 4-179

Literal DATETIME . 4-180
Casting Numeric Date and Time Strings to DATE Data Types 4-181

Literal INTERVAL . 4-182
Literal Number . 4-184

Integer Literals . 4-184
Fixed-Point Decimal Literals . 4-185
Floating-Point Decimal Literals . 4-185
Literal Numbers and the MONEY Data Type . 4-185

Literal Row . 4-185
Literals of an Unnamed Row Type. 4-187
Literals of a Named Row Type . 4-187
Literals for Nested Rows . 4-188

Quoted String . 4-188
Restrictions on Specifying Characters in Quoted Strings 4-189
The DELIMIDENT Environment Variable . 4-189
Newline Characters in Quoted Strings . 4-190
Using Quotation Marks in Strings . 4-191
DATETIME and INTERVAL Values as Strings . 4-191
LIKE and MATCHES in a Condition . 4-191
Inserting Values as Quoted Strings . 4-191
Numeric Operations on Character Columns . 4-192

Relational Operator. 4-192
Using Operator Functions in Place of Relational Operators 4-194
Collating Order for U.S. English Data. 4-194
Support for ASCII Characters in Nondefault Code Sets (GLS). 4-195
Literal Numbers as Operands . 4-195

Chapter 5. Other Syntax Segments . 5-1
Arguments . 5-1

Comparing Arguments to the Parameter List . 5-2
Subset of Expressions Valid as an Argument . 5-3
Arguments to UDRs in Remote Databases . 5-3

Collection-Derived Table . 5-4
Accessing a Collection Through a Virtual Table . 5-5
Table Expressions in the FROM Clause . 5-6
Restrictions with the Collection-Expression Format . 5-6
Row Type of the Resulting Collection-Derived Table . 5-7

Contents xvii

Accessing a Collection Through a Collection Variable . 5-10
Using a Collection Variable to Manipulate Collection Elements 5-10
Accessing a Nested Collection . 5-14
Accessing a Row Variable . 5-14

Database Name . 5-15
Using Keywords as Table Names . 5-15

Database Object Name . 5-16
Specifying a Database Object in an External Database. 5-17
Routine Overloading and Routine Signatures . 5-18
Owners of Objects Created by UDRs . 5-19

External Routine Reference . 5-19
VARIANT or NOT VARIANT Option . 5-20
Example of a C User-Defined Function . 5-20
Examples . 5-21

Identifier . 5-21
Use of Uppercase Characters . 5-22
Use of Keywords as Identifiers . 5-22
Support for Non-ASCII Characters in Identifiers . 5-23
Delimited Identifiers . 5-23
Enabling Delimited Identifiers . 5-24
Potential Ambiguities and Syntax Errors . 5-25
Using the Names of Built-In Functions as Column Names 5-25
Using Keywords as Column Names . 5-26
Using ALL, DISTINCT, or UNIQUE as a Column Name 5-26
Using INTERVAL or DATETIME as a Column Name . 5-27
Using rowid as a Column Name. 5-28
Using Keywords as Table Names . 5-28

Jar Name . 5-34
Optimizer Directives. 5-35

Optimizer Directives as Comments . 5-36
Restrictions on Optimizer Directives . 5-36
Access-Method Directives . 5-37
Join-Order Directive . 5-39
Join-Method Directives . 5-40
Optimization-Goal Directives . 5-42
Explain-Mode Directives . 5-43
External Directives . 5-44

Owner Name . 5-45
Using Quotation Marks . 5-46
Referencing Tables Owned by User informix. 5-46
ANSI-Compliant Database Restrictions and Case Sensitivity 5-47
Setting ANSIOWNER for an ANSI-Compliant Database 5-48
Default Owner Names . 5-48
Summary of Lettercase Rules for Owner Names . 5-49

Purpose Options . 5-49
Purpose Options for Access Methods . 5-50
Purpose Functions, Methods, Flags, and Values . 5-51
Purpose Options for XA Data Source Types . 5-53

Return Clause . 5-54
Limits on Returned Values. 5-55
Subset of SQL Data Types . 5-55
Using the REFERENCES Clause to Point to a Simple Large Object 5-56
Returning a Value from Another Database . 5-57
Named Return Parameters. 5-58
Cursor and Noncursor Functions . 5-59

Routine Modifier . 5-59
Adding or Modifying a Routine Modifier . 5-60
Modifier Descriptions . 5-61
CLASS . 5-61
COSTFUNC . 5-62
HANDLESNULLS . 5-62

xviii IBM Informix Guide to SQL: Syntax

INTERNAL . 5-62
ITERATOR . 5-63
NEGATOR . 5-63
PARALLELIZABLE . 5-63
PERCALL_COST (C) . 5-64
SELCONST (C) . 5-65
SELFUNC (C) . 5-65
STACK (C) . 5-66
VARIANT and NOT VARIANT . 5-66
Examples . 5-66

Routine Parameter List . 5-67
Subset of SQL Data Types . 5-68
Using the LIKE Clause . 5-68
Using the REFERENCES Clause . 5-68
Using the DEFAULT Clause . 5-69
Specifying OUT Parameters for User-Defined Routines 5-69
Specifying INOUT Parameters for a User-Defined Routine 5-70

Shared-Object Filename . 5-70
C Shared-Object File . 5-71
Java Shared-Object File . 5-72

Specific Name . 5-73
Restrictions on the Owner Name . 5-74
Restrictions on the Specific Name . 5-74

Statement Block . 5-74
Subset of SPL Statements Valid in the Statement Block 5-75
SQL Statements Valid in SPL Statement Blocks . 5-76
Nested Statement Blocks . 5-76
Restrictions on SPL Routines in Data-Manipulation Statements 5-77
Transactions in SPL Routines . 5-79
Support for roles and user identity . 5-79

Chapter 6. Built-In Routines . 6-1
Session Configuration Procedures . 6-1

Using SYSDBOPEN and SYSDBCLOSE Procedures . 6-2
DataBlade Module Management Functions. 6-5

The SYSBldPrepare Function . 6-5
The SYSBldRelease Function . 6-9

The EXPLAIN_SQL Routine . 6-9
UDR Definition Routines . 6-10

IFX_REPLACE_MODULE Function . 6-10
IFX_UNLOAD_MODULE Function . 6-12

jvpcontrol Function . 6-12
Using the MEMORY Keyword . 6-13
Using the THREADS Keyword . 6-13

SQLJ Driver Built-In Procedures . 6-13
sqlj.install_jar . 6-14
sqlj.replace_jar . 6-15
sqlj.remove_jar. 6-16
sqlj.alter_java_path . 6-16
sqlj.setUDTextName . 6-18
sqlj.unsetUDTextName . 6-18

DRDA Support Functions . 6-19
Metadata Function . 6-19
sysibm.SQLCAMessage Function . 6-21

Appendix A. Keywords of SQL for IBM Informix A-1

Appendix B. Keywords of SQL for IBM Informix Extended Parallel Server B-1

Appendix C. Accessibility . C-1

Contents xix

Accessibility features for IBM Informix products . C-1
Accessibility features . C-1
Keyboard navigation . C-1
Related accessibility information . C-1
IBM and accessibility . C-1

Dotted decimal syntax diagrams . C-1

Notices . D-1
Trademarks . D-3

Index . X-1

xx IBM Informix Guide to SQL: Syntax

Introduction

In This Introduction
This introduction provides an overview of the information in this publication and
describes the documentation conventions that it uses.

About This Publication
This publication describes the syntax of the Structured Query Language (SQL) and
of the Stored Procedure Language (SPL) for Version 11.50 of IBM® Informix®.

This publication is a companion volume to the IBM Informix Guide to SQL:
Reference, the IBM Informix Guide to SQL: Tutorial, and the IBM Informix Database
Design and Implementation Guide. The IBM Informix Guide to SQL: Reference provides
reference information about the system catalog, the built-in SQL data types, and
environment variables that can affect SQL statements. The IBM Informix Guide to
SQL: Tutorial shows how to use basic and advanced SQL and SPL routines to
access and manipulate the data in your databases. The IBM Informix Database
Design and Implementation Guide shows how to use SQL to implement and manage
relational databases.

Types of Users
This publication is written for the following users:
v Database users
v Database administrators
v Database-application programmers

This publication assumes that you have the following background:
v A working knowledge of your computer, your operating system, and the utilities

that your operating system provides
v Some experience working with relational databases or exposure to database

concepts
v Some experience with computer programming

If you have limited experience with relational databases, SQL, or your operating
system, refer to the IBM Informix Getting Started Guide for your database server for
a list of supplementary titles.

Software Dependencies
This publication assumes that you are using the IBM Informix, Version
11.50database server.

Assumptions About Your Locale
IBM Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment, called a
Global Language Support (GLS) locale.

This publication assumes that you use the U.S. 8859-1 English locale as the default
locale. The default is en_us.8859-1 (ISO 8859-1) on UNIX platforms or en_us.1252

© Copyright IBM Corp. 1996, 2010 xxi

(Microsoft 1252) for Windows environments. These locales support U.S. English
format conventions for dates, times, and currency, and also support the ISO 8859-1
or Microsoft 1252 code set, which includes the ASCII code set plus many 8-bit
characters such as è, é, and ñ.

If you plan to use non-ASCII characters in your data or in SQL identifiers, or if
you want to conform to localized collation rules for sorting character data, or to
localized display format conventions for date, number, or currency values, you
should specify an appropriate nondefault locale.

For instructions on how to specify a nondefault locale, additional syntax, and other
considerations related to GLS locales, see the IBM Informix GLS User's Guide.

Demonstration Databases
The DB-Access utility, which is provided with your IBM Informix database server
products, includes one or more of the following demonstration databases:
v The stores_demo database illustrates a relational schema with information about

a fictitious wholesale sporting-goods distributor. Many examples in IBM
Informix publications are based on the stores_demo database.

v The superstores_demo database illustrates an object-relational schema that
contains examples of extended data types, data-type inheritance and table
inheritance, and user-defined routines.

For information about how to create and populate the demonstration databases,
see the IBM Informix DB-Access User's Guide. For descriptions of the databases and
their contents, see the IBM Informix Guide to SQL: Reference.

The scripts that you use to install the demonstration databases reside in the
$INFORMIXDIR/bin directory on UNIX platforms and in the
%INFORMIXDIR%\bin directory in Windows environments.

What's New in SQL Syntax for Informix, Version 11.50
This publication includes information about new features and changes in existing
functionality.

The following changes and enhancements are relevant to this publication. For a
comprehensive list of all new features for this release, see the IBM Informix Getting
Started Guide.

Table 1. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC8.

Overview Reference

Locking tables from updatable secondary servers in a
cluster

You can set exclusive locks and shared locks from updatable
secondary servers in a cluster.

If you set exclusive locks from an updatable secondary
server, sessions can read the table but not update it. When
one session has an exclusive lock on a given table, no other
session can obtain a shared or exclusive lock on that table.

If you set shared locks from an updatable secondary server,
sessions can read the table but cannot modify it until the
lock is released.

“LOCK TABLE statement” on page 2-454

xxii IBM Informix Guide to SQL: Syntax

||

||

|
|

|
|

|
|
|
|

|
|
|

|

Table 1. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC8. (continued)

Overview Reference

New editions and product names

IBM Informix Dynamic Server editions were withdrawn and
new Informix editions are available. Some products were
also renamed. The publications in the Informix library
pertain to the following products:

v IBM Informix database server, formerly known as IBM
Informix Dynamic Server (IDS)

v IBM OpenAdmin Tool (OAT) for Informix, formerly
known as OpenAdmin Tool for Informix Dynamic Server
(IDS)

v IBM Informix SQL Warehousing Tool, formerly known as
Informix Warehouse Feature

For more information about the Informix product
family, go to http://www.ibm.com/software/data/
informix/.

Table 2. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC6.

Overview Reference

Load and Unload Data with External Tables

Informix supports external tables. You can read and write
from a source that is external to the database server.
External tables provide an SQL interface to data in text files
managed by the operating system or to data from a FIFO
device. To create external tables, use the CREATE
EXTERNAL TABLE statement. Use the existing DROP
TABLE statement to drop an external table.

“CREATE EXTERNAL TABLE Statement” on page
2-103

Also see IBM Informix Administrator's Guide.

Light Scans on Tables

You can now enable Informix to perform light scans on
compressed tables, tables with rows that are larger than a
page, and tables with any data, including VARCHAR,
LVARCHAR, and NVARCHAR data. The server does not
scan pieces of a row (such as smart large objects) that are
stored outside of the row.

To enable light scans, set the BATCHEDREAD_TABLE
configuration parameter to 1. You can also use the
IFX_BATCHEDREAD_TABLE environment option of the
SET ENVIRONMENT statement to change the value of the
BATCHEDREAD_TABLE configuration parameter for a
session.

“IFX_BATCHEDREAD_TABLE Environment Option”
on page 2-634

IBM Informix Administrator's Reference

IBM Informix Performance Guide

An ALTER FRAGMENT Operation Can Now Force Out
Transactions to Get Exclusive Access to Tables

The ALTER FRAGMENT operation requires exclusive access
and exclusive locks on all the tables involved in the
operation. Now a DBA can force out other transactions that
opened or locked the tables involved in an ALTER
FRAGMENT ON TABLE operation. When the
FORCE_DDL_EXEC environment option is enabled, the
ALTER FRAGMENT ON TABLE operation waits to get
exclusive access to the table, as specified by the lock mode
wait value. If necessary, the server rolls back the
transactions that have access or locks on the tables involved
in the operation until the timeout value of the
FORCE_DDL_EXEC environment option is reached.

“FORCE_DDL_EXEC Environment Option” on page
2-632

Introduction xxiii

|

||

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|

||

||

|

|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/data/informix/

Table 2. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC6. (continued)

Overview Reference

RETAINUPDATELOCKS Environment Option

The RETAINUPDATELOCKS environment option can
improve concurrency in Dynamic SQL applications that
include the SELECT . . . FOR UPDATE statement. When
your session uses the Committed Read, Dirty Read, or
Cursor Stability isolation levels, you can set this option to
instruct the database server to postpone releasing update
locks until a transaction ends. Retaining update locks
prevents users in other sessions from locking rows that you
have not yet updated. By default the setting persists for the
current session unless you reset it or you change the
isolation level to one that does not support the
RETAINUPDATELOCKS environment option.

“RETAINUPDATELOCKS Environment Option” on
page 2-635

Table 3. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC5.

Overview Reference

Loading Data into a Warehouse with the MERGE
Statement

The MERGE statement can merge records from a table,
view, or query (the source) with the records in a local
table (the target). You can specify a logical condition that
MERGE applies to a join of the source and target objects.

“MERGE statement” on page 2-458

Retrieving Data by Using Hierarchical Queries

The SELECT statement of Informix now supports START
WITH .. CONNECT BY syntax for recursively querying a
table in which a hierarchy of parent-child relationships
exist. The syntax can define recursive queries that reflect
the topology of the data hierarchy.

v CONNECT_BY_ISLEAF

v CONNECT_BY_ISCYCLE

v CONNECT_BY_ROOT

v LEVEL

v PRIOR

v ORDER SIBLINGS BY

v SYS_CONNECT_BY_PATH

“Hierarchical Clause” on page 2-572

“ORDER SIBLINGS BY Clause” on page 2-590

Add a Shadow Column to Replicated Tables for
Consistency Checking

You can use the new WITH REPLCHECK clause of the
CREATE TABLE statement to add the Enterprise
Replication shadow column, ifx_replcheck, when you
create a new table. You can also use the ADD
REPLCHECK clause of the ALTER TABLE statement to
add this shadow column to an existing table. By creating
a unique index on the ifx_replcheck column and your
primary key columns, you can greatly increase the speed
of consistency checking.

“Options clauses” on page 2-217

“Using the WITH REPLCHECK Keywords” on page
2-218

“Enterprise Replication shadow columns” on page 2-45

xxiv IBM Informix Guide to SQL: Syntax

|

||

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

Table 3. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC5. (continued)

Overview Reference

Enhanced Support for Multibyte Character Storage

In database locales that support multibyte code sets, such
as UTF-8, a single logical character can occupy up to four
bytes of storage. To prevent strings that contain multibyte
character from being truncated, you can use the new
SQL_LOGICAL_CHAR configuration parameter to
instruct the SQL parser to interpret the declared size of
built-in character data types in units of logical characters.
By default, explicit or default maximum size
specifications are interpreted in units of bytes.

“Logical Character Support in Character Columns” on
page 2-48

“Column Definition” on page 2-201

“Single-Byte and Multi-Byte Characters and Locales” on
page 4-24

The documentation for SQL administration API functions
has been moved to the IBM Informix Administrator's
Reference.

IBM Informix Administrator's Reference

Introduction xxv

Table 4. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC4.

Overview Reference

Save Disk Space by Compressing Data

You can now use SQL administration API commands to
save disk space by compressing row data in a table or in
one or more table fragments. You can also use SQL
administration API commands to consolidate free space in
a table or fragment, return this free space to the dbspace,
and estimate the amount of space that is saved by
compressing the data.

You can display the following types of information about
compression:

v Active compression dictionaries that describe how the
data is compressed, with the new onstat -g ppd
command

v All compression dictionaries, by querying the new
syscompdicts_full table and syscompdicts view in the
sysmaster database

v Progress of currently running compression operations,
with the new onstat-g dsk command

v Uncompressed contents of compressed log records,
with a new onlog utility option

v Percentage of compressed rows, with the onstat -pT
option

Before you can compress a table or fragment, you must
run an SQL administration API command that enables
compression. If you enable compression on the version
11.50.xC4 server and you want to revert to an earlier
version of the server, which does not support
compression, you must uncompress or drop any
compressed table or fragments before you revert. To
ensure successful reversion, follow the Informix reversion
procedures that are described in the Migration Guide.
You can use the onmode -b command to revert to Version
11.50.xC1, 11.50.xC2, or 11.50.xC3 if you previously used
that version of the server.

If you are migrating to Version 11.50.xC4 from Version
11.50.xC1, 11.50.xC2, or 11.50.xC3, you must run the
buildsmi script if you plan to use the syscompdict_full
table. The buildsmi script, which is in the etc directory in
your installation, drops and recreates the sysmaster
database, which contains the syscompdict_full table. The
buildsmi script must be run as user informix on UNIX,
or as a member of the Informix-Admin group on
Windows, after ensuring that no connections to the
sysmaster database are made during the build of the
database.

IBM Informix Administrator's Reference

xxvi IBM Informix Guide to SQL: Syntax

Table 4. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC4. (continued)

Overview Reference

DataBlade® Module Registration through SQL

You can now use the built-in SYSBldPrepare() function
to register one or more DataBlade modules or to
unregister a DataBlade module, as an alternative to using
the BladeManager utility. This enables you to register
DataBlade modules from any client API that supports
SQL, such as DB-Access, SPL, C API, ESQL, JDBC, or
ODBC, and without requiring that BladeManager be
installed. Another new function, SYSBldRelease(),
returns the version string of the SYSBldPrepare()
function.

“DataBlade Module Management Functions” on page 6-5

Table 5. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC3.

Overview Reference

Rolling Back SQL Transactions to a Savepoint

You can now declare or reference savepoints in SQL
statements. A savepoint identifies an arbitrary location
within the statements of an SQL transaction. Within its
transaction, the savepoint resembles a statement label to
which the ROLLBACK statement of SQL can cancel any
changes to the database that the transaction produced
between the savepoint and the ROLLBACK statement. A
client application that declares one or more savepoints
within a transaction can implement error-handling logic that
rolls back only the portion of the transaction that follows
the specified savepoint, rather than cancelling the entire
transaction if an exception occurs.

The following new SQL statements are implemented for
savepoints

v The SAVEPOINT statement creates a savepoint within the
current SQL transaction.

v The RELEASE SAVEPOINT statement destroys a specified
savepoint, as well as any other savepoints that exist
between the RELEASE statement and the savepoint that it
references.

v The ROLLBACK WORK TO SAVEPOINT statement
discards changes to the schema of the database or to its
data values by statements that follow the savepoint, but
the effects of DDL and DML statements that preceded the
savepoint persist.

This release of Informix directly supports the SQL
statements that declare or reference savepoint objects in
DB-Access and in UDRs written in the SPL, C, or Java
languages. Methods that support savepoints are also
supported in JDBC applications. Applications written in
ESQL/C that use the savepoint statements of SQL are also
supported with this release of Client SDK.

“TO SAVEPOINT Clause” on page 2-529

Introduction xxvii

Table 5. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC3. (continued)

Overview Reference

Changing the Size of the First Extent of a Table

When you create a table, you specify a first extent size
based on the eventual estimated size of the table. If the
table becomes larger or smaller than that estimate, you
might want to change the size of the first extent to avoid
either having too many extents or creating extents that are
larger than necessary. You can now change the size of the
first extent of a table in a dbspace. When you change the
size of the first extent, Informix records the change (in the
system catalog and on the partition page), but only makes
the actual change when the table is rebuilt or a new
partition or fragment is created.

“MODIFY EXTENT SIZE” on page 2-69

Using SQL administration API to Dynamically Update
Configuration Parameters

You can dynamically set configuration parameters by using
the new SQL administration API SET ONCONFIG
commands. These new function calls emulate onmode -wf or
onmode -wm commands. Use the SET ONCONFIG or SET
ONCONFIG PERMANENT commands to change
configuration parameters in the ONCONFIG file. Use the
SET ONCONFIG MEMORY command to configure
parameters only for the current session.

IBM Informix Administrator's Reference

Improved SQL Tracing with the SQL administration API

You can use these new commands to manage SQL tracing
by databases, sessions, and users: SET SQL TRACING
DATABASE, SET SQL TRACING SESSION, and SET SQL
TRACING USER. Previously, you could only trace SQL for
all databases at the server. Now you can control which
databases to include in the SQL trace. You can also turn
tracing on or off for a specific session, and specify whether
you want to trace SQL statements run by specific users. You
can also suspend and resume all tracing at the server,
without deallocating any resources, by using the SET SQL
TRACING SUSPEND and RESUME commands.

IBM Informix Administrator's Reference

xxviii IBM Informix Guide to SQL: Syntax

Table 6. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC2.

Overview Reference

Subquery Support in UPDATE and DELETE Statements

The FROM clause of a subquery in the WHERE clause of
the DELETE or UPDATE statement can specify as a data
source the same table or view that the FROM clause of the
DELETE statement or the Target clause of the UPDATE
statement specifies. In this version, Informix supports
DELETE and UPDATE operations with subqueries that
reference the same table object if all of the following
conditions are true:

v The subquery either returns only a single row, or else has
no references to columns in any table that is not listed in
its FROM clause.

v The subquery is specified in the WHERE clause of the
outer DELETE or UPDATE statement, using the
Condition with Subquery syntax.

If you call SPL routines within the same subquery, these
cannot reference the table that is being modified.

“Subqueries in the WHERE Clause of UPDATE” on
page 2-711 and “Subqueries in the WHERE Clause of
DELETE” on page 2-310

Longer Return Strings from String Manipulation
Functions

The following SQL string-manipulation functions now
support operations where the returned string can be up to
32 KB in length:

v LPAD

v RPAD

v REPLACE

v SUBSTR

v SUBSTRING

v TRIM

v LTRIM

v RTRIM

v ENCRYPT_AES

v ENCRYPT_TDES

v DECRYPT_CHAR

v DECRYPT_BINARY

v CONCAT (and the || operator)

In addition, the CONCAT function and the || operator
now provide native support for the LVARCHAR data type.

“Return Types from CONCAT and String Functions”
on page 4-141

Controlling I/O of B-Tree Indexes with Compression
Levels

B-tree scanners can now compress indexes by merging two
partially used index pages if the data on those pages totals
a set level (low, medium, or high). You can specify the
index compression level by modifying the value of the
compression field of the BTSCANNER configuration
parameter option, by running an onmode -C
compressionvalue command, or by calling an SQL
administration API function with a SET INDEX
COMPRESSION command.

IBM Informix Administrator's Reference

Introduction xxix

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version 11.50.xC1.

Overview Reference

Data Types BIGINT and BIGSERIAL

This release introduces two exact numeric
data types, BIGINT and BIGSERIAL. These
data types have the same ranges as the
existing INT8 and SERIAL8 data types, but
have storage and computational advantages.

“Exact Numeric Data Types” on page 4-26

SQL Expressions with the IS [NOT] NULL
Predicate

Now you can use SQL expressions as
operands in Boolean conditions that use the
IS NULL or IS NOT NULL predicate.
Previously, only column names were valid as
operands of IS NULL and IS NOT NULL,
which return a TRUE or FALSE result. The
use of IS NULL or IS NOT NULL with
expressions enables you to provide a value
for entries that otherwise are not computable
(because NULL is not a valid numeric value).

“IS NULL and IS NOT NULL Conditions” on
page 4-12

SQL administration API Commands to
Configure High-Availability Clusters

New commands for the SQL administration
API enable user informix (or members of the
DBSA group who hold Connect privilege on
the sysadmin database and on the new sysha
database) to configure high-availability data
replication cluster environments remotely.

These SQL function calls emulate the effects
of various onmode -d and onmode -wk
command-line options.

IBM Informix Administrator's Reference

Control External Directives for the Current
Session

You now can use the new EXTDIRECTIVES
session environment option of the SET
ENVIRONMENT statement to control
whether external directives are enabled,
disabled, or have default behavior during a
session. You can specify the default directives
behavior with the EXT_DIRECTIVES
configuration parameter and the client-side
IFX_EXTDIRECTIVES environment variable.

“SET ENVIRONMENT statement” on page
2-630

“EXTDIRECTIVES Environment Option” on
page 2-631

xxx IBM Informix Guide to SQL: Syntax

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version
11.50.xC1. (continued)

Overview Reference

Dynamic SQL in SPL Routines

You can now use the following dynamic SQL
statements in SPL routines:

v EXECUTE IMMEDIATE, to prepare,
execute and free an SQL statement whose
text is specified by a quoted string or by a
character expression.

v PREPARE, to define a prepared object
from the text of an SQL query or function
call.

v DECLARE, to associate the prepared object
with a Select cursor or with a Function
cursor.

v OPEN, to activate a cursor and to replace
any question mark (?) placeholders in the
text of the prepared object with values in
the USING clause of the OPEN statement.

v FETCH, to sequentially process the rows of
the active set of a cursor.

v CLOSE, to deactivate a cursor after all of
its rows have been processed.

v FREE, to deallocate the resources of a
cursor that is no longer needed.

For some of these dynamic SQL statements,
their syntax in SPL routines is a subset of
their Informix ESQL/C syntax, but the
PREPARE and EXECUTE IMMEDIATE
statements now support character
expressions in SPL routines.

In addition, the new SQLCODE built-in
function returns the value of sqlca.sqlcode
for the most recently executed SQL
statement. This function expression, which
can be invoked only from SPL routines, is
useful in error handling and in program
logic to exit from a loop after the last row of
the active set of a cursor has been processed.

“CLOSE statement” on page 2-76

“Declaring a Dynamic Cursor in an SPL
Routine” on page 2-305

“EXECUTE IMMEDIATE statement” on page
2-365

“Fetching from Dynamic Cursors in SPL
Routines” on page 2-380

“FREE statement” on page 2-384

“OPEN statement” on page 2-469

“PREPARE statement” on page 2-477

“SQLCODE Function (SPL)” on page 4-97

Introduction xxxi

Table 7. What's New in IBM Informix Guide to SQL: Syntax for Version
11.50.xC1. (continued)

Overview Reference

Automated Table Statistics Maintenance
System

Auto Update Statistics (AUS) is an UPDATE
STATISTICS maintenance system that can
automate the potentially complex DBA task
of updating table statistics. This AUS system
is implemented as two tasks of the
Scheduler:

1. The first AUS task, Auto Update
Statistics Evaluation, analyzes database
logs to evaluate whether or not each table
needs its statistics updated. Built-in
policies specify criteria for identifying the
tables whose column distributions should
be recalculated, but you can reset AUS
parameter values to modify these default
policies. Output from this task is a
prioritized set of UPDATE STATISTICS
statements that AUS generates.

2. The second AUS task, Auto Update
Statistics Refresh, recalculates table
statistics for use by the query optimizer.
During a recurring time interval that the
DBA specifies for this task, statements
from the Auto Update Statistics
Evaluation task are executed in their
order of priority.

The AUS system can simplify the work of the
DBA in maintaining column distributions in
the system catalog for tables that DML
statements have modified. This feature can
improve the performance of the database
server by regularly providing the query
optimizer with updated table statistics as the
basis for efficient query plans.

“Automated Table Statistics Maintenance” on
page 2-717

Example code conventions
Examples of SQL code occur throughout this publication. Except as noted, the code
is not specific to any single IBM Informix application development tool.

If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:
CONNECT TO stores_demo
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

xxxii IBM Informix Guide to SQL: Syntax

To use this SQL code for a specific product, you must apply the syntax rules for
that product. For example, if you are using an SQL API, you must use EXEC SQL
at the start of each statement and a semicolon (or other appropriate delimiter) at
the end of the statement. If you are using DB–Access, you must delimit multiple
statements with semicolons.

Tip: Ellipsis points in a code example indicate that more code would be added in
a full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the documentation for your product.

Additional documentation
Documentation about this release of IBM Informix products is available in various
formats.

All of the product documentation (including release notes, machine notes, and
documentation notes) is available from the information center on the web at
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp. Alternatively,
you can access or install the product documentation from the Quick Start CD that
is shipped with the product.

Compliance with industry standards
IBM Informix products are compliant with various standards.

IBM Informix SQL-based products are fully compliant with SQL-92 Entry Level
(published as ANSI X3.135-1992), which is identical to ISO 9075:1992. In addition,
many features of IBM Informix database servers comply with the SQL-92
Intermediate and Full Level and X/Open SQL Common Applications Environment
(CAE) standards.

The IBM Informix Geodetic DataBlade Module supports a subset of the data types
from the Spatial Data Transfer Standard (SDTS)—Federal Information Processing
Standard 173, as referenced by the document Content Standard for Geospatial
Metadata, Federal Geographic Data Committee, June 8, 1994 (FGDC Metadata
Standard).

IBM Informix Dynamic Server (IDS) Enterprise Edition, Version 11.50 is certified
under the Common Criteria. For more information, see Common Criteria
Certification: Requirements for IBM Informix Dynamic Server, which is available at
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US
&FNC=SRX&PBL=SC23-7690-00.

Syntax diagrams
Syntax diagrams use special components to describe the syntax for statements and
commands.

Table 8. Syntax Diagram Components

Component represented in PDF Component represented in HTML Meaning

>>---------------------- Statement begins.

Introduction xxxiii

http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-7690-00

Table 8. Syntax Diagram Components (continued)

Component represented in PDF Component represented in HTML Meaning

-----------------------> Statement continues on next
line.

>----------------------- Statement continues from
previous line.

----------------------->< Statement ends.

--------SELECT---------- Required item.

--+-----------------+---
’------LOCAL------’

Optional item.

---+-----ALL-------+---
+--DISTINCT-----+
’---UNIQUE------’

Required item with choice.
Only one item must be
present.

---+------------------+---
+--FOR UPDATE-----+
’--FOR READ ONLY--’

Optional items with choice
are shown below the main
line, one of which you might
specify.

.---NEXT---------.
----+----------------+---

+---PRIOR--------+
’---PREVIOUS-----’

The values below the main
line are optional, one of
which you might specify. If
you do not specify an item,
the value above the line will
be used as the default.

.-------,-----------.
V |
---+-----------------+---

+---index_name---+
’---table_name---’

Optional items. Several items
are allowed; a comma must
precede each repetition.

>>-| Table Reference |->< Reference to a syntax
segment.

Table Reference

|--+-----view--------+--|
+------table------+
’----synonym------’

Syntax segment.

How to read a command-line syntax diagram
Command-line syntax diagrams use similar elements to those of other syntax
diagrams.

Some of the elements are listed in the table in Syntax Diagrams.

Creating a no-conversion job

xxxiv IBM Informix Guide to SQL: Syntax

�� onpladm create job job
-p project

-n -d device -D database �

� -t table �

� �
(1)

Setting the Run Mode
-S server -T target

��

Notes:

1 See page Z-1

This diagram has a segment named “Setting the Run Mode,” which according to
the diagram footnote is on page Z-1. If this was an actual cross-reference, you
would find this segment on the first page of Appendix Z. Instead, this segment is
shown in the following segment diagram. Notice that the diagram uses segment
start and end components.

Setting the run mode:

-f
d
p
a

l
c

u n N

To see how to construct a command correctly, start at the upper left of the main
diagram. Follow the diagram to the right, including the elements that you want.
The elements in this diagram are case-sensitive because they illustrate utility
syntax. Other types of syntax, such as SQL, are not case-sensitive.

The Creating a No-Conversion Job diagram illustrates the following steps:
1. Type onpladm create job and then the name of the job.
2. Optionally, type -p and then the name of the project.
3. Type the following required elements:
v -n

v -d and the name of the device
v -D and the name of the database
v -t and the name of the table

4. Optionally, you can choose one or more of the following elements and repeat
them an arbitrary number of times:
v -S and the server name
v -T and the target server name
v The run mode. To set the run mode, follow the Setting the Run Mode

segment diagram to type -f, optionally type d, p, or a, and then optionally
type l or u.

Introduction xxxv

5. Follow the diagram to the terminator.

Keywords and punctuation
Keywords are words reserved for statements and all commands except
system-level commands.

When a keyword appears in a syntax diagram, it is shown in uppercase letters.
When you use a keyword in a command, you can write it in uppercase or
lowercase letters, but you must spell the keyword exactly as it appears in the
syntax diagram.

You must also use any punctuation in your statements and commands exactly as
shown in the syntax diagrams.

Identifiers and names
Variables serve as placeholders for identifiers and names in the syntax diagrams
and examples.

You can replace a variable with an arbitrary name, identifier, or literal, depending
on the context. Variables are also used to represent complex syntax elements that
are expanded in additional syntax diagrams. When a variable appears in a syntax
diagram, an example, or text, it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of a
simple SELECT statement.

�� SELECT column_name FROM table_name ��

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

How to provide documentation feedback
You are encouraged to send your comments about IBM Informix user
documentation.

Use one of the following methods:
v Send email to docinf@us.ibm.com.
v Go to the information center at http://publib.boulder.ibm.com/infocenter/

idshelp/v115/index.jsp and open the topic that you want to comment on. Click
the feedback link at the bottom of the page, fill out the form, and submit your
feedback.

v Add comments to topics directly in the Informix information center and read
comments that were added by other users. Share information about the product
documentation, participate in discussions with other users, rate topics, and
more! Find out more at http://publib.boulder.ibm.com/infocenter/idshelp/
v115/topic/com.ibm.start.doc/contributing.htm.

Feedback from all methods is monitored by the team that maintains the user
documentation. The feedback methods are reserved for reporting errors and
omissions in the documentation. For immediate help with a technical problem,
contact IBM Technical Support. For instructions, see the IBM Informix Technical
Support website at http://www.ibm.com/planetwide/.

xxxvi IBM Informix Guide to SQL: Syntax

mailto://docinf@us.ibm.com
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/index.jsp
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.start.doc/contributing.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.start.doc/contributing.htm
http://www.ibm.com/planetwide/

We appreciate your suggestions.

Introduction xxxvii

xxxviii IBM Informix Guide to SQL: Syntax

Chapter 1. Overview of SQL Syntax

In This Chapter

This chapter provides information about how to use the SQL statements, SPL
statements, and syntax segments that subsequent chapters of this book discuss. The
chapter is organized into the following sections.

Section Scope

“How to Enter SQL Statements” How to use syntax diagrams and descriptions to
enter SQL statements correctly

“How to Enter SQL Comments” on
page 1-3

How to enter comments in SQL statements

“Categories of SQL Statements” on
page 1-5

The SQL statements, listed by functional category

“ANSI/ISO Compliance and
Extensions” on page 1-10

The SQL statements, listed by degree of ANSI/ISO
compliance

How to Enter SQL Statements
SQL is a free-form language, like C or PASCAL, that generally ignores white-space
characters like TAB, LINEFEED, and extra blank spaces between statements or
statement elements. At least one blank character or other delimiter, however, must
separate keywords and identifiers from other syntax tokens.

SQL is lettercase insensitive, except within quoted strings; see also “Identifier” on
page 5-21. In an ANSI-compliant database, if you do not delimit the owner of an
object by double (") quotation marks, and the ANSIOWNER environment
variable was not set to 1 when the database server was initialized, the database
server stores the owner name in uppercase letters.

Statement descriptions are provided in this publication to help you to enter SQL
statements successfully. A statement description includes this information:
v A brief introduction that explains what the statement does
v A syntax diagram that shows how to enter the statement correctly
v A syntax table that explains each input parameter in the syntax diagram
v Rules of usage, typically with examples that illustrate these rules

For some statements, this information is provided for individual clauses.

Most statement descriptions conclude with references to related information in this
publication and in other publications.

Chapter 2, “SQL statements,” on page 2-1 provides descriptions of each SQL
statement, arranged in alphabetical order. Chapter 3, “SPL Statements,” on page 3-1
describes each of the SPL statements, using the same format.

The major aids for entering SQL statements include:
v The combination of the syntax diagram and syntax table
v The examples of syntax that appear in the rules of usage

© Copyright IBM Corp. 1996, 2010 1-1

v The references to related information

Using Syntax Diagrams and Syntax Tables
Before you try to use the syntax diagrams in this chapter, it is helpful to read the
syntax diagram section of the Introduction. This section is the key to
understanding the syntax diagrams and explains the elements that can appear in a
syntax diagram and the paths that connect the elements to each other. This section
also includes an example that illustrates the elements of typical syntax diagrams.
The narrative that follows the example diagram shows how to read the diagram in
order to enter the statement successfully.

Notes to the diagram can reference other syntax segments or can specify various
restrictions. If you are using an application programming interface, such as
ESQL/C or 4GL, only the SQL syntax rules that both your client application and
the database server support are valid.

When a syntax diagram includes input specifications that are not keywords, syntax
segments, nor punctuation symbols, such as identifiers, expressions, filenames, or
host variables, the syntax diagram is followed by a table that describes how to
enter the term without generating errors. Each syntax table includes four columns:
v The Element column lists each variable term in the syntax diagram.
v The Description column briefly describes the term and identifies the default

value, if the term has one.
v The Restrictions column summarizes the restrictions on the term, such as

acceptable ranges of values. (For some diagrams, restrictions that cannot be
tersely summarized appear in the Usage notes, rather than in this column.)

v The Syntax column points to the SQL segment that gives the detailed syntax for
the term. For a few terms, such as the names of host variables, pathnames, or
literal characters, no page reference is provided.

The diagrams generally provide an intuitive notation for what is valid in a given
SQL statement, but for some statements, dependencies or restrictions among syntax
elements are identified only in the text of the Usage section.

Using Examples
To understand the main syntax diagram and subdiagrams for a statement, study
the examples of syntax that appear in the rules of usage for each statement. These
examples have two purposes:
v To show how to accomplish specific tasks with the statement or its clauses
v To show how to use syntax of the statement or its clauses in a concrete way

Tip: An efficient way to understand a syntax diagram is to find an example of the
syntax and compare it with the keywords and parameters in the syntax diagram.
By mapping the concrete elements of the example to the abstract elements of the
syntax diagram, you can understand the syntax diagram and use it more
effectively.

For an explanation of the conventions used in the examples in this publication, see
the syntax diagram section of the Introduction.

These code examples are program fragments to illustrate valid syntax, rather than
complete SQL programs. In some code examples, ellipsis (. . .) symbols indicate

1-2 IBM Informix Guide to SQL: Syntax

that additional code has been omitted. To save space, however, ellipses are not
shown at the beginning or end of the program fragments.

Using Related Information
For help in understanding concepts and terms in the SQL statement description,
check the “Related Information” section at the end of each statement.

This section points to related information in this publication and other publications
to help you understand the statement in question. The section provides some or all
of the following information:
v The names of related statements that might contain a fuller discussion of topics

in this statement
v The titles of other publications that provide extended discussions of topics in

this statement

Tip: If you do not have extensive knowledge and experience with SQL, the IBM
Informix Guide to SQL: Tutorial gives you the basic SQL knowledge that you need to
understand and use the statement descriptions in this document.

How to Enter SQL Comments
You can add comments to clarify the purpose or effect of particular SQL
statements. You can also use comment symbols during program development to
disable individual statements without deleting them from your source code.

Your comments can help you or others to understand the role of the statement
within a program, SPL routine, or command file. The code examples in this
document sometimes include comments that clarify the role of an SQL statement
within the code, but your own SQL programs will be easier to read and to
maintain if you document them with frequent comments.

The following table shows the SQL comment indicators that you can enter in your
code. Here a Y in a column signifies that you can use the symbol with the product
or with the type of database identified in the column heading. An N in a column
signifies that you cannot use the symbol with the indicated product or with a
database of the indicated ANSI-compliance status.

Comment
Symbol ESQL/C

SPL
Routine DB-Access

ANSI-
Compliant
Databases

Databases Not
ANSI

Compliant Description

double
hyphen (--)

Y Y Y Y Y The double hyphen
precedes a comment
within a single line. To
comment more than one
line, put double hyphen
symbols at the beginning
of each comment line.

braces ({ . . .
})

N Y Y Y Y Braces enclose the
comment. The { precedes
the comment, and the }
follows it. Braces can
delimit single- or
multiple-line comments,
but comments cannot be
nested.

Chapter 1. Overview of SQL Syntax 1-3

Comment
Symbol ESQL/C

SPL
Routine DB-Access

ANSI-
Compliant
Databases

Databases Not
ANSI

Compliant Description

slash and
asterisk /* . .
. */

Y Y Y Y Y C-language style slash and
asterisk (/* */) paired
delimiters enclose the
comment. The /* precedes
the comment, and the */
follows it. These can
delimit single-line or
multiple-line comments,
but comments cannot be
nested.

Characters within the comment are ignored by the database server.

The section “Optimizer Directives” on page 5-35 describes a context where
information within comments can influence query plans of Informix.

If the product that you use supports all of these comment symbols, your choice of
a comment symbol depends on requirements for ANSI/ISO compliance:
v Double hyphen (--) complies with the ANSI/ISO standard for SQL.
v Braces ({ }) are an Informix extension to the ANSI/ISO standard.
v C-style slash-and-asterisk (/* . . . */) comply with the SQL-99 standard.

If ANSI/ISO compliance is not an issue, your choice of comment symbols is a
matter of personal preference.

In DB-Access, you can use any of these comment symbols when you enter SQL
statements with the SQL editor and when you create SQL command files with the
SQL editor or with a system editor.

An SQL command file is an operating-system file that contains one or more SQL
statements. Command files are also known as command scripts. For more
information about command files, see the discussion of command scripts in the
IBM Informix Guide to SQL: Tutorial. For information on how to create and modify
command files with the SQL editor or a system editor in DB-Access, see the IBM
Informix DB-Access User's Guide.

You can use any of these comment symbols in any line of an SPL routine. See the
discussion of how to comment and document an SPL routine in the IBM Informix
Guide to SQL: Tutorial.

In Informix ESQL/C, the double hyphen (--) can begin a comment that extends
to the end of the same line. For information on language-specific comment symbols
in Informix ESQL/C programs, see the IBM Informix ESQL/C Programmer's Manual.

Examples of SQL Comments

These examples illustrate different ways to use the SQL comment indicators.

1-4 IBM Informix Guide to SQL: Syntax

The following examples use each style of comment indicator, including the double
hyphen (--), braces ({ }), and C-style (/* . . . */) comment delimiters to
include a comment after an SQL statement. The comment appears on the same line
as the statement.
SELECT * FROM customer; -- Selects all columns and rows

SELECT * FROM customer; {Selects all columns and rows}

SELECT * FROM customer; /*Selects all columns and rows*/

The next three examples use the same SQL statement and the same comments as in
the preceding examples, but place the comment on a separate line:
SELECT * FROM customer;

-- Selects all columns and rows

SELECT * FROM customer;
{Selects all columns and rows}

SELECT * FROM customer;
/*Selects all columns and rows*/

In the following examples, the user enters the same SQL statement as in the
preceding example but now a multiple-line comment (or for the double-hyphen
indicator, two comments) follows each statement:
SELECT * FROM customer;

-- Selects all columns and rows
-- from the customer table

SELECT * FROM customer;
{Selects all columns and rows
from the customer table}

SELECT * FROM customer;
/*Selects all columns and rows
from the customer table*/

Comments in any of these styles can also appear within an SQL statement:
SELECT * -- Selects all columns and rows

FROM customer; -- from the customer table

SELECT * {Selects all columns and rows}
FROM customer; {from the customer table}

SELECT * /*Selects all columns and rows*/
FROM customer; /*from the customer table*/

If you use braces or C-style comments that are delimited by paired opening and
closing indicators, the closing comment indicator must be in the same style as the
opening comment indicator.

Non-ASCII Characters in SQL Comments
You can enter non-ASCII characters (including multibyte characters) in SQL
comments if the database locale supports the non-ASCII characters. For further
information on the GLS aspects of SQL comments, see the IBM Informix GLS User's
Guide.

Categories of SQL Statements
SQL statements are traditionally divided into the following logical categories:

Chapter 1. Overview of SQL Syntax 1-5

v Data definition statements. These data definition language (DDL) statements can
declare, rename, modify, or destroy objects in the local database.

v Data manipulation statements. These data manipulation language (DML)
statements can retrieve, insert, delete, or modify data values.

v Cursor manipulation statements. These statements can declare, open, and close
cursors, which are data structures for operations on multiple rows of data.

v Dynamic management statements. These statements support memory
management and allow users to specify at runtime the details of DML
operations.

v Data access statements. These statements specify discretionary access privileges
and support concurrent access to the database by multiple users.

v Data integrity statements. These implement transaction logging and support the
referential integrity of the database.

v Optimization statements. These can be used to improve the performance of
operations on the database.

v Routine definition statements. These can declare, define, modify, execute, or
destroy user-defined routines that the database stores.

v Client/server connection statements. These can open or close a connection
between a database and a client application.

v Auxiliary statements. These can provide information about the database. (This is
also a residual category for statements that are not closely related to the other
statement categories.)

v Optical subsystem statements. These statements are separately documented in
IBM Informix Optical Subsystem Guide.

The SQL statements of each category are listed in the pages that follow.

Data Definition Language Statements
v ALTER ACCESS_METHOD
v ALTER FRAGMENT
v ALTER FUNCTION
v ALTER INDEX
v ALTER PROCEDURE
v ALTER ROUTINE
v ALTER SEQUENCE
v ALTER SECURITY LABEL COMPONENT
v ALTER TABLE
v CLOSE DATABASE
v CREATE ACCESS_METHOD
v CREATE AGGREGATE
v CREATE CAST
v CREATE DATABASE
v CREATE DISTINCT TYPE
v CREATE EXTERNAL TABLE
v CREATE FUNCTION
v CREATE FUNCTION FROM
v CREATE INDEX
v CREATE OPAQUE TYPE

1-6 IBM Informix Guide to SQL: Syntax

v CREATE OPCLASS
v CREATE PROCEDURE
v CREATE PROCEDURE FROM
v CREATE ROLE
v CREATE ROUTINE FROM
v CREATE ROW TYPE
v CREATE SCHEMA
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v CREATE SEQUENCE
v CREATE SYNONYM
v CREATE TABLE
v CREATE TEMP TABLE
v CREATE TRIGGER
v CREATE VIEW
v CREATE XADATASOURCE
v CREATE XADATASOURCE TYPE
v DROP ACCESS_METHOD
v DROP AGGREGATE
v DROP CAST
v DROP DATABASE
v DROP FUNCTION
v DROP INDEX
v DROP OPCLASS
v DROP PROCEDURE
v DROP ROLE
v DROP ROUTINE
v DROP ROW TYPE
v DROP SECURITY
v DROP SEQUENCE
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER
v DROP TYPE
v DROP VIEW
v DROP XADATASOURCE
v DROP XADATASOURCE TYPE
v RENAME COLUMN
v RENAME DATABASE
v RENAME INDEX
v RENAME SECURITY
v RENAME SEQUENCE
v RENAME TABLE
v TRUNCATE

Chapter 1. Overview of SQL Syntax 1-7

v UPDATE STATISTICS

Data Manipulation Language Statements
v DELETE
v INSERT
v LOAD
v MERGE
v SELECT
v UNLOAD
v UPDATE

Note: DELETE, INSERT, MERGE, SELECT, and UPDATE are DML statements in
the ANSI/ISO standard for SQL, where MERGE can emulate INSERT and DELETE
or UPDATE. Although LOAD and UNLOAD resemble DML in their functionality,
these DB-Access macros are out-of-scope for most references in this document to
“DML statements.”

Data Integrity Statements
v BEGIN WORK
v COMMIT WORK
v SAVEPOINT
v RELEASE SAVEPOINT
v ROLLBACK WORK
v SET Database Object Mode
v SET LOG
v SET Transaction Mode
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE

Cursor Manipulation Statements
v CLOSE
v DECLARE
v FETCH
v FLUSH
v FREE
v OPEN
v PUT
v SET AUTOFREE

Dynamic Management Statements
v ALLOCATE COLLECTION
v ALLOCATE DESCRIPTOR
v ALLOCATE ROW
v DEALLOCATE COLLECTION
v DEALLOCATE DESCRIPTOR
v DEALLOCATE ROW
v DESCRIBE

1-8 IBM Informix Guide to SQL: Syntax

v DESCRIBE INPUT
v EXECUTE
v EXECUTE IMMEDIATE
v FREE
v GET DESCRIPTOR
v INFO
v PREPARE
v SET DEFERRED_PREPARE
v SET DESCRIPTOR

Data Access Statements
v GRANT
v GRANT FRAGMENT
v LOCK TABLE
v REVOKE
v REVOKE FRAGMENT
v SET ISOLATION
v SET LOCK MODE
v SET ROLE
v SET SESSION AUTHORIZATION
v SET TRANSACTION
v SET Transaction Mode
v UNLOCK TABLE

Optimization Statements
v SAVE EXTERNAL DIRECTIVES
v SET ENVIRONMENT
v SET EXPLAIN
v SET OPTIMIZATION
v SET PDQPRIORITY
v SET STATEMENT CACHE

Routine Definition Statements
v ALTER FUNCTION
v ALTER PROCEDURE
v ALTER ROUTINE
v CREATE FUNCTION
v CREATE FUNCTION FROM
v CREATE PROCEDURE
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM
v DROP FUNCTION
v DROP PROCEDURE
v DROP ROUTINE
v EXECUTE FUNCTION

Chapter 1. Overview of SQL Syntax 1-9

v EXECUTE PROCEDURE
v SET DEBUG FILE TO

Auxiliary Statements
v GET DIAGNOSTICS
v INFO
v OUTPUT
v SET COLLATION
v SET DATASKIP
v SET ENCRYPTION PASSWORD
v WHENEVER

Client/Server Connection Statements
v CONNECT
v DATABASE
v DISCONNECT
v SET CONNECTION

Optical Subsystem Statements
v ALTER OPTICAL CLUSTER
v CREATE OPTICAL CLUSTER
v DROP OPTICAL CLUSTER
v RELEASE
v RESERVE
v SET MOUNTING TIMEOUT

Important: See the IBM Informix Optical Subsystem Guide for more information.

ANSI/ISO Compliance and Extensions
Lists that follow show statements that match the ANSI SQL-92 standard at the
entry level, statements that are ANSI compliant but include Informix extensions,
and statements that are Informix extensions to the ANSI/ISO standard.

ANSI/ISO-Compliant Statements
v CLOSE
v COMMIT WORK
v RELEASE SAVEPOINT
v SET CONSTRAINTS (See “SET Transaction Mode statement” on page 2-674)
v SET SESSION AUTHORIZATION
v SET TRANSACTION

ANSI/ISO-Compliant Statements with Informix Extensions
v ALLOCATE DESCRIPTOR
v ALTER TABLE
v CONNECT
v CREATE FUNCTION

1-10 IBM Informix Guide to SQL: Syntax

v CREATE PROCEDURE
v CREATE TRIGGER
v CREATE SCHEMA
v CREATE TABLE
v CREATE TEMP TABLE
v CREATE VIEW
v DEALLOCATE DESCRIPTOR
v DECLARE
v DELETE
v DESCRIBE
v DESCRIBE INPUT
v DISCONNECT
v EXECUTE
v EXECUTE IMMEDIATE
v FETCH
v GET DESCRIPTOR
v GET DIAGNOSTICS
v GRANT
v INSERT
v MERGE
v OPEN
v PREPARE
v REVOKE
v ROLLBACK WORK
v SAVEPOINT
v SELECT
v SET CONNECTION
v SET DESCRIPTOR
v UPDATE STATISTICS
v WHENEVER

Statements that are Extensions to the ANSI/ISO Standard
v ALLOCATE COLLECTION
v ALLOCATE ROW
v ALTER ACCESS_METHOD
v ALTER FRAGMENT
v ALTER FUNCTION
v ALTER INDEX
v ALTER OPTICAL CLUSTER
v ALTER PROCEDURE
v ALTER ROUTINE
v ALTER SECURITY LABEL COMPONENT
v ALTER SEQUENCE
v BEGIN WORK
v CLOSE DATABASE

Chapter 1. Overview of SQL Syntax 1-11

v CREATE ACCESS_METHOD
v CREATE AGGREGATE
v CREATE CAST
v CREATE DATABASE
v CREATE DISTINCT TYPE
v CREATE EXTERNAL TABLE
v CREATE FUNCTION FROM
v CREATE INDEX
v CREATE OPAQUE TYPE
v CREATE OPCLASS
v CREATE OPTICAL CLUSTER
v CREATE PROCEDURE FROM
v CREATE ROLE
v CREATE ROUTINE FROM
v CREATE ROW TYPE
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v CREATE SEQUENCE
v CREATE SYNONYM
v CREATE XADATASOURCE
v CREATE XADATASOURCE TYPE
v DATABASE
v DEALLOCATE COLLECTION
v DEALLOCATE ROW
v DROP ACCESS_METHOD
v DROP AGGREGATE
v DROP CAST
v DROP DATABASE
v DROP FUNCTION
v DROP INDEX
v DROP OPCLASS
v DROP OPTICAL CLUSTER
v DROP PROCEDURE
v DROP ROLE
v DROP ROUTINE
v DROP ROW TYPE
v DROP SECURITY LABEL
v DROP SECURITY LABEL COMPONENT
v DROP SECURITY POLICY
v DROP SEQUENCE
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER
v DROP TYPE

1-12 IBM Informix Guide to SQL: Syntax

v DROP VIEW
v DROP XADATASOURCE
v DROP XADATASOURCE TYPE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v FLUSH
v FREE
v GRANT FRAGMENT
v LOAD
v LOCK TABLE
v OUTPUT
v PUT
v RELEASE
v RENAME COLUMN
v RENAME DATABASE
v RENAME INDEX
v RENAME SECURITY LABEL
v RENAME SECURITY LABEL COMPONENT
v RENAME SECURITY POLICY
v RENAME SEQUENCE
v RENAME TABLE
v RESERVE
v REVOKE FRAGMENT
v SAVE EXTERNAL DIRECTIVES
v SET AUTOFREE
v SET COLLATION
v SET CONSTRAINTS (See “SET Database Object Mode statement” on page

2-599.)
v SET Database Object Mode
v SET DATASKIP
v SET DEBUG FILE TO
v SET DEFERRED_PREPARE
v SET ENCRYPTION PASSWORD
v SET ENVIRONMENT
v SET EXPLAIN
v SET ISOLATION
v SET LOCK MODE
v SET LOG
v SET MOUNTING TIMEOUT
v SET OPTIMIZATION
v SET PDQPRIORITY
v SET ROLE
v SET STATEMENT CACHE
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE

Chapter 1. Overview of SQL Syntax 1-13

v TRUNCATE
v UNLOAD
v UNLOCK TABLE
v UPDATE STATISTICS

1-14 IBM Informix Guide to SQL: Syntax

Chapter 2. SQL statements

This chapter describes the syntax and semantics of SQL statements that are
recognized byInformix.

In This Chapter

The SQL statement names that appear as the title to each statement description in
this chapter are listed in alphabetical order.

For some statements, important details of the semantics appear in other volumes of
this documentation set, as indicated by cross-references.

For many statements, the syntax diagram, or the table of terms immediately
following the diagram, or both, includes references to syntax segments in
Chapter 4, “Data Types and Expressions,” on page 4-1 or in Chapter 5, “Other
Syntax Segments,” on page 5-1.

When the name of an SQL statement includes lowercase characters, such as
”CREATE Temporary TABLE,” it means that the first mixed-lettercase string in the
statement name is not an SQL keyword, but that two or more different SQL
keywords can follow the preceding uppercase keyword.

For an explanation of the structure of statement descriptions, see Chapter 1,
“Overview of SQL Syntax,” on page 1-1.

ALLOCATE COLLECTION statement
Use the ALLOCATE COLLECTION statement to allocate memory for a variable of
a collection data type (such as LIST, MULTISET, or SET) or for an untyped
collection variable.

Syntax

�� ALLOCATE COLLECTION variable ��

Element Description Restrictions Syntax

variable Name of the typed or untyped
collection variable to allocate

Must be an unallocated Informix ESQL/C
collection-type host variable

Language-specific
rules for names

Usage

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
variable that can store the value of a collection data type.

To create a collection variable for an Informix ESQL/C program

© Copyright IBM Corp. 1996, 2010 2-1

1. Declare the collection variable as a client collection variable in an Informix
ESQL/C program.
The collection variable can be a typed or untyped collection variable.

2. Allocate memory for the collection variable with the ALLOCATE
COLLECTION statement.

The ALLOCATE COLLECTION statement sets SQLCODE (that is, sqlca.sqlcode)
to zero (0) if the memory allocation was successful, or to a negative error code if
the allocation failed.

When you no longer need the collection variable, you must explicitly release the
memory that it occupies with the DEALLOCATE COLLECTION statement. After
the DEALLOCATE COLLECTION statement executes successfully, you can reuse
the collection variable.

Tip: The ALLOCATE COLLECTION statement allocates memory for an Informix
ESQL/C collection variable only. To allocate memory for an Informix ESQL/C row
variable, use the ALLOCATE ROW statement.

Examples

The following example shows how to allocate resources with the ALLOCATE
COLLECTION statement for the untyped collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_set;

The following example uses ALLOCATE COLLECTION to allocate resources for a
typed collection variable, a_typed_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_typed_set;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_typed_set;

Related Information

Related examples: Refer to the collection-variable example in “PUT statement” on
page 2-487.

Related statements: “ALLOCATE ROW statement” on page 2-4 and
“DEALLOCATE COLLECTION statement” on page 2-287

For a discussion of collection data types in ESQL/C programs, see the IBM
Informix ESQL/C Programmer's Manual.

ALLOCATE DESCRIPTOR statement
Use the ALLOCATE DESCRIPTOR statement to declare the name and allocate
memory for a system-descriptor area (SDA). Use this statement with ESQL/C.

2-2 IBM Informix Guide to SQL: Syntax

Syntax

�� ALLOCATE DESCRIPTOR 'descriptor'
descriptor_var WITH MAX items

items_var

��

Element Description Restrictions Syntax

descriptor Name that you declare here for an
unallocated system-descriptor area

Enclose in single (') quotation marks.
Must be unique among SDA names

“Quoted String” on
page 4-188.

descriptor_var Host variable that stores the name of
a system-descriptor area

Must contain name of unallocated
system-descriptor area

Language specific

items Number of item descriptors in
descriptor. Default value is 100.

Must be an unsigned INTEGER
greater than zero

“Literal Number”
on page 4-184

items_var Host variable that contains the
number of items

Data type must be INTEGER or
SMALLINT

Language specific

Usage

The ALLOCATE DESCRIPTOR statement creates a new system-descriptor area,
which is a location in memory that holds information that the DESCRIBE
statement can display, or that holds information about the WHERE clause of a
query.

A system-descriptor area (SDA) contains one or more fields called item descriptors.
Each item descriptor holds a data value that the database server can receive or
send. The item descriptors also contain information about the data, such as data
type, length, scale, precision, and support for NULL values.

A system-descriptor area holds information that a DESCRIBE ... USING SQL
DESCRIPTOR statement obtains or that holds information about the WHERE
clause of a dynamically executed query.

If the name that ALLOCATE DESCRIPTOR declares for a system-descriptor area
matches the name of an existing system-descriptor area, the database server returns
an error. After you free the specified descriptor with the DEALLOCATE
DESCRIPTOR statement, however, the ALLOCATE DESCRIPTOR statement can
reuse the same descriptor name.

WITH MAX Clause
You can use the WITH MAX clause to indicate the maximum number of item
descriptors you need. When you use this clause, the COUNT field is set to the
number of items that you specify. If you do not specify the WITH MAX clause, the
default value of the COUNT field is 100. You can change the value of the COUNT
field with the SET DESCRIPTOR statement.

The following examples show valid ALLOCATE DESCRIPTOR statements that
include the WITH MAX clause. This example uses embedded variable names to
identify the system-descriptor area and to specify the desired number of item
descriptors:
EXEC SQL allocate descriptor :descname with max :occ;

The next example uses a quoted string to identify the system-descriptor area and
an unsigned integer to specify the desired number of item descriptors:

Chapter 2. SQL statements 2-3

EXEC SQL allocate descriptor ’desc1’ with max 3;

Related Information

Related statements: “DEALLOCATE DESCRIPTOR statement” on page 2-288,
“DECLARE statement” on page 2-290, “DESCRIBE statement” on page 2-314,
“EXECUTE statement” on page 2-353, “FETCH statement” on page 2-372, “GET
DESCRIPTOR statement” on page 2-385, “OPEN statement” on page 2-469,
“PREPARE statement” on page 2-477, “PUT statement” on page 2-487, and “SET
DESCRIPTOR statement” on page 2-620

For more information on system-descriptor areas, refer to the IBM Informix ESQL/C
Programmer's Manual.

ALLOCATE ROW statement
Use the ALLOCATE ROW statement to allocate memory for a row variable. This
statement is an extension to the ANSI/ISO standard for SQL. Use this statement
with ESQL/C.

Syntax

�� ALLOCATE ROW variable ��

Element Description Restrictions Syntax

variable Name of a typed or untyped row
variable to allocate

Must be an unallocated Informix ESQL/C
row-type host variable

Language
specific

Usage

The ALLOCATE ROW statement allocates memory for a host variable that stores
row-type data. To create a row variable, an ESQL/C program must do the
following:
1. Declare the row variable. The row variable can be a typed or untyped row

variable.
2. Allocate memory for the row variable with the ALLOCATE ROW statement.

The following example shows how to allocate resources with the ALLOCATE ROW
statement for the typed row variable, a_row:
EXEC SQL BEGIN DECLARE SECTION;

row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate row :a_row;

The ALLOCATE ROW statement sets SQLCODE (the contents of sqlca.sqlcode) to
zero (0) if the memory allocation operation was successful, or to a negative error
code if the allocation failed.

You must explicitly release memory with the DEALLOCATE ROW statement. Once
you free the row variable with the DEALLOCATE ROW statement, you can reuse
the row variable.

2-4 IBM Informix Guide to SQL: Syntax

Tip: The ALLOCATE ROW statement allocates memory for an Informix ESQL/C
row variable only. To allocate memory for an Informix ESQL/C collection variable,
use the ALLOCATE COLLECTION statement.

When you use the same row variable in multiple function calls without
deallocating it, a memory leak on the client computer results. Because there is no
way to determine if a pointer is valid when it is passed, Informix ESQL/C
assumes that the pointer is not valid and assigns it to a new memory location.

Related Information

Related statements: “ALLOCATE COLLECTION statement” on page 2-1 and
“DEALLOCATE ROW statement” on page 2-289

For a discussion of complex data types in ESQL/C programs, see the IBM Informix
ESQL/C Programmer's Manual.

ALTER ACCESS_METHOD statement
Use the ALTER ACCESS_METHOD statement to change one or more attributes of
a user-defined primary or secondary access method in the sysams system catalog
table.

Syntax

�� ALTER ACCESS_METHOD access_method
owner .

�

� �

,
(1)

MODIFY Purpose Option
ADD

DROP purpose_keyword

��

Notes:

1 See “Purpose Options” on page 5-49

Element Description Restrictions Syntax

access_method Name of the access
method to modify

Access method must be registered in the sysams
system catalog table by a previous CREATE
ACCESS_METHOD statement

“Identifier” on page 5-21

owner Name of the owner of
the access method

Must own the access method “Owner Name” on page
5-45

purpose
_keyword

A keyword that
indicates which
attribute to change

Keyword must be associated with the access
method by a previous CREATE or ALTER
ACCESS_METHOD statement

“Purpose Functions,
Methods, Flags, and
Values” on page 5-51

Usage

This statement is an extension to the ANSI/ISO standard for SQL. This statement
cannot modify a built-in access method.

Chapter 2. SQL statements 2-5

Use ALTER ACCESS_METHOD to modify the definition of a user-defined access
method. You cannot modify a built-in access method.

You must own the access method or hold the DBA privilege to alter a user-defined
access method. In an ANSI-compliant database, the DBA must qualify the name of
the access method with the owner name if another user is the owner of the access
method.

When you alter an access method, you change the purpose-option specifications
(purpose functions, purpose methods, purpose flags, or purpose values) that define
the access method. For example, you might alter an access method to declare a
new user-defined function or method name, or to provide a multiplier for the scan
cost on a table.

If a transaction is in progress, the database server waits to modify the access
method until after the transaction is committed or rolled back. No other users can
execute the access method until the transaction has completed.

Example
The following statement alters the remote user-defined access method:
ALTER ACCESS_METHOD remote

ADD am_scancost = FS_scancost,
ADD am_rowids,
DROP am_getbyid,
MODIFY am_costfactor = 0.9;

The preceding example makes the following changes to the access method:
v Adds a user-defined function or method named FS_scancost(), which is

associated in the sysams table with the am_scancost keyword
v Sets (adds) the am_rowids flag
v Drops the user-defined function or method associated with the am_getbyid

keyword
v Modifies the am_costfactor value

Related Information

Related statements: “CREATE ACCESS_METHOD statement” on page 2-90 and
“DROP ACCESS_METHOD statement” on page 2-325

For information about how to set purpose-option specifications, see “Purpose
Options” on page 5-49.

For the schema of the sysams system catalog table, see the IBM Informix Guide to
SQL: Reference.

For more information on primary-access methods, see the IBM Informix
Virtual-Table Interface Programmer's Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer's Guide and the IBM Informix User-Defined
Routines and Data Types Developer's Guide.

For a discussion of privileges, see the “GRANT statement” on page 2-401 statement
in this chapter, or the IBM Informix Database Design and Implementation Guide.

2-6 IBM Informix Guide to SQL: Syntax

Related reference

SYSAMS (SQL Reference)

ALTER FRAGMENT statement
Use the ALTER FRAGMENT statement to change the distribution strategy or the
storage location of an existing table or index. This statement is an extension to the
ANSI/ISO standard for the SQL language.

Syntax

�� ALTER FRAGMENT �

�
(1)

ON TABLE surviving_table ATTACH Clause
(2)

DETACH Clause
(3)

INIT Clause
(4)

ADD Clause
(5)

DROP Clause
(6)

MODIFY Clause
(3)

ON INDEX surviving_index INIT Clause
(4)

ADD Clause
(5)

DROP Clause
(6)

MODIFY Clause

��

Notes:

1 See “ATTACH Clause” on page 2-10

2 See “DETACH Clause” on page 2-15

3 See “INIT Clause” on page 2-16

4 See “ADD Clause” on page 2-21

5 See “DROP Clause” on page 2-23

6 See “MODIFY Clause” on page 2-24

Element Description Restrictions Syntax

surviving
_index

Index on which to modify the
distribution or storage

Must exist when the statement executes “Identifier” on
page 5-21

surviving
_table

Table on which to modify the
distribution or storage

Must exist. See “Restrictions on the ALTER
FRAGMENT Statement” on page 2-9.

“Identifier” on
page 5-21

Chapter 2. SQL statements 2-7

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_016.htm#ids_sqr_016

Usage

The ALTER FRAGMENT statement applies only to table fragments or index
fragments that are located at the current site. No remote information is accessed or
updated.

You must have the Alter privilege or the DBA privilege to change the
fragmentation strategy of a table. You must have the Index privilege or the DBA
privilege to alter the fragmentation strategy of an index.

Attention: This statement can cause indexes to be dropped and rebuilt. Before
undertaking alter operations, check corresponding sections in your IBM Informix
Performance Guide to review effects and strategies.

Clauses of the ALTER FRAGMENT statement support the following tasks.

Clause Effect

ATTACH
Combines two or more tables that have the same schema into a single
fragmented table

DETACH
Detaches one fragment from a fragmented table, and creates a new
nonfragmented table to store the rows in the fragment.

INIT Provides the following options:
v Defines and initializes a fragmentation strategy on a nonfragmented

table
v Changes the order of evaluation of fragment expressions
v Changes the fragmentation strategy of a fragmented table or index
v Changes the storage location of an existing table
v Moves data from an existing table fragment into a new nonfragmented

table
v Changes the fragmentation key or fragmentation expression for a table

or index

ADD Adds an additional fragment to an existing fragmentation list

DROP Drops an existing fragment from a fragmentation list

MODIFY
Changes an existing expression-based fragmentation expression

Moves an existing fragment to a different dbspace

Use the CREATE TABLE statement or the INIT clause of the ALTER FRAGMENT
statement to create fragmented tables.

After a dbspace has been renamed successfully by the onspaces utility, only the
new name can reference the renamed dbspace. The database server automatically
updates existing fragmentation strategies for tables or indexes in the system
catalog, however, to replace the old dbspace name with the new name. You do not
need to take any additional action to update a distribution strategy or storage
location that was defined using the old dbspace name, but you must use the new
name if you reference the dbspace in an ALTER FRAGMENT or ALTER TABLE
statement.

2-8 IBM Informix Guide to SQL: Syntax

The ALTER FRAGMENT operation requires exclusive access and exclusive locks on
all of the tables involved in the operation. If you enable the FORCE_DDL_EXEC
session environment option, you can force out other transactions that have opened
a table involved in an ALTER FRAGMENT ON TABLE operation, or that have
placed locks on any of those tables. If the server is unable to get exclusive access
and exclusive locks on the table, the server starts rolling back the transactions that
are open or that have locks on the table, until the value specified with the
FORCE_DDL_EXEC option is reached. (For more information, see
“FORCE_DDL_EXEC Environment Option” on page 2-632.)

Restrictions on the ALTER FRAGMENT Statement
You cannot use the ALTER FRAGMENT statement on a view, on a temporary
table, or on a table that is not registered in the current database. If your table or
index is not already fragmented, the only clauses available to you are ATTACH
and INIT.

If the surviving_table has hash fragmentation, the only clauses available are
ATTACH and INIT. You cannot use ALTER FRAGMENT on any table that has a
dependent GK index defined on it. In addition, you cannot use this statement on a
table that has range fragmentation.

You cannot use ALTER FRAGMENT on a typed table that is part of a table
hierarchy.

ALTER FRAGMENT and Transaction Logging
If your database supports transaction logging, ALTER FRAGMENT is executed
within a single transaction. If the fragmentation strategy uses large numbers of
records, you might run out of log space or disk space. (To alter a fragmentation
strategy, the database server requires extra disk space that it later frees.)

If you run out of log space or disk space, try one of the following procedures to
reduce your log-space or disk-space requirements:
v Turn off logging and turn it back on again at the end of the operation. This

procedure indirectly requires a backup of the root dbspace.
v Split the operations into multiple ALTER FRAGMENT statements, moving a

smaller portion of records each time.

For information about log-space requirements and disk-space requirements, see
your IBM Informix Administrator's Guide. That guide also contains detailed
instructions about how to turn off logging. For information about backups, refer to
your IBM Informix Backup and Restore Guide.
Related reference

Overview of backup and restore (Backup and Restore Guide)
Related information

Logging and log administration (Administrator's Guide)

Disk, memory, and process management (Administrator's Guide)

Determining the Number of Rows in the Fragment

You can place as many rows into a fragment as the available space in the dbspace
allows.

Chapter 2. SQL statements 2-9

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.bar.doc/ids_bar_168.htm#ids_bar_168
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1131.htm#ids_admin_1131
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1161.htm#ids_admin_1161

To find out how many rows are in a fragment

1. Run the UPDATE STATISTICS statement on the table. This step fills the
sysfragments system catalog table with the current table information.

2. Query the sysfragments system catalog table to examine the npused and
nrows values. The npused column shows the number of data pages used in the
fragment, and the nrows column shows the number of rows in the fragment.

ATTACH Clause

Use the ATTACH clause of the ALTER FRAGMENT ON TABLE statement to
combine tables that have identical structures into a fragmentation strategy.

ATTACH Clause:

ATTACH �

,
(1)

surviving_table
consumed_table AS Clause

AS Clause:

AS expr
(2) AFTER

PARTITION new_frag old_frag
BEFORE

(1) (3)
REMAINDER

Notes:

1 Use path no more than once

2 Required if another surviving_table fragment has the same name as its dbspace

3 Required for fragmentation by expression; optional for round-robin
fragmentation

Element Description Restrictions Syntax

consumed
_table

Table that loses its identity, to be
merged with surviving_table

Schema must match that of surviving _table.
Cannot include serial columns, nor unique,
referential, or primary key constraints. See
also “General Restrictions for the ATTACH
Clause” on page 2-11.

“Identifier” on
page 5-21

expr Expression defining which rows
are stored in a fragment of a
fragmented-by-expression table

Can include only columns from the current
table and only data values from a single row.
See also “General Restrictions for the
ATTACH Clause” on page 2-11.

“Condition” on
page 4-5;
“Expression” on
page 4-40

new_frag Name declared here for a
consumed_table fragment. Default is
the dbspace name.

Must be unique among the names of
fragments of surviving_table

“Identifier” on
page 5-21

old_frag Fragment or dbspace name for a
surviving_table fragment

Must exist.. “Identifier” on
page 5-21

surviving
_table

Table on which to modify the
distribution or storage location

Must exist. Cannot have any constraints. See
also “Restrictions on the ALTER FRAGMENT
Statement” on page 2-9.

“Identifier” on
page 5-21

2-10 IBM Informix Guide to SQL: Syntax

|
|

|
|

To use this clause, you must have the DBA privilege or else be the owner of the
specified tables. The ATTACH clause supports the following tasks:
v Creates a single fragmented table by combining two or more

identically-structured, nonfragmented tables
(See “Combining Nonfragmented Tables to Create a Fragmented Table” on page
2-12.)

v Attaches one or more tables to a fragmented table
(See “Attaching a Table to a Fragmented Table” on page 2-12.)

General Restrictions for the ATTACH Clause
This clause is not valid in ALTER FRAGMENT ON INDEX statements.

Any tables that you attach must have been created previously in separate
partitions. You cannot attach the same table more than once.

All consumed tables listed in the ATTACH clause must have the same structure as
the surviving table. The number, names, data types, and relative position of the
columns must be identical.

The expression cannot include aggregates, subqueries, or variant functions.

Additional Restrictions on the ATTACH Clause: User-defined routines and
references to fields of a ROW-type column are not valid. You cannot attach a
fragmented table to another fragmented table.

All of the dbspaces that store the fragments must have the same page size.

For fragmented tables that are protected by a security policy, attaching a fragment
to the table fails if any of the following conditions are not satisfied:
v The source table and the target table are both protected by the same security

policy;
v Both tables have the same protection granularity (either row-level, or

column-level, or both row-level and column-level);
v In both tables, the same set of protected columns is protected by the same

security labels. If there is more than one protected column, there can be more
than one security label in each table, but the same label must protect the same
column in both tables.

If the ATTACH operation fails because one or more of these conditions are not
satisfied, you can use the ALTER TABLE statement to make the schemas of the two
tables identical, and then repeat the ALTER FRAGMENT ATTACH statement on
the modified tables

Only a user who holds the DBSECADM role can reference a protected table in the
ALTER FRAGMENT statement.

Using the BEFORE, AFTER, and REMAINDER options
The BEFORE and AFTER options allow you to place a new fragment either before
or after an existing fragment. You cannot use the BEFORE and AFTER options
when the distribution scheme is round-robin .

When you attach a new fragment without specifying an explicit BEFORE or
AFTER keyword option, the database server places the added fragment at the end
of the fragmentation list, unless a remainder fragment exists. If a remainder

Chapter 2. SQL statements 2-11

fragment exists, the new fragment, by default, is placed just before the remainder
fragment. You cannot attach a new fragment after the remainder fragment.

If you omit the AS PARTITION fragment specification, the default name of the
fragment is the name of the dbspace where it is stored. If another fragment of the
same table already has the same name as the dbspace, the database server issues
an exception, and the ALTER FRAGMENT ATTACH operation fails.

Combining Nonfragmented Tables to Create a Fragmented Table
When you transform tables with identical table structures into fragments in a
single table, you allow the database server to manage the fragmentation instead of
allowing the application to manage the fragmentation. The distribution scheme can
be round-robin or expression based.

To make a single, fragmented table from two or more identically-structured,
nonfragmented tables, the ATTACH clause must contain the surviving table in the
attach list. The attach list is the list of tables in the ATTACH clause.

To include a rowid column in the newly-created single, fragmented table, attach all
tables first and then add the rowid with the ALTER TABLE statement.

Attaching a Table to a Fragmented Table

To attach a nonfragmented table to an already fragmented table, the
nonfragmented table must have been created in a separate dbspace and must have
the same table structure as the fragmented table. In the following example, a
round-robin distribution scheme fragments the table cur_acct, and the table
old_acct is a nonfragmented table that resides in a separate dbspace. The following
example shows how to attach (as the consumed table) old_acct to cur_acct (as the
surviving table):
ALTER FRAGMENT ON TABLE cur_acct ATTACH old_acct;

When you attach one or more tables to a fragmented table, a consumed_table must
be nonfragmented.

Effect of the ATTACH Clause
After an ATTACH operation, all consumed tables no longer exist. Any CHECK
constraints or NOT NULL constraints on the consumed tables also no longer exist.
You must reference the records that were in the consumed tables through the
surviving table.

What Happens to Indexes?: A detached index on the surviving table retains its
same fragmentation strategy. That is, a detached index does not automatically
adjust to accommodate the new fragmentation of the surviving table. For more
information on what happens to indexes, see the discussion about altering table
fragments in your IBM Informix Performance Guide.

In a database that supports transaction logging, an ATTACH operation extends any
attached index on the surviving table according to the new fragmentation strategy
of the surviving table. All rows in the consumed table are subject to these
automatically adjusted indexes. For information on whether the database server
completely rebuilds the index on the surviving table or reuses an index that was
on the consumed table, see your IBM Informix Performance Guide.

In a nonlogging database of Informix, an ATTACH operation does not extend
indexes on the surviving table according to the new fragmentation strategy of the

2-12 IBM Informix Guide to SQL: Syntax

surviving table. To extend the fragmentation strategy of an attached index
according to the new fragmentation strategy of the surviving table, you must drop
the index and re-create it on the surviving table.

Some ALTER FRAGMENT ... ATTACH operations to attach a fragment can cause
the database server to update the index structure. When an index is rebuilt in
those cases, the associated column distribution is automatically recalculated, and is
available to the query optimizer when it designs query plans for the table on
which the fragment was attached.
v For an indexed column (or a set of columns) on which ALTER FRAGMENT ...

ATTACH automatically rebuilds a B-tree index, the recalculated column
distribution statistics are equivalent to distributions created by the UPDATE
STATISTICS statement in HIGH mode.

v If the rebuilt index is not a B-tree index, the automatically recalculated statistics
correspond to distributions created by the UPDATE STATISTICS statement in
LOW mode.

See also the section “Automatic Calculation of Distribution Statistics” on page
2-152 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are produced automatically when an
index or constraint is created on an existing table.
Related concepts

Improve the performance of operations that attach and detach fragments
(Performance Guide)

What Happens to BYTE and TEXT Columns?: When an ATTACH occurs, BYTE
and TEXT fragments of the consumed table become part of the surviving table and
continue to be associated with the same rows and data fragments as they were
before the ATTACH operation.

Each BYTE and TEXT column in every table that is specified in the ATTACH
clause must have the same storage type, either blobspace or tblspace. If the BYTE
or TEXT column is stored in a blobspace, the same column in all tables must be in
the same blobspace. If the BYTE or TEXT column is stored in a tblspace, the same
column must be stored in a tblspace in all tables.

What Happens to Triggers and Views?: When you attach tables, triggers on the
surviving table survive the ATTACH, but triggers on the consumed table are
automatically dropped. No triggers are activated by the ATTACH clause, but
subsequent data-manipulation operations on the new rows can activate triggers.

Views on the surviving table survive the ATTACH operation, but views on the
consumed table are automatically dropped.

What Happens with the Distribution Scheme?: You can attach a nonfragmented
table to a table with any type of supported distribution scheme. In general, the
resulting table has the same fragmentation strategy as the prior fragmentation
strategy of the surviving_table.

When you attach two or more nonfragmented tables, however, the distribution
scheme can either be based on expression or round-robin.

Only the following distribution schemes can result from combining the distribution
schemes of the tables in the ATTACH clause.

Chapter 2. SQL statements 2-13

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475

Prior Distribution Scheme
of Surviving Table

Prior Distribution Scheme
of Consumed Table

Resulting Distribution
Scheme

None None Round-robin or expression

Round-robin None Round-robin

Expression None Expression

Round-Robin Distribution Scheme: The following example combines
nonfragmented tables pen_types and pen_makers into a single, fragmented table,
pen_types. Table pen_types resides in dbspace dbsp1, and table pen_makers
resides in dbspace dbsp2. Table structures are identical in each table.
ALTER FRAGMENT ON TABLE pen_types ATTACH pen_types, pen_makers;

After you execute the ATTACH clause, the database server fragments the table
pen_types using a round-robin scheme into two dbspaces: the dbspace that
contained pen_types and the dbspace that contained pen_makers. Table
pen_makers is consumed and no longer exists; all rows that were in table
pen_makers are now in table pen_types.

Expression Distribution Scheme: Consider the following example that combines
tables cur_acct and new_acct and uses an expression-based distribution scheme.
Table cur_acct was originally created as a fragmented table and has fragments in
dbspaces dbsp1 and dbsp2. The first statement of the example shows that table
cur_acct was created with an expression-based distribution scheme. The second
statement of the example creates table new_acct in dbsp3 without a fragmentation
strategy. The third statement combines the tables cur_acct and new_acct. Table
structures (columns) are identical in each table.
CREATE TABLE cur_acct (a int) FRAGMENT BY EXPRESSION

a < 5 in dbsp1, a >= 5 and a < 10 in dbsp2;
CREATE TABLE new_acct (a int) IN dbsp3;
ALTER FRAGMENT ON TABLE cur_acct ATTACH new_acct AS a>=10;

When you examine the sysfragments system catalog table after you alter the
fragment, you see that table cur_acct is fragmented by expression into three
dbspaces. For additional information about the sysfragments system catalog table,
see the IBM Informix Guide to SQL: Reference.

In addition to simple range rules, you can use the ATTACH clause to fragment by
expression with hash or arbitrary rules. For a discussion of all types of expressions
that you can use in an expression-based distribution scheme, see “Fragmenting by
EXPRESSION” on page 2-223.

Warning: When you specify a date value as the default value for a parameter,
make sure to specify 4 digits instead of 2 digits for the year. If you specify a 2-digit
year, the setting of the DBCENTURY environment variable can affect how the
database server interprets the date value. For more information, see the IBM
Informix Guide to SQL: Reference.

2-14 IBM Informix Guide to SQL: Syntax

Related reference

SYSFRAGMENTS (SQL Reference)

DBCENTURY (SQL Reference)

DETACH Clause

Use the DETACH clause of the ALTER FRAGMENT ON TABLE statement to
detach a table fragment from a distribution scheme and place the contents into a
new nonfragmented table. This clause is not valid in ALTER FRAGMENT ON
INDEX statements.

For an explanation of distribution schemes, see “FRAGMENT BY clause” on page
2-222.

DETACH Clause:

DETACH fragment new_table
PARTITION

Element Description Restrictions Syntax

fragment Named fragment or dbspace that contains the table fragment to be
detached.

Must exist at
the time of
execution.

“Identifier” on
page 5-21

new_table Name that you declare here for a nonfragmented table that results
after you execute the ALTER FRAGMENT statement.

Must not exist
before
execution

“Identifier” on
page 5-21

The new table that results from executing the DETACH clause does not inherit any
indexes nor constraints from the original table. Only data values remain.

Similarly, the new table does not inherit any privileges from the original table.
Instead, the new table has the default privileges of any new table. For further
information on default table-level privileges, see the GRANT statement on
“Table-Level Privileges” on page 2-405.

The DETACH clause cannot be applied to a table if that table is the parent of a
referential constraint, or if a rowid column is defined on the table.

Distribution statistics after DETACH operations

Some ALTER FRAGMENT . . . DETACH operations to attach a fragment can cause
the database server to update the index structure. When an index is rebuilt in
those cases, the database server also recalculates the associated column
distributions, and these statistics are available to the query optimizer when it
designs query plans for the table from which the fragment was detached:
v For an indexed column (or for a set of columns) on which ALTER FRAGMENT .

. . DETACH automatically rebuilds a B-tree index, the recalculated column
distribution statistics are equivalent to distributions created by the UPDATE
STATISTICS statement in HIGH mode.

v If the rebuilt index is not a B-tree index, the automatically recalculated statistics
correspond to distributions created by the UPDATE STATISTICS statement in
LOW mode.

Chapter 2. SQL statements 2-15

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_040.htm#ids_sqr_040
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

See also the section “Automatic Calculation of Distribution Statistics” on page
2-152 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are produced automatically when an
index or constraint is created on an existing table.

Detach with BYTE and TEXT Columns
If the DETACH clause specifies the first fragment of a table that includes simple
large objects of data type BYTE or TEXT, the database server applies locks on the
blobspaces of every fragment of the table. To detach any other fragment of the
table locks only the blobspaces of the specified fragment, rather than the
blobspaces of all fragments, so fewer locks are required if the fragment is not the
first.

Detach from a Protected Table
If a successfully executed DETACH clause specifies a table that is protected by a
security policy, the database server creates a new table that is protected by the
same security policy, and has the same IDSSECURITYLABEL column for row
security labels and the same set of protected columns as the original table. The
IDSSECURITYLABEL column has a NOT NULL constraint. Only a user who holds
the DBSECADM role can reference a protected table in the ALTER FRAGMENT
statement.

Detach That Results in a Nonfragmented Table
The following example uses the table cur_acct fragmented into two dbspaces,
dbsp1 and dbsp2:
ALTER FRAGMENT ON TABLE cur_acct DETACH dbsp2 accounts;

This example detaches dbsp2 from the distribution scheme for cur_acct and places
the rows in a new table, accounts. Table accounts now has the same structure
(column names, number of columns, data types, and so on) as table cur_acct, but
the table accounts does not contain any indexes or constraints from the table
cur_acct. Both tables are now nonfragmented. The following example shows a table
that contains three fragments:
ALTER FRAGMENT ON TABLE bus_acct DETACH dbsp3 cli_acct;

This statement detaches dbsp3 from the distribution scheme for bus_acct and
places the rows in a new table, cli_acct. Table cli_acct now has the same structure
(column names, number of columns, data types, and so on) as bus_acct, but the
table cli_acct does not contain any indexes or constraints from the table bus_acct.
Table cli_acct is a nonfragmented table, but table bus_acct remains fragmented.

INIT Clause

The INIT clause of the ALTER FRAGMENT statement can define or modify the
fragmentation strategy or the storage location of an existing table or an existing
index. The INIT clause has the following syntax.

INIT Clause:

INIT
WITH ROWIDS

(1)
FRAGMENT BY Clause for Tables

IN dbspace
PARTITION fragment

(2)
FRAGMENT BY Clause for Indexes

2-16 IBM Informix Guide to SQL: Syntax

Notes:

1 See “FRAGMENT BY Clause for Tables” on page 2-18

2 See “FRAGMENT BY Clause for Indexes” on page 2-20

Element Description Restrictions Syntax

dbspace Dbspace storing fragmented data Must exist at time of execution “Identifier” on page 5-21

fragment Name of fragment No more than 2048 for same table “Identifier” on page 5-21

The INIT clause can accomplish tasks that include the following:
v Move a nonfragmented table from one dbspace to a named fragment or to

another dbspace.
v Convert a fragmented table to a nonfragmented table.
v Fragment an existing non-fragmented table without redefining it.
v Convert a fragmentation strategy to another fragmentation strategy.
v Fragment an existing index that is not fragmented without redefining the index.
v Convert a fragmented index to a nonfragmented index.
v Add a new rowid column to the table definition.

When you use the INIT clause to modify a table, the tabid value in the system
catalog tables changes for the affected table. The constrid value of all unique and
referential constraints on the table also changes.

For more information about the storage spaces in which you can store a table, see
“Using the IN Clause” on page 2-221.

Attention: When you execute the ALTER FRAGMENT statement with this clause,
it results in data movement if the table contains any data. If data values move, the
potential exists for significant logging, for the transaction being aborted as a long
transaction, and for a relatively long exclusive lock being held on the affected
tables. Use this statement when it does not interfere with day-to-day operations.

WITH ROWIDS Option
Nonfragmented tables contain a hidden column called rowid. Its integer value
defines the physical location of a row.

To include a rowid column in a fragmented table, you must explicitly request it by
using the WITH ROWIDS clause in CREATE TABLE (or ADD ROWIDS in ALTER
TABLE, or WITH ROWIDS in ALTER FRAGMENT INIT). The rowid in a row of a
fragmented table does not identify a physical location for the row in the same way
that a rowid in a non-fragmented table does.

When you use the WITH ROWIDS option to add a new rowid column to a
fragmented table, the database server assigns a unique rowid number to each row
and creates an index that it can use to find the physical location of the row.
Performance using this access method is comparable to using a SERIAL,
BIGSERIAL, or SERIAL8 column. The rowid value of a row cannot be updated,
but remains stable during the existence of the row. Each row requires an additional
four bytes to store the rowid column after you specify the WITH ROWIDS option.

Recommendation: When creating new applications, use primary keys as a method
of row identification instead of using rowid values.

Chapter 2. SQL statements 2-17

|

|
|

Converting a Fragmented Table to a Nonfragmented Table
You might decide that you no longer want a table to be fragmented. You can use
the INIT clause to convert a fragmented table to a nonfragmented table. The
following example shows the original fragmentation definition, as well as how to
use the INIT clause of the ALTER FRAGMENT statement to convert the table to a
nonfragmented table:
CREATE TABLE checks (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2, dbsp3;

ALTER FRAGMENT ON TABLE checks INIT IN dbsp1;

You must use the IN dbspace clause to place the table in a dbspace explicitly.

When you use the INIT clause to change a fragmented table to a nonfragmented
table, all attached indexes become nonfragmented indexes. In addition, constraints
that do not use existing user-defined indexes (detached indexes) become
nonfragmented indexes. All newly nonfragmented indexes exist in the same
dbspace as the new nonfragmented table.

Using the INIT clause to change a fragmented table to a nonfragmented table has
no effect on the fragmentation strategy of detached indexes, nor of constraints that
use detached indexes.

FRAGMENT BY Clause for Tables
Use the FRAGMENT BY option of the INIT clause of the ALTER FRAGMENT
statement to fragment an existing nonfragmented table, or to convert one table
fragmentation strategy to another.

The PARTITION BY keywords are a synonym for the FRAGMENT BY keywords in
this context.

FRAGMENT BY Clause for Tables:

FRAGMENT BY
PARTITION BY

�

�

� �

�

,

ROUND ROBIN IN dbspace
,

PARTITION part IN dbspace
EXPRESSION Fragment List

, ,

HASH (column) IN (dbspace, dbspace)
,

HYBRID (column) Expression List

Fragment List:

�

,

(expr) IN dbspace
PARTITION part (1)

REMAINDER

2-18 IBM Informix Guide to SQL: Syntax

||

Expression List:

� �

,
,

EXPRESSION expr IN (dbspace)
(1)

REMAINDER dbspace

Notes:

1 If included, must be the last item in the fragment list

Element Description Restrictions Syntax

column Column to which the strategy applies Must exist in the table “Identifier” on page 5-21

dbspace Dbspace that contains the table fragment Must specify at least 2 but no
more than 2,048 dbspaces

“Identifier” on page 5-21

expr Expression that defines a table fragment Must evaluate to a Boolean value
(t or f)

“Expression” on page
4-40

part Name of a fragment Required for any named
fragment in the same dbspace as
another named fragment of the
same table. Name must be
unique among fragments of the
same table.

“Identifier” on page 5-21

For more information on the fragmentation strategies available for tables, see the
“FRAGMENT BY clause” on page 2-222.

Changing an Existing Fragmentation Strategy on a Table: You can redefine a
fragmentation strategy on a table if you decide that your initial strategy does not
fulfill your needs. When you alter a fragmentation strategy, the database server
discards the existing fragmentation strategy and moves records to fragments as
defined in the new fragmentation strategy.

The following example shows the statement that originally defined the
fragmentation strategy on the table account and then shows an ALTER
FRAGMENT statement that redefines the fragmentation strategy:
CREATE TABLE account (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2;
ALTER FRAGMENT ON TABLE account

INIT FRAGMENT BY EXPRESSION
col1 < 0 IN dbsp1,
col2 >= 0 IN dbsp2;

If an existing dbspace is full when you redefine a fragmentation strategy, you must
not use it in the new fragmentation strategy.

Defining a Fragmentation Strategy on a Nonfragmented Table: The INIT clause
can define a fragmentation strategy on a nonfragmented table, regardless of
whether the table was created with a storage option.
CREATE TABLE balances (col1 INT, col2 INT) IN dbsp1;
ALTER FRAGMENT ON TABLE balances INIT

FRAGMENT BY EXPRESSION col1 <= 500 IN dbsp1,
col1 > 500 AND col1 <=1000 IN dbsp2, REMAINDER IN dbsp3;

Chapter 2. SQL statements 2-19

|

When you use the INIT clause to fragment an existing nonfragmented table, all
indexes on the table become fragmented in the same way as the table.

FRAGMENT BY Clause for Indexes
Use this clause to redefine the storage distribution strategy of an index without
redefining the index. The keywords FRAGMENT BY and PARTITION BY are
synonyms in this context.

FRAGMENT BY Clause for Indexes:

FRAGMENT
PARTITION

BY EXPRESSION Expression Fragment Clause

Expression Fragment Clause:

�

,

(expr) IN dbspace
PARTITION part

�

�
, REMAINDER IN dbspace

PARTITION part (expr)

Element Description Restrictions Syntax

dbspace Dbspace that contains the fragmented
information

Must specify at least one (but no
more than 2,048) dbspaces of the
same page size

“Identifier” on page
5-21

expr Expression defining an index fragment Must be unique among
fragmentation expressions for the
same index, and must return a
Boolean value

“Condition” on page
4-5; “Expression” on
page 4-40

part Name that you declare here for the
fragment. Default is the dbspace name.

Required for fragments in the
same dbspace as another
fragment of the same index. Must
be unique among fragments of
the same index.

“Identifier” on page
5-21

The INIT FRAGMENT BY clause for indexes of the ALTER FRAGMENT statement
can accomplish any of the following operations on the storage distribution scheme
of an existing index, without redefining the index:
v Fragment an existing nonfragmented index by an expression-based storage

distribution scheme.
v Change an existing fragmented index to a nonfragmented index.

When you use the FRAGMENT BY or PARTITION BY clause to convert an existing
storage fragmentation strategy to another expression-based fragmentation strategy,
Informix discards the existing fragmentation strategy and moves the data records
to fragments that you define in the new fragmentation strategy. Data movement
similarly occurs when you convert a nonfragmented index to a fragmented index,
and when you convert a fragmented index to a nonfragmented index.

2-20 IBM Informix Guide to SQL: Syntax

|
|
|
|
|
|
|

To convert an existing fragmented index to a nonfragmented index, you can use
the INIT clause to specify IN dbspace (or else PARTITION partition IN dbspace) as
the only storage specification for a previously fragmented index.

Just as for an expression-based index fragmentation scheme that the CREATE
INDEX statement defines, restrictions apply to each expression (expr) that you
specify in the ALTER FRAGMENT ON INDEX . . . INIT FRAGMENT BY
EXPRESSION statement, including these:
v Any column that the expression references must be from the current table.
v Those columns must be the indexed columns, or a subset of the indexed

columns.
v The expression cannot reference fields of a column of type ROW.
v Any data values in the expression must be from only a single row.
v No subqueries, aggregates, nor CURRVAL or NEXTVAL sequence object

expressions are allowed.
v The built-in CURRENT, DATE, DBINFO, DBSERVERNAME, ROWID,

SITENAME, SYSDATE, TODAY, and USER expressions are not valid in the
expression.

The restrictions above also apply to fragment key expressions for list and for range
interval index fragmentation schemes, including fragmentation strategies that are
defined in the FRAGMENT BY clause of the CREATE INDEX statement.

Detaching an Index from a Table-Fragmentation Strategy: You can detach an
index from a table-fragmentation strategy with the INIT clause of the ALTER
FRAGMENT ON INDEX statement, so that an attached index becomes a detached
index. This breaks any dependency of the index on the table fragmentation
strategy. If the INIT clause specifies only IN dbspace or PARTITION fragment IN
dbspace for a previously fragmented index, or if it specifies an index fragmentation
strategy that differs from the storage option of the table, then the index becomes a
detached index.

Fragmenting Unique and System Indexes: You can fragment unique indexes on a
table that uses a round-robin or expression-based distribution scheme, but any
columns referenced in the fragment expression must be indexed columns. If your
index fragmentation strategy violates this restriction, the ALTER FRAGMENT INIT
statement fails, and work is rolled back.

You might have an attached unique index on a table fragmented by Column A. If
you attempt to use ALTER FRAGMENT INIT to change the table fragmentation to
Column B, the statement fails because the unique index is defined on Column A.
To resolve this issue, use the INIT clause on the index to detach it from the table
fragmentation strategy and fragment it separately.

System indexes (such as those used in referential constraints and unique
constraints) use user-defined indexes if the indexes exist. If no user-defined indexes
can be used, system indexes remain nonfragmented and are moved to the dbspace
where the database was created. To fragment a system index, create the
fragmented index on the constraint columns and then use the ALTER TABLE
statement to add the constraint.

ADD Clause
Use the ADD clause to add another fragment to a list of fragments of an existing
table or index.

Chapter 2. SQL statements 2-21

ADD Clause:

ADD dbspace
REMAINDER IN PARTITION part IN

PARTITION part
expression IN dbspace

PARTITION part BEFORE fragment
AFTER

Element Description Restrictions Syntax

dbspace Name of a dbspace to store the
new fragment

Must exist “Identifier” on page 5-21

expression Expression that defines the new
fragment that is to be added

Must return a Boolean value (t
or f)

“Condition” on page 4-5;
“Expression” on page 4-40

fragment Name of an existing fragment Must exist “Identifier” on page 5-21

part Name that you declare here for
the new fragment. The default is
the name of the dbspace.

Required if another fragment
in the fragment list is stored in
the same dbspace. Must be
unique among names of
fragments of the index.

“Identifier” on page 5-21

The expression can contain column names only from the current table, and data
values only from a single row. No subqueries or aggregates are allowed. In
addition, the built-in CURRENT, DATE, DBINFO, SYSDATE, and TODAY
expressions are not valid in this context.

Adding a New Dbspace to a Round-Robin Distribution Scheme

You can add more dbspaces to a round-robin distribution scheme. The following
example shows the original round-robin definition:
CREATE TABLE book (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp4;

To add another dbspace, use the ADD clause, as in this example:
ALTER FRAGMENT ON TABLE book ADD dbsp3;

Adding a New Named Fragment to a Round-Robin Distribution
Scheme

In Informix, you can add a named fragment to an existing round-robin distribution
scheme. The name must be unique within the distribution among fragments of the
same dbspace. The following example specifies the same original round-robin
fragmentation definition as in the previous section:
CREATE TABLE book (col1 INT, col2 INT)

FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp4;

To add a new named fragment, you can use the ADD clause, as in the following
example:
ALTER FRAGMENT ON TABLE book

ADD PARTITION chapter3 IN dbsp1;

The new distribution uses dbsp1, dbsp4, and chapter3 as storage locations for a
3-part round-robin fragmentation scheme. The records in the fragment chapter3 are

2-22 IBM Informix Guide to SQL: Syntax

|
|

|
|
|
|

|
|

|
|

|
|

|
|

stored in separately in the dbspace dbsp1 from the records in the first fragment,
which is identified only by the dbspace name: dbsp1.

Adding an expression-based fragment

Adding a fragment expression to the fragmentation list of an expression-based
distribution scheme can relocate records from existing fragments into the new
fragment. When you insert a new fragment into the fragmentation list, the
database server reevaluates all the data in the existing fragments that follow the
new fragment. (The evalpos column value for any fragment in the sysfragments
system catalog table indicates the ordinal position of that fragment within the
fragmentation list.)

The next statement fragment shows the original expression definition:
FRAGMENT BY EXPRESSION

c1 < 100 IN dbsp1, c1 >= 100 AND c1 < 200 IN dbsp2,
REMAINDER IN dbsp3

To add another named fragment in dbspace dbsp2 to hold rows for column c1
values between 200 and 299, use the following ALTER FRAGMENT statement:
ALTER FRAGMENT ON TABLE news

ADD PARTITION century3 (c1 >= 200 AND c1 < 300) IN dbsp2;

Any rows that were formerly in the remainder fragment but that fit the criteria (c1
>= 200 AND c1 < 300) move to the new century3 fragment in dbspace dbsp2.

Using the BEFORE and AFTER Options

The BEFORE and AFTER options can position the new fragment either before or
after an existing fragment within the fragmentation list. The name of a fragment is
the name of the dbspace or the name declared in the PARTITION clause. You
cannot use the BEFORE and AFTER options if the distribution scheme is
round-robin.

When you attach a new fragment without an explicit BEFORE or AFTER option,
the database server places the added fragment at the end of the fragmentation list,
unless a remainder fragment exists. If a remainder fragment exists, the new
fragment is placed immediately before the remainder fragment. You cannot
position a new fragment after the remainder fragment.

Using the REMAINDER Option

You cannot add a remainder fragment if one already exists. If you add a new
fragment when a remainder exists, the database server retrieves and reevaluates all
records in the remainder fragment; some records might move to the new fragment.
The remainder fragment is always the last item in the fragment list.

DROP Clause

Use the DROP clause to remove an existing fragment from the fragmentation list of
a fragmented table or index.

DROP Clause:

DROP fragment
PARTITION

Chapter 2. SQL statements 2-23

|
|

|
|

|
|

|
|

|
|

Element Description Restrictions Syntax

fragment Name of the fragment Must exist when you execute the
statement

“Identifier” on page
5-21

If the table is fragmented by expression, you cannot drop a fragment containing
data that cannot be moved to another fragment. (If the distribution scheme has a
REMAINDER option, or if the expressions overlap, you can drop a fragment that
contains data.) You cannot drop a fragment if the table has only two fragments.

When you want to make a fragmented table nonfragmented, use either the INIT
clause or the DETACH clause of the ALTER FRAGMENT statement.

If the fragment was not given a name when it was created or added then the name
of the dbspace is also the name of the fragment.

When you drop a fragment, the underlying partition or dbspace is not affected.
Only the fragment data values within that partition or dbspace are affected.

When you drop a fragment, the database server attempts to move all records in the
dropped fragment to another fragment. In this case, the destination fragment might
not have enough space for the additional records. If this happens, follow one of the
procedures that “ALTER FRAGMENT and Transaction Logging” on page 2-9
describes to increase your available space, and retry the procedure.

The following examples show how to drop a fragment from a fragmentation list.
The first line shows how to drop an index fragment, and the second line shows
how to drop a table fragment.
ALTER FRAGMENT ON INDEX cust_indx DROP dbsp2;

ALTER FRAGMENT ON TABLE customer DROP dbsp1;

MODIFY Clause

Use the MODIFY clause to change one or more existing fragment expressions in
the fragmentation list of a table or of an index that is fragmented by expression.
You can also use this clause to change the storage location one or more
expression-based fragments.

MODIFY Clause:

�

,

MODIFY old TO PARTITION new
PARTITION expression IN dbspace

(1)
REMAINDER

Notes:

1 Use this path no more than once

Element Description Restrictions Syntax

dbspace Dbspace that stores the modified
information

Must exist at time of execution “Identifier” on page
5-21

2-24 IBM Informix Guide to SQL: Syntax

|

|
|
|
|

Element Description Restrictions Syntax

expression Modified expression Can specify columns in current table only
and data from only a single row

“Condition” on page
4-5; “Expression” on
page 4-40

new New name that you declare here
for the fragment (if new is
different from old)

Must be unique in fragmentation list
among names of fragments

“Identifier” on page
5-21

old Name of an existing fragment Must exist at time of execution “Identifier” on page
5-21

Usage

Here dbspace and old (or old and new) can be identical, if you are not changing the
storage location.

To use the MODIFY clause both to change the expression and to move its
corresponding fragment to a new storage location, you must change the expression
and you must also specify the name of a different dbspace or partition.

You must declare a new fragment name if more than one fragment of the same
table or index has the same identifier as the dbspace.

The expression must evaluate to a Boolean value (true or false).

No subqueries or aggregates are allowed in the expression. In addition, the built-in
CURRENT, DATE, DBINFO, SYSDATE, and TODAY expressions are not valid.

When you use the MODIFY clause to change an expression without changing the
storage location for the expression, you must use the same name for the old and
the new fragment. If the dbspace consists of only a single partition, however, you
can specify the same name for old and for dbspace, as in the following example:
ALTER FRAGMENT ON TABLE cust_acct

MODIFY dbsp1 TO acct_num < 65 IN dbsp1;

When you use the MODIFY clause to move a fragment from one dbspace to
another, old is the name of the dbspace where the fragment was previously located,
and dbspace is the new location for the fragment, as in the following example:
ALTER FRAGMENT ON TABLE cust_acct

MODIFY PARTITION part1 TO PARTITION part2 (acct_num < 35) IN dbsp2;

The ALTER FRAGMENT statement above modifies the distribution scheme for the
cust_acct table, so that the rows with values in column acct_num that are less than
35 (and that had previously been assigned to fragment part1 that was stored in the
dbspace dbsp1) will now be assigned to the fragment part2 that is stored in the
dbspace dbsp2.

When you use the MODIFY clause, the underlying dbspaces are not affected. Only
the data values within the fragments or dbspaces are affected.

If no remainder fragment already exists, you can redefine a nonremainder
fragment as a remainder fragment for rows that do not match the fragment key
values for any other fragment. You cannot change a REMAINDER fragment into a
nonremainder fragment, however, if any rows already stored in the REMAINDER
fragment do not satisfy the new expression.

Chapter 2. SQL statements 2-25

|
|
|

|
|

An attached index has the same storage distribution as its table. If all the indexes
on a table are attached indexes, and you use the MODIFY clause to modify the
table fragments, the database server automatically modifies the storage distribution
strategy for the index to match the new table fragmentation strategy.

Examples of ALTER FRAGMENT ON INDEX statements
The following series of examples illustrate the use of ALTER FRAGMENT ON
INDEX with the INIT, ADD, DROP, and MODIFY options. This first example
creates an index stored in dbsp1:
CREATE INDEX item_idx ON items (stock_num) IN dbsp1;

The following statement modifies the index to add fragmentation. Values up to 50
are stored in dbsp1, values between 51 and 80 in dbsp2, and the remainder in
dbsp3:
ALTER FRAGMENT ON INDEX item_idx INIT

FRAGMENT BY EXPRESSION
stock_num <= 50 IN dbsp1,
stock_num > 50 AND stock_num <= 80 IN dbsp2,
REMAINDER IN dbsp3;

The following statement adds a new fragment to the index:
ALTER FRAGMENT ON INDEX item_idx

ADD stock_num > 80 AND stock_num <= 120 IN dbsp4;

The following statement changes the first fragment of the index:
ALTER FRAGMENT ON INDEX item_idx

MODIFY dbsp1 TO stock_num <= 40 IN dbsp1;

The following statement drops the fragment in dbsp4 from the index:
ALTER FRAGMENT ON INDEX item_idx

DROP dbsp4;

The following statement defines an index that is fragmented by expression, with
the fragments stored in named partitions of the dbspaces dbsp1 and dbsp2:
ALTER FRAGMENT ON INDEX item_idx INIT

PARTITION BY EXPRESSION
PARTITION part1 stock_num <= 10 IN dbsp1,
PARTITION part2 stock_num > 20 AND stock_num <= 30 IN dbsp1,
PARTITION part3 REMAINDER IN dbsp2;

The following statement adds a new named fragment:
ALTER FRAGMENT ON INDEX item_idx ADD

PARTITION part4 stock_num > 30 AND stock_num <= 40 IN dbsp2
BEFORE part3;

Related Information

Related statements: “CREATE TABLE statement” on page 2-198, “CREATE INDEX
statement” on page 2-135, and “ALTER TABLE statement” on page 2-41

For a discussion of fragmentation strategy, refer to the IBM Informix Database
Design and Implementation Guide.

For information on how to maximize performance when you make fragment
modifications, see your IBM Informix Performance Guide.

2-26 IBM Informix Guide to SQL: Syntax

|

Related concepts

Improve the performance of operations that attach and detach fragments
(Performance Guide)

ALTER FUNCTION statement
Use the ALTER FUNCTION statement to change the routine modifiers or
pathname of a user-defined function. This statemen is an extension to the
ANSI/ISO standard for SQL.

Syntax

�� ALTER �

,

FUNCTION function ()
parameter_type

(1)
SPECIFIC FUNCTION Specific Name

�

� �

,
(2)

WITH(ADD Routine Modifier)
MODIFY
DROP
(3) (4)

MODIFY EXTERNAL NAME = Shared-Object Filename

��

Notes:

1 See “Specific Name” on page 5-73

2 See “Routine Modifier” on page 5-59

3 External routines only

4 See “Shared-Object Filename” on page 5-70

Element Description Restrictions Syntax

function User-defined
function to be
modified

Must be registered in the database. If the name does not
uniquely identify a function, you must enter one or more
appropriate values for parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of a
parameter

Must be the same data types (and specified in the same
order) as in the definition of function.

“Data Type” on
page 4-21

Usage

The ALTER FUNCTION statement can modify a user-defined function to tune its
performance by modifying characteristics that control how the function executes.
You can also add or replace related user-defined routines (UDRs) that provide
alternatives for the query optimizer, which can improve performance.

All modifications take effect on the next invocation of the function.

Only the UDR owner or the DBA can use the ALTER FUNCTION statement.

Chapter 2. SQL statements 2-27

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_475.htm#ids_prf_475

Keywords That Introduce Modifications

Use the following keywords to introduce what you modify in the UDR.

Keyword Effect on Specified Routine Modifier

ADD Add a new routine modifier to the UDR

MODIFY Change an attribute of the routine modifier

DROP Delete the routine modifier from the UDR

MODIFY EXTERNAL NAME (for
external functions only)

Replace the file specification of the executable file.
When the IFX_EXTEND_ROLE configuration
parameter = ON, this option is valid only for users to
whom the DBSA has granted the EXTEND role. With
IFX_EXTEND_ROLE = OFF (or not set), the UDR
owner or the DBA can use this option.

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be t
(equivalent of using the keyword ADD to add the routine modifier). For example,
both of the following statements alter the func1 function so that it can be executed
in parallel in the context of a parallelizable data query:
ALTER FUNCTION func1 WITH (MODIFY PARALLELIZABLE);
ALTER FUNCTION func1 WITH (ADD PARALLELIZABLE);

See also “Example of Altering Routine Modifiers” on page 2-33.

Related Information

Related Statements: “ALTER PROCEDURE statement” on page 2-30, “ALTER
ROUTINE statement” on page 2-31, “CREATE FUNCTION statement” on page
2-125, and “CREATE PROCEDURE statement” on page 2-162

For a discussion of how to create and use SPL routines, see the IBM Informix Guide
to SQL: Tutorial. For a discussion of how to create and use external routines, see
IBM Informix User-Defined Routines and Data Types Developer's Guide and the IBM
Informix DataBlade API Programmer's Guide.

ALTER INDEX statement
Use the ALTER INDEX statement to change the clustering attribute or the locking
mode of an existing index. This statement is an extension to the ANSI/ISO
standard for SQL.

Syntax

�� ALTER INDEX index TO CLUSTER
NOT

��

Element Description Restrictions Syntax

index Name of the index to be altered Must exist “Identifier” on page 5-21

2-28 IBM Informix Guide to SQL: Syntax

Usage

ALTER INDEX is valid only for indexes that the CREATE INDEX statement
created explicitly. ALTER INDEX cannot modify an index on a temporary table,
nor an index that the database server created implicitly to support a constraint.

You cannot change the collating order of an existing index. If you use ALTER
INDEX to modify an index after the SET COLLATION statement of Informix has
specified a non-default collating order, the SET COLLATION statement has no
effect on the index.

TO CLUSTER Option
The TO CLUSTER option causes the database server to reorder the rows of the
physical table according to the indexed order.

The next example shows how you can use the ALTER INDEX TO CLUSTER
statement to order the rows in the orders table physically. The CREATE INDEX
statement creates an index on the customer_num column of the table. Then the
ALTER INDEX statement causes the physical ordering of the rows.
CREATE INDEX ix_cust ON orders (customer_num);
ALTER INDEX ix_cust TO CLUSTER;

For an ascending index, TO CLUSTER puts rows in lowest-to-highest order. For a
descending index, the rows are reordered in highest-to-lowest order.

When you reorder, the entire file is rewritten. This process can take a long time,
and it requires sufficient disk space to maintain two copies of the table.

While a table is clustering, it is locked IN EXCLUSIVE MODE. When another
process is using the table to which the index name belongs, the database server
cannot execute the ALTER INDEX statement with the TO CLUSTER option; it
returns an error unless lock mode is set to WAIT. (When lock mode is set to WAIT,
the database server retries the ALTER INDEX statement.)

Over time, if you modify the table, you can expect the benefit of an earlier cluster
to disappear because rows are added in space-available order, not sequentially. You
can recluster the table to regain performance by issuing another ALTER INDEX TO
CLUSTER statement on the clustered index. You do not need to drop a clustered
index before you issue another ALTER INDEX TO CLUSTER statement on a
currently clustered index.

TO NOT CLUSTER Option
The TO NOT CLUSTER option drops the cluster attribute on the index name
without affecting the physical table. Because no more than one clustered index can
exist on a given table, you must use the TO NOT CLUSTER option to release the
cluster attribute from one index before you assign it to another index on the same
table. The following statements illustrate how to remove clustering from one index
and how a second index physically reclusters the table:
CREATE UNIQUE INDEX ix_ord ON orders (order_num);

CREATE CLUSTER INDEX ix_cust ON orders (customer_num);
. . .
ALTER INDEX ix_cust TO NOT CLUSTER;

ALTER INDEX ix_ord TO CLUSTER;

Chapter 2. SQL statements 2-29

The first two statements create indexes for the orders table and cluster the physical
table in ascending order on the customer_num column. The last two statements
recluster the physical table in ascending order on the order_num column.

ALTER PROCEDURE statement
Use the ALTER PROCEDURE statement to change the routine modifiers or
pathname of a previously defined external procedure. This statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� ALTER �

,

PROCEDURE procedure ()
parameter_type

(1)
SPECIFIC PROCEDURE Specific Name

�

� �

,
(2)

WITH(ADD Routine Modifier)
MODIFY
DROP
(3) (4)

MODIFY EXTERNAL NAME = Shared-Object Filename

��

Notes:

1 See “Specific Name” on page 5-73

2 See “Routine Modifier” on page 5-59

3 External routines only

4 See “Shared-Object Filename” on page 5-70

Element Description Restrictions Syntax

procedure User-defined
procedure to
modify

Must be registered in the database. If the name does not
uniquely identify a function, you must enter one or more
appropriate values for parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of a
parameter

Must be the same data types (and specified in the same
order) as in the definition of procedure.

“Data Type” on
page 4-21

Usage

The ALTER PROCEDURE statement enables you to modify an external procedure
to tune its performance by modifying characteristics that control how it executes.
You can also add or replace related UDRs that provide alternatives for the
optimizer, which can improve performance. All modifications take effect on the
next invocation of the procedure.

Only the UDR owner or the DBA can use the ALTER PROCEDURE statement.

If the procedure name is not unique among routines registered in the database,
you must enter one or more appropriate values for parameter_type.

2-30 IBM Informix Guide to SQL: Syntax

The following keywords introduce what you want to modify in procedure.

Keyword Effect

ADD Add a new routine modifier to the UDR

MODIFY Change an attribute of a routine modifier

DROP Delete a routine modifier from the UDR

MODIFY EXTERNAL NAME (for
external procedures only)

Replace the file specification of the executable file.
When the IFX_EXTEND_ROLE configuration
parameter = ON, this option is valid only for users to
whom the DBSA has granted the EXTEND role. With
IFX_EXTEND_ROLE = OFF (or not set), the UDR
owner or the DBA can use this option.

MODIFY EXTERNAL NAME (for
external procedures only)

Replace the file specification of the executable file.
(Valid only for users who have the EXTEND role)

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier). For example,
both of the following statements alter the proc1 procedure so that it can be
executed in parallel in the context of a parallelizable data query:
ALTER PROCEDURE proc1 WITH (MODIFY PARALLELIZABLE);
ALTER PROCEDURE proc1 WITH (ADD PARALLELIZABLE);

See also “Example of Altering Routine Modifiers” on page 2-33.

Related Information

Related statements: “ALTER ROUTINE statement,” “CREATE PROCEDURE
statement” on page 2-162, “DROP PROCEDURE statement” on page 2-335, and
“DROP ROUTINE statement” on page 2-339.

For a discussion of SPL routines, see the IBM Informix Guide to SQL: Tutorial.

For a discussion of how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade API
Programmer's Guide.

ALTER ROUTINE statement
Use the ALTER ROUTINE statement to change the routine modifiers or pathname
of a previously defined user-defined routine (UDR), This statement is an extension
to the ANSI/ISO standard for SQL.

Syntax

�� ALTER �

,

ROUTINE routine ()
parameter_type

(1)
SPECIFIC ROUTINE Specific Name

�

Chapter 2. SQL statements 2-31

� �

,
(2)

WITH(ADD Routine Modifier)
MODIFY
DROP
(3) (4)

MODIFY EXTERNAL NAME = Shared-Object Filename

��

Notes:

1 See “Specific Name” on page 5-73

2 See “Routine Modifier” on page 5-59

3 External routines only

4 See “Shared-Object Filename” on page 5-70

Element Description Restrictions Syntax

routine User-defined
routine to
modify

Must be registered in the database. If the name does not
uniquely identify a routine, you must enter one or more
appropriate values for parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of a
parameter

Must be the same data types (and specified in the same
order) as in the definition of routine.

“Data Type” on
page 4-21

Usage

The ALTER ROUTINE statement allows you to modify a previously defined UDR
to tune its performance by modifying characteristics that control how the UDR
executes. You can also add or replace related UDRs that provide alternatives for
the optimizer, which can improve performance.

This statement is useful when you do not know whether a UDR is a user-defined
function or a user-defined procedure. When you use this statement, the database
server alters the appropriate user-defined procedure or user-defined function.

All modifications take effect on the next invocation of the UDR.

Only the UDR owner or the DBA can use the ALTER ROUTINE statement.

Restrictions
If the name does not uniquely identify a UDR, you must enter one or more
appropriate values for parameter_type.

When you use this statement, the type of UDR cannot be ambiguous. The UDR
that you specify must refer to either a user-defined function or a user-defined
procedure. If either of the following conditions exist, the database server returns an
error:
v The name (and parameters) that you specify applies to both a user-defined

procedure and a user-defined function.
v The specific name that you specify applies to both a user-defined function and a

user-defined procedure.

2-32 IBM Informix Guide to SQL: Syntax

Keywords That Introduce Modifications

Use these keywords to introduce the items in the UDR that you want to modify:

Keyword Effect

ADD Add a routine modifier to the UDR

DROP Delete a routine modifier from the UDR

MODIFY Change an attribute of the routine modifier

MODIFY EXTERNAL NAME (for
external routines only)

Replace the file specification of the executable file.
When the IFX_EXTEND_ROLE configuration
parameter = ON, this option is valid only for users to
whom the DBSA has granted the EXTEND role. With
IFX_EXTEND_ROLE = OFF (or not set), the UDR
owner or the DBA can use this option.

WITH Introduces all modifications

If the routine modifier is a BOOLEAN value, MODIFY sets the value to be T
(equivalent to using the keyword ADD to add the routine modifier).

For example, both of the following statements alter the func1 UDR so that it can
be executed in parallel in the context of a parallelizable data query statement:
ALTER ROUTINE func1 WITH (MODIFY PARALLELIZABLE);
ALTER ROUTINE func1 WITH (ADD PARALLELIZABLE);

Example of Altering Routine Modifiers
Suppose you have an external function func1 that is set to handle NULL values
and has a cost per invocation set to 40. The following ALTER ROUTINE statement
adjusts the settings of the function by dropping the ability to handle NULL values,
tunes the func1 by changing the cost per invocation to 20, and indicates that the
function can execute in parallel:
ALTER ROUTINE func1(CHAR, INT, BOOLEAN)

WITH (
DROP HANDLESNULLS,
MODIFY PERCALL_COST = 20,
ADD PARALLELIZABLE
);

Because the name func1 is not unique to the database, the data type parameters
are specified so that the routine signature is unique. If this function had a Specific
Name, for example, raise_sal, specified when it was created, you could identify the
function with the following first line:
ALTER SPECIFIC ROUTINE raise_sal;

Related Information

Related Statements: “ALTER FUNCTION statement” on page 2-27, “ALTER
PROCEDURE statement” on page 2-30, “CREATE FUNCTION statement” on page
2-125, “CREATE PROCEDURE statement” on page 2-162, “DROP FUNCTION
statement” on page 2-329, “DROP PROCEDURE statement” on page 2-335, and
“DROP ROUTINE statement” on page 2-339.

For a discussion of how to create and use SPL routines, see the IBM Informix Guide
to SQL: Tutorial.

Chapter 2. SQL statements 2-33

For a discussion of how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade API
Programmer's Guide.

ALTER SECURITY LABEL COMPONENT statement
Use the ALTER SECURITY LABEL COMPONENT statement to add one or more
new elements to an existing security label component in the current database. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� ALTER SECURITY LABEL COMPONENT component ADD �

� � �

�

�

,
,

ARRAY [element BEFORE old_element]
AFTER

,

SET { element }
,

TREE (element UNDER old_element)

��

Element Description Restrictions Syntax

component Component to
which element is
added

Must already exist in the database. “Identifier” on page
5-21

element New element of
component

Must be unique among elements of this component,
and no longer than 32 bytes. The left (() and right
()) parentheses, comma (,), and colon (:)
symbols are not valid characters.

“Quoted String” on
page 4-188

old_element Existing element of
component

Must be an element of component. “Quoted String” on
page 4-188

Usage

Only DBSECADM can issue the ALTER SECURITY LABEL COMPONENT
statement, which defines new elements of an existing security label component.
The new elements become part of any security policy defined in a CREATE
SECURITY POLICY statement that references the specified component.

A security label component consists of a set of no more than 64 elements that the
CREATE SECURITY LABEL COMPONENT statement defines as string constants.
Each string constant can have no more than 32 bytes, and each must be unique
among elements of this component. The declaration of each element, which is a
valid value that the component can have, defines a category of data sensitivity. By
adding new elements to an existing component, the ALTER SECURITY LABEL

2-34 IBM Informix Guide to SQL: Syntax

COMPONENT statement expands the set of values that a component can have
within a security policy that includes the component, or within a security label that
supports the security policy.

When the ALTER SECURITY LABEL COMPONENT statement executes
successfully, Informix updates the following tables of the system catalog of the
current database:
v The sysseclabelcomponentelements table, to add new rows for each new

elements of the component,
v The sysseclabelcomponents table, to show the new cardinality of the security

elements that comprise the modified security component.

This statement can define new elements of a security label component, but it
cannot modify or drop an existing element. If the security design changes so that
different elements are required, DBSECADM can add the new elements, if the total
number of elements remains within the size and cardinality limits, and not use any
obsolete elements in defining labels that include the component.

Alternatively, DBSECADM can use the DROP SECURITY LABEL COMPONENT
statement to drop the component, and then use the CREATE SECURITY LABEL
COMPONENT statement to redefine a new component that has only the required
elements. You cannot, however, drop a security component if it is part of an
existing security policy. See “DROP SECURITY statement” on page 2-342 for
information about restrictions on dropping security label components and other
security objects of Informix.

The security label component to which new elements are added must be one of
three component types. The ARRAY, SET, or TREE keyword that immediately
follows the component name must specify the same component type that the
CREATE SECURITY LABEL COMPONENT statement specified when the
component was originally defined. The syntax for specifying the new list of
elements depends on whether the specified component is of type ARRAY, SET, or
TREE, which are the three types of security component that Informix supports.

The ADD ARRAY Clause
A security label component of type ARRAY is an ordered set of no more than 64
elements. The order in which array elements are declared is significant, because it
defines a descending order of data sensitivity, with each successive element
ranking lower in data sensitivity than the preceding element. The set of label
elements of the array and their comma (,) separators must be enclosed between a
pair of bracket ([...]) symbols. The same new element cannot be declared more
than once in the same ADD ARRAY clause.

In the ADD ARRAY clause, the BEFORE or AFTER keyword must follow the new
element (or a comma-separated list of new elements) to specify the position of the
new element within the descending order of data sensitivity. Within restrictions on
the size and the number of elements, this syntax enables DBSECADM to insert a
new element anywhere in the array, including the highest or the lowest position, or
between consecutive existing elements. The ALTER SECURITY LABEL
COMPONENT statement fails with an error, however, if the BEFORE or AFTER
keyword of the ADD ARRAY clause specifies an array element that was not
previously defined, either when the array component was created, or else in a
previous ALTER SECURITY LABEL COMPONENT statement that modified the
same array component.

Chapter 2. SQL statements 2-35

If multiple ALTER SECURITY LABEL COMPONENT operations are performed to
add elements to the same component of type ARRAY, DBSECADM might not be
able to reach the maximum of 64 array elements because of how array elements
are encoded. For information on how security elements are encoded, see the IBM
Informix Security Guide.

The following example defines a security label component of type ARRAY called
aquilae that is an ordered set of five elements, with imperator highest in data
sensitivity and asinus lowest. The subsequent ALTER SECURITY LABEL
COMPONENT statement adds two new elements:
v a new element called legatus that ranks between imperator and tribunus

v a new element called cunctator that ranks below asinus as the new low in data
sensitivity.

CREATE SECURITY LABEL COMPONENT aquilae
ARRAY ["imperator", "tribunus", "centurio", "miles", "asinus"];

ALTER SECURITY LABEL COMPONENT aquilae
ADD ARRAY ["legatus" BEFORE "tribunus","cunctator" AFTER "asinus"];

Successful execution of this ALTER SECURITY LABEL COMPONENT ... ADD
ARRAY statement modifies the aquilae security label component array, so that the
new descending order of component elements becomes this: imperator, legatus,
tribunus, centurio, miles, asinus, cunctator.

The ADD SET Clause
A security label component of type SET is an unordered set of no more than 64
elements. The order in which the elements of a SET component are declared is not
significant. The set of elements of the array and their comma separators must be
enclosed between a pair of braces ({ ... }) symbols. The same new element
cannot be declared more than once in the same ADD SET clause.

The following example defines a type SET security label component called
departments that is an unordered set of three elements, called Marketing, HR, and
Finance, which the ALTER SECURITY LABEL COMPONENT statement modifies
by adding three new elements called Training , QA, and Security:
CREATE SECURITY LABEL COMPONENT departments

SET { ’Marketing’, ’HR’, ’Finance’ };

ALTER SECURITY LABEL COMPONENT departments
ADD SET { ’Training’, ’QA’, ’Security’ };

Unlike ADD ARRAY or ADD TREE specifications, ADD SET operations of ALTER
SECURITY LABEL COMPONENT do not create "greater than" or "less than"
data-sensitivity relationships among the new and existing elements of the
redefined component, because the elements of a type SET component have no
implicit order of data sensitivity.

The ADD TREE Clause
A security label component of type TREE has the logical topology of a simple
graph with no loops. Each TREE component has a single root node and no more
than 63 additional nodes. Any new elements that the ALTER SECURITY LABEL
COMPONENT statement adds to this hierarchy must be inserted below the root
node. The string constant for each new node must be followed by the keyword
UNDER and by the string constant for some previously declared node. The set of

2-36 IBM Informix Guide to SQL: Syntax

elements of the TREE component, including their UNDER keywords and comma
separators, must be enclosed between a pair of parenthesis ((...)) symbols.

The component element specified after the UNDER keyword is called the parent of
the new element that precedes the same UNDER keyword. The new element is
called the child of that parent element. The ALTER SECURITY LABEL
COMPONENT statement fails with an error, however, if the ADD TREE clause
specifies a parent element that is not already defined in the database for this
component. The UNDER keyword cannot be followed by an element that is added
to the component in the same ADD TREE clause.

The string constant that designates the root node of a TREE component has the
highest data sensitivity of all the nodes within the TREE hierarchy. In any subset of
successive parent nodes and child nodes in the tree, each non-root element has
lower data sensitivity than its parent element or than any ancestor of its parent
element, but has higher data sensitivity than any of its child elements or than the
descendents of its child elements.

When a user who holds no exemptions attempts to access a data row that is
protected by a label that includes a TREE component, a read operation fails if the
security label of the user does not include an element that matches one of the
TREE elements for the same component of the data row label, or that matches an
ancestor of one of those elements. Unless the security policy of the label includes
the OVERRIDE clause, a write operation also fails in the same circumstances. If the
data row label has multiple TREE components, the user security label must include
a matching (or an ancestral) element value for every TREE component of the data
row security label.

In the following example, the ALTER SECURITY LABEL COMPONENT statement
modifies a tree component called Oakland by adding two new nodes to its tree
structure that was defined with six nodes by this CREATE SECURITY LABEL
COMPONENT statement:
CREATE SECURITY LABEL COMPONENT Oakland
TREE (’Port’ ROOT,

’Downtown’ UNDER ’Port’,
’Airport’ UNDER ’Port’,
’Estuary’ UNDER ’Airport’,
’Avenues’ UNDER ’Downtown’,
’Hills’ UNDER ’Avenues’);

ALTER SECURITY LABEL COMPONENT Oakland
ADD TREE (’Uptown’ UNDER ’Port’,

’Bay’ UNDER ’Estuary’);

Here new Uptown node is a child of Port, which has the highest data sensitivity
because it is the root node. The new Bay node is the child of Estuary, which is the
child of Airport, which is the child of Port, implying that Bay has a lower data
sensitivity than these three nodes of the hierarchy. In practice, it is unlikely that
any data would be labeled with Port, rather than classified at a lower level. The
Port value might be used for a label granted to a user who is allowed to access all
of the data about the Port.

If the ALTER SECURITY LABEL COMPONENT statement in this example
succeeds, and a subsequently defined data row label specifies Bay as its value for
the Oakland component, a user with no exemption for the security policy who
attempts to read the protected row in a query would need either Port, Airport,
Estuary, or Bay as a user label value to satisfy this component of the data row

Chapter 2. SQL statements 2-37

label. Values of Uptown or Downtown for this component in the user label are
insufficient, because they do not match Bay and are not ancestors of Bay. For a
query to read the protected row, the security label of the user must also include
values that satisfy any other components of the row security label, and the user
must also hold Select access privilege on the table and at least Connect access
privilege on the database that contains the protected row.

The ADD TREE clause cannot interpose a new node between an existing child
node and its parent.

Related Information

Related statements: ALTER TABLE, “CREATE SECURITY LABEL statement” on
page 2-183, “CREATE SECURITY LABEL COMPONENT statement” on page 2-184,
“CREATE SECURITY POLICY statement” on page 2-189, CREATE TABLE, “DROP
SECURITY statement” on page 2-342, GRANT EXEMPTION, GRANT SECURITY
LABEL, “RENAME SECURITY statement” on page 2-498, REVOKE EXEMPTION,
and REVOKE SECURITY LABEL

For a discussion of LBAC security objects, see the IBM Informix Security Guide.

ALTER SEQUENCE statement
Use the ALTER SEQUENCE statement to modify the definition of a sequence
object. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� ALTER SEQUENCE
owner.

sequence �

� �

(1) NOCYCLE
CYCLE

(1)
CACHE size
NOCACHE

(1) ORDER
NOORDER

(1) BY
INCREMENT step

(1) WITH
RESTART restart

(1) NOMAXVALUE
MAXVALUE max

(1) NOMINVALUE
MINVALUE min

��

Notes:

1 Use path no more than once

2-38 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

max New upper limit on values Must be integer > CURRVAL and restart “Literal Number” on page
4-184

min New lower limit on values Must be integer < CURRVAL and restart “Literal Number” on page
4-184

owner Owner of sequence Cannot be changed by this statement “Owner Name” on page
5-45

restart New first value in sequence Must be integer in the INT8 range “Literal Number” on page
4-184

sequence Name of existing sequence Must exist. Cannot be a synonym. “Identifier” on page 5-21

size New number of values to
preallocate in memory

Integer > 2 but < cardinality of values in
one cycle (= |(max - min)/step|)

“Literal Number” on page
4-184

step New interval between
successive values

Must be a nonzero integer “Literal Number” on page
4-184

Usage

The ALTER SEQUENCE statement can update the definition of a specified
sequence object in the syssequences system catalog table.

ALTER SEQUENCE redefines an existing sequence object. It only affects
subsequently generated values (and any unused values in the sequence cache). You
cannot use the ALTER SEQUENCE statement to rename a sequence nor to change
the owner of a sequence.

You must be the owner, or the DBA, or else have the Alter privilege on the
sequence to modify its definition. Only elements of the sequence definition that
you specify explicitly in the ALTER SEQUENCE statement are modified. An error
occurs if you make contradictory changes, such as specifying both MAXVALUE
and NOMAXVALUE, or both the CYCLE and NOCYCLE options.

INCREMENT BY Option
Use the INCREMENT BY option to specify a new interval between successive
numbers in a sequence. The interval, or step value, can be a positive whole number
(for ascending sequences) or a negative whole number (for descending sequences)
in the INT8 range. The BY keyword is optional.

RESTART WITH Option
Use the RESTART WITH option to specify a new first number of the sequence. The
restart value must be an integer within the INT8 range that is greater than or equal
to the min value (for an ascending sequence) or that is less than or equal to the
max value (for a descending sequence), if min or max is specified in the ALTER
SEQUENCE statement. The WITH keyword is optional.

When you modify a sequence using the RESTART option, the restart value is stored
in the syssequences system catalog table only until the first use of the sequence
object in a NEXTVAL expression. After that, the value is reset in the system
catalog. Use of the dbschema utility can increment sequence objects in the
database, creating gaps in the generated numbers that might not be expected in
applications that require serialized integers.

Chapter 2. SQL statements 2-39

MAXVALUE or NOMAXVALUE Option
Use the MAXVALUE option to specify a new upper limit of values in the
sequence. The maximum value, or max, must be an integer in the INT8 range that
is greater than sequence.CURRVAL and restart (or greater than the origin in the
original CREATE SEQUENCE statement, if restart is not specified).

Use the NOMAXVALUE option to replace the current limit with a new default
maximum of 2e64 for ascending sequences or -1 for descending sequences.

MINVALUE or NOMINVALUE Option
Use the MINVALUE option to specify a new lower limit of values in the sequence.
The minimum value, or min, must be an integer the INT8 range that is less than
sequence.CURRVAL and restart (or less than the origin in the original CREATE
SEQUENCE statement, if restart is not specified).

Use the NOMINVALUE option to replace the current lower limit with a default of
1 for ascending sequences or -(2e64) for descending sequences.

CYCLE or NOCYCLE Option
Use the CYCLE option to continue generating sequence values after the sequence
reaches the maximum (ascending) or minimum (descending) limit, to replace the
NOCYCLE attribute. After an ascending sequence reaches max, it generates the min
value for the next value. After a descending sequence reaches min, it generates the
max value for the next sequence value.

Use the NOCYCLE option to prevent the sequence from generating more values
after reaching the declared limit. Once the sequence reaches the limit, the next
reference to sequence.NEXTVAL returns an error message.

CACHE or NOCACHE Option
Use the CACHE option to specify a new number of sequence values that are
preallocated in memory for rapid access. The cache size must be a whole number
in the INT range that is less than the number of values in a cycle (or less than
(|max - min)/step|). The minimum size is 2 preallocated values.

Use NOCACHE to have no values preallocated in memory. (See also the
description of SEQ_CACHE_SIZE in “CREATE SEQUENCE statement” on page
2-191.)

ORDER or NOORDER Option
These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the ALTER SEQUENCE statement, however, for compatibility with
implementations of sequence objects in other dialects of SQL.

Examples

The examples below are based on the following sequence object and table:
CREATE SEQUENCE seq_2

INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

2-40 IBM Informix Guide to SQL: Syntax

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)

SELECT * FROM tab1;

col1 col2

0 0
1 1

ALTER SEQUENCE seq_2
RESTART WITH 5
INCREMENT by 2
MAXVALUE 300;

INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)
INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)
SELECT * FROM tab1;

col1 col2

0 0
1 1
5 5
7 7

Related Information

Related statements: “CREATE SEQUENCE statement” on page 2-191, “DROP
SEQUENCE statement” on page 2-344, “RENAME SEQUENCE statement” on page
2-500, “CREATE SYNONYM statement” on page 2-195, “DROP SYNONYM
statement” on page 2-346, “GRANT statement” on page 2-401, “REVOKE
statement” on page 2-502, “INSERT statement” on page 2-435, “UPDATE
statement” on page 2-700, and “SELECT statement” on page 2-536

For information about the syssequences system catalog table in which sequence
objects are registered, see the IBM Informix Guide to SQL: Reference.

For information about initializing, generating, or reading values from a sequence,
see “NEXTVAL and CURRVAL Operators” on page 4-78.
Related reference

SYSSEQUENCES (SQL Reference)

ALTER TABLE statement
Use the ALTER TABLE statement to modify the definition of an existing table.

Syntax

�� ALTER TABLE table
synonym

(1)
Basic Table Options

(2)
Logging TYPE Options

��

Chapter 2. SQL statements 2-41

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_067.htm#ids_sqr_067

Notes:

1 See “Basic Table Options” on page 2-44

2 See “Logging TYPE Options” on page 2-43

Element Description Restrictions Syntax

synonym Synonym for the table to be
altered

Synonym and its table must exist;
USETABLENAME must not be set

“Identifier” on page 5-21

table Name of table to be altered Must exist in the current database “Identifier” on page 5-21

Usage

In Informix, the database server performs the actions in the ALTER TABLE
statement in the order that you specify. If any action fails, the entire operation is
cancelled.

The ALTER TABLE statement cannot add a fragmentation strategy to a
nonfragmented table, nor modify the storage distribution strategy of a fragmented
table. For information on adding, modifying, or dropping the storage distribution
strategy of a table, see the “ALTER FRAGMENT statement” on page 2-7.

Altering a table on which a view depends might invalidate the view.

Warning: The clauses available with this statement have varying performance
implications. Before you undertake alter operations, check the corresponding
sections in your IBM Informix Performance Guide to review effects and strategies.

Restrictions on the Table

The table whose name or synonym follows the ALTER TABLE keywords must be a
permanent table in the current database. It is subject to the following restrictions:
v It cannot be a temporary table.
v It cannot be a violations table or a diagnostics table. (In addition, you cannot use

the ALTER TABLE statement to add, drop, or modify a column in a table that
has an associated violation table or diagnostics table.)

If the USETABLENAME environment variable is set, you cannot specify a synonym
for the table in the ALTER TABLE statement.

For a RAW table, the Logging TYPE options are the only part of the ALTER TABLE
statement that you can use.

To use ALTER TABLE, your discretionary access privileges must meet one of the
following conditions:
v You must have DBA privilege on the database containing the table.
v You must own the table.
v You must have the Alter privilege on the specified table and the Resource

privilege on the database where the table resides.
v To add a referential constraint, you must have the DBA or References privilege

on either the referenced columns or the referenced table.
v To drop a constraint, you must have the DBA privilege or be the owner of the

constraint. If you are the owner of the constraint but not the owner of the table,

2-42 IBM Informix Guide to SQL: Syntax

you must have Alter privilege on the specified table. You do not need the
References privilege to drop a constraint.

Related concepts

Table performance considerations (Performance Guide)

Logging TYPE Options

Use the Logging TYPE options to specify that the table has particular
characteristics that can improve various bulk operations on it.

Logging TYPE Options:

TYPE (STANDARD)
RAW

Here STANDARD, the default option of the CREATE TABLE statement, specifies a
logged table, and RAW specifies an unlogged table.

A table can have any of the following logging characteristics.

Option Effect

STANDARD
Logging table that allows rollback, recovery, and restoration from archives.
This is the default. Use this type for recovery and constraints functionality
on OLTP databases.

RAW Nonlogging table that do not support primary key constraints or unique
constraints. but that support referential constraints, and can be indexed
and updated. Use this type for quickly loading data.

Warning: Use raw tables for fast loading of data. It is recommended that you alter
the logging type to STANDARD and perform a level-0 backup before you use the
table in a transaction or modify the data within the table. If you must use a raw
table within a transaction, either set the isolation level to Repeatable Read or lock
the table in exclusive mode to prevent concurrency problems.

The Logging TYPE option can convert a non-logging table, such as a RAW table, to
a STANDARD table that supports transaction logging. If you use this feature, you
should be aware that the database server does not check to see whether a level 0
archive has been performed on the table.

Operations on a RAW table are not logged and are not recoverable, so RAW tables
are always at risk. When the database server converts a table that is not logged to
a STANDARD table type, it is your responsibility to perform a level-0 backup
before using the table in a transaction or modifying data in the table. Failure to do
this might lead to recovery problems in the event of a server crash.

For more information on these logging types of tables, refer to your IBM Informix
Administrator's Guide.

The Logging TYPE options have the following restrictions:
v You must perform a level-0 archive before the logging type of a table can be

altered to STANDARD from any other logging type.

Chapter 2. SQL statements 2-43

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_277.htm#ids_prf_277

v If you have triggers defined on the table, you cannot change the logging type to
RAW. Unlogged tables do not support triggers.

v The table cannot be TEMP table, and you cannot change any of these types of
tables to a TEMP table.

The following example changes a nonlogging table to a table that uses transaction
logging:
ALTER TABLE tabnolog TYPE (STANDARD);

The following example changes a logging table to a nonlogging table.
ALTER TABLE tablog TYPE (RAW);

Related reference

Transaction logging (Administrator's Guide)

Basic Table Options

The Basic Table Options segment of the ALTER TABLE statement has the following
syntax.

Basic Table Options:

�

,
(1)

ADD Column Clause
(2)

ADD CONSTRAINT Clause
(3)

MODIFY Clause
(4)

DROP CONSTRAINT Clause
(5)

DROP Column Clause
(6) (7)

MODIFY EXTENT SIZE Clause
(6) (8)

MODIFY NEXT SIZE Clause
(6) (9)

LOCK MODE Clause
(10)

PUT Clause
(11)

SECURITY POLICY Clause
ADD ROWIDS
DROP VERCOLS

(12)
ER Shadow Columns

(13)
ADD TYPE Clause

Notes:

1 See “ADD Column Clause” on page 2-47

2 See “ADD CONSTRAINT Clause” on page 2-66

3 See “MODIFY Clause” on page 2-59

4 See “DROP CONSTRAINT Clause” on page 2-69

2-44 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0648.htm#ids_admin_0648

5 See “DROP Column Clause” on page 2-57

6 Use this path no more than once

7 See “MODIFY EXTENT SIZE” on page 2-69

8 See “MODIFY NEXT SIZE Clause” on page 2-70

9 See “LOCK MODE Clause” on page 2-71

10 See “PUT Clause” on page 2-64

11 See “SECURITY POLICY Clause” on page 2-55

12 See “Enterprise Replication shadow columns”

13 See “ADD TYPE Clause” on page 2-72

You can use the Basic Table Options segment to modify the schema of a table by
adding, modifying, or dropping columns and constraints, or changing the extent
size or locking granularity of a table. The database server performs alterations in
the order that you specify. If any of the actions fails, the entire operation is
cancelled.

With Informix, you can also associate a table with a named ROW type or specify a
new storage space to store large-object data. You can also add or drop rowid
columns or shadow columns to support secondary server update operations of the
USELASTCOMMITTED feature. You cannot, however, specify these options in
conjunction with any other alterations.

Enterprise Replication shadow columns
You can add or drop Enterprise Replication shadow columns when you alter a
table.

Adding or dropping Enterprise Replication shadow columns:

ADD CRCOLS
REPLCHECK

DROP CRCOLS
REPLCHECK

Usage

If Enterprise Replication is active while you are altering the table with the ADD
CRCOLS or ADD REPLCHECK clauses, you must first put the table in alter mode
with the cdr alter command.

The ADD CRCOLS keywords create shadow columns, cdrserver and cdrtime, that
Enterprise Replication uses for conflict resolution.

Use the DROP CRCOLS keywords to drop the cdrserver and cdrtime shadow
columns. You must stop replication before dropping the cdrserver and cdrtime
shadow columns.

The ADD REPLCHECK keywords create the shadow column, ifx_replcheck, that
you can create an index on, along with your primary key, to speed the processing
of consistency checking with Enterprise Replication. The ifx_replcheck shadow
column requires that the cdrserver and cdrtime shadow columns also be defined
on the table.

Chapter 2. SQL statements 2-45

Use the DROP REPLCHECK keywords to drop the ifx_replcheck shadow column.

The cdrserver and cdrtime shadow columns are not visible in the systables system
catalog table.

For more information, refer to “Using the WITH CRCOLS Option” on page 2-218,
“Using the WITH REPLCHECK Keywords” on page 2-218, and to the IBM Informix
Enterprise Replication Guide.

Examples

In the following example, the cdrserver and cdrtime shadow columns are added to
the customer table:
ALTER TABLE customer ADD CRCOLS;

In the next example, the ifx_replcheck shadow column is added to the customer
table:
ALTER TABLE customer ADD REPLCHECK;

The following example drops the ifx_replcheck column from the customer table:
ALTER TABLE customer DROP REPLCHECK;

Related concepts

Shadow Columns (Enterprise Replication Guide)

Using the ADD ROWIDS Keywords

Use the ADD ROWIDS keywords to add a new column called rowid to a
fragmented table. (Fragmented tables do not contain the hidden rowid column by
default.) When you add a rowid column, the database server assigns a unique
number to each row that remains stable for the life of the row. The database server
creates an index that it uses to find the physical location of the row. After you add
the rowid column, each row of the table contains an additional 4 bytes to store the
rowid value.

The following example uses the ADD ROWIDS option to add a new rowid column
of type INTEGER to a fragmented table called frag1:
ALTER TABLE frag1 ADD ROWIDS;

Tip: Use the ADD ROWIDS clause only on fragmented tables. In nonfragmented
tables, the rowid column remains unchanged. It is recommended that you use
primary keys as an access method rather than exploiting the rowid column.

For additional information about the rowid column, refer to your IBM Informix
Administrator's Reference.
Related concepts

Use of Rowids (Administrator's Reference)

Using the DROP ROWIDS Keywords

The DROP ROWIDS keywords can drop a rowid column that you added (with
either the ALTER TABLE or ALTER FRAGMENT statement) to a fragmented table.

The following example drops the rowid column from the frag1 table:
ALTER TABLE frag1 DROP RWIDS;

2-46 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.erep.doc/ids_erp_047.htm#ids_erp_047
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0305.htm#ids_adr_0305

You cannot drop the rowid column of a nonfragmented table.

Using the ADD VERCOLS Keywords

The ADD VERCOLS keywords create shadow columns, ifx_insert_checksum and
ifx_row_version, that are used to support secondary server updates.

In the following example, the ifx_insert_checksum and ifx_row_version, shadow
columns are added to the customer table:
ALTER TABLE customer ADD VERCOLS;

For more information, refer to “Using the WITH VERCOLS Option” on page 2-219
and to the IBM Informix Administrator's Guide.
Related concepts

Row versioning (Administrator's Guide)

Using the DROP VERCOLS Keywords

Use the DROP VERCOLS keywords to drop the ifx_insert_checksum and
ifx_row_version shadow columns.

The following example drops those columns from the customer table:
ALTER TABLE customer DROP VERCOLS;

ADD Column Clause

Use the ADD Column clause to add a column or a security policy to a table.

ADD Column Clause:

ADD �

,

(New Column)
New Column

New Column:

new_column
(1)

Data Type
(2)

DEFAULT Clause

�

�
(3)

Single-Column Constraint Format
BEFORE column (4)

Add Column Security

Notes:

1 See “Data Type” on page 4-21

2 See “DEFAULT Clause” on page 2-49

3 See “Single-Column Constraint Format” on page 2-50

4 See “Add Column Security” on page 2-55

Chapter 2. SQL statements 2-47

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0877.htm#ids_admin_0877

Element Description Restrictions Syntax

column Name of column before which
new_column is to be placed

Must already exist in the table “Identifier” on
page 5-21

new_column Name of column that you are adding You cannot add a serial column if the
table contains data

“Identifier” on
page 5-21

The following restrictions apply to the ADD clause:
v You cannot add a serial column to a table that contains data.
v You cannot add columns beyond the maximum row size of 32,767 bytes.

The following restrictions affect the use of the ADD Column clause to add a
column of the IDSSECURITYLABEL data type to support label-based access
control:
v If the table has no security policy, a user who holds the DBSECADM role must

also include the ADD SECURITY POLICY statement to specify an existing
security policy.

v Only a user who holds the DBSECADM role can add a column of type
IDSSECURITYLABEL.

v A table can have at most one column of type IDSSECURITYLABEL.
v The IDSSECURITYLABEL column cannot have column protection.
v The IDSSECURITYLABEL column has an implicit NOT NULL constraint by

default. If no label name for the default security label is specified in the
DEFAULT clause, the default value for this column is the security label for write
access that is held by the user.

v The IDSSECURITY LABEL column cannot have any explicit single-column
constraints, and it cannot be part of multiple-column referential or check
constraints.

Logical Character Support in Character Columns

For new columns that you declare as built-in character data types, explicit or
default size specifications are interpreted in units of bytes, unless the
SQL_LOGICAL_CHAR configuration parameter has enabled logical character
semantics for the current database. This feature is designed to reduce the risk of
truncating data strings in locales that support a multibyte code set, such as UTF-8.
Enabling this feature causes the SQL parser to interpret the declared column size
as units of logical characters, rather than as bytes, and multiplies the declared
storage size allocated for the new character column by a positive integer value,
based on the SQL_LOGICAL_CHAR setting.
v If the value of this setting is OFF or 1, the SQL_LOGICAL_CHAR configuration

parameter has no effect.
v If the value of this setting is ON, rather than a digit, the expansion factor is the

number of bytes that are required to store the largest logical character in the
code set of the database. (The ON setting is equivalent to 4, which is the largest
valid digit.)

The value of this expansion factor is an attribute of the database, and is based on
the SQL_LOGICAL_CHAR setting when the database was created, rather than
when the ALTER TABLE statement is issued, if the two settings are not identical.

For columns that you declare as VARCHAR or NCHAR data types when this
feature is enabled, only the maximum size specification is expanded by this

2-48 IBM Informix Guide to SQL: Syntax

feature. The reserved size is the number of bytes specified by the explicit or default
reserved value in the data type declaration, because the minimum size of a logical
character is 1 byte.

Size specifications for character columns of user-defined types (UDTs) are always
interpreted as bytes, and are not affected by this feature. Columns that store strings
as large objects, such as CLOB and TEXT, are similarly unaffected.

For more information about the SQL_LOGICAL_CHAR configuration parameter,
see your IBM Informix Administrator's Reference. For additional information about
multibyte locales and logical characters, see the IBM Informix GLS User's Guide.
Related reference

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

Using the BEFORE Option

The BEFORE option specifies the column before which to add the new columns. In
the following example, the BEFORE option directs the database server to add the
item_weight column before the total_price column:
ALTER TABLE items

ADD (item_weight DECIMAL(6,2) NOT NULL BEFORE total_price);

If you do not include the BEFORE option, the database server adds the new
column or list of columns to the end of the table definition by default.

DEFAULT Clause

Use the DEFAULT clause to specify value that the database server should insert in
a column when an explicit value for the column is not specified.

DEFAULT Clause:

DEFAULT label
literal

NULL
USER
(1)

CURRENT
SYSDATE (2)

DATETIME Field Qualifier
TODAY
SITENAME
DBSERVERNAME

Notes:

1 Informix extension

2 See “DATETIME Field Qualifier” on page 4-38

Element Description Restrictions Syntax

label Name of a security
label

Must exist and must belong to the security policy that protects
the table. The column must be of type IDSSECURITYLABEL.

“Identifier” on
page 5-21

literal Literal default value
for the column

Must be appropriate for the data type of the column. See
“Using a Literal as a Default Value” on page 2-204.

“Identifier” on
page 5-21

Chapter 2. SQL statements 2-49

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

You cannot specify a default value for serial columns. If the table that you are
altering already has rows in it when you add a column that contains a default
value, the default values are applied only to rows inserted after the ALTER TABLE
MODIFY statement that added the new column. Any rows that existed before the
new column was added have a NULL value in the new column, unless you update
those rows to insert some non-NULL value. New rows that you insert will have
the default value that the MODIFY Clause specified, unless you insert some other
value into the new column.

The following example adds a column of data type DECIMAL(6,2) to the items
table. In items, the new column item_weight has a literal default value:
ALTER TABLE items

ADD item_weight DECIMAL (6, 2) DEFAULT 2.00
BEFORE total_price;

In this example, each existing row in the items table has a default value of 2.00 for
the item_weight column.

For more information about the options of the DEFAULT clause, refer to
“DEFAULT Clause” on page 2-203.

DEFAULT Labels
When DBSECADM adds a IDSSECURITYLABEL column to a table that is
protected by a security policy, the DEFAULT label specification is required unless
the table is empty. If the table is not empty, the specified label is inserted into the
existing rows of the table.

An error is issued if the DEFAULT clause specifies a security label for a column
whose data type is not IDSSECURITYLABEL, or if the table has no security policy,
or if the security policy of the label is not the security policy of the table, .

To define a specificlabel as the default value of an IDSSECURITYLABEL column,
specify the label name without the policy qualifier, rather than as policy.label,
because the security policy of the table is the only valid policy for any security
label that protects data in the table.

The statement in the following example adds security policy MegaCorp to table T1
and specifies column-level protection for the table by declaring a new column D of
type IDSSECURITYLABEL, whose default value is a security label called mylabel:
ALTER TABLE T1

ADD (D IDSSECURITYLABEL DEFAULT mylabel1)
ADD SECURITY POLICY MegaCorp;

Because no BEFORE clause is included, column D is last among the columns in the
schema of table T1. This statement fails if any of the database objects that it
references (except new column D) does not already exist in the database.

Single-Column Constraint Format
Use the Single-Column Constraint Format to associate one or more constraints with
a single column.

Single-Column Constraint Format:

2-50 IBM Informix Guide to SQL: Syntax

NOT NULL
(1) (2)

Constraint Definition

�

� � UNIQUE
(1) (1) (2)

DISTINCT Constraint Definition
PRIMARY KEY

(3)
REFERENCES Clause

(4)
CHECK Clause

Notes:

1 Informix extension

2 See “Constraint Definition” on page 2-52

3 See “REFERENCES Clause” on page 2-52

4 See “CHECK Clause” on page 2-54

You cannot specify a primary-key or unique constraint on a new column if the
table contains data. In the case of a unique constraint, however, the table can
contain a single row of data. When you want to add a column with a primary-key
constraint, the table must be empty when you issue the ALTER TABLE statement.

The following rules apply when you place primary-key or unique constraints on
existing columns:
v When you place a primary-key or unique constraint on a column or on a set of

columns, the database server creates an internal B-tree index on the constrained
column or set of columns, and automatically calculates column statistics,
equivalent to distributions created by the UPDATE STATISTICS statement in
HIGH mode, unless a user-created index was already defined on the same
column or set of columns.

v When you place a primary-key or unique constraint on a column or set of
columns, and a unique index already exists on that column or set of columns,
the constraint shares that index. If the existing index allows duplicates, however,
the database server returns an error. You must then drop the existing index
before you can add the constraint.

v When you place a primary-key or unique constraint on a column or set of
columns, and a referential constraint already exists on that column or set of
columns, the duplicate index is upgraded to UNIQUE (if possible), and the
index is shared.

You cannot place a unique constraint on a BYTE or TEXT column, nor can you
place referential constraints on columns of these data types. A check constraint on
a BYTE or TEXT column can check only for IS NULL, IS NOT NULL, or LENGTH.

The IDSSECURITYLABEL column has an implicit NOT NULL constraint, but it
cannot have explicit single-column constraints nor be part of multiple-column
referential constraints or check constraints. If the constraint is on a column that
stores encrypted data, Informix cannot enforce the constraint.

Chapter 2. SQL statements 2-51

When you place a referential constraint on a column or on a set of columns, and
an index already exists on that column or set of columns, the index is upgraded to
UNIQUE (if possible) and the index is shared.

Using NOT NULL Constraints with ADD
If a table contains data, when you add a column with a NOT NULL constraint you
must also include a DEFAULT clause. If the table is empty, however, you can add a
column and apply only the NOT NULL constraint. The following statement is
valid whether or not the table contains data:
ALTER TABLE items

ADD (item_weight DECIMAL(6,2)
DEFAULT 2.0 NOT NULL

BEFORE total_price);

Constraint Definition
Use the Constraint Definition portion of the ALTER TABLE statement to declare
the name of a constraint and to set the mode of the constraint to disabled, enabled,
or filtering.

Constraint Definition:

CONSTRAINT constraint
ENABLED
DISABLED

WITHOUT ERROR
FILTERING WITH ERROR

Element Description Restrictions Syntax

constraint Name declared here for the constraint Must be unique among the names of
indexes and constraints in database

“Identifier”
on page 5-21

For more information about constraint-mode options, see “Choosing a
Constraint-Mode Option” on page 2-213.

REFERENCES Clause

The REFERENCES clause has the following syntax.

REFERENCES Clause:

REFERENCES table

�

,

(column)

(1)
ON DELETE CASCADE

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Referenced column in the
referenced table

See “Restrictions on Referential Constraints”
on page 2-53.

“Identifier” on page 5-21

table The referenced table The referenced and the referencing tables
must reside in the same database

“Identifier” on page 5-21

2-52 IBM Informix Guide to SQL: Syntax

The REFERENCES clause allows you to place a foreign-key constraint on one or
more columns. The referenced column can be in the same table as the referencing
column, or in a different table in the same database.

If the referenced table is different from the referencing table, the default column is
the primary-key column. If the referenced table is the same as the referencing table,
there is no default.

Restrictions on Referential Constraints
You must have the REFERENCES privilege to create a referential constraint.

The following restrictions apply to the column that is specified (the referenced
column) in the REFERENCES clause:
v The referenced and referencing tables must be in the same database.
v The referenced column (or set of columns) must have a unique or primary-key

constraint.
v The referencing and referenced columns must be the same data type.

The only exceptions are that a referencing column must be an integer data type
if the referenced column is a serial data type:
– For BIGSERIAL referenced columns, use BIGINT referencing columns.
– For SERIAL referenced columns, use INT referencing columns.
– For SERIAL8 referenced columns, use INT8 referencing columns.

v You cannot place a referential constraint on a BYTE or TEXT column.
v Constraints uses the collation in effect at their time of creation.
v A column-level REFERENCES clause can include only a single column name.
v Maximum number of columns in a table-level REFERENCES clause is 16.
v The total length of the columns in a table-level REFERENCES clause cannot

exceed 390 bytes.

Default Column for the References Clause
If the referenced table is different from the referencing table, you do not need to
specify the referenced column; the default column is the primary-key column (or
columns) of the referenced table. If the referenced table is the same as the
referencing table, you must specify the referenced column.

The following example creates a new column in the cust_calls table, ref_order. The
ref_order column is a foreign key that references the order_num column in the
orders table.
ALTER TABLE cust_calls

ADD ref_order INTEGER
REFERENCES orders (order_num)
BEFORE user_id;

When you place a referential constraint on a column or set of columns, and a
duplicate or unique index already exists on that column or set of columns, the
index is shared.

Using the ON DELETE CASCADE Option
Use the ON DELETE CASCADE option if you want rows deleted in the child table
when corresponding rows are deleted in the parent table. If you do not specify
cascading deletes, the default behavior of the database server prevents you from
deleting data in a table if other tables reference it.

Chapter 2. SQL statements 2-53

If you specify this option, when you delete a row in the parent table, the database
server also deletes any rows associated with that row (foreign keys) in a child
table. The advantage of the ON DELETE CASCADE option is that it allows you to
reduce the quantity of SQL statements needed to perform delete actions.

For example, in the stores_demo database, the stock table contains the stock_num
column as a primary key. The catalog table refers to the stock_num column as a
foreign key. The following ALTER TABLE statements drop an existing foreign-key
constraint (without cascading delete) and add a new constraint that specifies
cascading deletes:
ALTER TABLE catalog DROP CONSTRAINT aa;

ALTER TABLE catalog ADD CONSTRAINT
(FOREIGN KEY (stock_num, manu_code) REFERENCES stock
ON DELETE CASCADE CONSTRAINT ab);

With cascading deletes specified on the child table, in addition to deleting a stock
item from the stock table, the delete cascades to the catalog table that is associated
with the stock_num foreign key. This cascading delete works only if the
stock_num that you are deleting was not ordered; otherwise, the constraint from
the items table would disallow the cascading delete. For more information, see
“Restrictions on DELETE When Tables Have Cascading Deletes” on page 2-309.

If a table has a trigger with a DELETE trigger event, you cannot define a
cascading-delete referential constraint on that table. You receive an error when you
attempt to add a referential constraint that specifies ON DELETE CASCADE to a
table that has a delete trigger.

For information about syntax restrictions and locking implications when you delete
rows from tables that have cascading deletes, see “Considerations When Tables
Have Cascading Deletes” on page 2-309.

Locks Held During Creation of a Referential Constraint
When you create a referential constraint, the database server places an exclusive
lock on the referenced table. The lock is released after you finish with the ALTER
TABLE statement or at the end of a transaction (if you are altering the table in a
database that uses transaction logging).

CHECK Clause
A check constraint designates a condition that must be met before data can be
inserted into a column.

CHECK Clause:

CHECK
(1)

(Condition)

Notes:

1 See “Condition” on page 4-5

During an insert or update, if a row returns false for any check constraint defined
on a table, the database server returns an error. No error is returned, however, if a
row returns NULL for a check constraint. In some cases, you might want to use
both a check constraint and a NOT NULL constraint.

2-54 IBM Informix Guide to SQL: Syntax

Check constraints are defined using search conditions. The search condition cannot
contain user-defined routines, subqueries, aggregates, host variables, or rowids. In
addition, the condition cannot contain the variant built-in functions CURRENT,
SYSDATE, USER, SITENAME, DBSERVERNAME, or TODAY.

The check constraint cannot include columns in different tables. When you are
using the ADD or MODIFY clause, the check constraint cannot depend upon
values in other columns of the same table.

The next example adds a new unit_price column to the items table and includes a
check constraint to ensure that the entered value is greater than 0:
ALTER TABLE items

ADD (unit_price MONEY (6,2) CHECK (unit_price > 0));

To create a constraint that checks values in more than one column, use the ADD
CONSTRAINT clause. The following example builds a constraint on the column
that was added in the previous example. The check constraint now spans two
columns in the table.
ALTER TABLE items ADD CONSTRAINT CHECK (unit_price < total_price);

Add Column Security
The Add Column Security clause associates the new column with a security label.

Add Column Security Clause:

SECURED WITH label
COLUMN

Element Description Restrictions Syntax

label Name of a security
label

Must exist and must belong to the same security policy that
protects the table.

“Identifier” on
page 5-21

Specify the label name without the policy qualifier, rather than as policy.label,
because the security policy of the table is the only valid policy for any security
label that protects data in the table.

The column cannot be of type IDSSECURITYLABEL

When a user who holds appropriate table access privileges attempts to access a
value in the protected column, the database server compares this label with the
security credentials of the user, and allows or withholds access on the basis of this
comparison.

SECURITY POLICY Clause
The optional Security Policy clause can use the following syntax to drop the
security policy that is currently associated with the table, or to associate a security
policy with a table that has none.

SECURITY POLICY Clause:

ADD SECURITY POLICY policy
DROP SECURITY POLICY

Chapter 2. SQL statements 2-55

Element Description Restrictions Syntax

policy Name of a security
policy

Must be the security policy that protects
the table

“Identifier” on page 5-21

Only DBSECADM can use this clause to add a security policy to an existing table,
or to remove from the table the protection of the security policy that currently
protects a table.

The ALTER TABLE statement cannot add a security policy to tables that were
defined by the CREATE EXTERNAL TABLE statement.

The following guidelines apply to tables that can be protected by executing the
ADD SECURITY POLICY clause of the ALTER TABLE statement:
v A table is not protected unless it has a security policy associated with it and has

either rows secured, or has at least one column secured. The former indicates
that the table is a protected table with row level granularity and the latter
indicates that the table is a protected table with column-level granularity.

v Securing rows by using the ALTER TABLE ... ADD statement to add an
IDSSECURITYLABEL column to an existing table fails if the table does not have
a security policy associated with it.

v Securing a column with the ALTER TABLE ... MODIFY ... COLUMN SECURED
WITH clause fails if the table does not have a security policy associated with it.

v A table can have at most one security policy. The ALTER TABLE ... ADD
SECURITY POLICY statement fails if the table already has a security policy.

v A table can have any number of protected columns. Each protected column can
have a different security label, or several protected columns can share the same
security label.

v You cannot use this clause to add a security policy to a temporary table, to a
typed table in a table hierarchy, or to any table outside the current database.

v A table can have at most one column of type IDSSECURITYLABEL.
v The IDSSECURITYLABEL column cannot have column protection.
v The IDSSECURITY LABEL column cannot have single column constraints nor be

part of multiple column referential or check constraints.
v The IDSSECURITYLABEL column cannot be encrypted.
v The IDSSECURITYLABEL column has an implicit DEFAULT NOT NULL

constraint. The default column value is the value of the security label of the user
for write access.

v The IDSSECURITYLABEL column can be dropped only by DBSECADM, who
must also hold the usual CONNECT, RESOURCE, and ALTER access privileges
for dropping columns.

v The IDSSECURITYLABEL column cannot be modified by the ALTER TABLE
statement.

v Attaching a fragment to a protected fragmented table fails if any of these
conditions are true:
– if the source table and the target table are not protected using the same

security policy;
– if the tables do not have the same protection granularity;
– if the tables do not have the same set of protected columns, each protected by

the same security label.

2-56 IBM Informix Guide to SQL: Syntax

|
|

For more information on using the ALTER FRAGMENT statement to attach
fragments to protected tables, see “Additional Restrictions on the ATTACH
Clause” on page 2-11.

v Detaching a fragment of a protected table creates a new table that is protected
by the same security policy for the same row security label column, and the
same set of protected columns.

If the DROP SECURITY POLICY clause executes successfully, it has the following
effects:
v A table is not protected unless it has a security policy associated with it and has

either rows secured or at least one column secured. The former indicates that the
table is a protected table with row level granularity and the latter indicates that
the table is a protected table with column level granularity.

v Securing rows with the IDSSECURITYLABEL column clause fails if the table
does not have a security policy associated with it.

v Securing a column with the COLUMN SECURED WITH clause of the ALTER
TABLE ADD or ALTER TABLE MODIFY statement fails if the table does not
have a security policy associated with it.

v When a security policy is dropped from a table by the ALTER TABLE DROP
SECURITY POLICY statement, the IDSSECURITYLABEL column is
automatically dropped. If the table has one or more protected columns, those
columns become unprotected.

Do not confuse this DROP SECURITY POLICY clause of the ALTER table
statement with the DROP SECURITY POLICY statement.
v When the DROP SECURITY POLICY clause of the ALTER TABLE statement

executes successfully, it terminates the association of the table with the security
policy, drops the IDSSECURITYLABEL column, and removes LBAC protection
from data that had been protected in that table. It has no effect, however, on the
security policy, nor on other tables protected by the policy.

v When the DROP SECURITY POLICY statement executes successfully, the effects
depend on whether the policy is dropped in RESTRICT or CASCADE mode, but
in either mode, it destroys the specified policy. See the description of “DROP
SECURITY statement” on page 2-342 for more information on the DROP
SECURITY POLICY statement of SQL, and about restrictions on that statement.

DROP Column Clause

Use the DROP Column clause to remove one or more columns from the schema of
a table.

DROP Column Clause:

DROP �

,

(column)
column

Element Description Restrictions Syntax

column Name of a column
to be dropped

Must exist in the table. No fragment expression can reference the
column, and it cannot be the last column in the table.

“Identifier” on
page 5-21

Chapter 2. SQL statements 2-57

You cannot issue an ALTER TABLE DROP statement that would drop every
column from the table. At least one column must remain in the table.

You cannot drop a column that is part of the fragmentation key of a fragmentation
strategy.

A column that is protected by a security label can be dropped by the ALTER
TABLE DROP statement, but the user must be DBSECADM and must also hold the
usual CONNECT, RESOURCE, and ALTER access privileges for modifying the
schema of the table.

How Dropping a Column Affects Constraints
When you drop a column, all constraints on that column are also dropped:
v All single-column constraints are dropped.
v All referential constraints that reference the column are dropped.
v All check constraints that reference the column are dropped.
v If the column is part of a multiple-column primary-key or unique constraint, the

constraints placed on the multiple columns are also dropped. This action, in
turn, triggers the dropping of all referential constraints that reference the
multiple columns.

Because any constraints that are associated with a column are dropped when the
column is dropped, the structure of other tables might also be altered when you
use this clause. For example, if the dropped column is a unique or primary key
that is referenced in other tables, those referential constraints also are dropped.
Therefore the structure of those other tables is also altered.

How Dropping a Column Affects Triggers
In general, when you drop a column from a table, the triggers based on that table
remain unchanged. If the column that you drop appears in the action clause of a
trigger, however, dropping the column can invalidate the trigger. The following
statements illustrate the possible effects on triggers:
CREATE TABLE tab1 (i1 int, i2 int, i3 int);
CREATE TABLE tab2 (i4 int, i5 int);
CREATE TRIGGER col1trig UPDATE OF i2 ON tab1

BEFORE(INSERT INTO tab2 VALUES(1,1));
ALTER TABLE tab2 DROP i4;

After the ALTER TABLE statement, tab2 has only one column. The col1trig trigger
is invalidated because the action clause as it is currently defined with values for
two columns cannot occur.

If you drop a column that occurs in the triggering column list of an UPDATE
trigger, the database server drops the column from the triggering column list. If the
column is the only member of the triggering column list, the database server drops
the trigger from the table. For more information on triggering columns in an
UPDATE trigger, see “CREATE TRIGGER statement” on page 2-241.

If a trigger is invalidated when you alter the underlying table, drop and then
re-create the trigger.

How Dropping a Column Affects Views
When you drop a column from a table, the views based on that table remain
unchanged. That is, the database server does not automatically drop the
corresponding columns from associated views.

2-58 IBM Informix Guide to SQL: Syntax

The view is not automatically dropped because ALTER TABLE can change the
order of columns in a table by dropping a column and then adding a new column
with the same name. In this case, views based on the altered table continue to
work, but retain their original sequence of columns.

If a view is invalidated when you alter the underlying table, you must rebuild the
view by using the DROP VIEW and CREATE VIEW statements.

MODIFY Clause
Use the MODIFY clause to change the data type, length, or default value of a
column, to add or remove the security label of a column, to allow or disallow
NULL values in a column, or to reset the serial counter of a SERIAL, SERIAL8, or
BIGSERIAL column.

MODIFY Clause:

MODIFY �

,

(Modify Column Clause)
Modify Column Clause

Modify Column Clause:

column
(1)

Data Type
(2)

DEFAULT Clause

�

�
(3)

Single-Column Constraint Format
(4)

Modify Column Security

Notes:

1 See “Data Type” on page 4-21

2 See “DEFAULT Clause” on page 2-49

3 See “Single-Column Constraint Format” on page 2-50

4 See “Modify Column Security” on page 2-63

Element Description Restrictions Syntax

column Column to modify Must exist in table. Cannot be a collection or
IDSSECURITYLABEL data type.

“Identifier” on page
5-21

You cannot change the data type of a column to a COLLECTION or a ROW type.

The IDSSECURITYLABEL column of a protected table cannot be altered to a
different data type, nor can an existing column be altered to be of type
IDSSECURITYLABEL.

When you modify a column, all attributes previously associated with the column
(that is, default value, single-column check constraint, or referential constraint) are

Chapter 2. SQL statements 2-59

dropped. When you want certain attributes of the column to remain, such as
PRIMARY KEY, you must re-specify those attributes.

For example, if you are changing the data type of an existing column, quantity, to
SMALLINT, but you want to keep the default value (in this case, 1) and the NOT
NULL column attribute, you can issue this statement:
ALTER TABLE items MODIFY (quantity SMALLINT DEFAULT 1 NOT NULL);

Tip: Both attributes are specified again in the modify clause.

When you change the data type of a column, the database server does not perform
the modification in place. The next example changes a VARCHAR(15) column to
an LVARCHAR(3072) column:
ALTER TABLE stock MODIFY (description LVARCHAR(3072));

When you modify a column that has column constraints associated with it, the
following constraints are dropped:
v All single-column constraints are dropped.
v All referential constraints that reference the column are dropped.
v If the modified column is part of a multiple-column primary-key or unique

constraint, all referential constraints that reference the multiple columns also are
dropped.

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other tables,
those referential constraints are also dropped. In addition, if the column is part of a
multiple-column primary-key or unique constraint, the multiple-column constraints
are not dropped, but any referential constraints placed on the column by other
tables are dropped.

For another example, suppose that a column is part of a multiple-column
primary-key constraint. This primary key is referenced by foreign keys in two
other tables. When this column is modified, the multiple-column primary-key
constraint is not dropped, but the referential constraints placed on it by the two
other tables are dropped.

Using the MODIFY Clause
The characteristics of the object you are attempting to modify can affect how you
handle your modifications.

Altering BYTE and TEXT Columns
You can use the MODIFY clause to change a BYTE column to a TEXT column, and
vice versa. You can also use the MODIFY clause to change a BYTE column to a
BLOB column and a TEXT column to a CLOB column. Except for these operations,
however, you cannot use the MODIFY clause to change a BYTE or TEXT column to
any other type of column, nor to change any other type of column to a BYTE or
TEXT column.

Altering the Next Serial Value
You can use the MODIFY clause to reset the next value of a SERIAL, BIGSERIAL,
or SERIAL8 column. You cannot set the next value below the current maximum
value in the column because that action can cause the database server to generate
duplicate numbers. You can set the next value, however, to any value higher than
the current maximum, which creates a gap in the series of values.

2-60 IBM Informix Guide to SQL: Syntax

If the new serial value that you specify is less than the current maximum value in
the serial column, the maximum value is not altered. If the maximum value is less
than what you specify, the next serial number will be what you specify. The next
serial value is not equivalent to one greater than the maximum serial value in the
column in two situations:
v There are no rows in the table, and an initial serial value was specified when the

table was created (or by a previous ALTER TABLE statement).
v There are rows in the table, but the next serial value was modified by a previous

ALTER TABLE statement.

The following example sets the next serial value to 1000:
ALTER TABLE my_table MODIFY (serial_num SERIAL (1000));

As an alternative, you can use the INSERT statement to create a gap in the series
of serial values in the column. For more information, see “Inserting Values into
Serial Columns” on page 2-441.

Altering the Next Serial Value in a Typed Table: You can set the initial serial
number or modify the next serial number for a ROW-type field with the MODIFY
clause of the ALTER TABLE statement. (You cannot set the initial number for a
serial field when you create a ROW data type.)

Suppose you have ROW types parent, child1, child2, and child3.
CREATE ROW TYPE parent (a int);
CREATE ROW TYPE child1 (s serial) UNDER parent;
CREATE ROW TYPE child2 (b float, s8 serial8) UNDER child1;
CREATE ROW TYPE child3 (d int) UNDER child2;

You then create corresponding typed tables:
CREATE TABLE OF TYPE parent;
CREATE TABLE OF TYPE child1 UNDER parent;
CREATE TABLE OF TYPE child2 UNDER child1;
CREATE TABLE OF TYPE child3 UNDER child2;

To change the next SERIAL and SERIAL8 numbers to 75, you can issue the
following statement:
ALTER TABLE child3 MODIFY (s serial(75), s8 serial8(75));

When the ALTER TABLE statement executes, the database server updates
corresponding serial columns in the child1, child2, and child3 tables.

Altering Character Columns

For modified columns that you declare as built-in character data types, explicit or
default size specifications are interpreted in units of bytes, unless the
SQL_LOGICAL_CHAR configuration parameter was set to enable logical character
semantics in character type declarations when the database was created. For more
information about logical character semantics when the ALTER TABLE statement
declares size specifications for character columns, see “Logical Character Support
in Character Columns” on page 2-48. For more information about the
SQL_LOGICAL_CHAR configuration parameter, see your IBM Informix
Administrator's Reference. For additional information about multibyte locales and
logical characters, see the IBM Informix GLS User's Guide.

Chapter 2. SQL statements 2-61

Related reference

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

Altering the Structure of Tables

When you use the MODIFY clause, you can also alter the structure of other tables.
If the modified column is referenced by other tables, those referential constraints
are dropped. You must add those constraints to the referencing tables again, using
the ALTER TABLE statement.

When you change the data type of an existing column, all data is converted to the
new data type, including numbers to characters and characters to numbers (if the
characters represent numbers). The following statement changes the data type of
the quantity column:
ALTER TABLE items MODIFY (quantity CHAR(6));

When a primary-key or unique constraint exists, however, conversion takes place
only if it does not violate the constraint. If a data type conversion would result in
duplicate values (by changing FLOAT to SMALLFLOAT, for example, or by
truncating CHAR values), the ALTER TABLE statement fails.

Modifying Tables for NULL Values

You can modify an existing column that formerly permitted NULLs to disallow
NULLs, provided that the column contains no NULL values. To do this, specify
MODIFY with the same column name and data type and the NOT NULL
keywords. Those keywords create a NOT NULL constraint on the column.

You can modify an existing column that did not permit NULLs to permit NULLs.
To do this, specify MODIFY with the column name and the existing data type, and
omit the NOT NULL keywords. The omission of the NOT NULL keywords drops
the NOT NULL constraint on the column. If a unique index exists on the column,
you can remove it using the DROP INDEX statement.

An alternative method of permitting NULL values in an existing column that did
not permit NULL values is to use the DROP CONSTRAINT clause to drop the
NOT NULL constraint on the column.

Adding a Constraint on a Non-Opaque Column
ALTER TABLE ... MODIFY operations that use the Single Column Constraint
format to implicitly create an index on a non-opaque column also automatically
calculate the distribution of the specified column. The distribution statistics are
available to the query optimizer when it designs query plans for the table on
which the constraint is defined:
v For columns on which the new constraint is implemented as a B-tree index, the

recalculated column distribution statistics are equivalent to distributions created
by the UPDATE STATISTICS statement in HIGH mode.

v If the new constraint is not implemented as a B-tree index, the automatically
recalculated statistics correspond to distributions created by the UPDATE
STATISTICS statement in LOW mode.

See also the section “Automatic Calculation of Distribution Statistics” on page
2-152 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are produced automatically when an
index or constraint is created on an existing table.

2-62 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

Modify Column Security
The Modify Column Security clause is valid only for tables that are protected by a
security policy. Use this clause to add or drop row-level security for the column.

Modify Column Security Clause:

SECURED WITH label
COLUMN

DROP COLUMN SECURITY

Element Description Restrictions Syntax

label Name of a security
label

Must exist and must belong to the same security policy that
protects the table.

“Identifier” on
page 5-21

This clause can add or drop row-level protection.
v To drop the row-level protection of a column, specify the DROP COLUMN

SECURITY keywords.
v To provide row-level protection to a column, specify SECURED WITH label (or

equivalently, COLUMN SECURED WITH label).

The security label can be the same label that protects other rows or columns of the
table, or it can be a different label of the same security policy. The following
restrictions apply to the SECURED WITH label option:
v The column cannot be of type IDSSECURITYLABEL.
v Specify the label without the policy qualifier, rather than as policy.label.
v The label must be a label of the security policy that secures the table.

.

Adding a Constraint That Existing Rows Violate
If you use the MODIFY clause to add a constraint in the enabled mode and receive
an error message because existing rows would violate the constraint, take the
following steps to add the constraint successfully:
1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the DISABLED
keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the START
VIOLATIONS TABLE statement.

3. Issue the SET CONSTRAINTS statement to switch the database object mode of
the constraint to the enabled mode.
When you issue this statement, existing rows in the target table that violate the
constraint are duplicated in the violations table; however, you receive an
integrity-violation error message, and the constraint remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the nonconforming
rows that are duplicated from the target table.
You might need to join the violations and diagnostics tables to get all the
necessary information.

5. Take corrective action on the rows in the target table that violate the constraint.
6. After you fix all the nonconforming rows in the target table, issue the SET

statement again to enable the constraint that was disabled.

Chapter 2. SQL statements 2-63

Now the constraint is enabled, and no integrity-violation error message is
returned because all rows in the target table now satisfy the new constraint.

How Modifying a Column Affects Triggers
If you modify a column that appears in the triggering column list of an UPDATE
trigger, the trigger is unchanged.

When you modify a column in a table, the triggers based on that table remain
unchanged, but the column modification might invalidate the trigger.

The following statements illustrate the possible affects on triggers:
CREATE TABLE tab1 (i1 INT, i2 INT, i3 INT);
CREATE TABLE tab2 (i4 INT, i5 INT);
CREATE TRIGGER col1trig UPDATE OF i2 ON tab1

BEFORE(INSERT INTO tab2 VALUES(1,1));
ALTER TABLE tab2 MODIFY i4 CHAR;

After the ALTER TABLE statement, column i4 accepts only character values.
Because character columns accept only values enclosed in quotation marks, the
action clause of the col1trig trigger is invalidated.

If a trigger is invalidated when you modify the underlying table, drop and then
re-create the trigger.

How Modifying a Column Affects Views
When you modify a column in a table, the views based on that table remain
unchanged. If a view is invalidated when you alter the underlying table, you must
rebuild the view.

PUT Clause
Use the PUT clause to specify the storage space (an sbspace) for a column that
contains smart large objects. This clause can specify storage characteristics for a
new column or replace the storage characteristics of an existing column. The
syntax is similar to the PUT clause of the CREATE TABLE statement, but specifies
only a single column, rather than a list of columns.

PUT Clause:

PUT column �

,

IN (sbspace) �

2-64 IBM Informix Guide to SQL: Syntax

�

�

,

()
EXTENT SIZE kilobytes

NO LOG

LOG
HIGH INTEG

NO KEEP ACCESS TIME

KEEP ACCESS TIME

Element Description Restrictions Syntax

column Column to store in the
specified sbspace

Must be a UDT, or a complex, BLOB,
or CLOB data type

“Identifier” on page 5-21

kilobytes Number of kilobytes to
allocate for the extent size

Must be an integer value “Literal Number” on page
4-184

sbspace Name of an area of storage for
smart large objects

The sbspace must exist “Identifier” on page 5-21

When you modify the storage characteristics of a column, all attributes previously
associated with the storage space for that column are dropped. When you want
certain attributes to remain, you must specify those attributes again. For example,
to retain logging, you must specify the log keyword again.

The format column.field is not valid here. That is, the smart large object that you are
storing cannot be one field of a row type.

When you modify the storage characteristics of a column that holds smart large
objects, the database server does not alter smart large objects that already exist, but
applies the new storage characteristics only to those smart large objects that are
inserted after the ALTER TABLE statement takes effect.

The following example alters the table sbtab to put BLOB column c1 in sbspace
sbs1, changes the extent size to 32 kilobytes, and turns on transaction logging:
ALTER TABLE sbtab PUT c1 IN (sbs1) (EXTENT SIZE 32, LOG);

The following example changes the logging status to NO LOG, and does not keep
the last access time of this BLOB column:
ALTER TABLE sbtab PUT c1 IN (sbs1) (NO LOG, NO KEEP ACCESS TIME);

The following example alters the table to put BLOB column c1 in sbspaces sbs1
and sbs2, changes the extent size to 100 kilobytes, turns on transaction logging,
and keeps the last access time:
ALTER TABLE sbtab PUT c1 IN (sbs1, sbs2)

(EXTENT SIZE 100, LOG, KEEP ACCESS TIME);

Chapter 2. SQL statements 2-65

For more information on the available storage characteristics, refer to the
counterpart of this section in the CREATE TABLE statement, “PUT Clause” on
page 2-225. For a discussion of large-object characteristics, refer to “Large-Object
Data Types” on page 4-29.

ADD CONSTRAINT Clause
Use the ADD CONSTRAINT clause to specify a constraint on a new or existing
column or on a set of columns.

ADD CONSTRAINT Clause:

ADD CONSTRAINT

�

(1)
Multiple-Column Constraint Format

,
(1)

(Multiple-Column Constraint Format)

Notes:

1 See “Multiple-Column Constraint Format” on page 2-67

For example, to add a unique constraint to the fname and lname columns of the
customer table, use the following statement:
ALTER TABLE customer ADD CONSTRAINT UNIQUE (lname, fname);

To declare a name for the constraint, change the preceding statement by adding the
CONSTRAINT keyword and an identifier for the constraint:
ALTER TABLE customer

ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust;

The name must be unique among the identifiers of constraints that are defined on
the same table. If you define no name for the constraint, the database server
assigns to the constraint a system-defined identifier, and stores this in the
sysconstraints.constrid column of the system catalog.

The new constraint is enabled by default. To add a constraint that is not enabled,
you can include the DISABLED keyword after the name of the constraint:
ALTER TABLE customer

ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust DISABLED;

Before you perform subsequent DML operations in which you want the constraint
to be enforced. you can use the SET Database Object Mode statement to enable the
disabled constraint.

When you do not specify a name for a new constraint, the database server
provides one. You can find the name of the constraint in the sysconstraints system
catalog table. For more information about the sysconstraints system catalog table,
see the IBM Informix Guide to SQL: Reference.

The following restrictions on the ADD CONSTRAINT clause affect columns of
certain data types:
v You cannot place a unique constraint nor referential constraints on a BYTE or

TEXT column.
v A check constraint on a BYTE or TEXT column can check only for IS NULL, IS

NOT NULL, or LENGTH.

2-66 IBM Informix Guide to SQL: Syntax

v An IDSSECURITYLABEL column has an implicit NOT NULL constraint by
default, but you cannot use the ADD CONSTRAINT clause to reference an
IDSSECURITYLABEL column in the definition of a single-column constraints nor
as part of a multiple-column referential constraint or check constraint.

v When you add a constraint, the collating order must be the same as when the
table was created.

Related reference

SYSCONSTRAINTS (SQL Reference)

Multiple-Column Constraint Format
Use this option to assign one or more constraints to a column or to a set of
columns in an existing table.

This closely resembles the syntax of the Multiple Column Constraint Format of the
CREATE TABLE statement.

Multiple-Column Constraint Format:

�

�

,
(2)

NOT NULL (column)
UNIQUE
(1)

DISTINCT
PRIMARY KEY

(3)
CHECK Clause

,
(2) (4)

FOREIGN KEY (column) REFERENCES Clause
INDEX DISABLED

�

�
(1) (5)

Constraint Definition

Notes:

1 Informix extension

2 Use path no more than 16 times

3 See “CHECK Clause” on page 2-54

4 See “REFERENCES Clause” on page 2-52

5 See “Constraint Definition” on page 2-52

Element Description Restrictions Syntax

column A column on which the constraint is placed No more than 16 columns “Identifier” on page
5-21

As in the CREATE TABLE statement, the Multiple-Column Constraint format for
ALTER TABLE differs from the Single-Column Constraint format by requiring the
FOREIGN KEY keywords before the REFERENCES clause when you specify a
foreign key constraint. In addition, as its name implies, the Multiple-Column
format can specify a list of columns as the scope of the new constraint, but this
syntax is also valid with a single column.

Chapter 2. SQL statements 2-67

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_029.htm#ids_sqr_029

A multiple-column constraint has these cardinality and size restrictions:
v It can specify no more than 16 column names.
v The maximum total length of the list of columns depends on the page size,

according to this formula:
MAXLength = (((PageSize - 93)/5) -1)

– For a page size of 2K, the total length cannot exceed 390 bytes.
– For a page size of 16K, the total length cannot exceed 3257 bytes.

Here the slash (/) symbol represents integer division.

If the constraint is on a set of columns that includes a column that stores encrypted
data, Informix cannot enforce the constraint. You can declare a name for the
constraint and set its mode by means of “Constraint Definition” on page 2-52.

If the ALTER TABLE ADD CONSTRAINT statement defines more than one
referential constraints on the same table, each constraint requires its own
REFERENCES clause, so that options like ON DELETE CASCADE can be specified
(or omitted) for each individual constraint, rather than applied to all of the
constraints.

If the database server implicitly creates an index on the same non-opaque column
or set of columns as the referential constraint, distribution statistics are
automatically calculated on the specified column, or on the lead column of a
multiple-column constraint.

These distribution statistics are equivalent to distributions created by the UPDATE
STATISTICS statement in HIGH mode, and are available to the query optimizer
when it designs query plans for the table on which the new constraint was created.
See also the section “Automatic Calculation of Distribution Statistics” on page
2-152 in the description of the CREATE INDEX statement for additional
information about statistical distributions that are calculated when an index or
constraint is created on an existing table.

Adding a Primary-Key or Unique Constraint
When you place a primary-key or unique constraint on a column or set of
columns, those columns must contain unique values. The database server checks
for existing constraints and indexes:
v If a user-created unique index already exists on that column or set of columns,

the constraint shares the index.
v If a user-created index that allows duplicates already exists on that column or

set of columns, the database server returns an error.
In this case, you must drop the existing index before adding the primary-key or
unique constraint.

v If a referential constraint already exists on that column or set of columns, the
duplicate index is upgraded to unique (if possible) and the index is shared.

v If no referential constraint or user-created index exists on that column or set of
columns, the database server creates an internal B-tree index on the specified
columns.

When you place a referential constraint on a column or set of columns, and an
index already exists on that column or set of columns, the index is shared.

If you own the table or have the Alter privilege on the table, you can create a
check, primary-key, or unique constraint on the table and specify yourself as the

2-68 IBM Informix Guide to SQL: Syntax

owner of the constraint. To add a referential constraint, you must have the
References privilege on either the referenced columns or the referenced table.
When you have the DBA privilege, you can create constraints for other users.

Recovery from Constraint Violations
If you use the ADD CONSTRAINT clause to add a constraint in the enabled mode,
you receive an error message because existing rows would violate the constraint.
For a procedure to add the constraint successfully, see “Adding a Constraint That
Existing Rows Violate” on page 2-63.

DROP CONSTRAINT Clause

Use the DROP CONSTRAINT clause to drop a named constraint.

DROP CONSTRAINT Clause:

DROP CONSTRAINT �

,

(constraint)
constraint

Element Description Restrictions Syntax

constraint Constraint to be dropped Must exist. “Identifier” on page 5-21

To drop an existing constraint, specify the DROP CONSTRAINT keywords and the
name of the constraint. Here is an example of dropping a constraint:
ALTER TABLE manufact DROP CONSTRAINT con_name;

If no name is specified when the constraint is created, the database server
generates the name. You can query the sysconstraints system catalog table for the
name and owner of a constraint. For example, to find the name of the constraint
placed on the items table, you can issue the following statement:
SELECT constrname FROM sysconstraints

WHERE tabid = (SELECT tabid FROM systables
WHERE tabname = ’items’);

When you drop a primary-key or unique constraint that has a corresponding
foreign key, the referential constraints are dropped. For example, if you drop the
primary-key constraint on the order_num column in the orders table and
order_num exists in the items table as a foreign key, that referential relationship is
also dropped.

By default, every IDSSECURITYLABEL column has an implicit NOT NULL
constraint, but the DROP CONSTRAINT clause cannot reference an
IDSSECURITYLABEL column.

MODIFY EXTENT SIZE
Use the MODIFY EXTENT SIZE clause with the ALTER TABLE statement to
change the size of the first extent of a table in a dbspace.

You cannot use the MODIFY EXTENT SIZE clause to change the size of the first
extent:
v of a table in a blobspace

Chapter 2. SQL statements 2-69

v of external tables, virtual tables, or system catalog tables
v in the tblspace tblspace

MODIFY EXTENT SIZE Clause:

MODIFY EXTENT SIZE kilobytes

Element Description Restrictions Syntax

kilobytes Length (in kilobytes) assigned here to
the first extent for this table

Specification cannot be a variable, and (4(page
size)) ≤ kilobytes ≤ (chunk size)

“Expression”
on page 4-40

The minimum extent size is 4 times the disk-page size. For example, on a system
with 2-kilobyte pages, the minimum length is 8 kilobytes. The maximum length is
the chunk size.

The following example specifies an extent size of 32 kilobytes:
ALTER TABLE customer MODIFY EXTENT SIZE 32;

When you change the size of the first extent, the database server records the
change in the system catalog and on the partition page, but only makes the actual
change when the table is rebuilt or a new partition or fragment is created.

For example, if a table has a first extent size of 8 kilobytes and you use the ALTER
TABLE statement to change this to 16 kilobytes, the server does not drop the
current first extent and recreate it with the new size. Instead, the new first extent
size of 16 kilobytes takes effect only when the server rebuilds the table after actions
such as creating a cluster index on the table or detaching a fragment from the
table.

If a TRUNCATE TABLE statement without the REUSE option is executed before
the ALTER TABLE statement with the MODIFY EXTENT SIZE clause, there is no
change in the size of the current first extent.

If an existing table in a dbspace has data in it, the first and next extents are already
allocated for the table and you will not be able to change the size of the first or
next extent. If you want to change the size of existing extents, you must drop the
table, recreate it with a storage clause indicating the desired size, and load the data
again.

You can change the size of the first and next extent at the same time. The
following example specifies changing the size of the first and next extent:
ALTER TABLE customer MODIFY EXTENT SIZE 32 NEXT SIZE 32

The first and next extent sizes are recorded in the PNSIZES logical log record.

MODIFY NEXT SIZE Clause
Use the MODIFY NEXT SIZE clause to change the size of the next extent.

MODIFY NEXT SIZE Clause:

MODIFY NEXT SIZE kilobytes

2-70 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

kilobytes Length (in kilobytes) assigned here to
the next extent for this table

Specification cannot be a variable, and (4(page
size)) ≤ kilobytes ≤ (chunk size)

“Expression”
on page 4-40

The minimum extent size is 4 times the disk-page size. For example, on a system
with 2-kilobyte pages, the minimum length is 8 kilobytes. The maximum length is
the chunk size. The following example specifies an extent size of 32 kilobytes:
ALTER TABLE customer MODIFY NEXT SIZE 32;

This clause cannot change the size of existing extents. You cannot change the size
of existing extents without unloading all of the data.

You cannot use the MODIFY NEXT SIZE clause of the ALTER TABLE statement to
change the size of the next extent of any system catalog table, even if you are user
informix.

To change the size of existing extents, you must unload all the data, drop the table,
modify the first-extent and next-extent sizes in the CREATE TABLE definition in the
database schema, re-create the table, and reload the data. For information about
how to optimize extent sizes, see your IBM Informix Performance Guide.
Related concepts

Managing the size of first and next extents for the tblspace tblspace
(Performance Guide)

LOCK MODE Clause

Use the LOCK MODE keywords to change the locking granularity of a table.

LOCK MODE Clause:

LOCK MODE (PAGE)
ROW

The following table describes the locking-granularity options available.

Granularity
Effect

PAGE
Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the same
order that you are using to process all the rows. For example, if you are
processing the contents of a table in the same order as its cluster index,
page locking is especially appropriate.

ROW Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. Only tables
with row-level locking support the LAST COMMITTED feature, which can
improve performance in the Committed Read and Dirty Read isolation
levels when another session holds an exclusive lock on a row that you
attempt to read. If you are using many rows at one time, however, the
lock-management overhead of row-level locking can become significant.

Chapter 2. SQL statements 2-71

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_295.htm#ids_prf_295
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_295.htm#ids_prf_295

You can also exceed the maximum number of locks available, depending
on the configuration of your database server.

The following statement changes the lock mode for the customer table to page
level locking:
ALTER TABLE customer LOCK MODE(page);

The next example changes the lock mode for the customer table to row level
locking:
ALTER TABLE customer LOCK MODE(row);

Precedence and Default Behavior
The LOCK MODE setting in an ALTER TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and the
DEF_TABLE_LOCKMODE configuration parameter. For information about the
IFX_DEF_TABLE_LOCKMODE environment variable, refer to the IBM Informix
Guide to SQL: Reference. For information about the DEF_TABLE_LOCKMODE
configuration parameter, refer to the IBM Informix Administrator's Reference.
Related reference

IFX_DEF_TABLE_LOCKMODE (SQL Reference)

DEF_TABLE_LOCKMODE Configuration Parameter (Administrator's
Reference)

ADD TYPE Clause

Use the ADD TYPE clause to convert a table that is not based on a named ROW
data type into a typed table. This clause is an extension to the ANSI/ISO standard
for SQL.

ADD TYPE Clause:

ADD TYPE row_type

Element Description Restrictions Syntax

row_type Identifier of an existing named
ROW data type for the table

The row_type fields must match the column
data type in their order and number

“Identifier” on
page 5-21

When you use the ADD TYPE clause, you assign the specified named ROW data
type to a table whose columns match the fields of that data type.

In addition to the requirements common to all ALTER TABLE operations (namely
DBA privilege on the database, Alter privilege on the table, and ownership of the
table), all of the following must be also true when you use the ADD TYPE clause
to convert an untyped table to the specified named ROW data type:
v The named ROW data type is already registered in the database.
v You hold the Usage privilege on the named ROW data type.
v There must be a 1-to-1 correspondence between the ordered set of column data

types of the untyped table and the ordered set of field data types of the named
ROW data type.

v The table cannot be a fragmented table that has rowid values.

2-72 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_242.htm#ids_sqr_242
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0051.htm#ids_adr_0051
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0051.htm#ids_adr_0051

You cannot combine the ADD TYPE clause with any clause that changes the
schema of the table. No other ADD, DROP, or MODIFY clause is valid in the same
ALTER TABLE statement that has the ADD TYPE clause. The ADD TYPE clause
does not allow you to change column data types. (To change the data type of a
column, use the MODIFY clause.)

Options Valid on Typed Tables

ALTER TABLE supports only the following options for tables of ROW data types.

Typed-Table Options:

�

,

(1)
ADD CONSTRAINT Clause

(2)
DROP CONSTRAINT Clause
(3) (4)

MODIFY NEXT SIZE Clause
(3) (5)

LOCK MODE Clause

Notes:

1 See “ADD CONSTRAINT Clause” on page 2-66

2 See “DROP CONSTRAINT Clause” on page 2-69

3 Use path no more than once

4 See “MODIFY NEXT SIZE Clause” on page 2-70

5 See “LOCK MODE Clause” on page 2-71

Altering Subtables and Supertables
Two considerations apply to typed tables that are part of inheritance hierarchies:
v For subtables, ADD CONSTRAINT and DROP CONSTRAINT are not valid on

inherited constraints.
v For supertables, ADD CONSTRAINT and DROP CONSTRAINT propagate to all

subtables.

Related Information

Related statements: “CREATE TABLE statement” on page 2-198, “DROP TABLE
statement” on page 2-347, “LOCK TABLE statement” on page 2-454, and “SET
Database Object Mode statement” on page 2-599.

For discussions of data-integrity constraints and the ON DELETE CASCADE
option, see the IBM Informix Guide to SQL: Tutorial.

For a discussion of database and table creation, see the IBM Informix Database
Design and Implementation Guide.

For information on how to maximize performance when you make table
modifications, see your IBM Informix Performance Guide.

Chapter 2. SQL statements 2-73

Related concepts

Table performance considerations (Performance Guide)

BEGIN WORK statement
Use the BEGIN WORK statement to start a transaction, which is a series of database
operations that the COMMIT WORK or ROLLBACK WORK statement terminates,
and that the database server treats as a single unit of work. This statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� BEGIN
WORK

(1)
WITHOUT REPLICATION

��

Notes:

1 ESQL/C only

Usage

The BEGIN WORK statement is valid only in a database that supports transaction
logging. This statement is not valid in an ANSI-compliant database.

Each row that an UPDATE, DELETE, INSERT, or MERGE statement affects during
a transaction is locked and remains locked throughout the transaction. A
transaction that contains many such statements or that contains statements that
affect many rows can exceed the limits that your operating system or the database
server configuration imposes on the number of simultaneous locks.

If no other user is accessing the table, you can avoid locking limits and reduce
locking overhead by locking the table with the LOCK TABLE statement after you
begin the transaction. Like other locks, this table lock is released when the
transaction terminates. The example of a transaction on “Example of BEGIN
WORK” on page 2-75 includes a LOCK TABLE statement.

Important: Issue the BEGIN WORK statement only if a transaction is not in
progress. If you issue a BEGIN WORK statement while you are in a transaction,
the database server returns an error.

The WORK keyword is optional. The following two statements are equivalent:
BEGIN;
BEGIN WORK;

In reading SQL source code that omits the WORK keyword, do not confuse the
BEGIN statement of SQL with the SPL keyword BEGIN, which, together with the
END keyword, can be used as a delimiter to define a statement block within an
SPL routine

In Informix ESQL/C, if you use the BEGIN WORK statement within a UDR called
by a WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. These statements prevent the program from looping endlessly if the

2-74 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_277.htm#ids_prf_277

ROLLBACK WORK statement encounters an error or a warning.

BEGIN WORK and ANSI-Compliant Databases
In an ANSI-compliant database, you do not need the BEGIN WORK statement
because transactions are implicit; every SQL statement occurs within a transaction.
The database server generates a warning when you use a BEGIN WORK statement
immediately after any of the following statements:
v DATABASE
v COMMIT WORK
v CREATE DATABASE
v ROLLBACK WORK

The database server returns an error when you use a BEGIN WORK statement
after any other statement in an ANSI-compliant database.

BEGIN WORK WITHOUT REPLICATION (ESQL/C)
When you use Enterprise Replication for data replication, you can use the BEGIN
WORK WITHOUT REPLICATION statement to start a transaction that does not
replicate to other database servers.

You cannot execute BEGIN WORK WITHOUT REPLICATION as a stand-alone
embedded statement in an Informix ESQL/C application. Instead you must execute
this statement indirectly. You can use either of the following methods:
v You can use a combination of the PREPARE and EXECUTE statements to

prepare and execute the BEGIN WORK WITHOUT REPLICATION statement.
v You can use the EXECUTE IMMEDIATE statement to prepare and execute

BEGIN WORK WITHOUT REPLICATION in a single step.

You cannot use the DECLARE cursor CURSOR WITH HOLD statement with the
BEGIN WORK WITHOUT REPLICATION statement.

For more information about data replication, see the IBM Informix Enterprise
Replication Guide.

Example of BEGIN WORK
When consecutive SQL statements perform what is logically a single unit of work,
you can define a transaction by grouping them between the BEGIN WORK and
COMMIT WORK statements. If the business requirements dictate that either all of
the statements be performed successfully, or else that none of them be performed,
you can enclose the statements of the transaction between BEGIN WORK to start a
transaction and COMMIT WORK to complete the transaction successfully (or
ROLLBACK WORK, to cancel the transaction, if the program detects an error).

In the following program fragment, the transaction locks the stock table (LOCK
TABLE), updates rows in the stock table (UPDATE), deletes rows from the stock
table (DELETE), and inserts a row into the manufact table (INSERT). In this
example (with no error handling), the database server executes each of these SQL
statements in sequence:
BEGIN WORK;

LOCK TABLE stock;
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = ’KAR’;

Chapter 2. SQL statements 2-75

DELETE FROM stock WHERE description = ’baseball bat’;
INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES (’LYM’, ’LYMAN’, 14);
COMMIT WORK;

Each statement itself is atomic; it either completes successfully or else the database
is unchanged afterwards. If any of these statements fail, the other statements will
still be executed and the net result is as if the failed statement was never
attempted. When the COMMIT WORK statement is executed, the successful
changes are made permanent.

Typically, however, transactions are defined with error handling, so that the
database server must perform a sequence of operations either completely or not at
all. In this case, when you include all of the operations within a single transaction,
the database server guarantees that all the statements are completely and perfectly
committed to disk, or else the database can be restored to the same state that it
was in before the transaction began.

By adding appropriate error handling (for example, by setting the DBACCNOIGN
environment variable in DB-Access, or by adding EXEC SQL WHENEVER ERROR
STOP in ESQL/C), the transaction can be implicitly rolled back because the
program stops on an error without executing COMMIT WORK. More careful
conditional coding in a programming language such as ESQL/C allows the
programmer to explicitly roll back the transaction while continuing the larger
program.

Error-handling and business logic in applications and UDRs can also delimit one
or more portions of a transaction by including SAVEPOINT and ROLLBACK TO
SAVEPOINT statements. If the ROLLBACK TO SAVEPOINT statement is issued
after an error is encountered, or after the results of part of the transaction indicate
a conflict with a business rule or with some other criterion, only the changes that
were made to the database between the ROLLBACK statement and its specified or
default savepoint are cancelled, rather than the entire transaction. The current
transaction continues at the statement that follows the ROLLBACK statement, with
any uncommitted changes to the data or to the schema of the database from
operations that preceded the savepoint remain pending, until the entire transaction
is either committed or rolled back. Any locks held by statements that were rolled
back are retained until the complete transaction ends.

Related Information

Related statements: “COMMIT WORK statement” on page 2-81, “ROLLBACK
WORK statement” on page 2-528, “SAVE EXTERNAL DIRECTIVES statement” on
page 2-531, “SAVEPOINT statement” on page 2-534, and “WHENEVER statement”
on page 2-729.

For discussions of transactions and locking, see the IBM Informix Guide to SQL:
Tutorial.

CLOSE statement
Use the CLOSE statement when you no longer need to refer to the set of rows
associated with a Select cursor or with a Function cursor. With ESQL/C, this
statement can also flush and close an Insert cursor. Use this statement with
Informix ESQL/C or SPL.

2-76 IBM Informix Guide to SQL: Syntax

Syntax

�� CLOSE cursor_id
(1) (2)

cursor_id_var

��

Notes:

1 Informix extension

2 ESQL/C only

Element Description Restrictions Syntax

cursor_id Name of cursor to be closed Must have been declared “Identifier” on page 5-21

cursor_id_var Host variable that contains the
value of cursor_id

Must be of a character data
type

Must conform to
language-specific rules for
names.

Usage

Closing a cursor makes the cursor unusable in any statements except OPEN or
FREE and releases resources that the database server had allocated to the cursor.

In a database that is not ANSI-compliant, you can close a cursor that has not been
opened or that has already been closed. No action is taken in these cases.

In an ANSI-compliant database, the database server returns an error if you close a
cursor that was not open.

Closing a Select or Function Cursor
When a cursor is associated with a SELECT, EXECUTE FUNCTION, or EXECUTE
PROCEDURE statement of SQL, closing the cursor terminates the associated SQL
statement.

The database server releases all resources that it might have allocated to the active
set of rows, for example, a temporary table that the cursor used to hold an ordered
set. The database server also releases any locks that it might have held on rows
that were selected through the cursor. If a transaction contains the CLOSE
statement, however, the database server does not release the locks until you issue
the COMMIT WORK or ROLLBACK WORK statement.

After you close a Select cursor or a Function cursor, the FETCH statement cannot
reference that cursor until you reopen it.

In an SPL routine, the built-in SQLCODE function can indicate the result of the
CLOSE statement for a Select cursor or a Function cursor. This function returns a
value equivalent to the SQLCODE field of the sqlca structure. Informix issues an
error, however, if you invoke the built-in SQLCODE function outside the calling
context of an SPL routine.

Closing an Insert Cursor
Because Informix does not support Insert cursors in SPL routines, the discussion of
Insert cursors in this section applies only to Informix ESQL/C. In SPL routines, the
CLOSE statement can reference only a Select cursor or a Function cursor that the

Chapter 2. SQL statements 2-77

DECLARE statement defined. (A FOREACH statement of SPL that has an INSERT
statement in its statement block can declare a direct cursor that functionally
resembles an Insert cursor, but the CLOSE statement cannot reference a direct
cursor that FOREACH declared. Informix closes the direct cursor automatically at
runtime when program control exits from the FOREACH loop where the direct
cursor was defined.)

In Informix ESQL/C, the CLOSE statement treats a cursor that is associated with
an INSERT statement differently from one that is associated with a SELECT,
EXECUTE FUNCTION, or EXECUTE PROCEDURE statement. When a cursor
identifier is associated with an INSERT statement, the CLOSE statement writes any
remaining buffered rows into the database. The number of rows that were
successfully inserted into the database is returned in the third element of the
sqlerrd array, sqlca.sqlerrd[2], in the sqlca structure. For information on how to
use SQLERRD to count the total number of rows that were inserted, see “Error
Checking” on page 2-493.

The SQLCODE field of the sqlca structure indicates the result of the CLOSE
statement for an Insert cursor. If all buffered rows are successfully inserted,
SQLCODE is set to zero. If an error is encountered, the SQLCODE field is set to a
negative error message number.

When SQLCODE is zero, the row buffer space is released, and the cursor is closed;
that is, you cannot execute a PUT or FLUSH statement that names the cursor until
you reopen it.

Tip: When you encounter an sqlca.SQLCODE error, a corresponding SQLSTATE
error value also exists. For information about how to get the message text, check
the GET DIAGNOSTICS statement.

If the insert is not successful, the number of successfully inserted rows is stored in
sqlerrd. Any buffered rows that follow the last successfully inserted row are
discarded. Because the insert fails, the CLOSE statement fails also, and the cursor
is not closed. For example, a CLOSE statement can fail if insufficient disk space
prevents some of the rows from being inserted. In this case, a second CLOSE
statement can be successful because no buffered rows exist. An OPEN statement
can also be successful because the OPEN statement performs an implicit close.

Closing a Collection Cursor
You can declare both Select and Insert cursors on collection variables. Such cursors
are called Collection cursors. Use the CLOSE statement to deallocate resources that
have been allocated for the Collection cursor. Only ESQL/C routines can use
CLOSE to reference Insert cursors on collection variables. The CLOSE statement in
SPL routines cannot reference direct Collection cursors that the FOREACH
statement of SPL can declare.

For more information on how to use a Collection cursor, see “Fetching from a
Collection Cursor” on page 2-379 and “Inserting into a Collection Cursor” on page
2-491.

Using End of Transaction to Close a Cursor
The COMMIT WORK and ROLLBACK WORK statements close all cursors except
those that are declared with a hold. It is better to close all cursors explicitly,

2-78 IBM Informix Guide to SQL: Syntax

however. For Select or Function cursors, this action simply makes the intent of the
program clear. It also helps to avoid a logic error if the WITH HOLD clause is later
added to the declaration of a cursor.

For an Insert cursor in ESQL/C routines, it is important to use the CLOSE
statement explicitly so that you can test the error code. Following the COMMIT
WORK statement, SQLCODE reflects the result of the COMMIT statement, not the
result of closing cursors. If you use a COMMIT WORK statement without first
using a CLOSE statement, and if an error occurs while the last buffered rows are
being written to the database, the transaction is still committed.

For how to use Insert cursors and the WITH HOLD clause, see “DECLARE
statement” on page 2-290.

In an ANSI-compliant database, a cursor cannot be closed implicitly. You must
issue the CLOSE statement.

Examples
EXEC SQL close democursor;

The following is ESQL/C Source code example from demo1.ec:
#include <stdio.h>

EXEC SQL define FNAME_LEN 15;
EXEC SQL define LNAME_LEN 15;

main()
{

EXEC SQL BEGIN DECLARE SECTION;
char fname[FNAME_LEN + 1];
char lname[LNAME_LEN + 1];

EXEC SQL END DECLARE SECTION;

printf("DEMO1 Sample ESQL Program running.\n\n");

EXEC SQL WHENEVER ERROR STOP;

EXEC SQL connect to ’stores7’;

EXEC SQL declare democursor cursor for
select fname, lname

into :fname, :lname
from customer
where lname < "C";

EXEC SQL open democursor;
for (;;)

{
EXEC SQL fetch democursor;
if (strncmp(SQLSTATE, "00", 2) != 0)

break;
printf("%s %s\n",fname, lname);
}

if (strncmp(SQLSTATE, "02", 2) != 0)
printf("SQLSTATE after fetch is %s\n", SQLSTATE);

EXEC SQL close democursor;
EXEC SQL free democursor;
EXEC SQL create routine from ’del_ord.sql’;

Chapter 2. SQL statements 2-79

EXEC SQL disconnect current;
printf("\nDEMO1 Sample Program over.\n\n");
exit(0);

}

Related Information

Related statements: “DECLARE statement” on page 2-290, “FETCH statement” on
page 2-372, “FLUSH statement” on page 2-382, “FREE statement” on page 2-384,
“OPEN statement” on page 2-469, “PUT statement” on page 2-487, and “SET
AUTOFREE statement” on page 2-606

For an introductory discussion of cursors, see the IBM Informix Guide to SQL:
Tutorial.

For a more advanced discussion of cursors, see the IBM Informix ESQL/C
Programmer's Manual.

CLOSE DATABASE statement
Use the CLOSE DATABASE statement to close the implicit connection to the
current database. This statement is an extension to the ANSI/ISO standard for
SQL.

Syntax

�� CLOSE DATABASE ��

Usage

When you issue a CLOSE DATABASE statement, you can issue only the following
SQL statements immediately after it:
v CONNECT
v CREATE DATABASE
v DATABASE
v DROP DATABASE
v DISCONNECT

(The DISCONNECT statement is valid here only if an explicit connection existed
before CLOSE DATABASE was executed.)

Issue the CLOSE DATABASE statement before you drop the current database.

If your current database supports transaction logging, and if you have started a
transaction, you must issue a COMMIT WORK or ROLLBACK WORK statement
before you can use the CLOSE DATABASE statement.

The following example shows how to use the CLOSE DATABASE statement before
you drop the current database to which your session had established an implicit
connection:
DATABASE stores_demo;
. . .
CLOSE DATABASE;
DROP DATABASE stores_demo;

2-80 IBM Informix Guide to SQL: Syntax

In Informix ESQL/C, the CLOSE DATABASE statement cannot appear in a
multistatement PREPARE operation.

If a previous CONNECT statement has established an explicit connection to a
database, and that connection is still your current connection, you cannot use the
CLOSE DATABASE statement to close that explicit connection. (You can use the
DISCONNECT statement to close the explicit connection.)

If you use the CLOSE DATABASE statement within a UDR called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This action prevents the program from looping endlessly if the
ROLLBACK WORK statement encounters an error or a warning.

When you issue the CLOSE DATABASE statement, any declared cursors are no
longer valid. You must re-declare any cursors that you want to use.

In an ANSI-compliant database, if no error is encountered while you exit from
DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automatically
commits any open transaction.

Related information

Related statements: “CONNECT statement” on page 2-83, “CREATE DATABASE
statement” on page 2-97, “DATABASE statement” on page 2-285, “DISCONNECT
statement” on page 2-323, and “DROP DATABASE statement” on page 2-328

COMMIT WORK statement
Use the COMMIT WORK statement to commit all modifications made to the
database from the beginning of a transaction.

Syntax

�� COMMIT
WORK

��

Usage

The COMMIT WORK statement informs the database server that you reached the
end of a series of statements that must succeed as a single unit. The database
server takes the required steps to make sure that all modifications that the
transaction makes are completed correctly and saved to disk.

Use COMMIT WORK only at the end of a multistatement operation in a database
with transaction logging, when you are sure that you want to keep all changes
made to the database from the beginning of a transaction.

The COMMIT WORK statement releases all row and table locks.

The WORK keyword is optional in a COMMIT WORK statement. The following
two statements are equivalent:
COMMIT;
COMMIT WORK;

Chapter 2. SQL statements 2-81

The following example shows a transaction bounded by BEGIN WORK and
COMMIT WORK statements.
BEGIN WORK;

DELETE FROM call_type WHERE call_code = ’O’;
INSERT INTO call_type VALUES (’S’, ’order status’);

COMMIT WORK;

In this example, the user first deletes the row from the call_type table where the
value of the call_code column is O. The user then inserts a new row in the
call_type table where the value of the call_code column is S. The database server
guarantees that both operations succeed or else neither succeeds.

In Informix ESQL/C, the COMMIT WORK statement closes all open cursors except
those that were declared using the WITH HOLD option.

Issuing COMMIT WORK in a Database That Is Not ANSI
Compliant

In a database that is not ANSI compliant, but that supports transaction logging, if
you initiate a transaction with a BEGIN WORK statement, you must issue a
COMMIT WORK statement at the end of the transaction. If you fail to issue a
COMMIT WORK statement in this case, the database server rolls back any
modifications that the transaction made to the database.

If you do not issue a BEGIN WORK statement, however, each statement executes
within its own transaction. These single-statement transactions do not require
either a BEGIN WORK statement or a COMMIT WORK statement.

Explicit DB-Access Transactions
When you use DB-Access in interactive mode with a database that is not
ANSI-compliant but that supports transaction logging, if you select the Commit
menu but do not issue the COMMIT WORK statement after a transaction has been
started by the BEGIN WORK statement, DB-Access automatically commits the
data, but issues the following warning:
Warning: Data commit is a result of unhandled exception in TXN PROC/FUNC

The purpose of this warning is to remind you to issue COMMIT WORK explicitly
to end a transaction that BEGIN WORK initiated.

In non-interactive mode, however, DB-Access rolls back the current transaction if
you end a session without issuing the COMMIT WORK statement.

Issuing COMMIT WORK in an ANSI-Compliant Database
In an ANSI-compliant database, you do not need BEGIN WORK to mark the
beginning of a transaction. You only need to mark the end of each transaction,
because a transaction is always in effect. A new transaction starts automatically
after each COMMIT WORK or ROLLBACK WORK statement.

You must, however, issue an explicit COMMIT WORK statement to mark the end
of each transaction. If you fail to do so, the database server rolls back any
modifications that the transaction made to the database.

In an ANSI-compliant database, however, if no error is encountered while you exit
from DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automatically
commits any open transaction.

2-82 IBM Informix Guide to SQL: Syntax

Related Information

Related statements: “BEGIN WORK statement” on page 2-74, “SAVE EXTERNAL
DIRECTIVES statement” on page 2-531, and “DECLARE statement” on page 2-290

For a discussion of concepts related to transactions, see the IBM Informix Guide to
SQL: Tutorial.

CONNECT statement
Use the CONNECT statement to connect to a database environment. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CONNECT TO
(1)

Database Environment
(2) (3)

USER Authentication Clause
DEFAULT

�

�
(4)

WITH CONCURRENT TRANSACTION

��

Notes:

1 See “Database Environment” on page 2-84

2 ESQL/C and DB-Access only

3 See “USER Validation Clause” on page 2-86

4 ESQL/C only

Usage

The CONNECT statement connects an application to a database environment, which
can be a database, a database server, or a database and a database server. If the
application successfully connects to the specified database environment, the
connection becomes the current connection for the application. The SQL statements
fail if the application has no current connection to a database server. If you specify
a database name, the database server opens that database. You cannot include
CONNECT within a PREPARE statement.

An application can connect to several database environments at the same time, and
it can establish multiple connections to the same database environment, provided
each connection has a unique connection name.

On UNIX, the only restriction on establishing multiple connections to the same
database environment is that an application can establish only one connection to
each local server that uses the shared-memory connection mechanism. To find out
whether a local server uses the shared-memory connection mechanism or the
local-loopback connection mechanism, examine the $INFORMIXDIR/etc/sqlhosts
file. For more information on the sqlhosts file, refer to your IBM Informix
Administrator's Guide.

Chapter 2. SQL statements 2-83

On Windows, the local connection mechanism is named pipes. Multiple
connections to the local server from one client can exist.

Only one connection is current at any time; other connections are dormant. The
application cannot interact with a database through a dormant connection. When
an application establishes a new connection, that connection becomes current, and
the previous current connection becomes dormant. You can make a dormant
connection current with the SET CONNECTION statement. See also “SET
CONNECTION statement” on page 2-610.

For connections between databases of different Informix instances, you cannot
establish multiple active connections between the same two database servers using
different server aliases. At any time, there can be only one active connection from
the local server to a remote server. If you use CONNECT TO dbserveralias
statements to specify different server aliases to connect to the same remote server,
where the dbserveralias identifiers are declared in setting of the DBSERVERALIASES
configuration parameter setting, no error message is issued, but the initial
connection is reused.

Privileges for Executing the CONNECT Statement
The current user, or PUBLIC, must hold the Connect privilege on the database that
the CONNECT statement specifies. The user who executes the CONNECT
statement cannot have the same authorization identifier as an existing role in that
database.

For information on how to use the USER Authentication clause to specify an
alternate user name when the CONNECT statement connects to a database server
on a remote host, see “USER Validation Clause” on page 2-86.

Connection Context
Each connection encompasses a set of information that is called the connection
context. The connection context includes the name of the current user, the
information that the database environment associates with this name, and
information on the state of the connection (such as whether an active transaction is
associated with the connection). The connection context is saved when an
application becomes dormant, and this context is restored when the application
becomes current again. (For more information, see “Making a dormant connection
as the current connection” on page 2-611.)

Database Environment
The CONNECT statement, like the SET CONNECTION statement, can use the
Database Environment syntax segment to specify the database or the database
server to which the application is attempting to establish a connection. Unlike the
SET CONNECTION statement, the CONNECT statement can also declare a name
for this connection to the specified database environment.

Database Environment:

'dbname'
'@dbservername' (1)
'dbname@dbservername' AS 'connection'
(1) connection_var

db_var

2-84 IBM Informix Guide to SQL: Syntax

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

connection Optional case-sensitive name
that you declare here for a
connection

Must be unique among connection names “Identifier” on
page 5-21

connection_var Host variable that stores the
name of connection

Must be a fixed-length character data type Language
specific

db_var Host variable that contains a
valid database environment (in
one of the formats in the
syntax diagram)

Must be a fixed-length character data type,
whose contents are in a format from the
syntax diagram

Language
specific

dbname Database to which to connect Must already exist “Identifier” on
page 5-21

dbservername Name of the database server to
which a connection is made

Must already exist; blank space is not valid
between @ symbol and dbservername. See also
“Restrictions on dbservername.”

“Identifier” on
page 5-21

If the DELIMIDENT environment variable is set, any quotation (') marks in the
database environment must be single. If DELIMIDENT is not set, then either
single (') or double (") quotation marks are valid here.

Restrictions on dbservername
If you specify dbservername, it must satisfy the following restrictions.
v If the database server that you specify is not online, you receive an error.
v On UNIX, the database server that you specify in dbservername must match the

name of a database server in the sqlhosts file.
v On Windows, dbservername must match the name of a database server in the

sqlhosts subkey in the registry. It is recommended that you use the setnet32
utility to update the registry.

Note: If the name of a database server is a delimited identifier, or if it includes
uppercase letters, that database server cannot participate in cross-server distributed
DML operations. (If the server name includes uppercase letters, it also cannot
participate in cross-database distributed DML operations by SQL statements that
specify the server name as a qualifier to a database name. These statements fail
with error -908, because the SQL parser downshifts all uppercase letters in server
names to lowercase characters.) To avoid this restriction, specify only undelimited
names with no uppercase letters when you declare the name or the alias of a
database server that will participate in distributed queries.

Specifying the Database Environment
You can specify a database server and a database, or a database server only, or a
database only. How a database is located and opened depends on whether you
specify a database server name in the database environment expression.

Only Database Server Specified: The @dbservername option establishes a
connection to the database server only; it does not open a database. When you use
this option, you must subsequently use the DATABASE or CREATE DATABASE
statement (or a PREPARE statement for one of these statements and an EXECUTE
statement) to open a database.

Chapter 2. SQL statements 2-85

Database Server and Database Specified: If you specify both a database server
and a database, your application connects to the database server, which locates and
opens the database.

Only Database Specified: The dbname option establishes a connection to the
default database server or to another database server in the DBPATH environment
variable. It also locates and opens the specified database. (The same is true of the
db_var option if this specifies only a database name.)

If you specify only dbname, its database server is read from the DBPATH
environment variable. The database server in the INFORMIXSERVER environment
variable is always added before the DBPATH value.

On UNIX, set the INFORMIXSERVER and DBPATH environment variables as the
following example (for the C shell) shows:
setenv INFORMIXSERVER srvA
setenv DBPATH //srvB://srvC

On Windows, choose Start > Programs > Informix > setnet32 from the Task Bar
and set the INFORMIXSERVER and DBPATH environment variables:
set INFORMIXSERVER = srvA
set DBPATH = //srvA://srvB://srvC

The next example shows the resulting DBPATH that your application uses:
//srvA://srvB://srvC

The application first establishes a connection to the database server that
INFORMIXSERVER specifies. The database server uses parameters in the
configuration file to locate the database. If the database does not reside on the
default database server, or if the default database server is not online, the
application connects to the next database server in DBPATH. In the previous
example, that database server would be srvB.

Declaring a Connection Name
In ESQL/C applications, you can declare an identifier for the connection to the
database environment by including the AS keyword, followed by a quoted string
or by a host variable that stores the identifier. The host variable must be a
fixed-length character data type.

Connection Identifiers
The optional connection name is a unique identifier that an ESQL/C application can
use to refer to a connection in subsequent SET CONNECTION and DISCONNECT
statements. If the application does not provide a connection name (or a connection
host variable), it can refer to the connection using the database environment. If the
application makes more than one connection to the same database environment,
however, each connection must have a unique name.

Only the CONNECT statement can use the AS keyword to declare a connection
name. The CONNECT statement cannot, however, reference a previously declared
connection name to specify a connection to a database environment.

USER Validation Clause

The USER Authentication clause specifies information that is used to determine
whether the application can access the target computer on a remote host.

2-86 IBM Informix Guide to SQL: Syntax

USER Authentication Clause:

USER 'user_id'
user_id_var

USING validation_var

Element Description Restrictions Syntax

user_id Valid login name See “Restrictions on the User Identifier
Parameter.”

“Quoted String”
on page 4-188

user_id_var Host variable that contains user_id Must be a fixed-length character data
type; same restrictions as user_id

Language specific

validation_var Host variable that contains a valid
password for login name in user_id
or user_id_var

Must be a fixed-length character type. See
“Restrictions on the Validation Variable
Parameter.”

Language specific

The USER Authentication clause is required when the CONNECT statement
connects to the database server on a remote host. Subsequent to the CONNECT
statement, all database operations on the remote host use the specified user name.

In DB-Access, the USING clause is valid within files executed from DB-Access. In
interactive mode, DB-Access prompts you for a password, so the USING keyword
and validation_var are not used.

Restrictions on the Validation Variable Parameter
On UNIX, the password stored in validation_var must be a valid password and
must exist in the /etc/passwd file. If the application connects to a remote database
server, the password must exist in this file on both the local and remote database
servers.

On Windows, the password stored in validation_var must be valid and must be the
password entered in User Manager. If the application connects to a remote
database server, the password must exist in the domain of both the client and the
server.

Restrictions on the User Identifier Parameter
The connection is rejected if any of the following conditions occur:
v The specified user lacks the privileges to access the database specified in the

database environment.
v The specified user lacks the permissions to connect to the remote host.
v You supply a USER Authentication clause but omit the USING validation_var

specification.

In compliance with the X/Open standard for the CONNECT statement, the
Informix ESQL/C preprocessor supports a CONNECT statement that has a USER
Authentication clause without the USING validation_var specification. If the
validation_var is not present, however, the database server rejects the connection at
runtime.

On UNIX, the user_id that you specify must be a valid login name and must exist
in the /etc/passwd file. If the application connects to a remote server, the login
name must exist in this file on both the local and remote database servers.

Chapter 2. SQL statements 2-87

On Windows, the user_id that you specify must be a valid login name and must
exist in User Manager. If the application connects to a remote server, the login
name must exist in the domain of both the client and the server.

Use of the Default User ID
If you do not supply the USER Authentication clause, the default user ID is used
to attempt the connection. The default user ID is the login name of the user
running the application. In this case, you obtain network permissions with the
standard authorization procedures. For example, on UNIX, the default user ID
must match a user ID in the /etc/hosts.equiv file. On Windows, you must be a
member of the domain, or if the database server is installed locally, you must be a
valid user on the computer where it is installed.

The DEFAULT Connection Specification
Instead of specifying an explicit database environment, you can use the DEFAULT
keyword to request a default connection to a default database server. The default
database server can be local or remote. To designate the default database server, set
its name in the INFORMIXSERVER environment variable. This option of
CONNECT does not open a database.

If the CONNECT TO DEFAULT statement succeeds, you must use the DATABASE
statement or the CREATE DATABASE statement to open or create a database in
the default database environment.

The Implicit Connection with DATABASE Statements
If you do not execute a CONNECT statement in your application, the first SQL
statement must be one of the following database statements (or a single statement
PREPARE for one of the following statements):
v DATABASE
v CREATE DATABASE
v DROP DATABASE

If one of these database statements is the first SQL statement in an application, the
statement establishes a connection to a database server, which is known as an
implicit connection. If the database statement specifies only a database name, the
database server name is obtained from the DBPATH environment variable. This
situation is described in “Specifying the Database Environment” on page 2-85.

An application that makes an implicit connection can establish other connections
explicitly (using the CONNECT statement) but cannot establish another implicit
connection unless the original implicit connection is closed. An application can
terminate an implicit connection using the DISCONNECT statement. After you
create an explicit connection, you cannot use any database statement to create
implicit connections until after you close the explicit connection.

After any implicit connection is made, that connection is considered to be the
default connection, regardless of whether the database server is the default that the
INFORMIXSERVER environment variable specifies. This feature allows the
application to refer to the implicit connection if additional explicit connections are
made, because the implicit connection has no identifier.

For example, if you establish an implicit connection followed by an explicit
connection, you can make the implicit connection current by issuing the SET
CONNECTION DEFAULT statement. This means, however, that once you establish

2-88 IBM Informix Guide to SQL: Syntax

an implicit connection, you cannot use the CONNECT DEFAULT statement,
because the implicit connection is now the default connection.

The database statements can always be used to open a database or create a new
database on the current database server.

WITH CONCURRENT TRANSACTION Option
The WITH CONCURRENT TRANSACTION clause enables you to switch to a
different connection while a transaction is active in the current connection. If the
current connection was not established using the WITH CONCURRENT
TRANSACTION clause, you cannot switch to a different connection if a transaction
is active; the CONNECT or SET CONNECTION statement fails, returning an error,
and the transaction in the current connection continues to be active.

In this case, the application must commit or roll back the active transaction in the
current connection before it switches to a different connection.

The WITH CONCURRENT TRANSACTION clause supports the concept of
multiple concurrent transactions, where each connection can have its own
transaction and the COMMIT WORK and ROLLBACK WORK statements affect
only the current connection. The WITH CONCURRENT TRANSACTION clause
does not support global transactions in which a single transaction spans databases
over multiple connections. The COMMIT WORK and ROLLBACK WORK
statements do not act on databases across multiple connections.

The following example illustrates how to use the WITH CONCURRENT
TRANSACTION clause:
main()
{
EXEC SQL connect to ’a@srv1’ as ’A’;
EXEC SQL connect to ’b@srv2’ as ’B’ with concurrent transaction;
EXEC SQL connect to ’c@srv3’ as ’C’ with concurrent transaction;

/*
Execute SQL statements in connection ’C’ , starting a transaction

*/
EXEC SQL set connection ’B’; -- switch to connection ’B’

/*
Execute SQL statements starting a transaction in ’B’.
Now there are two active transactions, one each in ’B’ and ’C’.

*/

EXEC SQL set connection ’A’; -- switch to connection ’A’

/*
Execute SQL statements starting a transaction in ’A’.
Now there are three active transactions, one each in ’A’, ’B’ and ’C’.

*/

EXEC SQL set connection ’C’; -- ERROR, transaction active in ’A’

/*
SET CONNECTION ’C’ fails (current connection is still ’A’)
The transaction in ’A’ must be committed or rolled back because
connection ’A’ was started without the CONCURRENT TRANSACTION
clause.

*/

Chapter 2. SQL statements 2-89

EXEC SQL commit work; -- commit tx in current connection (’A’)

/*
Now, there are two active transactions, in ’B’ and in ’C’,
which must be committed or rolled back separately

*/

EXEC SQL set connection ’B’; -- switch to connection ’B’
EXEC SQL commit work; -- commit tx in current connection (’B’)

EXEC SQL set connection ’C’; -- go back to connection ’C’
EXEC SQL commit work; -- commit tx in current connection (’C’)

EXEC SQL disconnect all;
}

Warning: When an application uses the WITH CONCURRENT TRANSACTION
clause to establish multiple connections to the same database environment, a
deadlock condition can occur.

Related Information

Related Statements: “DISCONNECT statement” on page 2-323, “SET
CONNECTION statement” on page 2-610, “DATABASE statement” on page 2-285,
and “CREATE DATABASE statement” on page 2-97

For more information about sqlhosts, refer to your IBM Informix Administrator's
Guide.

CREATE ACCESS_METHOD statement
Use the CREATE ACCESS_METHOD statement to register a new primary or
secondary access method in the sysams system catalog table.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SECONDARY
PRIMARY

ACCESS_METHOD access_method �

� �

,
(1)

(Purpose Options) ��

Notes:

1 See “Purpose Options” on page 5-49

Element Description Restrictions Syntax

access method Name declared here for the
new access method

Must be unique among access-method names in
the sysams system catalog table

“Identifier” on
page 5-21

2-90 IBM Informix Guide to SQL: Syntax

Usage

The CREATE ACCESS_METHOD statement adds a user-defined access method to
a database. To create an access method, you specify purpose functions (or purpose
methods), purpose flags, or purpose values as attributes of the access method, and you
associate keywords (based on column names in the sysams system catalog table)
with UDRs. You must have the DBA or Resource privilege to create an access
method.

For information on setting purpose options, including a list of all the purpose
function keywords, refer to “Purpose Options” on page 5-49.

The PRIMARY keyword specifies a user-defined primary-access method for a
virtual table. The SECONDARY keyword specifies creating a user-defined
secondary-access method for a virtual index. The SECONDARY keyword (and
creating virtual indexes) is not supported in the Java Virtual-Table Interface.

The following statement creates a secondary-access method named T_tree:
CREATE SECONDARY ACCESS_METHOD T_tree
(
am_getnext = ttree_getnext,

. . .
am_unique,
am_cluster,
am_sptype = ’S’
);

In the preceding example, the am_getnext keyword in the Purpose Options list is
associated with the ttree_getnext() UDR as the name of a method to scan for the
next item that satisfies a query. This example indicates that the T_tree secondary
access method supports unique keys and clustering, and resides in an sbspace.

Any UDR that the CREATE ACCESS_METHOD statement associates with the
keyword for a purpose function task, such as the association of ttree_getnext()
with am_getnext in the preceding example, must already have been registered in
the database by the CREATE FUNCTION statement (or by a functionally
equivalent statement, such as CREATE PROCEDURE FROM).

The following statement creates a primary-access method named am_tabprops that
resides in an extspace.
CREATE PRIMARY ACCESS_METHOD am_tabprops
(
am_open = FS_open,
am_close = FS_close,
am_beginscan = FS_beginScan,
am_create = FS_create,
am_scancost = FS_scanCost,
am_endscan = FS_endScan,
am_getnext = FS_getNext,
am_getbyid = FS_getById,
am_drop = FS_drop,
am_truncate = FS_truncate,
am_rowids,
am_sptype = ’x’
);

Chapter 2. SQL statements 2-91

Related Information

Related statements: “ALTER ACCESS_METHOD statement” on page 2-5 and
“DROP ACCESS_METHOD statement” on page 2-325

For the schema of the sysams table, see the IBM Informix Guide to SQL: Reference.

For information about how to set purpose-option specifications, see “Purpose
Options” on page 5-49.

For more information on primary-access methods, see the IBM Informix
Virtual-Table Interface Programmer's Guide.

For more information on secondary-access methods, see the IBM Informix
Virtual-Index Interface Programmer's Guide and the IBM Informix User-Defined
Routines and Data Types Developer's Guide.

For a discussion of privileges, see the “GRANT statement” on page 2-401 or
“REVOKE statement” on page 2-502 statements or the IBM Informix Database Design
and Implementation Guide.
Related reference

SYSAMS (SQL Reference)

CREATE AGGREGATE statement
Use the CREATE AGGREGATE statement to create a new aggregate function and
register it in the sysaggregates system catalog table.

User-defined aggregates extend the functionality of the database server by
performing aggregate computations that the user implements.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE AGGREGATE aggregate
(1)

Owner Name .

�

� �

,

WITH (Modifiers) ��

Modifiers:

INIT=init_func
ITER=iter_func
COMBINE=comb_func

FINAL=final_func
HANDLESNULLS

2-92 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_016.htm#ids_sqr_016

Notes:

1 See “Owner Name” on page 5-45

Element Description Restrictions Syntax

aggregate Name of the new aggregate Must be unique among names of
built-in aggregates and UDRs

“Identifier” on page
5-21

comb_func Function that merges one partial
result into the other and returns the
updated partial result

Must specify the combined function
both for parallel queries and for
sequential queries

“Identifier” on page
5-21

final_func Function that converts a partial
result into the result type

If this is omitted, then the returned
value is the final result of iter_func

“Identifier” on page
5-21

init_func Function that initializes the data
structures required for the
aggregate computation

Must be able to handle NULL
arguments

“Identifier” on page
5-21

iter_func Function that merges a single value
with a partial result and returns
updated partial result

Must specify an iterator function. If
init_func is omitted, iter_func must be
able to handle NULL arguments

“Identifier” on page
5-21

Usage

You can specify the INIT, ITER, COMBINE, FINAL, and HANDLESNULLS
modifiers in any order.

Important: You must specify the ITER and COMBINE modifiers in a CREATE
AGGREGATE statement. You do not need to specify the INIT, FINAL, and
HANDLESNULLS modifiers in a CREATE AGGREGATE statement.

The ITER, COMBINE, FINAL, and INIT modifiers specify the support functions for
a user-defined aggregate. These support functions do not need to exist at the time
when you create the user-defined aggregate.

If you omit the HANDLESNULLS modifier, rows with NULL aggregate argument
values do not contribute to the aggregate computation. If you include the
HANDLESNULLS modifier, you must define all the support functions to handle
NULL values as well.

Extending the Functionality of Aggregates
Informix provides two ways to extend the functionality of aggregates. Use the
CREATE AGGREGATE statement only for the second of the two cases.
v Extensions of built-in aggregates

A built-in aggregate is an aggregate that the database server provides, such as
COUNT, SUM, or AVG. These only support built-in data types. To extend a
built-in aggregate so that it supports a user-defined data type (UDT), you must
create user-defined routines that overload the binary operators for that
aggregate. For further information on extending built-in aggregates, see the IBM
Informix User-Defined Routines and Data Types Developer's Guide.

v Creation of user-defined aggregates
A user-defined aggregate is an aggregate that you define to perform an
aggregate computation that the database server does not provide. You can use
user-defined aggregates with built-in data types, extended data types, or both.
To create a user-defined aggregate, use the CREATE AGGREGATE statement. In
this statement, you name the new aggregate and specify the support functions

Chapter 2. SQL statements 2-93

that compute the aggregate result. These support functions perform
initialization, sequential aggregation, combination of results, and type
conversion.

Example of Creating a User-Defined Aggregate
The following example defines a user-defined aggregate named average:
CREATE AGGREGATE average

WITH (
INIT = average_init,
ITER = average_iter,
COMBINE = average_combine,
FINAL = average_final
);

Before you use the average aggregate in a query, you must also use CREATE
FUNCTION statements to create the support functions specified in the CREATE
AGGREGATE statement.

The following table gives an example of the task that each support function might
perform for average.

Keyword Support Function Effect

INIT average_init Allocates and initializes an extended data type storing
the current sum and the current row count

ITER average_iter For each row, adds the value of the expression to the
current sum and increments the current row count by
one

COMBINE average_combine Adds the current sum and the current row count of
one partial result to the other and returns the updated
result

FINAL average_final Returns the ratio of the current sum to the current
row count and converts this ratio to the result type

Parallel Execution
The database server can break up an aggregate computation into several pieces
and compute them in parallel. The database server uses the INIT and ITER support
functions to compute each piece sequentially. Then the database server uses the
COMBINE function to combine the partial results from all the pieces into a single
result value. Whether an aggregate is parallel is an optimization decision that is
transparent to the user.

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125 and “DROP
AGGREGATE statement” on page 2-326

For information about how to invoke a user-defined aggregate, see “User-Defined
Aggregates” on page 4-166 in the Expression segment.

For a description of the sysaggregates system catalog table that stores data about
user-defined aggregates, see the IBM Informix Guide to SQL: Reference.

For a discussion of user-defined aggregates, see IBM Informix User-Defined Routines
and Data Types Developer's Guide.

2-94 IBM Informix Guide to SQL: Syntax

Related reference

SYSAGGREGATES (SQL Reference)

CREATE CAST statement
Use the CREATE CAST statement to register a cast that converts data from one
data type to another.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
EXPLICIT
IMPLICIT CAST �

� (source_type AS target_type)
WITH function

��

Element Description Restrictions Syntax

function UDR that you register to
implement the cast

See “WITH Clause” on page 2-97. “Identifier” on
page 5-21

source_type Data type to be converted Must exist in the database at the time the cast is
registered. See also “Source and Target Data Types.”

“Data Type” on
page 4-21

target_type Data type that results
from the conversion

The same restrictions that apply for the source_type (as
listed above) also apply for the target_type

“Data Type” on
page 4-21

Usage

A cast is a mechanism that the database server uses to convert one data type to
another. The database server uses casts to perform the following tasks:
v To compare two values in the WHERE clause of a SELECT, UPDATE, or

DELETE statement
v To pass values as arguments to user-defined routines
v To return values from user-defined routines

To create a cast, you must have the necessary privileges on both the source data
type and the target data type. All users have access privileges to use the built-in
data types. To create a cast to or from an OPAQUE, DISTINCT, or named ROW
data type, however, requires the Usage privilege on that data type.

The CREATE CAST statement registers a cast in the syscasts system catalog table.
For more information on syscasts, see the chapter on system catalog tables in the
IBM Informix Guide to SQL: Reference.
Related reference

SYSCASTS (SQL Reference)

Source and Target Data Types
The CREATE CAST statement defines a cast that converts a source type to a target
type. Both the source and target data types must exist in the database when you

Chapter 2. SQL statements 2-95

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_015.htm#ids_sqr_015
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_019.htm#ids_sqr_019

execute the CREATE CAST statement to register the cast. The source and the target
data types have the following restrictions:
v Either the source or the target type, but not both, can be a built-in data type.
v Neither the source nor the target type can be a DISTINCT type of the other.
v Neither the source nor the target types can be a COLLECTION data type.

Explicit and Implicit Casts
To process queries with multiple data types often requires casts that convert data
from one data type to another. You can use the CREATE CAST statement to create
the following kinds of casts:
v Use the CREATE EXPLICIT CAST statement to define an explicit cast.
v Use the CREATE IMPLICIT CAST statement to define an implicit cast.

Explicit Casts
An explicit cast is a cast that you must specifically invoke, with either the CAST
AS keywords or with the cast operator (::). The database server does not
automatically invoke an explicit cast to resolve data type conversions. The
EXPLICIT keyword is optional; by default, the CREATE CAST statement creates an
explicit cast.

The following CREATE CAST statement defines an explicit cast from the
rate_of_return opaque data type to the percent distinct data type:
CREATE EXPLICIT CAST (rate_of_return AS percent

WITH rate_to_prcnt);

The following SELECT statement explicitly invokes this explicit cast in its WHERE
clause to compare the bond_rate column (of type rate_of_return) to the
initial_APR column (of type percent):
SELECT bond_rate FROM bond

WHERE bond_rate::percent > initial_APR;

Implicit Casts
The database server invokes built-in casts to convert from one built-in data type to
another built-in type that is not directly substitutable. For example, the database
server performs conversion of a character type such as CHAR to a numeric type
such as INTEGER through a built-in cast.

An implicit cast is a cast that the database server can invoke automatically when it
encounters data types that cannot be compared with built-in casts. This type of
cast enables the database server to automatically handle conversions between other
data types.

To define an implicit cast, specify the IMPLICIT keyword in the CREATE CAST
statement. For example, the following CREATE CAST statement specifies that the
database server should automatically use the prcnt_to_char() function to convert
from the CHAR data type to a distinct data type, percent:
CREATE IMPLICIT CAST (CHAR AS percent WITH char_to_prcnt);

This cast only supports automatic conversion from the CHAR data type to percent.
For the database server to convert from percent to CHAR, you also need to define
another implicit cast, as follows:
CREATE IMPLICIT CAST (percent AS CHAR WITH prcnt_to_char);

2-96 IBM Informix Guide to SQL: Syntax

The database server automatically invokes the char_to_prcnt() function to evaluate
the WHERE clause of the following SELECT statement:
SELECT commission FROM sales_rep WHERE commission > "25

Users can also invoke implicit casts explicitly. For more information on how to
explicitly invoke a cast function, see “Explicit Casts” on page 2-96.

When a built-in cast does not exist for conversion between data types, you can
create user-defined casts to make the necessary conversion.

WITH Clause
The WITH clause of the CREATE CAST statement specifies the name of the
user-defined function to invoke to perform the cast. This function is called the cast
function. You must specify a function name unless the source data type and the target
data type have identical representations. Two data types have identical
representations when the following conditions are met:
v Both data types have the same length and alignment.
v Both data types are passed by reference or both are passed by value.

The cast function must be registered in the same database as the cast at the time
the cast is invoked, but need not exist when the cast is created. The CREATE CAST
statement does not check privileges on the specified function name, or even verify
that the cast function exists. Each time a user invokes the cast explicitly or
implicitly, the database server verifies that the user has the Execute privilege on
the cast function.

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
DISTINCT TYPE statement” on page 2-100, “CREATE OPAQUE TYPE statement”
on page 2-154, “CREATE ROW TYPE statement” on page 2-176, and “DROP CAST
statement” on page 2-327

For more information about data types, casting, and conversion, see the Data Types
segment in this document and the IBM Informix Guide to SQL: Reference.

For examples that show how to create and use casts, see the IBM Informix Database
Design and Implementation Guide.
Related concepts

Data Types (SQL Reference)

CREATE DATABASE statement
Use the CREATE DATABASE statement to create a new database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE DATABASE database
IN dbspace

�

Chapter 2. SQL statements 2-97

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_093.htm#ids_sqr_093

�
WITH LOG

BUFFERED
LOG MODE ANSI

��

Element Description Restrictions Syntax

database Name that you declare here for the new
database that you are creating

Must be unique among names of
databases of the database server

“Database Name” on
page 5-15

dbspace The dbspace to store the data for this
database; default is the root dbspace

Must already exist “Identifier” on page
5-21

Usage

This statement is an extension to ANSI-standard syntax. (The ANSI/ISO standard
for the SQL language does not specify any syntax for construction of a database,
the process by which a database comes into existence and has its name declared.)

The database that CREATE DATABASE specifies becomes the current database.

If the DBCREATE_PERMISSION configuration parameter is not set, any user can
create a database. If the configuration file includes one or more
DBCREATE_PERMISSION specifications, however, only the specified users can
create databases. Whether or not DBCREATE_PERMISSION is set, user informix
can use the CREATE DATABASE statement. For additional information about how
to set the DBCREATE_PERMISSION parameter to control which users can create
new databases. see the IBM Informix Administrator's Reference.

The database name that you declare must be unique within the database server
environment in which you are working. The database server creates the system
catalog tables that describe the structure of the new database.

When you create a database, you alone can access it. It remains inaccessible to
other users until you, as DBA, grant database privileges. For information on how
to grant database privileges, see “GRANT statement” on page 2-401.

If a previous CONNECT statement has established an explicit connection to a
database, and that connection is still your current connection, you cannot use the
CREATE DATABASE statement (nor any SQL statement that creates an implicit
connection) until after you use DISCONNECT to close the explicit connection.

In Informix ESQL/C, the CREATE DATABASE statement cannot appear in a
multistatement PREPARE operation.

The SQL_LOGICAL_CHAR configuration parameter setting for the Informix
instance to which you are connected is recorded in the system catalog of the new
database. This setting cannot be changed, and persists until the database is
dropped, even if the Informix instance that manages the database is stopped and
restarted with a new SQL_LOGICAL_CHAR value. For a description of
SQL_LOGICAL_CHAR, which in multibyte locales can enable logical-character
semantics in declarations of character data types, see your IBM Informix
Administrator's Reference. For information about how the flags column of the
systables system catalog table encodes the SQL_LOGICAL_CHAR setting for the
database, see your IBM Informix Guide to SQL: Reference.

2-98 IBM Informix Guide to SQL: Syntax

If you do not specify a dbspace, the database server creates the system catalog
tables in the root dbspace by default. The following statement creates the vehicles
database in the root dbspace:
CREATE DATABASE vehicles;

The following statement creates the vehicles database in the research dbspace:
CREATE DATABASE vehicles IN research;

Related reference

DBCREATE_PERMISSION Configuration Parameter (Administrator's
Reference)

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

Logging Options
The logging options of the CREATE DATABASE statement determine the type of
logging that is done for the database. In the event of a failure, the database server
uses the log to re-create all committed transactions in your database.

The following statement uses the WITH LOG option to create a database with
unbuffered logging:
CREATE DATABASE unbufDatabase WITH LOG;

If you do not specify the WITH LOG keywords Informix will create an unlogged
database that cannot use transactions nor the SQL statements that support
transaction logging (BEGIN WORK, COMMIT WORK, ROLLBACK WORK,
RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT, SET IMPLICIT
TRANSACTION, SET LOG, and SET ISOLATION).

Specifying Buffered Logging
The following example creates a database that uses a buffered log:
CREATE DATABASE vehicles WITH BUFFERED LOG;

If you use a buffered log, you marginally enhance the performance of logging at
the risk of not being able to re-create the last few transactions after a failure. (See
the discussion of buffered logging in the IBM Informix Database Design and
Implementation Guide.)

ANSI-Compliant Databases
When you use the LOG MODE ANSI option in the CREATE DATABASE
statement, the database that you create is an ANSI-compliant database that
conforms to the ANSI/ISO standard for the SQL language. The following example
creates an ANSI-compliant database:
CREATE DATABASE employees WITH LOG MODE ANSI;

ANSI-compliant databases are different from databases that are not ANSI
compliant in several ways, including the following features:
v All SQL statements are automatically contained in transactions.
v All databases use unbuffered logging.
v Owner naming is enforced.

You must qualify with the owner name any table, view, synonym, index, or
constraint that you do not own. Unless you enclose the owner name between
quotation marks, alphabetic characters in owner names default to uppercase. (To

Chapter 2. SQL statements 2-99

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0042.htm#ids_adr_0042
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0042.htm#ids_adr_0042
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

prevent this upshifting of lowercase letters in undelimited owner names, you
can set the ANSIOWNER environment variable to 1.)
In addition, the routine signature of a UDR includes the name of the owner; in
databases that are not ANSI compliant, this is true only for the sysdbopen()
and sysdbclose() procedures.

v For sessions, the default isolation level is REPEATABLE READ.
v Default privileges on objects differ from those in databases that are not ANSI

compliant. When you create a table or a synonym, other users do not receive
access privileges (as members if the PUBLIC group) on the object by default.

v All DECIMAL data types are fixed-point values. If you declare a column as
DECIMAL(p), the default scale is zero, meaning that only integer values can be
stored. (In a database that is not ANSI compliant, DECIMAL(p) is a
floating-point data type of a scale large enough to store the exponential notation
for a value.)

Other slight differences exist between databases that are ANSI compliant and those
that are not. These differences are noted with the related SQL statement in this
document. For a detailed discussion of the differences between ANSI compliant
databases and databases that are not ANSI-compliant, see the IBM Informix
Database Design and Implementation Guide.

Creating an ANSI-compliant database does not mean that you automatically
receive warnings for Informix extensions to the ANSI/ISO standard for SQL syntax
when you run the database. You must also use the -ansi flag or the
DBANSIWARN environment variable to receive such warnings.

For additional information about -ansi and DBANSIWARN, see the IBM Informix
Guide to SQL: Reference.

Related Information

Related statements: “CLOSE DATABASE statement” on page 2-80, “CONNECT
statement” on page 2-83, “DATABASE statement” on page 2-285, and “DROP
DATABASE statement” on page 2-328
Related reference

DBANSIWARN (SQL Reference)

CREATE DISTINCT TYPE statement
Use the CREATE DISTINCT TYPE statement to create a new distinct data type.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE DISTINCT TYPE distinct_type AS source_type ��

Element Description Restrictions Syntax

distinct_type Name that you
declare here for the
new distinct data type

In an ANSI-compliant database, the combination of the
owner and data type must be unique within the database. In
a database that is not ANSI compliant, the name must be
unique among names of data types in the database.

“Data Type”
on page 4-21

2-100 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_207.htm#ids_sqr_207

Element Description Restrictions Syntax

source_type Name of existing type
on which the new
type is based

Must be either a built-in data type or one created with the
CREATE DISTINCT TYPE, CREATE OPAQUE TYPE, or
CREATE ROW TYPE statement

“Data Type”
on page 4-21

Usage

A distinct type is a data type based on a built-in data type or on an existing opaque
data type, a named ROW data type, or another distinct data type. Distinct data
types are strongly typed. Although the distinct type has the same physical
representation of data as its source type, values of the two types cannot be
compared without an explicit cast from one type to the other.

To create a distinct data type, you must have the Resource privilege on the
database. Any user with the Resource privilege can create a distinct type from one
of the built-in data types, which user informix owns.

Important: You cannot create a distinct type on the SERIAL, BIGSERIAL, or
SERIAL8 data types.

To create a distinct type from an opaque type, from a named ROW type, or from
another distinct type, you must be the owner of the data type or have the Usage
privilege on the data type.

By default, after a distinct type is defined, only the owner of the distinct type and
the DBA can use it. The owner of the distinct type, however, can grant to other
users the Usage privilege on the distinct type.

A distinct type has the same storage structure as its source type. The following
statement creates the distinct type birthday, based on the built-in DATE data type:
CREATE DISTINCT TYPE birthday AS DATE;

Although Informix uses the same storage format for the distinct type as it does for
its source type, a distinct type and its source type cannot be compared in an
operation unless one type is cast explicitly to the other type.

Privileges on Distinct Types
To create a distinct type, you must have the Resource privilege on the database.
When you create the distinct type, only you, the owner, have Usage privilege on
this type. Use the GRANT or REVOKE statements to grant or revoke Usage
privilege to other database users.

To find out what privileges exist on a particular type, check the sysxtdtypes
system catalog table for the owner name and the sysxtdtypeauth system catalog
table for additional data type privileges that might have been granted. For more
information on system catalog tables, see the IBM Informix Guide to SQL: Reference.

The DB-Access utility can also display privileges on distinct types.

Chapter 2. SQL statements 2-101

Related concepts

System Catalog Tables (SQL Reference)

Support Functions and Casts
When you create a distinct type, Informix automatically defines two explicit casts:
v A cast from the distinct type to its source type
v A cast from the source type to the distinct type

Because the two data types have the same representation (the same length and
alignment), no support functions are required to implement the casts.

You can create an implicit cast between a distinct type and its source type. To
create an implicit cast, use the Table Options clause to specify the format of the
external data. You must first drop the default explicit cast, however, between the
distinct type and its source type.

All support functions and casts that are defined on the source type can be used on
the distinct type. Casts and support functions that are defined on the distinct type,
however, are not available to the source type. Use the Table Options clause to
specify the format of the external data.

Manipulating Distinct Types
When you compare or manipulate data of a distinct type and its source type, you
must explicitly cast one type to the other in the following situations:
v To insert or update a column of one type with values of the other type
v To use a relational operator to add, subtract, multiply, divide, compare, or

otherwise manipulate two values, one of the source type and one of the distinct
type

For example, suppose you create a distinct type, dist_type, that is based on the
NUMERIC data type. You then create a table with two columns, one of type
dist_type and one of type NUMERIC.
CREATE DISTINCT TYPE dist_type AS NUMERIC;
CREATE TABLE t(col1 dist_type, col2 NUMERIC);

To directly compare the distinct type and its source type or assign a value of the
source type to a column of the distinct type, you must cast one type to the other,
as the following examples show:
INSERT INTO tab (col1) VALUES (3.5::dist_type);

SELECT col1, col2
FROM t WHERE (col1::NUMERIC) > col2;

SELECT col1, col2, (col1 + col2::dist_type) sum_col
FROM tab;

Related Information

Related statements: “CREATE CAST statement” on page 2-95, “CREATE
FUNCTION statement” on page 2-125, “CREATE OPAQUE TYPE statement” on
page 2-154, “CREATE ROW TYPE statement” on page 2-176, “DROP TYPE
statement” on page 2-350, and “DROP ROW TYPE statement” on page 2-341

2-102 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

For information and examples that show how to use and cast distinct types, see
the IBM Informix Guide to SQL: Tutorial.

For more information on when you might create a distinct type, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

CREATE EXTERNAL TABLE Statement
Use the CREATE EXTERNAL TABLE statement to define an external source that is
not part of your database to load and unload data for your database.

The implementation of the CREATE EXTERNAL TABLE statement is an extension
to the ANSI/ISO standard for SQL.

Syntax

�� CREATE EXTERNAL TABLE table
(1)

Column Definition �

�
(3)

USING(DATAFILES Clause)
(2) (2)

Table Options Table Options

��

Notes:

1 See “Column Definition” on page 2-104

2 See “Table options” on page 2-107

3 See “DATAFILES Clause” on page 2-105

Element Description Restrictions Syntax

table The name of the table to store
external data

Must be unique among names of tables, views,
and synonyms in the current database

“Identifier” on
page 5-21

Usage

You use external tables to load and unload data to or from your database. You can
also use external tables to query data in text files that are not in an Informix
database.

The first portion of the syntax diagram declares the name of the table and defines
its columns.

The portion that follows the USING keyword identifies external files that the
database server opens when you use the external table, and specifies additional
options for characteristics of the external table.

After executing the CREATE EXTERNAL TABLE statement, you can move data to
and from the external source with an INSERT INTO ... SELECT statement. See the
section “INTO EXTERNAL Clause” on page 2-595 for more information about
loading the results of a query into an external table.

Chapter 2. SQL statements 2-103

|

|
|

|
|

|

|||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|

||

||

||

|||||

||
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

Column Definition
Use the column definition segment of the CREATE EXTERNAL TABLE statement
to declare the name and data type of a single column of the new external table.

Column Definition:

�

SAMEAS template
,

column data_type Other Optional Clauses

Other Optional Clauses:

EXTERNAL CHAR (size)
NULL ' null_string '
NOT NULL

Element Description Restrictions Syntax

column One column name for each
column of the external table

For each column, you must specify a
built-in data type

“Identifier” on page 5-21

data_type Data type of the column The data_type can be any data type
supported by Informix.

“Data Type” on page 4-21

template Existing table with the same
schema as the external table

Cannot be a subset of columns nor
differ in any column data type

“Database Object Name” on
page 5-16

size Column size in bytes. Default is
1.

Integer; 1 ≤ size ≤ 32,767 “Literal Number” on page
4-184

null_string Value to represent NULL See “Defining NULL Values” on
page 2-105.

“Quoted String” on page
4-188

Using the SAMEAS Clause
The SAMEAS template clause uses all the column names and data types from the
template table in the definition of the new table.

You cannot use the SAMEAS clause for FIXED-format files.

Example

Consider loading a delimited ASCII text file into a table with the following
schema:
TABLE employee (

name CHAR(18) NOT NULL,
hiredate DATE DEFAULT TODAY,
address VARCHAR(40),
empno INTEGER);

The SQL statements used to load data into the employee table would be as follows:
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej"
);

INSERT INTO employee SELECT * FROM emp_ext;

2-104 IBM Informix Guide to SQL: Syntax

|

|
|

|

||||||||||||||||||||||||||||||||

|

|

||||||||||||||||||||||||||||||||||||

|

|||||

||
|
|
|
|

|||
|
|

||
|
|
|
|
|

||
|
||
|

|||
|
|
|
|

|
|
|

|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

The external table has the same name, type, and default for each column because
the CREATE statement includes the SAMEAS keyword. The default format is
delimited, so no format keyword is required.

Check constraints defined on columns in database tables are not inherited by the
external table. However, NOT NULL constraints are inherited by the external table.

Delimited files are ASCII by default. The default row delimiter is an end-of-line
character unless you use the RECORDEND keyword to specify a different
delimiter when you created the external table. (The RECORDEND keyword works
for delimited format only.)

Using the EXTERNAL Keyword
Use the EXTERNAL keyword to specify a CHAR data type for each column of
your external table that has a data type different from the internal table.

For example, you might have a VARCHAR column in the internal table that you
want to map to a CHAR column in the external table.

You must specify an external type for every column that is in fixed format. You
cannot specify an external type for delimited format columns except for BYTE and
TEXT columns where your specification is optional.

Defining NULL Values:

You can define a value to be interpreted as a NULL when loading or unloading
data from an external source.

The database server uses the NULL representation for a FIXED-format external
table to both interpret values as the data is loaded into the database and to format
NULL values into the appropriate data type when data is unloaded to an external
table.

The NULL representation must fit into the length of the external field.

Manipulating Data in Fixed Format Files
A fixed format file is one in which all rows have the same length.

For files in FIXED format, you must declare the column name and the EXTERNAL
item for each column to set the name and number of characters. For FIXED-format
files, the only data type allowed is CHAR. You can use the keyword NULL to
specify what string to interpret as a NULL value.

DATAFILES Clause
The DATAFILES clause specifies the operating system file or pipe that is opened
when you use an external table.

DATAFILES Clause:

DATAFILES �

Chapter 2. SQL statements 2-105

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|

|
|

|
|
|
|

|

|
|

|
|
|
|

|

|
|

|

|||||||
|

||

� �

�

,

(' DISK : fixed_path ')
PIPE formatted_path ;

; BLOBDIR : fixed_path
CLOBDIR

Element Description Restrictions Syntax

fixed_path Path name for input or output files in the
definition of the external table

See the notes that follow this table Must conform to
operating-system
rules

formatted_path Formatted path name that uses
pattern-matching characters

See the notes that follow this table Must conform to
operating-system
rules

The database server does not verify that any file or pipe exists at the specified
fixed_path or formatted_path, that the specified pipe is open, nor that the user has
permission to access that file system. Subsequent operations on the external table
will fail, however, unless the path is valid and, if a named pipe is being used, that
it is open, when the database server attempts to read or write to the external table.

For examples of the DATAFILES clause, see “External Table Examples” on page
2-112.

Keyword
Description

CLOBDIR
Specifies the server directory in which the CLOB file is stored.

BLOBDIR
Specifies the server directory in which the BLOB file is stored. When
creating queries, specify DISK followed by BLOBDIR followed by
CLOBDIR. If BLOBDIR is omitted, BLOB files are stored the same directory
as specified by the DISK clause. If both BLOBDIR and CLOBDIR are
omitted, a new file is created for each BLOB or CLOB column and stored
in the directory in which the DISK clause is specified.

In the following example, rows stored in /work1/exttab1.dat have their
BLOBs located in /work1/blobdir1 and CLOBs in the /work1/clobdir1
directory.

Rows stored in /work1/exttab2.dat have their BLOBs located in the /work1
directory and CLOBs in the /work1/clobdir2 directory. Because the
BLOBDIR clause is omitted, the BLOBs are stored in the directory where
exttab2.dat is stored.

Rows stored in the /work1/exttab3.dat have their BLOBs and CLOBs
located in the /work1 directory because both BLOBDIR and CLOBDIR are
omitted.
CREATE EXTERNAL TABLE exttab (

id SERIAL,
lobc CLOB,
lobb BLOB)

USING (DATAFILES(
"DISK:/work1/exttab1.dat;BLOBDIR:/work1/blobdir1;CLOBDIR:/work1/clobdir1",
"DISK:/work1/exttab2.dat;CLOBDIR:/work1/clobdir2",
"DISK:/work1/exttab3.dat"),
DELIMITER ’|’);

2-106 IBM Informix Guide to SQL: Syntax

|||

|

|||||

||
|
||
|
|

||
|
||
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

Using Formatting Characters with External Tables
You can use a formatted path name to designate a file name by using the
substitution character %r (first ..last).

Formatting String
Effect

%r(first ..last)
Specifies multiple files on the Informix server for the external table.

The first and last arguments represent a range of values that are substituted
in the expression when the statement is run. For example, specifying
my_file.%r(1..3) expands to:

my_file.1

my_file.2

my_file.3

The only supported formatting character supported by Informix is %r.

Table options
These options specify additional characteristics that define the table.

Table Options:

�

,
(1) DELIMITED

FORMAT ' '
INFORMIX
FIXED

DEFAULT
EXPRESS
DELUXE
DBDATE 'date_format'
DBMONEY 'currency'
DELIMITER 'field_delimiter'
RECORDEND 'record_delimiter'
MAXERRORS num_errors
REJECTFILE 'filename'
ESCAPE

NUMROWS num_rows
SIZE

Notes:

1 Use this path no more than once

Element Description Restrictions Syntax

field_delimiter Character to separate fields. Default
is pipe (|) character

For nonprinting characters,
use octal

“Quoted String” on page
4-188

filename Full path name for conversion error
messages

See “Reject Files” on page
2-111

Must conform to
operating-system rules.

num_errors Number of errors before load
operations are terminated

Value is ignored unless the
REJECTFILE value is set

“Literal Number” on page
4-184

num_rows Approximate number of rows
contained in the external table

Must be a positive number “Literal Number” on page
4-184

Chapter 2. SQL statements 2-107

|
|
|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

|||

|

|

||

|||||

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
||
|

Element Description Restrictions Syntax

record_delimiter Character to separate records.
Default is Newline (\n)

For nonprinting characters,
use octal

“Quoted String” on page
4-188

The num_errors specification is ignored during unload tasks.

If the RECORDEND value is not set, record_delimiter defaults to the Newline
character (\n). To specify a nonprinting character as the record delimiter or field
delimiter, you must encode it as the octal representation of the ASCII character. For
example, \006 can represent CTRL-F.

Use the table options keywords as the following table describes. You can use each
keyword whenever you plan to load or unload data unless only one of the two
modes is specified.

Keyword
Description

DBDATE
Specifies the date format when reading or writing an external table. You
use the DBDATE clause to convert data during load and unload operations
from external tables. In the following example, DBDATE is set to DMY2-. If
the date value in the database table was stored as 06/24/2009, the value
written to the external table is 24-06-09.
CREATE EXTERNAL TABLE ext_date (dob date)
USING (DATAFILES ("DISK:/tmp/datedisk"),

REJECTFILE "/tmp/datereject",
DBDATE "DMY2-",
FORMAT "delimited");

INSERT INTO ext_date SELECT * FROM basetab;

The DBDATE clause is also used when inserting date values from external
tables into database tables. In the following example, data in the external
table is converted to internal binary format based on the DBDATE value
set by the CREATE EXTERNAL TABLE statement.
INSERT INTO basetab SELECT * FROM ext_date;

If the DBDATE keyword is not specified in the USING clause of the
CREATE EXTERNAL TABLE statement, the date format is determined by
the setting of the DBDATE environment variable. If the DBDATE
environment variable is not specified, the date format is determined by the
setting of the GL_DATE environment variable. The value specified by the
DBDATE clause take precedence over the value specified by the DBDATE
environment variable. The setting of the DBDATE variable takes
precedence over that of the GL_DATE environment variable. See the IBM
Informix Guide to SQL: Reference for information about DBDATE and
GL_DATE values.

DBMONEY
Specifies the currency format when reading or writing an external table.
You use the DBMONEY clause to convert data during load and unload
operations from external tables. In the following example, DBMONEY is
set to DM, . Currency is formatted as DM (deutsche mark) units, using the
currency symbol DM and comma (,) . If the currency value in the database
table is stored as 100.50, the value written to the external table is 100,50.

2-108 IBM Informix Guide to SQL: Syntax

||||

||
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

CREATE EXTERNAL TABLE ext_money (sales money)
USING (DATAFILES ("DISK:/tmp/moneydisk"),

REJECTFILE "/tmp/moneyreject",
DBMONEY "DM,",
FORMAT "delimited");

INSERT INTO ext_money SELECT * FROM basetab;

When reading data from an external table into a database table, the
currency symbol is not required in the external table. For example, if the
external table contained the value 1000,78 and DBMONEY was set to DM,
then the data is not rejected and the row is stored correctly.

If the decimal separator in the external table and the value set for
DBMONEY do not match, then the row is rejected. For example, if the
external table contained the value 1000,78 (with a comma instead of a
decimal point) and the DBMONEY clause is set to DM. then the row is
rejected. If the data file contains a currency symbol and the currency
symbol does not match the DBMONEY currency symbol, the row is
rejected.

When writing data from a database table into an external table, the
currency symbol is not written to the external table.

If the DBMONEY clause is not specified, the data format is determined by
the setting of the DBMONEY environment variable. The value specified by
the DBMONEY clause take precedence over the value specified by the
DBMONEY environment variable. If the DBMONEY clause is not specified
and the DBMONEY environment variable is not set, the decimal separator
specified by the database locale is used. See the IBM Informix Guide to SQL:
Reference for information about DBMONEY values.

DEFAULT (load only)
Specifies replacing missing values in delimited input files with column
defaults (if they are defined) instead of NULLs, so input files can be
sparsely populated. Files do not need an entry for every column in the file
where a default is the value to be loaded.

DELIMITED
Specifies that the data file is a delimited text file. A delimiter character can
be specified using the optional DELIMITER table option.

DELIMITER
Specifies the character that separates fields in a delimited text file.

DELUXE (load only)
Specifies that data is loaded using deluxe mode. The deluxe mode updates
indexes, performs constraint checking, and evaluates triggers as data is
inserted into the table. Deluxe-mode loads are not as fast as express-mode
loads, but are more flexible. In deluxe mode, you can access and update
the table that is being loaded.

Deluxe mode is required for loading into STANDARD tables.

ESCAPE
Defines a character to mark ASCII special characters in ASCII-text-based
data files.

EXPRESS (load only)
Specifies that data is loaded using express mode. Express-mode loads are
significantly faster than deluxe-mode loads, but less flexible. In express

Chapter 2. SQL statements 2-109

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

mode you cannot update the table or read the new data entries until the
load is complete. Express mode can be used for both STANDARD and
RAW tables.

An error message is generated and the load is stopped if express mode is
specified and the table contains BYTE or TEXT data or smart large objects.

When loading data to a STANDARD table using express mode, indexes
and constraints are disabled and the table is locked in exclusive mode
before the load begins. Indexes and constraints are enabled and the table is
unlocked when the load is completed. After loading a STANDARD table,
the table is changed to read-only mode. You must perform a level-0 backup
before attempting to modify the table. Because the data loaded from the
external table is not logged, you must perform a level-0 backup to allow
data recovery.

When data is loaded using express mode the target table cannot be located
within an Enterprise Replication (ER) replicate. In addition, the target
database server must not have high-availability data replication (HDR)
enabled.

FIXED
Specifies that the data file is fixed width. When using EXTERNAL data
types in the external table, the FIXED format must be used.

FORMAT
Specifies the format of the data in the data files.

INFORMIX
Specifies that the format of the data file is internal Informix format.
Loading data from an external table saved in Informix format is faster than
loading data from a fixed or delimited external file. Use Informix format
when moving data from one Informix database to another.

MAXERRORS
Sets the number of errors that are allowed before the database server stops
loading data.

The minimum value for MAXERRORS is 1. Setting MAXERRORS to a
value less than 1 produces an error. The maximum value for MAXERRORS
is 2,147,483,647.

RECORDEND
Specifies the character that separates records in a delimited text file.

REJECTFILE
Sets the full path name where the database server writes data-conversion
errors. If not specified or if files cannot be opened, any error ends the
loading of data abnormally. See also “Reject Files” on page 2-111.

NUMROWS or SIZE
The approximate number of rows in the external table.

Specifying NUMROWS (or its synonym, SIZE) can improve performance
when an external table is used in a join query. This value cannot be NULL.

2-110 IBM Informix Guide to SQL: Syntax

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

Related reference

DBMONEY (SQL Reference)

DBDATE (SQL Reference)

Reject Files
Rows that have conversion errors during a load or rows that violate check
constraints on the external table are written to a reject file. The REJECTFILE clause
declares the path and file name of the reject file.

If you perform another load to the same table during the same session, any earlier
reject file of the same name is overwritten.

Reject file entries have the following format:
filename, record, reason-code,

field-name: bad-line

The following table describes these elements of the reject file:

Element
Description

filename
Name of the input file.

record Record number in the input file where the error was detected.

reason-code
Description of the error.

field-name
External field name where the first error in the line occurred, or <none> if
the rejection is not specific to a particular column.

bad-line
Line that caused the error (delimited or fixed-position character files only).

The reject file writes the filename, record, field-name, and reason-code in ASCII. The
bad-line information varies with the type of input file.
v For delimited files or fixed-position character files, up to 80 characters of the bad

line are copied directly into the reject file.
v For Informix internal data files, the bad line information is not placed in the

reject file because you cannot edit the binary representation in a file; but the
filename, record, reason-code, and field-name are still reported in the reject file so
you can isolate the problem. Use the Table Options clause to specify the format
of the external data.

The following errors can cause a row to be rejected.

Error Text
Explanation

CONSTRAINT constraint name
This constraint was violated.

CONVERT_ERR
Any field encounters a conversion error.

MISSING_DELIMITER
No delimiter was found.

Chapter 2. SQL statements 2-111

|

|

|

|

|
|
|

|
|

|

|
|

|

|
|

|
|

||

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|

|
|

|
|

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_218.htm#ids_sqr_218
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_212.htm#ids_sqr_212

MISSING_RECORDEND
No end of record was found.

NOT NULL
A NULL was found in field-name.

ROW_TOO_LONG
The input record is longer than 32 kilobytes.

Virtual Processors

A FIFO virtual processor is used by external tables in Informix. One FIFO virtual
processor is created when the server is initialized. Additional FIFO virtual
processors can be added using the onmode -p command. For example, use the
following command to add three FIFO virtual processors:
onmode -p +3 fifo

FIFO virtual processors cannot be deleted.

The FIFO virtual processors are used to process I/O related to the pipes that are
defined with the PIPE clause.

See the IBM Informix Administrator's Guide for more information about using FIFO
virtual processors.
Related concepts

FIFO virtual processors (Administrator's Guide)

External Table Examples
The examples in this section illustrate different ways to load and unload data
using external tables.

The following is an example of the CREATE EXTERNAL TABLE syntax. In the
example, an external table named empdata is created with two columns. The
DATAFILES clause indicates the location of the data file, specifies that the file is
delimited, indicates the location of the reject file, indicates that the reject file can
contain no more than 100 errors, and that data is to be loaded using deluxe mode.
CREATE EXTERNAL TABLE empdata
(

empname char(40),
empdoj date

)
USING
(DATAFILES

(
"DISK:/work/empdata.unl"

),
FORMAT "DELIMITED",
REJECTFILE "/work/errlog/empdata.rej",
MAXERRORS 100,
DELUXE

);

Creating an external table using the SAMEAS clause

The SAMEAS template clause uses all the column names and data types from the
template table in the definition of the new table. The following example uses the
column names and data types of the empdata table and uses them for the external
table.

2-112 IBM Informix Guide to SQL: Syntax

|
|

|
|

|
|

|

|
|
|
|

|

|

|
|

|
|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1286.htm#ids_admin_1286

CREATE EXTERNAL TABLE emp_ext SAMEAS empdata
USING
(DATAFILES

(
"DISK:/work/empdata2.unl"

),
REJECTFILE "/work/errlog/empdata2.rej",
DELUXE

);

Unloading data into an external table

The following example shows statements used to load data from a database table
into an external table.
CREATE EXTERNAL TABLE ext1(col1 int)
USING
(DATAFILES

(
"DISK:/tmp/ext1.unl"

)
);

CREATE TABLE base (col1 int);
INSERT INTO ext1 SELECT * FROM base;

You can also use the SELECT...INTO EXTERNAL syntax to unload data as in the
following example.
SELECT * FROM base
INTO EXTERNAL emp_target
USING
(DATAFILES

(
"DISK:/tmp/ext1.unl"

)
);

Selecting from an external table and loading into a database
table

The following example selects from an external and shows various ways to load
external data into a database table.
CREATE EXTERNAL TABLE ext1(col1 int)

USING
(DATAFILES

(
"DISK:/tmp/ext1.unl“

)
);

CREATE TABLE target1 (col1 int);
CREATE TABLE target2 (col1 serial8, col2 int);

SELECT * FROM ext1;
SELECT col1,COUNT(*) FROM ext1 GROUP BY 1;
SELECT MAX(col1) FROM ext1;
SELECT col1 FROM ext1 a, systables b WHERE a.col1=b.tabid;

INSERT INTO target1 SELECT * FROM ext1;
INSERT INTO target2 SELECT 0,* FROM ext1;

Chapter 2. SQL statements 2-113

|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Unloading from a database table to a text file using FIXED format

The next example creates an external table named emp_ext, defines the column
names and data types, and unloads the data from the database using fixed format.
CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(20),

address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6)
)

USING (
FORMAT ’FIXED’,
DATAFILES

(
"DISK:/work2/mydir/emp.fix"

)
);

INSERT INTO emp_ext SELECT * FROM employee;

Loading data from a data file into a database table using FIXED
format

The next example creates an external table named emp_ext and loads data into the
database from a fixed format file.
CREATE EXTERNAL TABLE emp_ext
(name CHAR(18) EXTERNAL CHAR(18),

address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6)

)
USING (

FORMAT ’FIXED’,
DATAFILES

(
"DISK:/work2/mydir/emp.fix"

)
);

INSERT INTO employee SELECT * FROM emp_ext;

Using formatting characters in the DATAFILES clause

To process three files, create the DATAFILES clause as in the following example.
DATAFILES

(
"DISK:/work2/extern.dir/mytbl.%r(1..3)"

)

The following shows how the list is expanded when the statement is run:
DATAFILES

(
"DISK:/work2/extern.dir/mytbl.1",
"DISK:/work2/extern.dir/mytbl.2",
"DISK:/work2/extern.dir/mytbl.3"

)

Related Information

For more information about external tables, refer to your IBM Informix
Administrator's Guide.

2-114 IBM Informix Guide to SQL: Syntax

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|

Related concepts

External tables (Administrator's Guide)

Loading Data from External Tables into Informix
To load data, you define the external data as an external table and then insert the
data into the database.

The database server performs express-mode loads and deluxe-mode loads. Mode
selection is determined by the logging mode (table type) of the destination table
and the presence or absence of the DELUXE or EXPRESS keywords in the USING
clause of the CREATE EXTERNAL TABLE statement. You can perform
express-mode loads only when the table is type RAW and does not have any active
indexes. The database server allows constraint checking for both load modes.

Express mode provides the highest performance during a load.

Deluxe mode combines fast parallel loading with evaluation of indexes and unique
constraints. Use deluxe mode in the following situations:
v The cost of rebuilding an index is too high for the amount of data that you are

loading.
v You want to use the empty space from deleted rows in the table that you are

loading. database

If the table receiving the rows from the external table is a STANDARD table (that
is, a database table that was not created by the CREATE TEMP TABLE or CREATE
RAW TABLE statement), the EXPRESS keyword has no effect, and the table is
loaded in DELUXE mode. The database server does not issue an exception when it
ignores the EXPRESS keyword in load operations where the receiving table is not a
RAW table.

Loading Data in Express Mode:

Choose express mode for fast loading of data.

Warning: Express-mode loads are not allowed for STANDARD tables.

Express-mode loads use light appends, which bypass the buffer pool. Light
appends eliminate the overhead associated with buffer management but do not log
the data. In express mode, the database server automatically locks the table
exclusively. No other users can access the table.

If you do not use the DELUXE keyword, the database server uses express mode
unless the target table has indexes or is a STANDARD table.

You can use express mode for any newly created table with no data if you define
the table as type RAW and do not define any indexes until after you load the data.
Choose RAW tables if you do not want to use logging.

To prepare an existing table for express-mode load, drop all indexes, and make
sure the table type is RAW.

Data loaded from an external table into a raw table is not logged; therefore, you
must perform a level-0 backup before the database can be dropped. If you try to
drop the database before you perform a level-0 backup, the database server issues
ISAM error -197, as follows:

Chapter 2. SQL statements 2-115

|

|

|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|
|
|
|

|

|

|

|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1333.htm#ids_admin_1333.dita

Partition recently appended to; can’t open for write or logging

Consider a table with the following schema:
TABLE employee (

name CHAR(18),
hiredate DATE,
address CHAR(40),
empno INTEGER);

To use express-mode load on an existing table
1. Alter the table type to allow fast loading.

ALTER TABLE employee TYPE (RAW);

2. Create the external table description.
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

FORMAT ’DELIMITED’,
DATAFILES

("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej",
EXPRESS
);

3. Load the table.
INSERT INTO employee SELECT * FROM emp_ext;

Because you specified express mode (step 2), the load stops with an error
message if the destination table contains indexes, constraints, or any other
problem conditions.

4. Create a level-0 backup.
Because the data is not logged, you must perform a level-0 backup to allow
data recovery. If a disk fails, you cannot recover the data automatically. You
need to use the most recent level-0 backup files.

If the table type is RAW (nonlogging), omit the statements BEGIN WORK and
COMMIT WORK.

Tip: If you delete many rows from a table and then load many new rows into the
table in EXPRESS mode, the table grows in size because light appends append to
the end of the table and do not reuse the empty space inside the table. (If you do
not specify EXPRESS mode, the loader might choose DELUXE mode to fill in the
space if a table has many deleted rows.)

Loading data in deluxe mode:

Deluxe mode combines fast parallel loading with evaluation of indexes and unique
constraints.

Use deluxe mode in the following situations:
v The cost of rebuilding an index is too high for the amount of data that you are

loading.
v You want to use the empty space from deleted rows in the table that you are

loading.

Deluxe-mode loads use regular single-row inserts, which add rows to a table that
can contain indexes. The insert modifies each index for each row during the load.

2-116 IBM Informix Guide to SQL: Syntax

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|
|

|
|

|
|
|
|
|

|

|
|

|

|
|

|
|

|
|

The insert also checks all constraints for each row. A deluxe-mode load allows you
to keep the table unlocked during the load so other users can continue to use it.

You also can use deluxe mode on tables that do not contain indexes; for instance, if
you want to have complete recoverability or maintain access to tables during a
load.

To prepare a table for deluxe-mode load, create the internal table as type
STANDARD, and create the external table with the keyword DELUXE.

To use deluxe-mode load on a table:
1. If you want row locking, specify row locking in the CREATE TABLE statement.

(Page locking is the default.) If you want other users to be able to read the
table during the load, set the lock mode to share. Otherwise, set it to
exclusive.
BEGIN WORK;
LOCK TABLE employee IN SHARE MODE;

2. Create the external table description.
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej",
DELUXE
);

3. Load the table.
INSERT INTO employee SELECT * FROM emp_ext;

4. Commit the load, releasing row or page locks.
COMMIT WORK;

Tip: Configure logical logs to allow maximum concurrent deluxe-load transactions
to complete.

Loading from a Delimited File to a Database Table with the Same Schema:

You can avoid defining the schema of an external table if it has the same schema
as the database table.

Consider loading a delimited ASCII text file into a table with the following
schema:
TABLE employee (

name CHAR(18) NOT NULL,
hiredate DATE DEFAULT TODAY,
address VARCHAR(40),
empno INTEGER);

The SQL statements used to load data into the employee table would be as follows:
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat"),
REJECTFILE "/work2/mydir/emp.rej"
);

INSERT INTO employee SELECT * FROM emp_ext;

Chapter 2. SQL statements 2-117

|
|

|
|
|

|
|

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|

|

|

|

|
|

|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

The external table has the same name, type, and default for each column because
the CREATE statement includes the SAMEAS keyword. The default format is
delimited, so no format keyword is required.

Delimited files are ASCII by default. The default row delimiter is an end-of-line
character unless you use the RECORDEND keyword to specify a different
delimiter when you created the external table. (The RECORDEND keyword works
for delimited format only.)

Loading from a Fixed Text File:

A fixed text file is one in which data resides in fixed positions within the file.

The following SQL statements load data from the emp_exp external table to a
fixed-position table (employee):
CREATE EXTERNAL TABLE emp_ext

(name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))

USING (
FORMAT ’FIXED’,
DATAFILES ("DISK:/work2/mydir/emp.fix")
);

INSERT INTO employee SELECT * FROM emp_ext;

The enumerated columns use the keyword EXTERNAL to describe the format in
which to store the data in the external file.

Loading Between Tables That Have the Same Schema:

You can easily move data from an external table to a database table if the tables
have the same schema.

You can load data from one table to another table that has the same schema (for
example, worldemp) with a simple INSERT statement.
INSERT INTO worldemp SELECT * FROM emp_ext;

Loading Values into Serial Columns:

You can insert successive numbers or explicit values in a serial column.

The database server loads serial columns with either the values from the original
data file or values that the database server automatically generates.

If you want the serial column values to be the values from the data file, the
INSERT statement does not require special handling. If you want the database
server to generate the value automatically, omit the serial column from the INSERT
statement. For example, if the first column in the table (col1) is the serial column
and you use the following statement, the default mechanism provides the serial
value:
INSERT INTO mytable (col2, ...) SELECT ...

If the table is being loaded into multiple partitions, the serial values are
incremented in the same sequence as the table fragments.

Loading Data Warehousing Tables:

2-118 IBM Informix Guide to SQL: Syntax

|
|
|

|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|

|

|

|

|
|

|
|
|
|
|
|

|

|
|

|

You can use external tables to load very large tables for data warehousing
applications.

This section discusses various scenarios to load very large tables:
v Loading initially
v Refreshing periodically
v Loading of OLTP data from database servers other than Informix.

Loading Initially:

The following scenario creates and loads a data warehouse table with external
data.

To load a table initially
1. Create the table as type RAW to take advantage of light appends and to avoid

the overhead of logging during the load.
CREATE RAW TABLE tab1 ...

2. Describe the external data file to the database server with the CREATE
EXTERNAL TABLE statement, specifying the EXPRESS statement in the USING
clause.

3. Load the table.
INSERT INTO tab1 SELECT * FROM ext_tab

The table loads quickly, and the operation uses very little log space.
4. Verify the integrity of the data.
5. Create indexes on the table so that queries run more quickly.
6. Perform a level-0 backup so that you can restore the table later, if necessary.

You do not need to perform this level-0 backup if it would be just as easy to
reload the table from the original source in the case of a problem.

Refreshing Periodically:

This scenario loads new data in a data warehouse table periodically from some
other source.

The scenario assumes that the table is type STANDARD during normal operation
and that the CREATE EXTERNAL TABLE statement has been previously executed
and the EXPRESS keyword was specified in the USING clause.

To refresh a table periodically
1. Drop all indexes on the table.
2. Alter the table to type RAW.

ALTER TABLE tab1 TYPE(RAW);

3. Load the new data in the table.
INSERT INTO tab1 SELECT * FROM ext_tab

This insert statement quickly appends new data to the end of the table, and the
operation uses very little log space.

4. Verify the integrity of the data.
5. Change the table to type STANDARD.

ALTER TABLE tab1 TYPE(STANDARD);

6. Re-create indexes on the table so that queries run more quickly.

Chapter 2. SQL statements 2-119

|
|

|

|

|

|

|

|
|

|

|
|

|

|
|
|

|

|

|

|

|

|
|
|

|

|
|

|
|
|

|

|

|

|

|

|

|
|

|

|

|

|

7. Perform a level-0 backup to enable you to restore the table later, if necessary.
You do not need to perform this level-0 backup if it would be just as easy to
reload the table from the original source in the case of a problem.

Initial Loading of OLTP Data from Other Database Servers:

This scenario loads data into Informix for the first time, as you might do when you
migrate from a different database server.

In this scenario, the table to load will be used for OLTP, so you need logged
transactions, rollback, and recoverability.

To load OLTP data initially from a different database server using the CREATE
EXTERNAL TABLE statement:
1. Create the table as type RAW to take advantage of light appends and to avoid

the overhead of logging during the load.
CREATE RAW TABLE tab1 ...

2. Describe the external data file to the database server with the CREATE
EXTERNAL TABLE statement specifying the EXPRESS in the USING clause.

3. Load the table.
INSERT INTO tab1 SELECT * FROM ext_tab

The table loads quickly, and the operation uses very little log space.
4. Verify the integrity of the data.
5. Perform a level-0 backup to provide a point from which to recover.
6. Change the table to type STANDARD.

ALTER TABLE tab1 TYPE(STANDARD);

7. Create indexes on the table so that queries run more quickly.
8. Enable constraints on the table to preserve the integrity of the data.

Unloading Data to External Tables from Informix
You unload data by creating an external table and inserting the data into it, or by
selecting data from an internal table into an external file.

To unload data in parallel, initiate a query that runs in parallel and writes its
output to multiple files. The unload job uses a round-robin technique to equalize
the number of rows in the output files.

Unloading to a Delimited File:

You can unload data to a delimited-ASCII text file from a table, as the following
example shows:
CREATE EXTERNAL TABLE emp_ext
SAMEAS employee
USING (

DATAFILES ("DISK:/work2/mydir/emp.dat")
);

INSERT INTO emp_ext SELECT * FROM employee;

Delimited files are ASCII by default.

Unloading to an Informix Data File:

To unload from the employee table to a table in Informix internal format, use
statements similar to the following ones:

2-120 IBM Informix Guide to SQL: Syntax

|
|
|

|

|
|

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|

|

|
|

SELECT * FROM employee
WHERE hiredate > "1/1/1996"
INTO EXTERNAL emp_ext
USING (

FORMAT ’INFORMIX’,
DATAFILES ("DISK:/work2/mydir/emp.dat")
);

Because the output files use Informix internal representation, you need to specify
the FORMAT 'INFORMIX' option in the USING clause. (The default is
delimited-ASCII format.)

Unloading to a Fixed-Text File:

You can unload data from the database into fixed format files.

The following SQL statements unload the employee table in fixed text format into
the emp_ext external table:
CREATE EXTERNAL TABLE emp_ext

(name CHAR(18) EXTERNAL CHAR(20),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6))

USING (
FORMAT ’FIXED’,
DATAFILES ("DISK:/work2/mydir/emp.fix")
);

INSERT INTO emp_ext SELECT * FROM employee;

These statements create a fixed-text file with 20 character positions in the first field,
the next 10 character positions in the second field, and so on. Because you are
choosing the rows with a SELECT statement, you can format the SELECT list in
any way that you want.

Adding an End-of-Line Character to a Fixed Text File:

You can add an end-of-line character to each line of a fixed-text file to use the file
for other applications.

If you are writing text in a fixed-text format, separate lines for each record are
helpful. An end-of-line character makes the date more legible and clear. If you use
delimited format defaults, an end-of-line character is automatic. However, for
fixed-format unloads, you need to add an end-of-line character to your records. For
example, consider a table with the following schema:
TABLE sample (

lastname CHAR(10),
firstname CHAR(10),
dateofbirth DATE);

This table contains the following values:
Adams Sam 10-02-1957

Smith John 01-01-1920

Next, consider an external table with the following schema:
CREATE EXTERNAL TABLE sample_ext (

lastname CHAR(10) EXTERNAL CHAR(10),
firstname CHAR(10) EXTERNAL CHAR(10),
dateofbirth DATE EXTERNAL CHAR(12));

Chapter 2. SQL statements 2-121

|
|
|
|
|
|
|

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

|
|
|
|

Unloading sample_ext without an end-of-line character produces the following
output:
Adams Sam 10-02-1957 Smith John 01-01-1920

You can add end-of-line characters by using a program or script, or by adding a
newline field in a SELECT statement.

Using a Program or Script:

To add an end-of-line character, you can write the fixed-length records to a data
file and then modify the data file with a program or script.

For example, you could use a C program to find the length of each record, locate
the end of a line, and then add an end-of-line character.

Adding a Newline Field in a SELECT Statement:

You can use an external table to load the newline character in your internal table.

To add an end-of-line character, select a final value from a table that contains a
newline character, as in the following example:
1. Create a file that contains only a newline character.

echo "" > /tmp/cr.fixed

2. Create an internal table to store this newline value to use when you unload the
data.
CREATE TABLE dummyCr (cr CHAR(1));

3. Create the external table to load the newline value.
CREATE EXTERNAL TABLE x_cr (cr CHAR(1) EXTERNAL CHAR(1))

USING (DATAFILES ("DISK:/tmp/cr.fixed"), FORMAT ’FIXED’);

4. Load the external table in the internal dummyCr table.
INSERT INTO dummyCr SELECT * FROM x_cr;

The internal table, dummyCr, now contains an end-of-line character that you can
use to unload in a SELECT statement:
1. To unload data from your internal table to an external table, create the external

table with the end-of-line character as an EXTERNAL CHAR.
CREATE EXTERNAL TABLE sample_ext
(

lastname CHAR(10) EXTERNAL CHAR(10),
firstname CHAR(10) EXTERNAL CHAR(10),
dateofbirth DATE EXTERNAL CHAR(12),
eol CHAR(1) EXTERNAL CHAR(1))

USING (DATAFILES), FORMAT ’FIXED’);

2. Select from the internal table and the dummyCr table to create an output file
that has rows separated by end-of-line characters.
INSERT INTO sample_ext(lastname, firstname, dateofbirth, eol)
SELECT a.lastname, a.firstname, a.dateofbirth, b.cr
FROM mytable a, dummyCr b;

Restrictions on External Tables
Certain operations on external tables are not supported or have limited scope.

Table 2-1 on page 2-123 compares table operations that are supported for database
tables and external tables.

2-122 IBM Informix Guide to SQL: Syntax

|
|

|

|
|

|

|
|

|
|

|

|

|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

|

|
|

Table 2-1. Database Tables and External Tables

Table Operation Database Table External Table

Support for indexes and:

v Primary keys

v Foreign keys

v Unique and non-unique
indexes

v Index scans

v Automatic index
(autoindex) during query
execution

v Index join

Yes No, sequential scans are
used.

Triggers are supported Yes No

Table can be a target in a
MERGE statement

Yes No. Not allowed as target
but allowed as source. See
“MERGE Example” on page
2-124

Table fragmentation is
supported

Yes No

Multiple database tables are
allowed in the FROM clause

Yes No. See “Query Example” on
page 2-125

DB-Access LOAD FROM ...
INSERT INTO statement is
supported

Yes No

The TRUNCATE TABLE
statement truncates a table

Yes No. Data in external tables is
not truncated using the
TRUNCATE statement.
Unloading data from a
database table to an external
table automatically truncates
the external table.

Table data is replicated Yes No

The UPDATE STATISTICS
statement is supported

Yes No

UPDATE and DELETE
statements are supported

Yes No

The ALTER TABLE statement
is supported

Yes No

LBAC is supported Yes No

Compression is supported Yes No

START and STOP
VIOLATIONS statements
supported

Yes No

TEMP tables are supported Yes No

The EXTERNAL data type is
supported for table columns

No Yes

DEFAULT clause is
supported

Yes No

Chapter 2. SQL statements 2-123

||

|||

|

|

|

|
|

|

|
|
|

|

||
|

|||

|
|
||
|
|
|

|
|
||

|
|
||
|

|
|
|

||

|
|
||
|
|
|
|
|
|

|||

|
|
||

|
|
||

|
|
||

|||

|||

|
|
|

||

|||

|
|
||

|
|
||

Table 2-1. Database Tables and External Tables (continued)

Table Operation Database Table External Table

PUT clause is supported for
BLOB and CLOB types

Yes No. BLOBDIR and CLOBDIR
can be specified using the
DATAFILES clause.

SERIAL, SERIAL8, and
BIGSERIAL data types
generate serial numbers

Yes No. These data types are
converted to equivalent
integer types and no serial
value is generated.

Table can be replicated using
Enterprise replication (ER)

Yes No

Changes to tables are logged
and can be replicated

Yes No. External tables are not
logged and cannot be
replicated; however system
catalogs are replicated.

ACID (atomicity, consistency,
isolation, durability)
properties are supported

Yes No

ETL (extract, transform, load)
is supported

SQL interface for ETL
operations is not supported;
however, utilities such as
HPL, dbload, onload,
onunload and LOAD,
UNLOAD statements are
supported.

Supported using a simple
SQL interface using the
INSERT ... SELECT statement
for high performance loading
and unloading of data.

Certain high-availability cluster operations are not supported (see External Tables in
High-Availability Cluster Environments in the IBM Informix Administrator's Guide).

To load BLOB or CLOB objects from an external table, you must create a
temporary sbspace and create temporary smart large objects in that space to store
the BLOB or CLOB data from the external table. Loading BLOB or CLOB data
from a read-only secondary server is not supported, because you cannot create a
temporary smart large object on a read-only secondary server.

MERGE Example

An external table cannot be the target of the MERGE statement. For example, if ext
is an external table, the following MERGE statement is valid with ext as the source
table:
MERGE INTO t1

USING ext ON t1.c1 = ext.c1
WHEN MATCHED THEN UPDATE
SET t1.c2 = ext.c2
WHEN NOT MATCHED THEN INSERT VALUES (99, ’999’);

The following statement, however, fails with ext as the target table:
MERGE INTO ext

USING t1 ON ext.c1 = t1.c1
WHEN MATCHED THEN UPDATE
SET ext.c2 = t1.c2
WHEN NOT MATCHED THEN INSERT VALUES (99, ’999’);

2-124 IBM Informix Guide to SQL: Syntax

|

|||

|
|
||
|
|

|
|
|

||
|
|
|

|
|
||

|
|
||
|
|
|

|
|
|

||

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

Query Example

Only the outermost query can have an external table reference. Only one external
table can be specified in any query. For example, the following statement is
allowed:

SELECT * FROM ext, t2 WHERE ext.c1 = t2.c1;

However, the following statements are not allowed:
v Multiple external tables cannot be specified within a query:

SELECT * FROM ext, ext3 WHERE ext.c1 = ext3.c1;

v An external table cannot be used in a subquery:
SELECT * FROM t1 WHERE t1.c1 IN (SELECT c1 FROM ext);

Related reference

External tables in high-availability cluster environments (Administrator's
Guide)

CREATE FUNCTION statement
Use the CREATE FUNCTION statement to create a user-defined function, to
register an external function, or to write and register an SPL function.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
DBA

FUNCTION function()
(1)

Routine Parameter List

�

�
(2)

REFERENCING Clause FOR table_object
' owner '.

(3)
Return Clause �

�
(4)

SPECIFIC Specific Name
�

,
(5)

WITH(Routine Modifier)

;
�

�
(6) (7)

Statement Block END FUNCTION
(8) (9)

External Routine Reference

�

�

�

,
(10)

DOCUMENT Quoted String

WITH LISTING IN 'pathname'
��

Notes:

1 See “Routine Parameter List” on page 5-67

Chapter 2. SQL statements 2-125

|

|
|
|

|

|

|

|

|

|

|

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1319.htm#ids_admin_1319
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1319.htm#ids_admin_1319

2 See “The REFERENCING and FOR Clauses” on page 2-128

3 See “Return Clause” on page 5-54

4 See “Specific Name” on page 5-73

5 See “Routine Modifier” on page 5-59

6 Stored Procedure Language only

7 See “Statement Block” on page 5-74

8 External routines only

9 See “External Routine Reference” on page 5-19

10 See “Quoted String” on page 4-188

Element Description Restrictions Syntax

function Name of new function
that is defined here

You must have the appropriate language
privileges. See “GRANT statement” on page
2-401 and “Overloading the Name of a
Function” on page 2-130.

“Identifier” on page 5-21

owner Owner of table_object Must own table_object “Owner Name” on page
5-45

pathname Pathname to a file in
which compile-time
warnings are stored

The specified pathname must exist on the
computer where the database resides

The path and filename
must conform to your
operating-system rules.

table_object Name or synonym of the
table or view whose
triggers can call function

Must exist in the local database “Identifier” on page 5-21

Tip: If you are trying to create a function from text of source code that is in a
separate file, use the CREATE FUNCTION FROM statement.

Usage

Informix supports user-defined functions written in these languages:
v Stored Procedure Language (SPL)
v One of the external languages (C or Java) that Informix supports (external

functions)

When the IFX_EXTEND_ROLE configuration parameter of is set to ON, only users
to whom the DBSA grants the built-in EXTEND role can create external functions.

How many values a function can return is language-dependent. Functions written
in SPL can return one or more values. External functions written in the C or Java
languages must return exactly one value. But a C function can return a collection
type, and external functions in queries can return additional values indirectly from
OUT parameters (and for the Java language, from INOUT parameters) that
Informix can process as statement-local variables (SLVs).

For information on how this document uses the terms UDR, function, and
procedure as well as recommended usage, see “Relationship Between Routines,
Functions, and Procedures” on page 2-164 and “Using CREATE PROCEDURE
Versus CREATE FUNCTION” on page 2-164, respectively.

2-126 IBM Informix Guide to SQL: Syntax

The entire length of a CREATE FUNCTION statement must be less than 64
kilobytes. This length is the literal length of the statement, including white-space
characters such as blank spaces and tabs.

In ESQL/C, you can use a CREATE FUNCTION statement only within a PREPARE
statement. If you want to create a user-defined function for which the text is
known at compile time, you must put the text in a file and specify this file with
the CREATE FUNCTION FROM statement.

Functions use the collating order that was in effect when they were created. See
“SET COLLATION statement” on page 2-608 for information about using
non-default collation.

Privileges Necessary for Using CREATE FUNCTION
You must have the Resource privilege on a database to create a function within
that database.

Before you can create an SPL function, you must also have the Usage privilege on
the SPL language . For more information, see “Usage Privilege in Stored Procedure
Language” on page 2-412.

By default, Usage privilege on SPL is granted to PUBLIC. You must also have at
least Resource privilege on a database to create an SPL function in that database.

DBA Keyword and Privileges on the Created Function
If you create a UDR with the DBA keyword, it is known as a DBA-privileged UDR.
You need the DBA privilege to create a DBA-privileged UDR.

Among users who do not hold the DBA privilege, only those to whom the DBA
grants the Execute privilege can invoke the DBA-privileged UDR. If the DBA
grants the Execute privilege to PUBLIC, however, then all users can use the
DBA-privileged UDR. For additional information about DBA-privileged UDRs, see
“Ownership of Created Database Objects” on page 2-170.

If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

When you create an owner-privileged UDR in an ANSI-compliant database, only
you can execute the UDR. Before other users can execute an owner-privileged
UDR, its owner must grant the Execute privilege, either to individual users, or to
roles, or to PUBLIC.

If you create an owner-privileged UDR in a database that is not ANSI compliant,
anyone can execute the UDR because PUBLIC is granted the Execute privilege by
default. To restrict access to an owner-privileged UDR to specific users, the owner
must revoke the Execute privilege on the UDR from PUBLIC, and then grant it to
specified users or roles. Setting the NODEFDAC environment variable to yes
prevents privileges on any UDR from being granted to PUBLIC. If this
environment variable is set to yes, no one besides the owner of the UDR can
invoke it unless the owner grants the Execute privilege for that UDR to other
users.

If an external C or Java language function has a negator function, you must grant
the Execute privilege on both the external function and on its negator function
before users can execute the external function.

Chapter 2. SQL statements 2-127

The REFERENCING and FOR Clauses
The REFERENCING clause can declare correlation names for the original value
and for the updated value in columns of the table_object that the FOR clause
specifies.

REFERENCING and FOR Clauses:

REFERENCING �
(1)

OLD correlation
(1) AS

NEW

FOR table_object
' owner '.

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in a
trigger routine

Must not be table_object “Identifier” on
page 5-21

owner Owner of table_object Must own table_object “Owner
Name” on
page 5-45

table_object Name or synonym of a table or view whose
triggers can call function

Must exist in the local database “Identifier” on
page 5-21

If you include the REFERENCING and FOR table_object clauses immediately after
the parameter list of the CREATE FUNCTION statement, the function that you
create is known as a trigger UDR or trigger routine. The FOR clause specifies the
table or view whose triggers can invoke the function from the FOR EACH ROW
section of their Triggered Action list.

In the REFERENCING clause, the OLD correlation specifies a prefix by which the
trigger routine can reference the value that a column of table_object had before the
trigger routine modifies that column value. The NEW correlation specifies a prefix
for referencing the new value that the trigger routine assigns to the column.
Whether the trigger routine can use correlation names to reference the OLD
column value, the NEW column value, or both values depends on the type of
triggering event:
v A trigger routine invoked by an Insert trigger can reference only the NEW

correlation name.
v A trigger routine invoked by a Delete trigger or by a Select trigger can reference

only the OLD correlation name.
v A trigger routine invoked by an Update trigger can reference both the OLD and

the NEW correlation names.

For information about how to use the correlation.column notation in triggered
actions, see “REFERENCING Clauses” on page 2-257.

Besides the general requirements for any Informix UDR that is written in the SPL
language, trigger routines can support certain additional syntax features, and are
subject to certain restrictions, that are not features (or that are not restrictions) for
ordinary UDRs that are not trigger routines:

2-128 IBM Informix Guide to SQL: Syntax

v A trigger routine must include the FOR table_object clause that specifies the name
of the table or view in the local database whose triggers can invoke this routine.

v A trigger routine can also include the REFERENCING clause to declare
correlation names for OLD and NEW values that SPL statements in the UDR can
reference.

v Trigger routines can be invoked only in the FOR EACH ROW section of the
Triggered Action list in the trigger definition.

v Correlated variables for OLD or NEW values can appear in the IF statement of
SPL and in CASE expressions.

v Correlated variables for OLD values cannot be on the left-hand side of a LET
expression.

v Correlated variables for NEW values cannot be on the left-hand side of a LET
expression if the FOR clause specifies a view whose INSTEAD OF trigger action
list invokes the trigger routine.

v Only correlated variables for NEW values can be on the left-hand side of a LET
expression that references correlated variables. In this case, however, the FOR
clause must specify a table, rather than a view.

v Both OLD and NEW values can be on the right-hand side of a LET expression.
v The Boolean operators SELECTING, INSERTING, DELETING, and UPDATING

are valid in trigger routines (and only in trigger routines and in other UDRs that
are invoked in triggered action statements) in contexts where Boolean
expressions are valid. These operators return TRUE ('t') if the triggering event
matches the DML operation referenced by the name of the operator, and they
return FALSE ('f') otherwise.

v If a single triggering event activates multiple triggers on the same table or view,
then all of the BEFORE actions take place before any of the FOR EACH ROW
actions, and all of the AFTER actions follow the FOR EACH ROW actions. The
order of execution of different triggers on the same event is not guaranteed.

v Trigger routines must be written in the SPL language. They cannot be written in
an external language, like the C or Java language, but they can include calls to
external language routines, such as the mi_trigger application programming
interface for trigger introspection.

v Trigger functions cannot reference savepoints. Any changes to the data values or
to the schema of the database by a triggered action must be committed or rolled
back in their entirety. Informix does not support the partial rollback of triggered
actions.

For more information about the mi_trigger API, refer to the IBM Informix DataBlade
API Programmer's Guide and to the IBM Informix DataBlade API Function Reference.

If you include the REFERENCING clause but omit the FOR clause, or if you
include the FOR clause but omit the REFERENCING clause, the CREATE
FUNCTION statement fails with an error.

If you omit the REFERENCING and FOR clauses, the UDR cannot use the
SELECTING, INSERTING, DELETING, and UPDATING operators, and cannot
declare variables that can represent and manipulate column values in triggered
actions on the table or view that the trigger definition specifies.

See the “REFERENCING Clauses” on page 2-257 section in the CREATE TRIGGER
statement description for the syntax of the REFERENCING clause for Delete,
Insert, Select, and Update triggers.

Chapter 2. SQL statements 2-129

Overloading the Name of a Function
Because Informix supports routine overloading, you can define more than one
function with the same name, but different parameter lists. You might want to
overload functions in the following situations:
v You create a user-defined function with the same name as a built-in function

(such as equal()) to process a new user-defined data type.
v You create type hierarchies, in which subtypes inherit data representation and

functions from supertypes.
v You create distinct types, which are data types that have the same internal storage

representation as an existing data type, but have different names and cannot be
compared to the source type without casting. Distinct types inherit support
functions from their source types.

For a brief description of the routine signature that uniquely identifies each
user-defined function, see “Routine Overloading and Routine Signatures” on page
5-18.

Using the SPECIFIC Clause to Specify a Specific Name
You can declare a specific name, unique to the database, for a user-defined
function. A specific name is useful when you are overloading a function.

DOCUMENT Clause
The quoted string in the DOCUMENT clause provides a synopsis and description
of the UDR. The string is stored in the sysprocbody system catalog table and is
intended for the user of the UDR. Anyone with access to the database can query
the sysprocbody system catalog table to obtain a description of one or all of the
UDRs stored in the database.

For example, the following query obtains a description of the SPL function
update_by_pct, that “SPL Functions” on page 2-131 shows:
SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = ’update_by_pct’

-- look for procedure named update_by_pct
AND b.datakey = ’D’-- want user document;

The preceding query returns the following text:
USAGE: Update a price by a percentage
Enter an integer percentage from 1 - 100
and a part id number

A UDR or application program can query the system catalog tables to fetch the
DOCUMENT clause and display it for a user.

For C and Java language functions, you can include a DOCUMENT clause at the
end of the CREATE FUNCTION statement, whether or not you use the END
FUNCTION keywords.

WITH LISTING IN Clause
The WITH LISTING IN clause specifies a filename where compile time warnings
are sent. After you compile a UDR, this file holds one or more warning messages.

If you do not use the WITH LISTING IN clause, the compiler does not generate a
list of warnings.

2-130 IBM Informix Guide to SQL: Syntax

On UNIX platforms, if you specify a filename but not a directory, this listing file is
created in your home directory on the computer where the database resides. If you
do not have a home directory on this computer, the file is created in the root
directory (the directory named “/”).

On Windows systems, if you specify a filename but not a directory, this listing file
is created in your current working directory if the database is on the local
computer. Otherwise, the default directory is %INFORMIXDIR%\bin.

SPL Functions
SPL functions are UDRs written in SPL that return one or more values. To write
and register an SPL function, use a CREATE FUNCTION statement. Embed
appropriate SQL and SPL statements between the CREATE FUNCTION and END
FUNCTION keywords. You can also follow the function with the DOCUMENT
and WITH FILE IN options.

SPL functions are parsed, optimized (as far as possible), and stored in the system
catalog tables in executable format. The body of an SPL function is stored in the
sysprocbody system catalog table. Other information about the function is stored
in other system catalog tables, including sysprocedures, sysprocplan, and
sysprocauth. For more information about these system catalog tables, see the IBM
Informix Guide to SQL: Reference.

The END FUNCTION keywords are required in every SPL function, and a
semicolon (;) must follow the clause that immediately precedes the statement
block. The following code example creates an SPL function:
CREATE FUNCTION update_by_pct (pct INT, pid CHAR(10))

RETURNING INT;
UPDATE inventory SET price = price + price * (pct/100)

WHERE part_id = pid;
return (select price from inventory where part_id = pid);

END FUNCTION
DOCUMENT "USAGE: Update a price by a percentage",

"Enter an integer percentage from 1 - 100",
"and a part id number"

WITH LISTING IN ’/tmp/warn_file’;

For more information on how to write SPL functions, see the chapter about SPL
routines in IBM Informix Guide to SQL: Tutorial.

See also the section “Transactions in SPL Routines” on page 5-79.

You can include valid SQL or SPL language statements in SPL functions. See,
however, the following sections in Chapter 5, “Other Syntax Segments,” on page
5-1 that describe restrictions on SQL and SPL statements within SPL routines:
“Subset of SPL Statements Valid in the Statement Block” on page 5-75; “SQL
Statements Valid in SPL Statement Blocks” on page 5-76; and “Restrictions on SPL
Routines in Data-Manipulation Statements” on page 5-77.
Related concepts

System Catalog Tables (SQL Reference)

External Procedures

External functions are functions you write in an external language (that is, a
programming language other than SPL) that Informix supports.

Chapter 2. SQL statements 2-131

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

To create a C user-defined function

1. Write the C function.
2. Compile the function and store the compiled code in a shared library (the

shared-object file for C).
3. Register the function in the database server with the CREATE FUNCTION

statement.

To create a user-defined function written in the Java language

1. Write a Java static method, which can use the JDBC functions to interact with
the database server.

2. Compile the Java source file and create a .jar file (the shared-object file for
Java).

3. Execute the install_jar() procedure with the EXECUTE PROCEDURE statement
to install the JAR file in the current database.

4. If the UDR uses user-defined types, create a map between SQL data types and
Java classes. Use the setUDTextName() procedure that is explained in
“EXECUTE PROCEDURE statement” on page 2-369.

5. Register the UDR with the CREATE FUNCTION statement.

Rather than storing the body of an external routine directly in the database, the
database server stores only the pathname of the shared-object file that contains the
compiled version of the routine. When it executes the external routine, the
database server invokes the external object code.

The database server stores information about an external function in system
catalog tables, including sysprocbody and sysprocauth. For more information on
the system catalog, see the IBM Informix Guide to SQL: Reference.
Related concepts

System Catalog Tables (SQL Reference)

Example of Registering a C User-Defined Function
The following example registers an external C user-defined function named equal(
) in the database. This function takes two arguments of the type basetype1 and
returns a single Boolean value. The external routine reference name specifies the
path to the C shared library where the function object code is actually stored. This
library contains a C function basetype1_equal(), which is invoked during
execution of the equal() function.
CREATE FUNCTION equal (arg1 basetype1, arg2 basetype1)

RETURNING BOOLEAN;
EXTERNAL NAME

"/usr/lib/basetype1/lib/libbtype1.so(basetype1_equal)"
LANGUAGE C

END FUNCTION;

Example of Registering a UDR Written in the Java Language
The following CREATE FUNCTION statement registers the user-defined function,
sql_explosive_reaction(). This function is discussed in “sqlj.install_jar” on page
6-14.
CREATE FUNCTION sql_explosive_reaction(INT) RETURNS INT WITH (class="jvp")

EXTERNAL NAME "course_jar:Chemistry.explosiveReaction" LANGUAGE JAVA;

2-132 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

This function returns a single INTEGER value. The EXTERNAL NAME clause
specifies that the Java implementation of the sql_explosive_reaction() function is a
method called explosiveReaction(), which resides in the Chemistry Java class that
resides in the course_jar JAR file.

Ownership of Created Database Objects
The user who creates an owner-privileged UDR, rather than the user who executes
the UDR, owns any database objects that are created by the UDR when the UDR is
executed, unless another owner is specified for the created object.

For example, assume that user mike creates this user-defined function:
CREATE FUNCTION func1 () RETURNING INT;

CREATE TABLE tab1 (colx INT);
RETURN 1;

END FUNCTION;

If user joan now executes function func1, user mike, not user joan, is the owner of
the newly created table tab1.

In the case of a DBA-privileged UDR, however, the user who executes a UDR
(rather than the UDR owner) owns any database objects created by the UDR,
unless another owner is specified for the database object within the UDR.

For example, assume that user mike creates this user-defined function:
CREATE DBA FUNCTION func2 () RETURNING INT;

CREATE TABLE tab2 (coly INT);
RETURN 1;

END FUNCTION;

If user joan now executes function func2, user joan, not user mike, is the owner of
the newly created table tab2.

See also the section “Support for roles and user identity” on page 5-79.

Examples
Overloaded functions are uniquely identified by the name and the input parameter
list. Instead of providing a long unique identifier, it is possible to provide specific
name and use it later. The following example illustrates an overloaded function,
whose identifier isgetArea, that has the specific names getSquareArea and
getRectangleArea:
CREATE FUNCTION getArea

(i INT DEFAULT 0)
RETURNING INT SPECIFIC getSquareArea;
DEFINE j INT;
LET j = i * i;
RETURN j;
END FUNCTION;

CREATE FUNCTION getArea
(i INT DEFAULT 0, j INT DEFAULT 0)

RETURNING INT SPECIFIC getRectangleArea;
DEFINE k INT;
LET k = i * j;
RETURN k;
END FUNCTION;

Now you can use the specific name, as in the following example:
GRANT EXECUTE ON SPECIFIC FUNCTION getSquareArea TO informix;
GRANT EXECUTE ON SPECIFIC FUNCTION getRectangleArea TO informix;

Chapter 2. SQL statements 2-133

Without the specific name, you would need to issue the following:
GRANT EXECUTE ON FUNCTION getArea (INTEGER) TO informix;
GRANT EXECUTE ON FUNCTION getArea (INTEGER,INTEGER) TO informix;

Related Information

Related statements: “ALTER FUNCTION statement” on page 2-27, “ALTER
ROUTINE statement” on page 2-31, “CREATE PROCEDURE statement” on page
2-162, “CREATE FUNCTION FROM statement,” “DROP FUNCTION statement”
on page 2-329, “DROP ROUTINE statement” on page 2-339, “GRANT statement”
on page 2-401, “EXECUTE FUNCTION statement” on page 2-361, “PREPARE
statement” on page 2-477, “REVOKE statement” on page 2-502, and “UPDATE
STATISTICS statement” on page 2-715

Chapter 3, “SPL Statements,” on page 3-1 of this document describes the SPL
language. For a discussion of how to create and use SPL routines, see the IBM
Informix Guide to SQL: Tutorial.

For a discussion of how to create and use external routines, see IBM Informix
User-Defined Routines and Data Types Developer's Guide. For information about how
to create C UDRs, see the IBM Informix DataBlade API Programmer's Guide.

CREATE FUNCTION FROM statement
Use the CREATE FUNCTION FROM statement to access a user-defined function
whose CREATE FUNCTION statement resides in a separate file.

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

Syntax

�� CREATE FUNCTION FROM 'file'
file_var

��

Element Description Restrictions Syntax

file Path and filename of a file that contains the
full CREATE FUNCTION statement text.
Default pathname is current directory.

Must exist and contain
exactly one CREATE
FUNCTION statement

Must conform to
operating-system rules.

file_var Variable storing value of file Same as for file Language specific

Usage

Functions written in the C or Java language are called external functions. When the
IFX_EXTEND_ROLE configuration parameter is set to ON, only users who have
been granted the built-in EXTEND role can create external functions.

An Informix ESQL/C program cannot directly create a user-defined function. That
is, it cannot contain the CREATE FUNCTION statement.

To create these functions within an Informix ESQL/C program

1. Create a source file with the CREATE FUNCTION statement.

2-134 IBM Informix Guide to SQL: Syntax

2. Use the CREATE FUNCTION FROM statement to send the contents of this
source file to the database server for execution.
The file that you specify in the file parameter can contain only one CREATE
FUNCTION statement.

For example, suppose that the following CREATE FUNCTION statement is in a
separate file, called del_ord.sql:
CREATE FUNCTION delete_order(p_order_num INT) RETURNING INT, INT;

DEFINE item_count INT;
SELECT count(*) INTO item_count FROM items

WHERE order_num = p_order_num;
DELETE FROM orders WHERE order_num = p_order_num;
RETURN p_order_num, item_count;

END FUNCTION;

In the Informix ESQL/C program, you can access the delete_order() SPL function
with the following CREATE FUNCTION FROM statement:
EXEC SQL create function from ’del_ord.sql’;

If you are not sure whether the UDR in the file is a user-defined function or a
user-defined procedure, use the CREATE ROUTINE FROM statement.

The filename that you provide is relative. If you provide a simple filename with no
pathname (as in the preceding example), the client application looks for the file in
the current directory.

Important: The Informix ESQL/C preprocessor does not process the contents of
the file that you specify. It only sends the contents to the database server for
execution. Therefore, there is no syntactic check that the file that you specify in
CREATE FUNCTION FROM actually contains a CREATE FUNCTION statement.
To improve readability of the code, however, it is recommended that you match
these two statements.

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
PROCEDURE statement” on page 2-162, “CREATE PROCEDURE FROM
statement” on page 2-171, and “CREATE ROUTINE FROM statement” on page
2-175

CREATE INDEX statement
Use the CREATE INDEX statement to create an index for one or more columns in
a table, or on values returned by a UDR that uses column values as arguments.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
(1)

Index-Type Options INDEX index ON table
synonym

(2)
Index-Key Specs �

Chapter 2. SQL statements 2-135

� Index Options
ONLINE

��

Index Options:

(3)
USING Access-Method Clause

�

�
(4) (5)

FILLFACTOR Option Storage Options
(6)

Index Modes

Notes:

1 See “Index-Type Options” on page 2-137

2 See “Index-Key Specification” on page 2-138

3 See “USING Access-Method Clause” on page 2-143

4 See “FILLFACTOR Option” on page 2-145

5 See “Storage options” on page 2-146

6 See “Index Modes” on page 2-149

Element Description Restrictions Syntax

index The name declared here for a new index. The name must be unique
among names of indexes in the
database.

“Identifier” on page
5-21

synonym, table The name or synonym of a standard or
temporary table to be indexed

The synonym and its table must
exist in the current database.

“Identifier” on page
5-21

Usage

When you issue the CREATE INDEX statement, the table is locked in exclusive
mode. If another process is using the table, CREATE INDEX returns an error. (For
an exception, however, see “The ONLINE keyword of CREATE INDEX” on page
2-151.)

If the index is on a column that stores encrypted data, the database server cannot
use the index.

Indexes use the collation that was in effect when CREATE INDEX executed.

A secondary-access method (sometimes referred to as an index-access method) is a set
of database server functions that build, access, and manipulate an index structure
such as a B-tree, R-tree, or an index structure that a DataBlade module provides, in
order to speed up the retrieval of data.

Neither synonym nor table can refer to a virtual table or to a table object that the
CREATE EXTERNAL TABLE statement defined.

You cannot directly base a functional index on a built-in function, but you can
create an SPL wrapper that calls and returns a value from a built-in function. The

2-136 IBM Informix Guide to SQL: Syntax

|
|

arguments to a user-defined function that defines a functional index cannot be the
values from a column of a collection data type.

The following statistics are generated automatically by the CREATE INDEX
statement, with or without the ONLINE keyword:
v Index-level statistics, equivalent to the statistics gathered in the UPDATE

STATISTICS operation in LOW mode for B-tree indexes.
v Column-distribution statistics, equivalent to the distribution generated in the

UPDATE STATISTICS operation in HIGH mode, for a non-opaque leading
indexed column of an ordinary B-tree index.

Index-Type Options

The index-type options let you specify attributes of the index.

Index-Type Options:

DISTINCT
UNIQUE

CLUSTER

UNIQUE or DISTINCT Option
Use the UNIQUE or DISTINCT keyword to require that the columns on which the
index is based accept only unique data. If you do not specify the UNIQUE or
DISTINCT keyword, the index allows duplicate values in the indexed column (or
in the set of indexed columns). The following example creates a unique index:
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num);

A unique index prevents duplicate values in the customer_num column. A column
with a unique index can have, at most, one NULL value.

The DISTINCT and UNIQUE keywords are synonyms in this context, so the
following statement has the same effect as the previous example:
CREATE DISTINCT INDEX c_num_ix ON customer (customer_num);

The index in both examples is maintained in ascending order, which is the default
order.

You can also prevent duplicates in a column or set of columns by creating a
unique constraint with the CREATE TABLE or ALTER TABLE statement. You
cannot specify an R-tree secondary-access method for a UNIQUE index key. For
more information on how to create unique constraints, see the CREATE TABLE or
ALTER TABLE statements.

See also the section “Differences Between a Unique Constraint and a Unique
Index” on page 2-207.

How Indexes Affect Primary-Key, Unique, and Referential
Constraints
The database server creates internal B-tree indexes for primary-key, unique, and
referential constraints. If a primary-key, unique, or referential constraint is added
after the table is created, any user-created indexes on the constrained columns are
used, if appropriate. An appropriate index is one that indexes the same columns
that are used in the primary-key, referential, or unique constraint. If an appropriate

Chapter 2. SQL statements 2-137

user-created index is not available, the database server creates a nonfragmented
internal index on the constrained column or columns.

CLUSTER option
Use the CLUSTER keyword to reorder the rows of the table in the order that the
index designates.

The CREATE CLUSTER INDEX statement fails if a CLUSTER index already exists
on the same table.
CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode);

This statement creates an index on the customer table and physically orders the
rows according to their postal code values, in (by default) ascending order.

If the CLUSTER option is specified in addition to fragments on, the data values are
clustered only within each fragment, and not globally across the entire table.

You cannot specify the CLUSTER option and the ONLINE keyword in the same
statement. In addition, some secondary-access methods (such as R-tree) do not
support clustering. Before you specify CLUSTER for your index, be sure that the
index uses an access method that supports clustering.

Index-Key Specification
Use the Index-Key Specification of the CREATE INDEX statement to define the key
value for the index, to specify whether to sort the index in ascending or
descending order, and to identify a default operator class if the secondary access
method in the USING clause has no default operator class, or to override its
default operator class.

Index-Key Specification:

�

�

,
ASC

(column DESC)
, op_class

function (func_col)

Element Description Restrictions Syntax

column Column or columns used as a
key to this index

See “Using a Column or Column List as the Index
Key” on page 2-139.

“Identifier” on
page 5-21

function User-defined function used as
a key to this index

Must be a nonvariant function that does not return a
large object data type. Cannot be a built-in algebraic,
exponential, log, or hex function.

“Identifier” on
page 5-21

func_col Columns whose values are
arguments to function

Cannot be of a collection data type. See “Using a
Function as an Index Key” on page 2-139.

“Identifier” on
page 5-21

op_class Operator class associated with
column or function for this
index

If the secondary-access method in the USING clause
has no default operator class, you must specify one
here. (See “Using an Operator Class” on page 2-143.)

“Identifier” on
page 5-21

The index-key value can be one or more columns that contain built-in data types.
If you specify multiple columns, the concatenation of values from the set of
columns is treated as a single composite column for indexing.

2-138 IBM Informix Guide to SQL: Syntax

The index-key value also can be one of the following:
v A column of type LVARCHAR(size), if size is smaller than 387 bytes
v One or more columns that contain user-defined data types
v One or more values that a user-defined function returns (referred to as a

functional index)
v A combination of columns and functions

The 387-byte LVARCHAR size limit is for dbspaces of the default (2 kilobyte) page
size, but dbspaces of larger page sizes can support larger index key sizes, as listed
in the following table.

Table 2-2. Maximum Index Key Size for Selected Page Sizes

Page Size Maximum Index Key Size

2 kilobytes 387 bytes

4 kilobytes 796 bytes

8 kilobytes 1,615 bytes

12 kilobytes 2,435 bytes

16 kilobytes 3,245 bytes

Using a Column or Column List as the Index Key
These restrictions apply to a column or column list specified as the index key:
v All the columns must exist and must be in the table being indexed.
v The maximum number of columns and total width of all columns depends on

the database server. See “Creating Composite Indexes” on page 2-140.
v You cannot add an ascending index to a column or column list that already has

a unique constraint on it. See “Using the ASC and DESC Sort-Order Options” on
page 2-141.

v You cannot add a unique index to a column or to a column list that has a
primary-key constraint. The reason is that defining the column or column list as
the primary key causes the database server to create a unique internal index on
the column or column list; you cannot create another unique index on this
column or column list with the CREATE INDEX statement.

v The number of indexes that you can create on the same column or the same set
of columns is restricted. See “Restrictions on the Number of Indexes on a Set of
Columns” on page 2-142.

These additional restrictions apply to indexes:
v The column must be in a table of the current database.
v The data type of the column cannot be a collection data type.

Using a Function as an Index Key
A functional index is indexed on the value that a specified function returns from a
column-value argument, rather than on the value of a column. For example, the
following statement creates a functional index on table zones using the value that
the user-defined function Area() returns as the key:
CREATE INDEX zone_func_ind ON zones (Area(length,width));

You can create functional indexes within an SPL routine. You can also create an
index on a nonvariant user-defined function that does not return a large object.
The arguments to the UDF cannot be from a column of a collection data type.

Chapter 2. SQL statements 2-139

The function must be a user-defined function. You cannot create a functional index
on any built-in function of SQL. You can, however, create a functional index on a
user-defined function that calls a built in function and uses the value returned by
the built-in function as the index key of a functional index.

The functional index can be a B-tree index, an R-tree index, or a user-defined
secondary-access method. The ONLINE keyword, however, is not valid when you
create a functional index; see “The ONLINE keyword of CREATE INDEX” on page
2-151.

Creating Composite Indexes
A simple index lists only one column (or only one column or function) in its Index
Key Specification. Any other index is a composite index. You should list the
columns in a composite index in the order from most frequently used to least
frequently used.

If you use SET COLLATION to specify the collating order of a non-default locale,
you can create multiple indexes on the same set of columns, using different
collations. (Such indexes are useful only on NCHAR or NVARCHAR columns.)

The following example creates a composite index using the stock_num and
manu_code columns of the stock table:
CREATE UNIQUE INDEX st_man_ix ON stock (stock_num, manu_code);

The UNIQUE keyword prevents any duplicates of a given combination of
stock_num and manu_code. The index is in ascending order by default.

You can include up to 16 columns in a composite index. The total width of all
indexed columns in a single composite index cannot exceed 380 bytes.

An index key part is either a column in a table or the result of a user-defined
function on one or more columns. A composite index can have up to 16 key parts
that are columns, or up to 341 key parts that are values returned by a UDR. This
limit is language-dependent and applies to UDRs written in SPL or Java; functional
indexes based on C language UDRs can have up to 102 key parts. A composite
index can have any of the following items as an index key:
v One or more columns
v One or more values that a user-defined function returns (referred to as a

functional index)
v A combination of columns and user-defined functions

For dbspaces of the default page size of 2 kilobytes, the total width of all indexed
columns in a single CREATE INDEX statement cannot exceed 387 bytes, except for
functional indexes of Informix, whose language-dependent limits are described
earlier in this section. For the maximum sizes in dbspaces larger than 2 kilobytes,
see “Index-Key Specification” on page 2-138.

Whether the index is based directly on column values in the table, or on functions
that take column values as arguments, the maximum size of the index key depends
only on page size. The maximum index key size for functional indexes in dbspaces
larger than 2 kilobytes are the same as for non-functional indexes. The only
difference between limits on column indexes and functional indexes is the number
of key parts. A column based index can have no more than 16 key parts and a

2-140 IBM Informix Guide to SQL: Syntax

functional index has different language-dependent limits on key parts. For a given
page size, the maximum index key size is the same for both column-based and
functional indexes.

Using the ASC and DESC Sort-Order Options
The ASC option specifies an index maintained in ascending order; this is the
default order. The DESC option can specify an index that is maintained in
descending order. These ASC and DESC options are valid with B-trees only.

Effects of Unique Constraints on Sort Order Options
When a column or list of columns is defined as unique in a CREATE TABLE or
ALTER TABLE statement, the database server implements that UNIQUE
CONSTRAINT by creating a unique ascending index. Thus, you cannot use the
CREATE INDEX statement to add an ascending index to a column or column list
that is already defined as unique.

However, you can create a descending index on such columns, and you can
include such columns in composite ascending indexes in different combinations.
For example, the following sequence of statements is valid:
CREATE TABLE customer (

customer_num SERIAL(101) UNIQUE,
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)
);

CREATE INDEX c_temp1 ON customer (customer_num DESC);
CREATE INDEX c_temp2 ON customer (customer_num, zipcode);

In this example, the customer_num column has a unique constraint placed on it.
The first CREATE INDEX statement places an index sorted in descending order on
the customer_num column. The second CREATE INDEX includes the
customer_num column as part of a composite index. For more information on
composite indexes, see “Creating Composite Indexes” on page 2-140.

Bidirectional Traversal of Indexes
If you do not specify the ASC or DESC keywords when you create an index on a
single column, key values are stored in ascending order by default; but the
bidirectional-traversal capability of the database server lets you create just one
index on a column and use that index for queries that specify sorting of results in
either ascending or descending order of the sort column.

Because of this capability, it does not matter whether you create a single-column
index as an ascending or descending index. Whichever storage order you choose
for an index, the database server can traverse that index in ascending or
descending order when it processes queries.

If you create a composite index on a table, however, the ASC and DESC keywords
might be required. For example, if you want to enter a SELECT statement whose
ORDER BY clause sorts on multiple columns and sorts each column in a different

Chapter 2. SQL statements 2-141

order, and you want to use an index for this query, you need to create a composite
index that corresponds to the ORDER BY columns. For example, suppose that you
want to enter the following query:
SELECT stock_num, manu_code, description, unit_price

FROM stock ORDER BY manu_code ASC, unit_price DESC;

This query sorts first in ascending order by the value of the manu_code column
and then in descending order by the value of the unit_price column. To use an
index for this query, you need to issue a CREATE INDEX statement that
corresponds to the requirements of the ORDER BY clause. For example, you can
enter either of the following statements to create the index:
CREATE INDEX stock_idx1 ON stock

(manu_code ASC, unit_price DESC);
CREATE INDEX stock_idx2 ON stock

(manu_code DESC, unit_price ASC);

The composite index that was used for this query (stock_idx1 or stock_idx2)
cannot be used for queries in which you specify the same sort direction for the two
columns in the ORDER BY clause. For example, suppose that you want to enter
the following queries:
SELECT stock_num, manu_code, description, unit_price

FROM stock ORDER BY manu_code ASC, unit_price ASC;
SELECT stock_num, manu_code, description, unit_price

FROM stock ORDER BY manu_code DESC, unit_price DESC;

If you want to use a composite index to improve the performance of these queries,
you need to enter one of the following CREATE INDEX statements. You can use
either one of the created indexes (stock_idx3 or stock_idx4) to improve the
performance of the preceding queries.
CREATE INDEX stock_idx3 ON stock

(manu_code ASC, unit_price ASC);
CREATE INDEX stock_idx4 ON stock

(manu_code DESC, unit_price DESC);

You can create no more than one ascending index and one descending index on a
column. Because of the bidirectional-traversal capability of the database server, you
only need to create one of the indexes. Creating both would achieve exactly the
same results for an ascending or descending sort on the stock_num column.

After INSERT or DELETE operations are performed on an indexed table, the
number of index entries can vary within a page, and the number of index pages
that a table requires can depend on whether the index specifies ascending or
descending order. For some load and DML operations, a descending single-column
or multi-column index might cause the database server to allocate more index
pages than an ascending index requires.
Related reference

Page Types Within an Index Extent (Administrator's Reference)

Restrictions on the Number of Indexes on a Set of Columns
You can create multiple indexes on a set of columns, provided that each index has
a unique combination of ascending and descending columns. For example, to
create all possible indexes on the stock_num and manu_code columns of the stock
table, you could create four indexes:
v The ix1 index on both columns in ascending order
v The ix2 index on both columns in descending order

2-142 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0296.htm#ids_adr_0296

v The ix3 index on stock_num in ascending order and on manu_code in
descending order

v The ix4 index on stock_num in descending order and on manu_code in
ascending order

Because of the bidirectional-traversal capability of the database server, you do not
need to create these four indexes. You only need to create two indexes:
v The ix1 and ix2 indexes achieve the same results for sorts in which the user

specifies the same sort direction (ascending or descending) for both columns, so
you only need one index of this pair.

v The ix3 and ix4 indexes achieve the same results for sorts in which the user
specifies different sort directions for the two columns (ascending on the first
column and descending on the second column or vice versa). Thus, you only
need to create one index of this pair. (See also “Bidirectional Traversal of
Indexes” on page 2-141.)

Informix can also support multiple indexes on the same combination of ascending
and descending columns, if each index has a different collating order; see “SET
COLLATION statement” on page 2-608.

Using an Operator Class
An operator class is the set of operators associated with a secondary-access method
for query optimization and building the index. You must specify an operator class
when you create an index if either one of the following is true:
v No default operator class for the secondary-access method exists. (A

user-defined access method can provide no default operator class.)
v You want to use an operator class that is different from the default operator

class that the secondary-access method provides.

If you use an alternative access method, and if the access method has a default
operator class, you can omit the operator class here; but if you do not specify an
operator class and the secondary-access method does not have a default operator
class, the database server returns an error. For more information, see “Default
Operator Classes” on page 2-161. The following CREATE INDEX statement creates
a B-tree index on the cust_tab table that uses the abs_btree_ops operator class for
the cust_num key:
CREATE INDEX c_num1_ix ON cust_tab (cust_num abs_btree_ops);

USING Access-Method Clause
The USING clause specifies the secondary-access method for the new index.

USING Access-Method Clause:

USING sec_acc_method �

,

(parameter = value)

Element Description Restrictions Syntax

parameter Secondary-access-method
parameter for this index

See the user documentation for your
user-defined access method

“Quoted String” on
page 4-188

Chapter 2. SQL statements 2-143

Element Description Restrictions Syntax

sec_acc
_method

Secondary-access method for
this index

Method can be a B-tree, R-tree, BTS, or
user-defined access method, such as one that a
DataBlade module defines

“Identifier” on page
5-21

value Value of the specified
parameter

Must be a valid literal value for parameter in
this secondary-access method

“Quoted String” on
page 4-188 or
“Literal Number” on
page 4-184

A secondary-access method is a set of routines that perform all of the operations
needed for an index, such as create, drop, insert, delete, update, and scan.

The database server provides the following secondary-access methods:
v The generic B-tree index is the built-in secondary-access method.

A B-tree index is good for a query that retrieves a range of data values. The
database server implements this secondary-access method and registers it as
btree in the system catalog tables.

v The R-tree method is a registered secondary-access method.
An R-tree index is good for searches on multidimensional data. The database
server registers this secondary-access method as rtree in the system catalog
tables of a database. An R-tree secondary-access method is not valid for a
UNIQUE index key. An R-tree index cannot be clustered, and cannot be stored
in a dbspace that has a non-default page size. For more information on R-tree
indexes, see the IBM Informix R-Tree Index User's Guide.

v The bts method is a registered secondary-access method.
The bts access method is a secondary access method that allows you to perform
basic text searching for words and phrases in a document repository stored in a
column of a table. To perform basic text searches, you create an index using the
bts access method on a text column and then use the bts_contains() search
predicate function and other management functions. For more information on
the bts access method, see Create the index by specifying the bts access method.

The access method that you specify must be registered in the sysams system
catalog table. The default secondary-access method is B-tree.

If the access method is B-tree, you can create only one index for each unique
combination of ascending and descending columnar or functional keys with
operator classes. (This restriction does not apply to other secondary-access
methods.) By default, CREATE INDEX creates a generic B-tree index. If you want
to create an index with a secondary-access method other than B-tree, you must
specify the name of the secondary-access method in the USING clause.

Some user-defined access methods are packaged as DataBlade modules. Some
DataBlade modules provide indexes that require specific parameters when you
create them. For more information about user-defined access methods, refer to the
documentation of your secondary access-method or DataBlade module.

The following example (for a database that implements R-tree indexes) creates an
R-tree index on the location column that contains an opaque data type, point, and
performs a query with a filter on the location column.
CREATE INDEX loc_ix ON TABLE emp (location) USING rtree;
SELECT name FROM emp WHERE location N_equator_equals point(’500, 0’);

2-144 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.dbext.doc/ids_dbxt_020.htm#ids_dbxt_020

The following CREATE INDEX statement creates an index that uses the fulltext
secondary-access method, which takes two parameters: WORD_SUPPORT and
PHRASE_SUPPORT. It indexes a table t, which has two columns: i, an integer
column, and data, a TEXT column.
CREATE INDEX tx ON t(data)

USING fulltext (WORD_SUPPORT='PATTERN’,
PHRASE_SUPPORT=’MAXIMUM’);

FILLFACTOR Option
Use the FILLFACTOR option to specify the degree of index-page fullness when
you want to create compacted indexes or provide information for the expansion of
an index at a later date.

The FILLFACTOR option takes effect only in the following cases:
v when you build an index on a table that contains more than 5,000 rows and that

uses more than 100 table pages
v when you create an index on a fragmented table
v when you create a fragmented index on a nonfragmented table.

FILLFACTOR Option:

FILLFACTOR percent

Element Description Restrictions Syntax

percent Percentage of each index page that is filled by index data
when the index is created. The default is 90.

1 ≤ percent ≤100 “Literal Number”
on page 4-184

When the index is created, the database server initially fills only that percentage of
the nodes specified with the FILLFACTOR value.

The FILLFACTOR can also be set as a parameter in the ONCONFIG file. The
FILLFACTOR clause on the CREATE INDEX statement overrides the setting in the
ONCONFIG file. For more information about the ONCONFIG file and the
parameters you can use, see your IBM Informix Administrator's Guide.
Related reference

Summary of configuration parameters (Administrator's Reference)

Providing a Low Percentage Value
If you provide a low percentage value, such as 50, you allow room for growth in
your index. The nodes of the index initially fill to a certain percentage and contain
space for inserts. The amount of available space depends on the number of keys in
each page as well as the percentage value.

For example, with a 50-percent FILLFACTOR value, the page would be half full
and could accommodate doubling in size. A low percentage value can result in
faster inserts and can be used for indexes that you expect to grow.

Providing a High Percentage Value
If you provide a high percentage value, such as 99, indexes are compacted, and
any new index inserts result in splitting nodes. The maximum density is 100

Chapter 2. SQL statements 2-145

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0012.htm#ids_adr_0012

percent. With a 100-percent FILLFACTOR value, the index has no room available
for growth; any addition to the index results in splitting the nodes.

A 99-percent FILLFACTOR value allows room for at least one insertion per node.
A high percentage value can result in faster queries and is appropriate for indexes
that you do not expect to grow, or for mostly read-only indexes.

Storage options
The storage options specify the distribution scheme of an index. You can use the
IN clause to specify a storage space for the entire index, or you can use the
FRAGMENT BY clause to fragment the index across multiple storage spaces.

Storage Options:

IN dbspace
extspace
(1)

TABLE
(2)

FRAGMENT BY Clause for Indexes

Notes:

1 B-tree indexes on nonfragmented tables only

2 See “FRAGMENT BY Clause for Indexes” on page 2-148

Element Description Restrictions Syntax

dbspace The dbspace in which to store the index Must exist “Identifier” on page 5-21

extspace Name assigned by the onspaces command to a storage
area outside the database server

Must exist See the documentation for
your access method.

If you specify any storage option (except IN TABLE), you create a detached index.
Detached indexes are indexes that are created with a specified distribution scheme.
Even if the distribution scheme specified for the index is identical to that specified
for the table, the index is still considered to be detached. If the distribution scheme
of a table changes, all detached indexes continue to use the distribution scheme
that the Storage Option clause specified.

IN Clause
Use the IN clause to specify a storage space to hold the entire index. The storage
space that you specify must already exist.

Storing an Index in a dbspace
Use the IN dbspace clause to specify the dbspace where you want your index to
reside. When you use this clause with any option except the TABLE keyword, you
create a detached index.

The IN dbspace clause allows you to isolate an index. For example, if the customer
table is created in the custdata dbspace, but you want to create an index in a
separate dbspace called custind, use the following statements:

2-146 IBM Informix Guide to SQL: Syntax

CREATE TABLE customer
. . .
IN custdata EXTENT SIZE 16;

CREATE INDEX idx_cust ON customer (customer_num) IN custind;

Storing an Index Fragment in a Named Partition
Besides the option of storing a fragment of the index in a dbspace, Informix
supports storing named fragments of the index in one or more dbspaces. Unless
you explicitly declare names for the fragments in the PARTITION BY or
FRAGMENT BY clause, each fragment, by default, has the same name as the
dbspace where it resides. This includes all fragmented tables and indexes migrated
from earlier releases of Informix.

Storing Data in an extspace
In general, use the extspace storage option in conjunction with the “USING
Access-Method Clause” on page 2-143. For more information, refer to the user
documentation for your custom-access method.

Creating an Index with the IN TABLE Keywords
Specifying IN TABLE as the storage option creates an index whose storage
behavior is the same as the default for earlier releases of Informix. Both the index
and the data pages for its table are stored together in the same extents, and the
dbspace distribution scheme for the index is the same as that of the table on which
it was built.

Using IN TABLE as the storage option specifies the same storage design for
non-fragmented B-tree indexes as enabling the DEFAULT_ATTACH environment
variable, but both DEFAULT_ATTACH and the IN TABLE keywords are
deprecated features that emulate the index storage behavior of Version 7.x of
Informix.

The name of the DEFAULT_ATTACH environment variable preserves an obsolete
definition of the term attached index. In current Informix nomenclature, this term
now designates an index whose data pages are stored in separate tablespaces and
separate extents from the data pages of the table, but the index and its table share
the same dbspace distribution scheme. For more information, see the description of
DEFAULT_ATTACH in the IBM Informix Guide to SQL: Reference.

The following restrictions apply to the IN TABLE keywords as an index storage
option:
v If the table on which you define the index is a fragmented table, Informix issues

errors -212 and -130 if you specify the IN TABLE option.
v This option does not support extensibility-related indexes, such as R-tree

indexes, functional indexes, or indexes that DataBlade modules provide.
v You cannot specify this storage option for any index that uses a collating order

different from that of its table, nor different from what the DB_LOCALE setting
specifies. For more information about the DB_LOCALE environment variable,
see the IBM Informix Guide to SQL: Reference.

IBM does not recommend use in new applications of the IN TABLE storage option,
nor of the DEFAULT_ATTACH environment variable. Such indexes are a
deprecated feature that might not be supported in some future release of Informix.

Chapter 2. SQL statements 2-147

Related reference

DEFAULT_ATTACH environment variable (SQL Reference)

FRAGMENT BY Clause for Indexes
Use the FRAGMENT BY clause to create a detached index and to define its
fragmentation strategy across dbspaces or partitions.

FRAGMENT BY Clause for Indexes:

FRAGMENT BY
PARTITION BY

EXPRESSION (Expression List , REMAINDER Clause)

Expression List:

�

,

(expr) IN dbspace
PARTITION part

REMAINDER Clause:

REMAINDER IN dbspace
PARTITION part (expr)

Element Description Restrictions Syntax

dbspace Dbspace in which to store the index
fragment that expr defines

Must exist. Include no more than
2,048 dbspace names

“Identifier” on page
5-21

expr Expression defining which index keys each
fragment stores

See “Restrictions on fragmentation
expressions.”

“Expression” on page
4-40; “Condition” on
page 4-5

part Name that you declare here for a partition
of a dbspace

Required for any partition in the
same dbspace as another partition
of the same index. Name must be
unique among partitions of the
same table.

“Identifier” on page
5-21

Here the IN keyword introduces the name of a storage space where an index
fragment is to be stored. If you list multiple dbspace names after the IN keyword,
use parentheses to delimit the dbspace list. All dbspaces that store the fragments
must have the same page size. The parentheses around the list of fragment
definitions that follow the EXPRESSION keyword are optional.

Restrictions on fragmentation expressions
The following restrictions apply to the expression:
v Each fragment expression can contain columns only from the current table, with

data values only from a single row.
v The columns contained in a fragment expression must be the same as the

indexed columns or a subset of the indexed columns.
v The expression must return a BOOLEAN (true or false) value.

2-148 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_232.htm#ids_sqr_232

v No subqueries, aggregates, user-defined routines, nor references to fields of a
ROW type column are valid.

v The built-in CURRENT, DATE, SYSDATE, and TODAY functions are not valid.

Fragmentation of System Indexes
System indexes (such as those that implement referential constraints and unique
constraints) utilize user-defined indexes if they exist. If no user-defined indexes can
be utilized, system indexes remain nonfragmented, and are moved to the dbspace
where the database was created.

To fragment a system index, create the fragmented index on the constraint
columns, and then add the constraint using the ALTER TABLE statement.

Fragmentation of Unique Indexes
You can fragment unique indexes on a table that uses a round-robin or an
expression-based distribution scheme, but any columns referenced in the fragment
expression must be indexed columns. If your index fragmentation strategy violates
this restriction, the CREATE INDEX statement fails, and work is rolled back.

Fragmentation of Indexes on Temporary Tables
You can fragment a unique index on a temporary table only if the underlying table
uses an expression-based distribution scheme. That is, the CREATE TEMP TABLE
statement that defines the temporary table must specify an explicit
expression-based distribution scheme. (Fragmentation of the index by ROUND
ROBIN is not supported, and fragmentation by LIST or by INTERVAL is
automatic, for a unique index on a table that uses a list or interval storage
partitioning strategy.)

If you try to create a fragmented, unique index on a temporary table for which you
did not specify a fragmentation strategy when you created the table, the database
server creates the index in the first dbspace that the DBSPACETEMP environment
variable specifies. For more information on the DBSPACETEMP environment
variable, see the IBM Informix Guide to SQL: Reference.

For more information on the default storage characteristics of temporary tables, see
“Where Temporary Tables are Stored” on page 2-239.
Related reference

DBSPACETEMP (SQL Reference)

Index Modes
Use the index mode options to specify the behavior of the index during insert,
delete, and update operations.

Index Modes:

ENABLED
DISABLED

WITHOUT ERROR
FILTERING WITH ERROR

The following table explains the index modes

Mode Effect

Chapter 2. SQL statements 2-149

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_228.htm#ids_sqr_228

DISABLED
The database server does not update the index after insert, delete, and
update operations that modify the base table. The optimizer does not use
the index during the execution of queries.

ENABLED
The database server updates the index after insert, delete, and update
operations that modify the base table. The optimizer uses the index during
query execution. If an insert or update operation causes a duplicate key
value to be added to a unique index, the statement fails.

FILTERING
The database server updates a unique index after insert, delete, and update
operations that modify the base table. (This option is not available with
duplicate indexes.)

The optimizer uses the index during query execution. If an insert or
update operation causes a duplicate key value to be added to a unique
index in filtering mode, the statement continues processing, but the bad
row is written to the violations table associated with the base table.
Diagnostic information about the unique-index violation is written to the
diagnostics table associated with the base table.

If you specify filtering for a unique index, you can also specify one of the
following error options.

Error Option
Effect

WITHOUT ERROR
A unique-index violation during an insert or update operation returns no
integrity-violation error to the user.

WITH ERROR
Any unique-index violation during an insert or update operation returns
an integrity-violation error to the user.

Specifying Modes for Unique Indexes
You must observe the following guidelines when you specify modes for unique
indexes in CREATE INDEX statements:
v You can set the mode of a unique index to enabled, disabled, or filtering.
v If you do not specify a mode, then by default the index is enabled.
v For an index set to filtering mode, if you do not specify an error option, the

default is WITHOUT ERROR.
v When you add a new unique index to an existing base table and specify the

disabled mode for the index, your CREATE INDEX statement succeeds even if
duplicate values in the indexed column would cause a unique-index violation.

v When you add a new unique index to an existing base table and specify the
enabled or filtering mode for the index, your CREATE INDEX statement
succeeds provided that no duplicate values exist in the indexed column that
would cause a unique-index violation. However, if any duplicate values exist in
the indexed column, your CREATE INDEX statement fails and returns an error.

v When you add a new unique index to an existing base table in the enabled or
filtering mode, and duplicate values exist in the indexed column, erroneous
rows in the base table are not filtered to the violations table. Thus, you cannot
use a violations table to detect the erroneous rows in the base table.

2-150 IBM Informix Guide to SQL: Syntax

Adding a Unique Index When Duplicate Values Exist in the
Column
If you attempt to add a unique index in the enabled mode but receive an error
message because duplicate values are in the indexed column, take the following
steps to add the index successfully:
1. Add the index in the disabled mode. Issue the CREATE INDEX statement

again, but this time specify the DISABLED keyword.
2. Start a violations and diagnostics table for the target table with the START

VIOLATIONS TABLE statement.
3. Issue a SET Database Object Mode statement to change the mode of the index

to enabled. When you issue this statement, existing rows in the target table that
violate the unique-index requirement are duplicated in the violations table. You
receive an integrity-violation error message, however, and the index remains
disabled.

4. Issue a SELECT statement on the violations table to retrieve the nonconforming
rows that are duplicated from the target table. You might need to join the
violations and diagnostics tables to get all the necessary information.

5. Take corrective action on the rows in the target table that violate the
unique-index requirement.

6. After you fix all the nonconforming rows in the target table, issue the SET
Database Object Mode statement again to switch the disabled index to the
enabled mode. This time the index is enabled, and no integrity violation error
message is returned because all rows in the target table now satisfy the new
unique-index requirement.

Specifying Modes for Duplicate Indexes
You must observe the following guidelines when you specify modes for duplicate
indexes in CREATE INDEX statements:
v You can set a duplicate index to enabled or disabled mode. Filtering mode is

available only for unique indexes.
v If you do not specify the mode of a duplicate index, by default the index is

enabled.

How the Database Server Treats Disabled Indexes
Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation (DML) operations.

When an index is disabled, the database server stops updating it and stops using it
during queries, but the catalog information about the disabled index is retained.
You cannot create a new index on a column or set of columns if a disabled index
on that column or set of columns already exists. Similarly, you cannot create an
active (enabled) unique, foreign-key, or primary-key constraint on a column or on a
set of columns if the indexes on which the active constraint depends are disabled.

The ONLINE keyword of CREATE INDEX
The DBA can reduce the risk of nonexclusive access errors, and can increase the
availability of the indexed table, by including the ONLINE keyword as the last
specification of the CREATE INDEX statement. The ONLINE keyword instructs the
database server to create the index while minimizing the duration of an exclusive
lock, so that the index can be created while concurrent users are accessing the
table.

Chapter 2. SQL statements 2-151

By default, CREATE INDEX attempts to place an exclusive lock on the indexed
table to prevent all other users from accessing the table while the index is being
created. The CREATE INDEX statement fails if another user already has a lock on
the table, or is currently accessing the table at the Dirty Read isolation level.

The database server builds the index, even if other users are performing Dirty
Read and DML operations on the indexed table. Immediately after you issue the
CREATE INDEX ONLINE statement, the new index is not yet visible to the query
optimizer for use in query plans or cost estimates, and the database server does
not support any other DDL operations on the indexed table, until after the
specified index has been built without errors. At this time, the database server
briefly locks the table while updating the system catalog with information about
the new index.

The indexed table in a CREATE INDEX ONLINE statement can be permanent or
temporary, logged or unlogged, and fragmented or non-fragmented. You cannot
specify the ONLINE keyword, however, when you are creating an index that has
any of the following attributes:
v a functional index
v a clustered index
v a virtual index
v an R-tree index.

The following statement instructs the database server to create a unique online
index called idx_1 on the lname column of the customer table:
CREATE UNIQUE INDEX IF NOT EXISTS idx_1 ON customer(lname) ONLINE;

If, while this index is being constructed, other users insert into the customer table
new rows in which lname is not unique, the database server issues an error after it
has created the new idx_1 index and registered it in the system catalog.

The term online index refers to the locking strategy that the database follows in
creating or dropping an index with the ONLINE keyword, rather than to
properties of the index that persist after its creation (or its destruction) has
completed. This term appears in some error messages, however, and in recovery or
restore operations, the database server re-creates as an online index any index that
you created as an online index.

No more than one CREATE INDEX ONLINE or DROP INDEX ONLINE statement
can concurrently reference online indexes on the same table, or online indexes that
have the same identifier.

Automatic Calculation of Distribution Statistics
When the CREATE INDEX statement runs successfully, with or without the
ONLINE keyword, Informix automatically gathers statistics for the newly created
index, and updates the sysdistrib system catalog table with values that are
equivalent to an UPDATE STATISTICS operation in a mode that depends on the
type of index:
v Index level statistics, equivalent to the statistics gathered by UPDATE

STATISTICS in the LOW mode, are calculated for most types of indexes,
including B-tree, Virtual Index Interface, and functional indexes.

2-152 IBM Informix Guide to SQL: Syntax

v Column distribution statistics, equivalent to the distribution generated in the
HIGH mode, for a non-opaque leading indexed column of an ordinary B-tree
index. The resolution percentage is 1.0 if the table has fewer than a million rows,
and 0.5 for larger table sizes.

These distribution statistics are available to the query optimizer when it designs
query plans for the table on which the new index was created.

For composite key indexes, only distributions of the leading column are created
implicitly by the CREATE INDEX statement.

The implicit creation of distribution statistics is not supported for the following
types of indexes:
v Indexes on columns of user-defined data types
v Indexes on columns of the built-in opaque data types (including BOOLEAN and

LVARCHAR)
v R-tree indexes
v Attached indexes.

If the calculation of distribution statistics fails during the CREATE INDEX
operation, the database server reports that failure in the error log, but continues to
create the index.

When distributions are successfully created by an explicit or implicit CREATE
INDEX operation, explain information (similar to one generated by UPDATE
STATISTICS) such as following is generated if the SET EXPLAIN facility is set to
ON.
Index: idx_01 on nita.foo
STATISTICS CREATED AUTOMATICALLY:
Column Distribution for: nita.foo.a
Mode: MEDIUM
Number of Bins: 101 Bin size: 100.0
Sort data: 0.3 MB
Completed building distribution in: 0 minutes 33 seconds

See the description of the “UPDATE STATISTICS statement” on page 2-715
statement for information about distribution statistics and about the difference
between LOW mode and MEDIUM mode distributions.

Related Information

Related statements: “ALTER INDEX statement” on page 2-28, “CREATE OPCLASS
statement” on page 2-158, “CREATE TABLE statement” on page 2-198, “DROP
INDEX statement” on page 2-332, “RENAME INDEX statement” on page 2-497,
and “SET Database Object Mode statement” on page 2-599

For a discussion of the structure of indexes, see your IBM Informix Administrator's
Reference.

For a discussion of the different types of indexes and information about
performance issues with indexes, see your IBM Informix Performance Guide.

For a discussion of the GLS aspects of the CREATE INDEX statement, see the IBM
Informix GLS User's Guide.

Chapter 2. SQL statements 2-153

For information about operator classes, refer to the “CREATE OPCLASS statement”
on page 2-158 statement and IBM Informix User-Defined Routines and Data Types
Developer's Guide.

For information about the indexes that DataBlade modules provide, refer to your
DataBlade module documentation.

CREATE OPAQUE TYPE statement
Use the CREATE OPAQUE TYPE statement to create an opaque data type.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE OPAQUE TYPE type �

�

�

(INTERNALLENGTH = length)
VARIABLE ,

(1)
, Opaque-Type Modifier

��

Notes:

1 See “Opaque-Type Modifier” on page 2-155

Element Description Restrictions Syntax

length Number of bytes needed to store
a value of this data type

Positive integer returned when sizeof()
directive is applied to the type structure

“Literal Number” on
page 4-184

type Name that you declare here for
the new opaque data type

Must be unique among data type names in
the database

“Identifier” on page
5-21

Usage

The CREATE OPAQUE TYPE statement registers a new opaque data type in the
sysxtdtypes system catalog table.

To create an opaque type, you must have the Resource privilege on the database.
When you create the opaque type, only you, the owner, have the Usage privilege
on the new opaque data type. You can use the GRANT or REVOKE statements to
grant or revoke the Usage privilege of other users of the database.

To view the privileges on a data type, check the sysxtdtypes system catalog table
for the owner name, and check the sysxtdtypeauth system catalog table for
additional type privileges that might have been granted.

For details of system catalog tables, see the IBM Informix Guide to SQL: Reference.

The DB-Access utility can also display privileges on opaque data types.

2-154 IBM Informix Guide to SQL: Syntax

Related concepts

System Catalog Tables (SQL Reference)

Declaring a Name for an Opaque Type
The name that you declare for an opaque data type is an SQL identifier. When you
create an opaque type in a database that is not ANSI-compliant, the name must be
unique among the names of data types within the database.

When you create an opaque type in an ANSI-compliant database, owner.type
combination must be unique within the database. The owner name is case
sensitive. If you do not put quotation marks around the owner name, the name of
the opaque-type owner is stored in uppercase letters.

INTERNALLENGTH Modifier
The INTERNALLENGTH modifier specifies the storage size that is required for the
opaque data type as fixed length or varying length.

Fixed-Length Opaque Types
A fixed-length opaque type has an internal structure of fixed size. To create a
fixed-length opaque type, specify the size of the internal structure, in bytes, for the
INTERNALLENGTH modifier. The next example creates a fixed-length opaque
type called fixlen_typ and allocates 8 bytes for storing this data type.
CREATE OPAQUE TYPE fixlen_typ(INTERNALLENGTH=8, CANNOTHASH)

Varying-Length Opaque Types
A varying-length opaque type has an internal structure whose size might vary
from one value to another. For example, the internal structure of an opaque data
type might hold the actual value of a string up to a certain size, but beyond this
size it might use an LO-pointer to a CLOB to hold the value.

To create a varying-length opaque data type, use the VARIABLE keyword with the
INTERNALLENGTH modifier. The following statement creates a variable-length
opaque data type called varlen_typ:
CREATE OPAQUE TYPE varlen_typ
(INTERNALLENGTH=VARIABLE, MAXLEN=1024)

Opaque-Type Modifier

Opaque-Type Modifier:

MAXLEN=length
CANNOTHASH
PASSEDBYVALUE
ALIGNMENT=align_value

Element Description Restrictions Syntax

align_value Byte boundary on which to align an
opaque type that is passed to a
user-defined routine. Default is 4 bytes.

Must be 1, 2, 4, or 8, depending on the C
definition of the opaque data type and
hardware and compiler used to build the
object file for the data type

“Literal
Number”
on page
4-184

Chapter 2. SQL statements 2-155

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

Element Description Restrictions Syntax

length Maximum length to allocate for instances
of varying-length opaque types. Default
is 2 kilobytes.

Must be a positive integer ≤ 32 kilobytes.
Do not specify for fixed-length data types.
Values that exceed this length return errors.

“Literal
Number”
on page
4-184

Modifiers can specify the following optional information for opaque types:
v MAXLEN specifies the maximum length for varying-length types.
v CANNOTHASH specifies that the database server cannot use the built-in hash

function on the opaque type.
v ALIGNMENT specifies the byte boundary on which the database server aligns

the opaque type.
v PASSEDBYVALUE specifies that an opaque type that requires 4 bytes or fewer of

storage is passed by value.

By default, opaque types are passed to user-defined routines by reference.

Defining an Opaque Type

To define a new opaque data type to the database server, you must provide the
following information in the C or Java language:
v A data structure that serves as the internal storage of the opaque data type

The internal storage details of the type are hidden, or opaque. Once you define a
new opaque data type, the database server can manipulate it without knowledge
of the C or Java structure in which it is stored.

v Support functions that allow the database server to interact with this internal
structure.
The support functions tell the database server how to interact with the internal
structure of the data type. These support functions must be written in the C or
Java programming language.

v Additional user-defined functions that other support functions or end users can
invoke to operate on the opaque type (optional)
Possible support functions include operator functions and cast functions. Before
you can use these functions in SQL statements, they must be registered with the
appropriate CREATE CAST, CREATE PROCEDURE, or CREATE FUNCTION
statement.

The following table summarizes the support functions for an opaque data type.

Function Description Invoked

input() Converts the opaque type from its external
LVARCHAR representation to its internal
representation

When a client application sends a
character representation of the opaque
type in an INSERT, UPDATE, or LOAD
statement

output() Converts the opaque type from its internal
representation to its external LVARCHAR
representation

When the database server sends a
character representation of the opaque
type as a result of a SELECT or FETCH
statement

2-156 IBM Informix Guide to SQL: Syntax

Function Description Invoked

receive() Converts the opaque type from its internal
representation on the client computer to its internal
representation on the server computer Provides
platform-independent results regardless of differences
between client and server computer types

When a client application sends an
internal representation of the opaque
type in an INSERT, UPDATE, or LOAD
statement

send() Converts the opaque type from its internal
representation on the server computer to its internal
representation on the client computer Provides
platform-independent results regardless of differences
between client and database server computer types

When the database server sends an
internal representation of the opaque
type as a result of a SELECT or FETCH
statement

db_receive() Converts the opaque type from its internal
representation on the local database to the
dbsendrecv type for transfer to an external database
on the local server

When a local database receives a
dbsendrecv type from an external
database on the local database server

db_send() Converts the opaque type from its internal
representation on the local database to the
dbsendrecv type for transfer to an external database
on the local server

When a local database sends a
dbsendrecv type to an external
database on the local database server

server_receive() Converts the opaque type from its internal
representation on the local server computer to the
srvsendrecv type for transfer to a remote database
server Use any name for this function.

When the local database server receives
a srvsendrecv type from a remote
database server

server_send() Converts the opaque type from its internal
representation on the local server computer to the
srvsendrecv type for transfer to a remote database
server Use any name for this function.

When the local database server sends a
srvsendrecv type to a remote database
server

import() Performs any tasks needed to convert from the
external (character) representation of an opaque type
to the internal format for a bulk copy

When DB-Access (LOAD) or the High
Performance Loader (HPL) initiates a
bulk copy from a text file to a database

export () Performs any tasks needed to convert from the
internal representation of an opaque type to the
external (character) format for a bulk copy

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a text file

importbinary() Performs any tasks needed to convert from the
internal representation of an opaque type on the
client computer to the internal representation on the
server computer for a bulk copy

When DB-Access (LOAD) or the High
Performance Loader initiates a bulk
copy from a binary file to a database

exportbinary() Performs any tasks needed to convert from the
internal representation of an opaque type on the
server computer to the internal representation on the
client computer for a bulk copy

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a binary
file

assign() Performs any processing required before storing the
opaque type to disk This support function must be
named assign().

When the database server executes
INSERT, UPDATE, or LOAD, before it
stores the opaque type to disk

destroy() Performs any processing necessary before removing a
row that contains the opaque type This support
function must be named destroy().

When the database server executes the
DELETE or DROP TABLE, before it
removes the opaque type from disk

lohandles() Returns a list of the LO-pointer structures (pointers to
smart large objects) in an opaque type

When the database server must search
opaque types for references to smart
large objects; when oncheck runs, or an
archive is performed

Chapter 2. SQL statements 2-157

Function Description Invoked

compare() Compares two values of the opaque type and returns
an integer value to indicate whether the first value is
less than, equal to, or greater than the second value

When the database server encounters
an ORDER BY, UNIQUE, DISTINCT, or
UNION clause in a SELECT statement,
or when CREATE INDEX creates a
B-tree index

After you write the necessary support functions for the opaque type, use the
CREATE FUNCTION statement to register these support functions in the same
database as the opaque type. Certain support functions convert other data types to
or from the new opaque type. After you create and register these support
functions, use the CREATE CAST statement to associate each function with a
particular cast. The cast must be registered in the same database as the support
function.

After you have written the necessary C language or Java language source code to
define an opaque data type, you then use the CREATE OPAQUE TYPE statement
to register the opaque data type in the database.

Related Information

Related statements: “CREATE CAST statement” on page 2-95, “CREATE DISTINCT
TYPE statement” on page 2-100, “CREATE FUNCTION statement” on page 2-125,
“CREATE ROW TYPE statement” on page 2-176, “CREATE TABLE statement” on
page 2-198, and “DROP TYPE statement” on page 2-350

For a description of an opaque type, see the IBM Informix Guide to SQL: Reference.

For information on how to define an opaque type, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

For information on how to use the Java language to define an opaque type, see the
J/Foundation Developer's Guide.

For information about the GLS aspects of the CREATE OPAQUE TYPE statement,
refer to the IBM Informix GLS User's Guide.
Related reference

OPAQUE (SQL Reference)

CREATE OPCLASS statement
Use the CREATE OPCLASS statement to create an operator class for a
secondary-access method.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE OPCLASS opclass FOR sec_acc_method �

2-158 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_132.htm#ids_sqr_132

� �

,
(1)

STRATEGIES (Strategy Specification) �

� �

,

SUPPORT (support_function) ��

Notes:

1 See “CREATE OPCLASS statement” on page 2-158

Element Description Restrictions Syntax

opclass Name that you declare here for a new
operator class

Must be unique among operator
classes within the database

“Identifier”
on page
5-21

sec_acc_method Secondary-access method with which the
new operator class is associated

Must already exist and must be
registered in the sysams table

“Identifier”
on page
5-21

support_function Support function that the secondary-access
method requires

Must be listed in the order
expected by the access method

“Identifier”
on page
5-21

Usage

An operator class is the set of operators that support a secondary-access method for
query optimization and building the index. A secondary-access method (sometimes
referred to as an index access method) is a set of database server functions that build,
access, and manipulate an index structure such as a B-tree, R-tree, or an index
structure that a DataBlade module provides.

The database server provides the B-tree and R-tree secondary-access methods. For
more information on the btree secondary-access method, see “Default Operator
Classes” on page 2-161.

Define a new operator class when you want one of the following:
v An index to use a different order for the data than the sequence that the default

operator class provides
v A set of operators that is different from any existing operator classes that are

associated with a particular secondary-access method

You must have the Resource privilege or be the DBA to create an operator class.
The actual name of an operator class is an SQL identifier. When you create an
operator class, the opclass name must be unique within the database.

When you create an operator class in an ANSI-compliant database, the
owner.opclass combination must be unique within the database. The owner name is
case sensitive. If you do not put quotation marks around the owner name (or else
set the ANSIOWNER environment variable), the name of the operator-class owner
is stored in uppercase letters.

The following CREATE OPCLASS statement creates a new operator class called
abs_btree_ops for the btree secondary-access method:

Chapter 2. SQL statements 2-159

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_lt, abs_lte, abs_eq, abs_gte, abs_gt)
SUPPORT (abs_cmp);

An operator class has two kinds of operator-class functions:
v Strategy functions

Specify strategy functions of an operator class in the STRATEGY clause of the
CREATE OPCLASS statement. In the preceding CREATE OPCLASS code
example, the abs_btree_ops operator class has five strategy functions.

v Support functions
Specify support functions of an operator class in the SUPPORT clause. In the
preceding CREATE OPCLASS code example, the abs_btree_ops operator class
has one support function.

STRATEGIES Clause
Strategy functions are functions that users can invoke within a DML statement to
operate on a specific data type. The query optimizer uses the strategy functions to
determine whether a given index can be used to process a query.

If a query includes a UDF or a column on which an index exists, and if the
qualifying operator in the query matches any function in the STRATEGIES clause,
then the query optimizer considers using the index for the query. For more
information on query plans, see your IBM Informix Performance Guide.

When you create a new operator class, the STRATEGIES clause identifies the
strategy functions for the secondary-access method. Each strategy specification lists
the name of a strategy function (and optionally, the data types of its parameters).
You must list these functions in the order that the secondary-access method
expects. For the specific order of strategy operators for the default operator classes
for a B-tree index and for an R-tree index, see IBM Informix User-Defined Routines
and Data Types Developer's Guide.
Related concepts

The query plan (Performance Guide)

Strategy Specification
The STRATEGIES keyword introduces a comma-separated list of function names or
function signatures for the new operator class. Each element of this list is called a
strategy specification and has the following syntax:

Strategy Specification:

strategy_function
(input_type , input_type)

, output_type

Element Description Restrictions Syntax

input_type Data type of an input parameter to the
strategy function for which you intend
to use a specific secondary-access
method

A strategy function accepts two
input parameters and can have
one optional output parameter

“Data Type” on
page 4-21

output_type Data type of the optional output
parameter of the strategy function

Optional output parameter for
side-effect indexes

“Data Type” on
page 4-21

2-160 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_492.htm#ids_prf_492

Element Description Restrictions Syntax

strategy_function Strategy function to associate with the
specified operator class

Must be listed in the order that
the specified secondary-access
method expects

“Identifier” on
page 5-21

Each strategy_function is an external function. The CREATE OPCLASS statement
does not verify that a user-defined function of the name you specify exists.
However, for the secondary-access method to use the strategy function, the
external function must be:
v Compiled in a shared library
v Registered in the database with the CREATE FUNCTION statement

Optionally, you can specify the signature of a strategy function in addition to its
name. A strategy function requires two input parameters and an optional output
parameter. To specify the function signature, specify:
v An input data type for each of the two input parameters of the strategy function,

in the order that the strategy function uses them
v Optionally, one output data type for an output parameter of the strategy function

You can specify UDTs as well as built-in data types. If you do not specify the
function signature, the database server assumes that each strategy function takes
two arguments of the same data type and returns a BOOLEAN value.

Indexes on Side-Effect Data
Side-effect data are additional values that a strategy function returns after a query
that contains the strategy function. For example, an image DataBlade module
might use a fuzzy index to search image data. The index ranks the images
according to how closely they match the search criteria. The database server
returns the rank values as side-effect data with the qualifying images.

SUPPORT Clause
Support functions are functions that the secondary-access method uses internally to
build and search the index. Specify these functions for the secondary-access
method in the SUPPORT clause of the CREATE OPCLASS statement.

You must list the names of the support functions in the order that the
secondary-access method expects. For the specific order of support operators for
the default operator classes for a B-tree index and an R-tree index, refer to “Default
Operator Classes.”

The support function is an external function. CREATE OPCLASS does not verify
that a specified support function exists. For the secondary-access method to use a
support function, however, the support function must meet these criteria:
v Be compiled in a shared library
v Be registered in the database with the CREATE FUNCTION statement

Default Operator Classes
Each secondary-access method has a default operator class that is associated with
it. By default, the CREATE INDEX statement associates the default operator class
with an index. For example, the following CREATE INDEX statement creates a
B-tree index on the zipcode column and automatically associates the default B-tree
operator class with this column:

Chapter 2. SQL statements 2-161

CREATE INDEX zip_ix ON customer(zipcode)

For each of the secondary-access methods that Informix provides, it provides a
default operator class, as follows:
v The default B-tree operator class is a built-in operator class.

The database server implements the operator-class functions for this operator
class and registers it as btree_ops in the system catalog tables of a database.

v The default R-tree operator class is a registered operator class.
The database server registers this operator class as rtree_ops in the system
catalog tables. The database server does not implement the operator-class
functions for the default R-tree operator class.

Important: To use an R-tree index, you must install a spatial DataBlade module
such as the Geodetic DataBlade module or any other third-party DataBlade module
that implements the R-tree index. These implement the R-tree operator-class
functions.

DataBlade modules can provide other types of secondary-access methods. If a
DataBlade module provides a secondary-access method, it might also provide a
default operator class. For more information, refer to your DataBlade module user's
guide.

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
INDEX statement” on page 2-135, and “DROP OPCLASS statement” on page 2-334

For information on support functions and how to create and extend an operator
class, see IBM Informix User-Defined Routines and Data Types Developer's Guide.

For more about R-tree indexes, see the IBM Informix R-Tree Index User's Guide.

For information about the GLS aspects of the CREATE OPCLASS statement, refer
to the IBM Informix GLS User's Guide.

CREATE PROCEDURE statement
Use the CREATE PROCEDURE statement to create a user-defined procedure. (To
create a procedure from text of source code that is in a separate file, use the
CREATE PROCEDURE FROM statement.)

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
DBA

PROCEDURE procedure
(1)

function

()
(2)

Routine Parameter List

�

2-162 IBM Informix Guide to SQL: Syntax

�
(3)

REFERENCING Clause FOR table_object
' owner '.

�

�
(1) (4)

Return Clause
(5)

SPECIFIC Specific Name

�

�

�

,
(1) (6)

WITH (Routine Modifier)

;
�

�
(1) (7)

Statement Block
(8) (9)

External Routine Reference

END PROCEDURE �

�

�

,
(10)

DOCUMENT Quoted String

WITH LISTING IN 'pathname'
��

Notes:

1 Stored Procedure Language only

2 See “Routine Parameter List” on page 5-67

3 See “The REFERENCING and FOR Clauses” on page 2-165

4 See “Return Clause” on page 5-54

5 See “Specific Name” on page 5-73

6 See “Routine Modifier” on page 5-59

7 See “Statement Block” on page 5-74

8 External routines only

9 See “External Routine Reference” on page 5-19

10 See “Quoted String” on page 4-188

Element Description Restrictions Syntax

function,
procedure

Name declared here for a
new SPL routine

See “Procedure Names in Informix” on page 2-167. “Identifier” on page
5-21

owner Owner of table_object Must own table_object “Owner Name” on
page 5-45

pathname File to store compile-time
warnings

Must exist on the computer where the database
resides

Operating system
specific

table_object Name or synonym of a
table or view whose
triggers can call this UDR

Must exist in the local database “Identifier” on page
5-21

Chapter 2. SQL statements 2-163

Usage

The entire length of a CREATE PROCEDURE statement must be less than 64
kilobytes. This length is the literal length of the CREATE PROCEDURE statement
text, including blank spaces, tabs, and other white-space characters.

In Informix ESQL/C, you can use CREATE PROCEDURE only as text within a
PREPARE statement. If you want to create a procedure for which the text is known
at compile time, you must use a CREATE PROCEDURE FROM statement.

Routines use the collating order that was in effect when they were created. See
“SET COLLATION statement” on page 2-608 statement of Informix for information
about using non-default collation.

Using CREATE PROCEDURE Versus CREATE FUNCTION
Although you can use CREATE PROCEDURE to write and register an SPL routine
that returns one or more values (that is, an SPL function)In Informix, it is
recommended that you use CREATE FUNCTION instead. To register an external
function, you must use CREATE FUNCTION.

Use the CREATE PROCEDURE statement to write and register an SPL procedure
or to register an external procedure.

For information on how terms such as user-defined procedures and user-defined
functions are used in this document, see “Relationship Between Routines,
Functions, and Procedures.”

Relationship Between Routines, Functions, and Procedures
A procedure is a routine that can accept arguments but does not return any values.
A function is a routine that can accept arguments and returns one or more values.
User-defined routine (UDR) is a generic term that includes both user-defined
procedures and user-defined functions. For information about named and
unnamed returned values, see “Return Clause” on page 5-54.

You can write a UDR in SPL (a SPL routine) or in an external language (an external
routine) that the database server supports. Where the term UDR appears in this
document, it can refer to both SPL routines and external routines.

The term user-defined procedure refers to SPL procedures and external procedures.
User-defined function refers to SPL functions and external functions.

In the documentation of earlier releases, the term stored procedure was used for both
SPL procedures and SPL functions. In this document, the term SPL routine replaces
the term stored procedure. When it is necessary to distinguish between an SPL
function and an SPL procedure, this document does so.

The term external routine applies to an external procedure or an external function,
both constructs designating UDRs that are written in a programming language
other than SPL. When it is necessary to distinguish between an external function
and an external procedure, this document does so.

Privileges Necessary for Using CREATE PROCEDURE
You must have the Resource privilege on a database to create a user-defined
procedure within that database.

2-164 IBM Informix Guide to SQL: Syntax

Before you can create an SPL procedure, you must also have the Usage privilege
on the SPL language. For more information, see “Usage Privilege in Stored
Procedure Language” on page 2-412.

By default, the Usage privilege on SPL is granted to PUBLIC. You must also have
at least the Resource privilege on a database to create an SPL procedure within that
database.

DBA Keyword and Privileges on the Procedure
If you create a UDR with the DBA keyword, it is known as a DBA-privileged UDR.
You need the DBA privilege to create a DBA-privileged UDR.

Among users who do not hold the DBA privilege, only those to whom the DBA
grants the Execute privilege can invoke the DBA-privileged UDR. If the DBA
grants the Execute privilege to PUBLIC, however, then all users can use the
DBA-privileged UDR. For additional information about DBA-privileged UDRs, see
“Ownership of Created Database Objects” on page 2-170.

If you omit the DBA keyword, the UDR is known as an owner-privileged UDR.

When you create an owner-privileged UDR in an ANSI-compliant database, only
you can execute the UDR. Before other users can execute an owner-privileged
UDR, its owner must grant the Execute privilege, either to individual users, or to
roles, or to PUBLIC.

If you create an owner-privileged UDR in a database that is not ANSI compliant,
anyone can execute the UDR because PUBLIC is granted the Execute privilege by
default. To restrict access to an owner-privileged UDR to specific users, the owner
must revoke the Execute privilege on the UDR from PUBLIC, and then grant it to
specified users or roles. Setting the NODEFDAC environment variable to yes
prevents privileges on any UDR from being granted to PUBLIC. If this
environment variable is set to yes, no one besides the owner of the UDR can
invoke it unless the owner grants the Execute privilege for that UDR to other
users.

The REFERENCING and FOR Clauses

The REFERENCING clause can declare correlation names for the original value
and for the updated value in columns of the table_object that the FOR clause
specifies.

REFERENCING and FOR Clauses:

REFERENCING �
(1)

OLD correlation
(1) AS

NEW

FOR table_object
' owner '.

Notes:

1 Use path no more than once

Chapter 2. SQL statements 2-165

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in a
trigger routine

Must not be table_object “Identifier” on
page 5-21

owner Owner of table_object Must own table_object “Owner
Name” on
page 5-45

table_object Name or synonym for the table or view whose
triggers can call this procedure

Must exist in the local database “Identifier” on
page 5-21

If you include the REFERENCING and FOR table_object clauses immediately after
the parameter list of the CREATE PROCEDURE statement, the routine that you
create is known as a trigger UDR or trigger routine. The FOR clause specifies the
table or view whose triggers can invoke the routine from the FOR EACH ROW
section of their Triggered Action list.

In the REFERENCING clause, the OLD correlation specifies a prefix by which the
trigger routine can reference the value that a column of table_object had before the
trigger routine modifies that column value. The NEW correlation specifies a prefix
for referencing the new value that the trigger routine assigns to the column.
Whether the trigger routine can use correlation names to reference the OLD
column value, the NEW column value, or both values depends on the type of
triggering event:
v A trigger routine invoked by an Insert trigger can reference only the NEW

correlation name.
v A trigger routine invoked by a Delete trigger or by a Select trigger can reference

only the OLD correlation name.
v A trigger routine invoked by an Update trigger can reference both the OLD and

the NEW correlation names.

For information about how to use the correlation.column notation in triggered
actions, see “REFERENCING Clauses” on page 2-257.

If you include the REFERENCING and FOR table_object clauses immediately after
the parameter list of the CREATE PROCEDURE statement, the procedure that you
create is known as a trigger UDR or trigger routine. The FOR clause specifies the
table or view whose triggers can invoke this procedure from the FOR EACH ROW
section of their Triggered Action list.

Besides the general requirements for any Informix UDR that is written in the SPL
language, trigger routines can support certain additional syntax features, and are
subject to certain restrictions, that are not features (or that are not restrictions) for
ordinary UDRs that are not trigger routines:
v A trigger routine must include the FOR table_object clause that specifies the name

of the table or view in the local database whose triggers can invoke this routine.
v A trigger routine can also include the REFERENCING clause to declare

correlation names for OLD and NEW values that SPL statements in the UDR can
reference.

v Trigger routines can be invoked only in the FOR EACH ROW section of the
Triggered Action list in the trigger definition.

v Correlated variables for OLD or NEW values can appear in the IF statement of
SPL and in CASE expressions.

2-166 IBM Informix Guide to SQL: Syntax

v Correlated variables for OLD values cannot be on the left-hand side of a LET
expression

v Correlated variables for NEW values cannot be on the left-hand side of a LET
expression if the FOR clause specifies a view whose INSTEAD OF trigger action
list invokes the trigger routine.

v Only correlated variables for NEW values can be on the left-hand side of a LET
expression that references correlated variables. In this case, the FOR clause must
specify a table, rather than a view, and the trigger whose action invokes the SPL
routine cannot be an INSTEAD OF trigger.

v Both OLD and NEW values can be on the right-hand side of a LET expression.
v The Boolean operators SELECTING, INSERTING, DELETING, and UPDATING

are valid in trigger routines (and only in trigger routines and in other UDRs that
are invoked in triggered action statements) in contexts where Boolean
expressions are valid. These operators return TRUE ('t') if the triggering event
matches the DML operation referenced by the name of the operator, and they
return FALSE ('f') otherwise.

v If a single triggering event activates multiple triggers on the same table or view,
then all of the BEFORE actions take place before any of the FOR EACH ROW
actions, and all of the AFTER actions follow the FOR EACH ROW actions. The
order of execution of different triggers on the same event is not guaranteed.

v Trigger routines must be written in the SPL language. They cannot be written in
an external language, like the C or Java language, but they can include calls to
external language routines, such as the mi_trigger application programming
interface for trigger introspection.

v Trigger routines cannot reference savepoints. Any changes to the data values or
to the schema of the database by a triggered action must be committed or rolled
back in their entirety. Partial rollback of a triggered action is not supported.

For more information about the mi_trigger API, refer to the IBM Informix DataBlade
API Programmer's Guide and to the IBM Informix DataBlade API Function Reference.

If you include the REFERENCING clause but omit the FOR clause, or if you
include the FOR clause but omit the REFERENCING clause, the CREATE
PROCEDURE statement fails with an error.

If you omit the REFERENCING and FOR clauses, the UDR cannot use the
SELECTING, INSERTING, DELETING, and UPDATING operators, and cannot
declare variables that can represent and manipulate column values in triggered
actions on the table or view that the trigger definition specifies.

See the “REFERENCING Clauses” on page 2-257 section in the CREATE TRIGGER
statement description for the syntax of the REFERENCING clause for Delete,
Insert, Select, and Update triggers on tables, and for Delete, Insert, and Update
INSTEAD OF triggers on views.

Procedure Names in Informix
Because Informix offers routine overloading, you can define more than one
user-defined routine (UDR) with the same name, but different parameter lists. You
might want to overload UDRs in the following situations:
v You create a UDR with the same name as a built-in routine (such as equal()) to

process a new user-defined data type.
v You create type hierarchies in which subtypes inherit data representation and

UDRs from supertypes.

Chapter 2. SQL statements 2-167

v You create distinct types, which are data types that have the same internal storage
representation as an existing data type, but have different names and cannot be
compared to the source type without casting. Distinct types inherit UDRs from
their source types.

For a brief description of the routine signature that uniquely identifies each UDR,
see “Routine Overloading and Routine Signatures” on page 5-18.

Using the SPECIFIC Clause to Specify a Specific Name
You can declare a specific name that is unique in the database for a user-defined
procedure. A specific name is useful when you are overloading a procedure.

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and description
of a UDR. The string is stored in the sysprocbody system catalog table and is
intended for the user of the UDR.

Anyone with access to the database can query the sysprocbody system catalog
table to obtain a description of one or all the UDRs stored in the database. A UDR
or application program can query the system catalog tables to fetch the
DOCUMENT clause and display it for a user.

For example, to find the description of the SPL procedure raise_prices, shown in
“SPL Procedures” on page 2-169, enter a query such as this example:
SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = ’raise_prices’

-- look for procedure named raise_prices
AND b.datakey = ’D’;-- want user document

The preceding query returns the following text:
USAGE: EXECUTE PROCEDURE raise_prices(xxx)
xxx = percentage from 1 - 100

For external procedures, you can use a DOCUMENT clause at the end of the
CREATE PROCEDURE statement, whether or not you use the END PROCEDURE
keywords.

Using the WITH LISTING IN Option
The WITH LISTING IN clause specifies a filename where compile time warnings
are sent. After you compile a UDR, this file holds one or more warning messages.
This listing file is created on the computer where the database resides.

If you do not use the WITH LISTING IN clause, the compiler does not generate a
list of warnings.

On UNIX, if you specify a filename but not a directory, this listing file is created in
your home directory on the computer where the database resides. If you do not
have a home directory on this computer, the file is created in the root directory
(the directory named “/”).

On Windows, if you specify a filename but not a directory, this listing file is
created in your current working directory if the database is on the local computer.
Otherwise, the default directory is %INFORMIXDIR%\bin.

2-168 IBM Informix Guide to SQL: Syntax

SPL Procedures
SPL procedures are UDRs written in Stored Procedure Language (SPL) that do not
return a value. To write and register an SPL routine, use the CREATE
PROCEDURE statement. Embed appropriate SQL and SPL statements between the
CREATE PROCEDURE and END PROCEDURE keywords. You can also follow the
UDR definition with the DOCUMENT and WITH FILE IN options.

SPL routines are parsed, optimized (as far as possible), and stored in the system
catalog tables in executable format. The body of an SPL routine is stored in the
sysprocbody system catalog table. Other information about the routine is stored in
other system catalog tables, including sysprocedures, sysprocplan, and
sysprocauth.

If the Statement Block portion of the CREATE PROCEDURE statement is empty, no
operation takes place when you call the procedure. You might use such a "dummy"
procedure in the development stage when you intend to establish the existence of
a procedure but have not yet coded it.

If you specify an optional clause after the parameter list, you must place a
semicolon after the clause that immediately precedes the Statement Block.

The following example creates an SPL procedure:
CREATE PROCEDURE raise_prices (per_cent INT)

UPDATE stock SET unit_price =
unit_price + (unit_price * (per_cent/100));

END PROCEDURE
DOCUMENT "USAGE: EXECUTE PROCEDURE raise_prices(xxx)",
"xxx = percentage from 1 - 100 "
WITH LISTING IN ’/tmp/warn_file’;

External Procedures

External procedures are procedures you write in an external language that the
database server supports.

To create a C user-defined procedure

1. Write a C function that does not return a value.
2. Compile the C function and store the compiled code in a shared library (the

shared-object file for C).
3. Register the C function in the database server with the CREATE PROCEDURE

statement.

To create a user-defined procedure written in the Java language

1. Write a Java static method, which can use the JDBC functions to interact with
the database server.

2. Compile the Java source and create a JAR file (the shared-object file).
3. Execute the install_jar() procedure with the EXECUTE PROCEDURE statement

to install the JAR file in the current database.
4. If the UDR uses user-defined types, create a mapping between SQL data types

and Java classes, using the setUDTextName() procedure that is explained in
“EXECUTE PROCEDURE statement” on page 2-369.

5. Register the UDR with the CREATE PROCEDURE statement. (If an external
routine returns a value, you must register it with the CREATE FUNCTION
statement, rather than CREATE PROCEDURE.)

Chapter 2. SQL statements 2-169

Rather than storing the body of an external routine directly in the database, the
database server stores only the pathname of the shared-object file that contains the
compiled version of the routine. The database server executes an external routine
by invoking the external object code.

When the IFX_EXTEND_ROLE configuration parameter is set to ON, only users
who have the built-in EXTEND role can create external procedures.

Registering a User-Defined Procedure

This example registers a C user-defined procedure named check_owner() that
takes one argument of the type LVARCHAR. The external routine reference
specifies the path to the C shared library where the procedure object code is stored.
This library contains a C function unix_owner(), which is invoked during
execution of the check_owner() procedure.
CREATE PROCEDURE check_owner (owner lvarchar)

EXTERNAL NAME "/usr/lib/ext_lib/genlib.so(unix_owner)"
LANGUAGE C

END PROCEDURE;

This example registers a user-defined procedure named showusers() that is
written in the Java language:
CREATE PROCEDURE showusers()

WITH (CLASS = "jvp") EXTERNAL NAME ’admin_jar:admin.showusers’
LANGUAGE JAVA;

The EXTERNAL NAME clause specifies that the Java implementation of the
showusers() procedure is a method called showusers(), which resides in the
admin Java class that resides in the admin_jar JAR file.

Ownership of Created Database Objects
The user who creates an owner-privileged UDR owns any database objects that the
UDR creates when it executes, unless some other owner is specified for the object.
In other words, the UDR owner, not the user who executes the owner-privileged
UDR, is the owner of any database objects created by the UDR unless another
owner is specified in the DDL statement that creates the database object.

In the case of a DBA-privileged UDR, however, the user who executes the UDR,
not the UDR owner, owns any database objects that the UDR creates, unless some
other owner is specified for the database object within the UDR.

For examples, see “Ownership of Created Database Objects” on page 2-133 in the
description of the CREATE FUNCTION statement.

Examples

For this example, assume that you have two overloaded procedures that are
defined as follows:
CREATE PROCEDURE raise_prices (per_cent INT)
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100));
END PROCEDURE

CREATE PROCEDURE raise_prices (per_cent INT, selected_unit CHAR)
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100))
where unit=selected_unit;
END PROCEDURE

2-170 IBM Informix Guide to SQL: Syntax

In order to refer to the above procedures, you would need to provide the
procedure name followed by the parameter list, as in the following examples:
DROP PROCEDURE raise_prices(INT);
DROP PROCEDURE raise_prices(INT, CHAR);

A more convenient way is to use the specific name to identify each of them. The
following example will create the procedure using the specific name:
CREATE PROCEDURE raise_prices (per_cent INT) SPECIFIC

raise_prices_all
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100));
END PROCEDURE

DROP SPECIFIC PROCEDURE raise_prices_all;

CREATE PROCEDURE raise_prices (per_cent INT, selected_unit CHAR)
SPECIFIC raise_prices_by_unit
UPDATE stock SET unit_price = unit_price + (unit_price * (per_cent/100))
where unit=selected_unit;
END PROCEDURE

We can simply drop them using their specific names:
DROP SPECIFIC PROCEDURE raise_prices_by_all;
DROP SPECIFIC PROCEDURE raise_prices_by_unit;

Related Information

Related statements: “ALTER FUNCTION statement” on page 2-27, “ALTER
PROCEDURE statement” on page 2-30, “ALTER ROUTINE statement” on page
2-31, “CREATE FUNCTION statement” on page 2-125, “CREATE FUNCTION
FROM statement” on page 2-134, “CREATE PROCEDURE FROM statement,”
“DROP FUNCTION statement” on page 2-329, “DROP PROCEDURE statement”
on page 2-335, “DROP ROUTINE statement” on page 2-339, “EXECUTE
FUNCTION statement” on page 2-361, “EXECUTE PROCEDURE statement” on
page 2-369, “GRANT statement” on page 2-401, “PREPARE statement” on page
2-477, “REVOKE statement” on page 2-502, and “UPDATE STATISTICS statement”
on page 2-715.

For a discussion of how to create and use SPL routines, see the IBM Informix Guide
to SQL: Tutorial. For a discussion of external routines, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

For information about how to create C UDRs, see the IBM Informix DataBlade API
Programmer's Guide. For more information on the NODEFDAC environment
variable and the related system catalog tables (sysprocedures, sysprocplan,
sysprocbody and sysprocauth), see the IBM Informix Guide to SQL: Reference.
Related concepts

System Catalog Tables (SQL Reference)

CREATE PROCEDURE FROM statement
Use the CREATE PROCEDURE FROM statement to access a user-defined
procedure. The actual text of the CREATE PROCEDURE statement resides in a
separate file.

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement with Informix ESQL/C.

Chapter 2. SQL statements 2-171

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

Syntax

�� CREATE PROCEDURE FROM 'file'
file_var

��

Element Description Restrictions Syntax

file Pathname and filename of file that
contains full text of a CREATE
PROCEDURE statement. Default
pathname is the current directory.

Must exist, and can contain only one
CREATE PROCEDURE statement. See also
“Default Directory That Holds the File.”

Operating-
system specific

file_var Name of a program variable that
contains file specification

Must be of a character data type; its
contents have same restrictions as file

Language
specific

Usage

You cannot create a user-defined procedure directly in an Informix ESQL/C
program. That is, the program cannot contain the CREATE PROCEDURE
statement.

To use a user-defined procedure in an ESQL/C program

1. Create a source file with the CREATE PROCEDURE statement.
2. Use the CREATE PROCEDURE FROM statement to send the contents of this

source file to the database server for execution.
The file can contain only one CREATE PROCEDURE statement.

For example, suppose that the following CREATE PROCEDURE statement is in a
separate file, called raise_pr.sql:
CREATE PROCEDURE raise_prices(per_cent INT)

UPDATE stock -- increase by percentage;
SET unit_price = unit_price +

(unit_price * (per_cent / 100));
END PROCEDURE;

In the Informix ESQL/C program, you can access the raise_prices() SPL procedure
with the following CREATE PROCEDURE FROM statement:
EXEC SQL create procedure from ’raise_pr.sql’;

If you are not sure whether the UDR in the file returns a value, use the CREATE
ROUTINE FROM statement.

When the IFX_EXTEND_ROLE configuration parameter is set to ON, only users
who have the built-in EXTEND role can create external routines.

User-defined procedures, like user-defined functions, use the collating order that
was in effect when they were created. See “SET COLLATION statement” on page
2-608 for information about using non-default collation.

Default Directory That Holds the File
The database server treats the specified filename (and any pathname) as relative.

On UNIX, if you specify a simple filename instead of a full pathname as the file
parameter, the client application looks for the file in your home directory on the

2-172 IBM Informix Guide to SQL: Syntax

computer where the database resides. If you do not have a home directory on this
computer, the default directory is the root directory.

On Windows, if you specify a filename but no directory as the file parameter, the
client application looks for the file in your current working directory if the
database is on the local computer. Otherwise, the default directory is
%INFORMIXDIR%\bin.

Important: The Informix ESQL/C preprocessor does not process the contents of
the file that you specify. It only sends the contents to the database server for
execution. Therefore, there is no syntactic check that the file that you specify in
CREATE PROCEDURE FROM actually contains a CREATE PROCEDURE
statement. To improve readability of the code, however, it is recommended that
you match these two statements.

Related Information

Related statements: “CREATE PROCEDURE statement” on page 2-162, “CREATE
FUNCTION FROM statement” on page 2-134, and “CREATE ROUTINE FROM
statement” on page 2-175

CREATE ROLE statement
Use the CREATE ROLE statement to declare and register a new role.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE ROLE role
'role'

��

Element Description Restrictions Syntax

role Name declared here for a
role that the DBA creates

Must be unique among role and user names in the
database. Maximum number of bytes is 32.

“Owner Name”
on page 5-45

Usage

CREATE ROLE declares a new role and registers it in the system catalog. A role
can associate a set of authorization identifiers with a set of access privileges on
database objects. The system catalog maintains information about the roles (and
their corresponding privileges) that are granted to users or to other roles.

Only the database administrator (DBA) can use CREATE ROLE to create a new
role. The DBA can assign the privileges required for some work task to a role, such
as engineer, and then use the GRANT statement to assign that role to specific
users, instead of granting that set of privileges to each user individually.

The role name is an authorization identifier. It cannot be a user name that is known
to the database server or to the operating system of the database server. The role
name cannot already be listed in the username column of the sysusers system
catalog table, nor in the grantor or grantee columns of the systabauth, syscolauth,
sysfragauth, sysprocauth, or sysroleauth system catalog tables.

Chapter 2. SQL statements 2-173

The role name also cannot match the name of any user or role that is already listed
in the grantor or grantee columns of the sysxtdtypeauth system catalog table, nor
any built-in role, such as EXTEND or DBSECADM.

After a role is created, the DBA can use the GRANT statement to assign the role to
PUBLIC, to users, or to other roles, and to grant specific privileges to the role. (A
role cannot, however, hold database-level privileges.) After a role is granted
successfully to a user or to PUBLIC, the user must use the SET ROLE statement to
enable the role. Only then can the user exercise the privileges of the role.

To create the role engineer, for example, enter the following statement:
CREATE ROLE engineer;

To grant access privileges to the role engineer, the DBA can issue GRANT
statements that include engineer in the list of grantees:
GRANT USAGE ON LANGUAGE SPL TO engineer;

To assign the role engineer to user kaycee, the DBA could issue this statement:
GRANT engineer TO kaycee;

To activate the role engineer, user kaycee must issue the following statement:
SET ROLE engineer;

If this SET ROLE statement is successful, user kaycee acquires whatever privileges
have been granted to the role engineer, in addition to any other privileges that
kaycee already holds as an individual or as PUBLIC.

A user can be granted several roles, but no more than one non-default role, as
specified by SET ROLE, can be enabled for any user at a given time.

An exception to requiring SET ROLE to explicitly enable a role is any default role
that the DBA specifies in the GRANT DEFAULT ROLE role TO user statement. If
that statement succeeds, the default role is automatically enabled when user
connects to the database. Any role can be a default role. (Similarly, users to whom
the Informix DBSA grants the EXTEND role need not execute SET ROLE before
they can create and drop external routines and shared libraries.)

CREATE ROLE, when used with the GRANT and SET ROLE statements, enables a
DBA to create one set of privileges for a role and then grant the role to many
users, instead of granting the same set of privileges individually to many users.

With the GRANT DEFAULT ROLE and SET ROLE DEFAULT statements, default
roles enable a DBA to assign privileges to a role that is activated automatically
when any user who holds that default role connects to the database. This feature is
useful when an application performs operations that require specific access
privileges, but the application does not include SET ROLE statements.

The REVOKE statement can cancel access privileges of a role, remove users from a
role, or cancel the default status of a role for one or more users. A role exists until
either the DBA or a user to whom the role was granted with the WITH GRANT
OPTION keywords uses the DROP ROLE statement to drop the role.

Important: The scope of a user-defined role (and of discretionary access privileges
that the GRANT statement assigns to the role) is the current database. When the
GRANT DEFAULT ROLE or SET ROLE statement activates a role, the role and its

2-174 IBM Informix Guide to SQL: Syntax

privileges take effect in the current database only. As a security precaution,
discretionary access privileges that a user receives only from a role cannot provide
access to tables outside the current database through a view or through a trigger
action.

Related Information

Related statements: “DROP ROLE statement” on page 2-338, “GRANT statement”
on page 2-401, “REVOKE statement” on page 2-502, and “SET ROLE statement” on
page 2-662

For a discussion of how to use roles, see the IBM Informix Database Design and
Implementation Guide.

CREATE ROUTINE FROM statement
Use the CREATE ROUTINE FROM statement to register a UDR by referencing the
text of a CREATE FUNCTION statement or CREATE PROCEDURE statement that
resides in a separate file.

This statement is an extension to the ANSI/ISO standard for SQL.

You can use this statement with ESQL/C.

Syntax

�� CREATE ROUTINE FROM 'file'
file_var

��

Element Description Restrictions Syntax

file Pathname and filename for the text of a
CREATE PROCEDURE or CREATE
FUNCTION statement. Default path is the
current directory.

Must exist and can contain only one
CREATE FUNCTION or CREATE
PROCEDURE statement.

Operating-
system
dependent

file_var Name of a program variable that contains file
specification

Must be a character data type; contents
must satisfy file restrictions

Language
specific

Usage

ESQL/C programs cannot use the CREATE FUNCTION or CREATE PROCEDURE
statement directly to define a UDR. You must instead do this:
1. Create a source file with the CREATE FUNCTION or CREATE PROCEDURE

statement.
2. Execute the CREATE ROUTINE FROM statement from an ESQL/C program to

send the contents of this source file to the database server for execution. The
file that you specify can contain only one CREATE FUNCTION or CREATE
PROCEDURE statement.

The file specification that you provide is relative. If you include no pathname, the
client application looks for the file in the current directory.

If you do not know at compile time whether the UDR in the file is a function or a
procedure, use the CREATE ROUTINE FROM statement in the Informix ESQL/C

Chapter 2. SQL statements 2-175

program. If you know whether the UDR is a function or a procedure, you can
improve the readability of your code by using the matching SQL statement to
access the source file:
v To access user-defined functions, use CREATE FUNCTION FROM.
v To access user-defined procedures, use CREATE PROCEDURE FROM.

When the IFX_EXTEND_ROLE configuration parameter is set to ON, only users to
whom the Database Server Administrator (DBSA) has granted the built-in
EXTEND role can create external routines.

Routines use the collating order that was in effect when they were created. See
“SET COLLATION statement” on page 2-608 for information about using
non-default collation.

Examples
EXEC SQL CREATE ROUTINE FROM ’del_ord.sql’;

ESQL/C source code example:
#include <stdio.h>

main()
{

printf("CREATE ROUTINE FROM ESQL Program running.\n\n");
EXEC SQL WHENEVER ERROR STOP;
EXEC SQL connect to ’stores_demo’;

EXEC SQL CREATE ROUTINE FROM ’del_ord.sql’;

EXEC SQL disconnect current;
printf("\nCREATE ROUTINE Sample Program over.\n\n");

exit(0);
}

del_ord.sql

CREATE FUNCTION delete_order(p_order_num int) RETURNING int, int;
DEFINE item_count int;
SELECT count(*) INTO item_count FROM items

WHERE order_num = p_order_num;
DELETE FROM orders WHERE order_num = p_order_num;
RETURN p_order_num, item_count;

END FUNCTION;

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
FUNCTION FROM statement” on page 2-134, “CREATE PROCEDURE statement”
on page 2-162, and “CREATE PROCEDURE FROM statement” on page 2-171

CREATE ROW TYPE statement
Use the CREATE ROW TYPE statement to create a named ROW type.

This statement is an extension to the ANSI/ISO standard for SQL.

2-176 IBM Informix Guide to SQL: Syntax

Syntax

�� CREATE ROW TYPE row_type �

�
(1) UNDER supertype

(Field Definition)

��

Notes:

1 See “Field Definition” on page 2-179

Element Description Restrictions Syntax

row_type Name that you declare here for a
new named ROW data type

See “Procedure for Creating a Subtype” on page
2-179.

“Identifier”
on page 5-21

supertype Name of the supertype within a
data type inheritance hierarchy

Must already exist in the database as a named
ROW type

“Data Type”
on page 4-21

Usage

The CREATE ROW TYPE statement declares a named ROW data type and
registers it in the system catalog. You can assign a named ROW data type to a
table or view to create a typed table or typed view. You can also define a column as a
named ROW type. Although you can assign a ROW type to a table to define the
schema of the table, ROW data types are not the same as table rows. Table rows
consist of one or more columns; ROW data types consist of one or more fields,
defined using the Field Definition syntax.

A named ROW data type is valid in most contexts where you can specify a data
type. Named ROW types are said to be strongly typed. No two named ROW types
are equivalent, even if they are structurally equivalent.

ROW types without identifiers are called unnamed ROW types. Any two unnamed
ROW types are considered equivalent if they are structurally equivalent. For more
information, see “ROW Data Types” on page 4-35.

Privileges on named ROW type columns are the same as privileges on any column.
For more information, see “Table-Level Privileges” on page 2-405. (To see what
privileges you have on a column, check the syscolauth system catalog table, which
is described in the IBM Informix Guide to SQL: Reference.)
Related reference

SYSCOLAUTH (SQL Reference)

Privileges on Named Row Data Types
Privileges for operations on a typed table (a table that is assigned a named ROW
data type) are the same as privileges on any table. For more information, see
“Table-Level Privileges” on page 2-405. This table shows which access privileges
you need to create a named ROW type.

Task Privileges Required

Create a named ROW type Resource privilege on the database

Create a named ROW type as a subtype
under a supertype

Under privilege on the supertype, as well as
the Resource privilege

Chapter 2. SQL statements 2-177

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_023.htm#ids_sqr_023

For information about Resource and Under privileges and the ALL keyword in the
context of privileges, see the “GRANT statement” on page 2-401 statement.

To find out what privileges exist on a ROW type, check the sysxtdtypes system
catalog table for the owner name and the sysxtdtypeauth system catalog table for
privileges on the ROW type that might have been granted to users or to roles.

To find out what privileges you have on a given table, check the systabauth
system catalog table. For more information on system catalog tables, see the IBM
Informix Guide to SQL: Reference.
Related reference

SYSTABAUTH (SQL Reference)

Inheritance and Named ROW Types
A named ROW type can belong to an inheritance hierarchy, as either a subtype or
a supertype. Use the UNDER clause in the CREATE ROW TYPE statement to
create a named ROW data type as a subtype of an existing ROW data type.

The supertype must also be a named ROW data type. If you create a named ROW
data type under an existing supertype, then the new type name row_type becomes
the name of the subtype.

When you create a named ROW type as a subtype, the subtype inherits all fields
of the supertype. In addition, you can add new fields to the subtype when you
create it. The new fields are specific to the subtype alone.

You cannot substitute a ROW type in an inheritance hierarchy for its supertype or
for its subtype. For example, consider a type hierarchy in which person_t is the
supertype and employee_t is the subtype. If a column is of type person_t, the
column can only contain person_t data. It cannot contain employee_t data.
Likewise, if a column is of type employee_t, the column can only contain
employee_t data. It cannot contain person_t data.

Creating a Subtype
In most cases, you add new fields when you create a named ROW type as a
subtype of another named ROW type (its supertype). To create the fields of a
named ROW type, use the field definition clause, as described in “Field Definition”
on page 2-179. When you create a subtype, you must use the UNDER keyword to
associate the supertype with the named ROW type that you want to create. The
next example creates the employee_t type under the person_t type:
CREATE ROW TYPE employee_t (salary NUMERIC(10,2),

bonus NUMERIC(10,2)) UNDER person_t;

The employee_t type inherits all the fields of person_t and has two additional
fields: salary and bonus; but the person_t type is not altered.

Type Hierarchies
When you create a subtype, you create a type hierarchy. In a type hierarchy, each
subtype that you create inherits its properties from a single supertype. If you create
a named ROW type customer_t under person_t, customer_t inherits all the fields
of person_t. If you create another named ROW type, salesrep_t under customer_t,
salesrep_t inherits all the fields of customer_t.

2-178 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_071.htm#ids_sqr_071

Thus, salesrep_t inherits all the fields that customer_t inherited from person_t as
well as all the fields defined specifically for customer_t. For a discussion of type
inheritance, refer to the IBM Informix Guide to SQL: Tutorial.

Procedure for Creating a Subtype
Before you create a named ROW type as a subtype in an inheritance hierarchy,
check the following information:
v Verify that you are authorized to create new data types. You must have the

Resource privilege on the database. You can find this information in the sysusers
system catalog table.

v Verify that the supertype exists. You can find this information in the sysxtdtypes
system catalog table.

v Verify that you are authorized to create subtypes to that supertype. You must
have the Under privilege on the supertype. You can find this information in the
sysusers system catalog table.

v Verify that the name that you declare for the named ROW type is unique. In an
ANSI-compliant database, the owner.type combination must be unique within the
database. In a database that is not ANSI-compliant, the name must be unique
among data type names in the database. To verify whether the name for a new
data type is unique, check the sysxtdtypes system catalog table. The name must
not be the name of an existing data type.

v If you are defining fields for the ROW type, check that no duplicate field names
exist in both new and inherited fields.

Important: When you create a subtype, you cannot redefine fields that it inherited
for its supertype. If you attempt to redefine these fields, the database server
returns an error.

You cannot apply constraints to named ROW data types, but you can specify
constraints when you create or alter a table that uses the named ROW types. You
can also specify NOT NULL constraints on individual fields of a ROW type.

Field Definition

Use the Field Definition clause to define a new field in a named ROW type.

Field Definition:

field data_type
NOT NULL

Element Description Restrictions Syntax

data_type Data type of the field See “Restrictions on Serial and Simple-Large-Object
Data Types” on page 2-180.

“Identifier”
on page 5-21

field Name of a field in row_type Must be unique among field names of this ROW
type and of its supertype

“Identifier”
on page 5-21

The NOT NULL constraint on the named ROW type field applies to the
corresponding columns when a typed table of the named ROW type is created.

Chapter 2. SQL statements 2-179

Restrictions on Serial and Simple-Large-Object Data Types
Serial and simple-large-object data types cannot be nested within a table.
Therefore, if a ROW type contains a BYTE, TEXT, SERIAL, BIGSERIAL, or
SERIAL8 field, you cannot use the ROW type to define a column in a table that is
not based on a ROW type. For example, the following code example produces an
error:
CREATE ROW TYPE serialtype (s serial, s8 serial8);
CREATE TABLE tab1 (col1 serialtype); --INVALID CODE

You cannot create a ROW type that has a BYTE or TEXT value that is stored in a
separate storage space. That is, you cannot use the IN clause to specify the storage
location. For example, the following example produces an error:
CREATE ROW TYPE row1 (field1 byte IN blobspace1); --INVALID CODE

A table hierarchy can include no more than one SERIAL, BIGSERIAL, or SERIAL8
column. If a supertable has a SERIAL column, none of its subtables can contain a
SERIAL column (but a subtable can have a BIGSERIAL or SERIAL8 column if no
other subtable contains a BIGSERIAL or SERIAL8 column, respectively).
Consequently, when you create the named ROW types on which the table
hierarchy is to be based, they can contain at most one SERIAL and one BIGSERIAL
or SERIAL8 field among them.

You cannot set the starting SERIAL, BIGSERIAL, or SERIAL8 value in the CREATE
ROW TYPE statement. To modify the value for a serial field, you must use either
the MODIFY clause of the ALTER TABLE statement, or else use the INSERT
statement to insert a value that is larger than the current maximum (or default)
serial value.

Serial fields in ROW types have performance implications across a table hierarchy.
To insert data into a subtable whose supertable (or its supertable) contains the
serial counter, the database server must also open the supertable, update the serial
value, and close the supertable, thus adding extra overhead.

In contexts where these restrictions or performance issues for SERIAL, BIGSERIAL,
or SERIAL8 data types conflict with your design goals, you might consider using
sequence objects to emulate the functionality of serial fields or serial columns.

Related Information

Related statements: “DROP ROW TYPE statement” on page 2-341, “CREATE
TABLE statement” on page 2-198, “CREATE CAST statement” on page 2-95,
“GRANT statement” on page 2-401, and “REVOKE statement” on page 2-502

For a discussion of named ROW types, see the IBM Informix Database Design and
Implementation Guide and the IBM Informix Guide to SQL: Reference.
Related concepts

ROW Data Types (SQL Reference)

CREATE SCHEMA statement
Use the CREATE SCHEMA statement to issue a block of data definition language
(DDL) and GRANT statements as a unit.

Use this statement with DB-Access.

2-180 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_163.htm#ids_sqr_163

Syntax

�� CREATE SCHEMA AUTHORIZATION user �

� �
(1)

CREATE TABLE Statement
(2)

CREATE VIEW Statement
(3)

GRANT Statement
(4) (5)

CREATE INDEX Statement
(6)

CREATE SYNONYM Statement
(7)

CREATE TRIGGER Statement
(8)

CREATE OPTICAL CLUSTER Statement
(9)

CREATE SEQUENCE Statement
(10)

CREATE ROW TYPE Statement
(11)

CREATE OPAQUE TYPE Statement
(12)

CREATE DISTINCT TYPE Statement
(13)

CREATE CAST Statement

;
��

Notes:

1 See “CREATE TABLE statement” on page 2-198

2 See “CREATE VIEW statement” on page 2-277

3 See “GRANT statement” on page 2-401

4 Informix extension

5 See “CREATE INDEX statement” on page 2-135

6 See “CREATE SYNONYM statement” on page 2-195

7 See “CREATE TRIGGER statement” on page 2-241

8 Optical Subsystem only. See the IBM Informix: Optical Subsystem Guide.

9 See “CREATE SEQUENCE statement” on page 2-191

10 See “CREATE ROW TYPE statement” on page 2-176

11 See “CREATE OPAQUE TYPE statement” on page 2-154

12 See “CREATE DISTINCT TYPE statement” on page 2-100

13 See “CREATE CAST statement” on page 2-95

Element Description Restrictions Syntax

user User who owns the
database objects that
this statement creates

If you have DBA privileges, you can specify the name of any
user. Otherwise, you must have the Resource privilege, and
you must specify your own user name.

“Owner
Name” on
page 5-45

Chapter 2. SQL statements 2-181

Usage

The CREATE SCHEMA statement allows the DBA to specify an owner for all
database objects that the CREATE SCHEMA statement creates. You cannot issue
CREATE SCHEMA until you have created the database that stores the objects.

Users with the Resource privilege can create a schema for themselves. In this case,
user must be the name of the person with the Resource privilege who is running
the CREATE SCHEMA statement. Anyone with the DBA privilege can also create a
schema for someone else. In this case, user can specify a user other than the person
who is running the CREATE SCHEMA statement.

You can put CREATE and GRANT statements in any logical order, as the following
example shows. Statements are considered part of the CREATE SCHEMA
statement until a semicolon (;) or an end-of-file symbol is reached.
CREATE SCHEMA AUTHORIZATION sarah

CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS

SELECT * FROM mytable WHERE mytime > ’12/31/2004’
CREATE INDEX idxtime ON mytable (mytime);

Creating Database Objects Within CREATE SCHEMA
All database objects that a CREATE SCHEMA statement creates are owned by user,
even if you do not explicitly name each database object. If you are the DBA, you
can create database objects for another user. If you are not the DBA, specifying an
owner other than yourself results in an error message.

You can only grant privileges with the CREATE SCHEMA statement; you cannot
use CREATE SCHEMA to revoke or to drop privileges.

If you create a database object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

Related Information

Related statements: “CREATE CAST statement” on page 2-95, “CREATE DISTINCT
TYPE statement” on page 2-100, “CREATE INDEX statement” on page 2-135,
“CREATE OPAQUE TYPE statement” on page 2-154, “CREATE OPCLASS
statement” on page 2-158, “CREATE ROW TYPE statement” on page 2-176,
“CREATE SEQUENCE statement” on page 2-191, “CREATE SYNONYM statement”
on page 2-195, “CREATE TABLE statement” on page 2-198, “CREATE VIEW
statement” on page 2-277, and “GRANT statement” on page 2-401

For a discussion of how to create a database, see the IBM Informix Database Design
and Implementation Guide.

2-182 IBM Informix Guide to SQL: Syntax

CREATE SECURITY LABEL statement
Use the CREATE SECURITY LABEL statement to define a new security label for a
specified security policy in the current database and to identify its components and
the elements of its components.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SECURITY LABEL policy . label � �

,
,

COMPONENT component element ��

Element Description Restrictions Syntax

component A security label
component

Must already exist in the database as a component
of the specified policy, and be unique among names
of components of this label.

“Identifier” on page
5-21

label Name you declare
here for this label

Must be unique among security label names for this
security policy

“Identifier” on page
5-21

element An element of the
specified component

Must have been defined when its component was
defined or was last altered. If component is an array,
only a single element can be specified.

“Quoted String” on
page 4-188

policy The security policy
of this label

Must already exist in the database “Identifier” on page
5-21

Usage

A security label is a named database object that supports a specified security policy.
A security label can be applied to a user, or to a row or to a column (or to both a
row and a column) of a table in the database. When a user who holds a security
label attempts to access data that has a security label, the database server takes
into account the security label of the column or row and the security label of the
user in determining whether to allow the user to access the data.

Every security label stores the following categories of information:
v It identifies an existing security policy that the label supports.
v It identifies at least one, but no more than 16 existing components of the security

policy that the label supports.
v It identifies one or more existing elements of each component of the security

label. (Only security label components of type SET or TREE can include more
than one element in the same security label.)

Only DBSECADM can issue this statement. When the CREATE SECURITY LABEL
statement executes successfully, it registers the specified label name, the numeric
identifier of the associated security policy, and the cardinality of its security label
components in the sysseclabels system catalog table.

Components and Elements of a Security Label
Like a security policy, a security label must have at least one component, but no
more than 16. The CREATE SECURITY LABEL statement cannot list security label

Chapter 2. SQL statements 2-183

components that are not components of the specified security policy. The same
component name cannot be specified more than once in the same CREATE
SECURITY LABEL statement. These components must already exist in the
database, where DBSECADM can register them with the CREATE SECURITY
LABEL COMPONENT statement.

Security label components can be of type ARRAY, SET, or TREE, as described in
CREATE SECURITY LABEL COMPONENT. For a component of type ARRAY, the
element list can identify only a single element. For components of type SET or
TREE, the element list can identify multiple component elements that were defined
when the component was created (or when it was last altered). See the CREATE
SECURITY LABEL COMPONENT statement for more information about the
structure and semantics of security label components.

The following example creates a security label called label1 for a security policy
called MegaCorp. The label uses two security label components, called levels and
compartments, each with one element, called VP and Marketing respectively:
CREATE SECURITY LABEL MegaCorp.label1

COMPONENT levels ’VP’,
COMPONENT compartments ’Marketing’;

For this example to be valid, the levels and compartments components, and their
security label components, VP and Marketing elements, must have been defined in
previously executed CREATE SECURITY LABEL COMPONENT statements.

In the next example, DBSECADM creates a security label called label2 for the same
MegaCorp security policy. This label uses three security label components, called
levels, compartments, and groups, where two of these components have one
element, and another has two:
CREATE SECURITY LABEL MegaCorp.label2

COMPONENT level ’Director’,
COMPONENT compartments ’HR’, ’Finance’,
COMPONENT groups ’EntireRegion’;

These examples illustrate that the components of a security label can be a subset of
the components of the security policy that the label supports, and that more than
one security label can support the same security policy.

Related Information

Related statements: “ALTER SECURITY LABEL COMPONENT statement” on page
2-34, ALTER TABLE, “CREATE SECURITY LABEL COMPONENT statement,”
“CREATE SECURITY POLICY statement” on page 2-189, CREATE TABLE, “DROP
SECURITY statement” on page 2-342, GRANT EXEMPTION, GRANT SECURITY
LABEL, “RENAME SECURITY statement” on page 2-498, REVOKE EXEMPTION,
and REVOKE SECURITY LABEL

For a discussion of LBAC security objects, see the IBM Informix Security Guide.

CREATE SECURITY LABEL COMPONENT statement
Use the CREATE SECURITY LABEL COMPONENT statement to define a new
security label component in the current database and to define the elements the
component.

This statement is an extension to the ANSI/ISO standard for SQL.

2-184 IBM Informix Guide to SQL: Syntax

Syntax

�� CREATE SECURITY LABEL COMPONENT component �

� �

�

�

,

ARRAY [element]
,

SET { element }

TREE (element ROOT , element UNDER element)

��

Element Description Restrictions Syntax

component Name declared
here for this
component

Must be unique among the names of security label
components in the database.

“Identifier” on page
5-21

element Component
element that is
defined here

Must be unique among elements of this component,
and no longer than 32 bytes. The left (() and right
()) parentheses, comma (,), and colon (:)
symbols are not valid characters.

“Quoted String” on
page 4-188

Usage

Only the DBSECADM can issue the CREATE SECURITY LABEL COMPONENT
statement, which defines a security label component. This is a database object that
defines one or more logical categories whose values can be used in a security
policy to determine whether a user's request to read or write data is accepted or
rejected. The set of all the valid individual values that the security component can
have is defined by the set of security label elements that this statement specifies for
the component.

The logical categories that security label components implement are identified by
DBSECADM in the process of designing a security policy, which is the core
construct of label-based access control (LBAC). To implement this security feature
in the database, however, DBSECADM must create security objects in the following
sequence:
1. A set of one or more security components, each of which can be defined by the

CREATE SECURITY LABEL COMPONENT statement. This statement specifies
the name of a security component, the structure of its range of values, and the
possible values for this component that can be assigned to a security label that
applies a security policy to data or to a user.

2. One or more security policies, each of which can be defined by the CREATE
SECURITY POLICY statement, which specifies a list of one or more
components and a set of rules that the security policy applies to data and to
users who attempt read or write operations on data that the security policy
protects in the database. A security policy always includes all the elements of a
component that CREATE SECURITY POLICY specifies.

3. A security label can be defined by the CREATE SECURITY LABEL statement,
which specifies one or more values for each of one or more components of the
security policy that the label supports. The security label can be applied to data

Chapter 2. SQL statements 2-185

and to users. All the components of a security label must be components of the
same security policy, but multiple security policies and multiple security labels
can share the same component. A security label typically includes only a subset
of the elements of a security component that CREATE SECURITY LABEL
COMPONENT defines.

See the GRANT Security and REVOKE Security statements for information on how
security labels and exemptions from the rules of a security policy define the LBAC
credentials of a user or of a role.

See the CREATE TABLE and ALTER TABLE statements for information on how
security labels can be associated with a database table or with an individual data
row in a table.

Types and Elements of Security Label Components
A security label component itself consists of one or more elements that the CREATE
SECURITY LABEL COMPONENT statement declares as string constants. These
elements define the set of values that are valid for the component,

When the CREATE SECURITY LABEL statement executes successfully, Informix
updates the system catalog of the database with the following new entries:
v It creates a new row in the sysseclabelcomponents table to register the new

component.
v For each element of the new component, it creates a new row in the

sysseclabelcomponentelements table.

The security label component must be defined as one of the three component
types. The ARRAY, SET, or TREE keyword that immediately follows the declaration
of the component name specifies the component type, which must be followed by a
list of the elements of the security component. These elements define the set of
values that the component can have within a security policy. For all three types of
security label components, the set of elements is under the following restrictions:
v The security component can have no more than 64 elements.
v Each element of a security component is a quoted string constant of no more

than 32 bytes.
v Characters in the quoted string constant cannot include the left (() or right ())

parentheses, comma (,), or colon (:) symbols, but other symbols that the
DB_LOCALE setting supports are valid, including the blank space (ASCII 32)
character.

v Each element must be unique among elements of the same security label
component, but the same quoted string constant value can also be an element of
other security label components.

The definition of each element within the component implies a level of data
sensitivity that a security label associates with a database table or with an
individual data row, and also affects the security credentials of users who hold a
security label to read or write data that is protected by the same label or by a
different label that specifies one or more elements of the component.

Like other database Data Definition Language statements of SQL that can define
database objects, CREATE SECURITY LABEL COMPONENT must specify a literal
value for each component element, rather than a placeholder. To change the
definition of an existing security label component, DBSECADM can use the ALTER
SECURITY LABEL COMPONENT to insert a new element into an ARRAY, SET, or

2-186 IBM Informix Guide to SQL: Syntax

TREE component. To drop or rename one or more individual elements of a
component, however, DBSECADM must use the DROP SECURITY LABEL
COMPONENT statement to destroy the existing component, and then reissue the
CREATE SECURITY LABEL COMPONENT statement to create a new component
that defines the required set of element values within an ARRAY, SET, or TREE
component structure.

ARRAY Components
A security label component of type ARRAY is an ordered set of no more than 64
elements. Each element defines a value that is valid for that component within a
security policy. The order in which elements are declared is significant, because it
defines a descending order of data sensitivity, with each successive element
ranking lower in data sensitivity than the preceding element. The set of label
elements of the array and their comma separators must be enclosed between a pair
of bracket ([...]) symbols.

When an ARRAY component is specified in the definition of a security label, the
label can specify no more than one element of that component as the value of the
component.

The following example defines a security label component of type ARRAY called
aquilae that is an ordered set of five elements called imperator, tribunus, centurio,
miles, and asinus:
CREATE SECURITY LABEL COMPONENT aquilae

ARRAY ["imperator", "tribunus", "centurio", "miles", "asinus"];

Here the component element with the highest data sensitivity is imperator and
asinus has the lowest data sensitivity, with the data sensitivity of tribunus ranking
above that of centurio but below that of imperator.

A component of type ARRAY can be appropriate in contexts where some
dimension of a multidimensional security policy can be mapped onto a single scale
that is monotonically descending.

SET Components
A security label component of type SET is an unordered set of no more than 64
elements. Each element of the SET is a string constant of no more than 32 bytes,
and must be unique within the component, but the same value can be used in
other components. The order in which the elements of a SET component are
declared is not significant in regard to the data sensitivity of the categories that
these elements identify. The elements and their comma separators must be
enclosed between a pair of braces ({ ... }) symbols.

When a SET component is specified in the definition of a security label, the label
can specify one or multiple elements of that component as valid values for the
component.

In the following example, DBSECADM defines a security label component called
departments that is an unordered set of three elements, called Marketing, HR, and
finance:
CREATE SECURITY LABEL COMPONENT departments

SET { ’Marketing’, ’HR’, ’Finance’ };

Like all components of type SET, the order in which these elements are declared
implies no relative rank in data sensitivity.

Chapter 2. SQL statements 2-187

A component of type SET can be appropriate in contexts where some dimension of
a multidimensional security policy can be represented as nominal categories,
without any logical basis for ordering them on a monotonic scale, nor for
arranging them in a hierarchy.

TREE Components
A security label component of type TREE has the logical topology of a hierarchy
(that is, a simple graph with no loops) that has a single root node and no more
than 63 additional nodes. The string constant for the root node must be listed first
and must be followed by the ROOT keyword. The string constant for each
subsequently declared node must be followed by the keyword UNDER and by the
string constant for some previously declared node. The set of elements of the TREE
component, including their ROOT and UNDER keywords and comma separators,
must be enclosed between a pair of parenthesis ((...)) symbols.

The label element specified after the UNDER keyword is called the parent of the
label element that precedes the same UNDER keyword (which is called the child of
that parent element). The CREATE SECURITY LABEL COMPONENT statement
fails with an error if a node name that follows the UNDER keyword has not
already been declared in the same statement.

The string constant that designates the root node of a tree component has the
highest data sensitivity. For a user to read or write protected data, each tree
component of the user security label must include at least one of the elements in
the tree component of the data row security label, or the ancestor of one such
element. For example, if "Beta" is declared UNDER "Alpha" and "Gamma" is
declared UNDER "Beta" then "Gamma" also ranks below "Alpha" in data
sensitivity. Only elements that are in the same chain of parent-child relationships
can be compared in their data sensitivity.

The next example defines a security label component called Oakland as a tree
structure with six nodes:
CREATE SECURITY LABEL COMPONENT Oakland
TREE (’Port’ ROOT,

’Downtown’ UNDER ’Port’,
’Airport’ UNDER ’Port’,
’Estuary’ UNDER ’Airport’,
’Avenues’ UNDER ’Downtown’,
’Hills’ UNDER ’Avenues’);

Here the root node is Port, which has the highest data sensitivity. Within this
hierarchy, the Downtown, Avenues, and Hills elements represent descending
levels of data sensitivity, and the Airport element has a higher data sensitivity than
the Estuary element. In this example, the four component elements that the
UNDER keyword designates as parent nodes are each declared before being
included in UNDER specifications. A modified version of this example would also
be valid if the Avenues node declaration preceded the Airport node declaration,
but an error would result if the Hills node declaration had preceded the Avenues
node declaration.

A component of type TREE can be appropriate in contexts where some dimension
of a multidimensional security policy can be mapped to a single logical hierarchy,
or to a group of hierarchies that share a common root.

2-188 IBM Informix Guide to SQL: Syntax

Related Information

Related statements: “ALTER SECURITY LABEL COMPONENT statement” on page
2-34, ALTER TABLE, “CREATE SECURITY LABEL statement” on page 2-183,
“CREATE SECURITY POLICY statement,” CREATE TABLE, “DROP SECURITY
statement” on page 2-342, GRANT EXEMPTION, GRANT SECURITY LABEL,
“RENAME SECURITY statement” on page 2-498, REVOKE EXEMPTION, and
REVOKE SECURITY LABEL

For a discussion of LBAC security objects, see the IBM Informix Security Guide.

CREATE SECURITY POLICY statement
Use the CREATE SECURITY POLICY statement to define a new security policy in
the current database and to identify its security label components and access rules.
Only Informix supports this statement.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE SECURITY POLICY policy COMPONENTS �

,
(1)

component �

�
WITH IDSLBACRULES RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL ��

Notes:

1 You can specify no more than 16 components.

Element Description Restrictions Syntax

component A security label
component

Must already exist in the database, and be unique
among the names of components for this policy

“Identifier” on page
5-21

policy Name declared
here for a security
policy

Must be unique among the names of security
policies in the database

“Identifier” on page
5-21

Usage

A security policy is a named database object that stores the following information:
v It defines a set of security label components that comprise a security label.
v It associates that security label with a set of access rules.

For tables that are protected by a security policy, the access rules enable Informix
to compare the security credentials of a user with the security label of a row or
column. The security policy is applied to determine whether a user who holds a
given security label can read or write data in a row or column that is labeled with
a security label. A security policy has no effect on data that has no security label.

No more than one security policy can be attached to a table at any point in time,
and a security policy can include no more than 16 security label components.

Chapter 2. SQL statements 2-189

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a security policy of
the specified name is already registered in the current database.

Only DBSECADM can issue this statement. When the CREATE SECURITY POLICY
statement executes successfully, Informix makes the following updates to the
system catalog of the current database:
v Registers the specified policy name and the cardinality of its security label

components in the syssecpolicies table
v Creates for each component a new row in the syssecpolicycomponentrules table.

Security Label Components of a Security Policy
The CREATE SECURITY POLICY statement must specify at least one (but no more
than 16) security label components. These components must already exist in the
database, where DBSECADM can register them with the CREATE SECURITY
LABEL COMPONENT statement. The same component name cannot be specified
more than once in the same CREATE SECURITY POLICY statement.

See the section CREATE SECURITY LABEL COMPONENT for more information
about the structure and semantics of security label components.

Rules Associated with a Security Policy
The WITH IDSLBACRULES keywords specify the read access rules and write
access rules that the new security policy enforces. If you do not specify them, these
keywords are in effect by default, because the IDSLBACRULES access rules are
the only access rules that the a security policy can support.

The following IDSLBACRULES access rules for read access, called
IDSLBACREAD, apply when data values are read from labeled rows or columns
in SELECT, UPDATE, or DELETE operations:
v IDSLBACREADARRAY: Each array component of the user security label must

be greater than or equal to the array component of the data row security label.
That is, only data at or below the level of the user can be read.

v IDSLBACREADTREE: Each tree component of the user security label must
include at least one of the elements in the tree component of the data row
security label (or the ancestor of one such element).

v IDSLBACREADSET: Each set component of the user security label must include
the set component of the data row security label.

The following IDSLBACRULES access rules for write access, called
IDSLBACWRITE, apply when data values are written to labeled rows or columns
in INSERT, UPDATE, or DELETE operations:
v IDSLBACWRITEARRAY: Each array component of the user security label must

be equal to the array component of the data row security label. That is, only
data at the same level as the user can be written.

v IDSLBACWRITETREE: Each tree component of the user security label must
include at least one of the elements in the tree component of the data row
security label (or the ancestor of one such element).

v IDSLBACWRITESET: Each set component of the user security label must
include the set component of the data row security label.

2-190 IBM Informix Guide to SQL: Syntax

If DBSECADM omits the WITH IDSLBACRULES keywords, then those rules are in
effect by default. If any specification except IDSLBACRULES follows the WITH
keyword, however, the CREATE SECURITY POLICY statement fails with an error,
and no security policy is created.

Besides the explicit or default WITH IDSLBACRULES keywords, the CREATE
SECURITY POLICY statement must also specify the write access rule to enforce
when a user is not authorized to write the explicitly specified security label
provided in the DELETE, INSERT, or UPDATE statement for a table protected with
this security policy. The security label of the user and the exemption credentials
that the user holds determine whether the user has write access to an explicitly
provided security label.
v If the CREATE SECURITY POLICY statement specifies OVERRIDE NOT

AUTHORIZED WRITE SECURITY LABEL, then Informix uses the value of the
user security label, rather than the security label that is explicitly specified in the
DELETE, INSERT, or UPDATE statement, to determine whether the user has
write-access to data values that are protected by a security label in the DELETE,
INSERT, or UPDATE operation.

v The default is RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL. If you
specify these keywords explicitly, or if they are in effect by default, then
DELETE, INSERT, or UPDATE statements fail with an error if the user is not
authorized to write data in a row or column that has the explicitly specified
security label.

The following example creates a security policy called MegaCorp that uses three
security label components, with no OVERRIDE provision for the user security label
to provide write access in DELETE, INSERT, or UPDATE operations on data whose
explicitly specified security label does not authorize write access for that user:
CREATE SECURITY POLICY MegaCorp

COMPONENTS levels, compartments, groups
WITH IDSLBACRULES;

For this example to be valid, the levels, compartments, and groups security label
components (or components that have been renamed to these identifiers) must
have been previously defined by the CREATE SECURITY LABEL COMPONENT
statement.

Related Information

Related statements: “ALTER SECURITY LABEL COMPONENT statement” on page
2-34, ALTER TABLE, “CREATE SECURITY LABEL statement” on page 2-183,
“CREATE SECURITY LABEL COMPONENT statement” on page 2-184, CREATE
TABLE, “DROP SECURITY statement” on page 2-342, GRANT EXEMPTION,
GRANT SECURITY LABEL, “RENAME SECURITY statement” on page 2-498,
REVOKE EXEMPTION, and REVOKE SECURITY LABEL

For a discussion of LBAC security objects, see the IBM Informix Security Guide.

CREATE SEQUENCE statement
Use the CREATE SEQUENCE statement to create a sequence database object from
which multiple users can generate unique integers.

This statement is an extension to the ANSI/ISO standard for SQL.

Chapter 2. SQL statements 2-191

Syntax

�� CREATE SEQUENCE sequence
owner .

�

�

�
BY (1)

INCREMENT step
WITH

START origin
NOMAXVALUE
MAXVALUE max
NOMINVALUE
MINVALUE min
NOCYCLE
CYCLE
CACHE size
NOCACHE
ORDER
NOORDER

��

Notes:

1 Each keyword option can appear no more than once.

Element Description Restrictions Syntax

max Upper limit of values Must be an integer > origin “Literal Number” on page
4-184

min Lower limit of values Must be an integer less than origin “Literal Number” on page
4-184

origin First number in the sequence Must be an integer in INT8 or BIGINT
range

“Literal Number” on page
4-184

owner Owner of sequence Must be an authorization identifier “Owner Name” on page
5-45

sequence Name that you declare here for
the new sequence

Must be unique among sequence,
table, view, and synonym names

“Identifier” on page 5-21

size Number of values that are
preallocated in memory

Integer > 1, but < cardinality of a cycle
(= |(max - min)/step|)

“Literal Number” on page
4-184

step Interval between successive values Nonzero integer in INT range “Literal Number” on page
4-184

Usage

A sequence (sometimes called a sequence generator or sequence object) returns a
monotonically ascending or descending series of unique integers, one at a time.
The CREATE SEQUENCE statement defines a new sequence object, declares its
identifier, and registers it in the syssequences system catalog table.

Authorized users of a sequence can request a new value by including the
sequence.NEXTVAL expression in DML statements. The sequence.CURRVAL
expression returns the current value of the specified sequence. NEXTVAL and
CURRVAL expressions are valid only within SELECT, DELETE, INSERT, and
UPDATE statements; Informix returns an error if you attempt to invoke the built-in
NEXTVAL or CURRVAL functions in any other context.

2-192 IBM Informix Guide to SQL: Syntax

Generated values logically resemble the BIGSERIAL or SERIAL8 data type, but can
be negative, and are unique within the sequence. Because the database server
generates the values, sequences support a much higher level of concurrency than a
serial column can. The values are independent of transactions; a generated value
cannot be rolled back, even if the transaction in which it was generated fails.

You can use a sequence to generate primary key values automatically, using one
sequence for many tables, or each table can have its own sequence.

CREATE SEQUENCE can specify the following characteristics of a sequence:
v Initial value
v Size and sign of the increment between values
v Maximum and minimum values
v Whether the sequence recycles values after reaching its limit
v How many values are preallocated in memory for rapid access.

A database can support multiple sequences concurrently, but the name of a
sequence (or in an ANSI-compliant database, the owner.sequence combination) must
be unique within the current database among the names of tables, temporary
tables, views, synonyms, and sequences.

An error occurs if you include contradictory options, such as specifying both the
MINVALUE and NOMINVALUE options, or both CACHE and NOCACHE.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a sequence object of
the specified name is already registered in the current database, or if the specified
name is the identifier of a table, view, or synonym in the current database.

INCREMENT BY Option
Use the INCREMENT BY option to specify the interval between successive
numbers in the sequence. The BY keyword is optional. The interval, or step value,
can be a positive whole number (for an ascending sequence) or a negative whole
number (for a descending sequence) in the INT8 range. If you do not specify any
step value, the default interval between successive generated values is 1, and the
sequence is an ascending sequence.

START WITH Option
Use the START WITH option to specify the first number of the sequence. This
origin value must be an integer within the INT8 range that is greater than or equal
to the min value (for an ascending sequence) or that is less than or equal to the
max value (for a descending sequence), if min or max is specified in the CREATE
SEQUENCE statement. The WITH keyword is optional.

If you do not specify an origin value, the default initial value is min for an
ascending sequence or max for a descending sequence. (The “MAXVALUE or
NOMAXVALUE Option” and “MINVALUE or NOMINVALUE Option” on page
2-194 sections that follow describe the max and min specifications respectively.)

MAXVALUE or NOMAXVALUE Option
Use the MAXVALUE option to specify the upper limit of values in a sequence. The
maximum value, or max, must be an integer in the INT8 range that is greater than
the value of the origin.

Chapter 2. SQL statements 2-193

If you do not specify a max value, the default is NOMAXVALUE. This default
setting supports values that are less than or equal to 2e64 for ascending sequences,
or less than or equal to -1 for descending sequences.

MINVALUE or NOMINVALUE Option
Use the MINVALUE option to specify the lower limit of values, or min. This
integer must be in the INT8 range and be less than the value of origin.

If you do not specify a min value, the default is NOMINVALUE. This default
setting supports values that are greater than or equal to 1 for ascending sequences,
or greater than or equal to -(2e64) for descending sequences.

CYCLE or NOCYCLE Option
Use the CYCLE option to continue generating sequence values after the sequence
reaches the maximum (ascending) or minimum (descending) limit. After an
ascending sequence reaches the max value, it generates the min value for the next
sequence value. After a descending sequence reaches the min value, it generates
the max value for the next sequence value.

The default is NOCYCLE. At this default setting, the sequence cannot generate
more values after reaching the declared limit. Once the sequence reaches the limit,
the next reference to sequence.NEXTVAL returns an error.

CACHE or NOCACHE Option
Use the CACHE option to specify the number of sequence values that are
preallocated in memory for rapid access. This feature can enhance the performance
of a heavily used sequence. The cache size must be a positive whole number in the
INT range. If you specify the CYCLE option, then size must be less than the
number of values in a cycle (or less than |(max - min)/step|). The minimum is 2
preallocated values. The default is 20 preallocated values.

The NOCACHE keyword specifies that no generated values (that is, zero) are
preallocated in memory for this sequence object.

The configuration parameter SEQ_CACHE_SIZE specifies the maximum number of
sequence objects that can have preallocated values in the sequence cache. If this
configuration parameter is not set, then by default no more than 10 different
sequence objects can be defined with the CACHE option.

ORDER or NOORDER Option
These keywords have no effect on the behavior of the sequence. The sequence
always issues values to users in the order of their requests, as if the ORDER
keyword were always specified. The ORDER and NOORDER keywords are
accepted by the CREATE SEQUENCE statement for compatibility with
implementations of sequence objects in other dialects of SQL.

Examples
CREATE SEQUENCE seq_2

INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

2-194 IBM Informix Guide to SQL: Syntax

INSERT INTO tab1 (col1, col2) VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL)

SELECT * FROM tab1;

col1 col2

0 0
1 1

Related Information

Related statements: “ALTER SEQUENCE statement” on page 2-38, “DROP
SEQUENCE statement” on page 2-344, “RENAME SEQUENCE statement” on page
2-500, “CREATE SYNONYM statement,” “DROP SYNONYM statement” on page
2-346, “GRANT statement” on page 2-401, and “REVOKE statement” on page
2-502

For information about the syssequences system catalog table in which sequence
objects are registered, see the IBM Informix Guide to SQL: Reference.

For information about initializing a sequence and generating or reading values
from a sequence, see “NEXTVAL and CURRVAL Operators” on page 4-78.
Related reference

SYSSEQUENCES (SQL Reference)

CREATE SYNONYM statement
Use the CREATE SYNONYM statement to declare and register an alternative name
for an existing table, view, or sequence object.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE
PUBLIC

PRIVATE
SYNONYM synonym FOR table

view
sequence

��

Element Description Restrictions Syntax

sequence Name of a local sequence Must exist in the current database “Identifier” on page
5-21

table, view Name of database table, external
table, or view for which synonym is
being created

Must be registered in the current
database, or in a database specified in
a qualifier

“Database Object
Name” on page 5-16

synonym Synonym declared here for the name
of table, view, or sequence

Must be unique among table object
names; see also Usage notes

“Database Object
Name” on page 5-16

Usage

Users have the same privileges for a synonym that they have for the database
object that the synonym references. The syssynonyms, syssyntable, and systables
system catalog tables maintain information about synonyms.

Chapter 2. SQL statements 2-195

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_067.htm#ids_sqr_067

You cannot create a synonym for a synonym in the same database.

The identifier of the synonym must be unique among the names of tables,
temporary tables, external tables, views, and sequence objects in the same
database. (See, however, the section “Synonyms with the Same Name” on page
2-197.)

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a synonym of the
specified name is already registered in the current database, or if the specified
name is the identifier of a table, view, or sequence object in the current database.

Once a synonym is created, it persists until the owner executes the DROP
SYNONYM statement. (This persistence distinguishes a synonym from an alias that
you can declare in the FROM clause of a SELECT statement. The alias is in scope
only while that SELECT statement is executing.)

If a synonym refers to a table, view, or sequence in the same database, however,
the synonym is automatically dropped if the referenced table, view, or sequence
object is dropped. For additional information, see the section “Synonyms for
objects outside the current database.”

Synonyms for objects outside the current database
A synonym can be created for any table or view in any database of the database
server to which your session is currently connected.

This example declares a synonym for a table outside your current database, in the
payables database of your current database server.
CREATE SYNONYM mysum FOR payables:jean.summary;

You can also create a synonym for an external table that the CREATE EXTERNAL
TABLE statement registered in the current database. (The external table is
registered in the system catalog of the database where it was created, but it is not
stored in any database.)

You can also create a synonym for a table or view that exists in a database of a
database server that is not your current database server. Both database servers
must be online when you create the synonym. In a network, the remote database
server verifies that the table or view referenced by the synonym exists when you
create the synonym. The next example creates a synonym for a table in a database
of a remote database server:
CREATE SYNONYM mysum FOR payables@phoenix:jean.summary;

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. If the summary table is
dropped from the payables database, the mysum synonym is left intact.
Subsequent attempts to use mysum return the error: Table not found.

Informix, however, does not support synonyms for these table objects :
v Typed tables (including any table that is part of a table hierarchy)
v Tables or views with columns of any extended data types
v Sequence objects outside the local database

2-196 IBM Informix Guide to SQL: Syntax

PUBLIC and PRIVATE Synonyms
If you use the PUBLIC keyword (or no keyword at all), anyone who has access to
the database can use your synonym. If the database is not ANSI-compliant, a user
does not need to know the name of the owner of a public synonym. Any synonym
in a database that is not ANSI-compliant and was created in an Informix database
server earlier than Version 5.0 is a public synonym.

In an ANSI-compliant database, all synonyms are private. If you use the PUBLIC
or PRIVATE keywords, the database server issues a syntax error.

If you use the PRIVATE keyword to declare a synonym in a database that is not
ANSI-compliant, the unqualified synonym can be used by its owner. Other users
must qualify the synonym with the name of the owner.

Synonyms with the Same Name
In an ANSI-compliant database, the owner.synonym combination must be unique
among all synonyms, tables, views, and sequences. You must specify owner when
you refer to a synonym that you do not own, as in this example:
CREATE SYNONYM emp FOR accting.employee

In a database that is not ANSI-compliant, no two public synonyms can have the
same identifier, and the identifier of a synonym must also be unique among the
names of tables, views, and sequences in the same database.

The owner.synonym combination of a private synonym must be unique among all
the synonyms in the database. That is, more than one private synonym with the
same name can exist in the same database, but a different user must own each of
these synonyms. The same user cannot create both a private and a public synonym
that have the same name. For example, the following code generates an error:
CREATE SYNONYM our_custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

A private synonym can be declared with the same name as a public synonym only
if the two synonyms have different owners. If you own a private synonym, and a
public synonym exists with the same name, the database server resolves the
unqualified name as the private synonym. (In this case, you must specify
owner.synonym to reference the public synonym.) If you use DROP SYNONYM
with the unqualified synonym identifier when your private synonym and the
public synonym of another user both have the same identifier, only your private
synonym is dropped. If you repeat the same DROP SYNONYM statement, the
database server drops the public synonym.

Chaining Synonyms

If you create a synonym for a table or view that is not in the current database, and
this table or view is dropped, the synonym remains registered in the system
catalog. You can create a new synonym whose identifier is the name of the
dropped table or view, but that points to a table or view in the current database
(or in another database).

In this way, after you rename a table, or after you move a table or view to another
database location, you can chain synonyms together so that the original synonym
remains valid in existing applications. You can chain up to 16 synonyms in this
manner.

Chapter 2. SQL statements 2-197

Chaining synonyms to reference a relocated table object is possible for tables or
views, but this is not valid for synonyms that point to a sequence object, because
CREATE SYNONYM can define synonyms only for sequences that are registered in
the current database.

The following steps chain two synonyms together for the customer table, which
will ultimately reside on the zoo database server. Here ellipses (. . .) mark
CREATE TABLE statements that are not complete:
1. In the stores_demo database on the database server that is called training,

issue the following statement:
CREATE TABLE customer (lname CHAR(15)...);

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer;

3. On the database server called zoo, issue the following statement:
CREATE TABLE customer (lname CHAR(15)...);

4. On the database server called training, issue the following statement:
DROP TABLE customer;
CREATE SYNONYM customer FOR stores_demo@zoo:customer;

The synonym cust on the accntg database server now points to the customer table
on the zoo database server.

The following steps show an example of chaining two synonyms together and
changing the table to which a synonym points:
1. On the database server called training, issue the following statement:

CREATE TABLE customer (lname CHAR(15)...);

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores_demo@training:customer;

3. On the database server called training, issue the following statement:
DROP TABLE customer;
CREATE TABLE customer (lastname CHAR(20)...);

The synonym cust on the accntg database server now points to a new version of
the customer table on the training database server.

Related Information

Related statement: “DROP SYNONYM statement” on page 2-346.

For a discussion of concepts related to synonyms, see the IBM Informix Database
Design and Implementation Guide.

CREATE TABLE statement
Use the CREATE TABLE statement to create a new permanent table in the current
database.

You can use the CREATE TABLE statement to create relational-database tables or to
create typed tables (object-relational tables). For information on how to create
temporary tables, see “CREATE TEMP TABLE statement” on page 2-234.

For information on how to create external table objects that are not stored in the
database, see “CREATE EXTERNAL TABLE Statement” on page 2-103.

2-198 IBM Informix Guide to SQL: Syntax

|
|

When you create a table, you can place data-integrity constraints on columns, to
designate where the table is stored, to define a fragmentation strategy, to indicate
the size of its initial and subsequent extents, and to specify how to lock the new
table.

Syntax

�� CREATE
STANDARD
RAW TABLE table Table Definition

(1)
) Options

(2) (3)
OF TYPE Clause

��

Table Definition:

�

�

,
(4)

(Column Definition
,

(5)
, Multiple-Column Constraint

(4)
Column Definition

Notes:

1 See “Options clauses” on page 2-217

2 Informix extension

3 See “OF TYPE Clause” on page 2-230

4 See “Column Definition” on page 2-201

5 See “Multiple-Column Constraint Format” on page 2-214

Element Description Restrictions Syntax

table Name that you declare
here for the new table

Must be unique among the names of tables,
synonyms, views, and sequences in the database

“Identifier” on page
5-21

Usage

The CREATE TABLE statement can include various clauses, some of which are
identified in the following list.

Clause Page What the Clause Specifies

Logging Options “Logging Options” on page 2-201 Logging characteristics of the new table

Column Definition “Column Definition” on page 2-201 Name and other attributes of an
individual column

DEFAULT “DEFAULT Clause” on page 2-203 Default value for an individual column

Single-Column Constraint “Single-Column Constraint Format” on page
2-205

Data-integrity constraints on an
individual column

REFERENCES “REFERENCES Clause” on page 2-208 Referential-integrity constraints with
other columns

Chapter 2. SQL statements 2-199

Clause Page What the Clause Specifies

CHECK “CHECK Clause” on page 2-211 Check constraints with other columns

Constraint Definition “Constraint Definition” on page 2-212 Name and other attributes of a
constraint

Multiple-Column
Constraint

“Multiple-Column Constraint Format” on
page 2-214

Data-integrity constraints on a set of
columns

WITH CRCOLS “Using the WITH CRCOLS Option” on page
2-218

Two shadow columns for Enterprise
Replication conflict resolution

WITH REPLCHECK “Using the WITH REPLCHECK Keywords”
on page 2-218

One shadow column for Enterprise
Replication consistency checking

WITH VERCOLS “Using the WITH VERCOLS Option” on page
2-219

Two shadow columns for high
availability

SECURITY POLICY “SECURITY POLICY Clause” on page 2-220 Specifies a policy for label-based access
control (LBAC)

Storage Options “Storage Options” on page 2-221 Attributes of where the table is
physically stored

IN “Using the IN Clause” on page 2-221 Storage object to hold the new table (or
part of it)

FRAGMENT BY or
PARTITION BY

“FRAGMENT BY clause” on page 2-222 Distribution scheme of a fragmented
table

WITH ROWIDS “Using the WITH ROWIDS Option” on page
2-223

Hidden column in a fragmented table

PUT “PUT Clause” on page 2-225 Storage location for BLOB or CLOB
column values

EXTENT SIZE “EXTENT SIZE Options” on page 2-227 Size of the first and subsequent extents

USING ACCESS METHOD “USING Access-Method Clause” on page
2-228

How to access the new table

LOCK MODE “LOCK MODE Options” on page 2-229 Locking granularity of the new table

OF TYPE “OF TYPE Clause” on page 2-230 Named ROW type of a new typed table

UNDER “Using the UNDER Clause” on page 2-232 Supertable of a new subtable in a table
hierarchy

When you create a new table, every column must have a data type associated with
it. The table name must be unique among all the names of tables, views, sequences,
and synonyms within the same database, but the names of columns need only be
unique among the column names of the same table.

In an ANSI-compliant database, the combination owner.table must be unique among
tables, synonyms, views, and sequence objects within the database.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a table of the
specified name is already registered in the current database.

In DB-Access, using CREATE TABLE outside the CREATE SCHEMA statement
generates warnings if you use the -ansi flag or if you set DBANSIWARN.

In Informix ESQL/C, using CREATE TABLE generates warnings if you compile
with the -ansi flag or set DBANSIWARN. For information about the

2-200 IBM Informix Guide to SQL: Syntax

DBANSIWARN environment variable, see the IBM Informix Guide to SQL:
Reference.
Related reference

DBANSIWARN (SQL Reference)

Logging Options
Use the Logging Type options to specify logging characteristics that can improve
performance in various bulk operations on the table. Other than the default option
(STANDARD) that is used for OLTP databases, these logging options are used
primarily to improve performance in data warehousing databases.

A table can have either of the following logging characteristics.

Logging Type
Effect

STANDARD
Logging tables that allow rollback, recovery, and restoration from archives.
This type is the default. Use this type of table for all the recovery and
constraints functionality that OLTP databases require.

RAW Nonlogging tables that do not support primary key constraints or unique
constraints. but that support referential constraints, and can be indexed
and updated. Use this type of table for quickly loading data.

Warning: Use raw tables for fast loading of data, but set the logging type to
STANDARD and perform a level-0 backup before you use the table in a
transaction or modify the data within the table. If you must use a raw table within
a transaction, either set the isolation level to Repeatable Read or lock the table in
exclusive mode to prevent concurrency problems.

For more information on these logging types of tables, refer to your IBM Informix
Administrator's Guide.

Column Definition
Use the column definition segment of the CREATE TABLE statement to declare the
name and data type (and optionally the default value, and the constraints or the
security label) of a single column of the new table.

Column Definition:

(1)
column Data Type

(2)
DEFAULT Clause

�

�
(3)

Single-Column Constraint Format

�

�
SECURED WITH label

COLUMN

Chapter 2. SQL statements 2-201

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_207.htm#ids_sqr_207

Notes:

1 See “Data Type” on page 4-21

2 See “DEFAULT Clause” on page 2-203

3 See “Single-Column Constraint Format” on page 2-205

Element Description Restrictions Syntax

column Name that you declare here
for a column in the table

Must be unique in this table “Identifier” on page 5-21

label Name of a security label that
protects column

Must exist and must belong to the
security policy that protects the table.
Here column cannot be of type
IDSSECURITYLABEL.

“Identifier” on page 5-21

Because the maximum row size is 32,767 bytes, no more than approximately 97
columns can be of COLLECTION data types (SET, LIST, and MULTISET). No more
than approximately 195 columns in the table can be of the data types BYTE, TEXT,
ROW, LVARCHAR, NVARCHAR, VARCHAR, and varying-length UDTs. (Here 195
columns is an approximate lower limit that applies to platforms with a 2 Kb base
page size. For platforms with a base page size of 4 Kb, such as Windows and AIX®

systems, the upper limit is approximately 450 columns of these data types.)

The upper limit on the number of columns of these data types also depends on
other data describing the table that the database server stores in the same partition.
For some tables, the maximum number of columns might be lower, if the aggregate
length of all the SQL identifiers (including the database name, table names, and
index names) that are compressed and stored on the disk reduces the free space
that is available for the columns.

Character Column Size Semantics

Any explicit or default storage size specifications for columns of built-in character
types, such as CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR, are
interpreted in units of bytes, unless the SQL_LOGICAL_CHAR configuration
parameter is set to enable logical character semantics in datatype declarations.

Interpreting size declarations as logical character semantics reduces the risk of
insufficient storage for column values in INSERT and UPDATE operations When
the data length exceeds the maximum size of the column, then the result depends
on the ANSI-compliance status of the database:
v If the database is not ANSI-compliant, Informix truncates the value. No

warning is generated when this truncation occurs.
v If the database is ANSI-compliant, then the INSERT or UPDATE operation fails

and this error is returned

: -1279: Value exceeds string column length.

See the IBM Informix Administrator's Reference description of the
SQL_LOGICAL_CHAR configuration parameter for more information about the
effect of its setting in locales that support a multibyte code set, such as UTF-8,
where a single logical character can require more than one byte of storage.

2-202 IBM Informix Guide to SQL: Syntax

Restrictions on IDSSECURITYLABEL Columns

The following restrictions affect the use of the Column Definition clause to specify
a column of the IDSSECURITYLABEL data type to support label-based access
control (LBAC):
v If the table has no security policy, a user who holds the DBSECADM role must

also include the SECURITY POLICY clause to specify a security policy.
v Only a user who holds the DBSECADM role can specify a column of type

IDSSECURITYLABEL.
v A table can have at most one column of type IDSSECURITYLABEL.
v The IDSSECURITYLABEL column cannot have column protection.
v The IDSSECURITYLABEL column has an implicit NOT NULL constraint by

default. If no label name for the default security label is specified in the
DEFAULT clause, the default value for this column is the security label for write
access that is held by the user.

v The IDSSECURITY LABEL column cannot have any explicit single-column
constraints, and it cannot be part of multiple-column referential or check
constraints.

v The IDSSECURITYLABEL column cannot be encrypted.

As with any SQL identifier, syntactic ambiguities (and sometimes error messages
or unexpected behavior) can occur if the column name is a keyword, or if it is the
same as the table name, or the name of another table that you subsequently join
with the table). For information about the keywords of Informix, see Appendix A,
“Keywords of SQL for IBM Informix,” on page A-1.

If you define a column of a table to be of a named ROW type, the table does not
adopt any constraints of the named ROW.
Related reference

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

DEFAULT Clause

Use the DEFAULT clause to specify the default value for the database server to
insert into a column when no explicit value for the column is specified. You cannot
specify default values for SERIAL, BIGSERIAL, or SERIAL8 columns.

DEFAULT Clause:

DEFAULT NULL
label
literal
USER
(1)

CURRENT
SYSDATE (2)

DATETIME Field Qualifier
TODAY
SITENAME
DBSERVERNAME

Notes:

1 Informix extension

Chapter 2. SQL statements 2-203

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

2 See “DATETIME Field Qualifier” on page 4-38

Element Description Restrictions Syntax

label Name of a security label Must exist and must belong to the security policy that
protects the table. The column must be of type
IDSSECURITYLABEL.

“Identifier” on
page 5-21

literal String of alphabetic or
numeric characters

Must be an appropriate data type for the column. See
“Using a Literal as a Default Value.”

“Expression”
on page 4-40

Using NULL as a Default Value
If you specify no default value for a column, the default is NULL unless you place
a NOT NULL constraint on the column. In this case, no default exists.

If you specify NULL as the default value for a column, you cannot specify a NOT
NULL constraint as part of the column definition. (For details of NOT NULL
constraints, see “Using the NOT NULL Constraint” on page 2-206.)

NULL is not a valid default value for a column that is part of a primary key.

If the column is a BYTE or TEXT data type, NULL is the only valid default value.

In Informix, if the column is a BLOB or CLOB data type, NULL is the only valid
default value.

Using a Literal as a Default Value
You can designate a literal value as a default value. A literal value is a string of
alphabetic or numeric characters. To use a literal value as a default value, you
must adhere to the syntax restrictions in the following table.

For Columns of Data Type Format of Default Value

BOOLEAN Use ’t’ or ’f’ (respectively for true or false) as a
“Quoted String” on page 4-188.

CHAR, CHARACTER VARYING, DATE, VARCHAR,
NCHAR, NVARCHAR, LVARCHAR

“Quoted String” on page 4-188. See note that follows
for DATE.

DATETIME “Literal DATETIME” on page 4-180

BIGINT, DECIMAL, FLOAT, INT8, INTEGER, MONEY,
SMALLFLOAT, SMALLINT

“Literal Number” on page 4-184

INTERVAL “Literal INTERVAL” on page 4-182

Opaque data types “Quoted String” on page 4-188 in format of
“Single-Column Constraint Format” on page 2-205

DATE literals must be of the format that the DBDATE (or else GL_DATE)
environment variable specifies. In the default locale, if neither DBDATE nor
GL_DATE is set, date literals must be of the mm/dd/yyyy format.

Using a Built-in Function as a Default Value
You can specify a built-in function as the default column value. The following table
lists built-in functions and operators that you can specify, the data type
requirements, and the recommended size (in bytes) for their corresponding
columns.

2-204 IBM Informix Guide to SQL: Syntax

Built-In Function Data Type Requirement Recommended Size

CURRENT, SYSDATE DATETIME column with matching qualifier Enough bytes to store the longest
DATETIME value for the locale

DBSERVERNAME,
SITENAME

CHAR, VARCHAR, NCHAR, NVARCHAR, or
CHARACTER VARYING column

128 bytes

TODAY DATE column Enough bytes to store the longest
DATE value for the locale

USER CHAR, VARCHAR, NCHAR, NVARCHAR, or
CHARACTER VARYING column

32 bytes

These column sizes are recommended because, if the column length is too small to
store the default value during INSERT or ALTER TABLE operations, the database
server returns an error.

You cannot designate a built-in variant function (that is, CURRENT, SYSDATE,
USER, TODAY, SITENAME, or DBSERVERNAME) as the default value for a
column that holds an opaque or distinct data type. In addition, larger column sizes
are required if the data values are encrypted, or if they are encoded in the Unicode
character set of the UTF-8 locale. (See the description of the SET ENCRYPTION
statement later in this chapter for more information about storage size
requirements for encrypted data.)

For descriptions of these functions, see “Constant Expressions” on page 4-70.

The following example creates a table called accounts. In accounts, the
acc_num,acc_type, and acc_descr columns have literal default values. The acc_id
column defaults to the login name of the user.
CREATE TABLE accounts (

acc_num INTEGER DEFAULT 1,
acc_type CHAR(1) DEFAULT ’A’,
acc_descr CHAR(20) DEFAULT ’New Account’,
acc_id CHAR(32) DEFAULT USER)

Single-Column Constraint Format
Use the Single-Column Constraint format to define and declare the name of at
least one constraint on a single column, and to specify the mode of each constraint.

The Single-Column Constraint format can associate one or more constraints with a
column, in order to perform any of the following tasks:
v Create one or more data-integrity constraints for a column.
v Specify a meaningful name for a constraint.
v Specify the constraint-mode that controls the behavior of a constraint during

insert, delete, and update operations.

Single-Column Constraint Format:

NOT NULL (1) (2)
Constraint Definition

�

Chapter 2. SQL statements 2-205

� �

(1)
DISTINCT

UNIQUE (1) (2)
PRIMARY KEY Constraint Definition

(3)
REFERENCES Clause

(4)
CHECK Clause

Notes:

1 Informix extension

2 See “Constraint Definition” on page 2-212

3 See “REFERENCES Clause” on page 2-208

4 See “CHECK Clause” on page 2-211

The following example creates a standard table with two constraints: num, a
primary-key constraint on the acc_num column; and code, a unique constraint on
the acc_code column:
CREATE TABLE accounts (

acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code INTEGER UNIQUE CONSTRAINT code,
acc_descr CHAR(30));

The types of constraints used in this example are defined in sections that follow.

Restrictions on Using the Single-Column Constraint Format
The single-column constraint format cannot specify a constraint that involves more
than one column. Thus, you cannot use the single-column constraint format to
define a composite key. For information on multiple-column constraints, see
“Multiple-Column Constraint Format” on page 2-214.

You cannot place unique, primary-key, or referential constraints on BYTE or TEXT
columns. You can, however, check for NULL or non-NULL values on BYTE or
TEXT columns with a check constraint.

You cannot place unique constraints, primary-key constraints, or referential
constraints on BLOB or CLOB columns of Informix. If the constraint is on a
column that stores encrypted data, Informix cannot enforce the constraint.

Using the NOT NULL Constraint
Use the NOT NULL keywords to require that a column receive a value during
insert or update operations. If you place a NOT NULL constraint on a column (and
no default value is specified), you must enter a value into this column when you
insert a row or update that column in a row. If you do not enter a value, the
database server returns an error, because no default value exists.

The following example creates the newitems table. In newitems, the column
manucode does not have a default value nor does it allow NULL values.

2-206 IBM Informix Guide to SQL: Syntax

CREATE TABLE newitems (
newitem_num INTEGER,
manucode CHAR(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20));

You cannot specify NULL as the explicit default value for a column if you also
specify the NOT NULL constraint.

The NOT NULL constraint is required for columns of the collection data types
LIST, MULTISET, and SET. No other column constraints are allowed on a collection
data type.

Using UNIQUE or DISTINCT Constraints
Use the UNIQUE or DISTINCT keyword to require that a column or set of
columns accepts only unique data values. You cannot insert values that duplicate
the values of some other row into a column that has a unique constraint. When
you create a UNIQUE or DISTINCT constraint, the database server automatically
creates an internal index on the constrained column or columns. (In this context,
the keyword DISTINCT is a synonym for UNIQUE.)

You cannot place a unique constraint on a column that already has a primary-key
constraint. You cannot place a unique constraint on a BYTE or TEXT column.

As previously noted, you cannot place a unique or primary-key constraint on a
BLOB or CLOB column of Informix.

Opaque data types support a unique constraint only where a secondary-access
method supports uniqueness for that type. The default secondary-access method is
a generic B-tree, which supports the equal() operator function. Therefore, if the
definition of the opaque type includes the equal() function, a column of that
opaque type can have a unique constraint.

The following example creates a simple table that has a unique constraint on one
of its columns:
CREATE TABLE accounts

(acc_name CHAR(12),
acc_num SERIAL UNIQUE CONSTRAINT acc_num);

For an explanation of the constraint name, refer to “Declaring a Constraint Name”
on page 2-212.

Differences Between a Unique Constraint and a Unique Index
Although a unique index and a unique constraint are functionally similar, besides
various differences in the syntax by which you declare, alter, or destroy them, there
are additional differences between these two types of database objects:
v In DDL statements, they are registered or dropped in different tables of the

system catalog
v In DML statements, enabled unique constraints on a logged table are checked at

the end of a statement, but unique indexes are checked on a row-by-row basis,
thereby preventing any insert or update of a row that might potentially violate
the uniqueness of the specified column (or for a multiple-column column
constraint or index, the column list).

For example, if you stored the values 1, 2, and 3 in rows of a logged table that has
an INT column, an UPDATE operation on that table that specifies SET c = c + 1

Chapter 2. SQL statements 2-207

would fail with an error if there were a unique index on the column c, but the
statement would succeed if the column had a unique constraint.

Using the PRIMARY KEY Constraint
A primary key is a column (or a set of columns, if you use the multiple-column
constraint format) that contains a non-NULL, unique value for each row in a table.
When you define a PRIMARY KEY constraint, the database server automatically
creates an internal index on the column or columns that make up the primary key.

You can designate only one primary key for a table. If you define a single column
as the primary key, then it is unique by definition. You cannot explicitly give the
same column a unique constraint.

You cannot place a unique or primary-key constraint on a BLOB or CLOB column.

Opaque types of Informix support a primary key constraint only where a
secondary-access method supports the uniqueness for that type. The default
secondary-access method is a generic B-tree, which supports the equal() function.
Therefore, if the definition of the opaque type includes the equal() function, a
column of that opaque type can have a primary-key constraint.

You cannot place a primary-key constraint on a BYTE or TEXT column.

In the previous two examples, a unique constraint was placed on the column
acc_num. The following example creates this column as the primary key for the
accounts table:
CREATE TABLE accounts

(acc_name CHAR(12),
acc_num SERIAL PRIMARY KEY CONSTRAINT acc_num);

REFERENCES Clause

Use the REFERENCES clause to establish a referential relationship:
v Within a table (that is, between two columns of the same table)
v Between two tables (in other words, create a foreign key)

REFERENCES Clause:

REFERENCES table

�

,

(column)

(1)
ON DELETE CASCADE

Notes:

1 Informix extension

Element Description Restrictions Syntax

column A referenced column See “Restrictions on Referential Constraints” on
page 2-209.

“Identifier” on page
5-21

table The referenced table Must reside in the same database as the
referencing table

“Identifier” on page
5-21

2-208 IBM Informix Guide to SQL: Syntax

The referencing column (the column being defined) is the column or set of columns
that refers to the referenced column or set of columns. The referencing column can
contain NULL and duplicate values, but values in the referenced column (or set of
columns) must be unique.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced column (primary key)
and the child is the referencing column (foreign key). The referential constraint
establishes this parent-child relationship.

When you create a referential constraint, the database server automatically creates
an internal index on the constrained column or columns.

Restrictions on Referential Constraints
You must have the References privilege to create a referential constraint.

When you use the REFERENCES clause, you must observe the following
restrictions:
v The referenced and referencing tables must be in the same database.
v The referenced column (or set of columns when you use the multiple-column

constraint format) must have a unique or primary-key constraint.
v The data types of the referencing and referenced columns must be identical.

The only exceptions are that a referencing column must be an integer data type
if the referenced column is a serial data type:
– For BIGSERIAL referenced columns, use BIGINT referencing columns.
– For SERIAL referenced columns, use INT referencing columns.
– For SERIAL8 referenced columns, use INT8 referencing columns.

v You cannot place a referential constraint on a BYTE or TEXT column.
v You cannot place a referential constraint on a BLOB or CLOB column.
v When you use the single-column constraint format, you can reference only one

column.
v When you use the multiple-column constraint format, the maximum number of

columns in the REFERENCES clause is 16, and the total length of the columns
cannot exceed 390 bytes if the page size is 2 kilobytes. (The maximum length
increases with the page size.)

Default Values for the Referenced Column
If the referenced table is different from the referencing table, you do not need to
specify the referenced column; the default column is the primary-key column (or
columns) of the referenced table. If the referenced table is the same as the
referencing table, you must specify the referenced column.

Referential Relationships Within a Table
You can establish a referential relationship between two columns of the same table.
In the following example, the emp_num column in the employee table uniquely
identifies every employee through an employee number. The mgr_num column in
that table contains the employee number of the manager who manages that
employee. In this case, mgr_num references emp_num. Duplicate values appear in
the mgr_num column because managers manage more than one employee.
CREATE TABLE employee

(
emp_num INTEGER PRIMARY KEY,
mgr_num INTEGER REFERENCES employee (emp_num)
);

Chapter 2. SQL statements 2-209

Locking Implications of Creating a Referential Constraint
When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
finished. If you are creating a table in a database that supports transaction logging,
and you are using transactions, the lock is released at the end of the transaction.

Example That Uses the Single-Column Constraint Format

The following example uses the single-column constraint format to create a
referential relationship between the sub_accounts and accounts tables. The
ref_num column in the sub_accounts table references the acc_num column (the
primary key) in the accounts table.
CREATE TABLE accounts (

acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20));

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20));

When you use the single-column constraint format, you do not explicitly specify
the ref_num column as a foreign key. To use the FOREIGN KEY keyword, use the
“Multiple-Column Constraint Format” on page 2-214.

Using the ON DELETE CASCADE Option
Use the ON DELETE CASCADE option to specify whether you want rows deleted
in a child table when corresponding rows are deleted in the parent table. If you do
not specify cascading deletes, the default behavior of the database server prevents
you from deleting data in a table if other tables reference it.

If you specify this option, later when you delete a row in the parent table, the
database server also deletes any rows associated with that row (foreign keys) in a
child table. The principal advantage to the cascading-deletes feature is that it
allows you to reduce the quantity of SQL statements you need to perform delete
actions.

For example, the all_candy table contains the candy_num column as a primary
key. The hard_candy table refers to the candy_num column as a foreign key. The
following CREATE TABLE statement creates the hard_candy table with the
cascading-delete option on the foreign key:
CREATE TABLE all_candy

(candy_num SERIAL PRIMARY KEY,
candy_maker CHAR(25));

CREATE TABLE hard_candy
(candy_num INT,
candy_flavor CHAR(20),
FOREIGN KEY (candy_num) REFERENCES all_candy
ON DELETE CASCADE);

Because ON DELETE CASCADE is specified for the dependent table, when a row
of the all_candy table is deleted, the corresponding rows of the hard_candy table
are also deleted. For information about syntax restrictions and locking implications
when you delete rows from tables that have cascading deletes, see “Considerations
When Tables Have Cascading Deletes” on page 2-309.

2-210 IBM Informix Guide to SQL: Syntax

CHECK Clause

Use the CHECK clause to designate conditions that must be met before data can be
assigned to a column during an INSERT or UPDATE statement.

CHECK Clause:

CHECK
(1)

(Condition)

Notes:

1 See “Condition” on page 4-5

In Informix, the condition cannot include a user-defined routine.

During an insert or update, if the check constraint of a row evaluates to false, the
database server returns an error. The database server does not return an error if a
row evaluates to NULL for a check constraint. In some cases, you might want to
use both a check constraint and a NOT NULL constraint.

Using a Search Condition
The search condition that defines a check constraint cannot contain the following
elements: user-defined routines, subqueries, aggregates, host variables, or rowids.
In addition, the search condition cannot contain the following built-in variant
functions: CURRENT, SYSDATE, USER, SITENAME, DBSERVERNAME, or
TODAY.

When you specify a date value in a search condition, make sure you specify four
digits for the year, so that the DBCENTURY environment variable has no effect on
the condition. When you specify a two-digit year, the DBCENTURY environment
variable can produce unpredictable results if the condition depends on an
abbreviated year value. For more information about DBCENTURY, see the IBM
Informix Guide to SQL: Reference.

More generally, the database server saves the settings of environment variables
from the time of creation of check constraints. If any of these settings are
subsequently changed in a way that can affect the evaluation of a condition in a
check constraint, the new settings are disregarded, and the original environment
variable settings are used when the condition is evaluated.

With a BYTE or TEXT column, you can check for NULL or not-NULL values. This
constraint is the only constraint allowed on a BYTE or TEXT column.
Related reference

DBCENTURY (SQL Reference)

Restrictions When Using the Single-Column Constraint Format
When you use the single-column constraint format to define a check constraint, the
check constraint cannot depend on values in other columns of the table. The
following example creates the my_accounts table that has two columns with check
constraints, each in the single-column constraint format:
CREATE TABLE my_accounts (

chk_id SERIAL PRIMARY KEY,
acct1 MONEY CHECK (acct1 BETWEEN 0 AND 99999),
acct2 MONEY CHECK (acct2 BETWEEN 0 AND 99999));

Chapter 2. SQL statements 2-211

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

Both acct1 and acct2 are columns of MONEY data type whose values must be
between 0 and 99999. If, however, you want to test that acct1 has a larger balance
than acct2, you cannot use the single-column constraint format. To create a
constraint that checks values in more than one column, you must use the
“Multiple-Column Constraint Format” on page 2-214.

Constraint Definition

Use the constraint definition portion of CREATE TABLE for these purposes:
v To declare a name for the constraint
v To set a constraint to disabled, enabled, or filtering mode.

Constraint Definition:

CONSTRAINT constraint ENABLED

DISABLED
WITHOUT ERROR

FILTERING WITH ERROR

Element Description Restrictions Syntax

constraint Name of constraint Must be unique for the table among
index and constraint names

“Identifier” on page 5-21

Declaring a Constraint Name
The database server implements the constraint as an index. Whenever you use the
single- or multiple-column constraint format to place a data restriction on a
column, but without declaring a constraint name, the database server creates a
constraint and adds a row for that constraint in the sysconstraints system catalog
table. The database server also generates an identifier and adds a row to the
sysindexes system catalog table for each new primary-key, unique, or referential
constraint that does not share an index with an existing constraint. Even if you
declare a name for a constraint, the database server generates the name that
appears in the sysindexes table.

If you want, you can specify a meaningful name for the constraint. The name must
be unique among the names of constraints and indexes in the database.

Constraint names appear in error messages having to do with constraint violations.
You can use this name when you use the DROP CONSTRAINT clause of the
ALTER TABLE statement.

You also specify a constraint name when you change the mode of constraint with
the SET Database Object Mode statement or the SET Transaction Mode statement,
and in the DROP INDEX statement for constraints that are implemented as indexes
with user-defined names.

In an ANSI-compliant database, when you declare the name of a constraint of any
type, the combination of the owner name and constraint name must be unique
within the database.

The system catalog table that holds information about indexes is the sysindices
table.

2-212 IBM Informix Guide to SQL: Syntax

Constraint Names That the Database Server Generates: If you do not specify a
constraint name, the database server generates a constraint name using the
following template:
<constraint_type><tabid>_<constraintid>

In this template, constraint_type is the letter u for unique or primary-key
constraints, r for referential constraints, c for check constraints, and n for NOT
NULL constraints. In the template, tabid and constraintid are values from the tabid
and constrid columns of the systables and sysconstraints system catalog tables,
respectively. For example, the constraint name for a unique constraint might look
like ” u111_14” (with a leading blank space).

If the generated name conflicts with an existing identifier, the database server
returns an error, and you must then supply an explicit constraint name.

The generated index name in sysindexes (or sysindices) has this format:
[blankspace]<tabid>_<constraintid>

For example, the index name might be something like “ 111_14 “ (quotation marks
used here to show the blank space).

Choosing a Constraint-Mode Option

Use the constraint-mode options to control the behavior of constraints in INSERT,
DELETE, and UPDATE operations. These are the options.

Mode Effect

DISABLED
Does not enforce the constraint during INSERT, DELETE, and UPDATE
operations

ENABLED
Enforces the constraint during INSERT, DELETE, and UPDATE operations
If a target row causes a violation of the constraint, the statement fails. This
mode is the default.

FILTERING
Enforces the constraint during INSERT, DELETE, and UPDATE operations
If a target row causes a violation of the constraint, the statement continues
processing. The database server writes the row in question to the violations
table associated with the target table and writes diagnostic information to
the associated diagnostics table.

If you choose filtering mode, you can specify the WITHOUT ERROR or WITH
ERROR options. The following list explains these options.

Error Option
Effect

WITHOUT ERROR
Does not return an integrity-violation error when a filtering-mode
constraint is violated during an insert, delete, or update operation. This is
the default error option.

WITH ERROR
Returns an integrity-violation error when a filtering-mode constraint is
violated during an insert, delete, or update operation

Chapter 2. SQL statements 2-213

To reset the constraint mode of a table, see “SET Database Object Mode statement”
on page 2-599. For information about where the database server stores rows that
violate a constraint set to FILTERING, see “START VIOLATIONS TABLE
statement” on page 2-677.

Multiple-Column Constraint Format

Use the multiple-column constraint format to associate one or more columns with
a constraint. This alternative to the single-column constraint format allows you to
associate multiple columns with a constraint.

Multiple-Column Constraint Format:

�

�

,

UNIQUE (column)
(1)

DISTINCT
PRIMARY KEY

,
(2)

FOREIGN KEY (column) REFERENCES Clause
(3)

CHECK Clause

�

�
(1) (4)

Constraint Definition

Notes:

1 Informix extension

2 See “REFERENCES Clause” on page 2-208

3 See “CHECK Clause” on page 2-211

4 See “Constraint Definition” on page 2-212

Element Description Restrictions Syntax

column Columns on which to place constraint Not BYTE, TEXT, BLOB, CLOB “Identifier” on page
5-21

A multiple-column constraint has these cardinality and size restrictions:
v It can specify no more than 16 column names.
v In Informix, the maximum total length of the list of columns depends on the

page size, according to this formula:
MAXLength = (((PageSize - 93)/5) -1)

– For a page size of 2K, the total length cannot exceed 390 bytes.
– For a page size of 16K, the total length cannot exceed 3257 bytes.

Here the slash (/) symbol represents integer division.

When you define a unique constraint (by using the UNIQUE or DISTINCT
keyword), a column cannot appear in the constraint list more than once.

Using the multiple-column constraint format, you can perform these tasks:

2-214 IBM Informix Guide to SQL: Syntax

v Create data-integrity constraints for a set of one or more columns
v Declare a mnemonic name for a constraint
v Specify the constraint-mode option that controls the behavior of a constraint

during insert, delete, and update operations.

When you use this format, you can create composite primary and foreign keys, or
define check constraints that compare data in different columns.

See also the section “Differences Between a Unique Constraint and a Unique
Index” on page 2-207.

Restrictions with the Multiple-Column Constraint Format

Using Large-Object Types in Constraints: You cannot place unique, primary-key,
or referential (FOREIGN KEY) constraints on BYTE or TEXT columns. You can,
however, check for NULL or non-NULL values with a check constraint.

You cannot place unique or primary-key constraints on BLOB or CLOB columns. If
the constraint is on a set of columns that includes a column that stores encrypted
data, Informix cannot enforce the constraint.

You can find detailed discussions of specific constraints in the following sections:

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on page 2-211 “Defining Check Constraints Across
Columns” on page 2-216

DISTINCT “Using UNIQUE or DISTINCT
Constraints” on page 2-207

“Examples of the Multiple-Column
Constraint Format”

FOREIGN KEY “Using the FOREIGN KEY
Constraint”

“Defining Composite Primary and
Foreign Keys” on page 2-216

PRIMARY KEY “Using the PRIMARY KEY
Constraint” on page 2-208

“Defining Composite Primary and
Foreign Keys” on page 2-216

UNIQUE “Using UNIQUE or DISTINCT
Constraints” on page 2-207

“Examples of the Multiple-Column
Constraint Format”

Using the FOREIGN KEY Constraint
A foreign key joins and establishes dependencies between tables. That is, it creates
a referential constraint. (For more information on referential constraints, see the
“REFERENCES Clause” on page 2-208.)

A foreign key references a unique or primary key in a table. For every entry in the
foreign-key columns, a matching entry must exist in the unique or primary-key
columns if all foreign-key columns contain non-NULL values.

You cannot specify BYTE or TEXT columns as foreign keys.

You cannot specify BLOB or CLOB columns as foreign keys.

Examples of the Multiple-Column Constraint Format

The following example creates a standard table, called order_items, with a unique
constraint, called items_constr, using the multiple-column constraint format:

Chapter 2. SQL statements 2-215

CREATE TABLE order_items
(
order_id SERIAL,
line_item_id INT not null,
unit_price DECIMAL(6,2),
quantity INT,
UNIQUE (order_id,line_item_id) CONSTRAINT items_constr
);

For constraint names, see “Declaring a Constraint Name” on page 2-212.

Defining Check Constraints Across Columns:

When you use the multiple-column constraint format to define check constraints, a
check constraint can apply to more than one column in the same table. (You
cannot, however, create a check constraint whose condition uses a value from a
column in another table.)

This example compares two columns, acct1 and acct2, in the new table:
CREATE TABLE my_accounts

(
chk_id SERIAL PRIMARY KEY,
acct1 MONEY,
acct2 MONEY,
CHECK (0 < acct1 AND acct1 < 99999),
CHECK (0 < acct2 AND acct2 < 99999),
CHECK (acct1 > acct2)
);

In this example, the acct1 column must be greater than the acct2 column, or the
insert or update fails.

Defining Composite Primary and Foreign Keys:

When you use the multiple-column constraint format, you can create a composite
key. A composite key specifies multiple columns for a primary-key or foreign-key
constraint.

The next example creates two tables. The first table has a composite key that acts
as a primary key, and the second table has a composite key that acts as a foreign
key.
CREATE TABLE accounts (

acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type));

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER NOT NULL,
ref_type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

(acc_num, acc_type));

In this example, the foreign key of the sub_accounts table, ref_num and ref_type,
references the composite key, acc_num and acc_type, in the accounts table. If,
during an insert or update, you tried to insert a row into the sub_accounts table

2-216 IBM Informix Guide to SQL: Syntax

whose value for ref_num and ref_type did not exactly correspond to the values for
acc_num and acc_type in an existing row in the accounts table, the database server
would return an error.

A referential constraint must have a one-to-one relationship between referencing
and referenced columns. In other words, if the primary key is a set of columns (a
composite key), then the foreign key also must be a set of columns that
corresponds to the composite key.

Because of the default behavior of the database server, when you create the
foreign-key reference, you do not need to reference the composite-key columns
(acc_num and acc_type) explicitly. You can rewrite the references section of the
previous example as follows:
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

Default Index Creation Strategy for Constraints
When you create a table with unique or primary-key constraints, the database
server creates an internal index that is unique and ascending for each constraint.

When you create a table with a referential constraint, the database server creates an
internal index that is ascending and that allows duplicate values for each column
that you specify in the referential constraint.

An internal index occupies the same storage location as its table. For fragmented
tables, the fragments of an internal index occupy the same dbspace partitions that
you specify for the table fragments (or in some cases, the database dbspace).

If you require an index fragmentation strategy that is independent of the
underlying table fragmentation, do not define the constraint when you create the
table. Instead, use the CREATE INDEX statement to create a unique index with the
desired fragmentation strategy. Then use the ALTER TABLE statement to add the
constraint. The new constraint uses the previously defined index.

Important: In a database without logging, detached checking is the only kind of
constraint checking available. Detached checking means that constraint checking is
performed on a row-by-row basis.

Options clauses
The Options clauses of the CREATE TABLE statement provide options to create
various shadow columns, and to specify a security policy, a storage locations, a
fragmentation strategy, the extent size, the locking mode, a user-defined access
method for the table, and other table properties.

Options:

�

,

WITH CRCOLS
REPLCHECK
VERCOLS

(1)
SECURITY POLICY Clause

�

Chapter 2. SQL statements 2-217

�
(2) (3)

Storage Options
(4)

LOCK MODE Options

�

�
(5)

USING Access-Method Clause

Notes:

1 See “SECURITY POLICY Clause” on page 2-220

2 Informix extension

3 See “Storage Options” on page 2-221

4 See “LOCK MODE Options” on page 2-229

5 See “USING Access-Method Clause” on page 2-228

Using the WITH CRCOLS Option
Use the WITH CRCOLS keywords to create two shadow columns that Enterprise
Replication uses for conflict resolution. The first column, cdrserver, contains the
identity of the database server where the last modification occurred. The second
column, cdrtime, contains the time stamp of the last modification. You must add
these columns before you can use time stamps for UDR conflict resolution. These
two columns are hidden shadow columns, because they cannot be indexed and
cannot be viewed in system catalog tables.

For most database operations, the cdrserver and cdrtime columns are hidden. For
example, if you include the WITH CRCOLS keywords when you create a table, the
cdrserver and cdrtime columns have the following behavior:
v They are not returned by queries that specify an asterisk (*) as the projection

list, as in the statement:
SELECT * FROM tablename;

v They do not appear in DB-Access when you ask for information about the
columns of the table.

v They are not included in the number of columns (ncols) in the systables system
catalog table entry for tablename.

To view the contents of cdrserver and cdrtime, you must explicitly specify the
columns in the projection list of a SELECT statement, as the following example
shows:
SELECT cdrserver, cdrtime FROM tablename;

For more information about how to use this option, refer to the IBM Informix
Enterprise Replication Guide.
Related concepts

Preparing Tables for a Consistency Check Index (Enterprise Replication Guide)

Using the WITH REPLCHECK Keywords
Use the WITH REPLCHECK keywords to create the ifx_replcheck shadow column
that Enterprise Replication uses for consistency checking.

2-218 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.erep.doc/ids_erp_525.htm#ids_erp_525

The ifx_replcheck column is a visible shadow column because it can be indexed
and can be viewed in system catalog tables. After you create the ifx_replcheck
shadow column, you must create a new unique index on the primary key and the
ifx_replcheck column. Enterprise Replication uses that index to speed consistency
checking.

The ifx_replcheck shadow column requires that the cdrserver and cdrtime shadow
columns also be defined on the table.

For most database operations, the ifx_replcheck column is hidden. For example, if
you include the WITH REPLCHECK keywords when you create a table, the
ifx_replcheck column has the following behavior:
v It is not returned by queries that specify an asterisk (*) as the projection list, as

in the statement:
SELECT * FROM tablename;

v It does appear in DB-Access when you ask for information about the columns of
the table.

v It is included in the number of columns (ncols) in the systables system catalog
table entry for tablename.

To view the contents of ifx_replcheck , you must explicitly specify the columns in
the projection list of a SELECT statement, as the following example shows:
SELECT ifx_replcheck FROM customer;

For more information about how to use these keywords, refer to the IBM Informix
Enterprise Replication Guide.

Example

In the following example, the cdrserver, cdrtime, and ifx_replcheck shadow
columns are added to the customer table:
CREATE TABLE customer (id int) WITH CRCOLS WITH REPLCHECK;

Related concepts

Shadow Columns (Enterprise Replication Guide)

Using the WITH VERCOLS Option
Use the WITH VERCOLS keywords to create two shadow columns that Informix
uses to support update operations on secondary servers.

The first column, ifx_insert_checksum, contains a checksum of the row when it
was first created. The second column, ifx_row_version, contains a version number
of the row. When a row is first inserted, ifx_insert_checksum is generated, and
ifx_row_version will be set to one. Each time the row is updated, ifx_row_version
is incremented by one, but ifx_insert_checksum does not change. These two
columns are visible shadow columns because they can be indexed and can be
viewed in system catalog tables.

For most database operations, the ifx_insert_checksum and ifx_row_version
columns are hidden. For example, if you include the WITH VERCOLS keywords
when you create a table, the ifx_insert_checksum and ifx_row_version columns
have the following behavior:
v They are not returned by queries that specify an asterisk (*) as the projection

list, as in the statement:
SELECT * FROM tablename;

Chapter 2. SQL statements 2-219

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.erep.doc/ids_erp_047.htm#ids_erp_047

v They appear in DB-Access when you ask for information about the columns of
the table.

v They are included in the number of columns (ncols) in the systables system
catalog table entry for tablename.

To view the contents of ifx_insert_checksum and ifx_row_version, you must
explicitly specify the column names in the projection list of a SELECT statement, as
the following example shows:
SELECT ifx_insert_checksum, ifx_row_version FROM tablename;

When row versioning is enabled, ifx_row_version is incremented by one each time
the row is updated; however, row updates made by Enterprise Replication do not
increment the row version. To update the row version on a server using Enterprise
Replication, you must include the ifx_row_version column in the replicate
participant definition.

For more information about how to use this option, refer to the IBM Informix
Administrator's Guide.
Related concepts

Row versioning (Administrator's Guide)

SECURITY POLICY Clause

The optional Security Policy clause can use the following syntax to specify a
security policy that is associated with the table. .

SECURITY POLICY Clause:

SECURITY POLICY policy

Element Description Restrictions Syntax

policy Name of a security
policy

Must exist in the database “Identifier” on page 5-21

Only DBSECADM can create a table that includes the Security Policy clause to
specify a security policy for the table.

The following guidelines apply to tables that can be protected by including a valid
SECURITY POLICY clause in the CREATE TABLE statement:
v A table is not protected unless it has a security policy associated with it and has

either rows secured or at least one column secured. The former indicates that the
table is a protected table with row level granularity and the latter indicates that
the table is a protected table with column level granularity.

v Securing rows with the IDSSECURITYLABEL column clause fails if the table
does not have a security policy associated with it.

v Securing a column with the COLUMN SECURED WITH clause fails if the table
does not have a security policy associated with it.

v A table can have at most one security policy.
v A table can have any number of protected columns, and each protected column

can have a different label, or several protected columns can share the same label.

2-220 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0877.htm#ids_admin_0877

v A security policy cannot be associated with a temporary table nor with a typed
table in a table hierarchy.

Storage Options

Use these options to specify the storage location, distribution scheme, and extent
size for the table. This is an extension to the ANSI/ISO standard for SQL syntax.

Storage Options:

IN dbspace
extspace

(1)
FRAGMENT BY Clause

(2)
PUT Clause

�

�
(3)

EXTENT SIZE Options

Notes:

1 See “FRAGMENT BY clause” on page 2-222

2 See “PUT Clause” on page 2-225

3 See “EXTENT SIZE Options” on page 2-227

Element Description Restrictions Syntax

dbspace Dbspace to store the table Must already exist “Identifier” on page 5-21

extspace Name declared in the onspaces command to a
storage area outside the database server

Must already exist See documentation for your
access method.

If you use the “USING Access-Method Clause” on page 2-228 to specify an access
method, that method must support the storage space.

You can specify a dbspace for the table that is different from the storage location
for the database, or fragment the table among dbspaces, or among named
fragments in one or more dbspaces. If you specify no IN clause nor fragmentation
scheme, the new table resides in the same dbspace where the current database
resides.

In Informix, you can use the PUT clause to specify storage options for smart large
objects. For more information, see “PUT Clause” on page 2-225.

Note: If your table contains simple large objects (TEXT or BYTE), you can specify
a separate blobspace for each object. For information on storing simple large
objects, refer to “Large-Object Data Types” on page 4-29.

Using the IN Clause
Use the IN clause to specify a storage space for the table. The storage space that
you specify must already exist.

Storing Data in a dbspace: You can use the IN clause to isolate a table. For
example, if the history database is in the dbs1 dbspace, but you want the family
data placed in a separate dbspace called famdata, use the following statements:

Chapter 2. SQL statements 2-221

|
|
|

CREATE DATABASE history IN dbs1;

CREATE TABLE family
(
id_num SERIAL(101) UNIQUE,
name CHAR(40),
nickname CHAR(20),
mother CHAR(40),
father CHAR(40)
)
IN famdata;

For more information about how to store and manage your tables in separate
dbspaces, see your IBM Informix Administrator's Guide.
Related concepts

Tables (Administrator's Guide)

Storing Data in an extspace: In general, use the extspace storage option in
conjunction with the “USING Access-Method Clause” on page 2-228. For more
information, refer to the documentation of your access method.

FRAGMENT BY clause
Use the FRAGMENT BY clause to create a fragmented table and to specify its
storage distribution scheme. The keywords PARTITION BY are a synonym for
FRAGMENT BY.

Use the FRAGMENT BY clause to create fragmented tables and to specify their
distribution scheme. (The keywords PARTITION BY are a synonym for
FRAGMENT BY.)

FRAGMENT BY clause for tables:

WITH ROWIDS
FRAGMENT BY
PARTITION

�

�

,

ROUND ROBIN IN dbspace
,

PARTITION part IN dbspace
EXPRESSION Fragment List

Fragment list:

�

,

expr IN dbspace
PARTITION part (expr)

�

�
, REMAINDER IN dbspace

PARTITION part

Element Description Restrictions Syntax

column Column to which to apply the
fragmentation strategy

Must be a column within the table “Identifier” on
page 5-21

2-222 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0510.htm#ids_admin_0510

Element Description Restrictions Syntax

dbspace Dbspace to store the table
fragment

You can specify no more than 2,048 dbspaces. All
dbspaces that store the fragments must have the
same page size.

“Identifier” on
page 5-21

expr Expression that defines a table
fragment

Columns can be from the current table only, and
data values can be from only a single row. Value
returned must be Boolean (true or false).

“Expression”
on page 4-40

partition Name of a fragment Required for any named fragment in the same
dbspace as another fragment of the same table.
Name must be unique among fragments of the
same table.

“Identifier” on
page 5-21

When you fragment a table, the IN keyword is followed by the name of the
storage space where a table fragment is to be stored.

Using the WITH ROWIDS Option
Nonfragmented tables contain a hidden column called rowid, but by default,
fragmented tables have no rowid column. You can use the WITH ROWIDS
keywords to add the rowid column to a fragmented table. Each row is
automatically assigned a unique rowid value that remains stable for the life of the
row and that the database server can use to find the physical location of the row.
Each row requires an additional four bytes to store the rowid.

Important: This is a deprecated feature. Use primary keys as an access method
rather than the rowid column.

You cannot use the WITH ROWIDS clause with typed tables.

Fragmenting by ROUND ROBIN
In a round-robin distribution scheme, specify at least two dbspaces where you
want the fragments to be placed, or specify at least two fragment names in one or
more dbspaces. As records are inserted into the table, they are placed in the first
available fragment. The database server balances the load among the specified
fragments as you insert records and distributes the rows in such a way that the
fragments always maintain approximately the same number of rows. In this
distribution scheme, the database server must scan all fragments when it searches
for a row.

You can use the PUT clause to specify round-robin fragmentation for smart large
objects. For more information, see the “PUT Clause” on page 2-225.

Fragmenting by EXPRESSION
In an expression-based distribution scheme, each fragment expression in a rule
specifies a storage space. Each fragment expression in the rule isolates data and
aids the database server in searching for rows.

To fragment a table by expression, specify one of the following rules:
v Range rule

A range rule specifies fragment expressions that use a range to specify which
rows are placed in a fragment, as the next example shows:
FRAGMENT BY EXPRESSION c1 < 100 IN dbsp1,

c1 >= 100 AND c1 < 200 IN dbsp2, c1 >= 200 IN dbsp3;

v Arbitrary rule

Chapter 2. SQL statements 2-223

|

An arbitrary rule specifies fragment expressions based on a predefined SQL
expression that typically uses OR clauses to group data, as the following
example shows:
FRAGMENT BY EXPRESSION

zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5;

Warning: See the note about the DBCENTURY environment variable and date
values in fragment expressions in the section “Logging Options” on page 2-201.

User-Defined Functions in Fragment Expressions: For rows that include
user-defined data types, you can use comparison conditions or user-defined
functions to define the range rules. In the following example, comparison
conditions define the range rules for the long1 column, which contains an opaque
data type:
FRAGMENT BY EXPRESSION

long1 < ’3001’ IN dbsp1,
long1 BETWEEN ’3001’ AND ’6000’ IN dbsp2,
long1 > ’6000’ IN dbsp3;

An implicit, user-defined cast converts 3001 and 6000 to the opaque type.

Alternatively, you can use user-defined functions to define the range rules for the
opaque data type of the long1 column:
FRAGMENT BY EXPRESSION

(lessthan(long1,’3001’)) IN dbsp1,
(greaterthanorequal(long1,’3001’) AND
lessthanorequal(long,’6000’)) IN dbsp2,
(greaterthan(long1,’6000’)) IN dbsp3;

Explicit user-defined functions require parentheses around the entire fragment
expression before the IN clause, as the previous example shows.

User-defined functions in a fragment expression can be written in SPL or in the C
or Java language. These functions must satisfy four requirements:
v They must evaluate to a Boolean value.
v They must be nonvariant.
v They must reside within the same database as the table.
v They must not generate OUT nor INOUT parameters.

For information on how to create UDRs for fragment expressions, refer to IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Using the REMAINDER Keyword: Use the REMAINDER keyword to specify the
storage space in which to store valid values that fall outside the specified
expression or expressions. If you do not specify a remainder, and a row is inserted
or updated with values that do not correspond to any fragment definition, the
database server returns an error.

The following example uses an arbitrary rule to define five fragments for specific
values of the c1 column, and a sixth fragment for all other values:
CREATE TABLE T1 (c1 INT) FRAGMENT BY EXPRESSION

PARTITION PART_1 (c1 = 10) IN dbs1,
PARTITION PART_2 (c1 = 20) IN dbs1,

2-224 IBM Informix Guide to SQL: Syntax

PARTITION PART_3 (c1 = 30) IN dbs1,
PARTITION PART_4 (c1 = 40) IN dbs2,
PARTITION PART_5 (c1 = 50) IN dbs2,
PARTITION PART_6 REMAINDER IN dbs2;

Here the first three fragments are stored in partitions of the dbs1 dbspace, and the
other fragments, including the remainder, are stored in named fragments of the
dbs2 dbspace. Explicit fragment names are required in this example, because each
dbspace has multiple partitions.

Expression Fragment Clause

Expression Fragment Clause:

�

,

expr IN dbspace
PARTITION part (expr)

�

�
, REMAINDER IN dbspace

PARTITION part

Element Description Restrictions Syntax

part Name of a fragment Required for any named fragment in the same
dbspace as another named fragment of the
same table. Name must be unique among
fragments of the same table.

“Identifier” on page 5-21

dbspace dbspace to store the table
fragment

You can specify no more than 2,048 dbspaces. All
dbspaces that store the fragments must have the
same page size.

“Identifier” on page 5-21

expr Expression that defines a
table fragment using a
range, hash, or arbitrary
rule

Columns can be from the current table only,
and data values can be from only a single row.
Value returned must be Boolean (true or false).

“Expression” on page 4-40

PUT Clause

Use the PUT clause to specify the storage spaces and characteristics for each
column that will contain smart large objects.

PUT Clause:

Chapter 2. SQL statements 2-225

|
|
|
|

PUT � �

�

,
,

column IN (sbspace)
,

()
EXTENT SIZE kbytes

NO LOG

LOG
HIGH INTEG

NO KEEP ACCESS TIME

KEEP ACCESS TIME

Element Description Restrictions Syntax

column Column to store in sbspace Must contain a BLOB, CLOB,
user-defined, or complex data type

“Identifier” on page 5-21

kbytes Number of kilobytes to allocate for
the extent size

Must be an integer value “Literal Number” on
page 4-184

sbspace Name of an area of storage Must exist “Identifier” on page 5-21

The column cannot be in the form column.field. That is, the smart large object that
you are storing cannot be one field of a row type.

A smart large object is contained in a single sbspace. The SBSPACENAME
configuration parameter specifies the system default sbspace in which smart large
objects are created, unless you specify another storage area.

Specifying more than one sbspace distributes the smart large objects in a
round-robin distribution scheme, so that the number of smart large objects in each
space is approximately equal. The syscolattribs system catalog table contains one
row for each sbspace that you specify in the PUT clause.

When you fragment smart large objects across different sbspaces, you can work
with smaller sbspaces. If you limit the size of an sbspace, backup and archive
operations can perform more quickly. For an example that uses the PUT clause, see
“Alternative to Full Logging” on page 2-227.

The following storage options are available to store BLOB and CLOB data:

Option Effect

EXTENT SIZE
Specifies how many kilobytes in a smart-large-object extent. The database
server might round the EXTENT SIZE up so that the extents are multiples
of the sbspace page size.

HIGH INTEG
Produces user-data pages that contain a page header and a page trailer to
detect incomplete writes and data corruption. This is the default
data-integrity behavior.

2-226 IBM Informix Guide to SQL: Syntax

KEEP ACCESS TIME
Records, in the smart-large-object metadata, the system time when the
smart large object was last read or written.

LOG Follows the logging procedure used with the current database log for the
corresponding smart large object. This option can generate large amounts
of log traffic and increase the risk of filling the logical log. (See also
“Alternative to Full Logging.”)

NO KEEP ACCESS TIME
Does not record the system time when the smart large object was last read
or written. This provides better performance than the KEEP ACCESS TIME
option and is the default tracking behavior.

NO LOG
Turns off logging. This option is the default behavior.

If a user-defined or complex data type contains more than one large object, the
specified large-object storage options apply to all large objects in the type unless
the storage options are overridden when the large object is created.

Important: The PUT clause does not affect the storage of simple-large-object data
types (BYTE and TEXT). For information on how to store BYTE and TEXT data,
see “Large-Object Data Types” on page 4-29.

Alternative to Full Logging
Instead of full logging, you can turn off logging when you load the smart large
object initially and then turn logging back on once the object is loaded.

Use the NO LOG option to turn off logging. If you use NO LOG, you can restore
the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist either,
but that result is not guaranteed.

The following statement creates the greek table. Data values for the table are
fragmented into the dbs1 and dbs2 dbspaces. The PUT clause assigns the
smart-large-object data in the gamma and delta columns to the sb1 and sb2
sbspaces, respectively. The TEXT data values in the eps column are assigned to the
blb1 blobspace.
CREATE TABLE greek
(alpha INTEGER,
beta VARCHAR(150),
gamma CLOB,
delta BLOB,
eps TEXT IN blb1)

FRAGMENT BY EXPRESSION
alpha <= 5 IN dbs1, alpha > 5 IN dbs2
PUT gamma IN (sb1), delta IN (sb2);

EXTENT SIZE Options

The EXTENT SIZE options can define the size of storage extents allocated to the
table.

EXTENT SIZE Options:

EXTENT SIZE first_kilobytes NEXT SIZE next_kilobytes

Chapter 2. SQL statements 2-227

Element Description Restrictions Syntax

first_kilobytes Length in kilobytes of the first
extent for the table; default is 16.

Must return a positive number;
maximum is the chunk size

“Expression” on page
4-40

next_kilobytes Length in kilobytes of each
subsequent extent; default is 16.

Must return a positive number;
maximum is the chunk size

“Expression” on page
4-40

The minimum length of first_kilobytes (and of next_kilobytes) is four times the
disk-page size on your system. For example, if you have a 2-kilobyte page system,
the minimum length is 8 kilobytes.

The next example specifies a first extent of 20 kilobytes and allows the rest of the
extents to use the default size:
CREATE TABLE emp_info

(
f_name CHAR(20),
l_name CHAR(20),
position CHAR(20),
start_date DATETIME YEAR TO DAY,
comments VARCHAR(255)
)

EXTENT SIZE 20;

If a table has no data, you can use the ALTER TABLE MODIFY EXTENT SIZE or
ALTER TABLE MODIFY NEXT SIZE statements of SQL to change the size of the
first extent and of the next extent, respectively, of the empty table. These
operations are not supported, however, for tables that contain one or more rows.
For more information about these options to the ALTER TABLE statement, see
“MODIFY EXTENT SIZE” on page 2-69 and “MODIFY NEXT SIZE Clause” on
page 2-70.

If you need to revise the extent sizes of a table, you can modify the extent and
next-extent sizes in the generated schema files of an unloaded table. For example,
to make a database more efficient, you might unload a table, modify the extent
sizes in the schema files, and then create and load a new table. For information
about how to optimize extents, see your IBM Informix Administrator's Guide.
Related concepts

Extents (Administrator's Guide)

USING Access-Method Clause

The USING Access Method clause can specify an access method.

USING Access-Method Clause:

USING
(1)

Specific Name �

2-228 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0485.htm#ids_admin_0485

� �

�

,

,

(config_keyword)
='config_value'

Notes:

1 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

config_keyword Configuration keyword associated
with the specified access method

No more than 18 bytes. The access
method must exist.

Literal keyword

config_value Value of the specified configuration
keyword

No more than 236 bytes. Must be
defined by the access method.

“Quoted String”
on page 4-188

A primary-access method is a set of routines to perform DDL and DML operations,
such as create, drop, insert, delete, update, and scan, to make a table available to
the database server. Informix provides a built-in primary-access method.

You store and manage a virtual table either outside of the database server in an
extspace or inside the database server in an sbspace. (See “Storage Options” on
page 2-221.) You can access a virtual table with SQL statements. Access to a virtual
table requires a user-defined primary-access method.

DataBlade modules can provide other primary-access methods to access virtual
tables. When you access a virtual table, the database server calls the routines
associated with that access method rather than the built-in table routines. For more
information on these other primary-access methods, refer to your access-method
documentation.

You can retrieve a list of configuration values for an access method from a table
descriptor (mi_am_table_desc) using the MI_TAB_AMPARAM macro. Not all
keywords require configuration values.

The access method must already exist. For example, if an access method called
textfile exists, you can specify it with the following syntax:
CREATE TABLE mybook

(...)
IN myextspace
USING textfile (DELIMITER=’:’);

LOCK MODE Options

Use the LOCK MODE options to specify the locking granularity of the table.

LOCK MODE Options:

LOCK MODE PAGE
ROW

The following table describes the locking-granularity options available.

Chapter 2. SQL statements 2-229

Granularity Effect

PAGE Obtains and releases one lock on a whole page of rows

This is the default locking granularity. Page-level locking is especially
useful when you know that the rows are grouped into pages in the same
order that you are using to process all the rows. For example, if you are
processing the contents of a table in the same order as its cluster index,
page locking is appropriate.

ROW Obtains and releases one lock per row

Row-level locking provides the highest level of concurrency. If you are
using many rows at one time, however, the lock-management overhead
can become significant. You might also exceed the maximum number of
locks available, depending on the configuration of your database server,
but Informix can support up to 18 million locks on 32-bit platforms, or 600
million locks on 64-bit platforms. Only tables with row-level locking can
support the LAST COMMITTED isolation level feature.

You can subsequently change the lock mode of the table with the ALTER TABLE ...
LOCK MODE statement.

Precedence and Default Behavior
In Informix, you do not need to specify the lock mode each time you create a new
table. You can globally set the locking granularity of all new tables in the following
environments:
v Database session of an individual user

You can set the IFX_DEF_TABLE_LOCKMODE environment variable to specify
the lock mode of new tables during your current session.

v Database server (all sessions on the database server)
If you are a DBA, you can set the DEF_TABLE_LOCKMODE configuration
parameter in the ONCONFIG file to determine the lock mode of all new tables
in the database server.
If you are not a DBA, you can set the IFX_DEF_TABLE_LOCKMODE
environment variable for the database server, before you run oninit, to specify
the lock mode of all new tables of the database server.

The LOCK MODE setting in a CREATE TABLE statement takes precedence over
the settings of the IFX_DEF_TABLE_LOCKMODE environment variable and the
DEF_TABLE_LOCKMODE configuration parameter.

If CREATE TABLE specifies no lock mode setting, the default mode depends on
the setting of the IFX_DEF_TABLE_LOCKMODE environment variable or the
DEF_TABLE_LOCKMODE configuration parameter. For information about
IFX_DEF_TABLE_LOCKMODE, refer to the IBM Informix Guide to SQL: Reference.
For information about the DEF_TABLE_LOCKMODE configuration parameter,
refer to the IBM Informix Administrator's Reference.
Related reference

IFX_DEF_TABLE_LOCKMODE (SQL Reference)

OF TYPE Clause

Use the OF TYPE clause to create a typed table for an object-relational database. A
typed table is a table to which you assign a named ROW data type.

2-230 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_242.htm#ids_sqr_242

OF TYPE Clause:

OF TYPE row_type

�

,
(1)

(Multiple-Column Constraint Format)

�

�
UNDER supertable

(2)
Options

Notes:

1 See “Multiple-Column Constraint Format” on page 2-214

2 See “Options clauses” on page 2-217

Element Description Restrictions Syntax

row_type Name of the ROW type on which
this table is based

Must be a named ROW data type
registered in the local database

“Identifier” on page
5-21

supertable Name of the table from which this
table inherits its properties

Must already exist as a typed table “Identifier” on page
5-21

If you use the UNDER clause, the row_type must be derived from the ROW type of
the supertable. A type hierarchy must already exist in which the named ROW type
of the new table is a subtype of the named ROW type of the supertable.

Jagged rows are any set rows from a table hierarchy in which the number of
columns is not fixed among the typed tables within the hierarchy. Some APIs, such
as Informix ESQL/C and Informix JDBC Driver, do not support queries that return
jagged rows.

When you create a typed table, CREATE TABLE cannot specify names for its
columns, because the column names were declared when you created the ROW
type. Columns of a typed table correspond to the fields of the named ROW type.
The ALTER TABLE statement cannot add additional columns to a typed table.

For example, suppose you create a named ROW type, student_t, as follows:
CREATE ROW TYPE student_t

(name VARCHAR(30),
average REAL,
birthdate DATETIME YEAR TO DAY)

If a table is assigned the type student_t, the table is a typed table whose columns
are of the same name and data type, and in the same order, as the fields of the
type student_t. For example, the following CREATE TABLE statement creates a
typed table named students whose type is student_t:
CREATE TABLE students OF TYPE student_t

The students table has the following columns:
name VARCHAR(30)
average REAL
birthdate DATETIME

Chapter 2. SQL statements 2-231

For more information about ROW types, refer to the CREATE ROW TYPE
statement on page 1-194.

Using Large-Object Data in Typed Tables
Use the BLOB or CLOB instead of BYTE or TEXT data types when you create a
typed table that contains columns for large objects. For backward compatibility,
you can create a named-ROW type that contains BYTE or TEXT fields and use that
ROW type to re-create an existing (untyped) table as a typed table. Although you
can use a ROW type that contains BYTE or TEXT fields to create a typed table,
such a ROW type is not valid as a column. You can, however, use a ROW type that
contains BLOB or CLOB fields both in typed tables and in columns.

Using the UNDER Clause
Use the UNDER clause to specify inheritance (that is, define the new table as a
subtable). The subtable inherits properties from the specified supertable. In
addition, you can define new properties specific to the subtable.

Continuing the example shown in “OF TYPE Clause” on page 2-230, the following
statements create a typed table, grad_students, that inherits all of the columns of
the students table but also has columns for adviser and field_of_study that
correspond to fields in the grad_student_t ROW type:
CREATE ROW TYPE grad_student_t

(adviser CHAR(25),
field_of_study CHAR(40)) UNDER student_t;

CREATE TABLE grad_students OF TYPE grad_student_t UNDER students;

When you use the UNDER clause, the subtable inherits these properties:
v All columns in the supertable
v All constraints defined on the supertable
v All indexes defined on the supertable
v All triggers defined on the supertable.
v All referential integrity constraints
v The access method
v The storage option specification (including fragmentation strategy)

If a subtable defines no fragments, but if its supertable has fragments defined,
then the subtable inherits the fragments of the supertable.

Tip: Any heritable attributes that are added to a supertable after subtables have
been created are automatically inherited by existing subtables. You do not need to
add all heritable attributes to a supertable before you create its subtables.

Restrictions on Table Hierarchies: Inheritance occurs in one direction only,
namely from supertable to subtable. Properties of subtables are not inherited by
supertables. The section “System Catalog Information” on page 2-233 lists the
inherited database objects for which the system catalog maintains no information
regarding subtables.

No two tables in a table hierarchy can have the same data type. For example, the
final line of the next code example is invalid, because the tables tab2 and tab3
cannot have the same row type (rowtype2):

create row type rowtype1 (...);
create row type rowtype2 (...) under rowtype1;
create table tab1 of type rowtype1;
create table tab2 of type rowtype2 under tab1;
create table tab3 of type rowtype2 under tab1; -- This is not valid.

2-232 IBM Informix Guide to SQL: Syntax

Access Privileges on Tables
The privileges on a table describe both who can access the information in the table
and who can create new tables. For more information about access privileges, see
the description of the “GRANT statement” on page 2-401 statement.

In an ANSI-compliant database, no default table-level privileges exist. You must
grant these privileges explicitly.

Setting the environment variable NODEFDAC to yes prevents default privileges
from being granted to PUBLIC on new tables in a database that is not ANSI
compliant, as described in the IBM Informix Guide to SQL: Reference. For more
information about privileges, see the IBM Informix Guide to SQL: Tutorial.
Related reference

NODEFDAC (SQL Reference)

System Catalog Information
When you create a table, the database server adds information about the table to
the systables system catalog table, and column information to syscolumns system
catalog table. The sysfragments system catalog table contains information about
fragmentation strategies and the storage location of fragments. The sysblobs
system catalog table contains information about the location of dbspaces and of
simple large objects. (The syschunks table in the sysmaster database contains
information about the location of smart large objects.)

The systabauth, syscolauth, sysfragauth, sysprocauth, sysusers, and
sysxtdtypeauth tables contain information about the discretionary access privileges
that various CREATE TABLE options require.

The sysextcols, sysextdfiles, and sysexternal tables contain additional information
about objects that the CREATE EXTERNAL TABLE statement registers in the
database.

The systables, sysxtdtypes, and sysinherits system catalog tables provide
information about typed tables. For typed-table hierarchies, constraints, indexes,
and triggers are recorded in the system catalog for the supertable, but not for
subtables that inherit them. Fragmentation information, however, is recorded for
both supertables and subtables. For more information about inheritance, refer to
the IBM Informix Guide to SQL: Tutorial.

Related Information

Related statements: “ALTER TABLE statement” on page 2-41, “CREATE INDEX
statement” on page 2-135, “CREATE DATABASE statement” on page 2-97,
“CREATE EXTERNAL TABLE Statement” on page 2-103, “CREATE ROW TYPE
statement” on page 2-176, “CREATE TEMP TABLE statement” on page 2-234,
“DROP TABLE statement” on page 2-347, “SET Database Object Mode statement”
on page 2-599, and “SET Transaction Mode statement” on page 2-674

For discussions of database and table creation, including discussions on data types,
data-integrity constraints, and tables in hierarchies, see the IBM Informix Database
Design and Implementation Guide.

For information about the system catalog tables that store information about
objects in the database, see the IBM Informix Guide to SQL: Reference. For
information about the syschunks table (in the sysmaster database) that contains

Chapter 2. SQL statements 2-233

|
|
|

|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_285.htm#ids_sqr_285

information about the location of smart large objects, see your IBM Informix
Administrator's Reference.
Related concepts

System Catalog Tables (SQL Reference)
Related reference

syschunks (Administrator's Reference)

CREATE TEMP TABLE statement
Use the CREATE TEMP TABLE statement to create a temporary table in the
current database.

Syntax

�� �

,
(1)

CREATE TEMP TABLE table (Column Definition �

�

�

)
,

(2)
, Multiple-Column Constraint Format

(1)
Column Definition

WITH NO LOG

(3)
Options ��

Notes:

1 See “Column Definition” on page 2-235

2 See “Multiple-Column Constraint Format” on page 2-237

3 See “Temporary Table Options” on page 2-238

Element Description Restrictions Syntax

table Name declared here for a table Must be unique in session “Identifier” on page 5-21

Usage

You must have the Connect privilege on the database to create a temporary table.
The temporary table is visible only to the user who created it.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a temporary table of
the specified name already exists in the current session, or if the specified name is
the identifier of a permanent table, external table, view, sequence object, or
synonym in the current database.

In DB-Access, using the CREATE TEMP TABLE statement outside the CREATE
SCHEMA statement generates warnings if you set DBANSIWARN.

In ESQL/C, the CREATE TEMP TABLE statement generates warnings if you use
the -ansi flag or set the DBANSIWARN environment variable.

2-234 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0216.htm#ids_adr_0216

Using the TEMP Option
When you create a TEMP table, you can build indexes and constraints on the table.

Naming a Temporary Table
A temporary table is associated with a session, not with a database. When you
create a temporary table, you cannot create another temporary table with the same
name (even for another database) until you drop the first temporary table or end
the session. The name must be different from the name of any other table, view,
sequence object, or synonym in the current database, but it need not be different
from the temporary table names that are declared in other sessions.

In an ANSI-compliant database, the combination owner.table must be unique in the
database.

Using the WITH NO LOG Option
Use the WITH NO LOG option to reduce the overhead of transaction logging. If
you specify WITH NO LOG, operations on the temporary table are not included in
the transaction log records.

If the ONCONFIG parameter TEMPTAB_NOLOG is set to 1, logging of temporary
tables is disabled and all temporary tables are non-logging by default. This setting
can improve the performance of operations that use temporary tables, such as
HDR operations. The WITH NO LOG option is not needed when
TEMPTAB_NOLOG has disabled logging of temporary tables. For information
about how to set the TEMPTAB_NOLOG parameter, see your IBM Informix
Administrator's Reference.

If you use the WITH NO LOG option in a database that does not use logging, the
WITH NO LOG keywords have no effect. If your database does not support
transaction logging, every table behaves as if the WITH NO LOG option were
specified.

Once you turn off logging on a temporary table, you cannot turn it back on; a
temporary table, therefore, is either always logged or else never logged.

The following temporary table is not logged in a database that uses logging:
CREATE TEMP TABLE tab2 (fname CHAR(15), lname CHAR(15))

WITH NO LOG;

Column Definition
Use the Column Definition segment of the CREATE TEMP TABLE statement to
declare the name and the data type (and optionally a default value and
constraints) of a single column of the temporary table.

Column Definition:

column
(1)

Data Type
(2)

DEFAULT Clause

�

Chapter 2. SQL statements 2-235

�
(3)

Single-Column Constraint Format

Notes:

1 See “Data Type” on page 4-21

2 See “DEFAULT Clause” on page 2-203

3 See “Single-Column Constraint Format”

Element Description Restrictions Syntax

column Name declared here for a column in the table Must be unique in its table “Identifier” on page
5-21

This portion of the CREATE TEMP TABLE statement resembles the corresponding
syntax segment in the CREATE TABLE statement. The differences include these:
v You cannot define a referential constraint on the column.
v The data type cannot be IDSSECURITYLABEL.
v The SECURED WITH label option is not supported for temporary tables.

Just as when you create permanent tables, any explicit or default storage size
specification for a column of a built-in character type, such as CHAR, LVARCHAR,
NCHAR, NVARCHAR, or VARCHAR, is interpreted in units of bytes, unless the
SQL_LOGICAL_CHAR configuration parameter is set to enable logical character
semantics for datatype declarations. See the IBM Informix Administrator's Reference
for more information about the effect of the SQL_LOGICAL_CHAR setting in
locales that support multibyte code sets, such as UTF-8, where a single logical
character can require more than one byte of storage.
Related reference

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

Single-Column Constraint Format

Use the single-column constraint format to create one or more data-integrity
constraints for a single column in a temporary table.

Single-Column Constraint Format:

NOT NULL

� UNIQUE
(1)

DISTINCT
PRIMARY KEY

(2)
CHECK Clause

Notes:

1 Informix extension

2 See “CHECK Clause” on page 2-211

2-236 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

This is a subset of the syntax of “Single-Column Constraint Format” on page 2-205
that the CREATE TABLE statement supports.

You can find detailed discussions of specific constraints in these sections.

Constraint
For more information, see

CHECK
“CHECK Clause” on page 2-211

DISTINCT
“Using UNIQUE or DISTINCT Constraints” on page 2-207

NOT NULL
“Using the NOT NULL Constraint” on page 2-206

PRIMARY KEY
“Using the PRIMARY KEY Constraint” on page 2-208

UNIQUE
“Using UNIQUE or DISTINCT Constraints” on page 2-207

Constraints that you define on temporary tables are always enabled.

Multiple-Column Constraint Format

Use the multiple-column constraint format to associate one or more columns with
a constraint. This alternative to the single-column constraint format allows you to
associate multiple columns with a constraint.

Multiple-Column Constraint Format:

�

,

UNIQUE (column)
(1)

DISTINCT
PRIMARY KEY

(2)
CHECK Clause

Notes:

1 Informix extension

2 See “CHECK Clause” on page 2-211

Element Description Restrictions Syntax

column Name of column or columns on
which the constraint is placed

Must be unique in a table, but the same name can
be in different tables of the same database

“Identifier”
on page 5-21

This is a subset of the syntax of “Multiple-Column Constraint Format” on page
2-214 that the CREATE TABLE statement supports.

This alternative to the single-column constraint segment of CREATE TEMP TABLE
can associate multiple columns with a constraint. Constraints that you define on
temporary tables are always enabled.

Chapter 2. SQL statements 2-237

The following table indicates where you can find detailed discussions of specific
constraints.

Constraint For more information, see For an example, see

CHECK “CHECK Clause” on page 2-211 “Defining Check Constraints Across Columns”
on page 2-216

DISTINCT “Using UNIQUE or DISTINCT
Constraints” on page 2-207

“Examples of the Multiple-Column Constraint
Format” on page 2-215

PRIMARY KEY “Using the PRIMARY KEY Constraint”
on page 2-208

“Defining Composite Primary and Foreign
Keys” on page 2-216

UNIQUE “Using UNIQUE or DISTINCT
Constraints” on page 2-207

“Examples of the Multiple-Column Constraint
Format” on page 2-215

See also the section “Differences Between a Unique Constraint and a Unique
Index” on page 2-207.

Temporary Table Options
The Options clauses of CREATE TEMP TABLE let you specify storage locations,
locking modes, and user-defined access methods. You cannot specify the size of the
initial or next extents for a temporary table. Extents for a temporary table always
have a size of eight pages.

Options:

(1) (2)
Storage Options

(3)
LOCK MODE Options

�

�
(4)

USING Access-Method Clause

Notes:

1 Informix extension

2 See “Storage Options”

3 See “LOCK MODE Options” on page 2-229

4 See “USING Access-Method Clause” on page 2-228

This is a subset of the syntax of “Options clauses” on page 2-217 that the CREATE
TABLE statement supports.

Storage Options
Use the Storage Options segment of the CREATE TEMP TABLE statement to
specify the storage location and distribution scheme for the table. This is an
extension to the ANSI/ISO standard for SQL syntax.

2-238 IBM Informix Guide to SQL: Syntax

Storage Options:

IN dbspace
extspace

(1)
FRAGMENT BY Clause

(2)
PUT Clause

(3)
EXTENT SIZE Options

Notes:

1 See “FRAGMENT BY clause” on page 2-222

2 See “PUT Clause” on page 2-225

3 See “EXTENT SIZE Options” on page 2-227

Element Description Restrictions Syntax

dbspace Dbspace or temporary dbspace in which to store the
temporary table.

Must already exist “Identifier” on page
5-21

extspace Name that onspaces assigned to a storage area outside
the database server

Must already exist See documentation for
access method.

Only temporary tables that include BLOB or CLOB columns can include the PUT
clause as a storage option.

If you specify a temporary dbspace after the IN keyword, the database server does
not perform any logical logging nor physical logging of the temporary table. You
cannot mirror a temporary dbspace.

If you specify no extent size option, the default extent size is 8 pages.

To create a fragmented, unique index on a temporary table, you must specify an
explicit list-based or expression-based distribution scheme for a temporary table in
the CREATE TEMP TABLE statement.

Where Temporary Tables are Stored
The distribution scheme that you specify with the CREATE TEMP TABLE
statement (either with the IN clause or the FRAGMENT BY clause) takes
precedence over the information that the DBSPACETEMP environment variable or
the DBSPACETEMP configuration parameter specifies.

If you do not specify an explicit distribution scheme for a temporary table, its
storage location depends on the DBSPACETEMP (or DBSPACETEMP) setting.
v If DBSPACETEMP and DBSPACETEMP are not set, all temporary tables are

created without fragmentation in the same dbspace where the database was
created (or in rootdbs, if the database was not created in another dbspace).

v If only one dbspace for temporary tables is specified by DBSPACETEMP (or by
DBSPACETEMP, if DBSPACETEMP is not set), all temporary tables are created
without fragmentation in the specified dbspace.

v If DBSPACETEMP (or DBSPACETEMP, if DBSPACETEMP is not set) specifies
two or more dbspaces for temporary tables, then each temporary table is created
in one of the specified dbspaces.
In a non-logging database, each temporary table is created in a temporary
dbspace; in databases that support transaction logging, the temporary table is
created in a standard dbspace. The database server keeps track of which of these

Chapter 2. SQL statements 2-239

dbspaces was most recently used, and when it receives the next request to
allocate temporary storage, the database server uses the next available dbspace
(in a round-robin pattern) in order to allocate I/O operations approximately
evenly among those dbspaces.

For example, if you create three temporary tables in a database with logging where
DBSPACETEMP specifies tempspc1, tempspc2, and tempspc3 as the default
dbspaces for temporary tables, then the first table is created in the dbspace called
tempspc1, the second table is created in tempspc2, and the third one is created in
tempspc3, if these are the only requests for temporary storage.

Temporary tables created with SELECT... INTO TEMP also behave this way, so that
DBSPACETEMP (or DBSPACETEMP) settings that specify multiple dbspaces result
in round-robin fragmentation.

For more information on the DBSPACETEMP environment variable, see the IBM
Informix Guide to SQL: Reference. For more information on the DBSPACETEMP
configuration parameter, see your IBM Informix Administrator's Reference.

The following example shows how to insert data into a temporary table called
result_tmp to output to a file the results of a user-defined function (f_one) that
returns multiple rows:
CREATE TEMP TABLE result_tmp(...);
INSERT INTO result_tmp EXECUTE FUNCTION f_one();
UNLOAD TO ’file’ SELECT * FROM result_tmp;

Related reference

DBSPACETEMP (SQL Reference)

DBSPACETEMP Configuration Parameter (Administrator's Reference)

Differences between temporary and permanent tables
Compared to permanent tables, temporary tables differ in these ways:
v They have fewer types of constraints available.
v They have fewer options that you can specify.
v They are not visible to other users or sessions.
v They do not appear in the system catalog tables.
v They are not preserved, as described in the section “Duration of temporary

tables.”

The INFO statement and the Info Menu option of DB-Access cannot reference
temporary tables.

Duration of temporary tables
The duration of a temporary table depends on whether or not it is logged.

A logged temporary table exists until one of the following events occurs:
v The application disconnects.
v The DROP TABLE statement is issued on the temporary table.
v The database is closed.

When any of these events occurs, the temporary table is deleted.

2-240 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_228.htm#ids_sqr_228
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0046.htm#ids_adr_0046

Nonlogging temporary tables include tables that were created using the WITH NO
LOG option of CREATE TEMP TABLE.

A nonlogging temporary table exists until one of the following situations occurs:
v The application disconnects.
v The DROP TABLE statement is issued on the temporary table.
v The database is closed, and the nonlogging temporary table includes at least one

column of a user-defined type, or of a built-in opaque data type. (The Informix
built-in opaque data types include BLOB, BOOLEAN, CLOB, LVARCHAR, and
IDSSECURITYLABEL.)

If the nonlogging temporary table does not include any columns of UDTs or of
built-in opaque data types, you can use that table to transfer data from one
database to another while the application remains connected, because the table is
not destroyed when the database is closed. You must use a permanent table (or
some other strategy) if the data to be transferred includes UDTs or built-in opaque
data types.

Related Information

Related statements: “ALTER TABLE statement” on page 2-41, “CREATE TABLE
statement” on page 2-198, “CREATE DATABASE statement” on page 2-97, “DROP
TABLE statement” on page 2-347, and “SELECT statement” on page 2-536

For additional information about the DBANSIWARN and DBSPACETEMP
environment variables, refer to the IBM Informix Guide to SQL: Reference.

For additional information about the ONCONFIG parameter DBSPACETEMP, see
your IBM Informix Administrator's Guide.
Related concepts

Environment Variables (SQL Reference)
Related reference

DBSPACETEMP Configuration Parameter (Administrator's Reference)

CREATE TRIGGER statement
Use the CREATE TRIGGER statement to define a trigger on a table. You can also
use CREATE TRIGGER to define an INSTEAD OF trigger on a view.

This is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE TRIGGER
(1)

Owner Name

trigger �

Chapter 2. SQL statements 2-241

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0046.htm#ids_adr_0046

�
(2)

Trigger on a Table
INSTEAD OF

(3)
Trigger on a View

ENABLED
DISABLED ��

Notes:

1 See “Owner Name” on page 5-45

2 See “Defining a Trigger Event and Action” on page 2-243

3 See “INSTEAD OF Triggers on Views” on page 2-274

Element Description Restrictions Syntax

trigger Name that you declare here
for a new trigger

Must be unique among the names of
triggers in the current database

“Identifier” on page
5-21

Usage

A trigger is a database object that, unless disabled, automatically executes a
specified set of SQL statements, called the trigger action, when a specified trigger
event occurs.

The trigger event that initiates the trigger action can be an INSERT, DELETE,
UPDATE, or a SELECT statement. The MERGE statement can also be the triggering
event for an UPDATE, DELETE, or INSERT trigger. The event definition must
specify the table or view on which the trigger is defined. (SELECT or UPDATE
events for triggers on tables can also specify one or more columns.)

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a trigger of the
specified name is already defined on a table or view in the current database.

You can use the CREATE TRIGGER statement in two distinct ways:
v You can define a trigger on a table in the current database.
v You can also define an INSTEAD OF trigger on a view in the current database.

Any SQL statement that is an instance of the trigger event is called a triggering
statement. When the event occurs, triggers defined on tables and triggers defined
on views differ in whether the triggering statement is executed:
v For tables, the trigger event and the trigger action both execute.
v For views, only the trigger action executes, instead of the event.

The CREATE TRIGGER statement can support the integrity of data in the database
by defining rules by which specified DML operations (the triggering events) cause
the database server to take specified actions. The following sections describe the
syntax elements.

Clause Page Effect

Defining a Trigger
Event and Actions

“Defining a Trigger Event and Action”
on page 2-243

Associates triggered actions
with an event

Trigger Modes “Trigger Modes” on page 2-245 Enables or disables the trigger

2-242 IBM Informix Guide to SQL: Syntax

|
|
|
|
|

Clause Page Effect

Insert Events and
Delete Events

“INSERT Events and DELETE Events”
on page 2-248

Defines Insert events and
Delete events

Update Events “UPDATE Event” on page 2-249 Defines Update events

Select Events “SELECT Event” on page 2-250 Defines Select events

Action Clause “Action Clause” on page 2-254 Defines triggered actions

REFERENCING
Clause for Delete

“REFERENCING Clause for Delete” on
page 2-257

Declares qualifier for deleted
values

REFERENCING
Clause for Insert

“REFERENCING Clause for Insert” on
page 2-258

Declares qualifier for inserted
values

REFERENCING
Clause for Update

“REFERENCING Clause for Update”
on page 2-258

Declares qualifiers for old and
new values

REFERENCING
Clause for Select

“REFERENCING Clause for Select” on
page 2-259

Declares qualifier for result set
values

Correlated Table
Action

“Correlated Table Action” on page
2-260

Defines triggered actions

Triggered Action “Triggered Action” on page 2-260 Defines triggered actions

INSTEAD OF
Trigger on Views

“INSTEAD OF Triggers on Views” on
page 2-274

Defines a trigger on views

Action Clause of
INSTEAD OF
Triggers

“The Action Clause of INSTEAD OF
Triggers” on page 2-275

Triggered actions on views

Defining a Trigger Event and Action

This syntax defines the event and action of a trigger on a table or on a view.

Trigger on a Table:

�

�

DELETE ON table DELETE and SELECT Subclauses
SELECT

,

OF column
UPDATE ON table UPDATE Subclauses

,

OF column
(1) (2)

INSERT ON table NEW Declaration Correlated Table Action
(3)

Action Clause

DELETE and SELECT Subclauses:

(3)
Action Clause

(4) (2)
OLD Declaration Correlated Table Action

Chapter 2. SQL statements 2-243

UPDATE Subclauses:

(3)
Action Clause

(4) (2)
OLD Declaration Correlated Table Action

(4) (1) (2)
OLD Declaration NEW Declaration Correlated Table Action

Trigger on a View:

INSERT ON view
REFERENCING NEW correlation

AS
DELETE ON view

REFERENCING OLD correlation
AS

UPDATE ON view
REFERENCING OLD correlation

AS NEW correlation
AS

REFERENCING NEW correlation
AS OLD correlation

AS

�

� FOR EACH ROW
(5)

INSTEAD OF Triggered Action

Notes:

1 See “REFERENCING Clause for Insert” on page 2-258

2 See “Correlated Table Action” on page 2-260

3 See “Action Clause” on page 2-254

4 See “REFERENCING Clause for Update” on page 2-258

5 See “INSTEAD OF Triggers on Views” on page 2-274

Element Description Restrictions Syntax

column The name of a column in the triggering table Must exist “Identifier” on page
5-21

correlation Name that you declare here to qualify an old or new
column value (as correlation.column) in a triggered
action

Must be unique in this
trigger

“Identifier” on page
5-21

table, view Name or synonym of the triggering table or view. The
table or view can include an owner. qualifier.

Must exist in the current
database

“Identifier” on page
5-21

The left-hand portion of the main diagram (including the table or view) defines the
trigger event (sometimes called the triggering event). The rest of the diagram declares
correlation names and defines the trigger action (sometimes called the triggered
action). (For triggers on tables, see “Action Clause” on page 2-254 and “Correlated
Table Action” on page 2-260. For INSTEAD OF triggers on views, see “The Action
Clause of INSTEAD OF Triggers” on page 2-275.)

2-244 IBM Informix Guide to SQL: Syntax

Restrictions on Triggers
To create a trigger on a table or a view, you must own the table or view, or have
DBA privilege. For the relationship between the privileges of the trigger owner and
those of other users, see “Privileges to Execute Trigger Actions” on page 2-269.

The table on which you create a trigger must exist in the current database. You
cannot create a trigger on any of the following types of tables:
v A diagnostics table, a violations table, or a table in another database
v A raw table, a temporary table, or a system catalog table
v A table object that the CREATE EXTERNAL TABLE statement created

In DB-Access, if you want to define a trigger as part of a schema, place the
CREATE TRIGGER statement inside a CREATE SCHEMA statement.

If you are embedding the CREATE TRIGGER statement in an Informix ESQL/C
program, you cannot use a host variable in the trigger definition.

You can use the DROP TRIGGER statement to remove an existing trigger. If you
use DROP TABLE or DROP VIEW to remove triggering tables or views from the
database, all triggers on those tables or views are also dropped.

The ON EXCEPTION statement of SPL has no effect when it is issued from a
trigger routine, nor from the Action clause or the Correlated Action clause of a
trigger.

The triggered action of an Insert trigger that increments a BIGSERIAL, SERIAL, or
SERIAL8 column does not update the sqlca.sqlerrd[1] field of the SQL
Communication Area structure. The triggered INSERT operation can successfully
increment the serial counter for the column, but the value of the sqlca.sqlerrd[1]
field remains zero, rather than being reset to the new serial value.

You cannot define a DELETE trigger on a table that has a referential constraint that
specifies ON DELETE CASCADE.

For additional restrictions on INSTEAD OF triggers on views, see “Restrictions on
INSTEAD OF Triggers on Views” on page 2-275.

Trigger Modes
You can set a trigger mode to enable or disable a trigger when you create it.

Trigger Modes

��
ENABLED
DISABLED ��

You can create triggers on tables or on views in ENABLED or DISABLED mode.
v When a trigger is created in ENABLED mode, the database server executes the

trigger action when the trigger event is encountered. (If you specify no mode
when you create a trigger, ENABLED is the default mode.)

v When a trigger is created in DISABLED mode, the trigger event does not cause
execution of the trigger action. In effect, the database server ignores the trigger
and its action, even though the systriggers system catalog table maintains
information about the disabled trigger.

Chapter 2. SQL statements 2-245

|

You can also use the SET TRIGGERS option of the Database Object Mode
statement to set an existing trigger to the ENABLED or DISABLED mode.

After a DISABLED trigger is enabled by the SET TRIGGERS statement, the
database server can execute the trigger action when the trigger event is
encountered, but the trigger does not perform retroactively. The database server
does not attempt to execute the trigger for rows that were selected, inserted,
deleted, or updated while the trigger was disabled and before it was enabled.

Warning: Because the behavior of a trigger varies according to its ENABLED or
DISABLED mode, be cautious about disabling a trigger. If disabling a trigger will
eventually destroy the semantic integrity of the database, do not disable the
trigger.

Trigger Inheritance in a Table Hierarchy
By default, any trigger that you define on a typed table of Informix is inherited by
all its subtables.

In versions of Informix earlier than version 11.10, however, if you define a trigger
on a subtable of a typed table, that trigger overrides any trigger for the same type
of triggering event (Select, Delete, Insert, or Update) that the subtable inherits from
its supertable. In this version of Informix, however, a table can inherit more than
one trigger that the same triggering event activates, so both triggers are defined for
the same type of event on the subtable.

In all versions of Informix, a trigger that you set on a subtable is inherited by all
its dependent tables, but has no effect on its supertable.

This behavior is important when you require a trigger to be enabled in a
supertable, but to be disabled in its subtable. In Informix 10.00 and in earlier
versions, you cannot use the SET TRIGGERS option of the SET Database Object
Mode statement to disable an inherited trigger selectively within a hierarchy. In
this release, however, disabling a trigger on a table within a table hierarchy has no
effect on inherited triggers. For example, the following statement has no effect on
triggers on table objects that are above or below subtable within a table hierarchy:
SET TRIGGERS FOR subtable DISABLED

Similarly, the DROP TRIGGER statement cannot destroy an inherited trigger
without also destroying the trigger on the supertable. In this situation, you must
instead define a trigger with no Action clause on the subtable. Because triggers are
not additive, this empty trigger overrides the inherited trigger and executes for the
subtable and for any subtables under the subtable, which are not subject to further
overrides.

Triggers and SPL Routines
You cannot define a trigger in an SPL routine that is called inside a DML (data
manipulation language) statement, as listed in “Data Manipulation Language
Statements” on page 1-8. Thus, the following statement returns an error if the
sp_items procedure includes the CREATE TRIGGER statement:
INSERT INTO items EXECUTE PROCEDURE sp_items;

You can use the CREATE FUNCTION or CREATE PROCEDURE statement of SQL
with the REFERENCING clause to define trigger routines that include the FOR table
or FOR view specification. These UDRs must include the REFERENCING clause
that declares correlation names for OLD or NEW column values in the specified

2-246 IBM Informix Guide to SQL: Syntax

table or view. Triggers on the table or view can invoke the trigger routine from the
FOR EACH ROW section of the Triggered Action list. Triggers can also invoke
non-trigger routines from the BEFORE and AFTER sections of the Triggered Action
list, but these UDRs cannot use correlation names to reference the NEW or OLD
column values. The REFERENCING clause in a trigger routine supports the same
syntax as in the CREATE TRIGGER statement, as described in the section
“REFERENCING Clauses” on page 2-257.

Multiple triggers that the same triggering event executes can invoke more than one
trigger routine, and these trigger routines can access the same NEW or OLD
column values by using SPL variables that have the same names or different
names. When a single triggering event executes multiple triggers, the order of
execution is not guaranteed, but all of the BEFORE triggered actions execute before
any of the FOR EACH ROW triggered actions, and all of the AFTER triggered
actions execute after all of the FOR EACH ROW triggered actions.

For UDRs that are not trigger routines, SPL variables are not valid in CREATE
TRIGGER statements. An SPL routine cannot perform INSERT, DELETE, or
UPDATE operations on any table or view that is not local to the current database.
See also “Rules for SPL Routines” on page 2-268 for additional restrictions on SPL
routines that are invoked in triggered actions.

Trigger Events
The trigger event specifies what DML statements can initiate the trigger. The event
can be an INSERT, DELETE, or UPDATE operation on the table or view, or a
SELECT operation that queries the table. Each CREATE TRIGGER statement must
specify exactly one trigger event. Any SQL statement that is an instance of the
trigger event is called a triggering statement.

For each table, you can define triggers that are activated by INSERT, DELETE,
UPDATE, or SELECT statements. For each view, you can define INSTEAD OF
triggers that are activated by INSERT, DELETE, or UPDATE statements. Multiple
triggers on the same table or view can be activated by different types of trigger
events or by the same type of trigger event.

You cannot specify a DELETE event if the triggering table has a referential
constraint that specifies ON DELETE CASCADE.

You are responsible for guaranteeing that the triggering statement returns the same
result with and without the trigger action on a table. See also the sections “Action
Clause” on page 2-254 and “Triggered Action” on page 2-260.

A triggering statement from an external database server can activate the trigger.

As the following example shows, an Insert trigger on newtab, managed by
dbserver1, is activated by an INSERT statement from dbserver2. The trigger
executes as if the INSERT originated on dbserver1.
-- Trigger on stores_demo@dbserver1:newtab
CREATE TRIGGER ins_tr INSERT ON newtab

REFERENCING new AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE nt_pct (post_ins.mc));

-- Triggering statement from dbserver2
INSERT INTO stores_demo@dbserver1:newtab

SELECT item_num, order_num, quantity, stock_num, manu_code,
total_price FROM items;

Chapter 2. SQL statements 2-247

Informix also supports INSTEAD OF triggers on views, which are initiated when a
triggering DML operation references the specified view. The INSTEAD OF trigger
replaces the trigger event with the specified trigger action on a view, rather than
execute the triggering INSERT, DELETE, or UPDATE operation. A view can have
any number of INSTEAD OF trigger defined for each type of INSERT, DELETE, or
UPDATE triggering event.

Trigger Events with Cursors
For triggers on tables, if the triggering statement uses a cursor, each part of the
trigger action (including BEFORE, FOR EACH ROW, and AFTER, if these are
specified for the trigger) is activated for each row that the cursor processes.

This behavior differs from what occurs when a triggering statement does not use a
cursor and updates multiple rows. In this case, any BEFORE and AFTER triggered
actions execute only once, but the FOR EACH ROW action list is executed for each
row processed by the triggering statement. For additional information about
trigger actions, see “Action Clause” on page 2-254

Privileges on the Trigger Event
You must have appropriate Insert, Delete, Update, or Select privilege on the
triggering table or view to execute a triggering INSERT, DELETE, UPDATE, or
SELECT statement as the trigger event. The triggering statement might still fail,
however, if you do not also have the privileges necessary to execute one of the
SQL statements in the trigger action. When the trigger actions are executed, the
database server checks your privileges for each SQL statement in the trigger
definition, as if the statement were being executed independently of the trigger.
For information on the privileges needed to execute the trigger actions, see
“Privileges to Execute Trigger Actions” on page 2-269.

Performance Impact of Triggers
The INSERT, DELETE, UPDATE, and SELECT statements that initiate triggers
might appear to execute slowly because they execute additional SQL statements,
and the user might not know that other actions are occurring.

The execution time for a trigger event depends on the complexity of the trigger
action and whether it initiates other triggers. The time increases as the number of
cascading triggers increases. For more information on triggers that initiate other
triggers, see “Cascading Triggers” on page 2-270.

INSERT Events and DELETE Events
INSERT and DELETE events on tables are defined by those keywords and by the
ON table clause, using the following syntax.

INSERT or DELETE Event on a Table:

INSERT
DELETE

ON table

Element Description Restrictions Syntax

table Name of the triggering table Must exist in the database “Identifier” on page
5-21

2-248 IBM Informix Guide to SQL: Syntax

An Insert trigger is activated when an INSERT statement includes the specified
table (or a synonym for table) in its INTO clause. Similarly, a Delete trigger is
activated when a DELETE statement includes the specified table (or a synonym for
table) in its FROM clause.

The MERGE statement can also activate an Insert trigger, if the specified table of
the Insert trigger is the target table of a MERGE statement that includes the Insert
clause. Similarly, the MERGE statement can also activate a Delete trigger, if the
specified table of the Delete trigger is the target table of a MERGE statement that
includes the Delete clause.

The TRUNCATE TABLE statement does not activate Delete triggers when it
removes all the rows from a table. If an enabled Delete trigger is defined for a
table on which you do not hold the Alter privilege, the database server returns an
error if you attempt to truncate that table, even though the TRUNCATE statement
cannot be the triggering event for a Delete trigger. (For more information about the
discretionary access privileges that truncate operations require, see the
“TRUNCATE statement” on page 2-690.)

For triggers on views, the INSTEAD OF keywords must immediately precede the
INSERT, DELETE, or UPDATE keyword that specifies the type of trigger event,
and the name or synonym of a view (rather than of a table) must follow the ON
keyword. The section “INSTEAD OF Triggers on Views” on page 2-274 describes
the syntax for defining INSTEAD OF trigger events.

Any number of Insert triggers, and any number of Delete triggers, can be defined
on the same table.

If you define a trigger on a subtable within a table hierarchy, and the subtable
supports cascading deletes, then a DELETE operation on the supertable activates
the Delete triggers on the subtable.

See also the section “Re-Entrancy of Triggers” on page 2-265 for information about
dependencies and restrictions on the actions of Insert triggers and Delete triggers.

UPDATE Event
UPDATE events (and SELECT events) can include an optional column list.

UPDATE Event:

UPDATE

�

,

OF column

ON table

Element Description Restrictions Syntax

column Column that activates the trigger Must exist in the triggering table “Identifier” on page
5-21

table Name of the triggering table Must exist in the database “Identifier” on page
5-21

The column list is optional. If you omit the OF column list, updating any column of
table activates the trigger.

Chapter 2. SQL statements 2-249

|
|
|
|
|

The OF column clause is not valid for an INSTEAD OF trigger on a view.

An UPDATE on the triggering table can activate the trigger in two cases:
v The UPDATE statement references any column in the column list.
v The UPDATE event definition has no OF column list specification.

Whether it updates one column or more than one column from the column list, a
triggering UPDATE statement activates each Update trigger only once.

The MERGE statement can also activate an Update trigger, if the specified table of a
trigger with no columns list is the target table of the MERGE statement, or if the
Update clause of the MERGE statement references a column in the column list of
the Update trigger.

Defining Multiple Update Triggers
Multiple Update triggers on a table can include the same or different columns. In
the following example, trig3 on the items table includes in its column list
stock_num, which is a triggering column in trig1.
CREATE TRIGGER trig1 UPDATE OF item_num, stock_num ON items

REFERENCING OLD AS pre NEW AS post
FOR EACH ROW(EXECUTE PROCEDURE proc1());

CREATE TRIGGER trig2 UPDATE OF manu_code ON items
BEFORE(EXECUTE PROCEDURE proc2());

CREATE TRIGGER trig3 UPDATE OF order_num, stock_num ON items
BEFORE(EXECUTE PROCEDURE proc3());

When an UPDATE statement updates multiple columns that have different
triggers, the firing order is based on the lowest-numbered column that is defined
in the triggers that actually fired, regardless of whether that lowest-numbered
column was actually the triggering column when the trigger fired. If several
Update triggers are set on the same column or on the same set of columns,
however, the order of trigger execution is not guaranteed.

The following example shows that table taba has four columns (a, b, c, d):
CREATE TABLE taba (a int, b int, c int, d int);

Define trig1 as an update on columns a and c, and define trig2 as an update on
columns b and d, as the following example shows:
CREATE TRIGGER trig1 UPDATE OF a, c ON taba

AFTER (UPDATE tabb SET y = y + 1);

CREATE TRIGGER trig2 UPDATE OF b, d ON taba
AFTER (UPDATE tabb SET z = z + 1);

The following example shows a triggering statement for the Update trigger:
UPDATE taba SET (b, c) = (b + 1, c + 1);

Then trig1 for columns a and c executes first, and trig2 for columns b and d
executes next. In this case, the smallest column number in the two triggers is
column 1 (a), and the next is column 2 (b).

SELECT Event
DELETE and INSERT events are defined by those keywords (and the ON table
clause), but SELECT and UPDATE events also support an optional column list.

2-250 IBM Informix Guide to SQL: Syntax

SELECT Event:

SELECT

�

,

OF column

ON table
' owner '.

Element Description Restrictions Syntax

column Column that activates the trigger Must exist in the triggering table “Identifier” on page
5-21

owner Owner of table Must own table “Owner Name” on
page 5-45

table Name of the triggering table Must exist in the database “Identifier” on page
5-21

If you define more than one Select trigger on the same table, the column list is
optional, and the column lists for each trigger can be unique or can duplicate that
of another Select trigger.

A SELECT on the triggering table can activate the trigger in two cases:
v The SELECT statement references any column in the column list.
v The SELECT event definition has no OF column list specification.

(Sections that follow, however, describe additional circumstances that can affect
whether or not a SELECT statement activates a Select trigger.)

Whether it specifies one column or more than one column from the column list, a
triggering SELECT statement activates the Select trigger only once.

The action of a Select trigger cannot include an UPDATE, INSERT, or DELETE on
the triggering table. The action of a Select trigger can include UPDATE, INSERT,
and DELETE actions on tables other than the triggering table. The following
example defines a Select trigger on one column of a table:
CREATE TRIGGER mytrig

SELECT OF cola ON mytab REFERENCING OLD AS pre
FOR EACH ROW (INSERT INTO newtab VALUES(’for each action’));

You cannot specify a SELECT event for an INSTEAD OF trigger on a view.

Circumstances When a Select Trigger Is Activated
A query on the triggering table activates a Select trigger in these cases:
v The SELECT statement is a stand-alone SELECT statement.
v The SELECT statement occurs within a UDR called in a select list.
v The SELECT statement is a subquery in the Projection list.
v The SELECT statement is a subquery in the FROM clause.
v The SELECT statement occurs within a UDR called by EXECUTE PROCEDURE

or EXECUTE FUNCTION.
v The SELECT statement selects data from a supertable in a table hierarchy. In this

case the SELECT statement activates Select triggers for the supertable and all the
subtables in the hierarchy.

Chapter 2. SQL statements 2-251

For information on SELECT statements that do not activate a Select trigger, see
“Circumstances When a Select Trigger Is Not Activated” on page 2-254.

Stand-alone SELECT Statements
A Select trigger is activated if the triggering column appears in the select list of the
Projection clause of a stand-alone SELECT statement.

For example, if a Select trigger is defined to execute whenever column col1 of table
tab1 is selected, then both of the following stand-alone SELECT statements activate
the Select trigger:
SELECT * FROM tab1;
SELECT col1 FROM tab1;

SELECT Statements Within UDRs in the Select List
A Select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block, and the UDR also appears in the select list of the
Projection clause of a SELECT statement. For example, assume that a UDR named
my_rtn contains this SELECT statement in its statement block:
SELECT col1 FROM tab1;

Now suppose that the following SELECT statement invokes the my_rtn UDR in its
select list:
SELECT my_rtn() FROM tab2;

This SELECT statement activates the Select trigger defined on column col1 of table
tab1 when the my_rtn UDR is executed.

UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION
Call

A Select trigger is activated by a UDR if the UDR contains a SELECT statement
within its statement block and the UDR is called by an EXECUTE PROCEDURE or
the EXECUTE FUNCTION statement. For example, assume that the user-defined
procedure named my_rtn contains the following SELECT statement in its statement
block:
SELECT col1 FROM tab1;

Now suppose that the following statement invokes the my_rtn procedure:
EXECUTE PROCEDURE my_rtn();

This statement activates the Select trigger defined on column col1 of table tab1
when the SELECT statement within the statement block is executed.

Subqueries in the Select List
A Select trigger can be activated by a subquery that appears in the select list of the
Projection clause of a SELECT statement.

For example, if an enabled Select trigger was defined on col1 of tab1, the subquery
in the following SELECT statement activates that trigger:
SELECT (SELECT col1 FROM tab1 WHERE col1=1), colx, col y FROM tabz;

2-252 IBM Informix Guide to SQL: Syntax

Subqueries in the FROM Clause of SELECT
Table expressions in the FROM clause of a SELECT statement can be the triggering
event on a table that is referenced by an uncorrelated subquery. In the following
example, the subquery that specifies a table expression is the triggering event for
any enabled Select triggers that are defined on col1 of tab1:
SELECT vcol FROM (SELECT FIRST 5 col1 FROM tab1 ORDER BY col1) vtab(vcol);

Subqueries in the WHERE Clause of DELETE or UPDATE
Subqueries that are specified using the Condition with Subquery syntax in the
WHERE clause of the DELETE statement or the UPDATE statement cannot be the
triggering event for a Select trigger. In the following example, the subquery is not
the triggering event for any enabled Select triggers that are defined on col2 of
tab1::
DELETE tab1 WHERE EXISTS

(SELECT col2 FROM tab1 WHERE col2 > 1024);

The DELETE operation in same example, however, activates any enabled Delete
triggers that are defined on tab1. No enabled Select trigger on tab1 can be
activated by a subquery within a DELETE statement that modifies a table
referenced in the FROM clause of the subquery.

Similarly, the subquery in the WHERE clause of the following UPDATE statement
is not the triggering event for any enabled Select triggers that are defined on col3
of tab1:
UPDATE tab1 SET col3 = col3 + 10

WHERE col3 > ANY
(SELECT col3 from tab1 WHERE col3 > 1);

The same example activates any enabled Update trigger that is defined on col3 of
tab1, but no Select trigger can be updated by the subquery. For additional
restrictions on Select triggers, see “Circumstances When a Select Trigger Is Not
Activated” on page 2-254.

Select Triggers in Table Hierarchies
A subtable in an Informix database inherits the Select triggers that are defined on
its supertable. When you select from a supertable, the SELECT statement activates
the Select triggers on the supertable and the inherited Select triggers on the
subtables in the table hierarchy.

For example, assume that table tab1 is the supertable and table tab2 is the subtable
in a table hierarchy. If the Select trigger trig1 is defined on table tab1, a SELECT
statement on table tab1 activates the Select trigger trig1 for the rows in table tab1
and the inherited Select trigger trig1 for the rows in table tab2.

If you add a Select trigger to a subtable, this Select trigger does not override the
Select trigger that the subtable inherits from its supertable, but increases the
number of Select triggers on the subtable. For example, if the Select trigger trig1 is
defined on column col1 in supertable tab1, the subtable tab2 inherits this trigger. If
you define a Select trigger named trig2 on column col1 in subtable tab2, and a
SELECT statement selects from col1 in supertable tab1, this SELECT statement
activates trigger trig1 for the rows in table tab1 and both triggers trig1 and trig2
for the rows in table tab2. (In version 10.0 and in earlier releases of Informix,
however, a Select trigger that you add to the subtable overrides the Select trigger
that the subtable inherited from the supertable.)

Chapter 2. SQL statements 2-253

Circumstances When a Select Trigger Is Not Activated
A SELECT statement on the triggering table does not activate a Select trigger in
certain circumstances:
v If a subquery or UDR that contains the triggering SELECT statement appears in

any clause of a SELECT statement other than the Projection clause or the FROM
clause, the Select trigger is not activated.
For example, if the subquery or UDR appears in the WHERE clause or HAVING
clause of a SELECT statement, the SELECT statement within the subquery or
UDR does not activate the Select trigger.

v If the trigger action of a Select trigger calls a UDR that includes a triggering
SELECT statement, the Select trigger on the SELECT in the UDR is not activated.
Cascading Select triggers are not supported.

v If a SELECT statement contains a built-in aggregate or user-defined aggregate in
its Projection clause, the Select trigger is not activated. For example, the
following SELECT statement does not activate a Select trigger defined on col1 of
tab1:
SELECT MIN(col1) FROM tab1;

v A SELECT statement that includes the UNION or UNION ALL operator does
not activate a Select trigger.

v The SELECT clause of INSERT does not activate a Select trigger.
v A subquery in the WHERE clause of the DELETE or UPDATE statement cannot

activate a Select trigger on the same table that the DELETE or UPDATE
statement is modifying.

v If the Projection clause of a SELECT includes the DISTINCT or UNIQUE
keywords, the SELECT statement does not activate a Select trigger.

v Select triggers are not supported on scroll cursors.
v If a SELECT statement refers to a remote triggering table, the Select trigger is not

activated on the remote database server.
v Columns in the ORDER BY list of a query activate no Select triggers (nor any

other triggers) unless they are also listed in the Projection clause.

An exception to the last restriction is that a Select trigger can be activated by a
column in the ORDER BY list of a subquery in the FROM clause, whether or not
the same column also appears in the Projection clause. In the following example, a
table expression that includes col1 in the ORDER BY clause (but not in the select
list of the Projection clause) is the triggering event for any enabled Select triggers
that are defined on col1 of tab1:
SELECT vcol FROM (SELECT col2 FROM tab1 ORDER BY col1) vtab(vcol);

Action Clause
The Action clause defines the SQL statements that are executed when the trigger is
activated. For a trigger on a table, there can be up to three sections in the Action
clause: BEFORE, AFTER and FOR EACH ROW.
v The BEFORE actions are executed once for each triggering event, before the

database server performs the triggering DML operation.
v The AFTER actions are also executed once for each triggering DML event, after

the operation on the table is complete, in the context of the triggering statement.
v The FOR EACH ROW actions are executed for each row that is inserted,

updated, deleted or selected in the DML operation, after the DML operation is
executed on each row, but before the database server writes the values into the
log and into the table.

2-254 IBM Informix Guide to SQL: Syntax

If the same table has multiple triggers that are activated by the same triggering
event, the order of trigger execution is not guaranteed, but all of the BEFORE
triggered actions execute before any of the FOR EACH ROW triggered actions, and
all of the AFTER triggered actions execute after all of the FOR EACH ROW
triggered actions.

When you define an INSTEAD OF trigger on a view, the BEFORE and AFTER
keywords are not supported, but the FOR EACH ROW section of the Action clause
is valid. See the section “INSTEAD OF Triggers on Views” on page 2-274 for the
syntax of specifying triggered actions on a view.

The Action clause has the following syntax.

Action Clause:

(1)
BEFORE Triggered Action

(1)
FOR EACH ROW Triggered Action

�

�
(1)

AFTER Triggered Action

Notes:

1 See “Triggered Action” on page 2-260

For the trigger to have any effect on the table, you must define at least one
triggered action, using the keywords BEFORE, FOR EACH ROW, or AFTER to
indicate when the action occurs relative to execution of the triggering event.

You can specify actions for any or all of these three options on a single trigger, but
any BEFORE action list must be specified first, and any AFTER action list must be
specified last. For more information on the Action clause when a REFERENCING
clause is also specified, see “Correlated Table Action” on page 2-260.

BEFORE Actions
The list of BEFORE trigger actions execute once before the triggering statement
executes. Even if the triggering statement does not process any rows, the database
server executes the BEFORE trigger actions.

FOR EACH ROW Actions
After a row of the triggering table is processed, the database server executes all of
the statements of the FOR EACH ROW trigger action list; this cycle is repeated for
every row that the triggering statement processes. (But if the triggering statement
does not insert, delete, update, or select any rows, the database server does not
execute the FOR EACH ROW trigger actions.)

The FOR EACH ROW action list of a Select trigger is executed once for each
instance of a row. For example, the same row can appear more than once in the
result of a query joining two tables. For more information on FOR EACH ROW
actions that reference specific values in rows that the triggering statement
processes, see “REFERENCING Clauses” on page 2-257.

Chapter 2. SQL statements 2-255

AFTER Actions
The specified set of AFTER trigger actions executes once after the action of the
triggering statement is complete. If the triggering statement does not process any
rows, the AFTER trigger actions still execute.

Actions of Multiple Triggers
When an UPDATE or MERGE statement activates multiple triggers, the trigger
actions merge. Assume that taba has columns a, b, c, and d, as this example
shows:
CREATE TABLE taba (a INT, b INT, c INT, d INT);

Next, assume that you define trig1 on columns a and c, and trig2 on columns b
and d. If both triggers specify BEFORE, FOR EACH ROW, and AFTER actions,
then the trigger actions are executed in the following order:
1. BEFORE action list for trigger (a, c)
2. BEFORE action list for trigger (b, d)
3. FOR EACH ROW action list for trigger (a, c)
4. FOR EACH ROW action list for trigger (b, d)
5. AFTER action list for trigger (a, c)
6. AFTER action list for trigger (b, d)

The database server treats all the triggers that are activated by the same triggering
statement as a single trigger, and the trigger action is the merged-action list. All the
rules that govern a trigger action apply to the merged list as one list, and no
distinction is made between the two original triggers.

Guaranteeing Row-Order Independence
In a FOR EACH ROW triggered-action list, the result might depend on the order
of the rows being processed. You can ensure that the result is independent of row
order by following these suggestions:
v Avoid selecting the triggering table in the FOR EACH ROW section.

If the triggering statement affects multiple rows in the triggering table, the result
of the SELECT statement in the FOR EACH ROW section varies as each row is
processed. This condition also applies to any cascading triggers. See “Cascading
Triggers” on page 2-270.

v In the FOR EACH ROW section, avoid updating a table with values derived
from the current row of the triggering table.
If the trigger actions modify any row in the table more than once, the final result
for that row depends on the order in which rows from the triggering table are
processed.

v Avoid modifying a table in the FOR EACH ROW section that is selected by
another statement in the same FOR EACH ROW trigger action, including any
cascading trigger actions.

If FOR EACH ROW actions modify a table, the changes might not be complete
when a subsequent action of the trigger refers to the table. In this case, the result
might differ, depending on the order in which rows are processed.

The database server does not enforce rules to prevent these situations because
doing so would restrict the set of tables from which a trigger action can select.

2-256 IBM Informix Guide to SQL: Syntax

Furthermore, the result of most trigger actions is independent of row order.
Consequently, you are responsible for ensuring that the results of the trigger
actions are independent of row order.

REFERENCING Clauses
The REFERENCING clause for any event declares a correlation name (or for Update
triggers, two correlation names) that can be used to qualify column values in the
triggering table. These names enable FOR EACH ROW actions to reference new or
old column values in the result of trigger events.

They also enable FOR EACH ROW actions to reference old column values that
existed in the triggering table prior to modification by trigger events.

Correlation names are not valid if the triggered action includes both the INSERT
statement and the BEFORE WHEN or AFTER WHEN keywords. This restriction
does not affect triggered actions that specify the FOR EACH ROW keywords
without the BEFORE or AFTER keywords, or that include no INSERT statement.

The REFERENCING clause syntax that is described here for the CREATE
TRIGGER statement is also valid in CREATE FUNCTION and CREATE
PROCEDURE statements that define a trigger routine, provided that the CREATE
FUNCTION or CREATE PROCEDURE statement also includes the FOR table_object
clause to specify the table or view whose FOR EACH ROW actions can invoke the
trigger routine.

REFERENCING Clause for Delete
The REFERENCING clause for a Delete trigger can declare a correlation name for
the deleted value in a column.

REFERENCING Clause for Delete:

REFERENCING OLD
AS

correlation

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
column value (as correlation.column) in a
triggered action

Must be unique within this CREATE
TRIGGER statement

“Identifier”
on page 5-21

The correlation is a qualifier for the column value in the triggering table before the
triggering statement executed. The correlation is in scope in the FOR EACH ROW
trigger action list. See “Correlated Table Action” on page 2-260.

To use a correlation name in a trigger action to refer to an old column value, prefix
the column name with the correlation name and a period (.) symbol. For
example, if the NEW correlation name is post, refer to the new value for the column
fname as post.fname.

If the trigger event is a DELETE statement, using the new correlation name as a
qualifier causes an error, because the column has no value after the row is deleted.
For the rules that govern the use of correlation names, see “Using Correlation
Names in Triggered Actions” on page 2-263.

Chapter 2. SQL statements 2-257

You can use the REFERENCING clause for Delete only if you define a FOR EACH
ROW trigger action.

REFERENCING Clause for Insert
The REFERENCING clause for an Insert trigger can declare a correlation name for
the inserted value in a column.

REFERENCING Clause for Insert:

REFERENCING NEW
AS

correlation

Element Description Restrictions Syntax

correlation Name that you declare here to qualify a new
column value (as correlation.column) in a triggered
action

Must be unique within this
CREATE TRIGGER statement

“Identifier”
on page
5-21

The correlation is a name for the new column value after the triggering statement
has executed. Its scope of reference is only the FOR EACH ROW trigger action list;
see “Correlated Table Action” on page 2-260. To use the correlation name, precede
the column name with the correlation name, followed by a period (.) symbol.
Thus, if the NEW correlation name is post, refer to the new value for the column
fname as post.fname.

If the trigger event is an INSERT statement, using the old correlation name as a
qualifier causes an error, because no value exists before the row is inserted. For the
rules that govern how to use correlation names, see “Using Correlation Names in
Triggered Actions” on page 2-263. You can use the INSERT REFERENCING clause
only if you define a FOR EACH ROW trigger action.

The following example illustrates use of the INSERT REFERENCING clause. This
example inserts a row into backup_table1 for every row that is inserted into
table1. The values that are inserted into col1 and col2 of backup_table1 are an
exact copy of the values that were just inserted into table1.
CREATE TABLE table1 (col1 INT, col2 INT);
CREATE TABLE backup_table1 (col1 INT, col2 INT);
CREATE TRIGGER before_trig

INSERT ON table1 REFERENCING NEW AS new
FOR EACH ROW
(
INSERT INTO backup_table1 (col1, col2)
VALUES (new.col1, new.col2)
);

As the preceding example shows, the INSERT REFERENCING clause allows you
to refer to data values produced by the trigger action.

REFERENCING Clause for Update
The REFERENCING clause for an Update trigger can declare correlation names for
the original value and for the updated value in a column.

REFERENCING Clause for Update:

2-258 IBM Informix Guide to SQL: Syntax

REFERENCING �
(1)

OLD correlation
(1) AS

NEW

Notes:

1 Use path no more than once

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in a
triggered action

Must be unique within this
CREATE TRIGGER statement

“Identifier” on
page 5-21

The OLD correlation is the name of the value of the column in the triggering table
before execution of the triggering statement; the NEW correlation identifies the
corresponding value after the triggering statement executes.

The scope of reference of the correlation names that you declare here is only within
the FOR EACH ROW trigger action list. See “Correlated Table Action” on page
2-260.

To refer to an old or new column value, prefix the column name with the
correlation name and a period (.) symbol. For example, if the new correlation name
is post, you can refer to the new value in column fname as post.fname.

If the trigger event is an UPDATE statement, you can define both old and new
correlation names to refer to column values before and after the triggering UPDATE
statement. For rules that govern the use of correlation names, see “Using
Correlation Names in Triggered Actions” on page 2-263.

You can use the UPDATE REFERENCING clause only if you define a FOR EACH
ROW trigger action.

REFERENCING Clause for Select
The REFERENCING clause for a Select trigger can declare a correlation name for
the value in a column.

REFERENCING Clause for Select:

REFERENCING OLD
AS

correlation

Element Description Restrictions Syntax

correlation Name that you declare here to qualify an old
or new column value (as correlation.column) in
a triggered action

Must be unique within this
CREATE TRIGGER statement

“Identifier” on
page 5-21

This has the same syntax as the “REFERENCING Clause for Delete” on page 2-257.
The scope of reference of the correlation name that you declare here is only within
the FOR EACH ROW trigger action list. See “Correlated Table Action” on page
2-260.

Chapter 2. SQL statements 2-259

You use the correlation name to refer to an old column value by preceding the
column name with the correlation name and a period (.) symbol. For example, if
the old correlation name is pre, you can refer to the old value for the column fname
as pre.fname.

If the trigger event is a SELECT statement, using the new correlation name as a
qualifier causes an error because the column does not have a new value after the
column is selected. For the rules that govern the use of correlation names, see
“Using Correlation Names in Triggered Actions” on page 2-263.

You can use the SELECT REFERENCING clause only if you define a FOR EACH
ROW trigger action.

Correlated Table Action
Use the Correlated Trigger Action clause to define the SQL statements that are
executed as the trigger action when a triggering event activates a trigger on a
table.

Correlated Table Action:

(1)
BEFORE Triggered-Action

�

�
(1)

FOR EACH ROW Triggered-Action
(1)

AFTER Triggered-Action

Notes:

1 See “Triggered Action”

If the CREATE TRIGGER statement contains an INSERT REFERENCING clause, a
DELETE REFERENCING clause, an UPDATE REFERENCING clause, or a SELECT
REFERENCING clause, you must include a FOR EACH ROW triggered-action list
in the Action clause. You can also include BEFORE and AFTER triggered-action
lists, but they are optional.

For information on the BEFORE, FOR EACH ROW, and AFTER triggered-action
lists, see “Action Clause” on page 2-254

Triggered Action
The Triggered Action specifies a list of SQL statements to execute when a trigger is
activated. The BEFORE, FOR EACH ROW, and AFTER sections of the Action
Clause can each specify different list of triggered actions for the same trigger.

Triggered Action:

2-260 IBM Informix Guide to SQL: Syntax

� �

,
,

(2)
(INSERT Statement)

(1) (3)
WHEN (Condition) DELETE Statement

(4)
UPDATE Statement

(5)
EXECUTE PROCEDURE Statement

(6)
EXECUTE FUNCTION Statement

Notes:

1 See “Condition” on page 4-5

2 See “INSERT statement” on page 2-435

3 See “DELETE statement” on page 2-307

4 See “UPDATE statement” on page 2-700

5 See “EXECUTE PROCEDURE statement” on page 2-369

6 See “EXECUTE FUNCTION statement” on page 2-361

For a trigger on a table, the trigger action consists of an optional WHEN condition
and the action statements. You can specify a triggered-action list for each WHEN
clause, or you can specify a single list (of one or more trigger actions) if you
include no WHEN clause.

Database objects that are referenced explicitly in the trigger action or in the
definition of the trigger event, such as tables, columns, and UDRs, must exist when
the CREATE TRIGGER statement defines the new trigger.

Attention: When you specify a date expression in the WHEN condition or in an
action statement, make sure to specify four digits instead of two digits for the year.
For more about abbreviated years, see the description of DBCENTURY in the IBM
Informix Guide to SQL: Reference, which also describes how the behavior of some
database objects can be affected by environment variable settings. Like
fragmentation expressions, check constraints, and UDRs, triggers are stored in the
system catalog with the creation-time settings of environment variables that can
affect the evaluation of expressions like the WHEN condition. The database server
ignores any subsequent changes to those settings when evaluating expressions in
those database objects.
Related reference

DBCENTURY (SQL Reference)

WHEN Condition
The WHEN condition makes the triggered action dependent on the outcome of a
test. When you include a WHEN condition in a triggered action, the statements in
the triggered action list execute only if the condition evaluates to true. If the
WHEN condition evaluates to false or unknown, then the statements in the
triggered action list are not executed.

If the triggered action is in a FOR EACH ROW section, its condition is evaluated
for each row. For example, the triggered action in the following trigger executes
only if the condition in the WHEN clause is true:

Chapter 2. SQL statements 2-261

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES(pre.stock_num, pre.order_num,

pre.unit_price, post.unit_price, CURRENT));

An SPL routine that executes inside the WHEN condition carries the same
restrictions as a UDR that is called in a data manipulation statement. That is, the
SPL routine cannot contain certain SQL statements. For information on which
statements are restricted, see “Restrictions on SPL Routines in Data-Manipulation
Statements” on page 5-77.

Action Statements
The triggered-action statements can be INSERT, DELETE, UPDATE, EXECUTE
FUNCTION, or EXECUTE PROCEDURE statements. If the action list contains
multiple statements, and the WHEN condition is satisfied (or is absent), then these
statements execute in the order in which they appear in the list.

UDRs as Triggered Actions: Calls to user-defined functions and procedures,
including trigger routines, can be triggered actions. The triggered action list of the
FOR EACH ROW clause can include calls to UDRs that call mi_trigger*()
functions. Triggered actions are the only context in which a trigger routine of
Informix can be invoked. For restrictions on the calling context and the syntax of
trigger routines, see “The REFERENCING and FOR Clauses” on page 2-128.

You can use the EXECUTE FUNCTION statement to call any user-defined function
or trigger function. Use the EXECUTE PROCEDURE statement to call any
user-defined procedure or trigger procedure.

In contexts where Boolean expressions are valid, the Boolean operators
SELECTING, INSERTING, DELETING, and UPDATING are valid in trigger
routines and in other UDRs that are invoked in triggered action statements. These
operators return TRUE ('t') if the triggering event matches the DML operation that
matches the name of the operator; otherwise they return FALSE ('f'). A single
trigger routine can be designed to perform different triggered actions for different
types of triggering events, using these Boolean operators to execute program
blocks that are appropriate to the type of trigger.

For restrictions on using SPL routines as triggered actions, see “Rules for SPL
Routines” on page 2-268 and “Triggers and SPL Routines” on page 2-246.

Achieving a Consistent Result: To guarantee that the triggering statement returns
the same result with and without the triggered actions, make sure that the
triggered actions in the BEFORE and FOR EACH ROW sections do not modify any
table referenced in the following clauses:
v WHERE clause
v SET clause in the UPDATE statement
v SELECT clause
v EXECUTE PROCEDURE clause or EXECUTE FUNCTION clause in a

multiple-row INSERT statement.

Using Reserved Words: If you use the INSERT, DELETE, UPDATE, or EXECUTE
reserved words as a correlation identifier in any of the following clauses inside a
triggered action list, you must qualify them by the owner name, the table name, or
both:

2-262 IBM Informix Guide to SQL: Syntax

v FROM clause of a SELECT statement
v INTO clause of the EXECUTE PROCEDURE or EXECUTE FUNCTION statement
v GROUP BY clause
v SET clause of the UPDATE statement.

You get a syntax error if these keywords are not qualified when you use these
clauses inside a triggered action.

If you use the keyword as a column name, it must be qualified by the table name;
for example, table.update. If both the table name and the column name are
keywords, they must be qualified by the owner name (for example,
owner.insert.update). If the owner name, table name, and column name are all
keywords, the owner name must be in quotation marks; for example,
'delete'.insert.update. (These are general rules regarding reserved words as
identifiers, rather than special cases for triggers. Your code will be easier to read
and to maintain if you avoid using the keywords of SQL as identifiers.)

The only exception is when these keywords are the first table or column name in
the list, and you do not need to qualify them. For example, delete in the following
statement does not need to be qualified because it is the first column listed in the
INTO clause:
CREATE TRIGGER t1 UPDATE OF b ON tab1

FOR EACH ROW (EXECUTE PROCEDURE p2() INTO delete, d);

The following statements show examples in which you must qualify the column
name or the table name:
v FROM clause of a SELECT statement

CREATE TRIGGER t1 INSERT ON tab1
BEFORE (INSERT INTO tab2 SELECT * FROM tab3, ’owner1’.update);

v INTO clause of an EXECUTE PROCEDURE statement
CREATE TRIGGER t3 UPDATE OF b ON tab1

FOR EACH ROW (EXECUTE PROCEDURE p2() INTO
d, tab1.delete);

An INSTEAD OF trigger on a view cannot include the EXECUTE PROCEDURE
INTO statement among its triggered actions.

v GROUP BY clause of a SELECT statement
CREATE TRIGGER t4 DELETE ON tab1

BEFORE (INSERT INTO tab3 SELECT deptno, SUM(exp)
FROM budget GROUP BY deptno, budget.update);

v SET clause of an UPDATE statement
CREATE TRIGGER t2 UPDATE OF a ON tab1

BEFORE (UPDATE tab2 SET a = 10, tab2.insert = 5);

Using Correlation Names in Triggered Actions
These rules apply when you use correlation names in triggered actions:
v You can use the correlation names as qualifiers for the old and new column

values in SQL statements of the FOR EACH ROW triggered-action list and in
the WHEN condition.

v The WHEN conditions and FOR EACH ROW clauses of multiple triggers on the
same table can use different correlated variables in the REFERENCING clauses
of triggers and of trigger routines to reference values in the same column.

v The old and new correlation names refer to all rows affected by the triggering
statement.

Chapter 2. SQL statements 2-263

v You cannot use the correlation name to qualify a column name in the GROUP
BY, the SET, or the COUNT DISTINCT clause.

v The scope of reference of the correlation names is the entire trigger definition.
This scope is statically determined, meaning that it is limited to the trigger
definition; it does not encompass cascading triggers or columns that are
qualified by a table name in a UDR that is a triggered action, except for trigger
routines that are invoked in the FOR EACH ROW clause.

For additional information on using correlation names in trigger routines, see
“Rules for SPL Routines” on page 2-268.

When to Use Correlation Names
In SQL statements of the FOR EACH ROW list, you must qualify all references to
columns in the triggering table with either the old or new correlation name, unless
the statement is valid independent of the triggered action.

In other words, if a column name inside a FOR EACH ROW triggered action list is
not qualified by a correlation name, even if it is qualified by the triggering table
name, it is interpreted as if the statement were independent of the triggered action.
No special effort is made to search the definition of the triggering table for the
non-qualified column name.

For example, assume that the following DELETE statement is a triggered action
inside the FOR EACH ROW section of a trigger:
DELETE FROM tab1 WHERE col_c = col_c2;

For the statement to be valid, both col_c and col_c2 must be columns from tab1. If
col_c2 is intended to be a correlation reference to a column in the triggering table,
it must be qualified by either the old or the new correlation name. If col_c2 is not
a column in tab1 and is not qualified by either the old or new correlation name,
you get an error.

In a statement that is valid independent of the triggered action, a column name
with no correlation qualifier refers to the current value in the database.

In the triggered action for trigger t1 in the next example, mgr in the WHERE
clause of the correlated subquery is an unqualified column in the triggering table.
In this case, mgr refers to the current column value in empsal because the INSERT
statement is valid independent of the triggered action.
CREATE DATABASE db1;
CREATE TABLE empsal (empno INT, salary INT, mgr INT);
CREATE TABLE mgr (eno INT, bonus INT);
CREATE TABLE biggap (empno INT, salary INT, mgr INT);

CREATE TRIGGER t1 UPDATE OF salary ON empsal
AFTER (INSERT INTO biggap SELECT * FROM empsal WHERE salary <

(SELECT bonus FROM mgr WHERE eno = mgr));

In a triggered action, an unqualified column name from the triggering table refers
to the current column value, but only when the triggered statement is valid
independent of the triggered action.

Qualified Versus Unqualified Value
The following table summarizes what value is retrieved when the column name is
qualified by the old or by the new correlation name after various trigger events.

2-264 IBM Informix Guide to SQL: Syntax

Trigger Event old.column new.column

INSERT No value (error) Inserted value

UPDATE (column updated) Original value Current value (U)

UPDATE (column not updated) Original value Original value (N)

DELETE Original value No value (error)

SELECT Original value No value (error)

When a correlation name has no value, an error is issued only when an SQL or
SPL statement referencing the undefined correlation is executed, rather than when
the correlation name is declared. Refer to the following key when you read the
previous table.

Term Meaning

Original value
Value before the triggering event

Current value
Value after the triggering event

(N) Cannot be changed by triggered action

(U) Can be updated by triggered actions; updated value might be different
from the original value because of preceding triggered actions.

Outside a FOR EACH ROW triggered-action list, you cannot qualify a column
from the triggering table with either the old correlation name or the new
correlation name; it always refers to the current value in the database.

Statements in the trigger action list use whatever collating order was in effect
when the trigger was created, even if a different collation is in effect when the
trigger action is executed. See “SET COLLATION statement” on page 2-608 for
details of how to specify a collating order different from what DB_LOCALE
specifies.

Re-Entrancy of Triggers
In some cases a trigger can be re-entrant. In these cases the triggered action can
reference the triggering table. In other words, both the trigger event and the
triggered action can operate on the same table. The following list summarizes the
situations in which triggers can be re-entrant and the situations in which triggers
cannot be re-entrant:
v The trigger action of an Update trigger cannot be an INSERT or DELETE of the

table that the trigger event updated.
v Similarly, the trigger action of an Update trigger cannot be an UPDATE of a

column that the trigger event updated. (But the trigger action of an Update
trigger can update a column that was not updated by the trigger event.)
For example, assume that the following UPDATE statement, which updates
columns a and b of tab1, is the triggering statement:
UPDATE tab1 SET (a, b) = (a + 1, b + 1);

Now consider the trigger actions in the following example. The first UPDATE
statement is a valid trigger action, but the second one is not, because it updates
column b again.
UPDATE tab1 SET c = c + 1; -- OK
UPDATE tab1 SET b = b + 1; -- INVALID

Chapter 2. SQL statements 2-265

v If the trigger has an UPDATE event, the trigger action can be an EXECUTE
PROCEDURE or EXECUTE FUNCTION statement with an INTO clause that
references a column that was updated by the trigger event or any other column
in the triggering table.
When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is the
trigger action, the INTO clause for an UPDATE trigger is valid only in FOR
EACH ROW trigger actions, and column names that appear in the INTO clause
must be from the triggering table.
The following statement illustrates the appropriate use of the INTO clause:
CREATE TRIGGER upd_totpr UPDATE OF quantity ON items

REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW(EXECUTE PROCEDURE

calc_totpr(pre_upd.quantity,post_upd.quantity,
pre_upd.total_price) INTO total_price);

The column that follows the INTO keyword must be in the triggering table, but
need not have been updated by the trigger event.
When the INTO clause appears in the EXECUTE PROCEDURE or EXECUTE
FUNCTION statement, the database server updates the specified columns with
values returned from the UDR, immediately upon returning from the UDR.

v If the trigger has an INSERT event, the trigger action cannot be an INSERT or
DELETE statement that references the triggering table.

v If the trigger has an INSERT event, the trigger action can be an UPDATE
statement that references a column in the triggering table, but this column
cannot be a column for which a value was supplied by the trigger event.
If the trigger has an INSERT event, and the trigger action updates the triggering
table, the columns in both statements must be mutually exclusive. For example,
assume that the triggering statement inserts values for columns cola and colb of
table tab1:
INSERT INTO tab1 (cola, colb) VALUES (1,10);

Now consider the following trigger actions. The first UPDATE is valid, but the
second one is not, because it updates column colb even though the trigger event
already supplied a value for column colb:
UPDATE tab1 SET colc=100; --OK
UPDATE tab1 SET colb=100; --INVALID

v If the trigger has an INSERT event, the trigger action can be an EXECUTE
PROCEDURE or EXECUTE FUNCTION statement with an INTO clause that
references a column that was supplied by the trigger event or a column that was
not supplied by the trigger event.
When an EXECUTE PROCEDURE or EXECUTE FUNCTION statement is the
trigger action, you can specify the INTO clause for an INSERT trigger only when
the trigger action occurs in the FOR EACH ROW list. In this case, the INTO
clause can contain only column names from the triggering table.
The following statement illustrates the valid use of the INTO clause:
CREATE TRIGGER ins_totpr INSERT ON items

REFERENCING NEW AS new_ins
FOR EACH ROW (EXECUTE PROCEDURE calc_totpr

(0, new_ins.quantity, 0) INTO total_price);

The column that follows the INTO keyword can be a column in the triggering
table that was supplied by the trigger event, or a column in the triggering table
that was not supplied by the trigger event.
When the INTO clause appears in the EXECUTE PROCEDURE or the EXECUTE
FUNCTION statement, the database server immediately updates the specified
columns with values returned from the UDR.

2-266 IBM Informix Guide to SQL: Syntax

v If the trigger action is a SELECT statement, the SELECT statement can reference
the triggering table. The SELECT statement can be a trigger action in the
following instances:
– The SELECT statement appears in a subquery in the WHEN clause or in a

trigger-action statement.
– The trigger action is a UDR, and the SELECT statement appears inside the

UDR.

Re-Entrancy and Cascading Triggers
The cases when a trigger cannot be re-entrant apply recursively to all cascading
triggers, which are considered part of the initial trigger. In particular, this rule
means that a cascading trigger cannot update any columns in the triggering table
that were updated by the original triggering statement, including any
nontriggering columns affected by that statement. For example, assume this
UPDATE statement is the triggering statement:
UPDATE tab1 SET (a, b) = (a + 1, b + 1);

In the cascading triggers of the next example, trig2 fails at runtime because it
references column b, which the triggering UPDATE statement updates:
CREATE TRIGGER trig1 UPDATE OF a ON tab1-- Valid

AFTER (UPDATE tab2 SET e = e + 1);

CREATE TRIGGER trig2 UPDATE OF e ON tab2-- Invalid
AFTER (UPDATE tab1 SET b = b + 1);

Now consider the following SQL statements. When the final UPDATE statement is
executed, column a is updated and the trigger trig1 is activated.

The trigger action again updates column a with an EXECUTE PROCEDURE INTO
statement.
CREATE TABLE temp1 (a INT, b INT, e INT);
INSERT INTO temp1 VALUES (10, 20, 30);

CREATE PROCEDURE proc(val iINT) RETURNING INT,INT;
RETURN val+10, val+20;

END PROCEDURE;

CREATE TRIGGER trig1 UPDATE OF a ON temp1
FOR EACH ROW (EXECUTE PROCEDURE proc(50) INTO a, e);

CREATE TRIGGER trig2 UPDATE OF e ON temp1
FOR EACH ROW (EXECUTE PROCEDURE proc(100) INTO a, e);

UPDATE temp1 SET (a,b) = (40,50);

Several questions arise from this example of cascading triggers. First, should the
update of column a activate trigger trig1 again? The answer is no. Because the
trigger was activated, it is not activated a second time. If the trigger action is an
EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO statement, the
only triggers that are activated are those that are defined on columns that are
mutually exclusive from the columns updated until then (in the cascade of
triggers) in that table. Other triggers are ignored.

Another question that arises from the example is whether trigger trig2 should be
activated. The answer is yes. The trigger trig2 is defined on column e. Until now,
column e in table temp1 has not been modified. Trigger trig2 is activated.

Chapter 2. SQL statements 2-267

A final question that arises from the example is whether triggers trig1 and trig2
should be activated after the trigger action in trig2 is performed. The answer is no.
Neither trigger is activated. By this time columns a and e have been updated once,
and triggers trig1 and trig2 have been executed once. The database server ignores
and does not activate these triggers. For more about cascading triggers, see
“Cascading Triggers” on page 2-270.

As noted earlier, an INSTEAD OF trigger on a view cannot include the EXECUTE
PROCEDURE INTO statement among its trigger actions. In addition, an error
results if two views each have INSERT INSTEAD OF triggers with actions defined
to perform INSERT operations on the other view.

Rules for SPL Routines

In addition to the rules listed in “Re-Entrancy of Triggers” on page 2-265, the
following guidelines apply to an SPL routine that is specified as a trigger action:
v The SPL routine cannot be a cursor function (one that returns more than one

row) in a context where only one row is expected.
v You cannot use the old or new correlation name inside the SPL routine unless

the CREATE FUNCTION or CREATE PROCEDURE statement includes the
REFERENCING clause that defines the UDR as a trigger routine. If you need to
use the corresponding values in a routine that is not a trigger routine, you must
pass them as parameters. In this case, the routine should be independent of
triggers, and the old or new correlation name does not have any meaning
outside the trigger.

v A trigger routine must include the REFERENCING clause that can declare a
correlation name for OLD or NEW column values that SPL statements in the
trigger routine can reference.

v A trigger routine must include the FOR table_object clause that specifies the name
of the table or view in the local database whose triggers can invoke this routine.
The triggered action cannot call a trigger routine that does not specify the
triggering table or view.

v Only trigger routines invoked in the FOR EACH ROW section of the Triggered
Action list can operate directly on old or new correlation names that are defined
in the REFERENCING clause of the trigger or of the trigger routine.

v Trigger routines can be invoked only in the FOR EACH ROW section of the
Triggered Action list in the trigger definition.

v Correlated variables for OLD or NEW values can appear in the IF statement of
SPL and in CASE expressions.

v Only correlated variables for NEW values can be on the left-hand side of a LET
expression that references correlated variables. In this case, the FOR clause of the
SPL routine must specify a table, rather than a view, and the trigger whose
action invokes the SPL routine cannot be an INSTEAD OF trigger.

v Both OLD and NEW values can be on the right-hand side of a LET expression.
v Only trigger routines that are invoked in the FOR EACH ROW clause can use

the Boolean operators SELECTING, INSERTING, DELETING, and UPDATING.
These operators return TRUE ('t') if the triggering event matches the DML
operation referenced by the name of the operator, and they return FALSE ('f')
otherwise.

v The IF statement of SPL and CASE expressions of SQL can specify these
operators as the condition in a trigger routine.

v Trigger routines must be written in the SPL language. They cannot be written in
an external language, such as the C or Java language, but the trigger routine can

2-268 IBM Informix Guide to SQL: Syntax

include calls to external language routines, such as the mi_trigger application
programming interface for trigger introspection.

v Trigger routines cannot reference savepoints. Any changes to the data values or
to the schema of the database by a triggered action must be committed or rolled
back in their entirety. Informix does not support the ROLLBACK TO
SAVEPOINT statement in a trigger routine for the partial rollback of a triggered
action.

For more information about the mi_trigger API, refer to the IBM Informix DataBlade
API Programmer's Guide and to the IBM Informix DataBlade API Function Reference.

When you use an SPL routine as a trigger action, the database objects that the
routine references are not checked until the routine is executed.

See also the SPL restrictions in “Triggers and SPL Routines” on page 2-246.

Privileges to Execute Trigger Actions
If you do not own the trigger, but the access privileges held by the trigger owner
include WITH GRANT OPTION, then for each triggered SQL statement you inherit
the privileges of the trigger owner (with grant option), in addition to any
privileges that have been granted to you individually, or through an active or
default role that you hold, or that you hold as a member of the PUBLIC group. If
the triggered action calls a UDR, you need Execute privilege on the UDR, or the
trigger owner must have Execute privilege with grant option.

Important: As a security precaution, discretionary access privileges that the user
holds only from a role (but that were not granted to the user individually or as
member of the PUBLIC group) cannot provide access to tables outside the current
database through a triggered action or through a trigger routine.

As a security precaution, however, discretionary access privileges that the user
holds only from a role (but that were not granted to the user individually or as
member of the PUBLIC group) cannot provide access to tables outside the current
database through a triggered action or through a trigger routine.

While executing the UDR, however, you do not inherit the privileges of the trigger
owner; instead, you receive the privileges granted with the UDR, depending on
whether the routine is a DBA-privileged or an owner-privileged UDR:
1. Privileges for a DBA-privileged UDR

When a UDR is registered with the DBA keyword, and you are granted the
Execute privilege on the UDR, the database server automatically grants you
temporary DBA privileges that are available only when you are executing the
UDR.

2. Privileges for an owner-privileged UDR
If the UDR was created without the DBA keyword, but the owner of the UDR
was granted the necessary privileges on the underlying database objects with
the WITH GRANT OPTION keywords, then you inherit these privileges when
you are granted the Execute privilege on the UDR.

For a UDR that is not DBA privileged, all non-qualified database objects that the
UDR references are implicitly qualified by the name of the UDR owner.

Chapter 2. SQL statements 2-269

If the UDR owner has no WITH GRANT OPTION privilege, you have your
original privileges on the underlying database objects when the UDR executes. For
more information on privileges on SPL routines, refer to the IBM Informix Guide to
SQL: Tutorial.

A view that has no INSTEAD OF trigger has only Select (with grant option)
privilege. If an INSTEAD OF trigger is created on it, however, then the view has
Insert (with grant option) privilege during creation of the trigger. The view owner
can now grant only Select and Insert privileges to others. This is independent of
the trigger action. It is not necessary to obtain Execute (with grant option) privilege
on the procedure or function. By default, Execute privilege (without grant option)
is granted on each UDR in the action list.

You can use roles with triggers. Role-related statements (CREATE ROLE, DROP
ROLE, GRANT, REVOKE, and SET ROLE) and SET SESSION AUTHORIZATION
statements are valid in a UDR that the triggered action invokes. Privileges that a
user acquired by enabling a role or by a SET SESSION AUTHORIZATION
statement are not relinquished when a trigger is executed.

On a complex view (one with columns from more than one table), only the owner
or DBA can create an INSTEAD OF trigger. The owner receives Select privileges
when the trigger is created. Only after obtaining the required Execute privileges
can the owner of the view grant privileges to other users. When the trigger on the
complex view is dropped, all of these privileges are revoked.

Creating a Trigger Action That Anyone Can Use

For a trigger to be executable by anyone who has the privileges to execute the
triggering statement, you can ask the DBA to create a DBA-privileged UDR and
grant you the Execute privilege with the WITH GRANT OPTION right.

You then use the DBA-privileged UDR as the trigger action. Anyone can execute
the trigger action because the DBA-privileged UDR carries the WITH GRANT
OPTION right. When you activate the UDR, the database server applies
privilege-checking rules for a DBA.

Cascading Triggers
The database server allows triggers other than Select triggers to cascade, meaning
that the trigger actions of one trigger can activate another trigger. (For further
information on the restriction against cascading Select triggers, see “Circumstances
When a Select Trigger Is Activated” on page 2-251.)

The maximum number of triggers in a cascading series is 61: the initial trigger plus
a maximum of 60 cascading triggers. When the number of cascading triggers in a
series exceeds the maximum, the database server returns error number -748, with
the following message:
Exceeded limit on maximum number of cascaded triggers.

The next example illustrates a series of cascading triggers that enforce referential
integrity on the manufact, stock, and items tables in the stores_demo database.
When a manufacturer is deleted from the manufact table, the first trigger,
del_manu, deletes all the items of that manufacturer from the stock table. Each
DELETE in the stock table activates a second trigger, del_items, that deletes all
items of that manufacturer from the items table. Finally, each DELETE in the items
table triggers SPL routine log_order, creating a record of any orders in the orders
table that can no longer be filled.

2-270 IBM Informix Guide to SQL: Syntax

CREATE TRIGGER del_manu
DELETE ON manufact REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM stock WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_stock
DELETE ON stock REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM items WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_items
DELETE ON items REFERENCING OLD AS pre_del
FOR EACH ROW(EXECUTE PROCEDURE log_order(pre_del.order_num));

When you are not using logging, referential integrity constraints on both the
manufact and stock tables prohibit the triggers in this example from executing.
When you use logging, however, the triggers execute successfully because
constraint checking is deferred until all the trigger actions are complete, including
the actions of cascading triggers. For more information about how constraints are
handled when triggers execute, see “Constraint Checking.”

The database server prevents loops of cascading triggers by not allowing you to
modify the triggering table in any cascading trigger action, except with an
UPDATE statement that does not modify any column that the triggering UPDATE
statement updated, or with an INSERT statement. An INSERT trigger can define
UPDATE trigger actions on the same table.

Constraint Checking
When you use logging, the database server defers constraint checking on the
triggering statement until after the statements in the triggered-action list execute.
This is equivalent to executing a SET CONSTRAINTS ALL DEFERRED statement
before executing the triggering statement. After the trigger action is completed, the
database server effectively executes a SET CONSTRAINTS constraint IMMEDIATE
statement to check the constraints that were deferred. This action allows you to
write triggers so that the trigger action can resolve any constraint violations that
the triggering statement creates. For more information, see “SET Database Object
Mode statement” on page 2-599.

Consider the following example, in which the table child has constraint r1, which
references the table parent. You define trigger trig1 and activate it with an INSERT
statement. In the trigger action, trig1 checks to see if parent has a row with the
value of the current cola in child; if not, it inserts it.
CREATE TABLE parent (cola INT PRIMARY KEY);
CREATE TABLE child (cola INT REFERENCES parent CONSTRAINT r1);
CREATE TRIGGER trig1 INSERT ON child

REFERENCING NEW AS new
FOR EACH ROW
WHEN((SELECT COUNT (*) FROM parent

WHERE cola = new.cola) = 0)
-- parent row does not exist

(INSERT INTO parent VALUES (new.cola));

When you insert a row into a table that is the child table in a referential constraint,
the row might not exist in the parent table. The database server does not
immediately return this error on a triggering statement. Instead, it allows the
trigger action to resolve the constraint violation by inserting the corresponding row
into the parent table. As the previous example shows, you can check within the
trigger action to see whether the parent row exists, and if so, you can provide logic
to bypass the INSERT action.

For a database without logging, the database server does not defer constraint
checking on the triggering statement. In this case, the database server immediately
returns an error if the triggering statement violates a constraint.

Chapter 2. SQL statements 2-271

You cannot use the SET Transaction Mode statement in a trigger action. The
database server checks this restriction when you activate a trigger, because the
statement could occur inside a UDR.

Preventing Triggers from Overriding Each Other
When you activate multiple triggers with an UPDATE statement, a trigger can
possibly override the changes that an earlier trigger made. If you do not want the
trigger actions to interact, you can split the UPDATE statement into multiple
UPDATE statements, each of which updates an individual column.

As another alternative, you can create a single update trigger for all columns that
require a trigger action. Then, inside the trigger action, you can test for the column
being updated and apply the actions in the desired order. This approach, however,
is different from having the database server apply the actions of individual
triggers, and it has the following disadvantages:
v If the triggering UPDATE statement sets a column to the current value, you

cannot detect the UPDATE, so the trigger action is skipped. You might wish to
execute the trigger action, even though the value of the column has not changed.

v If the trigger has a BEFORE action, it applies to all columns, because you cannot
yet detect whether a column has changed.

Tables in Remote Databases
You cannot create triggers on tables or views that reside outside the current
database. You can, however, define a trigger on a local table whose trigger action
manipulates a table in another database of the local server instance, or a table in a
database of another server instance.

The following example defines an Update trigger on the newtab table in the
current database of the local Informix server instance, dbserver1, to which the
session is connected. Here the trigger action specifies an UPDATE operation on the
items table of the stores_demo database of the remote dbserver2 Informix server
instance:
CREATE TRIGGER upd_nt UPDATE ON newtab

REFERENCING NEW AS post
FOR EACH ROW(UPDATE stores_demo@dbserver2:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

In summary, triggers registered in the local database can support local,
cross-database, and cross-server trigger actions:
v local trigger actions on a table in the local database
v cross-database trigger actions on a table in another database of the local server

instance
v cross-server trigger actions on a table in a database of a remote server instance.

The cross-server triggered action of a trigger that is defined in a database of a
remote server instance can be the event that activates one or more triggers in the
local database, but in this case, triggered actions of the local trigger cannot be
cross-server operations. If a SELECT, DELETE, INSERT, MERGE, or UPDATE
statement from a remote database server is the event that activates a local trigger
whose action specifies a table in a database of a remote server instance, the trigger
actions fail.

For example, the following combination of trigger action and triggering statement
results in an error when the triggering statement executes:

2-272 IBM Informix Guide to SQL: Syntax

-- Trigger action from dbserver1 to dbserver3:
CREATE TRIGGER upd_nt UPDATE ON newtab

REFERENCING NEW AS post
FOR EACH ROW(UPDATE stores_demo@dbserver3:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

-- Triggering statement from dbserver2:
UPDATE stores_demo@dbserver1:newtab

SET qty = qty * 2 WHERE s_num = 5
AND mc = ’ANZ’;

The UPDATE statement above returns an error at run time, because a cross-server
triggering event cannot trigger another cross-server action.

Important: As a security precaution, discretionary access privileges that a user
holds only from a role cannot provide access to tables outside the current database
through a view or through a trigger. Cross-database trigger actions and
cross-server trigger actions require access privileges on the non-local database and
table that were granted directly to the user, or granted to the PUBLIC group.

Logging and Recovery
You can create triggers for databases, with and without logging. If the trigger fails
in a database that has transaction logging, the triggering statement and trigger
actions are rolled back, as if the actions were an extension of the triggering
statement, but the rest of the transaction is not rolled back.

In a database that does not have transaction logging, however, you cannot roll
back when the triggering statement fails. In this case, you are responsible for
maintaining data integrity in the database. The UPDATE, INSERT, or DELETE
action of the triggering statement occurs before the trigger actions in the FOR
EACH ROW section. If the trigger action fails for a database without logging, the
application must restore the row that was changed by the triggering statement to
its previous value.

If a trigger action calls a UDR, but the UDR terminates in an exception-handling
section, any actions that modify data inside that section are rolled back with the
triggering statement. In the following partial example, when the exception handler
traps an error, it inserts a row into the table logtab:
ON EXCEPTION IN (-201)

INSERT INTO logtab values (errno, errstr);
RAISE EXCEPTION -201

END EXCEPTION;

When the RAISE EXCEPTION statement returns the error, however, the database
server rolls back this INSERT because it is part of the trigger actions. If the UDR is
executed outside a trigger action, the INSERT is not rolled back.

The UDR that implements a trigger action cannot contain any BEGIN WORK,
COMMIT WORK, or ROLLBACK WORK statements. If the database has
transaction logging, you must either begin an explicit transaction before the
triggering statement, or the statement itself must be an implicit transaction. In any
case, no other transaction-related statement is valid inside the UDR.

You can use triggers to enforce referential actions that the database server does not
currently support. In a database without logging, you are responsible for
maintaining data integrity when the triggering statement fails.

Chapter 2. SQL statements 2-273

INSTEAD OF Triggers on Views
Use INSTEAD OF triggers to define a specified action for the database server to
perform when a trigger on a view is activated, rather than execute the triggering
INSERT, DELETE, MERGE, or UPDATE statement.

Syntax

�� CREATE TRIGGER trigger INSTEAD OF
ENABLED

Trigger on a View DISABLED ��

Trigger on a View:

INSERT ON view
REFERENCING NEW correlation

AS
DELETE ON view

REFERENCING OLD correlation
AS

UPDATE ON view
REFERENCING OLD correlation

AS NEW correlation
AS

REFERENCING NEW correlation
AS OLD correlation

AS

�

� FOR EACH ROW
(1)

INSTEAD OF Triggered Action

Notes:

1 See “The Action Clause of INSTEAD OF Triggers” on page 2-275

Element Description Restrictions Syntax

correlation Name that you declare here to qualify
an old or new column value (as
correlation.column) in a triggered action

Must be unique in this statement “Identifier” on page
5-21

trigger Name declared here for the trigger Must be unique among the names of
triggers in the database

“Identifier” on page
5-21

view Name or synonym of the triggering
view. Can include owner. qualifier.

The view or synonym must exist in the
current database

“Identifier” on page
5-21

You can use the trigger action to update the tables underlying the view, in some
cases updating an otherwise “non-updatable” view. You can also use INSTEAD OF
triggers to substitute other actions when INSERT, DELETE, or UPDATE statements
reference specific columns within the database.

In the optional REFERENCING clause of an INSTEAD OF UPDATE trigger, the
new correlation name can appear before or after the old correlation name.

With Informix, the same REFERENCING OLD and REFERENCING NEW syntax is
supported in the CREATE FUNCTION and CREATE PROCEDURE statements for
defining correlation names in trigger routines. A trigger routine can be invoked in

2-274 IBM Informix Guide to SQL: Syntax

the Action clause for INSTEAD OF triggers on the view that is specified in the
FOR clause of the CREATE FUNCTION or CREATE PROCEDURE statement that
defines the trigger routine.

The specified view is sometimes called the triggering view. The left-hand portion of
this diagram (including the view specification) defines the trigger event. The rest of
the diagram defines correlation names and the trigger action.

The Action Clause of INSTEAD OF Triggers
When the trigger event for the specified view is encountered, the SQL statements of
the trigger action are executed, instead of the triggering statement. Triggers defined
on a view support the following syntax in the action clause.

INSTEAD OF Triggered Action:

�

,
(1)

(INSERT Statement)
(2)

DELETE Statement
(3)

UPDATE Statement
(4)

EXECUTE PROCEDURE Statement
(5)

EXECUTE FUNCTION Statement

Notes:

1 See “INSERT statement” on page 2-435

2 See “DELETE statement” on page 2-307

3 See “UPDATE statement” on page 2-700

4 See “EXECUTE PROCEDURE statement” on page 2-369

5 See “EXECUTE FUNCTION statement” on page 2-361

This is not identical to the syntax of the trigger action for a trigger on a table, as
described in the section “Triggered Action” on page 2-260. Because no WHEN
(condition) is supported, the same trigger action is executed whenever the
INSTEAD OF trigger event is encountered, and only one action list can be
specified, rather than a separate list for each condition.

Restrictions on INSTEAD OF Triggers on Views
You must be either the owner of the view or have the DBA status to create an
INSTEAD OF trigger on a view. The owner of a simple view (based on only one
table) has Insert, Update, and Delete privileges. For information about the
relationship between the privileges of the trigger owner and the privileges of other
users, see “Privileges to Execute Trigger Actions” on page 2-269.

If multiple tables underlie a view, only the owner of the view can create a trigger,
but that owner can grant DML privileges on the view to other users.

An INSTEAD OF trigger defined on a view cannot violate the “Restrictions on
Triggers” on page 2-245 and must observe the following additional rules:
v You can define an INSTEAD OF trigger only on a view, not on a table.
v The view must be local to the current database.

Chapter 2. SQL statements 2-275

v The view cannot be an updatable view WITH CHECK OPTION.
v No SELECT event or WHEN clause is valid in an INSTEAD OF trigger.
v No BEFORE nor AFTER action is valid in an INSTEAD OF trigger.
v No OF column clause is valid in an INSTEAD OF UPDATE trigger.
v Every INSTEAD OF trigger must specify FOR EACH ROW.
v Trigger routines called by INSTEAD OF triggers cannot reference savepoints.

A view can have any number of INSTEAD OF triggers defined for each type of
event (INSERT, DELETE, or UPDATE).

The ON EXCEPTION statement of SPL has no effect when it is issued from the
Action clause of an INSTEAD OF trigger.

Just as with triggers on tables, an INSTEAD OF trigger whose triggered action
inserts a new serial value into a BIGSERIAL, SERIAL, or SERIAL8 column cannot
update the sqlca.sqlerrd[1] field of the SQL Communication Area structure. The
triggered INSERT operation can successfully increment the serial counter for the
column, but the value of the sqlca.sqlerrd[1] field remains zero, rather than being
reset to the serial value. The sqlca.sqlerrd[1] field can show the new serial value
that you insert directly through an updatable view, but that field cannot show the
action of an INSTEAD OF Insert trigger on a serial column.

Updating Views
INSERT, DELETE, or UPDATE statements can directly modify a view only if all of
the following are true of the SELECT statement that defines the view:
v All of the columns in the view are from a single table.
v No columns in the projection list are aggregate values.
v No UNIQUE or DISTINCT keyword is in the SELECT projection list.
v No GROUP BY clause nor UNION operator is in the view definition.
v The query selects no calculated values and no literal values.

By using INSTEAD OF triggers, however, you can circumvent these restrictions on
the view, if the trigger action modifies the base table.

Example of an INSTEAD OF Trigger on a View
Suppose that dept and emp are tables that list departments and employees:
CREATE TABLE dept (

deptno INTEGER PRIMARY KEY,
deptname CHAR(20),
manager_num INT

);
CREATE TABLE emp (

empno INTEGER PRIMARY KEY,
empname CHAR(20),
deptno INTEGER REFERENCES dept(deptno),
startdate DATE

);
ALTER TABLE dept ADD CONSTRAINT(FOREIGN KEY (manager_num)

REFERENCES emp(empno));

The next statement defines manager_info, a view of columns in the dept and emp
tables that includes all the managers of each department:
CREATE VIEW manager_info AS

SELECT d.deptno, d.deptname, e.empno, e.empname
FROM emp e, dept d WHERE e.empno = d.manager_num;

2-276 IBM Informix Guide to SQL: Syntax

The following CREATE TRIGGER statement creates manager_info_insert, an
INSTEAD OF trigger that is designed to insert rows into the dept and emp tables
through the manager_info view:
CREATE TRIGGER manager_info_insert

INSTEAD OF INSERT ON manager_info --defines trigger event
REFERENCING NEW AS n --new manager data

FOR EACH ROW --defines trigger action
(EXECUTE PROCEDURE instab(n.deptno, n.empno));

CREATE PROCEDURE instab (dno INT, eno INT)
INSERT INTO dept(deptno, manager_num) VALUES(dno, eno);
INSERT INTO emp (empno, deptno) VALUES (eno, dno);

END PROCEDURE;

After the tables, view, trigger, and SPL routine have been created, the database
server treats the following INSERT statement as a triggering event:
INSERT INTO manager_info(deptno, empno) VALUES (08, 4232);

This triggering INSERT statement is not executed, but this event causes the trigger
action to be executed instead, invoking the instab() SPL routine. The INSERT
statements in the SPL routine insert new values into both the emp and dept base
tables of the manager_info view.

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
PROCEDURE statement” on page 2-162, “CREATE VIEW statement,”“DROP
TRIGGER statement” on page 2-349, “EXECUTE PROCEDURE statement” on page
2-369, and “SET Database Object Mode statement” on page 2-599

For a task-oriented discussion of triggers, and for examples of INSTEAD OF
DELETE (and UPDATE) triggers on views, see the IBM Informix Guide to SQL:
Tutorial. For performance implications of triggers, see your IBM Informix
Performance Guide.
Related concepts

Performance implications for triggers (Performance Guide)

CREATE VIEW statement
Use the CREATE VIEW statement to create a new view that is based on one or
more existing tables and views that reside in the database, or in another database
of the local database server or of a different database server.

Syntax

�� CREATE VIEW view
owner

�

,

(column)
OF TYPE row_type

AS �

Chapter 2. SQL statements 2-277

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_551.htm#ids_prf_551

�
(1)

Subset of SELECT Statement
WITH CHECK OPTION

��

Notes:

1 See “Subset of SELECT Statements Valid in View Definitions” on page 2-279

Element Description Restrictions Syntax

column Name that you declare here for a column
in view. Default is a column name from
Projection list of SELECT.

See “Naming View Columns” on
page 2-280.

“Identifier” on page
5-21

owner Owner of the view. If omitted, default is
the user ID that issues the statement.

To specify another user ID requires
DBA access privilege.

“Owner Name” on
page 5-45

row_type Named-row type for typed view Must already exist in the database “Data Type” on page
4-21

view Name that you declare here for the view Must be unique among view, table,
sequence, and synonym names in the
database.

“Identifier” on page
5-21

Usage

A view is a virtual table, defined by a SELECT statement. Except for the statements
in the following list, you can specify the name or synonym of a view in any SQL
statement where the name of a table is syntactically valid:
v ALTER FRAGMENT
v CREATE INDEX
v CREATE TABLE
v CREATE TRIGGER
v RENAME TABLE
v START VIOLATIONS TABLE
v STOP VIOLATIONS TABLE
v TRUNCATE
v UPDATE STATISTICS

You must specify the name of a view when you use the CREATE TRIGGER
statement to define an INSTEAD OF trigger on a view, but the syntax and
functionality are different from those of a trigger defined on a table.

“Updating Through Views” on page 2-282 prohibits non-updatable views in
INSERT, DELETE, or UPDATE statements (where other views are valid).

To create a view, you must have the Select privilege on all columns from which the
view is derived. You can query a view as if it were a table, and in some cases, you
can update it as if it were a table; but a view is not a table.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if a view of the
specified name is already registered in the current database, or if the specified
name is the identifier of a table, synonym, or sequence object in the current
database.

2-278 IBM Informix Guide to SQL: Syntax

The view consists of the set of rows and columns that the SELECT statement in the
view definition returns each time you refer to the view in a query.

In some cases, the database server merges the SELECT statement of the user with
the SELECT statement defining the view and executes the combined statements. In
other cases, a query against a view might execute more slowly than expected, if
the complexity of the view definition causes the database server to create a
temporary table (referred to as a materialized view). For more information on
materialized views, see the IBM Informix Performance Guide.

The view reflects changes to the underlying tables with one exception. If a SELECT
* specification defines the view, the view has only the columns that existed in the
underlying tables when the view was defined by CREATE VIEW. Any new
columns that are subsequently added to the underlying tables with the ALTER
TABLE statement do not appear in the view.

The view inherits the data types of the columns in the tables from which the view
is derived. The database server determines data types of virtual columns from the
nature of the expression.

The SELECT statement is stored in the sysviews system catalog table. When you
subsequently refer to a view in another statement, the database server performs the
defining SELECT statement while it executes the new statement.

In DB-Access, if you create a view outside the CREATE SCHEMA statement, you
receive warnings if you use the -ansi flag or if you set the DBANSIWARN
environment variable.

The following statement creates a view that is based on the person table. When
you create a view like this, which has no OF TYPE clause, the view is referred to
as an untyped view.
CREATE VIEW v1 AS SELECT * FROM person;

Related concepts

View costs (Performance Guide)

Typed Views
You can create typed views if you have Usage privileges on the named-ROW type
or if you are its owner or the DBA. If you omit the OF TYPE clause, rows in the
view are considered untyped and default to an unnamed-ROW type.

Typed views, like typed tables, are based on a named-ROW type. Each column in
the view corresponds to a field in the named-ROW type. The following statement
creates a typed view that is based on the table person.
CREATE VIEW v2 OF TYPE person_t AS SELECT * FROM person;

To create a typed view, you must include an OF TYPE clause. When you create a
typed view, the named-ROW type that you specify immediately after the OF TYPE
keywords must already exist.

Subset of SELECT Statements Valid in View Definitions
You cannot create a view on a temporary table. The FROM clause of the SELECT
statement cannot include the name of a temporary table.

Chapter 2. SQL statements 2-279

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_534.htm#ids_prf_534

If Select privileges are revoked from a user for a table that is referenced in the
SELECT statement defining a view that the same user owns, then that view is
dropped, unless it also includes columns from tables in another database.

You cannot create a view on typed tables (including any table that is part of a table
hierarchy) that reside in a remote database.

Do not use display labels in the Select list of the Projection clause. Display labels in
the Projection clause are interpreted as column names.

Hardcoded values should not be used in a view, but only in the WHERE clause of
the SELECT statements that query the view. If the values are not hardcoded in the
view, the query optimizer can then always exclude those literal values and can
complete the query in less time. But if the same values are hardcoded in the view,
the query optimizer still must evaluate the literal value.

The SELECT statement in CREATE VIEW cannot include the SKIP, FIRST, or LIMIT
keywords, the INTO TEMP clause, or the ORDER BY clause. For complete
information about SELECT statement syntax and usage, see “SELECT statement”
on page 2-536.

Union Views
A view that contains a UNION or UNION ALL operator in its SELECT statement
is known as a union view. Certain restrictions apply to union views:
v If a CREATE VIEW statement defines a union view, you cannot specify the

WITH CHECK OPTION keywords in the CREATE VIEW statement.
v All restrictions that apply to UNION or UNION ALL operations in stand-alone

SELECT statements also apply to UNION and UNION ALL operations in the
SELECT statement of a union view.

For a list of these restrictions, see “Restrictions on a Combined SELECT” on page
2-597. For an example of a CREATE VIEW statement that defines a union view, see
“Naming View Columns.”

Naming View Columns
The number of columns that you specify in the column list must match the number
of columns returned by the SELECT statement that defines the view. If you do not
specify a list of columns, the view inherits the column names of the underlying
tables. In the following example, the view herostock has the same column names
as the columns in Projection clause of the SELECT statement:
CREATE VIEW herostock AS

SELECT stock_num, description, unit_price, unit, unit_descr
FROM stock WHERE manu_code = ’HRO’;

You must specify at least one column name in the following circumstances:
v If you provide names for some of the columns in a view, then you must provide

names for all the columns. That is, the column list must contain an entry for
every column that appears in the view.

v If the SELECT statement returns an expression, the corresponding column in the
view is called a virtual column. You must provide a name for a virtual column.
In the following example, the user must specify the column parameter because
the select list of the Projection clause of the SELECT statement contains an
aggregate expression:

2-280 IBM Informix Guide to SQL: Syntax

CREATE VIEW newview (firstcol, secondcol) AS
SELECT sum(cola), colb FROM oldtab;

v You must also specify column names in cases where any of the selected columns
have duplicate column names without the table qualifiers. For example, if both
orders.order_num and items.order_num appear in the SELECT statement, the
CREATE VIEW statement, must provide two separate column names to label
them:
CREATE VIEW someorders (custnum,ocustnum,newprice) AS

SELECT orders.order_num,items.order_num,
items.total_price*1.5

FROM orders, items
WHERE orders.order_num = items.order_num
AND items.total_price > 100.00;

Here custnum and ocustnum replace the two identical column names.
v The CREATE VIEW statement must also provide column names in the column

list when the SELECT statement includes a UNION or UNION ALL operator
and the names of the corresponding columns in the SELECT statements are not
identical.
For example, code in the following CREATE VIEW statement must specify the
column list because the second column in the first SELECT statement has a
different name from the second column in the second SELECT statement:
CREATE VIEW myview (cola, colb) AS

SELECT colx, coly from firsttab
UNION
SELECT colx, colz from secondtab;

Using a View in the SELECT Statement
You can define a view whose columns are based on other views, but you must
abide by the restrictions on creating views that are discussed in the IBM Informix
Database Design and Implementation Guide.

WITH CHECK OPTION Keywords
The WITH CHECK OPTION keywords instruct the database server to ensure that
all modifications that are made through the view to the underlying tables satisfy
the definition of the view.

The following example creates a view that is named palo_alto, which uses all the
information in the customer table for customers in the city of Palo Alto. The
database server checks any modifications made to the customer table through
palo_alto because the WITH CHECK OPTION keywords are specified.
CREATE VIEW palo_alto AS

SELECT * FROM customer WHERE city = ’Palo Alto’
WITH CHECK OPTION

You can insert into a view a row that does not satisfy the conditions of the view
(that is, a row that is not visible through the view). You can also update a row of a
view so that it no longer satisfies the conditions of the view. For example, if the
view was created without the WITH CHECK OPTION keywords, you could insert
a row through the view where the city is Los Altos, or you could update a row
through the view by changing the city from Palo Alto to Los Altos.

To prevent such inserts and updates, you can add the WITH CHECK OPTION
keywords when you create the view. These keywords ask the database server to
test every inserted or updated row to ensure that it meets the conditions that are

Chapter 2. SQL statements 2-281

set by the WHERE clause of the view. The database server rejects the operation
with an error if the row does not meet the conditions.

Even if the view was created with the WITH CHECK OPTION keywords,
however, you can perform inserts and updates through the view to change
columns that are not part of the view definition. A column is not part of the view
definition if it does not appear in the WHERE clause of the SELECT statement that
defines the view.

Updating Through Views
If a view is built on a single table, the view is updatable if the SELECT statement
that defines the view does not contain any of the following elements:
v Columns in the projection list that are aggregate values
v Columns in the projection list that use the UNIQUE or DISTINCT keyword
v A GROUP BY clause
v A UNION operator
v A query that selects calculated or literal values.

You can DELETE from a view that selects calculated values from a single table, but
INSERT and UPDATE operations are not valid on such views.

In an updatable view, you can update the values in the underlying table by
inserting values into the view. If a view is built on a table that has a derived value
for a column, however, that column is not updatable through the view. Other
columns in the view, however, can be updated.

See also “Updating Views” on page 2-276 for information about using INSTEAD
OF triggers to update views that are based on more than one table or that include
columns containing aggregates or other calculated values.

Important: You cannot update or insert rows in a remote table through views that
were created using the WITH CHECK OPTION keywords.

Related Information

Related statements: “CREATE TABLE statement” on page 2-198, “CREATE
TRIGGER statement” on page 2-241, “DROP VIEW statement” on page 2-351,
“GRANT statement” on page 2-401, “REVOKE statement” on page 2-502,“SELECT
statement” on page 2-536, and “SET SESSION AUTHORIZATION statement” on
page 2-664

For a discussion of views, see the IBM Informix Database Design and Implementation
Guide.

For a discussion of how to use privileges and views to restrict access to the
database, see the IBM Informix Guide to SQL: Tutorial.

CREATE XADATASOURCE statement
Use the CREATE XADATASOURCE statement to create a new XA-compliant data
source and create an entry for it in the sysxadatasources system catalog table. This
statement is an extension to the ANSI/ISO standard for SQL.

2-282 IBM Informix Guide to SQL: Syntax

Syntax

�� CREATE XADATASOURCE xa_source USING xa_type ��

Element Description Restrictions Syntax

xa_source Name that you declare here for
the new XA data source

Must be unique among XA data source names
in sysxadatasources

“Identifier” on page
5-21

xa_type Name of an existing XA data
source type

Must already exist in the database in the
sysxasourcetypes system catalog table

“Identifier” on page
5-21

Usage

An XA-compliant data source is an external data source that complies with the
X/Open DTP XA Standard for managing interactions between a transaction
manager and a resource manager. To register XA-compliant data sources in the
database requires two SQL statements:
v First create one or more XA-compliant data source types by using the CREATE

XADATASOURCE TYPE statement.
v Then create one or more instances of XA-compliant data sources with the

CREATE XADATASOURCE statement.

You can integrate transactions at the XA data source with the Informix transaction,
using a 2-phase commit protocol to ensure that transactions are uniformly
committed or rolled back among multiple database servers, and manage multiple
external XA data sources within the same global transaction.

Any user can create an XA data source, which follows standard owner-naming
rules, according to the ANSI-compliance status of the database. Only a database
that uses transaction logging can support the X/Open DTP XA Standard.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an XA data source of
the specified name is already registered in the current database.

Both XA data source types and instances of XA data sources are specific to one
database. To support distributed transactions, they must be created in each
database that interacts with the external XA data source.

The following statement creates a new XA data source instance called
informix.NewYork of type informix.MQSeries.
CREATE XADATASOURCE informix.NewYork USING informix.MQSeries;

Related Information

Related statements: “CREATE XADATASOURCE TYPE statement” on page 2-284,
“DROP XADATASOURCE statement” on page 2-352, “DROP XADATASOURCE
TYPE statement” on page 2-352

For the schema of the sysxadatasources system catalog table, see the IBM Informix
Guide to SQL: Reference. For more information on XA data sources, see the IBM
Informix DataBlade API Programmer's Guide.

Chapter 2. SQL statements 2-283

CREATE XADATASOURCE TYPE statement
Use the CREATE XADATASOURCE TYPE statement to create a new XA-compliant
data source type and create an entry for it in the sysxasourcetypes system catalog
table. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� CREATE XADATASOURCE TYPE xa_type �

,
(1)

(Purpose Options) ��

Notes:

1 See “Purpose Options” on page 5-49

Element Description Restrictions Syntax

xa_type Name that you declare here
for a new XA data source
type

Must be unique among XA data source type
names in the sysxasourcetypes system catalog
table

“Identifier” on
page 5-21

Usage

The CREATE XADATASOURCE TYPE statement adds an XA-compliant data
source type to the database.

Any user can create an XA data source type, whose owner-naming rules depend
on the ANSI-compliance status of the database. Only a database that uses
transaction logging can support the X/Open DTP XA Standard.

To create a data source type, you must declare its name and specify purpose
functions and purpose values as attributes of the XA source type. Most of the
purpose options that follow the source type name associate columns in the
sysxasourcetypes system catalog table with the name of a UDR.

If you include the optional IF NOT EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if an XA data source
type of the specified name is already registered in the current database.

Both XA data source types and instances of XA data sources are specific to one
database. To support distributed transactions, they must be created in each
database that interacts with the external XA data source.

The following statement creates a new XA data source type called MQSeries®,
owned by user informix.
CREATE XADATASOURCE TYPE ’informix’.MQSeries(

xa_flags = 1,
xa_version = 0,
xa_open = informix.mqseries_open,
xa_close = informix.mqseries_close,
xa_start = informix.mqseries_start,
xa_end = informix.mqseries_end,
xa_rollback = informix.mqseries_rollback,
xa_prepare = informix.mqseries_prepare,
xa_commit = informix.mqseries_commit,

2-284 IBM Informix Guide to SQL: Syntax

xa_recover = informix.mqseries_recover,
xa_forget = informix.mqseries_forget,

xa_complete = informix.mqseries_complete);

You need to provide one value or UDR name for each of the options listed above,
but the sequence in which you list them is not critical. (The order of purpose
options in this example corresponds to the order of column names in the
sysxasourcetypes system catalog table.)

After this statement executes successfully, you can create instances of type
informix.MQSeries. The following statement creates a new instance called
informix.MenloPark of XA-compliant data source type informix.MQSeries:
CREATE XADATASOURCE informix.MenloPark USING informix.MQSeries;

Related information

Related statements: “CREATE XADATASOURCE statement” on page 2-282, “DROP
XADATASOURCE statement” on page 2-352, “DROP XADATASOURCE TYPE
statement” on page 2-352

For information about how to enter purpose-option specifications, see “Purpose
Options” on page 5-49.

For information on how to use XA data sources, see the IBM Informix DataBlade
API Programmer's Guide.

For the schema of the sysxasourcetypes table, see the IBM Informix Guide to SQL:
Reference.
Related reference

SYSXASOURCETYPES (SQL Reference)

DATABASE statement
Use the DATABASE statement to open an accessible database as the current
database. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DATABASE database
EXCLUSIVE

��

Element Description Restrictions Syntax

database Name of the database The database must exist “Database Name” on page
5-15

Usage

You can use the DATABASE statement to select any database on your database
server. To select a database on another database server, specify the name of the
database server with the database name.

Chapter 2. SQL statements 2-285

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_081.htm#ids_sqr_081

If you include the name of the current (or another) database server with the
database name, the database server name cannot be uppercase. (See “Database
Name” on page 5-15 for the syntax of specifying the database server name.)

Issuing a DATABASE statement when a database is already open closes the current
database before opening the new one. Closing the current database releases any
cursor resources that the database server holds, invalidating any cursors that you
have declared up to that point. If the user specification was changed through a SET
SESSION AUTHORIZATION statement, the original user name is restored when
the new database is opened.

If a previous CONNECT statement has established an explicit connection to a
database, and that connection is still your current connection, you cannot use the
DATABASE statement (nor any SQL statement that creates an implicit connection)
until after you use DISCONNECT to close the explicit connection.

The current user (or PUBLIC) must have the Connect privilege on the database
that is specified in the DATABASE statement. The current user cannot have the
same user name as an existing role in the database.

DATABASE is not a valid statement in multistatement PREPARE operations.

SQLCA.SQLWARN Settings Immediately after DATABASE
Executes (ESQL/C)

Immediately after DATABASE executes, you can identify characteristics of the
specified database by examining warning flags in the sqlca structure.
v If the first field of sqlca.sqlwarn is blank, then no warnings were issued.
v The second sqlca.sqlwarn field is set to the letter W if the database that was

opened supports transaction logging.
v The third field is set to W if database is an ANSI-compliant database.
v The fourth field is set to W if database is an Informix database.
v The fifth field is set to W if database converts all floating-point data to DECIMAL

format. (System lacks FLOAT and SMALLFLOAT support.)
v The seventh field is set to W if database is the secondary server (that is, running in

read-only mode) in a data-replication pair.
v The eighth field is set to W if database has DB_LOCALE set to a locale different

from the DB_LOCALE setting on the client system.

EXCLUSIVE keyword

The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others to access the database, you
must first execute the CLOSE DATABASE statement and then reopen the database
without the EXCLUSIVE keyword. The following statement opens the stores_demo
database on the training database server in exclusive mode:
DATABASE stores_demo@training EXCLUSIVE;

If another user has already opened the specified database, exclusive access is
denied, an error is returned, and no database is opened.

If you encounter this error, but you are unable to confirm that other users are
connected to the database, your non-exclusive access might be caused by a sensor

2-286 IBM Informix Guide to SQL: Syntax

or task that is running in the Scheduler API. To temporarily disable the Scheduler,
you can issue this SQL administration API command:
EXECUTE FUNCTION admin(’scheduler shutdown’);

After the admin('scheduler shutdown') routine has completed execution. retry the
DATABASE ... EXCLUSIVE statement.

For more information on the Scheduler API commands, see your IBM Informix
Administrator's Guide. For information about the privileges that you must hold to
call SQL administration API functions, see your IBM Informix Administrator's
Reference.

Related Information

Related statements: “CLOSE DATABASE statement” on page 2-80, “CONNECT
statement” on page 2-83, “CREATE DATABASE statement” on page 2-97,
“DISCONNECT statement” on page 2-323, and “SET CONNECTION statement”
on page 2-610

For discussions of how to use different data models to design and implement a
database, see the IBM Informix Database Design and Implementation Guide.

For descriptions of the sqlca structure, see the IBM Informix Guide to SQL: Tutorial
or the IBM Informix ESQL/C Programmer's Manual.
Related concepts

The Scheduler (Administrator's Guide)
Related reference

SQL Administration API Overview (Administrator's Reference)

DEALLOCATE COLLECTION statement
Use the DEALLOCATE COLLECTION statement to release memory for a collection
variable that was previously allocated with the ALLOCATE COLLECTION
statement.

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

Syntax

�� DEALLOCATE COLLECTION :variable ��

Element Description Restrictions Syntax

variable Name that identifies a typed or
untyped collection variable for
which to deallocate memory

Must be the name of an Informix
ESQL/C collection variable that
has already been allocated

Name must conform to
language-specific rules for
names of variables

Usage

The DEALLOCATE COLLECTION statement frees all the memory that is
associated with the Informix ESQL/C collection variable that variable identifies.

Chapter 2. SQL statements 2-287

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_1121.htm#ids_admin_1121
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_sapi_001.htm#ids_sapi_001

You must explicitly release memory resources for a collection variable with
DEALLOCATE COLLECTION. Otherwise, deallocation occurs automatically at the
end of the program.

The DEALLOCATE COLLECTION statement releases resources for both typed and
untyped collection variables.

Tip: The DEALLOCATE COLLECTION statement deallocates memory for an
Informix ESQL/C collection variable only. To deallocate memory for an Informix
ESQL/C row variable, use the DEALLOCATE ROW statement.

If you deallocate a nonexistent collection variable or a variable that is not an
Informix ESQL/C collection variable, an error results. Once you deallocate a
collection variable, you can use the ALLOCATE COLLECTION to reallocate
resources and you can then reuse a collection variable.

This example shows how to deallocate resources with the DEALLOCATE
COLLECTION statement for the untyped collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate collection :a_set;
. . .
EXEC SQL deallocate collection :a_set;

Related Information

Related example: refer to the collection variable example in “PUT statement” on
page 2-487.

Related statements: “ALLOCATE COLLECTION statement” on page 2-1 and
“DEALLOCATE ROW statement” on page 2-289

For a discussion of collection data types, see the IBM Informix ESQL/C
Programmer's Manual.

DEALLOCATE DESCRIPTOR statement
Use the DEALLOCATE DESCRIPTOR statement to free a previously allocated,
system-descriptor area. Use this statement with Informix ESQL/C.

Syntax

�� DEALLOCATE DESCRIPTOR 'descriptor'
descriptor_var

��

Element Description Restrictions Syntax

descriptor Name of a system-descriptor
area

Use single quotation marks.
System-descriptor area must already be
allocated

“Quoted String” on
page 4-188

descriptor_var Host variable that contains
the name of a
system-descriptor area

System-descriptor area must already be
allocated, and the variable must already
have been declared

Name must conform to
language-specific rules

2-288 IBM Informix Guide to SQL: Syntax

Usage

The DEALLOCATE DESCRIPTOR statement frees all the memory that is associated
with the system-descriptor area that descriptor or descriptor_var identifies. It also
frees all the item descriptors (including memory for data items in the item
descriptors).

You can reuse a descriptor or descriptor variable after it is deallocated. Otherwise,
deallocation occurs automatically at the end of the program.

If you deallocate a nonexistent descriptor or descriptor variable, an error results.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an sqlda
structure. You can use it only to free the memory that is allocated for a
system-descriptor area.

The following examples show valid DEALLOCATE DESCRIPTOR statements. The
first line uses an embedded-variable name, and the second line uses a quoted
string to identify the allocated system-descriptor area.
EXEC SQL deallocate descriptor :descname;

EXEC SQL deallocate descriptor ’desc1’;

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DECLARE statement” on page 2-290, “DESCRIBE statement” on page 2-314,
“EXECUTE statement” on page 2-353, “FETCH statement” on page 2-372, “GET
DESCRIPTOR statement” on page 2-385, “OPEN statement” on page 2-469,
“PREPARE statement” on page 2-477, “PUT statement” on page 2-487, and “SET
DESCRIPTOR statement” on page 2-620

For more information on system-descriptor areas, refer to the IBM Informix ESQL/C
Programmer's Manual.

DEALLOCATE ROW statement
Use the DEALLOCATE ROW statement to release memory for a ROW variable.

This statement is an extension to the ANSI/ISO standard for SQL. Use this
statement with ESQL/C.

Syntax

�� DEALLOCATE ROW :variable ��

Element Description Restrictions Syntax

variable Typed or untyped row variable Must be declared and allocated Language specific

Usage

DEALLOCATE ROW frees all the memory that is associated with the Informix
ESQL/C typed or untyped row variable that variable identifies. If you do not
explicitly release memory resources with DEALLOCATE ROW, deallocation occurs

Chapter 2. SQL statements 2-289

automatically at the end of the program. To deallocate memory for an Informix
ESQL/C collection variable, use the DEALLOCATE COLLECTION statement.

After you deallocate a ROW variable, you can use the ALLOCATE ROW statement
to reallocate resources, and you can then reuse a ROW variable. The following
example shows how to deallocate resources for the ROW variable, a_row, using
the DEALLOCATE ROW statement:
EXEC SQL BEGIN DECLARE SECTION; row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL allocate row :a_row;
. . .
EXEC SQL deallocate row :a_row;

Related Information

Related statements: “ALLOCATE ROW statement” on page 2-4 and
“DEALLOCATE COLLECTION statement” on page 2-287

For a discussion of ROW data types, see the IBM Informix Guide to SQL: Tutorial.
For complex data types, see the IBM Informix ESQL/C Programmer's Manual.

DECLARE statement
Use the DECLARE statement of dynamic SQL to declare a cursor and to associate
it with an SQL statement that returns a set of rows to an Informix ESQL/C or SPL
routine.

Syntax

�� DECLARE cursor_id
(1) (2)

cursor_id_var

�

�
(1) (2) (3)

CURSOR FOR Subset of INSERT Statement
(1) FOR UPDATE or FOR READ ONLY Select Options

WITH HOLD Other Select or Function Options
(1) (2)

SCROLL CURSOR Other Select or Function Options
WITH HOLD

(2) (4)
CURSOR FOR SELECT with Collection-Derived Table

(5)
INSERT with Collection-Derived Table

��

FOR UPDATE or FOR READ ONLY Select Options:

�

FOR READ ONLY
(2) (6) (1)

Subset of SELECT Statement FOR UPDATE
,

OF column

2-290 IBM Informix Guide to SQL: Syntax

Other Select or Function Options:

(2) (7)
FOR SELECT Statement

statement_id
(1) (2)

statement_id_var
(8)

EXECUTE PROCEDURE Statement
(2) (9)

EXECUTE FUNCTION Statement

Notes:

1 Informix extension

2 ESQL/C only

3 See “Subset of INSERT Statement with a Sequential Cursor” on page 2-296

4 See “Select with a Collection-Derived Table” on page 2-302

5 See “Insert with a Collection-Derived Table” on page 2-303

6 See “Subset of SELECT Statement Associated with Cursors” on page 2-300

7 See “SELECT statement” on page 2-536

8 See “EXECUTE PROCEDURE statement” on page 2-369

9 See “EXECUTE FUNCTION statement” on page 2-361

Element Description Restrictions Syntax

column Column to update with cursor Must exist, but need not be listed in
Select list of the Projection clause

“Identifier” on page
5-21

cursor_id Name declared here for cursor Must be unique in the routine among
names of cursors and prepared
objects (and in SPL, among variables)

“Identifier” on page
5-21

cursor_id_var Variable holding cursor_id Must have a character data type Language-specific

statement_id Name of prepared statement Must have been declared by a
PREPARE statement

“Identifier” on page
5-21

statement_id_var Variable holding statement_id Must have a character data type Language-specific

Usage

Except as noted, sections that follow describe how to use the DECLARE statement
in Informix ESQL/C routines. For information about the more restricted syntax
and semantics of the DECLARE statement in SPL routines, see “Declaring a
Dynamic Cursor in an SPL Routine” on page 2-305.

A cursor is an identifier that you associate with an SQL statement that returns a
group of rows. The DECLARE statement associates the cursor with one of the
following database objects:
v With an SQL statement, such as SELECT, EXECUTE FUNCTION (or EXECUTE

PROCEDURE), or INSERT.
Each of these SQL statements creates a different type of cursor. For more
information, see “Overview of Cursor Types” on page 2-292.

Chapter 2. SQL statements 2-291

v With the statement identifier (statement id or statement id variable) of a prepared
statement
You can prepare one of the previous SQL statements and associate the prepared
statement with a cursor. For more information, see “Associating a Cursor with a
Prepared Statement” on page 2-301.

v Using Informix with a collection variable in an Informix ESQL/C program
The name of the collection variable appears in the FROM clause of a SELECT or
the INTO clause of an INSERT. For more information, see “Associating a Cursor
with a Prepared Statement” on page 2-301.

DECLARE assigns an identifier to the cursor, specifies its uses, and directs the
Informix ESQL/C preprocessor to allocate storage for it. DECLARE must precede
any other statement that refers to the cursor during program execution.

The maximum length of a DECLARE statement is 64 kilobytes. The cursors and
prepared objects that can exist concurrently in a single program are limited by
available memory. To avoid exceeding the limit, use the FREE statement to release
the resources of prepared statements or cursors that are no longer needed.

An ESQL/C program can consist of one or more source-code files. By default, the
scope of reference of a cursor is global to a program, so a cursor that was declared
in one source file can be referenced from a statement in another file. If you want to
limit the scope of each cursor name to the file where it was declared, you must
preprocess each file with the -local command-line option.

Multiple cursors can be declared for the same prepared statement identifier. For
example, the following Informix ESQL/C example does not return an error:
EXEC SQL prepare id1 from ’select * from customer’;
EXEC SQL declare x cursor for id1;
EXEC SQL declare y scroll cursor for id1;
EXEC SQL declare z cursor with hold for id1;

If you include the -ansi compilation flag (or if DBANSIWARN is set), warnings
are generated for statements that use dynamic cursor names, dynamic statement
identifiers, or statements that use collection-derived tables. Some error checking is
performed at runtime, such as these typical checks:
v Invalid use of sequential cursors as scroll cursors
v Use of undeclared cursors
v Invalid cursor names or statement names (empty)

Checks for multiple declarations of a cursor of the same name are performed at
compile time only if the cursor or statement is specified as an identifier. The
following example uses a host variable to store the cursor name:
EXEC SQL declare x cursor for select * from customer;
. . .
stcopy("x", s);
EXEC SQL declare :s cursor for select * from customer;

A cursor uses the collating order that was in effect when the cursor was declared,
even if this is different from the collation of the session at runtime.

Overview of Cursor Types
Cursors are typically required for data manipulation language (DML) operations
on more than one row of data (or on an Informix ESQL/C collection variable). You
can declare the following types of cursors with the DECLARE statement:

2-292 IBM Informix Guide to SQL: Syntax

v A Select cursor is a cursor associated with a SELECT statement.
v A Function cursor is a cursor associated with an EXECUTE FUNCTION (or

EXECUTE PROCEDURE) statement.
v An Insert cursor is a cursor associated with an INSERT statement.

Sections that follow describe each of these cursor types. Cursors can also have
sequential, scroll, and hold characteristics (but an Insert cursor cannot be a scroll
cursor). These characteristics determine the structure of the cursor; see “Cursor
Characteristics” on page 2-298. In addition, a Select or Function cursor can specify
read-only or update mode. For more information, see “Select Cursor or Function
Cursor.”

Tip: Function cursors behave the same as Select cursors that are enabled as update
cursors.

Besides associating a cursor directly with the text of an SQL statement, the FOR
keyword of the DECLARE statement can be followed by the identifier of a
prepared SQL statement, associating the cursor with the result set of an INSERT,
SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement that was
prepared dynamically. This feature enables you to associate different SQL
statements with the same cursor at different times. In this case, the type of cursor
depends on the prepared SQL statement that the statement_id or statement_id
variable specifies when the cursor is opened. (For more information, see
“Associating a Cursor with a Prepared Statement” on page 2-301.)

Select Cursor or Function Cursor
When an SQL statement returns more than one group of values to an Informix
ESQL/C program, you must declare a cursor to save the multiple groups, or rows,
of data and to access these rows one at a time. You must associate one of the
following SQL statements with a cursor:
v If you associate a SELECT statement with a cursor, the cursor is called a Select

cursor.
A Select cursor is a data structure that represents a specific location within the
active set of rows that the SELECT statement retrieved.

v If you associate an EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a cursor, the cursor is called a Function cursor.
The Function cursor represents the columns or values that a user-defined
function returns. Function cursors behave the same as Select cursors that are
enabled as update cursors.

In Informix, for compatibility with legacy applications, if an SPL function was
created with the CREATE PROCEDURE statement, you can create a Function
cursor with the EXECUTE PROCEDURE statement. With external functions, you
must use the EXECUTE FUNCTION statement.

When you associate a SELECT or EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor, the statement can include an INTO clause.
However, if you prepare the SELECT or EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement, you must omit the INTO clause in the PREPARE
statement and use the INTO clause of the FETCH statement to retrieve the values
from the Collection cursor.

A Select or Function cursor can scan returned rows of data and to move data row
by row into a set of receiving variables, as the following steps describe:

Chapter 2. SQL statements 2-293

1. DECLARE
Use DECLARE to define a cursor and associate it with a statement.

2. OPEN
Use OPEN to open the cursor. The database server processes the query until it
locates or constructs the first row of the active set.

3. FETCH
Use FETCH to retrieve successive rows of data from the cursor.

4. CLOSE
Use CLOSE to close the cursor when its active set is no longer needed.

5. FREE
Use FREE to release the resources that are allocated for the cursor.

Using the FOR READ ONLY Option
Use the FOR READ ONLY keywords to define a cursor as a read-only cursor. A
cursor declared to be read-only cannot be used to update (or delete) any row that
it fetches.

The need for the FOR READ ONLY keywords depends on whether your database
is ANSI compliant or not ANSI compliant.

In a database that is not ANSI compliant, the cursor that the DECLARE statement
defines is a read-only cursor by default, so you do not need to specify the FOR
READ ONLY keywords if you want the cursor to be a read-only cursor. The only
advantage of specifying the FOR READ ONLY keywords explicitly is for better
program documentation.

In an ANSI-compliant database, the cursor associated with a SELECT statement
through the DECLARE statement is an update cursor by default, provided that the
SELECT statement conforms to all of the restrictions for update cursors listed in
“Subset of SELECT Statement Associated with Cursors” on page 2-300. If you want
a Select cursor to be read-only, you must use the FOR READ ONLY keywords
when you declare the cursor.

The database server can use less stringent locking for a read-only cursor than for
an update cursor.

The following example creates a read-only cursor:
EXEC SQL declare z_curs cursor for

select * from customer_ansi
for read only;

Using the FOR UPDATE Option
Use the FOR UPDATE option to declare an update cursor. You can use the update
cursor to modify (update or delete) the current row.

In an ANSI-compliant database, you can use a Select cursor to update or delete
data if the cursor was not declared with the FOR READ ONLY keywords and it
follows the restrictions on update cursors that are described in “Subset of SELECT
Statement Associated with Cursors” on page 2-300. You do not need to use the
FOR UPDATE keywords when you declare the cursor.

The following example declares an update cursor:

2-294 IBM Informix Guide to SQL: Syntax

EXEC SQL declare new_curs cursor for
select * from customer_notansi
for update;

In an update cursor, you can update or delete rows in the active set. After you
create an update cursor, you can update or delete the currently selected row by
using an UPDATE or DELETE statement with the WHERE CURRENT OF clause.
The words CURRENT OF refer to the row that was most recently fetched; they
take the place of the usual test expressions in the WHERE clause.

An update cursor lets you perform updates that are not possible with the UPDATE
statement because the decision to update and the values of the new data items can
be based on the original contents of the row. Your program can evaluate or
manipulate the selected data before it decides whether to update. The UPDATE
statement cannot interrogate the table that is being updated.

You can specify particular columns that can be updated. The columns need not
appear in the Select list of the Projection clause.

Using FOR UPDATE with a List of Columns: When you declare an update
cursor, you can limit the update to specific columns by including the OF keyword
and a list of columns. You can modify only those named columns in subsequent
UPDATE statements. The columns need not be in the select list of the SELECT
clause.

The next example declares an update cursor and specifies that this cursor can
update only the fname and lname columns in the customer_notansi table:
EXEC SQL declare name_curs cursor for

select * from customer_notansi
for update of fname, lname;

By default, unless declared as FOR READ ONLY, a Select cursor in a database that
is ANSI compliant is an update cursor, so the FOR UPDATE keywords are
optional. If you want an update cursor to be able to modify only some of the
columns in a table, however, you must specify these columns in the FOR UPDATE
OF column list.

The principal advantage to specifying columns is documentation and preventing
programming errors. (The database server refuses to update any other columns.)
An additional advantage is improved performance, when the SELECT statement
meets the following criteria:
v The SELECT statement can be processed using an index.
v The columns that are listed are not part of the index that is used to process the

SELECT statement.

If the columns that you intend to update are part of the index that is used to
process the SELECT statement, the database server keeps a list of each updated
row, to ensure that no row is updated twice. If the OF keyword specifies which
columns can be updated, the database server determines whether or not to keep
the list of updated rows. If the database server determines that the work of
keeping the list is unnecessary, performance improves. If you do not use the OF
column list, the database server always maintains a list of updated rows, although
the list might be unnecessary.

The following example contains Informix ESQL/C code that uses an update cursor
with a DELETE statement to delete the current row.

Chapter 2. SQL statements 2-295

Whenever the row is deleted, the cursor remains between rows. After you delete
data, you must use a FETCH statement to advance the cursor to the next row
before you can refer to the cursor in a DELETE or UPDATE statement.
EXEC SQL declare q_curs cursor for

select * from customer where lname matches :last_name for update;

EXEC SQL open q_curs;
for (;;)
{

EXEC SQL fetch q_curs into :cust_rec;
if (strncmp(SQLSTATE, "00", 2) != 0)

break;

/* Display customer values and prompt for answer */
printf("\n%s %s", cust_rec.fname, cust_rec.lname);
printf("\nDelete this customer? ");
scanf("%s", answer);

if (answer[0] == ’y’)
EXEC SQL delete from customer where current of q_curs;

if (strncmp(SQLSTATE, "00", 2) != 0)
break;

}
printf("\n");
EXEC SQL close q_curs;

Locking with an Update Cursor: The FOR UPDATE keywords notify the
database server that updating is possible and cause it to use more stringent locking
than with a Select cursor. You declare an update cursor to let the database server
know that the program might update (or delete) any row that it fetches as part of
the SELECT statement. The update cursor employs promotable locks for rows that
the program fetches. Other programs can read the locked row, but no other
program can place a promotable lock (also called a write lock). Before the program
modifies the row, the row lock is promoted to an exclusive lock.

It is possible to declare an update cursor with the WITH HOLD keywords, but the
only reason to do so is to break a long series of updates into smaller transactions.
You must fetch and update a particular row in the same transaction.

If an operation involves fetching and updating a large number of rows, the lock
table that the database server maintains can overflow. The usual way to prevent
this overflow is to lock the entire table that is being updated. If this action is
impossible, an alternative is to update through a hold cursor and to execute
COMMIT WORK at frequent intervals. You must plan such an application
carefully, however, because COMMIT WORK releases all locks, even those that are
placed through a hold cursor.

Subset of INSERT Statement with a Sequential Cursor
As indicated in the diagram for “DECLARE statement” on page 2-290, to create an
Insert cursor, you associate a sequential cursor with a restricted form of the
INSERT statement. The INSERT statement must include a VALUES clause; it
cannot contain an embedded SELECT statement.

The following example contains Informix ESQL/C code that declares an Insert
cursor:
EXEC SQL declare ins_cur cursor for

insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

2-296 IBM Informix Guide to SQL: Syntax

The Insert cursor simply inserts rows of data; it cannot be used to fetch data.
When an Insert cursor is opened, a buffer is created in memory. The buffer receives
rows of data as the program executes PUT statements. The rows are written to disk
only when the buffer is full. You can flush the buffer (that is, to write its contents
into the database) when it is less than full, using the CLOSE, FLUSH, or COMMIT
WORK statements. This topic is discussed further under the CLOSE, FLUSH, and
PUT statements.

You must close an Insert cursor to insert any buffered rows into the database
before the program ends. You can lose data if you do not close the cursor properly.
For a complete description of INSERT syntax and usage, see “INSERT statement”
on page 2-435.

Insert Cursor

When you associate an INSERT statement with a cursor, the cursor is called an
Insert cursor. An Insert cursor is a data structure that represents the rows that the
INSERT statement is to add to the database. The Insert cursor simply inserts rows
of data; it cannot be used to fetch data. To create an Insert cursor, you associate a
cursor with a restricted form of the INSERT statement. The INSERT statement
must include a VALUES clause; it cannot contain an embedded SELECT statement.

Create an Insert cursor if you want to add multiple rows to the database in an
INSERT operation. An Insert cursor allows bulk insert data to be buffered in
memory and written to disk when the buffer is full, as these steps describe:
1. Use DECLARE to define an Insert cursor for the INSERT statement.
2. Open the cursor with the OPEN statement. The database server creates the

insert buffer in memory and positions the cursor at the first row of the insert
buffer.

3. Copy successive rows of data into the insert buffer with the PUT statement.
4. The database server writes the rows to disk only when the buffer is full. You

can use the CLOSE, FLUSH, or COMMIT WORK statement to flush the buffer
when it is less than full. This topic is discussed further under the PUT and
CLOSE statements.

5. Close the cursor with the CLOSE statement when the insert cursor is no longer
needed. You must close an Insert cursor to insert any buffered rows into the
database before the program ends. You can lose data if you do not close the
cursor properly.

6. Free the cursor with the FREE statement. The FREE statement releases the
resources that are allocated for an Insert cursor.

Using an Insert cursor is more efficient than embedding the INSERT statement
directly. This process reduces communication between the program and the
database server and also increases the speed of the insertions.

Insert cursors also have the sequential cursor characteristic. To create an Insert
cursor, you associate a sequential cursor with a restricted form of the INSERT
statement. (For more information, see “Insert Cursor.”) The following example
contains IBM Informix ESQL/C code that declares a sequential Insert cursor:
EXEC SQL declare ins_cur cursor for

insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Chapter 2. SQL statements 2-297

Cursor Characteristics
You can declare a cursor as a sequential cursor (the default), a scroll cursor (by
using the SCROLL keyword), or a hold cursor (by using the WITH HOLD
keywords). The SCROLL and WITH HOLD keywords are not mutually exclusive.
Sections that follow explain these structural characteristics.

A Select or Function cursor can be either a sequential or a scroll cursor. An Insert
cursor can only be a sequential cursor. In ESQL/C routines, Select, Function, and
Insert cursors can optionally be hold cursors. (In SPL routines, all cursors are
sequential cursors, but only Select cursors can be hold cursors.)

Creating a Sequential Cursor by Default
If you use only the CURSOR keyword, you create a sequential cursor, which can
fetch only the next row in sequence from the active set. The sequential cursor can
read through the active set only once each time it is opened.

If you are using a sequential cursor for a Select cursor, on each execution of the
FETCH statement, the database server returns the contents of the current row and
locates the next row in the active set.

The following example creates a read-only sequential cursor in a database that is
not ANSI compliant and an update sequential cursor in an ANSI-compliant
database:
EXEC SQL declare s_cur cursor for

select fname, lname into :st_fname, :st_lname
from orders where customer_num = 114;

Insert cursors also have the sequential cursor characteristic. To create a Insert
cursor, you associate a sequential cursor with a restricted form of the INSERT
statement. (For more information, see “Insert Cursor” on page 2-297.) The
following example declares an Insert cursor:
EXEC SQL declare ins_cur cursor for

insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Using the SCROLL Keyword to Create a Scroll Cursor
Use the SCROLL keyword to create a scroll cursor, which can fetch rows of the
active set in any sequence.

The database server retains the active set of the cursor as a temporary table until
the cursor is closed. You can fetch the first, last, or any intermediate rows of the
active set as well as fetch rows repeatedly without having to close and reopen the
cursor. (See FETCH.)

On a multiuser system, the rows in the tables from which the active-set rows were
derived might change after the cursor is opened and a copy is made in the
temporary table. If you use a scroll cursor within a transaction, you can prevent
copied rows from changing either by setting the isolation level to Repeatable Read
or by locking the entire table in share mode during the transaction. (See SET
ISOLATION and LOCK TABLE.)

The following example creates a scroll cursor for a SELECT statement:
DECLARE sc_cur SCROLL CURSOR FOR SELECT * FROM orders;

You can create scroll cursors as Select and Function cursors but not as Insert
cursors. Scroll cursors cannot be declared as FOR UPDATE.

2-298 IBM Informix Guide to SQL: Syntax

Using the WITH HOLD Keywords to Create a Hold Cursor
Use the WITH HOLD keywords to create a hold cursor. A hold cursor allows
uninterrupted access to a set of rows across multiple transactions. Ordinarily, all
cursors close at the end of a transaction. A hold cursor does not close; it remains
open after a transaction ends.

A hold cursor can be either a sequential cursor or (in ESQL/C) a scroll cursor.

The WITH HOLD keywords are valid in SPL routines only for Select cursors. For
the syntax of the DECLARE statement in SPL routines, see “Declaring a Dynamic
Cursor in an SPL Routine” on page 2-305.

In ESQL/C, you can use the WITH HOLD keywords to declare Select and
Function cursors (with the sequential attribute or the scroll attribute) and also to
declare Insert cursors. These keywords follow the CURSOR keyword in the
DECLARE statement. The following example creates a sequential hold cursor for a
SELECT statement:
DECLARE hld_cur CURSOR WITH HOLD FOR

SELECT customer_num, lname, city FROM customer;

You can use a select hold cursor as the following Informix ESQL/C code example
shows. This code fragment uses a hold cursor as a master cursor to scan one set of
records and a sequential cursor as a detail cursor to point to records that are
located in a different table. The records that the master cursor scans are the basis
for updating the records to which the detail cursor points. The COMMIT WORK
statement at the end of each iteration of the first WHILE loop leaves the hold
cursor c_master open but closes the sequential cursor c_detail and releases all
locks. This technique minimizes the resources that the database server must devote
to locks and unfinished transactions, and it gives other users immediate access to
updated rows.
EXEC SQL BEGIN DECLARE SECTION;

int p_custnum, int save_status; long p_orddate;
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare st_1 from
’select order_date from orders where customer_num = ? for update’;

EXEC SQL declare c_detail cursor for st_1;
EXEC SQL declare c_master cursor with hold for

select customer_num from customer where city = ’Pittsburgh’;

EXEC SQL open c_master;
if(SQLCODE==0) /* the open worked */

EXEC SQL fetch c_master into :p_custnum; /* discover first customer */
while(SQLCODE==0) /* while no errors and not end of pittsburgh customers */

{
EXEC SQL begin work; /* start transaction for customer p_custnum */
EXEC SQL open c_detail using :p_custnum;
if(SQLCODE==0) /* detail open succeeded */

EXEC SQL fetch c_detail into :p_orddate; /* get first order */
while(SQLCODE==0) /* while no errors and not end of orders */

{
EXEC SQL update orders set order_date = ’08/15/94’

where current of c_detail;
if(status==0) /* update was ok */

EXEC SQL fetch c_detail into :p_orddate; /* next order */
}

if(SQLCODE==SQLNOTFOUND) /* correctly updated all found orders */
EXEC SQL commit work; /* make updates permanent, set status */

else /* some failure in an update */
{

save_status = SQLCODE; /* save error for loop control */

Chapter 2. SQL statements 2-299

EXEC SQL rollback work;
SQLCODE = save_status; /* force loop to end */
}

if(SQLCODE==0) /* all updates, and the commit, worked ok */
EXEC SQL fetch c_master into :p_custnum; /* next customer? */

}
EXEC SQL close c_master;

Use either the CLOSE statement to close the hold cursor explicitly or the CLOSE
DATABASE or DISCONNECT statements to close it implicitly. The CLOSE
DATABASE statement closes all cursors.

Releases earlier than Version 9.40 of Informix do not support the PDQPRIORITY
feature with cursors that were declared WITH HOLD.

Using an Insert Cursor with Hold: If you associate a hold cursor with an INSERT
statement, you can use transactions to break a long series of PUT statements into
smaller sets of PUT statements. Instead of waiting for the PUT statements to fill
the buffer and cause an automatic write to the database, you can execute a
COMMIT WORK statement to flush the row buffer. With a hold cursor, COMMIT
WORK commits the inserted rows but leaves the cursor open for further inserts.
This method can be desirable when you are inserting a large number of rows,
because pending uncommitted work consumes database server resources.

Subset of SELECT Statement Associated with Cursors
As indicated in the syntax diagram for “DECLARE statement” on page 2-290, not
all SELECT statements can be associated with a read-only or update cursor.

If the DECLARE statement includes one of these options, you must observe certain
restrictions on the SELECT statement that is included in the DECLARE statement
(either directly or as a prepared statement).

If the DECLARE statement includes the FOR READ ONLY option, the SELECT
statement cannot have a FOR READ ONLY or FOR UPDATE option. (For a
description of SELECT syntax and usage, see “SELECT statement” on page 2-536.)

If the DECLARE statement includes the FOR UPDATE option, the SELECT
statement must conform to the following restrictions:
v The statement can select data from only one table.
v The statement cannot include any aggregate functions.
v The statement cannot include any of the following clauses or keywords:

DISTINCT, FOR READ ONLY, FOR UPDATE, GROUP BY, INTO TEMP, ORDER
BY, UNION, or UNIQUE.

Examples of Cursors in Non-ANSI Compliant Databases

In a database that is not ANSI compliant, a cursor associated with a SELECT
statement is a read-only cursor by default. The following example declares a
read-only cursor in a non-ANSI compliant database:
EXEC SQL declare cust_curs cursor for

select * from customer_notansi;

If you want to make it clear in the program code that this cursor is a read-only
cursor, specify the FOR READ ONLY option as the following example shows:
EXEC SQL declare cust_curs cursor for

select * from customer_notansi for read only;

2-300 IBM Informix Guide to SQL: Syntax

If you want this cursor to be an update cursor, specify the FOR UPDATE option in
your DECLARE statement. This example declares an update cursor:
EXEC SQL declare new_curs cursor for

select * from customer_notansi for update;

If you want an update cursor to be able to modify only some columns in a table,
you must specify those columns in the FOR UPDATE clause. The following
example declares an update cursor that can update only the fname and lname
columns in the customer_notansi table:
EXEC SQL declare name_curs cursor for

select * from customer_notansi for update of fname, lname;

Examples of Cursors in ANSI-Compliant Databases

In an ANSI-compliant database, a cursor associated with a SELECT statement is an
update cursor by default.

The following example declares an update cursor in an ANSI-compliant database:
EXEC SQL declare x_curs cursor for select * from customer_ansi;

To make it clear in the program documentation that this cursor is an update cursor,
you can specify the FOR UPDATE option as in this example:
EXEC SQL declare x_curs cursor for

select * from customer_ansi for update;

If you want an update cursor to be able to modify only some of the columns in a
table, you must specify these columns in the FOR UPDATE option. The following
example declares an update cursor and specifies that this cursor can update only
the fname and lname columns in the customer_ansi table:
EXEC SQL declare y_curs cursor for

select * from customer_ansi for update of fname, lname;

If you want a cursor to be a read-only cursor, you must override the default
behavior of the DECLARE statement by specifying the FOR READ ONLY option in
your DECLARE statement. The following example declares a read-only cursor:
EXEC SQL declare z_curs cursor for

select * from customer_ansi for read only;

Associating a Cursor with a Prepared Statement
The PREPARE statement lets you assemble the text of an SQL statement at runtime
and pass the statement text to the database server for execution. If you anticipate
that a dynamically prepared SELECT, EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement that returns values could produce more than one row of
data, the prepared statement must be associated with a cursor. (See PREPARE.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable), which is a data structure that represents the prepared statement text. To
declare a cursor for the statement text, associate a cursor with the statement
identifier.

You can associate a sequential cursor with any prepared SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement. You cannot associate a scroll
cursor with a prepared INSERT statement or with a SELECT statement that was
prepared to include a FOR UPDATE clause.

Chapter 2. SQL statements 2-301

After a cursor is opened, used, and closed, a different statement can be prepared
under the same statement identifier. In this way, it is possible to use a single cursor
with different statements at different times. The cursor must be redeclared before
you use it again.

The following example contains Informix ESQL/C code that prepares a SELECT
statement and declares a sequential cursor for the prepared statement text. The
statement identifier st_1 is first prepared from a SELECT statement that returns
values; then the cursor c_detail is declared for st_1.
EXEC SQL prepare st_1 from

’select order_date
from orders where customer_num = ?’;

EXEC SQL declare c_detail cursor for st_1;

If you want to use a prepared SELECT statement to modify data, add a FOR
UPDATE clause to the statement text that you want to prepare, as the following
Informix ESQL/C example shows:
EXEC SQL prepare sel_1 from

’select * from customer for update’;
EXEC SQL declare sel_curs cursor for sel_1;

DDL operations that change the schema of a table can invalidate a cursor whose
associated prepared statement or associated routine references the modified table,
unless the prepared objects are recompiled, or unless the routine is reoptimized.
For more information, see the section “DDL Operations on Tables Referenced by
Cursors” on page 2-475.

The DECLARE statement allows you to declare a cursor for an Informix ESQL/C
collection variable. Such a cursor is called a Collection cursor. You use a collection
variable to access the elements of a collection (SET, MULTISET, LIST) column. Use
a cursor when you want to access one or more elements in a collection variable.

The Collection-Derived Table segment identifies the collection variable for which to
declare the cursor. For more information, see “Collection-Derived Table” on page
5-4.

Select with a Collection-Derived Table
The diagram for “DECLARE statement” on page 2-290 refers to this section.

To declare a Select cursor for a collection variable, include the Collection- Derived
Table segment with the SELECT statement that you associate with the Collection
cursor. A Select cursor allows you to select one or more elements from the
collection variable. (For a description of SELECT syntax and usage, see “SELECT
statement” on page 2-536.)

When you declare a Select cursor for a collection variable, the DECLARE statement
has the following restrictions:
v It cannot include the FOR READ ONLY keywords as cursor mode.

The Select cursor is an update cursor.
v It cannot include the SCROLL or WITH HOLD keywords.

The Select cursor must be a sequential cursor.

In addition, the SELECT statement that you associate with the collection cursor has
the following restrictions:

2-302 IBM Informix Guide to SQL: Syntax

v It cannot include the following clauses or options: WHERE, GROUP BY, ORDER
BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.

v It cannot contain expressions in the projection list.
v If the collection contains elements of opaque, distinct, built-in, or other collection

data types, the projection list must be an asterisk (*).
v Column names in the projection list must be simple column names, without

qualifiers.
These columns cannot use the following syntax:
database@server:table.column --INVALID SYNTAX

v It must specify the name of the collection variable in the FROM clause.
You cannot specify an input parameter (the question-mark (?) symbol) for the
collection variable. Likewise, you cannot use the virtual table format of the
Collection-Derived Table segment.

Using a Select Cursor with a Collection Variable:

A Collection cursor that includes a SELECT statement with the Collection- Derived
Table clause provides access to the elements in a collection variable.

To select more than one element

1. Create a client collection variable in your Informix ESQL/C program.
2. Declare the Collection cursor for the SELECT statement with the DECLARE

statement. To modify elements of the collection variable, declare the Select
cursor as an update cursor with the FOR UPDATE keywords. You can then use
the WHERE CURRENT OF clause of the DELETE and UPDATE statements to
delete or update elements of the collection.

3. Open this cursor with the OPEN statement.
4. Fetch the elements from the Collection cursor with the FETCH statement and

the INTO clause.
5. If necessary, perform any updates or deletes on the fetched data and save the

modified collection variable in the collection column. Once the collection
variable contains the correct elements, use the UPDATE or INSERT statement to
save the contents of the collection variable in the actual collection column (SET,
MULTISET, or LIST).

6. Close the Collection cursor with the CLOSE statement.

This DECLARE statement declares a Select cursor for a collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare set_curs cursor for select * from table(:a_set);

For an extended code example that uses a Collection cursor for a SELECT
statement, see “Fetching from a Collection Cursor” on page 2-379.

Insert with a Collection-Derived Table

To declare an Insert cursor for a collection variable, include the Collection- Derived
Table segment in the INSERT statement associated with the Collection cursor. An
Insert cursor can insert one or more elements in the collection. For a description of
INSERT syntax and usage, see “INSERT statement” on page 2-435.

Chapter 2. SQL statements 2-303

The Insert cursor must be a sequential cursor. That is, the DECLARE statement
cannot specify the SCROLL keyword.

When you declare an Insert cursor for a collection variable, the Collection- Derived
Table clause of the INSERT statement must contain the name of the collection
variable. You cannot specify an input parameter (the question-mark (?) symbol)
for the collection variable. However, you can use an input parameter in the
VALUES clause of the INSERT statement. This parameter indicates that the
collection element is to be provided later by the FROM clause of the PUT
statement.

A Collection cursor that includes an INSERT statement with the Collection-
Derived Table clause allows you to insert more than one element into a collection
variable.

To insert more than one element

1. Create a client collection variable in your Informix ESQL/C program.
2. Declare the Collection cursor for the INSERT statement with the DECLARE

statement.
3. Open the cursor with the OPEN statement.
4. Put the elements into the Collection cursor with the PUT statement and the

FROM clause.
5. Once the collection variable contains all the elements, use the UPDATE

statement or the INSERT statement on a table name to save the contents of the
collection variable in a collection column (SET, MULTISET, or LIST).

6. Close the Collection cursor with the CLOSE statement.

This example declares an Insert cursor for the a_set collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection multiset(smallint not null) a_mset;
int an_element;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare mset_curs cursor for

insert into table(:a_mset) values (?);
EXEC SQL open mset_curs;
while (1)
{
...

EXEC SQL put mset_curs from :an_element;
...
}

To insert the elements into the collection variable, use the PUT statement with the
FROM clause. For a code example that uses a Collection cursor for an INSERT
statement, see “Inserting into a Collection Cursor” on page 2-491.

Using Cursors with Transactions
To roll back a modification, you must perform the modification within a
transaction. A transaction in a database that is not ANSI compliant begins only
when the BEGIN WORK statement is executed.

In an ANSI-compliant database, transactions are always in effect.

The database server enforces these guidelines for select and update cursors to
ensure that modifications can be committed or rolled back properly:

2-304 IBM Informix Guide to SQL: Syntax

v Open an insert or update cursor within a transaction.
v Include PUT and FLUSH statements within one transaction.
v Modify data (update, insert, or delete) within one transaction.

The database server lets you open and close a hold cursor for an update outside a
transaction; however, you should fetch all the rows that pertain to a given
modification and then perform the modification all within a single transaction. You
cannot open and close a hold cursor or an update cursor outside a transaction.

The following example uses an update cursor within a transaction:
EXEC SQL declare q_curs cursor for

select customer_num, fname, lname from customer
where lname matches :last_name for update;

EXEC SQL open q_curs;
EXEC SQL begin work;
EXEC SQL fetch q_curs into :cust_rec; /* fetch after begin */
EXEC SQL update customer set lname = ’Smith’

where current of q_curs;
/* no error */
EXEC SQL commit work;

When you update a row within a transaction, the row remains locked until the
cursor is closed or the transaction is committed or rolled back. If you update a row
when no transaction is in effect, the row lock is released when the modified row is
written to disk. If you update or delete a row outside a transaction, you cannot roll
back the operation.

In a database that uses transactions, you cannot open an Insert cursor outside a
transaction unless it was also declared with the WITH HOLD keywords.

Declaring a Dynamic Cursor in an SPL Routine
Use the DECLARE statement in an SPL routine to declare the name of a dynamic
cursor and to associate that cursor with the statement identifier of a prepared
object that the PREPARE statement has declared in the same SPL routine.

Syntax
The syntax of the DECLARE statement in SPL routines is a subset of the syntax
that DECLARE supports in Informix ESQL/C routines.

�� DECLARE cursor_id FOR statement_id
(1)

WITH HOLD

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

cursor_id Name declared here for a
new dynamic cursor

Must be unique among
names of cursors, variables,
and prepared objects in the
SPL routine

“Identifier” on
page 5-21

statement_id Identifier of a single
prepared SQL statement

Must have been declared in a
PREPARE statement of the
same SPL routine

“Identifier” on
page 5-21

Chapter 2. SQL statements 2-305

Usage
In UDRs written in the SPL language, the statement_id associated with the cursor
must have been declared earlier in the same UDR by a PREPARE statement from
the text of a single SQL statement of one of these statement types:
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v SELECT.

This prepared statement text that statement_id specifies can include question mark (
?) symbols as placeholders for values that the user supplies at runtime, but these
placeholders in the PREPARE statement can represent only data values, not SQL
identifiers.

Dynamic cursors that the DECLARE statement can define in SPL routines resemble
ESQL/C Select cursors or Function cursors in their functionality, but with these
restrictions:
v Cursors that DECLARE defines in an SPL routine can be Select cursors or

Function cursors, but they cannot be Insert cursors nor Collection cursors.
v The identifier of the cursor or of the prepared statement cannot be specified as

an SPL variable, because in SPL, the identifiers of variables, cursors, and
prepared objects all share the same namespace.

v By default, dynamic cursors of SPL are sequential. They cannot be scroll cursors.
v The semantics of dynamic cursors that you create with the WITH HOLD

keywords are the same as for hold cursors that the FOREACH statement
declares.

v The WITH HOLD keywords are valid in SPL routines only for Select cursors. If
statement_id references the prepared text of an EXECUTE FUNCTION or
EXECUTE PROCEDURE statement, the DECLARE statement fails with error
-26056.

v The FOR UPDATE and FOR READ ONLY keywords that ESQL/C supports in
DECLARE statements are not supported in SPL routines. Use the FOREACH
statement of SPL to declare direct cursors that can emulate the functionality of
ESQL/C update cursors. (But queries associated with direct cursors are defined
when the UDR is compiled, rather than at runtime.)

v The DECLARE statement in SPL routines does not support SELECT operations
on collection-derived tables.

v Syntax errors in DECLARE statements of SPL routines are reported at runtime,
unlike syntax errors of ESQL/C, which are reported when the routine is
compiled.

The names of the dynamic cursors that the DECLARE statement associates with a
prepared statement in SPL routines can be referenced by the OPEN, CLOSE,
FETCH, and FREE statements of dynamic SQL in the same SPL routine.

In the following program fragment, a cursor called equi_noctis is declared,
opened, closed, and freed.
CREATE FUNCTION lente

DEFINE first, last VARCHAR(30);
. . .
DATABASE stores_demo;
LET first = "select * from state";
LET lsst = "where code < ?";
PREPARE stmt_1 FROM first || last;
DECLARE cursor_1 FOR stmt_1;

2-306 IBM Informix Guide to SQL: Syntax

OPEN cursor_1
. . .
CLOSE cursor_1;
FREE cursor_1;
FREE stmt_1;
...
END FUNCTION;

Related Information

Related statements: “CLOSE statement” on page 2-76, “DELETE statement,”
“EXECUTE PROCEDURE statement” on page 2-369, “FETCH statement” on page
2-372, “FLUSH statement” on page 2-382, “FREE statement” on page 2-384,
“INSERT statement” on page 2-435, “OPEN statement” on page 2-469, “PREPARE
statement” on page 2-477, “PUT statement” on page 2-487, “SELECT statement” on
page 2-536, “SET AUTOFREE statement” on page 2-606 and “UPDATE statement”
on page 2-700.

For a discussion of direct cursors in SPL routines that for some tasks are an
alternative to dynamic cursors, see “FOREACH” on page 3-22.

For discussions of cursors and data modification, see the IBM Informix Guide to
SQL: Tutorial.

For more advanced issues related to cursors or to their use with collection
variables, see the IBM Informix ESQL/C Programmer's Manual.

DELETE statement

Use the DELETE statement to delete one or more rows from a table, or to delete
one or more elements from an SPL or Informix ESQL/C collection variable.

Syntax

�� DELETE
(1) (2)

Optimizer Directives

FROM
(1)

�

� table
view
synonym
(1)

ONLY (table)
(synonym)

(3)
Collection-Derived Table

�

�
(1) (4)

WHERE condition
(5)

WHERE CURRENT OF cursor_id

��

Notes:

1 Informix extension

2 See “Optimizer Directives” on page 5-35

Chapter 2. SQL statements 2-307

|
|

3 See “Collection-Derived Table” on page 5-4

4 See “Using the WHERE Keyword to Specify a Condition” on page 2-310

5 ESQL/C and Stored Procedure Language only

Element Description Restrictions Syntax

alias Temporary name that you
declare here for a table

You cannot declare an alias for an indexed
table

“Identifier” on page
5-21

condition Logical criteria that deleted
rows must satisfy

Cannot be a UDR nor a correlated subquery “Condition” on page
4-5

cursor_id Previously declared cursor Must have been declared FOR UPDATE “Identifier” on page
5-21

synonym,
table, view

Table, view, or synonym with
rows to be deleted

The table or view (or synonym and the table or
view to which it points) must exist

“Database Object
Name” on page 5-16

Usage

To execute the DELETE statement, you must hold the DBA access privilege on the
database, or the Delete access privilege on the table.

In a database with explicit transaction logging, any DELETE statement that you
execute outside a transaction is treated as a single transaction.

If you specify a view name, the view must be updatable. For an explanation of an
updatable view, see “Updating Through Views” on page 2-282.

The DELETE statement cannot reference table objects that the CREATE EXTERNAL
TABLE statement defined.

The database server locks each row affected by a DELETE statement within a
transaction for the duration of the transaction. The type of lock that the database
server uses is determined by the lock mode of the table, as set by a CREATE
TABLE or ALTER TABLE statement, as follows:
v If the lock mode is ROW, the database server acquires one lock for each row

affected by the delete.

If the number of rows affected is very large and the lock mode is ROW, you might
exceed the limits your operating system places on the maximum number of
simultaneous locks. If this occurs, you can either reduce the scope of the DELETE
statement or lock the table in exclusive mode before you execute the statement.

If you use DELETE without a WHERE clause (to specify either a condition or the
active set of the cursor), all rows in the table are deleted. It is typically more
efficient, however, to use the TRUNCATE statement, rather than the DELETE
statement, to remove all rows from a table.

In DB-Access, if you omit the WHERE clause while working at the SQL menu,
DB-Access prompts you to verify that you want to delete all rows from a table.
You do not receive a prompt if you execute DELETE within a command file.

In an ANSI-compliant database, data manipulation language (DML) statements are
always in a transaction. You cannot execute a DELETE statement outside a
transaction.

2-308 IBM Informix Guide to SQL: Syntax

|
|

On Informix, the FROM keyword that immediately follows DELETE can be
omitted if the DELIMIDENT environment variable has been set.

Using the ONLY Keyword
If you use DELETE to remove rows of a supertable, rows from both the supertable
and its subtables can be deleted. To delete rows from the supertable only, specify
the ONLY keyword before the table name.
DELETE FROM ONLY(super_tab)

WHERE name = "johnson";

Warning: If you use the DELETE statement on a supertable and omit the ONLY
keyword and WHERE clause, all rows of the supertable and its subtables are
deleted.

You cannot specify the ONLY keyword if you plan to use the WHERE CURRENT
OF clause to delete the current row of the active set of a cursor.

Considerations When Tables Have Cascading Deletes
When you use the ON DELETE CASCADE option of the REFERENCES clause of
either the CREATE TABLE or ALTER TABLE statement, you specify that you want
deletes to cascade from one table to another. For example, in the stores_demo
database, the stock table contains the column stock_num as a primary key. The
catalog and items tables each contain the column stock_num as foreign keys with
the ON DELETE CASCADE option specified. When a delete is performed from the
stock table, rows are also deleted in the catalog and items tables, which are
referenced through the foreign keys.

To have DELETE actions cascade to a table that has a referential constraint on a
parent table, you need the Delete privilege only on the parent table that you
reference in the DELETE statement.

If a DELETE operation with no WHERE clause is performed on a table that one or
more child tables reference with cascading deletes, Informix deletes all rows from
that table and from any affected child tables. (This resembles the effect of the
TRUNCATE statement, but Informix does not support TRUNCATE operations on
any table that has a child table referencing it.)

For an example of how to create a referential constraint that uses cascading deletes,
see “Using the ON DELETE CASCADE Option” on page 2-210.

Restrictions on DELETE When Tables Have Cascading Deletes
You cannot use a child table in a correlated subquery to delete a row from a parent
table. If two child tables reference the same parent table, and one child specifies
cascading deletes but the other child does not, then if you attempt to delete a row
that applies to both child tables from the parent table, the delete fails, and no rows
are deleted from the parent or child tables.

Locking and Logging Implications of Cascading Deletes
During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables.

Informix requires transaction logging for cascading deletes. If logging is turned off
in a database that is not ANSI-compliant, even temporarily, deletes do not cascade,
because you cannot roll back any actions. For example, if a parent row is deleted,
but the system fails before the child rows are deleted, the database will have

Chapter 2. SQL statements 2-309

dangling child records, in violation of referential integrity. After logging is turned
back on, however, subsequent deletes cascade.

Using the WHERE Keyword to Specify a Condition
Use the WHERE condition clause to specify which rows you want to delete from
the table. The condition after the WHERE keyword is equivalent to the condition in
the SELECT or UPDATE statement. For example, the next statement deletes all the
rows of the items table where the order number is less than 1034:
DELETE FROM items WHERE order_num < 1034;

In DB-Access, if you include a WHERE clause that selects all rows in the table,
DB-Access gives no prompt and deletes all rows.

If you are deleting from a supertable in a table hierarchy, a subquery in the
WHERE clause cannot reference a subtable.

When deleting from a subtable, a subquery in the WHERE clause can reference the
supertable only in SELECT ... FROM ONLY (supertable)... syntax.

Subqueries in the WHERE Clause of DELETE
The FROM clause of a subquery in the WHERE clause of the DELETE statement
can specify as a data source the same table or view that the FROM clause of the
DELETE statement specifies. DELETE operations with subqueries that reference the
same table object are supported only if all of the following conditions are true:
v The subquery either returns a single row, or else has no correlated column

references.
v The subquery is in the DELETE statement WHERE clause, using Condition with

Subquery syntax.
v Any SPL routines within the subquery cannot reference the table that is being

modified.

Unless all of these conditions are satisfied, DELETE statements that include
subqueries that reference the same table or view that the DELETE statement
modifies return error -360.

The following example deletes from the orders table a subset of rows whose
paid_date column value satisfies the condition in the WHERE clause. The WHERE
clause specifies which rows to delete by applying the IN operator to the rows
returned by a subquery that selects only the rows of the orders table where the
paid_date value is earlier than the current date:
DELETE FROM orders WHERE paid_date IN

(SELECT paid_date FROM orders WHERE paid_date < CURRENT);

This subquery includes only uncorrelated column references, because its only
referenced column is in a table specified in its FROM clause. The requirements
listed above are in effect, because the data source of the subquery is the same
orders table that the FROM clause of the outer UPDATE statement specifies. The
previous example illustrates Informix support for uncorrelated subqueries in the
WHERE clause of the DELETE statement. rather than how to write short SQL
statements. The next example achieves the same result with simpler syntax:
DELETE orders WHERE paid_date < CURRENT;

The following example deletes from the stock table the row (or rows) with the
largest unit_price value. The WHERE clause identifies which unit_price value is

2-310 IBM Informix Guide to SQL: Syntax

the largest by applying the equality operator to the result of a subquery that calls
the built-in MAX aggregate function for the unit_price column values:
DELETE FROM stock WHERE unit_price =

(SELECT MAX(unit_price) FROM stock);

If an enabled Select trigger is defined on a table that is the data source of a
subquery in the WHERE clause of a DELETE statement that modifies the same
table, executing that subquery within the DELETE statement does not activate the
trigger.

A subquery in the DELETE statement can include the UNION or UNION ALL
operators.

If the table that the outer DELETE statement modifies a typed table within a table
hierarchy, Informix supports all of the following operations that use valid
subqueries in the WHERE clause of DELETE:
v DELETE from parent table with subquery (SELECT from parent table)
v DELETE from parent table with subquery (SELECT from child table)
v DELETE from child table with subquery (SELECT from parent table)
v DELETE from child table with subquery (SELECT from child table).

See the Condition with Subquery topic for more information about the syntax of
subqueries to return multiple rows as predicates in the WHERE clause of the
DELETE statement.

Using the WHERE CURRENT OF Keywords (ESQL/C, SPL)
The WHERE CURRENT OF clause deletes the current row of the active set of a
cursor. When you include this clause, the DELETE statement removes the row of
the active set at the current position of the cursor. After the deletion, no current
row exists; you cannot use the cursor to delete or update a row until you
reposition the cursor with a FETCH statement (in ESQL/C routines) or with a
FOREACH statement (in SPL routines).

You access the current row of the active set of a cursor with an update cursor.
Before you can use the WHERE CURRENT OF clause, you must first create an
update cursor by using the FOREACH statement (in SPL) or the DECLARE
statement with the FOR UPDATE clause (in Informix ESQL/C). The cursor_id that
follows the OF keyword cannot be declared, however, by the DECLARE statement
in an SPL routine

Unless they are declared with the FOR READ ONLY keywords, all Select cursors
are potentially update cursors in an ANSI-compliant database. You can use the
WHERE CURRENT OF clause with any Select cursor that was not declared with
the FOR READ ONLY keywords.

You cannot use WHERE CURRENT OF if you are selecting from only one table in
a table hierarchy. That is, this clause is not valid with the ONLY keyword.

The WHERE CURRENT OF clause can be used to delete an element from a
collection by deleting the current row of the collection-derived table that a
collection variable holds. For more information, see “Collection-Derived Table” on
page 5-4.

Chapter 2. SQL statements 2-311

Deleting Rows That Contain Opaque Data Types
Some opaque data types require special processing when they are deleted. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

To accomplish this process, call a user-defined support function called destroy().
When you use DELETE to remove a row that contains one of these opaque types,
the database server automatically invokes destroy() for the opaque type. This
function decides how to remove the data, regardless of where it is stored. For more
information on the destroy() support function, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Deleting Rows That Contain Collection Data Types
When a row contains a column that is a collection data type (LIST, MULTISET, or
SET), you can search for a particular element in the collection, and delete the row
or rows in which the element is found.

For example, the following statement deletes any rows from the new_tab table in
which the set_col column contains the element jimmy smith:
DELETE FROM new_tab WHERE ’jimmy smith’ IN set_col;

You can also use a collection variable to delete values in a collection column by
deleting one or more individual elements in a collection. For more information, see
“Collection-Derived Table” on page 5-4 and the examples in “Database Name” on
page 5-15 and “Example of Deleting from a Collection” on page 5-12.

Data Types in Distributed DELETE Operations
A DELETE statement (or any other SQL data-manipulation language statement)
that accesses a database of another Informix instance can reference only the
following data types:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT data types that appear in this list.

Cross-server distributed DELETE operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database.

Cross-server DML operations cannot reference a column or expression of a
complex, large-object, nor user-defined opaque data type (UDT), nor of an
unsupported DISTINCT type or built-in opaque type. For additional information
about the data types that Informix supports in cross-server DML operations, see
“Data Types in Cross-Server Transactions” on page 2-545.

Distributed operations that access other databases of the local Informix instance,
however, can access the same data types that are listed above for cross-server
operations, and also the following additional data types:

2-312 IBM Informix Guide to SQL: Syntax

v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database
Transactions” on page 2-544

v DISTINCT of the built-in types that are referenced in the line above
v DISTINCT of any of the data types that are listed in either of the two lines

above
v Opaque user-defined data types (UDTs) that can be cast explicitly to built-in

data types.

Cross-database DELETE operations can support these DISTINCT and opaque UDTs
only if all the opaque and DISTINCT UDTs are cast explicitly to built-in types, and
all of the opaque UDTs, DISTINCT types, data type hierarchies, and casts are
defined exactly the same way in each of the participating databases.

Distributed DELETE statements cannot access a database of another Informix
instance unless both server instances support either a TCP/IP or an IPCSTR
connection, as defined in their DBSERVERNAME or DBSERVERALIASES
configuration parameters and in the sqlhosts file or SQLHOSTS registry subkey.
This connection-type requirement applies to any communication between Informix
instances, even if both database servers reside on the same computer.

SQLSTATE Values in an ANSI-Compliant Database
If no rows satisfy the WHERE clause of a DELETE operation on a table in an
ANSI-compliant database, the database server issues a warning. You can detect this
warning condition in either of the following ways:
v The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE field to

the value 02000. In an SQL API application, the SQLSTATE variable contains
this same value.

v In an SQL API application, the sqlca.sqlcode and SQLCODE variables contain
the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
DELETE . . . WHERE statement is part of a multistatement prepared object, and
the database server returns no rows.

SQLSTATE Values in a Database That Is Not ANSI-Compliant
In a database that is not ANSI compliant, the database server does not return a
warning when it finds no rows satisfying the WHERE clause of a DELETE
statement. In this case, the SQLSTATE code is 00000 and the SQLCODE code is
zero (0). If the DELETE . . . WHERE is part of a multistatement prepared object,
however, and no rows are returned, the database server does issue a warning. It
sets SQLSTATE to 02000 and sets the SQLCODE value to 100.

For information on the ANSI/ISO-compliance status of values returned to the
SQLSTATE variable, see the section “SQLSTATE Support for the ANSI/ISO
Standard for SQL” on page 2-392.

Related Information

Related Statements: “DECLARE statement” on page 2-290, “FETCH statement” on
page 2-372, “GET DIAGNOSTICS statement” on page 2-391, “INSERT statement”
on page 2-435, “OPEN statement” on page 2-469, “SELECT statement” on page
2-536, and “UPDATE statement” on page 2-700

Chapter 2. SQL statements 2-313

For discussions of the DELETE statement, SPL routines, statement modification,
cursors, and the SQLCODE code, see the IBM Informix Guide to SQL: Tutorial.

For information on how to access row and collections with Informix ESQL/C host
variables, see the chapter on complex data types in the IBM Informix ESQL/C
Programmer's Manual.

For a discussion of the GLS aspects of the DELETE statement, see the IBM Informix
GLS User's Guide.

DESCRIBE statement

Use the DESCRIBE statement to obtain information about output parameters and
other features of a prepared statement before you execute it. Use this statement
with Informix ESQL/C. (See also “DESCRIBE INPUT statement” on page 2-318.)

Syntax

�� DESCRIBE
OUTPUT

statement_id_var
statement_id

�

� USING SQL DESCRIPTOR descriptor_var
'descriptor'

INTO SQL DESCRIPTOR descriptor_var
'descriptor'

sqlda_pointer

��

Element Description Restrictions Syntax

descriptor Name of a system-descriptor
area

System-descriptor area must already
be allocated

“Quoted String” on page
4-188

descriptor_var Host variable specifying a
system-descriptor area

Must contain the name of an
allocated system-descriptor area

Language-specific rules for
names

sqlda_pointer Pointer to an sqlda structure Cannot begin with dollar ($) sign
or colon (:). An sqlda structure is
required if dynamic SQL is used.

See the sqlda structure in
the IBM Informix ESQL/C
Programmer's Manual

statement_id Statement identifier for a
prepared SQL statement

Must be defined in a previous
PREPARE statement

“PREPARE statement” on
page 2-477; “Identifier” on
page 5-21

statement
_id_var

Host variable that contains
the value of statement_id

Must be declared in a previous
PREPARE statement

Language-specific rules for
names

Usage

DESCRIBE can provide information at runtime about a prepared statement:
v The type of SQL statement that was prepared
v Whether an UPDATE or DELETE statement contains a WHERE clause
v For a SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE), INSERT, or

UPDATE statement, the DESCRIBE statement also returns the number, data
types, and size of the values, and the name of the column or expression that the
query returns.

2-314 IBM Informix Guide to SQL: Syntax

With this information, you can write code to allocate memory to hold retrieved
values and display or process them after they are fetched.

The OUTPUT Keyword
The OUTPUT keyword specifies that only information about output parameters of
the prepared statement are stored in the sqlda descriptor area. If you omit this
keyword, DESCRIBE can return input parameters, but only for INSERT statements
(and for UPDATE, if the IFX_UPDDESC environment variable is set in the
environment where the database server is initialized).

Describing the Statement Type
The DESCRIBE statement takes a statement identifier from a PREPARE statement
as input. When the DESCRIBE statement executes, the database server sets the
value of the SQLCODE field of the sqlca to indicate the statement type (that is, the
keyword with which the statement begins). If the prepared statement text contains
more than one SQL statement, the DESCRIBE statement returns the type of the first
statement in the text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can test the number against the constant
names that are defined. In Informix ESQL/C, the constant names are defined in
the sqlstypes.h header file.

The DESCRIBE statement (and the DESCRIBE INPUT statement) use the
SQLCODE field differently from any other statement, possibly returning a nonzero
value when it executes successfully. You can revise standard error-checking
routines to accommodate this behavior, if desired.

Checking for the Existence of a WHERE Clause
If the DESCRIBE statement detects that a prepared statement contains an UPDATE
or DELETE statement without a WHERE clause, the DESCRIBE statement sets the
sqlca.sqlwarn.sqlwarn4 variable to W.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update operation on the
entire table. Check the sqlca.sqlwarn.sqlwarn4 variable to avoid unintended global
changes to your table.

Describing a Statement with Runtime Parameters
If the prepared statement contains parameters for which the number of parameters
or parameter data types is to be supplied at runtime, you can describe these input
values. If the prepared statement text includes one of the following statements, the
DESCRIBE statement returns a description of each column or expression that is
included in the list:
v EXECUTE FUNCTION (or EXECUTE PROCEDURE)
v INSERT
v SELECT (without an INTO TEMP clause)
v UPDATE

In Informix, the IFX_UPDDESC environment variable, as described in the IBM
Informix Guide to SQL: Reference, must be set before you can use DESCRIBE to
obtain information about an UPDATE statement.

Chapter 2. SQL statements 2-315

The description includes the following information:
v The data type of the column, as defined in the table
v The length of the column, in bytes
v The name of the column or expression

For a prepared INSERT or UPDATE statement, DESCRIBE returns only the
dynamic parameters (those expressed with a question mark (?) symbol). Using the
OUTPUT keyword, however, prevents these from being returned.

You can specify a destination for the returned information as a new or existing
system-descriptor area, or as a pointer to an sqlda structure.

A system-descriptor area conforms to the X/Open standards.
Related reference

IFX_UPDDESC (SQL Reference)

Using the SQL DESCRIPTOR Keywords
Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area.

Use the INTO SQL DESCRIPTOR clause to create a new system-descriptor
structure and store the description of a statement list in that structure.

To describe one of the previously mentioned statements into a system-descriptor
area, DESCRIBE updates the system-descriptor area in these ways:
v It sets the COUNT field in the system-descriptor area to the number of values in

the statement list. An error results if COUNT is greater than the number of item
descriptors in the system-descriptor area.

v It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE fields
in the system-descriptor area.
If the column has an opaque data type, the database server sets the EXTYPEID,
EXTYPENAME, EXTYPELENGTH, EXTYPEOWNERLENGTH, and
EXTYPEOWNERNAME fields of the item descriptor.

v It allocates memory for the DATA field for each item descriptor, based on the
TYPE and LENGTH information.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify system-descriptor-area information with SET DESCRIPTOR
statements to show the address in memory that is to receive the described value.
You can change the data type to another compatible type. This change causes data
conversion to take place when data values are fetched.

You can use the system-descriptor area in prepared statements that support a
USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

2-316 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_253.htm#ids_sqr_253

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.
main()
{
. . .
EXEC SQL allocate descriptor ’desc1’ with max 3;
EXEC SQL prepare curs1 FROM ’select * from tab’;
EXEC SQL describe curs1 using sql descriptor ’desc1’;
}
EXEC SQL describe curs1 using sql descriptor :desc1var;

Using the INTO sqlda Pointer Clause
Use the INTO sqlda_pointer clause to allocate memory for an sqlda structure and
store its address in an sqlda pointer. The DESCRIBE statement fills in the allocated
memory with descriptive information. Unlike the USING clause, the INTO clause
creates new sqlda structures to store the output from DESCRIBE.

The DESCRIBE statement sets the sqlda.sqld field to the number of values in the
statement list. The sqlda structure also contains an array of data descriptors
(sqlvar structures), one for each value in the statement list. After a DESCRIBE
statement is executed, the sqlda.sqlvar structure has the sqltype, sqllen, and
sqlname fields set.

If the column has an opaque data type, DESCRIBE...INTO sets the sqlxid,
sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the item
descriptor.

The DESCRIBE statement allocates memory for an sqlda pointer once it is declared
in a program. The application program, however, must designate the storage area
of the sqlda.sqlvar.sqldatafields.

Describing a Collection Variable
The DESCRIBE statement can provide information about a collection variable when
you use the USING SQL DESCRIPTOR or INTO clause. You must issue the
DESCRIBE statement after you open the Select or Insert cursor, because the
OPEN...USING statement specifies the name of the collection variable to use.

The next Informix ESQL/C code fragment dynamically selects the elements of the
:a_set collection variable into a system-descriptor area called desc1:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor ’desc1’;
EXEC SQL select set_col into :a_set from table1;
EXEC SQL prepare set_id from ’select * from table(?)’

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor ’desc1’;

do
{

EXEC SQL fetch set_curs using sql descriptor ’desc1’;
...

Chapter 2. SQL statements 2-317

EXEC SQL get descriptor ’desc1’ :set_count = count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor ’desc1’ value :i
:element_type = TYPE;

switch
{

case SQLINTEGER:
EXEC SQL get descriptor ’desc1’ value :i

:element_value = data;
...

} /* end switch */
} /* end for */

} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor ’desc1’;

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DEALLOCATE DESCRIPTOR statement” on page 2-288, “DECLARE statement”
on page 2-290, “DESCRIBE INPUT statement,” “EXECUTE statement” on page
2-353, “FETCH statement” on page 2-372, “GET DESCRIPTOR statement” on page
2-385, “OPEN statement” on page 2-469, “PREPARE statement” on page 2-477,
“PUT statement” on page 2-487, and “SET DESCRIPTOR statement” on page 2-620

For a task-oriented discussion of the DESCRIBE statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about how to use a system-descriptor area and sqlda, refer
to the IBM Informix ESQL/C Programmer's Manual.

DESCRIBE INPUT statement
Use the DESCRIBE INPUT statement to return input parameter information before
a prepared statement is executed.

Use this statement with ESQL/C.

Syntax

�� DESCRIBE INPUT statement_var
statement_id

�

� USING SQL DESCRIPTOR 'descriptor'
descriptor_var

INTO SQL DESCRIPTOR 'descriptor'
descriptor_var

(1)
sqlda_pointer

��

Notes:

1 Informix extension

2-318 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

descriptor Name of a system-descriptor
area

System-descriptor area must already
be allocated

“Quoted String” on page
4-188

descriptor_var Host variable specifying a
system-descriptor area

Must contain the name of an
allocated system-descriptor area

Language-specific rules for
names

sqlda_pointer Pointer to an sqlda structure Cannot begin with dollar ($) sign
or colon (:). An sqlda structure is
required if dynamic SQL is used.

See the sqlda structure in
the IBM Informix ESQL/C
Programmer's Manual.

statement_id Statement identifier for a
prepared SQL statement

Must be defined in a previously
executed PREPARE statement

“PREPARE statement” on
page 2-477; “PREPARE
statement” on page 2-477;
“Identifier” on page 5-21

statement_var Host variable that contains
the value of statement_id

Variable and statement_id both must
be declared

Language-specific rules for
names

Usage

The DESCRIBE INPUT and the DESCRIBE OUTPUT statements can return
information about a prepared statement to an SQL Descriptor Area (sqlda):
v For a SELECT, EXECUTE FUNCTION (or PROCEDURE), INSERT, or UPDATE

statement, the DESCRIBE statement (with no INPUT keyword) returns the
number, data types, and size of the returned values, and the name of the column
or expression.

v For a SELECT, EXECUTE FUNCTION, EXECUTE PROCEDURE, DELETE,
INSERT, or UPDATE statement, the DESCRIBE INPUT statement returns all the
input parameters of a prepared statement.

Tip: Informix versions earlier than 9.40 do not support the INPUT keyword. For
compatibility with legacy applications, DESCRIBE without INPUT is supported. In
new applications, you should use DESCRIBE INPUT statements to provide
information about dynamic parameters in the WHERE clause, in subqueries, and in
other syntactic contexts where the old form of DESCRIBE cannot provide
information.

With this information, you can write code to allocate memory to hold retrieved
values that you can display or process after they are fetched.

The IFX_UPDDESC environment variable does not need to be set before you can
use DESCRIBE INPUT to obtain information about an UPDATE statement.

Describing the Statement Type
This statement takes a statement identifier from a PREPARE statement as input.
After DESCRIBE INPUT executes, the SQLCODE field of the sqlca indicates the
statement type (that is, the keyword with which the statement begins). If a
prepared object contains more than one SQL statement, DESCRIBE INPUT returns
the type of the first statement in the prepared text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. You can compare the number with the
named constants that are defined in the sqlstypes.h header file.

Chapter 2. SQL statements 2-319

The DESCRIBE and DESCRIBE INPUT statements use SQLCODE differently from
other statements, under some circumstances returning a nonzero value after
successful execution. You can revise standard error-checking routines to
accommodate this behavior, if desired.

Checking for Existence of a WHERE Clause
If the DESCRIBE INPUT statement detects that a prepared object contains an
UPDATE or DELETE statement without a WHERE clause, the database server sets
the sqlca.sqlwarn.sqlwarn4 variable to W.

When you do not specify a WHERE clause in either a DELETE or UPDATE
statement, the database server performs the delete or update action on the entire
table. Check the sqlca.sqlwarn.sqlwarn4 variable after DESCRIBE INPUT executes
to avoid unintended global changes to your table.

Describing a Statement with Dynamic Runtime Parameters
If the prepared statement specifies a set of parameters whose cardinality or data
types must be supplied at runtime, you can describe these input values. If the
prepared statement text includes one of the following statements, the DESCRIBE
INPUT statement returns a description of each column or expression that is
included in the list:
v EXECUTE FUNCTION (or EXECUTE PROCEDURE)
v INSERT or SELECT
v UPDATE or DELETE

The description includes the following information:
v The data type of the column, as defined in the table
v The length of the column, in bytes
v The name of the column or expression
v Information about dynamic parameters (parameters that are expressed as question

(?) mark symbols within the prepared statement)

If the database server cannot infer the data type of an expression parameter, the
DESCRIBE INPUT statement returns SQLUNKNOWN as the data type.

You can specify a destination for the returned information as a new or existing
system-descriptor area, or as a pointer to an sqlda structure.

Using the SQL DESCRIPTOR Keywords
Specify INTO SQL DESCRIPTOR to create a new system-descriptor structure and
store the description of a prepared statement list in that structure.

Use the USING SQL DESCRIPTOR clause to store the description of a prepared
statement list in a previously allocated system-descriptor area. Executing the
DESCRIBE INPUT . . . USING SQL DESCRIPTOR statement updates an existing
system-descriptor area in the following ways:
v It allocates memory for the DATA field for each item descriptor, based on the

TYPE and LENGTH information.
v It sets the COUNT field in the system-descriptor area to the number of values in

the statement list. An error results if COUNT is greater than the number of item
descriptors in the system-descriptor area.

2-320 IBM Informix Guide to SQL: Syntax

v It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE fields
in the system-descriptor area.

For columns of opaque data types, the DESCRIBE INPUT statement sets the
EXTYPEID, EXTYPENAME, EXTYPELENGTH, EXTYPEOWNERLENGTH, and
EXTYPEOWNERNAME fields of the item descriptor.

After a DESCRIBE INPUT statement executes, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the decimal
scale and precision. If TYPE is not set to DECIMAL or MONEY, the values for
SCALE and PRECISION are not set, and LENGTH is unaffected.

You must modify the system-descriptor-area information with the SET
DESCRIPTOR statement to specify the address in memory that is to receive the
described value. You can change the data type to another compatible type. This
causes data conversion to take place when the data values are fetched.

You can also use the system-descriptor area in other statements that support a
USING SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

The following examples show the use of a system descriptor in a DESCRIBE
statement. In the first example, the system descriptor is a quoted string; in the
second example, it is an embedded variable name.
main()
{
. . .
EXEC SQL allocate descriptor ’desc1’ with max 3;
EXEC SQL prepare curs1 FROM ’select * from tab’;
EXEC SQL describe curs1 using sql descriptor ’desc1’;
}
EXEC SQL describe curs1 using sql descriptor :desc1var;

A system-descriptor area conforms to the X/Open standards.

Using the INTO sqlda Pointer Clause
The INTO sqlda_pointer clause allocates memory for an sqlda structure and store its
address in an sqlda pointer. The DESCRIBE INPUT statement fills in the allocated
memory with descriptive information.

The DESCRIBE INPUT statement sets the sqlda.sqld field to the number of values
in the statement list. The sqlda structure also contains an array of data descriptors
(sqlvar structures), one for each value in the statement list. After a DESCRIBE
statement is executed, the sqlda.sqlvar structure has the sqltype, sqllen, and
sqlname fields set.

If the column has an opaque data type, DESCRIBE INPUT . . . INTO sets the
sqlxid, sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the
item descriptor.

The DESCRIBE INPUT statement allocates memory for an sqlda pointer once it is
declared in a program. The application program, however, must designate the
storage area of the sqlda.sqlvar.sqldata fields.

Chapter 2. SQL statements 2-321

Describing a Collection Variable
The DESCRIBE INPUT statement can provide information about a collection
variable if you use the INTO or USING SQL DESCRIPTOR clause.

You must execute the DESCRIBE INPUT statement after you open the Select or
Insert cursor. Otherwise, DESCRIBE INPUT cannot get information about the
collection variable because it is the OPEN . . . USING statement that specifies the
name of the collection variable to use.

The next Informix ESQL/C program fragment dynamically selects the elements of
the :a_set collection variable into a system-descriptor area called desc1:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor ’desc1’;
EXEC SQL select set_col into :a_set from table1;
EXEC SQL prepare set_id from

’select * from table(?)’;

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor ’desc1’;do
{

EXEC SQL fetch set_curs using sql descriptor ’desc1’;
...
EXEC SQL get descriptor ’desc1’ :set_count = count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor ’desc1’ value :i
:element_type = TYPE;

switch
{

case SQLINTEGER:
EXEC SQL get descriptor ’desc1’ value :i

:element_value = data;
...

} /* end switch */
} /* end for */

} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor ’desc1’;

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DEALLOCATE DESCRIPTOR statement” on page 2-288, “DECLARE statement”
on page 2-290, “DESCRIBE statement” on page 2-314, “EXECUTE statement” on
page 2-353, “FETCH statement” on page 2-372, “GET DESCRIPTOR statement” on
page 2-385, “OPEN statement” on page 2-469, “PREPARE statement” on page
2-477, “PUT statement” on page 2-487, and “SET DESCRIPTOR statement” on page
2-620

2-322 IBM Informix Guide to SQL: Syntax

For a task-oriented discussion of the DESCRIBE statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about how to use a system-descriptor area and sqlda, refer
to the IBM Informix ESQL/C Programmer's Manual.

DISCONNECT statement
Use the DISCONNECT statement to terminate a connection between an application
and a database server.

Syntax

�� DISCONNECT CURRENT
(1)

ALL
DEFAULT

'connection'
connection_var

��

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

connection String that specifies a
connection to terminate

Connection name that the CONNECT
statement assigned

“Quoted String” on
page 4-188

connection_var Host variable that holds the
name of a connection

Must be a fixed-length character data
type

Language specific

Usage

DISCONNECT terminates a connection to a database server. If a database is open,
it closes before the connection drops. Even if you made a connection to a specific
database only, the connection to the database server is terminated by
DISCONNECT. If DISCONNECT does not terminate the current connection, the
connection context of the current environment is not changed.

DISCONNECT is not valid as statement text in a PREPARE statement.

In ESQL/C, if you disconnect with connection or connection_var, DISCONNECT
generates an error if the specified connection is not a current or dormant
connection.

DEFAULT Option

DISCONNECT DEFAULT disconnects the default connection.

The default connection is one of the following connections:
v A connection established by the CONNECT TO DEFAULT statement
v An implicit default connection established by the DATABASE or CREATE

DATABASE statement

Chapter 2. SQL statements 2-323

You can use DISCONNECT to drop the default connection. If the DATABASE
statement does not specify a database server, as in the following example, the
default connection is made to the default database server:
EXEC SQL database ’stores_demo’;
. . .
EXEC SQL disconnect default;

If the DATABASE statement specifies a database server, as the following example
shows, the default connection is made to that database server:
EXEC SQL database ’stores_demo@mydbsrvr’;
. . .
EXEC SQL disconnect default;

In either case, the DEFAULT option of DISCONNECT disconnects this default
connection. For more information, see “The DEFAULT Connection Specification”
on page 2-88.

Specifying the CURRENT Keyword
The DISCONNECT CURRENT statement terminates the current connection. For
example, the DISCONNECT statement in the following program fragment
terminates the current connection to the database server mydbsrvr:
CONNECT TO ’stores_demo@mydbsrvr’;
. . .
DISCONNECT CURRENT;

When a Transaction is Active
DISCONNECT generates an error during a transaction. The transaction remains
active, and the application must explicitly commit it or roll it back. If an
application terminates without issuing DISCONNECT (because of a system failure
or program error, for example), active transactions are rolled back.

In an ANSI-compliant database, however, if no error is encountered while you exit
from DB-Access in non-interactive mode without issuing the CLOSE DATABASE,
COMMIT WORK, or DISCONNECT statement, the database server automatically
commits any open transaction.

Disconnecting in a Thread-Safe Environment
If you issue the DISCONNECT statement in a thread-safe Informix ESQL/C
application, keep in mind that an active connection can be disconnected only from
within the thread in which it is active. Therefore, one thread cannot disconnect the
active connection of another thread. The DISCONNECT statement generates an
error if such an attempt is made.

Once a connection becomes dormant, however, any other thread can disconnect it
unless an ongoing transaction is associated with the dormant connection that was
established with the WITH CONCURRENT TRANSACTION clause of CONNECT.
If the dormant connection was not established with the WITH CONCURRENT
TRANSACTION clause, DISCONNECT generates an error when it tries to
disconnect the connection.

For an explanation of connections in a thread-safe Informix ESQL/C application,
see “SET CONNECTION statement” on page 2-610.

2-324 IBM Informix Guide to SQL: Syntax

Specifying the ALL Option
Use the keyword ALL to terminate all connections established by the application
up to that time. For example, the following DISCONNECT statement disconnects
the current connection as well as all dormant connections:
DISCONNECT ALL;

In Informix ESQL/C, the ALL keyword has the same effect on multithreaded
applications that it has on single-threaded applications. Execution of the
DISCONNECT ALL statement causes all connections in all threads to be
terminated. However, the DISCONNECT ALL statement fails if any of the
connections is in use or has an ongoing transaction associated with it. If either of
these conditions is true, none of the connections is disconnected.

Related Information

Related statements: “CONNECT statement” on page 2-83, “DATABASE statement”
on page 2-285, and “SET CONNECTION statement” on page 2-610

For information on multithreaded applications, see the IBM Informix ESQL/C
Programmer's Manual.

DROP ACCESS_METHOD statement
Use the DROP ACCESS_METHOD statement to remove a previously defined
primary or secondary access method from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP ACCESS_METHOD access_method RESTRICT ��

Element Description Restrictions Syntax

access_method Name of access
method to drop

Must be registered in sysams system catalog table;
cannot be a built-in access method

“Identifier” on page
5-21

owner Owner of the
access method

Must own the access method “Owner Name” on
page 5-45

Usage

The RESTRICT keyword is required. You cannot drop an access method if virtual
tables or indexes exist that use the access method. You must be the owner of the
access method or have DBA privileges to drop an access method.

If a transaction is in progress, the database server waits to drop the access method
until the transaction is committed or rolled back. No other users can execute the
access method until the transaction has completed.

Examples
Related Information

For this example, suppose that an access method was created by this statement:

Chapter 2. SQL statements 2-325

CREATE SECONDARY ACCESS_METHOD T_tree
(

am_getnext = ttree_getnext,
am_unique,
am_cluster,
am_sptype = ’S’

);

The following statement drops this access method:
DROP ACCESS_METHOD T_tree RESTRICT;

Details of existing access methods can be found in the sysams system catalog table
with the following query:
SELECT am_name FROM informix.sysams;

Related statements: “ALTER ACCESS_METHOD statement” on page 2-5 and
“CREATE ACCESS_METHOD statement” on page 2-90

For a description of the RESTRICT keyword, see “Specifying RESTRICT Mode” on
page 2-348. For more information on primary-access methods and secondary-access
methods, see the IBM Informix Virtual-Table Interface Programmer's Guide and the
IBM Informix Virtual-Index Interface Programmer's Guide

For a discussion of privileges, see the “GRANT statement” on page 2-401 statement
or the IBM Informix Database Design and Implementation Guide.

DROP AGGREGATE statement
Use the DROP AGGREGATE statement to drop a user-defined aggregate that you
created with the CREATE AGGREGATE statement.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP AGGREGATE
owner .

aggregate ��

Element Description Restrictions Syntax

aggregate Name of the user-defined
aggregate to be dropped

Must have been previously created with
the CREATE AGGREGATE statement

“Identifier” on page 5-21

owner Owner of the aggregate Must own the aggregate “Owner Name” on page
5-45

Usage

Dropping a user-defined aggregate does not drop the support functions that you
defined for the aggregate in the CREATE AGGREGATE statement. The database
server does not track dependency of SQL statements on user-defined aggregates
that you use in the statements. For example, you can drop a user-defined
aggregate that is used in an SPL routine.

The following example drops the user-defined aggregate named my_avg:
DROP AGGREGATE my_avg;

2-326 IBM Informix Guide to SQL: Syntax

Related Information

Related statements: “CREATE AGGREGATE statement” on page 2-92

For information about how to invoke a user-defined aggregate, see the discussion
of user-defined aggregates in the Expression segment. For a description of the
sysaggregates system catalog table that holds information about user-defined
aggregates, see the IBM Informix Guide to SQL: Reference. For a discussion of
user-defined aggregates, see IBM Informix User-Defined Routines and Data Types
Developer's Guide.
Related reference

SYSAGGREGATES (SQL Reference)

DROP CAST statement
Use the DROP CAST statement to remove an existing cast from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP CAST (source_type AS target_type) ��

Element Description Restrictions Syntax

source_type Data type that the cast accepts as input Must exist “Identifier” on page 5-21; “Data Type”
on page 4-21

target_type Data type returned by the cast Must exist “Identifier” on page 5-21; “Data Type”
on page 4-21

Usage

You must be owner of the cast or have the DBA privilege to use DROP CAST.
Dropping a cast removes its definition from the syscasts system catalog table, so
the cast cannot be invoked explicitly or implicitly. Dropping a cast has no effect on
the user-defined function associated with the cast. Use the DROP FUNCTION
statement to remove the user-defined function from the database.

Warning: Do not drop built-in casts, which user informix owns. These are
required for automatic conversions between built-in data types.

A cast defined on a given data type can also be used on any DISTINCT types
created from that source type. If you drop the cast, you can no longer invoke it for
the DISTINCT types, but dropping a cast that is defined for a DISTINCT type has
no effect on casts for its source type. When you create a DISTINCT type, the
database server automatically defines an explicit cast from the DISTINCT type to
its source type and another explicit cast from the source type to the DISTINCT
type. When you drop the DISTINCT type, the database server automatically drops
these two casts.

Chapter 2. SQL statements 2-327

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_015.htm#ids_sqr_015

Examples

A cast (like this one in the superstores_demo database) can be dropped with the
DROP CAST statement:
DROP CAST (decimal(5,5) AS percent);

Details of existing casts can be found in the syscasts system catalog table the
following SQL:
SELECT routine_name, class, argument_type, result_type FROM Syscasts;

Related Information

Related statements: “CREATE CAST statement” on page 2-95 and “DROP
FUNCTION statement” on page 2-329.

For more information about data types, refer to the IBM Informix Guide to SQL:
Reference.
Related concepts

Data Types (SQL Reference)

DROP DATABASE statement
Use the DROP DATABASE statement to delete an entire database, including all
system catalog tables, objects, and data.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP DATABASE
(1)

Database Name ��

Notes:

1 See “Database Name” on page 5-15

Usage

The DROP DATABASE statement is an extension to the ANSI/ISO standard, which
does not provide syntax for the destruction of a database.

The following statement drops the stores_demo database:
DROP DATABASE stores_demo

You must have the DBA privilege or be user informix to run the DROP
DATABASE statement successfully. Otherwise, the database server issues an error
message and does not drop the database.

You cannot drop the current database or a database that is currently being used by
another user. All the current users of the database must first execute the CLOSE
DATABASE statement before DROP DATABASE can be successful.

The DROP DATABASE statement attempts to create an implicit connection to the
database that you intend to drop. If a previous CONNECT statement has

2-328 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_093.htm#ids_sqr_093

established an explicit connection to another database, and that connection is still
your current connection, the DROP DATABASE statement fails with error -1811. In
this case, you must first use the DISCONNECT statement to close the explicit
connection before you can execute the DROP DATABASE statement.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement, nor within an SPL routine.

In a DROP DATABASE operation, the database server acquires a lock on each table
in the database and holds the locks until the entire operation is complete.
Configure your database server with enough locks to accommodate this fact.

For example, if the database to be dropped has 2500 tables, but fewer than 2500
locks were configured for your database server, the DROP DATABASE statement
fails. For more information on how to configure the number of locks available to
the database server, see the discussion of the LOCKS configuration parameter in
your IBM Informix Administrator's Reference.

In DB-Access, use the DROP DATABASE statement with caution. DB-Access does
not prompt you to verify that you want to delete the entire database.

In ESQL/C, you can use an unqualified database name in a program or host
variable, or you can specify the fully-qualified database@server format. For example,
the following statement drops the stores_demo database of a database server
called gibson95:
EXEC SQL DROP DATABASE stores_demo@gibson95;

If this statement executes successfully, the gibson95 database server instance
continues to exist, but the stores_demo database of that database server no longer
exists. For more information, see “Database Name” on page 5-15.

Related Information

Related statements: “CLOSE DATABASE statement” on page 2-80, “CONNECT
statement” on page 2-83, “CREATE DATABASE statement” on page 2-97,
“DATABASE statement” on page 2-285, and “DISCONNECT statement” on page
2-323
Related reference

LOCKS Configuration Parameter (Administrator's Reference)

DROP FUNCTION statement
Use the DROP FUNCTION statement to remove a user-defined function from the
database. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP FUNCTION

�

function
owner . ,

(parameter_type)
(1)

SPECIFIC FUNCTION Specific Name

��

Chapter 2. SQL statements 2-329

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0094.htm#ids_adr_0094

Notes:

1 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

function Name of the
user-defined function to
be dropped

Must exist (that is, be registered) in the database. If
the name does not uniquely identify a function, you
must enter one or more appropriate values for
parameter_type.

“Identifier” on
page 5-21

parameter_type Data type of the
parameter

The data type (or list of data types) must be the same
data types (and specified in the same order) as in the
CREATE FUNCTION statement that registered the
function

“Data Type” on
page 4-21

Usage

Dropping a user-defined function removes the text and executable versions of the
function from the database. (Make sure to keep a copy of the function text
somewhere outside the database, in case you need to re-create a function after it is
dropped.)

If you do not know whether a UDR is a function or a procedure, you can drop it
by using the DROP ROUTINE statement.

To use the DROP FUNCTION statement, you must be the owner of the
user-defined function or have the DBA privilege. To drop an external user-defined
function, see also “Dropping an External Routine” on page 2-340.

You cannot use the DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to drop a protected routine. For more information about protected
routines, see the description of the sysprocedures system catalog table in the IBM
Informix Guide to SQL: Reference.

You cannot drop an SPL function from within the same SPL function.

Informix can resolve a function by its specific name, if the function definition
declared a specific name. If you use the specific name in this statement, you must
also use the keyword SPECIFIC, as in the following example:
DROP SPECIFIC FUNCTION compare_point;

Otherwise, if the function name is not unique within the database, you must
specify enough parameter_type information to disambiguate the name. If you use
parameter data types to identify a user-defined function, they follow the function
name, as in the following example:
DROP FUNCTION compare (int, int);

But the database server returns an error if it cannot resolve an ambiguous function
name whose signature differs from that of another function only in an unnamed
ROW-type parameter. (This error cannot be anticipated by the database server
when the ambiguous function is defined.)

2-330 IBM Informix Guide to SQL: Syntax

Determine whether a function exists

Before you attempt to drop a user-defined function, you can check for its existence
in the database by querying the system catalog. In the following example, the
SELECT statement retrieves from the sysprodures table any routines whose
identifier is MyFunction:
SELECT * FROM sysprocedures WHERE procname = MyFunction;

If this query returns a single row, then a UDR called MyFunction is registered in the
current database.

If this query returns no rows, you do not need to issue the DROP FUNCTION
statement, but you might wish to verify that the WHERE clause specified the
correct name, and that you are connected to the correct database.

If the query returns more than one row, then the routine name MyFunction is
overloaded in the current database, and you need to examine the attributes of the
MyFunction routines to determine which of them, if any, need to be unregistered by
the DROP FUNCTION statement.
Related reference

SYSPROCEDURES (SQL Reference)

Dropping External Functions
A user-defined function (UDF) written in C language or in the Java language is
called an external function. External functions must include the External Routine
Reference clause that specifies a shared-object filename. By default, only users to
whom the DBSA has granted the built-in EXTEND role can create or drop an
external function. See the section “Granting the EXTEND Role” on page 2-417 for
additional information about this feature.

To remove the executable version of a C language routine from shared memory,
call the IFX_UNLOAD_MODULE function. To replace the executable version of a
C routine with another routine, call the IFX_REPLACE_MODULE function. Both
of these built-in functions are described in “UDR Definition Routines” on page
6-10.

Examples

Most functions can be dropped using SQL statements similar to the following:
DROP FUNCTION best_month;

If you have more than one function with the same name, however, by using
function overloading, the DROP FUNCTION statement must either specify the
specific name of the function (if it has one), or the parameter list to uniquely
identify it. For example, the superstores_demo database has two last_contact
functions that were created with the following arguments:
CREATE FUNCTION last_contact(cust_name name_t) ...

and
CREATE FUNCTION last_contact(c_num INT) ...

To drop the second of these functions, use the following:
DROP FUNCTION last_contact(INT);

Chapter 2. SQL statements 2-331

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

If the above functions had been created with the specific names
last_cname_contact and last_cnum_contact, then to drop the second of these,
iddur the following statement:
DROP SPECIFIC FUNCTION last_cnum_contact;

Details of existing functions can be found in the sysprocedures system catalog table
using SQL like the following:
SELECT procname, specificname, paramtypes

FROM sysprocedures ;

Related Information

Related statements: “ALTER FUNCTION statement” on page 2-27, “CREATE
FUNCTION statement” on page 2-125, “CREATE FUNCTION FROM statement”
on page 2-134, “DROP PROCEDURE statement” on page 2-335, “DROP ROUTINE
statement” on page 2-339, “EXECUTE FUNCTION statement” on page 2-361, and
“GRANT statement” on page 2-401

For information on how to create user-defined functions, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

DROP INDEX statement
Use the DROP INDEX statement to remove an index.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP INDEX
owner .

index
ONLINE

��

Element Description Restrictions Syntax

index Name of the index to be dropped Must exist in the
database

“Identifier” on page 5-21

owner Name of index owner Must own the index “Owner Name” on page 5-45

Usage

In a typical online transaction processing (OLTP) environment, concurrent
applications are connected to the database server to perform DML operations. For
every query, the optimizer chooses a plan that is based on existing indexes,
distribution statistics, and directives. After numerous OLTP transactions, however,
the chosen plan might no longer be the best plan for query execution. In this case,
dropping an inefficient index can sometimes improve performance.

You must be the owner of the index or have the DBA privilege to use the DROP
INDEX statement. The following example drops the index o_num_ix that joed
owns. The stores_demo database must be the current database:
DROP INDEX stores_demo:joed.o_num_ix;

You cannot use the DROP INDEX statement to drop a unique constraint, nor to
drop an index that supports a constraint; you must use the ALTER TABLE . . .

2-332 IBM Informix Guide to SQL: Syntax

DROP CONSTRAINT statement to drop the constraint. When you drop the
constraint, the database server automatically drops any index that exists solely to
support that constraint. If you attempt to use DROP INDEX to drop an index that
is shared by a unique constraint, the database server renames the specified index
in the sysindexes system catalog table, declaring a new name in this format:
[space]<tabid>_<constraint_id>

Here tabid and constraint_id are from the systables and sysconstraints system
catalog tables, respectively. The sysconstraints.idxname column is then updated to
something like: " 121_13" (where quotation marks show the leading blank space).
If this index is a unique index with only referential constraints sharing it, the index
is downgraded to a duplicate index after it is renamed.

In some contexts, an alternative to the DROP INDEX statement is the SET
Database Object Mode statement, which can disable a specified index without
removing it from the system catalog. For more information about this SQL
statement, which can also enable an index that is currently disabled, see “SET
Database Object Mode statement” on page 2-599.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no index of the
specified name is registered in the current database.

The ONLINE keyword of DROP INDEX
The DBA can reduce the risk of nonexclusive access errors, and can increase the
availability of the indexed table, by including the ONLINE keyword as the last
specification of the DROP INDEX statement. The ONLINE keyword instructs the
database server to drop the index while minimizing the duration of an exclusive
lock, so that the index can be dropped while concurrent users are accessing the
table.

By default, DROP INDEX attempts to place an exclusive lock on the indexed table
to prevent all other users from accessing the table while the index is being
dropped. The DROP INDEX statement fails if another user already has a lock on
the table, or is currently accessing the table at the Dirty Read isolation level.

After you issue the DROP INDEX ONLINE statement, the query optimizer does
not consider using the specified index in subsequent query plans or cost estimates,
and the database server does not support any other DDL operations on the
indexed table, until after the specified index has been dropped. Query operations
that were initiated prior to the DROP INDEX ONLINE statement, however, can
continue to access the index until the queries are completed.

When no other users are accessing the index, the database server drops the index,
and the DROP INDEX ONLINE statement terminates execution.

By default, the DROP INDEX ONLINE statement does not wait indefinitely for
locks to be released. If one or more concurrent sessions hold locks on the table, the
statement might fail with error -216 or -113 unless you first issue the SET LOCK
MODE TO WAIT statement to specify an indefinite wait. Otherwise, DROP INDEX
ONLINE uses the waiting period for locks that the DEADLOCK_TIMEOUT
configuration parameter specifies, or that a previous SET LOCK MODE statement
specified. To avoid locking errors, execute SET LOCK MODE TO WAIT (with no
specified limit) before you attempt to drop an index online.

Chapter 2. SQL statements 2-333

You cannot use the CREATE INDEX statement to declare a new index that has the
same identifier until after the specified index has been dropped. No more than one
CREATE INDEX ONLINE or DROP INDEX ONLINE statement can concurrently
reference indexes on the same table.

The indexed table in a DROP INDEX ONLINE statement can be permanent or
temporary, logged or unlogged, and fragmented or non-fragmented. You cannot
specify the ONLINE keyword, however, when you are dropping an index that has
any of the following attributes:
v a functional index
v a clustered index
v a virtual index
v an R-tree index.

The following statement instructs the database server to drop online an index
called idx_01:
DROP INDEX IF EXISTS idx_01 ONLINE;

Examples

An index such as the one found in the stores_demo database can be dropped with:
DROP INDEX zip_ix;

If necessary, you can specify the index name as the fully qualified four-part object
name (database@instance:owner.indexname), as in the following:
DROP INDEX stores_demo@prod:"informix".zip_ix ;

Details of existing functions can be found in the sysprocedures system catalog table,
as in the following:
SELECT idxname FROM sysindices ;

Related Information

Related statements: “ALTER TABLE statement” on page 2-41, “CREATE INDEX
statement” on page 2-135, “CREATE TABLE statement” on page 2-198. and
“CREATE TEMP TABLE statement” on page 2-234. For the effect of indexes on
performance, see your IBM Informix Performance Guide.

For more information on virtual indexes, see the IBM Informix Virtual-Index Interface
Programmer's Guide.
Related concepts

Indexes and index performance considerations (Performance Guide)

DROP OPCLASS statement
Use the DROP OPCLASS statement to remove an existing operator class from the
database.

This statement is an extension to the ANSI/ISO standard for SQL.

2-334 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_359.htm#ids_prf_359

Syntax

�� DROP OPCLASS
owner .

opclass RESTRICT ��

Element Description Restrictions Syntax

opclass Name of operator class to be
dropped

Must have been created by a previous
CREATE OPCLASS statement

“Identifier” on page
5-21

owner Name of opclass owner Must own the operator class “Owner Name” on page
5-45

Usage

You must be the owner of the operator class or have the DBA privilege to use the
DROP OPCLASS statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no operator class of
the specified name is registered in the current database.

The RESTRICT keyword causes DROP OPCLASS to fail if the database contains
indexes defined on the operator class that you plan to drop. Therefore, before you
drop the operator class, you must use the DROP INDEX statement to drop any
dependent indexes.

The following DROP OPCLASS statement drops an operator class called
abs_btree_ops:
DROP OPCLASS abs_btree_ops RESTRICT

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no function of the
specified name (or of the specified specific name, if you include the SPECIFIC
keyword) is registered in the current database.

Related Information

Related statement: “CREATE OPCLASS statement” on page 2-158, “DROP INDEX
statement” on page 2-332

For information on how to create or extend an operator class, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

DROP PROCEDURE statement
Use the DROP PROCEDURE statement to drop a user-defined procedure from the
database. This statement is an extension to the ANSI/ISO standard for SQL.

Chapter 2. SQL statements 2-335

Syntax

�� DROP

�

PROCEDURE procedure
owner . (1) ,

function
(parameter_type)

(2)
SPECIFIC PROCEDURE Specific Name

��

Notes:

1 Informix-SPL language only

2 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

function Name of a procedure or
SPL function to drop

Must exist (that is, be registered) in the database “Identifier” on
page 5-21

owner Name of UDR owner Must own the procedure or SPL function “Owner Name” on
page 5-45

parameter _type The data type of the
parameter

The data type (or list of data types) must be the
same types (and in the same order) as those
specified when the procedure was created

“Identifier” on
page 5-21; “Data
Type” on page
4-21

procedure Name of user-defined
procedure to drop

Must exist (that is, be registered) in the database “Database Object
Name” on page
5-16

Usage

Dropping a user-defined procedure removes the text and executable version of the
procedure from the database. You cannot drop an SPL procedure within the same
SPL procedure.

You cannot use the DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to drop a protected routine. For more information about protected
routines, see the description of the sysprocedures system catalog table in the IBM
Informix Guide to SQL: Reference.

To use the DROP PROCEDURE statement, you must be the owner of the
procedure or have the DBA privilege.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no procedure of the
specified name is registered in the current database.

If the function or procedure name is not unique within the database, you must
specify enough parameter_type information to disambiguate the name. If the
database server cannot resolve an ambiguous UDR name whose signature differs
from that of another UDR only in an unnamed ROW type parameter, an error is
returned. (This error cannot be anticipated by the database server when the
ambiguous function or procedure is defined.)

2-336 IBM Informix Guide to SQL: Syntax

If you do not know whether a UDR is a user-defined procedure or a user-defined
function, you can use the DROP ROUTINE statement. For more information, see
“DROP ROUTINE statement” on page 2-339.

For compatibility with earlier Informix versions, you can use this statement to drop
an SPL function that CREATE PROCEDURE created. You can include parameter
data types after the name of the procedure to identify the procedure:
DROP PROCEDURE compare(int, int);

If you use the specific name for the user-defined procedure, you must also use the
keyword SPECIFIC, as in the following example:
DROP SPECIFIC PROCEDURE compare_point;

Determine whether a procedure exists

Before you attempt to drop a user-defined procedure, you can check for its
existence in the database by querying the system catalog. In the following example,
the SELECT statement retrieves from the sysprodures table any routines whose
identifier is MyProcedure:
SELECT * FROM sysprocedures WHERE procname = MyProcedure;

If this query returns a single row, then a UDR called MyProcedure is registered in
the current database.

If this query returns no rows, you do not need to issue the DROP PROCEDURE
statement, but you might wish to verify that the WHERE clause specified the
correct name, and that you are connected to the correct database.

If the query returns more than one row, then the routine name MyProcedure is
overloaded in the current database, and you need to examine the attributes of the
MyProcedure routines to determine which of them, if any, need to be unregistered
by the DROP PROCEDURE statement.
Related reference

SYSPROCEDURES (SQL Reference)

Dropping an External Procedure
A user-defined procedure (UDR) written in C language or in the Java language is
called an external routine. External routines must include the External Routine
Reference clause that specifies a shared-object filename. By default, only users to
whom the DBSA has granted the built-in EXTEND role can create or drop an
external routine. See the section “Granting the EXTEND Role” on page 2-417 for
additional information about this feature.

To remove the executable version of a C language procedure from shared memory,
call the IFX_UNLOAD_MODULE function. To replace the executable version of a
C routine with another routine, call the IFX_REPLACE_MODULE function. Both
of these built-in functions are described in “UDR Definition Routines” on page
6-10.

Related Information

Related statements: “CREATE PROCEDURE statement” on page 2-162, “CREATE
PROCEDURE FROM statement” on page 2-171, “DROP FUNCTION statement” on
page 2-329

Chapter 2. SQL statements 2-337

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

page 2-329, “DROP ROUTINE statement” on page 2-339, “EXECUTE PROCEDURE
statement” on page 2-369, and “GRANT statement” on page 2-401

For information on how to create user-defined routines, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

DROP ROLE statement
Use the DROP ROLE statement to remove a user-defined role from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP ROLE role
'role'

��

Element Description Restrictions Syntax

role Name of the role to be
dropped

Must be registered in the local database. When a role name
is enclosed in quotation marks, it is case sensitive.

“Owner
Name” on
page 5-45

Usage

Either the DBA or a user to whom the role was granted with the WITH GRANT
OPTION keywords can issue the DROP ROLE statement. (Like a user name, a role
is an authorization identifier, not a database object, so a role has no owner.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no role of the
specified name is registered in the current database.

After you drop a role, no user can grant or enable the dropped role, and any user
who had been assigned the role loses its privileges (such as table-level privileges
or routine-level privileges) when the role is dropped, unless the same privileges
were granted to PUBLIC or to the user individually. If the dropped role was the
default role of a user, the default role for that user becomes NULL.

The following statement drops the role engineer:
DROP ROLE engineer;

You cannot use the DROP ROLE statement to drop a built-in role, such as the
EXTEND or DBSECADM roles of Informix.

Related Information

Related statements: “CREATE ROLE statement” on page 2-173, “GRANT
statement” on page 2-401, “REVOKE statement” on page 2-502, and “SET ROLE
statement” on page 2-662

For a discussion of how to use roles, see the IBM Informix Guide to SQL: Tutorial.

2-338 IBM Informix Guide to SQL: Syntax

DROP ROUTINE statement
Use the DROP ROUTINE statement to remove a user-defined routine (UDR) from
the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP

�

ROUTINE routine
owner . ,

(parameter_type)
(1)

SPECIFIC ROUTINE Specific Name

��

Notes:

1 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

owner Name of UDR owner Must own the UDR “Owner Name” on
page 5-45

parameter_type Data type of a parameter of
routine

The data type (or list of data types) must be
the same type (and specified in the same
order) as in the UDR definition

“Identifier” on
page 5-21; “Data
Type” on page
4-21

routine Name of the UDR to drop The UDR must exist (that is, be registered) in
the database

“Identifier” on
page 5-21

Usage

Dropping a UDR removes the text and executable versions of the UDR from the
database. If you do not know whether a UDR is a user-defined function or a
user-defined procedure, this statement instructs the database server to drop the
specified user-defined function or user-defined procedure.

To use the DROP ROUTINE statement, you must be the owner of the UDR or have
the DBA privilege.

You cannot drop an SPL routine from within the same SPL routine.

Restrictions
You cannot use the DROP ROUTINE, DROP FUNCTION, or DROP PROCEDURE
statement to drop a protected routine. For more information about protected
routines, see the description of the sysprocedures system catalog table in the IBM
Informix Guide to SQL: Reference.

To use the DROP ROUTINE statement to unregister a UDR, the type of UDR
cannot be ambiguous. The name of the UDR that you specify must refer to either a
user-defined function or a user-defined procedure. If either of the following
conditions exist, the database server returns an error:
v The name (and parameters) that you specify apply to both a user-defined

procedure and a user-defined function,

Chapter 2. SQL statements 2-339

v The specific name that you specify applies to both a user-defined procedure and
a user-defined function.

If the routine name is not unique within the database, you must specify enough
parameter_type information to disambiguate the name. If the database server cannot
resolve an ambiguous routine name whose signature differs from that of another
routine only in an unnamed ROW type parameter, an error is returned. (This error
cannot be anticipated by the database server when the ambiguous routine is
defined.)

If you use parameter data types to identify a UDR, they follow the UDR name, as
in the following example:
DROP ROUTINE compare(INT, INT);

If you use the specific name for the UDR, you must also include the keyword
SPECIFIC, as in the following example:
DROP SPECIFIC ROUTINE compare_point;

Determining Whether a Routine Exists

Before you attempt to drop a user-defined routine, you can check for its existence
in the database by querying the system catalog. In the following example, the
SELECT statement retrieves from the sysprodures table any routines whose
identifier is MyRoutine:
SELECT * FROM sysprocedures WHERE procname = MyRoutine;

If this query returns a single row, then a UDR called MyRoutine is registered in
the current database.

If this query returns no rows, you do not need to issue the DROP ROUTINE
statement, but you might wish to verify that the WHERE clause specified the
correct name, and that you are connected to the correct database.

If the query returns more than one row, then the routine name MyRoutine is
overloaded in the current database, and you need to examine the attributes of the
MyRoutine routines to determine which of them, if any, need to be unregistered
by the DROP ROUTINE statement.
Related reference

SYSPROCEDURES (SQL Reference)

Dropping an External Routine

A user-defined routine (UDR) written in C language or in the Java language is
called an external routine. External routines must include the External Routine
Reference clause that specifies a shared-object filename. By default, only users to
whom the DBSA has granted the built-in EXTEND role can create or drop an
external routine. See the section “Granting the EXTEND Role” on page 2-417 for
additional information about this feature.

To remove the executable version of a C language procedure from shared memory,
call the IFX_UNLOAD_MODULE function. To replace the executable version of a
C routine with another routine, call the IFX_REPLACE_MODULE function. Both
of these built-in functions are described in “UDR Definition Routines” on page
6-10.

2-340 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
PROCEDURE statement” on page 2-162, “DROP FUNCTION statement” on page
2-329, “DROP PROCEDURE statement” on page 2-335, “EXECUTE FUNCTION
statement” on page 2-361, “EXECUTE PROCEDURE statement” on page 2-369, and
“GRANT statement” on page 2-401

DROP ROW TYPE statement
Use the DROP ROW TYPE statement to remove an existing named ROW data type
from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP ROW TYPE
owner .

row_type RESTRICT ��

Element Description Restrictions Syntax

owner Name of owner of the ROW type Must be the owner of row_type “Owner Name” on page
5-45

row_type Name of an existing named ROW
data type to be dropped

Must exist. See also the Usage
section that follows.

“Identifier” on page 5-21;
“Data Type” on page 4-21

Usage

The DROP ROW TYPE statement removes the entry for the specified row_type from
the sysxtdtypes system catalog table. You must be the owner of the specified
named ROW data type or have the DBA privilege to execute the DROP ROW
TYPE statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no named ROW data
type of the specified name is registered in the current database.

You cannot drop a named ROW data type if its name is in use. You cannot drop a
named ROW data type when any of the following conditions are true:
v Any existing tables or columns are using the named ROW data type.
v The named ROW data type is a supertype in an inheritance hierarchy.
v A view is defined on a column of the named ROW data type.

To drop a named ROW-type column from a table, use ALTER TABLE.

The DROP ROW TYPE statement cannot drop unnamed ROW data types.

The RESTRICT Keyword
The RESTRICT keyword is required with the DROP ROW TYPE statement.
RESTRICT causes DROP ROW TYPE to fail if dependencies on row_type exist.

Chapter 2. SQL statements 2-341

The DROP ROW TYPE statement fails and returns an error message if any of the
following conditions is true:
v The named ROW data type is used for an existing table or column.

Check the systables and syscolumns system catalog tables to find out whether
any tables or data types use the named ROW data type.

v The named ROW data type is the supertype in an inheritance hierarchy.
Look in the sysinherits system catalog table to see which named ROW data
types have child types.

The following statement drops the named ROW data type employee_t:
DROP ROW TYPE employee_t RESTRICT

Related Information

Related statement: “CREATE ROW TYPE statement” on page 2-176

For a description of the system catalog tables, see the IBM Informix Guide to SQL:
Reference.

For a discussion of named ROW data types, see the IBM Informix Guide to SQL:
Tutorial.

For information on how to create user-defined data types, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.
Related concepts

System Catalog Tables (SQL Reference)

DROP SECURITY statement
Use the DROP SECURITY statement to remove an existing security object from the
current database. The object can be a security policy, security label, or a security
label component.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP SECURITY
RESTRICT

LABEL policy . label
LABEL COMPONENT component

RESTRICT
POLICY policy CASCADE

��

Element Description Restrictions Syntax

component Security label
component to drop

Must exist in the database “Identifier” on page
5-21

label Security label to
drop

Must exist in the database as a label of the specified
policy

“Identifier” on page
5-21

policy Security policy to
drop

Must exist in the database “Identifier” on page
5-21

2-342 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

Usage

Only DBSECADM can issue this statement. When the DROP SECURITY statement
executes successfully, the database server deletes any rows that reference the name
or the numeric identifier of the specified object from the tables of the system
catalog, including these tables:
v sysecpolicies for security policies
v sysseclabels for security labels
v sysseclabelcomponents for security label components.

The keyword or keywords that follow the SECURITY keyword identify the type of
security object that is being dropped.
v SECURITY POLICY policy specifies a security policy
v SECURITY LABEL policy.label specifies a security label
v SECURITY LABEL COMPONENT component specifies a security label

component.

There is no SQL statement that selectively drops some elements of a security label
component without destroying the entire component object. To remove only a
subset of the elements of a security label component from the database,
DBSECADM can use the DROP SECURITY LABEL COMPONENT statement to
drop the component, and then redefine the dropped component, using the
CREATE SECURITY LABEL COMPONENT statement, but without including any
elements that are no longer needed. (An alternative is to drop all the security
labels that include the deprecated elements, and then use the CREATE SECURITY
LABEL statement to redefine new labels with the same components as the dropped
labels, but without those elements. In this case, the deprecated elements persist in
the database, but no security label uses them as values for their component.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no security object of
the specified security object type and of the specified name is registered in the
current database.

Restrictions on Dropping Security Objects
By default, the RESTRICT keyword is in effect when any security object is
dropped. Only a security policy can be dropped in CASCADE mode. DBSECADM
cannot drop a security policy in RESTRICT mode if any of the following conditions
are true:
v A table is protected by that security policy
v A security label depends on that security policy
v A user has been granted an exemption from a rule of that security policy.

A security policy cannot be dropped in CASCADE mode if the policy is protecting
any table. When a security policy is successfully dropped in CASCADE mode, the
following security objects are also dropped or revoked:
v All the security labels that are associated with the dropped security policy
v All the security labels that were dropped are also revoked from the users who

hold those labels
v All the exemptions from the dropped security policy are revoked.

Chapter 2. SQL statements 2-343

A security label cannot be dropped in RESTRICT mode, which is the only
supported mode for dropping labels, if any of the following conditions are true:
v A column is protected by that security label
v A user holds that security label.

A security label component cannot be dropped in RESTRICT mode, which is the
only supported mode for dropping components, if any security policy depends on
that security label component.

Examples of Dropping Security Objects

The following statement instructs the database server to drop the security label
witty:
DROP SECURITY LABEL witty;

The statement fails if any column is protected by the witty label, or if any user
holds this label.

The next example instructs the database server to drop the security label
component adhesive from the database:
DROP SECURITY LABEL COMPONENT adhesive;

The statement fails if any security policy depends on the adhesive security label
component.

The following example instructs the database server to drop the best security
policy in CASCADE mode:
DROP SECURITY POLICY best CASCADE;

This statement fails if that policy is currently protecting any table. If this statement
succeeds, however, it has the following additional effects because of the CASCADE
specification:
v All security labels associated with the best security policy are also dropped.
v All exemptions from the best security policy are revoked.
v All security labels that were dropped because the best security policy was

dropped are revoked from all users who hold those labels.

Related Information

Related statements: “ALTER SECURITY LABEL COMPONENT statement” on page
2-34, ALTER TABLE, “CREATE SECURITY LABEL statement” on page 2-183,
“CREATE SECURITY LABEL COMPONENT statement” on page 2-184, “CREATE
SECURITY POLICY statement” on page 2-189, CREATE TABLE, GRANT
EXEMPTION, GRANT SECURITY LABEL, “RENAME SECURITY statement” on
page 2-498, REVOKE EXEMPTION, and REVOKE SECURITY LABEL

For a discussion of LBAC security objects, see your IBM Informix Security Guide

DROP SEQUENCE statement
Use the DROP SEQUENCE statement to remove a sequence object from the
database.

This statement is an extension to the ANSI/ISO standard for SQL.

2-344 IBM Informix Guide to SQL: Syntax

Syntax

�� DROP SEQUENCE
owner .

sequence ��

Element Description Restrictions Syntax

owner Name of sequence owner Must own the sequence object “Owner Name” on page
5-45

sequence Name of a sequence Must exist in the current database “Identifier” on page 5-21

Usage

This statement removes the sequence entry from the syssequences system catalog
table. To drop a sequence, you must be its owner or have the DBA privilege on the
database. In an ANSI-compliant database, you must qualify the name of the
sequence with the name of its owner (owner.sequence) if you are not the owner.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no sequence object of
the specified name is registered in the current database.

If you drop a sequence, any synonyms for the name of the sequence are also
dropped automatically by the database server.

You cannot use a synonym to specify the identifier of the sequence in the DROP
SEQUENCE statement.

Examples
Related Information

Suppose you had a sequence created with something code similar to the following:
CREATE SEQUENCE Invoice_Numbers

START 10000 INCREMENT 1 NOCYCLE ;

Such a sequence can be dropped using the following:
DROP SEQUENCE Invoice_Numbers;

Details of existing sequences can be found by joining the syssequences and systables
system catalog tables as in the following:
SELECT t.tabname SeqName

FROM Syssequences s, Systables t
WHERE t.tabid = s.tabid ;

Related statements: “ALTER SEQUENCE statement” on page 2-38, “CREATE
SEQUENCE statement” on page 2-191, “RENAME SEQUENCE statement” on page
2-500, “GRANT statement” on page 2-401, “REVOKE statement” on page 2-502,
“INSERT statement” on page 2-435, “UPDATE statement” on page 2-700, and
“SELECT statement” on page 2-536

Chapter 2. SQL statements 2-345

DROP SYNONYM statement
Use the DROP SYNONYM statement to unregister an existing synonym.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP SYNONYM
owner .

synonym ��

Element Description Restrictions Syntax

owner Owner of synonym Must own synonym “Owner Name” on
page 5-45

synonym Synonym to be
dropped

The synonym must exist in the current database. “Identifier” on page
5-21

Usage

This removes the entries for the synonym from the systables, syssynonyms, and
syssyntable system catalog tables. You must own the synonym or have the DBA
privilege to execute the DROP SYNONYM statement. Dropping a synonym has no
effect on the table, view, or sequence object to which the synonym points.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no synonym of the
specified name is registered in the current database.

The following statement drops the synonym nj_cust, that user cathyg owns:
DROP SYNONYM cathyg.nj_cust;

DROP SYNONYM is not the only DDL operation that can unregister a synonym. If
a table, view, or sequence is dropped, any synonyms that exist in the same
database and that refer to that table, view, or sequence object are also dropped.

If a synonym in the current database refers to a dropped table or view in another
database, however, that synonym remains registered in the system catalog until
you explicitly drop it by using the DROP SYNONYM statement. You can create in
the same database another table or view, and declare as its identifier the name of
the dropped table or view. (If that is not the name of any table object in the current
database, you can instead create a table, view, or sequence object in the current
database, and declare as its name the identifier of the table or view that was
dropped in the other database.) In either case, the old synonym now refers to the
new table object. For a more complete discussion of synonym chaining, see the
topic “Chaining Synonyms” on page 2-197 in the CREATE SYNONYM statement
description.

Related Information

Related statement: “CREATE SYNONYM statement” on page 2-195

For a discussion of synonyms, see the IBM Informix Guide to SQL: Tutorial.

2-346 IBM Informix Guide to SQL: Syntax

DROP TABLE statement
Use the DROP TABLE statement to remove a table with its associated indexes and
data. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP TABLE
owner .

table
synonym

CASCADE
RESTRICT ��

Element Description Restrictions Syntax

owner Name of table owner Must own the table “Owner Name”
on page 5-45

synonym Local synonym for a table that
is to be dropped

The synonym and its table must exist, and
USETABLENAME must not be set to 1

“Identifier” on
page 5-21

table Name of a table to drop Must be registered in the systables system catalog
table of the local database

“Identifier” on
page 5-21

Usage

You must be the owner of the table or have the DBA privilege to use the DROP
TABLE statement.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no table of the
specified name is registered in the current database.

You cannot drop a system catalog table.

If you issue a DROP TABLE statement, DB-Access does not prompt you to verify
that you want to delete an entire table.

Effects of the DROP TABLE Statement
Use the DROP TABLE statement with caution. When you remove a table, you also
delete the data stored in it, the indexes or constraints on the columns (including all
the referential constraints placed on its columns), any local synonyms assigned to
it, any triggers created on it, and any access privileges granted on the table. You
also drop all views based on the table and any violations and diagnostics tables
associated with the table.

DROP TABLE does not remove any synonyms for the table that were created in an
external database. To remove external synonyms for the dropped table, you must
do so explicitly with the DROP SYNONYM statement.

You can prevent users from specifying a synonym in DROP TABLE statements by
setting the USETABLENAME environment variable. If USETABLENAME is set, an
error results if any user attempts to specify DROP TABLE synonym.

Specifying CASCADE Mode
The CASCADE keyword in DROP TABLE removes related database objects,
including referential constraints built on the table, views defined on the table, and
any violations and diagnostics tables associated with the table.

Chapter 2. SQL statements 2-347

If the table is the supertable in an inheritance hierarchy, CASCADE drops all of the
subtables as well as the supertable.

The CASCADE mode is the default mode of the DROP TABLE statement. You can
also specify this mode explicitly with the CASCADE keyword.

Specifying RESTRICT Mode
The RESTRICT keyword can control the drop operation for supertables, for tables
that have referential constraints and views defined on them, or for tables that have
violations and diagnostics tables associated them. Using the RESTRICT option
causes the drop operation to fail and an error message to be returned if any of the
following conditions are true:
v Existing referential constraints reference table.

v Existing views are defined on table.

v Any violations tables or diagnostics tables are associated with table.
v The table is the supertable in an inheritance hierarchy.

Dropping a Table That Contains Opaque Data Types
Some opaque data types require special processing when they are deleted. For
example, if an opaque type contains spatial or multi-representational data, it might
provide a choice of how to store the data: inside the internal structure or, for large
objects, in a smart large object.

The database server removes opaque types by calling a user-defined support
function called destroy(). When you execute the DROP TABLE statement on a
table whose rows contain an opaque type, the database server automatically
invokes the destroy() function for the type. The destroy() function can perform
certain operations on columns of the opaque data type before the table is dropped.
For more information about the destroy() support function, see IBM Informix
User-Defined Routines and Data Types Developer's Guide.

Tables That Cannot Be Dropped
Restrictions exist on the types of tables that you can drop:
v You cannot drop any system catalog table.
v You cannot drop a table that is not in the current database.
v You cannot drop a violations table or a diagnostics table.

Before you can drop such a table, you must first issue a STOP VIOLATIONS
TABLE statement on the base table with which the violations and diagnostics
tables are associated.

The following example removes two tables in the current database. Both are owned
by joed, the current user. Neither table has an associated violations or diagnostics
table, nor a referential constraint or view defined on it.
DROP TABLE customer;
DROP TABLE stores_demo@accntg:joed.state;

Related Information

Related statements: “CREATE TABLE statement” on page 2-198, “DROP
DATABASE statement” on page 2-328, and “TRUNCATE statement” on page 2-690.

2-348 IBM Informix Guide to SQL: Syntax

For a discussion of the data integrity of tables, see the IBM Informix Guide to SQL:
Tutorial. For a discussion of how to create a table, see the IBM Informix Database
Design and Implementation Guide.

DROP TRIGGER statement
Use the DROP TRIGGER statement to remove a trigger definition from the
database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP TRIGGER
owner .

trigger ��

Element Description Restrictions Syntax

owner Name of the owner of the trigger Must own the trigger “Owner Name” on page 5-45

trigger Name of the trigger to drop The trigger must exist in
the local database

“Identifier” on page 5-21

Usage

You must be the owner of the trigger or have the DBA privilege to drop the
trigger. Dropping a trigger removes the text of the trigger definition and the
executable trigger from the database. The row describing the specified trigger is
deleted from the systriggers system catalog table.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no trigger of the
specified name is registered in the current database.

Dropping an INSTEAD OF trigger on a complex view (a view with columns from
more than one table) revokes any privileges on the view that the owner of the
trigger received automatically when creating the trigger, and also revokes any
privileges that the owner of the trigger granted to other users. (Dropping a trigger
on a simple view does not revoke any privileges.)

The following statement drops the items_pct trigger:
DROP TRIGGER items_pct;

If a DROP TRIGGER statement appears inside an SPL routine that is called by a
data manipulation (DML) statement, the database server returns an error.

When multiple triggers are defined on the same table or view for the same
triggering event, the order in which the triggers execute is not guaranteed. If you
have a preferred sequence of execution, but the triggers are executing in some
other sequence, you might wish to drop all of the triggers except the one that you
want to run first, and then re-create the other triggers in the relative order in
which you want them to execute, so that they are listed in the system catalog in
the intended order of execution.

Chapter 2. SQL statements 2-349

Related Information

Related statements: “CREATE TRIGGER statement” on page 2-241, “DROP TABLE
statement” on page 2-347

DROP TYPE statement
Use the DROP TYPE statement to remove a user-defined distinct or opaque data
type from the database. (You cannot use this statement to remove a built-in data
type.)

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP TYPE
owner .

data_type RESTRICT ��

Element Description Restrictions Syntax

data_type Name of distinct or opaque
data type to be removed

Must be an existing user-defined distinct or
opaque type in the local database; cannot
be a built-in data type

“Identifier” on page 5-21

owner Name of data type owner Must own the data type “Owner Name” on page
5-45

Usage

To drop a distinct or opaque data type with the DROP TYPE statement, you must
be the owner of the data type or have the DBA privilege. When you use this
statement, you remove the data type definition from the database (in the
sysxtdtypes system catalog table). In general, this statement does not remove any
definitions of casts or of support functions associated with that data type.

Important: When you drop a distinct type, the database server automatically
drops the two explicit casts between the distinct type and the type on which it is
based.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no user-defined
distinct or opaque data type of the specified name is registered in the current
database.

The DROP TYPE statement fails with an error if you attempt to drop a built-in
data type, such as the built-in opaque BOOLEAN or LVARCHAR type, or the
built-in distinct IDSSECURITYLABEL type.

You cannot drop a distinct or opaque type if the database contains any casts,
columns, or user-defined functions whose definitions reference the data type.

The following statement drops the new_type data type:
DROP TYPE new_type RESTRICT;

2-350 IBM Informix Guide to SQL: Syntax

Related Information

Related statements: “CREATE DISTINCT TYPE statement” on page 2-100,
“CREATE OPAQUE TYPE statement” on page 2-154, “CREATE ROW TYPE
statement” on page 2-176, “DROP ROW TYPE statement” on page 2-341, and
“CREATE TABLE statement” on page 2-198

DROP VIEW statement
Use the DROP VIEW statement to remove a view from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP VIEW
owner .

view
synonym

CASCADE
RESTRICT ��

Element Description Restrictions Syntax

owner Name of view owner Must own the view “Owner Name” on page 5-45

synonym Synonym for a view that this
statement drops

The synonym and the view to
which it points must exist in the
local database

“Identifier” on page 5-21

view Name of a view to drop Must exist in systables “Identifier” on page 5-21

Usage

To drop a view, you must be the owner or have the DBA privilege.

When you drop a view, you also drop any other views and INSTEAD OF triggers
whose definitions depend on that view. (You can also specify this default behavior
explicitly with the CASCADE keyword.)

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no view of the
specified name is registered in the current database.

When you include the RESTRICT keyword in the DROP VIEW statement, the drop
operation fails if any other existing views are defined on view; otherwise, these
dependent views would be unregistered by the DROP VIEW operation.

You can query the sysdepend system catalog table to determine which views, if
any, depend on another view.

The following statement drops the view that is named cust1:
DROP VIEW cust1

Related Information

Related statements: “CREATE VIEW statement” on page 2-277 and “DROP TABLE
statement” on page 2-347

Chapter 2. SQL statements 2-351

For a discussion of views, see the IBM Informix Guide to SQL: Tutorial.

DROP XADATASOURCE statement
Use the DROP XADATASOURCE statement to drop a previously defined
XA-compliant data source from the system catalog of the database.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� DROP XADATASOURCE xa_source RESTRICT ��

Element Description Restrictions Syntax

xa_source The XA-compliant data
source to drop

Must be present in the sysxadatasources system catalog
table

“Identifier” on
page 5-21

Usage

The RESTRICT keyword is required. You must be the owner of the XA data source
or hold DBA privileges to drop an access method.

If you include the optional IF EXISTS keywords, the database server takes no
action (rather than sending an exception to the application) if no XA data source of
the specified name is registered in the current database.

The following statement drops the XA data source instance called NewYork that is
owned by user informix.
DROP XADATASOURCE informix.NewYork RESTRICT;

You cannot drop an access method if it is being used in a transaction that is
currently open. If an XA data source has been registered with a transaction that is
not complete, you can drop the data source only after the database is closed or the
session ends.

Related Information

Related statements: “CREATE XADATASOURCE statement” on page 2-282,
“CREATE XADATASOURCE TYPE statement” on page 2-284, “DROP
XADATASOURCE TYPE statement”

For a description of the RESTRICT keyword, see “Specifying RESTRICT Mode” on
page 2-348. For information on how to use XA data sources, see the IBM Informix
DataBlade API Programmer's Guide.

DROP XADATASOURCE TYPE statement
Use the DROP XADATASOURCE TYPE statement to drop a previously defined
XA-compliant data source type from the database.

This statement is an extension to the ANSI/ISO standard for SQL.

2-352 IBM Informix Guide to SQL: Syntax

Syntax

�� DROP XADATASOURCE TYPE xa_type RESTRICT ��

Element Description Restrictions Syntax

xa_type Name of the XA data source
type to be dropped

Must be present in the sysxasourcetypes system
catalog table

“Identifier” on
page 5-21

Usage

The RESTRICT keyword is required. You cannot unregister an XA data source type
if virtual tables or indexes exist that use the data source. You must be user
informix or have DBA privileges to drop an XA data source type.

The following statement drops an XA data source type called MQSeries owned by
user informix:

DROP XADATASOURCE TYPE informix.MQSeries RESTRICT;

You cannot drop an XA data source type until after all the XA data source
instances that use that data source type have been dropped.

Related Information

Related statements: “CREATE XADATASOURCE statement” on page 2-282,
“CREATE XADATASOURCE TYPE statement” on page 2-284, “DROP
XADATASOURCE statement” on page 2-352

For a description of the RESTRICT keyword, see “Specifying RESTRICT Mode” on
page 2-348. For information on how to use XA data sources, see the IBM Informix
DataBlade API Programmer's Guide.

EXECUTE statement
Use the EXECUTE statement to run a previously prepared statement or a
multiple-statement prepared object.

Use this statement with Informix ESQL/C.

Syntax

�� EXECUTE stmt_id
stmt_id_var (1)

INTO Clause

�

�
(2)

USING Clause

��

Notes:

1 See “INTO Clause” on page 2-355

2 See “USING Clause” on page 2-358

Chapter 2. SQL statements 2-353

Element Description Restrictions Syntax

stmt_id Identifier of a prepared
SQL statement

Must have been declared in a previous PREPARE
statement

“Identifier” on
page 5-21

stmt_id_var Host variable containing
the identifier of a prepared
statement

Must exist and must contain a statement identifier
that a previous PREPARE statement declared, and
must be of a character data type

“PREPARE
statement” on
page 2-477

Usage

The EXECUTE statement passes a prepared SQL statement to the database server
for execution. The following example shows an EXECUTE statement within an
Informix ESQL/C program:
EXEC SQL PREPARE del_1 FROM

’DELETE FROM customer WHERE customer_num = 119’;
EXEC SQL EXECUTE del_1;

Once prepared, an SQL statement can be executed as often as needed.

After you release the database server resources (using a FREE statement), you
cannot use the statement identifier with a DECLARE cursor or with the EXECUTE
statement until you prepare the statement again.

If the statement contained question mark (?) placeholders, use the USING clause
to provide specific values for them before execution. For more information, see the
“USING Clause” on page 2-358.

You can execute any prepared statement except those in the following list:
v A prepared SELECT statement that returns more than one row

When you use a prepared SELECT statement to return multiple rows of data,
you must use a cursor to retrieve the data rows. As an alternative, you can
EXECUTE a prepared SELECT INTO TEMP statement to achieve the same
result.
For more information on cursors, see “DECLARE statement” on page 2-290.

v A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement for
an SPL function that returns more than one row
When you prepare an EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement to invoke an SPL function that returns multiple rows, you must use a
cursor to retrieve the data rows.
For more information on how to execute a SELECT or an EXECUTE FUNCTION
(or EXECUTE PROCEDURE) statement, see “PREPARE statement” on page
2-477.

If you create or drop a trigger after you prepare a triggering INSERT, DELETE, or
UPDATE statement, the prepared statement returns an error when you execute it.

Scope of Statement Identifiers
A program can consist of one or more source-code files. By default, the scope of
reference of a statement identifier is global to the program. A statement identifier
created in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of reference of a
statement identifier to the file in which it is executed, you can preprocess all the
files with the -local command-line option.

2-354 IBM Informix Guide to SQL: Syntax

INTO Clause

Use the INTO clause to save the returned values of these SQL statements:
v A prepared singleton SELECT statement that returns only one row of column

values for the columns in the select list
v A prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement for

an SPL function that returns only one set of values

The INTO clause of the EXECUTE statement has the following syntax:

INTO Clause:

�

,

INTO output_var
(1)

: indicator_var
INDICATOR

SQL DESCRIPTOR descriptor_var
'descriptor'

DESCRIPTOR sqlda_pointer

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Quoted string that identifies a
system-descriptor area

Must already be allocated. Use
single (') quotation marks

“Quoted String”
on page 4-188

descriptor_var Host variable that identifies a
system-descriptor area

System-descriptor area must
already be allocated

Language specific

indicator_var Host variable that receives a return code
if corresponding parameter_var is NULL
value, or if truncation occurs

Cannot be DATETIME or
INTERVAL data type

Language specific

output_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared statement

Must be a character data type Language specific

sqlda_pointer Pointer to an sqlda structure that defines
data type and memory location of values
to replace a question-mark (?)
placeholder in a prepared object

Cannot begin with a dollar sign ($
) or a colon (:) symbol. An sqlda
structure is required with dynamic
SQL

“DESCRIBE
INPUT
statement” on
page 2-318

This closely resembles the syntax of the “USING Clause” on page 2-358.

The INTO clause provides a concise and efficient alternative to more complicated
and lengthy syntax. In addition, by placing values into variables that can be
displayed, the INTO clause simplifies and enhances your ability to retrieve and
display data values. For example, if you use the INTO clause, you do not need to
use a cursor to retrieve values from a table.

You can store the returned values in output variables, in output SQL descriptors,
or in output sqlda pointers.

Chapter 2. SQL statements 2-355

Restrictions with the INTO Clause
If you execute a prepared SELECT statement that returns more than one row, or
execute a prepared EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
for an SPL function that returns more than one group of return values, you receive
an error message. In addition, if you prepare and declare a statement and then
attempt to execute that statement, you receive an error message.

You cannot select a NULL value from a table column and place that value into an
output variable. If you know in advance that a table column contains a NULL
value, after you select the data, check the indicator variable that is associated with
the column to determine if the value is NULL.

To use the INTO clause with the EXECUTE statement

1. Declare the output variables that the EXECUTE statement uses.
2. Use PREPARE to prepare your SELECT statement or to prepare your EXECUTE

FUNCTION (or EXECUTE PROCEDURE) statement.
3. Use the EXECUTE statement, with the INTO clause, to execute your SELECT

statement or to execute your EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement.

Replacing Placeholders with Parameters
You can specify any of the following items to replace the question-mark
placeholders in a prepared statement before you execute it:
v A host variable name (if the number and data type of the parameters are known

at compile time)
v A system descriptor that identifies a system descriptor area
v A descriptor that is a pointer to an sqlda structure

Sections that follow describe each of these options for specifying parameters.

Saving Values In Host or Program Variables
If you know the number of return values to be supplied at runtime and their data
types, you can define the values that the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement returns as host variables in your program. Use
these host variables with the INTO keyword, followed by the names of the
variables. These variables are matched with the return values in a one-to-one
correspondence, from left to right.

You must supply one variable name for each value that the SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) returns. The data type of each variable
must be compatible with the corresponding returned value from the prepared
statement.

Saving Values in a System-Descriptor Area
If you do not know the number of return values to be supplied at runtime or their
data types, you can associate output values with a system-descriptor area. A
system-descriptor area describes the data type and memory location of one or
more values.

A system-descriptor area conforms to the X/Open standards.

2-356 IBM Informix Guide to SQL: Syntax

To specify a system-descriptor area as the location of output values, use the INTO
SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area describes are
stored in the system-descriptor area.

The following example shows how to use the system-descriptor area to execute
prepared statements in IBM Informix ESQL/C:
EXEC SQL allocate descriptor ’desc1’;
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL execute sel1 into sql descriptor ’desc1’;

The COUNT field corresponds to the number of values that the prepared statement
returns. The value of COUNT must be less than or equal to the value of the
occurrences that were specified when the system-descriptor area was allocated
with the ALLOCATE DESCRIPTOR statement.

You can obtain the value of a field with the GET DESCRIPTOR statement and set
the value with the SET DESCRIPTOR statement.

For more information, refer to the discussion of the system-descriptor area in the
IBM Informix ESQL/C Programmer's Manual.

Saving Values in an sqlda Structure (ESQL/C)
If you do not know the number of output values to be returned at runtime or their
data types, you can associate output values from an sqlda structure. An sqlda
structure lists the data type and memory location of one or more return values. To
specify an sqlda structure as the location of return values, use the INTO
DESCRIPTOR clause of the EXECUTE statement. Each time the EXECUTE
statement is run, the database server places the returns values that the sqlda
structure describes into the sqlda structure.

The next example uses an sqlda structure to execute a prepared statement:
struct sqlda *pointer2;
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL describe sel1 into pointer2;
EXEC SQL execute sel1 into descriptor pointer2;

The sqlda.sqld value specifies the number of output values that are described in
occurrences of sqlvar. This number must correspond to the number of values that
the SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
returns.

For more information, refer to the sqlda discussion in the IBM Informix ESQL/C
Programmer's Manual.

This example uses the INTO clause with an EXECUTE statement in Informix
ESQL/C:

Chapter 2. SQL statements 2-357

EXEC SQL prepare sel1 from ’select fname, lname from customer
where customer_num =123’;

EXEC SQL execute sel1 into :fname, :lname using :cust_num;

The next example uses the INTO clause to return multiple rows of data:
EXEC SQL BEGIN DECLARE SECTION;
int customer_num =100;
char fname[25];
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare sel1 from ’select fname from customer
where customer_num=?’;

for (;customer_num < 200; customer_num++)
{
EXEC SQL execute sel1 into :fname using customer_num;
printf("Customer number is %d\n", customer_num);
printf("Customer first name is %s\n\n", fname);
}

The sqlca Record and EXECUTE
After an EXECUTE statement, the sqlca can reflect two results:
v The sqlca can reflect an error within the EXECUTE statement.

For example, when an UPDATE ...WHERE statement in a prepared statement
processes zero rows, the database server sets sqlca to 100.

v The sqlca can reflect the success or failure of the executed statement.

Returned SQLCODE Values with EXECUTE
If a prepared statement fails to access any rows when it executes, the database
server returns the SQLCODE value of zero (0).

For a multistatement prepared object, however, if any statement in the following
list fails to access rows, the returned SQLCODE value is SQLNOTFOUND (= 100):
v INSERT INTO table SELECT ... WHERE
v SELECT...WHERE ... INTO TEMP
v DELETE ... WHERE
v UPDATE ... WHERE

In an ANSI-compliant database, if you prepare and execute any of the statements
in the preceding list, and no rows are returned, the returned SQLCODE value is
SQLNOTFOUND (= 100).

USING Clause

Use the USING clause to specify the values that are to replace question-mark (?)
placeholders in the prepared statement. Providing values in the EXECUTE
statement that replace the question-mark (?) placeholders in the prepared
statement is sometimes called parameterizing the prepared statement.

USING Clause:

2-358 IBM Informix Guide to SQL: Syntax

�

,

USING parameter_var
(1)

: indicator_var
INDICATOR

SQL DESCRIPTOR descriptor_var
'descriptor'

DESCRIPTOR sqlda_pointer

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Quoted string that identifies a
system-descriptor area

System-descriptor area must
already be allocated. Use single
(') quotation marks.

“Quoted String”
on page 4-188

descriptor_var Host variable that identifies a
system-descriptor area

System-descriptor area must
already be allocated

Language specific

indicator_var Host variable that receives a return code if
corresponding parameter_var is NULL
value, or if truncation occurs

Cannot be DATETIME or
INTERVAL data type

Language specific

parameter_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared statement

Must be a character data type Language specific

sqlda_pointer Pointer to an sqlda structure that defines
data type and memory location of values to
replace question-mark (?) placeholder in a
prepared object

Cannot begin with a dollar sign
($) or a colon (:). An sqlda
structure is required with
dynamic SQL

“DESCRIBE
INPUT statement”
on page 2-318

This closely resembles the syntax of the “INTO Clause” on page 2-355.

If you know the number of parameters to be supplied at runtime and their data
types, you can define the parameters that are needed by the EXECUTE statement
as host variables in your program.

If you do not know the number of parameters to be supplied at runtime or their
data types, you can associate input values from a system-descriptor area or an
sqlda structure. Both of these descriptor structures describe the data type and
memory location of one or more values to replace question-mark (?) placeholders.

Supplying Parameters Through Host or Program Variables
You pass parameters to the database server by opening the cursor with the USING
keyword, followed by the names of the variables. These variables are matched with
prepared statement question-mark (?) placeholders in a one-to-one
correspondence, from left to right. You must supply one storage- parameter
variable for each placeholder. The data type of each variable must be compatible
with the corresponding value that the prepared statement requires.

The following example executes the prepared UPDATE statement in Informix
ESQL/C:

Chapter 2. SQL statements 2-359

stcopy ("update orders set order_date = ?
where po_num = ?", stm1);

EXEC SQL prepare statement_1 from :stm1;
EXEC SQL execute statement_1 using :order_date, :po_num;

Supplying Parameters Through a System Descriptor
You can create a system-descriptor area that describes the data type and memory
location of one or more values and then specify the descriptor in the USING SQL
DESCRIPTOR clause of the EXECUTE statement.

Each time that the EXECUTE statement is run, the values that the
system-descriptor area describes are used to replace question-mark (?)
placeholders in the PREPARE statement.

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
number of item descriptors that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement.

The following example shows how to use system descriptors to execute a prepared
statement in Informix ESQL/C:
EXEC SQL execute prep_stmt using sql descriptor ’desc1’;

Supplying Parameters Through an sqlda Structure (ESQL/C)
You can specify the sqlda pointer in the USING DESCRIPTOR clause of the
EXECUTE statement.

Each time the EXECUTE statement is run, the values that the descriptor structure
describes are used to replace question-mark (?) placeholders in the PREPARE
statement.

The sqlda.sqld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of dynamic
parameters in the prepared statement.

The following example shows how to use an sqlda structure to execute a prepared
statement in Informix ESQL/C:
EXEC SQL execute prep_stmt using descriptor pointer2;

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DEALLOCATE DESCRIPTOR statement” on page 2-288, “DECLARE statement”
on page 2-290, “EXECUTE IMMEDIATE statement” on page 2-365, “FETCH
statement” on page 2-372, “GET DESCRIPTOR statement” on page 2-385,
“PREPARE statement” on page 2-477, “PUT statement” on page 2-487, and “SET
DESCRIPTOR statement” on page 2-620

For a task-oriented discussion of the EXECUTE statement, see the IBM Informix
Guide to SQL: Tutorial.

For more information about concepts that relate to the EXECUTE statement, see
the IBM Informix ESQL/C Programmer's Manual.

2-360 IBM Informix Guide to SQL: Syntax

EXECUTE FUNCTION statement
Use the EXECUTE FUNCTION statement to invoke a user-defined function or a
built-in routine that returns a value.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� EXECUTE FUNCTION �

�

�

(1) (3) (4)
function () INTO Clause
(1) ,

SPL_var (2)
Argument

�

�
(5) (6)

WITH TRIGGER REFERENCES

��

Notes:

1 Stored Procedure Language only

2 See “Arguments” on page 5-1

3 ESQL/C only

4 See “INTO Clause” on page 2-363

5 Trigger functions only

6 See “The WITH TRIGGER REFERENCES Keywords” on page 2-370

Element Description Restrictions Syntax

function Name of a user-defined
function to execute

Must be registered in the database “Database Object
Name” on page 5-16

SPL_var Variable that contains the
name of an SPL routine to
be executed

Must be a CHAR, VARCHAR, NCHAR, or
NVARCHAR data type that contains the
non-NULL name of an existing SPL function

“Identifier” on page
5-21

Usage

The EXECUTE FUNCTION statement invokes a user-defined function (UDF), with
arguments, and specifies where the results are to be returned.

An external C or Java language function returns exactly one value.

An SPL function can return one or more values.

You cannot use the EXECUTE FUNCTION statement to invoke any type of
user-defined procedure that returns no value. Instead, use the EXECUTE
PROCEDURE or EXECUTE ROUTINE statement to execute procedures.

You must have the Execute privilege on the user-defined function.

Chapter 2. SQL statements 2-361

For more information, see “GRANT statement” on page 2-401.

In ANSI/ISO-compliant databases that support implicit transactions, the EXECUTE
FUNCTION statement does not, by default, begin a new transaction. SQL
statements within the invoked function, however, can begin a new transaction.

Negator Functions and Their Companions
If a UDF that returns a BOOLEAN value has a companion function, any user who
executes the function must have the Execute privilege on both the function and on
its companion. For example, if a function has a negator function, any user who
executes the function must have the Execute privilege on both the function and its
negator. In addition, the companion function must have the same owner as its
negator function.

For information on how to designate a UDF as the companion to its negator
function, see “NEGATOR” on page 5-63.

How the EXECUTE FUNCTION Statement Works
For a user-defined function to be executed with the EXECUTE FUNCTION
statement, the following conditions must exist:
v The qualified function name or the function signature (the function name with

its parameter list) must be unique within the name space or database.
v The function must exist.
v The function must not have any OUT nor INOUT parameters.

If EXECUTE FUNCTION specifies fewer arguments than the user-defined function
expects, the unspecified arguments are said to be missing. Missing arguments are
initialized to their corresponding parameter default values, if these were defined.
The syntax of specifying default values for parameters is described in “Routine
Parameter List” on page 5-67.

EXECUTE FUNCTION returns an error under the following conditions:
v It specifies more arguments than the user-defined function expects.
v One or more arguments are missing and do not have default values.
v The fully qualified function name or the function signature is not unique.
v No function with the specified name or signature that you specify is found.
v You use it to attempt to execute a user-defined procedure.

If the function name is not unique within the database, you must specify enough
parameter_type information to disambiguate the name. See the section “Arguments”
on page 5-1 for additional information about how to specify parameters when
invoking a function.

The specific name of an external UDR is valid in some DDL statements, but is not
valid in contexts where you invoke the function.

If Informix cannot resolve an ambiguous function name whose signature differs
from that of another routine only in an unnamed-ROW type parameter, an error is
returned. (This error cannot be anticipated by the database server when the
ambiguous function is defined.)

2-362 IBM Informix Guide to SQL: Syntax

INTO Clause

INTO Clause:

�

,

INTO data_var
(1)

: indicator_var
(2)

$
INDICATOR

data_structure

Notes:

1 ESQL/C only

2 Informix extension

Element Description Restrictions Syntax

data_structure Structure that was declared as a
host variable

Individual elements of structure must
be compatible with the data types of
the returned values

Language specific

data_var Variable to receive the value that a
user-defined function returns

See “Data Variables.” Language specific

indicator_var Program variable to store a return
code if the corresponding data_var
receives a NULL value

Use an indicator variable if the value
of the corresponding data_var might
be NULL

Language specific

You must include an INTO clause with EXECUTE FUNCTION to specify the
variables that receive the values that a user-defined function returns. If the
function returns more than one value, the values are returned into the list of
variables in the order in which you specify them.

If the EXECUTE FUNCTION statement stands alone (that is, it is not part of a
DECLARE statement and does not use the INTO clause), it must execute a
noncursor function. A noncursor function returns only one row of values. The
following example shows a SELECT statement in IBM Informix ESQL/C:
EXEC SQL execute function

cust_num(fname, lname, company_name) into :c_num;

Data Variables
If you issue EXECUTE FUNCTION within an Informix ESQL/C program, data_var
must be a host variable. Within an SPL routine, data_var must be an SPL variable.

If you issue EXECUTE FUNCTION within a CREATE TRIGGER statement,
data_var must be a column name in the triggering table or in another table.

INTO Clause with Indicator Variables (ESQL/C)
You should use an indicator variable if the possibility exists that data returned
from the user-defined function is NULL. For more information about indicator
variables, see the IBM Informix ESQL/C Programmer's Manual.

Chapter 2. SQL statements 2-363

INTO Clause with Cursors
If EXECUTE FUNCTION calls a UDF that returns more than one row of values, it
must execute a cursor function. A cursor function can return one or more rows of
values and must be associated with a Function cursor to execute.

If the SPL function returns more than one row or a collection data type, you must
access the rows or collection elements with a cursor.

To return more than one row of values, an external function (one written in the C
or Java language) must be defined as an iterator function. For more information on
iterator functions, see the IBM Informix DataBlade API Programmer's Guide.

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement can store the fetched values. For more information, see
“FOREACH” on page 3-22.

To return more than one row of values, an SPL function must include the WITH
RESUME keywords in its RETURN statement. For more information on how to
write SPL functions, see the IBM Informix Guide to SQL: Tutorial.

In an IBM Informix ESQL/C program, the DECLARE statement can declare a
Function cursor and the FETCH statement can return rows individually from the
cursor. You can put the INTO clause in the EXECUTE FUNCTION or in the
FETCH statement, but you cannot put it in both. The following IBM Informix
ESQL/C code examples show different ways you can use the INTO clause:
v Using the INTO clause in the EXECUTE FUNCTION statement:

EXEC SQL declare f_curs cursor for
execute function get_orders(customer_num)
into :ord_num, :ord_date;

EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs;
EXEC SQL close f_curs;

v Using the INTO clause in the FETCH statement:
EXEC SQL declare f_curs cursor for

execute function get_orders(customer_num);
EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs into :ord_num, :ord_date;
EXEC SQL close f_curs;

Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO

In ESQL/C, you cannot prepare an EXECUTE FUNCTION statement that includes
the INTO clause. For similar functionality, however, follow these steps:
1. Prepare the EXECUTE FUNCTION statement with no INTO clause.
2. Declare a Function cursor for the prepared statement.
3. Open the cursor.
4. Execute the FETCH statement with an INTO clause to fetch the returned values

into program variables.

Alternatively, you can do the following:

2-364 IBM Informix Guide to SQL: Syntax

1. Declare a cursor for the EXECUTE FUNCTION statement without first
preparing the statement, and include the INTO clause in the EXECUTE
FUNCTION when you declare the cursor.

2. Open the cursor.
3. Fetch the returned values from the cursor without using the INTO clause of the

FETCH statement.

Dynamic Routine-Name Specification of SPL Functions
Dynamic routine-name specification simplifies the writing of an SPL function that
calls another SPL routine whose name is not known until runtime. To specify the
name of an SPL routine in the EXECUTE FUNCTION statement, instead of listing
the explicit name of an SPL routine, you can use an SPL variable to hold the
routine name. For more information about how to execute SPL functions
dynamically, see the IBM Informix Guide to SQL: Tutorial.

Related Information

“Receiving Input from the Called UDR” on page 3-4, “CREATE FUNCTION
statement” on page 2-125, “CREATE FUNCTION FROM statement” on page 2-134,
“DROP FUNCTION statement” on page 2-329, “DROP ROUTINE statement” on
page 2-339, “EXECUTE PROCEDURE statement” on page 2-369, “FOREACH” on
page 3-22

EXECUTE IMMEDIATE statement
Use the EXECUTE IMMEDIATE statement to perform tasks equivalent to what the
PREPARE, EXECUTE, and FREE statements accomplish, but as a single operation.

Use this Dynamic SQL statement with Informix ESQL/C and SPL.

Syntax

�� EXECUTE IMMEDIATE

�

' statement '
; ;

(1)
; statement

statement_var
(2)

char_expr

��

Notes:

1 ESQL/C only

2 SPL only

Element Description Restrictions Syntax

char_expr Expression that
evaluates to a character
data type

Must evaluate to a CHAR, LVARCHAR, NCHAR,
NVARCHAR, or VARCHAR data type

“Expression”
on page 4-40

statement Text of a valid SQL
statement

See the same sections that are listed below for
statement_var

See this
chapter.

Chapter 2. SQL statements 2-365

Element Description Restrictions Syntax

statement _var Variable containing
statement or (in
ESQL/C) a
semicolon-separated
list of statements

Must be a previously declared variable of type CHAR,
NCHAR, NVARCHAR, or VARCHAR (or in SPL,
LVARCHAR). See “EXECUTE IMMEDIATE and
Restricted Statements” and “Restrictions on Valid
Statements” on page 2-367.

Language
specific

Usage

The EXECUTE IMMEDIATE statement dynamically executes a single SQL
statement (or in ESQL/C routines, a semicolon-separated list of SQL statements)
that is constructed during program execution. For example, you can obtain the
name of a database from program input, construct the DATABASE statement as a
program variable, and then use EXECUTE IMMEDIATE to execute the statement,
which opens the specified database.

Within ESQL/C routines, the statement text specified by the variable or quoted
string can include more than one SQL statement, if consecutive statements are
separated by a semicolon (;) delimiter. In SPL routines, however, only one
statement can be included. The statement cannot be an SPL statement, but can be
any SQL statement that is not listed in the sections “EXECUTE IMMEDIATE and
Restricted Statements” or “Restrictions on Valid Statements” on page 2-367.

The specification that follows the IMMEDIATE keyword, if valid, is parsed and
executed; then all data structures and memory resources are released immediately.
Unless you use EXECUTE IMMEDIATE, these operations would otherwise require
separate PREPARE, EXECUTE, and FREE statements.

The session environment values (such as the EXTDIRECTIVES, OPTCOMPIND, or
USELASTCOMMITTED settings of the ESQL/C or SPL routine that issues the
EXECUTE IMMEDIATE statement) override the corresponding ONCONFIG
parameter values, if these are different.

The maximum length of an EXECUTE IMMEDIATE statement is 64 kilobytes in
ESQL/C routines, or 32 kilobytes in UDRs written in the SPL language.

In ANSI/ISO-compliant databases that support implicit transactions, the EXECUTE
IMMEDIATE statement does not, by default, begin a new transaction. Execution of
the specified SQL statement text, however, can begin a new transaction.

EXECUTE IMMEDIATE and Restricted Statements
The EXECUTE IMMEDIATE statement cannot execute the following SQL
statements.
v CLOSE
v CONNECT
v DECLARE
v DISCONNECT
v EXECUTE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v FETCH

2-366 IBM Informix Guide to SQL: Syntax

v FLUSH
v FREE
v GET DESCRIPTOR
v GET DIAGNOSTICS
v OPEN
v OUTPUT
v PREPARE
v PUT
v SELECT
v SET AUTOFREE
v SET CONNECTION
v SET DEFERRED_PREPARE
v SET DESCRIPTOR
v WHENEVER

For EXECUTE PROCEDURE, this restriction applies only to calls that return one or
more values.

The only form of the SELECT statement that EXECUTE IMMEDIATE supports as
statement text is SELECT ... INTO TEMP table. For the syntax of the INTO TEMP
table clause in SELECT statements, see “INTO Table Clauses” on page 2-593.

In addition, ESQL/C cannot use the EXECUTE IMMEDIATE statement to execute
the following statements in text that contains multiple SQL statements that are
separated by semicolons:
v CLOSE DATABASE
v CREATE DATABASE
v DATABASE
v DROP DATABASE
v SELECT (except SELECT INTO TEMP)

The EXECUTE IMMEDIATE statement cannot process SQL statement text that
includes question mark (?) symbols as placeholders. Use the PREPARE statement
and either a cursor or the EXECUTE statement to execute a dynamically
constructed SELECT statement.

(In SPL routines, the EXECUTE IMMEDIATE statement can execute only a single
SQL statement. If the specification that immediately follows the IMMEDIATE
keyword evaluates to a list of multiple SQL statements, or by a NULL value, or
text that is not a valid SQL statement, the database server issues a runtime error.)

Restrictions on Valid Statements
The following restrictions apply to the statements contained in the character
expression, quoted string, or statement variable that immediately follows the
EXECUTE IMMEDIATE keywords:
v The SQL statement cannot contain a host-language comment.
v Names of host-language variables are not recognized as such in prepared text.

The only identifiers that you can use are names registered in the system catalog
of the current database, such as table names and column names.

Chapter 2. SQL statements 2-367

v The statement cannot reference a host-variable list or a descriptor; it must not
contain any question-mark (?) placeholders, which are allowed with a
PREPARE statement.

v The text must not include any embedded SQL statement prefix, such as the
dollar sign ($) or the keywords EXEC SQL.
Although it is not required, the SQL statement terminator (;) can be included in
the statement text.

v A SELECT or INSERT statement specified within the EXECUTE IMMEDIATE
statement cannot contain a Collection-Derived Table clause.
EXECUTE IMMEDIATE cannot process input host variables, which are required
for a collection variable. Use the EXECUTE statement or a cursor to process
prepared accesses to collection variables.

Handling Exceptions from EXECUTE IMMEDIATE Statements
If the Informix ESQL/C parser detects a syntax error when the EXECUTE
IMMEDIATE statement is compiled, it issues a compilation error, and no
executable UDR is produced until the syntax is corrected and recompiled. If the
parser accepts the EXECUTE IMMEDIATE syntax and the UDR compiles
successfully, but an exception occurs during a call to the UDR when the EXECUTE
IMMEDIATE statement is executing, the database server issues an error at runtime.
Runtime errors can be trapped by the WHENEVER statement, or by some other
exception-handling mechanism in the program logic of the UDR.

For routines written in the SPL language, SQL expressions are evaluated at
runtime, not when the routine is compiled or optimized. If an expression that
follows the IMMEDIATE keyword specifies invalid SQL statement text, Informix
issues a runtime exception, rather than a compilation error. After any runtime error
condition in an SPL routine, program control passes to the ON EXCEPTION
statement block (if this is defined); otherwise, execution of the UDR terminates
abnormally, and an error is returned to the calling context. For information on how
to handle runtime errors in SPL routines, see the descriptions of the SPL statement
“ON EXCEPTION” on page 3-37. (See also the built-in SQL function SQLCODE.)

Examples of the EXECUTE IMMEDIATE Statement
The following ESQL/C examples show EXECUTE IMMEDIATE statements in
Informix ESQL/C. Both examples use host variables that contain a CREATE
DATABASE statement.
sprintf(cdb_text1, "create database %s", usr_db_id);
EXEC SQL execute immediate :cdb_text1;

sprintf(cdb_text2, "create database %s", usr_db_id2);
EXEC SQL execute immediate :cdb_text2;

The next example shows an SPL program fragment that declares local SPL
variables and assigns to them portions of the text of two DDL statements. It then
issues an EXECUTE IMMEDIATE statement to drop a table called DYN_TAB,
specifying the DROP TABLE statement text in an SPL variable. The second
EXECUTE IMMEDIATE statement in this example creates a table of the same
name, in this case specifying the CREATE TABLE statement text in a character
expression that concatenates the contents of two SPL variables.

CREATE PROCEDURE myproc()
DEFINE COLS VARCHAR(22);
DEFINE CRTOPER VARCHAR(16);
DEFINE DRPOPER VARCHAR(16);
DEFINE TABNAME VARCHAR(16);

2-368 IBM Informix Guide to SQL: Syntax

DEFINE QRYSTR VARCHAR(100);
...
LET CRTOPER = "CREATE TABLE ";
LET DRPOPER = "DROP TABLE ";
LET TABNAME = "DYN_TAB";
LET COLS = "(ID INT, NAME CHAR(20))";
LET QRYSTR = DRPOPER || TABNAME;
EXECUTE IMMEDIATE QRYSTR;

EXECUTE IMMEDIATE CRTOPER || TABNAME || COLS;

END PROCEDURE;

Related Information

Related statements: “EXECUTE statement” on page 2-353, “FREE statement” on
page 2-384, and “PREPARE statement” on page 2-477

For a discussion of quick execution, see the IBM Informix Guide to SQL: Tutorial.

EXECUTE PROCEDURE statement
Use the EXECUTE PROCEDURE statement to invoke a user-defined procedure or
a built-in routine. This statement is an extension to the ANSI/ISO standard for
SQL.

Syntax

�� EXECUTE PROCEDURE

�

procedure ()
(1) ,

SPL_var (2)
function Argument

�

�

�

,
(1)

INTO output_var

(3)
WITH TRIGGER REFERENCES

��

Notes:

1 Stored Procedure Language only

2 See “Arguments” on page 5-1

3 Trigger routines only

Element Description Restrictions Syntax

function SPL routine to execute Must exist “Database Object
Name” on page 5-16

output_var Host variable or program
variable that receives the
returned value from UDR

In the context of a CREATE TRIGGER
statement, must contain column names in the
triggering table or in another table

Language specific

procedure User-defined procedure to
execute

Must exist “Database Object
Name” on page 5-16

SPL_var Variable that contains the
name of the SPL routine to
execute

Must be a character data type that contains
the non-NULL name of an SPL routine.

“Identifier” on page
5-21

Chapter 2. SQL statements 2-369

Usage

The EXECUTE PROCEDURE statement invokes a user-defined procedure and
specifies its arguments.

For compatibility with earlier Informix versions, you can use the EXECUTE
PROCEDURE statement to execute an SPL function that the CREATE PROCEDURE
statement defined.

If the EXECUTE PROCEDURE statement returns more than one row, the result set
must be processed within a FOREACH loop of an SPL routine, or else accessed
through a cursor of an ESQL/C routine.

In ANSI/ISO-compliant databases that support implicit transactions, the EXECUTE
PROCEDURE statement does not, by default, begin a new transaction. SQL
statements within the invoked procedure, however, can begin a new transaction.

Causes of Errors
EXECUTE PROCEDURE returns an error under the following conditions:
v It has more arguments than the called procedure expects.
v One or more arguments are missing and do not have default values.
v The fully qualified procedure name or the routine signature is not unique.
v No procedure with the specified name or signature is found.

If the procedure name is not unique within the database, you must specify enough
parameter_type information to disambiguate the name. See “Arguments” on page
5-1 for additional information about how to specify parameters when invoking a
procedure. (In Informix, the specific name of an external UDR is valid in DDL
statements, but is not valid in contexts where you invoke the procedure.)

Using the INTO Clause
Use the INTO clause to specify where to store the values that the SPL function
returns.

If an SPL function returns more than one value, the values are returned into the
list of variables in the order in which you specify them. If an SPL function returns
more than one row or a collection data type, you must access the rows or
collection elements with a cursor.

You cannot prepare an EXECUTE PROCEDURE statement that has an INTO
clause. For more information, see “Alternatives to PREPARE ... EXECUTE
FUNCTION ... INTO” on page 2-364.

The WITH TRIGGER REFERENCES Keywords
You must include the WITH TRIGGER REFERENCES keywords when you use the
EXECUTE PROCEDURE statement to invoke a trigger procedure.

A trigger procedure is an SPL routine that EXECUTE PROCEDURE can invoke
only from the FOR EACH ROW section of the Action clause of a trigger definition.
Such procedures must include the REFERENCING clause and the FOR clause in
the CREATE PROCEDURE statement that defined the procedure. This
REFERENCING clause declares names for correlated variables that the procedure
can use to reference the old column value in the row when the trigger event

2-370 IBM Informix Guide to SQL: Syntax

occurred, or the new value of the column after the row was modified by the
trigger. The FOR clause specifies the table or view on which the trigger is defined.

Example of Invoking a Trigger Procedure
The following example defines three tables and a trigger procedure that references
one of these tables in its FOR clause:
CREATE TABLE tab1 (col1 INT,col2 INT);
CREATE TABLE tab2 (col1 INT);
CREATE TABLE temptab1

(old_col1 INTt, new_col1 INT, old_col2 INT, new_col2 INT);

/* The following procedure is invoked from an INSERT trigger in this example.
*/
CREATE PROCEDURE proc1()
REFERENCING OLD AS o NEW AS n FOR tab1;

IF (INSERTING) THEN -- INSERTING Boolean operator
LET n.col1 = n.col1 + 1; -- You can modify new values.
INSERT INTO temptab1 VALUES(0,n.col1,1,n.col2);

END IF

IF (UPDATING) THEN -- UPDATING Boolean operator
-- you can access relevant old and new values.
INSERT INTO temptab1 values(o.col1,n.col1,o.col2,n.col2);

END IF

if (SELECTING) THEN -- SELECTING Boolean operator
-- you can access relevant old values.
INSERT INTO temptab1 VALUES(o.col1,0,o.col2,0);

END IF

if (DELETING) THEN -- DELETING Boolean operator
DELETE FROM temptab1 WHERE temptab1.col1 = o.col1;

END IF

END PROCEDURE;

This example illustrates that the triggered action can be a different DML operation
from the triggering event. Although this procedure inserts a row when an Insert
trigger calls it, and deletes a row when a Delete trigger calls it, it also performs
INSERT operations if it is called by a Select trigger or by an Update trigger.

The proc1() trigger procedure in this example uses Boolean conditional operators
that are valid only in trigger routines. The INSERTING operator returns true only
if the procedure is called from the FOR EACH ROW action of an INSERT trigger.
This procedure can also be called from other triggers whose trigger event is an
UPDATE, SELECT, or DELETE. statement, because the UPDATING, SELECTING
and DELETING operators return true (t) if the procedure is invoked in the
triggered action of the corresponding type of triggering event.

The following statement defines an Insert trigger on tab1 that calls proc1() from
the FOR EACH ROW section as its triggered action, and perform an INSERT
operation that activates this trigger:
CREATE TRIGGER ins_trig_tab1 INSERT ON tab1 REFERENCING NEW AS post

FOR EACH ROW(EXECUTE PROCEDURE proc1() WITH TRIGGER REFERENCES);

Note that the REFERENCING clause of the trigger declares a correlation name for
the NEW value that is different from the correlation name that the trigger
procedure declared. These names do not need to match, because the correlation

Chapter 2. SQL statements 2-371

name that was declared in the trigger procedure has that procedure as its scope of
reference. The following statement activates the ins_trig_tab1 trigger, which
executes the proc1() procedure.
INSERT INTO tab1 VALUES (111,222);

Because the trigger procedure increments the new value of col1 by 1, the value
inserted is (112, 222), rather than the value that the triggering event specified.

Dynamic Routine-Name Specification of SPL Procedures
Dynamic routine-name specification simplifies the writing of an SPL routine that calls
another SPL routine whose name is not known until runtime. To specify the name
of an SPL routine in the EXECUTE PROCEDURE statement, instead of listing the
explicit name of an SPL routine, you can use an SPL variable to hold the routine
name.

If the SPL variable names an SPL routine that returns a value (an SPL function),
include the INTO clause of EXECUTE PROCEDURE to specify a receiving variable
(or variables) to hold the value (or values) that the SPL function returns. For more
information on how to execute SPL procedures dynamically, see the IBM Informix
Guide to SQL: Tutorial.

Related Information

Related statements: “CREATE FUNCTION statement” on page 2-125, “CREATE
PROCEDURE statement” on page 2-162, “CREATE TRIGGER statement” on page
2-241, “EXECUTE FUNCTION statement” on page 2-361, “GRANT statement” on
page 2-401, “Receiving Input from the Called UDR” on page 3-4, “FOREACH” on
page 3-22, and “LET” on page 3-31

FETCH statement
Use the FETCH statement to move a cursor to a new row in the active set and to
retrieve the row values from memory.

Use this statement with Informix ESQL/C and with SPL.

Syntax

�� FETCH
(1) (2) NEXT

PRIOR
PREVIOUS
FIRST
LAST
CURRENT

+
RELATIVE position_num_var

position_num
- position_num

ABSOLUTE row_position_var
row_position

�

2-372 IBM Informix Guide to SQL: Syntax

�
(1) (2)

cursor_id_var
cursor_id

�

�

�

(1) (2)

USING SQL DESCRIPTOR ' descriptor '
descriptor_var

DESCRIPTOR sqlda_pointer
,

INTO output_var
(2)

INDICATOR indicator_var
(1)

:
(2)

data_structure

��

Notes:

1 Informix extension

2 ESQL/C only

Element Description Restrictions Syntax

cursor_id Cursor to retrieve rows Must be open “Identifier” on page
5-21

cursor_id_var Host variable storing cursor_id Must be character data type Language specific

data_structure Structure as a host variable Must store fetched values Language specific

descriptor System-descriptor area Must have been allocated “Quoted String” on
page 4-188

descriptor_var Host variable storing descriptor Must be allocated Language specific

indicator_var Host variable for return code if
output_var can be NULL value

See “Using Indicator Variables”
on page 2-376.

Language specific

output_var Host variable for fetched value Must store value from row Language specific

position_num Position relative to current row Value 0 fetches current row “Literal Number” on
page 4-184

position_num_var Host variable (= position_num) Value 0 fetches current row Language specific

row_position Ordinal position in active set Must be an integer >1 “Literal Number” on
page 4-184

row_position_var Host variable (= row_ position) Must be 1 or greater Language specific

sqlda_pointer Pointer to an sqlda structure Cannot begin with $ nor : See ESQL/C .

Usage

Except as noted, sections that follow describe how to use the FETCH statement in
Informix ESQL/C routines. For information about the more restricted syntax and
semantics of the FETCH statement in SPL routines, see “Fetching from Dynamic
Cursors in SPL Routines” on page 2-380.

Chapter 2. SQL statements 2-373

How the database server creates, stores, and fetches members of the active set of
rows depends on whether the cursor was declared as a sequential cursor or as a
scroll cursor. All cursors that the FETCH statement can reference in SPL routines
are sequential cursors.

In X/Open mode, if a cursor-direction value (such as NEXT or RELATIVE) is
specified, a warning message is issued, indicating that the statement does not
conform to X/Open standards.

FETCH with a Sequential Cursor
A sequential cursor can fetch only the next row in sequence from the active set.
The only option available is the default option, NEXT. A sequential cursor can read
through a table only once each time the table is opened. The following Informix
ESQL/C example illustrates the FETCH statement with a sequential cursor:
EXEC SQL FETCH seq_curs INTO :fname, :lname;
EXEC SQL FETCH NEXT seq_curs INTO :fname, :lname;

When the program opens a sequential cursor, the database server processes the
query to the point of locating or constructing the first row of data. The goal of the
database server is to tie up as few resources as possible.

Because the sequential cursor can retrieve only the next row, the database server
can frequently create the active set one row at a time.

On each FETCH operation, the database server returns the contents of the current
row and locates the next row. This one-row-at-a-time strategy is not possible if the
database server must create the entire active set to determine which row is the first
row (as would be the case if the SELECT statement included an ORDER BY
clause).

FETCH with a Scroll Cursor
These Informix ESQL/C examples illustrate the FETCH statement with a scroll
cursor:
EXEC SQL fetch previous q_curs into :orders;
EXEC SQL fetch last q_curs into :orders;
EXEC SQL fetch relative -10 q_curs into :orders;
printf("Which row? ");
scanf("
EXEC SQL fetch absolute :row_num q_curs into :orders;

A scroll cursor can fetch any row in the active set, either by specifying an absolute
row position or a relative offset. Use the following cursor-position options to
specify a particular row that you want to retrieve.

Keyword
Effect

NEXT Retrieves next row in active set

PREVIOUS
Retrieves previous row in active set

PRIOR
Retrieves previous row in active set (Synonymous with PREVIOUS.)

FIRST Retrieves the first row in active set

LAST Retrieves the last row in active set

2-374 IBM Informix Guide to SQL: Syntax

CURRENT
Retrieves the current row in active set (the same row as returned by the
previous FETCH statement from the scroll cursor)

RELATIVE
Retrieves nth row, relative to the current cursor position in the active set,
where position_num (or position_num_var) supplies n. A negative value
indicates the nth row prior to the current cursor position. If position_num =
0, the current row is fetched.

ABSOLUTE
Retrieves nth row in active set, where row_position_var (or row_position) = n
. Absolute row positions are numbered from 1.

Tip: Do not confuse row-position values with rowid values. A rowid value is
based on the position of a row in its table and remains valid until the table is
rebuilt. A row-position value (a value that the ABSOLUTE keyword retrieves) is
the relative position of the row in the current active set of the cursor; the next time
the cursor is opened, different rows might be selected.

How the Database Server Implements Scroll Cursors
Because it cannot anticipate which row the program will ask for next, the database
server must retain all the rows in the active set until the scroll cursor closes. When
a scroll cursor opens, the database server implements the active set as a temporary
table, although it might not populate this table immediately.

The first time a row is fetched, the database server copies it into the temporary
table as well as returning it to the program.

When a row is fetched for the second time, it can be taken from the temporary
table. This scheme uses the fewest resources, in case the program abandons the
query before it fetches all the rows. Rows that are never fetched are usually not
copied from the database, or are saved in a temporary table.

Specifying Where Values Go in Memory
Each value from the select list of the query or the output of the executed
user-defined function must be returned into a memory location. You can specify
these destinations in one of the following ways:
v Use the INTO clause of a SELECT statement.
v Use the INTO clause of an EXECUTE Function (or EXECUTE PROCEDURE)

statement.
v Use the INTO clause of a FETCH statement.
v Use a system-descriptor area.
v Use an sqlda structure.

Using the INTO Clause
If you associate a SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement with a Function cursor, the statement can contain an INTO clause to
specify variables to receive the returned values. You can use this method only
when you write the SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statement as part of the cursor declaration; see “DECLARE statement” on page
2-290. In this case, the FETCH statement cannot contain an INTO clause.

Chapter 2. SQL statements 2-375

The following example uses the INTO clause of the SELECT statement to specify
program variables in Informix ESQL/C:
EXEC SQL declare ord_date cursor for

select order_num, order_date, po_num
into :o_num, :o_date, :o_po;

EXEC SQL open ord_date;
EXEC SQL fetch next ord_date;

If you prepare a SELECT statement, the SELECT cannot include the INTO clause so
you must use the INTO clause of the FETCH statement.

When you create a SELECT statement dynamically, you cannot use an INTO clause
because you cannot name host variables in a prepared statement.

If you are certain of the number and data type of values in the projection list, you
can use an INTO clause in the FETCH statement. If user input generated the query,
however, you might not be certain of the number and data type of values that are
being selected. In this case, you must use either a system descriptor or else a
pointer to an sqlda structure.

Using Indicator Variables
Use an indicator variable if the returned data might be null.

The indicator_var parameter is optional, but use an indicator variable if the
possibility exists that the value of output_var is NULL.

If you specify the indicator variable without the INDICATOR keyword, you cannot
put a blank space between output_var and indicator_var.

For information about rules for placing a prefix before the indicator_var, see the
IBM Informix ESQL/C Programmer's Manual.

The host variable cannot be a DATETIME or INTERVAL data type.

When the INTO Clause of FETCH is Required
When SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE) omits the
INTO clause, you must specify a data destination when a row is fetched.

For example, to dynamically execute a SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement, the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) cannot include its INTO clause in the PREPARE
statement. Therefore, the FETCH statement must include an INTO clause to
retrieve data into a set of variables. This method lets you store different rows in
different memory locations.

You can fetch into a program-array element only by using an INTO clause in the
FETCH statement. If you use a program array, you must list both the array name
and a specific element of the array in data_structure. When you are declaring a
cursor, do not refer to an array element within the SQL statement.

Tip: If you are certain of the number and data type of values in the select list of
the Projection clause, you can use an INTO clause in the FETCH statement.

2-376 IBM Informix Guide to SQL: Syntax

In the following Informix ESQL/C example, a series of complete rows is fetched
into a program array. The INTO clause of each FETCH statement specifies an array
element as well as the array name:
EXEC SQL BEGIN DECLARE SECTION;

char wanted_state[2];
short int row_count = 0;
struct customer_t{
{

int c_no;
char fname[15];
char lname[15];

} cust_rec[100];
EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to’stores_demo’;
printf("Enter 2-letter state code: ");
scanf ("%s", wanted_state);
EXEC SQL declare cust cursor for

select * from customer where state = :wanted_state;
EXEC SQL open cust;
EXEC SQL fetch cust into :cust_rec[row_count];
while (SQLCODE == 0)
{

printf("\n%s %s", cust_rec[row_count].fname,
cust_rec[row_count].lname);

row_count++;
EXEC SQL fetch cust into :cust_rec[row_count];

}
printf ("\n");
EXEC SQL close cust;
EXEC SQL free cust;

}

Using a System-Descriptor Area (X/Open)
You can use a system-descriptor area to store output values when you do not
know the number of return values or their data types that a SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement returns at runtime. A
system-descriptor area describes the data type and memory location of one or
more return values, and conforms to the X/Open standards.

The keywords USING SQL DESCRIPTOR introduce the name of the
system-descriptor area into which you fetch the contents of a row or the return
values of a user-defined function. You can then use the GET DESCRIPTOR
statement to transfer the values that the FETCH statement returns from the
system-descriptor area into host variables.

The following example shows a valid FETCH...USING SQL DESCRIPTOR
statement:
EXEC SQL allocate descriptor ’desc’;

...
EXEC SQL declare selcurs cursor for

select * from customer where state = ’CA’;
EXEC SQL describe selcurs using sql descriptor ’desc’;
EXEC SQL open selcurs;
while (1)

{
EXEC SQL fetch selcurs using sql descriptor ’desc’;

You can also use an sqlda structure to supply parameters dynamically.

Chapter 2. SQL statements 2-377

Using sqlda Structures
You can use a pointer to an sqlda structure to stores output values when you do
not know the number of values or their data types that a SELECT or EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement returns.

This structure contains data descriptors that specify the data type and memory
location for one selected value. The keywords USING DESCRIPTOR introduce the
name of the pointer to the sqlda structure.

Tip: If you know the number and data types of all values in the select list, you can
use an INTO clause in the FETCH statement. For more information, see “When the
INTO Clause of FETCH is Required” on page 2-376.

To specify an sqlda structure as the location of parameters

1. Declare an sqlda pointer variable.
2. Use the DESCRIBE statement to fill in the sqlda structure.
3. Allocate memory to hold the data values.
4. Use the USING DESCRIPTOR clause of FETCH to specify the sqlda structure

as the location into which you fetch the returned values.

The following example shows a FETCH USING DESCRIPTOR statement:
struct sqlda *sqlda_ptr;
...
EXEC SQL declare selcurs2 cursor for

select * from customer where state = ’CA’;
EXEC SQL describe selcurs2 into sqlda_ptr;
...
EXEC SQL open selcurs2;
while (1)

{
EXEC SQL fetch selcurs2 using descriptor sqlda_ptr;
...

The sqld value specifies the number of output values that are described in
occurrences of the sqlvar structures of the sqlda structure. This number must
correspond to the number of values returned from the prepared statement.

Fetching a Row for Update
The FETCH statement does not ordinarily lock a row that is fetched. Thus, another
process can modify (update or delete) the fetched row immediately after your
program receives it. A fetched row is locked in the following cases:
v When you set the isolation level to Repeatable Read, each row that you fetch is

locked with a read lock until the cursor closes or until the current transaction
ends. Other programs can also read the locked rows.

v When you set the isolation level to Cursor Stability, the current row is locked.
v In an ANSI-compliant database, an isolation level of Repeatable Read is the

default; you can set it to something else.
v When you are fetching through an update cursor (one that is declared FOR

UPDATE), each row you fetch is locked with a promotable lock. Other programs
can read the locked row, but no other program can place a promotable or write
lock; therefore, the row is unchanged if another user tries to modify it using the
WHERE CURRENT OF clause of an UPDATE or DELETE statement.

2-378 IBM Informix Guide to SQL: Syntax

When you modify a row, the lock is upgraded to a write lock and remains until
the cursor is closed or the transaction ends. If you do not modify the row, the
behavior of the database server depends on the isolation level you have set. The
database server releases the lock on an unchanged row as soon as another row is
fetched, unless you are using Repeatable Read isolation. (See “SET ISOLATION
statement” on page 2-648.)

Important: You can hold locks on additional rows even when Repeatable Read
isolation is not in use or is unavailable. Update the row with unchanged data to
hold it locked while your program is reading other rows. You must evaluate the
effect of this technique on performance in the context of your application, and you
must be aware of the increased potential for deadlock.

When you use explicit transactions, be sure that a row is both fetched and
modified within a single transaction; that is, both the FETCH statement and the
subsequent UPDATE or DELETE statement must fall between a BEGIN WORK
statement and the next COMMIT WORK statement.

Fetching from a Collection Cursor
A Collection cursor allows you to access the individual elements of an Informix
ESQL/C collection variable. To declare a Collection cursor, use the DECLARE
statement and include the Collection-Derived Table segment in the SELECT
statement that you associate with the cursor. After you open the collection cursor
with the OPEN statement, the cursor allows you to access the elements of the
collection variable.

To fetch elements, one at a time, from a Collection cursor, use the FETCH
statement and the INTO clause. The FETCH statement identifies the Collection
cursor that is associated with the collection variable. The INTO clause identifies the
host variable that holds the element value that is fetched from the Collection
cursor. The data type of the host variable in the INTO clause must match the
element type of the collection.

Suppose you have a table called children with the following structure:
CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20) NOT NULL),

)

The following Informix ESQL/C code fragment shows how to fetch elements from
the child_colors collection variable:
EXEC SQL BEGIN DECLARE SECTION;

client collection child_colors;
varchar one_favorite[21];
char child_name[31] = "marybeth";

EXEC SQL END DECLARE SECTION;
EXEC SQL allocate collection :child_colors;
/* Get structure of fav_colors column for untyped
* child_colors collection variable */
EXEC SQL select fav_colors into :child_colors

from children
where name = :child_name;

/* Declare select cursor for child_colors collection
* variable */
EXEC SQL declare colors_curs cursor for

select * from table(:child_colors);

Chapter 2. SQL statements 2-379

EXEC SQL open colors_curs;
do
{

EXEC SQL fetch colors_curs into :one_favorite;
...

} while (SQLCODE == 0)
EXEC SQL close colors_curs;
EXEC SQL free colors_curs;
EXEC SQL deallocate collection :child_colors;

After you fetch a collection element, you can modify the element with the
UPDATE or DELETE statements. For more information, see the UPDATE and
DELETE statements in this document. You can also insert new elements into the
collection variable with an INSERT statement. For more information, see the
INSERT statement.

Checking the Result of FETCH
You can use the SQLSTATE variable to check the result of each FETCH statement.
The database server sets the SQLSTATE variable after each SQL statement. If a
row is returned successfully, the SQLSTATE variable contains the value 00000. If
no row is found, the database server sets the SQLSTATE code to 02000, which
indicates no data found, and the current row is unchanged. The following
conditions set the SQLSTATE code to 02000, indicating no data found:
v The active set contains no rows.
v You issue a FETCH NEXT statement when the cursor points to the last row in

the active set or points past it.
v You issue a FETCH PRIOR or FETCH PREVIOUS statement when the cursor

points to the first row in the active set.
v You issue a FETCH RELATIVE n statement when no nth row exists in the active

set.
v You issue a FETCH ABSOLUTE n statement when no nth row exists in the

active set.

The database server copies the SQLSTATE code from the RETURNED_SQLSTATE
field of the system-diagnostics area. Client-server communication protocols of
Informix, such as SQLI and DRDA®, support SQLSTATE code values. For a list of
these codes, and for information about how to get the message text, see “Using the
SQLSTATE Error Status Code” on page 2-391. You can use the GET DIAGNOSTICS
statement to examine the RETURNED_SQLSTATEfield directly. The
system-diagnostics area can also contain additional error information.

You can also use SQLCODE variable of the SQL Communications Area (sqlca) to
determine the same results.

Fetching from Dynamic Cursors in SPL Routines

Use the FETCH statement in an SPL routine to retrieve the next row of the active
set of a specified dynamic cursor into an ordered list of SPL variables that were
declared in the same SPL routine.

Syntax

The syntax of the FETCH statement in SPL routines is a subset of the syntax that
FETCH supports in Informix ESQL/C routines.

2-380 IBM Informix Guide to SQL: Syntax

�� �

,

FETCH cursor_id INTO output_var ��

Element Description Restrictions Syntax

cursor_id Name of a dynamic
cursor

Must be open and must have
been declared in the same
SPL routine

“Identifier” on
page 5-21

output_var An SPL variable to store a
fetched value from the
row

Must have been declared
locally or globally in the
calling context, and must be
of a data type compatible
with the fetched column
value

“Identifier” on
page 5-21

Just as in ESQL/C routines, the list of output variables must correspond in
number, order, and data type with column values that the SQL statement
associated with the rows returned by the specified cursor.

All SPL cursors are sequential cursors. Your UDR must include logic to detect the
end of the active set of the cursor, because the NOTFOUND condition does not
automatically raise an exception in SPL.

The built-in SQLCODE function, which can only be called from SPL routines, can
return the status code of a FETCH operation.

All other restrictions of ESQL/C on FETCH statements that reference sequential
Select or Function cursors also apply to FETCH operations in SPL.

The FETCH statement in SPL routines does not support the following ESQL/C
features:
v cursor names specified as host variables
v positional specifications or positional keywords (which require scroll cursors)
v the USING clause with descriptors or with sqlda pointers.

In the SPL language, indicator variables are not needed. If the FETCH operation
retrieves a NULL value, the SPL variable that receives that fetched value is set to
NULL.

The FETCH statement can reference only dynamic cursors that the DECLARE
statement defined. The cursor_id cannot specify the name of a direct cursor that the
FOREACH statement of SPL declared.

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2, “CLOSE
statement” on page 2-76, “DEALLOCATE DESCRIPTOR statement” on page 2-288,
“DECLARE statement” on page 2-290, “DESCRIBE statement” on page 2-314, “GET
DESCRIPTOR statement” on page 2-385, “OPEN statement” on page 2-469,
“PREPARE statement” on page 2-477, “SET DEFERRED_PREPARE statement” on
page 2-618, and “SET DESCRIPTOR statement” on page 2-620

For a task-oriented discussion of the FETCH statement, see the IBM Informix Guide
to SQL: Tutorial.

Chapter 2. SQL statements 2-381

For more information about concepts that relate to the FETCH statement, see the
IBM Informix ESQL/C Programmer's Manual.

FLUSH statement
Use the FLUSH statement to force rows that a PUT statement buffered to be
written to the database.

Syntax

�� FLUSH cursor_id
cursor_id_var

��

Element Description Restrictions Syntax

cursor_id Name of a cursor Must have been declared “Identifier” on page
5-21

cursor_id_var Host variable that holds the value
of cursor_id

Must be a character data type Language specific

Usage

Use this statement, which is an extension to the ANSI/ISO standard for SQL, with
Informix ESQL/C.

The PUT statement adds a row to a buffer, whose content is written to the
database when the buffer is full. Use the FLUSH statement to force the insertion
when the buffer is not full.

If the program terminates without closing the cursor, the buffer is left unflushed.
Rows placed into the buffer since the last flush are lost. Do not expect the end of
the program to close the cursor and flush the buffer automatically. The following
example shows a FLUSH statement that operates on a cursor called icurs:
FLUSH icurs

Error Checking FLUSH Statements
The SQL Communications Area (sqlca) structure contains information on the
success of each FLUSH statement and the number of rows that are inserted
successfully. The result of each FLUSH statement is described in the fields of the
sqlca: sqlca.sqlcode, SQLCODE, and sqlca.sqlerrd[2].

When you use data buffering with an Insert cursor, you do not discover errors
until the buffer is flushed. For example, an input value that is incompatible with
the data type of the column for which it is intended is discovered only when the
buffer is flushed. When an error is discovered, any rows in the buffer that are
located after the error are not inserted; they are lost from memory.

The SQLCODE field is set either to an error code or to zero (0) if no error occurs.
The third element of the SQLERRD array is set to the number of rows that are
successfully inserted into the database:
v If a block of rows is successfully inserted into the database, SQLCODE is set to

zero (0) and SQLERRD to the count of rows.

2-382 IBM Informix Guide to SQL: Syntax

v If an error occurs while the FLUSH statement is inserting a block of rows,
SQLCODE shows which error, and SQLERRD contains the number of rows that
were successfully inserted. (Uninserted rows are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. Client-server communication protocols of Informix, such as SQLI
and DRDA, support SQLSTATE code values. For a list of these codes, and for
information about how to get the message text, see “Using the SQLSTATE Error
Status Code” on page 2-391.

To count the number of rows actually inserted into the database as well as the
number not yet inserted

1. Prepare two integer variables, for example, total and pending.
2. When the cursor opens, set both variables to 0.
3. Each time a PUT statement executes, increment both total and pending.
4. Whenever a FLUSH statement executes or the cursor is closed, subtract the

third field of the SQLERRD array from pending.

Examples
The following example assumes that a function named next_cust returns either
information about a new customer or null data to signal the end of input:
EXEC SQL BEGIN WORK;
EXEC SQL OPEN new_custs;

while(SQLCODE == 0)
{
next_cust();
if(the_company == NULL)
break;

EXEC SQL PUT new_custs;
}

if(SQLCODE == 0) /* if no problem with PUT */
{
EXEC SQL FLUSH new_custs;
/* write any rows left */

if(SQLCODE == 0) /* if no problem with FLUSH */
EXEC SQL COMMIT WORK; /* commit changes */

}
else
EXEC SQL ROLLBACK WORK; /* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null data,
the PUT statement sends the returned data to the row buffer. When the buffer fills,
the rows it contains are automatically sent to the database server. The loop
normally ends when next_cust has no more data to return.

Related Information

Related statements: “CLOSE statement” on page 2-76, “DECLARE statement” on
page 2-290, “OPEN statement” on page 2-469, and “PREPARE statement” on page
2-477

For a task-oriented discussion of FLUSH, see the IBM Informix Guide to SQL:
Tutorial.

Chapter 2. SQL statements 2-383

For information about the sqlca structure, see the IBM Informix ESQL/C
Programmer's Manual.

FREE statement
Use the FREE statement to release resources that are allocated to a prepared
statement or to a cursor.

Syntax

�� FREE cursor_id
statement_id
(1)

cursor_id_var
statement_id_var

��

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

cursor_id Name of a cursor Must have been declared “Identifier” on page
5-21

cursor_id_var Host variable that holds the
value of cursor_id

Must be a character data type Language specific

statement_id Identifier of a prepared SQL
statement

Must be defined in a previous
PREPARE statement

“PREPARE statement”
on page 2-477

statement_id_var Host variable that stores the
name of a prepared object

Must be declared as a character
data type.

“PREPARE statement”
on page 2-477

Usage

Use this statement, which is an extension to the ANSI/ISO standard for SQL, with
Informix ESQL/C or with SPL.

FREE releases the resources that the database server and (for ESQL/C) the
application-development tool allocated for a prepared statement or for a cursor.

If you declared a cursor for a prepared statement, FREE statement_id (or
statement_id_var) releases only the resources in the application development tool;
the cursor can still be used. The resources in the database server are released only
when you free the cursor.

If you prepared a statement (but did not declare a cursor for it), FREE statement_id
(or FREE statement_id_var) releases the resources in both the application
development tool and the database server.

After you free a statement, you cannot execute it or declare a cursor for it until
you prepare it again.

The following Informix ESQL/C example shows the sequence of statements that is
used to free an implicitly prepared statement:
EXEC SQL prepare sel_stmt from ’select * from orders’;
...
EXEC SQL free sel_stmt;

2-384 IBM Informix Guide to SQL: Syntax

The following Informix ESQL/C example shows the sequence of statements that
are used to release the resources of an explicitly prepared statement. The first FREE
statement in this example frees the cursor. The second FREE statement in this
example frees the prepared statement.
sprintf(demoselect, "%s %s",

"select * from customer ",
"where customer_num between 100 and 200");

EXEC SQL prepare sel_stmt from :demoselect;
EXEC SQL declare sel_curs cursor for sel_stmt;
EXEC SQL open sel_curs;
...
EXEC SQL close sel_curs;
EXEC SQL free sel_curs;
EXEC SQL free sel_stmt;

If you declared a cursor for a prepared statement, freeing the cursor releases only
the resources in the database server. To release the resources for the statement in
the application-development tool, use FREE statement_id (or FREE statement_id_var).
If a cursor is not declared for a prepared statement, freeing it releases the resources
in both the application-development tool and the database server. For an ESQL/C
example of a FREE statement that frees a cursor, see the previous example.

After a cursor is freed, it cannot be opened until it is declared again. The cursor
should be explicitly closed before it is freed.

When an SPL routine completes execution, the database server automatically
releases any resources that had been allocated to the cursor or to prepared
statements by PREPARE or DECLARE statements in the routine, if these have not
already been released by the FREE statement.

The FREE statement in SPL routines cannot reference the cursor_id of a direct
cursor that the FOREACH statement of SPL can declare.

Related Information

Related statements: “CLOSE statement” on page 2-76, “DECLARE statement” on
page 2-290, “EXECUTE statement” on page 2-353, “EXECUTE IMMEDIATE
statement” on page 2-365, “OPEN statement” on page 2-469, “PREPARE statement”
on page 2-477, and “SET AUTOFREE statement” on page 2-606

For a task-oriented discussion of the FREE statement, see the IBM Informix Guide to
SQL: Tutorial.

GET DESCRIPTOR statement
Use the GET DESCRIPTOR statement to read from a system descriptor area.

Syntax

�� GET DESCRIPTOR descriptor_var
'descriptor '

�

Chapter 2. SQL statements 2-385

�

�

total_items_var = COUNT
,

VALUE item_num_var Described Item Information
item_num

��

Described Item Information:

field_var = TYPE
LENGTH
PRECISION
SCALE
NULLABLE
INDICATOR
NAME
DATA
IDATA
ITYPE
ILENGTH
(1)

EXTYPEID
EXTYPENAME
EXTYPEOWNERNAME
EXTYPELENGTH
EXTYPEOWNERLENGTH
SOURCEID
SOURCETYPE

Notes:

1 Informix extension

Element Description Restrictions Syntax

descriptor Quoted string that identifies a
system-descriptor area (SDA)

System-descriptor area must
already have been allocated

“Quoted String” on
page 4-188

descriptor_var Variable that stores descriptor value Same restrictions as descriptor Language specific

field_var Host variable to receive the contents
of a field from an SDA

Must be of type that can receive
value of a specified SDA field

Language specific

item_num Unsigned ordinal number of an item
described in the SDA

0 ≤ item_num ≤ (number of item
descriptors in the SDA)

“Literal Number” on
page 4-184

item_num_ var Host variable storing item_num Must be an integer data type Language specific

total_items_var Host variable storing the number of
items described in the SDA

Must be an integer data type Language specific

Usage

Use this statement with Informix ESQL/C.

Use the GET DESCRIPTOR statement to accomplish any of the following tasks:
v Determine how many items are described in a system-descriptor area.
v Determine the characteristics of each column or expression that is described in

the system-descriptor area.
v Copy a value from the system-descriptor area into a host variable after a FETCH

statement.

2-386 IBM Informix Guide to SQL: Syntax

You can use GET DESCRIPTOR after you describe EXECUTE FUNCTION, INSERT,
SELECT, or UPDATE statements with the DESCRIBE ... USING SQL DESCRIPTOR
statement.

The host variables that you reference in the GET DESCRIPTOR statement must be
declared in the BEGIN DECLARE SECTION of a program.

If an error occurs during the assignment of a value to any specified host variable,
the contents of the host variable are undefined.

Using the COUNT Keyword
Use the COUNT keyword to determine how many items are described in the
system-descriptor area.

The following Informix ESQL/C example shows how to use a GET DESCRIPTOR
statement with a host variable to determine how many items are described in the
system-descriptor area called desc1:
main()
{
EXEC SQL BEGIN DECLARE SECTION;
int h_count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc1’ with max 20;

/* This section of program would prepare a SELECT or INSERT
* statement into the s_id statement id.
*/
EXEC SQL describe s_id using sql descriptor ’desc1’;

EXEC SQL get descriptor ’desc1’ :h_count = count;
...
}

Using the VALUE Clause
Use the VALUE clause to obtain information about a described column or
expression or to retrieve values that the database server returns in a system
descriptor area.

The item_num must be greater than zero (0) but not greater than the number of
item descriptors that were specified when the system-descriptor area was allocated
with the ALLOCATE DESCRIPTOR statement.

Using the VALUE Clause After a DESCRIBE
After you describe a SELECT, EXECUTE FUNCTION (or EXECUTE PROCEDURE),
INSERT, or UPDATE statement, the characteristics of each column or expression in
the select list of the SELECT statement, the characteristics of the values returned by
the EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement, or the
characteristics of each column in an INSERT or UPDATE statement are returned to
the system-descriptor area. Each value in the system-descriptor area describes the
characteristics of one returned column or expression.

The following Informix ESQL/C example uses GET DESCRIPTOR to obtain data
type information from the demodesc system-descriptor area:

Chapter 2. SQL statements 2-387

EXEC SQL get descriptor ’demodesc’ value :index
:type = TYPE,
:len = LENGTH,
:name = NAME;

printf("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The value that the database server returns into the TYPE field is a defined integer.
To evaluate the data type that is returned, test for a specific integer value. For
additional information about integer data type values, see “Setting the TYPE or
ITYPE Field” on page 2-623.

In X/Open mode, the X/Open code is returned to the TYPE field. You cannot mix
the two modes because errors can result. For example, if a particular data type is
not defined under X/Open mode but is defined for IBM Informix products,
executing a GET DESCRIPTOR statement can result in an error.

In X/Open mode, a warning message appears if ILENGTH, IDATA, or ITYPE is
used. It indicates that these fields are not standard X/Open fields for a
system-descriptor area.

If the TYPE of a fetched value is DECIMAL or MONEY, the database server
returns the precision and scale information for a column into the PRECISION and
SCALE fields after a DESCRIBE statement is executed. If the TYPE is not
DECIMAL or MONEY, the SCALE and PRECISION fields are undefined.

Using the VALUE Clause After a FETCH
Each time your program fetches a row, it must copy the fetched value into host
variables so that the data can be used. To accomplish this task, use a GET
DESCRIPTOR statement after each fetch of each value in the select list. If three
values exist in the select list, you need to use three GET DESCRIPTOR statements
after each fetch (assuming you want to read all three values). The item numbers
for each of the three GET DESCRIPTOR statements are 1, 2, and 3.

The following Informix ESQL/C example shows how you can copy data from the
DATA field into a host variable (result) after a fetch. For this example, it is
predetermined that all returned values are the same data type:
EXEC SQL get descriptor ’demodesc’ :desc_count = count;
.. .
EXEC SQL fetch democursor using sql descriptor ’demodesc’;
for (i = 1; i <= desc_count; i++)

{
if (sqlca.sqlcode != 0) break;
EXEC SQL get descriptor ’demodesc’ value :i :result = DATA;
printf("%s ", result);
}

printf("\n");

Fetching a NULL Value
When you use GET DESCRIPTOR after a fetch, and the fetched value is NULL, the
INDICATOR field is set to -1 to indicate the NULL value. The value of DATA is
undefined if INDICATOR indicates a NULL value. The host variable into which
DATA is copied has an unpredictable value.

Using LENGTH or ILENGTH
If your DATA or IDATA field contains a character string, you must specify a value
for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to the
maximum length of the string. The DATA or IDATA field might contain a literal

2-388 IBM Informix Guide to SQL: Syntax

character string or a character string that is derived from a character variable of
CHAR or VARCHAR data type. This provides a method to determine the length of
a string in the DATA or IDATA field dynamically.

If a DESCRIBE statement precedes a GET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is specified in
your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Describing an Opaque-Type Column
The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has an opaque type as its data type:
v The EXTYPEID field stores the extended ID for the opaque type. This integer is

the value in the corresponding extended_id column of the sysxtdtypes system
catalog table.

v The EXTYPENAME field stores the name of the opaque type. This character
value is the value in the name column of the row with the matching
extended_id value in the sysxtdtypes system catalog table.

v The EXTYPELENGTH field stores the length of the opaque-type name. This
integer is the length of the data type name (in bytes).

v The EXTYPEOWNERNAME field stores the name of the opaque-type owner.
This character value is the value in the owner column of the row with the
matching extended_id value in the sysxtdtypes system catalog table.

v The EXTYPEOWNERLENGTH field stores the length of the value in the
EXTTYPEOWNERNAME field. This integer is the length, in bytes, of the name
of the owner of the opaque type.

Use these field names with the GET DESCRIPTOR statement to obtain information
about an opaque column.

Describing a Distinct-Type Column
The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has a distinct type as its data type:
v The SOURCEID field stores the extended identifier for the source data type.

This integer has the value of the source column for the row of the sysxtdtypes
system catalog table whose extended_id value matches that of the distinct data
type. This field is set only if the source data type is an opaque data type.

v The SOURCETYPE field stores the data type constant for the source data type.
This value is the data type constant (from the sqltypes.h file) for the data type
of the source type for the DISTINCT data type. The codes for the SOURCETYPE
field are listed in the description of the TYPE field in the SET DESCRIPTOR
statement. (For more information, see “Setting the TYPE or ITYPE Field” on
page 2-623.) This integer value must correspond to the value in the type column
for the row of the sysxtdtypes system catalog table whose extended_id value
matches that of the DISTINCT data type.

Use these field names with the GET DESCRIPTOR statement to obtain information
about a distinct-type column.

Chapter 2. SQL statements 2-389

Examples
You use the GET DESCRIPTOR statement to accomplish any of the following
tasks:
v To determine how many items are described in a system-descriptor area.
v To determine the characteristics of each column or expression that is described

in the system-descriptor area.
v To copy a value from the system-descriptor area into a host variable after a

FETCH statement.

The following ESQL/C example shows how to use a GET DESCRIPTOR statement
with a host variable to determine how many items are described in the
system-descriptor area called desc1: GET DESCRIPTOR
main()
{
EXEC SQL BEGIN DECLARE SECTION;
int h_count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc1’ with max 20;

/* This section of program would prepare a SELECT or INSERT
* statement into the s_id statement id.
*/

EXEC SQL describe s_id using sql descriptor ’desc1’;
EXEC SQL get descriptor ’desc1’ :h_count = count;

The following ESQL/C example uses GET DESCRIPTOR to obtain data type
information from the demodesc system-descriptor area:
EXEC SQL get descriptor ’demodesc’ value
:index :type = TYPE,
:len = LENGTH,
:name = NAME;
printf("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The following ESQL/C example shows how you can copy data from the DATA
field into a host variable (result) after a fetch. For this example, it is predetermined
that all returned values are the same data type:
EXEC SQL get descriptor ’demodesc’ :desc_count = count;
.. .
EXEC SQL fetch democursor using sql descriptor ’demodesc’;
for (i = 1; i <= desc_count; i++)
{
if (sqlca.sqlcode != 0) break;
EXEC SQL get descriptor ’demodesc’ value :i :result = DATA;
printf("%s ", result);
}
printf("\n");

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DEALLOCATE DESCRIPTOR statement” on page 2-288, “DECLARE statement”
on page 2-290, “DESCRIBE statement” on page 2-314, “EXECUTE statement” on
page 2-353, “FETCH statement” on page 2-372, “OPEN statement” on page 2-469,
“PREPARE statement” on page 2-477, “PUT statement” on page 2-487, and “SET
DESCRIPTOR statement” on page 2-620

2-390 IBM Informix Guide to SQL: Syntax

For more information on concepts that relate to the GET DESCRIPTOR statement,
see the IBM Informix ESQL/C Programmer's Manual.

For more information on the sysxtdtypes system catalog table, see the IBM Informix
Guide to SQL: Reference.
Related reference

SYSXTDTYPES (SQL Reference)

GET DIAGNOSTICS statement
Use the GET DIAGNOSTICS statement to return diagnostic information about the
most recently executed SQL statement.

Syntax

�� GET DIAGNOSTICS
(1)

Statement Clause
(2)

EXCEPTION Clause

��

Notes:

1 See “Statement Clause” on page 2-395

2 See “EXCEPTION Clause” on page 2-396

Usage

Use this statement with Informix ESQL/C.

The GET DIAGNOSTICS statement retrieves specified status information that the
database server records in a structure called the diagnostics area. Using GET
DIAGNOSTICS does not change the contents of the diagnostics area.

The GET DIAGNOSTICS statement uses one of the following two clauses:
v The Statement clause returns count and overflow information about errors and

warnings that the most recent SQL statement generates.
v The EXCEPTION clause provides specific information about errors and warnings

that the most recent SQL statement generates.

Using the SQLSTATE Error Status Code
When an SQL statement executes, an error status code is automatically generated.
This code represents success, failure, warning, or no data found. This error status
code is stored in a built-in variable called SQLSTATE.

Class and Subclass Codes
The SQLSTATE status code is a five-character string that can contain only digits
and uppercase letters.

The first two characters of the SQLSTATE status code indicate a class. The last
three characters of the SQLSTATE code indicate a subclass. Figure 2-1 on page
2-392 shows the structure of the SQLSTATE code. This example uses the value
08001, where 08 is the class code and 001 is the subclass code. The value 08001
represents the error unable to connect with database environment.

Chapter 2. SQL statements 2-391

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_084.htm#ids_sqr_084

The following table is a quick reference for interpreting class code values.

SQLSTATE Class Code Value
Outcome

00 Success

01 Success with warning

02 No data found

> 02 Error or warning

SQLSTATE Support for the ANSI/ISO Standard for SQL
All status codes returned to the SQLSTATE variable are ANSI-compliant except in
the following cases:
v SQLSTATE codes with a class code of 01 and a subclass code that begins with

an I are Informix-specific warning messages.
v SQLSTATE codes with a class code of IX and any subclass code are

Informix-specific error messages.
v SQLSTATE codes whose class code begins with a digit in the range 5 to 9 or

with an uppercase letter in the range I to Z indicate conditions that are currently
undefined by the ANSI/ISO standard for SQL. The only exception is that
SQLSTATE codes whose class code is IX are Informix-specific error messages.

Client-server communication protocols of Informix, such as SQLI and DRDA,
support these SQLSTATE code values.

List of SQLSTATE Codes

This table describes the class codes, subclass codes, and the meaning of all valid
warning and error codes associated with the SQLSTATE variable.

Class Subclass Meaning

00 000 Success.

Class
code

Subclass code

0 8 0 0 1

Figure 2-1. Structure of the SQLSTATE Code

2-392 IBM Informix Guide to SQL: Syntax

Class Subclass Meaning

01 000 Success with warning.

002 Disconnect error. Transaction rolled back.

003 NULL value eliminated in set function.

004 String data, right truncation.

005 Insufficient item descriptor areas.

006 Privilege not revoked.

007 Privilege not granted.

I01 Database has transactions.

I03 ANSI-compliant database selected.

I04 IBM Informix database server selected.

I05 Float to decimal conversion was used.

I06 Informix extension to ANSI-compliant syntax.

I07 UPDATE or DELETE statement does not have a WHERE clause.

I08 An ANSI keyword was used as a cursor name.

I09 Cardinalities of the projection list and of the INTO list are not equal.

I10 Database server running in secondary mode.

I11 Dataskip is turned on.

02 000 No data found.

07 000 Dynamic SQL error.

001 USING clause does not match dynamic parameters.

002 USING clause does not match target specifications.

003 Cursor specification cannot be executed.

004 USING clause is required for dynamic parameters.

005 Prepared statement is not a cursor specification.

006 Restricted data type attribute violation.

008 Invalid descriptor count.

009 Invalid descriptor index.

08 000 Connection exception.

001 Database server rejected the connection.

002 Connection name in use.

003 Connection does not exist.

004 Client unable to establish connection.

006 Transaction rolled back.

007 Transaction state unknown.

S01 Communication failure.

0A 000 Feature not supported.

001 Multiple server transactions.

21 000 Cardinality violation.

S01 Insert value list does not match column list.

S02 Degree of derived table does not match column list.

Chapter 2. SQL statements 2-393

Class Subclass Meaning

22 000 Data exception.

001 String data, right truncation.

002 NULL value, no indicator parameter.

003 Numeric value out of range.

005 Error in assignment.

027 Data exception trim error.

012 Division by zero (0).

019 Invalid escape character.

024 Unterminated string.

025 Invalid escape sequence.

23 000 Integrity constraint violation.

24 000 Invalid cursor state.

25 000 Invalid transaction state.

2B 000 Dependent privilege descriptors still exist.

2D 000 Invalid transaction termination.

26 000 Invalid SQL statement identifier.

2E 000 Invalid connection name.

28 000 Invalid user-authorization specification.

33 000 Invalid SQL descriptor name.

34 000 Invalid cursor name.

35 000 Invalid exception number.

37 000 Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE.

3C 000 Duplicate cursor name.

40 000 Transaction rollback.

003 Statement completion unknown.

42 000 Syntax error or access violation.

S0 000 Invalid name.

001 Base table or view table already exists.

002 Base table not found.

011 Index already exists.

021 Column already exists.

S1 001 Memory allocation failure.

IX 000 Informix reserved error message.

Using SQLSTATE in Applications
You can use a built-in variable, called SQLSTATE, which you do not need to
declare in your program. SQLSTATE contains the status code, essential for error
handling, which is generated every time your program executes an SQL statement.
SQLSTATE is created automatically. You can examine the SQLSTATE variable to
determine whether an SQL statement was successful. If the SQLSTATE variable
indicates that the statement failed, you can execute a GET DIAGNOSTICS
statement to obtain additional error information.

2-394 IBM Informix Guide to SQL: Syntax

For an example of how to use an SQLSTATE variable in a program, see “Using
GET DIAGNOSTICS for Error Checking” on page 2-400.

Statement Clause

Statement Clause:

�

,

status_var = ROW_COUNT
NUMBER
MORE

Element Description Restrictions Syntax

status_var Host variable to receive status information about the most
recent SQL statement for the specified status field name

Must match data
type of the field

Language
specific

When retrieving count and overflow information, GET DIAGNOSTICS can deposit
the values of the three statement fields into a corresponding host variable. The
host-variable data type must be the same as that of the requested field. The
following keywords represent these three fields.

Field Name
Keyword Field Data Type Field Contents

ESQL/C Host Variable Data
Type

MORE Character Y or N char[2]

NUMBER Integer 1 to 35,000 int

ROW_COUNT Integer 0 to 999,999,999 int

Using the MORE Keyword
Use the MORE keyword to determine if the most recently executed SQL statement
resulted in the following actions by the database server:
v Stored all the exceptions that it detected in the diagnostics area

If so, GET DIAGNOSTICS returns a value of N.
v Detected more exceptions than it stored in the diagnostics area

If so, GET DIAGNOSTICS returns a value of Y. (The value of MORE is always
N.)

Using the ROW_COUNT Keyword
The ROW_COUNT keyword returns the number of rows the most recently
executed DML statement processed. ROW_COUNT counts these rows:
v Inserted into a table
v Updated in a table
v Deleted from a table

Using the NUMBER Keyword
The NUMBER keyword returns the number of exceptions that the most recently
executed SQL statement raised. The NUMBER field can hold a value from 1 to
35,000, depending on how many exceptions are counted.

Chapter 2. SQL statements 2-395

EXCEPTION Clause

Exception Clause:

EXCEPTION exception_num
exception_var

�

,

information = CLASS_ORIGIN
CONNECTION_NAME
INFORMIX_SQLCODE
MESSAGE_LENGTH
MESSAGE_TEXT
RETURNED_SQLSTATE
SERVER_NAME
SUBCLASS_ORIGIN

Element Description Restrictions Syntax

exception_num Number of exceptions Integer in range 1 to 35,000 “Literal Number” on page
4-184

exception_var Variable storing exception_num Must be SMALLINT or INT Language specific

information Host variable to receive the value of
a specified exception field

Data type must match that of
the specified field

Language specific

The exception_num literal indicates one of the exception values from the number of
exceptions that the NUMBER field in the Statement clause returns.

When retrieving exception information, GET DIAGNOSTICS writes the values of
each of the seven fields into corresponding host variables. These fields are located
in the diagnostics area and are derived from an exception raised by the most recent
SQL statement.

The host-variable data type must be the same as that of the requested field. The
following table describes the seven exception information fields.

Field Name Keyword Field Data Type Field Contents
ESQL/C Host
Variable Data Type

RETURNED_SQLSTATE Character SQLSTATE value char[6]

INFORMIX_SQLCODE Integer Informix-specific
status code

int4

CLASS_ORIGIN Character String char[255]

SUBCLASS_ORIGIN Character String char[255]

MESSAGE_TEXT Character String char[255]

MESSAGE_LENGTH Integer Numeric value int

SERVER_NAME Character String char[255]

CONNECTION_NAME Character String char[255]

The application specifies the exception by number, using either an unsigned
integer or an integer host variable (an exact numeric with a scale of 0). An
exception with a value of 1 corresponds to the SQLSTATE value set by the most
recent SQL statement other than GET DIAGNOSTICS. The association between
other exception numbers and other exceptions raised by that SQL statement is

2-396 IBM Informix Guide to SQL: Syntax

undefined. Thus, no set order exists in which the diagnostic area can be filled with
exception values. You always get at least one exception, even if the SQLSTATE
value indicates success.

If an error occurs within the GET DIAGNOSTICS statement (that is, if an invalid
exception number is requested), the Informix internal SQLCODE and SQLSTATE
variables are set to the value of that exception. In addition, the GET
DIAGNOSTICS fields are undefined.

Using the RETURNED_SQLSTATE Keyword

The RETURNED_SQLSTATE keyword returns the SQLSTATE value that describes
the exception.

Using the INFORMIX_SQLCODE Keyword

The INFORMIX_SQLCODE keyword returns the Informix-specific status code. The
same value is also available in the global SQLCODE variable. For more
information, see the discussion of the SQLCODE variable in the IBM Informix
ESQL/C Programmer's Manual.

Using the CLASS_ORIGIN Keyword

Use the CLASS_ORIGIN keyword to retrieve the class portion of the
RETURNED_SQLSTATE value. If the ISO standard for SQL defines the class, the
value of CLASS_ORIGIN is equal to ISO 9075. Otherwise, the value returned by
CLASS_ORIGIN is defined by Informix and cannot be ISO 9075. The terms ANSI
SQL and ISO SQL are synonymous.

Using the SUBCLASS_ORIGIN Keyword

The SUBCLASS_ORIGIN keyword returns data on the RETURNED_SQLSTATE
subclass. (This value is ISO 9075 if the ISO standard defines the subclass.)

Using the MESSAGE_TEXT Keyword

The MESSAGE_TEXT keyword returns the message text of the exception (for
example, an error message).

Using the MESSAGE_LENGTH Keyword

The MESSAGE_LENGTH keyword returns the length in bytes of the current
message text string.

Using the SERVER_NAME Keyword

The SERVER_NAME keyword returns the name of the database server associated
with a CONNECT or DATABASE statement. GET DIAGNOSTICS updates the
SERVER_NAME field when any of the following events occur:
v A CONNECT statement successfully executes.
v A SET CONNECTION statement successfully executes.
v A DISCONNECT statement successfully terminates the current connection.
v A DISCONNECT ALL statement fails.

The SERVER_NAME field is not updated, however, after these events:
v A CONNECT statement fails.

Chapter 2. SQL statements 2-397

v A DISCONNECT statement fails (but this does not include the DISCONNECT
ALL statement).

v A SET CONNECTION statement fails.

The SERVER_NAME field retains the value set in the previous SQL statement. If
any of the preceding conditions occur on the first SQL statement that executes, the
SERVER_NAME field is blank.

The Contents of the SERVER_NAME Field
The SERVER_NAME field contains different information after you execute the
following statements.

Executed Statement
SERVER_NAME Field Contents

CONNECT
Contains the name of the database server to which you connect or fail to
connect Field is blank if you do not have a current connection or if you
make a default connection.

SET CONNECTION
Contains the name of the database server to which you switch or fail to
switch

DISCONNECT
Contains the name of the database server from which you disconnect or
fail to disconnect If you disconnect and then you execute a DISCONNECT
statement for a connection that is not current, the SERVER_NAME field
remains unchanged.

DISCONNECT ALL
Sets the field to blank if the statement executes successfully If the
statement fails, SERVER_NAME contains the names of all the database
servers from which you did not disconnect. (This information does not
mean that the connection still exists.)

If CONNECT succeeds, SERVER_NAME is set to one of the following values:
v The INFORMIXSERVER value (if the connection is to a default database server;

that is, if CONNECT specified no database server)
v The name of the database server (if the connection is to a specific database

server)

The DATABASE Statement
When you execute a DATABASE statement, the SERVER_NAME field contains the
name of the database server on which the database resides.

Using the CONNECTION_NAME Keyword

Use the CONNECTION_NAME keyword to return the name of the connection
specified in your CONNECT or SET CONNECTION statement.

When the CONNECTION_NAME Keyword Is Updated
GET DIAGNOSTICS updates the CONNECTION_NAME field when the following
situations occur:
v A CONNECT statement successfully executes.
v A SET CONNECTION statement successfully executes.
v A DISCONNECT statement successfully executes at the current connection.

2-398 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS fills the CONNECTION_NAME field with blanks because
no current connection exists.

v A DISCONNECT ALL statement fails.

When the CONNECTION_NAME Is Not Updated
The CONNECTION_NAME field is not updated in the following cases:
v A CONNECT statement fails.
v A DISCONNECT statement fails (but this does not include the DISCONNECT

ALL statement).
v A SET CONNECTION statement fails.

The CONNECTION_NAME field retains the value set in the previous SQL
statement. If any of the preceding conditions occurs on the first SQL statement that
executes, the CONNECTION_NAME field is blank.

An implicit connection has no name. After a DATABASE statement successfully
creates an implicit connection, the CONNECTION_NAME field is blank.

The Contents of the CONNECTION_NAME Field
The CONNECTION_NAME field contains different information after you execute
the following statements.

Executed Statement
CONNECTION_NAME Field Contents

CONNECT
Contains connection name specified in the CONNECT statement, to which
you connect or fail to connect The field is blank for no current connection
or a default connection.

SET CONNECTION
Contains the connection name specified in the CONNECT statement, to
which you switch or fail to switch

DISCONNECT
Contains the connection name specified in the CONNECT statement, from
which you disconnect or fail to disconnect If you disconnect, and then
execute a DISCONNECT statement for a connection that is not current, the
CONNECTION_NAME field remains unchanged.

DISCONNECT ALL
Contains no information if the statement executes successfully If the
statement does not execute successfully, the CONNECTION_NAME field
contains the names of all the connections specified in your CONNECT
statement from which you did not disconnect. This information does not
mean, however, that the connection still exists.

If CONNECT is successful, CONNECTION_NAME takes one of these values:
v The name of the database environment as specified in the CONNECT statement

if the CONNECT statement does not include the AS clause
v The name of the connection (the identifier that was declared after the AS

keyword) if the CONNECT statement includes the AS clause

Chapter 2. SQL statements 2-399

Using GET DIAGNOSTICS for Error Checking
GET DIAGNOSTICS returns values from various fields in the diagnostics area. For
each field in the diagnostics area that you wish to access, you must supply a host
variable of a compatible data type.

The following example illustrates how to use the GET DIAGNOSTICS statement to
display error information. The example shows an Informix ESQL/C error display
routine called disp_sqlstate_err():
void disp_sqlstate_err()
{
int j;
EXEC SQL BEGIN DECLARE SECTION;

int exception_count;
char overflow[2];
int exception_num=1;
char class_id[255];
char subclass_id[255];
char message[255];
int messlen;
char sqlstate_code[6];
int i;

EXEC SQL END DECLARE SECTION;
printf("---------------------------------");
printf("-------------------------\n");
printf("SQLSTATE:
printf("SQLCODE: %d\n", SQLCODE);
printf("\n");
EXEC SQL get diagnostics :exception_count = NUMBER,

:overflow = MORE;
printf("EXCEPTIONS: Number=%d\t", exception_count);
printf("More? %s\n", overflow);
for (i = 1; i <= exception_count; i++)
{

EXEC SQL get diagnostics exception :i
:sqlstate_code = RETURNED_SQLSTATE,
:class_id = CLASS_ORIGIN, :subclass_id = SUBCLASS_ORIGIN,
:message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;

printf("- - - - - - - - - - - - - - - - - - - -\n");
printf("EXCEPTION %d: SQLSTATE=%s\n", i, sqlstate_code);
message[messlen-1] =’\0’;
printf("MESSAGE TEXT: %s\n", message);
j = stleng(class_id);
while((class_id[j] == ’\0’) ||

(class_id[j] == ’ ’))
j--;

class_id[j+1] = ’\0’;
printf("CLASS ORIGIN:
j = stleng(subclass_id);
while((subclass_id[j] == ’\0’) ||

(subclass_id[j] == ’ ’))
j--;

subclass_id[j+1] = ’\0’;
printf("SUBCLASS ORIGIN:

}
printf("---------------------------------");
printf("-------------------------\n");

}

Related Information

For a task-oriented discussion of error handling and the SQLSTATE variable, see
the IBM Informix Guide to SQL: Tutorial. For a discussion of concepts related to the

2-400 IBM Informix Guide to SQL: Syntax

GET DIAGNOSTICS statement and the SQLSTATE variable, see the IBM Informix
ESQL/C Programmer's Manual.

GRANT statement
Use the GRANT statement to assign access privileges and roles to users and to
other roles. Users who hold the DBSECADM role can use this statement to assign
user security labels and exemptions from label-based access control (LBAC)
security rules.

Syntax

�� GRANT

�

(1) (2)
Database-Level Privileges TO PUBLIC

(3) ,
DEFAULT ROLE Role Name

'user'
(3)

Role Name TO Options
(4)

Security Administration Options
(5)

Table-Level Privileges TO Options
(1) (6)

Routine-Level Privileges
(7)

Language-Level Privileges
(8)

Type-Level Privileges
(9)

Sequence-Level Privileges

��

TO Options:

�

�

TO PUBLIC
, WITH GRANT OPTION AS 'grantor'

'user'
,

'role'
'user'

Notes:

1 Informix extension

2 See “Database-Level Privileges” on page 2-403

3 See “Role Name” on page 2-414

4 See “Security Administration Options” on page 2-419

5 See “Table-Level Privileges” on page 2-405

6 See “Routine-Level Privileges” on page 2-410

7 See “Language-Level Privileges” on page 2-412

8 See “Type-Level Privileges” on page 2-409

Chapter 2. SQL statements 2-401

9 See “Sequence-Level Privileges” on page 2-412

Element Description Restrictions Syntax

grantor Authorization identifier of a user who can use REVOKE to cancel
the effects of this GRANT statement. If AS clause is omitted,
default is login name of user issuing this statement

Must be valid
user name (not a
role name). On
Windows, the
user name
cannot exceed 20
characters. On
other platforms,
the limit is 32
bytes.

“Owner Name”
on page 5-45

role Name of an existing role to which you grant one or more access
privileges, or to which you assign another role

Must exist in the
database

“Owner Name”
on page 5-45

user Authorization identifier of a user to whom you grant one or
more access privileges, or to whom you assign a role

Same as for
grantor

“Owner Name”
on page 5-45

Usage

The GRANT statement extends to other users specific discretionary access
privileges or LBAC labels and exceptions that would normally accrue only to the
DBA or to the creator of an object. Subsequent GRANT statements do not affect
privileges that have already been granted to a user.

You can use the GRANT statement for operations like the following:
v Authorize others to use or administer a database that you create
v Allow others to view, alter, or drop a table, synonym, view or a sequence object

that you create
v Allow others to use a data type or the SPL language, or to execute a

user-defined routine (UDR) that you create
v Assign a role and its privileges to users, or to PUBLIC, or to another role
v Assign a default role to one or more users or to PUBLIC
v If you hold the DBSECADM role, assign LBAC security labels or exemptions

from rules of LBAC security policies to users,

You can grant privileges to a previously created role or to a built-in role. You can
grant a role to PUBLIC, to individual users, or to another role.

If you enclose grantor, role, or user in quotation marks, the name is case sensitive
and is stored exactly as you typed it. In an ANSI-compliant database, if you do not
use quotation marks as delimiters, the name is stored in uppercase letters.

On Windows only, the database server does not support user name that consists of
more than 20 characters.

Privileges that you grant remain in effect until you cancel them with a REVOKE
statement. Only the grantor of a privilege can revoke that privilege. The grantor is
the person who issues the GRANT statement, unless the AS grantor clause transfers
the right to revoke those privileges to another user.

Only the owner of an object or a user to whom privileges were explicitly granted
with the WITH GRANT OPTION keywords can grant privileges on an object.
Having DBA privileges is not sufficient. As DBA, however, you can grant a

2-402 IBM Informix Guide to SQL: Syntax

privilege on behalf of another user by using the AS grantor clause. For privileges
on database objects whose owner is not a user recognized by the operating system
(for example, user informix), the AS grantor clause is useful.

The keyword PUBLIC extends the specified privilege or role to the PUBLIC group
of all users who connect to the database. If you intend to restrict privileges that
PUBLIC already holds to only a subset of users, you must first revoke those
privileges from PUBLIC.

To grant privileges on one or more fragments of a table that has been fragmented
by expression, see “GRANT FRAGMENT statement” on page 2-428.

Database-Level Privileges
Database-level access privileges affect access to a database. Only individual users,
rather than roles, can hold database privileges.

Database-Level Privileges:

CONNECT
RESOURCE
DBA

When you create a database with the CREATE DATABASE statement, you are the
owner and automatically receive all database-level privileges.

The database remains inaccessible to any other users until you, as DBA, grant
database privileges to them.

As database owner, you also receive table-level privileges on all tables in the
database automatically. For more information about table-level privileges, see
“Table-Level Privileges” on page 2-405.

Recommendation: Only user informix can modify system catalog tables directly.
Except as noted specifically in your database server documentation, however, do
not use DML statements to insert, delete, or update rows of system catalog tables
directly, because modifying data in these tables can destroy the integrity of the
database.

When database-level privileges conflict with table-level privileges, the more
restrictive privileges take precedence.

Database access levels are, from lowest to highest, Connect, Resource, and DBA.
Use the corresponding keyword to grant a level of access privilege.

Chapter 2. SQL statements 2-403

Privilege Effect

CONNECT Lets you query and modify data

You can modify the database schema if you own the database object that
you intend to modify. Any user with the Connect privilege can perform
the following operations:

v Connect to the database with the CONNECT statement or another
connection statement

v Execute SELECT, INSERT, UPDATE, and DELETE statements, provided
the user has the necessary table-level privileges

v Create views, provided the user has the Select privilege on the
underlying tables

v Create synonyms

v Create temporary tables and create indexes on the temporary tables

v Alter or drop a table or an index, provided the user owns the table or
index (or has Alter, Index, or References privileges on the table)

v Grant privileges on a table or view, provided the user owns the table
(or was given privileges on the table with the WITH GRANT OPTION
keywords)

RESOURCE Lets you extend the structure of the database In addition to the
capabilities of the Connect privilege, the holder of the Resource privilege
can perform the following functions:

v Create new tables

v Create new indexes

v Create new UDRs

v Create new data types

DBA Has all the capabilities of the Resource privilege and can perform the
following additional operations:

v Grant any database-level privilege, including the DBA privilege, to
another user

v Grant any table-level privilege to another user or to a role

v Grant a role to a user or to another role

v Revoke a privilege whose grantor you specify as the revoker in the AS
clause of the REVOKE statement

v Restrict the Execute privilege to DBAs when registering a UDR

v Execute the SET SESSION AUTHORIZATION statement

v Create any database object

v Create tables, views, and indexes, designating another user as owner of
these objects

v Alter, drop, or rename database objects, regardless of who owns them

v Execute the DROP DISTRIBUTIONS option of the UPDATE STATISTICS
statement

v Execute DROP DATABASE and RENAME DATABASE statements

User informix has the privilege required to alter the tables of the system catalog,
including the systables table.

The following example uses the PUBLIC keyword to grant the Connect privilege
on the currently active database to all users:
GRANT CONNECT TO PUBLIC;

2-404 IBM Informix Guide to SQL: Syntax

You cannot grant database-level privileges to a role. Only individual users or
PUBLIC can hold database-level privileges.

Table-Level Privileges

When you create a table with the CREATE TABLE statement, you are the table
owner and automatically receive all table-level privileges. You cannot transfer
ownership to another user, but you can grant table-level privileges to another user
or to a role. (See, however, “RENAME TABLE statement” on page 2-500, which can
change both the name and the ownership of a table.)

A user with the database-level DBA privilege automatically receives all table-level
privileges on every table in that database.

Table-Level Privileges:

�

�

PRIVILEGES
ALL

,

INSERT
DELETE

(1)
UPDATE
(1) ,

SELECT
REFERENCES (column)

(1)
ALTER
INDEX
UNDER

ON �

�
owner .

table
view
synonym

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Column on which the References, Select, or Update
privilege is granted. Default scope is all columns of
table, view, or synonym.

Must be a column of the
table, view, or synonym

“Identifier” on page
5-21

owner Name of the user who owns the table, view, or
synonym

Must be a valid
authorization identifier

“Owner Name” on
page 5-45

synonym,
table, view

Synonym, table, or view on which privileges are
granted.

Must exist in the current
database

“Identifier” on page
5-21

The GRANT statement can list one or more of the following keywords to specify
the table privileges that you grant to the same users or roles.

Privilege Effect

INSERT Lets you insert rows

Chapter 2. SQL statements 2-405

Privilege Effect

DELETE Lets you delete rows

SELECT Lets you access any column in SELECT statements. You can restrict the
Select privilege to one or more columns by listing the columns.

UPDATE Lets you access any column in UPDATE statements. You can restrict the
Update privilege to one or more columns by listing the columns.

REFERENCES Lets you define referential constraints on columns. You must have the
Resource privilege to take advantage of the References privilege. (You can
add, however, a referential constraint during an ALTER TABLE statement
without holding the Resource privilege on the database.) You need only
the References privilege to indicate cascading deletes. You do not need
the Delete privilege to place cascading deletes on a table. You can restrict
the References privilege to one or more columns by listing the columns.

INDEX Lets you create permanent indexes. You must have the Resource privilege
to use the Index privilege. (Any user with the Connect privilege can
create an index on temporary tables.)

ALTER Lets you add or delete columns, modify column data types, add or delete
constraints, change the locking mode of the table from PAGE to ROW, or
add or drop a corresponding ROW data type for your table. It also lets
you enable or disable indexes, constraints and triggers, as described in
“SET Database Object Mode statement” on page 2-599.

You must have the Resource privilege to use the Alter privilege. In
addition, you also need the Usage privilege for any user-defined data
type affected by the ALTER TABLE statement.

UNDER Lets you create sub-tables under a typed table.

ALL Provides all privileges listed above. The PRIVILEGES keyword is
optional.

You can narrow the scope of a Select, Update, or References privilege by specifying
the columns to which the privilege applies.

Specify the keyword PUBLIC as user if you intend the GRANT statement to apply
to all users.

Some simple examples that follow illustrate how to give table-level privileges with
the GRANT statement.

The following statement grants the privilege to delete and select values in any
column in the table customer to users mary and john. It also grants the Update
privilege, but only for columns customer_num, fname, and lname:
GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)

ON customer TO mary, john;

To grant the same privileges as those above to all authorized users, use the
keyword PUBLIC as the following example shows:
GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)

ON customer TO PUBLIC;

For an Informixdatabase, suppose a user named mary has created a typed table
named tab1. By default, only user mary can create subtables under the tab1 table.
If mary wants to grant the ability to create subtables under the tab1 table to a user
named john, mary must enter the following GRANT statement:
GRANT UNDER ON tab1 TO john;

2-406 IBM Informix Guide to SQL: Syntax

After receiving the Under privilege on table tab1, user john can create one or more
subtables under tab1.

Effect of the ALL Keyword
The ALL keyword grants all possible table-level privileges to the specified user. If
any or all of the table-level privileges do not exist for the grantor, the GRANT
statement with the ALL keyword succeeds (in the sense of SQLCODE being set to
zero, even if the possible privileges are an empty set for the grantor on the table).
In this case, however, the following SQLSTATE warning is returned:
01007 - Privilege not granted.

For example, assume that user ted has the Select and Insert privileges on the
customer table with the authority to grant those privileges to other users.

User ted wants to grant all table-level privileges to user tania. So user ted issues
the following GRANT statement:
GRANT ALL ON customer TO tania;

This statement executes successfully but returns SQLSTATE code 01007 for the
following reasons:
v The statement succeeds in granting the Select and Insert privileges to user tania

because user ted has those privileges and the right to grant those privileges to
other users.

v The other privileges implied by the ALL keyword were not grantable by user
ted and, therefore, were not granted to user tania.

If you grant all table-level privileges with the ALL keyword, the privileges
includes the Under privilege only if the table is a typed table. The grant of ALL
privileges does not include the Under privilege if the table is not based on a ROW
type.

If the table owner grants ALL privileges on a traditional relational table and later
changes that table to a typed table, the table owner must explicitly grant the Under
privilege to allow other users to create subtables under it.

Table Reference

You grant table-level privileges directly by specifying the name or an existing
synonym of a table or of a view, which you can qualify with the owner name.

Table Reference:

owner .
view
table
synonym

Element Description Restrictions Syntax

owner Name of the user who owns the
table, view, or synonym

Must be a valid authorization
identifier

“Owner Name” on
page 5-45

synonym, table,
view

Synonym, table, or view on which
privileges are granted

The table, view, or synonym must
exist in the database

“Identifier” on page
5-21

The object on which you grant privileges must reside in the current database.

Chapter 2. SQL statements 2-407

For table objects that the CREATE EXTERNAL TABLE statement has registered in
the current database, the Select privilege and the Insert privilege are supported,
but no other table or column access privileges can be granted or revoked.

In an ANSI-compliant database, if owner is not enclosed between quotation marks,
the database stores the owner name in lowercase letters.

Privileges on Tables and Synonyms
In an ANSI-compliant database, if you create a table, only you, its owner, have any
table-level privileges until you explicitly grant them to others.

When you create a table in a database that is not ANSI compliant, however,
PUBLIC receives Select, Insert, Delete, Under, and Update privileges for that table
and its synonyms. (The NODEFDAC environment variable, when set to yes,
prevents PUBLIC from automatically receiving these table-level privileges.)

To allow access only to some users, or only on some columns in a database that is
not ANSI compliant, you must explicitly revoke the privileges that PUBLIC
receives by default, and then grant only the privileges that you intend. For
example, this series of statements grants privileges on the entire customer table to
users john and mary, but restricts PUBLIC access to the Select privilege on only
four of the columns in that table:
REVOKE ALL ON customer FROM PUBLIC;
GRANT ALL ON customer TO john, mary;
GRANT SELECT (fname, lname, company, city) ON customer TO PUBLIC;

Privileges on a View
You must have at least the Select privilege on a table or columns to create a view
on that table. For views that reference only tables in the current database, if the
owner of a view loses the Select privilege on any base table underlying the view,
the view is dropped.

You have the same privileges for the view that you have for the table or tables
contributing data to the view. For example, if you create a view from a table to
which you have only Select privileges, you can select data from your view but you
cannot delete or update data. For information on how to create a view, see
“CREATE VIEW statement” on page 2-277.

When you create a view, PUBLIC does not automatically receive any privileges for
a view that you create. Only you have access to table data through that view. Even
users who have privileges on the base table of the view do not automatically
receive privileges for the view.

You can grant (or revoke) privileges on a view only if you are the owner of the
underlying base tables, or if you received these privileges on the base table with
the right to grant them (specified by the WITH GRANT OPTION keywords). You
must explicitly grant those privileges within your authority, because PUBLIC does
not automatically receive any privileges on a view when it is created.

The creator of a view can explicitly grant Select, Insert, Delete, and Update
privileges for the view to other users or to a role. You cannot grant Index, Alter,
Under, or References privileges on a view (nor can you specify the ALL keyword
for views, because ALL confers Index, References, and Alter privileges).

2-408 IBM Informix Guide to SQL: Syntax

|
|
|

Type-Level Privileges
You can specify two privileges on data types that are not built-in data types:
v The Usage privilege on a user-defined data type
v The Under privilege on a named ROW type

Type-Level Privileges:

USAGE ON TYPE type_name
UNDER ON TYPE row_type_name

Element Description Restrictions Syntax

row_type_name Named ROW type on which the
Under privilege is granted

Named ROW data type must exist “Identifier” on page
5-21; “Data Type” on
page 4-21

type_name User-defined type on which the
Usage privilege is granted

User-defined data type must exist. “Identifier” on page
5-21; “Data Type” on
page 4-21

To see what privileges exist on user-defined data types, check the sysxtdtypes
system catalog table for the owner of each UDT, and the sysxtdtypeauth system
catalog table for any other users or roles that hold privileges on UDTs. See the IBM
Informix Guide to SQL: Reference for information on the system catalog tables.

For all the built-in data types, however, these access privileges are automatically
available to PUBLIC and cannot be revoked.
Related concepts

System Catalog Tables (SQL Reference)

USAGE Privilege
You own any user-defined data type (UDT) that you create. As owner, you
automatically receive the Usage privilege on that data type and can grant the
Usage privilege to others so that they can reference the type name or data of that
type in SQL statements. DBAs can also grant the Usage privilege for UDTs.

The following example grants user mark access privileges to use the widget
user-defined type:
GRANT USAGE ON TYPE widget TO mark;

If you grant Usage privilege to a user (or to a role) that has Alter privileges, that
grantee can add a column to a table that contains values of your UDT.

Without privileges from the GRANT statement, any user can issue SQL statements
that reference built-in data types. In contrast, a user must receive an explicit Usage
privilege from a GRANT statement to use a distinct data type, even if the distinct
type is based on a built-in type.

For more information about user-defined types, see “CREATE OPAQUE TYPE
statement” on page 2-154, “CREATE DISTINCT TYPE statement” on page 2-100,
the discussion of data types in the IBM Informix Guide to SQL: Reference and the
IBM Informix Database Design and Implementation Guide.

Chapter 2. SQL statements 2-409

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

UNDER Privilege
You own any named ROW type that you create. If you want other users to be able
to create subtypes under this named ROW type, you must grant to these users the
Under privilege on your named ROW type.

For example, suppose that you create a ROW type named rtype1:
CREATE ROW TYPE rtype1 (cola INT, colb INT);

If you want another user named kathy to be able to create a subtype under this
named ROW type, you must grant the Under privilege on this named ROW type
to user kathy:
GRANT UNDER ON ROW TYPE rtype1 TO kathy;

Now user kathy can create another ROW type under the rtype1 ROW type, even
though kathy is not the owner of the rtype1 ROW type:
CREATE ROW TYPE rtype2 (colc INT, cold INT) UNDER rtype1;

For more about named ROW types, see “CREATE ROW TYPE statement” on page
2-176, and the discussion of data types in the IBM Informix Guide to SQL: Reference
and the IBM Informix Database Design and Implementation Guide.
Related concepts

ROW Data Types (SQL Reference)

Named row types (Database Design and Implementation Guide)

Unnamed row types (Database Design and Implementation Guide)

Routine-Level Privileges

When you create a user-defined routine (UDR), you become owner of the UDR
and you automatically receive the Execute privilege on that UDR.

The Execute privilege allows you to invoke the UDR with an EXECUTE
FUNCTION or EXECUTE PROCEDURE statement, whichever is appropriate, or
with a CALL statement in an SPL routine. The Execute privilege also allows you to
use a user-defined function in an expression, as in this example:
SELECT * FROM table WHERE in_stock(partnum) < 20;

For users, roles, or members of the PUBLIC group who need the Execute privilege
on a given UDR, the GRANT statement supports the following syntax:

Routine-Level Privileges:

EXECUTE ON SPL_routine
PROCEDURE routine ()
FUNCTION (1)
ROUTINE Routine Parameter List

(2)
SPECIFIC ROUTINE Specific Name

FUNCTION
PROCEDURE

Notes:

1 See “Routine Parameter List” on page 5-67

2-410 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_163.htm#ids_sqr_163
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.ddi.doc/ids_ddi_311.htm#ids_ddi_311
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.ddi.doc/ids_ddi_312.htm#ids_ddi_312

2 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

routine A user-defined routine Must exist “Identifier” on page 5-21

SPL_routine An SPL routine Must be unique in the database “Identifier” on page 5-21

The following statement grants Execute privilege on the delete_order routine to
user finn:
GRANT EXECUTE ON ROUTINE delete_order TO finn;

Whether you must grant the Execute privilege explicitly depends on the following
conditions:
v If you have DBA-level privileges, you can use the DBA keyword of CREATE

FUNCTION or CREATE PROCEDURE to restrict the default Execute privilege to
users with the DBA privilege. You must explicitly grant the Execute privilege on
that UDR to users who do not have the DBA privilege.

v If you have the Resource database-level privilege but not the DBA privilege, you
cannot use the DBA keyword when you create a UDR:
– When you create a UDR in a database that is not ANSI compliant, PUBLIC

can execute that UDR. You do not need to issue a GRANT statement for other
users to receive the Execute privilege.

– Setting the NODEFDAC environment variable to yes prevents PUBLIC from
executing the UDR until you explicitly grant the Execute privilege.

v In an ANSI-compliant database, the creator of a UDR must explicitly grant the
Execute privilege on the UDR for other users to be able to execute it.

In Informix, if two or more UDRs have the same name, use a keyword from this
list to specify which of those UDRs a user list can execute.

Keyword
UDR that the User Can Execute

SPECIFIC
The UDR identified by specific name

FUNCTION
Any function with the specified routine name (and parameter types that
match routine parameter list, if specified)

PROCEDURE
Any procedure with the specified routine name (and parameter types that
match routine parameter list, if specified)

ROUTINE
Functions or procedures with the specified routine name (and parameter
types that match routine parameter list, if specified)

If both a user-defined function and a user-defined procedure of Informix have the
same name and the same list of parameter data types, you can grant the Execute
privilege to both with the keyword ROUTINE.

To limit the Execute privilege to one routine among several that have the same
identifier, use the FUNCTION, PROCEDURE, or SPECIFIC keyword.

Chapter 2. SQL statements 2-411

To limit the Execute privilege to a UDR that accepts certain data types as
arguments, include the routine parameter list or use the SPECIFIC keyword to
introduce the specific name of a UDR.

In Informix, if an external function has a negator function, you must grant the
Execute privilege on both the external function and its negator function before
users can execute the external function.

A user must have the Usage privilege on a language to register a user-defined
routine of Informix that is written in that language.

Language-Level Privileges

Informix also supports language-level privileges, which specify the programming
languages of UDRs that users who have been granted Usage privileges for a given
language can register in the database. This is the syntax of the USAGE ON
LANGUAGE clause for specifying language-level privileges:

Language-Level Privileges:

USAGE ON LANGUAGE SPL

In this release of Informix, only the SPL keyword is supported in the USAGE ON
LANGUAGE clause.

When a user executes the CREATE FUNCTION or CREATE PROCEDURE
statement to register a UDR that is written in SPL, the database server verifies that
the user has the Usage privilege on the language in which the UDR is written. (In
this release of Informix, the C language and the Java language do not require
Usage privilege.)

For information on other privileges that these statements require, see “CREATE
FUNCTION statement” on page 2-125 and “CREATE PROCEDURE statement” on
page 2-162.

Usage Privilege in Stored Procedure Language
The Usage privilege on SPL is granted to PUBLIC by default. Only user informix,
the DBA, or a user who was granted the Usage privilege WITH GRANT OPTION
can grant the Usage privilege on SPL to another user.

In the following example, assume that the default Usage privilege on SPL was
revoked from PUBLIC and the DBA wants to grant the Usage privilege on SPL to
the role named developers:
GRANT USAGE ON LANGUAGE SPL TO developers;

Sequence-Level Privileges

Although Informix implements sequence objects as tables, only a subset of
table-level privileges (page “Table-Level Privileges” on page 2-405) can be granted
on a sequence. You can grant the Select or Alter privilege (or both) on a sequence:

Sequence-Level Privileges:

2-412 IBM Informix Guide to SQL: Syntax

�

ALL
,

(1)
SELECT
ALTER

ON
owner.

(1)
sequence

synonym

Notes:

1 Informix extension

Element Description Restrictions Syntax

owner Owner of sequence (or owner of synonym) Must be the owner “Owner Name” on page
5-45

sequence Sequence on which to grant privileges Must exist “Identifier” on page
5-21

synonym Synonym for a sequence object Must exist “Identifier” on page
5-21

The sequence object must exist in the current database. You can qualify the sequence
or synonym identifier with a valid owner name, but the name of a remote database
(or database@server) is not valid as a qualifier. You can include the WITH GRANT
OPTION keywords when you grant ALTER, SELECT, or ALL to a user or to
PUBLIC (but not to a role) as privileges on a sequence object.

Alter Privilege
You can grant the Alter privilege on a sequence to another user or to a role. The
Alter privilege enables a specified user or role to modify the definition of a
sequence with the ALTER SEQUENCE statement or to rename the sequence with
the RENAME SEQUENCE statement.

The following statement grants the Alter privilege to user mark on the cust_seq
sequence object:
GRANT ALTER ON cust_seq TO mark;

Select Privilege
You can grant the Select privilege on a sequence to another user or to a role. The
Select privilege enables a specified user or role to use sequence.CURRVAL and
sequence.NEXTVAL expressions in SQL statements to read and to increment
(respectively) the value of a sequence.

The following statement grants the Select privilege to user mark on the cust_seq
sequence object:
GRANT SELECT ON cust_seq TO mark;

ALL Keyword
You can specify the ALL keyword to grant both Alter and Select privileges on a
sequence object to another user or to a role, or to a list of users or roles.

The User List
You can grant privileges to an individual user or to a list of users. You can also
specify the PUBLIC keyword to grant privileges to all users.

Chapter 2. SQL statements 2-413

User List:

�

PUBLIC
,

user
'user'

Element Description Restrictions Syntax

user Login name of a user to whom you are granting
privilege or granting a role

Must be a valid
authorization identifier

“Owner Name” on
page 5-45

The following example grants the Insert table-level privilege on table1 to the user
mary in a database that is not ANSI-compliant:
GRANT INSERT ON table1 TO mary;

In an ANSI-compliant database, if you do not include quotation marks as
delimiters around user, the name of the user is stored in uppercase letters.

Role Name

You can use the GRANT statement to associate a list of one or more users (or all
users, using the PUBLIC keyword) with a role name that can describe what they
do. After you declare and grant a role, access privileges that you grant to that role
are thereby granted to all users who are currently associated with that role.

Role Name:

role
'role'

Element Description Restrictions Syntax

role Role that is granted, or to which a
privilege or another role is granted

Must exist. If enclosed between quotation
marks, role is case sensitive.

“Owner Name” on
page 5-45

You can also grant an existing role to another role. This action gives whatever
privileges the granted role possesses to all users who have the receiving role.

Granting a Role to a User or to Another Role
You must register a role in the database before the role can be used in a GRANT
statement. For more information, see “CREATE ROLE statement” on page 2-173.

A DBA has the authority to grant a new role to another user. If a user receives a
role WITH GRANT OPTION, that user can grant the role to other users or to
another role. Users keep a role that was granted to them until the REVOKE
statement breaks the association between their login names and the role name.

Important: The CREATE ROLE and GRANT statements do not activate the role. A
non-default role has no effect until SET ROLE enables it. The grantor or the
grantee of a role can issue the SET ROLE statement.

2-414 IBM Informix Guide to SQL: Syntax

The following example shows the actions required to grant and activate the role
payables to a group of employees who perform account payable functions. First
the DBA creates role payables, then grants it to maryf.
CREATE ROLE payables;
GRANT payables TO maryf WITH GRANT OPTION;

The DBA or maryf can activate the role with the following statement:
SET ROLE payables;

User maryf has the WITH GRANT OPTION authorization to grant payables to
other employees who pay accounts.
GRANT payables TO charly, gene, marvin, raoul;

If you grant privileges for one role to another role, the recipient role has the
combined set of privileges that have been granted to both roles. The following
example grants the role petty_cash to the role payables:
CREATE ROLE petty_cash;
SET ROLE petty_cash;
GRANT petty_cash TO payables;

After all of these statements execute successfully, if user raoul uses the SET ROLE
statement to make payables his current role, then (aside from the effects of any
REVOKE operations) he holds the following combined set of access privileges:
v The privileges granted to the payables role
v The privileges granted to the petty_cash role
v The privileges granted individually to raoul

v The privileges granted to PUBLIC

If you attempt to grant a role to yourself, either directly or indirectly, the database
server generates an error. (For an important exception to this rule, however, see the
description of the “DBSECADM Clause” on page 2-419.)

The database server also generates an error if you include the WITH GRANT
OPTION keywords in a GRANT statement that assigns a role to another role.

Granting privileges to a role
You can grant table-level and routine-level access privileges to a role if you have
the authority to grant these same privileges to login names or to PUBLIC. You can
also grant type-level privileges to a role. A role cannot hold database-level
privileges.

Important: The scope of a user-defined role (and of discretionary access privileges
that the GRANT statement assigns to the role) is the current database. When the
GRANT DEFAULT ROLE or SET ROLE statement activates a role, the role and its
privileges take effect in the current database only. As a security precaution,
discretionary access privileges that a user receives only from a role cannot provide
access to tables outside the current database through a view or through the action
of a trigger.

The syntax is more restricted for granting privileges to a role than to a user:
v You can specify the AS grantor clause.

In this way, whoever has the role can revoke these same privileges. For more
information, see “AS grantor Clause” on page 2-418.

v You cannot include the WITH GRANT OPTION clause.

Chapter 2. SQL statements 2-415

A role cannot, in turn, grant the same access privileges to another user.

This example grants Insert privilege on the supplier table to the role payables:
GRANT INSERT ON supplier TO payables;

Anyone who has been granted the payables role, and who successfully activates it
by issuing the SET ROLE statement, can now insert rows into supplier.

Granting a Default Role
The DBA or the owner of the database (by default, user informix) can define a
default role for one or more users or for PUBLIC with the GRANT DEFAULT ROLE
statement. A default role is activated when the user connects to the database. The
SET ROLE statement is not required to activate a default role.

Default roles are useful if users access databases through client applications that
cannot modify access privileges nor set roles.

A default role can specify a set of access privileges to all the users who are
assigned that role, as in the following example:
CREATE ROLE accounting;
GRANT ALTER, INSERT, SELECT ON stock TO accounting;
GRANT DEFAULT ROLE accounting TO mary, asok, vlad;

The last statement provides users mary, asok, and vlad with accounting as their
default role. If any of these users connects to a database, that user activates
whatever privileges the accounting role holds, in addition to any privileges that
the user already possesses as an individual or as PUBLIC.

The role must already exist and the user must have the access privileges to set the
role. If the role has not previously been granted to a user, it is granted as part of
setting the default role.

If no default role is defined for a user nor for PUBLIC, then no role is set, and the
existing privileges of the user are in effect.

The following example shows how the default role can be assigned to all users:
DATABASE hrdb;
CREATE ROLE emprole;
GRANT CONNECT TO PUBLIC;
GRANT SELECT ON emptab TO emprole;
GRANT emprole TO PUBLIC;
GRANT DEFAULT ROLE emprole TO PUBLIC;

Note: Using GRANT DEFAULT ROLE is an alternative to issuing the SET ROLE
statement in the sysdbopen() procedure. Default roles defined using the
sysdbopen() procedure, however, have precedence over any other role when a
user establishes a connection.

Changing the default role for a user or for PUBLIC only affects new database
connections. Existing connection continue to run under currently assigned roles. If
one default role was granted to user, and another default role was granted to
PUBLIC, the default role granted to user takes precedence at connection time.

A default role cannot be assigned to another role. Because roles are not defined
across databases, the default role must be assigned for each database. No options
besides the user-list are valid after the TO keyword in the GRANT DEFAULT

2-416 IBM Informix Guide to SQL: Syntax

ROLE statement. The database server issues an error if you attempt to include the
AS grantor clause or the WITH GRANT OPTION clause.

Granting the EXTEND Role
The Database Server Administrator (DBSA), by default user informix, can grant
the built-in EXTEND roles to one or more users or to PUBLIC with the GRANT
EXTEND TO user-list statement. If the IFX_EXTEND_ROLE configuration
parameter is set to ON, only users who hold the EXTEND role can create or drop
UDRs that are written in C or Java, external languages that can support shared
libraries. The SET ROLE statement is not required for the EXTEND role to have
this effect; it is sufficient for a user to hold the EXTEND role without using SET
ROLE to enable it. The following example grants this role to user max:
GRANT EXTEND TO ’max’;

This statement enables user max to create or drop UDRs, without requiring max to
issue the SET ROLE EXTEND statement. (Here the quotation marks preserve the
lowercase letters in the authorization identifier max.)

In databases for which this security feature is not needed, the DBSA can disable
this restriction on who can create or drop external UDRs by setting the
IFX_EXTEND_ROLE configuration parameter to OFF in the ONCONFIG file.
When IFX_EXTEND_ROLE is set to OFF, any user who holds the Resource
privilege can create or drop external UDRs. See “Database-Level Privileges” on
page 2-403 for information about the Resource privileges.

WITH GRANT OPTION Keywords

The WITH GRANT OPTION keywords convey the privilege or role to user with
the right to grant the same privileges or role to other users. You create a chain of
privileges that begins with you and extends to user as well as to whomever user
subsequently conveys the right to grant privileges. If you include WITH GRANT
OPTION, you can no longer control the dissemination of privileges.

The following example grants the Alter and Select privileges to user mark on the
cust_seq sequence object, with the ability to grant those privileges to others:
GRANT ALL ON cust_seq TO mark WITH GRANT OPTION;

If you revoke from user the privilege that you granted using the WITH GRANT
OPTION keyword, you sever the chain of privileges. That is, when you revoke
privileges from user, you automatically revoke the privileges of all users who
received privileges from user or from the chain that user created (unless user, or the
users who received privileges from user, were granted the same set of privileges by
someone else).

The following examples illustrate this situation. You, as the owner of the table
items, issue the following statements to grant access to user mary:
REVOKE ALL ON items FROM PUBLIC;
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION;

User mary uses her privilege to grant users cathy and paul access to the table:
GRANT SELECT, UPDATE ON items TO cathy;
GRANT SELECT ON items TO paul;

Later you revoke the access privileges for user mary on the items table:
REVOKE SELECT, UPDATE ON items FROM mary;

Chapter 2. SQL statements 2-417

This single statement effectively revokes all privileges on the items table from
users mary, cathy, and paul. If you want to create a chain of privileges with
another user as the source of the privilege, use the AS grantor clause.

In Informix, the WITH GRANT OPTION keywords are valid only for users. They
are not valid when a role is the grantee of a privilege or of another role.

The Database Server Administrator cannot include the WITH GRANT OPTION
keywords in the GRANT EXTEND or GRANT DBSECADM statements. The DBSA
cannot delegate to another user the authorization to grant the built-in EXTEND or
DBSECADM roles. If more than one user needs either of these authorizations, they
should be included in the DBSA group when the database server is installed.

In addition to the GRANT DBSECADM statement, none of the other security
administration options of the GRANT statement support the WITH GRANT
OPTION keywords. For more information about these statements and their syntax,
see “Security Administration Options” on page 2-419.

AS grantor Clause

When you grant privileges, by default, you are the one who can revoke those
privileges. The AS grantor clause lets you establish another user as the source of
the privileges you are granting. When you use this clause, the login provided in
the AS grantor clause replaces your login in the appropriate system catalog table.
You can use this clause only if you have the DBA privilege on the database.

After you use this clause, only the specified grantor can REVOKE the effects of the
current GRANT. Even a DBA cannot revoke a privilege unless that DBA is listed in
the system catalog table as the source who granted the privilege.

The following example illustrates this situation. You are the DBA and you grant all
privileges on the items table to user tom with the right to grant all privileges:
REVOKE ALL ON items FROM PUBLIC;
GRANT ALL ON items TO tom WITH GRANT OPTION;

The following example illustrates a different situation. You also grant Select and
Update privileges to user jim, but you specify that the grant is made as user tom.
(The records of the database server show that user tom is the grantor of the grant
in the systabauth system catalog table, rather than you.)
GRANT SELECT, UPDATE ON items TO jim AS tom;

Later, you decide to revoke privileges on the items table from user tom, so you
issue the following statement:
REVOKE ALL ON items FROM tom;

If instead, however, you try to revoke privileges from user jim with a similar
statement, the database server returns an error, as the next example shows:
REVOKE SELECT, UPDATE ON items FROM jim;

580: Cannot revoke permission.

You receive an error because the database server record shows the original grantor
as user tom, and you cannot revoke the privilege. Although you are the DBA, you
cannot revoke a privilege that another user granted.

2-418 IBM Informix Guide to SQL: Syntax

The AS grantor clause is not valid in the GRANT DEFAULT ROLE statement.

Security Administration Options

In conjunction with the REVOKE statement, the GRANT statement supports the
discretionary access control (DAC) data security feature of Informix by specifying
which users or roles hold privileges that are required to access the database or
objects within the database.

The Security Administration Options of the GRANT statement, like their
counterparts for the REVOKE statement, support an additional set of data security
features, called label-based access control (LBAC). These features enable Informix
to allow or withhold access to protected data on the basis of a comparing a row
security label or column security label that is contained in the data object to the
user security label and other credentials that have been granted to the user who is
seeking access.

Security Administration Options:

(1)
DBSECADM Clause

(2)
EXEMPTION Clause

(3)
SECURITY LABEL Clause

(4)
SETSESSIONAUTH Clause

Notes:

1 See “DBSECADM Clause”

2 See “EXEMPTION Clause” on page 2-421

3 See “SECURITY LABEL Clause” on page 2-423

4 See “SETSESSIONAUTH Clause” on page 2-427

Use of these GRANT statement security administration options is restricted:
v Only the Database Server Administrator (DBSA), by default user informix, or

(on UNIX) a member of the DBSA group, or (on Windows) a member of the
Informix-Admin group, can use the GRANT DBSECADM statement to grant the
DBSECADM role.

v Only a user who holds the DBSECADM role can issue the GRANT
EXEMPTION, GRANT SECURITY LABEL, or GRANT SETSESSIONAUTH
statements, or the corresponding REVOKE statements.

DBSECADM Clause

The GRANT DBSECADM statement enables the user to whom the DBSECADM
role is granted to issue DDL statements that can create, alter, rename, or drop
security objects, including security policies, security labels, and security
components.

DBSECADM Clause:

Chapter 2. SQL statements 2-419

DBSECADM TO �

,

user
USER

Element Description Restrictions Syntax

user User to whom the role is to be granted Must be the authorization
identifier of a user

“Owner Name” on page
5-45

The DBSECADM role is a built-in role that only the DBSA can grant. Unlike
user-defined roles, whose scope is the database in which the role is created, the
scope of the DBSECADM role is all of the databases of the Informix instance. It is
not necessary for DBSA to reissue the GRANT DBSECADM statement in other
databases of the same server. Like all built-in roles of Informix, the DBSECADM
role is enabled when it is granted, without requiring activation by the SET ROLE
statement, and it remains in effect until it is revoked.

Only a user who holds the DBSECADM role can issue the following SQL
statements that create or modify security objects:
v ALTER SECURITY LABEL COMPONENT
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v DROP SECURITY LABEL
v DROP SECURITY LABEL COMPONENT
v DROP SECURITY POLICY
v RENAME SECURITY LABEL
v RENAME SECURITY LABEL COMPONENT
v RENAME SECURITY POLICY

Only a user who holds the DBSECADM role can use the following SQL statements
to reference tables that are protected by a security policy:
v ALTER TABLE ... ADD SECURITY POLICY
v ALTER TABLE ... ADD ... IDSSECURITYLABEL [DEFAULT label]
v ALTER TABLE ... ADD ... [COLUMN] SECURED WITH
v ALTER TABLE ... DROP SECURITY POLICY
v ALTER TABLE ... MODIFY ... [COLUMN] SECURED WITH
v ALTER TABLE ... MODIFY ... DROP COLUMN SECURITY
v CREATE TABLE ... COLUMN SECURED WITH
v CREATE TABLE ... IDSSECURITYLABEL [DEFAULT label]
v CREATE TABLE ... SECURITY POLICY

The following GRANT and REVOKE statements also cannot be issued by a user
who does not hold the DBSECADM role:
v GRANT EXEMPTION
v GRANT SECURITY LABEL
v GRANT SETSESSIONAUTH
v REVOKE EXEMPTION

2-420 IBM Informix Guide to SQL: Syntax

v REVOKE SECURITY LABEL
v REVOKE SETSESSIONAUTH

The USER keyword that can follow the TO keyword is optional, and has no effect,
but any authorization identifier that the DBSA specifies in the GRANT
DBSECADM statement must be the identifier of an individual user, rather than the
identifier of a role, or the PUBLIC group.

The user can be the DBSA who issues this GRANT DBSECADM statement. This is
an important exception to the general restriction that the TO clause of the GRANT
statement (like the FROM clause in the REVOKE statements) cannot explicitly
reference the authorization identifier of the user who issues the statement. Unlike
other roles, access privileges, user security labels, and exemptions on rules that the
GRANT statement can specify, you can grant the DBSECADM role to yourself, if
you are user informix, or a member of the DBSA group, or (on Windows if you are
a member of the Informix-Admin group.

In the following example, the DBSA grants the DBSECADM role to user niccolo:
GRANT DBSECADM TO niccolo;

If this statement executes successfully, user niccolo can perform the LBAC
operations listed above, provided that niccolo also holds sufficient discretionary
access privileges on the database and on the database objects that those SQL
statements reference.

After a user is granted the DBSECADM role, only the DBSA can revoke it.

For a discussion of LBAC security objects, see your IBM Informix Security Guide.

EXEMPTION Clause

The GRANT EXEMPTION statement modifies the security credentials of the
specified user (or list of users) by disabling one or all of the rules of a specified
security policy.

EXEMPTION Clause:

EXEMPTION ON RULE IDSLBACREADARRAY
IDSLBACREADTREE
IDSLBACREADSET
IDSLBACWRITEARRAY

WRITEDOWN
WRITEUP

IDSLBACWRITESET
IDSLBACWRITETREE
ALL

FOR policy �

,

TO user
USER

Element Description Restrictions Syntax

policy The security policy from which the exemption
is granted

Must exist in the database “Identifier” on page
5-21

user User to whom the exemption is to be granted Must be the authorization
identifier of a user

“Owner Name” on page
5-45

Chapter 2. SQL statements 2-421

Only a user who holds the DBSECADM role can issue the GRANT EXEMPTION
statement.

Rules on Which Exemptions Are Granted: The keyword that follows the ON
keyword specifies the predefined LBAC access rule of the security policy (whose
identifier follows the FOR keyword) for which an exemption is granted. The access
rule for which exemption is granted does not apply when a table that is protected
by the specified security policy is accessed by a user to whom the exemption is
granted. For descriptions of the predefined rules for read access and for write
access that are associated with a security policy, see the section “Rules Associated
with a Security Policy” on page 2-190.

The following keywords of the GRANT EXEMPTION statement identify specific
IDSLBACRULES rules from which this statement can exempt users:
v IDSLBACREADARRAY exempts the user from the IDSLBACREADARRAY rule

for the specified security policy. That rule requires that each array component of
the user security label must be greater than or equal to the corresponding array
component of the data row security label.

v IDSLBACREADSET exempts the user from the IDSLBACREADSET rule for the
specified security policy. That rule requires that each set component of the user
security label must include the set component of the data row security label

v IDSLBACREADTREE exempts the user from the IDSLBACREADTREE rule for
the specified security policy. That rule requires that each tree component of the
user security label must include at least one of the elements in the tree
component of the data row security label, or else the ancestor of one such
element.

v IDSLBACWRITEARRAY WRITEDOWN exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. That rule requires
that each array component of the user security label must be equal to the array
component of the data row security label. The user who holds this exemption
can write to a row whose array component level is below the level in the label
of the user. The user cannot, however, write to a row in whose label the array
component level is above the level in the label of the user.

v IDSLBACWRITEARRAY WRITEUP exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. The user who
holds this exemption can write to a row whose array component level is above
the level in the label of the user. The user cannot, however, write to a row in
whose label the array component level is below the level in the label of the user.

v IDSLBACWRITEARRAY (with no WRITEDOWN or WRITEUP keyword)
exempts the user from the IDSLBACWRITEARRAY rule for the specified
security policy. The user who holds this exemption can write to a row without
regard to the corresponding array component level of the row label.

v IDSLBACWRITESET exempts the user from the IDSLBACWRITESET rule for
the specified security policy. That rule requires that each set component of the
user security label must include the set component of the data row security label

v IDSLBACWRITETREE exempts the user from the IDSLBACWRITETREE rule
for the specified security policy. That rule requires that each tree component of
the user security label must include at least one of the elements in the tree
component of the data row security label, or an ancestor of one such element.

v ALL exempts the user from all IDSLBACRULES rules for the specified security
policy. This form of exemption is required to load data into a protected table.

In the following example, DBSECADM grants an exemption from all of the rules of
the MegaCorp security policy to users manoj and sam:

2-422 IBM Informix Guide to SQL: Syntax

GRANT EXEMPTION ON RULE ALL FOR MegaCorp TO manoj, sam;

Security Policies and Grantees of Exemptions: An exemption applies only to the
rules of the security policy whose name follows the FOR keyword. A protected
table can have multiple security labels, but no more than one security policy.

The GRANT EXEMPTION statement fails with an error if the specified policy does
not exist in the database.

The USER keyword that can follow the TO keyword is optional, and has no effect,
but any authorization identifier specified in the GRANT EXEMPTION statement
must be the identifier of an individual user, rather than the identifier of a role. This
user cannot be the DBSECADM who issues the same GRANT EXEMPTION
statement.

In the following example, DBSECADM grants an exemption to user lynette from
rule IDSLBACREADARRAY of the MegaCorp security policy:
GRANT EXEMPTION ON RULE IDSLBACREADARRAY FOR MegaCorp TO lynette;

This exemption bypasses the read access rules for all array components of security
labels of the specified policy.

When the GRANT EXEMPTION statement successfully grants an exemption to a
user, the database server updates the syssecpolicyexemptions table of the system
catalog to register the new exemption (or multiple exemptions, if several users are
listed after the TO keyword).

For a discussion of LBAC security objects, see your Informix.

SECURITY LABEL Clause

The GRANT SECURITY LABEL statement grants a security label to a user or to a
list of users.

SECURITY LABEL Clause:

SECURITY LABEL policy . label �

,

TO user
USER

FOR ALL ACCESS
FOR READ ACCESS
FOR WRITE ACCESS

Element Description Restrictions Syntax

label Name of an existing security label Must exist as a label for the
specified security policy

“Identifier” on page
5-21

policy The security policy of this label Must already exist in the
database

“Identifier” on page
5-21

user User to whom the label is to be granted Must be the authorization
identifier of a user

“Owner Name” on page
5-45

Only a user who holds the DBSECADM role can issue the GRANT SECURITY
LABEL statement.

Chapter 2. SQL statements 2-423

A security label is a database object that is always associated with a security policy.
That policy defines the set of valid security components that make up the security
label. The label stores a set of one or more values for each component of the
security policy.

The DBSECADM can associate a security label with the following entities:
v A column of a database table, which a column security label can protect
v A row of a database table, which a row security label can protect
v A user, whose user security label (and any exemptions from rules of the security

policy that have been granted to the user) are called the security credentials of the
user.

When a user who holds a security label for a specific security policy attempts to
access a row that is protected by a row security label of the same security policy,
the database server compares the sets of values in the user security label and in the
row security label to determine whether the user should be allowed access to the
data. Similarly, LBAC takes into account the user security label and the column
security label in determining whether the credentials of the user should allow
access to the protected column.

The GRANT SECURITY LABEL statement is the mechanism by which DBSECADM
associates a user with a security label. (Data values in a protected table are
associated with a row security label or with a column security label by options to
the CREATE TABLE or ALTER TABLE statements that only DBSECADM can
execute, rather than by the GRANT SECURITY LABEL statement.)

The USER keyword that can follow the TO keyword is optional, and has no effect,
but any authorization identifier specified in the GRANT SECURITY LABEL
statement must be the identifier of an individual user, rather than of a role.

Access Specifications: The list of users to whom the security label is granted can
optionally be followed by keywords that specify the type of access to data that the
security policy of the label protects
v FOR WRITE ACCESS

These keywords restrict the label to the write access rules of IDSLBACRULES,
namely IDLSBACWRITEARRAY, IDLSBACWRITESET, and
IDLSBACWRITETREE. These rules affect INSERT, DELETE, and UPDATE
operations on protected data.

v FOR READ ACCESS
These keywords restrict the label to the read access rules of IDSLBACRULES,
namely IDLSBACWREADARRAY, IDLSBACREADSET, and
IDLSBACREADTREE. These rules affect SELECT, DELETE, and UPDATE
operations on protected data.

v FOR ALL ACCESS
These keywords apply the label to all of the read and write access rules that are
listed above. If the GRANT SECURITY LABEL statement includes no FOR ...
ACCESS specification, this option takes effect as the default.

For more information about these IDSLBACRULES rules for label-based read and
write access, see “Rules Associated with a Security Policy” on page 2-190. For
information about exemptions to these rules that can be granted for a specific
security policy, see “Rules on Which Exemptions Are Granted” on page 2-422.

2-424 IBM Informix Guide to SQL: Syntax

If a user is granted a different security label for read access than for write access,
then the values given for the security label components must follow these rules:
v For security label components of type ARRAY, the value must be the same in

both security labels.
v For security label components of type SET, the values given in the security label

used for WRITE access must be a subset of the values given in the security label
used for READ access. If all of the values are the same, this is interpreted as
being a subset, and is allowed.

v For security label components of type TREE, every element in the tree
component of the security label for write access must be either an element or a
descendent of an element in the tree component of the security label for read
access.

In summary, when DBSECADM attempts to grant a security label for read access
to a user who already holds a security label for write access, or vice versa, the read
label cannot be more restrictive than the write label. Otherwise, the GRANT
SECURITY LABEL statement fails with an error.

A user can be granted no more than two labels for the same security policy. If two
labels are granted for the same policy, one label must be for read access and the
other for write access. If DBSECADM attempts to grant a security label for read
access to a user who already holds a security label for read access that is based on
the same security policy, the GRANT SECURITY LABEL statement fails with an
error. A similar failure result if both labels are for write access and are on the same
security policy.

In both of these cases, the first security label must be revoked explicitly by the
REVOKE SECURITY LABEL statement before a second label can be granted for the
same access mode and the same security policy. The only exception to this rule is if
both labels specify the same values for component elements, because in this case
both security labels are functionally identical, and no error is issued.

Rules for User Security Labels: The following rules affect security labels that are
granted to users by the GRANT SECURITY LABEL statement:
v The user cannot be the DBSECADM who issues this GRANT SECURITY LABEL

statement.
v A user without a security label has a NULL or zero label. A user with no

security label cannot access data in a protected table, unless the user holds the
necessary exemptions on the policy.

v By default, the IDSSECURITYLABEL column of a protected table cannot have
NULL values. A user with no security label cannot insert data into a table with
row protection, even if the user has been granted the necessary exemptions on
the security policy, unless the row label is explicitly specified in the INSERT
statement. For details of how to specify a security label explicitly in the INSERT
statement, see “Security Label Support Functions” on page 4-118.

v User security labels have no effect on the following types of database tables,
because these tables cannot be protected by a security policy:
– Virtual Table Interface tables,
– tables with Virtual Index Interface indexes,
– tables in a typed-table hierarchy,
– temporary tables.

Examples of Granting User Security Labels:

Chapter 2. SQL statements 2-425

The following three statements create three security label components called level,
compartments, and groups respectively:
CREATE SECURITY LABEL COMPONENT

level ARRAY [’TS’,’S’,’C’,’U’];

CREATE SECURITY LABEL COMPONENT
compartments SET {’A’,’B’,’C’,’D’};

CREATE SECURITY LABEL COMPONENT
groups TREE (’G1’ ROOT,

’G2’ UNDER ROOT,
’G3’ UNDER ROOT);

The following statement creates a security policy called secPolicy based on the
three components above:
CREATE SECURITY POLICY secPolicy COMPONENTS

level, compartments, groups;

The following statement creates a security label called secLabel1:
CREATE SECURITY LABEL secPolicy.secLabel1

COMPONENT level ’S’,
COMPONENT compartments ’A’, ’B’,
COMPONENT groups ’G2’;

The following statement creates a security label called secLabel2:
CREATE SECURITY LABEL secPolicy.secLabel2

COMPONENT level ’S’,
COMPONENT compartments ’B’,
COMPONENT groups ’G2’;

The following statement creates a security label called secLabel3:
CREATE SECURITY LABEL secPolicy.secLabel3

COMPONENT level ’S’,
COMPONENT compartments ’A’,
COMPONENT groups ’G3’;

The following statement creates a security label called secLabel4:
CREATE SECURITY LABEL secPolicy.secLabel4

COMPONENT level ’TS’,
COMPONENT compartments ’A’,
COMPONENT groups ’G1’;

The following statement grants a security label for read access to user sam:
GRANT SECURITY LABEL secPolicy.secLabel1

TO sam FOR READ ACCESS;

The following statement grants a security label for write access to user sam. This
statement succeeds because it satisfies the rules given above.
GRANT SECURITY LABEL secPolicy.secLabel2

TO sam FOR WRITE ACCESS;

The following statement grants a security label for read access to user lynette:
GRANT SECURITY LABEL secPolicy.secLabel1

TO lynette FOR READ ACCESS;

The following statement attempts to grant a security label for write access to user
sam. This statement fails because it violates the rule with respect to the tree
component.

2-426 IBM Informix Guide to SQL: Syntax

GRANT SECURITY LABEL secPolicy.secLabel3
TO sam FOR WRITE ACCESS;

The following statement attempts to grant a security label for write access to user
sam. This statement fails because it violates the rule with respect to the array
component.
GRANT SECURITY LABEL secPolicy.secLabel4

TO sam FOR WRITE ACCESS;

When the GRANT SECURITY LABEL statement successfully grants a security label
to a user, the database server updates the sysseclabelauth table of the system
catalog to register the new holder of the security label.

For a discussion of LBAC security objects, see your IBM Informix Security Guide
Related concepts

Label-Based Access Control (Security Guide)

SETSESSIONAUTH Clause

The GRANT SETSESSIONAUTH statement grants the SETSESSIONAUTH
privilege to one or more users or roles. This privilege allows the holder to use the
SET SESSION AUTHORIZATION statement to set the session authorization to
PUBLIC or to any one of a list of specified users.

SETSESSIONAUTH Clause:

�

SETSESSIONAUTH ON PUBLIC
,

user
USER

�

,

TO user
USER

role
ROLE

Element Description Restrictions Syntax

role Role to which the privilege is to be granted Must be the authorization
identifier of a role

“Owner Name” on
page 5-45

user After the TO keyword, a user to whom the
privilege is to be granted. After the ON
keyword, a user whose identity the grantee can
specify in the SET AUTHORIZATION statement.

Must be the authorization
identifier of a user

“Owner Name” on
page 5-45

Only a user who holds the DBSECADM role can grant the SETSESSIONAUTH
privilege. Both the SETSESSIONAUTH privilege and the DBA privilege are
required to execute the SET AUTHORIZATION statement.

The user or PUBLIC specification that follows the ON keyword specifies whose
identity the grantee of the SETSESSIONAUTH privilege can take while using SET
SESSION AUTHORIZATION statement. This can be a user or PUBLIC but not a
role. If PUBLIC is specified, then the grantee of the privilege can assume the
identity of any database user.

Chapter 2. SQL statements 2-427

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

The USER and ROLE keywords that can follow the TO keyword are optional.
Neither the user nor the role can be the holder of the DBSECADM role who issues
the GRANT SETSESSIONAUTH statement. The TO clause cannot specify PUBLIC
as the grantee.

The following example grants to user sam the ability to set the session
authorization to users lynette and manoj:
GRANT SETSESSIONAUTH ON lynette, manoj TO sam;

The next example grants to user lynette the ability to set the session authorization
to PUBLIC:
GRANT SETSESSIONAUTH ON PUBLIC TO lynette;

Only a user who holds the DBSECADM role can revoke the SETSESSIONAUTH
privilege. For a discussion of LBAC security objects, see your IBM Informix
Security Guide

Related Information

Related statements: “GRANT FRAGMENT statement,” “REVOKE statement” on
page 2-502, and “REVOKE FRAGMENT statement” on page 2-525

For information about roles, see the following statements: “CREATE ROLE
statement” on page 2-173, “DROP ROLE statement” on page 2-338, and “SET
ROLE statement” on page 2-662.

In the IBM Informix Database Design and Implementation Guide, see the discussion of
privileges.

For a discussion of how to embed GRANT and REVOKE statements in programs,
see the IBM Informix Guide to SQL: Tutorial.

GRANT FRAGMENT statement
Use the GRANT FRAGMENT statement to assign privileges on table fragments in
the local database if the table is fragmented by expression.

Syntax

�� GRANT FRAGMENT
(1)

Fragment-Level Privileges ON table
'owner' .

�

,

(fragment) �

�

�

�

TO PUBLIC
, WITH GRANT OPTION AS 'grantor'

'user'
,

'role'

��

Notes:

1 See “Fragment-Level Privileges” on page 2-429

2-428 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

fragment Name of a fragment Must exist; cannot be
delimited by quotation
marks

“Identifier” on page
5-21

grantor User who can revoke the privileges Same as for user “Owner Name” on page
5-45

owner User who owns table Must be owner of table “Owner Name” on page
5-45

role Role to receive privileges Must exist in sysusers “Owner Name” on page
5-45

table Fragmented table on which fragment
privileges are granted

Must exist and must be
fragmented by expression

“Identifier” on page
5-21

user User to whom privileges are to be granted Must be a valid
authorization identifier

“Owner Name” on page
5-45

Usage

This statement is an extension to the ANSI/ISO standard for SQL.

Use the GRANT FRAGMENT statement to grant to users (or roles) any of the
Insert, Update, and Delete access privileges on individual fragments of a table. The
GRANT FRAGMENT statement is valid only for tables that are fragmented
according to an expression-based distribution scheme. For an explanation of this
type of fragmentation strategy, see “Expression Distribution Scheme” on page 2-14.

Fragment-Level Privileges

The keyword or keywords that follow the FRAGMENT keyword specify
fragment-level privileges, which are a logical subset of table-level privileges:

Fragment-Level Privileges:

�

ALL
,

INSERT
DELETE
UPDATE

These keywords correspond to the following fragment-level privileges:

Keyword
Effect on Grantee

ALL Receives Insert, Delete, and Update privileges on the fragment

INSERT
Can insert rows into the fragment

DELETE
Can delete rows from the fragment

UPDATE
Can update rows in the fragment and in any columns.

Chapter 2. SQL statements 2-429

|

Definition of Fragment-Level Authorization
In an ANSI-compliant database, the owner implicitly receives all table-level
privileges on a newly created table, but no other users receive privileges.

A user who has table privileges on a fragmented table has the privileges implicitly
on all fragments of the table. These privileges are not recorded in the sysfragauth
system catalog table.

When a fragmented table is created in a database that is not ANSI compliant, the
table owner implicitly receives all table-level privileges on the table, and other
users (that is, PUBLIC) receive all fragment-level privileges by default. The
privileges granted to PUBLIC are explicitly recorded in the systabauth system
catalog table.

If you use the REVOKE statement to withdraw existing table-level privileges,
however, you can then use the GRANT FRAGMENT statement to restore specified
table-level privileges to users, roles, or PUBLIC on some subset of the fragments.

Whether or not the database is ANSI compliant, you can use the GRANT
FRAGMENT statement to grant explicit Insert, Update, and Delete privileges on
one or more fragments of a table that is fragmented by expression. The privileges
that the GRANT FRAGMENT statement grants are explicitly recorded in the
sysfragauth system catalog table.

The Insert, Update, and Delete privileges that are conferred on table fragments by
the GRANT FRAGMENT statement are collectively known as fragment-level
privileges or fragment-level authority.

Effect of Fragment-Level Authorization in Statement Validation
Fragment-level privilege enables users to execute INSERT, DELETE, and UPDATE
data manipulation language (DML) statements on table fragments, even if the
grantees lack Insert, Update, and Delete privileges on the table as a whole. Users
who lack the table privileges can insert, delete, and update rows in authorized
fragments because of the algorithm by which the database server validates DML
statements. This algorithm consists of the following checks:
1. When a user executes an INSERT, DELETE, or UPDATE statement, the

database server first checks whether the user has the table privileges necessary
for the operation attempted. If the table privileges exist, the statement continues
processing.

2. If the table privileges do not exist, the database server checks whether the table
is fragmented by expression. If the table is not fragmented by expression, the
database server returns an error to the user. This error indicates that the user
does not have the privilege to execute the statement.

3. If the table is fragmented by expression, the database server checks whether the
user holds the fragment privileges necessary for the attempted operation. If the
user holds the required fragment privileges, the database server continues to
process the statement. If the fragment privileges do not exist, the database
server returns an error to the user. This error indicates that the user does not
have the privilege to execute the statement.

Duration of Fragment-Level Privileges
The duration of fragment-level privileges is tied to the duration of the
fragmentation strategy for the table as a whole.

2-430 IBM Informix Guide to SQL: Syntax

If you drop a fragmentation strategy by means of a DROP TABLE statement or by
the INIT, DROP, or DETACH clauses of an ALTER FRAGMENT statement, you
also drop any privileges that exist for the affected fragments. Similarly, if you drop
a fragment of a table, you also drop any privileges that exist for the fragment.

Tables that are created as a result of a DETACH or INIT clause of an ALTER
FRAGMENT statement do not keep the privileges that the former fragment or
fragments had when they were part of the fragmented table. Instead, such tables
assume the default table privileges.

If a table on which fragment privileges are defined is changed to a table with a
round-robin strategy or some other expression strategy, the fragment privileges are
also dropped, and the table assumes the default table privileges.

Specifying Fragments
You can specify one fragment or a comma-separated list of fragments, with the
name (or list of names) enclosed between parentheses that immediately follow the
ON table specification. You cannot use quotation marks to delimit fragment names.
The database server issues an error if you include no fragment, or if no fragment
of the specified table matches a fragment that you list.

Each fragment must be referenced by its name. If you did not declare an explicit
identifier when you created the fragment, its name defaults to the name of the
dbspace in which it resides.

After a dbspace is renamed successfully by the onspaces utility, only the new name
is valid. Informix automatically updates existing fragmentation strategies in the
system catalog to substitute the new dbspace name, but you must specify the new
name in GRANT FRAGMENT statement to reference a fragment whose default
name is the name of a renamed dbspace.

The TO Clause

The list of one or more users or roles that follows the TO keyword identifies the
grantees. You can specify the PUBLIC keyword to grant the specified
fragment-level privileges to all users.

You cannot use GRANT FRAGMENT to grant fragment-level privileges to yourself,
either directly or through roles.

If you enclose user or role in quotation marks, the name is case sensitive and is
stored exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks around user or around role, the name is stored in uppercase
letters.

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part1 to user larry:
GRANT FRAGMENT ALL ON customer (part1) TO larry;

The following statement grants the Insert, Update, and Delete privileges on the
fragments of the customer table in part1 and part2 to user millie:
GRANT FRAGMENT ALL ON customer (part1, part2) TO millie;

To grant privileges on all fragments of a table to the same user or users, you can
use the GRANT statement instead of the GRANT FRAGMENT statement. You can
also use the GRANT FRAGMENT statement for this purpose.

Chapter 2. SQL statements 2-431

|
|

|
|
|

Assume that the customer table is fragmented by expression into three fragments,
and these fragments reside in the dbspaces named part1, part2, and part3. You can
use either of the following statements to grant the Insert privilege on all fragments
of the table to user helen:
GRANT FRAGMENT INSERT ON customer (part1, part2, part3) TO helen;

GRANT INSERT ON customer TO helen;

Granting Privileges to One User or a List of Users

You can grant fragment-level privileges to a single user or to a list of users.

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part3 to user oswald:
GRANT FRAGMENT ALL ON customer (part3) TO oswald;

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part3 to users jerome and hilda:
GRANT FRAGMENT ALL ON customer (part3) TO jerome, hilda;

Granting One Privilege or a List of Privileges

When you specify fragment-level privileges in a GRANT FRAGMENT statement,
you can specify one privilege, a list of privileges, or all privileges.

The following statement grants the Update privilege on the fragment of the
customer table in part1 to user ed:
GRANT FRAGMENT UPDATE ON customer (part1) TO ed;

The following statement grants the Update and Insert privileges on the fragment of
the customer table in part1 to user susan:
GRANT FRAGMENT UPDATE, INSERT ON customer (part1) TO susan;

The following statement grants the Insert, Update, and Delete privileges on the
fragment of the customer table in part1 to user harry:
GRANT FRAGMENT ALL ON customer (part1) TO harry;

WITH GRANT OPTION Clause

As in other GRANT statements, the WITH GRANT OPTION keywords specify that
the grantee can grant the same fragment-level privileges to other users. WITH
GRANT OPTION is not valid if the TO clause specifies a role as grantee. For
additional information, see “WITH GRANT OPTION Keywords” on page 2-417.

The following statement grants the Update privilege on the fragment of the
customer table in part3 to user george and also gives george the right to grant the
Update privilege on the same fragment to other users:
GRANT FRAGMENT UPDATE ON customer (part3) TO george WITH GRANT OPTION;

AS grantor Clause

The AS grantor clause of the GRANT FRAGMENT statement can specify the
grantor of the privilege. You can use this clause only if you have the DBA privilege
on the database. When you include the AS grantor clause, the database server lists

2-432 IBM Informix Guide to SQL: Syntax

the user or role who is specified as grantor as the grantor of the privilege in the
grantor column of the sysfragauth system catalog table.

In the next example, the DBA grants the Delete privilege on the fragment of the
customer table in the part3 fragment to user martha, and uses the AS grantor
clause to specify that user jack is listed in sysfragauth as the grantor of the
privilege:
GRANT FRAGMENT DELETE ON customer (part3) TO martha AS jack;

One effect of the AS grantor clause in the previous example is that user jack can
execute the REVOKE FRAGMENT statement to cancel the Delete fragment-level
privilege that martha holds, if this GRANT FRAGMENT statement were the only
source of the fragment authority of martha on the customer rows in part3.

Omitting the AS grantor Clause
When GRANT FRAGMENT does not include the AS grantor clause, the user who
issues the statement is the default grantor of the specified fragment privileges.

In the next example, the user grants the Update privilege on the fragment of the
customer table in part3 to user fred. Because this statement does not specify the
AS grantor clause, the user who issues the statement is listed by default as the
grantor of the privilege in the sysfragauth system catalog table.
GRANT FRAGMENT UPDATE ON customer (part3) TO fred;

If you omit the AS grantor clause of GRANT FRAGMENT, or if you specify your
own login name as the grantor, you can later use the REVOKE FRAGMENT
statement to revoke the privilege that you granted to the specified user. For
example, if you grant the Delete privilege on the fragment of the customer table in
part3 to user martha but specify user jack as the grantor of the privilege, user jack
can revoke that privilege from user martha, but you cannot revoke that privilege
from user martha.

The DBA, or the owner of the fragment, can use the AS clause of the REVOKE
FRAGMENT statement to revoke privileges on the fragment.

Related Information

Related statements: “GRANT statement” on page 2-401 and “REVOKE
FRAGMENT statement” on page 2-525

For a discussion of fragment-level and table-level privileges, see the IBM Informix
Database Design and Implementation Guide.

INFO statement
Use the INFO statement to list the names of all the user-defined tables in the
current database, or to display information about a specific table.

Syntax

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement only with DB-Access.

Chapter 2. SQL statements 2-433

|
|
|
|

|

|

�� INFO TABLES
COLUMNS FOR table
INDEXES
STATUS
PRIVILEGES
ACCESS
FRAGMENTS
REFERENCES

��

Element Description Restrictions Syntax

table Table about which you seek information Must exist “Database Object Name” on page
5-16

Usage

The INFO TABLES statement lists the names of all the user-defined tables in the
current database. Other keywords that can immediately follow the INFO keyword
instruct DB-Access to display various attributes of the table whose name follows
the FOR keyword. To display information from more than one keyword option,
issue multiple INFO statements.

The keyword options that the INFO statement supports can display the following
information:
v TABLES Keyword

Use TABLES (with no FOR clause) to list the identifier of every table in the
current database, not including system catalog tables. Each user-defined table is
listed in one of the following formats:
– If you are the owner of the cust_calls table, it appears as cust_calls.
– If you are not the owner of the cust_calls table, the authorization identifier of

the owner precedes the table name, such as 'june'.cust_calls.
v COLUMNS Keyword

Use COLUMNS to display the names and data types of the columns in the
specified table, showing for each column whether NULL values are allowed.

v INDEXES Keyword

Use INDEXES to display the name, owner, and type of each index of the
specified table, the clustered status, and listing the indexed columns.

v FRAGMENTS Keyword

Use FRAGMENTS to display the fragmentation strategy and the names of the
dbspaces storing the fragments of a fragmented table. If the table is fragmented
with an expression-based distribution scheme, the INFO statement also shows
the expressions.

v ACCESS or PRIVILEGES Keyword

Use ACCESS or PRIVILEGES to display the discretionary access privileges
currently held by users, roles, and the PUBLIC group for the specified table.
(These two keywords are synonyms in this context.)

v REFERENCES Keyword

Use REFERENCES to display the References access privilege for users who can
define referential constraints on the columns of the specified table. For
database-level privileges, use a SELECT statement to query the sysusers system
catalog table.

v STATUS Keyword

2-434 IBM Informix Guide to SQL: Syntax

Use STATUS to display information about the owner, row length, number of
rows and columns, creation date, and the status of audit trails for the specified
table.

An alternative to using the INFO statement of SQL is to use the Info command of
the SQL menu or of the Table menu of DB-Access to display the same and
additional information.

Examples

Use the following example to list the user tables in a database:
INFO TABLES;

To display information about a specific table, use the syntax:
INFO info_keyword FOR table

Here table is the table name and info_keyword is one of the seven keyword options,
besides TABLES, to the INFO statement. For example, to display the names of the
columns of the table customer, use this statement:
INFO COLUMNS FOR customer;

This example produces the following output:
Column name Type Nulls

customer_num serial no
fname char(15) yes
lname char(15) yes
company char(20) yes
address1 char(20) yes
address2 char(20) yes
city char(15) yes
state char(2) yes
zipcode char(5) yes
phone char(18) yes

Related Information

Related statements: “GRANT statement” on page 2-401 and “REVOKE statement”
on page 2-502

For a description of the Info option on the SQL menu or the TABLE menu in
DB-Access, see the IBM Informix DB-Access User's Guide.

INSERT statement
Use the INSERT statement to insert one or more new rows into a table or view, or
to insert one or more elements into an SQL or Informix ESQL/C collection
variable.

Syntax

�� INSERT �

Chapter 2. SQL statements 2-435

�

�

�

(1)
INTO synonym VALUES Clause

view , (2)
table EXECUTE Routine Clause

(column) (3)
Subset of SELECT Statement

external
, (3)

Subset of SELECT Statement
(column)

(6) (7)
INTO Collection-Derived Table Field Options

(4) (5)
AT position

��

Field Options:

�

,

field

(1)
VALUES Clause

(3)
Subset of SELECT Statement

Notes:

1 See “VALUES Clause” on page 2-439

2 See “Execute Routine Clause” on page 2-446

3 See “Subset of SELECT Statement” on page 2-446

4 Stored Procedure Language only

5 ESQL/C only

6 See “Collection-Derived Table” on page 5-4

7 Informix extension

Element Description Restrictions Syntax

column Column to receive new value See “Specifying Columns” on page
2-437.

“Identifier” on page
5-21

external External table into which to
insert data

Must exist “Database Object
Name” on page 5-16

field Field of a named or unnamed
ROW data type

Must already be defined in the
database

“Field Definition” on
page 2-179

position Position at which to insert an
element of a LIST data type

Literal integer or an INT or
SMALLINT type SPL variable.

“Literal Number” on
page 4-184

synonym, table,
view

Table, view, or synonym in
which to insert data

Synonym or view and the table to
which it points must exist

“Database Object
Name” on page 5-16

Usage

To insert data into a table, you must either own the table or have the Insert
privilege for the table (see “GRANT statement” on page 2-401). To insert data into
a view, you must have the required Insert privilege, and the view must meet the
requirements explained in “Inserting Rows Through a View” on page 2-437.

2-436 IBM Informix Guide to SQL: Syntax

If the table or view has data integrity constraints, the inserted rows must meet the
constraint criteria. If they do not, the database server returns an error. If the
checking mode is set to IMMEDIATE, all specified constraints are checked at the
end of each INSERT statement. If the checking mode is set to DEFERRED, all
specified constraints are not checked until the transaction is committed.

Specifying Columns
If you do not explicitly specify one or more columns, data is inserted into columns
using the column order that was established when the table was created or last
altered. The column order is listed in the syscolumns system catalog table.

In Informix ESQL/C, you can use the DESCRIBE statement with an INSERT
statement to identify the column order and the data type of the columns in a table.

The number of columns specified in the INSERT INTO clause must equal the
number of values supplied in the VALUES clause or by the SELECT statement,
either implicitly or explicitly. If you specify a column list, the columns receive data
in the order in which you list the columns. The first value following the VALUES
keyword is inserted into the first column listed, the second value is inserted into
the second column listed, and so on.

If you omit a column from the column list, and the column does not have a default
value associated with it, the database server places a NULL value in the column
when the INSERT statement is executed.

Using the AT Clause (ESQL/C, SPL)
Use the AT clause to insert LIST elements at a specified position in a collection
variable. By default, Informix adds a new element at the end of a LIST collection.

If you specify a position greater than the number of elements in the list, the
database server adds the element to the end of the list. You must specify a position
value of at least 1 because the first element in the list is at position 1.

The following SPL example inserts a value at a specific position in a list:
CREATE PROCEDURE test3()

DEFINE a_list LIST(SMALLINT NOT NULL);
SELECT list_col INTO a_list FROM table1 WHERE id = 201;
INSERT AT 3 INTO TABLE(a_list) VALUES(9);
UPDATE table1 VALUES list_col = a_list WHERE id = 201;

END PROCEDURE;

Suppose that before this INSERT, a_list contained the elements {1,8,4,5,2}. After
this INSERT, a_list contains the elements {1,8,9,4,5,2}. The new element 9 was
inserted at position 3 in the list. For more information on inserting values into
collection variables, see “Collection-Derived Table” on page 5-4.

Inserting Rows Through a View
You can insert data through a single-table view if you have the Insert privilege on
the view. To do this, the defining SELECT statement can select from only one table,
and it cannot contain any of the following components:
v DISTINCT keyword
v GROUP BY clause
v Derived value (also referred to as a virtual column)
v Aggregate value

Chapter 2. SQL statements 2-437

Columns in the underlying table that are unspecified in the view receive either a
default value or a NULL value if no default is specified. If one of these columns
has no default value, and a NULL value is not allowed, the INSERT fails.

You can use data-integrity constraints to prevent users from inserting values into
the underlying table that do not fit the view-defining SELECT statement. For
further information, see “WITH CHECK OPTION Keywords” on page 2-281.

You can insert rows through a single-table or a multiple-table view if an INSTEAD
OF trigger specifies valid INSERT operations in its Action clause. See “INSTEAD
OF Triggers on Views” on page 2-274 for information on how to create INSTEAD
OF triggers that insert through views.

If several users are entering sensitive information into a single table, the built-in
USER function can limit their view to only the specific rows that each user
inserted. The following example contains a view and an INSERT statement that
achieves this effect:
CREATE VIEW salary_view AS

SELECT lname, fname, current_salary FROM salary WHERE entered_by = USER;

INSERT INTO salary VALUES (’Smith’, ’Pat’, 75000, USER);

Inserting Rows with a Cursor
In Informix ESQL/C, if you associate a cursor with an INSERT statement, you
must use the OPEN, PUT, and CLOSE statements to carry out the INSERT
operation. For databases that have transactions but are not ANSI-compliant, you
must issue these statements within a transaction.

If you are using a cursor that is associated with an INSERT statement, the rows are
buffered before they are written to the disk. The insert buffer is flushed under the
following conditions:
v The buffer becomes full.
v A FLUSH statement executes.
v A CLOSE statement closes the cursor.
v In a database that is not ANSI-compliant, an OPEN statement implicitly closes

and then reopens the cursor.
v A COMMIT WORK statement ends the transaction.

When the insert buffer is flushed, the client processor performs appropriate data
conversion before it sends the rows to the database server. When the database
server receives the buffer, it converts any user-defined data types and then begins
to insert the rows one at a time into the database. If an error is encountered while
the database server inserts the buffered rows into the database, any buffered rows
that follow the last successfully inserted rows are discarded.

Inserting Rows into a Database Without Transactions
If you are inserting rows into a database with no transaction logging, you must
take explicit action to restore inserted rows if the operation fails. For example, if
INSERT fails after entering some rows, the successfully inserted rows remain in the
table. You cannot recover automatically from a failed insert into a database for
which no transaction log exists

2-438 IBM Informix Guide to SQL: Syntax

Inserting Rows into a Database with Transactions
If you are inserting rows into a database and you are using explicit transactions,
use the ROLLBACK WORK statement to undo the INSERT. If you do not execute
BEGIN WORK before the INSERT, and the INSERT fails, the database server
automatically rolls back any data modifications made since the beginning of the
INSERT. If you are using an explicit transaction, and the INSERT fails, the database
server automatically undoes the effects of the INSERT.

In an ANSI-compliant database, transactions are implicit, and all database
modifications take place within a transaction. In this case, if an INSERT statement
fails, use the ROLLBACK WORK statement to undo the insertions.

Tables that you create with the RAW logging type are not logged. Thus, raw tables
are not recoverable, even if the database uses logging.

Rows that you insert with a transaction remain locked until the end of the
transaction. The end of a transaction is either a COMMIT WORK statement, where
all modifications are made to the database, or a ROLLBACK WORK statement,
where none of the modifications are made to the database. If many rows are
affected by a single INSERT statement, you can exceed the maximum number of
simultaneous locks permitted. To prevent this situation, either insert fewer rows
per transaction, or lock the page (or the entire table) before you execute the
INSERT statement.

VALUES Clause

The VALUES clause can specify values to insert into one or more columns. When
you use the VALUES clause, you can insert only one row at a time.

Each value that follows the VALUES keyword is assigned to the corresponding
column listed in the INSERT INTO clause (or in column order, if a list of columns
is not specified). If you are inserting a quoted string into a column, the maximum
length that can be inserted without error is 256 bytes.

VALUES Clause:

Chapter 2. SQL statements 2-439

VALUES �

,

(input_var)
(1)

: indicator_var
(2)

$ indicator_var
NULL
USER

(3)
Quoted String

(4)
Literal Number
(2) (5)

Constant Expression
(6)

Column Expression
(7)

Literal Collection
(8)

Literal Row
(9)

Expression
'literal_Boolean'
literal_opaque

Notes:

1 ESQL/C only

2 Informix extension

3 See “Quoted String” on page 4-188

4 See “Literal Number” on page 4-184

5 See “Constant Expressions” on page 4-70

6 See “Column Expressions” on page 4-59

7 See “Literal Collection” on page 4-177

8 See “Literal Row” on page 4-185

9 See “Expression” on page 4-40

Element Description Restrictions Syntax

indicator_var Variable to show if SQL statement
returns NULL to input_var

See the IBM Informix ESQL/C
Programmer's Manual.

Language specific

input_var Variable that holds value to insert.
This can be a collection variable.

Can contain any value option of
VALUES clause

Language specific

literal_opaque Literal representation for an opaque
data type

Must be recognized by the input
support function of the opaque
data type

See documentation of
the opaque type.

literal_Boolean Literal representation of a
BOOLEAN value as a single
character

Either ’t’ (TRUE) or ’f’ (FALSE) “Quoted String” on
page 4-188

In Informix ESQL/C, if you use an input_var variable to specify the value, you can
insert character strings longer than 256 bytes into a table.

2-440 IBM Informix Guide to SQL: Syntax

For the keywords and the types of literal values that are valid in the VALUES
clause, refer to “Constant Expressions” on page 4-70.

Considering Data Types
The value that the INSERT statement puts into a column does not need to be of
the same data type as the column that receives it. These two data types, however,
must be compatible. Two data types are compatible if the database server has some
way to cast one data type to another. A cast is the mechanism by which the
database server converts one data type to another.

The database server makes every effort to perform data conversion. If the data
cannot be converted, the INSERT operation fails. Data conversion also fails if the
target data type cannot hold the value that is specified. For example, you cannot
insert the integer 123456 into a column defined as a SMALLINT data type because
this data type cannot hold a number that large.

For a summary of the casting that the database server provides, see the IBM
Informix Guide to SQL: Reference. For information on how to create a user-defined
cast, see the CREATE CAST statement in this document and IBM Informix
User-Defined Routines and Data Types Developer's Guide.
Related tasks

Data Type Casting and Conversion (SQL Reference)

Inserting Values into Serial Columns
You can insert successive numbers, explicit values, or explicit values that reset the
value in a SERIAL, BIGSERIAL, or SERIAL8 column:
v To insert a consecutive serial value

Specify a zero (0) for the serial column in the INSERT statement. In this case, the
database server assigns the next highest value.

v To insert an explicit value
Specify the nonzero value after first verifying that it does not duplicate one
already in the table. If the serial column is uniquely indexed or has a unique
constraint, and your value duplicates one already in the table, an error results. If
the value is greater than the current maximum value, you will create a gap in
the series.

v To create a gap in the series (that is, to reset the serial value)
Specify a positive value that is greater than the current maximum value in the
column.
Alternatively, you can use the MODIFY clause of the ALTER TABLE statement to
reset the next value of a serial column.

For more information, see “Altering the Next Serial Value” on page 2-60.

NULL values are not valid in serial columns.

In Informix, inserting a serial value into a table that is part of a table hierarchy
updates all tables in the hierarchy that contain the serial counter with the value
that you insert. You can express this value either as zero (0) for the next highest
value, or as a specific positive integer.

Inserting Values into Opaque-Type Columns
Informix supports INSERT operations that specify literal values of opaque data
types as quoted strings in the VALUES clause. You can use this syntax to insert

Chapter 2. SQL statements 2-441

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_166.htm#ids_sqr_166

values of opaque UDTs into columns of tables in the local database, or into
columns of tables in other databases of the local instance.

Some opaque data types require special processing when they are inserted. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

This is accomplished by calling a user-defined support function called assign().
When you execute INSERT on a table whose rows contains one of these opaque
types, the database server automatically invokes the assign() function for the type.
The assign() function can make the decision of how to store the data. For more
information about the assign() support function, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Inserting Values into Collection Columns
You can use the VALUES clause to insert values into a collection column. For more
information, see “Collection Constructors” on page 4-82.

For example, suppose you define the tab1 table as follows:
CREATE TABLE tab1

(
int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)
);

The following INSERT statement inserts a row into tab1:
INSERT INTO tab1 VALUES

(
10,
LIST{ROW(1,’abcde’),

ROW(POW(3,3), ’=27’),
ROW(ROUND(ROOT(126)), ’=11’)},

100
);

The collection column, list1, in this example, has three elements. Each element is
an unnamed row type with an INTEGER field and a CHAR(5) field. The first
element is composed of two literal values, an integer (1) and a quoted string
(abcde). The second and third elements also use a quoted string to indicate the
second field, but specify the value for the first field with an expression.

Regardless of what method you use to insert values into a collection column, you
cannot insert NULL elements into the column. Thus expressions that you use
cannot evaluate to NULL. If the collection that you are attempting to insert
contains a NULL element, the database server returns an error.

You can also use a collection variable to insert the values of one or more collection
elements into a collection column. For more information, see “Collection-Derived
Table” on page 5-4.

Inserting Values into ROW-Type Columns
Use the VALUES clause to insert values into a named or unnamed ROW type
column, as in the following example:
CREATE ROW TYPE address_t

(
street CHAR(20),

2-442 IBM Informix Guide to SQL: Syntax

city CHAR(15),
state CHAR(2),
zipcode CHAR(9)
);

CREATE TABLE employee
(
name ROW (fname CHAR(20), lname CHAR(20)),
address address_t
);

The next example inserts literal values in the name and address columns:
INSERT INTO employee VALUES

(
ROW(’John’, ’Williams’),
ROW(’103 Baker St’, ’Tracy’,’CA’, 94060)::address_t

);

INSERT uses ROW constructors to generate values for the name column (an
unnamed ROW data type) and the address column (a named ROW data type).
When you specify a value for a named ROW data type, you must use the CAST
AS keywords or the double colon (::) operator, with the name of the ROW data
type, to cast the value to the named ROW data type.

For the syntax of ROW constructors, see “Constructor Expressions” on page 4-81 in
the Expression segment. For information on literal values for named ROW and
unnamed ROW data types, see “Literal Row” on page 4-185.

When you use a ROW variable in the VALUES clause, the ROW variable must
contain values for each field value. For more information, see “Inserting into a
Row Variable (ESQL/C, SPL)” on page 2-447.

You can use Informix ESQL/C host variables to insert nonliteral values in two
ways:
v An entire ROW type into a column. Use a row variable in the VALUES clause to

insert values for all fields in a ROW column at one time.
v Individual fields of a ROW type. To insert nonliteral values in a ROW-type

column, insert the elements into a row variable and then specify the collection
variable in the SET clause of an UPDATE statement.

Data Types in Distributed INSERT Operations
An INSERT statement (or any other SQL data-manipulation language statement)
that accesses a database of another Informix instance can reference only the
following data types:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT data types that appear in this list.

Cross-server distributed INSERT operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database.

Chapter 2. SQL statements 2-443

Cross-server DML operations cannot reference a column or expression of a
complex, large-object, nor user-defined data type (UDT), nor of an unsupported
DISTINCT or built-in opaque type. For additional information about the data types
that Informix supports in cross-server DML operations, see “Data Types in
Cross-Server Transactions” on page 2-545.

Distributed operations that access other databases of the local Informix instance,
however, can access the cross-server data types that are listed above, and also the
following data types:
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-544
v DISTINCT of the built-in types that are referenced in the line above
v DISTINCT of any of the data types that are listed in either of the two lines

above
v Opaque user-defined data types (UDTs) that can be cast explicitly to built-in

data types.

Cross-database INSERT operations can support these DISTINCT and opaque UDTs
only if all the opaque UDTs and DISTINCT types are cast explicitly to built-in
types, and all of the opaque UDTs, DISTINCT types, data type hierarchies, and
casts are defined exactly the same way in each participating database.

Distributed INSERT transactions cannot access the database of another Informix
instance unless both servers define TCP/IP or IPCSTR connections in their
DBSERVERNAME or DBSERVERALIASES configuration parameters and in the
sqlhosts file or SQLHOSTS registry subkey. The requirement, that both
participating servers support the same type of connection (either TCP/IP or else
IPCSTR), applies to any communication between Informix instances, even if both
reside on the same computer.

Using Expressions in the VALUES Clause
With IBM Informix, you can insert any type of expression except a column
expression into a column. For example, you can insert built-in functions that return
the current date, date and time, login name of the current user, or database server
name where the current database resides.

The TODAY keyword returns the system date. The CURRENT or SYSDATE
keyword returns the system date and time. The USER keyword returns a string
that contains the login account name of the current user. The SITENAME or
DBSERVERNAME keyword returns the database server name where the current
database resides. The following example uses built-in functions to insert data:
INSERT INTO cust_calls (customer_num, call_dtime, user_id,

call_code, call_descr)
VALUES (212, CURRENT, USER, ’L’, ’2 days’);

For more information, see “Expression” on page 4-40.

Inserting NULL Values
When you execute the INSERT statement, the database server inserts a NULL
value into any column for which you provide no value, as well as for all columns
that have no default values and that are not listed explicitly. You also can specify
the NULL keyword in the VALUES clause to indicate that a column should be
assigned a NULL value.

The following example inserts values into three columns of the orders table:
INSERT INTO orders (orders_num, order_date, customer_num) VALUES (0, NULL, 123);

2-444 IBM Informix Guide to SQL: Syntax

In this example, a NULL value is explicitly entered in the order_date column, and
all other columns of the orders table that are not explicitly listed in the INSERT
INTO clause are also filled with NULL values.

Inserting Values into Protected Tables
In a database that uses label-based access control (LBAC), the INTO clause of the
INSERT statement can reference a table that is protected by a security policy if the
user holds sufficient credentials for the security policy of the label that protects the
table, as well as holding the Insert privilege on the table.

A user who holds no security label, however, cannot insert data into a table that
has LBAC row protection, even if the user has been granted the required
exemptions from rules of the security policy, unless the row label of the protected
table is specified in the VALUES clause of the INSERT statement. Data
manipulation language statements can provide the row label of a protected table
by calling any of three built-in functions whose first argument specifies the name
of the security policy, and whose additional arguments are one of the following:
v name of the security label
v name of the IDSSECURITYLABEL column in the table.
v names of the security policy components in the label and the values of their

elements

For example, the following INSERT statement calls the built-in
SECLABEL_BY_NAME function in order to insert a new row into a table called
tab002 that is protected by a row label called Decca of the MegaCorp security
policy:
INSERT INTO tab002

VALUES (SECLABEL_BY_NAME(’Megacorp’, ’Decca’), 45, ’A.C.Debussy’);

Whether this INSERT operation succeeds depends on whether the security
credentials of the user are sufficient, relative to the component values of the Decca
label, to enable write access to the tab002 table.

For additional examples of INSERT statements that access protected tables by
calling SECLABEL_BY_NAME or similar built-in functions, see “Security Label
Support Functions” on page 4-118. For general information about LBAC security
policies, security labels, read and write access rules, and exemptions from those
rules, see your IBM Informix Security Guide.
Related concepts

Label-Based Access Control (Security Guide)

Truncated CHAR Values
In a database that is not ANSI-compliant, if you assign a value to a CHAR(n)
column or variable and the length of that value exceeds n characters, the database
server truncates the last characters without raising an error. For example, suppose
that you define this table:
CREATE TABLE tab1 (col_one CHAR(2);

The database server truncates the data values in the following INSERT statements
to "jo" and "sa" respectively, but does not return a warning:
INSERT INTO tab1 VALUES ("john");
INSERT INTO tab1 VALUES ("sally");

Thus, in a database that is not ANSI-compliant, the semantic integrity of data for a
CHAR(n) column or variable is not enforced when the value inserted or updated

Chapter 2. SQL statements 2-445

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

exceeds the declared length n. (But in an ANSI-compliant database, the database
server issues error -1279 when truncation of character data occurs.)

Subset of SELECT Statement
As indicated in the diagram for “INSERT statement” on page 2-435, not all clauses
and options of the SELECT statement are available for you to use in a query
within an INSERT statement. The following SELECT clauses and options are not
supported by Informix in an INSERT statement:
v FIRST and INTO TEMP
v ORDER BY and UNION

In an ANSI-compliant database, if this statement has a WHERE clause that does
not return rows, sqlca returns SQLNOTFOUND (100).

If an INSERT statement that is part of a multistatement prepared object inserts no
rows, sqlca returns SQLNOTFOUND (100) for both ANSI-compliant databases and
databases that are not ANSI-compliant. In databases that are not ANSI-compliant,
sqlca returns zero (0) if no rows satisfy the WHERE clause.

In Informix, if you are inserting values into a supertable in a table hierarchy, the
subquery can reference a subtable. If you are inserting values into a subtable in a
table hierarchy, the subquery can reference the supertable if it references only the
supertable. That is, the subquery must use the SELECT...FROM ONLY
(supertable)...syntax.

Execute Routine Clause

You can specify the EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
to insert values that a user-defined function returns.

Execute Routine Clause:

EXECUTE PROCEDURE procedure
FUNCTION function

�

()
,

(1)
Argument

Notes:

1 See “Arguments” on page 5-1

Element Description Restrictions Syntax

function,
procedure

User-defined function or procedure to insert the
data

Must exist “Database Object
Name” on page 5-16

When you use a user-defined function to insert column values, the return values of
the function must have a one-to-one correspondence with the listed columns. That
is, each value that the function returns must be of the data type expected by the
corresponding column in the column list.

For backward compatibility, Informix can use the EXECUTE PROCEDURE
keywords to execute an SPL function that was created with the CREATE
PROCEDURE statement.

2-446 IBM Informix Guide to SQL: Syntax

If the called SPL routine scans or updates the target table of the INSERT statement,
the database returns an error. That is, the SPL routine cannot select data from the
table into which you are inserting rows.

If a called SPL routine contains certain SQL statements, the database server returns
an error. For information on which SQL statements cannot be used in an SPL
routine that is called within a data manipulation statement, see “Restrictions on
SPL Routines in Data-Manipulation Statements” on page 5-77.

Number of Values Returned by SPL, C, and Java Functions
An SPL function can return one or more values. Make sure that the number of
returned values matches the number of columns in the table or the number of
columns in the column list of the INSERT statement. These columns must have
data types that are compatible with the values that the SPL function returns.

An external function written in the C or Java language can only return one value.
Make sure that you specify only one column in the column list of the INSERT
statement. This column must have a compatible data type with the value that the
external function returns. The external function can be an iterator function.

The following example shows how to insert data into a temporary table called
result_tmp in order to output to a file the results of a user-defined function (f_one)
that returns multiple rows:
CREATE TEMP TABLE result_tmp(...);
INSERT INTO result_tmp EXECUTE FUNCTION f_one();
UNLOAD TO ’file’ SELECT * FROM foo_tmp;

Inserting into a Row Variable (ESQL/C, SPL)
The INSERT statement does not support a row variable in the Collection-
Derived-Table segment. You can use the UPDATE statement, however, to insert
new field values into a row variable. For example, the following Informix ESQL/C
code fragment inserts a new row into the rectangles table (which “Inserting Values
into ROW-Type Columns” on page 2-442 defines):
EXEC SQL BEGIN DECLARE SECTION;

row (x int, y int, length float, width float) myrect;
EXEC SQL END DECLARE SECTION;

...
EXEC SQL update table(:myrect)

set x=7, y=3, length=6, width=2;
EXEC SQL insert into rectangles values (12, :myrect);

For more information, see “Updating a Row Variable (ESQL/C)” on page 2-714.

Using INSERT as a Dynamic Management Statement
In Informix ESQL/C, you can use the INSERT statement to handle situations
where you need to write code that can insert data whose structure is unknown at
the time you compile. For more information, refer to the dynamic management
section of the IBM Informix ESQL/C Programmer's Manual.

Related Information

Related statements: “CLOSE statement” on page 2-76, “DECLARE statement” on
page 2-290, “DESCRIBE statement” on page 2-314, “EXECUTE statement” on page
2-353, “FLUSH statement” on page 2-382, “FOREACH” on page 3-22, “OPEN
statement” on page 2-469, “PREPARE statement” on page 2-477, “PUT statement”
on page 2-487, and “SELECT statement” on page 2-536

Chapter 2. SQL statements 2-447

For a task-oriented discussion of inserting data into tables and for information on
how to access row and collections with SPL variables, see the IBM Informix Guide to
SQL: Tutorial.

For a discussion of the GLS aspects of the INSERT statement, see the IBM Informix
GLS User's Guide.

For information on how to access row and collection values with Informix ESQL/C
host variables, see the chapter on complex data types in the IBM Informix ESQL/C
Programmer's Manual.

LOAD statement
Use the LOAD statement to insert data from an operating-system file into an
existing table or view.

Syntax

�� LOAD FROM 'filename'
DELIMITER 'delimiter'

INSERT INTO �

� table
view
synonym

�

,

(column)

��

Element Description Restrictions Syntax

column Column to receive data values from
filename

See “INSERT INTO Clause” on
page 2-453.

“Identifier” on page
5-21

delimiter Character to separate data values in each
line of the load file. Default delimiter is
the pipe (|) symbol.

See “DELIMITER Clause” on
page 2-453.

“Quoted String” on
page 4-188

filename Path and filename of file to read. Default
pathname is current directory

See “LOAD FROM File.” Specific to operating
system rules

synonym, table,
view

Synonym for the table in which to insert
data from filename

Synonym and table or view to
which it points must exist

“Database Object
Name” on page 5-16

Usage

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement only with DB-Access.

The LOAD statement appends new rows to the table. It does not overwrite existing
data. You cannot add a row that has the same key as an existing row.

To use the LOAD statement, you must have Insert privileges for the table where
you want to insert data. For information on database-level and table-level
privileges, see the GRANT statement.

LOAD FROM File
The LOAD FROM file contains the data to be loaded into the specified table or
view. The default pathname for the load file is the current directory.

2-448 IBM Informix Guide to SQL: Syntax

You can use the file that the UNLOAD statement creates as the LOAD FROM file.
(See “UNLOAD TO File” on page 2-696 for a description of how values of various
data types are represented within the UNLOAD TO file.)

If you do not include a list of columns in the INSERT INTO clause, the fields in
the file must match the columns that are specified for the table in number, order,
and data type.

Each line of the file must have the same number of fields. You must define field
lengths that are less than or equal to the length that is specified for the
corresponding column. Specify only values that can convert to the data type of the
corresponding column. The following table indicates how the database server
expects you to represent the data types in the LOAD FROM file (when you use the
default locale, U.S. English).

Type of Data Input Format

blank One or more blank characters between delimiters You can
include leading blanks in fields that do not correspond to
character columns.

BOOLEAN A t or T indicates a TRUE value, and an f or F indicates a
FALSE value.

COLLECTIONS Collection must have its values surrounded by braces ({ }) and
a field delimiter separating each element. For more information,
see “Loading Complex Data Types” on page 2-452.

DATE Character string in the following format: mm/dd/year You must
state the month as a two-digit number. You can use a two-digit
number for the year if the year is in the 20th century. (You can
specify another century algorithm with the DBCENTURY
environment variable.) The value must be an actual date; for
example, February 30 is illegal. You can use a different date
format if you indicate this format with the GL_DATE or
DBDATE environment variable. For more information about
environment variables, see the IBM Informix Guide to SQL:
Reference and the IBM Informix GLS User's Guide.

DECIMAL, MONEY,
FLOAT

Value that can include a leading and/or trailing currency
symbol and thousands and decimal separators Your locale files
or the DBMONEY environment variable can specify a currency
format.

NULL Nothing between the delimiters

ROW types (named or
unnamed)

ROW type must have its values surrounded by parentheses and
a field delimiter that separates each element. For more
information, see “Loading Complex Data Types” on page 2-452.

Simple large objects
(TEXT, BYTE)

TEXT and BYTE columns are loaded directly from the LOAD
TO file. For more information, see “Loading Simple Large
Objects” on page 2-451.

Smart large objects
(CLOB, BLOB)

CLOB and BLOB columns are loaded from a separate
operating-system file. The field for the CLOB or BLOB column
in the LOAD FROM file contains the name of this separate file.
For more information, see “Loading Smart Large Objects” on
page 2-451.

Chapter 2. SQL statements 2-449

Type of Data Input Format

Time Character string in year-month-day hour:minute:second.fraction
format You cannot use data type keywords or qualifiers for
DATETIME or INTERVAL values. The year must be a 4-digit
number, and the month must be a 2-digit number. The DBTIME
or GL_DATETIME environment variable can specify other
formats.

User-defined data formats
(opaque types)

Associated opaque type must have an import support function
defined if special processing is required to copy the data in the
LOAD FROM file to the internal format of the opaque type. An
import binary support function might also be required for data
in binary format. The LOAD FROM file data must be in the
format that the import or import binary support function
expects. The associated opaque type must have an assign
support function if special processing is required before writing
the data in the database. See “Loading Opaque-Type Columns”
on page 2-452.

For more information on DB* environment variables, refer to the IBM Informix
Guide to SQL: Reference. For more information on GL* environment variables, refer
to the IBM Informix GLS User's Guide.

If you are using a nondefault locale, the formats of DATE, DATETIME, MONEY,
and numeric column values in the LOAD FROM file must be compatible with the
formats that the locale supports for these data types. For more information, see the
IBM Informix GLS User's Guide.

The following example shows the contents of an input file named new_custs:
0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|Palo Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||Palo Alto|CA|94301|

(415)323-6440

This data file conveys the following information:
v Indicates a serial field by specifying a zero (0)
v Uses the pipe (|), the default delimiter
v Assigns NULL values to the phone field for the first row and the address2 field

for the second row
The NULL values are shown by two delimiters with nothing between them.

The following statement loads the values from the new_custs file into the
customer table that jason owns:
LOAD FROM ’new_custs’ INSERT INTO jason.customer;

If you include any of the following special characters as part of the value of a field,
you must precede the character with a backslash (\) escape symbol:
v Backslash
v Delimiter
v Newline character anywhere in the value of a VARCHAR or NVARCHAR

column
v Newline character at end of a value for a TEXT value

2-450 IBM Informix Guide to SQL: Syntax

Do not use the backslash character (\) as a field separator. It serves as an escape
character to inform the LOAD statement that the next character is to be interpreted
as part of the data, rather than as having special significance.

Fields that correspond to character columns can contain more characters than the
defined maximum allows for the field. The extra characters are ignored.

If you are loading files that contain VARCHAR data types, note the following
information:
v If you give the LOAD statement data in which the character fields (including

VARCHAR) are longer than the column size, the excess characters are
disregarded.

v Use the backslash (\) to escape embedded delimiter and backslash characters
in all character fields, including VARCHAR.

v Do not use the following characters as delimiting characters in the LOAD FROM
file: digits (0 to 9), the letters a to f, and A to F, the backslash (\) character, or
the NEWLINE (CTRL-J) character.

Related concepts

Environment Variables (SQL Reference)

Loading Simple Large Objects
The database server loads simple large objects (BYTE and TEXT columns) directly
from the LOAD FROM file. Keep the following restrictions in mind when you load
BYTE and TEXT data:
v You cannot have leading and trailing blanks in BYTE fields.
v Use the backslash (\) to escape the special significance of literal delimiter and

backslash characters in TEXT fields.
v Data being loaded into a BYTE column must be in ASCII-hexadecimal form.

BYTE columns cannot contain preceding blanks.
v Do not use the following characters as delimiting characters in the LOAD FROM

file: digits (0 to 9), the letters a to f, and A to F, the backslash (\) character, or
the NEWLINE (CTRL-J) character.

For loading TEXT columns in a non-default locale, the database server handles any
required code-set conversions for the data. See also the IBM Informix GLS User's
Guide.

If you are unloading files that contain BYTE or TEXT data types, objects smaller
than 10 kilobytes are stored temporarily in memory. You can adjust the 10-kilobyte
setting to a larger setting with the DBBLOBBUF environment variable. Simple
large objects that are larger than the default or the setting of DBBLOBBUF are
stored in a temporary file. For more information about the DBBLOBBUF
environment variable, see the IBM Informix Guide to SQL: Reference.
Related reference

DBBLOBBUF (SQL Reference)

Loading Smart Large Objects
The database server loads smart large objects (BLOB and CLOB columns) from a
separate operating-system file on the client computer. For information on the
structure of this file, see “Unloading Smart Large Objects” on page 2-697.

In a LOAD FROM file, a CLOB or BLOB column value appears as follows:

Chapter 2. SQL statements 2-451

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_208.htm#ids_sqr_208

start_off,length,client_path

In this format, start_off is the starting offset (in hexadecimal) of the
smart-large-object value within the client file, length is the length (in hexadecimal)
of the BLOB or CLOB value, and client_path is the pathname for the client file. No
blank spaces can appear between these values.

For example, to load a CLOB value that is 512 bytes long and is at offset 256 in the
/usr/apps/clob9ce7.318 file, the database server expects the CLOB value to appear
as follows in the LOAD FROM file:
|100,200,/usr/apps/clob9ce7.318|

If the whole client file is to be loaded, a CLOB or BLOB column value appears as
follows in the LOAD FROM file:
client_path

For example, to load a CLOB value that occupies the entire file
/usr/apps/clob9ce7.318, the database server expects the CLOB value to appear as
follows in the LOAD FROM file:
|/usr/apps/clob9ce7.318|

In DB-Access, the USING clause is valid within files executed from DB-Access. In
interactive mode, DB-Access prompts you for a password, so the USING keyword
and validation_var are not used.

For CLOB columns, the database server handles any required code-set conversions
for the data. See also the IBM Informix GLS User's Guide.

Loading Complex Data Types
In a LOAD FROM file, complex data types appear as follows:
v Collections are introduced with the appropriate constructor (SET, MULTISET, or

LIST), and their elements are enclosed in braces ({ }) and separated with a
comma, as follows:
constructor{val1 , val2 , ... }

For example, to load the SET values {1, 3, 4} into a column whose data type is
SET(INTEGER NOT NULL), the corresponding field of the LOAD FROM file
appears as:
|SET{1 , 3 , 4}|

v Row types (named and unnamed) are introduced with the ROW constructor and
their fields are enclosed with parentheses and separated with a comma, as
follows:
ROW(val1 , val2 , ...)

For example, to load the ROW values (1, ’abc’), the corresponding field of the
LOAD FROM file appears as:
|ROW(1 , abc)|

Loading Opaque-Type Columns
Some opaque data types require special processing when they are inserted. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

2-452 IBM Informix Guide to SQL: Syntax

This processing is accomplished by calling a user-defined support function called
assign(). When you execute the LOAD statement on a table whose rows contain
one of these opaque types, the database server automatically invokes the assign()
function for the type. The assign() function can make the decision of how to store
the data. For more information about the assign() support function, see the IBM
Informix User-Defined Routines and Data Types Developer's Guide.

DELIMITER Clause

Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the input file. You can specify TAB (CTRL-I)
or a blank space (= ASCII 32) as the delimiter symbol. You cannot use the
following items as the delimiter symbol:
v Backslash (\)
v NEWLINE character (CTRL-J)
v Hexadecimal numbers (0 to 9, a to f, A to F)

If you omit this clause, the database server checks the DBDELIMITER
environment variable. For information about how to set the DBDELIMITER
environment variable, see the IBM Informix Guide to SQL: Reference.

If the DBDELIMITER environment variable has not been set, the default delimiter
is the pipe (|).

The following example specifies the semicolon (;) as the delimiting character. The
example uses Windows file-naming conventions.
LOAD FROM ’C:\data\loadfile’ DELIMITER ’;’

INSERT INTO orders;

Related reference

DBDELIMITER (SQL Reference)

INSERT INTO Clause

Use the INSERT INTO clause to specify the table, synonym, or view in which to
load the new data. You must specify the column names only if one of the
following conditions is true:
v You are not loading data into all columns.
v The input file does not match the default order of the columns (the order

specified when the table was created).

The INTO clause cannot specify a table object that the CREATE EXTERNAL
TABLE statement defined.

The following example identifies the price and discount columns as the only
columns in which to add data. The example uses Windows file naming
conventions.
LOAD FROM ’C:\tmp\prices’ DELIMITER ’,’

INSERT INTO norman.worktab(price,discount)

Related Information

Related statements: “UNLOAD statement” on page 2-695 and “INSERT statement”
on page 2-435

Chapter 2. SQL statements 2-453

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_214.htm#ids_sqr_214

For a task-oriented discussion of the LOAD statement and other utilities for
moving data, see the IBM Informix Migration Guide.

For a discussion of the GLS aspects of the LOAD statement, see the IBM Informix
GLS User's Guide.
Related concepts

The LOAD and UNLOAD statements (Migration Guide)

LOCK TABLE statement
Use the LOCK TABLE statement to control access to a table by other processes.

Syntax

�� LOCK TABLE
owner.

table
synonym

IN SHARE
EXCLUSIVE

MODE ��

Element Description Restrictions Syntax

owner Owner of synonym or table Must be the owner of the
specified object

“Owner Name” on page 5-45

synonym Synonym for the table to be
locked

Synonym and the table to which it
points must exist

“Identifier” on page 5-21

table Table to be locked See first paragraph of “Usage.” “Identifier” on page 5-21

Usage

This statement is an extension to the ANSI/ISO standard for SQL.

You can use LOCK TABLE to lock a table if either of the following is true:
v You are the owner of the table.
v You have Select privilege on the table or on a column in the table, either from a

direct grant or from a grant to PUBLIC or to your current role.

The LOCK TABLE statement fails if the table is already locked in EXCLUSIVE
mode by another process, or if you request an EXCLUSIVE lock while another user
has locked the same table in SHARE mode.

The SHARE keyword locks a table in shared mode. Shared mode gives other
processes read access to the table but denies write access. Other processes cannot
update or delete data if a table is locked in shared mode.

The EXCLUSIVE keyword locks a table in exclusive mode. This mode denies other
processes both read and write access to the table. Exclusive-mode locking
automatically occurs during the ALTER INDEX, ALTER TABLE, CREATE INDEX,
DROP INDEX, RENAME COLUMN, RENAME TABLE, START VIOLATIONS
TABLE, STOP VIOLATIONS TABLE, and TRUNCATE statements.

LOCK TABLE statement behavior on secondary servers

You can set an exclusive lock on a table from an updatable secondary server in a
high-availability cluster. For exclusive mode locks requested from a secondary

2-454 IBM Informix Guide to SQL: Syntax

|

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.mig.doc/ids_mig_181.htm#ids_mig_181

server, sessions can read the table but not update it. This behavior is similar to
shared access mode on a secondary server; that is, when one session has an
exclusive lock on a given table, no other session can obtain a shared or exclusive
lock on that table.

On read-only secondary servers, the session issuing the LOCK TABLE statement
does not lock the table and the database server does not return an error to the
client.

Shared mode locks in a cluster behave the same as for a standalone server. After a
LOCK TABLE statement runs successfully, users can read the table but cannot
modify it until the lock is released.

Concurrent Access to Tables with Shared Locks
After the LOCK TABLE statement that specifies the IN SHARE MODE keywords
executes successfully, other users can read the table but cannot modify its data
until the lock is released. In databases that support transaction logging, the
SELECT statement can implicitly place a shared lock on each tables that is listed in
the FROM clause, in order to prevent other users from modifying those tables until
the query is committed or rolled back.

Concurrent Access to Tables with Exclusive Locks
After the LOCK TABLE statement with the IN EXCLUSIVE MODE option executes
successfully, no other user can obtain a lock on the specified table. When you
attempt a DDL operation on that table, however, you might receive RSAM error
-106 if the same table is being accessed by a concurrent session (for example, by
opening a cursor). This error can also affect implicit locks that certain DDL
statements place on tables automatically.

This is possible because table locks do not preclude table access. An exclusive lock
prevents other users from obtaining a lock, but it cannot prevent them from
opening the table for write operations that wait for the exclusive lock to be
released, or for Dirty Read operations on the table. You can set the
IFX_DIRTY_WAIT environment variable to specify that the DDL operation wait
for a specified number of seconds for Dirty Read operations to commit or rollback.

When one or more rows in a table are locked by an exclusive lock, the effect on
other users partly depends on their transaction isolation level. Other users in all
isolation levels except the Dirty Read isolation level might encounter locking
errors, such as transactions that fail because the lock was not released within a
specified time limit, or a deadlock situation.

On tables where row-level locking affects some of the rows, the risk of locking
conflicts can be reduced by enabling transactions to read the most recently
committed version of the data in the row-level locked table, rather than waiting for
the transaction that holds the lock on that row to be committed or rolled back. This
can be accomplished in several different ways, including these:
v From an individual session, issue this SQL statement

SET ISOLATION TO COMMITTED READ LAST COMMITTED;

v For all sessions using Committed Read or Read Committed isolation levels, set
the USELASTCOMMITTED configuration parameter to ’ALL’ or to ’COMMITTED
READ’, or else issue the SET ENVIRONMENT USELASTCOMMITTED statement
with ’ALL’ or ’COMMITTED READ’ as the session environment option.

Chapter 2. SQL statements 2-455

|
|
|
|

|
|
|

|
|
|

v For all sessions using Dirty Read or Read Uncommitted isolation levels, set the
USELASTCOMMITTED configuration parameter to ’ALL’ or to ’DIRTY READ’, or
else issue the SET ENVIRONMENT USELASTCOMMITTED statement with
’ALL’ or ’DIRTY READ’ as the session environment option.

v For users for whom a user.sysdbopen() procedure is defined in the database,
the DBA can define that procedure to include the SET ENVIRONMENT
USELASTCOMMITTED statement with ’ALL’ or ’COMMITTED READ’ as the session
environment option, and also issue the SET ISOLATION statement to set
Committed Read as the isolation level.

v For users for whom no user.sysdbopen() procedure exists in the database, the
DBA can define a PUBLIC.sysdbopen procedure that specifies the same SET
ENVIRONMENT USELASTCOMMITTED and SET ISOLATION statements.

This LAST COMMITTED isolation feature is useful only when row-level locking is
in effect, rather than when another session holds an exclusive lock on the entire
table. This feature is disabled for the specified table when LOCK TABLE applies a
table-level lock. See “The LAST COMMITTED Option to Committed Read” on
page 2-651 for more information about this LAST COMMITTED feature for
concurrent access to tables in which some rows are locked by exclusive locks, and
for restrictions on the kinds of tables that can support this feature.

Databases with transaction logging
If your database was created with transaction logging, the LOCK TABLE statement
succeeds only if it executes within a transaction. You must issue a BEGIN WORK
statement before you can execute a LOCK TABLE statement.

Transactions are implicit in an ANSI-compliant database. The LOCK TABLE
statement succeeds if the specified table is not already locked by another process.

The following guidelines apply to the use of the LOCK TABLE statement within
transactions:
v You cannot lock system catalog tables.
v You cannot switch between shared and exclusive table locking within a

transaction. For example, once you lock the table in shared mode, you cannot
upgrade the lock mode to exclusive.

v If you issue a LOCK TABLE statement before you access a row in the table, and
PDQ is not in effect, no row locks are set for the table. In this way, you can
override row-level locking and avoid exceeding the maximum number of locks
that are defined in the database server configuration. (But if PDQ is not in effect,
you might run out of locks with error -134 unless the LOCKS parameter of your
ONCONFIG file specifies a large enough number of locks.)

v All row and table locks release automatically after a transaction is completed.
The UNLOCK TABLE statement fails in a database that uses transaction logging.

v The same user can explicitly use LOCK TABLE to lock up to 32 tables
concurrently. (Use SET ISOLATION to specify an appropriate isolation level,
such as Repeatable Read, if you need to lock rows from more than 32 tables
during a single transaction.)

The following example shows how to change the locking mode of a table in a
database that was created with transaction logging:
BEGIN WORK;
LOCK TABLE orders IN EXCLUSIVE MODE;
...
COMMIT WORK;

2-456 IBM Informix Guide to SQL: Syntax

BEGIN WORK;
LOCK TABLE orders IN SHARE MODE;
...
COMMIT WORK;

Warning: It is recommended that you not use nonlogging tables in a transaction. If
you need to use a nonlogging table in a transaction, either lock the table in
exclusive mode or set the isolation level to Repeatable Read to prevent concurrency
problems.

Databases without transaction logging
In a database that was created without transaction logging (by omitting the WITH
LOG keywords in the CREATE DATABASE statement), table locks that were set by
the LOCK TABLE statement are released after any of the following events:
v An UNLOCK TABLE statement executes.
v The user closes the database.
v The user exits from the application.

To change the lock mode on a table, release the lock with the UNLOCK TABLE
statement and then issue a new LOCK TABLE statement.

The following example shows how to change the lock mode of a table in an
unlogged database:
LOCK TABLE orders IN EXCLUSIVE MODE;

. . .
UNLOCK TABLE orders;

. . .
LOCK TABLE orders IN SHARE MODE;

Locking Granularity
The default granularity for locking a table is at the page level, or whatever you
specify (either PAGE or ROW) in the IFX_TABLE_LOCKMODE environment
variable, or if that is not set, by setting DEF_TABLE_LOCKMODE in the
ONCONFIG file. The LOCK MODE clause of the CREATE TABLE or ALTER
TABLE statement can override the default locking granularity by specifying PAGE
or ROW. Only row-level locks support the LAST COMMITTED feature of Informix.

The LOCK TABLE statement, however, always locks the entire table, overriding
any other locking granularity specification for the table.

In all of these contexts, the term "lock mode" means the locking granularity. In the
context of the SET LOCK MODE statement, however, "lock mode" refers to the
behavior of the database server when a process attempts to access a row or a table
that another process has locked.

Related Information

Related statements: “BEGIN WORK statement” on page 2-74, “COMMIT WORK
statement” on page 2-81, “SAVE EXTERNAL DIRECTIVES statement” on page
2-531, “SET ISOLATION statement” on page 2-648, “SET LOCK MODE statement”
on page 2-655, and “UNLOCK TABLE statement” on page 2-699

For a discussion of concurrency and locks, see the IBM Informix Guide to SQL:
Tutorial.

Chapter 2. SQL statements 2-457

MERGE statement

Use the MERGE statement to transfer data from a source table into a target table
by combining UPDATE or DELETE operations with INSERT operations in a single
SQL statement. You can also use this statement to join the source and target tables,
and then perform only UPDATE operations, only DELETE operations, or only
INSERT operations on the target table.

The MERGE statement supports the ANSI/ISO standard for SQL with Informix
extensions.

Syntax

��

�

MERGE INTO target_table
, target_view alias

target_synonym AS
directive

�

� USING source_table
source_view alias
(source_subquery) AS

�

,

(derived_column)

ON condition �

� �

,
(1)

Insert Clause
(1)

Update Clause
Delete Clause

��

Update Clause:

(2)
WHEN MATCHED THEN UPDATE SET Clause

Delete Clause:

WHEN MATCHED THEN DELETE

Insert Clause:

�

(3)
WHEN NOT MATCHED THEN INSERT VALUES Clause

,

(column)

Notes:

1 Use this path no more than once

2-458 IBM Informix Guide to SQL: Syntax

|
|
|
|
|

|

2 See “SET Clause” on page 2-704

3 See “VALUES Clause” on page 2-439

Element Description Restrictions Syntax

alias A temporary name that you declare
here for the target or source table
object

The source and target aliases must
be different. If potentially
ambiguous, the AS keyword must
precede alias.

“Identifier” on page
5-21

column A column in the target object into
which to insert source data

This must exist in the target object “Identifier” on page
5-21

condition A Boolean condition to apply to
rows in the join of the source and
target tables

This can reference data values in
the source and target objects

“Condition” on page
4-5

derived_column A name that you declare here if the
source object is a derived table

The SET and VALUES clauses can
reference this name.

“Identifier” on page
5-21

directive A query optimizer directive The directive must be valid. “Optimizer
Directives” on page
5-35

source_table,
source_view,
source_subquery

A table (or the result of a query)
containing data to be relocated

Object must exist. See also
“Restrictions on Source and Target
Tables” on page 2-463.

“Database Object
Name” on page 5-16;
“SELECT statement”
on page 2-536

target_table,
target_view,
target_synonym

The name or synonym of a table or
updatable view in which to insert,
update, or delete data

See “Restrictions on Source and
Target Tables” on page 2-463.

“Database Object
Name” on page 5-16

Usage

The MERGE statement of Informix is a data manipulation language (DML)
statement that joins a source table object with a target table or view. The condition
that you specify after the ON keyword determines which rows from the source
object are used in UPDATE or DELETE operations on the target, and which rows
are used in INSERT operations on the target. The MERGE statement does not
modify its source object.

The condition must be followed by the WHEN MATCHED THEN keywords of the
Delete or the Update clause, or by the WHEN NOT MATCHED THEN keywords
of the Insert clause, or by both the Update (or Delete) and Insert clauses.
v If you specify both the Update clause and the Insert clause, the MERGE

statement can perform both INSERT and UPDATE operations on the target
object.

v If you specify both the Delete clause and the Insert clause, the MERGE statement
can perform both INSERT and DELETE operations on the target object.

v If you specify no Insert clause, no INSERT operations are performed, but the
Update clause must specify an UPDATE operation (or else the Delete clause
must specify a DELETE operation) on the target object for source rows that
match the condition.

v If you specify no Update clause and no Delete clause, no UPDATE or DELETE
operations are performed, but the Insert clause must specify an INSERT
operation on the target object for source rows that do not match the condition.

The MERGE statement fails with an error if no Delete clause, no Update clause,
and no Insert clause is specified.

Chapter 2. SQL statements 2-459

|
|
|

|
|

|
|
|
|

|
|
|

|
|

The MERGE statement can have the following effects on the target object:
v If the Update clause is included, the MERGE statement updates rows in the

target table or view according to the specifications of the SET clause with data
from rows in the source table for which the condition evaluates to true.

v If the Delete clause is included, the MERGE statement deletes from the target
table or view the rows for which the condition evaluates to true.

v If the Insert clause is included, the MERGE statement inserts new rows into the
target table or view according to the specifications of the VALUES clause with
data from rows in the source table for which the condition evaluates to false.

A single MERGE statement, however, can have no more than two of these three
effects, because the Delete clause and the Update clause are mutually exclusive.

For operations on large tables, make sure that these resources are available on your
system:
v A sufficient number of locks
v Sufficient temporary dbspace storage for the intermediate join results
v Sufficient dbspace storage for the results of the MERGE statement.

In a high-availability cluster configuration, you can issue the MERGE statement
from a primary server or from an updatable secondary server.

Optimizer Directives and Subqueries

You can optionally specify one or more query optimizer directives after the
MERGE keyword, such as access method directives, join order directives, and join
method directives to specify how the source and target tables are joined. The
goal-oriented directives like EXPLAIN and AVOID_EXECUTE are also valid in the
MERGE statement.

Within the MERGE statement, subqueries can also include optimizer directives to
control other aspects of the execution plan. Subqueries are valid in the following
contexts in the MERGE statement:
v In the condition of the ON clause
v In the SET clause of the Update clause
v In the VALUES clause of the Insert clause
v In the USING clause if it specifies a source query, which can include a subquery

in any context where the SELECT statement supports a subquery.

The MERGE statement fails with an error, however, if it includes a subquery that
references the target table.

In a database that supports external directives, the query optimizer can also apply
external directives to the outer join of the source and target tables, or to subqueries
within the MERGE statement.

The ON Condition

The condition that follows the ON keyword specifies a join filter for the source and
target table objects. This ON clause filter determines the matched rows and
unmatched rows in the MERGE statement, based on the outer join of the target
and source tables.

2-460 IBM Informix Guide to SQL: Syntax

|
|

|
|

v If the MERGE statement includes the Update clause, and the ON clause
condition evaluates to true, then the corresponding rows are updated in the
target.

v If the MERGE statement includes the Delete clause, and the ON clause condition
evaluates to true, then the corresponding rows are deleted from the target.

v If the MERGE statement includes the Insert clause, and the ON clause condition
evaluates to false, then the corresponding source rows are inserted into the
target.

Update operations of the MERGE statement on rows that match the condition obey
the UPDATE statement rules for the SET clause. For details of the syntax for
specifying the updated values in the target table, see “SET Clause” on page 2-704.

Delete operations of MERGE on rows that match the condition obey the DELETE
statement rules. For details of deleting values from the target table, see “Using the
WHERE Keyword to Specify a Condition” on page 2-310.

Insert operations on rows that do not match the condition obey the INSERT
statement rules for the VALUES clause. For details of the syntax for specifying the
inserted values in the target table, see “VALUES Clause” on page 2-439.

Error Handling

If an error occurs while the MERGE statement is executing, the entire statement is
rolled back.

For databases that support transaction logging, you can include error-handling
logic that includes the ROLLBACK TO SAVEPOINT statement in a transaction that
includes the MERGE statement and that defines one or more savepoints. After a
partial rollback of the transaction to a savepoint, the effects of the INSERT,
DELETE, or UPDATE operations of the MERGE statement persist in the target
table if the MERGE statement precedes the savepoint in the lexical order of
statements for that savepoint level of the transaction. The effects of MERGE are
rolled back, however, if the MERGE statement follows the specified savepoint
within the transaction.

In an ANSI-compliant database, data manipulation language (DML) statements are
always in a transaction. These databases do not support the MERGE statement
outside a transaction.

Constraint Checking

Enabled data-integrity constraints on the target object are enforced in MERGE
operations.
v If the checking mode is set to DEFERRED, the constraints are not checked until

after the transaction is committed.
v If the constraint-checking mode for the target table is set to IMMEDIATE, then

unique and referential constraints are checked after all the UPDATE (or
DELETE) and INSERT operations are complete. The NOT NULL and check
constraints are checked during the UPDATE, DELETE, and INSERT operations.

For information on setting the constraint-checking mode, see the topic “SET
Transaction Mode statement” on page 2-674.

Chapter 2. SQL statements 2-461

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

If a referential constraint on the target table was defined with the ON DELETE
CASCADE keywords, the DELETE clause of the MERGE statement also performs
cascading deletes on rows of child tables of the target table.

A Delete merge fails, however, if an enabled referential constraint has established a
parent-child relationship between the target and source tables, if the constraint was
defined with the ON DELETE CASCADE keywords. The MERGE statement cannot
perform cascading deletes on rows of its source table. For more information, see
the topic “Restrictions on DELETE When Tables Have Cascading Deletes” on page
2-309.

If the START VIOLATIONS statement has defined an active violations table on the
target table, then the MERGE statement can have the following effects on the
target, violations, and diagnostic tables:
v The conforming rows in the target table that match the join condition are either

deleted or updated.
v The target table also receives the conforming unmatched rows that MERGE

successfully inserts.
v The violation table receives the nonconforming rows.
v A diagnostic table receives information about why the nonconforming rows

failed to satisfy a constraint or a unique index during operations of the MERGE
statement on the target table.

To enable a violations table and a diagnostic table on the target table, the SET
Database Object Mode statement must set the constraints or unique indexes of the
target table to ENABLED or FILTERING mode. For more information, see the
topics “Relationship to the SET Database Object Mode statement” on page 2-678
and “SET Database Object Mode statement” on page 2-599.

Using the MERGE Statement with Triggers

The target object can be a table on which an Update, Delete, or Insert trigger is
defined. If both an Update trigger and an Insert trigger (or both a Delete trigger
and an Insert trigger) are enabled on the target table, MERGE can act as the
triggering event for both triggers, if the MERGE statement performs both UPDATE
(or DELETE) and INSERT operations on the target.

If the MERGE statement includes operations that activate both Update (or Delete)
and Insert triggers, the BEFORE trigger actions of both triggers are executed when
the MERGE operation starts. Similarly, the AFTER trigger actions of both triggers
are executed at the end of the MERGE operation. The FOR EACH ROW trigger
actions are activated for each row processed.

Just as for any DML statement, the database server treats all the triggers that are
activated by the same MERGE statement as a single trigger, and the resulting
trigger action is the merged-action list. All the rules that govern a trigger action
apply to the merged list as one list, and no distinction is made between the two
original triggers. For more information, see “Actions of Multiple Triggers” on page
2-256.

The target object, however, cannot be a view on which an enabled INSTEAD OF
trigger is defined. Before you can use that view as the target of a MERGE
statement, you must disable or drop the INSTEAD OF trigger.

2-462 IBM Informix Guide to SQL: Syntax

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

In the definition of a trigger, the MERGE statement cannot be specified directly as
a triggered action. An SPL trigger routine that is called in a triggered action,
however, can issue the MERGE statement.

Security Policies and Secure Auditing

If the source object or any of its columns is protected by a label-based access
control (LBAC) security policy, the user who issues the MERGE statement must
have a security label (or must hold a security policy exemption) that provides
sufficient credentials to read the source table in MERGE operations.

If the target object or any of its columns is protected by a label-based security
policy, the user who issues the MERGE statement must have a security label (or
must hold a security policy exemption) that provides sufficient credentials to write
in the target object columns that the SET clause or the VALUES clause specifies, or
to delete rows from the target that include protected data.

If both the source and the target table are protected, they must be protected by the
same security policy. The MERGE statement cannot join tables that are protected
by different LBAC security policies.

On Informix instances that use the secure-auditing facility to record activity that
could potentially alter or reveal data or the auditing configuration, no specific
audit event mnemonic is defined in audit trails for the MERGE statement:
v Activities specified by the Delete clause are recorded as DELETE events.
v Activities specified by the Insert clause are recorded as INSERT events.
v Activities specified by the Update clause are recorded as UPDATE events.

Restrictions on Source and Target Tables
Which table objects can be the source or target of the MERGE statement depends
on attributes of the table object, and on what access privileges are held by the user
who issues the MERGE statement.

The target table must be local to the database to which the current session is
connected, but you can specify a remote a table as the source table, or in
subqueries of the SET clause for UPDATE operations, and in subqueries of the
VALUES clause for INSERT operations. Sections that follow identify additional
restrictions on the source and target tables.

Restrictions on the Source Table

The source object can be the name or synonym of a STANDARD, RAW, TEMP,
EXTERNAL, or collection-derived table, or a view. It can be in the same database
as the target object, or in a different database of the local Informix instance, or it
can be a remote table that is managed by a different Informix instance.

If the source is a collection-derived table that is defined by the result of a query,
the USING clause can declare names for derived columns that the SET and
VALUES clauses of the MERGE statement can reference.

The user who issues the MERGE statement must hold the Connect access privilege
(or a higher privilege) on the database of the source object, and must also hold the
Select privilege (or a higher privilege) on the source object. The user can be

Chapter 2. SQL statements 2-463

|

|
|
|
|

granted these access privileges individually, or can hold them as a member of the
PUBLIC group, or through the current or default role of the user, if the role or
PUBLIC holds those privileges.

If the source object or any of its columns is protected by a label-based security
policy, the user who issues the MERGE statement must have a security label (or
must hold a security policy exemption) that provides sufficient credentials to read
the source object. If the credentials of the user are insufficient to read protected
columns, according to the standard label-based access control (LBAC) rules, then
the MERGE statement can process only a subset of the source data. If this subset is
empty, the MERGE statement cannot insert any values from the source object into
the target table.

The following restrictions apply to the source table object:
v The source cannot be a view on which an enabled SELECT trigger is defined.
v The source cannot be a typed table in the same table hierarchy as the target

table.
v In a Delete merge, the source cannot have a child-table relationship with the

target, as defined by an enabled referential constraint, if that constraint was
defined with the ON DELETE CASCADE keywords. (Child-table relationships
have no effect on the Delete merge, however, unless a target table constraint
specifies cascading deletes.)

Restrictions on the Target Table

The target table object must be in a database of the same Informix instance to
which the current session is connected. It can be the name or synonym of a
STANDARD, RAW, or TEMP table, or an updatable view. If the target is a
supertable within a table hierarchy, the Delete clause also deletes the
corresponding rows in all the subtables of the target table.

The user who issues the MERGE statement must hold the Connect access privilege
(or a higher privilege) on the database of the target object, and must also hold the
Insert privilege and the Update or Delete privilege on the target object, if the
MERGE statement includes the corresponding Insert, Update, or Delete clause.

The following restrictions apply to the target table of the MERGE statement. If that
table has any of the following attributes, the MERGE operation returns an error.
v The target cannot be a typed table in the same table hierarchy as the source

table.
v The target cannot be a Virtual Table Interface (VTI) table.
v The target cannot be an object that the CREATE EXTERNAL TABLE statement

defined.
v The target cannot be in a database of a remote Informix instance.
v The target cannot be a system catalog table.
v The target cannot be a view on which an enabled INSTEAD OF trigger is

defined.
v The target cannot be a read-only view.
v The target cannot be a pseudo-table (a memory-resident object in a system

database, such as the sysmaster or sysadmin databases).
v The target cannot be a data source of any subquery of the same MERGE

statement, including subqueries in the ON clause, in the SET clause, or in the
VALUES clause.

2-464 IBM Informix Guide to SQL: Syntax

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

v If the MERGE statement includes the DELETE clause, the target cannot have a
parent-table relationship with the source table, if this relationship is defined by
an enabled referential constraint that specifies the ON DELETE CASCADE
keywords.

Handling Duplicate Rows
While MERGE is executing, the same row in the target table cannot be updated or
deleted more than once. No attempt is made to update or delete any row in the
target that did not already exist before the MERGE statement was executed. That
is, there are no updates or deletes of rows that the same MERGE statement
inserted into the target.

The following example of the MERGE statement uses the transaction table
new_sale as the source table from which to insert or update rows in the fact table
sale. The join condition in this example tests whether the new_sale.cust_id column
value matches the sale.cust_id column value.
MERGE INTO sale USING new_sale AS n

ON sale.cust_id = n.cust_id
WHEN MATCHED THEN UPDATE

SET sale.salecount = sale.salecount + n.salecount
WHEN NOT MATCHED THEN INSERT (cust_id, salecount)

VALUES (n.cust_id, n.salecount);

To execute this MERGE statement, the database server joins the target and source
tables, and then applies the specified equality condition to process the result of the
join:
v For rows that satisfy the condition (because the sale.cust_id value matches the

new_sale.cust_id value), MERGE updates the sale.salecount column value,
according to the SET clause specification.

v For rows that do not satisfy the condition (because no row in the sale table has
the same cust_id value as new_sale.cust_id), MERGE inserts new rows
containing the new_sale.cust_id and new_sale.salecount values into the sale
table, according to the VALUES clause specification.

For the MERGE statement in the previous example, suppose that the sale target
table contains the two records shown at the left, and that the new_sale source table
contains the three records shown at the right in the following display:

Records in 'sale' Table Records in 'new_sale' Table

cust_id sale_count cust_id sale_count

Tom 129 Tom 20

Julie 230 Julie 3

Julie 10

When merging new_sale into sale by specifying the expression sale.cust_id =
new_sale.cust_id as the matching condition, the MERGE statement returns an
error, because it attempts to update one of the records in the sale target table more
than once.

Data Types in Distributed MERGE Operations

If the source table or view (or any table object referenced in the source query)
specifies a table object in a database of a Informix instance other than the local

Chapter 2. SQL statements 2-465

|
|
|
|

instance that manages the database of the target table, the MERGE statement can
access columns of only the following data types in the remote database:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any DISTINCT data type that appears in this list.

Cross-server distributed MERGE operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database. For additional information about the data
types that Informix supports in cross-server DML operations, see “Data Types in
Cross-Server Transactions” on page 2-545.

MERGE operations cannot access a database of another Informix instance unless
both server instances support either a TCP/IP or an IPCSTR connection, as defined
in their DBSERVERNAME or DBSERVERALIASES configuration parameters and in
the sqlhosts file or SQLHOSTS registry subkey. This connection-type requirement
applies to any communication between Informix instances, even if both database
servers reside on the same computer.

Distributed MERGE operations that access table objects in other databases of the
local Informix instance, however, can access all of the cross-server data types in the
preceding list, and these additional data types:
v Most built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-544
v DISTINCT of the same built-in opaque types
v DISTINCT of any of the data types in either of the two preceding lines
v Opaque user-defined data types (UDTs) that are explicitly cast to built-in data

types.

The MERGE statement also supports Distributed Relational Database Architecture™

(DRDA) protocols in common client APIs. For the Informix data types that MERGE
can return from a remote database through DRDA protocols, see the IBM Informix
Administrator's Guide for lists of the Informix data types that are supported (and
that are not supported) by DRDA.
Related reference

SQL and supported and unsupported data types (Administrator's Guide)

Examples of MERGE Statements
Examples in this section include MERGE statements that illustrate join conditions
and various DML operations on the result set of the join.

Examples

The following MERGE statement includes the Update and Insert clauses, and uses
an equality predicate as the join condition:

2-466 IBM Informix Guide to SQL: Syntax

|
|
|
|
|
|

|

|
|

|

|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0211.htm#ids_admin_0211

MERGE INTO customer c
USING ext_customer e
ON c.customer_num=e.customer_num

WHEN MATCHED THEN
UPDATE SET c.fname = e.fname,

c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone

WHEN NOT MATCHED THEN
INSERT (c.fname, c.lname, c.company, c.address1, c.address2,

c.city, c.state, c.zipcode, c.phone)
VALUES

(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone);

The next example specifies multiple predicates in the ON clause:
MERGE INTO customer c

USING ext_customer e
ON c.customer_num=e.customer_num

AND c.fname=e.fname AND c.lname=e.lname
WHEN MATCHED THEN

UPDATE SET c.fname = e.fname,
c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone

WHEN NOT MATCHED THEN
INSERT

(c.fname, c.lname, c.company, c.address1, c.address2,
c.city, c.state, c.zipcode, c.phone)
VALUES
(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone);

The following MERGE statement performs an Update join, with no Insert clause:
MERGE INTO customer c
USING ext_customer e
ON c.customer_num=e.customer_num
WHEN MATCHED THEN
UPDATE SET c.fname = e.fname,

c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone ;

The following MERGE statement includes only the Delete clause after the join
condition:
MERGE INTO customer c

USING ext_customer e
ON c.customer_num=e.customer_num
WHEN MATCHED THEN

DELETE ;

Chapter 2. SQL statements 2-467

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

The next MERGE example includes only the Insert clause:
MERGE INTO customer c
USING ext_customer e
ON c.customer_num=e.customer_num AND c.fname=e.fname

AND c.lname=e.lname
WHEN NOT MATCHED THEN

INSERT
(c.fname, c.lname, c.company, c.address1, c.address2,
c.city, c.state, c.zipcode, c.phone)
VALUES
(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone);

The next example illustrates that the WHEN MATCHED and WHEN NOT
MATCHED specifications can appear in any order:
MERGE INTO customer c

USING ext_customer e
ON c.customer_num=e.customer_num AND c.fname=e.fname AND c.lname=e.lname

WHEN NOT MATCHED THEN
INSERT

(c.fname, c.lname, c.company, c.address1, c.address2,
c.city, c.state, c.zipcode, c.phone)

VALUES
(e.fname, e.lname, e.company, e.address1, e.address2,
e.city, e.state, e.zipcode, e.phone)

WHEN MATCHED THEN UPDATE
SET c.fname = e.fname,

c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone ;

The following MERGE statement specifies as its source a derived table that the
query in the USING clause defines:
MERGE INTO customer c

USING (SELECT * from ext_customer e1, orders e2
WHERE e1.customer_num=e2.customer_num) e

ON c.customer_num=e.customer_num AND c.fname=e.fname
AND c.lname=e.lname

WHEN NOT MATCHED THEN
INSERT (c.fname, c.lname, c.company, c.address1, c.address2,

c.city, c.state, c.zipcode, c.phone)
VALUES (e.fname, e.lname, e.company, e.address1, e.address2,

e.city, e.state, e.zipcode, e.phone)
WHEN MATCHED THEN

UPDATE SET c.fname = e.fname,
c.lname = e.lname,
c.company = e.company,
c.address1 = e.address1,
c.address2 = e.address2,
c.city = e.city,
c.state = e.state,
c.zipcode = e.zipcode,
c.phone = e.phone ;

Related Information

Related statements: “DELETE statement” on page 2-307, “INSERT statement” on
page 2-435 and “UPDATE statement” on page 2-700

2-468 IBM Informix Guide to SQL: Syntax

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

OPEN statement
Use the OPEN statement to activate a cursor.

Syntax

�� OPEN cursor_id
(1) (2)

cursor_id_var

�

�

�

,

USING parameter_var
(2)

SQL DESCRIPTOR 'descriptor ' DESCRIPTOR sqlda_pointer
descriptor_var

�

�
(1) (2)

WITH REOPTIMIZATION

��

Notes:

1 Informix extension

2 ESQL/C only

Element Description Restrictions Syntax

cursor_id Name of a cursor Must have been declared by the
DECLARE statement

“Identifier” on page
5-21

cursor_id_var Host variable = cursor_id Must be a character data type Language specific

descriptor Name of a system-descriptor area Must have been allocated “Quoted String” on
page 4-188

descriptor_var Host variable that identifies the
system-descriptor area

System-descriptor area must have
been allocated

“Quoted String” on
page 4-188

parameter_var Host variable whose contents replace
a question (?) mark placeholder in a
prepared SQL statement

Must be a character or collection
data type

Language specific

sqlda_pointer Pointer to sqlda structure defining
data type and memory location of
values to replace question (?) marks
in a prepared statement

Cannot begin with a dollar ($)
sign nor with a colon (:). You
must use an sqlda structure with
dynamic SQL statements.

“DESCRIBE statement”
on page 2-314

Usage

Use this statement with Informix ESQL/C or with SPL.

A cursor is an identifier associated with an SQL statement that returns an ordered
set of values. The OPEN statement activates a cursor that the DECLARE statement
defined.

Cursor can be classified by their associated SQL statements:
v A Select cursor: a cursor that is associated with a SELECT statement

Chapter 2. SQL statements 2-469

v A Function cursor: a cursor that is associated with the EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement

v An Insert cursor: a cursor that is associated with the INSERT statement
v A Collection cursor: a Select or Insert cursor that operates on a collection variable.

In UDRs written in the SPL language, the OPEN statement can reference only
Select or Function cursors, and these must specify the identifier of the cursor,
rather than a variable that stores the cursor_id. The OPEN statement cannot
reference a direct cursor that the FOREACH statement of SPL has declared.

The specific actions that the database server takes differ, depending on the
statement with which the cursor is associated. In ESQL/C, when you associate one
of the previous statements with a cursor directly (that is, you do not prepare the
statement and associate the statement identifier with the cursor), the OPEN
statement implicitly prepares the statement. (This is not a feature of OPEN in SPL
routines, where the DECLARE statement associates a cursor with the identifier of
an existing prepared statement, rather than directly with SQL statement text.)

In an ANSI-compliant database, you receive an error code if you try to open a
cursor that is already open.

Opening a Select Cursor
When you open either a Select cursor or an update cursor that is created with the
SELECT... FOR UPDATE syntax, the SELECT statement is passed to the database
server with any values that are specified in the USING clause. The database server
processes the query to the point of locating or constructing the first row of the
active set. The following example illustrates a simple OPEN statement in Informix
ESQL/C:
EXEC SQL declare s_curs cursor for select * from orders;
EXEC SQL open s_curs;

An SPL routine cannot reference an update cursor in the OPEN statement.

Opening an Update Cursor Inside a Transaction
If you are working in a database with explicit transactions, you must open an
update cursor within a transaction. This requirement is waived if you declared the
cursor using the WITH HOLD option.

Opening a Function Cursor
When you open a Function cursor, the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement is passed to the database server with any values that are
specified in the USING clause.

The values in the USING clause are passed as arguments to the user-defined
function. This user-defined function must be declared to accept values. (If the
statement was previously prepared, the statement was passed to the database
server when it was prepared.) The database server executes the function to the
point where it returns the first set of values.

The following example illustrates a simple OPEN statement in Informix ESQL/C:
EXEC SQL declare s_curs cursor for

execute function new_func(arg1,arg2)
into :ret_val1, :ret_val2;

EXEC SQL open s_curs;

2-470 IBM Informix Guide to SQL: Syntax

Reopening a Select or Function Cursor
The database server evaluates the values that are specified in the USING clause of
the OPEN statement only when it opens a Select cursor or Function cursor. While
the cursor is open, subsequent changes to program variables in the USING clause
do not change the active set of the cursor.

In a database that is ANSI-compliant, you receive an error code if you try to open
a cursor that is already open.

In a database that is not ANSI-compliant, a subsequent OPEN statement closes the
cursor and then reopens it. When the database server reopens the cursor, it creates
a new active set, based on the current values of the variables in the USING clause.
If the variables have changed since the previous OPEN statement, reopening the
cursor can generate an entirely different active set.

Even if the values of the variables are unchanged, the values in the active set can
be different, as in the following situations:
v If the user-defined function takes a different execution path from the previous

OPEN statement on a Function cursor
v If data in the table was modified since the previous OPEN statement on a Select

cursor

The database server can process most queries dynamically, without pre-fetching all
rows when it opens the Select or Function cursor. Therefore, if other users are
modifying the table at the same time that the cursor is being processed, the active
set might reflect the results of these actions.

For some queries, the database server evaluates the entire active set when it opens
the cursor. These queries include those with the following features:
v Queries that require sorting: those with an ORDER BY clause or with the

DISTINCT or UNIQUE keyword
v Queries that require hashing: those with a join or with the GROUP BY clause

For these queries, any changes that other users make to the table while the cursor
is being processed are not reflected in the active set.

Errors Associated with Select and Function Cursors
Because the database server is seeing the query for the first time, it might detect
errors. In this case, it does not actually return the first row of data, but it resets the
SQLCODE variable and the sqlca.sqlcode field of the sqlca. The value is either
negative or zero, as the following table describes.

Code Value
Significance

Negative
An error was detected in the SELECT statement

Zero The SELECT statement is valid

Unlike ESQL/C routines, SPL routines do not have direct access to the sqlca
structure. An ESQL/C routine must invoke the built-in SQLCODE function
explicitly to access the return code of the SELECT, EXECUTE FUNCTION, or
EXECUTE PROCEDURE statement associated with the cursor that OPEN
references.

Chapter 2. SQL statements 2-471

If the SELECT, SELECT...FOR UPDATE, EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement is valid, but no rows match its criteria, the first FETCH
statement returns a value of 100 (SQLNOTFOUND), meaning that no rows were found.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value also exists. For information about how to view the message text, refer to
“Using the SQLSTATE Error Status Code” on page 2-391.

Opening an Insert Cursor (ESQL/C)
When you open an Insert cursor, the cursor passes the INSERT statement to the
database server, which checks the validity of the keywords and column names. The
database server also allocates memory for an insert buffer to hold new data. (See
“DECLARE statement” on page 2-290.)

An OPEN statement for a cursor that is associated with an INSERT statement
cannot include a USING clause.

Example of Opening an Insert Cursor

The following Informix ESQL/C example illustrates an OPEN statement with an
Insert cursor:
EXEC SQL prepare s1 from

’insert into manufact values (’npr’, ’napier’)’;
EXEC SQL declare in_curs cursor for s1;
EXEC SQL open in_curs;
EXEC SQL put in_curs;
EXEC SQL close in_curs;

Reopening an Insert Cursor
When you reopen an Insert cursor that is already open, you effectively flush the
insert buffer; any rows that are stored in the insert buffer are written into the
database table. The database server first closes the cursor, which causes the flush
and then reopens the cursor. For information about how to check errors and count
inserted rows, see “Error Checking” on page 2-493.

In an ANSI-compliant database, you receive an error code if you try to open a
cursor that is already open.

Opening a Collection Cursor (ESQL/C)
You can declare both Select and Insert cursors on collection variables. Such cursors
are called Collection cursors. You must use the OPEN statement to activate these
cursors.

Use the name of a collection variable in the USING clause of the OPEN statement.
For more information on the use of OPEN ... USING with a collection variable, see
“Fetching from a Collection Cursor” on page 2-379 and “Inserting into a Collection
Cursor” on page 2-491.

USING Clause
The USING clause is required when the cursor is associated with a prepared
statement that includes question-mark (?) placeholders, as follows:
v A SELECT statement with input parameters in its WHERE clause
v An EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement with input

parameters as arguments to its user-defined function
v An INSERT statement with input parameters in its VALUES clause (in ESQL/C).

2-472 IBM Informix Guide to SQL: Syntax

In SPL routines, you must specify these parameters as SPL variables.

In ESQL/C, you can supply values for these parameters in one of the following
ways:
v You can specify one or more host variables.
v You can specify a system-descriptor area.
v You can specify a pointer to an sqlda structure.

For more information, see “PREPARE statement” on page 2-477.

If you know the number and the order of parameters to be supplied at runtime
and their data types, you can define the parameters that are needed by the
statement as host variables in your program. You pass parameters to the database
server positionally, by opening the cursor with the USING keyword, followed by
the names of the variables in their sequential order. These variables are matched
with the SELECT or EXECUTE FUNCTION (or EXECUTE PROCEDURE)
statement question-mark (?) placeholders in a one-to-one correspondence, from
left to right.

You cannot include indicator variables of ESQL/C in the list of variables. To use an
indicator variable, you must include the SELECT or EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement text as part of the DECLARE statement, rather
than the identifier of a prepared statement.

You must supply one host variable name for each placeholder. The data type of
each variable must be compatible with the corresponding type that the prepared
statement requires. The following Informix ESQL/C code fragment opens a Select
cursor and specifies host variables in the USING clause:
sprintf (select_1, "%s %s %s %s %s",

"SELECT o.order_num, sum(total price)",
"FROM orders o, items i",
"WHERE o.order_date > ? AND o.customer_num = ?",
"AND o.order_num = i.order_num",
"GROUP BY o.order_num");

EXEC SQL prepare statement_1 from :select_1;
EXEC SQL declare q_curs cursor for statement_1;
EXEC SQL open q_curs using :o_date, :o.customer_num;

The following example illustrates the USING clause of the OPEN statement with
an EXECUTE FUNCTION statement in an Informix ESQL/C code fragment:
stcopy ("EXECUTE FUNCTION one_func(?, ?)", exfunc_stmt);
EXEC SQL prepare exfunc_id from :exfunc_stmt;
EXEC SQL declare func_curs cursor for exfunc_id;
EXEC SQL open func_curs using :arg1, :arg2;

Specifying a System Descriptor Area (ESQL/C)
If you do not know the number of parameters to be supplied at runtime or their
data types, you can associate input values from a system-descriptor area. A
system-descriptor area describes the data type and memory location of one or
more values to replace question-mark (?) placeholders.

A system-descriptor area conforms to the X/Open standards.

Use the SQL DESCRIPTOR keywords to introduce the name of a system descriptor
area as the location of the parameters.

Chapter 2. SQL statements 2-473

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be less
than or equal to the number of item descriptors that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

The following example shows the OPEN ... USING SQL DESCRIPTOR statement:
EXEC SQL allocate descriptor ’desc1’;
...
EXEC SQL open selcurs using sql descriptor ’desc1’;

As the example indicates, the system descriptor area must be allocated before you
reference it in the OPEN statement.

Specifying a Pointer to an sqlda Structure (ESQL/C)
If you do not know the number of parameters to be supplied at runtime, or their
data types, you can associate input values from an sqlda structure. An sqlda
structure lists the data type and memory location of one or more values to replace
question-mark (?) placeholders.

Use the DESCRIPTOR keyword to introduce a pointer to the sqlda structure as the
location of the parameters.

The sqlda value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of dynamic
parameters in the prepared statement.

Example of Specifying a Pointer to an sqlda Structure

The following example shows an OPEN ... USING DESCRIPTOR statement:
struct sqlda *sdp;
...
EXEC SQL open selcurs using descriptor sdp;

Using the WITH REOPTIMIZATION Option (ESQL/C)
Use the WITH REOPTIMIZATION keywords to reoptimize your query plan. When
you prepare SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE
statements, the database server uses a query plan to optimize the query. If you
later modify the data associated with the prepared statement, you can compromise
the effectiveness of the query plan for that statement. In other words, if you
change the data, you might deoptimize your query. To ensure optimization of your
query, you can prepare the statement again, or open the cursor again using the
WITH REOPTIMIZATION option.

You should generally use the WITH REOPTIMIZATION option, because it
provides the following advantages over preparing a statement again:
v Rebuilds only the query plan, rather than the entire statement
v Uses fewer resources
v Reduces overhead
v Requires less time

The WITH REOPTIMIZATION option forces the database server to optimize the
query-design plan before it processes the OPEN cursor statement.

2-474 IBM Informix Guide to SQL: Syntax

The following examples use the WITH REOPTIMIZATION keywords:
EXEC SQL open selcurs using descriptor sdp with reoptimization;

Relationship Between OPEN and FREE
The database server allocates resources to prepared statements and open cursors. If
you execute a FREE statement_id or FREE statement_id_var statement, you can still
open the cursor associated with the freed statement ID. If you release resources
with a FREE cursor_id or FREE cursor_id_var statement, however, you cannot use
the cursor unless you declare the cursor again.

Similarly, if you use the SET AUTOFREE statement for one or more cursors, when
the program closes the specific cursor, the database server automatically frees the
cursor-related resources. In this case, you cannot use the cursor unless you declare
the cursor again.

DDL Operations on Tables Referenced by Cursors
Various DDL statements can drop, rename, or alter the schema of a table that is
referenced directly (or indirectly, by the identifier of a prepared statement) in the
DECLARE statement that defines a cursor. Subsequent OPEN operations on the
cursor might fail with error -710, or might produce unexpected results. Changing
the number of columns or the data type of a column has this effect, and the user
typically must reissue the DESCRIBE statement, the PREPARE statement, and (for
cursors associated with routines) the UPDATE STATISTICS statement for any SPL
routines that reference a table whose schema has been modified.

These restrictions do not apply, however, if an index is added or dropped when
automatic recompilation is enabled for prepared objects and for SPL routines that
reference tables that ALTER TABLE, CREATE INDEX, or DROP INDEX operations
have modified. This is the default behavior of Informix. For more information
about enabling or disabling automatic recompilation after schema changes, see the
description of the IFX_AUTO_REPREPARE option to the SET ENVIRONMENT
statement. For more information about the AUTO_REPREPARE configuration
parameter, see your IBM Informix Administrator's Reference.

When the AUTO_REPREPARE configuration parameter and the
IFX_AUTO_REPREPARE session environment variable are set to disable
recompilation of prepared objects, however, adding an index to a table that is
referenced directly or indirectly in a DECLARE statement can similarly invalidate
the associated cursor. Subsequent OPEN statements that specify the invalid cursor
fail, even if they include the WITH REOPTIMIZATION keywords. If an index is
added to the table that is associated with a cursor while automatic recompilation is
disabled, you must prepare the statement again and declare the cursor again before
you can open the cursor. For cursors associated with calls to SPL routines, you
must run the UPDATE STATISTICS statement for routines that reference tables to
which an index has been added or dropped. You cannot simply reopen a cursor
that is based on a prepared statement that is no longer valid.

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DEALLOCATE DESCRIPTOR statement” on page 2-288, “DESCRIBE statement”
on page 2-314, “CLOSE statement” on page 2-76, “DECLARE statement” on page
2-290, “EXECUTE statement” on page 2-353, “FETCH statement” on page 2-372,
“FLUSH statement” on page 2-382, “FREE statement” on page 2-384, “GET
DESCRIPTOR statement” on page 2-385, “PREPARE statement” on page 2-477,

Chapter 2. SQL statements 2-475

“PUT statement” on page 2-487, “SET AUTOFREE statement” on page 2-606, “SET
DEFERRED_PREPARE statement” on page 2-618, and “SET DESCRIPTOR
statement” on page 2-620

For a task-oriented discussion of the OPEN statement, see the IBM Informix Guide
to SQL: Tutorial.

For more information on system-descriptor areas and the sqlda structure, refer to
the IBM Informix ESQL/C Programmer's Manual.
Related reference

AUTO_REPREPARE Configuration Parameter (Administrator's Reference)

OUTPUT statement
Use the OUTPUT statement to send the results of a query to an operating-system
file or to a program.

Syntax

�� OUTPUT TO filename
PIPE program WITHOUT HEADINGS

(1)
SELECT Statement ��

Notes:

1 See “SELECT statement” on page 2-536

Element Description Restrictions Syntax

filename Path and filename where query
results are written. The default
path is the current directory.

Can specify a new or existing file. If the
file exists, query results overwrite the
current contents of the file.

Must conform to the
rules of your operating
system.

program Name of a program to receive the
query results as input

Program must exist, must be known to
the operating system, and must be able
to read the results of a query.

Must conform to the
rules of your operating
system.

Usage

The OUTPUT statement writes query results in an operating-system file, or pipes
query results to another program. You can optionally specify whether column
headings are omitted from the query output. This statement is an extension to the
ANSI/ISO standard for SQL. You can use this statement only with DB-Access.

Sending Query Results to a File

To send the results of a query to an operating-system file, specify the full
pathname for the file. If the file already exists, the output overwrites the current
contents.

The following examples show how to send the result of a query to an
operating-system file. The example uses UNIX file naming conventions.
OUTPUT TO /usr/april/query1

SELECT * FROM cust_calls WHERE call_code = ’L’

2-476 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0026.htm#ids_adr_0026

Displaying Query Results Without Column Headings

To display the results of a query without column headings, use the WITHOUT
HEADINGS keywords.

Sending Query Results to Another Program
You can use the keyword PIPE to send the query results to another program, as
the following example shows:
OUTPUT TO PIPE more

SELECT customer_num, call_dtime, call_code
FROM cust_calls;

Related Information

Related statements: “SELECT statement” on page 2-536 and “UNLOAD statement”
on page 2-695

PREPARE statement
Use the PREPARE statement to parse, validate, and generate an execution plan for
one or more SQL statements at runtime.

Syntax

�� PREPARE statement_id
(1)

statement_id_var

FROM ' statement_text '
(1)

statement_var
(2)

char_expression

��

Notes:

1 ESQL/C only

2 SPL only

Element Description Restrictions Syntax

char_expression Expression that evaluates to
the text of a single SQL
statement

Statement must be a SELECT, EXECUTE
FUNCTION, or EXECUTE PROCEDURE

“Expression” on
page 4-40

statement_id Identifier declared here for
the prepared object

Must be unique in the routine among names
of cursors and prepared objects (and in SPL,
among variables)

“Identifier” on
page 5-21

statement_id_var Host variable storing
statement_id

Must have been previously declared as a
character data type

Language specific

statement_text Text of the SQL statement(s)
to prepare

See “Preparing Multiple SQL Statements” on
page 2-485 and “Statement Text” on page
2-479.

“Quoted String”
on page 4-188.

statement_var Host variable storing the text
of one or more SQL
statements

Must be a character data type. Not valid if
the SQL statement(s) contains the
Collection-Derived Table segment.

Language specific

Chapter 2. SQL statements 2-477

Usage

Use this statement in ESQL/C or SPL routines.

The PREPARE statement enables your program to assemble the text of one (or for
ESQL/C, more than one) SQL statement at runtime, to declare an identifier for the
resulting prepared object, and to make it executable. This dynamic form of SQL is
accomplished in three steps:
1. The PREPARE statement accepts statement text as input, either as a quoted

string, or an ESQL/C character variable, or (in SPL) as the value to which a
character expression evaluates. Statement text can contain question-mark (?)
placeholders to represent values that are to be defined when the statement is
executed.

2. The OPEN statement (and in ESQL/C routines, the EXECUTE statement) can
supply the required input values and execute the prepared statement once or
many times.

3. Resources allocated to the prepared statement can be released later using the
FREE statement.

For more information about the replacement of placeholders in prepared
statements with runtime values, see the section “Preparing Statements That Receive
Parameters” on page 2-482.

The same collating order that is current when you create a prepared object is also
used when that object is executed, even if the execution-time collation of the
session (or of DB_LOCALE) is different.

Restrictions
The number of prepared objects in a single program is limited by available
memory. These include statement identifiers declared in PREPARE statements
(statement_id or statement_id_var) and declared cursors. To avoid exceeding the
limit, use the FREE statement to release some statements or cursors.

The maximum length of a PREPARE statement is 64 kilobytes in ESQL/C routines,
or 32 kilobytes in SPL routines.

In SPL routines, a prepared object can include the text of no more than one SQL
statement, and that statement must be either an EXECUTE FUNCTION, EXECUTE
PROCEDURE, or SELECT statement, but the SELECT statement cannot include the
INTO variable, INTO TEMP, or FOR UPDATE clause.

An expression that specifies the statement text in an SPL routine must evaluate to
a CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR data type. You must
explicitly cast to one of these types an expression of any other text data type, such
as a UDT.

For restrictions in ESQL/C routines on the SQL statements in the character string,
see “Restricted Statements in Single-Statement Prepares” on page 2-481 and
“Restricted Statements in Multistatement Prepared Objects” on page 2-486.

Declaring a Statement Identifier
PREPARE sends the statement text to the database server, which analyzes the
statement text. If the text contains no syntax errors, the database server translates it
to an internal form. This translated statement is saved for later execution in a data

2-478 IBM Informix Guide to SQL: Syntax

structure that the PREPARE statement allocates. The name of the structure is the
value that is assigned to the statement identifier in the PREPARE statement.
Subsequent SQL statements can refer to the structure by using the same statement
identifier that was used in the PREPARE statement.

A subsequent FREE statement releases the database server resources that were
allocated to the statement. After you release these resources with FREE, you cannot
use the statement identifier in a DECLARE statement or (in ESQL/C) with the
EXECUTE statement until you prepare the statement again.

The database server resources for the prepared objects that an SPL routine defines
are released automatically when the routine exits.

Scope of Statement Identifiers
An ESQL/C program can consist of one or more source-code files. By default, the
scope of reference of a statement identifier is global to the program. Therefore, a
statement identifier that is prepared in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of reference of a
statement identifier to the file in which it is prepared, preprocess all the files with
the -local command-line option.

Releasing a Statement Identifier
A statement identifier can represent only one SQL statement or (in ESQL/C) one
semicolon-separated list of SQL statements at a time. A new PREPARE statement
can specify an existing statement identifier if you want to bind the identifier to a
different SQL statement text.

The PREPARE statement supports dynamic statement-identifier names, which
allow you to prepare a statement identifier as an identifier or (in ESQL/C) as a
host variable of a data type that can contain a character string. The first example
that follows shows a statement identifier that was specified as a host variable. The
second specifies a statement identifier as a character string.
stcopy ("query2", stmtid);
EXEC SQL prepare :stmtid from ’select * from customer’;

EXEC SQL prepare query2 from ’select * from customer’;

The variable must be a character data type. In C, it must be declared as char.

In an SPL routine, statement identifiers that the PREPARE statement declares are
automatically defined in the local scope. Do not attempt to declare a statement
identifier as having local or global scope. A statement identifier defined in one SPL
routine is not visible to any other SPL routine that the same session calls. SPL
statement identifiers share the same namespace as SPL variables and cursor names.

Statement Text
Statement text can be specified in the PREPARE statement
v as a quoted string
v or as text that is stored in an ESQL/C program variable
v or (in SPL routines) as a character expression.

The following restrictions apply to the statement text:
v The text can contain only SQL statements. It cannot contain statements or

comments from the host programming language.

Chapter 2. SQL statements 2-479

v The text can contain comments preceded by a double hyphen (--), or that are
enclosed in braces ({ }) or in C-style slash and asterisk (/* */) delimiters.
These symbols introduce or enclose SQL comments. For more information on
SQL comment symbols, see “How to Enter SQL Comments” on page 1-3.

v The text can contain either a single SQL statement or (in ESQL/C routines) a
series of statements that are separated by semicolon (;) symbols.
For a list of SQL statements that cannot be prepared, see “Restricted Statements
in Single-Statement Prepares” on page 2-481. For more information on how to
prepare multiple SQL statements, see “Preparing Multiple SQL Statements” on
page 2-485.

v The text cannot include an embedded SQL statement prefix or terminator, such
as a dollar sign ($) or the words EXEC SQL.

v Host-language variables are not recognized as such in prepared text.
Therefore, you cannot prepare a SELECT (or EXECUTE FUNCTION or
EXECUTE PROCEDURE) statement that includes an INTO clause, because the
INTO clause requires a host-language variable.

v The only identifiers that you can use are names that are defined in the database,
such as names of tables and columns. For more information on how to use
identifiers in statement text, see “Preparing Statements with SQL Identifiers” on
page 2-483.

v Use a question mark (?) as a placeholder to indicate where data is supplied
when the statement executes, as in this Informix ESQL/C example:
EXEC SQL prepare new_cust from

’insert into customer(fname,lname) values(?,?)’;

For more information on how to use question marks as placeholders, see
“Preparing Statements That Receive Parameters” on page 2-482.

If the prepared statement contains the Collection-Derived Table segment or an
Informix ESQL/C collection variable, some additional limitations exist on how you
can assemble the text for the PREPARE statement. For information about dynamic
SQL, see the IBM Informix ESQL/C Programmer's Manual. SPL routines cannot use
dynamic SQL statements to process prepared statements that contain the
Collection-Derived Table segment.

Preparing and Executing User-Defined Routines
The way to prepare a user-defined routine (UDR) depends on whether the UDR is
a user-defined procedure or a user-defined function:
v To prepare a user-defined procedure, prepare the EXECUTE PROCEDURE

statement that executes the procedure.
To execute the prepared procedure, use the EXECUTE statement.

v To prepare a user-defined function, prepare the EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement that executes the function.
You cannot include the INTO clause of EXECUTE FUNCTION (or EXECUTE
PROCEDURE) in the PREPARE statement.

How to execute a prepared user-defined function depends on whether it returns
only one group or multiple groups of values. Use the EXECUTE statement for
user-defined functions that return only one group of values.

To execute user-defined functions that return more than one group of return
values, you must associate the EXECUTE FUNCTION (or EXECUTE
PROCEDURE) statement with a cursor.

2-480 IBM Informix Guide to SQL: Syntax

Restricted Statements in Single-Statement Prepares

In general, you can prepare any data manipulation language (DML) statement.

In Informix, you can prepare any single SQL statement except for the following
statements:
v ALLOCATE COLLECTION
v ALLOCATE DESCRIPTOR
v ALLOCATE ROW
v CLOSE
v CONNECT
v CREATE FUNCTION FROM
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM
v DEALLOCATE COLLECTION
v DEALLOCATE DESCRIPTOR
v DEALLOCATE ROW
v DECLARE
v DESCRIBE
v DISCONNECT
v EXECUTE
v EXECUTE IMMEDIATE
v FETCH
v FLUSH
v FREE
v GET DESCRIPTOR
v GET DIAGNOSTICS
v INFO
v LOAD
v OPEN
v OUTPUT
v PREPARE
v PUT
v SET AUTOFREE
v SET CONNECTION
v SET DEFERRED_PREPARE
v SET DESCRIPTOR
v UNLOAD
v WHENEVER

You can prepare a SELECT statement. If SELECT includes the INTO TEMP clause,
an ESQL/C program can execute the prepared statement with an EXECUTE
statement. If it does not include the INTO TEMP clause, the statement returns rows
of data. Use DECLARE, OPEN, and FETCH cursor statements to retrieve the rows.

Chapter 2. SQL statements 2-481

In ESQL/C, a prepared SELECT statement can include a FOR UPDATE clause.
This clause is used with the DECLARE statement to create an update cursor. The
next example shows a SELECT statement with a FOR UPDATE clause in Informix
ESQL/C:
sprintf(up_query, "%s %s %s",

"select * from customer ",
"where customer_num between ? and ? ",
"for update");

EXEC SQL prepare up_sel from :up_query;
EXEC SQL declare up_curs cursor for up_sel;
EXEC SQL open up_curs using :low_cust,:high_cust;

Preparing Statements When Parameters Are Known

In some prepared statements, all necessary information is known at the time the
statement is prepared. The following example in Informix ESQL/C shows two
statements that were prepared from constant data:
sprintf(redo_st, "%s %s",

"drop table workt1; ",
"create table workt1 (wtk serial, wtv float)");

EXEC SQL prepare redotab from :redo_st;

Preparing Statements That Receive Parameters

In some statements, parameters are unknown when the statement is prepared
because a different value can be inserted each time the statement is executed. In
these statements, you can use a question-mark (?) placeholder where a parameter
must be supplied when the statement is executed.

The PREPARE statements in the following Informix ESQL/C examples show some
uses of question-mark (?) placeholders:
EXEC SQL prepare s3 from

’select * from customer where state matches ?’;
EXEC SQL prepare in1 from ’insert into manufact values (?,?,?)’;
sprintf(up_query, "%s %s",

"update customer set zipcode = ?"
"where current of zip_cursor");

EXEC SQL prepare update2 from :up_query;
EXEC SQL prepare exfunc from

’execute function func1 (?, ?)’;

You can use a placeholder to defer evaluation of a value until runtime only for an
expression, but not for an SQL identifier, except as noted in “Preparing Statements
with SQL Identifiers” on page 2-483.

The following example of an Informix ESQL/C code fragment prepares a
statement from a variable that is named demoquery. The text in the variable
includes one question-mark (?) placeholder. The prepared statement is associated
with a cursor and, when the cursor is opened, the USING clause of the OPEN
statement supplies a value for the placeholder:
EXEC SQL BEGIN DECLARE SECTION;

char queryvalue [6];
char demoquery [80];

EXEC SQL END DECLARE SECTION;

EXEC SQL connect to ’stores_demo’;
sprintf(demoquery, "%s %s",

"select fname, lname from customer ",
"where lname > ? ");

2-482 IBM Informix Guide to SQL: Syntax

EXEC SQL prepare quid from :demoquery;
EXEC SQL declare democursor cursor for quid;
stcopy("C", queryvalue);
EXEC SQL open democursor using :queryvalue;

The USING clause is available in both OPEN statements that are associated with a
cursor and EXECUTE statements (all other prepared statements).

You can use a question-mark (?) placeholder to represent the name of an Informix
ESQL/C or SPL collection variable.

Preparing Statements with SQL Identifiers

In general, you must specify SQL identifiers explicitly in the statement text when
you prepare the statement. In a few special cases, however, you can use the
question-mark (?) placeholder for an SQL identifier:
v For the database name in the DATABASE statement.
v For the dbspace name in the IN dbspace clause of the CREATE DATABASE

statement.
v For the cursor name in statements that use cursor names.

Obtaining SQL Identifiers from User Input
If a prepared statement requires identifiers, but the identifiers are unknown when
you write the prepared statement, you can construct a statement that receives SQL
identifiers from user input.

The following Informix ESQL/C example prompts the user for the name of a table
and uses that name in a SELECT statement. Because this name is unknown until
runtime, the number and data types of the table columns are also unknown.
Therefore, the program cannot allocate host variables to receive data from each
row in advance. Instead, this program fragment describes the statement into an
sqlda descriptor and fetches each row with the descriptor. The fetch puts each row
into memory locations that the program provides dynamically.

If a program retrieves all the rows in the active set, the FETCH statement would be
placed in a loop that fetched each row. If the FETCH statement retrieves more than
one data value (column), another loop exists after the FETCH, which performs
some action on each data value:
#include <stdio.h>
EXEC SQL include sqlda;
EXEC SQL include sqltypes;
char *malloc();

main()
{

struct sqlda *demodesc;
char tablename[19];
int i;

EXEC SQL BEGIN DECLARE SECTION;
char demoselect[200];

EXEC SQL END DECLARE SECTION;

/* This program selects all the columns of a given tablename.
The tablename is supplied interactively. */

EXEC SQL connect to ’stores_demo’;
printf("This program does a select * on a table\n");
printf("Enter table name: ");
scanf("%s", tablename);

Chapter 2. SQL statements 2-483

sprintf(demoselect, "select * from %s", tablename);

EXEC SQL prepare iid from :demoselect;
EXEC SQL describe iid into demodesc;

/* Print what describe returns */

for (i = 0; i < demodesc->sqld; i++)
prsqlda (demodesc->sqlvar + i);

/* Assign the data pointers. */

for (i = 0; i < demodesc->sqld; i++)
{
switch (demodesc->sqlvar[i].sqltype & SQLTYPE)

{
case SQLCHAR:

demodesc->sqlvar[i].sqltype = CCHARTYPE;
/* make room for null terminator */
demodesc->sqlvar[i].sqllen++;
demodesc->sqlvar[i].sqldata =

malloc(demodesc->sqlvar[i].sqllen);
break;

case SQLSMINT: /* fall through */
case SQLINT: /* fall through */
case SQLSERIAL:

demodesc->sqlvar[i].sqltype = CINTTYPE;
demodesc->sqlvar[i].sqldata =

malloc(sizeof(int));
break;

/* And so on for each type. */
}

}

/* Declare and open cursor for select . */
EXEC SQL declare d_curs cursor for iid;
EXEC SQL open d_curs;

/* Fetch selected rows one at a time into demodesc. */
for(; ;)

{
printf("\n");
EXEC SQL fetch d_curs using descriptor demodesc;
if (sqlca.sqlcode != 0)

break;
for (i = 0; i < demodesc->sqld; i++)

{
switch (demodesc->sqlvar[i].sqltype)

{
case CCHARTYPE:

printf("%s: \"%s\n", demodesc->sqlvar[i].sqlname,
demodesc->sqlvar[i].sqldata);

break;
case CINTTYPE:

printf("%s: %d\n", demodesc->sqlvar[i].sqlname,
*((int *) demodesc->sqlvar[i].sqldata));

break;
/* And so forth for each type... */

}
}

}
EXEC SQL close d_curs;
EXEC SQL free d_curs;
/* Free the data memory. */

for (i = 0; i < demodesc->sqld; i++)
free(demodesc->sqlvar[i].sqldata);

2-484 IBM Informix Guide to SQL: Syntax

free(demodesc);

printf ("Program Over.\n");
}

prsqlda(sp)
struct sqlvar_struct *sp;

{
printf ("type = %d\n", sp->sqltype);
printf ("len = %d\n", sp->sqllen);
printf ("data = %lx\n", sp->sqldata);
printf ("ind = %lx\n", sp->sqlind);
printf ("name = %s\n", sp->sqlname);
}

Preparing Multiple SQL Statements
In ESQL/C, you can execute several SQL statements as one action if you include
them in the same PREPARE statement. Multistatement text is processed as a unit;
actions are not treated sequentially. Therefore, multistatement text cannot include
statements that depend on actions that occur in a previous statement in the text.
For example, you cannot create a table and insert values into that table in the same
prepared statement block.

If a statement in a multistatement prepare returns an error, the whole prepared
statement stops executing. The database server does not execute any remaining
statements. In most situations, compiled products return error-status information
on the error, but do not indicate which statement in the text causes an error. You
can use the sqlca.sqlerrd[4] field in the sqlca to find the offset of the errors.

In a multistatement prepare, if no rows are returned from a WHERE clause in the
following statements, the database server returns SQLNOTFOUND (100):
v UPDATE ... WHERE ...
v SELECT INTO TEMP ... WHERE ...
v INSERT INTO ... WHERE ...
v DELETE FROM ... WHERE ...

In the next example, four SQL statements are prepared into a single Informix
ESQL/C string called query. Individual statements are delimited with semicolons.

A single PREPARE statement can prepare the four statements for execution, and a
single EXECUTE statement can execute the statements that are associated with the
qid statement identifier:
sprintf (query, "%s %s %s %s %s %s %s",

"update account set balance = balance + ? ",
"where acct_number = ?;",

"update teller set balance = balance + ? ",
"where teller_number = ?;",

"update branch set balance = balance + ? ",
"where branch_number = ?;",

"insert into history values (?, ?);";
EXEC SQL prepare qid from :query;

EXEC SQL begin work;
EXEC SQL execute qid using

:delta, :acct_number, :delta, :teller_number,
:delta, :branch_number, :timestamp, :values;

EXEC SQL commit work;

Chapter 2. SQL statements 2-485

Here the semicolons (;) are required as SQL statement-terminator symbols
between each SQL statement in the text that query holds.

Restricted Statements in Multistatement Prepared Objects
In addition to the statements listed as exceptions in “Restricted Statements in
Single-Statement Prepares” on page 2-481, you cannot use the following statements
in the text of a multiple-statement prepared object:
v CLOSE DATABASE
v CREATE DATABASE
v DATABASE
v DROP DATABASE
v RENAME DATABASE
v SELECT (with one exception)

The following types of statements are also not valid in a multistatement prepare:
v Statements that can cause the current database to close during the execution of

the multistatement sequence
v Statements that include references to TEXT or BYTE host variables

In general, you cannot use the SELECT statement in a multistatement prepare. The
only form of the SELECT statement allowed in a multistatement prepare is a
SELECT statement with an INTO temporary table clause.

Using Prepared Statements for Efficiency
To increase performance efficiency, you can use the PREPARE statement and an
EXECUTE statement in a loop to eliminate overhead that redundant parsing and
optimizing cause. For example, an UPDATE statement that is located within a
WHILE loop is parsed each time the loop runs. If you prepare the UPDATE
statement outside the loop, the statement is parsed only once, eliminating
overhead and speeding statement execution. The following example shows how to
prepare an Informix ESQL/C statement to improve performance:
EXEC SQL BEGIN DECLARE SECTION;

char disc_up[80];
int cust_num;

EXEC SQL END DECLARE SECTION;
main()
{

sprintf(disc_up, "%s %s","update customer ",
"set discount = 0.1 where customer_num = ?");

EXEC SQL prepare up1 from :disc_up;
while (1)

{
printf("Enter customer number (or 0 to quit): ");
scanf("%d", cust_num);
if (cust_num == 0)

break;
EXEC SQL execute up1 using :cust_num;
}

}

Like the SQL statement cache, prepared statements can reduce how often the same
query plan is reoptimized, thereby conserving resources in some contexts. The
section “Prepared Statements and the Statement Cache” on page 2-669 discusses
the use of prepared DML statements, cursors, and the SQL statement cache as
combined or alternative techniques for improving query performance.

2-486 IBM Informix Guide to SQL: Syntax

DDL Operations on Tables Referenced in Prepared Objects
These restrictions do not apply, however, if an index is added or dropped when
automatic recompilation is enabled for prepared objects and routines that directly
reference tables that ALTER TABLE, CREATE INDEX, or DROP INDEX operations
have modified. This is the default behavior of Informix. For more information
about enabling or disabling automatic recompilation after changes to the schema of
a table, see “IFX_AUTO_REPREPARE Environment Option” on page 2-633.

When the AUTO_REPREPARE configuration parameter and the
IFX_AUTO_REPREPARE session environment variable are set to disable automatic
recompilation, however, adding an index to a table that a prepared statement
references indirectly can similarly invalidate the prepared statement. A subsequent
OPEN statement fails if the cursor refers to the invalid prepared statement, even if
the OPEN statement includes the WITH REOPTIMIZATION keywords. If an index
on an indirectly referenced table is added after the statement was prepared while
automatic recompilation is disabled, you must prepare the statement again and
declare the cursor again. You cannot simply reopen the cursor if it is based on a
prepared statement that is no longer valid.

Related Statements

Related statements: “CLOSE statement” on page 2-76, “DECLARE statement” on
page 2-290, “DESCRIBE statement” on page 2-314, “EXECUTE statement” on page
2-353, “FREE statement” on page 2-384, “OPEN statement” on page 2-469, “SET
AUTOFREE statement” on page 2-606, and “SET DEFERRED_PREPARE statement”
on page 2-618

For information about basic concepts that relate to the PREPARE statement, see the
IBM Informix Guide to SQL: Tutorial.

For information about more advanced concepts that relate to the PREPARE
statement, see the IBM Informix ESQL/C Programmer's Manual.

PUT statement
Use the PUT statement to store a row in an insert buffer for later insertion into the
database.

Syntax

�� PUT cursor_id_var
cursor_id

�

�

�

,

FROM output_var
INDICATOR indicator_var
$indicator_var
:indicator_var

USING SQL DESCRIPTOR 'descriptor '
descriptor_var

DESCRIPTOR sqlda_pointer

��

Chapter 2. SQL statements 2-487

Element Description Restrictions Syntax

cursor_id Name of a cursor Must be open “Identifier” on page 5-21

cursor_id_var Host variable = cursor_id Must be a character type;
cursor must be open

Language specific

descriptor Name of a system-descriptor area Must already be allocated “Quoted String” on page
4-188

descriptor_var Host-variable that contains descriptor Must already be allocated “Quoted String” on page
4-188

indicator_var Host variable to receive a return code if
corresponding output_var receives a
NULL value

Cannot be a DATETIME or
INTERVAL data type

Language specific

output_var Host variable whose contents replace a
question-mark (?) placeholder in a
prepared INSERT statement

Must be a character data
type

Language specific

sqlda_pointer Pointer to an sqlda structure First character cannot be the
($) or (:) symbol

“DESCRIBE statement” on
page 2-314

Usage

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement with ESQL/C.

PUT stores a row in an insert buffer that is created when the cursor is opened.

If the buffer has no room for the new row when the statement executes, the
buffered rows are written to the database in a block, and the buffer is emptied. As
a result, some PUT statement executions cause rows to be written to the database,
and some do not. You can use the FLUSH statement to write buffered rows to the
database without adding a new row. The CLOSE statement writes any remaining
rows before it closes an Insert cursor.

If the current database uses explicit transactions, you must execute a PUT
statement within a transaction.

The following example uses a PUT statement in Informix ESQL/C:
EXEC SQL prepare ins_mcode from

’insert into manufact values(?,?)’;
EXEC SQL declare mcode cursor for ins_mcode;
EXEC SQL open mcode;
EXEC SQL put mcode from :the_code, :the_name;

The PUT statement is not an X/Open SQL statement. Therefore, you get a warning
message if you compile a PUT statement in X/Open mode.

Supplying Inserted Values
The values in the inserted row can come from one of the following sources:
v Constant values that are written into the INSERT statement
v Program variables that are named in the INSERT statement
v Program variables in the FROM clause of the PUT statement
v Values that are prepared in memory addressed by an sqlda structure or a

system-descriptor area and then specified in the USING clause of the PUT
statement

2-488 IBM Informix Guide to SQL: Syntax

The system descriptor area or sqlda structure that descriptor or sqlda_pointer
references must define a data type and memory location of each value that
corresponds to a question-mark (?) placeholder in a prepared INSERT statement.

Using Constant Values in INSERT
The VALUES clause lists the values for the inserted columns. One or more of these
values can be constants (that is, numbers or character strings).

When all the inserted values are constants, the PUT statement has a special effect.
Instead of creating a row and putting it in the buffer, the PUT statement merely
increments a counter. When you use a FLUSH or CLOSE statement to empty the
buffer, one row and a repetition count are sent to the database server, which inserts
that number of rows. In the following Informix ESQL/C example, 99 empty
customer records are inserted into the customer table. Because all values are
constants, no disk output occurs until the cursor closes. (The constant zero for
customer_num causes generation of a SERIAL value.) The following example
inserts 99 empty customer records into the customer table:
int count;
EXEC SQL declare fill_c cursor for

insert into customer(customer_num) values(0);
EXEC SQL open fill_c;
for (count = 1; count <= 99; ++count)

EXEC SQL put fill_c;
EXEC SQL close fill_c;

Naming Program Variables in INSERT
When you associate the INSERT statement with a cursor (in the DECLARE
statement), you create an Insert cursor. In the INSERT statement, you can name
program variables in the VALUES clause. When each PUT statement is executed,
the contents of the program variables at that time are used to populate the row
that is inserted into the buffer.

If you are creating an Insert cursor (using DECLARE with INSERT), you must use
only program variables in the VALUES clause. Variable names are not recognized
in the context of a prepared statement; you associate a prepared statement with a
cursor through its statement identifier.

The following Informix ESQL/C example illustrates the use of an Insert cursor.
The code includes the following statements:
v The DECLARE statement associates a cursor called ins_curs with an INSERT

statement that inserts data into the customer table.
The VALUES clause specifies a data structure that is called cust_rec; the
Informix ESQL/C preprocessor converts cust_rec to a list of values, one for each
component of the structure.

v The OPEN statement creates a buffer.
v A user-defined function (not defined within this example) obtains customer

information from user input and stores it in cust_rec.
v The PUT statement composes a row from the current contents of the cust_rec

structure and sends it to the row buffer.
v The CLOSE statement inserts into the customer table any rows that remain in

the row buffer and closes the Insert cursor:
int keep_going = 1;
EXEC SQL BEGIN DECLARE SECTION

struct cust_row { /* fields of a row of customer table */ } cust_rec;
EXEC SQL END DECLARE SECTION
EXEC SQL declare ins_curs cursor for

Chapter 2. SQL statements 2-489

insert into customer values (:cust_row);
EXEC SQL open ins_curs;
while ((sqlca.sqlcode == 0) && (keep_going))

{
keep_going = get_user_input(cust_rec); /* ask user for new customer */

if (keep_going) /* user did supply customer info
*/

{
cust_rec.customer_num = 0; /* request new serial value */
EXEC SQL put ins_curs;
}

if (sqlca.sqlcode == 0) /* no error from PUT */
keep_going = (prompt_for_y_or_n("another new customer") ==’Y’)

}
EXEC SQL close ins_curs;

Use an indicator variable if the data to be inserted might be NULL.

Naming Program Variables in PUT
When the INSERT statement is prepared (see “PREPARE statement” on page
2-477), you cannot use program variables in its VALUES clause, but you can
represent values by a question-mark (?) placeholder. List the program variables in
the FROM clause of the PUT statement to supply the missing values.

The following Informix ESQL/C example lists host variables in a PUT statement:
char answer [1] = ’y’;
EXEC SQL BEGIN DECLARE SECTION;

char ins_comp[80];
char u_company[20];

EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to ’stores_demo’;
EXEC SQL prepare ins_comp from

’insert into customer (customer_num, company) values (0, ?)’;
EXEC SQL declare ins_curs cursor for ins_comp;
EXEC SQL open ins_curs;

while (1)
{
printf("\nEnter a customer: ");
gets(u_company);
EXEC SQL put ins_curs from :u_company;
printf("Enter another customer (y/n) ? ");
if (answer = getch() != ’y’)

break;
}

EXEC SQL close ins_curs;
EXEC SQL disconnect all;

}

Indicator variables are optional, but you should use an indicator variable if the
possibility exists that output_var might contain a NULL value. If you specify the
indicator variable without the INDICATOR keyword, you cannot put a blank space
between output_var and indicator_var.

Using the USING Clause
If you do not know the number of parameters to be supplied at runtime or their
data types, you can associate input values from a system-descriptor area or an

2-490 IBM Informix Guide to SQL: Syntax

sqlda structure. Both of these descriptor structures describe the data type and
memory location of one or more values to replace question-mark (?) placeholders.

Each time the PUT statement executes, the values that the descriptor structure
describes are used to replace question-mark (?) placeholders in the INSERT
statement. This process is similar to using a FROM clause with a list of variables,
except that your program has full control over the memory location of the data
values.

Specifying a System-Descriptor Area
The SQL DESCRIPTOR option specifies the name of a system-descriptor area.

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be less
than or equal to the number of item descriptors that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

A system-descriptor area conforms to the X/Open standards.

The following Informix ESQL/C example shows how to associate values from a
system-descriptor area:
EXEC SQL allocate descriptor ’desc1’;
...
EXEC SQL put selcurs using sql descriptor ’desc1’;

Specifying an sqlda Structure
Use the DESCRIPTOR option to introduce the name of a pointer to an sqlda
structure. The following Informix ESQL/C example shows how to associate values
from an sqlda structure:
EXEC SQL put selcurs using descriptor pointer2;

Inserting into a Collection Cursor
A Collection cursor allows you to access the individual elements of a collection
variable. To declare a Collection cursor, use the DECLARE statement and include
the Collection-Derived Table segment in the INSERT statement that you associate
with the cursor. Once you open the Collection cursor with the OPEN statement,
the cursor can put elements in the collection variable.

To put elements, one at a time, into the Insert cursor, use the PUT statement and
the FROM clause. The PUT statement identifies the Collection cursor that is
associated with the collection variable. The FROM clause identifies the element
value to be inserted into the cursor. The data type of any host variable in the
FROM clause must match the element type of the collection.

Important: The collection variable stores the elements of the collection. However, it
has no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the actual
collection column with the INSERT or UPDATE statement.

Suppose you have a table called children with the following schema:

Chapter 2. SQL statements 2-491

CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20) NOT NULL)

);

The following Informix ESQL/C program fragment shows how to use an Insert
cursor to put elements into a collection variable called child_colors:
EXEC SQL BEGIN DECLARE SECTION;

client collection child_colors;
char *favorites[]
(

"blue",
"purple",
"green",
"white",
"gold",
0

);
int a = 0;
char child_name[21];

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :child_colors;

/* Get structure of fav_colors column for untyped
* child_colors collection variable */
EXEC SQL select fav_colors into :child_colors

from children where name = :child_name;
/* Declare insert cursor for child_colors collection
* variable and open this cursor */
EXEC SQL declare colors_curs cursor for

insert into table(:child_colors)
values (?);

EXEC SQL open colors_curs;
/* Use PUT to gather the favorite-color values
* into a cursor */
while (fav_colors[a])

{
EXEC SQL put colors_curs from :favorites[:a];
a++
...

}
/* Flush cursor contents to collection variable */
EXEC SQL flush colors_curs;
EXEC SQL update children set fav_colors = :child_colors;

EXEC SQL close colors_curs;
EXEC SQL deallocate collection :child_colors;

After the FLUSH statement executes, the collection variable, child_colors, contains
the elements {"blue", "purple", "green", "white", "gold"}. The UPDATE
statement at the end of this program fragment saves the new collection into the
fav_colors column of the database. Without this UPDATE statement, the new
collection would not be added to the collection column.

Writing Buffered Rows
To open an Insert cursor, the OPEN statement creates an insert buffer. The PUT
statement puts a row into this insert buffer. The buffered rows are inserted into the
database table as a block only when necessary; this process is called flushing the
buffer. The buffer is flushed after any of the following events:

2-492 IBM Informix Guide to SQL: Syntax

v Buffer is too full to hold the new row at the start of a PUT statement.
v A FLUSH statement executes.
v A CLOSE statement closes the cursor.
v An OPEN statement specifies an already open cursor, closing it before reopening

it. (This implicit CLOSE statement flushes the buffer.)
v A COMMIT WORK statement executes.
v Buffer contains BYTE or TEXT data (flushed after a single PUT statement).

If the program terminates without closing an Insert cursor, the buffer remains
unflushed. Rows that were inserted into the buffer since the last flush are lost. Do
not rely on the end of the program to close the cursor and flush the buffer.

Error Checking
The sqlca structure contains information on the success of each PUT statement as
well as information that lets you count the rows that were inserted. The result of
each PUT statement is contained in the following fields of the sqlca: sqlca.sqlcode,
SQLCODE, and sqlca.sqlerrd[2].

Data buffering with an Insert cursor means that errors are not discovered until the
buffer is flushed. For example, an input value that is incompatible with the data
type of the column for which it is intended is discovered only when the buffer is
flushed. When an error is discovered, buffered rows that were not inserted before
the error are not inserted; they are lost from memory.

The SQLCODE field is set to 0 if no error occurs; otherwise, it is set to an error
code. The third element of the sqlerrd array is set to the number of rows that were
successfully inserted into the database:
v If any row is put into the insert buffer, but not written to the database,

SQLCODE and sqlerrd are set to 0 (SQLCODE because no error occurred, and
sqlerrd because no rows were inserted).

v If a block of buffered rows is written to the database during the execution of a
PUT statement, SQLCODE is set to 0 and sqlerrd is set to the number of rows
that was successfully inserted into the database.

v If an error occurs while the buffered rows are written to the database,
SQLCODE indicates the error, and sqlerrd contains the number of successfully
inserted rows. (The uninserted rows are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a SQLSTATE error value also
exists. See the GET DIAGNOSTICS statement for details of how to obtain the
message text.

To count the number of pending and inserted rows in the database

1. Prepare two integer variables (for example, total and pending).
2. When the cursor is opened, set both variables to 0.
3. Each time a PUT statement executes, increment both total and pending.
4. Whenever a PUT or FLUSH statement executes or the cursor closes, subtract

the third field of the SQLERRD array from pending.

At any time, (total - pending) represents the number of rows actually inserted. If
no statements fail, pending contains zero after the cursor is closed. If an error
occurs during a PUT, FLUSH, or CLOSE statement, the value that remains in
pending is the number of uninserted (discarded) rows.

Chapter 2. SQL statements 2-493

Related Statements

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2, “CLOSE
statement” on page 2-76, “DEALLOCATE DESCRIPTOR statement” on page 2-288,
“FLUSH statement” on page 2-382, “DECLARE statement” on page 2-290, “GET
DESCRIPTOR statement” on page 2-385, “OPEN statement” on page 2-469,
“PREPARE statement” on page 2-477, and “SET DESCRIPTOR statement” on page
2-620

For a task-oriented discussion of the PUT statement, see the IBM Informix Guide to
SQL: Tutorial.

For more information about error checking, the system-descriptor area, and the
sqlda structure, see the IBM Informix ESQL/C Programmer's Manual.

RELEASE SAVEPOINT statement
Use the RELEASE SAVEPOINT statement to destroy a specified savepoint. The
RELEASE SAVEPOINT statement is compliant with the ANSI/ISO standard for
SQL.

Syntax

�� RELEASE SAVEPOINT savepoint ��

Element Description Restrictions Syntax

savepoint Name of the
savepoint to be
destroyed

Must exist in the current savepoint level “Identifier” on page 5-21

Usage

Restriction: After this statement executes successfully, rollback to the specified
savepoint (or to any other savepoint between the RELEASE SAVEPOINT statement
and the specified savepoint) is no longer possible.

The RELEASE SAVEPOINT statement destroys the specified savepoint. Any
savepoints set between that savepoint and the RELEASE SAVEPOINT statement in
the current savepoint level are also destroyed. Any other savepoints, however, that
were set earlier than the specified savepoint in the current savepoint level continue
to be active.

The RELEASE SAVEPOINT statement fails with an error in the following contexts:
v No SQL transaction is open.
v No savepoint with the specified name exists in the current savepoint level.
v The statement is part of a triggered action.
v The statement is part of an XA transaction.
v The autocommit transaction mode of the client API is enabled.
v The statement is part of a cross-server distributed SQL transaction in which one

of the participating database servers does not support savepoints.
v The statement is issued within a UDR that is invoked within a DML statement.

2-494 IBM Informix Guide to SQL: Syntax

The identifier of any savepoint that RELEASE SAVEPOINT destroys can be reused
in a subsequent SAVEPOINT statement of the same savepoint level, even if the
released savepoint was set by a SAVEPOINT statement that included the UNIQUE
keyword.

Because savepoints are program objects, not database objects, the RELEASE
SAVEPOINT statement has no direct effect on the database or on its system catalog
tables. RELEASE SAVEPOINT can affect user tables and the system catalog
indirectly, however, if it changes the scope of a subsequent ROLLBACK TO
SAVEPOINT operation that cancels uncommitted changes to the database within a
different portion of the current savepoint level, as the next example illustrates.

The following program fragment sets and then releases a savepoint called sp45:
BEGIN WORK;
CREATE DATABASE third_base IN db3 WITH BUFFERED LOG;
SAVEPOINT sp46;
CREATE TABLE tab1 (col1 INT, col2 CHAR(24));
SAVEPOINT sp45 UNIQUE;
...
CREATE TABLE tab2 (col1 INT8, col2 LVARCHAR(24000));
SAVEPOINT sp44;
...
RELEASE SAVEPOINT sp45;
ROLLBACK TO SAVEPOINT;

The effect of the RELEASE SAVEPOINT statement in this example is to destroy
two savepoints, sp45 and sp44. If the only remaining savepoint in the current
savepoint level is sp46, the subsequent ROLLBACK TO SAVEPOINT statement
cancels the DDL statements that created tab1 and tab2, and any DML operations
on those tables that preceded the ROLLBACK statement. The rollback does not,
however, cancel the CREATE DATABASE statement that created the third_base
database. Without the RELEASE SAVEPOINT statement, the CREATE TABLE
statement that created tab1 would not have been cancelled, because Informix
would have treated sp44 as the default.savepoint that the TO SAVEPOINT clause
of the ROLLBACK statement references.

Related information

Related statements: “SAVEPOINT statement” on page 2-534 and “ROLLBACK
WORK statement” on page 2-528.

RENAME COLUMN statement
Use the RENAME COLUMN statement to change the name of a column. The
RENAME COLUMN statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME COLUMN
owner.

table . old_column TO new_column ��

Element Description Restrictions Syntax

new_column Name that you
declare here to replace
old_column

Must be unique among column names in table.
See also “How Triggers Are Affected” on page
2-496.

“Identifier” on page 5-21

old_column Column to rename Must exist within table “Identifier” on page 5-21

Chapter 2. SQL statements 2-495

Element Description Restrictions Syntax

owner Owner of the table Must be the owner of table “Owner Name” on page
5-45

table Table that contains
old_column

Must be registered in the current database “Identifier” on page 5-21

Usage

You can rename a column of a table if any of the following conditions are true:
v You own the table or have Alter privilege on the table.
v You have the DBA privilege on the database.

The column can be in a table object that the CREATE EXTERNAL TABLE
statement defined.

How Views and Check Constraints Are Affected
If you rename a column that appears in a view, the text of the view definition in
the sysviews system catalog table is updated to reflect the new column name. If
you rename a column that appears in a check constraint, the text of the check
constraint in the syschecks system catalog table is updated to reflect the new
column name.

How Triggers Are Affected
If you rename a column that appears within the definition a trigger, it is replaced
with the new name only in the following instances:
v When it appears as part of a correlation name inside the FOR EACH ROW

action clause of a trigger
v When it appears as part of a correlation name in the INTO clause of an

EXECUTE FUNCTION (or EXECUTE PROCEDURE) statement
v When it appears as a triggering column in the UPDATE clause

When the trigger executes, if the database server encounters a column name that
no longer exists in the table, an error is returned.

Example of RENAME COLUMN

The following example assigns the new name of c_num to the customer_num
column in the customer table:
RENAME COLUMN customer.customer_num TO c_num;

Related Information

Related statements: “ALTER TABLE statement” on page 2-41, “CREATE TABLE
statement” on page 2-198, “CREATE TRIGGER statement” on page 2-241,
“CREATE VIEW statement” on page 2-277, and “RENAME TABLE statement” on
page 2-500

RENAME DATABASE statement
Use the RENAME DATABASE statement to change the name of a database. This
statement is an extension to the ANSI/ISO standard for SQL.

2-496 IBM Informix Guide to SQL: Syntax

|
|

Syntax

�� RENAME DATABASE
owner.

old_database TO new_database ��

Element Description Restrictions Syntax

new_database New name that you
declare here for
old_database

Must be unique among database names of the
current database server; must not be opened by any
user when this statement is issued

“Database Name”
on page 5-15

old_database Name that new_database
replaces

Must exist on current database server, but it cannot
be the name of the current database

“Database Name”
on page 5-15

owner Owner of old_database Must be the owner of the database “Owner Name” on
page 5-45

Usage

You can rename a database if either of the following is true:
v You created the database.
v You have the DBA privilege on the database.

The RENAME DATABASE statement fails with error -9874, however, if the
specified database contains any of the following objects:
v a virtual table
v a virtual index
v an R-tree index
v a DataBlade that references the current name of the database in a user-defined

primary access method or in a user-defined secondary access method.

You can only rename databases of the database server to which you are currently
connected.

You cannot rename a database from inside an SPL routine.

Related information

Related statement: “CREATE DATABASE statement” on page 2-97

For information on how to update the three-part names of jar files after you
rename the database, see the J/Foundation Developer's Guide.

RENAME INDEX statement
Use the RENAME INDEX statement to change the name of an existing index. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME INDEX
owner.

old_index TO new_index ��

Chapter 2. SQL statements 2-497

Element Description Restrictions Syntax

new_index New name that you
declare here for the
index

Name must be unique to the database (or to the
session, if old_index is on a temporary table)

“Identifier” on page
5-21

old_index Index name that
new_index replaces

Must exist, but it cannot be any of the following: --
An index on a system catalog table -- A
system-generated constraint index -- A Virtual-Index
Interface (VII)

“Identifier” on page
5-21

owner Owner of index Must be the owner of old_index “Owner Name” on page
5-45

Usage

You can rename an index if you are the owner of the index or have the DBA
privilege on the database.

When you rename an index, the database server changes the index name in the
sysindexes, sysconstraints, sysobjstate, and sysfragments system catalog tables.
(But for an index on a temporary table, no system catalog tables are updated.)

Indexes on system catalog tables cannot be renamed. If you want to change the
name of a system-generated index that implements a constraint, use the ALTER
TABLE ... DROP CONSTRAINT statement to drop the constraint, and then use the
ALTER TABLE ... ADD CONSTRAINT statement to define a new constraint that
has the same definition as the constraint that you dropped, but for which you
declare the new name.

By default, SPL routines that use the renamed index are reoptimized when they are
next executed after the index is renamed. When automatic recompilation is
disabled, however, SPL routines that use the renamed index are automatically
recompiled on their next use if the renamed index is associated with a directly
referenced table. If the table is only referenced indirectly, however, execution can
fail with error -710. For more information about enabling or disabling automatic
recompilation after changes to the schema of a referenced table, see the
“IFX_AUTO_REPREPARE Environment Option” on page 2-633. For more
information about the AUTO_REPREPARE configuration parameter, see your IBM
Informix Administrator's Reference.

Related information

Related statements: ALTER INDEX, CREATE INDEX, and DROP INDEX

For a discussion of SPL-routine reoptimization, see your IBM Informix Performance
Guide.
Related concepts

Reoptimizing SPL routines (Performance Guide)

RENAME SECURITY statement
Use the RENAME SECURITY statement to change the name of an existing security
object. The object can be a security policy, or a security label, or a security label
component.

2-498 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_544.htm#ids_prf_544

Syntax

�� RENAME SECURITY POLICY
LABEL policy .
LABEL COMPONENT

old_name TO new_name ��

Element Description Restrictions Syntax

new_name New name that you
declare here for the
security object

Must be unique among identifiers of security objects
in the database, and must be different from old_name

“Identifier” on page
5-21

old_name Current name that
new_name replaces

Must exist in the database as the identifiers of a
security object

“Identifier” on page
5-21

policy Security policy of
the old_name label

Must be the security policy for which old_name is a
security label

“Identifier” on page
5-21

Usage

This statement is an extension to the ANSI/ISO standard for SQL.

Only DBSECADM can issue this statement. The RENAME SECURITY statement
replaces the old_name with the specified new_name in the table of the system
catalog in which the renamed security object is registered:
v sysecpolicies.secpolicyname for security policies
v sysseclabels.seclabelname for security labels
v sysseclabelcomponents.compname for security label components.

This statement does not, however, change the numeric value of the
sysecpolicies.secpolicyid, sysseclabels.seclabelid, nor
sysseclabelcomponents.compid of the renamed security object.

The keyword or keywords that follow the SECURITY keyword identify the type of
security object that is being renamed. In the following example, the new identifier
honesty replaces best as the name of a security policy:
RENAME SECURITY POLICY best TO honesty;

In the following example, the new identifier transparent replaces opaque as the
name of a label for the honesty security policy:
RENAME SECURITY LABEL honesty.opaque TO transparent;

In the next example, the new identifier accountant replaces architect as the name
of a security label component:
RENAME SECURITY LABEL COMPONENT architect TO accountant;

Related Information

Related statements: “ALTER SECURITY LABEL COMPONENT statement” on page
2-34, ALTER TABLE, “CREATE SECURITY LABEL statement” on page 2-183,
“CREATE SECURITY LABEL COMPONENT statement” on page 2-184, “CREATE
SECURITY POLICY statement” on page 2-189, CREATE TABLE, “DROP SECURITY
statement” on page 2-342, GRANT EXEMPTION, GRANT SECURITY LABEL,
REVOKE EXEMPTION, and REVOKE SECURITY LABEL

For a discussion of LBAC security objects, see your IBM Informix Security Guide

Chapter 2. SQL statements 2-499

Related concepts

Label-Based Access Control (Security Guide)

RENAME SEQUENCE statement
Use the RENAME SEQUENCE statement to change the name of a sequence. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� RENAME SEQUENCE
owner.

old_sequence TO new_sequence ��

Element Description Restrictions Syntax

new_sequence New name that you declare here
for an existing sequence

Must be unique among the names of
sequences, tables, views, and
synonyms in the database

“Identifier” on page 5-21

old_sequence Current name of a sequence Must exist in the current database “Identifier” on page 5-21

owner Owner of the sequence Must be the owner of the sequence “Owner Name” on page
5-45

Usage

To rename a sequence, you must be the owner of the sequence, have the ALTER
privilege on the sequence, or have the DBA privilege on the database.

You cannot use a synonym to specify the name of the sequence.

In a database that is not ANSI compliant, the name of new_sequence (or in an
ANSI-compliant database, the combination of owner.new_sequence) must be unique
among sequences, tables, views, and synonyms in the database.

Related information

Related statements: “ALTER SEQUENCE statement” on page 2-38, “CREATE
SEQUENCE statement” on page 2-191, “DROP SEQUENCE statement” on page
2-344, “CREATE SYNONYM statement” on page 2-195, “DROP SYNONYM
statement” on page 2-346, “GRANT statement” on page 2-401, “REVOKE
statement” on page 2-502, “INSERT statement” on page 2-435, “UPDATE
statement” on page 2-700, and “SELECT statement” on page 2-536

For information about generating values from a sequence, see “NEXTVAL and
CURRVAL Operators” on page 4-78.

RENAME TABLE statement
Use the RENAME TABLE statement to change the name of a table. The RENAME
TABLE statement is an extension to the ANSI/ISO standard for SQL.

Syntax

2-500 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sec.doc/ids_lb_002.htm#ids_lb_002

�� RENAME TABLE
owner.

old_table TO new_table ��

Element Description Restrictions Syntax

new_table New name for old_table Must be unique among the names of
sequences, tables, views, and synonyms in
the database

“Identifier” on page
5-21

old_table Name that new_table replaces Must be the name (not the synonym) of a
table that is registered in the current
database

“Identifier” on page
5-21

owner Current owner of the table Must be the owner of the table. “Owner Name” on
page 5-45

Usage

To rename a table, you must be the owner of the table, or have the ALTER
privilege on the table, or have the DBA privilege on the database.

An error occurs if old_table is a synonym, rather than the name of a table.

The old_table can be an object that the CREATE EXTERNAL TABLE statement
defined.

The renamed table remains in the current database. You cannot use the RENAME
TABLE statement to move a table from the current database to another database,
nor to rename a table that resides in another database.

You cannot change the table owner by renaming the table. An error occurs if you
try to specify an owner. qualifier for the new name of the table.

When the table owner is changed, you must specify both the old owner and new
owner.

In an ANSI-compliant database, if you are not the owner of old_table, you must
specify owner.old_table as the old name of the table.

If old_table is referenced by a view in the current database, the view definition is
updated in the sysviews system catalog table to reflect the new table name. For
further information on the sysviews system catalog table, see the IBM Informix
Guide to SQL: Reference.

If old_table is a triggering table, the database server takes these actions:
v Replaces the name of the table in the trigger definition but does not replace the

table name where it appears inside any triggered actions
v Returns an error if the new table name is the same as a correlation name in the

REFERENCING clause of the trigger definition

When the trigger executes, the database server returns an error if it encounters a
table name for which no table exists.

Chapter 2. SQL statements 2-501

|
|

Using RENAME TABLE to Reorganize a Table

The RENAME TABLE statement can be a useful alternative to the ALTER TABLE
statement when you need to reorganize the schema of an existing table. Suppose,
for example, that you decide to change the order of columns in the items table of
the stores demonstration database. You can reorganize the items table to move the
quantity column from the fifth position to the third position by following these
steps:
1. Create a new table, new_table, that contains the column quantity in the third

position.
2. Fill the table with data from the current items table.
3. Drop the old items table.
4. Rename new_table with the identifier items.

The following example uses the RENAME TABLE statement as the last step:
CREATE TABLE new_table

(
item_num SMALLINT,
order_num INTEGER,
quantity SMALLINT,
stock_num SMALLINT,
manu_code CHAR(3),
total_price MONEY(8)
);

INSERT INTO new_table
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price FROM items;
DROP TABLE items;
RENAME TABLE new_table TO items;

Related information

Related statements: “ALTER TABLE statement” on page 2-41, “CREATE TABLE
statement” on page 2-198, “DROP TABLE statement” on page 2-347, and
“RENAME COLUMN statement” on page 2-495
Related reference

SYSVIEWS (SQL Reference)

REVOKE statement
Use the REVOKE statement to cancel access privileges or roles that are held by
users, by roles, or by PUBLIC, or to cancel user security labels or exemptions from
the rules of security policies.

Syntax

2-502 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_078.htm#ids_sqr_078

�� REVOKE

�

�

(1) (2) (3)
Database-Level Privileges FROM User List
DEFAULT ROLE FROM PUBLIC

,

' user '
(4)

Role Name FROM PUBLIC
, AS ' revoker '

' user '
' role '

(5)
Security Administration Options

(6)
Table-Level Privileges FROM Options
(1) (7)

Routine-Level Privileges
(8)

Language-Level Privileges
(9)

Type-Level Privileges
(10)

Sequence-Level Privileges

��

FROM options:

FROM

�

(3) CASCADE
User List

RESTRICT AS ' revoker '
,

(1) (4)
Role Name

' user '

Notes:

1 Informix extension

2 See “Database-Level Privileges” on page 2-504

3 See “User List” on page 2-513

4 See “Role Name” on page 2-514

5 See “Security Administration Options” on page 2-517

6 See “Table-Level Privileges” on page 2-506

7 See “Routine-Level Privileges” on page 2-510

8 See “Language-Level Privileges” on page 2-511

9 See “Type-Level Privileges” on page 2-509

10 See “Sequence-Level Privileges” on page 2-512

Element Description Restrictions Syntax

revoker Authorization identifier of the grantor of the
privileges to be revoked

Must be grantor of the
specified privileges

“Owner Name” on page
5-45

Chapter 2. SQL statements 2-503

Element Description Restrictions Syntax

role Role from which you revoke another role Must exist “Owner Name” on page
5-45

user User whose role (or default role) you cancel Must exist “Owner Name” on page
5-45

Usage

To cancel privileges on one or more fragments of a table that has been fragmented
by expression, see “REVOKE FRAGMENT statement” on page 2-525.

You can revoke privileges if any of the following conditions is true for the
privileges that you are attempting to revoke on some database object:
v You granted them and did not designate another user as grantor.
v The GRANT statement specified you as grantor.
v You are revoking privileges from PUBLIC on an object that you own, and those

privileges were granted by default when you created the object.
v You have database-level DBA privileges and you specify in the AS clause the

name of a user who was grantor of the privilege.

The REVOKE statement can cancel any of the following access privileges or roles
that a user, or PUBLIC, or a role currently holds:
v Privileges on the database (but a role cannot hold database-level privileges)
v Privileges on a table, synonym, view, or sequence object
v Privileges on a user-defined data type (UDT), a user-defined routine (UDR), or

on the SPL language
v A non-default role, or the default role of PUBLIC or of a user.

You cannot revoke privileges from yourself. You cannot revoke grantor status from
another user. To revoke a privilege that was granted to another user by the AS
grantor clause of the GRANT statement, you must have the DBA privilege, and you
must use the AS clause to specify that user as revoker.

If you enclose revoker, role, or user in quotation marks, the name is case sensitive
and is stored exactly as you typed it. In an ANSI-compliant database, if you do not
use quotation marks as delimiters, the name is stored in uppercase letters.

Database-Level Privileges
Three concentric layers of database-level privileges, Connect, Resource, and DBA,
authorize increasing power over database access and control. Only a user with the
DBA privilege can grant or revoke database-level privileges.

Database-Level Privileges:

DBA
RESOURCE
CONNECT

Because of the hierarchical organization of the privileges (as outlined in the
privilege definitions that are described later in this section), if you revoke either
the Resource or the Connect privilege from a user with the DBA privilege, the

2-504 IBM Informix Guide to SQL: Syntax

statement has no effect. If you revoke the DBA privilege from a user who has the
DBA privilege, the user retains the Connect privilege on the database. To deny
database access to a user with the DBA or Resource privilege, you must first
revoke the DBA or the Resource privilege and then revoke the Connect privilege in
a separate REVOKE statement.

Similarly, if you revoke the Connect privilege from a user who has the Resource
privilege, the statement has no effect. If you revoke the Resource privilege from a
user, the user retains the Connect privilege on the database.

Only users or PUBLIC can hold database-level privileges. You cannot revoke these
privileges from a role, because a role cannot hold database level privileges.

The following table lists the keyword for each database-level privilege.

Privilege Effect

DBA Has all the capabilities of the Resource privilege and can perform the
following additional operations:

v Grant any database-level privilege, including the DBA privilege, to
another user.

v Grant any table-level privilege to another user or to a role.

v Grant a role to a user or to another role.

v Revoke a privilege whose grantor you specify as the revoker in the AS
clause of the REVOKE statement.

v Restrict the Execute privilege to DBAs when registering a UDR.

v Execute the SET SESSION AUTHORIZATION statement.

v Create any database object.

v Create tables, views, and indexes, designating another user as owner of
these objects.

v Alter, drop, or rename database objects, regardless of who owns it.

v Execute the DROP DISTRIBUTIONS option of the UPDATE STATISTICS
statement.

v Execute DROP DATABASE and RENAME DATABASE statements.

RESOURCE Lets you extend the structure of the database. In addition to the capabilities
of the Connect privilege, the holder of the Resource privilege can perform
the following operations:

v Create new tables.

v Create new indexes.

v Create new user-defined routines.

v Create new data types.

Chapter 2. SQL statements 2-505

Privilege Effect

CONNECT If you have this privilege, you can query and modify data, and modify the
database schema if you own the database object that you want to modify.
A user holding the Connect privilege can perform the following operations:

v Connect to the database with the CONNECT statement or another
connection statement.

v Execute SELECT, INSERT, UPDATE, and DELETE statements, provided
that the user has the necessary table-level privileges.

v Create views, provided that the user has the Select privilege on the
underlying tables.

v Create synonyms.

v Create temporary tables and create indexes on temporary tables.

v Alter or drop a table or an index, if the user owns the table or index (or
has the Alter, Index, or References privilege on the table).

v Grant privileges on a table, if the user owns the table (or was given
privileges on the table with the WITH GRANT OPTION keyword).

Table-Level Privileges
Table-level privileges, also called table privileges, specify which operations a user or
role can perform on a table or view in the database. You can use a synonym to
specify the table or view on which you grant or revoke table privileges.

Select, Update, and References privileges can be granted on a subset of the
columns of a table or view, but can be revoked only for all columns. If Select
privileges are revoked from a user for a table that is referenced in the SELECT
statement defining a view that the same user owns, then that view is dropped,
unless it also includes columns from tables in another database.

For table objects that the CREATE EXTERNAL TABLE statement has registered in
the current database, only the Select privilege and the Insert privilege are
supported; no other table or column access privileges can be granted or revoked.

Use the following syntax to specifying which table-level privileges to revoke from
one or more users or roles:

Table-Level Privileges:

�

PRIVILEGES
ALL

,

INSERT
DELETE
UPDATE
(1)

SELECT
ALTER
INDEX
REFERENCES
UNDER

ON
owner .

table
view
synonym

Notes:

1 Informix extension

2-506 IBM Informix Guide to SQL: Syntax

|
|
|

Element Description Restrictions Syntax

owner Name of the user who owns the table, view, or
synonym

Must be a valid
authorization identifier

“Owner Name” on
page 5-45

synonym, table,
view

Synonym, table, or view on which privileges are
granted

Must exist in the
current database

“Identifier” on page
5-21

In one REVOKE statement, you can list one or more of the following keywords to
specify the privileges on the specified table to be revoked from the users or roles.

Privilege Effect after REVOKE

INSERT User cannot insert rows.

DELETE User cannot delete rows.

SELECT User cannot display data retrieved by a SELECT statement.

UPDATE User cannot change column values.

INDEX User cannot create permanent indexes. You must have the Resource
privilege to take advantage of the Index privilege. (But any user who has
the Connect privilege can create indexes on temporary tables.)

ALTER The holder cannot add or delete columns, modify column data types, add
or delete constraints, change the locking mode of a table from PAGE to
ROW, nor add or drop a corresponding named ROW type table. The user
also cannot enable or disable indexes, constraints, nor triggers, as
described in “SET Database Object Mode statement” on page 2-599.

Privilege Effect after REVOKE

REFERENCES User cannot reference columns in referential constraints. You must also
have the Resource privilege on the database to take advantage of the
References privilege on tables. (You can add, however, a referential
constraint during an ALTER TABLE statement. without holding the
Resource privilege on the database.) Revoking the References privilege
disallows cascading DELETE operations.

UNDER User cannot create subtables under a typed table.

ALL This removes all of the table privileges that are listed above. (Here the
PRIVILEGES keyword is optional.)

See also “Table-Level Privileges” on page 2-405.

If a user receives the same privilege from two different grantors and one grantor
revokes the privilege, the grantee still has the privilege until the second grantor
also revokes the privilege. For example, if both you and a DBA grant the Update
privilege on your table to ted, both you and the DBA must revoke the Update
privilege to prevent ted from updating your table.

If user ted holds the same privileges through a role or as PUBLIC, however, this
REVOKE operation does not prevent ted from exercising the Update privilege.

When to Use REVOKE Before GRANT
You can use combinations of REVOKE and GRANT to replace PUBLIC with
specific users as grantees, and to remove table-level privileges on some columns.

Replacing PUBLIC with Specified Users: If a table owner grants a privilege to
PUBLIC, the owner cannot revoke the same privilege from any specific user. For

Chapter 2. SQL statements 2-507

example, assume PUBLIC has default Select privileges on your customer table.
Suppose that you issue the following statement in an attempt to exclude ted from
accessing your table:
REVOKE ALL ON customer FROM ted;

This statement results in ISAM error message 111, No record found, because the
system catalog tables (syscolauth or systabauth) contain no table-level privilege
entry for a user named ted. This REVOKE operation does not prevent ted from
keeping all the table-level privileges given to PUBLIC on the customer table.

To restrict table-level privileges, first revoke the privileges with the PUBLIC
keyword, then re-grant them to some appropriate list of users and roles. The
following statements revoke the Index and Alter privileges from all users for the
customer table, and then grant these privileges specifically to user mary:
REVOKE INDEX, ALTER ON customer FROM PUBLIC;
GRANT INDEX, ALTER ON customer TO mary;

Restricting Access to Specific Columns: Unlike GRANT, the REVOKE statement
has no syntax to specify privileges on a subset of columns in a table. To revoke the
Select, Update, or References privilege on a column from a user, you must revoke
the privilege for all the columns of the table. To provide access to some of the
columns on which you previously had granted privileges, issue a new GRANT
statement to restore the appropriate privilege on specific columns.

The next example cancels Select privileges for PUBLIC on certain columns:
REVOKE SELECT ON customer FROM PUBLIC;
GRANT SELECT (fname, lname, company, city) ON customer TO PUBLIC;

In the next example, mary first receives the ability to reference four columns in
customer, then the table owner restricts references to two columns:
GRANT REFERENCES (fname, lname, company, city) ON customer TO mary;
REVOKE REFERENCES ON customer FROM mary;
GRANT REFERENCES (company, city) ON customer TO mary;

Effect of the ALL Keyword
The ALL keyword revokes all table-level privileges. If any or all of the table-level
privileges do not exist for the revokee, REVOKE with the ALL keyword executes
successfully but returns the following SQLSTATE code:
01006--Privilege not revoked

For example, assume that user hal has the Select and Insert privileges on the
customer table. User jocelyn wants to revoke all table-level privileges from user
hal. So user jocelyn issues the following REVOKE statement:
REVOKE ALL ON customer FROM hal;

This statement executes successfully but returns SQLSTATE code 01006. The
SQLSTATE warning is returned because both of the following are true:
v The statement succeeds in revoking the Select and Insert privileges from user

hal because user hal had those privileges.
v SQLSTATE code 01006 is returned because user hal lacked other privileges

implied by the ALL keyword, but these privileges were not revoked.

The ALL keyword instructs the database server to revoke everything possible,
including nothing. If the user from whom privileges are revoked has no privileges

2-508 IBM Informix Guide to SQL: Syntax

on the table, the REVOKE ALL statement still succeeds, because it revokes
everything possible from the user (in this case, no privileges at all).

Effect of the ALL Keyword on UNDER Privilege: If you revoke ALL privileges
on a typed table, the Under privilege is included in the privileges that are revoked.
If you revoke ALL privileges on a table that is not based on a ROW type, the
Under privilege is not included among the privileges that are revoked. (The Under
privilege can be granted only on a typed table.)

Effect of Uncommitted Transactions
The REVOKE statement places an exclusive row lock on the entry in the systables
system catalog table for the table on which privileges are revoked. This lock is not
released until the transaction that contains the REVOKE statement terminates.
When another transaction attempts to prepare a SELECT statement against this
table while the first transaction is open, the concurrent transaction fails, because
the systables row for the specified table remains exclusively locked. The attempt to
prepare the SELECT statement cannot succeed until after the first transaction is
either committed or rolled back.

Type-Level Privileges

You can revoke two privileges on data types:
v The Usage privilege on a user-defined data type
v The Under privilege on a named ROW type

Type-Level Privileges:

USAGE ON TYPE type_name
UNDER ON TYPE row_type

Element Description Restrictions Syntax

row_type Named ROW type for which to revoke Under privilege Must exist Data Type, p. “Data
Type” on page 4-21

type_name User-defined type for which to revoke Usage privilege Must exist Data Type, p. “Data
Type” on page 4-21

Usage Privilege
Any user can reference a built-in data type in an SQL statement, but not a
DISTINCT data type that is based on a built-in data type. The creator of a
user-defined data type or a DBA must explicitly grant the Usage privilege on the
UDT, including a DISTINCT data type based on a built-in data type.

REVOKE with the USAGE ON TYPE keywords removes the Usage privilege that
you granted earlier to another user, to PUBLIC, or to a role.

The following statement revokes from user mark the privilege of using the widget
user-defined type:
REVOKE USAGE ON TYPE widget FROM mark;

Under Privilege
You own any named ROW data type that you create. If you want other users to be
able to create subtypes under this named ROW type, you must grant these users
the Under privilege on your named ROW type. If you later want to remove the

Chapter 2. SQL statements 2-509

ability of these users to create subtypes under the named ROW type, you must
revoke the Under privilege from these users. A REVOKE statement with the
UNDER ON TYPE keywords removes the Under privilege that you granted earlier
to these users.

For example, suppose that you created a ROW type named rtype1:
CREATE ROW TYPE rtype1 (cola INT, colb INT);

If you want another user named kathy to be able to create a subtype under this
named ROW type, you must grant the Under privilege on this named ROW type
to user kathy:
GRANT UNDER ON TYPE rtype1 TO kathy;

Now user kathy can create another ROW type under the rtype1 ROW type even
though kathy is not the owner of the rtype1 ROW type:
CREATE ROW TYPE rtype2 (colc INT, cold INT) UNDER rtype1;

If you later want to remove the ability of user kathy to create subtypes under the
rtype1 ROW type, enter the following statement:
REVOKE UNDER ON TYPE rtype1 FROM kathy;

Routine-Level Privileges

If you revoke the Execute privilege on a UDR from a user, that user can no longer
execute that UDR in any way. For details of how a user can execute a UDR, see
“Routine-Level Privileges” on page 2-410.

Routine-Level Privileges:

EXECUTE ON �

� SPL_routine
PROCEDURE routine ()
FUNCTION (1)
ROUTINE Routine Parameter List

(2)
SPECIFIC ROUTINE Specific Name

FUNCTION
PROCEDURE

Notes:

1 See “Routine Parameter List” on page 5-67

2 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

routine A user-defined routine Must exist “Identifier” on page 5-21

SPL_routine An SPL routine Must be unique in the database “Identifier” on page 5-21

In an ANSI-compliant database, the owner name must qualify the routine name,
unless the user who issues the REVOKE statement is the owner of the routine.

The following example cancels the Execute privilege of user mark on the
delete_order routine that is owned by luke:

2-510 IBM Informix Guide to SQL: Syntax

REVOKE EXECUTE ON ROUTINE luke.delete_order FROM mark;

In Informix, any negator function for which you grant the Execute privilege
requires a separate, explicit, REVOKE statement.

When you create a UDR under any of the following circumstances, PUBLIC is not
granted Execute privilege by default. Therefore you must explicitly grant the
Execute privilege before you can revoke it:
v You create the UDR in an ANSI-compliant database.
v You have DBA privilege and specify DBA after the CREATE keyword to restrict

the Execute privilege to users with the DBA database-level privilege.
v The NODEFDAC environment variable is set to yes to prevent PUBLIC from

receiving any privileges that are not explicitly granted.

But if you create a UDR with none of those conditions in effect, PUBLIC can
execute your UDR without the GRANT EXECUTE statement. To limit who can
execute your UDR, revoke Execute privilege FROM PUBLIC, and grant it to users
(see “User List” on page 2-513) or roles (see “Role Name” on page 2-514).

In Informix, if two or more UDRs have the same name, use a keyword from this
list to specify which of those UDRs a user list can no longer execute.

Keyword
UDR for Which Execution by the User is Prevented

SPECIFIC
The UDR identified by specific name

FUNCTION
Any function with the specified routine name (and parameter types that
match routine parameter list, if specified)

PROCEDURE
Any procedure with the specified routine name (and parameter types that
match routine parameter list, if specified)

ROUTINE
Functions or procedures with the specified routine name (and parameter
types that match routine parameter list, if specified)

Language-Level Privileges

A user must have the Usage privilege on SPL to register a UDR written in SPL.

Language-Level Privileges:

USAGE ON LANGUAGE SPL

When a user registers a UDR that is written in SPL, Informix verifies that the user
has the Usage privilege on the SPL language. If the user does not, the CREATE
FUNCTION or CREATE PROCEDURE statement fails with an error. (The C
language and the Java language do not require the Usage privilege.)

To revoke the Usage privilege on the SPL language from a user or role, issue a
REVOKE statement that includes the USAGE ON LANGUAGE SPL keywords. If
this statement succeeds, any user or role that you specify in the FROM clause can
no longer register UDRs that are written in the specified language. For example, if

Chapter 2. SQL statements 2-511

you revoke the default Usage privilege on SPL from PUBLIC, the ability to create
SPL routines is taken away from all users:
REVOKE USAGE ON LANGUAGE SPL FROM PUBLIC;

You can issue a GRANT USAGE ON LANGUAGE statement to restore Usage
privilege on SPL to a restricted group, such as to the role named developers:
GRANT USAGE ON LANGUAGE SPL TO developers;

Sequence-Level Privileges

Although Informix implements sequence objects as tables, only the following
subset of the table privileges (as described in “Table-Level Privileges” on page
2-405) can be granted or revoked on a sequence:
v Select privilege
v Alter privilege

Use the following syntax to specify privileges to revoke on a sequence object:

Sequence-Level Privileges:

�

ALL
,

ALTER
SELECT

ON
'owner.'

sequence
synonym

Element Description Restrictions Syntax

owner Owner of the sequence or of its synonym Must be the owner “Owner Name” on page
5-45

sequence Sequence on which to revoke privileges Must exist “Identifier” on page 5-21

synonym Synonym for a sequence object Must point to a sequence “Identifier” on page 5-21

The sequence must reside in the current database. (You can qualify the sequence or
synonym identifier with a valid owner name, but the name of a remote database (or
database@server) is not valid as a qualifier.) Syntax to revoke sequence-level
privileges is an extension to the ANSI/ISO standard for SQL.

Alter Privilege
You can revoke the Alter privilege on a sequence from another user, from PUBLIC,
or from a role. The Alter privilege enables a specified user or role to modify the
definition of a sequence with the ALTER SEQUENCE statement or to rename the
sequence with the RENAME SEQUENCE statement.

The following REVOKE statement cancels any Alter privilege that was granted
individually to user mark on the cust_seq sequence object:
REVOKE ALTER ON cust_seq FROM mark;

Select Privilege
You can revoke the Select privilege on a sequence from another user, from PUBLIC,
or from a role. Select privilege enables a user or role to use the sequence.CURRVAL
and sequence.NEXTVAL in SQL statements to access and to increment the value of
a sequence.

2-512 IBM Informix Guide to SQL: Syntax

The following REVOKE statement cancels any Select privilege that was granted
individually to user mark on the cust_seq sequence object:
REVOKE SELECT ON cust_seq FROM mark;

ALL Keyword
You can use the ALL keyword to revoke both Alter and Select privileges from
another user, from PUBLIC, or from a role.

The following example cancels any Alter and Select privileges that user mark
holds on the cust_seq sequence object:
REVOKE ALL ON cust_seq FROM mark;

Whether mark can still access cust_seq after this statement executes depends on
whether the user still holds Alter or Select privileges on cust_seq that were
granted to PUBLIC, or if he holds a role to which unrevoked privileges on
cust_seq have been granted.

User List
The authorization identifiers (or the PUBLIC keyword) that follow the FROM
keyword of REVOKE specify who loses the revoked privileges or revoked roles. If
you use the PUBLIC keyword as the user list, the REVOKE statement revokes the
specified privileges or roles from PUBLIC, thereby revoking them from all users to
whom the privileges or roles have not been explicitly granted, or who do not hold
some other role through which they have received the role or privilege.

The user list can consist of the authorization identifier of a single user or of
multiple users, separated by commas. If you use the PUBLIC keyword as the user
list, the REVOKE statement revokes the specified privileges from all users.

User List:

�

PUBLIC
,

user
'user'

Element Description Restrictions Syntax

user Login name of a user whose privilege or role
you are revoking

Must be a valid
authorization identifier

“Owner Name” on
page 5-45

Spell the user names in the list exactly as they were spelled in the GRANT
statement. You can optionally use quotation marks around each user name in the
list to preserve the lettercase. In an ANSI-compliant database, if you do not use
quotation marks to delimit user, the name of the user is stored in uppercase letters
unless the ANSIOWNER environment variable was set to 1 before the database
server was initialized.

When you specify login names, you can use the REVOKE statement and the
GRANT statement to secure various types of database objects selectively. For
examples, see “When to Use REVOKE Before GRANT” on page 2-507.

Chapter 2. SQL statements 2-513

Role Name
Only the DBA or a user who was granted a role WITH GRANT OPTION can
revoke a role or its privileges. Users cannot revoke roles from themselves.

Role Name:

'role'
role

Element Description Restrictions Syntax

role A role with one of these attributes:

v Loses an existing privilege or role

v Is lost by a user or by another role

Must exist. If enclosed between
quotation marks, role is case sensitive.

“Owner
Name” on
page 5-45

Immediately after the REVOKE keyword, the name of a role specifies a role to be
revoked from the user list. After the FROM keyword, however, the name of a role
specifies a role from which access privilege (or another role) is to be revoked. The
same FROM clause can include both user and role names if no other REVOKE
options conflict with the user or role specifications. Syntax to revoke privileges on a
role or from a role are extensions to the ANSI/ISO standard for SQL.

When you include a role after the FROM keyword of the REVOKE statement, the
specified privilege (or another role) is revoked from that role, but users who have
that role retain any privileges or roles that were granted to them individually.

If you enclose role between quotation marks, the name is case sensitive and is
stored exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks as delimiters, the role is stored in uppercase letters.

When you revoke a role that was granted to a user with the WITH GRANT
OPTION keywords, you revoke both the role and the option to grant it.

The following examples show the effects of REVOKE role:
v Remove users or remove another role from inclusion in the specified role:

REVOKE accounting FROM mary;
REVOKE payroll FROM accounting;

v Remove one or more access privileges from a role:
REVOKE UPDATE ON employee FROM accounting;

When you revoke table-level privileges from a role, you cannot include the
RESTRICT or CASCADE keywords.

Revoking a Default Role
The DBA or the owner of the database can define a default role for one or more
users or for PUBLIC with the GRANT DEFAULT ROLE statement. Unlike a
non-default role, which does not take effect until the SET ROLE statement activates
the role, a default role takes effect automatically when the user connects to the
database. The default role can specify a set of access privileges for all the users
who are granted that default role. Conversely, the REVOKE DEFAULT ROLE
statement cancels the current default role as the default role for the specified
user-list, as in the following program fragment:

2-514 IBM Informix Guide to SQL: Syntax

CREATE ROLE accounting;
GRANT USAGE ON LANGUAGE SPL TO accounting;
GRANT ALL PRIVILEGES ON receivables TO accounting;
GRANT DEFAULT ROLE accounting TO mary;
. . .
REVOKE DEFAULT ROLE FROM mary;

The last statement removes from user mary any access privileges that she holds
only through her default role. In this example, the default role was accounting, but
because at a given point in time there can be only one default role for an
individual user (or for the PUBLIC group), the name of the default role is not
specified in the REVOKE DEFAULT ROLE statement. If mary issues the SET ROLE
DEFAULT statement, it has no effect until she is granted some new default role.

After you execute REVOKE DEFAULT ROLE specifying one or more users or
PUBLIC, any privileges that those users held only through the default role are
cancelled. (But this statement does not revoke any privileges that were granted to a
user individually, or privileges that were granted to a user through another role, or
privileges that PUBLIC holds.)

After REVOKE DEFAULT ROLE successfully cancels the default role of user, the
default role of user becomes NULL, and the default role information is removed
from the system catalog. (In this context, NULL and NONE are synonyms.)

No warning is issued if REVOKE DEFAULT ROLE specifies a user who has not
been granted a default role.

No options besides the user-list are valid after the FROM keyword in the REVOKE
DEFAULT ROLE statement.

Revoking the EXTEND Role
Only the Database Server Administrator (DBSA), by default user informix, can
grant the built-in EXTEND role to one or more users or to PUBLIC with the
GRANT EXTEND TO user-list statement. Only users who have the EXTEND role
can create or drop external UDRs that are written in the C or Java languages, both
of which support shared libraries. (It is sufficient to hold the EXTEND role; it is
not necessary to activate it with the SET ROLE statement for a user to be able to
create and drop external UDRs.) Conversely, the REVOKE EXTEND FROM user-list
statement cancels the EXTEND role of the specified users, preventing them from
creating or dropping any external UDRs, as in the following example:
REVOKE EXTEND FROM ’max’;

This statement prevents user max from creating or dropping external UDRs, even
if max is the owner of a UDR that he subsequently attempts to drop.

In databases for which this security feature is not needed, the DBSA can disable
this restriction on who can create or drop external UDRs by setting the
IFX_EXTEND_ROLE configuration parameter to OFF in the ONCONFIG file.
When IFX_EXTEND_ROLE is set to OFF, users with at least the Resource privilege
on the database can create or drop external UDRs. See “Database-Level Privileges”
on page 2-504 for information about the Resource privilege.

Revoking Privileges Granted WITH GRANT OPTION
If you revoke from user privileges or a role that you granted using the WITH
GRANT OPTION keywords, you sever the chain of privileges granted by that user.

Chapter 2. SQL statements 2-515

Thus, when you revoke privileges from users or from a role, you also revoke the
same privilege resulting from GRANT statements in the following contexts:
v Issued by your grantee
v Allowed because your grantee specified the WITH GRANT OPTION clause
v Allowed because subsequent grantees granted the same privilege or role using

the WITH GRANT OPTION clause

The following examples illustrate this situation. You, as the owner of the table
items, issue the following statements to grant access privileges to user mary:
REVOKE ALL ON items FROM PUBLIC;
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION;

User mary then uses her new privilege to grant users cathy and paul access to the
items table:
GRANT SELECT, UPDATE ON items TO cathy;
GRANT SELECT ON items TO paul;

Later you revoke privileges on the items table from user mary:
REVOKE SELECT, UPDATE ON items FROM mary;

This single statement effectively revokes all privileges on the items table from
users mary, cathy, and paul.

The CASCADE keyword has the same effect as this default condition.

The AS Clause

Without the AS clause, the user who executes the REVOKE statement must be the
grantor of the privilege that is being revoked. The DBA or the owner of the object
can use the AS clause to specify another user (who must be the grantor of the
privilege) as the revoker of the privileges. The AS clause provides the only
mechanism by which privileges can be revoked on a database object whose owner
is an authorization identifier, such as informix, that is not also a valid user account
known to the operating system.

Effect of CASCADE Keyword on UNDER Privileges
If you revoke the Under privilege on a typed table with the CASCADE option, the
Under privilege is removed from the specified user, and any subtables created
under the typed table by that user are dropped from the database.

If you revoke the Under privilege on a named ROW type with the CASCADE
option when that data type is in use, the REVOKE fails. This exception to the
default behavior of the CASCADE option occurs because the database server
supports the DROP ROW TYPE statement with the RESTRICT keyword only.

For example, assume that user jeff creates a ROW type named rtype1 and grants
the Under privilege on that ROW type to user mary. User mary now creates a
ROW type named rtype2 under ROW type rtype1 and grants the Under privilege
on ROW type rtype2 to user andy. Then user andy creates a ROW type named
rtype3 under ROW type rtype2.

If user jeff now tries to revoke the Under privilege on ROW type rtype1 from user
mary with the CASCADE option, the REVOKE statement fails, because ROW type
rtype2 is still in use by ROW type rtype3.

2-516 IBM Informix Guide to SQL: Syntax

Controlling the Scope of REVOKE with the RESTRICT Option
The RESTRICT keyword causes the REVOKE statement to fail when any of the
following dependencies exist:
v A view depends on a Select privilege that you are attempting to revoke.
v A foreign-key constraint depends on a References privilege that you attempt to

revoke.
v You attempt to revoke a privilege from a user who subsequently granted this

privilege to another user or to a role.

REVOKE does not fail if it specifies a user who has the right to grant the privilege
to others but has not exercised that right. For example, assume that user clara
specifies WITH GRANT OPTION when she grants the Select privilege on the
customer table to user ted. Further assume that user ted, in turn, grants the Select
privilege on the customer table to user tania. The following statement that clara
issued has no effect, because ted has used his authority to grant the Select
privilege:
REVOKE SELECT ON customer FROM ted RESTRICT;

In contrast, if user ted does not grant the Select privilege to tania or to any other
user, the same REVOKE statement succeeds. Even if ted does grant the Select
privilege to another user, either of the following statements succeeds:
REVOKE SELECT ON customer FROM ted CASCADE;
REVOKE SELECT ON customer FROM ted;

Security Administration Options
In conjunction with the GRANT statement, the REVOKE statement supports the
discretionary access control (DAC) data security feature of Informix by specifying
which users or roles hold privileges that are required to access the database or
objects within the database.

The Security Administration Options of the REVOKE statement, like their
counterparts for the GRANT statement, support an additional set of data security
features, called label-based access control (LBAC). These features enable Informix
to allow or withhold access to protected data on the basis of a comparing a row
security label or column security label that is contained in the data object to the
user security label and other credentials that have been granted to the user who is
seeking access.

Security Administration Options:

(1)
DBSECADM Clause

(2)
EXEMPTION Clause

(3)
SECURITY LABEL Clause

(4)
SETSESSIONAUTH Clause

Notes:

1 See “DBSECADM Clause” on page 2-518

2 See “EXEMPTION Clause” on page 2-519

3 See “SECURITY LABEL Clause” on page 2-521

Chapter 2. SQL statements 2-517

4 See “SETSESSIONAUTH Clause” on page 2-523

Use of these REVOKE statement security administration options is restricted:
v Only the Database Server Administrator (DBSA), by default user informix, can

use the REVOKE DBSECADM statement to revoke the DBSECADM role.
v Only a user who holds the DBSECADM role can issue the REVOKE

EXEMPTION, REVOKE SECURITY LABEL, or REVOKE SETSESSIONAUTH
statements.

DBSECADM Clause

The REVOKE DBSECADM statement prevents the user to whom the DBSECADM
role was granted from issuing DDL statements that can create, alter, rename, or
drop security objects, including security policies, security labels, and security
components.

DBSECADM Clause:

DBSECADM FROM �

,

user
USER

Element Description Restrictions Syntax

user User from whom the role is to be revoked Must be the authorization
identifier of a user

“Owner Name” on page
5-45

The DBSECADM role is a built-in role that only the DBSA can revoke. Unlike
user-defined roles, whose scope is the database in which the role is created, the
scope of the DBSECADM role is all of the databases of the Informix instance. It is
not necessary for DBSA to reissue the REVOKE DBSECADM statement in other
databases of the same server.

Only a user who holds the DBSECADM role can issue the following SQL
statements that create or modify security objects:
v ALTER SECURITY LABEL COMPONENT
v CREATE SECURITY LABEL
v CREATE SECURITY LABEL COMPONENT
v CREATE SECURITY POLICY
v DROP SECURITY LABEL
v DROP SECURITY LABEL COMPONENT
v DROP SECURITY POLICY
v RENAME SECURITY LABEL
v RENAME SECURITY LABEL COMPONENT
v RENAME SECURITY POLICY

Only a user who holds the DBSECADM role can use the following SQL statements
to reference tables that are protected by a security policy:
v ALTER TABLE ... ADD SECURITY POLICY
v ALTER TABLE ... ADD ... IDSSECURITYLABEL [DEFAULT label]
v ALTER TABLE ... ADD ... [COLUMN] SECURED WITH

2-518 IBM Informix Guide to SQL: Syntax

v ALTER TABLE ... DROP SECURITY POLICY
v ALTER TABLE ... MODIFY ... [COLUMN] SECURED WITH
v ALTER TABLE ... MODIFY ... DROP COLUMN SECURITY
v CREATE TABLE ... COLUMN SECURED WITH
v CREATE TABLE ... IDSSECURITYLABEL [DEFAULT label]
v CREATE TABLE ... SECURITY POLICY

The following GRANT and REVOKE statements also cannot be issued by a user
who does not hold the DBSECADM role:
v GRANT EXEMPTION
v GRANT SECURITY LABEL
v GRANT SETSESSIONAUTH
v REVOKE EXEMPTION
v REVOKE SECURITY LABEL
v REVOKE SETSESSIONAUTH

The USER keyword that can follow the FROM keyword is optional, and has no
effect, but any authorization identifier that the DBSA specifies in the REVOKE
DBSECADM statement must be the identifier of an individual user, rather than the
identifier of a role. The user cannot be the DBSA who issues this REVOKE
DBSECADM statement.

In the following example, the DBSA cancels the DBSECADM role of user niccolo:
REVOKE DBSECADM FROM niccolo;

If this statement executes successfully, user niccolo can no longer perform the
operations listed above.

After the DBSECADM role is revoked, only the DBSA can grant it again to the user
from whom it was revoked.

EXEMPTION Clause

The REVOKE EXEMPTION statement modifies the security credentials of the
specified user (or list of users) by enabling one or all of the rules of a specified
security policy from which the user had been exempt.

EXEMPTION Clause:

EXEMPTION ON RULE IDSLBACREADARRAY
IDSLBACREADTREE
IDSLBACREADSET
IDSLBACWRITEARRAY

WRITEDOWN
WRITEUP

IDSLBACWRITESET
IDSLBACWRITETREE
ALL

FOR policy �

,

FROM user
USER

Chapter 2. SQL statements 2-519

Element Description Restrictions Syntax

policy Security policy for which the exemption is
revoked

Must exist in the database “Identifier” on page
5-21

user User to whom the exemption is to be revoked Must be the authorization
identifier of a user

“Owner Name” on page
5-45

Only a user who holds the DBSECADM role can issue the REVOKE EXEMPTION
statement.

Rules on Which Exemptions Are Revoked: The keyword that follows the ON
keyword specifies the predefined access rule of the security policy (whose
identifier follows the FOR keyword) for which an exemption is cancelled. The
access rule for which exemption is revoked applies when a table that is protected
by the specified policy is accessed by a user from whom the exemption is revoked.
For descriptions of the predefined rules for read access and for write access that
are associated with a security policy, see the section “Rules Associated with a
Security Policy” on page 2-190.

The following keywords of the REVOKE EXEMPTION statement identify specific
IDSLBACRULES rules that this statement can apply to formerly exempt users:
v IDSLBACREADARRAY applies to the user the IDSLBACREADARRAY rule for

the specified security policy. For a user with no exemption, this rule requires
that each array component of the user security label must be greater than or
equal to the corresponding array component of the data row security label.

v IDSLBACREADSET applies to the user the IDSLBACREADSET rule for the
specified security policy. For a user with no exemption, this rule requires that
each set component of the user security label must include the set component of
the data row security label

v IDSLBACREADTREE applies to the user the IDSLBACREADTREE rule for the
specified security policy. For a user with no exemption, this rule requires that
each tree component of the user security label must include at least one of the
elements in the tree component of the data row security label, or else an
ancestor of one such element.

v IDSLBACWRITEARRAY WRITEDOWN exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. The user who
loses this exemption cannot write to a row protected by a label that includes an
array component level below the level in the label of the user.

v IDSLBACWRITEARRAY WRITEUP exempts the user from one aspect of the
IDSLBACWRITEARRAY rule for the specified security policy. The user who
loses this exemption cannot write to a row protected by a label that includes an
array component level above the level in the label of the user.

v IDSLBACWRITEARRAY (with no WRITEDOWN or WRITEUP keyword) applies
to the user the IDSLBACWRITEARRAY rule for the specified security policy.
The user who loses this exemption cannot write to a row whose array
component level is above or below the level in the label of the user. .

v IDSLBACWRITESET applies to the user the IDSLBACWRITESET rule for the
specified security policy. For a user with no exemption, that rule requires that
each set component of the user security label must include the set component of
the data row security label

v IDSLBACWRITETREE applies to the user the IDSLBACWRITETREE rule for
the specified security policy. For a user with no exemption, that rule requires

2-520 IBM Informix Guide to SQL: Syntax

that each tree component of the user security label must include at least one of
the elements in the tree component of the data row security label, or the
ancestor of one such element.

v ALL revokes an exemption from all IDSLBACRULES rules for the specified
security policy.

In the following example, DBSECADM revokes an exemption from all of the rules
of the MegaCorp security policy from users manoj and sam:
REVOKE EXEMPTION ON RULE ALL FOR MegaCorp FROM manoj, sam;

Security Policies and Grantees of Exemptions: An exemption applies only to the
rules of a single security policy. whose name follows the FOR keyword. Because a
protected table can have multiple security labels, but no more than one security
policy, revocation of an exemption can prevent a user with insufficient security
credentials from accessing data in tables that are protected by the specified security
policy.

The REVOKE EXEMPTION statement fails with an error if the specified policy
does not exist in the database.

The USER keyword that can follow the FROM keyword is optional, and has no
effect, but any authorization identifier specified in the REVOKE EXEMPTION
statement must be the identifier of an individual user, rather than the identifier of
a role. This user cannot be the DBSECADM who issues the same REVOKE
EXEMPTION statement.

In the following example, DBSECADM revokes an exemption from user lynette for
rule IDSLBACREADARRAY of the MegaCorp security policy:
REVOKE EXEMPTION ON RULE IDSLBACREADARRAY FOR MegaCorp FROM lynette;

This exemption restores the read access rules for all array components for
subsequent read operations that user lynette attempts on tables protected by
security labels of the specified policy.

When the REVOKE EXEMPTION statement successfully cancels an exemption of a
user, the database server updates the syssecpolicyexemptions table of the system
catalog to unregister the revoked exemption (or multiple exemptions, if several
users are listed after the FROM keyword).

SECURITY LABEL Clause

The REVOKE SECURITY LABEL statement cancels a security label (or all the
security labels of a specified security policy) held by one or more users.

SECURITY LABEL Clause:

SECURITY LABEL policy . label
*

�

,

FROM user
USER

FOR ALL ACCESS
FOR READ ACCESS
FOR WRITE ACCESS

Element Description Restrictions Syntax

label Name of an existing security label Must exist as a label for the
specified security policy

“Identifier” on page 5-21

Chapter 2. SQL statements 2-521

Element Description Restrictions Syntax

policy The security policy of this label Must already exist in the
database

“Identifier” on page 5-21

user User from whom the label is revoked Must be the authorization
identifier of a user

“Owner Name” on page 5-45

Only a user who holds the DBSECADM role can issue the REVOKE SECURITY
LABEL statement.

A security label is a database object that is always associated with a security policy.
That policy defines the set of valid security components that make up the security
label. The label stores a set of one or more values for each component of the
security policy.

The DBSECADM can associate a security label with the following entities:
v A column of a database table, which a column security label can protect
v A row of a database table, which a row security label can protect
v A user, whose user security label (and any exemptions from rules of the security

policy that have been granted to the user) are called the security credentials of the
user.

When a user who holds a security label for a specific security policy attempts to
access a row that is protected by a row security label of the same security policy,
the database server compares the sets of values in the user security label and in the
row security label in determining whether or not the user should be allowed to
access the data. Similarly, LBAC takes into account the user security label and the
column security label in determining whether or not the credentials of the user
should be allowed to access a protected column.

The GRANT SECURITY LABEL and REVOKE SECURITY LABEL statements
enable DBSECADM to control the association of a user with a label. (Data values
in a protected table are associated with a row security label or with a column
security label by options to the CREATE TABLE or ALTER TABLE statements that
only DBSECADM can execute, rather than by the GRANT SECURITY LABEL
statement.)

Immediately following the LABEL keyword, the asterisk (*) symbol in the policy.*
specification instructs the database server to revoke every security label of the
policy. If instead of an asterisk you specify policy.label, that label must be the name
of a security label of the specified policy. In this case, if the statement is successful,
only that security label is revoked from the user list.

The USER keyword that can follow the FROM keyword is optional, but any
authorization identifier specified in the REVOKE SECURITY LABEL statement
must be the identifier of an individual user, rather than the identifier of a role.

Access Specifications: The list of users from whom the security label is revoked
can optionally be followed by keywords that specify the type of access to data that
the security policy of the label protects
v FOR WRITE ACCESS

These keywords restrict the label to the write access rules of IDSLBACRULES,
namely IDLSBACWRITEARRAY, IDLSBACWRITESET, and
IDLSBACWRITETREE.

2-522 IBM Informix Guide to SQL: Syntax

v FOR READ ACCESS
These keywords restrict the label to the read access rules of IDSLBACRULES,
namely IDLSBACWREADARRAY, IDLSBACREADSET, and
IDLSBACREADTREE.

v FOR ALL ACCESS
These keywords apply the label to all of the read and write access rules that are
listed above. If the REVOKE SECURITY LABEL statement includes no FOR ...
ACCESS specification, this option takes effect as the default.

For more information about these IDSLBACRULES rules for label-based read and
write access, see “Rules Associated with a Security Policy” on page 2-190. For
information about exemptions to these rules that can be granted for a specific
security policy, see “Rules on Which Exemptions Are Revoked” on page 2-520.

Examples of Revoking User Security Labels:

The following three statements create three security label components called level,
compartments, and groups respectively:
CREATE SECURITY LABEL COMPONENT

level ARRAY [’TS’,’S’,’C’,’U’];

CREATE SECURITY LABEL COMPONENT
compartments SET {’A’,’B’,’C’,’D’};

CREATE SECURITY LABEL COMPONENT
groups TREE (’G1’ ROOT,

’G2’ UNDER ROOT,
’G3’ UNDER ROOT);

The following statement creates a security policy called secPolicy based on the
three components above:
CREATE SECURITY POLICY secPolicy COMPONENTS

level, compartments, groups;

The following statement creates a security label called secLabel1:
CREATE SECURITY LABEL secPolicy.secLabel1

COMPONENT level ’S’,
COMPONENT compartments ’A’, ’B’,
COMPONENT groups ’G2’;

The following statement grants this security label for read access to user sam:
GRANT SECURITY LABEL secPolicy.secLabel1

TO sam FOR READ ACCESS;

The following statement revokes the security label for read access from user sam.
REVOKE SECURITY LABEL secPolicy.secLabel1

FROM sam FOR READ ACCESS;

When the REVOKE SECURITY LABEL statement successfully cancels a security
label that was held by a user, the database server updates the sysseclabelauth
table of the system catalog to remove the user from the list of those who hold that
security label.

SETSESSIONAUTH Clause

The REVOKE SETSESSIONAUTH statement revokes the SETSESSIONAUTH
privilege from one or more users or roles. The SETSESSIONAUTH privilege allows

Chapter 2. SQL statements 2-523

users who also hold the DBA privilege to use the SET SESSION
AUTHORIZATION statement to set the session authorization to one of a set of
specified users.

SETSESSIONAUTH Clause:

�

SETSESSIONAUTH ON PUBLIC
,

user
USER

�

,

FROM user
USER

role
ROLE

Element Description Restrictions Syntax

role Role from which the privilege is to be revoked Must be the authorization
identifier of a role

“Owner Name” on
page 5-45

user After the FROM keyword, a user from whom the
privilege is to be revoked. After the ON
keyword, a user whose identity the grantee can
specify in the SET AUTHORIZATION statement.

Must be the authorization
identifier of a user

“Owner Name” on
page 5-45

Only a user who holds the DBSECADM role can revoke the SETSESSIONAUTH
privilege.

The user or PUBLIC specification that follows the ON keyword specifies whose
identity the grantee of the SETSESSIONAUTH privilege is no longer able to
assume while using the SET SESSION AUTHORIZATION statement. This can be a
user or PUBLIC, but not a role. If PUBLIC is specified, then the grantee of the
privilege no longer has the ability to assume the identity of an arbitrary database
user.

The USER and ROLE keywords that can follow the FROM keyword are optional.
Neither the user nor the role can be the holder of the DBSECADM role who issues
the REVOKE SETSESSIONAUTH statement. The FROM clause cannot specify
PUBLIC.

The following example grants to user sam the ability to set the session
authorization to users lynette and manor:
REVOKE SETSESSIONAUTH ON lynette, manoj TO sam;

The next example revokes from user lynette the ability to set the session
authorization to PUBLIC:
REVOKE SETSESSIONAUTH ON PUBLIC FROM lynette;

The PUBLIC scope of the privilege that this statement revokes had enabled user
lynette to assume the access privileges and the security credentials of any user
whose name she specified in the SET SESSION AUTHORIZATION statement.

Related Information

Related Statements: “GRANT statement” on page 2-401, “GRANT FRAGMENT
statement” on page 2-428, and “REVOKE FRAGMENT statement” on page 2-525

2-524 IBM Informix Guide to SQL: Syntax

For information about roles, see the following statements: “CREATE ROLE
statement” on page 2-173, “DROP ROLE statement” on page 2-338, and “SET
ROLE statement” on page 2-662.

For a discussion of discretionary access privileges, see the IBM Informix Database
Design and Implementation Guide.

For a discussion of LBAC security objects, see your IBM Informix Security Guide.

For a discussion of how to embed GRANT and REVOKE statements in programs,
see the IBM Informix Guide to SQL: Tutorial.

REVOKE FRAGMENT statement
Use the REVOKE FRAGMENT statement to revoke from one or more users or
roles the Insert, Update, or Delete fragment-level privileges that were granted on
individual fragments of a table that has been fragmented by expression. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� REVOKE FRAGMENT
(1)

Fragment-Level Privileges ON table �

�

�

,

(fragment)

FROM

�

PUBLIC
,

user
'user'
role
'role'

AS revoker
'revoker'

��

Notes:

1 See “Fragment-Level Privileges” on page 2-526

Element Description Restrictions Syntax

fragment Name of a fragment or the dbspace that stores
one fragment. Default is all fragments of table.

Must exist and must store a
fragment of table

“Identifier” on page
5-21

revoker User (who is not executing this statement) who
was grantor of privileges to be revoked

Must be grantor of the
fragment-level privileges

“Owner Name” on
page 5-45

role Role from which privileges are to be revoked Must exist in the database “Owner Name” on
page 5-45

table Fragmented table whose fragment-level privileges
are to be revoked

Must exist and must be
fragmented by expression

“Database Object
Name” on page 5-16

user User from whom privileges are to be revoked Must be a valid
authorization identifier

“Owner Name” on
page 5-45

Usage

The REVOKE FRAGMENT statement is a special case of the REVOKE statement
for assigning privileges on table fragments. Use the REVOKE FRAGMENT
statement to revoke the Insert, Update, or Delete privilege on one or more table

Chapter 2. SQL statements 2-525

|
|

fragments from one or more users or roles. The DBA can use this statement to
revoke privileges on a fragment whose owner is another user.

The REVOKE FRAGMENT statement is valid only for tables that are fragmented
by an expression-based distribution scheme. For an explanation of this
fragmentation strategy, see “Expression Distribution Scheme” on page 2-14.

Specifying Fragments
If you specify no fragment, the privileges are revoked for all fragments of table. You
can specify one fragment or a comma-separated list of fragments enclosed between
parentheses that immediately follow the ON table specification.

Each fragment must be referenced by its name. If you did not declare an explicit
identifier when you created the fragment, its name defaults to the name of the
dbspace in which it resides.

After a dbspace is renamed successfully by the onspaces utility, only the new name
is valid. Informix automatically updates existing fragmentation strategies in the
system catalog to substitute the new dbspace name, but you must specify the new
name in REVOKE FRAGMENT statement to reference a fragment whose default
name is the name of a renamed dbspace.

The FROM Clause

You can specify the PUBLIC keyword to revoke the specified fragment-level
privileges from PUBLIC, thereby revoking the privileges from all users to whom
the privileges have not been explicitly granted, or who do not hold a role through
which they have received the privileges.

If you enclose user or role in quotation marks, the name is case sensitive and is
stored exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks around user or around role, the name is stored in uppercase letters
by default, although you can set the ANSIOWNER environment variable to
preserve lowercase characters in owner specifications.

When you include a role in the FROM clause of REVOKE FRAGMENT, the
specified fragment privilege is revoked from that role. Users who have that role,
however, retain any fragment privileges they hold that were granted to them
individually or to PUBLIC.

Fragment-Level Privileges

The keyword or keywords that follow the FRAGMENT keyword specify
fragment-level privileges, which are a logical subset of table-level privileges:

Fragment-Level Privileges:

�

ALL
,

INSERT
DELETE
UPDATE

2-526 IBM Informix Guide to SQL: Syntax

|
|
|

You can revoke fragment-level privileges individually or in combination. The
following keywords specify the fragment-level privileges that you can revoke.

Keyword
Effect

INSERT
Prevents the user from inserting rows in the fragment

DELETE
Prevents the user from deleting rows in the fragment

UPDATE
Prevents the user from updating rows in the fragment

ALL Cancels Insert, Delete, and Update privileges on a fragment

If you specify the ALL keyword in a REVOKE FRAGMENT statement, the
specified users and roles lose all fragment-level privileges that they currently
possess on the specified fragments. For example, assume that a user currently has
the Update privilege on one fragment of a table. If you use the ALL keyword to
revoke all current privileges on this fragment from this user, the user loses the
Update privilege that he or she had on this fragment.

For the distinction between fragment-level and table-level privileges, see the
sections “Definition of Fragment-Level Authorization” on page 2-430 and “Effect of
Fragment-Level Authorization in Statement Validation” on page 2-430.

The AS Clause

Without the AS clause, the user who executes the REVOKE statement must be a
grantor of the privilege that is being revoked. The DBA or the owner of the
fragment can use the AS clause to specify another user (who must be the grantor
of the privilege) as the revoker of privileges on a fragment.

The AS clause provides the only mechanism by which privileges can be revoked
on a fragment whose owner is an authorization identifier that is not a valid user
account known to the operating system.

Examples of the REVOKE FRAGMENT Statement

Examples that follow are based on the customer table. They all assume that the
customer table is fragmented by expression into three fragments named part1,
part2, and part3.

Revoking Privileges on One Fragment

The following statement revokes the Update privilege on the fragment of the
customer table in part1 from user ed:
REVOKE FRAGMENT UPDATE ON customer (part1) FROM ed;

The following statement revokes the Update and Insert privileges on the fragment
of the customer table in part1 from user susan:
REVOKE FRAGMENT UPDATE, INSERT ON customer (part1) FROM susan;

The following statement revokes all privileges currently granted to user harry on
the fragment of the customer table in part1:
REVOKE FRAGMENT ALL ON customer (part1) FROM harry;

Chapter 2. SQL statements 2-527

|
|
|

Revoking Privileges on More Than One Fragment

The following statement revokes all privileges currently granted to user millie on
the fragments of the customer table in part1 and part2:
REVOKE FRAGMENT ALL ON customer (part1, part2) FROM millie;

Revoking Privileges from More Than One User

The following statement revokes all privileges currently granted to users jerome
and hilda on the fragment of the customer table in part3:
REVOKE FRAGMENT ALL ON customer (part3) FROM jerome, hilda;

Revoking Privileges Without Specifying Fragments

The following statement revokes all current privileges from user mel on all
fragments for which this user currently has privileges:
REVOKE FRAGMENT ALL ON customer FROM mel;

Related Statements

Related statements: “GRANT FRAGMENT statement” on page 2-428 and
“REVOKE statement” on page 2-502

For a discussion of fragment-level and table-level privileges, see the section
“Fragment-Level Privileges” on page 2-429. See also the IBM Informix Database
Design and Implementation Guide.

ROLLBACK WORK statement
Use the ROLLBACK WORK statement to cancel all or part of the current
transaction intentionally, undoing any changes that occurred since the beginning of
the transaction, or between the ROLLBACK WORK statement and a specified or
default savepoint.

Syntax

��
WORK

ROLLBACK
TO SAVEPOINT

savepoint

��

Element Description Restrictions Syntax

savepoint Name of the
savepoint that
delimits the scope of
the rollback

Must exist in the current transaction. “Identifier” on page 5-21

Usage

The ROLLBACK WORK statement is valid only in databases that support
transaction logging. Only logged operations can be rolled back. Use ROLLBACK
WORK only at the end of a multistatement operation.

2-528 IBM Informix Guide to SQL: Syntax

The ROLLBACK WORK statement restores the database to its state that existed
before the cancelled portion of the transaction began.

In a database that is not ANSI-compliant, the BEGIN WORK statement starts a
transaction. You can end a transaction with the COMMIT WORK statement or
cancel all or part of the transaction with the ROLLBACK WORK statement. If you
issue the ROLLBACK WORK statement when no transaction is pending in a
database that is not ANSI-compliant, Informix issues an error.

In an ANSI-compliant database, multistatement transactions are implicit. You do
not need to mark the beginning of a transaction with the BEGIN WORK statement.
You only need to mark the end of each transaction with a COMMIT WORK
statement or cancel the transaction with a ROLLBACK WORK statement. If you
issue the ROLLBACK WORK statement when no transaction is pending, the
statement is accepted but has no effect.

The ROLLBACK WORK statement restores the database to the state that existed
before the cancelled portion of the transaction began. Unless you include the TO
SAVEPOINT keywords, ROLLBACK WORK cancels the entire transaction.

The ROLLBACK WORK statement releases all row and table locks that the
cancelled transaction holds.

In Informix ESQL/C and SPL, the ROLLBACK WORK statement closes all open
cursors except those that are declared as hold cursors by including the WITH HOLD
keywords. Hold cursors remain open after a transaction is committed or rolled
back.

If you use the ROLLBACK WORK statement within an SPL routine that the
WHENEVER statement calls, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This step prevents the program from looping if the ROLLBACK WORK
statement encounters an error or a warning.

If a program terminates abnormally, the current transaction is implicitly rolled
back.

WORK Keyword

The WORK keyword is optional in a ROLLBACK WORK statement. The following
two statements are equivalent:
ROLLBACK;

ROLLBACK WORK;

TO SAVEPOINT Clause

The optional TO SAVEPOINT clause specifies a partial rollback. This clause can
restrict the scope of the rollback to the operations of the current savepoint level
between the ROLLBACK statement and the specified or default savepoint. If no
savepoint is specified after the SAVEPOINT keyword, the rollback ends at the most
recently set savepoint within the current savepoint level.

When the ROLLBACK WORK TO SAVEPOINT statement executes successfully,
any effects of DDL and DML statements that preceded the savepoint persist, but

Chapter 2. SQL statements 2-529

changes to the schema of the database or to its data values by statements that
follow the savepoint are cancelled. Any locks acquired by these cancelled
statements persist, but are released at the end of the transaction. Any savepoints
between the specified savepoint and the ROLLBACK statement are destroyed, but
the savepoint referenced by the ROLLBACK statement (and any savepoints that
precede the referenced savepoint) continue to exist. Program control passes to the
statement that immediately follows the ROLLBACK statement.

If the TO SAVEPOINT clause is omitted, the ROLLBACK statement rolls back the
entire transaction, and all savepoints within the transaction are released.

If the specified savepoint does not exist in the current transaction, the database
server issues an exception.

The TO SAVEPOINT clause is not valid in a ROLLBACK statement that
immediately follows the TRUNCATE statement. In this case, the attempted partial
rollback fails with an error. To cancel uncommitted changes that the TRUNCATE
statement has made to a table, issue ROLLBACK WORK as the next statement, but
with no TO SAVEPOINT clause.

The following program fragment rolls back part of the current transaction to a
savepoint called pt109:
BEGIN WORK;
DROP TABLE tab03;
CREATE TABLE tab03 (col1 CHAR(24), col2 DATE);
SAVEPOINT pt108;
...
INSERT INTO tab03 VALUES (’First day of autumn’, ’09/23/2012’);
SAVEPOINT pt109;
...
DELETE FROM tab03 WHERE col2 < ’12/09/2009’;
SAVEPOINT pt110;
...
ROLLBACK TO SAVEPOINT pt109;

The ROLLBACK statement in this example has these effects:
v Cancels the DML operation that deleted any rows with col2 date values earlier

than December 9, 2009.
v Releases savepoint pt110, and any other savepoints between pt109 and the

ROLLBACK statement.
v Cancels any other changes to the database by operations that follow savepoint

pt109 in the lexical order of SQL statements within the current transaction.

Savepoint pt108, however, is not released, because it was set earlier than pt109 in
the transaction. Not cancelled by this partial rollback are the effects of any
uncommitted DDL or DML operations of the transaction before savepoint pt109
was set, including the creation of table tab03 and the INSERT operation that added
a row to that table. These persist after the partial rollback, pending the possibility
of another partial rollback to a savepoint, and the eventual commitment or rollback
of the entire transaction.

Related Statements

Related statements: “BEGIN WORK statement” on page 2-74, “COMMIT WORK
statement” on page 2-81, “RELEASE SAVEPOINT statement” on page 2-494, and
“SAVEPOINT statement” on page 2-534.

2-530 IBM Informix Guide to SQL: Syntax

For a discussion of transactions and ROLLBACK WORK, see the IBM Informix
Guide to SQL: Tutorial.

SAVE EXTERNAL DIRECTIVES statement
Use the SAVE EXTERNAL DIRECTIVES statement to create external optimizer
directives for a specified query, and save the directives in the database. These
directives are applied automatically to subsequent instances of the same query.
This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SAVE EXTERNAL DIRECTIVES �

,

directive ACTIVE
INACTIVE
TEST ONLY

FOR query ��

Element Description Restrictions Syntax

directive Optimizer directive valid for query Must be valid for query “Optimizer Directives” on page
5-35

query Text of a valid SELECT statement NULL string is not valid “SELECT statement” on page
2-536

Usage

SAVE EXTERNAL DIRECTIVES associates one or more optimizer directives with a
query, and stores a record of this association in the sysdirectives system catalog
table, for subsequent use with queries that match the specified query string. This
statement establishes an association between the list of optimizer directives and the
text of a query, but it does not execute the specified query.

Only the DBA or user informix can execute SAVE EXTERNAL DIRECTIVES.
Optimizer directives that it stores in the database are called external directives.

External optimizer directives
External directives that the SAVE EXTERNAL DIRECTIVES statement associates
with the text of a query can improve performance in some queries for which the
default behavior of the query optimizer is not satisfactory.

External optimizer directives are similar to inline optimizer directives that are
embedded within a query. However, unlike inline directives, external directives can
be applied without revising or recompiling existing applications.

Enabling or disabling external directives for a session
Informix ignores external directives if the EXT_DIRECTIVES parameter is set to 0
in the configuration file or the EXTDIRECTIVES keyword in the SET
ENVIRONMENT statement is set to 0, OFF, or off during a session.

In addition, the client system can disable external directives for its current session
when the IFX_EXTDIRECTIVES environment variable is set to 0.

Chapter 2. SQL statements 2-531

The following table shows whether external directives are disabled (OFF) or
enabled (ON) for various combinations of valid IFX_EXTDIRECTIVES settings on
the client system and valid EXT_DIRECTIVES configuration parameter settings on
Informix:

Table 2-3. Combinations of IFX_DIRECTIVES settings and EXT_DIRECTIVES configuration parameter settings

IFX_EXTDIRECTIVES setting
on client system EXT_DIRECTIVES = 0 EXT_DIRECTIVES = 1 EXT_DIRECTIVES = 2

IFX_EXTDIRECTIVES not set OFF OFF ON

IFX_EXTDIRECTIVES = 1 OFF ON ON

IFX_EXTDIRECTIVES = 0 OFF OFF OFF

If EXT_DIRECTIVES is set to 1 or 2 when the database server is initialized, then
the server is enabled for external directives. Individual sessions can enable or
disable external directives by setting IFX_EXTDIRECTIVES, as the table shows.
Any settings other than 1 or 2 are interpreted as zero, disabling this feature.

When external directives are enabled, the status of individual external directives is
specified by the ACTIVE, INACTIVE, or TEST ONLY keywords. (But only queries
on which directives are effective can benefit from external directives.)

You can also use the EXTDIRECTIVES option of the SET ENVIRONMENT
statement to enable or disable external directives during a session. What you
specify using the EXTDIRECTIVES option overwrites the external directive value
that is specified in the EXT_DIRECTIVES configuration parameter in the
ONCONFIG file.

To overwrite the value for enabling or disabling the external directive in the
ONCONFIG file and:
v To enable the external directives during a session, specify 1, on, or ON as the

value for SET ENVIRONMENT EXTDIRECTIVES.
v To disable the external directives during a session, specify 0, off, or OFF as the

value for SET ENVIRONMENT EXTDIRECTIVES.

To enable the default values specified in the EXT_DIRECTIVES configuration
parameter and in the client-side IFX_EXTDIRECTIVES environment variable
during a session, specify DEFAULT as the value for the EXTDIRECTIVES option of
the SET ENVIRONMENT statement.

For more information on using the EXTDIRECTIVES option of the SET
ENVIRONMENT statement, see “SET ENVIRONMENT statement” on page 2-630.

The directive Specification
Each directive specification in the SAVE EXTERNAL DIRECTIVES statement must
follow the syntax of the Optimizer Directives segment, as described in “Optimizer
Directives” on page 5-35. If you specify more than one directive, separate them by
a comma (,) symbol, as in the following example:
SAVE EXTERNAL DIRECTIVES /*+ AVOID_INDEX (table1 index1)*/, /*+ FULL(table1) */

ACTIVE FOR
SELECT /*+ INDEX(table1 index1) */ col1, col2

FROM table1, table2 WHERE table1.col1 = table2.col1;

2-532 IBM Informix Guide to SQL: Syntax

This example associates AVOID_INDEX and FULL directives with the specified
query. The inline INDEX directive is ignored by the query optimizer when the
external directives are applied to a query that matches the SELECT statement.

The ACTIVE, INACTIVE, and TEST ONLY Keywords
You must include one of the ACTIVE, INACTIVE, or TEST ONLY keyword options
to enable, disable, or restrict the scope of external directives:
v If external directives are enabled, the ACTIVE keyword applies the list of

directives to any subsequent query that matches the query string.
v The INACTIVE keyword causes Informix to ignore the directive. (It is associated

with the query in sysdirectives, but it is dormant, with no effect.)
v If external directives are enabled, the TEST ONLY keywords apply the directives

only to matching queries that the DBA or user informix executes. Queries by
any other users cannot use TEST ONLY external directives.

An INACTIVE directive has no effect unless the DBA or user informix changes the
sysdirectives.active system catalog column value from zero (INACTIVE) to one
(ACTIVE) or two (TEST ONLY) for that directive. External directives do not have
SQL identifiers, but the DBA can reference the sysdirectives.id column in an
UPDATE statement to specify which external directive to update.

Alternatively, the DBA or user informix can delete an INACTIVE or TEST ONLY
row from sysdirectives and use the SET EXTERNAL DIRECTIVES statement to
redefine the deleted directive, but now specifying the ACTIVE keyword. This can
give other users access to TEST ONLY directives that the DBA has validated.

The query Specification
The query specification that follows the FOR keyword in SAVE EXTERNAL
DIRECTIVES must specify the syntax of a valid SELECT statement, as described in
“SELECT statement” on page 2-536. If the query text also includes any inline
optimizer directives, the inline directives are ignored when external directives are
applied to the query.

When external directives are enabled and the sysdirectives system catalog table is
not empty, the database server compares every query with the query text of every
ACTIVE external directive, and for queries executed by the DBA or user informix,
with every TEST ONLY external directive. If an external directive has been applied
to a query, output from the SET EXPLAIN statement indicates “EXTERNAL
DIRECTIVES IN EFFECT” for that query.

The purpose of external directives is to improve the performance of queries that
match the query string, but the use of such directives can potentially slow other
queries, if the query optimizer must compare the query strings of a large number of
active external directives with the text of every SELECT statement. For this reason,
IBM recommends that the DBA not allow the sysdirectives table to accumulate
more than a few ACTIVE rows. (Another way to avoid unintended performance
impact on other queries is to disable this feature.)

If more than one SET EXTERNAL DIRECTIVES statements associate active external
directives with the same query, the effect is unpredictable, because the optimizer
uses the first sysdirectives row whose query string matches the query.

Chapter 2. SQL statements 2-533

Related Statements

For information about optimizer directives and their syntax, see the segment
“Optimizer Directives” in “Optimizer Directives” on page 5-35.

For information about the sysdirectives table and the IFX_EXTDIRECTIVES
environment variable, see the IBM Informix Guide to SQL: Reference.
Related reference

IFX_EXTDIRECTIVES (SQL Reference)

SAVEPOINT statement
Use the SAVEPOINT statement to declare the name of a new savepoint within the
current SQL transaction, and to set the position of the new savepoint within the
lexical order of SQL statements within the transaction. The SAVEPOINT statement
is compliant with the ANSI/ISO standard for SQL.

Syntax

�� SAVEPOINT savepoint
(1)

UNIQUE

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

savepoint Name declared here
for the new savepoint

Cannot be the name of an existing unique
savepoint in the same savepoint level

“Identifier” on page 5-21

Usage

You can use the SAVEPOINT statement in SQL transactions to support error
handling with DB-Access and in SPL, C, and Java routines.

The SAVEPOINT statement sets the specified savepoint at the current position in
the lexical order of statements within the current transaction. After the
SAVEPOINT statement executes successfully, subsequent ROLLBACK TO
SAVEPOINT statements that reference this savepoint can cancel any uncommitted
changes to the database from logged DML or DDL operations in the current
transaction that follow the new savepoint but precede the ROLLBACK TO
SAVEPOINT statement.

If an existing savepoint in the same transaction has the same name that the
SAVEPOINT statement specifies, the existing savepoint is destroyed, unless one of
the following conditions is true:
v The existing savepoint was set in a different savepoint level.
v The existing savepoint name was declared with the UNIQUE keyword option. In

this case, the SAVEPOINT statement fails with an error, unless the existing
UNIQUE savepoint was set in a different savepoint level.

Destroying a savepoint to reuse its name for another savepoint is not the same as
releasing the savepoint. Reusing a savepoint name destroys only one savepoint.

2-534 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_244.htm#ids_sqr_244

Releasing a savepoint with the RELEASE SAVEPOINT statement releases the
specified savepoint and all savepoints that have been subsequently set.

The UNIQUE option

This optional keyword specifies that the application does not intend to reuse the
name of this savepoint in another SAVEPOINT statement while this savepoint is
active within the current savepoint level.

If a savepoint already exists that was set with the same name and with the
UNIQUE keyword within the current savepoint level, the SAVEPOINT statement
fails with an error, and the existing savepoint is not destroyed.

Savepoint levels

Informix supports the construct of nested savepoint levels. A single SQL
transaction can have multiple savepoint levels. New savepoint levels are
automatically created for the duration of execution of an SPL routine or an external
UDR. Recursive calls to the same SPL routine or UDR also increment the savepoint
level of the current transaction.

A savepoint level ends when the UDR in which it was created finishes execution.
When a savepoint level ends, all savepoints within it are automatically released.
Any DDL or DML modifications are inherited by the parent savepoint level (that
is, by the savepoint level within which the one that just ended was created), and
are subject to any savepoint-related statements that are issued against the parent
savepoint level.

The following rules apply to actions within a savepoint level:
v Savepoints can only be referenced within the savepoint level in which they are

established. You cannot release, destroy, or roll back to a savepoint established
outside of the current savepoint level.

v The uniqueness of savepoint names is only enforced within the current
savepoint level. The names of savepoints that are active in other savepoint levels
can be reused in the current savepoint level without affecting those savepoints in
other savepoint levels.

Savepoints in distributed SQL transactions

Savepoints are valid in cross-database distributed SQL transactions of a single
Informix instance that supports transactions if all of the participating databases
support transaction logging. Savepoints are also supported in cross-server SQL
transactions, including operations in high-availability clusters, if all of the
participating Informix instances support savepoints, and all of the databases that
are accessed in the transaction use logging.

If any of the participating database servers in a cross-server transaction does not
support savepoints, however, and a connection is established between a
coordinator that can support savepoints and a subordinate server that cannot, any
ROLLBACK TO SAVEPOINT statement within the distributed transaction fails
with an error.

Chapter 2. SQL statements 2-535

Persistence of savepoints

Savepoints are position markers within SQL transactions, not database objects. An
existing savepoint S is destroyed by any of the following events within the same
transaction:
v A COMMIT WORK or ROLLBACK WORK (without the TO SAVEPOINT clause)

statement is executed.
v A RELEASE SAVEPOINT statement is executed that specifies S in the same

savepoint level.
v A ROLLBACK TO SAVEPOINT or RELEASE SAVEPOINT statement is executed

that specifies a savepoint that was established earlier than S in the same
savepoint level.

v A SAVEPOINT statement specifies the same name as S in the same savepoint
level, and S was not created with the UNIQUE keyword.

Restrictions on savepoints

Savepoints and savepoint levels are not supported in the following contexts:
v in databases that do not support transaction logging
v in triggered actions
v in XA global transactions
v in applications or UDRs where the AUTOCOMMIT connection attribute is

enabled.

In addition, the SAVEPOINT statement (like the RELEASE SAVEPOINT and
ROLLBACK WORK TO SAVEPOINT statements) is not valid in UDRs that are
invoked within DML statements, as in the following example:
SELECT first_1 foo() FROM systables;

Here the foo() routine cannot set a savepoint.

Related Statements

Related statements: “RELEASE SAVEPOINT statement” on page 2-494 and
“ROLLBACK WORK statement” on page 2-528

SELECT statement
Use the SELECT statement to retrieve values from a database or from an SPL or
Informix ESQL/C collection variable. A SELECT operation is called a query.

Rows or values that satisfy the specified search criteria of the query are called
qualifying rows or values. What the query retrieves to its calling context, after
applying any additional logical conditions, is called the result set of the query. This
result set can be empty.

Syntax

�� SELECT Select Options �

UNION SELECT Select Options
ALL

�

2-536 IBM Informix Guide to SQL: Syntax

�
(1)

ORDER BY Clause

�

(2)
FOR READ ONLY

UPDATE
,

OF column

�

�
(2) (3)

INTO Table Clause

��

Select options:

(2) (4)
Optimizer Directives

(5)
Projection Clause �

�
(6) (7) (8)

INTO Clause

(9)
FROM Clause

(10)
WHERE Clause

�

�
(11)

Hierarchical Clause
(12)

GROUP BY Clause
(13)

HAVING Clause

Notes:

1 See “ORDER BY Clause” on page 2-586

2 Informix extension

3 See “INTO Table Clauses” on page 2-593

4 See “Optimizer Directives” on page 5-35

5 See “Projection Clause” on page 2-539

6 ESQL/C only

7 Informix SPL routines only

8 See “INTO Clause” on page 2-549

9 See “FROM Clause” on page 2-551

10 See “WHERE Clause of SELECT” on page 2-566

11 See “Hierarchical Clause” on page 2-572

12 See “GROUP BY Clause” on page 2-584

13 See “HAVING Clause” on page 2-585

Chapter 2. SQL statements 2-537

Element Description Restrictions Syntax

column Name of a column that can be
updated after a FETCH

Must be in a FROM clause table, but does not need to
be in the select list of the Projection clause

“Identifier”
on page 5-21

Usage

The SELECT statement can return data from tables in the current database, or in
another database of the current database server, or in a database of another
database server. Only the SELECT keyword, the Projection clause, and the FROM
clause are required specifications.

For hierarchical queries that include the CONNECT BY clause, the FROM clause
can specify only a single table that must reside in the local database of the
Informix database server instance to which the current session is connected.

The SELECT statement can reference no more than one external table that the
CREATE EXTERNAL TABLE statement has defined, and this external table can be
specified only in the outermost query. You cannot reference an external table in a
subquery.

You need the Connect access privilege on the database to execute a query, as well
as the Select privilege on the table objects from which the query retrieves rows.

The SELECT statement can include various basic clauses, which are identified in
the following list.

Clause Page Effect

“Optimizer Directives”
on page 5-35

Specifies how the query should be implemented

“Projection Clause” on
page 2-539

Specifies a list of items to be read from the database

“INTO Clause” on page
2-549

Specifies variables to receive the result set

“FROM Clause” on
page 2-551

Specifies the data sources of Projection clause items

“Using the ON Clause”
on page 2-563

Specifies join conditions as pre-join filters

“WHERE Clause of
SELECT” on page 2-566

Sets conditions on qualifying rows and post-join filters

“Hierarchical Clause”
on page 2-572

Sets conditions for queries of hierarchical data

“GROUP BY Clause” on
page 2-584

Combines groups of rows into summary results

“HAVING Clause” on
page 2-585

Sets conditions on the summary results

“ORDER BY Clause” on
page 2-586

Sorts qualifying rows according to column values

“ORDER SIBLINGS BY
Clause” on page 2-590

Sorts hierarchical data for siblings at every level

“FOR UPDATE Clause”
on page 2-591

Enables updating of the result set after a FETCH

2-538 IBM Informix Guide to SQL: Syntax

|
|
|
|

Clause Page Effect

“FOR READ ONLY
Clause” on page 2-592

Disables updating of the result set after a FETCH

“INTO TEMP Clause”
on page 2-594

Puts the result set into a temporary table

“INTO EXTERNAL
Clause” on page 2-595

Stores the result set in an external table

“UNION ALL operator”
on page 2-598

Combines the result sets of two SELECT statements

“UNION Operator” on
page 2-597

Same as UNION ALL, but discards duplicate rows

Sections that follow describe these clauses of the SELECT statement.

Projection Clause

The Projection clause (sometimes called the Select clause) specifies a list of database
objects or expressions to retrieve, and can set restrictions on qualifying rows. (The
select list is sometimes also called the projection list.)

Projection Clause:

(1)
SKIP offset

off_var

(1)
FIRST max
LIMIT max_var

ALL

DISTINCT
(1)

UNIQUE

�

� �

,

Select List

Select List:

(2)
Expression

column display_label
AS

column
table. display_label
view. AS
synonym. *
alias.
external. *

(3)
(Collection Subquery)

subquery

Notes:

1 Informix extension

2 See “Expression” on page 4-40

Chapter 2. SQL statements 2-539

3 See “Collection Subquery” on page 4-3

Element Description Restrictions Syntax

alias Temporary table or view name. See
“FROM Clause” on page 2-551.

Valid only if the FROM clause declares
the alias for table or view

“Identifier” on page
5-21

column Column from which to retrieve data Must exist in a data source that the
FROM clause references

“Identifier” on page
5-21

display _label Temporary name declared here for a
column or for an expression

See “Declaring a Display Label” on
page 2-548

“Identifier” on page
5-21

external External table from which to retrieve
data

Must exist “Database Object
Name” on page 5-16

max Integer (> 0) specifying maximum
number of rows to return

If max > number of qualifying rows
then all matching rows are returned

“Literal Number” on
page 4-184

max_var Host variable or local SPL variable
storing the value of max

Same as max; valid in prepared objects
and in SPL routines

Language dependent

offset Integer (> 0) specifying how many
qualifying rows to exclude before the
first row of the result set

Cannot be negative. If offset > (number
of qualifying rows), then no rows are
returned

“Literal Number” on
page 4-184

off_var Host variable or local SPL variable
storing the value of offset

Same as offset; valid in prepared
objects and in user-defined routines

Language dependent

subquery Embedded query A subquery within the Projection
clause cannot include the SKIP, FIRST,
INTO TEMP, or the ORDER BY clause.

“SELECT statement”
on page 2-536

table, view,
synonym

Name of a table, view, or synonym
from which to retrieve data

The synonym and the table or view to
which it points must exist

“Database Object
Name” on page 5-16

The asterisk (*) specifies all columns in the table or view in their defined order. To
retrieve all columns in another order, or a subset of columns, you must specify
individual column names explicitly. A solitary asterisk (*) can be a valid Projection
clause if the FROM clause specifies only a single data source.

The SKIP, FIRST, LIMIT, MIDDLE, DISTINCT, and UNIQUE specifications can
restrict results to a subset of the qualifying rows, as sections that follow explain.

The Order of Qualifying Rows
To execute a query, the database server constructs a query plan and retrieves all
qualifying rows that match the WHERE clause conditions. (Here a row refers to one
set of values, as specified in the select list, from a single record in the table or
joined tables that the FROM clause specifies.) If the query has no ORDER BY
clause, the qualifying rows are sequenced in the order of their retrieval, which
might vary with each execution; otherwise, their sequence follows the ORDER BY
specification, as described in “ORDER BY Clause” on page 2-586.

Whether or not the query specifies ORDER BY can affect which qualifying rows
are in the result set if the Projection clause includes any of the following options:
v the FIRST option
v the SKIP and LIMIT options

Using the SKIP Option
The SKIP offset option specifies how many of the qualifying rows to exclude, for
offset an integer in the SERIAL8 range, counting from the first qualifying row. The
following example retrieves the values from all rows except the first 10 rows:

2-540 IBM Informix Guide to SQL: Syntax

SELECT SKIP 10 a, b FROM tab1;

You can also use a host variable to specify how many rows to exclude. In an SPL
routine, you can use an input parameter or a local variable to provide this value.

When you use the SKIP option in a query with an ORDER BY clause, you can
exclude the first offset rows that have the lowest values according to the ORDER
BY criteria. You can also use SKIP to exclude rows with the highest values, if the
ORDER BY clause includes the DESC keyword. For example, the following query
returns all rows of the orders table, except for the fifty oldest orders:
SELECT SKIP 50 * FROM orders ORDER BY order_date;

Here the result set is empty if there are fewer than 50 rows in the orders table. An
offset = 0 is not invalid, but in that case the SKIP option does nothing.

You can also use the SKIP option to restrict the result sets of prepared SELECT
statements, of UNION queries, in queries whose result set defines a
collection-derived table, and in the events and actions of triggers.

You can use the SKIP and the FIRST options together to specify which and how
many qualifying rows are in the result set, as illustrated by examples in the section
“Using the SKIP Option with the FIRST Option” on page 2-542.

The SKIP option is not valid in the following contexts:
v In the definition of a view
v In nested SELECT statements
v In subqueries.

Using the FIRST Option
The FIRST max option specifies that the result set includes no more than max rows
(or exactly max, if max is not greater than the number of qualifying rows). Any
additional rows that satisfy the selection criteria are not returned. The following
example retrieves at most 10 rows from table tab1:
SELECT FIRST 10 a, b FROM tab1;

Informix can use a host variable or the value of an SPL input parameter in a local
variable to specify max.

With an ORDER BY clause, you can retrieve the first max qualifying rows. For
example, the following query finds the ten highest-paid employees:
SELECT FIRST 10 name, salary FROM emp ORDER BY salary DESC;

You can use the FIRST option in a query whose result set defines
collection-derived table (CDT) within the FROM clause of another SELECT
statement. The following query specifies a CDT that has no more than ten rows:
SELECT *

FROM TABLE(MULTISET(SELECT FIRST 10 * FROM employees
ORDER BY employee_id)) vt(x,y), tab2
WHERE tab2.id = vt.x;

The FIRST and SKIP keywords are also valid in queries that include table
expressions in the FROM clause:
SELECT * FROM (SELECT SKIP 2 FIRST 8 col1 FROM tab1 WHERE col1 > 50);

The next example applies the FIRST option to the result of a UNION expression:

Chapter 2. SQL statements 2-541

SELECT FIRST 10 a, b FROM tab1 UNION SELECT a, b FROM tab2;

The FIRST option is not valid in any of the following contexts:
v In the definition of a view
v In nested SELECT statements
v In subqueries, except for subqueries that specify table expressions in the FROM

clause
v In a singleton SELECT (where max = 1) within an SPL routine
v Where embedded SELECT statements are used as expressions

The LIMIT Keyword

LIMIT is a keyword synonym for the FIRST keyword in the Projection clause. You
cannot, however, substitute LIMIT for FIRST in other syntactic contexts where
FIRST is valid, such as in the FETCH statement.

Using SKIP, FIRST, LIMIT, or MIDDLE as a Column Name
If no integer follows the FIRST keyword, the database server interprets FIRST as a
column identifier. For example, if table T has columns first, second, and third, the
following query would return data from the column named first:
SELECT first FROM T

The same considerations apply to the SKIP and LIMIT keywords. If no literal
integer or integer variable follows the LIMIT keyword in the Projection clause,
Informix interprets LIMIT as a column name. If no data source in the FROM clause
has a column with that name, the query fails with an error.

Using the SKIP Option with the FIRST Option
If a Projection clause with the SKIP offset option also includes FIRST or LIMIT, the
result set begins with the row whose ordinal position is (offset + 1) in the set of
qualifying rows, rather than with the first row. The row in position (offset + max) is
the last row in the result set, unless there are fewer than (offset + max) qualifying
rows. The following example ignores the first 50 rows from table tab1, but returns
a result set of at most 10 rows, beginning with the fifty-first row:
SELECT SKIP 50 FIRST 10 a, b FROM tab1;

The next example uses in a query with SKIP and FIRST to insert no more than five
rows from table tab1 into table tab2, beginning with the eleventh row:
INSERT INTO tab2 SELECT SKIP 10 FIRST 5 * FROM tab1;

The following collection subquery returns only the eleventh through fifteenth
qualifying rows as a collection-derived table, orders these five rows by the value in
column a, and stores this result set in a temporary table.
SELECT * FROM TABLE (MULTISET (SELECT SKIP 10 FIRST 5 a FROM tab3

ORDER BY a)) INTO TEMP;

The following INSERT statement includes a collection subquery whose results
define a collection-derived table. The rows are ordered by the value in column a,
and are inserted into table tab1.
INSERT INTO tab1 (a) SELECT * FROM TABLE (MULTISET (SELECT SKIP 10 FIRST 5 a

FROM tab3 ORDER BY a));

Queries that combine the FIRST or LIMIT and SKIP options with the ORDER BY
clause can impose a unique order on the qualifying rows, so successive queries
that increment the offset value by the value of max can partition the qualifying

2-542 IBM Informix Guide to SQL: Syntax

rows into disjunct subsets of max rows. This can support web applications that
require a fixed page size, without requiring cursor management.

You can use these features in distributed queries only if all of the participating
database servers support the SKIP and FIRST options.

Allowing Duplicates
You can apply the ALL, UNIQUE, or DISTINCT keywords to indicate whether
duplicate values are returned, if any exist. If you do not specify any of these
keywords in the Projection clause, all qualifying rows are returned by default.

Keyword
Effect

ALL Specifies that all qualifying rows are returned, regardless of whether
duplicates exist. (This is the default specification.)

DISTINCT
Excludes duplicates of qualifying rows from the result set

UNIQUE
Excludes duplicate. (Here UNIQUE is a synonym for DISTINCT. This is an
extension to the ANSI/ISO standard.)

For example, the next query returns all the unique ordered pairs of values from the
stock_num and manu_code columns in rows of the items table. If several rows
have the same pair of values, that pair appears only once in the result set:
SELECT DISTINCT stock_num, manu_code FROM items;

You can specify DISTINCT or UNIQUE no more than once in each level of a query
or subquery. The following example uses DISTINCT in both the query and in the
subquery:
SELECT DISTINCT stock_num, manu_code FROM items

WHERE order_num = (SELECT DISTINCT order_num FROM orders
WHERE customer_num = 120);

Data Types in Distributed Queries
Queries whose only data sources are tables and views in the local database to
which the session is connected can return values from columns or expressions of
any built-in or user-defined data type that is registered in the local database.
Queries that reference tables or views in other databases are called distributed
queries, and the data types that they can access are a subset of the data types that
Informix supports in local queries.

Among distributed queries, the restrictions on data types depend on the number of
participating database servers.
v If all the databases that the query accesses are databases of the same Informix

instance, the query is called a cross-database distributed query.
v If the query accesses databases of multiple Informix instances, the query is called

a cross-server distributed query.

In both types of distributed queries, all participating databases must have the same
ANSI/ISO-compliance status. A cross-server distributed query can use both the
SKIP and FIRST options if all participating servers support the SKIP option;
otherwise the query fails with an error. More generally, all cross-server operations
require that the participating database server instances support the SQL syntax that
specifies the operation.

Chapter 2. SQL statements 2-543

For additional information about distributed queries, see the IBM Informix Database
Design and Implementation Guide.

Data Types in Cross-Database Transactions: Distributed queries (and other
distributed DML operations or function calls) that access only databases of the
local Informix instance can access data types of the following categories:
v The built-in data types that are not opaque, including these:

– BIGINT
– BIGSERIAL
– BYTE
– CHAR
– DATE
– DATETIME
– DECIMAL
– FLOAT
– INT
– INTERVAL
– INT8
– MONEY
– NCHAR
– NVARCHAR
– SERIAL
– SERIAL8
– SMALLFLOAT
– SMALLINT
– TEXT
– VARCHAR

v Most built-in opaque data types, including these:
– BLOB
– BOOLEAN
– CLIENTBINVAL
– CLOB
– IFX_LO_SPEC
– IFX_LO_STAT
– INDEXKEYARRAY
– LVARCHAR
– POINTER
– RTNPARAMTYPES,
– SELFUNCARGS
– STAT
– XID

v User-defined types (UDTs) that are cast explicitly to any of the built-in types that
are listed above

v DISTINCT of any of the built-in types in the preceding list.

2-544 IBM Informix Guide to SQL: Syntax

Distributed operations across databases of the local Informix instance can return
UDTs and DISTINCT types based on built-in data types only if all the UDTs and
DISTINCT types are cast explicitly to built-in data types.

All the opaque UDTs, DISTINCT types, data type hierarchies, and casts must have
exactly the same definitions in each database that participates in the distributed
query. For queries or other DML operations in cross-server UDRs that use the data
types listed above as parameters or as returned data types, the UDR must also
have the same definition in each participating database.

A cross-database distributed query (or any other cross-database DML operation)
fails with an error if it references a table, view, or synonym in another database of
the local Informix instance that includes a column of any of the following data
types:
v LOLIST
v IMPEX
v IMPEXBIN
v SENDRECV
v DISTINCT of any of the opaque data types that are listed above.
v Complex types (named or unnamed ROW, COLLECTION, LIST, MULTISET, or

SET)

Data Types in Cross-Server Transactions: A distributed query (or any other
distributed DML operation or function call) across databases of two or more
Informix instances cannot return complex or large-object data types, nor most
user-defined data types (UDTs) or opaque data types. Cross-server distributed
queries, DML operations, and function calls can return only the following data
types:
v Any non-opaque built-in data type
v BOOLEAN
v LVARCHAR
v DISTINCT of non-opaque built-in types
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any of the DISTINCT types that appear above in this list.

A cross-server distributed query can support DISTINCT data types only if they are
cast explicitly to built-in types, and all of the DISTINCT types, their data type
hierarchies, and their casts are defined exactly the same way in each database that
participates in the distributed query. For queries or other DML operations in
cross-server UDRs that use the data types in the preceding list as parameters or as
returned data types, the UDR must also have the same definition in every
participating database.

The built-in DISTINCT data type IDSSECURITYLABEL, which stores security label
objects, can be accessed in cross-server and cross-database operations on protected
data by users who hold sufficient security credentials. Like local operations on
protected data, distributed queries that access remote tables protected by a security
policy can return only the qualifying rows that IDSLBACRULES allow, after the
database server has compared the security label that secures the data with the
security credentials of the user who issues the query.

Chapter 2. SQL statements 2-545

For additional information about the data types that Informix supports in
cross-server DML operations, see “Data Types in Cross-Server Transactions” on
page 2-545. For information about the table hierarchies of the DISTINCT data types
that are valid in cross-server operations, see “DISTINCT Types in Distributed
Operations” on page 4-33.

A cross-server query (or any other cross-server DML operation) fails with an error
if it references a table, view, or synonym in a database of another Informix instance
that includes a column of any of the following data types:
v BLOB
v CLOB
v INDEXKEYARRAY
v POINTER
v RTNPARAMTYPES
v SELFUNCARGS
v IFX_LO_SPEC
v IFX_LO_STAT
v STAT
v CLIENTBINVAL
v User-defined OPAQUE types
v Complex types (named or unnamed ROW, COLLECTION, LIST, MULTISET, or

SET)
v DISTINCT of any of the opaque or complex data types that are listed above.

Cross-server queries cannot access the database of another Informix instance unless
both servers define TCP/IP or IPCSTR connections in their DBSERVERNAME or
DSERVERALIASES configuration parameters and in the sqlhosts file or
SQLHOSTS registry subkey. The requirement that both participating servers
support the same type of connection (either TCP/IP or else IPCSTR) applies to any
communication between Informix instances, even if both reside on the same
computer.r.

Expressions in the Select List
You can use any basic type of expression (column, constant, built-in function,
aggregate function, and user-defined routine), or combination thereof, in the select
list. The expression types are described in “Expression” on page 4-40. Sections that
follow present examples of simple expression in the select list.

You can combine simple numeric expressions by connecting them with arithmetic
operators for addition, subtraction, multiplication, and division. If you combine a
column expression and an aggregate function, however, you must include the
column expression in the GROUP BY clause. (See also “Relationship of GROUP BY
and Projection Clauses” on page 2-584.)

In general, you cannot use variables (for example, host variables in an Informix
ESQL/C application) in the select list by themselves. A variable is valid in the
select list, however, if an arithmetic or concatenation operator connects it to a
constant.

In a FOREACH SELECT statement, you cannot use SPL variables in the select list,
by themselves or with column names, when the tables in the FROM clause are
remote tables. You can use SPL variables by themselves or with a constant in the
select list only when the tables in the FROM clause are local tables.

2-546 IBM Informix Guide to SQL: Syntax

In distributed queries of Informix, values in expressions (and returned by
expressions) are restricted, as “Data Types in Cross-Server Transactions” on page
2-545 describes. Any UDRs whose return values are used as expressions in other
databases of the same Informix instance must be defined in each participating
database.

The Boolean operator NOT is not valid in the Projection clause.

Selecting Columns: Column expressions are the most commonly used expressions
in a SELECT statement. For a complete description of the syntax and use of
column expressions, see “Column Expressions” on page 4-59. The following
examples use column expressions in the Projection clause:
SELECT orders.order_num, items.price FROM orders, items;
SELECT customer.customer_num ccnum, company FROM customer;
SELECT catalog_num, stock_num, cat_advert [1,15] FROM catalog;
SELECT lead_time - 2 UNITS DAY FROM manufact;

Selecting Constants: If you include a constant expression in the projection list, the
same value is returned for each row that the query returns (except when the
constant expression is NEXTVAL). For a complete description of the syntax and
use of constant expressions, see “Constant Expressions” on page 4-70. Examples
that follow show constant expressions within a select list:
SELECT ’The first name is’, fname FROM customer;
SELECT TODAY FROM cust_calls;
SELECT SITENAME FROM systables WHERE tabid = ;1
SELECT lead_time - 2 UNITS DAY FROM manufact;
SELECT customer_num + LENGTH(’string’) from customer;

Selecting Built-In Function Expressions: A built-in function expression uses a
function that is evaluated for each row in the query. All built-in function
expressions require arguments. This set of expressions contains the time functions
and the length function when they are used with a column name as an argument.
The following examples show built-in function expressions within the select list of
the Projection clause:
SELECT EXTEND(res_dtime, YEAR TO SECOND) FROM cust_calls;
SELECT LENGTH(fname) + LENGTH(lname) FROM customer;
SELECT HEX(order_num) FROM orders;
SELECT MONTH(order_date) FROM orders;

Selecting Aggregate Function Expressions: An aggregate function returns one
value for a set of queried rows. This value depends on the set of rows that the
WHERE clause of the SELECT statement qualifies. In the absence of a WHERE
clause, the aggregate functions take on values that depend on all the rows that the
FROM clause forms. Examples that follow show aggregate functions in a select list:
SELECT SUM(total_price) FROM items WHERE order_num = 1013;
SELECT COUNT(*) FROM orders WHERE order_num = 1001;
SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer;

Selecting User-Defined Function Expressions: User-defined functions extend the
range of functions that are available to you and allow you to perform a subquery
on each row that you select.

The following example calls the get_orders() user-defined function for each
customer_num and displays the returned value under the n_orders label:
SELECT customer_num, lname, get_orders(customer_num) n_orders

FROM customer;

Chapter 2. SQL statements 2-547

If an SPL routine in a SELECT statement contains certain SQL statements, the
database server returns an error. For information on which SQL statements cannot
be used in an SPL routine that is called within a query, see “Restrictions on SPL
Routines in Data-Manipulation Statements” on page 5-77.

For the complete syntax of user-defined function expressions, see “User-Defined
Functions” on page 4-160.

Selecting Expressions That Use Arithmetic Operators: You can combine numeric
expressions with arithmetic operators to make complex expressions. You cannot
combine expressions that contain aggregate functions with column expressions.
These examples show expressions that use arithmetic operators within a select list
in the Projection clause:
SELECT stock_num, quantity*total_price FROM customer;
SELECT price*2 doubleprice FROM items;
SELECT count(*)+2 FROM customer;
SELECT count(*)+LENGTH(’ab’) FROM customer;

Selecting ROW Fields: You can select a specific field of a named or unnamed
ROW type column with row.field notation, using a period (.) as a separator
between the row and field names. For example, suppose you have the following
table structure:
CREATE ROW TYPE one (a INTEGER, b FLOAT);
CREATE ROW TYPE two (c one, d CHAR(10));
CREATE ROW TYPE three (e CHAR(10), f two);

CREATE TABLE new_tab OF TYPE two;
CREATE TABLE three_tab OF TYPE three;

The following examples show expressions that are valid in the select list:
SELECT t.c FROM new_tab t;
SELECT f.c.a FROM three_tab;
SELECT f.d FROM three_tab;

You can also enter an asterisk (*) in place of a field name to signify that all fields
of the ROW-type column are to be selected.

For example, if the my_tab table has a ROW-type column named rowcol that
contains four fields, the following SELECT statement retrieves all four fields of the
rowcol column:
SELECT rowcol.* FROM my_tab;

You can also retrieve all fields from a row-type column by specifying only the
column name. This example has the same effect as the previous query:
SELECT rowcol FROM my_tab;

You can use row.field notation not only with ROW-type columns but with
expressions that evaluate to ROW-type values. For more information, see “Column
Expressions” on page 4-59 in the Expression segment.

Declaring a Display Label
You can declare a display label for any column or column expression in the select
list of the Projection clause. This temporary name is in scope only while the
SELECT statement is executing.

In DB-Access, a display label appears as the heading for that column in the output
of the SELECT statement.

2-548 IBM Informix Guide to SQL: Syntax

In Informix ESQL/C, the value of display_label is stored in the sqlname field of the
sqlda structure. For more information on the sqlda structure, see the IBM Informix
ESQL/C Programmer's Manual.

If your display label is an SQL keyword, use the AS keyword to clarify the syntax.
For example, to use UNITS, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION as display labels, use the AS keyword with the display label. The
following statement uses AS with minute as a display label:
SELECT call_dtime AS minute FROM cust_calls;

For the keywords of SQL, see Appendix A, “Keywords of SQL for IBM Informix,”
on page A-1.

If you are creating a temporary table, you must supply a display label for any
columns that are not simple column expressions. The display label is used as the
name of the column in the temporary table. If you are using the SELECT statement
to define a view, do not use display labels. Specify the desired label names in the
CREATE VIEW column list instead.

INTO Clause

Use the INTO clause in an SPL routine or an Informix ESQL/C program to specify
the program variables or host variables to receive data that SELECT retrieves.

INTO Clause:

INTO �

,

output_var
(1)

:indicator_var
(2)

$indicator_var
data_structure

Notes:

1 ESQL/C only

2 Informix extension

Element Description Restrictions Syntax

data_ structure Structure that was declared as a host
variable

Data types of elements must be able to
store the values that are being selected

Language
specific

indicator_ var Program variable to receive a return
code if corresponding output_var
receives a NULL value

Optional; use an indicator variable if the
possibility exists that the value of the
corresponding output_var is NULL

Language
specific

output_ var Program or host variable to receive
value of the corresponding select list
item. Can be a collection variable

Order of receiving variables must match
the order of corresponding items in the
select list of Projection clause

Language
specific

The INTO clause specifies one or more variables that receive the values that the
query returns. If it returns multiple values, they are assigned to the list of variables
in the order in which you specify the variables.

Chapter 2. SQL statements 2-549

If the SELECT statement stands alone (that is, it is not part of a DECLARE
statement and does not use the INTO clause), it must be a singleton SELECT
statement. A singleton SELECT statement returns only one row.

The number of receiving variables must be equal to the number of items in the
select list of the Projection clause. The data type of each receiving variable should
be compatible with the data type of the corresponding column or expression in the
select list.

For the actions that the database server takes when the data type of the receiving
variable does not match that of the selected item, see “Warnings in ESQL/C” on
page 2-551.

The following example shows a singleton SELECT statement in Informix ESQL/C:
EXEC SQL select fname, lname, company

into :p_fname, :p_lname, :p_coname
from customer where customer_num = 101;

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement holds the fetched values. For more information, see
“FOREACH” on page 3-22.

INTO Clause with Indicator Variables
If the possibility exists that a data value returned from the query is NULL, use an
ESQL/C indicator variable in the INTO clause. For more information, see the IBM
Informix ESQL/C Programmer's Manual.

INTO Clause with Cursors
If the SELECT statement returns more than one row, you must use a cursor in a
FETCH statement to fetch the rows individually. You can put the INTO clause in
the FETCH statement rather than in the SELECT statement, but you should not put
it in both.

The following Informix ESQL/C code examples show different ways you can use
the INTO clause. As both examples show, first you must use the DECLARE
statement to declare a cursor.

Using the INTO clause in the SELECT statement:
EXEC SQL declare q_curs cursor for

select lname, company
into :p_lname, :p_company
from customer;

EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs;
EXEC SQL close q_curs;

Using the INTO clause in the FETCH statement:
EXEC SQL declare q_curs cursor for

select lname, company from customer;
EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs into :p_lname, :p_company;
EXEC SQL close q_curs;

2-550 IBM Informix Guide to SQL: Syntax

Preparing a SELECT ... INTO Query
In Informix ESQL/C, you cannot prepare a query that has an INTO clause. You
can prepare the query without the INTO clause, declare a cursor for the prepared
query, open the cursor, and then use the FETCH statement with an INTO clause to
fetch the cursor into the program variable.

Alternatively, you can declare a cursor for the query without first preparing the
query and include the INTO clause in the query when you declare the cursor. Then
open the cursor and fetch the cursor without using the INTO clause of the FETCH
statement.

Using Array Variables with the INTO Clause
In Informix ESQL/C, if you use a DECLARE statement with a SELECT statement
that contains an INTO clause, and the variable is an array element, you can
identify individual elements of the array with integer literals or variables. The
value of the variable that is used as a subscript is determined when the cursor is
declared; the subscript variable subsequently acts as a constant.

The following Informix ESQL/C code example declares a cursor for a SELECT ...
INTO statement using the variables i and j as subscripts for the array a. After you
declare the cursor, the INTO clause of the SELECT statement is equivalent to INTO
a[5], a[2].
i = 5
j = 2
EXEC SQL declare c cursor for

select order_num, po_num into :a[i], :a[j] from orders
where order_num =1005 and po_num =2865;

You can also use program variables in the FETCH statement to specify an element
of a program array in the INTO clause. The program variables are evaluated at
each fetch, rather than when you declare the cursor.

Error Checking
If the data type of the receiving variable does not match that of the selected item,
the data type of the selected item is converted, if possible, to the data type of the
variable. If the conversion is impossible, an error occurs, and a negative value is
returned in the status variable, sqlca.sqlcode, or SQLCODE. In this case, the value
in the program variable is unpredictable.

In an ANSI-compliant database, if the number of variables that are listed in the
INTO clause differs from the number of items in the select list of the Projection
clause, you receive an error.

Warnings in ESQL/C: In Informix ESQL/C, if the number of variables listed in
the INTO clause differs from the number of items in the Projection clause, a
warning is returned in the sqlwarn structure: sqlca.sqlwarn.sqlwarn3. The actual
number of variables that are transferred is the lesser of the two numbers. For
information about the sqlwarn structure, see the IBM Informix ESQL/C
Programmer's Manual.

FROM Clause

The FROM clause lists the table objects from which you are selecting the data.

Chapter 2. SQL statements 2-551

FROM Clause:

FROM �

�

� �

�

,

Table Reference
,

(1) (2)
, Informix-Extension OUTER Clause

, ,
(1) (2)

Informix-Extension OUTER Clause , Table Reference
,

(3)
ANSI Table Reference

Table Reference:

Relation
alias

(1)
AS

(1) (4)
Iterator

(1) (5) (6) (7)
Collection-Derived Table

Relation:

table
view
synonym

�

alias
(1) ,

AS
(derived_column)

Notes:

1 Informix extension

2 See “Informix-Extension Outer Joins” on page 2-565

3 See “ANSI Table Reference” on page 2-560

4 See “Iterator Functions” on page 2-557

5 Stored Procedure Language only

6 ESQL/C only

7 See “Collection-Derived Table” on page 5-4

Element Description Restrictions Syntax

alias Temporary name for a table,
view, or derived table in this
query

See “The AS Keyword” on page
2-553.

“Identifier” on page 5-21

derived
_column

Temporary name for a derived
column in a table expression

Unless the underlying collection is a
ROW type, you can declare no more
than one derived_column name

“Identifier” on page 5-21

external External table from which to
retrieve data

Must exist but cannot be the outer
table in an outer join

“Database Object Name” on
page 5-16

2-552 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

num Number of rows to sample Unsigned integer > 0 “Literal Number” on page
4-184

subquery Specifies rows to be retrieved Cannot be a correlated subquery “SELECT statement” on
page 2-536

synonym,
table, view

Synonym for a table from which
to retrieve data

Synonym and table or view to
which it points must exist

“Database Object Name” on
page 5-16

If the FROM clause specifies more than one data source, the query is called a join,
because its result set can join rows from several table references. For more
information about joins, see “Queries that Join Tables” on page 2-559.

Aliases for Tables or Views
You can declare an alias for a table or view in the FROM clause. If you do so, you
must use the alias to refer to the table or view in other clauses of the SELECT
statement. You can also use aliases to make the query shorter.

The following examples show typical uses of the FROM clause. The first query
selects all the columns and rows from the customer table. The second query uses a
join between the customer and orders table to select all the customers who have
placed orders.
SELECT * FROM customer;
SELECT fname, lname, order_num FROM customer, orders

WHERE customer.customer_num = orders.customer_num;

The next example is equivalent to the second query in the preceding example, but
it declares aliases in the FROM clause and uses them in the WHERE clause:
SELECT fname, lname, order_num FROM customer c, orders o

WHERE c.customer_num = o.customer_num;

Aliases (sometimes called correlation names) are especially useful with a self-join.
For more information about self-joins, see “Self-Joins” on page 2-571. In a self-join,
you must list the table name twice in the FROM clause and declare a different alias
for each of the two instances of the table name.

The AS Keyword: If you use a potentially ambiguous word as an alias (or as a
display label), you must begin its declaration with the keyword AS. This keyword
is required if you use any of the keywords ORDER, FOR, AT, GROUP, HAVING,
INTO, NOT, UNION, WHERE, WITH, CREATE, or GRANT as an alias for a table
or view.

The database server would issue an error if the next example did not include the
AS keyword to indicate that not is a display label, rather than an operator:
CREATE TABLE t1(a INT);
SELECT a AS not FROM t1;

If you do not declare an alias for a collection-derived table, the database server
assigns an implementation-dependent name to it.

Table Expressions
A table expression (sometimes called a derived table) is a view name, a table name, or
an uncorrelated subquery in the FROM clause. Table expressions can be simple or
complex:
v Simple table expressions

Chapter 2. SQL statements 2-553

A simple table expression is one whose underlying query can be folded into the
main query while preserving the correctness of the query result.

v Complex table expressions
A complex table expression is one whose underlying query cannot be folded into
the main query while preserving the correctness of the query result. The
database server materializes such table expressions into a temporary table that is
used in the main query. Subqueries in the FROM clause that specify aggregates,
unions, or the ORDER BY clause are implemented as complex table expressions,
which typically require more resources of the database server than simple table
expressions.

In either case, the table expression is evaluated as a general SQL query and its
results can be thought of as a logical table. This logical table and its columns can
be used just like an ordinary base table, but it is not persistent. It exists only
during the execution of the query that references it.

Table expressions have the same syntax as general SELECT statements, but with
most of the restrictions that apply to subqueries in other contexts. A table
expression cannot include the SELECT INTO clause.

Unlike subqueries in the Projection clause or in the WHERE clause, subqueries in
the FROM clause cannot be correlated subqueries. A correlated subquery is a
subquery that refers to a column of a table that is not listed in its FROM clause.
Conversely, any subquery that references only columns in tables that are listed in
its FROM clause is an uncorrelated subquery.

Although a derived table in the FROM clause cannot be defined by a correlated
subquery, the uncorrelated subquery that defines a derived table can contain a
correlated subquery outside its FROM clause, as in the following example:
SELECT * FROM (SELECT * FROM t1

WHERE a IN (SELECT b FROM t2 WHERE t1.a = t2.b));

Here the subquery in the first WHERE clause is a correlated subquery, because it
references column a of table t1, but its FROM clause specifies only table t2. No
error is returned, because the correlated subquery is specified in the WHERE
clause of the subquery in which it is nested, not the FROM clause.

In FROM clause table expressions, Informix also supports the ORDER BY clause,
which is not valid in subqueries outside the FROM clause. Columns or expressions
that are specified by the ORDER BY clause in a table expression need not be
included in the Projection clause.

Informix does not support Generalized Key indexes. It supports table expressions
in the triggered actions of CREATE TRIGGER statements, and as the triggering
event of a Select trigger. Informix also supports the ORDER BY clause in table
expressions, and iterator functions as FROM clause table expressions.

The CALL statement of SPL cannot invoke a TABLE function within a subquery in
the FROM clause of the SELECT statement.

Apart from these restrictions, any valid SQL query can be a table expression. A
table expression can be nested within another table expression (within the 64
kilobyte size limit on the text of a single SQL statement), and can include tables
and views in its definition. You can use table expressions in CREATE VIEW
statements to define views.

2-554 IBM Informix Guide to SQL: Syntax

Usability and Performance Considerations: Although equivalent functionality is
available through views, subqueries as table expressions simplify the formulation
of queries, make the syntax more flexible and intuitive, and support the ANSI/ISO
standard for SQL.

The query optimizer does not materialize simple table expressions that the FROM
clause specifies. The performance of a query that uses the ANSI/ISO syntax for a
table expression in the FROM clause is at least as good as a that of a query that
uses the Informix-extension TABLE (MULTISET (SELECT ...)) syntax to specify an
equivalent derived table in the FROM clause. Subqueries in the FROM clause that
include aggregate functions, the UNION operator, or ORDER BY specifications are
implemented as complex table expressions that can impose greater costs than
simple table expressions. Use the SET EXPLAIN statement to examine the query
plan and the estimated cost of a table expression.

The following are examples of valid table expressions:
SELECT * FROM (SELECT * FROM t);

SELECT * FROM (SELECT * FROM t) AS s;

SELECT * FROM (SELECT * FROM t) AS s WHERE t.a = s.b;

SELECT * FROM (SELECT * FROM t) AS s, (SELECT * FROM u) AS v WHERE s.a = v.b;

SELECT * FROM (SELECT SKIP 2 col1 FROM tab1 WHERE col1 > 50 ORDER BY col1 DESC);

SELECT * FROM (SELECT col1,col3 FROM tab1
WHERE col1 < 50 GROUP BY col1,col3 ORDER BY col3) vtab(vcol0,vcol1);

SELECT * FROM (SELECT * FROM t WHERE t.a = 1) AS s,
OUTER
(SELECT * FROM u WHERE u.b = 2 GROUP BY 1) AS v WHERE s.a = v.b;

SELECT * FROM (SELECT a AS colA FROM t WHERE t.a = 1) AS s,
OUTER
(SELECT b AS colB FROM u WHERE u.b = 2 GROUP BY 1) AS v

WHERE s.colA = v.colB;

CREATE VIEW vu AS SELECT * FROM (SELECT * FROM t);

SELECT * FROM ((SELECT * FROM t) AS r) AS s;

Restrictions on External Tables in Joins and Subqueries
When you use external tables in joins or subqueries, the following restrictions
apply:
v No more than one external table is valid in a query.
v The external table cannot be the outer table in an outer join.
v For subqueries that cannot be converted to joins, you can use an external table

in the main query, but not in the subquery.
v You cannot do a self-join on an external table.

For more information on subqueries, see your IBM Informix Performance Guide.

The ONLY Keyword
If the SELECT statement queries a supertable, rows from both the supertable and
its subtables are returned. To query rows from the supertable only, you must
include the ONLY keyword in the FROM clause, as in this example:
SELECT * FROM ONLY(super_tab);

Chapter 2. SQL statements 2-555

Selecting from a Collection Variable

The SELECT statement in conjunction with the Collection-Derived Table segment
allows you to select elements from a collection variable.

The Collection-Derived Table segment identifies the collection variable from which
to select the elements. (See “Collection-Derived Table” on page 5-4.)

Using Collection Variables with SELECT: To modify the contents of a column of
a collection data type, you can use the SELECT statement with a collection variable
in various ways:
v You can select the contents (if any) of a collection column into a collection

variable.
You can assign the data type of the column to a collection variable of type
COLLECTION (that is, an untyped collection variable).

v You can select the contents from a collection variable to determine the data that
you might want to update.

v You can select the contents from a collection variable INTO another variable in
order to update certain collection elements.
The INTO clause identifies the variable for the element value that is selected
from the collection variable. The data type of the host variable in the INTO
clause must be compatible with that of the corresponding collection element.

v You can use a Collection cursor to select one or more elements from an Informix
ESQL/C collection variable.
For more information, including restrictions on the SELECT statement, see
“Associating a Cursor with a Prepared Statement” on page 2-301.

v You can use a Collection cursor to select one or more elements from an SPL
collection variable.
For more information, including restrictions on the SELECT statement, see
“Using a SELECT ... INTO Statement” on page 3-23.

When one of the tables to be joined is a collection, the FROM clause cannot specify
a join. This restriction applies when the collection variable holds your
collection-derived table. See also “Collection-Derived Table” on page 5-4. and the
INSERT, UPDATE, and DELETE statement descriptions in this chapter.

Selecting from a Row Variable (ESQL/C)

The SELECT statement can include the Collection-Derived Table segment to select
one or more fields from a row variable. The Collection-Derived Table segment
identifies the row variable from which to select the fields. For more information,
see “Collection-Derived Table” on page 5-4.

To select fields

1. Create a row variable in your Informix ESQL/C program.
2. Optionally, fill the row variable with field values. You can select a ROW-type

column into the row variable with the SELECT statement (without the
Collection-Derived Table segment). Alternatively, you can insert field values
into the row variable with the UPDATE statement and the Collection-Derived
Table segment.

3. Select row fields from the row variable with the SELECT statement and the
Collection-Derived Table segment.

2-556 IBM Informix Guide to SQL: Syntax

4. Once the row variable contains the correct field values, you can use the
INSERT or UPDATE statement on a table or view name to save the contents of
the row variable in a named or unnamed row column.

The INTO clause can specify a host variable to hold a field value selected from the
row variable.

The type of the host variable must be compatible with that of the field. For
example, this code fragment puts the width field value into the rect_width host
variable.
EXEC SQL BEGIN DECLARE SECTION;

ROW (x INT, y INT, length FLOAT, width FLOAT) myrect;
double rect_width;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT rect INTO :myrect FROM rectangles

WHERE area = 200;
EXEC SQL SELECT width INTO :rect_width FROM table(:myrect);

The SELECT statement on a row variable has the following restrictions:
v No expressions are allowed in the select list of the Projection clause.
v ROW columns cannot be in a WHERE clause comparison condition.
v The Projection clause must be an asterisk (*) if the row-type contains fields of

opaque, distinct, or built-in data types.
v Columns listed in the Projection clause can have only unqualified names. They

cannot use the syntax database@server:table.column.

v The following clauses are not allowed: GROUP BY, HAVING, INTO TEMP,
ORDER BY, and WHERE.

v The FROM clause has no provisions to do a join.

You can modify the row variable with the Collection-Derived Table segment of the
UPDATE statements. (The INSERT and DELETE statements do not support a row
variable in the Collection-Derived Table segment.)

The row variable stores the fields of the row. It has no intrinsic connection,
however, with a database column. Once the row variable contains the correct field
values, you must then save the variable into the ROW column with one of the
following SQL statements:
v To update the ROW column in the table with the row variable, use an UPDATE

statement on a table or view name and specify the row variable in the SET
clause. For more information, see “Updating ROW-Type Columns” on page
2-707.

v To insert a row into a ROW column, use the INSERT statement on a table or
view and specify the row variable in the VALUES clause. See “Inserting Values
into ROW-Type Columns” on page 2-442.

For examples of how to use SPL row variables, see the IBM Informix Guide to SQL:
Tutorial. For information on using Informix ESQL/C row variables, see the
discussion of complex data types in the IBM Informix ESQL/C Programmer's Manual.

Iterator Functions
The FROM clause can include a call to an iterator function to specify the source for
a query. An iterator function is a user-defined function that returns to its calling
SQL statement several times, each time returning a value.

Chapter 2. SQL statements 2-557

You can query the returned result set of an iterator UDR using a virtual table
interface. Use this syntax to invoke an iterator function in the FROM clause:

Iterator:

TABLE �

� ((1) iterator ())
(2)

FUNCTION Routine Parameter List
PROCEDURE

�

�

�

table
AS ,

(column)

Notes:

1 Informix extension

2 See “Routine Parameter List” on page 5-67

Element Description Restrictions Syntax

column Name declared here for a virtual
column in table

Must be unique among column names in
table. Cannot include qualifiers

“Identifier” on page
5-21

iterator Name of the iterator function Must be registered in the database “Identifier” on page
5-21

table Name declared here for virtual table
holding iterator result set

Cannot include qualifiers “Identifier” on page
5-21

The keyword FUNCTION (or PROCEDURE) was required in releases earlier than
Informix 10.5. These keyword extensions to the ANSI/ISO standard for SQL are
optional in this release, and have no effect. The following two query specifications,
which specify fibGen() as an iterator function, are equivalent:
SELECT * FROM TABLE FUNCTION (fibGen(10));
SELECT * FROM TABLE (fibGen(10));

The table can only be referenced within the context of this query. After the SELECT
statement terminates, the virtual table no longer exists.

The number of columns must match the number of values returned by the iterator.
An external function can return no more than one value (but that can be of a
collection data type). An SPL routine can return multiple values.

To reference the virtual table columns in other parts of the SELECT statement, for
example, in the WHERE clause or HAVING clause, you must declare its name and
the virtual column names in the FROM clause. You do not need to declare the table
name or column names in the FROM clause if you use the asterisk notation in the
Select list of the Projection clause:
SELECT * FROM ...

For more information and examples of using iterator functions in queries, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

2-558 IBM Informix Guide to SQL: Syntax

Queries that Join Tables
If the FROM clause specifies more than one table reference, the query can join
rows from several tables. A join condition specifies a relationship between at least
one column from each table to be joined. Because the columns in a join condition
are being compared, they must have compatible data types.

The FROM clause of the SELECT statement can specify several types of joins.

FROM Clause Keywords Corresponding Result Set

CROSS JOIN
Cartesian product (all possible pairs of rows)

INNER JOIN
Only rows from CROSS that satisfy the join condition

LEFT OUTER JOIN
Qualifying rows of one table, and all rows of another

RIGHT OUTER JOIN
Same as LEFT, but roles of the two tables are reversed

FULL OUTER JOIN The union of all rows from an INNER join of the two tables,
and of all rows of each table that have no match in the other
table (using NULL values in the selected columns of the
other table)

The last four categories are collectively called “Join Types” in the literature of the
relational model; a CROSS JOIN ignores the specific data values in joined tables,
returning every possible pair of rows, where one row is from each table.

In an inner (or simple) join, the result contains only the combination of rows that
satisfy the join conditions. Outer joins preserve rows that otherwise would be
discarded by inner joins. In an outer join, the result contains the combination of
rows that satisfy the join conditions and the rows from the dominant table that
would otherwise be discarded. The rows from the dominant table that do not have
matching rows in the subordinate table contain NULL values in the columns
selected from the subordinate table.

Informix supports the two different syntaxes for left outer joins:
v Informix-extension syntax
v ANSI-compliant syntax

Earlier versions of the database server supported only Informix-extension syntax
for outer joins. Informix continues to support this legacy syntax, but using the
ANSI-compliant syntax for joins provides greater flexibility in creating queries. In
view definitions, however, the legacy syntax does not require materialized views,
so it might offer performance advantages.

If you use ANSI-compliant syntax to specify a join in the FROM clause, you must
also use ANSI-compliant syntax for all outer joins in the same query block. Thus,
you cannot begin another outer join with only the OUTER keyword. The following
query, for example, is not valid:
SELECT * FROM customer, OUTER orders RIGHT JOIN cust_calls

ON (customer.customer_num = orders.customer_num)
WHERE customer.customer_num = 104);

This returns an error because it attempts to combine the Informix-extension
OUTER syntax with the ANSI-compliant RIGHT JOIN syntax for outer joins.

Chapter 2. SQL statements 2-559

See the section “Informix-Extension Outer Joins” on page 2-565 for the
Informix-extension syntax for LEFT OUTER joins.

ANSI-Compliant Joins
The ANSI-compliant syntax for joins supports these join specifications:
v To use a CROSS join, a LEFT OUTER, RIGHT OUTER, or FULL OUTER join, or

an INNER (or simple) join, see “Creating an ANSI Join” on page 2-561 and
“ANSI INNER Joins” on page 2-563.

v To use pre-join filters, see “Using the ON Clause” on page 2-563.
v To use one or more post-join filters in the WHERE clause, see “Specifying a

Post-Join Filter” on page 2-564.
v To have the dominant or subordinate part of an outer join be the result set of

another join, see “Using a Join as the Dominant or Subordinate Part of an Outer
Join” on page 2-565.

Important: Use the ANSI-compliant syntax for joins when you create new queries
in Informix. In Informix releases earlier than 10.00.xC3, cross-server distributed
queries with ANSI-compliant joins use query plans that are inefficient for this
release. For any UDR older than Informix 10.00.xC3 that performs a cross-server
ANSI-compliant join, use the UPDATE STATISTICS statement to replace the
original query plan with a re-optimized plan.

ANSI Table Reference:

This diagram shows the ANSI-compliant syntax for a table reference.

ANSI Table Reference:

synonym
table alias
view (1)
ONLY (table) AS

(synonym)
(2) (1) (3) (4)

Collection Derived Table
(5)

Iterator
(6)

ANSI Joined Tables
alias

(1)
AS

Notes:

1 Informix extension

2 Stored Procedure Language only

3 ESQL/C only

4 See “Collection-Derived Table” on page 5-4

5 See “Iterator Functions” on page 2-557

6 See “ANSI Joined Tables” on page 2-561

Element Description Restrictions Syntax

alias Temporary name for a table or view
within the scope of the SELECT

See “The AS Keyword” on page 2-553. “Identifier” on
page 5-21

2-560 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

synonym,
table, view

Source from which to retrieve data The synonym and the table or view to
which it points must exist

“Database Object
Name” on page
5-16

Here the ONLY keyword is the same semantically as in the Informix-extension
Table Reference segment, as described in “The ONLY Keyword” on page 2-555.

The AS keyword is optional when you declare an alias (also called a correlation
name) for a table reference, as described in “The AS Keyword” on page 2-553,
unless the alias conflicts with an SQL keyword.

Creating an ANSI Join: With ANSI-compliant joined table syntax, as shown in
the following diagram, you can specify the INNER JOIN, CROSS JOIN, NATURAL
JOIN, LEFT JOIN (or LEFT OUTER JOIN), RIGHT JOIN and FULL OUTER JOIN
keywords. The OUTER keyword is optional in ANSI-compliant outer joins.

You must use the same form of join syntax (either Informix extension or
ANSI-compliant) for all of the outer joins in the same query block. When you use
the ANSI-compliant syntax, you must also specify the join condition in the ON
clause, as described in “Using the ON Clause” on page 2-563.

ANSI Joined Tables:

This is the ANSI-compliant syntax for specifying inner and outer joins.

ANSI Joined Tables:

�
(1)

ANSI Table Reference Join Options
(1) (2)

CROSS JOIN ANSI Table Reference
(ANSI Joined Tables)

Join Options:

INNER (1)
LEFT JOIN ANSI Table Reference ON Clause
RIGHT OUTER
FULL

ON Clause:

Chapter 2. SQL statements 2-561

ON �

�

AND
(3)

Join
(4)

Function Expression
(2)

Condition
(subquery)

(5)
(Collection Subquery)

OR
(3)

Join
(4)

Function Expression
(2)

Condition
(subquery)

(5)
(Collection Subquery)

Notes:

1 See “ANSI Table Reference” on page 2-560

2 See “Condition” on page 4-5

3 See “Specifying a Join in the WHERE Clause” on page 2-570

4 See “Function Expressions” on page 4-86

5 See “Collection Subquery” on page 4-3

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST or the ORDER BY clause “SELECT statement” on
page 2-536

The ANSI-Joined Table segment must be enclosed between parentheses if it is
immediately followed by another join specification. For example, the first of the
following two queries returns an error; the second query is valid:
SELECT * FROM (T1 LEFT JOIN T2) CROSS JOIN T3 ON (T1.c1 = T2.c5)

WHERE (T1.c1 < 100); -- Ambiguous order of operations;

SELECT * FROM (T1 LEFT JOIN T2 ON (T1.c1 = T2.c5)) CROSS JOIN T3
WHERE (T1.c1 < 100); -- Unambiguous order of operations;

The following valid query specifies nested LEFT OUTER joins of table expressions
within the FROM clause of the outer SELECT statement:
SELECT * FROM
((SELECT C1,C2 FROM T3) AS VT3(V31,V32)
LEFT OUTER JOIN

((SELECT C1,C2 FROM T1) AS VT1(VC1,VC2)
LEFT OUTER JOIN
(SELECT C1,C2 FROM T2) AS VT2(VC3,VC4)
ON VT1.VC1 = VT2.VC3)

ON VT3.V31 = VT2.VC3);

ANSI CROSS Joins: The CROSS keyword specifies the Cartesian product,
returning all possible paired combinations that include one row from each of the
joined tables.

2-562 IBM Informix Guide to SQL: Syntax

ANSI INNER Joins: To create an inner (or simple) join using the ANSI-compliant
syntax, specify the join with the JOIN or INNER JOIN keywords. If you specify
only the JOIN keyword, the database server creates an implicit inner join by
default. An inner join returns all the rows in a table that have one or more
matching rows in the other table (or tables). The unmatched rows are discarded.

ANSI LEFT OUTER Joins: The LEFT keyword specifies a join that treats the first
table reference as the dominant table in the join. In a left outer join, the
subordinate part of the outer join appears to the right of the keyword that begins
the outer join specification. The result set includes all the rows that an INNER join
returns, plus all rows that would otherwise have been discarded from the
dominant table.

ANSI RIGHT OUTER Joins: The RIGHT keyword specifies a join that treats the
second table reference as the dominant table in the join. In a right outer join, the
subordinate part of the outer join appears to the left of the keyword that begins the
outer join specification. The result set includes all the rows that an INNER join
returns, plus all rows that would otherwise have been discarded from the
dominant table.

ANSI FULL OUTER Joins: The FULL keyword specifies a join in which the result
set includes all the rows from the Cartesian product for which the join condition is
true, plus all the rows from each table that do not match the join condition.

In an ANSI-compliant join that specifies the LEFT, RIGHT, or FULL keywords in
the FROM clause, the OUTER keyword is optional.

Join-method optimizer directives that you specify for an ANSI-compliant joined
query are ignored, but are listed under Directives Not Followed in the sqexplain.out
file.

Using the ON Clause
Use the ON clause to specify the join condition and any expressions as optional
join filters.

The following example from the stores_demo database illustrates how the join
condition in the ON clause combines the customer and orders tables:
SELECT c.customer_num, c.company, c.phone, o.order_date

FROM customer c LEFT JOIN orders o
ON c.customer_num = o.customer_num;

The following table shows part of the joined customer and orders tables.

customer_num company phone order_date

101 All Sports Supplies 408-789-8075 05/21/2008

102 Sports Spot 415-822-1289 NULL

103 Phil’s Sports 415-328-4543 NULL

104 Play Ball! 415-368-1100 05/20/2008

— — — —

In an outer join, the join filters (expressions) that you specify in the ON clause
determine which rows of the subordinate table join to the dominant (or outer)
table. The dominant table, by definition, returns all its rows in the joined table.
That is, a join filter in the ON clause has no effect on the dominant table.

Chapter 2. SQL statements 2-563

If the ON clause specifies a join filter on the dominant table, the database server
joins only those dominant table rows that meet the criterion of the join filter to
rows in the subordinate table. The joined result contains all rows from the
dominant table. Rows in the dominant table that do not meet the criterion of the
join filter are extended with NULL values for the subordinate columns.

The following example from the stores_demo database illustrates the effect of a
join filter in the ON clause:
SELECT c.customer_num, c.company, c.phone, o.order_date

FROM customer c LEFT JOIN orders o
ON c.customer_num = o.customer_num

AND c.company <> "All Sports Supplies";

The row that contains All Sports Supplies remains in the joined result.

customer_num company phone order_date

101 All Sports Supplies 408-789-8075 NULL

102 Sports Spot 415-822-1289 NULL

103 Phil’s Sports 415-328-4543 NULL

104 Play Ball! 415-368-1100 05/20/2008

— — — —

Even though the order date for customer number 101 is 05/21/2008 in the orders
table, the effect of placing the join filter (c.company <> "All Sports Supplies")
prevents this row in the dominant customer table from being joined to the
subordinate orders table. Instead, a NULL value for order_date is extended to the
row of All Sports Supplies.

Applying a join filter to a base table in the subordinate part of an outer join can
improve performance. For more information, see your IBM Informix Performance
Guide.

Specifying a Post-Join Filter: When you use the ON clause to specify the join,
you can use the WHERE clause as a post-join filter. The database server applies the
post-join filter of the WHERE clause to the results of the outer join.

The following example illustrates the use of a post-join filter. This query returns
data from the stores_demo database. Suppose you want to determine which items
in the catalog are not being ordered. The next query creates an outer join of the
data from the catalog and items tables and then determines which catalog items
from a specific manufacturer (HRO) have not sold:
SELECT c.catalog_num, c.stock_num, c.manu_code, i.quantity

FROM catalog c LEFT JOIN items i
ON c.stock_num = i.stock_num AND c.manu_code = i.manu_code
WHERE i.quantity IS NULL AND c.manu_code = "HRO";

The WHERE clause contains the post-join filter that locates the rows of HRO items
in the catalog for which nothing has been sold.

When you apply a post-join filter to a base table in the dominant or subordinate
part of an outer join, you might improve performance. For more information, see
your IBM Informix Performance Guide.

2-564 IBM Informix Guide to SQL: Syntax

Using a Join as the Dominant or Subordinate Part of an Outer Join: With the
ANSI join syntax, you can nest joins. You can use a join as the dominant or
subordinate part of an outer or inner join.

Suppose you want to modify the previous query (the post-join filter example) to
get more information that will help you determine whether to continue carrying
each unsold item in the catalog. You can modify the query to include information
from the stock table so that you can see a short description of each unsold item
with its cost:
SELECT c.catalog_num, c.stock_num, s.description, s.unit_price,

s.unit_descr, c.manu_code, i.quantity
FROM (catalog c INNER JOIN stock s

ON c.stock_num = s.stock_num
AND c.manu_code = s.manu_code)

LEFT JOIN items i
ON c.stock_num = i.stock_num

AND c.manu_code = i.manu_code
WHERE i.quantity IS NULL

AND c.manu_code = "HRO";

In this example, an inner join between the catalog and stock tables forms the
dominant part of an outer join with the items table.

For additional examples of outer joins, see the IBM Informix Guide to SQL: Tutorial.

Informix-Extension Outer Joins
The Informix-extension syntax for outer joins begins with an implicit left outer
join. That is, you begin an outer join with the OUTER keyword. This is the syntax
of the Informix-extension OUTER clause.

Informix-Extension OUTER Clause:

OUTER

� � �

� �

(1)
Table Reference

,
, ,

(1) (2)
(Table Reference , Informix-Extension OUTER Clause)

, ,
(2) (1)

Informix-Extension OUTER Clause , Table Reference

Notes:

1 See “FROM Clause” on page 2-551

2 Informix extension

If you use this syntax for an outer join, you must use Informix-extension syntax for
all outer joins in a single query block, and you must include the join condition in
the WHERE clause. You cannot begin another outer join with the LEFT JOIN or the
LEFT OUTER JOIN keywords.

This example uses the OUTER keyword to create an outer join that lists all
customers and their orders, regardless of whether they have placed orders:
SELECT c.customer_num, c.lname, o.order_num FROM customer c,

OUTER orders o WHERE c.customer_num = o.customer_num;

Chapter 2. SQL statements 2-565

This example returns all the rows from the customer table with the rows that
match in the orders table. If no record for a customer appears in the orders table,
the returned order_num column for that customer has a NULL value.

If you have a complex outer join, that is, the query has more than one outer join,
you must either embed the additional outer join or joins in parentheses, as the
syntax diagram shows, or establish join conditions, or relationships, between the
dominant table and each subordinate table in the WHERE clause.

When an expression or a condition in the WHERE clause relates two subordinate
tables, you must use parentheses around the joined tables in the FROM clause to
enforce dominant-subordinate relationships, as in this example:
SELECT c.company, o.order_date, i.total_price, m.manu_name

FROM customer c,
OUTER (orders o, OUTER (items i, OUTER manufact m))

WHERE c.customer_num = o.customer_num
AND o.order_num = i.order_num
AND i.manu_code = m.manu_code;

When you omit parentheses around the subordinate tables in the FROM clause,
you must establish join conditions between the dominant table and each
subordinate table in the WHERE clause. If a join condition is between two
subordinate tables, the query fails, but the following example successfully returns a
result:
SELECT c.company, o.order_date, c2.call_descr

FROM customer c, OUTER orders o, OUTER cust_calls c2
WHERE c.customer_num = o.customer_num

AND c.customer_num = c2.customer_num;

The IBM Informix Guide to SQL: Tutorial has examples of complex outer joins.

WHERE Clause of SELECT

The WHERE clause can specify join conditions for Informix-extension joins,
post-join filters for ANSI-compliant joins, and for search criteria on data values.

WHERE Clause:

WHERE �

Logical_Operator
(1)

Condition
(2)

Join
(3)

Function Expression
(subquery)

(4)
(Collection Subquery)

(5)
Statement Local Variable Expressions

Notes:

1 See “Condition” on page 4-5

2 See “Specifying a Join in the WHERE Clause” on page 2-570

3 See “Function Expressions” on page 4-86

2-566 IBM Informix Guide to SQL: Syntax

4 See “Collection Subquery” on page 4-3

5 See “Statement-Local Variable Expressions” on page 4-163

Element Description Restrictions Syntax

Logical_
Operator

Combines two
conditions

Valid options are logical union (= OR or OR NOT) or
logical intersection (= AND or AND NOT)

“Conditions with
AND or OR” on
page 4-20

subquery Embedded query Cannot include the FIRST or ORDER BY keywords “SELECT statement”
on page 2-536

Using a Condition in the WHERE Clause
You can use these simple conditions or comparisons in the WHERE clause:
v Relational-operator condition
v IN or BETWEEN . . . AND
v IS NULL or IS NOT NULL
v LIKE or MATCHES

You also can use a SELECT statement within the WHERE clause; this is called a
subquery. The following WHERE clause operators are valid in a subquery:
v IN or EXISTS
v ALL, ANY, or SOME

For more information, see “Condition” on page 4-5.

In the WHERE clause, an aggregate function is not valid unless it is part of a
subquery or is on a correlated column originating from a parent query, and the
WHERE clause is in a subquery within a HAVING clause.

Relational-Operator Condition: A relational-operator condition is satisfied if the
expressions on each side of the operator fulfill the relation that the operator
specifies. The following statements use the greater than (>) and equal (=)
relational operators:
SELECT order_num FROM orders

WHERE order_date > ’6/04/08’;
SELECT fname, lname, company

FROM customer
WHERE city[1,3] = ’San’;

Single quotation marks are required around 'San' because the substring is from a
character column. See the “Relational-Operator Condition” on page 4-9.

IN Condition: The IN condition is satisfied when the expression to the left of the
IN keyword is included in the list of values to the right of the keyword.

The following examples show the IN condition:
SELECT lname, fname, company FROM customer

WHERE state IN (’CA’,’WA’, ’NJ’);
SELECT * FROM cust_calls

WHERE user_id NOT IN (USER);

For more information, see the “IN Subquery” on page 4-17.

BETWEEN Condition: The BETWEEN condition is satisfied when the value to
the left of BETWEEN is in the inclusive range of the two values on the right of

Chapter 2. SQL statements 2-567

BETWEEN. The first two queries in the following example use literal values after
the BETWEEN keyword. The third query uses the built-in CURRENT function and
a literal interval to search for dates between the current day and seven days earlier.
SELECT stock_num, manu_code FROM stock

WHERE unit_price BETWEEN 125.00 AND 200.00;
SELECT DISTINCT customer_num, stock_num, manu_code

FROM orders, items
WHERE order_date BETWEEN ’6/1/07’ AND ’9/1/07’;

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN (CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT;

For more information, see the “BETWEEN Condition” on page 4-9.

Using IS NULL and IS NOT NULL Conditions: The IS NULL condition is
satisfied if the specified column contains a NULL value, or if the specified expression
evaluates to NULL.

If you use the IS NOT NULL predicate, the condition is satisfied when the column
contains a value that is not NULL, or when the expression does not evaluate to
NULL. The following example selects the order numbers and customer numbers
for which the order has not been paid:
SELECT order_num, customer_num FROM orders

WHERE paid_date IS NULL;

For a complete description of the IS NULL and IS NOT NULL operators, see the
“IS NULL and IS NOT NULL Conditions” on page 4-12.

LIKE or MATCHES Condition: The LIKE or MATCHES condition is satisfied if
either of the following is true:
v The value of the column that precedes the LIKE or MATCHES keyword matches

the pattern that the quoted string specifies. You can use wildcard characters in
the string.

v The value of the column that precedes the LIKE or MATCHES keyword matches
the pattern that is specified by the column that follows the LIKE or MATCHES
keyword. The value of the column on the right serves as the matching pattern in
the condition.

The following SELECT statement returns all rows in the customer table in which
the lname column begins with the literal string ’Baxter’. Because the string is a
literal string, the condition is case sensitive.
SELECT * FROM customer WHERE lname LIKE ’Baxter%’ ;

The next SELECT statement returns all rows in the customer table in which the
value of the lname column matches the value of the fname column:
SELECT * FROM customer WHERE lname LIKE fname;

The following examples use the LIKE condition with a wildcard. The first SELECT
statement finds all stock items that are some kind of ball. The second SELECT
statement finds all company names that contain a percent (%) sign. Backslash (\
) is used as the default escape character for the percent (%) sign wildcard. The
third SELECT statement uses the ESCAPE option with the LIKE condition to
retrieve rows from the customer table in which the company column includes a
percent (%) sign. The z is used as an escape character for the percent (%) sign:

2-568 IBM Informix Guide to SQL: Syntax

SELECT stock_num, manu_code FROM stock
WHERE description LIKE ’

SELECT * FROM customer WHERE company LIKE ’
SELECT * FROM customer WHERE company LIKE ’%z%%’ ESCAPE ’z’;

The following examples use MATCHES with a wildcard in SELECT statements.
The first SELECT statement finds all stock items that are some kind of ball. The
second SELECT statement finds all company names that contain an asterisk (*).
The backslash (\) is used as the default escape character for a literal asterisk (*)
character. The third statement uses the ESCAPE option with the MATCHES
condition to retrieve rows from the customer table where the company column
includes an asterisk (*). The z character is specified as an escape character for the
asterisk (*) character:
SELECT stock_num, manu_code FROM stock

WHERE description MATCHES ’*ball’;

SELECT * FROM customer WHERE company MATCHES ’***’;

SELECT * FROM customer WHERE company MATCHES ’*z**’ ESCAPE ’z’;

See also the “LIKE and MATCHES Condition” on page 4-13.

IN Subquery: With the IN subquery, more than one row can be returned, but
only one column can be returned.

This example shows the use of an IN subquery in a SELECT statement:
SELECT DISTINCT customer_num FROM orders

WHERE order_num NOT IN
(SELECT order_num FROM items

WHERE stock_num = 1);

For additional information, see the “IN Condition” on page 4-10.

EXISTS Subquery: With the EXISTS subquery, one or more columns can be
returned.

The following example of a SELECT statement with an EXISTS subquery returns
the stock number and manufacturer code for every item that has never been
ordered (and is therefore not listed in the items table).

It is appropriate to use an EXISTS subquery in this SELECT statement because you
need the correlated subquery to test both stock_num and manu_code in the items
table.
SELECT stock_num, manu_code FROM stock

WHERE NOT EXISTS
(SELECT stock_num, manu_code FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code);

The preceding example would work equally well if you use a SELECT * in the
subquery in place of the column names, because you are testing for the existence
of a row or rows.

For additional information, see the “EXISTS Subquery” on page 4-18.

ALL, ANY, SOME Subqueries: The following examples return the order number
of all orders that contain an item whose total price is greater than the total price of

Chapter 2. SQL statements 2-569

every item in order number 1023. The first SELECT uses the ALL subquery, and
the second SELECT produces the same result by using the MAX aggregate
function.
SELECT DISTINCT order_num FROM items

WHERE total_price > ALL (SELECT total_price FROM items
WHERE order_num = 1023);

SELECT DISTINCT order_num FROM items
WHERE total_price > SELECT MAX(total_price) FROM items

WHERE order_num = 1023);

The following SELECT statements return the order number of all orders that
contain an item whose total price is greater than the total price of at least one of
the items in order number 1023. The first SELECT statement uses the ANY
keyword, and the second SELECT statement uses the MIN aggregate function:
SELECT DISTINCT order_num FROM items

WHERE total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023);

SELECT DISTINCT order_num FROM items
WHERE total_price > (SELECT MIN(total_price) FROM items

WHERE order_num = 1023);

You can omit the keywords ANY, ALL, or SOME in a subquery if the subquery
returns exactly one value. If you omit ANY, ALL, or SOME, and the subquery
returns more than one value, you receive an error. The subquery in the next
example returns only one row, because it uses an aggregate function:
SELECT order_num FROM items

WHERE stock_num = 9 AND quantity =
(SELECT MAX(quantity) FROM items WHERE stock_num = 9);

See also “ALL, ANY, and SOME Subqueries” on page 4-18.

Specifying a Join in the WHERE Clause
You join two tables by creating a relationship in the WHERE clause between at
least one column from one table and at least one column from another. The join
creates a temporary composite table where each pair of rows (one from each table)
that satisfies the join condition is linked to form a single row.

Join:

Data Source
column

(1)
Relational Operator �

�
Data Source

column

Data Source:

alias .
external .
table .
view .
synonym .

2-570 IBM Informix Guide to SQL: Syntax

Notes:

1 See “Relational Operator” on page 4-192

Element Description Restrictions Syntax

alias Temporary alternative name declared in the
FROM clause for a table or view

See “Self-Joins”; “FROM Clause”
on page 2-551

“Identifier” on page
5-21

column Column of a table or view to be joined Must exist in the table or view “Identifier” on page
5-21

external External table from which to retrieve data External table must exist “Database Object
Name” on page
5-16

synonym,
table, view

Name of a synonym, table, or view to be
joined in the query

Synonym and the table or view to
which it points must exist

“Database Object
Name” on page
5-16

Rows from the tables or views are joined when there is a match between the values
of specified columns. When the columns to be joined have the same name, you
must qualify each column name with its data source.

Two-Table Joins:

You can create two-table joins, multiple-table joins, self-joins, and outer joins
(Informix-extension syntax). The following example shows a two-table join:
SELECT order_num, lname, fname FROM customer, orders

WHERE customer.customer_num = orders.customer_num;

Multiple-Table Joins:

A multiple-table join is a join of more than two tables. Its structure is similar to the
structure of a two-table join, except that you have a join condition for more than
one pair of tables in the WHERE clause. When columns from different tables have
the same name, you must qualify the column name with its associated table or
table alias, as in table.column. For the full syntax of a table name, see “Database
Object Name” on page 5-16.

The following multiple-table join yields the company name of the customer who
ordered an item as well as its stock number and manufacturer code:
SELECT DISTINCT company, stock_num, manu_code

FROM customer c, orders o, items i
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num;

Self-Joins:

You can join a table to itself. To do so, you must list the table name twice in the
FROM clause and assign it two different table aliases. Use the aliases to refer to
each of the two tables in the WHERE clause. The next example is a self-join on the
stock table. It finds pairs of stock items whose unit prices differ by a factor greater
than 2.5. The letters x and y are each aliases for the stock table.
SELECT x.stock_num, x.manu_code, y.stock_num, y.manu_code

FROM stock x, stock y WHERE x.unit_price > 2.5 * y.unit_price;

Chapter 2. SQL statements 2-571

Informix-Extension Outer Joins: The next outer join lists the company name of
the customer and all associated order numbers, if the customer has placed an
order. If not, the company name is still listed, and a NULL value is returned for
the order number.
SELECT company, order_num FROM customer c, OUTER orders o

WHERE c.customer_num = o.customer_num;

For more information about outer joins, see the IBM Informix Guide to SQL: Tutorial.

Hierarchical Clause
The Hierarchical clause sets the conditions for recursive queries on a table object in
which a hierarchy of parent-child dependencies exists among the rows. SELECT
statements that include this clause are called hierarchical queries.

The table object on which the hierarchical query operates must be specified in the
FROM clause of the SELECT statement. The table object is typically a
self-referencing table in which one or more columns acts as a foreign key
constraint for another column (or for a subset of the columns) in the same table.

Only Informix supports this clause, which is an extension to the ANSI/ISO
standard for SQL.

Syntax

Hierarchical Clause

��
(1)

START WITH Clause

(2)
CONNECT BY Clause ��

Notes:

1 See “START WITH Clause” on page 2-576

2 See “CONNECT BY Clause” on page 2-576

The table object on which the hierarchical query operates must be specified in the
FROM clause of the SELECT statement. This can be any of the following table
objects:
v A table or updateable view
v A temporary table
v A table in another database of the same Informix instance to which the session is

connected
v A derived table that is the result of a query
v A table protected by a label-based access control (LBAC) security policy
v A table with column level encryption or row level encryption
v A synonym for any of the above table objects.

The following table objects are not supported in the FROM clause of a hierarchical
query:
v A join of two or more tables
v A view that is not updatable
v A table in a database of a remote Informix instance

2-572 IBM Informix Guide to SQL: Syntax

v An external table that the CREATE EXTERNAL TABLE statement defined
v A sequence object.

Informix supports sequence objects in the projection list of hierarchical queries, in
the WHERE clause, and in other contexts where an expression is valid in SELECT
statements, but not in the hierarchical query clause.

The hierarchical clause is valid in correlated subqueries and in uncorrelated
subqueries.

Hierarchical queries can include all types of optimizer directives, with these
exceptions:
v Join-order directives
v Join-method directives

Hierarchical queries do not support the Parallel Database Query (PDQ) feature of
Informix.

The Hierarchical clause can specify recursive queries on a table whose rows
describe a hierarchy of parent-child relationships.
v This can be a simple hierarchy, such as the reporting structure of an organization

in which every node that is not the root reports to a single node at higher level
within the hierarchy. (In the LBAC security feature of Informix, a security label
component of type TREE has the logical structure of a simple hierarchy.)

v Besides simple hierarchies, the Hierarchical clause can query data hierarchies of
more complex topologies, in which nodes have many-to-many relationships, and
in which a child node can be the ancestor of its parent. For information on using
the Hierarchical clause to query a table that has cycles within the data hierarchy,
see the “CONNECT BY Clause” on page 2-576.

Note: The Hierarchical clause is unrelated to table hierarchies, in which a
hierarchy of parent-child relationships exist among the schemas of a set of typed
tables. Similarly, the hierarchy of a set of DISTINCT data types that all derive from
a common base type resembles a data hierarchy, but is unrelated to the
Hierarchical clause, where the hierarchy exists in parent-child dependencies
between data entities, rather than relationships among data types.

SQL Syntax Specific to Hierarchical Queries

Besides the START WITH, CONNECT BY, and CONNECT NOCYCLE BY
keywords that specify the conditions for recursive queries of a table that contains
hierarchical data, hierarchical queries also support additional syntax tokens that
are valid only in hierarchical queries, and that cannot be used in SELECT
statements that have no CONNECT BY clause. Syntax tokens specific to
hierarchical queries include two operators, three pseudocolumns, and a built-in
function:
v CONNECT_BY_ROOT operator

This can return an expression for the root ancestor of its operand.
v PRIOR operator

This can reference a returned value from the previous recursive step.
v LEVEL pseudocolumn

This can indicate which step of the query returned a row within the hierarchy.
v CONNECT_BY_ISCYCLE pseudocolumn

Chapter 2. SQL statements 2-573

This can indicate whether a row has a child node that is also its ancestor.
v CONNECT_BY_ISLEAF pseudocolumn

This can indicate whether a row has any children among the rows that the query
returns.

v SYS_CONNECT_BY_PATH function
This can construct and return a string representing the path from a specified row
to the root of the hierarchy

v SIBLINGS keyword in the ORDER BY clause
The ORDER SIBLINGS BY clause can sort returned rows for siblings of the same
parent at every level.

These pseudocolumns and the SYS_CONNECT_BY_PATH function are typically
specified in the Projection clause of the SELECT statement, but the LEVEL
pseudocolumn and the PRIOR operator can be specified in the Hierarchical clause.

For details of the syntax and semantics of these tokens that only support
hierarchical queries, see “Conditions in the CONNECT BY Clause” on page 2-578
and “ORDER SIBLINGS BY Clause” on page 2-590.

Overview of Hierarchical Queries

The clauses of a SELECT statement that includes the Hierarchical clause are
processed in the following sequence:
1. FROM clause (for only a single table object in the current database)
2. Hierarchical clause
3. WHERE clause (without join predicates)
4. GROUP BY clause
5. HAVING clause
6. Projection clause
7. ORDER BY clause

The Hierarchical clause follows the WHERE clause in the lexical sequence of
SELECT statement clauses, but the WHERE clause predicates are processed on the
result of the Hierarchical clause. The WHERE clause cannot specify join predicates
if the SELECT statement includes the Hierarchical clause, but the table object
specified in the FROM clause can be the result set of a query that joins one or
more tables.

Any SELECT statement that includes a hierarchical-query-clause is called a
hierarchical query, which performs a recursive series of queries on the table that
the FROM clause specifies:
1. The optional START WITH clause can specify a condition. Any rows that

satisfy this condition are returned as the first intermediate result set of the
hierarchical query.

2. The next step applies the condition specified in the CONNECT BY clause to the
table. Any rows satisfying that condition are returned as the second
intermediate result set.

3. The next step applies the CONNECT BY condition to the table. Any rows that
are returned comprise the third intermediate result set.

4. The CONNECT BY clause executes queries recursively to produce successive
intermediate result sets, until an iteration yields an empty result set.

2-574 IBM Informix Guide to SQL: Syntax

5. The hierarchical SELECT statement then combines all of the intermediate result
sets of the preceding recursive steps, producing the final result set of the
Hierarchical clause.

6. The predicates of the WHERE clause are then applied to this set of rows that
the Hierarchical clause retrieved, and the remaining clauses of the SELECT
statement are subsequently applied in the order that was listed above.

After the START WITH and CONNECT BY clauses have returned all of the
intermediate result sets, you can use the ORDER SIBLINGS BY clause to sort the
sibling rows that have the same parent for every level within the hierarchy. For
more information, see “ORDER SIBLINGS BY Clause” on page 2-590.

You can use output from the SET EXPLAIN statement to view the execution path
of a hierarchical query.

The Hierarchical clause provides an efficient alternative to using the Node
DataBlade to retrieve information from hierarchical data sets

Example of a Hierarchical Data Set

In several topics that follow, SQL code examples that illustrate hierarchical queries
are based on hierarchic data in the following employee table, whose rows contains
information about employees within an organizational hierarchy. The mgrid
column shows the employee identifier (empid) of the manager to whom the
employee reports:
CREATE TABLE employee(

empid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(10),
salary DECIMAL(9, 2),
mgrid INTEGER

);

Data values for the 17 rows in the employee table are these.
INSERT INTO employee VALUES (1, ’Jones’, 30000, 10);
INSERT INTO employee VALUES (2, ’Hall’, 35000, 10);
INSERT INTO employee VALUES (3, ’Kim’, 40000, 10);
INSERT INTO employee VALUES (4, ’Lindsay’, 38000, 10);
INSERT INTO employee VALUES (5, ’McKeough’, 42000, 11);
INSERT INTO employee VALUES (6, ’Barnes’, 41000, 11);
INSERT INTO employee VALUES (7, ’O’’Neil’, 36000, 12);
INSERT INTO employee VALUES (8, ’Smith’, 34000, 12);
INSERT INTO employee VALUES (9, ’Shoeman’, 33000, 12);
INSERT INTO employee VALUES (10, ’Monroe’, 50000, 15);
INSERT INTO employee VALUES (11, ’Zander’, 52000, 16);
INSERT INTO employee VALUES (12, ’Henry’, 51000, 16);
INSERT INTO employee VALUES (13, ’Aaron’, 54000, 15);
INSERT INTO employee VALUES (14, ’Scott’, 53000, 16);
INSERT INTO employee VALUES (15, ’Mills’, 70000, 17);
INSERT INTO employee VALUES (16, ’Goyal’, 80000, 17);
INSERT INTO employee VALUES (17, ’Urbassek’, 95000, NULL);

Here the NULL value in the mgrid column in the last row shows that employee
Urbassek, whose mgrid value is 17 is the root node of this reporting hierarchy.

The following diagram illustrates the four levels of the reporting hierarchy (with
nodes showing the empid values) for the employee table data:

Chapter 2. SQL statements 2-575

START WITH Clause
The optional START WITH clause specifies a condition. The row that satisfies this
condition becomes the root for beginning the recursive operations of the
CONNECT BY clause in hierarchical queries.

Only Informix supports the START WITH clause, which is an extension to the
ANSI/ISO standard for SQL.

Syntax

��
(1)

START WITH Condition ��

Notes:

1 See “Condition” on page 4-5

Usage

The START WITH clause specifies a search condition that the CONNECT BY clause
uses for the first iteration of its recursive actions. If you omit the START WITH
clause, the CONNECT BY clause treats every row as the root of the hierarchy for
the initial set of intermediate results.

CONNECT BY Clause
The CONNECT BY clause specifies conditions for performing recursive operations
in hierarchical queries.

The CONNECT BY clause is an extension to the ANSI/ISO standard for SQL.

Syntax

��
(1)

CONNECT BY Condition
NOCYCLE

��

Notes:

1 See “Condition” on page 4-5

51 2 3 7 8 9

10 13

4

12

17

1411

6

1615

Figure 2-2. Relationships of Elements in a Reporting Hierarchy

2-576 IBM Informix Guide to SQL: Syntax

Usage

If you include the START WITH clause, the search condition that it specifies is
applied in producing the first intermediate result set for the hierarchical query.
This consists of the rows of the table specified in the FROM clause for which the
START WITH condition is true.

If the START WITH clause is omitted, no START WITH condition is available as a
filter, and the first intermediate result set is the entire set of rows in the table that
the FROM clause specifies.

The CONNECT BY clause produces successive intermediate result sets by applying
the CONNECT BY search condition until this recursive process terminates when an
iteration yields an empty result set.

The NOCYCLE Keyword

Rows returned by recursive queries of the CONNECT BY clause must be part of a
simple hierarchy. SELECT statements that include the Hierarchical clause fail with
an error if the query returns a row that is both the ancestor and the descendant of
another node. This topology is called a cycle.

You can include the NOCYCLE keyword between the CONNECT BY keywords
and the condition specification of the CONNECT BY clause to filter out any rows
that would otherwise cause the hierarchical query to fail with error -26079 because
of a cycle in an intermediate result set.

For example, for the hierarchical data set of the employee table that is described in
the topic“Hierarchical Clause” on page 2-572, the following UPDATE statement
introduces a cycle for the employees whose empid values are 5 and 17:
UPDATE employee SET mgrid = 5 WHERE name = ’Urbassek’;

After the hierarchical data set has been modified by the UPDATE statement above,
the following query (which omits the NOCYCLE keyword) fails:
SELECT empid, name, mgrid , CONNECT_BY_ISLEAF leaf
FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

Error -26079 is issued when the last CONNECT BY step detects that employee
McKeough is part of a loop:

empid name mgrid leaf

16 Goyal 17 0
14 Scott 16 1
12 Henry 16 0
9 Shoeman 12 1
8 Smith 12 1
7 O’Neil 12 1
11 Zander 16 0
6 Barnes 11 1
5 McKeough 11 0

26079: CONNECT BY query resulted in a loop/cycle.
Error in line 8
Near character position 28

Chapter 2. SQL statements 2-577

You can include the NOCYCLE keyword between the CONNECT BY keywords
and the condition specification of the CONNECT BY clause to filter out any rows
that would otherwise cause the hierarchical query to fail with error -26079 because
of a cycle in an intermediate result set. The following query differs from the query
that failed by including the CONNECT_BY_ISCYCLE pseudocolumn in the
Projection clause, and by including the NOCYCLE keyword in the CONNECT BY
clause.
SELECT empid, name, mgrid, CONNECT_BY_ISLEAF leaf, CONNECT_BY_ISCYCLE cycle
FROM employee
START WITH name = ’Goyal’
CONNECT BY NOCYCLE PRIOR empid = mgrid;

empid name mgrid leaf cycle

16 Goyal 17 0 0
14 Scott 16 1 0
12 Henry 16 0 0
9 Shoeman 12 1 0
8 Smith 12 1 0
7 O’Neil 12 1 0
11 Zander 16 0 0
6 Barnes 11 1 0
5 McKeough 11 0 0
17 Urbassek 5 0 1
15 Mills 17 0 0
13 Aaron 15 1 0
10 Monroe 15 0 0
4 Lindsay 10 1 0
3 Kim 10 1 0
2 Hall 10 1 0
1 Jones 10 1 0

17 row(s) retrieved.

Because the NOCYCLE keyword enabled the CONNECT BY clause to continue
processing after the cycle was detected, Urbassek was returned from the
CONNECT BY step that had failed in the previous example, and processing
continued until all of the rows in the data set had been returned. In the output
display above, leaf is an alias for the CONNECT_BY_ISLEAF pseudocolumn, and
cycle is an alias for the CONNECT_BY_ISCYCLE pseudocolumn, with both aliases
declared in the Projection clause. In these results, Urbassek is marked in the cycle
column as the cause of the loop.

The result set above implies that the cycle can be removed from the employee
table by changing the mgrid value in the row that had identified McKeough as the
manager of Urbassek:
UPDATE employee SET mgrid = NULL WHERE empid = 17;

Conditions in the CONNECT BY Clause
Besides expressions and operators that are valid in Boolean conditions and in
general SQL expressions, the condition that is specified in CONNECT BY clause
supports two additional syntax constructs, the PRIOR operator and the LEVEL
pseudocolumn, that are valid only in SELECT statements that include the
Hierarchical clause.

The PRIOR Operator

The PRIOR unary operator can appear in the CONNECT BY clause with a column
name as its operand. PRIOR can be used to distinguish column references to the
result of the most recent previous recursive step of the CONNECT BY clause from

2-578 IBM Informix Guide to SQL: Syntax

column references to the current result set. The column name immediately follows
this right-associative operator, as in the following syntax fragment:
CONNECT BY mgrid = PRIOR empid

Here the CONNECT BY condition is satisfied by those rows in which the manager
specified in the mgrid, column matches the employee value was in the empid
column in the previous iteration.

The PRIOR operator can be applied to expressions more complex than column
names. The following condition uses an arithmetic expression as the operand of
PRIOR:
CONNECT BY PRIOR (salary - 10000) = salary

The PRIOR operator can appear more than once in the same CONNECT BY
condition. See also the topic “Hierarchical Clause” on page 2-572, which provides
an example of a hierarchical query that uses the PRIOR operator in a condition of
the CONNECT BY clause.

The LEVEL Pseudocolumn

A pseudocolumn is a keyword of SQL that shares the same namespace as column
names, and that is valid in some contexts where a column expression is valid.

LEVEL is a pseudocolumn that returns the ordinal number of the recursive step in
the Hierarchic clause that returned the row. For all the rows returned by the
START WITH clause, LEVEL return the value 1. Rows returned by applying the
first iteration of the CONNECT BY clause return 2. Rows that were returned by
successive iterations of the CONNECT BY have LEVEL values incremented by 1,
so that LEVEL = (N + 1) indicates a row that the Nth CONNECT BY iteration
returned. The data type of the LEVEL column is INTEGER.

The following example of a hierarchical query specifies LEVEL in the select list of
the Projection clause:
SELECT name, LEVEL FROM employee START WITH name = ’Goyal’

CONNECT BY PRIOR empid = mgrid;

The query above would return these results:
name level

Goyal 1
Zander 2
McKeough 3
Barnes 3
Henry 2
O’Neil 3
Smith 3
Shoeman 3
Scott 2

9 row(s) retrieved.

LEVEL can appear in the Projection clause of SELECT statements that include the
Hierarchical clause, and in the condition of the CONNECT BY clause.

The LEVEL pseudocolumn is not valid, however, in the following contexts:
v a SELECT statement that has no CONNECT BY clause
v the START WITH condition of the Hierarchical clause

Chapter 2. SQL statements 2-579

v an operand of the CONNECT_BY_ROOT operator
v an argument to the SYS_CONNECT_BY_PATH function.

Additional Syntax Valid Only in Hierarchical Queries

The following syntax tokens support hierarchical queries, and are valid only in
hierarchical queries. Unlike the PRIOR operator and the LEVEL pseudocolumn,
however, they are not valid in the Hierarchical clause:
v the CONNECT_BY_ISCYCLE pseudocolumn
v the CONNECT_BY_ISLEAF pseudocolumn
v the CONNECT_BY_ROOT unary operator
v the SYS_CONNECT_BY_PATH() function of SQL.

Sections that follow describe these features of hierarchical queries that are not valid
in SELECT statements that have no Hierarchical clause, but that are not valid
within the Hierarchical clause.

The CONNECT_BY_ISCYCLE Pseudocolumn

CONNECT_BY_ISCYCLE is a pseudocolumn that returns a 1 if the row would
cycle at the next level in the hierarchy. That is, the row has an immediate child that
is also an ancestor given the search-condition specified in the CONNECT BY
clause. If the row does not directly cause a cycle, the column returns 0. A value
other than 0 is only possible when NOCYCLE is specified in the CONNECT BY
clause. The data type of this column is INTEGER.

The following UPDATE statement creates a loop in the data hierarchy of the
employee table:
UPDATE employee SET mgrid = 5 WHERE empid = 17;

The following hierarchical query includes the CONNECT_BY_ISCYCLE
pseudocolumn in the Projection clause, but the CONNECT BY clause throws an
error in the step where it encounters the loop that the UPDATE statement created.
SELECT empid,

name,
mgrid,
CONNECT_BY_ISLEAF leaf,
CONNECT_BY_ISCYCLE cycle

FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

665: Internal error on semantics -
CONNECT_BY_ISCYCLE is used without NOCYCLE parameter..

Error in line 1
Near character position 72

This query avoids the -655 error by specifying the NOCYCLE in the CONNECT BY
clause. throws an error in the step where it encounters the loop that the UPDATE
statement created.
SELECT empid, name, mgrid,

CONNECT_BY_ISLEAF leaf, CONNECT_BY_ISCYCLE cycle
FROM employee

START WITH name = ’Goyal’
CONNECT BY NOCYCLE PRIOR empid = mgrid;

2-580 IBM Informix Guide to SQL: Syntax

For the results of this query, see the example in the description of the NOCYCLE
keyword in the topic “CONNECT BY Clause” on page 2-576.

The CONNECT_BY_ISCYCLE pseudocolumn is not valid in the following contexts:
v a SELECT statement that has no CONNECT BY clause
v the START WITH or CONNECT BY clause
v an operand of the CONNECT_BY_ROOT operator
v an argument to the SYS_CONNECT_BY_PATH function

The CONNECT_BY_ISLEAF Pseudocolumn

CONNECT_BY_ISLEAF is a pseudocolumn that returns a 1 if the row is a leaf in
the hierarchy as defined by the CONNECT BY clause. A node is a leaf node if it has
no children in the query result hierarchy (not in the actual data hierarchy). If the
row is not a leaf the column returns 0. The data type of the column is INTEGER.

The following hierarchical query specifies the CONNECT_BY_ISLEAF
pseudocolumn in the Projection clause, and declares leaf as an alias for that
column, which appears in the DB-Access display of the result set:
SELECT empid, name, mgrid, CONNECT_BY_ISLEAF leaf
FROM emp1oyee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

empid name mgrid leaf

16 Goyal 17 0
14 Scott 16 1
12 Henry 16 0
9 Shoeman 12 1
8 Smith 12 1
7 O’Neil 12 1
11 Zander 16 0
6 Barnes 11 1
5 McKeough 11 1

9 row(s) retrieved.

The CONNECT_BY_ROOT Operator

For every row in the hierarchy, the CONNECT_BY_ROOT unary operator accepts
as its operand an expression that evaluates to a row that is a node of the hierarchy.
CONNECT_BY_ROOT returns the expression for the root ancestor of its operand.

>>--CONNECT_BY_ROOT--expression---------------------------><

The expression operand can be any SQL expression, but it must not contain any
hierarchical query token, including these:
v the CONNECT_BY_ROOT or PRIOR unary operators
v the CONNECT_BY_ISCYCLE, CONNECT_BY_ISLEAF, or LEVEL

pseudocolumns
v the SYS_CONNECT_BY_PATH function.

The return data type of this right-associative operator is the data type of the
specified expression.

Chapter 2. SQL statements 2-581

The hierarchical query in the following example returns rows from the employee
table that include both the identifying number of the manager to whom the
employee reports directly, and also the name of the manager at the root of the
hierarchy for this query.
SELECT empid, name, mgrid, CONNECT_BY_ROOT name AS topboss
FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid;

empid name mgrid topboss

16 Goyal 17 Goyal
14 Scott 16 Goyal
12 Henry 16 Goyal
9 Shoeman 12 Goyal
8 Smith 12 Goyal
7 O’Neil 12 Goyal
11 Zander 16 Goyal
6 Barnes 11 Goyal
5 McKeough 11 Goyal

9 row(s) retrieved.

The CONNECT_BY_ROOT operator is not valid in the following contexts:
v a SELECT statement that has no CONNECT BY clause
v the START WITH or CONNECT BY clause
v an argument to the SYS_CONNECT_BY_PATH function

The SYS_CONNECT_BY_PATH Function

Calls to SYS_CONNECT_BY_PATH () function are valid in SELECT statements
that include the Hierarchical clause, but this function cannot be called from the
Hierarchical clause. Informix returns an error if you attempt to invoke this function
within the condition of the START WITH or CONNECT BY clauses.

The SYS_CONNECT_BY_PATH function can be used in hierarchical queries to
build a string representing a path from the row corresponding to the root node to
the current row.

This is the calling syntax for SYS_CONNECT_BY_PATH to return a string for a
given row at LEVEL N:

SYS_CONNECT_BY_PATH Function

�� �

,

SYS_CONNECT_BY_PATH (string_expression , ' format_string ') ��

Element Description Restrictions Syntax

format_string Typically a constant string that
serves as a separator

None “Quoted String” on
page 4-188

string_expression An expression that identifies a row. Cannot include hierarchical query
tokens

“Expression” on
page 4-40

2-582 IBM Informix Guide to SQL: Syntax

SYS_CONNECT_BY_PATH builds the string representation of the path from the
root to a given row at LEVEL N of the hierarchy by recursively concatenating the
successive returned values:
v path1 := string_expression1||format_string represents the path to the root row

from the first intermediate result set,
v path2 := path1||string_expression2||format_string evaluates to the path from the

root to a row in the second intermediate result set,
v . . .
v pathN := path(N-1)||string_expressionN||format_string evaluates to the path from

the root to the Nth intermediate result set.

The expressions in arguments to SYS_CONNECT_BY_PATH must not include any
hierarchical query construct, including these:
v the CONNECT_BY_ROOT or PRIOR unary operators
v the CONNECT_BY_ISCYCLE, CONNECT_BY_ISLEAF, or LEVEL

pseudocolumns
v the SYS_CONNECT_BY_PATH function.

Also not valid in the argument list are aggregate expressions.

The return value from SYS_CONNECT_BY_PATH () is of type LVARCHAR(4000).

The hierarchical query in the following example calls the
SYS_CONNECT_BY_PATH function in the Projection list with the employee.name
column and the slash (/) character as its arguments.
SELECT empid, name, mgrid, SYS_CONNECT_BY_PATH(name,’/’) as hierarchy

FROM employee
START WITH name = ’Henry’
CONNECT BY PRIOR empid = mgrid;

The query returns the rows within the subset of the data hierarchy in which Henry
is specified as the root in the START WITH clause, showing the name and empid
number of each employee and of the employee's manager, and the path within the
hierarchy to Henry. The CONNECT BY clause uses the equality predicate PRIOR
empid = mgrid to return the employees who report to the managers (in this case,
onlyHenry) whose empid was returned by the previous step. This is the result set
of the query:
empid 12
name Henry
mgrid 16
hierarchy /Henry

empid 9
name Shoeman
mgrid 12
hierarchy /Henry/Shoeman

empid 8
name Smith
mgrid 12
hierarchy /Henry/Smith

empid 7
name O’Neil
mgrid 12
hierarchy /Henry/O’Neil

4 row(s) retrieved.

Chapter 2. SQL statements 2-583

These rows are listed in the order in which they were retrieved:
v The START WITH clause returned the Henry row at the root of this hierarchy.
v The first step of the CONNECT BY clause returned three rows, corresponding to

the three employees who report to Henry.
v The next CONNECT BY step returned no rows, because the Shoeman, Smith,

and O'Neil rows that returned by the previous step are all leaf nodes within this
hierarchy, for which the PRIOR empid = mgrid condition evaluates to false.

At this point query execution ended, returning the four rows listed above, where
hierarchy is an alias for the path to Henry that SYS_CONNECT_BY_PATH(
name,’/’) returned for each row. (In the first returned row, the string /Henry shows
the root status of Henry.)

GROUP BY Clause

Use the GROUP BY clause to produce a single row of results for each group. A
group is a set of rows that have the same values for each column (or expression)
that is listed in this clause.

GROUP BY Clause:

GROUP BY �

,

column
table_object .

(1)
select_number

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Group rows by the value of this column
(or this expression)

See “Relationship of GROUP BY and
Projection Clauses.”

“Identifier” on
page 5-21,
“Expression” on
page 4-40

select _number Integer specifying the ordinal position of
a column or expression in the select list
of the Projection clause

See “Using Select Numbers” on page
2-585.

“Literal Number”
on page 4-184

table_object Name, synonym, or alias of the table or
view containing column

Must exist and must be specified in
the FROM clause

“Identifier” on
page 5-21

The SELECT statement with a GROUP BY clause returns a single row of results for
each group of rows that have the same value in column, or that have the same
value in the column or expression that the select_number specifies.

Relationship of GROUP BY and Projection Clauses
A GROUP BY clause restricts what the Projection clause can specify. If you use a
GROUP BY clause, each column specified in the select list of the Projection clause
must also be included in the GROUP BY clause.

2-584 IBM Informix Guide to SQL: Syntax

If you use an aggregate function and one or more column expressions in the select
list, you must put all the column names that are not used as part of an aggregate
or time expression in the GROUP BY clause.

Constant expressions and BYTE or TEXT column expressions are not valid in the
GROUP BY list.

If the select list includes a BYTE or TEXT column, you cannot use the GROUP BY
clause. In addition, you cannot include a ROWID in a GROUP BY clause.

In Informix, if your select list includes a column of a user-defined data type, the
column cannot be used in a GROUP BY clause unless the UDT can use the built-in
bit-hashing function. Any UDT that cannot use the built-in bit-hashing function
must be created with the CANNOTHASH modifier, which tells the database server
that the UDT cannot be used in a GROUP BY clause.

The following example specifies one column that is not in an aggregate expression.
The total_price column should not be in the GROUP BY list because it appears as
the argument of an aggregate function. The COUNT and SUM aggregates are
applied to each group, not to the whole query set.
SELECT order_num, COUNT(*), SUM(total_price)

FROM items GROUP BY order_num;

If a column stands alone in a column expression in the select list, you must use it
in the GROUP BY clause. If a column is combined with another column by an
arithmetic operator, you can choose to group by the individual columns or by the
combined expression using the number.

NULL Values in the GROUP BY Clause

In a column listed in a GROUP BY clause, each row that contains a NULL value
belongs to a single group. That is, all NULL values are grouped together.

Using Select Numbers
You can use one or more integers in the GROUP BY clause to stand for column
expressions. In the next example, the first SELECT statement uses select numbers
for order_date and paid_date - order_date in the GROUP BY clause. You can
group only by a combined expression using the select numbers.

In the second SELECT statement, you cannot replace the 2 with the arithmetic
expression paid_date - order_date:
SELECT order_date, COUNT(*), paid_date - order_date

FROM orders GROUP BY 1, 3;
SELECT order_date, paid_date - order_date

FROM orders GROUP BY order_date, 2;

HAVING Clause

Use the HAVING clause to apply one or more qualifying conditions to groups.

HAVING Clause:

HAVING
(1)

Condition

Chapter 2. SQL statements 2-585

Notes:

1 See “Condition” on page 4-5

In the following examples, each condition compares one calculated property of the
group with another calculated property of the group or with a constant. The first
SELECT statement uses a HAVING clause that compares the calculated expression
COUNT(*) with the constant 2. The query returns the average total price per item on
all orders that have more than two items.

The second SELECT statement lists customers and the call months for customers
who have made two or more calls in the same month:
SELECT order_num, AVG(total_price) FROM items

GROUP BY order_num HAVING COUNT(*) > 2;
SELECT customer_num, EXTEND (call_dtime, MONTH TO MONTH)

FROM cust_calls GROUP BY 1, 2 HAVING COUNT(*) > 1;

You can use the HAVING clause to place conditions on the GROUP BY column
values as well as on calculated values. This example returns cust_code and
customer_num, call_dtime, and groups them by call_code for all calls that have
been received from customers with customer_num less than 120:
SELECT customer_num, EXTEND (call_dtime), call_code

FROM cust_calls GROUP BY call_code, 2, 1
HAVING customer_num < 120;

The HAVING clause generally complements a GROUP BY clause. If you omit the
GROUP BY clause, the HAVING clause applies to all rows that satisfy the query,
and all rows in the table make up a single group. The following example returns
the average price of all the values in the table, as long as more than ten rows are
in the table:
SELECT AVG(total_price) FROM items HAVING COUNT(*) > 10;

ORDER BY Clause

The ORDER BY clause sorts query results by specified columns or expressions.

ORDER BY Clause:

ORDER BY
(1)

SIBLINGS

�

� �

,
ASC

column
table_object . (3) DESC

(2) [first, last]
Expression

select_number
display_label
(3)

ROWID

Notes:

1 See “ORDER SIBLINGS BY Clause” on page 2-590

2-586 IBM Informix Guide to SQL: Syntax

2 See “Expression” on page 4-40

3 Informix extension

Element Description Restrictions Syntax

column Sort rows by value in this column None “Identifier” on page
5-21

display_label Temporary name for a column or for a
column expression

Must be unique among labels
declared in the Projection clause

“Identifier” on page
5-21

first, last First and last byte in column substring
to sort the result set

Integers; for BYTE, TEXT, and
character data types only

“Literal Number”
on page 4-184

select_ number Ordinal position of a column in the
select list of the Projection clause

See “Using Select Numbers” on page
2-585.

“Literal Number”
on page 4-184

table_object Name, synonym, or alias of the table
or view containing column

Must exist and must be specified in
the FROM clause

“Identifier” on page
5-21

The ORDER BY clause implies that the query returns more than one row. In SPL,
the database server issues an error if you specify the ORDER BY clause without a
FOREACH loop to process the returned rows individually within the SPL routine.

The following query specifies a derived table in the FROM clause whose rows are
ordered by the col1 value, and declares vtab as the name of the derived table, and
vcol as the name of its only column:
SELECT vcol FROM (SELECT FIRST 5 col1 FROM tab1 ORDER BY col1) vtab(vcol);

Ordering by a Column or by an Expression
To order query results by an expression, you must also declare a display label for
the expression in the Projection clause, as in the following example, which declares
the display label span for the difference between two columns:
SELECT paid_date - ship_date span, customer_num FROM orders

ORDER BY span;

Informix supports columns and expressions in the ORDER BY clause that do not
appear in the select list of the Projection clause. You can omit a display label for
the derived column in the select list and specify the derived column by means of a
select number in the ORDER BY clause.

The select list of the Projection clause must include any column or expression that
the ORDER BY clause specifies, however, if any of the following is true:
v The query includes the DISTINCT, UNIQUE, or UNION operator.
v The query includes the INTO TEMP table clause.
v The distributed query accesses a remote database whose server requires every

column or expression in the ORDER BY clause to also appear in the select list of
the Projection clause.

v An expression in the ORDER BY clause includes a display label for a column
substring. (See the next section, “Ordering by a Substring” on page 2-588.)

The next query selects one column from the orders table and sorts the results by
the value of another column. By default, the rows are listed in ascending order.
SELECT ship_date FROM orders ORDER BY order_date;

Chapter 2. SQL statements 2-587

You can order by an aggregate expression only if the query also has a GROUP BY
clause. This query declares the display label maxwgt for an aggregate in the
ORDER BY clause:
SELECT ship_charge, MAX(ship_weight) maxwgt

FROM orders GROUP BY ship_charge ORDER BY maxwgt;

If the current processing locale defines a localized collation, then NCHAR and
NVARCHAR column values are sorted in that localized order.

In Informix, no column in the ORDER BY clause can be a collection type, but a
query whose result set defines a collection-derived table can include the ORDER
BY clause. For an example, see “Collection-Derived Table” on page 5-4.

You might improve the performance of some non-PDQ queries that use the
ORDER BY clause to sort a large set of rows if you increase the setting of the
DS_NONPDQ_QUERY_MEM configuration parameter.

Ordering by a Substring
You can order by a substring instead of by the entire length of a character, BYTE,
or TEXT column, or of an expression returning a character string. The database
server uses the substring to sort the result set. Define the substring by specifying
integer subscripts (the first and last parameters), representing the starting and
ending byte positions of the substring within the column value.

The following SELECT statement queries the customer table and specifies a
column substring in the ORDER BY column. This instructs the database server to
sort the query results by the portion of the lname column contained in the sixth
through ninth bytes of the column value.
SELECT * from customer ORDER BY lname[6,9];

Assume that the value of lname in one row of the customer table is Greenburg.
Because of the column substring in the ORDER BY clause, the database server
determines the sort position of this row by using the value burg, rather than the
complete column value Greenburg.

When ordering by an expression, you can specify substrings only for expressions
that return a character data type. If you specify a column substring in the ORDER
BY clause, the column must have one of the following data types: BYTE, CHAR,
NCHAR, NVARCHAR, TEXT, or VARCHAR.

Informix can also support LVARCHAR column substrings in the ORDER BY
clause, if the column is in a database of the local database server.

For information on the GLS aspects of using column substrings in the ORDER BY
clause, see the IBM Informix GLS User's Guide.

Ascending and Descending Orders
You can use the ASC and DESC keywords to specify ascending (smallest value
first) or descending (largest value first) order. The default order is ascending. For
DATE and DATETIME data types, smallest means earliest in time and largest means
latest in time. For character data types in the default locale, the order is the ASCII
collating sequence, as listed in “Collating Order for U.S. English Data” on page
4-194.

2-588 IBM Informix Guide to SQL: Syntax

For NCHAR or NVARCHAR data types, the localized collating order of the current
session is used, if that is different from the code set order. For more information
about collation, see “SET COLLATION statement” on page 2-608.

If you specify the ORDER BY clause, NULL values are ordered as less than values
that are not NULL. Using the ASC order, a NULL value comes before any
non-NULL value; using DESC order, the NULL comes last.

Nested Ordering
If you list more than one column in the ORDER BY clause, your query is ordered
by a nested sort. The first level of sort is based on the first column; the second
column determines the second level of sort. The following example of a nested sort
selects all the rows in the cust_calls table and orders them by call_code and by
call_dtime within call_code:
SELECT * FROM cust_calls ORDER BY call_code, call_dtime;

Using Select Numbers
In place of column names, you can enter in the ORDER BY clause one or more
integers that refer to the position of items listed in the select list of the Projection
clause. You can also use a select number to sort by an expression.

The following example orders by the expression paid_date - order_date and
customer_num, using select numbers in a nested sort:
SELECT order_num, customer_num, paid_date - order_date

FROM orders
ORDER BY 3, 2;

Select numbers are required in the ORDER BY clause when SELECT statements are
joined by the UNION or UNION ALL keywords, or when compatible columns in
the same position have different names.

Ordering by Rowids
You can specify the ROWID keyword in the ORDER BY clause. This specifies the
rowid column, a hidden column in nonfragmented tables and in fragmented tables
that were created with the WITH ROWIDS clause. The rowid column contains a
unique internal record number that is associated with a row in a table. (It is
recommended, however, that you utilize primary keys as your access method,
rather than exploiting the rowid column.)

The ORDER BY clause cannot specify the rowid column if the table from which
you are selecting is a fragmented table that has no rowid column.

You do not need to include the ROWID keyword in the Projection clause when
you specify ROWID in the ORDER BY clause.

For further information about rowid values and how to use the rowid column in
column expressions, see “WITH ROWIDS Option” on page 2-17 and “Using
Rowids” on page 4-64.

ORDER BY Clause with DECLARE
In Informix ESQL/C, you cannot use a DECLARE statement with a FOR UPDATE
clause to associate a cursor with a SELECT statement that has an ORDER BY
clause.

Chapter 2. SQL statements 2-589

Placing Indexes on ORDER BY Columns
When you include an ORDER BY clause in a SELECT statement, you can improve
the performance of the query by creating an index on the column or columns that
the ORDER BY clause specifies. The database server uses the index that you placed
on the ORDER BY columns to sort the query results in the most efficient manner.
For more information on how to create indexes that correspond to the columns of
an ORDER BY clause, see “Using the ASC and DESC Sort-Order Options” on page
2-141.

ORDER SIBLINGS BY Clause
The ORDER SIBLINGS BY clause is valid only in a hierarchical query. The optional
SIBLINGS keyword specifies an order that first sorts the parent rows, and then
sorts the child rows of each parent for every level within the hierarchy.

Rows that have duplicate lists of values in the columns specified after the
SIBLINGS BY keywords are arbitrarily ordered among the rows with the same list
of values and the same parent. If a hierarchical query includes the ORDER BY
clause without the SIBLINGS keyword, rows are ordered according to the sort
specifications that follow the ORDER BY keywords. Neither the ORDER BY clause
nor the ORDER SIBLINGS BY option to the ORDER BY clause is required in
hierarchical queries.

The hierarchical query in the following example returns the subset of rows in the
hierarchical data set whose root is Goyal, as listed in the topic “Hierarchical
Clause” on page 2-572. This query includes the ORDER SIBLINGS BY clause to
sort by name the employees who report to the same manager:
SELECT empid, name, mgrid, LEVEL

FROM employee
START WITH name = ’Goyal’
CONNECT BY PRIOR empid = mgrid

ORDER SIBLINGS BY name;

The rows returned by this query are sorted in the following order:
empid name mgrid level

16 Goyal 17 1
12 Henry 16 2
7 O’Neil 12 3
9 Shoeman 12 3
8 Smith 12 3
14 Scott 16 2
11 Zander 16 2
6 Barnes 11 3
5 McKeough 11 3

9 row(s) retrieved.

Here the START WITH clause returned the Goyal row at the root of this hierarchy.
Two subsequent CONNECT BY steps (marked as 2 and 3 in the level
pseudocolumn) returned three sets of sibling rows:
v Henry, Scott, and Zander are siblings whose parent is Goyal;
v O'Neil, Shoeman, and Smith are siblings whose parent is Henry;
v Barnes and McKeough are siblings whose parent is Zander.

The next CONNECT BY step returned no rows, because the rows for which level =
3 are leaf nodes within this hierarchy. At this point in the execution of the query,
the ORDER SIBLINGS BY clause was applied to the result set, sorting the rows in
the order shown above.

2-590 IBM Informix Guide to SQL: Syntax

Because the sort key, name, is a VARCHAR column, the returned rows within each
set of siblings are in the ASCII order of their employee.name values. Only the sets
of siblings that are leaf nodes in the hierarchy of returned rows appear
consecutively in the sorted result set, because the managers are immediately
followed by the employees who report to them, rather than by their siblings. An
exception in this example is Scott, whose child nodes form an empty set.

The SIBLINGS keyword in the ORDER BY clause is an extension to the ISO
standard syntax for the SQL language. The SELECT statement fails with an error if
you include the SIBLINGS keyword in the ORDER BY clause of a query or
subquery that does not include a valid CONNECT BY clause.

For more information about hierarchical queries and the CONNECT BY clause, see
“Hierarchical Clause” on page 2-572.

FOR UPDATE Clause

Use the FOR UPDATE clause when you intend to update the values returned by a
prepared SELECT statement when the values are fetched. Preparing a SELECT
statement that contains a FOR UPDATE clause is equivalent to preparing the
SELECT statement without the FOR UPDATE clause and then declaring a FOR
UPDATE cursor for the prepared statement.

FOR UPDATE Clause:

FOR UPDATE

�

,

OF column

Element Description Restrictions Syntax

column Name of a column that can be
updated after a FETCH

Must be in the FROM clause table, but it does not need
to be in the select list of the Projection clause

“Identifier”
on page 5-21

The FOR UPDATE keyword notifies the database server that updating is possible,
causing it to use more stringent locking than it would with a Select cursor. You
cannot modify data through a cursor without this clause. You can specify which
columns can be updated.

After you declare a cursor for a SELECT ... FOR UPDATE statement, you can
update or delete the currently selected row using an UPDATE or DELETE
statement with the WHERE CURRENT OF clause. The keywords CURRENT OF
refer to the row that was most recently fetched; they replace the usual conditional
expressions in the WHERE clause. To update rows with a specific value, your
program might contain statements such as those in the following example:
EXEC SQL BEGIN DECLARE SECTION;

char fname[16];
char lname[16];
EXEC SQL END DECLARE SECTION;

. . .

EXEC SQL connect to ’stores_demo’;
/* select statement being prepared contains a for update clause */
EXEC SQL prepare x from ’select fname, lname from customer for update’;
EXEC SQL declare xc cursor for x;

Chapter 2. SQL statements 2-591

for (;;)
{
EXEC SQL fetch xc into $fname, $lname;
if (strncmp(SQLSTATE, ’00’, 2) != 0) break;
printf("%d %s %s\n",cnum, fname, lname);
if (cnum == 999) --update rows with 999 customer_num

EXEC SQL update customer set fname = ’rosey’ where current of xc;
}

EXEC SQL close xc;
EXEC SQL disconnect current;

A SELECT...FOR UPDATE statement, like an Update cursor, allows you to perform
updates that are not possible with the UPDATE statement alone, because both the
decision to update and the values of the new data items can be based on the
original contents of the row. The UPDATE statement cannot query the table that is
being updated.

Note: A normal update inside the FETCH loop of a cursor cannot guarantee that
the updated rows are not fetched again after the UPDATE. The WHERE
CURRENT OF specification relates the UPDATE to the Update cursor, and
guarantees that each row is updated no more than once, by internally keeping a
list of the rows that have already been updated. These rows will not be fetched
again by the Update cursor.

Syntax incompatible with the FOR UPDATE clause
A SELECT statement that includes the FOR UPDATE clause must conform to the
following restrictions:
v The statement can select data from only one table.
v The statement cannot include any aggregate functions.
v The statement cannot include any of the following clauses or keywords:

DISTINCT, FOR READ ONLY, GROUP BY, INTO TEMP, INTO EXTERNAL,
ORDER BY, UNION, UNIQUE.

For information on how to declare an update cursor for a SELECT statement that
does not include a FOR UPDATE clause, see “Using the FOR UPDATE Option” on
page 2-294.

FOR READ ONLY Clause

Use the FOR READ ONLY keywords to specify that the Select cursor declared for
the SELECT statement is a read-only cursor. A read-only cursor is a cursor that
cannot modify data. This section provides the following information about the FOR
READ ONLY clause:
v When you must use the FOR READ ONLY clause
v Syntax restrictions on a SELECT statement that uses a FOR READ ONLY clause

Using the FOR READ ONLY Clause in Read-Only Mode
Normally, you do not need to include the FOR READ ONLY clause in a SELECT
statement. SELECT is a read-only operation by definition, so the FOR READ ONLY
clause is usually unnecessary. In certain circumstances, however, you must include
the FOR READ ONLY keywords in a SELECT statement.

If you have used the High-Performance Loader (HPL) in express mode to load
data into the tables of an ANSI-compliant database, and you have not yet
performed a level-0 backup of this data, the database is in read-only mode. When

2-592 IBM Informix Guide to SQL: Syntax

the database is in read-only mode, the database server rejects any attempts by a
Select cursor to access the data unless the SELECT or the DECLARE includes a
FOR READ ONLY clause. This restriction remains in effect until the user has
performed a level-0 backup of the data.

In an ANSI-compliant database, Select cursors are update cursors by default. An
update cursor is a cursor that can be used to modify data. These update cursors
are incompatible with the read-only mode of the database. For example, this
SELECT statement against the customer_ansi table fails:
EXEC SQL declare ansi_curs cursor for

select * from customer_ansi;

The solution is to include the FOR READ ONLY clause in your Select cursors. The
read-only cursor that this clause specifies is compatible with the read-only mode of
the database. For example, the following SELECT FOR READ ONLY statement
against the customer_ansi table succeeds:
EXEC SQL declare ansi_read cursor for

select * from customer_ansi for read only;

DB-Access executes all SELECT statements with Select cursors, so you must specify
FOR READ ONLY in all queries that access data in a read-only ANSI-compliant
database. The FOR READ ONLY clause causes DB-Access to declare the cursor for
the SELECT statement as a read-only cursor.

For more information on level-0 backups, see your IBM Informix Backup and Restore
Guide. For more information on Select cursors, read-only cursors, and update
cursors, see “DECLARE statement” on page 2-290.

For more information on the express mode of the HPL of Informix, see the IBM
Informix High-Performance Loader User's Guide.
Related concepts

Backup levels (Backup and Restore Guide)

Syntax That Is Incompatible with the FOR READ ONLY Clause
If you attempt to include both the FOR READ ONLY clause and the FOR UPDATE
clause in the same SELECT statement, the SELECT statement fails. For information
on declaring a read-only cursor for a SELECT statement that does not include a
FOR READ ONLY clause, see “DECLARE statement” on page 2-290.

INTO Table Clauses

Use the INTO Table clauses to specify a temporary, permanent, or external table to
receive the data that the SELECT statement retrieves.

INTO Table Clauses:

INTO TEMP table
WITH NO LOG

EXTERNAL table USING USING Options

USING Options:

Chapter 2. SQL statements 2-593

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.bar.doc/ids_bar_463.htm#ids_bar_463

(
(1)

Table Options ,

(2)
DATAFILES Clause

(1)
Table Options

)

Notes:

1 See “Table Options” on page 2-596

2 See “DATAFILES Clause” on page 2-105

Element Description Restrictions Syntax

table Name declared here of a
table to receive the query
results

Must be unique among names of tables, views,
synonyms, and sequence objects that you own in the
current database

“Database Object
Name” on page
5-16

You must have the Connect privilege on a database to create a temporary or
external table in that database. The name of a temporary table need not be unique
among the identifiers of temporary tables in other user sessions.

Column names in the temporary or external table must be specified in the
Projection clause, where you must supply a display label for all expressions that
are not simple column expressions. The display label becomes the column name in
the temporary or external table. If you do not declare a display label for a column
expression, the table uses the column name from the select list of the Projection
clause.

The following INTO TEMP example creates the pushdate table with two columns,
customer_num and slowdate:
SELECT customer_num, call_dtime + 5 UNITS DAY slowdate

FROM cust_calls INTO TEMP pushdate;

Results When No Rows are Returned
When you use an INTO Table clause combined with the WHERE clause, and no
rows are returned, the SQLNOTFOUND value is 100 in ANSI-compliant databases
and 0 in databases that are not ANSI compliant. If the SELECT INTO
TEMP...WHERE... statement is a part of a multistatement PREPARE and no rows
are returned, the SQLNOTFOUND value is 100 for both ANSI-compliant databases
and databases that are not ANSI-compliant.

This release of Informix continues to process the remaining statements of a
multistatement prepared object after encountering the SQLNOTFOUND value of
100. You can maintain the legacy behavior, however, of not executing the
remaining prepared statements by setting the IFX_MULTIPREPSTMT environment
variable to 1.

Restrictions with INTO Table Clauses in ESQL/C
In Informix ESQL/C, do not use the INTO clause with an INTO table clause. If you
do, no results are returned to the program variables and the SQLCODE variable is
set to a negative value.

INTO TEMP Clause

The INTO TEMP clause creates a temporary table to hold the query results. The
default initial and next extents for a temporary table are four pages. The temporary

2-594 IBM Informix Guide to SQL: Syntax

table must be accessible by the built-in RSAM access method of the database
server; you cannot specify another access method.

If you use the same query results more than once, using a temporary table saves
time. In addition, using an INTO TEMP clause often gives you clearer and more
understandable SELECT statements.

Data values in a temporary table are static; they are not updated as changes are
made to the tables that were used to build the temporary table. You can use the
CREATE INDEX statement to create indexes on a temporary table.

A logged, temporary table exists until one of the following situations occurs:
v The application disconnects from the database.
v A DROP TABLE statement is issued on the temporary table.
v The database is closed.

For Informix, if your database does not have transaction logging, the temporary
table behaves in the same way as a table created with the WITH NO LOG option.

If you specify more than one temporary dbspace in the DBSPACETEMP
environment variable (or if this is not set, in the DBSPACETEMP configuration
parameter), the INTO TEMP clause loads the rows of the results set of the query
into each of these dbspaces in round-robin fashion. For more information about the
storage location of temporary tables that queries with the INTO TEMP clause
create, see “Where Temporary Tables are Stored” on page 2-239.

Using the WITH NO LOG Option
Use the WITH NO LOG option to reduce the overhead of transaction logging
because operations on nonlogging temporary tables are not logged.

A nonlogging temporary table exists until one of the following events occurs:
v The application disconnects.
v A DROP TABLE statement is issued on the temporary table.

Because nonlogging temporary tables do not disappear when the database is
closed, you can use a nonlogging temporary table to transfer data from one
database to another while the application remains connected. The behavior of a
temporary table that you create with the WITH NO LOG option of the INTO
TEMP clause is the same as that of a scratch table.

For more information about temporary tables, see “CREATE TEMP TABLE
statement” on page 2-234.

INTO EXTERNAL Clause
The INTO EXTERNAL clause unloads query results into an external table, creating
a default external table description that you can use when you subsequently reload
the files.

The INTO EXTERNAL clause combines the functionality of the CREATE
EXTERNAL TABLE . . . SAMEAS and INSERT INTO . . . SELECT statements.

The INTO EXTERNAL clause overwrites any previously existing rows in the
EXTERNAL table.

Chapter 2. SQL statements 2-595

|
|
|
|

|
|

|
|

Table Options: Use the Table Options clause of the SELECT INTO EXTERNAL
statement to specify the format of the unloaded data in the external table.

Table Options:

�

,
DELIMITED

FORMAT ' INFORMIX '
DELIMITER 'field_delimiter '
RECORDEND 'record_delimiter '
ESCAPE

Element Description Restrictions Syntax

field_delimiter Character to separate fields.
Default is pipe (|) character

See “Specifying Delimiters.” “Quoted String”
on page 4-188

record_delimiter Character to separate records “Quoted String”
on page 4-188

The following table describes the keywords that apply to unloading data. If you
want to specify additional table options in the external-table description for the
purpose of reloading the table later, see “Table options” on page 2-107.

In the SELECT ... INTO EXTERNAL statement, you can specify all table options
that are discussed in the CREATE EXTERNAL TABLE statement except the
fixed-format option.

You can use the INTO EXTERNAL clause when the format type of the created data
file is either delimited text (if you use the DELIMITED keyword) or text in
Informix internal data format (if you use the INFORMIX keyword). You cannot use
it for a fixed-format unload.

Keyword
Effect

DELIMITER
Specifies the character that separates fields in a delimited text file

ESCAPE
Directs the database server to recognize ASCII special characters embedded
in ASCII-text-based data files

If you do not specify ESCAPE when you load data, the database server
does not check the character fields in text data files for embedded special
characters.

If you do not specify ESCAPE when you unload data, the database server
does not create embedded hexadecimal characters in text fields.

FORMAT
Specifies the format of the data in the data files

RECORDEND
Specifies the character that separates records in a delimited text file

Specifying Delimiters: If you do not set the RECORDEND environment variable,
the default value for record_delimiter is the newline character (CTRL-J).

2-596 IBM Informix Guide to SQL: Syntax

|
|

|

|||

|

|||||

||
|
||
|

||||
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

If you use a non-printing character as a delimiter, encode it as the octal
representation of the ASCII character. For example, '\006' can represent CTRL-F.

For more information on external tables, see “CREATE EXTERNAL TABLE
Statement” on page 2-103.

UNION Operator
Place the UNION operator between two SELECT statements to combine the
queries into a single query. You can string several SELECT statements together
using the UNION operator. Corresponding items do not need to have the same
name. Omitting the ALL keyword excludes duplicate rows.

Restrictions on a Combined SELECT
Several restrictions apply on the queries that you can connect with a UNION
operator, as the following list describes:
v In Informix ESQL/C, you cannot use an INTO clause in a compound query

unless exactly one row is returned, and you are not using a cursor. In this case,
the INTO clause must be in the first SELECT statement.

v The number of items in the Projection clause of each query must be the same,
and the corresponding items in each Projection clause must have compatible
data types.

v The Projection clause of each query cannot specify BYTE or TEXT columns. (This
restriction does not apply to UNION ALL operations.)

v If you use an ORDER BY clause, it must follow the last Projection clause, and
you must refer to the item ordered by integer, not by identifier. Sorting takes
place after the set operation is complete.

v You can store the combined results of a UNION operator in a temporary table,
but the INTO TEMP clause can appear only in the final SELECT statement.

A UNION subquery is a query that includes the UNION operator within a
subquery. The following additional restrictions affect UNION subqueries:
v The CREATE VIEW statement cannot specify a UNION subquery to define the

view.
v UNION subqueries cannot be triggering events. If a valid UNION subquery

specifies a column on which a Select trigger has been defined, the query
succeeds, but the trigger (or the INSTEAD OF trigger on a view) is ignored.

v Only columns in the local database are valid in a UNION subquery. You cannot
reference a remote table or view in a UNION subquery.

v General expressions that include host variables are not valid on the left of the
ALL, ANY, IN, NOT IN and SOME operators in a query that includes a UNION
subquery. An expression that consists solely of a single host variable. however, is
valid in this context.

For example, the following query is valid under the above restriction:
SELECT col1 FROM tab1 WHERE ? <= ALL

(SELECT col2 FROM tab2 UNION SELECT col3 FROM tab3);

In this example, the expression to the left of ALL is a single host variable (?),
which is the only expression involving host variables that is supported before the
ALL, ANY, IN, NOT IN, or SOME operators in a query that includes a UNION
subquery.

In contrast, the following example shows an invalid query:

Chapter 2. SQL statements 2-597

|
|

|
|

SELECT col1 FROM tab1 WHERE (? + 8) <= ALL
(SELECT col2 FROM tab2 UNION SELECT col3 FROM tab3);

This query fails because an operand of the relational <= operator to the left of the
ALL operator is (? + 8), an arithmetic expression that includes a host variable,
which is not valid syntax in a UNION subquery.

Expressions that do not contain host variables are not subject to this restriction.
Thus, the following query (which includes the same UNION subquery) is valid:
SELECT col1 FROM tab1 WHERE (col1 + 8) <= ALL

(SELECT col2 FROM tab2 UNION SELECT col3 FROM tab3);

UNION ALL operator
If you use the UNION ALL operator, all the selected rows are returned, without
removing the duplicate rows. (If you use the UNION operator alone, any duplicate
rows are removed from the complete set of qualifying rows. That is, if multiple
rows contain identical values in each column, only one row is retained.)

The next example uses UNION ALL to join two SELECT statements without
removing duplicates. The query returns a list of all the calls that were received
during the first quarter of 2007 and the first quarter of 2008.
SELECT customer_num, call_code FROM cust_calls

WHERE call_dtime BETWEEN
DATETIME (2007-1-1) YEAR TO DAY

AND DATETIME (2007-3-31) YEAR TO DAY
UNION ALL
SELECT customer_num, call_code FROM cust_calls

WHERE call_dtime BETWEEN
DATETIME (2008-1-1)YEAR TO DAY

AND DATETIME (2008-3-31) YEAR TO DAY;

If you want to remove duplicates, use the UNION operator without the keyword
ALL in the query. In the preceding example, if the combination 101 B were
returned in both SELECT statements, a UNION operator would cause the
combination to be listed once. (If you want to remove duplicates within each
SELECT statement, use the DISTINCT keyword in the Projection clause, as
described in “Projection Clause” on page 2-539.)

UNION in Subqueries
You can use the UNION and UNION ALL operators in subqueries of SELECT
statements within the WHERE clause, the FROM clause, and in collection
subqueries. In this release of Informix, however, subqueries that include UNION or
UNION ALL are not supported in the following contexts:
v In the definition of a view
v In the event or in the Action clause of a trigger
v With the FOR UPDATE clause or with an Update cursor
v In a distributed query (accessing tables outside the local database)

For more information about collection subqueries, see “Collection Subquery” on
page 4-3. For more information about the FOR UPDATE clause, see “FOR UPDATE
Clause” on page 2-591.

In a combined subquery, the database server can resolve a column name only
within the scope of its qualifying table reference. The following query, for example,
returns an error:

2-598 IBM Informix Guide to SQL: Syntax

SELECT * FROM t1 WHERE EXISTS
(SELECT a FROM t2
UNION
SELECT b FROM t3 WHERE t3.c IN

(SELECT t4.x FROM t4 WHERE t4.4 = t2.z));

Here t2.z in the innermost subquery cannot be resolved, because z occurs outside
the scope of reference of the table reference t2. Only column references that belong
to t4, t3, or t1 can be resolved in the innermost subquery. The scope of a table
reference extends downwards through subqueries, but not across the UNION
operator to sibling SELECT statements.

Related Information

Because the SELECT statement is "the Q in SQL," most features of the database
server directly or indirectly support SELECT operations, which are central to
relational and object-relational databases. (So this section is not comprehensive.)

For task-oriented discussions of the SELECT statement, see the IBM Informix Guide
to SQL: Tutorial.

For a discussion of the GLS aspects of the SELECT statement, see the IBM Informix
GLS User's Guide.

For information on how to access row and collection values with Informix ESQL/C
host variables, see the discussion of complex data types in the IBM Informix
ESQL/C Programmer's Manual.

SET Database Object Mode statement
Use the SET Database Object Mode statement to change the filtering mode of
constraints of unique indexes, or to enable or disable constraints, indexes, and
triggers.

Only Informix supports this statement, which is an extension to the ANSI/ISO
standard for SQL. To specify whether constraints are checked at the statement level
or at the transaction level, see “SET Transaction Mode statement” on page 2-674.

Syntax

�� SET
(1)

Object-List Format
(2)

Table Format

��

Notes:

1 See “Object-List Format” on page 2-600

2 See “Table Format” on page 2-601

Usage

In the context of this statement, database object has the restricted meaning of an
index, a trigger, or a constraint, rather than the more general meaning of this term
that the description of the “Database Object Name” on page 5-16 segment defines
in Chapter 5, “Other Syntax Segments,” on page 5-1.

Chapter 2. SQL statements 2-599

The scope of the SET Database Object Mode statement is restricted to constraints,
indexes, or triggers in the local database to which the session is currently
connected. After you change the mode of an object, the new mode is in effect for
all sessions of that database, and persists until another SET Database Object Mode
statement changes it again, or until the object is dropped from the database.

Only two object modes are available for triggers and for indexes that allow
duplicate values:
v enabled
v disabled

For constraints and for unique indexes, you can also specify two additional modes:
v filtering without integrity-violation errors
v filtering with integrity-violation errors

At any given time, an object must be in exactly one of these modes. These modes,
which are sometimes called object states, are described in the section “Definitions of
Database Object Modes” on page 2-603.

The sysobjstate system catalog table lists all of the constraint, index, and trigger
objects in the database, and the current mode of each object. For information on
the sysobjstate table, see the IBM Informix Guide to SQL: Reference.

In cluster environments, the SET INDEXES statement is not supported on
updatable secondary servers. (More generally, any session-level index, trigger, and
constraint modes that the SET Database Object Mode statement specifies are not
redirected for UPDATE operations on table objects in databases of secondary
servers.)
Related reference

SYSOBJSTATE (SQL Reference)

Privileges Required for Changing Database Object Modes
To change the mode of a constraint, index, or trigger, you must have the necessary
access privileges. You must meet at least one of these requirements:
v You must have the DBA privilege on the database.
v You must be the owner of the table on which the database object is defined and

you must also have the Resource privilege on the database.
v You must have the Alter privilege on the table on which the database object is

defined and you must also have the Resource privilege on the database.

Object-List Format

Use the object-list format to change the mode for one or more constraint, index, or
trigger.

Object-List Format:

2-600 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_047.htm#ids_sqr_047

�

�

�

,
(1)

CONSTRAINTS constraint Modes for Constraints and Unique Indexes
,

(1)
INDEXES index Modes for Constraints and Unique Indexes

(2)
Modes for Triggers and Duplicate Indexes

,

TRIGGERS trigger
(2)

Modes for Triggers and Duplicate Indexes

Notes:

1 See “Modes for Constraints and Unique Indexes” on page 2-602

2 See “Modes for Triggers and Duplicate Indexes” on page 2-605

Element Description Restrictions Syntax

constraint Name of a constraint whose
mode is to be set

Must be a local constraint, and all constraints in the
list must be defined on the same table

“Identifier” on
page 5-21

index Name of an index whose
mode is to be set

Must be a local index, and all indexes in the list
must be defined on the same table

“Identifier” on
page 5-21

trigger Name of a trigger whose
mode is to be set

Must be a local trigger, and all triggers in the list
must be defined on the same table or view

“Identifier” on
page 5-21

For example, to change the mode of the unique index unq_ssn on the cust_subset
table to filtering, enter the following statement:
SET INDEXES unq_ssn FILTERING;

You can also use the object-list format to change the mode for a list of constraints,
indexes, or triggers that are defined on the same table. Assume that four triggers
are defined on the cust_subset table: insert_trig, update_trig, delete_trig, and
execute_trig. Also assume that all four triggers are enabled. To disable all triggers
except execute_trig, enter this statement:
SET TRIGGERS insert_trig, update_trig, delete_trig DISABLED;

If my_trig is a disabled INSTEAD OF trigger on a view, the following statement
enables that trigger:
SET TRIGGERS my_trig ENABLED;

In cluster environments, the SET INDEXES statement is not supported on
updatable secondary servers. Session-level index, trigger, and constraint modes that
the SET Database Object Mode statement specifies are not redirected for UPDATE
operations on table objects in databases of secondary servers.

Table Format

Use the table format to change the mode of all database objects of a specified type
that have been defined on the same table or view.

Chapter 2. SQL statements 2-601

Table Format:

�

,

CONSTRAINTS
INDEXES
TRIGGERS

FOR table_object
'owner' .

�

�
(1)

Modes for Constraints and Unique Indexes
(2)

Modes for Triggers and Duplicate Indexes

Notes:

1 See “Modes for Constraints and Unique Indexes”

2 See “Modes for Triggers and Duplicate Indexes” on page 2-605

Element Description Restrictions Syntax

owner Owner of table Must own table “Owner Name” on
page 5-45

table_object Table or view on
which objects are
defined

Must be a local table or view. Objects defined on a
temporary table cannot be set to disabled or filtering
modes.

“Identifier” on
page 5-21

This example disables all constraints defined on the cust_subset table:
SET CONSTRAINTS FOR cust_subset DISABLED;

In table format, you can change the modes of more than one database object type
with a single statement. For example, this enables all constraints, indexes, and
triggers that are defined on the cust_subset table:
SET CONSTRAINTS, INDEXES, TRIGGERS FOR cust_subset ENABLED;

In Informix 10.00 and in earlier versions, you cannot use the SET TRIGGERS
option of the SET Database Object Mode statement to disable an inherited trigger
selectively within a table hierarchy. In this release, however, disabling a trigger on
a table within a hierarchy has no effect on inherited triggers. For example, the
following statement disables all triggers on the specified subtable, but the statement
has no effect on triggers on table objects that are above or below subtable within a
table hierarchy:
SET TRIGGERS FOR subtable DISABLED

In cluster environments, the SET INDEXES statement is not supported on
updatable secondary servers. Session-level index, trigger, and constraint modes that
the SET Database Object Mode statement specifies are not redirected for UPDATE
operations on table objects in databases of secondary servers.

Modes for Constraints and Unique Indexes

You can specify enabled or disabled mode for a constraint or a unique index.

2-602 IBM Informix Guide to SQL: Syntax

Modes for Constraints and Unique Indexes:

ENABLED
DISABLED

WITHOUT ERROR
FILTERING WITH ERROR

If you specify no mode for a constraint in a CREATE TABLE, ALTER TABLE, or
SET Database Object Mode statement, the constraint is enabled by default. If you
do not specify the mode for an index in the CREATE INDEX or SET Database
Object Mode statement, the index is enabled by default.

Definitions of Database Object Modes
You can use database object modes to control the effects of INSERT, DELETE, and
UPDATE statements. Your choice of mode affects the tables whose data you are
manipulating, the behavior of the database objects defined on those tables, and the
behavior of the data manipulation statements themselves.

Enabled Mode
Constraints, indexes, and triggers are enabled by default. The CREATE TABLE,
ALTER TABLE, CREATE INDEX, and CREATE TRIGGER statements create
database objects in enabled mode, unless you specify another mode. When a
database object is enabled, the database server recognizes the existence of the
database object and takes the database object into consideration while it executes
an INSERT, DELETE, or UPDATE statement (or for Select triggers, a SELECT
statement). Thus, an enabled constraint is enforced, an enabled index updated, and
an enabled trigger is executed when the trigger event takes place.

When you enable constraints and unique indexes, if a violating row exists, the data
manipulation statement fails (that is, no rows are changed) and the database server
returns an error message.

Disabled Mode
When a database object is disabled, the database server ignores it during the
execution of an INSERT, DELETE, SELECT, or UPDATE statement. A disabled
constraint is not enforced, a disabled index is not updated, and a disabled trigger
is not executed when the trigger event takes place. When you disable constraints
and unique indexes, any data manipulation statement that violates the restriction
of the constraint or unique index succeeds (that is, the target row is changed), and
the database server does not return an error message.

You can use the disabled mode to add a new constraint or new unique index to an
existing table, even if some rows in the table do not satisfy the new integrity
specification. Disabling can also be efficient in LOAD operations.

For information on adding a constraint, see “Adding a Constraint That Existing
Rows Violate” on page 2-63 in the ALTER TABLE statement. For information on
adding a unique index, see “Adding a Unique Index When Duplicate Values Exist
in the Column” on page 2-151 in the CREATE INDEX statement.

Filtering Mode
When a constraint or unique index is in filtering mode, the INSERT, DELETE, or
UPDATE statement succeeds, but the database server enforces the constraint or the
unique-index requirement by writing any failed rows to the violations table

Chapter 2. SQL statements 2-603

associated with the target table. Diagnostic information about the constraint
violation or unique-index violation is written to the diagnostics table associated
with the target table.

In data manipulation operations, filtering mode has the following specific effects
on INSERT, UPDATE, and DELETE statements:
v A constraint violation during an INSERT statement causes the database server to

make a copy of the nonconforming record and write it to the violations table.
The database server does not write the nonconforming record to the target table.
If the INSERT statement is not a singleton INSERT, the rest of the insert
operation proceeds with the next record.

v A constraint violation or unique-index violation during an UPDATE statement
causes the database server to make a copy of the existing record that was to be
updated and write it to the violations table. The database server also makes a
copy of the new record and writes it to the violations table, but the actual record
is not updated in the target table. If the UPDATE statement is not a singleton
update, the rest of the update operation proceeds with the next record.

v A constraint violation or unique-index violation during a DELETE statement
causes the database server to make a copy of the record that was to be deleted
and write it to the violations table. The database server does not delete the
actual record in the target table. If the DELETE statement is not a singleton
delete, the rest of the delete operation proceeds with the next record.

In all of these cases, the database server sends diagnostic information about each
constraint violation or unique-index violation to the diagnostics table associated
with the target table.

For information on the structure of the records that the database server writes to
the violations and diagnostics tables, see “Structure of the violations table” on page
2-680 and “Structure of the diagnostics table” on page 2-685.

Starting and Stopping the Violations and Diagnostics Tables:

You must use the START VIOLATIONS TABLE statement to start the violations
and diagnostics tables for the target table on which the database objects are
defined, either before you set any database objects that are defined on the table to
the filtering mode, or after you set database objects to filtering, but before any
users issue INSERT, DELETE, or UPDATE statements.

If you want to stop the database server from filtering bad records to the violations
table and sending diagnostic information about each bad record to the diagnostics
table, you must issue a STOP VIOLATIONS TABLE statement.

For further information on these statements, see “START VIOLATIONS TABLE
statement” on page 2-677 and “STOP VIOLATIONS TABLE statement” on page
2-689.

Error Options for Filtering Mode: When you set the mode of a constraint or
unique index to filtering, you can specify one of two error options. These error
options control whether the database server displays an integrity-violation error
message when it encounters bad records during execution of data manipulation
statements:

2-604 IBM Informix Guide to SQL: Syntax

v The WITH ERROR option instructs the database server to return a referential
integrity-violation error message after executing an INSERT, DELETE, or
UPDATE statement in which one or more of the target rows causes a constraint
violation or a unique-index violation.

v The WITHOUT ERROR option is the default. This option prevents the database
server from issuing a referential integrity-violation error message to the user
after an INSERT, DELETE, or UPDATE statement causes a constraint violation or
a unique-index violation.

Effect of Filtering Mode on the Database: The net effect of the filtering mode is
that the contents of the target table always satisfy all constraints on the table and
any unique-index requirements on the table.

In addition, the database server does not lose any data values that violate a
constraint or unique-index requirement, because non-conforming records are sent
to the violations table, and diagnostic information about those records is sent to
the diagnostics table.

Furthermore, when filtering mode is in effect, insert, delete, and update operations
on the target table do not fail when the database server encounters bad records.
These operations succeed in adding all the good records to the target table. Thus,
filtering mode is appropriate for large-scale batch updates of tables. The user can
fix records that violate constraints and unique-index requirements after the fact.
The user does not need to fix the bad records before the batch update to avoid
losing the bad records during the batch update.

Modes for Triggers and Duplicate Indexes
You can specify the modes for triggers or duplicate indexes.

Modes for Triggers and Duplicate Indexes:

ENABLED
DISABLED

If you specify no mode for an index or for a trigger when you create it or in a
subsequent SET Database Object Mode statement, the object is enabled by default.

Examples
SET CONSTRAINTS u100_1 ENABLED;

SET CONSTRAINTS r104_11 FILTERING WITH ERROR;

SET CONSTRAINTS FOR orders DISABLED;

Related Information

Related statements: “ALTER TABLE statement” on page 2-41, “CREATE TABLE
statement” on page 2-198, “CREATE INDEX statement” on page 2-135, “CREATE
TRIGGER statement” on page 2-241, “START VIOLATIONS TABLE statement” on
page 2-677, and “STOP VIOLATIONS TABLE statement” on page 2-689

For a discussion of object modes and violation detection and examples that show
how database object modes work when users execute data manipulation
statements on target tables or add new constraints and indexes to target tables, see
the IBM Informix Guide to SQL: Tutorial.

Chapter 2. SQL statements 2-605

For information on the system catalog tables associated with the SET Database
Object Mode statement, see the descriptions of the sysobjstate and sysviolations
tables in the IBM Informix Guide to SQL: Reference.
Related concepts

System Catalog Tables (SQL Reference)

SET AUTOFREE statement
Use the SET AUTOFREE statement to instruct the database server to enable or
disable a memory-management feature that can free the memory allocated for a
cursor automatically, as soon as the cursor is closed.

Syntax

�� SET AUTOFREE
ENABLED

DISABLED FOR cursor_id
cursor_id_var

��

Element Description Restrictions Syntax

cursor_id Name of a cursor for which
Autofree is to be reset

Must already be declared within the
program

“Identifier” on page 5-21

cursor_id_var Host variable that holds the
value of cursor_id

Must store a cursor_id already
declared in the program

Must conform to
language-specific rules for
names.

Usage

This statement is an extension to the ANSI/ISO standard for SQL. You can use this
statement only with Informix ESQL/C.

When the Autofree feature is enabled for a cursor, and the cursor is subsequently
closed, you do not need to explicitly use the FREE statement to release the
memory that the database server allocated for the cursor. If you issue SET
AUTOFREE but specify no option, the default is ENABLED.

The SET AUTOFREE statement that enables the Autofree feature must appear
before the OPEN statement that opens a cursor. The SET AUTOFREE statement
does not affect the memory allocated to a cursor that is already open. After a
cursor is Autofree enabled, you cannot open that cursor a second time.

Globally Affecting Cursors with SET AUTOFREE
If you include no FOR cursor_id or FOR cursor_id_var clause, then the scope of SET
AUTOFREE is all subsequently-declared cursors in the program (or more precisely,
all cursors declared before a subsequent SET AUTOFREE statement with no FOR
clause globally resets the Autofree feature). This example enables the Autofree
feature for all subsequent cursors in the program:
EXEC SQL set autofree;

The next example disables the Autofree feature for all subsequent cursors:
EXEC SQL set autofree disabled;

2-606 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_009.htm#ids_sqr_009

Using the FOR Clause to Specify a Specific Cursor
If you specify FOR cursor _id or FOR cursor_id_var, then SET AUTOFREE affects
only the cursor that you specify after the FOR keyword.

This option allows you to override a global setting for all cursors. For example, if
you issue a SET AUTOFREE ENABLED statement for all cursors in a program, you
can issue a subsequent SET AUTOFREE DISABLED FOR statement to disable the
Autofree feature for a specific cursor.

In the following example, the first statement enables the Autofree feature for all
cursors, while the second statement disables the Autofree feature for the cursor
named x1:
EXEC SQL set autofree enabled;
EXEC SQL set autofree disabled for x1;

Here the x1 cursor must have been declared but not yet opened.

Associated and Detached Statements
When a cursor is automatically freed, its associated prepared statement (or
associated statement) is also freed.

The term associated statement has a special meaning in the context of the Autofree
feature. A cursor is associated with a prepared statement if it is the first cursor that
you declare with the prepared statement, or if it is the first cursor that you declare
with the statement after the statement is detached.

The term detached statement has a special meaning in the context of the Autofree
feature. A prepared statement is detached if you do not declare a cursor with the
statement, or if the cursor with which the statement is associated was freed.

If the Autofree feature is enabled for a cursor that has an associated prepared
statement, and that cursor is closed, the database server frees the memory allocated
to the prepared statement as well as the memory allocated for the cursor. Suppose
that you enable the Autofree feature for the following cursor:
/*Cursor associated with a prepared statement */
EXEC SQL prepare sel_stmt ’select * from customer’;
EXEC SQL declare sel_curs2 cursor for sel_stmt;

When the database server closes the sel_curs2 cursor, it automatically performs the
equivalent of the following FREE statements:
FREE sel_curs2;
FREE sel_stmt;

Because memory for the sel_stmt statement is freed automatically, you cannot
declare a new cursor on it unless you prepare the statement again.

Closing Cursors Implicitly
A potential problem exists with cursors that have the Autofree feature enabled. In
a database that is not ANSI-compliant, if you do not close a cursor explicitly and
then open it again, the cursor is closed implicitly. This implicit closing of the cursor
triggers the Autofree feature. The second time the cursor is opened, the database
server generates an error message (cursor not found) because the cursor is already
freed.

Chapter 2. SQL statements 2-607

Related Information

Related statements: “CLOSE statement” on page 2-76, “DECLARE statement” on
page 2-290, “FETCH statement” on page 2-372, “FREE statement” on page 2-384,
“OPEN statement” on page 2-469, and “PREPARE statement” on page 2-477

For more information on the Autofree feature, see the IBM Informix ESQL/C
Programmer's Manual.

SET COLLATION statement
Use the SET COLLATION statement to specify a new collating order for the
session, superseding the collation implied by the DB_LOCALE environment
variable setting. SET NO COLLATION restores the default collation.

Syntax

�� SET COLLATION locale
NO COLLATION

��

Element Description Restrictions Syntax

locale Name of a locale whose collating
order is to be used in this session

Must be the name of a locale that the
database server can access

“Quoted String”
on page 4-188

Usage

The SET COLLATION statement is an extension to the ANSI/ISO standard for
SQL. You can use this statement with Informix ESQL/C.

As the IBM Informix GLS User's Guide explains, the database server uses locale files
to specify the character set, the collating order, and other conventions of some
natural language to display and manipulate character strings and other data
values. The collating order of the database locale is the sequential order in which
the database server sorts character strings.

If you set no value for DB_LOCALE, the default locale, based on United States
English, is en_us.8859-1 for UNIX, or Code Page 1252 for Windows systems.
Otherwise, the database server uses the DB_LOCALE setting as its locale. The SET
COLLATION statement overrides the collating order of DB_LOCALE at runtime
for all database servers previously accessed in the same session.

The new collating order remains in effect for the rest of the session, or until you
issue another SET COLLATION statement. Other sessions are not affected, but
database objects that you created with a non-default collation use whatever
collating order was in effect at their time of their creation.

By default, the collating order is the code-set order, but some locales also support a
locale-specific order. In most contexts, only NCHAR and NVARCHAR data values
can be sorted according to a locale-specific collating order.

2-608 IBM Informix Guide to SQL: Syntax

Specifying a Collating Order with SET COLLATION
SET COLLATION replaces the current collating order with that of the specified
locale for all database servers previously accessed in the current session. For
example, this specifies the collating order of the German language:
EXEC SQL set collation "de_de.8859-1";

If the next action of a database server in this session sorted NCHAR or
NVARCHAR values, this would follow the German collating order.

Suppose that, in the same session, the following SET NO COLLATION statement
restores the DB_LOCALE setting for the collating order:
EXEC SQL set no collation;

After SET NO COLLATION executes, subsequent collation in the same session is
based on the DB_LOCALE setting. Any database objects that you created using the
German collating order, however, such as check constraints, indexes, prepared
objects, triggers, or UDRs, will continue to apply German collation to NCHAR and
NVARCHAR data types.

Restrictions on SET COLLATION
Although SET COLLATION enables you to change the collating order of the
database server dynamically within a session, you should be aware of these
limitations on the effects of the SET COLLATION statement.
v Only collation performed by the database server is affected. Client processes that

sort data are not affected by SET COLLATION.
v Only the current session is affected. Other sessions are not affected directly by

your SET COLLATION statements (but any database objects that you create will
sort in their creation-time collating order).

v Changing the collating order does not change the code set. The database server
always uses the code set specified by DB_LOCALE.

v Only NCHAR and NVARCHAR values sort in locale-specific order.
v For Informix to support versions of Unicode up to 4.1, the GL_USEGLU

environment variable must be set to a value of 1 (one) in the database server
environment before the server is started, and before the database is created. This
setting initializes conversion routines that enable Unicode collation by the server
in databases that use UTF-8 character encoding, including the Chinese
GB18030-2000 code set.

Because SET COLLATION changes only the collating order, rather than the current
locale or code set, you generally cannot use this statement to insert character data
from different locales, such as French and Japanese, into the same database. You
must use a locale that supports Unicode if the database needs to store characters
from two or more languages that require inherently different code sets or code
pages. The database can store characters from the dissimilar character sets of more
than one natural language only if you set DB_LOCALE to a Unicode locale when
the database is created.

Collation Performed by Database Objects
Although the database reverts to the DB_LOCALE collating order after the session
ends (or after you execute SET NO COLLATION), objects that you create using a
non-default collation persist in the database. You can create, for example, multiple
indexes on the same set of columns, called multilingual indexes, using different
collating orders that SET COLLATION specifies.

Chapter 2. SQL statements 2-609

Only one clustered index, however, can exist on a given set of columns.

Only one unique constraint or primary key can exist on a given set of columns, but
you can create multiple unique indexes on the same set of columns, if each index
has a different collation order.

The query optimizer ignores indexes that apply any collation other than the
current session collation to NCHAR or NVARCHAR columns when calculating the
cost of a query.

The collating order of an attached index must be the same as that of its table, and
this must be the default collating order specified by DB_LOCALE.

The ALTER INDEX statement cannot change the collation of an index. Any
previous SET COLLATION statement is ignored when ALTER INDEX executes.

When you compare values from CHAR columns with NCHAR columns, Informix
casts the CHAR value to NCHAR, and then applies the current collation. Similarly,
before comparing VARCHAR and NVARCHAR values, Informix first casts the
VARCHAR values to NVARCHAR.

When synonyms are created for remote tables or views, the participating databases
must have the same collating order. Existing synonyms, however, can be used in
other databases that support SET COLLATION and the collating order of the
synonym, regardless of the DB_LOCALE setting.

Check constraints, cursors, prepared objects, triggers, and SPL routines that sort
NCHAR or NVARCHAR values use the collation that was in effect at the time of
their creation, if this is different from the DB_LOCALE setting.

The effect on performance is sensitive to how many different collations are used
when creating database objects that sort in a localized order.

Related Information

For information on locales, see the IBM Informix GLS User's Guide.

SET CONNECTION statement
Use the SET CONNECTION statement to reestablish a connection between an
application and a database environment and to make the connection current. You
can also use this statement with the DORMANT option to put the current
connection in a dormant state. Use this statement with Informix ESQL/C.

Syntax

�� SET CONNECTION �

2-610 IBM Informix Guide to SQL: Syntax

� 'connection '
(1) (1)

connection_var DORMANT
(1) (2)

Database Environment
DEFAULT
(1)

CURRENT DORMANT

��

Notes:

1 Informix extension

2 See “Database Environment” on page 2-84

Element Description Restrictions Syntax

connection Name of the initial connection that the CONNECT
statement made

The database must
already exist

“Quoted String”
on page 4-188

connection_var Host variable that contains the value of connection Must be a character
data type

Language specific

Usage

You can use SET CONNECTION to make a dormant connection the current
connection or to make the current connection dormant.

SET CONNECTION is not valid as a prepared statement.

Making a dormant connection as the current connection
If you use the SET CONNECTION statement without the DORMANT option,
connection must represent a dormant connection. A dormant connection is a
connection that is established but is not current.

The SET CONNECTION statement, with no DORMANT option, makes the
specified dormant connection the current one. The connection that the application
specifies must be dormant. The connection that is current when the statement
executes becomes dormant.

The SET CONNECTION statement in the following example makes connection
con1 the current connection and makes con2 a dormant connection:
CONNECT TO ’stores_demo’ AS ’con1’;
...
CONNECT TO ’demo’ AS ’con2’;
...
SET CONNECTION ’con1’;

A dormant connection has a connection context associated with it. When an
application makes a dormant connection current, it reestablishes that connection to
a database environment and restores its connection context. (For more information
on connection context, see the “CONNECT statement” on page 2-83 statement on
page “CONNECT statement” on page 2-83.) Reestablishing a connection is
comparable to establishing the initial connection, except that it typically avoids
authenticating the permissions for the user again, and it avoids reallocating
resources associated with the initial connection. For example, the application does
not need to reprepare any statements that have previously been prepared in the
connection, nor does it need to redeclare any cursors.

Chapter 2. SQL statements 2-611

Making a current connection as the dormant connection
In the SET CONNECTION connection DORMANT statement, connection must
represent the current connection. The SET CONNECTION statement with the
DORMANT option makes the specified current connection a dormant connection.

For example, the following SET CONNECTION statement makes connection con1
dormant:
SET CONNECTION ’con1’ DORMANT;

The SET CONNECTION statement with the DORMANT option generates an error
if you specify a connection that is already dormant. For example, if connection
con1 is current and connection con2 is dormant, the following SET CONNECTION
statement returns an error message:
SET CONNECTION ’con2’ DORMANT;

The following SET CONNECTION statement executes successfully:
SET CONNECTION ’con1’ DORMANT;

Dormant Connections in a Single-Threaded Environment
In a single-threaded Informix ESQL/C application (one that does not use threads),
the DORMANT option makes the current connection dormant. Using this option
makes single-threaded Informix ESQL/C applications upwardly compatible with
thread-safe Informix ESQL/C applications. A single-threaded environment,
however, can have only one active connection while the program executes.

Dormant Connections in a Thread-Safe Environment
In a thread-safe Informix ESQL/C application, the DORMANT option makes an
active connection dormant. Another thread can now use the connection by issuing
the SET CONNECTION statement without the DORMANT option. A thread-safe
environment can have many threads (concurrent pieces of work performing
particular tasks) in one Informix ESQL/C application, and each thread can have
one active connection.

An active connection is associated with a particular thread. Two threads cannot
share the same active connection. Once a thread makes an active connection
dormant, that connection is available to other threads. A dormant connection is still
established but is not currently associated with any thread. For example, if the
connection named con1 is active in the thread named thread_1, the thread named
thread_2 cannot make connection con1 its active connection until thread_1 has
made connection con1 dormant.

The following code fragment from a thread-safe Informix ESQL/C program shows
how a particular thread within a thread-safe application makes a connection active,
performs work on a table through this connection, and then makes the connection
dormant so that other threads can use the connection:
thread_2()
{ /* Make con2 an active connection */

EXEC SQL connect to ’db2’ as ’con2’;
/*Do insert on table t2 in db2*/
EXEC SQL insert into table t2 values(10);
/* make con2 available to other threads */
EXEC SQL set connection ’con2’ dormant;

}

2-612 IBM Informix Guide to SQL: Syntax

If a connection to a database environment was initiated using the CONNECT . . .
WITH CONCURRENT TRANSACTION statement, any thread that subsequently
connects to that database environment can use an ongoing transaction. In addition,
if an open cursor is associated with such a connection, the cursor remains open
when the connection is made dormant.

Threads within a thread-safe Informix ESQL/C application can use the same
cursor by making the associated connection current, even though only one thread
can use the connection at any given time.

Identifying the Connection
If the application did not specify a connection name in the initial CONNECT
statement, you must use a database environment (such as a database name or a
database pathname) as the connection name. For example, the following SET
CONNECTION statement uses a database environment for the connection name
because the CONNECT statement does not use a connection name. For information
about quoted strings that specify a database environment, see “Database
Environment” on page 2-84.
CONNECT TO ’stores_demo’;
...
CONNECT TO ’demo’;
...
SET CONNECTION ’stores_demo’;

If a connection to a database server was assigned a connection name, however, you
must use the connection name to reconnect to the database server. An error is
returned if you use a database environment rather than the connection name when
a connection name exists.

DEFAULT Option
The DEFAULT option specifies the default connection for a SET CONNECTION
statement. The default connection is one of the following connections:
v An explicit default connection (a connection established with the CONNECT TO

DEFAULT statement)
v An implicit default connection (any connection established with the DATABASE

or CREATE DATABASE statements)

Use SET CONNECTION without a DORMANT option to reestablish the default
connection, or with that option to make the default connection dormant.

For more information, see “The DEFAULT Connection Specification” on page 2-88
and “The Implicit Connection with DATABASE Statements” on page 2-88.

CURRENT Keyword
Use the CURRENT keyword with the DORMANT option of the SET
CONNECTION statement as a shorthand form of identifying the current
connection. The CURRENT keyword replaces the current connection name. If the
current connection is con1, the following two statements are equivalent:
SET CONNECTION ’con1’ DORMANT;

SET CONNECTION CURRENT DORMANT;

Chapter 2. SQL statements 2-613

When a Transaction is Active
Without the DORMANT keyword, the SET CONNECTION statement implicitly
puts the current connection in the dormant state.

When you issue a SET CONNECTION statement with the DORMANT keyword,
the SET CONNECTION statement explicitly puts the current connection in the
dormant state. In both cases, the statement can fail if a connection that becomes
dormant has an uncommitted transaction. If the connection that becomes dormant
has an uncommitted transaction, the following conditions apply:
v If the connection was established using the WITH CONCURRENT

TRANSACTION clause of the CONNECT statement, SET CONNECTION
succeeds and puts the connection in a dormant state.

v If the connection was not established by the WITH CONCURRENT
TRANSACTION clause of the CONNECT statement, SET CONNECTION fails
and cannot set the connection to a dormant state, and the transaction in the
current connection continues to be active. The statement generates an error and
the application must decide whether to commit or roll back the active
transaction.

Related Information

Related statements: “CONNECT statement” on page 2-83, “DISCONNECT
statement” on page 2-323, and “DATABASE statement” on page 2-285

For a discussion of the SET CONNECTION statement and thread-safe applications,
see the IBM Informix ESQL/C Programmer's Manual.

SET CONSTRAINTS statement
Use the SET CONSTRAINTS statements to specify how some or all of the
constraints on a table are processed.

Syntax

�� SET CONSTRAINTS �

� �

�

,

constraint IMMEDIATE
ALL DEFERRED

,
(1) ENABLED

constraint DISABLED
FOR table WITHOUT ERROR

'owner' . FILTERING WITH ERROR

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

constraint Constraint whose mode is to be
reset

All constraints must exist and must all be
defined on the same table

“Identifier” on page
5-21

2-614 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

owner Owner of table Must own table “Owner Name” on
page 5-45

table Table whose constraint mode is to
be reset for all constraints

Table must exist in the database “Identifier” on page
5-21

Usage

Constraint-mode options of the SET CONSTRAINTS statements include these:
v Whether constraints are checked at the statement level (IMMEDIATE) or at the

transaction level (DEFERRED)
v Whether to enable or disable constraints
v Whether to change the filtering mode of constraints.

The SET CONSTRAINTS keywords begin the SET Transaction Mode statement,
which is described in “SET Transaction Mode statement” on page 2-674.

The SET CONSTRAINTS keywords can also begin a special case of the SET
Database Object Mode statement, which is an extension to the ANSI/ISO standard
for SQL. The SET Database Object Mode statement can also enable or disable a
trigger or index, or change the filtering mode of a unique index. For the complete
syntax and semantics of the SET Database Object Mode statement, see “SET
Database Object Mode statement” on page 2-599.

Restrictions on secondary servers

In cluster environments, the ENABLED, DISABLED, and FILTERING options of
the SET CONSTRAINTS statement are not supported on updatable secondary
servers. (More generally, session-level index, trigger, and constraint modes that the
SET Database Object Mode statement specifies are not redirected for UPDATE
operations on table objects in databases of secondary servers.)

SET DATASKIP statement
Use the SET DATASKIP statement to control whether the database server skips a
dbspace that is unavailable during the processing of a transaction.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET DATASKIP

�

ON
,

dbspace
OFF
DEFAULT

��

Element Description Restrictions Syntax

dbspace Name of the skipped dbspace Must exist at time of execution “Identifier” on page
5-21

Chapter 2. SQL statements 2-615

Usage

SET DATASKIP allows you to reset at runtime the Dataskip feature, which controls
whether the database server skips a dbspace that is unavailable (for example, due
to a media failure) in the course of processing a transaction.

In Informix ESQL/C, the warning flag sqlca.sqlwarn.sqlwarn6 is set to W if a
dbspace is skipped. See also the IBM Informix ESQL/C Programmer's Manual.

In Informix, this statement applies only to tables that are fragmented across
dbspaces or partitions. It does not apply to blobspaces nor to sbspaces.

Specifying SET DATASKIP ON without including a dbspace instructs the database
server to skip any dbspaces in the fragmentation list that are unavailable. You can
use the onstat -d or -D options to determine whether a dbspace is down.

When you specify SET DATASKIP ON dbspace, you are instructing the database
server to skip the specified dbspace if it is unavailable.

If you specify SET DATASKIP OFF, the Dataskip feature is disabled. If you specify
SET DATASKIP DEFAULT, the database server uses the setting that is specified in
the DATASKIP configuration parameter in ONCONFIG file.

Circumstances When a Dbspace Cannot Be Skipped
The database server cannot skip a dbspace under certain conditions. The following
list outlines those conditions:
v Referential constraint checking

When you want to delete a parent row, the child rows must also be available for
deletion, and must exist in an available fragment.
When you want to insert a new child row, the parent row must be found in the
available fragments.

v Updates
When you perform an update that moves a record from one fragment to
another, both fragments must be available.

v Inserts
When you try to insert records in a expression-based fragmentation strategy and
the dbspace is unavailable, an error is returned.
When you try to insert records in a round-robin fragment-based strategy, and a
dbspace is down, the database server inserts the rows into any available
dbspace.
When no dbspace is available, an error is returned.

v Indexing
When you perform updates that affect the index, such as when you insert or
delete rows, or update an indexed column, the index must be available.
When you try to create an index, the dbspace you want to use must be available.

v Serial keys
The first fragment is used to store the current serial-key value internally. This is
not visible to you except when the first fragment becomes unavailable and a
new serial key value is required, which can happen during INSERT statements.

2-616 IBM Informix Guide to SQL: Syntax

Examples

The following skips dbsp1 for the current session:
SET DATASKIP ON dbsp1;

The following sets the value of DATASKIP to the value specified in onconfig:
SET DATASKIP DEFAULT;

The following switches DATASKIP off so that all dbspaces are used.
SET DATASKIP OFF;

Related Information

For additional information about the Dataskip feature, see your IBM Informix
Administrator's Guide.

SET DEBUG FILE statement
Use the SET DEBUG FILE statement to identify the file that is to receive the
runtime trace output of an SPL routine.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET DEBUG FILE TO 'filename'
filename_var
expression

WITH APPEND
��

Element Description Restrictions Syntax

expression Expression that returns a filename Must be a valid filename “Expression” on page
4-40

filename Pathname of the file that contains the
output of the TRACE statement

See “Using the WITH
APPEND Option”

“Quoted String” on page
4-188.

filename_var Host variable storing filename string Must be a character type Language specific

Usage

This statement specifies the file to which the database server writes the output
from the TRACE statement in the SPL routine. Each time the TRACE statement is
executed, the trace information is added to this output file.

Using the WITH APPEND Option
The output file that you specify in the SET DEBUG FILE statement can be a new
file or existing file. If you specify an existing file, its current contents are deleted
when you issue the SET DEBUG FILE TO statement. The first execution of a
TRACE statement sends trace output to the beginning of the file.

If you include the WITH APPEND option, the current contents of the file are
preserved when you issue the SET DEBUG FILE statement. The first execution of a
TRACE statement adds the new trace output to the end of the file.

Chapter 2. SQL statements 2-617

If you specify a new file in the SET DEBUG FILE TO statement, it makes no
difference whether you include the WITH APPEND option. The first execution of a
TRACE statement sends trace output to the beginning of the new file whether you
include or omit the WITH APPEND option.

Closing the Output File

To close the file that the SET DEBUG FILE TO statement opened, issue another
SET DEBUG FILE TO statement with another filename. You can then read or edit
the contents of the first file.

Redirecting Trace Output
You can use the SET DEBUG FILE TO statement outside an SPL routine to direct
the trace output of the SPL routine to a file. You can also use this statement within
an SPL routine to redirect its own output.

Location of the Output File
If you execute the SET DEBUG FILE statement with a simple filename on a local
database, the output file is located in your current directory. If your current
database is on a remote database server, the output file is located in your home
directory on the remote database server. If you provide a full pathname for the
debug file, the file is placed in the directory that you specify on the remote
database server. If you do not have write permissions in the directory, you receive
an error.

The following example sends the output of the SET DEBUG FILE TO statement to
a file called debug.out:
SET DEBUG FILE TO ’debug’ || ’.out’;

Related Information

Related statement: “TRACE” on page 3-47

For a task-oriented discussion of SPL routines, see the IBM Informix Guide to SQL:
Tutorial.

SET DEFERRED_PREPARE statement
Use the SET DEFERRED_PREPARE statement to control whether a client process
postpones sending a PREPARE statement to the database server until the OPEN or
EXECUTE statement is sent.

Only Informix supports this statement, which is an extension to the ANSI/ISO
standard for SQL. You can use this statement only with Informix ESQL/C.

Syntax

�� SET DEFERRED_PREPARE
ENABLED

DISABLED
��

2-618 IBM Informix Guide to SQL: Syntax

Usage

By default, the SET DEFERRED_PREPARE statement causes the application
program to delay sending the PREPARE statement to the database server until the
OPEN or EXECUTE statement is executed. In effect, the PREPARE statement is
bundled with the other statement so that one round-trip of messages, instead of
two, is sent between the client and the server. This Deferred-Prepare feature can
affect the following series of Dynamic SQL statement:
v PREPARE, DECLARE, OPEN statement blocks that operate with the FETCH or

PUT statements
v PREPARE followed by the EXECUTE or EXECUTE IMMEDIATE statement

You can specify ENABLED or DISABLED options for SET DEFERRED_PREPARE.

If you specify no option, the default is ENABLED. The following example enables
the Deferred-Prepare feature by default:
EXEC SQL set deferred_prepare;

The ENABLED option enables the Deferred-Prepare feature within the application.
The following example explicitly specifies the ENABLED option:
EXEC SQL set deferred_prepare enabled;

After an application issues SET DEFERRED_PREPARE ENABLED, the
Deferred-Prepare feature is enabled for subsequent PREPARE statements in the
application. The application then exhibits the following behavior:
v The sequence PREPARE, DECLARE, OPEN sends the PREPARE statement to the

database server with the OPEN statement. If the prepared statement has syntax
errors, the database server does not return error messages to the application
until the application declares a cursor for the prepared statement and opens the
cursor.

v The sequence PREPARE, EXECUTE sends the PREPARE statement to the
database server with the EXECUTE statement. If a prepared statement contains
syntax errors, the database server does not return error messages to the
application until the application attempts to execute the prepared statement.

If Deferred-Prepare is enabled in a PREPARE, DECLARE, OPEN statement block
that contains a DESCRIBE statement, the DESCRIBE statement must follow the
OPEN statement rather than the PREPARE statement. If the DESCRIBE follows
PREPARE, the DESCRIBE statement results in an error.

Use the DISABLED option to disable the Deferred-Prepare feature within the
application. The following example specifies the DISABLED option:
EXEC SQL set deferred_prepare disabled;

If you specify the DISABLED option, the application sends each PREPARE
statement to the database server when the PREPARE statement is executed.

Example of SET DEFERRED_PREPARE
The following code fragment shows a SET DEFERRED_PREPARE statement with a
PREPARE, EXECUTE statement block. In this case, the database server executes the
PREPARE and EXECUTE statements all at once:
EXEC SQL BEGIN DECLARE SECTION;

int a;
EXEC SQL END DECLARE SECTION;

Chapter 2. SQL statements 2-619

EXEC SQL allocate descriptor ’desc’;
EXEC SQL create database test;
EXEC SQL create table x (a int);

/* Enable Deferred-Prepare feature */
EXEC SQL set deferred_prepare enabled;
/* Prepare an INSERT statement */
EXEC SQL prepare ins_stmt from ’insert into x values(?)’;
a = 2;
EXEC SQL EXECUTE ins_stmt using :a;
if (SQLCODE)

printf("EXECUTE : SQLCODE is %d\n", SQLCODE);

Using Deferred-Prepare with OPTOFC
You can use the Deferred-Prepare and Open-Fetch-Close Optimization (OPTOFC)
features in combination. The OPTOFC feature delays sending the OPEN message
to the database server until the FETCH message is sent. The following situations
occur if you enable the Deferred-Prepare and OPTOFC features at the same time:
v If the text of a prepared statement contains syntax errors, the error messages are

not returned to the application until the first FETCH statement is executed.
v A DESCRIBE statement cannot be executed until after the FETCH statement.
v You must issue an ALLOCATE DESCRIPTOR statement before a DESCRIBE or

GET DESCRIPTOR statement can be executed.

The database server performs an internal execution of a SET DESCRIPTOR
statement which sets the TYPE, LENGTH, DATA, and other fields in the system
descriptor area. You can specify a GET DESCRIPTOR statement after the FETCH
statement to see the data that is returned.

Related Information

Related statements: “DECLARE statement” on page 2-290, “DESCRIBE statement”
on page 2-314, “EXECUTE statement” on page 2-353, “OPEN statement” on page
2-469, and “PREPARE statement” on page 2-477

For a task-oriented discussion of the PREPARE statement and dynamic SQL, see
the IBM Informix Guide to SQL: Tutorial.

For more information about concepts that relate to the SET DEFERRED_PREPARE
statement, see the IBM Informix ESQL/C Programmer's Manual.

SET DESCRIPTOR statement
Use the SET DESCRIPTOR statement to set values in a system-descriptor area
(SDA).

Use this statement with Informix ESQL/C.

Syntax

�� SET DESCRIPTOR descriptor_var
'descriptor '

�

2-620 IBM Informix Guide to SQL: Syntax

�

�

COUNT= total_items_var
total_items

,
(1)

VALUE item_num_var Item Descriptor
item_num

��

Notes:

1 See “Item Descriptor” on page 2-622

Element Description Restrictions Syntax

descriptor String that identifies the SDA to which
values are assigned

System-descriptor area (SDA)
must be previously allocated

“Quoted String” on
page 4-188

descriptor_var Host variable that stores descriptor Same restrictions as descriptor Language specific

item_num Unsigned integer that specifies ordinal
position of an item descriptor in the
SDA

0 < item_num ≤ (number of item
descriptors specified when SDA
was allocated)

“Literal Number” on
page 4-184

item_num_var Host variable that stores item_num Same restrictions as item_num Language specific

total_items Unsigned integer that specifies how
many items the SDA describes

Same restrictions as item_num “Literal Number” on
page 4-184

total_items_var Host variable that stores total_items Same restrictions as total_items Language specific

Usage

The SET DESCRIPTOR statement can be used after you have described SELECT,
EXECUTE FUNCTION, EXECUTE PROCEDURE, ALLOCATE DESCRIPTOR, or
INSERT statements with the DESCRIBE ... USING SQL DESCRIPTOR statement.

SET DESCRIPTOR can assign values to a system-descriptor area in these cases:
v To set the COUNT field of a system-descriptor area to match the number of

items for which you are providing descriptions in the system-descriptor area
v To set the item descriptor for each value for which you are providing

descriptions in the system-descriptor area
v To modify the contents of an item-descriptor field

If an error occurs during the assignment to any identified system-descriptor fields,
the contents of all identified fields are set to 0 or NULL, depending on the data
type of the variable.

Using the COUNT Clause
Use the COUNT clause to set the number of items that are to be used in the
system-descriptor area. If you allocate a system-descriptor area with more items
than you are using, you need to set the COUNT field to the number of items that
you are actually using. The following example shows a fragment of an Informix
ESQL/C program:
EXEC SQL BEGIN DECLARE SECTION;

int count;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor ’desc_100’; /*allocates for 100 items*/
count = 2;

EXEC SQL set descriptor ’desc_100’ count = :count;

Chapter 2. SQL statements 2-621

Using the VALUE Clause
Use the VALUE clause to assign values from host variables into fields of a
system-descriptor area. You can assign values for items for which you are
providing a description (such as parameters in a WHERE clause), or you can
modify values for items after you use a DESCRIBE statement to fill the fields for
an UPDATE or INSERT statement.

Item Descriptor

Use the Item Descriptor portion of the SET DESCRIPTOR statement to set value
for an individual field in a system-descriptor area.

Item Descriptor:

TYPE = literal_int_var
LENGTH literal_int
PRECISION
SCALE
NULLABLE
INDICATOR
ITYPE
ILENGTH

(1)
DATA = Literal Number
IDATA (2)

Literal DATETIME
(3)

Literal INTERVAL
(4)

Quoted String
input_var

(4)
NAME = Quoted String
EXTYPENAME input_var
EXTYPEOWNERNAME
SOURCEID = literal_int_var
SOURCETYPE literal_int
EXTYPEID
EXTYPELENGTH
EXTYPEOWNERLENGTH

Notes:

1 See “Literal Number” on page 4-184

2 See “Literal DATETIME” on page 4-180

3 See “Literal INTERVAL” on page 4-182

4 See “Quoted String” on page 4-188

Element Description Restrictions Syntax

input_var Host variable storing data for the
specified item descriptor field

Must be appropriate for the specified
field

Language-specific

literal_int Integer value (> 0) assigned to the
specified item descriptor field

Restrictions depend on the keyword
to the left of = symbol

“Literal Number” on
page 4-184

literal_int_var Variable having literal_int value Same as for literal_int Language-specific

2-622 IBM Informix Guide to SQL: Syntax

For information on codes that are valid for the TYPE or ITYPE fields and their
meanings, see “Setting the TYPE or ITYPE Field.”

For the restrictions that apply to other field types, see the individual headings for
field types under “Using the VALUE Clause” on page 2-622.

Setting the TYPE or ITYPE Field
Use these integer values to set the value of TYPE or ITYPE for each item.

SQL Data Type
Integer
Value

X-Open
Integer
Value SQL Data Type

Integer
Value

X-Open
Integer
Value

CHAR 0 1 MONEY 8 –

SMALLINT 1 4 DATETIME 10 –

INTEGER 2 5 BYTE 11 –

FLOAT 3 6 TEXT 12 –

SMALLFLOAT 4 – VARCHAR 13 –

DECIMAL 5 3 INTERVAL 14 –

SERIAL 6 – NCHAR 15 –

DATE 7 – NVARCHAR 16 –

The following table lists integer values that represent additional data types
available with Informix.

SQL Data Type
Integer
Value SQL Data Type

Integer
Value

INT8 17 Fixed-length OPAQUE type 41

SERIAL8 18 LVARCHAR (client-side only) 43

SET 19 BOOLEAN 45

MULTISET 20 BIGINT 52

LIST 21 BIGSERIAL 53

ROW (unnamed) 22 IDSSECURITYLABEL 2061

COLLECTION 23 ROW (named) 4118

Variable-length
OPAQUE type

40

The same TYPE constants can also appear in the syscolumns.coltype column in
the system catalog; see IBM Informix Guide to SQL: Reference.

For code that is easier to maintain, use the predefined constants for these SQL data
types instead of their actual integer values. These constants are defined in the
$INFORMIX/incl/public/sqltypes.h header file. You cannot, however, use the
actual constant name in the SET DESCRIPTOR statement. Instead, assign the
constant to an integer host variable and specify the host variable in the SET
DESCRIPTOR statement file.

The following example shows how you can set the TYPE field in Informix
ESQL/C:

Chapter 2. SQL statements 2-623

main()
{
EXEC SQL BEGIN DECLARE SECTION;

int itemno, type;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate descriptor ’desc1’ with max 5;
...
type = SQLINT; itemno = 3;
EXEC SQL set descriptor ’desc1’ value :itemno type = :type;
}

This information is identical for ITYPE. Use ITYPE when you create a dynamic
program that does not comply with the X/Open standard.

Compiling Without the -xopen Option: If you compile without the -xopen
option, the normal Informix SQL code is assigned for TYPE. You must be careful
not to mix normal and X/Open modes, because errors can result. For example, if a
data type is not defined under X/Open mode, but is defined under normal mode,
executing a SET DESCRIPTOR statement can result in an error.

Setting the TYPE Field in X/Open Programs: In X/Open mode, you must use the
X/Open set of integer codes for the data type in the TYPE field.

If you use the ILENGTH, IDATA, or ITYPE fields in a SET DESCRIPTOR
statement, a warning message appears. The warning indicates that these fields are
not standard X/Open fields for a system-descriptor area.

For code that is easier to maintain, use the predefined constants for these X/Open
SQL data types instead of their actual integer value. These constants are defined in
the $INFORMIX/incl/public/sqlxtype.h header file.

Using DECIMAL or MONEY Data Types: If you set the TYPE field for a
DECIMAL or MONEY data type, and you want to use a scale or precision other
than the default values, set the SCALE and PRECISION fields. You do not need to
set the LENGTHfield for a DECIMAL or MONEY item; the LENGTH field is set
accordingly from the SCALE and PRECISION fields.

Using DATETIME or INTERVAL Data Types: If you set the TYPE field for a
DATETIME or INTERVAL value, the DATA field can be a DATETIME or
INTERVAL literal or a character string. If you use a character string, the LENGTH
field must be the encoded qualifier value.

To determine the encoded qualifiers for a DATETIME or INTERVAL character
string, use the datetime and interval macros in the datetime.h header file.

If you set DATA to a host variable of DATETIME or INTERVAL, you do not need
to set LENGTH explicitly to the encoded qualifier integer.

Setting the DATA or IDATA Field
When you set the DATA or IDATA field, use the appropriate type of data
(character string for CHAR or VARCHAR, integer for INTEGER, and so on).

If any value other than DATA is set, the value of DATA is undefined. You cannot
set the DATA or IDATA field for an item without setting TYPE for that item. If
you set the TYPE field for an item to a character type, you must also set the
LENGTH field. If you do not set the LENGTH field for a character item, you
receive an error.

2-624 IBM Informix Guide to SQL: Syntax

Setting the LENGTH or ILENGTH Field
If your DATA or IDATA field contains a character string, you must specify a value
for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to the
maximum length of the string. The DATA or IDATA field can contain a literal
character string of up to 368-bytes, or a character string derived from a character
variable of a CHAR or VARCHAR data type. This provides a method to determine
dynamically the length of a string in the DATA or IDATAfield.

If a DESCRIBE statement precedes a SET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is specified in
your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Setting the INDICATOR Field
If you want to put a NULL value into the system-descriptor area, set the
INDICATOR field to -1 and do not set the DATA field.

If you set the INDICATOR field to 0 to indicate that the data is not NULL, you
must set the DATA field.

Setting Opaque-Type Fields
The following item-descriptor fields provide information about a column that has
an opaque type as its data type:
v The EXTYPEID field stores the extended identifier for the opaque type. This

integer value must correspond to a value in the extended_id column of the
sysxtdtypes system catalog table.

v TheEXTYPENAME field stores the name of the opaque type. This character
value must correspond to a value in the name column of the row with the
matching extended_id value in the sysxtdtypes system catalog table.

v The EXTYPELENGTH field stores the length of the opaque-type name. This
integer value is the length, in bytes, of the string in the EXTYPENAME field.

v The EXTYPEOWNERNAME field stores the name of the opaque-type owner.
This character value must correspond to a value in the owner column of the row
with the matching extended_id value in the sysxtdtypes system catalog table.

v The EXTYPEOWNERLENGTH field stores the length of the value in the
EXTTYPEOWNERNAME field. This integer value is the length, in bytes, of the
string in the EXTYPEOWNERNAME field.

For more information on the sysxtdtypes system catalog table, see the IBM Informix
Guide to SQL: Reference.
Related reference

SYSXTDTYPES (SQL Reference)

Setting Distinct-Type Fields
The following item-descriptor fields provide information about a column that has a
distinct type as its data type:
v The SOURCEID field stores the extended identifier for the source data type.

Set this field if the source type of the distinct type is an opaque data type. This
integer value must correspond to a value in the source column for the row of
the sysxtdtypes system catalog table whose extended_id value matches that of
the distinct type you are setting.

Chapter 2. SQL statements 2-625

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_084.htm#ids_sqr_084

v TheSOURCETYPE field stores the data type constant for the source data type.
This value is the data type constant for the built-in data type that is the source
type for the distinct type. The codes for the SOURCETYPE field are the same as
those for the TYPE field (page “Setting the TYPE or ITYPE Field” on page
2-623). This integer value must correspond to the value in the type column for
the row of the sysxtdtypes system catalog table whose extended_id value
matches that of the distinct type you are setting.

For more information on the sysxtdtypes system catalog table, see the IBM Informix
Guide to SQL: Reference.
Related reference

SYSXTDTYPES (SQL Reference)

Modifying Values Set by the DESCRIBE Statement
You can use a DESCRIBE statement to modify the contents of a system-descriptor
area after it is set.

After you use DESCRIBE on a SELECT or an INSERT statement, you must check to
determine whether the TYPE field is set to either 11 or 12 to indicate a TEXT or
BYTE data type. If TYPE contains an 11 or a 12, you must use the SET
DESCRIPTOR statement to reset TYPE to 116, which indicates FILE type.

Related Information

Related statements: “ALLOCATE DESCRIPTOR statement” on page 2-2,
“DEALLOCATE DESCRIPTOR statement” on page 2-288, “DECLARE statement”
on page 2-290, “DESCRIBE statement” on page 2-314, “EXECUTE statement” on
page 2-353, “FETCH statement” on page 2-372, “GET DESCRIPTOR statement” on
page 2-385, “OPEN statement” on page 2-469, “PREPARE statement” on page
2-477, and “PUT statement” on page 2-487

For more information on system-descriptor areas, refer to the IBM Informix ESQL/C
Programmer's Manual.

SET ENCRYPTION PASSWORD statement
Use the SET ENCRYPTION PASSWORD statement to define or reset a session
password for the encryption and decryption of character, BLOB, or CLOB values.

Only Informix supports this statement, which is an extension to the ANSI/ISO
standard for SQL. You can use this statement with ESQL/C.

Syntax

�� SET ENCRYPTION PASSWORD 'password'
WITH HINT 'hint'

��

Element Description Restrictions Syntax

hint String that GETHINT returns from
an encrypted argument

(0 byte) ≤ hint ≤ (32 bytes). Do not
include the password in the hint.

“Expression” on page
4-40

password Password (or a multi-word phrase)
for data encryption

(6 bytes) ≤ password ≤ (120 bytes). Do
not specify your login password.

“Expression” on page
4-40

2-626 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_084.htm#ids_sqr_084

Usage

The SET ENCRYPTION PASSWORD statement declares a password to support
data confidentiality through built-in functions that use the Triple-DES or AES
algorithms for encryption and decryption. These functions enable the database to
store sensitive data in an encrypted format that prevents anyone who cannot
provide the secret password from viewing, copying, or modifying encrypted data.

The password is not stored as plain text in the database and is not accessible to the
DBA. This security feature is independent of the Trusted Facility feature.

Important: By default, communication between client systems and Informix is in
plain text. Unless the database is accessible only by a secure network, the DBA
must enable the encryption communication support module (ENCCSM) to provide
data encryption between the database server and any client system. Otherwise, an
attacker might read the password and use it to access encrypted data.

If the network is not secure, all of the database servers in a distributed query need
ENCCSM enabled, so that the password is not transmitted as plain text. For
information about how to enable a communication support module (CSM), see
your IBM Informix Administrator's Guide.

Operations on encrypted data tend to be slower than corresponding operations on
plain text data, but use of this feature has no effect on unencrypted data.

The SET ENCRYPTION PASSWORD statements can be prepared, and EXECUTE
IMMEDIATE can process a prepared SET ENCRYPTION PASSWORD statement.

Storage Requirements for Encryption
Use the ENCRYPT_AES or ENCRYPT_TDES built-in functions to encrypt data.
Encrypted values of character data types are stored in BASE64 format (also called
Radix-64). For character data, this requires significantly more storage than the
corresponding unencrypted data. Omitting the hint can reduce encryption
overhead by more than 50 bytes for each encrypted value. It is the responsibility of
the user to make sufficient storage space available for encrypted values.

The following table lists the data types that can be encrypted, and built-in
functions that you can use to encrypt and decrypt values of those data types:

Original Data Type Encrypted Data Type BASE64 Format Decryption Function

CHAR CHAR Yes DECRYPT_CHAR

NCHAR NCHAR Yes DECRYPT_CHAR

VARCHAR VARCHAR Yes DECRYPT_CHAR

NVARCHAR NVARCHAR Yes DECRYPT_CHAR

LVARCHAR LVARCHAR Yes DECRYPT_CHAR

BLOB BLOB No DECRYPT_BINARY

CLOB BLOB No DECRYPT_CHAR

You cannot encrypt a column of the IDSSECURITYLABEL data type.

Chapter 2. SQL statements 2-627

If the encrypted VARCHAR (or NVARCHAR) value is longer than the 255 byte
maximum size for those data types, the encryption function returns a CHAR (or
NCHAR) value of sufficient size to store the encrypted value.

DECRYPT_BINARY and DECRYPT_CHAR both return the same value from
encrypted CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR values. No
built-in encryption or decryption functions support BYTE or TEXT data types, but
you can use BLOB data types to encrypt very large strings.

Warning: If the declared size of a database column in which you intend to store
encrypted data is smaller than the encrypted data length, truncation occurs when
you insert the encrypted data into the column. The truncated data cannot
subsequently be decrypted, because the data length indicated in the header of the
encrypted string does not match what the column stores. To avoid truncation,
make sure that any column storing encrypted strings has sufficient length. (See the
cross-reference in the next paragraph for details of how to calculate encrypted
string lengths.)

Besides the unencrypted data length, the storage required for encrypted data
depends on the encoding format, on whether you specify a hint, and on the block
size of the encryption function. For a formula to estimate the encrypted size, see
"Calculating storage requirements for encrypted data" on page “Calculating storage
requirements for encrypted data” on page 4-110.

Specifying a Session Password and Hint
The required password specification can be quoted strings or other character
expression that evaluates to a string whose length is at least 6 bytes but no more
than 128 bytes. The optional hint can specify a string no longer than 32 bytes.

The password or hint can be a single word or several words. The hint should be a
word or phrase that helps you to remember the password, but does not include the
password. You can subsequently execute the built-in GETHINT function (with an
encrypted value as its argument) to return the plain text of hint.

The following ESQL/C program fragment defines a routine that includes the SET
ENCRYPTION PASSWORD statement and executes DML statements:
process_ssn()
{
EXEC SQL BEGIN DECLARE SECTION;
char password[128];
char myhint[33];
char myid[16], myssn[16];
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL SET ENCRYPTION PASSWORD :password WITH HINT :myhint;
...
EXEC SQL INSERT INTO tab1 VALUES (’:abcd’, ENCRYPT_AES("111-22-3333")) ;
EXEC SQL SELECT Pid, DECRYPT(ssn, :password) INTO :myid, :myssn;
...
EXEC SQL SELECT GETHINT(ssn) INTO :myhint, WHERE id = :myid;
}

Levels of Encryption
You can use SET ENCRYPTION PASSWORD with encryption and decryption
functions to support these granularities of encryption in the database.
v Column-Level Encryption: All values in a given column of a database table are

encrypted using the same password, the same encryption algorithm, and the

2-628 IBM Informix Guide to SQL: Syntax

same encryption mode. (In this case, you can save disk space by storing the hint
outside the encrypted column, rather than repeating it in every row.)

v Cell-Level Encryption: Values of a given column in different rows of the same
database table are encrypted using different passwords, or different encryption
algorithms, or different encryption modes. This technique is sometimes
necessary to protect personal data. (Row-column level encryption and set-column
level encryption are both synonyms for cell-level encryption.)
Cell-level encryption can cause substantial maintenance costs. If you implement
this level of encryption, your application is responsible for determining which
rows contain encrypted data and for using the correct code to handle the data.
The built-in decryption functions of Informix fail with error -26005 if they are
applied to unencrypted data. The simplest way to avoid this error is to use
column-level encryption rather than cell-level encryption.
If you do not use encryption functions, people might enter unencrypted data
into columns that are meant to contain encrypted data. To ensure that data
entered into a field is always encrypted, use views and INSTEAD OF triggers.

Protecting Passwords
Passwords and hints that you declare with SET ENCRYPTION PASSWORD are not
stored as plain text in any table of the system catalog, which also maintains no
record of which columns or tables contain encrypted data. To prevent other users
from accessing the plain text of encrypted data or of a password, however, you
must avoid actions that might compromise the secrecy of a password:
v Do not create a functional index using a decryption function. (This would store

plain-text data in the database, defeating the purpose of encryption.)
v On a network that is not secure, always work with encrypted data, or use

session encryption, because the SQL communication between client and server
sends passwords, hints, and the data to be encrypted as plain text.

v Do not store passwords in a trigger or in a UDR that exposes the password to
the public.

v Do not set the session password prior to creating any view, trigger, procedure, or
UDR. Set the session password only when you use the object. Otherwise, the
password might be visible in the schema to other users, and queries executed by
other users might return unencrypted data. The following example shows a
procedure that includes an encrypted password:
-- reset session encryption password
set encryption password null;

-- create procedure without password
create procedure p1 ();

insert into tab2 select (decrypt_char (col1))
from tab1;

end procedure;

-- set session encryption password
set encryption password ("PASSWD2");

-- insert data
insert into tab1 values (encrypt_aes (’WXY’));

-- call procedure

Output from the SET EXPLAIN statement always displays the password and hint
parameters as XXXXX, rather than displaying actual password or hint values.

Chapter 2. SQL statements 2-629

Related Information

For more information about built-in functions for encrypting and decrypting data,
see “Encryption and decryption functions” on page 4-106.

For information on setting the environment variable INFORMIXCONCSMCFG,
refer to the IBM Informix Guide to SQL: Reference.
Related reference

INFORMIXCONCSMCFG (SQL Reference)

SET ENVIRONMENT statement
Use the SET ENVIRONMENT statement to specify settings for session environment
options that can affect subsequent queries submitted within the same routine, or
other operations of the current user session. For some options, this statement
overrides the default behavior set by a configuration parameter or by an
environment variable for the database server instance.

This is an extension to the ANSI/ISO standard for SQL. Informix supports the
EXTDIRECTIVES, FORCE_DDL_EXEC, IFX_AUTO_REPREPARE,
IFX_BATCHEDREAD_TABLE, OPTCOMPIND, RETAINUPDATELOCKS, and
USELASTCOMMITTED session environment options.

Syntax

�� SET ENVIRONMENT OPTCOMPIND DEFAULT
'integer '

EXTDIRECTIVES OFF
IFX_AUTO_REPREPARE '0'

ON
'1'
(1)

DEFAULT
FORCE_DDL_EXEC OFF

'0'
ON
'1'
'integer'

IFX_BATCHEDREAD_TABLE 0
1

RETAINUPDATELOCKS ' ALL '
USELASTCOMMITTED NONE

DIRTY READ
COMMITTED READ
(2)

CURSOR STABILITY

��

Notes:

1 DEFAULT is not valid for IFX_AUTO_REPREPARE

2 With RETAINUPDATELOCKS only

Element Description Restrictions Syntax

value Value to set for the specified environment
option, which this statement also enables

Must be valid for the specified
environment option

“Quoted String”
on page 4-188

2-630 IBM Informix Guide to SQL: Syntax

|
|
|
|

|||||||||

|

|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_260.htm#ids_sqr_260

Element Description Restrictions Syntax

integer OPTCOMPIND codes 0, 1, or 2 prioritize a
nested-loop join optimizer strategy.
FORCE_DDL_EXEC value > 1 sets a timeout
limit, in seconds.

Same as for value “Quoted String”
on page 4-188

Usage

SET ENVIRONMENT specifies environment options that can affect queries or
manage resource use by the routine in which the statement is executed. Some
options can override the setting of an environment variable or of a configuration
parameter during the session in which SET ENVIRONMENT is issued. For
example the SET ENVIRONMENT OPTCOMPIND ’2’ statement instructs the query
optimizer to use cost as the basis for subsequent join plans during the session,
rather than favoring nested-loop joins, even if this behavior conflicts with the
current 0 or 1 setting of the OPTCOMPIND environment variable.

The following keywords have similar effects for several session environment
options:
v OFF disables the specified option
v ON enables the option
v DEFAULT sets the option to its default value

The arguments that follow the option name depend on the syntax of the option.
The option name and its ON, OFF, and DEFAULT keywords do not require
quotation-mark delimiters, and are not case sensitive. All other arguments must be
enclosed between single (') or double (") quotation marks. If a quoted string is a
valid argument for a session environment option, the argument is case sensitive.

If you specify an unsupported environment option name, error -19840 is returned.
If you specify an unsupported integer or digit value as the setting for a valid
environment option, an option-specific error is returned (for example, error -19843,
Invalid IFX_AUTO_REPREPARE value specified). The SET ENVIRONMENT
statement can enable only the session environment options of Informix that are
described in sections that follow.

For information about the performance implications of the SET ENVIRONMENT
options, refer to the IBM Informix Performance Guide.

EXTDIRECTIVES Environment Option
You can use the EXTDIRECTIVES environment option of the SET ENVIRONMENT
statement to enable or disable external optimizer directives during the current
session.

The setting that you specify for EXTDIRECTIVES option can override the settings
of both the IFX_EXTDIRECTIVES environment variable and of the
EXT_DIRECTIVES configuration parameter in the ONCONFIG file for enabling or
disabling external optimizer directives. Other user sessions are not affected

To disable external optimizer directives during the current session, specify 0, off,
or OFF as the value for SET ENVIRONMENT EXTDIRECTIVES.

Chapter 2. SQL statements 2-631

|
|
|
|

To enable external optimizer directives during the current session, specify 1, on, or
ON as the value for SET ENVIRONMENT EXTDIRECTIVES.

To enable the default values specified in the EXT_DIRECTIVES configuration
parameter and the client-side IFX_EXTDIRECTIVES environment variable during
the current session, specify DEFAULT as the value for SET ENVIRONMENT
EXTDIRECTIVES.

For information on how to define external optimizer directives and save them in
the sysdirectives table of the system catalog, see the description of the SAVE
EXTERNAL DIRECTIVES statement. For more information about the
EXT_DIRECTIVES configuration parameter and the effects of its settings, see the
IBM Informix Administrator's Reference. For more information about the
IFX_EXTDIRECTIVES environment variable, see the IBM Informix Guide to SQL:
Reference, which also describes how the settings of both the EXT_DIRECTIVES
configuration parameter and of the IFX_EXTDIRECTIVES environment variable
can determine whether access to external directives is enabled or disabled for the
query optimizer.

FORCE_DDL_EXEC Environment Option
Use the FORCE_DDL_EXEC environment option of the SET ENVIRONMENT
statement to force out other transactions that have opened or have locks on the
tables involved in an ALTER FRAGMENT ON TABLE operation.

When the FORCE_DDL_EXEC environment option is enabled, the server also
closes the hold cursors during rollback by the session that performs the ALTER
FRAGMENT ON TABLE operation

The FORCE_DDL_EXEC option can have any of the following values:
v ’ON’, ’on’, or ’1’ to enable the server to force out transactions that are open or

have a lock on the table when an ALTER FRAGMENT ON TABLE statement is
issued until the server gets a lock and exclusive access on the table.

v ’OFF’, ’off’, or’0’ to prevent the server from forcing out transactions that are
open or have a lock on the table when an ALTER FRAGMENT ON TABLE
statement is issued. (The default value is off.)

v A numeric positive integer that represents an amount of time in seconds. The
numeric value enables the server to force out transactions until the server gets
exclusive access and exclusive locks on the table or until the specified time limit
occurs. If the server cannot force out transactions by the specified amount of
time, the server stops attempting to force out the transactions.

For example, to enable the FORCE_DDL_EXEC environment option to operate for
100 seconds when an ALTER FRAGMENT ON TABLE statement is issued, specify:
SET ENVIRONMENT FORCE_DDL_EXEC ’100’;

Important: When you use the FORCE_DDL_EXEC environment option, also use
the SET LOCK MODE TO WAIT statement to specify a period of time for the
server to force out any transactions in order to get exclusive access and a lock. If
you run SET LOCK MODE TO WAIT without specifying an amount of time, the
FORCE_DDL_EXEC option will not impact the alter fragment operation. For more
information, see “SET LOCK MODE statement” on page 2-655.

When you enable the FORCE_DDL_EXEC environment option, the server supports
multiple sessions performing ALTER FRAGMENT ON TABLE operations. If two
sessions perform ALTER FRAGMENT ON TABLE on a common table when the

2-632 IBM Informix Guide to SQL: Syntax

|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|

FORCE_DDL_EXEC option is enabled, the second session will get an error. If
another ALTER operation is occurring on the table, the ALTER FRAGMENT ON
TABLE operation with an enabled FORCE_DDL_EXEC environment option will get
an error.

The prerequisites for enabling the FORCE_DDL_EXEC option are:
v You must be user informix or have DBA privileges on the database.
v The database must be a logging database.

After you complete an ALTER FRAGMENT ON TABLE operation with the
FORCE_DDL_EXEC environment option enabled, you can turn the
FORCE_DDL_EXEC environment option off.

The onshowaudit utility displays an alter fragment event code (ALFR), which
identifies alter fragment events that ran when the FORCE_DDL_EXEC
environment option was enabled.

IFX_AUTO_REPREPARE Environment Option
Use the IFX_AUTO_REPREPARE environment option to reduce the incidence of
SQL error -710 in databases that dynamic SQL applications access. This error might
be issued when a cursor attempts to execute a prepared object or when an SPL
routine performs a query after DDL operations have changed the schema of a table
that the prepared object or the stored procedure references.

While the IFX_AUTO_REPREPARE option is enabled, you can avoid -710 errors
after some changes to the schema of a database table, such as adding an enabled
index. This feature can reduce the need to issue the PREPARE statement explicitly
to recompile prepared objects. or to issue the UPDATE STATISTICS statement
explicitly to reoptimize SPL routines. If IFX_AUTO_REPREPARE is enabled during
table schema changes that do not require reissuing the DESCRIBE statement, the
database server automatically identifies and recompiles prepared statements and
SPL routines that reference the modified table.

The value that the SET ENVIRONMENT IFX_AUTO_REPREPARE statement
specifies can enable or disable this automatic recompilation feature:
v If the specified IFX_AUTO_REPREPARE value is ’1’ or ’ON’ or ’on’, then

automatic recompilation is enabled.
v If the specified IFX_AUTO_REPREPARE value is ’0’ or ’OFF’ or ’off’, then

automatic recompilation is disabled.

The following statement enables automatic recompilation after DDL operations on
tables that prepared objects or SPL routines reference:
SET ENVIRONMENT IFX_AUTO_REPREPARE ’1’;

This overrides the setting of the AUTO_REPREPARE configuration parameter, if it
is zero or 'None', for the remainder of the current session, or until you reset
IFX_AUTO_REPREPARE.

The database server might not detect some changes to a table schema that
invalidate prepared objects or SPL routines, even when IFX_AUTO_REPREPARE is
enabled. For example, changes to a table schema by one session causes concurrent
sessions to receive error -710 when they attempt to read the same table after
obtaining a shared lock.

Chapter 2. SQL statements 2-633

|
|
|
|

|

|

|

|
|
|

|
|
|

Enabling IFX_AUTO_REPREPARE has no effect on prepared statements and SPL
routines that reference tables in which DDL operations change the number of
columns in the table, or change the data type of a column. After these schema
changes, you typically must reissue the DESCRIBE statement, the PREPARE
statement, and (for cursors associated with routines) the UPDATE STATISTICS
statement for any routines that reference the table whose schema has been
modified.

If you are satisfied with how your applications currently handle errors from
schema changes, you can disable automatic recompilation, as in this example:
SET ENVIRONMENT IFX_AUTO_REPREPARE ’OFF’;

If enabling the IFX_AUTO_REPREPARE session environment variable results in an
error, that error is passed back to the application.

For more information about the AUTO_REPREPARE configuration parameter, see
your IBM Informix Administrator's Reference. For a discussion of the effects of the
IFX_AUTO_REPREPARE and AUTO_REPREPARE settings on cursors and on
queries, see your IBM Informix Performance Guide.

IFX_BATCHEDREAD_TABLE Environment Option
Use the IFX_BATCHEDREAD_TABLE environment option of the SET
ENVIRONMENT statement of SQL to enable or disable the value of the
BATCHEDREAD_TABLE configuration parameter for a session.

Specify:
v ’1’ to enable light scans on compressed tables, tables with rows that are larger

than a page, and tables with VARCHAR, LVARCHAR, and NVARCHAR data
for a session

v ’0’ to disable these light scans for a session

For example, to enable light scans on large tables with VARCHAR data, specify:
SET ENVIRONMENT IFX_BATCHEDREAD_TABLE ’1’;

For information on light scans, see the IBM Informix Performance Guide.

OPTCOMPIND Environment Option
Use the OPTCOMPIND environment option of the SET ENVIRONMENT statement
to specify methods for the query optimizer to choose in subsequent join queries
and MERGE statements of the currently executing routine. This statement
overrides the system default setting of the OPTCOMPIND environment variable.

The OPTCOMPIND environment option can improve the performance of databases
that are used for both decision support and online transaction processing. Use this
option to specify join methods for the query optimizer to use in subsequent
queries.
v If the value is ’0’ then the query optimizer uses a nested-loop join where

possible, rather than a sort-merge join or a hash join.
v If the value is ’1’ and the transaction isolation level is Repeatable Read, the

optimizer behaves as in setting ’0’, as described above; for any other isolation
level, it behaves like setting ’2’, as described next.

2-634 IBM Informix Guide to SQL: Syntax

|

|
|
|

|

|
|
|

|

|

|

|

v If the value is ’2’ then the query optimizer does not necessarily prefer
nested-loop joins, but bases its decision entirely on the estimated cost, regardless
of the transaction isolation mode.

For example, the following statement replaces whatever OPTCOMPIND setting
was previously in effect with a purely cost-based optimizer strategy:
SET ENVIRONMENT OPTCOMPIND ’2’;

Use the DEFAULT keyword to restore the system default value, as described in the
OPTCOMPIND topic of the IBM Informix Guide to SQL: Reference.

For performance implications of the OPTCOMPIND option, see your IBM Informix
Performance Guide.

The scope of the OPTCOMPIND setting that the SET ENVIRONMENT
OPTCOMPIND statement specifies is local to the routine that issues the statement,
and persists until the routine exits, or until the routine issues another SET
ENVIRONMENT OPTCOMPIND statement, rather than persisting for the entire
session. After that routine terminates, the setting reverts to the system default
value that the OPTCOMPIND environment variable specifies.

No other option to SET ENVIRONMENT has a scope that is local to the routine.
The settings of all the other SET ENVIRONMENT options persist until the session
ends, or until another SQL statement resets their value.
Related concepts

Influencing the choice of a query plan (Performance Guide)
Related reference

OPTCOMPIND environment variable (SQL Reference)

RETAINUPDATELOCKS Environment Option
The RETAINUPDATELOCKS environment option can improve concurrency in
Dynamic SQL applications that include the SELECT ... FOR UPDATE statement.
This option can modify the behavior of the current transaction isolation level at
runtime if the session is using the Committed Read, Dirty Read, or Cursor Stability
isolation levels to enable (or to disable) the RETAIN UPDATE LOCKS clause of the
SET ISOLATION statement.

When the RETAINUPDATELOCKS environment option is enabled for the current
isolation level, the database server, by default, retains the update lock on a row
until the end of the transaction. Any update locks are held until the transaction is
committed or rolled back, whether or not the SET ISOLATION statement that
defined the isolation level included the RETAIN UPDATE LOCKS keywords. When
this option is set to ALL or to the name of the current Informix isolation level (if
this level is Committed Read, Dirty Read, or Cursor Stability), this setting prevents
concurrent users in other sessions from deleting or updating a row on which you
have placed an update lock, but that you have not yet updated.

By specifying NONE as the RETAINUPDATELOCKS setting, you disable this
feature and restore the default locking behavior. When NONE is the setting, unless
the isolation level has been set by a SET ISOLATION statement that explicitly
included the RETAIN UPDATE LOCKS keywords, the database server releases the
update lock at the next FETCH operation, or when the cursor is closed.

Chapter 2. SQL statements 2-635

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_609.htm#ids_prf_609
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_287.htm#ids_sqr_287

The SET ENVIRONMENT RETAINUPDATELOCKS statement has no effect on
update cursors if the Informix isolation level is REPEATABLE READ. Similarly out
of scope are transactions whose isolation level has been set by the SET
TRANSACTION statement, which defines ANSI/ISO-compliant isolation levels,
rather than Informix isolation levels. (For more information about Informix and
ISO isolation levels, see the topic “Comparing SET TRANSACTION with SET
ISOLATION” on page 2-670.)

The RETAINUPDATELOCKS option accepts any one of five settings that can affect
the current Informix isolation level, as well as the isolation levels established by
SET ISOLATION statements issued after the SET ENVIRONMENT statement. For
every setting except ’NONE’, the effect of the setting is to implicitly include the
RETAIN UPDATE LOCKS keywords in SET ISOLATION specifications:
v If the value is ’COMMITTED READ’ the database server retains any update lock

until the end of a transaction that uses the Committed Read isolation level.
v If the value is ’CURSOR STABILITY’, the database server retains any update lock

until the end of a transaction that uses the Cursor Stability isolation level.
v If the value is ’DIRTY READ’, the database server retains any update lock until

the end of a transaction that uses the Dirty Read isolation level.
v If the value is ’ALL’, the database server retains any update lock until the end of

the transaction that uses the Committed Read, Dirty Read, or Cursor Stability
isolation level.

v If the value is ’NONE’, the RETAINUPDATELOCKS feature is disabled until the
session ends, or until another SET ISOLATION or SET ENVIRONMENT
statement re-enables the retention of update locks. Under the NONE setting, if
your application defines an update cursor, the database server releases its
update locks at the next FETCH operation, or when the update cursor is closed.
Update locks are not retained, even if the Committed Read, Dirty Read, or
Cursor Stability isolation level had enforced RETAIN UPDATE LOCKS behavior
before the SET ENVIRONMENT RETAINUPDATELOCKS 'NONE' statement
executed.

These settings are not case-sensitive. For example, ’ALL’ and ’all’ have the same
effect.

The SET ENVIRONMENT RETAINUPDATELOCKS statement takes effect (by
resetting the session environment) when it is issued. It can be issued outside a
transaction. If the isolation level of the current transaction matches the setting
specified after the RETAINUPDATELOCKS keyword, the new setting can change
the RETAIN UPDATE LOCKS behavior of the transaction that is running when the
statement is issued.

For example, consider the following SET ENVIRONMENT and SET ISOLATION
statements:
BEGIN WORK; --Begin first transaction
SET ENVIRONMENT RETAINUPDATELOCKS ’COMMITTED READ’;
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SELECT ... FOR UPDATE ...
...
COMMIT WORK;
SET ENVIRONMENT RETAINUPDATELOCKS ’DIRTY READ’;
BEGIN WORK; --Begin second transaction
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SELECT ... FOR UPDATE ...
...
COMMIT WORK;

2-636 IBM Informix Guide to SQL: Syntax

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

In the first transaction above, the RETAINUPDATELOCKS setting in the SET
ENVIRONMENT statement makes the retention of update locks the default
behavior for the Committed Read isolation level. As a result, the database server
interprets the first SET ISOLATION statement, which specifies Committed Read
but has no RETAIN UPDATE LOCKS clause, as if it had included that clause:
SET ISOLATION TO

READ LAST COMMITTED RETAIN UPDATE LOCKS;

Because the SET ENVIRONMENT RETAINUPDATELOCKS statement in the
second transaction specifies DIRTY READ as its setting, however, it has no effect
on the second SET ISOLATION statement, which defines a Committed Read
isolation level. Each of the settings that correspond to a specific Informix isolation
level only affect update locks in transactions that use the same isolation level.

In cross-server SELECT ... FOR UPDATE distributed queries, but some
participating servers do not support update lock retention, the entire transaction
conforms to the isolation level of the session that issued the transaction. If that
session has an enabled RETAINUPDATELOCKS option in effect, it is also in effect
for the servers that support update lock retention, but other participating servers
follow their default behavior for releasing update locks.

The SET ENVIRONMENT RETAINUPDATELOCKS statement fails with error
-26199 if the database in which it is issued does not support transaction logging.

The sysdbopen() Procedure

The built-in sysdbopen() routine can issue the SET ENVIRONMENT
RETAINUPDATELOCKS statement when your session connects to a database in
which sysdbopen() is defined, as in the following example.
CREATE PROCEDURE PUBLIC.SYSDBOPEN()

SET PDQPRIORITY 10;
SET ENVIRONMENT RETAINUPDATELOCKS ’ALL’;

END PROCEDURE

After the example above takes effect, it prevents other sessions from modifying
rows on which you have placed an update lock, so that you can update the rows
later in the current transaction. Unless you issue another SQL statement within the
same session to disable the retention of update locks, the effects of a SET
ENVIRONMENT RETAINUPDATELOCKS statement that sysdbopen() issues
persists until the end of the session. This session-long persistence of the
RETAINUPDATELOCKS value that sysdbopen() specifies, however, is a special
case. Any other SPL routine can use the SET ENVIRONMENT statements to
specify update lock retention for the Committed Read, Dirty Read, or Cursor
Stability transaction isolation level, or for ’ALL’, but their effect persists only while
the routine is executing, and not after the routine exits.

Resetting the Default Update Lock Behavior

In releases of Informix earlier than version 11.50.xC6, the most recently executed
SET ISOLATION statement specified the default for subsequent transactions. If the
most recent SET ISOLATION statement included the RETAIN UPDATE LOCKS
clause, it was necessary to execute the SET ISOLATION statement for the same
isolation level (but without the RETAIN UPDATE LOCKS clause) to disable the
retention of update locks. Now, however, if SET ENVIRONMENT
RETAINUPDATELOCKS has enabled retention, you must explicitly run the SET

Chapter 2. SQL statements 2-637

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

ENVIRONMENT RETAINUPDATELOCKS ’NONE’ statement to restore non-retention as the
default behavior, as in the following example.
BEGIN WORK; --Begin first transaction
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SET ENVIRONMENT RETAINUPDATELOCKS ’COMMITTED READ’;
SELECT ... FOR UPDATE ...
...
COMMIT WORK;
BEGIN WORK; --Begin second transaction
SET ENVIRONMENT RETAINUPDATELOCKS ’NONE’;
SET ISOLATION TO COMMITTED READ LAST COMMITTED;
SELECT ... FOR UPDATE ...
...

In the first transaction above, the first SET ENVIRONMENT statement modifies
the behavior of the Committed Read isolation level of the current transaction to
retain update locks, even though the SET ISOLATION statement that established
that isolation level preceded the SET ENVIRONMENT statement in the lexical
order of statements within the transaction. The LAST COMMITTED specification
for this isolation level is not affected by this SET ENVIRONMENT statement.

The SET ISOLATION statement in the second transaction is interpreted literally,
however, because the default behavior was reset to NONE by the second SET
ENVIRONMENT statement.

Update Lock Retention in High Availability Clusters

In a high availability cluster environment, the RETAINUPDATELOCKS option is
valid only on a primary server. Applications that require the retention of update
locks must be run on the primary server if they include the SET ENVIRONMENT
RETAINUPDATELOCKS statement. When it is issued from a secondary server, the
statement has no effect on locking behavior, and the server returns an error.

USELASTCOMMITTED Environment Option
The USELASTCOMMITTED environment option can improve concurrency in
sessions that use the Committed Read, Dirty Read, Read Committed, or Read
Uncommitted isolation levels by reducing the risk of locking conflicts when two or
more sessions attempt to access the same row in a table whose locking granularity
is row-level locking.

The SET ENVIRONMENT USELASTCOMMITTED statement can specify whether
queries and other operations that encounter exclusive locks that other sessions
hold while changing data values should use the most recently committed version
of the data, rather than wait for the lock to be released.

This statement can override the USELASTCOMMITTED configuration parameter
setting for the duration of the current session. You can use the SET ISOLATION
statement to override the USELASTCOMMITTED session environment setting.

The USELASTCOMMITTED option can have any one of four values:
v If the value is ’COMMITTED READ’ then the database server reads the most recently

committed version of the data when it encounters an exclusive lock while
attempting to read a row in the Committed Read or Read Committed isolation
level.

2-638 IBM Informix Guide to SQL: Syntax

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

v If the value is ’DIRTY READ’ then the database server reads the most recently
committed version of the data if it encounters an exclusive lock while
attempting to read a row in the Dirty Read or Read Uncommitted isolation level.

v If the value is ’ALL’ then the database server reads the most recently committed
version of the data if it encounters an exclusive lock while attempting to read a
row in the Committed Read, Dirty Read, Read Committed, or Read
Uncommitted isolation level.

v If the value is ’NONE’, this value disables the USELASTCOMMITTED feature
that can access the last committed version of data in a locked row. Under this
setting, if your session encounters an exclusive lock when attempting to read a
row in the Committed Read, Dirty Read, Read Committed, or Read
Uncommitted isolation level, your transaction cannot read that row until the
concurrent transaction that holds the exclusive lock is committed or rolled back.

For example, the following statements specify the Committed Read isolation mode
and replace the explicit or default USELASTCOMMITTED configuration parameter
setting with a setting that reads the most recently committed version of the data in
rows on which concurrent readers hold an exclusive lock:
SET ISOLATION COMMITTED READ;
SET ENVIRONMENT USELASTCOMMITTED ’ALL’;

Any SPL routine can use these statements to specify the Committed Read Last
Committed transaction isolation level during a session. These statements enable
SQL operations that read data to use the last committed version when an exclusive
lock is encountered during an operation that reads a row. This can avoid deadlock
situations or other locking errors when another session is attempting to modify the
same row. It does not reduce the risk of locking conflicts with other sessions that
are writing to tables, or with concurrent DDL transactions that hold implicit or
explicit locks on a user table or on a system catalog table.

For example, the following statements within a PUBLIC.sysdbopen or
user.sysdbopen procedure specify at connection time the Committed Read isolation
mode and replace the explicit or default USELASTCOMMITTED configuration
parameter setting with a setting that reads the most recently committed version of
the data in tables on which concurrent readers hold an exclusive lock:
SET ISOLATION COMMITTED READ;
SET ENVIRONMENT USELASTCOMMITTED ’ALL’;

Besides sysdbopen(), any SPL routine can use these statements to specify the
Committed Read Last Committed transaction isolation level during a session.
These statements enable SQL operations that read data to use the last committed
version when an exclusive lock is encountered during an operation that reads a
table. This can avoid deadlock situations or other locking errors when another
session is attempting to modify the same row or table. It does not reduce the risk
of locking conflicts with other sessions that are writing to tables, or with
concurrent DDL transactions that hold implicit or explicit locks on a user table or
on a system catalog table.

In cross-server distributed queries, if the isolation level of the session that issued
the query has the LAST COMMITTED isolation level option in effect, but one or
more of the participating databases does not support this LAST COMMITTED
feature, then the entire transaction conforms to the Committed Read or Dirty Read
isolation level of the session that issued the transaction, without the LAST
COMMITTED option enabled.

Chapter 2. SQL statements 2-639

For information about additional restrictions that can prevent a transaction from
reading the most recently committed data from a table locked by another
transaction while USELASTCOMMITTED is enabled, see “The LAST COMMITTED
Option to Committed Read” on page 2-651.

For more information about the USELASTCOMMITTED configuration parameter,
see your IBM Informix Administrator's Reference.

Related Information

Related statements: , “SET ISOLATION statement” on page 2-648, “SET
PDQPRIORITY statement” on page 2-661
Related reference

USELASTCOMMITTED Configuration Parameter (Administrator's Reference)

SET EXPLAIN statement
Use the SET EXPLAIN statement to enable or disable the recording measurements
of queries in the current session, including the plan of the query optimizer, an
estimate of the number of rows returned, and the relative cost of the query.

Syntax

�� SET EXPLAIN OFF
ON

AVOID_EXECUTE
FILE TO 'filename '

filename_var
expr

��

Element Description Restrictions Syntax

expr Expression that returns a filename
specification

Must return a string satisfying the
restrictions on filename

“Expression” on page
4-40

filename Path and filename of the file to receive
the output. For the default, see
“Location of the Output File” on page
2-618.

Must conform to operating- system
rules. If an existing file, see “Using
the WITH APPEND Option” on
page 2-617.

“Quoted String” on
page 4-188

filename_var Host variable that stores filename Must be a character data type Language specific

Usage

Output from a SET EXPLAIN ON statement is directed to the appropriate file until
you issue a SET EXPLAIN OFF statement or until the program ends. If you do not
enter a SET EXPLAIN statement, then the default behavior is OFF, and the
database server does not generate measurements for queries.

The SET EXPLAIN statement executes during the database server optimization
phase, which occurs when you initiate a query. For queries that are associated with
a cursor, if the query is prepared and does not have host variables, optimization
occurs when you prepare it. Otherwise, optimization occurs when you open the
cursor.

2-640 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0186.htm#ids_adr_0186

The SET EXPLAIN statement provides various measurements of the work involved
in performing a query.

Option Effect

ON Generates measurements for each subsequent query and writes the results
to an output file in the current directory. If the file already exists, new
output is appended to the existing file.

AVOID_EXECUTE
Prevents a SELECT, INSERT, UPDATE, or DELETE statement from
executing while the database server prints the query plan to an output file

OFF Terminates activity of the SET EXPLAIN statement, so that measurements
for subsequent queries are no longer generated or written to the output file

FILE TO
Generates measurements for each subsequent query and allows you to
specify the location for the explain output file.

The following example writes the query plan in the default sqexplain.out file for
subsequent queries in the current session:
SET EXPLAIN ON;

The following example suspends writing query plans to a file in the current
session:
SET EXPLAIN OFF;

Using the AVOID_EXECUTE Option
The SET EXPLAIN ON AVOID_EXECUTE statement activates the Avoid Execute
option for a session, or until the next SET EXPLAIN OFF (or ON) without
AVOID_EXECUTE. The AVOID_EXECUTE keyword prevents DML statements
from executing; instead, the database server prints the query plan to an output file.
If you activate AVOID_EXECUTE for a query that contains a remote table, the
query does not execute at either the local or remote site.

The following example stores the output in the specified file.
SET EXPLAIN ON AVOID_EXECUTE;
SET EXPLAIN FILE TO '/tmp/explain.out’;

This form of the SET EXPLAIN statement is valid for XPS only.

When AVOID_EXECUTE is set, the database server sends a warning message. If
you are using DB-Access, it displays a text message
Warning! avoid_execute has been set

for any select, delete, update or insert query operations. From ESQL, the
sqlwarn.sqlwarn7 character is set to 'W'.

Use the SET EXPLAIN ON or the SET EXPLAIN OFF statement to turn off the
AVOID_EXECUTE option. The SET EXPLAIN ON statement turns off the
AVOID_EXECUTE option but continues to generate a query plan and writes the
results to an output file.

If you issue the SET EXPLAIN ON AVOID_EXECUTE statement in an SPL routine,
the SPL routine and any DDL statements still execute, but the DML statements
inside the SPL routine do not execute. The database server prints the query plan of

Chapter 2. SQL statements 2-641

the SPL routine to an output file. To turn off this option, you must execute the SET
EXPLAIN ON or the SET EXPLAIN OFF statement outside the SPL routine. If you
execute the SET EXPLAIN ON AVOID_EXECUTE statement before you execute an
SPL routine, the DML statements inside the SPL routine do not execute, and the
database server does not print a query plan of the SPL routine to an output file.

Nonvariant functions in a query are still evaluated when AVOID_EXECUTE is in
effect, because the database server calculates these functions before optimization.

For example, the func() function is evaluated, even though the following SELECT
statement is not executed:
SELECT * FROM orders WHERE func(10) > 5;

For other performance implications of the AVOID_EXECUTE option, see your IBM
Informix Performance Guide.

If you execute the SET EXPLAIN ON AVOID_EXECUTE statement before you
open a cursor in an Informix ESQL/C program, each FETCH operation returns the
message that the row was not found. If you execute SET EXPLAIN ON
AVOID_EXECUTE after an Informix ESQL/C program opens a cursor, however,
this statement has no effect on the cursor, which continues to return rows.

Using the FILE TO Option
When you execute a SET EXPLAIN FILE TO statement, explain output is implicitly
turned on. The default filename for the output is sqexplain.out until changed by a
SET EXPLAIN FILE TO statement. Once changed, the filename remains set until
the end of the session or until it is changed by another SET EXPLAIN FILE TO
statement.

The filename can be any valid combination of optional path and filename. If no
path component is specified, the file is placed in your current directory. The
permissions for the file are owned by the current user.

The output file that you specify in the SET EXPLAIN statement can be a new file
or an existing file. In Informix, if the FILE TO clause specifies an existing file, the
new output is appended to that file.

Default Name and Location of the Output File on UNIX
When you issue the SET EXPLAIN ON statement, the plan that the optimizer
chooses for each subsequent query is written to the sqexplain.out file by default.

If the output file does not exist when you issue SET EXPLAIN ON, the database
server creates the output file. If the output file already exists when you issue the
SET EXPLAIN ON statement, subsequent output is appended to the file.

If the client application and the database server are on the same computer, the
sqexplain.out file is stored in your current directory. If you are using a Version 5.x
or earlier client application and the sqexplain.out file does not appear in the
current directory, check your home directory for the file. When the current
database is on another computer, the sqexplain.out file is stored in your home
directory on the remote host.

2-642 IBM Informix Guide to SQL: Syntax

Default Name and Location of the Output File on Windows
On Windows, SET EXPLAIN ON writes the plan that the optimizer chooses for
each subsequent query to file %INFORMIXDIR%\sqexpln\username.out where
username is the user login.

SET EXPLAIN output
View the SET EXPLAIN output file to analyze information on an executed query,
including the directives set for the query, an estimate of the cost of the query, an
estimate of the number of returned rows, the order in which the server accessed
tables, index keys, join methods, and query statistics.

The following table lists terms that can appear in the output file and their
significance.

Table 2-4. Output file terms

Term Significance

Query Displays the executed query and indicates whether SET OPTIMIZATION
was set to HIGH or LOW. If you SET OPTIMIZATION to LOW, the
output displays the following uppercase string as the first line:
QUERY:{LOW}

If you SET OPTIMIZATION to HIGH, the output of SET EXPLAIN
displays the following uppercase string as the first line: QUERY:

Directives
followed

Lists the directives set for the query

If the syntax for a directive is incorrect, the query is processed without
the directive. In that case, the output shows DIRECTIVES NOT FOLLOWED in
addition to DIRECTIVES FOLLOWED.

For more information on the directives specified after this term, see the
“Optimizer Directives” on page 5-35 or “SET OPTIMIZATION statement”
on page 2-659.

If a DELETE or UPDATE statement specifies an uncorrelated subquery in
the WHERE clause, the set of qualifying rows returned by the subquery
is materialized as a temporary table, and the output of SET EXPLAIN
displays within parentheses the following message: (Temp Table For
Subquery)

Estimated cost An estimate of the amount of work for the query

The optimizer uses an estimate to compare the cost of one path with
another. The estimate is a number the optimizer assigns to the selected
access method. This number does not translate directly into time and
cannot be used to compare different queries. It can be used, however, to
compare changes made for the same query. When data distributions are
used, a query with a higher estimate generally takes longer to run than
one with a smaller estimate.

In the case of a query and a subquery, two estimated cost figures are
returned; the query figure also includes the subquery cost. The subquery
cost is shown so that you can see the cost that is associated with only the
subquery.

Estimated
number of rows
returned

An estimate of the number of rows to be returned

This number is based on information in the system catalog tables.

Chapter 2. SQL statements 2-643

Table 2-4. Output file terms (continued)

Term Significance

Numbered list The order in which tables are accessed, followed by the access method
used (index path or sequential scan)

When a query involves table inheritance, all the tables are listed under
the supertable in the order in which they were accessed.

Index name The name of the index

For example, idx1 is the name of the following index:Index Name:
informix.idx1

Index keys
The columns used as filters or indexes; the column name used for the
index path or filter is indicated. The notation (Key Only) indicates that all
the desired columns are part of the index key, so a key-only read of the
index could be substituted for a read of the actual table.

The Lower Index Filter shows the key value where the index read begins;
and the Upper Index Filter is shown for the key value where the index
read stops. The Index Key Filters show filters that will be applied on
retrieved index key values. If the query uses an index self-join path, the
Index Self Join Keys shows the leading index key columns used as self-join
keys, and the Lower bound and Upper bound show the boundaries of the
leading index key columns.

Join method When the query involves a join between two tables, the join method that
the optimizer used (Nested Loop or Dynamic Hash) is shown at the
bottom of the output for that query.

When the query involves a dynamic join of two tables, if the output
contains the words Build Outer, the hash table is built on the first table
listed (called the build table). If the words Build Outer do not appear, the
hash table is built on the second table listed.

Query statistics When the EXPLAIN_STAT configuration parameter is set to 1, this
section shows the number of rows returned, the number of rows
estimated in the query plan, the time required, calls to iterator functions,
and the estimated cost of scan and join operations on table objects.

If the query uses a collating order other than the default for the DB_LOCALE
setting, then the DB_LOCALE setting and the name of the other locale that is the
basis for the collation in the query (as specified by the SET COLLATION
statement) are both included in the output file. Similarly, if an index is not used
because of its collation, the output file indicates this.

Complete-Connection Level Settings and Output Examples
The SET EXPLAIN statement supports complete-connection level settings.

The SET EXPLAIN statement supports complete-connection level settings. This means
that values in the local session environment at the time of connection are
propagated to all new or resumed transactions of the following types:
v transactions within the local database
v distributed transactions across databases of the same server instance
v distributed transactions across databases of two or more database server

instances
v global transactions with XA-compliant data sources that are registered in the

local database

2-644 IBM Informix Guide to SQL: Syntax

If you change the SET EXPLAIN setting within a transaction, the new value is
propagated back to the local environment and also to all subsequent new or
resumed transactions.

Examples of SET EXPLAIN Output

The following SQL statements cause Informix to write the query plans of the
UPDATE statement (and of its subquery) to the default sqexplain.out output file:
DATABASE stores_demo;
SET EXPLAIN ON;
UPDATE orders SET ship_charge = ship_charge + 2.00

WHERE customer_num IN
(SELECT orders.customer_num FROM orders

WHERE orders.ship_weight < 50);
CLOSE DATABASE;

The following information is displayed in the resulting output:
QUERY:

update orders set ship_charge = ship_charge + 2.00
where customer_num in
(select orders.customer_num from orders where

orders.ship_weight < 50)

Estimated Cost: 4
Estimated # of Rows Returned: 8

1) informix.orders: INDEX PATH

(1) Index Keys: customer_num (Serial, fragments: ALL)
Lower Index Filter: informix.orders.customer_num = ANY

Subquery:

Estimated Cost: 2
Estimated # of Rows Returned: 8
(Temp Table For Subquery)

1) informix.orders: SEQUENTIAL SCAN

Filters: informix.orders.ship_weight < 50.00

The next example is based on the following SQL statements, which include a
DELETE operation:
DATABASE stores_demo;
SET EXPLAIN ON;
DELETE FROM catalog WHERE stock_num IN
(SELECT stock.stock_num FROM stock, catalog WHERE

stock.stock_num = catalog.stock_num
AND stock.unit_price < 50);

CLOSE DATABASE;

Below is the resulting output:
QUERY:

DELETE FROM catalog WHERE stock_num IN
(SELECTstock.stock_num from stock, catalog

WHERE stock.stock_num = catalog.stock_num
AND stock.unit_price < 50);

Estimated Cost: 19
Estimated # of Rows Returned: 37

Chapter 2. SQL statements 2-645

1) ajay.catalog: INDEX PATH

(1) Index Keys: stock_num manu_code (Serial, fragments: ALL)
Lower Index Filter: ajay.catalog.stock_num = ANY

Subquery:

Estimated Cost: 12
Estimated # of Rows Returned: 44
(Temp Table For Subquery)

1) ajay.stock: SEQUENTIAL SCAN

Filters: ajay.stock.unit_price < $50.00

2) ajay.catalog: INDEX PATH

(1) Index Keys: stock_num manu_code
(Key-Only) (Serial, fragments: ALL)
Lower Index Filter:
ajay.stock.stock_num = ajay.catalog.stock_num

NESTED LOOP JOIN

Related Information

“SET OPTIMIZATION statement” on page 2-659, “UPDATE STATISTICS
statement” on page 2-715

For a description of the EXPLAIN and AVOID_EXECUTE optimizer directives, see
“Explain-Mode Directives” on page 5-43. For discussions of SET EXPLAIN and of
analyzing the output of the optimizer, see your IBM Informix Performance Guide.

External Table Operations in SET EXPLAIN Output
The Query Statistics section of SET EXPLAIN output provides information on
operations that are loading data from or unloading data to an external table.

The following codes in the Query Statistics section of the SET EXPLAIN output file
provides information on external tables:
v xlcnv identifies an operation that is loading data from an external table and

inserting the data into a base table. Here x = external table, l = loading, and cnv
= converter

v xucnv identifies an operation that is reading data from the base table and writing
to the file that the external table is pointing to. Here x = external table, u =
unloading, and cnv = converter

Examples

The following example shows a query in which an operating is loading data from
an external table and inserting the data into a base table:
QUERY: (OPTIMIZATION TIMESTAMP: 11-11-2009 12:55:20)

insert into items select * from ext_items

Estimated Cost: 5
Estimated # of Rows Returned: 68

1) informix.ext_items: SEQUENTIAL SCAN

Query statistics:

2-646 IBM Informix Guide to SQL: Syntax

Table map :

Internal name Table name

t1 items

type it_count time

xlread 1 00:00.00

type it_count time

xlcnv 67 00:00.00

type table rows_ins time

insert t1 67 00:00.00

The following example shows a query in which an operating is loading data from
an external table and inserting the data into a base table:
QUERY: (OPTIMIZATION TIMESTAMP: 11-11-2009 12:47:55)

select * from orders into external ord_ext
using (datafiles (’disk:/tmp/ord’))

Estimated Cost: 2
Estimated # of Rows Returned: 23

1) informix.orders: SEQUENTIAL SCAN

Query statistics:

Table map :

Internal name Table name

t1 orders

type table rows_prod est_rows rows_scan time est_cost

scan t1 23 23 23 00:00.00 3

type it_count time

xucnv 23 00:00.00

type it_count time

xuwrite 23 00:00.00

SET INDEXES statement
Use the SET INDEXES statement to enable or disable an index, or to change the
filtering mode of a unique index.

Only Informix supports this statement, which is an extension to the ANSI/ISO
standard for SQL.

Chapter 2. SQL statements 2-647

Syntax

�� SET INDEXES �

,

index
FOR table

ENABLED
DISABLED

(1) WITHOUT ERROR
FILTERING WITH ERROR

��

Notes:

1 Unique indexes only

Element Description Restrictions Syntax

table Table whose indexes are all to be enabled, disabled, or
changed in their filtering mode

Must exist “Identifier” on page
5-21

index Index to be enabled, disabled, or changed in its filtering
mode

Must exist “Identifier” on page
5-21

Usage

The SET INDEXES statement is a special case of the SET Database Object Mode
statement. The SET Database Object Mode statement can also enable or disable a
trigger or constraint, or can change the filtering mode of constraints and unique
indexes.

For the complete syntax and semantics of the SET INDEXES statement, see “SET
Database Object Mode statement” on page 2-599.

Do not confuse the SET INDEXES statement with the SET INDEX statement, which
was supported in releases earlier than Version 9.40. The Informix database server
ignores the SET INDEX statement in current releases.

Restrictions on Secondary Servers

In cluster environments, the SET INDEXES statement is not supported on
updatable secondary servers. (More generally, session-level index, trigger, and
constraint modes that the SET Database Object Mode statement specifies are not
redirected for UPDATE operations on table objects in databases of secondary
servers.)

SET ISOLATION statement
Use the SET ISOLATION statement to define the degree of concurrency among
processes that attempt to access the same rows simultaneously.

This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET ISOLATION
TO

�

2-648 IBM Informix Guide to SQL: Syntax

� REPEATABLE READ
COMMITTED READ

LAST COMMITTED RETAIN UPDATE LOCKS
CURSOR STABILITY
DIRTY READ

WITH WARNING

��

Usage

The SET ISOLATION statement is an Informix extension to the ANSI SQL-92
standard. The SET ISOLATION statement can change the enduring isolation level
for the session. If you want to set isolation levels through an ANSI-compliant
statement, use the SET TRANSACTION statement instead. For a comparison of
these two statements, see “SET TRANSACTION statement” on page 2-670.

The TO keyword is optional, and has no effect.

SET ISOLATION provides the same functionality as the ISO/ANSI-compliant SET
TRANSACTION statement for isolation levels of DIRTY READ (called
UNCOMMITTED in SET TRANSACTION), COMMITTED READ, and
REPEATABLE READ (called SERIALIZABLE in SET TRANSACTION).

The database isolation_level affects read concurrency when rows are retrieved from
the database. The isolation level specifies the phenomena that can occur during
execution of concurrent SQL transactions. The following phenomena are possible:
v Dirty Read. SQL transaction T1 modifies a row. SQL transaction T2 then reads

that row before T1 performs a COMMIT. If T1 then performs a ROLLBACK, T2
will have read a row that was never committed, and therefore can be considered
never to have existed.

v Non-Repeatable Read. SQL transaction T1 reads a row. SQL transaction T2 then
modifies or deletes that row and performs a COMMIT. If T1 then attempts to
reread that row, T1 might receive the modified value or discover that the row
has been deleted.

v Phantom Row. SQL transaction T1 reads the set of rows N that satisfy some
search condition. SQL transaction T2 then executes SQL statements that generate
one or more new rows that satisfy the search condition used by SQL transaction
T1. If T1 then repeats the original read with the same search condition, T1
receives a different set of rows.

The database server uses shared locks to support different levels of isolation
among processes attempting to access data.

The update or delete process always acquires an exclusive lock on the row that is
being modified. The level of isolation does not interfere with rows that you are
updating or deleting. If another process attempts to update or delete rows that you
are reading with an isolation level of Repeatable Read, that process is denied
access to those rows.

In Informix ESQL/C, cursors that are open when SET ISOLATION executes might
or might not use the new isolation level when rows are retrieved. Any isolation
level that was set from the time the cursor was opened until the application fetches
a row might be in effect. The database server might have read rows into internal
buffers and internal temporary tables using the isolation level that was in effect at
that time. To ensure consistency and reproducible results, close any open cursors
before you execute the SET ISOLATION statement.

Chapter 2. SQL statements 2-649

You can issue the SET ISOLATION statement from a client computer only after a
database is opened.

Complete-Connection Level Settings
The SET ISOLATION statement supports complete-connection level settings. This
means that values in the local session environment at the time of connection are
propagated to all new or resumed transactions. These can include the following
types of transactions:
v transactions within the local database,
v distributed transactions across databases of the same server instance,
v distributed transactions across databases of two or more database server

instances,
v global transactions with XA-compliant data sources that are registered in the

local database.

If you change the isolation level within a transaction, the new value is propagated
back to the local environment and also to all subsequent new or resumed
transactions.

Informix Isolation Levels
The following definitions explain the critical characteristics of each isolation level,
from the lowest level of isolation to the highest.

Using the Dirty Read Isolation Level
Use the Dirty Read option to copy rows from the database whether or not there
are locks on them. The program that fetches a row places no locks and it respects
none. Dirty Read is the only isolation level available to databases that do not
implement transaction logging.

This isolation level is most appropriate for static tables that are used for queries of
tables where data is not being modified, because it provides no isolation. With
Dirty Read, the program might return an uncommitted row that was inserted or
modified within a transaction that has subsequently rolled back, or a phantom row
that was not visible when you first read the query set, but that materializes in the
query set before a subsequent read within the same transaction. (Only the
Repeatable Read isolation level prevents access to phantom rows. Only Dirty Read
provides access to uncommitted rows from concurrent transactions that might
subsequently be rolled back.)

The optional WITH WARNING keywords instruct the database server to issue a
warning when DML operations that use the Dirty Read isolation level might return
an uncommitted row or a phantom row. The transaction in the following example
uses this isolation level:
BEGIN WORK;
SET ISOLATION TO DIRTY READ WITH WARNING;
...
COMMIT WORK;

The Dirty Read isolation level is sensitive to the current setting of the
USELASTCOMMITTED configuration parameter and of the
USELASTCOMMITTED session environment variable. For information about the
behavior of the Dirty Read isolation level when either of these are set to DIRTY
READ or to ALL, see “The LAST COMMITTED Option to Committed Read” on page
2-651.

2-650 IBM Informix Guide to SQL: Syntax

When you use High Availability Data Replication, the database server effectively
uses Dirty Read isolation on the HDR Secondary Server, regardless of the specified
SET ISOLATION or SET TRANSACTION isolation level, unless the
UPDATABLE_SECONDARY configuration parameter is enabled. For more
information about this topic, see “Isolation Levels for Secondary Data Replication
Servers” on page 2-655.

Using the Committed Read Isolation Level
Use the Committed Read option to guarantee that every retrieved row is
committed in the table at the time that the row is retrieved. This option does not
place a lock on the fetched row. Committed Read is the default level of isolation in
a database with logging that is not ANSI compliant.

Committed Read is appropriate when each row is processed as an independent
unit, without reference to other rows in the same table or in other tables.

The LAST COMMITTED Option to Committed Read:

Use the LAST COMMITTED keyword option of the Committed Read isolation
level to reduce the risk of exclusive row-level locks held by other sessions either
causing applications to fail with locking errors, or preventing applications from
reading a locked row until after a concurrent transaction is committed or rolled
back.

In contexts where an application attempts to read a row on which another session
holds an exclusive lock, these keywords instruct the database server to return the
most recently committed version of the row, rather than wait for the lock to be
released.

This feature takes effect implicitly in all user sessions that use the Committed Read
isolation level of the SET ISOLATION statement, or that use the Read Committed
isolation level of the ANSI/ISO-compliant SET TRANSACTION statement, under
any of the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’COMMITTED

READ’ or to ’ALL’

v if the SET ENVIRONMENT statement sets the USELASTCOMMITTED session
environment variable to ’COMMITTED READ’ or to ’ALL’.

This feature also takes effect implicitly in all user sessions that use the Dirty Read
isolation level of the SET ISOLATION statement, or that use the Read
Uncommitted isolation level of the ANSI/ISO-compliant SET TRANSACTION
statement, under any of the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’DIRTY READ’ or

to ’ALL’

v if the SET ENVIRONMENT statement sets the USELASTCOMMITTED session
environment variable to ’DIRTY READ’ or to ’ALL’.

Enabling this feature cannot eliminate the possibility of locking conflicts, but they
reduce the number of scenarios in which other sessions reading the same row can
cause an error. The LAST COMMITTED keywords are only effective with
concurrent read operations. They cannot prevent locking conflicts or errors that can
occur when concurrent sessions attempt to write to the same row.

This feature has no effect on Committed Read or Dirty Read behavior in contexts
where no “last committed" version of the table is available, including these:

Chapter 2. SQL statements 2-651

v The database does not support transaction logging
v The table was created with the LOCK MODE PAGE keywords, or has been

altered to have a locking mode of PAGE
v The IFX_DEF_TABLE_LOCKMODE environment variable is set to ‘PAGE'
v The DEF_TABLE_LOCKMODE configuration parameter is set to ‘PAGE'
v The LOCK TABLE statement has explicitly set an exclusive lock on the table
v An uncommitted DDL statement has implicitly set an exclusive lock on the table
v The table is a system catalog table on which an uncommitted DDL statement has

implicitly set an exclusive lock
v The table has columns of complex data types or of user-defined data types
v The table is a RAW table
v A DataBlade module is accessing the table
v The table was created using the Virtual Table Interface.

User-defined access methods are not required to support the LAST COMMITTED
feature.

The scope of LAST COMMITTED semantics is neither statement-based nor
transaction-based. This isolation level has the same instant-in-time scope that the
Committed Read isolation level has without the LAST COMMITTED option. For
example, when a query is executed twice within a single transaction with LAST
COMMITTED in effect, different results might be returned by the same query, if
other DML transactions that were operating on the same data are committed in the
interval between the two submissions of the query. This instantaneous nature of
the semantics of Committed Read and of Committed Read Last Committed exactly
implements the ANSI/ISO Read Committed isolation level.

The LAST COMMITTED feature does not support reading through table-level
locks. If the access plan for a query that uses the LAST COMMITTED feature
encounters a table-level lock in a table or index that it needs to access, the query
will return the following error codes:

SQL error code:
252: Cannot get system information for table.

ISAM error code:
113: ISAM error: the file is locked.

Using the Cursor Stability Isolation Level
Use the Cursor Stability option to place a shared lock on the fetched row, which is
released when you fetch another row or close the cursor. Another process can also
place a shared lock on the same row, but no process can acquire an exclusive lock
to modify data in the row. Such row stability is important when the program
updates another table based on the data it reads from the row.

If you set the isolation level to Cursor Stability, but you are not using a transaction,
the Cursor Stability acts like the Committed Read isolation level.

Using the Repeatable Read Isolation Level
Use the Repeatable Read option to place a shared lock on every row that is
selected during the transaction. Another process can also place a shared lock on a
selected row, but no other process can modify any selected row during your
transaction, nor insert a row that meets the search criteria of your query during
your transaction. If you repeat the query during the transaction, you reread the

2-652 IBM Informix Guide to SQL: Syntax

same information. The shared locks are released only when the transaction
commits or rolls back. Repeatable Read is the default isolation level in an
ANSI-compliant database.

Repeatable Read isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most.

Default Isolation Levels
The default isolation level for a particular database is established when you create
the database according to database type. The following list describes the default
isolation level for each database type.

Isolation Level
Database Type

Dirty Read
Default level in a database without logging

Committed Read
Default level in a logged database that is not ANSI compliant

Repeatable Read
Default level in an ANSI-compliant database

The default level remains in effect until you issue a SET ISOLATION statement.
After a SET ISOLATION statement executes, the new isolation level remains in
effect until one of the following events occurs:
v You enter another SET ISOLATION statement.
v You open another database that has a default isolation level different from the

level that your last SET ISOLATION statement specified.
v The program ends.

For a Informix database that is not ANSI-compliant, unless you explicitly set the
USELASTCOMMITTED configuration parameter, the LAST COMMITTED feature
is not in effect for the default isolation levels. The SET ENVIRONMENT statement
or the SET ISOLATION statement can override this default and enable LAST
COMMITTED for the current session.

Using the RETAIN UPDATE LOCKS Option
Use the RETAIN UPDATE LOCKS option to affect the behavior of the database
server when it handles a SELECT ... FOR UPDATE statement.

In a database with the isolation level set to Dirty Read, Committed Read, or
Cursor Stability, the database server places an update lock on a fetched row of a
SELECT ... FOR UPDATE statement. When you turn on the RETAIN UPDATE
LOCKS option, the database server retains the update lock until the end of the
transaction rather than releasing it at the next subsequent FETCH or when the
cursor is closed. This option prevents other users from placing an exclusive lock on
the updated row before the current user reaches the end of the transaction.

You can use this option to achieve the same locking effects but avoid the overhead
of dummy updates or the repeatable read isolation level.

You can turn this option on or off at any time during the current session.

You can turn the option off by resetting the isolation level without using the
RETAIN UPDATE LOCKS keywords, as in the following example.

Chapter 2. SQL statements 2-653

BEGIN WORK;
SET ISOLATION TO

COMMITTED READ LAST COMMITTED RETAIN UPDATE LOCKS;
...
COMMIT WORK;
BEGIN WORK;
SET ISOLATION TO COMMITTED READ LAST COMMITTED ;
...
COMMIT WORK;

Controlling Update Locks through the Session Environment

Another way to disable RETAIN UPDATE LOCKS behavior is to execute this SQL
statement:
SET ENVIRONMENT RETAINUPDATELOCKS ’NONE’;

This disables the RETAIN UPDATE LOCKS clause for the current transaction, and
for any subsequent transactions of the same session, by resetting the
RETAINUPDATELOCKS session environment variable.

The SET ENVIRONMENT RETAINUPDATELOCKS statement can also make the
retention of update locks the default behavior for either the Committed Read,
Cursor Stability, or Dirty Read isolation levels, or for all of these isolation levels,
regardless of whether the SET ISOLATION statement includes the RETAIN
UPDATE LOCKS clause.

For more information on update locks, see “RETAINUPDATELOCKS Environment
Option” on page 2-635 and “Locking Considerations” on page 2-703.

Turning the Option OFF During a Transaction:

If you set the RETAIN UPDATE LOCKS option to OFF after a transaction has
begun, but before the transaction has been committed or rolled back, several
update locks might still exist.

Switching OFF the feature does not directly release any update lock. When you
turn this option off, the database server reverts to normal behavior for the three
isolation levels. That is, a FETCH statement releases the update lock placed on a
row by the immediately preceding FETCH statement, and a closed cursor releases
the update lock on the current row.

Update locks placed by earlier FETCH statements are not released unless multiple
update cursors are present within the same transaction. In this case, a subsequent
FETCH could also release older update locks of other cursors.

Effects of Isolation Levels
You cannot set the transaction isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Dirty Read.

The data retrieved from a BYTE or TEXT column can vary, depending on the
transaction isolation level. Under Dirty Read or Committed Read levels of
isolation, a process can read a BYTE or TEXT column that is either deleted (if the
delete is not yet committed) or in the process of being deleted. Under these
isolation levels, deleted data is readable under certain conditions. For information
about these conditions, see the IBM Informix Administrator's Guide.

2-654 IBM Informix Guide to SQL: Syntax

|

|
|

|

|
|
|

|
|
|
|
|

|
|

When you use DB-Access, as you use higher levels of isolation, lock conflicts occur
more frequently. For example, if you use Cursor Stability, more lock conflicts occur
than if you use Committed Read.

Using a scroll cursor in an Informix ESQL/C transaction, you can force consistency
between your temporary table and the database table either by setting the level to
Repeatable Read or by locking the entire table during the transaction.

If you use a scroll cursor WITH HOLD in a transaction, you cannot force
consistency between your temporary table and the database table. A table-level
lock or locks that are set by Repeatable Read are released when the transaction is
completed, but the scroll cursor with hold remains open beyond the end of the
transaction. You can modify released rows as soon as the transaction ends, but
retrieved data in the temporary table might be inconsistent with the actual data.

Attention: Do not use nonlogging tables within a transaction. If you need to use a
nonlogging table within a transaction, either set the isolation level to Repeatable
Read or else lock the table in Exclusive mode to prevent concurrency problems.

Isolation Levels for Secondary Data Replication Servers
If the UPDATABLE_SECONDARY configuration parameter is disabled (by being
unset or by being set to zero), a secondary data replication server is read-only. In
this case, only the Dirty Read or Read Uncommitted transaction isolation levels are
available on High-Availability Data Replication (HDR) and Remote Standalone
Secondary (RSS) servers.

If the UPDATABLE_SECONDARY parameter is enabled (by being set to a valid
number of connections greater than zero), a secondary data replication server can
support the Read Committed, Committed Read, or Committed Read Last
Committed transaction isolation level, with or without the USELASTCOMMITTED
session environment variable of the SET ENVIRONMENT statement. Only DML
statements of SQL (the INSERT, UPDATE, and DELETE statements) can support
write operations on an updatable secondary server.

Shared Disk Secondary (SDS) servers, however, can support the Read Committed,
Committed Read, Committed Read Last Committed isolation levels, regardless of
their UPDATABLE_SECONDARY setting. For more information about the
UPDATABLE_SECONDARY configuration parameter, see the IBM Informix
Administrator's Reference.

Related Information

Related statements: “CREATE DATABASE statement” on page 2-97, “SET LOCK
MODE statement,” and “SET TRANSACTION statement” on page 2-670

For a discussion of how to set the transaction isolation level, see the IBM Informix
Guide to SQL: Tutorial.

SET LOCK MODE statement
Use the SET LOCK MODE statement to define how the database server handles a
process that tries to access a locked row or table.

This statement is an extension to the ANSI/ISO standard for SQL.

Chapter 2. SQL statements 2-655

Syntax

�� SET LOCK MODE TO NOT WAIT
WAIT

seconds

��

Element Description Restrictions Syntax

seconds Maximum number of seconds that a process waits for a
lock to be released before issuing an error

Valid only if shorter than
system default

“Literal Number”
on page 4-184

Usage

This statement can direct the response of the database server in the following ways
when a process tries to access a locked row or table.

Lock Mode
Effect

NOT WAIT
Database server ends the operation immediately and returns an error code.
This condition is the default.

WAIT Database server suspends the process until the lock releases.

WAIT seconds
Database server suspends the process until the lock releases or until the
waiting period ends. If the lock remains after the waiting period, the
operation ends and an error code is returned.

In the following example, the user specifies that if the process requests a locked
row, the operation should end immediately and an error code should be returned:
SET LOCK MODE TO NOT WAIT;

In the following example, the user specifies that the process should be suspended
until the lock is released:
SET LOCK MODE TO WAIT;

The next example sets an upper limit of 17 seconds on the length of any wait:
SET LOCK MODE TO WAIT 17;

WAIT Clause

The WAIT clause causes the database server to suspend the process until the lock
is released or until a specified number of seconds have passed without the lock
being released.

The database server protects against the possibility of a deadlock when you
request the WAIT option. Before the database server suspends a process, it checks
whether suspending the process could create a deadlock. If the database server
discovers that a deadlock could occur, it ends the operation (overruling your
instruction to wait) and returns an error code. In the case of either a suspected or
actual deadlock, the database server returns an error.

Cautiously use the unlimited waiting period that was created when you specify the
WAIT option without seconds. If you do not specify an upper limit, and the process

2-656 IBM Informix Guide to SQL: Syntax

that placed the lock somehow fails to release it, suspended processes could wait
indefinitely. Because a true deadlock situation does not exist, the database server
does not take corrective action.

In a network environment, the DBA uses the ONCONFIG parameter
DEADLOCK_TIMEOUT to establish a default value for seconds. If you use a SET
LOCK MODE statement to set an upper limit, your value applies only when your
waiting period is shorter than the system default.

Complete-Connection Level Settings
The SET LOCK MODE statement supports complete-connection level settings. This
means that values in the local session environment at the time of connection are
propagated to all new or resumed transactions. These can include the following
types of transactions:
v transactions within the local database,
v distributed transactions across databases of the same server instance,
v distributed transactions across databases of two or more database server

instances,
v global transactions with XA-compliant data sources that are registered in the

local database.

If you change the lock mode setting within a transaction, the new value is
propagated back to the local environment and also to all subsequent new or
resumed transactions.

In releases of Informix earlier than 9.40.UC8, the SET LOCK MODE statement did
not support complete-connection level settings. The process waited for the
specified number of seconds only if you acquired locks within the current database
server and a remote database server within the same transaction.

Related Information

Related statements: “LOCK TABLE statement” on page 2-454, “SET ISOLATION
statement” on page 2-648, “SET TRANSACTION statement” on page 2-670, and
“UNLOCK TABLE statement” on page 2-699

For a description of the two distinct meanings of the term lock mode in this
document, see the section “Locking Granularity” on page 2-457.

For a discussion of how to set the lock mode behavior of the database server, see
the IBM Informix Guide to SQL: Tutorial.

To avoid waiting in operations that attempt to read rows on which concurrent
sessions hold exclusive row-level locks, you can also use the LAST COMMITTED
feature, either by setting it explicitly in the SET ISOLATION COMMITTED READ
statement, or by setting the USELASTCOMMITTED configuration parameter or the
USELASTCOMMITTED session environment option. For more information about
the LAST COMMITTED feature, see the section “Using the Committed Read
Isolation Level” on page 2-651.

SET LOG statement
Use the SET LOG statement to change your database logging mode from buffered
transaction logging to unbuffered transaction logging or vice versa.

Chapter 2. SQL statements 2-657

This statement is an extension to the ANSI/ISO standard for SQL. Unlike most
extensions, the SET LOG statement is not valid in an ANSI-compliant database.

Syntax

�� SET
BUFFERED

LOG ��

Usage

You activate transaction logging when you create a database or add logging to an
existing database. These transaction logs can be buffered or unbuffered.

Buffered logging is a type of logging that holds transactions in a memory buffer
until the buffer is full, regardless of when the transaction is committed or rolled
back. The database server provides this option to speed up operations by reducing
the number of disk writes.

Attention: You gain a marginal increase in efficiency with buffered logging, but
you incur some risk. In the event of a system failure, the database server cannot
recover any completed transactions in the memory buffer that were not written to
disk.

The SET LOG statement in the following example changes the transaction logging
mode to buffered logging:
SET BUFFERED LOG;

Unbuffered logging is a type of logging that does not hold transactions in a
memory buffer. As soon as a transaction ends, the database server writes the
transaction to disk. If a system failure occurs when you are using unbuffered
logging, you recover all completed transactions, but not those still in the buffer.
The default condition for transaction logs is unbuffered logging.

The SET LOG statement in the following example changes the transaction logging
mode to unbuffered logging:
SET LOG;

The SET LOG statement redefines the mode for the current session only. The
default mode, which the database administrator sets with the ondblog utility,
remains unchanged.

The buffering option does not affect retrievals from external tables. For distributed
queries, a database with logging can retrieve only from databases with logging, but
it makes no difference whether the databases use buffered or unbuffered logging.

An ANSI-compliant database cannot use buffered logging.

You cannot change the logging mode of ANSI-compliant databases. If you created
a database with the WITH LOG MODE ANSI keywords, you cannot later use the
SET LOG statement to change the logging mode to buffered or unbuffered
transaction logging.

Related Information

Related statement: “CREATE DATABASE statement” on page 2-97

2-658 IBM Informix Guide to SQL: Syntax

SET OPTIMIZATION statement
Use the SET OPTIMIZATION statement to specify how much time the query
execution optimizer spends developing a query plan or specifying optimization
goals. The SET OPTIMIZATION statement is an extension to the ANSI/ISO
standard for SQL

Syntax

�� SET OPTIMIZATION HIGH
LOW

FIRST_ROWS
ALL_ROWS

��

Usage

You can execute a SET OPTIMIZATION statement at any time. The specified
optimization level carries across databases on the current database server. The
option that you specify remains in effect until you issue another SET
OPTIMIZATION statement or until the program ends. The default database server
optimization level for the amount of time that the query optimizer spends
determining the query plan is HIGH.

On Informix, the default optimization goal is ALL_ROWS. Although you can set
only one option at a time, you can issue two SET OPTIMIZATION statements: one
that specifies the time the optimizer spends to determine the query plan and one
that specifies the optimization goal of the query.

HIGH and LOW Options
The HIGH and LOW options determine how much time the query optimizer
spends to determine the query plan:
v HIGH

This option directs the optimizer to use a sophisticated cost-based algorithm that
examines all reasonable query-plan choices and selects the best overall
alternative.
For large joins, this algorithm can incur more overhead than you desire. In
extreme cases, you can run out of memory.

v LOW
This option directs the optimizer to use a less sophisticated but faster to design
optimization algorithm, based on the lowest-cost path at each stage. This
algorithm eliminates unlikely join strategies during the early stages of
optimization and reduces the time and resources spent during optimization.
When you specify the LOW level of optimization, the database server might not
select the optimal strategy because that strategy was eliminated from
consideration during the early stages of the algorithm.

FIRST_ROWS and ALL_ROWS Options
The FIRST_ROWS and ALL_ROWS options relate to the optimization goal of the
query:
v FIRST_ROWS

Chapter 2. SQL statements 2-659

This option directs the optimizer to choose the query plan that returns the first
result record as soon as possible, ignoring plans that would sort records or
create a hash table.

v ALL_ROWS
This option directs the optimizer to choose the query plan that returns all the
records as quickly as possible.

You can also specify the optimization goal of a specific query with the
optimization-goal directive. For more information, see “Optimizer Directives” on
page 5-35.

Optimizing SPL Routines
For SPL routines that remain unchanged or change only slightly, you might want
to set the SET OPTIMIZATION statement to HIGH when you create the SPL
routine. This step stores the best query plans for the SPL routine. Then execute a
SET OPTIMIZATION LOW statement before you execute the SPL routine. The SPL
routine then uses the optimal query plans and runs at the more cost-effective rate.

Examples
The following example shows optimization across a network. The central database
(on the midstate database server) is to have LOW optimization; the western
database (on the rockies database server) is to have HIGH optimization.
CONNECT TO ’central@midstate’;
SET OPTIMIZATION LOW;
SELECT * FROM customer;
CLOSE DATABASE;
CONNECT TO ’western@rockies’;
SET OPTIMIZATION HIGH;
SELECT * FROM customer;
CLOSE DATABASE;
CONNECT TO ’wyoming@rockies’;
SELECT * FROM customer;

Here the wyoming database is to have HIGH optimization because it resides on
the same database server as the western database. The code does not need to
re-specify the optimization level for the wyoming database because the wyoming
database resides on the rockies database server like the western database.

The following example directs the Informix optimizer to use the most time to
determine a query plan, and to then return the first rows of the result as soon as
possible:
SET OPTIMIZATION LOW;
SET OPTIMIZATION FIRST_ROWS;
SELECT lname, fname, bonus

FROM sales_emp, sales
WHERE sales.empid = sales_emp.empid AND bonus > 5,000

ORDER BY bonus DESC;

Related Information

Related statements: “SET EXPLAIN statement” on page 2-640, “SET
ENVIRONMENT statement” on page 2-630, and “UPDATE STATISTICS statement”
on page 2-715

For information on other methods by which you can alter the query plan of the
Informix optimizer, see “Optimizer Directives” on page 5-35.

2-660 IBM Informix Guide to SQL: Syntax

For more information on how to optimize queries, see your IBM Informix
Performance Guide.

SET PDQPRIORITY statement
The SET PDQPRIORITY statement enables an application to set the query priority
level dynamically within a routine. The SET PDQPRIORITY statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� SET PDQPRIORITY DEFAULT
LOW
OFF
HIGH
resources

��

Element Description Restrictions Syntax

resources Integer that specifies the query priority
level and the percent of resources to
process the query

Can range from -1 to 100. See also
“Allocating Database Server
Resources” on page 2-662.

“Literal Number”
on page 4-184

Usage

The SET PDQPRIORITY statement overrides the PDQPRIORITY environment
variable (but has lower precedence than the MAX_PDQPRIORITY configuration
parameter). The scope of SET PDQPRIORITY is local to the routine, and does not
affect other routines within the same session. When a routine that issues this
statement terminates, the setting reverts to the system default value.

Set PDQ priority to a value less than the quotient of 100 divided by the maximum
number of prepared statements. For example, if two prepared statements are
active, you should set the PDQ priority to less than 50.

For example, assume that the DBA sets the MAX_PDQPRIORITY parameter to 50.
Then a user enters the following SET PDQPRIORITY statement to set the query
priority level to 80 percent of resources:
SET PDQPRIORITY 80;

When it processes the query, the database server uses the MAX_PDQPRIORITY
value to factor the query priority level set by the user. The database server silently
processes the query with a priority level of 40. This priority level represents 50
percent of the 80 percent of resources that the user specifies.

The following keywords are supported by the SET PDQPRIORITY statement.

Keyword
Effect

DEFAULT
Uses the setting of the PDQPRIORITY environment variable

LOW Data values are fetched from fragmented tables in parallel. (In Informix,
when you specify LOW, the database server uses no other forms of
parallelism.)

Chapter 2. SQL statements 2-661

OFF PDQ is turned off (Informix only). The database server uses no parallelism.
OFF is the default if you use neither the PDQPRIORITY environment
variable nor the SET PDQPRIORITY statement.

HIGH The database server determines an appropriate PDQPRIORITY value,
based on factors that include the number of available processors, the
fragmentation of the tables being queried, the complexity of the query, and
others. IBM reserves the right to change the performance behavior of
queries when HIGH is specified in future releases.

Allocating Database Server Resources
You can specify an integer in the range from -1 to 100 to indicate a query priority
level as the percent of database server resources to process the query. Resources
include the amount of memory and the number of processors. The higher the
number you specify, the more resources the database server uses.

Use of more resources usually indicates better performance for a given query.
Using excessive resources, however, can cause contention for resources and remove
resources from other queries, so that degraded performance results. With the
resources option, the following values are numeric equivalents of the keywords that
indicate query priority level.

Value Equivalent Keyword-Priority Level

-1 DEFAULT

0 OFF

1 LOW

For Informix, the following statements are equivalent. The first statement uses the
keyword LOW to establish a low query-priority level. The second uses a value of 1
in the resources parameter to establish a low query-priority level.
SET PDQPRIORITY LOW;

SET PDQPRIORITY 1;

SET ROLE statement
Use the SET ROLE statement to enable the privileges of a user-defined role. This
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET ROLE role
'role'
NULL
NONE
DEFAULT

��

Element Description Restrictions Syntax

role Name of a role to
be enabled

Must already exist in the database and must already have
been granted to the user, but cannot be a built-in role. If
enclosed between quotation marks, role is case sensitive.

“Owner Name” on
page 5-45;

2-662 IBM Informix Guide to SQL: Syntax

Usage

Any user who is granted a role can enable the role by using the SET ROLE
statement. You can only enable one role at a time. If you execute the SET ROLE
statement after a role is already set, the new role replaces the old role as the
current role.

The SET ROLE statement returns an error if the user does not currently hold the
role, or if the role is a built-in role. (The access privileges held by a built-in role,
such as the EXTEND role or the DBSECADM role, are always in effect, and do not
require activation by the SET ROLE statement if the user holds that role.)

Users can be granted a default role for the database instance when the DBA issues
the GRANT DEFAULT ROLE statement. If no default role exists for the user in the
current database, role NULL or NONE is assigned by default. In this context,
NULL and NONE are synonyms. Roles NULL and NONE can have no privileges.
To set your role to NULL or NONE disables your current role.

When you use SET ROLE to enable a role, you gain the privileges of the role, in
addition to the privileges of PUBLIC and your own privileges. If a role is granted
to another role that has been assigned to you, you gain the privileges of both roles,
in addition to any privileges of PUBLIC and your own privileges.

After SET ROLE executes successfully, the specified role remains effective until the
current database is closed or the user executes another SET ROLE statement. Only
the user, however, not the role, retains ownership of any database objects, such as
tables, that were created during the session.

A role is in scope only within the current database. You cannot use privileges that
you acquire from a role to access data in another database. For example, if you
have privileges from a role in the database named acctg, and you execute a
distributed query over the databases named acctg and inventory, your query
cannot access the data in the inventory database unless you were also granted
appropriate privileges in the inventory database. As a security precaution,
discretionary access privileges that the user holds only from a role cannot provide
access to tables outside the current database through a view or through the action
of a trigger.

If your database supports explicit transactions, you must issue the SET ROLE
statement outside a transaction. If your database is ANSI-compliant, SET ROLE
must be the first statement of a new transaction. If the SET ROLE statement is
executed while a transaction is active, an error occurs. For more information about
SQL statements that initiate an implicit transaction, see “SET SESSION
AUTHORIZATION and Transactions” on page 2-666.

If the SET ROLE statement is executed as a part of a trigger or SPL routine, and
the owner of the trigger or SPL routine was granted the role with the WITH
GRANT OPTION, the role is enabled even if you are not granted the role. For
example, this code fragment sets a role and then relinquishes it after a query:
EXEC SQL set role engineer;
EXEC SQL select fname, lname, project

INTO :efname, :elname, :eproject FROM projects
WHERE project_num > 100 AND lname = ’Larkin’;

printf ("%s is working on %s\n", efname, eproject);
EXEC SQL set role NULL;

Chapter 2. SQL statements 2-663

Setting the Default Role
The DBA or the owner of the database can issue the GRANT DEFAULT ROLE
statement to assign an existing role as the default role to a specified list of users or
to PUBLIC. Unlike a non-default role, the default role does not require the SET
ROLE statement to enable it. When a user is assigned to the default role, an
implicit connection to the database is granted to the user.

Each of the three statements in next example respectively performs one of the
following operations on a role:
v Declares a role called Engineer

v Assigns Select privileges on the locomotives table to the Engineer role
v Defines Engineer as the default role for the user jgould.
EXEC SQL CREATE ROLE ’Engineer’;
EXEC SQL GRANT SELECT ON locomotives TO ’Engineer’;
EXEC SQL GRANT DEFAULT ROLE ’Engineer’ TO jgould;

If jgould subsequently uses the SET ROLE statement to enable some other role,
then by executing the following statement, jgould replaces that role with Engineer
as the current role:
SET ROLE DEFAULT;

If you have no default role, SET ROLE DEFAULT makes NONE your current role,
leaving only the privileges that have been granted explicitly to your username or to
PUBLIC. After GRANT DEFAULT ROLE changes your default role to a new
default role, executing SET ROLE DEFAULT restores your most recently granted
default role, even if this role was not your default role when you connected to the
database.

If one default role is granted to PUBLIC, but a different role is granted as the
default role to an individual user, the individually-granted default role takes
precedence if that user issues SET ROLE DEFAULT or connects to the database.

Related Information

Related statements: “CREATE ROLE statement” on page 2-173, “DROP ROLE
statement” on page 2-338, “GRANT statement” on page 2-401, and “REVOKE
statement” on page 2-502

For a discussion of how to use roles, see the IBM Informix Guide to SQL: Tutorial.

SET SESSION AUTHORIZATION statement
The SET SESSION AUTHORIZATION statement lets you change the user name
under which database operations are performed in the current session.

Syntax

�� SET SESSION AUTHORIZATION TO 'user' ��

Element Description Restrictions Syntax

user User name by which database
operations will be performed in the
current session

Must be a valid user
name. Delimiters (') are
optional

“Owner Name” on
page 5-45

2-664 IBM Informix Guide to SQL: Syntax

Usage

This statement allows you to assume the identity of another user, including their
DAC and LBAC credentials.

Both the DBA and SETSESSIONAUTH access privilege are required to execute this
statement. Unless when you start the session you already hold the
SETSESSIONAUTH privilege for PUBLIC (or for the user whose name you specify
in the SET SESSION AUTHORIZATION statement), and you also hold the DBA
privilege, this statement fails with an error.

If the database server has been converted from a legacy version that did not
support label-based access control, users who held the DBA privilege are
automatically granted the SETSESSIONAUTH access privilege for PUBLIC in the
migration process. If the database server has been initialized as a version that
supports LBAC security policies, users who hold the DBSECADM role can grant
the SETSESSIONAUTH privilege to other users. Because the security credentials of
each user determine what data rows can be accessed in protected tables, the
DBSECADM should exercise care in granting the SETSESSIONAUTH privilege and
in specifying its scope.

The new identity remains in effect in the current database until you execute SET
SESSION AUTHORIZATION again, or until you close the current database. When
you use this statement, the specified user must have the Connect privilege on the
current database. In addition the DBA cannot set the new authorization identifier
to PUBLIC, nor to any existing role in the current database.

Setting a session to another user causes a change in a user name in the current
active database server. The specified user, as far as this database server process is
concerned, is completely disposessed of any privileges while accessing the
database server through some administrative utility. Additionally, the new session
user is not able to initiate any administrative operation (execute a utility, for
example) by virtue of the acquired identity.

After the SET SESSION AUTHORIZATION statement successfully executes, any
role enabled by a previous user is relinquished. You must use the SET ROLE
statement if you wish to assume a role that has been granted to the specified user.
The database server does not enable the default role of user automatically.

After SET SESSION AUTHORIZATION successfully executes, the database server
puts any owner-privileged UDRs that the DBA created while using the new
authorization identifier in RESTRICTED mode, which can affect access privileges
during operations of the UDR on objects in remote databases. For more
information on RESTRICTED mode, see the sysprocedures system catalog table in
the IBM Informix Guide to SQL: Reference.

When you assume the identity of another user by executing the SET SESSION
AUTHORIZATION statement, you can perform operations in the current database
only. You cannot perform an operation on a database object outside the current
database, such as a remote table. In addition, you cannot execute a DROP
DATABASE or RENAME DATABASE statement, even if the database is owned by
the real or effective user.

You can use this statement either to obtain access to the data directly or to grant
the database-level or table-level privileges needed for the database operation to

Chapter 2. SQL statements 2-665

proceed. The following example shows how to use the SET SESSION
AUTHORIZATION statement to obtain table-level privileges:
SET SESSION AUTHORIZATION TO ’cathl’;
GRANT ALL ON customer TO mary;
SET SESSION AUTHORIZATION TO ’mary’;
UPDATE customer SET fname = ’Carl’ WHERE lname = ’Pauli’;

If you enclose user in quotation marks, the name is case sensitive and is stored
exactly as you typed it. In an ANSI-compliant database, if you do not use
quotation marks as delimiters, the name is stored in uppercase letters.
Related reference

SYSPROCEDURES (SQL Reference)

SET SESSION AUTHORIZATION and Transactions
If your database is not ANSI compliant, you must issue the SET SESSION
AUTHORIZATION statement outside a transaction. If you issue the statement
within a transaction, you receive an error message.

In an ANSI-compliant database, you can execute the SET SESSION
AUTHORIZATION statement only if you have not executed a statement that
initiates an implicit transaction (for example, CREATE TABLE or SELECT).
Statements that do not initiate an implicit transaction are statements that do not
acquire locks or log data (for example, SET EXPLAIN and SET ISOLATION). You
can execute the SET SESSION AUTHORIZATION statement immediately after a
DATABASE statement or a COMMIT WORK statement.

Related Information

Related statements: “CONNECT statement” on page 2-83, “DATABASE statement”
on page 2-285, “GRANT statement” on page 2-401, “REVOKE statement” on page
2-502, and “SET ROLE statement” on page 2-662

SET STATEMENT CACHE statement
Use the SET STATEMENT CACHE statement to turn caching on or off for the
current session. This statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� SET STATEMENT CACHE ON
OFF

��

Usage

You can use the SET STATEMENT CACHE statement to turn caching in the SQL
statement cache ON or OFF for the current session. The statement cache stores in a
buffer identical statements that are repeatedly executed in a session. Only data
manipulation language (DML) statements (DELETE, INSERT, UPDATE, or
SELECT) can be stored in the statement cache.

This mechanism allows qualifying statements to bypass the optimization stage and
parsing stage, and avoid recompiling, which can reduce memory consumption and
can improve query processing time.

2-666 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_053.htm#ids_sqr_053

Precedence and Default Behavior
SET STATEMENT CACHE takes precedence over the STMT_CACHE environment
variable and the STMT_CACHE configuration parameter. You must enable the SQL
statement cache, however, either by setting the STMT_CACHE configuration
parameter or by using the onmode utility, before the SET STATEMENT CACHE
statement can execute successfully.

When you issue a SET STATEMENT CACHE ON statement, the SQL statement
cache remains in effect until you issue a SET STATEMENT CACHE OFF statement
or until the program ends. If you do not use SET STATEMENT CACHE, the
default behavior depends on the setting of the STMT_CACHE environment
variable or the STMT_CACHE configuration parameter.

Turning the Cache ON
Use the ON option to enable the SQL statement cache. When the SQL statement
cache is enabled, each statement that you execute passes through the SQL
statement cache to determine if a matching cache entry is present. If so, the
database server uses the cached entry to execute the statement.

If the statement has no matching entry, the database server tests to see if it
qualifies for entry into the cache. For the conditions a statement must meet to enter
into the cache, see “Statement Qualification” on page 2-668.

Restrictions on Matching Entries in the SQL Statement Cache
When the database server considers whether or not a statement is identical to a
statement in the SQL statement cache, the following items must match:
v Lettercase
v Comments
v White space
v Optimization settings

– SET OPTIMIZATION statement options
– Optimizer directives
– The SET ENVIRONMENT OPTCOMPIND statement options or settings of the

OPTCOMPIND environment variable, or of the OPTCOMPIND configuration
parameter in the ONCONFIG file. (If conflicting settings exist for the same
query, this is the descending order of precedence.)

v Parallelism settings
– SET PDQPRIORITY statement options or settings of the PDQPRIORITY

environment variable
v Query text strings
v Literals

If an SQL statement is semantically equivalent to a statement in the SQL statement
cache but has different literals, the statement is not considered identical and
qualifies for entry into the cache. For example, the following SELECT statements
are not identical:
SELECT col1, col2 FROM tab1 WHERE col1=3;

SELECT col1, col2 FROM tab1 WHERE col1=5;

In this example, both statements are entered into the SQL statement cache.

Chapter 2. SQL statements 2-667

Host-variable names, however, are insignificant. For example, the following select
statements are considered identical:
SELECT * FROM tab1 WHERE x = :x AND y = :y;

SELECT * FROM tab1 WHERE x = :p AND y = :q;

In the previous example, although the host names are different, the statements
qualify, because the case, query text strings, and white space match. Performance
does not improve, however, because each statement has already been parsed and
optimized by the PREPARE statement.

Turning the Cache OFF
The OFF option disables the SQL statement cache. When you turn caching OFF for
your session, no SQL statement cache code is executed for that session.

The SQL statement cache is designed to save memory in environments where
identical queries are executed repeatedly and schema changes are infrequent. If this
is not the case, you might want to turn the SQL statement cache off to avoid the
overhead of caching. For example, if you have little cache cohesion, that is, when
relatively few matches but many new entries into the cache exist, the cache
management overhead is high. In this case, turn the SQL statement cache off.

If you know that you are executing many statements that do not qualify for the
SQL statement cache, you might want to disable it and avoid the overhead of
testing to see if each DML statement qualifies for insertion into the cache.

Statement Qualification
A statement that can be cached in the SQL statement cache (and consequently, one
that can match a statement that already appears in the SQL statement cache) must
meet all of the following conditions:
v It must be a SELECT, INSERT, UPDATE, or DELETE statement.
v It must contain only non-opaque built-in data types (excluding BLOB,

BOOLEAN, BYTE, CLOB, LVARCHAR, and TEXT).
v It must contain only built-in operators.
v It cannot contain user-defined routines.
v It cannot contain temporary or remote tables.
v It cannot contain subqueries in the Projection list.
v It cannot be part of a multistatement PREPARE.
v It cannot have user-privilege restrictions on target columns.
v In an ANSI-compliant database, it must contain fully qualified object names.
v It cannot require re-optimization.

Requiring Re-Execution Before Cache Insertion
A qualified SQL statement is fully inserted into the SQL statement cache only after
the database server counts a configurable number of references (which are
sometimes called "hits") to that statement. For the default value of zero, a qualified
DML statement does not need to be re-executed before it is cached.

Using the STMT_CACHE_HITS configuration parameter, however, the database
administrator (DBA) can specify that qualified DML statements must be executed a
minimum number of times before they are inserted into the statement cache. By

2-668 IBM Informix Guide to SQL: Syntax

setting this to a value of one (or to a larger value), the DBA excludes one-time-only
ad hoc queries from full insertion into the SQL statement cache, thereby lowering
cache-management overhead.

Enabling or Disabling Insertions After Size Exceeds Configured
Limit
The DBA can prevent the insertion of additional qualified SQL statements into the
statement cache when the cache size reaches its configured size (as specified by the
STMT_CACHE_SIZE configuration parameter) by setting the configuration
parameter STMT_CACHE_NOLIMIT to zero.

Prepared Statements and the Statement Cache
Prepared statements are inherently cached for a single session. That is, if a
prepared statement is executed many times (or if a single cursor is opened many
times), the same prepared query plan is used by that session. If a session prepares
a statement and then executes it many times, its performance is essentially
unaffected by using the SQL statement cache, because the statement is optimized
just once, during the PREPARE statement.

If other sessions also prepare that same statement, however, or if the first session
prepares the statement several times, then the statement cache usually provides a
direct performance benefit, because the database server only calculates the query
plan once. Of course, the original session might gain a (small) benefit from the
statement cache, even if it prepares the statement only once, because other sessions
use less memory, and the database server does less work for the other sessions.

Examples

The following example turns on statement caching for the current session:
SET STATEMENT CACHE ON;

The following turns off statement caching for the current session:
SET STATEMENT CACHE OFF;

Related Information

For information on optimization settings, see “SAVE EXTERNAL DIRECTIVES
statement” on page 2-531, “SET OPTIMIZATION statement” on page 2-659, and
“Optimizer Directives” on page 5-35.

For information about the STMT_CACHE environment variable, see the IBM
Informix Guide to SQL: Reference.

For more information about STMT_CACHE, STMT_CACHE_NUMPOOL,
STMT_CACHE_HITS, and other configuration parameters that affect the statement
cache, as well as cache-related command-line options of the onmode utility, see
your IBM Informix Administrator's Reference.

For more information on the performance implications of this feature, on when
and how to use the SQL statement cache, on how to monitor the cache with the
onstat options, and on how to tune the configuration parameters, see your IBM
Informix Performance Guide.

Chapter 2. SQL statements 2-669

Related reference

STMT_CACHE (SQL Reference)

The onmode Utility (Administrator's Reference)

SET TRANSACTION statement
Use the SET TRANSACTION statement to define the isolation level and to specify
whether the access mode of a transaction is read-only or read-write.

Syntax

�� SET TRANSACTION �

,
(1)

READ WRITE
READ ONLY

(1)
ISOLATION LEVEL READ COMMITTED

REPEATABLE READ
SERIALIZABLE
READ UNCOMMITTED

��

Notes:

1 Use path no more than once

Usage

SET TRANSACTION is valid only in databases with transaction logging. You can
issue this statement from a client computer only after a database is opened. The
transaction isolation level affects concurrency among processes that attempt to
access the same rows simultaneously from the database. The database server uses
shared locks to support different levels of isolation among processes that are
attempting to read data, as the following list shows:
v Read Uncommitted
v Read Committed
v (ANSI) Repeatable Read
v Serializable

The update or delete process always acquires an exclusive lock on the row that is
being modified. The level of isolation does not interfere with such rows, but the
access mode does affect whether you can update or delete rows.

If another process attempts to update or delete rows that you are reading with an
isolation level of Serializable or (ANSI) Repeatable Read, that process will be
denied access to those rows.

Comparing SET TRANSACTION with SET ISOLATION
The SET TRANSACTION statement complies with ANSI SQL-92. This statement is
similar to the Informix SET ISOLATION statement; however, the SET ISOLATION
statement is not ANSI compliant and does not provide access modes. In fact, the
isolation levels that you can set with the SET TRANSACTION statement are almost
parallel to the isolation levels that you can set with the SET ISOLATION statement,
as the following table shows.

2-670 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_304.htm#ids_sqr_304
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0407.htm#ids_adr_0407

SET TRANSACTION Isolation Level SET ISOLATION Isolation Level

Read Uncommitted Dirty Read

Read Committed Committed Read

[Not supported] Cursor Stability

(ANSI) Repeatable Read (Informix) Repeatable Read

Serializable (Informix) Repeatable Read

Another difference between SET TRANSACTION and SET ISOLATION is the
behavior of the isolation levels within transactions. You can issue SET
TRANSACTION only once for a transaction. Any cursors that are opened during
that transaction are guaranteed that isolation level (or access mode, if you are
defining an access mode). With SET ISOLATION, after a transaction is started, you
can change the isolation level more than once within the transaction.

The following examples illustrate this difference in the behavior of the SET
ISOLATION and SET TRANSACTION statements:
EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK; -- Executes without error

Compare the previous example to these SET TRANSACTION statements:
EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

-- Produces error 876: Cannot issue SET TRANSACTION
-- in an active transaction.

An additional difference between SET ISOLATION and SET TRANSACTION is the
duration of isolation levels. Because SET ISOLATION supports
complete-connection level settings, the isolation level specified by SET ISOLATION
remains in effect until another SET ISOLATION statement is issued. The isolation
level set by SET TRANSACTION only remains in effect until the transaction
terminates. Then the isolation level is reset to the default for the database type.

Informix Isolation Levels
The following definitions explain the critical characteristics of each isolation level,
from the lowest level of isolation to the highest.

Using the Read Uncommitted Option
Use the Read Uncommitted option to copy rows from the database whether or not
locks are present on them. The program that fetches a row places no locks and it
respects none. Read Uncommitted is the only isolation level available to databases
that do not have transactions.

This isolation level is most appropriate in queries of static tables whose data is not
being modified, because it provides no isolation. With Read Uncommitted, the
program might return an uncommitted row that was inserted or modified within a
transaction that was subsequently rolled back.

Chapter 2. SQL statements 2-671

The Uncommitted Read isolation level of SET TRANSACTION does not directly
support the LAST COMMITTED feature of the Committed Read isolation level of
the SET ISOLATION statement. The LAST COMMITTED feature can reduce the
risk of locking conflicts when an application attempts to read a row on which
another session holds an exclusive lock while modifying data. When this feature is
enabled, the database server returns the most recently committed version of the
data, rather than wait for the lock to be released.

This feature takes effect implicitly, however, in all user sessions that use the Read
Uncommitted isolation level of the SET TRANSACTION statement, under either of
the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’DIRTY READ’ or

to ’ALL’

v if the SET ENVIRONMENT statement set the USELASTCOMMITTED session
environment option to ’DIRTY READ’ or to ’ALL’.

See the section “The LAST COMMITTED Option to Committed Read” on page
2-651 for more information about the LAST COMMITTED feature and its
restrictions.

Using the Read Committed Option
Use the Read Committed option to guarantee that every retrieved row is
committed in the table at the time that the row is retrieved. This option does not
place a lock on the fetched row. Read Committed is the default level of isolation in
a database with logging that is not ANSI compliant.

Read Committed is appropriate when each row of data is processed as an
independent unit, without reference to other rows in the same or other tables.

The Read Committed isolation level of SET TRANSACTION does not directly
support the LAST COMMITTED feature of the Committed Read isolation level of
the SET ISOLATION statement, which can reduce the risk of locking conflicts
when an application attempts to read data in a row on which another session
holds an exclusive row-level lock. When this feature is enabled, the database server
returns the most recently committed version of the data, rather than wait for the
lock to be released

This feature takes effect implicitly, however, in all user sessions that use the Read
Committed isolation level of the SET TRANSACTION statement, under either of
the following circumstances:
v if the USELASTCOMMITTED configuration parameter is set to ’COMMITTED

READ’ or to ’ALL’

v if the SET ENVIRONMENT statement set the USELASTCOMMITTED session
environment variable to ’COMMITTED READ’ or to ’ALL’.

See the section “The LAST COMMITTED Option to Committed Read” on page
2-651 for more information about the LAST COMMITTED feature and its
restrictions.

Using the Repeatable Read and Serializable Options
The Informix implementation of Repeatable Read and of Serializable are
equivalent. The Serializable (or Repeatable Read) option places a shared lock on
every row that is selected during the transaction.

2-672 IBM Informix Guide to SQL: Syntax

Another process can also place a shared lock on a selected row, but no other
process can modify any selected row during your transaction or insert a row that
meets the search criteria of your query during your transaction.

A phantom row is a row that was not visible when you first read the query set, but
that materializes in a subsequent read of the query set in the same transaction.
Only this isolation level prevents access to a phantom row.

If you repeat the query during the transaction, you reread the same data. The
shared locks are released only when the transaction is committed or rolled back.
Serializable is the default isolation level in an ANSI-compliant database.
Serializable isolation places the largest number of locks and holds them the
longest. Therefore, it is the level that reduces concurrency the most.

Default Isolation Levels
The default isolation level is established when you create the database.

Informix Name ANSI Name When This Is the Default Level of Isolation

Dirty Read Read Uncommitted Database without transaction logging

Committed Read Read Committed Databases with logging that are not ANSI-
compliant

Repeatable Read Serializable ANSI-compliant databases

For an Informix database that is not ANSI-compliant, unless you explicitly set the
USELASTCOMMITTED configuration parameter, the LAST COMMITTED feature
is not in effect for the default isolation levels. The SET ENVIRONMENT statement
or the SET ISOLATION statement can override this default and enable LAST
COMMITTED for the current session.

The default isolation level remains in effect until you issue a SET TRANSACTION
statement within a transaction. After a COMMIT WORK statement completes the
transaction or a ROLLBACK WORK statement cancels the entire transaction, the
isolation level is reset to the default.

When you use High Availability Data Replication, the database server effectively
uses Dirty Read isolation on the HDR Secondary Server, regardless of the specified
SET ISOLATION or SET TRANSACTION isolation level, unless the
UPDATABLE_SECONDARY configuration parameter is enabled. For more
information about this topic, see “Isolation Levels for Secondary Data Replication
Servers” on page 2-655.

Access Modes
Access modes affect read and write concurrency for rows within transactions. Use
access modes to control data modification. SET TRANSACTION can specify that a
transaction is read-only or read-write. By default, transactions are read-write.
When you specify a read-only transaction, certain limitations apply. Read-only
transactions cannot perform the following actions:
v Insert, delete, or update rows of a table.
v Create, alter, or drop any database object such as schemas, tables, temporary

tables, indexes, or SPL routines.
v Grant or revoke access privileges.
v Update statistics.

Chapter 2. SQL statements 2-673

v Rename columns or tables.

You can execute SPL routines in a read-only transaction as long as the SPL routine
does not try to perform any restricted statement.

Effects of Isolation Levels
You cannot set the transaction isolation level in a database that does not have
logging. Every retrieval in an unlogged database occurs as a Read Uncommitted.

The data that is obtained during retrieval of BYTE or TEXT data can vary,
depending on the transaction isolation levels. Under Read Uncommitted or Read
Committed isolation levels, a process is permitted to read a BYTE or TEXT column
that is either deleted (if the delete is not yet committed) or in the process of being
deleted. Under these isolation levels, an application can read a deleted BYTE or
TEXT column when certain conditions exist. For information about these
conditions, see the IBM Informix Administrator's Guide.

In Informix ESQL/C, if you use a scroll cursor in a transaction, you can force
consistency between your temporary table and the database table either by setting
the isolation level to Serializable or by locking the entire table. A scroll cursor with
hold, however, cannot guarantee the same consistency between the two tables.
Table-level locks set by Serializable are released when the transaction is completed,
but the scroll cursor with hold remains open beyond the end of the transaction.
You can modify released rows as soon as the transaction ends, so the retrieved
data in the temporary table might be inconsistent with the actual data.

Warning: Do not use nonlogging tables within a transaction. If you need to use a
nonlogging table within a transaction, either set the isolation level to Repeatable
Read or lock the table in exclusive mode to prevent concurrency problems.

Related Information

Related statements: “CREATE DATABASE statement” on page 2-97, “SET
ISOLATION statement” on page 2-648, and “SET LOCK MODE statement” on
page 2-655

For a discussion of isolation levels and concurrency issues, see the IBM Informix
Guide to SQL: Tutorial.

SET Transaction Mode statement
Use the SET Transaction Mode statement to specify whether constraints are
checked at the statement level or at the transaction level during the current
transaction.

Syntax

�� SET CONSTRAINTS �

,

constraint
ALL

IMMEDIATE
DEFERRED

��

2-674 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

constraint Constraint whose transaction
mode is to be changed

All constraints must exist in the same
database, which must support logging

“Identifier” on page
5-21

Usage

To enable or disable constraints, or to change their filtering mode, see “SET
Database Object Mode statement” on page 2-599.

This statement is valid only in a database with transaction logging, and its effect is
limited to the transaction in which it is executed.

Use the IMMEDIATE keyword to set the transaction mode of constraints to
statement-level checking. IMMEDIATE is the default transaction mode of
constraints when they are created.

Use the DEFERRED keyword to set the transaction mode to transaction-level
checking. You cannot change the transaction mode of a constraint to DEFERRED
unless the constraint is currently enabled.

Statement-Level Checking
When you set the transaction mode to IMMEDIATE, statement-level checking is
turned on, and all specified constraints are checked at the end of each INSERT,
UPDATE, or DELETE statement. If a constraint violation occurs, the statement is
not executed.

Transaction-Level Checking
When you set the transaction mode of constraints to DEFERRED, statement-level
checking is turned off, and all (or the specified) constraints are not checked until
the transaction is committed. If a constraint violation occurs while the transaction
is being committed, the transaction is rolled back.

Tip: If you defer checking a primary-key constraint, checking the not-NULL
constraint for that column or set of columns is also deferred.

Duration of Transaction Modes
The duration of the transaction mode that the SET Transaction Mode statement
specifies is the transaction in which the SET Transaction Mode statement is
executed. You cannot execute this statement outside a transaction. Once a
COMMIT WORK or ROLLBACK WORK statement is successfully completed, the
transaction mode of all constraints reverts to IMMEDIATE.

To switch from transaction-level checking to statement-level checking, you can use
the SET Transaction Mode statement to set the transaction mode to IMMEDIATE,
or you can use a COMMIT WORK or ROLLBACK WORK statement to terminate
your transaction.

Specifying All Constraints or a List of Constraints
You can specify all constraints in the database in the SET Transaction Mode
statement, or you can specify a single constraint, or list of constraints.

If you specify the ALL keyword, the SET Transaction Mode statement sets the
transaction mode for all constraints in the database. If any statement in the

Chapter 2. SQL statements 2-675

transaction requires that any constraint on any table in the database be checked,
the database server performs the checks at the statement level or the transaction
level, depending on the setting that you specify in the SET Transaction Mode
statement.

If you specify a single constraint name or a list of constraints, the SET Transaction
Mode statement sets the transaction mode for the specified constraints only. If any
statement in the transaction requires checking of a constraint that you did not
specify in the SET Transaction Mode statement, that constraint is checked at the
statement level regardless of the setting that you specified in the SET Transaction
Mode statement for other constraints.

When you specify a list of constraints, the constraints do not need to be defined on
the same table, but they must exist in the same database.

Specifying Remote Constraints
You can set the transaction mode of local constraints or remote constraints. That is,
the constraints that are specified in the SET Transaction Mode statement can be
constraints that are defined on local tables or constraints that are defined on
remote tables.

Examples of Setting the Transaction Mode for Constraints

The following example shows how to defer checking constraints within a
transaction until the transaction is complete. The SET Transaction Mode statement
in the example specifies that any constraints on any tables in the database are not
checked until the COMMIT WORK statement is encountered.
BEGIN WORK;
SET CONSTRAINTS ALL DEFERRED;
...
COMMIT WORK;

The following example specifies that a list of constraints is not checked until the
transaction is complete:
BEGIN WORK;
SET CONSTRAINTS update_const, insert_const DEFERRED;
...
COMMIT WORK;

Related Information

Related statements: “ALTER TABLE statement” on page 2-41 and “CREATE TABLE
statement” on page 2-198

SET TRIGGERS statement
Use the SET TRIGGERS statement to enable or disable all or some of the triggers
on a table, or all or some of the INSTEAD OF triggers on a view.

2-676 IBM Informix Guide to SQL: Syntax

Syntax

�� SET TRIGGERS �

,

trigger
FOR table

'owner' . view

ENABLED

DISABLED
��

Element Description Restrictions Syntax

owner The owner of table or view Must own the table or
view

“Owner Name” on page 5-45

table Table whose triggers are all to be enabled or
disabled

Must exist “Identifier” on page 5-21

trigger Trigger to be enabled or disabled Must exist “Identifier” on page 5-21

view View whose INSTEAD OF triggers are all to be
enabled or disabled

Must exist “Identifier” on page 5-21

Usage

The SET TRIGGERS statement is a special case of the SET Database Object Mode
statement. The SET Database Object Mode statement can also enable or disable an
index or a constraint, or change the filtering mode of a unique index or of a
constraint.

For the complete syntax and semantics of the SET TRIGGERS statement, see “SET
Database Object Mode statement” on page 2-599.

Restrictions on secondary servers

In cluster environments, the SET TRIGGERS statement is not supported on
updatable secondary servers. (More generally, session-level index, trigger, and
constraint modes that the SET Database Object Mode statement specifies are not
redirected for UPDATE operations on table objects in databases of secondary
servers.)

START VIOLATIONS TABLE statement
Use the START VIOLATIONS TABLE statement to create a violations table and a
diagnostics table for a specified target table. The START VIOLATIONS TABLE
statement is an extension to the ANSI/ISO standard for SQL.

Syntax

�� START VIOLATIONS TABLE FOR table
'owner' .

�

�
USING violations , diagnostics MAX ROWS num_rows

��

Chapter 2. SQL statements 2-677

Element Description Restrictions Syntax

diagnostics Declares the name of a diagnostics table to
be associated with the target table. Default
name is table_dia.

Must be unique among names of
tables, views, sequences, and
synonyms

“Identifier” on page
5-21

num_rows Maximum number of rows that the
database server can insert into violations
when a single statement is executed on
table

Must be an integer in range from 1
to the maximum value of the
INTEGER data type

“Literal Number”
on page 4-184

owner The owner of table Must own the table “Owner Name” on
page 5-45

table Target table for which violations and
diagnostics tables are to be created

If USING clause is omitted, no
more than 124 bytes

“Identifier” on page
5-21

violations Violations table to be associated with table.
Default name is table_vio.

Same restrictions as diagnostics “Identifier” on page
5-21

Usage

The database server associates the violations table and the diagnostics table) with the
target table that you specify after the FOR keyword by recording the relationship
among the three tables in the sysviolations system catalog table.

A target table must satisfy these requirements:
v It cannot be a table in a database that is not the current database.
v It cannot be an object that the CREATE EXTERNAL TABLE statement defined.
v It cannot already be associated with a violations or diagnostics table.
v It cannot be a system catalog table.

The START VIOLATIONS TABLE statement creates the special violations table that
holds nonconforming rows that fail to satisfy constraints and unique indexes
during insert, update, and delete operations on target tables. This statement also
creates the special diagnostics table that contains information about the integrity
violations that each row causes in the violations table.

Relationship to the SET Database Object Mode statement
The START VIOLATIONS TABLE statement is closely related to the SET Database
Object Mode statement. If you use SET Database Object Mode to set the constraints
or unique indexes defined on a table to the FILTERING mode, without also using
START VIOLATIONS TABLE, any rows that violate a constraint or unique-index
requirement in data manipulation operations are not filtered out to a violations
table. Instead you receive an error message that indicates that you must start a
violations table for the target table.

Similarly, if you use the SET Database Object Mode statement to set a disabled
constraint or disabled unique index to the ENABLED or FILTERING mode, but
you do not use START VIOLATIONS TABLE for the table on which the database
objects are defined, any rows that do not satisfy the constraint or unique-index
requirement are not filtered out to a violations table.

In these cases, to identify the rows that do not satisfy the constraint or
unique-index requirement, issue the START VIOLATIONS TABLE statement to

2-678 IBM Informix Guide to SQL: Syntax

|

start the violations and diagnostics tables. Do this before you use the SET Database
Object Mode statement to set the database objects to the ENABLED or FILTERING
database object mode.

Effect on concurrent transactions
If the database has transaction logging, you must issue START VIOLATIONS
TABLE in isolation. That is, no other transaction can be in progress on a target
table when you issue START VIOLATIONS TABLE on that table within a
transaction. Any transactions that start on the target table after the first transaction
has issued the START VIOLATIONS TABLE statement will behave the same way
as the first transaction with respect to the violations and diagnostics tables. That is,
any constraint and unique-index violations by these subsequent transactions will
be recorded in the violations and diagnostics tables.

For example, if transaction A operates on table tab1 and issues a START
VIOLATIONS TABLE statement on table tab1, the database server starts a
violations table named tab1_vio and filters any constraint or unique-index
violations on table tab1 by transaction A to table tab1_vio. If transactions B and C
start on table tab1 after transaction A has issued the START VIOLATIONS TABLE
statement, the database server also filters any constraint and unique-index
violations by transactions B and C to table tab1_vio.

The result is that all three transactions do not receive error messages about
constraint and unique-index violations, even though transactions B and C do not
expect this behavior. For example, if transaction B issues an INSERT or UPDATE
statement that violates a check constraint on table tab1, the database server does
not issue a constraint violation error to transaction B. Instead, the database server
filters the nonconforming row (also called a "bad row") to the violations table
without notifying transaction B that a data-integrity violation occurred.

You can prevent this situation from arising in Informix by specifying WITH
ERRORS when you specify the FILTERING mode in a SET Database Object Mode,
CREATE TABLE, ALTER TABLE, or CREATE INDEX statement. When multiple
transactions operate on a table and the WITH ERRORS option is in effect, any
transaction that violates a constraint or unique-index requirement on a target table
receives a data-integrity error message.

Stopping the Violations and Diagnostics Tables
After you use START VIOLATIONS TABLE to create an association between a
target table and the violations and diagnostics tables, the only way to drop the
association between the target table and the violations and diagnostics tables is to
issue a STOP VIOLATIONS TABLE statement for the target table. For more
information, see “STOP VIOLATIONS TABLE statement” on page 2-689.

USING Clause
You can use the USING clause to declare explicit names for the violations table and
for the diagnostics table.

If you omit the USING clause, the database server assigns names to the violation
table and the diagnostics table. The system-assigned name of the violations table
consists of the name of the target table followed by the string _vio. The name that
the database server assigns to the diagnostics table consists of the name of the
target table followed by the string _dia.

Chapter 2. SQL statements 2-679

If you omit the USING clause, the maximum length of the name of the target table
is 124 bytes.

Using the MAX ROWS clause
The MAX ROWS clause specifies the maximum number of rows that the database
server can insert into the diagnostics table when a single statement is executed on
the target table. If you omit the MAX ROWS clause, no upper limit is imposed on
the number of rows that can be inserted into the diagnostics table when a single
statement is executed on the target table.

Specifying the maximum number of rows in the diagnostics
table

The following statement starts violations and diagnostics tables for the target table
named orders. The MAX ROWS clause specifies the maximum number of rows
that can be inserted into the diagnostics table when a single statement, such as an
INSERT statement, is executed on the target table.
START VIOLATIONS TABLE FOR orders MAX ROWS 50000;

Privileges required for starting violations or diagnostics tables
To start a violations or a diagnostics table for a target table, you must meet one of
the following requirements:
v You must have the DBA privilege on the database.
v You must be the owner of the target table and also have the Resource privilege

on the database.
v You must have the Alter privilege on the target table and also have the Resource

privilege on the database.

Structure of the violations table
When you issue START VIOLATIONS TABLE for a target table, the violations table
that the statement creates has a predefined structure. This structure consists of the
columns of the target table and three additional columns.

The following table shows the schema of the violations table.

Column Name Data Type Column Description

Same columns (in the
same order) that
appear in the target
table

Same types as
corresponding
columns in the
target table.

The violations table has the same schema as the
target table, so that rows violating constraints or a
unique-index during insert, update, and delete
operations can be filtered to the violations table.

informix_tupleid SERIAL Unique serial code for the nonconforming row

informix_optype CHAR(1) The type of operation that caused this bad row.
This column can have the following values:

I = Insert

D = Delete

O = Update (with original values in this
row)

N = Update (with new values in this row)

S = SET Database Object Mode

informix_recowner CHAR(32) User who issued the statement that created this
nonconforming row

2-680 IBM Informix Guide to SQL: Syntax

If the target table of the START VIOLATIONS TABLE statement is protected by a
security policy, the database server protects the violations table with same security
policy. In this case, the schema of the violations table includes an
IDSSECURITYLABEL column whose name and position among other columns
corresponds to the IDSSECURITYLABEL column of the target table. When the
violations table is created, any SECURED WITH label specifications that protect
columns in the target table also protect the corresponding violations table columns.

Serial columns in the target table are converted to integer data types in the
violations table.

Users can examine these nonconforming rows in the violations table, analyze the
related rows that contain diagnostic information in the diagnostics table, and take
corrective actions.

Examples of START VIOLATIONS TABLE Statements
The following examples show different ways to execute the START VIOLATIONS
TABLE statement.

Violations and Diagnostics Tables with Default Names
The following statement starts violations and diagnostics tables for the target table
named cust_subset. The violations table is named cust_subset_vio by default, and
the diagnostics table is named cust_subset_dia by default.
START VIOLATIONS TABLE FOR cust_subset;

Violations and Diagnostics Tables with Explicit Names
The following statement starts a violations and diagnostics table for the target table
named items. The USING clause assigns explicit names to the violations and
diagnostics tables. The violations table is to be named exceptions, and the
diagnostics table is to be named reasons.
START VIOLATIONS TABLE FOR items USING exceptions, reasons;

Relationships Among the Target, Violations, and Diagnostics
Tables

Users can take advantage of the relationships among the target, violations, and
diagnostics tables to obtain diagnostic information about rows that cause
data-integrity violations during INSERT, DELETE, and UPDATE statements. Each
row of the violations table has at least one corresponding row in the diagnostics
table.
v One row in the violations table is a copy of any row in the target table for which

a data-integrity violation was detected. A row in the diagnostics table contains
information about the nature of the data-integrity violation caused by the
nonconforming row in the violations table.

v One row in the violations table has a unique serial identifier in the
informix_tupleid column. A row in the diagnostics table has the same serial
identifier in its informix_tupleid column.

A given row in the violations table can have more than one corresponding row in
the diagnostics table. The multiple rows in the diagnostics table all have the same
serial identifier in their informix_tupleid column so that they are all linked to the
same row in the violations table. Multiple rows can exist in the diagnostics table
for the same row in the violations table because a nonconforming row in the
violations table can cause more than one data-integrity violation.

Chapter 2. SQL statements 2-681

For example, the same nonconforming row can violate a unique index for one
column, a not-NULL constraint for another column, and a check constraint for a
third column. In this case, the diagnostics table contains three rows for the single
nonconforming row in the violations table. Each of these diagnostic rows identifies
a different data-integrity violation that the nonconforming row in the violations
table caused.

By joining the violations and diagnostics tables, the DBA or target-table owner can
obtain diagnostic information about any or all nonconforming rows in the
violations table. SELECT statements can perform these joins interactively, or you
can write a program to perform them within transactions.

Initial Privileges on the Violations Table
When you issue the START VIOLATIONS TABLE statement to create the violations
table, the database server uses the set of privileges granted on the target table as a
basis for granting privileges on the violations table. The database server follows
different rules, however, when it grants each type of privilege.

The following table summarizes the circumstances under which the database
server grants each type of privilege on the violations table.

Privilege
Condition for Granting the Privilege

Alter Alter privilege is not granted on the violations table. (Users cannot alter
violations tables.)

Index User has Index privilege on the violations table if the user has the Index
privilege on the target table.

Insert User has the Insert privilege on the violations table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Delete User has the Delete privilege on the violations table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Select User has the Select privilege on the informix_tupleid, informix_optype,
and informix_recowner columns of the violations table if the user has the
Select privilege on any column of the target table.

User has the Select privilege on any other column of the violations table if
the user has the Select privilege on the same column in the target table.

Update
User has the Update privilege on the informix_tupleid, informix_optype,
and informix_recowner columns of the violations table if the user has the
Update privilege on any column of the target table.

(Even with the Update privilege on the informix_tupleid column,
however, the user cannot update this SERIAL column.)

User has the Update privilege on any other violations table column if the
user has the Update privilege on the same column in the target table.

References
The References privilege is not granted on the violations table. (Users
cannot add referential constraints to violations tables.)

The following rules apply to ownership of the violations table and privileges on
the violations table:

2-682 IBM Informix Guide to SQL: Syntax

v When the violations table is created, the owner of the target table becomes the
owner of the violations table.

v The owner of the violations table automatically receives all table-level privileges
on the violations table, including the Alter and References privileges. The
database server, however, prevents the owner of the violations table from
altering the violations table or adding a referential constraint to the violations
table.

v You can use the GRANT and REVOKE statements to modify the initial set of
privileges on the violations table.

v When you issue an INSERT, DELETE, or UPDATE statement on a target table
that has a filtering-mode unique index or constraint defined on it, you must
have the Insert privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the INSERT, DELETE, or UPDATE statement on the
target table provided that you have the necessary privileges on the target table.
The database server does not return an error concerning the lack of Insert
privilege on the violations and diagnostics tables unless an integrity violation is
detected during execution of the INSERT, DELETE, or UPDATE statement.
Similarly, when you issue a SET Database Object Mode statement to set a
disabled constraint or disabled unique index to the enabled or filtering mode,
and a violations table and diagnostics table exist for the target table, you must
have the Insert privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the SET Database Object Mode statement if you
have the necessary privileges on the target table. The database server does not
return an error concerning the lack of Insert privilege on the violations and
diagnostics tables, unless an integrity violation is detected during the execution
of the SET Database Object Mode statement.

v The grantor of the initial set of privileges on the violations table is the same as
the grantor of the privileges on the target table.
For example, if user henry was granted the Insert privilege on the target table
by both user jill and user albert, then the Insert privilege on the violations table
is granted to henry both by jill and by albert.

v After the violations table is started, revoking a privilege on the target table from
a user does not automatically revoke the same privilege on the violations table
from that user. Instead, you must explicitly revoke the privilege on the violations
table from the user.

v If you have fragment-level privileges on the target table, you have the
corresponding fragment-level privileges on the violations table.

Example of Privileges on the Violations Table
The following example illustrates how the initial set of privileges on a violations
table is derived from the current set of privileges on the target table. Assume that a
table named cust_subset consists of the following columns: ssn (customer Social
Security number), fname (customer first name), lname (customer last name), and
city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:
v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.
v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.

Chapter 2. SQL statements 2-683

v User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics
table named cust_subset_diags for the cust_subset table:
START VIOLATIONS TABLE FOR cust_subset

USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the
cust_subset_viols violations table:
v User alvin is the owner of the violations table, so he has all table-level privileges

on the table.
v User barbara has the Insert, Delete, and Index privileges on the table.

User barbara has the Select privilege on five columns of the violations table: the
ssn, the lname, the informix_tupleid, the informix_optype, and the
informix_recowner columns.

v User carrie has Insert and Delete privileges on the violations table.
User carrie has the Update privilege on four columns of the violations table: the
city, the informix_tupleid, the informix_optype, and the informix_recowner
columns. She cannot, however, update the informix_tupleid column (because
this is a SERIAL column).
User carrie has the Select privilege on four columns of the violations table: the
ssn column, the informix_tupleid column, the informix_optype column, and the
informix_recowner column.

v User danny has no privileges on the violations table.

Using the Violations Table
The following rules concern the structure and use of the violations table:
v Every pair of update rows in the violations table has the same value in the

informix_tupleid column to indicate that both rows refer to the same row in the
target table.

v If the target table has columns named informix_tupleid, informix_optype, or
informix_recowner, the database server attempts to generate alternative names
for these columns in the violations table by appending a digit to the end of the
column name (for example, informix_tupleid1). If this fails, an error is returned,
and no violations table is started for the target table.

v When a table functions as a violations table, it cannot have triggers or
constraints defined on it.

v When a table functions as a violations table, users can create indexes on it, even
though the existence of an index affects performance. Unique indexes on the
violations table cannot be set to FILTERING database object mode.

v If a target table has a violations and diagnostics table associated with it,
dropping the target table in cascade mode (the default mode) causes the
violations and diagnostics tables to be dropped also. If the target table is
dropped in the restricted mode, the DROP TABLE operation fails (because the
violations and diagnostics tables exist).

v After a violations table is started for a target table, ALTER TABLE cannot add,
modify, or drop columns of the violations, diagnostics, or target tables. Before
you can alter any of these tables, you must issue a STOP VIOLATIONS TABLE
statement for the target table.

v The database server does not clear out the contents of the violations table before
or after it uses the violations table during an INSERT, UPDATE, DELETE, or SET
Database Object Mode operation.

2-684 IBM Informix Guide to SQL: Syntax

v If a target table has a filtering-mode constraint or unique index defined on it and
a violations table associated with it, users cannot insert into the target table by
selecting from the violations table. Before you insert rows into the target table by
selecting from the violations table, you must take one of the following steps:
– You can set the constraint or unique index to DISABLED mode.
– You can issue STOP VIOLATIONS TABLE for the target table.
If it is inconvenient to take either of these steps, but you intend to copy records
from the violations table into the target table, a third option is to select from the
violations table into a temporary table and then insert the contents of the
temporary table into the target table.

v If the target table that is specified in the START VIOLATIONS TABLE statement
is fragmented, the violations table has the same fragmentation strategy as the
target table. Each fragment of the violations table is stored in the same dbspace
partition as the corresponding fragment of the target table.

v Once a violations table is started for a target table, you cannot use the ALTER
FRAGMENT statement to alter the fragmentation strategy of the target table or
the violations table.

v If the target table specified in the START VIOLATIONS TABLE statement is not
fragmented, the database server places the violations table in the same dbspace
as the target table.

v If the target table has BYTE or TEXT columns, BYTE or TEXT data values in the
violations table are created in the same blobspace that stores the BYTE or TEXT
data in the target table.

Example of a Violations Table
To start a violations and diagnostics table for the target table named customer in
the demonstration database, enter the following statement:
START VIOLATIONS TABLE FOR customer;

Because you include no USING clause, the violations table is named customer_vio
by default. The customer_vio table includes these columns:

customer_num
fname lname

company
address1
address2

city state
zipcode
phone

informix_tupleid
informix_optype
informix_recowner

The customer_vio table has the same table definition as the customer table except
that the customer_vio table has three additional columns that contain information
about the operation that caused the nonconforming row.

Structure of the diagnostics table
When you issue a START VIOLATIONS TABLE statement for a target table, the
diagnostics table that the statement creates has a predefined structure. This
structure is independent of the structure of the target table.

The following table shows the schema of the diagnostics table.

Column Name Data Type Description

informix_tupleid INTEGER Implicitly refers to informix_tupleid column
values in the violations table This relationship,
however, is not declared as a foreign-key to
primary-key relationship.

Chapter 2. SQL statements 2-685

Column Name Data Type Description

objtype CHAR(1) Identifies the type of violation This column can
have the following values:

C = Constraint violation

I = Unique-index violation

objowner CHAR(32) Identifies the owner of the constraint or index
for which an integrity violation was detected

objname VARCHAR(128, 0) Contains the name of the constraint or index for
which an integrity violation was detected

Initial privileges on the diagnostics table
When the START VIOLATIONS TABLE statement creates the diagnostics table, the
set of access privileges granted on the target table are a basis for granting
privileges on the diagnostics table. The database server follows different rules,
however, when it grants each type of privilege.

The following table explains the circumstances under which the database server
grants each privilege on the diagnostics table.

Privilege
Condition for Granting the Privilege

Insert User has the Insert privilege on the diagnostics table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Delete User has the Delete privilege on the diagnostics table if the user has the
Insert, Delete, or Update privilege on any column of the target table.

Select User has the Select privilege on the diagnostics table if the user has the
Select privilege on any column in the target table.

Update
User has the Update privilege on the diagnostics table if the user has the
Update privilege on any column in the target table.

Index User has the Index privilege on the diagnostics table if the user has the
Index privilege on the target table.

Alter Alter privilege is not granted on the diagnostics table.

(Users cannot alter the schema of diagnostics tables.)

References
References privilege is not granted on the diagnostics table.

(Users cannot define referential constraints on diagnostics tables.)

The following rules concern access privileges on the diagnostics table:
v When the diagnostics table is created, the owner of the target table becomes the

owner of the diagnostics table.
v The owner of the diagnostics table automatically receives all table-level

privileges on the diagnostics table, including the Alter and References privileges.
The database server, however, prevents the owner of the diagnostics table from
altering the diagnostics table or adding a referential constraint to the diagnostics
table.

v You can use the GRANT and REVOKE statements to modify the initial set of
privileges on the diagnostics table.

2-686 IBM Informix Guide to SQL: Syntax

v For INSERT, DELETE, or UPDATE operations on a target table that has a
filtering-mode unique index or constraint defined on it, you must have the Insert
privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the INSERT, DELETE, or UPDATE statement on the
target table, provided you have the necessary privileges on the target table. The
database server does not return an error concerning the lack of Insert privilege
on the violations and diagnostics tables unless an integrity violation is detected
during execution of the INSERT, DELETE, or UPDATE statement.
Similarly, when you issue a SET Database Object Mode statement to set a
disabled constraint or disabled unique index to the enabled or filtering mode,
and a violations table and diagnostics table exist for the target table, you must
have the Insert privilege on the violations and diagnostics tables.
If you do not have the Insert privilege on the violations and diagnostics tables,
the database server executes the SET Database Object Mode statement, provided
you have the necessary privileges on the target table. The database server does
not return an error concerning the lack of Insert privilege on the violations and
diagnostics tables unless an integrity violation is detected during the execution
of the SET Database Object Mode statement.

v The grantor of the initial set of privileges on the diagnostics table is the same as
the grantor of the privileges on the target table. For example, if the user jenny
was granted the Insert privilege on the target table by both the user wayne and
the user laurie, both user wayne and user laurie grant the Insert privilege on
the diagnostics table to user jenny.

v Once a diagnostics table is started for a target table, revoking a privilege on the
target table from a user does not automatically revoke the same privilege on the
diagnostics table from that user. Instead you must explicitly revoke the privilege
on the diagnostics table from the user.

v If you have fragment-level privileges on the target table, you have the
corresponding table-level privileges on the diagnostics table.

The next example illustrates how the initial set of privileges on a diagnostics table
is derived from the current privileges on the target table. Assume that you have a
table called cust_subset that holds customer data. This table consists of the
following columns: ssn (social security number), fname (first name), lname (last
name), and city (city in which the customer lives). The following set of access
privileges exists on the cust_subset table:
v User alvin is the owner of the table.
v User barbara has the Insert and Index privileges on the table. She also has the

Select privilege on the ssn and lname columns.
v User danny has the Alter privilege on the table.
v User carrie has the Update privilege on the city column. She also has the Select

privilege on the ssn column.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics
table named cust_subset_diags for the cust_subset table:
START VIOLATIONS TABLE FOR cust_subset

USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the
cust_subset_diags diagnostics table:
v User alvin is the owner of the diagnostics table, so he has all table-level

privileges on the table.

Chapter 2. SQL statements 2-687

v User barbara has the Insert, Delete, Select, and Index privileges on the
diagnostics table.

v User carrie has the Insert, Delete, Select, and Update privileges on the
diagnostics table.

v User danny has no privileges on the diagnostics table.

Using the Diagnostics Table
For information on the relationship between the diagnostics table and the
violations table, see “Relationships Among the Target, Violations, and Diagnostics
Tables” on page 2-681.

The following issues concern the structure and use of the diagnostics table:
v The MAX ROWS clause of the START VIOLATIONS TABLE statement sets a

limit on the number of rows that can be inserted into the diagnostics table when
you execute a single statement, such as an INSERT or SET Database Object
Mode statement, on the target table.

v The MAX ROWS clause limits the number of rows only for operations in which
the table functions as a diagnostics table.

v When a table functions as a diagnostics table, it cannot have triggers or
constraints defined on it.

v When a table functions as a diagnostics table, users can create indexes on the
table, but the existence of an index affects performance. You cannot set unique
indexes on a diagnostics table to FILTERING database object mode.

v If a target table has a violations and diagnostics table associated with it,
dropping the target table in cascade mode (the default mode) causes the
violations and diagnostics tables to be dropped also.

v If the target table is dropped in restricted mode, the DROP TABLE operation
fails (because the violations and diagnostics tables exist).

v Once a violations table is started for a target table, you cannot use the ALTER
TABLE statement to add, modify, or drop columns in the target table, violations
table, or diagnostics table. Before you can alter any of these tables, you must
issue a STOP VIOLATIONS TABLE statement for the target table.

v The database server does not clear out the contents of the diagnostics table
before or after it uses the diagnostics table during an Insert, Update, Delete, or
Set operation.

v If the target table that is specified in the START VIOLATIONS TABLE statement
is fragmented, the diagnostics table is fragmented with a round-robin strategy
over the same dbspaces in which the target table is fragmented.

To start a violations and diagnostics table for the target table named stock in the
demonstration database, enter the following statement:
START VIOLATIONS TABLE FOR stock;

Because your START VIOLATIONS TABLE statement does not include a USING
clause, the diagnostics table is named stock_dia by default. The stock_dia table
includes the following columns:

informix_tupleid objtype objowner objname

This list of columns shows an important difference between the diagnostics table
and violations table for a target table. Whereas the violations table has a matching

2-688 IBM Informix Guide to SQL: Syntax

column for every column in the target table, the columns of the diagnostics table
do not match any columns in the target table. The diagnostics table created by any
START VIOLATIONS TABLE statement always has the same columns with the
same column names and data types.

Related Information

Related statements: “CREATE INDEX statement” on page 2-135, “CREATE TABLE
statement” on page 2-198, “SET Database Object Mode statement” on page 2-599,
and “STOP VIOLATIONS TABLE statement”

For a discussion of object modes and violation detection, see the IBM Informix
Guide to SQL: Tutorial.

STOP VIOLATIONS TABLE statement
Use the STOP VIOLATIONS TABLE statement to drop the association between a
target table, its violations table, and its diagnostics table. This statement is an
extension to the ANSI/ISO standard for SQL.

Syntax

�� STOP VIOLATIONS TABLE FOR table
'owner' .

��

Element Description Restrictions Syntax

owner The owner of table Must own the table “Owner Name” on
page 5-45

table Name of a target table whose association
with the violations and diagnostics table is to
be dropped. No default value exists.

Must be a local table that has an
associated violations table and a
diagnostics table

“Identifier” on page
5-21

Usage

The STOP VIOLATIONS TABLE statement drops the association between the target
table, the violations table, and the diagnostics table. After you issue this statement,
the former violations and diagnostics tables continue to exist, but they no longer
function as violations and diagnostics tables for the target table. They now have
the status of regular database tables instead of violations and diagnostics tables for
the target table. You must issue the DROP TABLE statement to drop these two
tables explicitly.

When DML operations (INSERT, DELETE, or UPDATE) cause data-integrity
violations for rows of the target table, the nonconforming rows are no longer
filtered to the former violations table, and diagnostic information about the
data-integrity violations is not placed in the former diagnostics table.

Example of Stopping the Violations and Diagnostics Tables
Assume that a target table named cust_subset has an associated violations table
named cust_subset_vio and an associated diagnostics table named
cust_subset_dia. To drop the association between the target table and the
violations and diagnostics tables, enter the following statement:
STOP VIOLATIONS TABLE FOR cust_subset;

Chapter 2. SQL statements 2-689

This deletes the row in the sysviolations system catalog table that had registered
the former association. Subsequent DML operations on the target cust_subset table
will no longer cause the database server to insert information about
nonconforming rows into its former violations table or diagnostics table.

Example of Dropping the Violations and Diagnostics Tables
After you execute the STOP VIOLATIONS TABLE statement in the preceding
example, the cust_subset_vio and the cust_subset_dia tables continue to exist, but
they are no longer associated with the cust_subset table. Instead they now have
the status of regular database tables. To drop these two tables, enter the following
statements:
DROP TABLE cust_subset_vio;
DROP TABLE cust_subset_dia;

If you had previously issued the DROP TABLE statement without the RESTRICT
keyword to successfully drop the cust_subset table, then the statements above
would not be necessary, because dropping the target table in cascade mode
implicitly drops any associated violations table and diagnostics table.

Privileges Required for Stopping a Violations Table
To stop a violations or a diagnostics table for a given target table, you must meet
one of the following requirements:
v You must have the DBA privilege on the database.
v You must be the owner of the target table and have the Resource privilege on

the database.
v You must have the Alter privilege on the target table and the Resource privilege

on the database.

Related Information

Related statements: “SET Database Object Mode statement” on page 2-599 and
“START VIOLATIONS TABLE statement” on page 2-677

For a discussion of database object modes and violation detection, see the IBM
Informix Guide to SQL: Tutorial.

TRUNCATE statement
Use the TRUNCATE statement to quickly delete all rows from a local table and
free the associated storage space. You can optionally reserve the space for the same
table and its indexes. Only Informix supports this implementation of the
TRUNCATE statement, which is an extension to the ANSI/ISO standard for SQL.

Syntax

�� TRUNCATE
TABLE

'owner' .
table
synonym

DROP STORAGE

REUSE STORAGE
��

Element Description Restrictions Syntax

owner Owner of table or synonym See Usage notes. “Owner Name” on page 5-45

2-690 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

synonym Synonym for the table from which to remove
all data

Must exist, and
USETABLENAME
must not be set

“Identifier” on page 5-21

table Name of table from which to remove all data
and all B-tree structures of its indexes

Must exist in the
database

“Identifier” on page 5-21

Usage

The TRUNCATE statement rapidly deletes from a local table all active data rows
and the B-tree structures of indexes on the table. You have the option of releasing
the storage space that was occupied by the rows and index extents, or of reusing
the same space when the table is subsequently repopulated with new rows.

To execute the TRUNCATE statement, at least one of the following conditions must
be satisfied:
v You are the owner of the table.
v You hold the Delete access privilege on the table.
v You hold the DBA access privilege on the current database.

If an enabled Delete trigger is defined on the table, you must also hold the Alter
privilege on the table, even though the TRUNCATE statement does not activate
triggers.

Although it requires the Delete privilege for a non-DBA user who does not own
the table, TRUNCATE is a data definition language (DDL) statement. Like other
DDL statements, TRUNCATE cannot operate on any table outside the database to
which you are connected, nor on a table that a concurrent session is reading in
Dirty Read isolation mode.

Informix always logs the TRUNCATE operation, even for a non-logging table. In
databases that support transaction logging, only the COMMIT WORK or
ROLLBACK WORK statement of SQL is valid after the TRUNCATE statement
within the same transaction. Here the ROLLBACK statement must cancel the entire
transaction that includes the TRUNCATE statement. Informix issues an error if
ROLLBACK TO SAVEPOINT (or any other SQL statement except for COMMIT
WORK or ROLLBACK WORK without the TO SAVEPOINT clause) immediately
follows the TRUNCATE statement.

When you successfully rollback the TRUNCATE statement, no rows are removed
from the table, and the storage extents that hold the rows and index partitions
continue to be allocated to the table. Only databases with transaction logging can
support the ROLLBACK WORK statement.

After the TRUNCATE statement successfully executes, Informix automatically
updates the statistics and distributions for the table and for its indexes in the
system catalog to show no rows in the table nor in its dbspace partitions. It is not
necessary to run the UPDATE STATISTICS statement immediately after you
commit the TRUNCATE statement.

If the table that the TRUNCATE statement specifies is a typed table, a successful
TRUNCATE operation removes all the rows and B-tree structures from that table
and from all its subtables within the table hierarchy.

Chapter 2. SQL statements 2-691

The TRUNCATE statement does not reset the serial value of SERIAL, BIGSERIAL,
or SERIAL8 columns. To reset the counter of a serial column, use the MODIFY
clause of the ALTER TABLE statement, either before or after you execute the
TRUNCATE statement.

The TABLE Keyword
The TABLE keyword has no effect on this statement, but it can be included to
make your code more legible for human readers. Both of the following statements
have the same effect, deleting all rows and any related index data from the
customer table:
TRUNCATE TABLE customer;

TRUNCATE customer;

The Table Specification
You must specify the name or synonym of a table in the local database to which
you are currently connected. If the USETABLENAME environment variable is set,
you must use the name of the table, rather than a synonym. The table can be of
type STANDARD, RAW, or TEMP, but you cannot specify the name or synonym of
a view, or an object that the CREATE EXTERNAL TABLE statement defined.
(Categories of tables that are not valid with TRUNCATE are listed in the section
“Restrictions” on page 2-694.)

In a database that is ANSI-compliant, you must specify the owner qualifier if you
are not the owner of the table or synonym.

After the TRUNCATE statement begins execution, Informix attempts to place an
exclusive lock on the specified table, to prevent other sessions from locking the
table until the TRUNCATE statement is committed or rolled back. Exclusive locks
are also applied to any dependent tables of the truncated table within a table
hierarchy.

While concurrent sessions that use the Dirty Read isolation level are reading the
table, however, the TRUNCATE statement fails with an RSAM -106 error. To
reduce this risk, you can set the IFX_DIRTY_WAIT environment variable to
specify that the TRUNCATE operation wait for a specified number of seconds for
Dirty Read transactions to commit or rollback.

The Storage Specification
By default, all of the partition extents that had been allocated to the specified table
and to its indexes are released after TRUNCATE successfully executes, but you can
include the DROP STORAGE keywords to achieve the same result, making the
storage space available for other database objects. The first extent size remains the
same as it was before the TRUNCATE operation released the storage.

Alternatively, if it is your intention to keep the same storage space allocated to the
same table for subsequently loaded data, specify the REUSE STORAGE keywords
to prevent the space from being deallocated. The REUSE STORAGE option of
TRUNCATE can make storage management more efficient in applications where
the same table is periodically emptied and reloaded with new rows.

This example truncates the state table and free all extents except the first extent:
TRUNCATE TABLE state DROP STORAGE;

2-692 IBM Informix Guide to SQL: Syntax

The following example truncates the same table but only remove the actual data.
All extents stay the same.
TRUNCATE TABLE state REUSE STORAGE;

Whether you specify DROP STORAGE or REUSE STORAGE, any out-of-row data
values are released for all rows of the table when the TRUNCATE transaction is
committed. Storage occupied by any BLOB or CLOB values that become
unreferenced in the TRUNCATE transaction is also released.

The AM_TRUNCATE Purpose Function
Informix provides built-in am_truncate purpose functions for its primary access
methods that support TRUNCATE operations on columns of permanent and
temporary tables. It also provides a built-in am_truncate purpose function for its
secondary access method for TRUNCATE operations on B-tree indexes.

For the TRUNCATE statement to work correctly in a virtual table interface (VTI)
table requires a valid am_truncate purpose function in the primary access method
for the data type of the VTI table. To register a new primary access method in the
database, use the CREATE PRIMARY ACCESS_METHOD statement of SQL:
CREATE PRIMARY ACCESS_METHOD vti(

AM_GETNEXT = vti_getnext
AM_TRUNCATE = vti_truncate
...);

You can also use the ALTER ACCESS_METHOD statement to add a valid
am_truncate purpose function to an existing access method that has no
am_truncate purpose function:
ALTER ACCESS_METHOD abc (ADD AM_TRUNCATE = abc_truncate);

In these examples, the vti_truncate and abc_truncate functions must be routines
that support the functionality of the AM_TRUNCATE purpose option keyword,
and that were previously registered in the database by the CREATE FUNCTION or
CREATE ROUTINE statement.

Performance Advantages of TRUNCATE
The TRUNCATE statement is not equivalent to DROP TABLE. After TRUNCATE
successfully executes, the specified table and all its columns and indexes are still
registered in the database, but with no rows of data. In information management
applications that require replacing all of the records in a table after some time
interval, TRUNCATE requires fewer updates to the system catalog than the
equivalent DROP TABLE, CREATE TABLE, and any additional DDL statements to
redefine any synonyms, views, constraints, triggers, privileges, fragmentation
schemes, and other attributes and associated database objects of the table.

In contexts where no existing rows of a table are needed, the TRUNCATE
statement is typically far more efficient than using the DELETE statement with no
WHERE clause to empty the table, because TRUNCATE requires fewer resources
and less logging overhead than DELETE:
v DELETE FROM table deletes each row as a separately logged operation. If

indexes exist on the table, each index must be updated when a row is deleted,
and this update is also logged for each row. If an enabled Delete trigger is
defined on the table, its triggered actions must also be executed and logged.

v TRUNCATE table performs the removal of all rows and of the B-tree structures
of every index on the table as a single operation, and writes a single entry in the

Chapter 2. SQL statements 2-693

logical log when the transaction that includes TRUNCATE is committed or
rolled back. The triggered action of any enabled trigger is ignored.

These performance advantages of TRUNCATE over DELETE are reduced when the
table has one or more columns with the following attributes:
v Any simple large object data types stored in blobspaces
v Any BLOB, CLOB, complex, or user-defined types stored in sbspaces
v Any opaque types for which a destroy support function is defined.

Each of these features require the database server to read each row of the table,
substantially reducing the speed of TRUNCATE.

If a table includes one or more UDTs for which you have registered an
am_truncate() purpose function, then the performance difference between
TRUNCATE and DELETE would reflect the relative costs of invoking the
am_truncate interface once for TRUNCATE versus invoking the destroy() support
function for each row.

As listed in the next section, certain conditions cause TRUNCATE to fail with an
error. Some of these conditions have no effect on DELETE operations, so in those
cases you can remove all rows more efficiently with a DELETE statement, as in the
following operation on the customer table:
DELETE customer;

The FROM keyword that immediately follows DELETE can be omitted, as in this
example, only if the DELIMIDENT environment variable is set.

Restrictions
The TRUNCATE statement fails if any of the following conditions exist:
v The user does not have Delete privilege on the table.
v The table has an enabled Delete trigger, but the user lacks the Alter privilege.
v The specified table or synonym does not exist in the local database.
v The table was defined by the CREATE EXTERNAL TABLE statement.
v The specified synonym does not reference a table in the local database.
v The statement specifies a synonym for a local table, but the USETABLENAME

environment variable is set.
v The statement specifies the name of a view or a synonym for a view.
v The table is a system catalog table or a system-monitoring interface (SMI) table.
v An R-tree index is defined on the table.
v The table is a virtual table (or has a virtual-index interface) for which no valid

am_truncate access method exists in the database.
v An Enterprise Replication replicate that is not a master replicate is defined on

the table. (For more information about replicates, see the IBM Informix Enterprise
Replication Guide.)

v A shared or exclusive lock on the table already exists.
v One or more cursors are open on the table.
v A concurrent session with Dirty Read isolation level is reading the table.
v Another table, with at least one row, has an enabled foreign-key constraint on

the specified table. (An enabled foreign key constraint of another table that has
no rows, however, has no effect on a TRUNCATE operation.)

2-694 IBM Informix Guide to SQL: Syntax

|

Related Information

“DELETE statement” on page 2-307, “DROP TABLE statement” on page 2-347

UNLOAD statement
Use the UNLOAD statement to write the rows retrieved by a SELECT statement to
an operating-system file. The UNLOAD statement is an extension to the ANSI/ISO
standard for SQL.

Syntax

�� UNLOAD TO 'filename'
DELIMITER 'delimiter'

(1)
SELECT Statement

variable
��

Notes:

1 See “SELECT statement” on page 2-536

Element Description Restrictions Syntax

delimiter Quoted string to specify the field
delimiter character in filename file

See “DELIMITER Clause” on page
2-699

“Quoted String” on
page 4-188

filename Operating-system file to receive the
rows. Default pathname is the current
directory.

See “UNLOAD TO File” on page
2-696.

“Quoted String” on
page 4-188

variable Host variable that contains the text of
a valid SELECT statement

Must have been declared as a
character data type

Language- specific

Usage

Important: Use the UNLOAD statement only with DB-Access.

The UNLOAD statement copies to a file the rows retrieved by a query. You must
have the Select privilege on all columns specified in the SELECT statement. For
information on database-level and table-level privileges, see “GRANT statement”
on page 2-401.

You can specify a literal SELECT statement or a character variable that contains the
text of a SELECT statement. (See “SELECT statement” on page 2-536.)

The following example unloads rows whose value of customer.customer_num is
greater than or equal to 138, and writes them to a file named cust_file:
UNLOAD TO ’cust_file’ DELIMITER ’!’

SELECT * FROM customer WHERE customer_num> = 138;

The resulting output file, cust_file, contains two rows of data values:
138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite 10!Palo Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo Alto!CA!94301!

(415)323-5400

Chapter 2. SQL statements 2-695

UNLOAD TO File

The UNLOAD TO file, as specified by the filename parameter, receives the retrieved
rows. You can use an UNLOAD TO file as input to a LOAD statement.

In the default locale, data values have these formats in the UNLOAD TO file.

Data Type Output Format

BOOLEAN BOOLEAN values appear as either t for TRUE or f for FALSE.

Character If a character field contains the delimiter, IBM Informix products automatically escape it with a
backslash (\) to prevent interpretation as a special character. (If you use a LOAD statement to
insert the rows into a table, backslash escape characters are automatically stripped.)

Collections A collection is unloaded with its values between braces ({ }) and a delimiter between each
element. For more information, see “Unloading Complex Types” on page 2-698.

DATE DATE values are represented as mm/dd/yyyy (or the default format for the database locale), where
mm is the month (January = 1, and so on), dd is the day, and yyyy is the year. If you have set the
GL_DATE or DBDATE environment variable, the UNLOAD statement uses the specified date
format for DATE values.

DATETIME,
INTERVAL

Literal DATETIME and INTERVAL values appear as digits and delimiters, without keyword
qualifiers, in the default format yyyy-mm-dd hh:mi:ss.fff. Time units outside the declared precision
are omitted. If the GL_DATETIME or DBTIME environment variable is set, DATETIME values
appear in the specified format.

DECIMAL,
MONEY

Values are unloaded with no leading currency symbol. In the default locale, comma (,) is the
thousands separator and period (.) is the decimal separator. If DBMONEY is set, UNLOAD uses
its specified separators and currency format for MONEY values.

NULL NULL appears as two delimiters with no characters between them.

Number Values appear as literals, with no leading blanks. BIGINT, INTEGER, INT8, and SMALLINT zero
appear as 0, and MONEY, FLOAT, SMALLFLOAT, and DECIMAL zero appear as 0.0.

ROW types
(named and
unnamed)

A ROW type is unloaded with its values enclosed between parentheses and a field delimiter
separating each element. For more information, see “Unloading Complex Types” on page 2-698.

Simple large
objects (TEXT,
BYTE)

TEXT and BYTE columns are unloaded directly into the UNLOAD TO file. BYTE values appear in
ASCII hexadecimal form, with no added white space or newline characters. For more information,
see “Unloading Simple Large Objects” on page 2-697.

Smart large
objects (CLOB,
BLOB)

CLOB and BLOB columns are unloaded into a separate operating-system file (for each column) on
the client computer. The CLOB or BLOB field in the UNLOAD TO file contains the name of this
file. For more information, see “Unloading Smart Large Objects” on page 2-697.

User-defined
data types
(opaque types)

Opaque types must have an export() support function defined. They need special processing to
copy data from the internal format of the opaque data type to the UNLOAD TO file format. An
export binary support function might also be required for data in binary format. The data in the
UNLOAD TO file would correspond to the format that the export() or exportbinary() support
function returns.

For more information on DB* environment variables, refer to the IBM Informix
Guide to SQL: Reference. For more information on GL* environment variables, refer
to the IBM Informix GLS User's Guide.

In a nondefault locale, DATE, DATETIME, MONEY, and numeric column values
have formats that the locale supports for these data types. For more information,
see the IBM Informix GLS User's Guide.

2-696 IBM Informix Guide to SQL: Syntax

Unloading Character Columns
In unloading files that contain VARCHAR or NVARCHAR columns, trailing blanks
are retained in VARCHAR, LVARCHAR, or NVARCHAR fields. Trailing blanks are
discarded when CHAR or NCHAR columns are unloaded.

For CHAR, VARCHAR, NCHAR, and NVARCHAR columns, an empty string (a
data string of zero length, containing no characters) appears in the UNLOAD TO
file as the four bytes “|\ |” (delimiter, backslash, blank space, delimiter).

Some earlier releases of Informix database servers used “||” (consecutive
delimiters) to represent the empty string in LOAD and UNLOAD operations. In
this release, however, “||” only represents NULL values in CHAR, VARCHAR,
LVARCHAR, NCHAR, and NVARCHAR columns.

Unloading Simple Large Objects
The database server writes BYTE and TEXT values directly into the UNLOAD TO
file. BYTE values are written in hexadecimal dump format with no added blank
spaces or new line characters. The logical length of an UNLOAD TO file
containing BYTE data can therefore be long and difficult to print or edit.

If you are unloading files that contain simple-large-object data types, do not use
characters that can appear in BYTE or TEXT values as delimiters in the UNLOAD
TO file. See also the section “DELIMITER Clause” on page 2-699.

The database server handles any required code-set conversions for TEXT data. For
more information, see the IBM Informix GLS User's Guide.

If you are unloading files that contain simple-large-object data types, objects
smaller than 10 kilobytes are stored temporarily in memory. You can adjust the
10-kilobyte setting to a larger setting with the DBBLOBBUF environment variable.
BYTE or TEXT values larger than the default or the DBBLOBBUF setting are
stored in a temporary file. For additional information about DBBLOBBUF, see the
IBM Informix Guide to SQL: Reference.
Related reference

DBBLOBBUF (SQL Reference)

Unloading Smart Large Objects
The database server unloads smart large objects (from BLOB or CLOB columns)
into a separate operating-system file for each column, in the same directory on the
client computer as the UNLOAD TO file. All the smart blobs in the same column
are stored in a single file. The filename has one of these formats:
v For a BLOB value: blob########
v For a CLOB value: clob########

In the preceding formats, the pound (#) symbols represent the digits of the
unique hexadecimal smart-large-object identifier of the first smart large object in
the file. The maximum number of digits for a smart-large-object identifier is 17.
Most smart large objects, however, would have an identifier with fewer digits.

When the database server unloads the first smart large object, it creates the
appropriate BLOB or CLOB client file with the hexadecimal identifier of the smart
large object. If additional smart-large-object values are present in the same column,
the database server writes their values to the same file, and lists in the UNLOAD
TO file (*.unl) the sbspace, chunk, and page numbers, and smart large object
identifier, for each BLOB or CLOB value in the file.

Chapter 2. SQL statements 2-697

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_208.htm#ids_sqr_208

The following example shows an UNLOAD TO file entry for two smart large
object values from the same column:
Object # 1
Space Chunk Page = [5,6,3] Object ID = 1192071051

Object #2
Space Chunk Page = [5,6,4] Object ID = 1192071050

both rows unloaded

In an UNLOAD TO file, a BLOB or CLOB column value appears in this format:
start_off,length,client_path

Here start_off is the starting offset (in hexadecimal format) of the smart-large-object
value within the client file, length is the length (in hexadecimal) of the BLOB or
CLOB value, and client_path is the pathname for the client file. No blank spaces
can appear between these values. If a CLOB value is 512 bytes long and is at offset
256 in the /usr/apps/clob9ce7.318 file, for example, then the CLOB value appears as
follows in the UNLOAD TO file:
|100,200,/usr/apps/clob9ce7.318|

If a BLOB or CLOB column value occupies an entire client file, the CLOB or BLOB
column value appears as follows in the UNLOAD TO file:
client_path

For example, if a CLOB value occupies the entire file /usr/apps/clob9ce7.318, the
CLOB value appears as follows in the UNLOAD TO file:
|/usr/apps/clob9ce7.318|

For locales that support multibyte code sets, be sure that the declared size (in
bytes) of any column that receives character data is large enough to store the entire
data string. For some locales, this can require up to 4 times the number of logical
characters in the longest data string.

The database server handles any required code-set conversions for CLOB data. For
more information, see the IBM Informix GLS User's Guide.

Unloading Complex Types
In an UNLOAD TO file, values of complex data types appear as follows:
v Collections are introduced with the appropriate constructor (MULTISET, LIST,

SET), with their comma-separated elements enclosed in braces ({ }):
constructor{val1 , val2 , ... }

For example, to unload the SET values {1, 3, 4} from a column of the SET
(INTEGER NOT NULL) data type, the corresponding field of the UNLOAD TO
file appears as follows:
|SET{1 , 3 , 4}|

v ROW types (named and unnamed) are introduced by the ROW constructor and
have their fields enclosed between parentheses and comma-separated:
ROW(val1 , val2 , ...)

For example, to unload the ROW values (1, ’abc’), the corresponding field of
the UNLOAD TO file appears as follows:
|ROW(1 , abc)|

2-698 IBM Informix Guide to SQL: Syntax

DELIMITER Clause

Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the output file. If you omit this clause, then
DB-Access checks the setting of the DBDELIMITER environment variable. If
DBDELIMITER has not been set, the default delimiter is the pipe (|) symbol.
You can specify TAB (CTRL-I) or a blank space (ASCII 32) as the delimiter symbol,
but the following characters are not valid in any locale as delimiter symbols:
v Backslash (\)
v Newline character (CTRL-J)
v Hexadecimal digits (0 to 9, a to f, A to F)

The backslash (\) is not a valid field separator or record delimiter because it is
the default escape character, indicating that the next character is a literal character
in the data, rather than a special character.

The following UNLOAD statement specifies the semicolon (;) as the delimiter:
UNLOAD TO ’cust.out’ DELIMITER ’;’

SELECT fname, lname, company, city FROM customer;

Related Information

Related statements: “LOAD statement” on page 2-448 and “SELECT statement” on
page 2-536

For information about how to set environment variables, see the IBM Informix
Guide to SQL: Reference.

For a discussion of the GLS aspects of the UNLOAD statement, see the IBM
Informix GLS User's Guide.

For a task-oriented discussion of the UNLOAD statement and other utilities for
moving data, see the IBM Informix Migration Guide.

UNLOCK TABLE statement
Use the UNLOCK TABLE statement in a database that does not support
transaction logging to unlock a table that you previously locked with the LOCK
TABLE statement. The UNLOCK TABLE statement is an extension to the
ANSI/ISO standard for SQL.

Syntax

�� UNLOCK TABLE table
synonym

��

Element Description Restrictions Syntax

synonym Synonym for a table
to unlock

The synonym and the table to which it points must exist “Database Object
Name” on page
5-16

table Table to unlock Must be in a database without transaction logging, and
must be a table that you previously locked

“Database Object
Name” on page
5-16

Chapter 2. SQL statements 2-699

Usage

Restriction: The UNLOCK TABLE statement is not valid within a transaction.

You can lock a table if you own the table or if you have the Select privilege on the
table, either from a direct grant to your user ID or from a grant to PUBLIC. You
can only unlock a table that you locked. You cannot unlock a table that another
process locked. Only one lock can apply to a table at a time.

You must specify the name or synonym of the table that you are unlocking. Do not
specify the name of a view, or a synonym for a view.

To change the lock mode of a table in a database that was created without
transaction logging, use the UNLOCK TABLE statement to unlock the table, then
issue a new LOCK TABLE statement. The following example shows how to change
the lock mode of a table in a database that was created without transaction
logging:
LOCK TABLE items IN EXCLUSIVE MODE;
...
UNLOCK TABLE items;
...
LOCK TABLE items IN SHARE MODE;

The UNLOCK TABLE statement fails if it is issued within a transaction. Table locks
set within a transaction are released automatically when the transaction completes.

If you are using an ANSI-compliant database, do not issue an UNLOCK TABLE
statement. The UNLOCK TABLE statement fails if it is issued within a transaction,
and a transaction is always in effect in an ANSI-compliant database.

Related information

Related statements: “BEGIN WORK statement” on page 2-74, “COMMIT WORK
statement” on page 2-81, “LOCK TABLE statement” on page 2-454, and
“ROLLBACK WORK statement” on page 2-528

For a discussion of concurrency and locks, see the IBM Informix Guide to SQL:
Tutorial.

UPDATE statement
Use the UPDATE statement to change the values in one or more columns of one or
more existing rows in a table or view.

Syntax

�� UPDATE �

�
(3)

Target SET Clause WHERE Options
(1) (2)

Optimizer Directives
(4) (3)

Collection-Derived Table SET Clause
(5) (6)

WHERE CURRENT OF cursor

��

2-700 IBM Informix Guide to SQL: Syntax

Target:

'owner' .
table
view
synonym
(1)

ONLY (table)
(synonym)

WHERE Options:

Subset of FROM Clause (7)
WHERE condition

(5) (6)
WHERE CURRENT OF cursor_id

Notes:

1 Informix extension

2 See “Optimizer Directives” on page 5-35

3 See “SET Clause” on page 2-704

4 See “Collection-Derived Table” on page 5-4

5 ESQL/C and SPL only

6 See “Using the WHERE CURRENT OF Clause (ESQL/C, SPL)” on page 2-713

7 See “WHERE Clause of UPDATE” on page 2-710

Element Description Restrictions Syntax

condition Logical criteria that updated rows
must satisfy

Cannot be a UDR nor a correlated
subquery

“Condition” on
page 4-5

cursor Name of a cursor whose current
row is to be updated

Cannot be a host variable. You cannot
update a row that includes aggregates

“Identifier” on
page 5-21

synonym, table,
view

Synonym, table, or view that
contains rows to be updated

The synonym and the table or view to
which it points must exist

“Database Object
Name” on page
5-16

Usage

Use the UPDATE statement to update any of the following types of objects:
v A row in a table: a single row, a group of rows, or all rows in a table
v For Informix, an element in a collection variable
v An Informix ESQL/C row variable: a field or all fields

With Informix, you can also use this statement to change the values in one or more
elements in an Informix ESQL/C or SPL collection variable or ROW variable.

For information on how to update elements of a collection variable, see
“Collection-Derived Table” on page 5-4. Sections that follow in this description of
the UPDATE statement describe how to update a row in a table.

Chapter 2. SQL statements 2-701

You must either own the table or have the Update privilege for the table; see
“GRANT statement” on page 2-401. To update data in a view, you must have the
Update privilege, and the view must meet the requirements that are explained in
“Updating Rows Through a View.”

The target of the UPDATE statement cannot be a table object that the CREATE
EXTERNAL TABLE statement defined.

The cursor (as defined in the SELECT ... FOR UPDATE portion of a DECLARE
statement) can contain only column names. If you omit the WHERE clause, all
rows of the target table are updated.

If you are using effective checking and the checking mode is set to IMMEDIATE,
all specified constraints are checked at the end of each UPDATE statement. If the
checking mode is set to DEFERRED, all specified constraints are not checked until
the transaction is committed.

In DB-Access, if you omit the WHERE clause and are in interactive mode,
DB-Access does not run the UPDATE statement until you confirm that you want to
change all rows. If the statement is in a command file, however, and you are
running at the command line, the statement executes immediately.

Using the ONLY Keyword
If you use the UPDATE statement to update rows of a supertable, rows from its
subtables can also be updated. To update rows from the supertable only, use the
ONLY keyword prior to the table name, as this example shows:
UPDATE ONLY(am_studies_super)

WHERE advisor = "johnson"
SET advisor = "camarillo";

Note: If you use the UPDATE statement on a supertable without the ONLY
keyword and without a WHERE clause, all rows of the supertable and its subtables
are updated. You cannot use the ONLY keyword if you plan to use the WHERE
CURRENT OF clause to update the current row of the active set of a cursor.

Updating Rows Through a View
You can update data through a single-table view if you have the Update privilege
on the view (see “GRANT statement” on page 2-401). For a view to be updatable,
the query that defines the view must not contain any of the following items:
v Columns in the projection list that are aggregate values
v Columns in the projection list that use the UNIQUE or DISTINCT keyword
v A GROUP BY clause
v A UNION operator

In addition, if a view is built on a table that has a derived value for a column, that
column cannot be updated through the view. Other columns in the view, however,
can be updated. In an updatable view, you can update the values in the underlying
table by inserting values into the view.
CREATE VIEW cust_view AS SELECT * FROM customer;
UPDATE cust_view SET customer_num=10001 WHERE customer_cum=101;

The following statements define a view that includes all the rows in the customer
table and changes the customer_num value to 10001 in any row where the value of
that column is 101:

2-702 IBM Informix Guide to SQL: Syntax

|
|

CREATE VIEW cust_view AS SELECT * FROM customer;
UPDATE cust_view SET customer_num=10001 WHERE customer_num=101;

You can use data-integrity constraints to prevent users from updating values in the
underlying table when the update values do not fit the SELECT statement that
defined the view. For more information, see “WITH CHECK OPTION Keywords”
on page 2-281.

Because duplicate rows can occur in a view even if its base table has unique rows,
be careful when you update a table through a view. For example, if a view is
defined on the items table and contains only the order_num and total_price
columns, and if two items from the same order have the same total price, the view
contains duplicate rows. In this case, if you update one of the two duplicate
total_price values, you have no way to know which item price is updated.

Important: If you are using a view with a check option, you cannot update rows
in a remote table.

An alternative to directly modifying data values in a view with the UPDATE
statement is to create an INSTEAD OF trigger on the view. For more information,
see “INSTEAD OF Triggers on Views” on page 2-274.

Updating Rows in a Database Without Transactions
If you are updating rows in a database without transactions, you must take explicit
action to restore updated rows. For example, if the UPDATE statement fails after
updating some rows, the successfully updated rows remain in the table. You
cannot automatically recover from a failed update.

Updating Rows in a Database with Transactions
If you are updating rows in a database with transactions, and you are using
transactions, you can undo the update using the ROLLBACK WORK statement. If
you do not execute a BEGIN WORK statement before the update, and the update
fails, the database server automatically rolls back any database modifications made
since the beginning of the update.

You can create temporary tables with the WITH NO LOG option. These tables are
not logged and are not recoverable.

Tables that you create with the RAW logging type are not logged. Thus, RAW
tables are not recoverable, even if the database uses logging. For information about
RAW tables, refer to the IBM Informix Guide to SQL: Reference.

In an ANSI-compliant database, transactions are implicit, and all database
modifications take place within a transaction. In this case, if an UPDATE statement
fails, you can use ROLLBACK WORK to undo the update.

If you are within an explicit transaction, and the update fails, the database server
automatically undoes the effects of the update.

Locking Considerations
When a row is selected with the intent to update, the update process acquires an
update lock. Update locks permit other processes to read, or share, a row that is
about to be updated, but they do not allow those processes to update or delete it.
Just before the update occurs, the update process promotes the shared lock to an

Chapter 2. SQL statements 2-703

exclusive lock. An exclusive lock prevents other processes from reading or
modifying the contents of the row until the lock is released.

An update process can acquire an update lock on a row or on a page that has a
shared lock from another process, but you cannot promote the update lock from
shared to exclusive (and the update cannot occur) until the other process releases
its lock.

If the number of rows that a single update affects is large, you can exceed the
limits placed on the maximum number of simultaneous locks. If this occurs, you
can reduce the number of transactions per UPDATE statement, or you can lock the
page or the entire table before you execute the statement.

SET Clause

Use the SET clause to identify the columns to update and assign values to each
column. The clause supports the following formats:
v A single-column format, which pairs each column with a single expression
v A multiple-column format, which associates a list of multiple columns with the

values returned by one or more expressions

SET Clause:

SET
(1)

Single-Column Format
(2) (3)

Multiple-Column Format

Notes:

1 See “Single-Column Format”

2 Informix extension

3 See “Multiple-Column Format” on page 2-706

Single-Column Format
Use the single-column format to pair one column with a single expression.

Single-Column Format:

�

,

column = expression
(singleton_select)
NULL
collection_var

Element Description Restrictions Syntax

column Column to be updated Cannot be a serial data type “Identifier” on page
5-21

collection_var Host or program variable Must be declared as a collection data type Language specific

expression Returns a value for column Cannot contain aggregate functions “Expression” on
page 4-40

2-704 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

singleton _select Subquery that returns
exactly one row

Returned subquery values must have a 1-to-1
correspondence with column list

“SELECT statement”
on page 2-536

You can use this syntax to update a column that has a ROW data type.

You can include any number of "single column = single expression" terms. The
expression can be an SQL subquery (enclosed between parentheses) that returns a
single row, provided that the corresponding column is of a data type that can store
the value (or the set of values) from the row that the subquery returns.

To specify values of a ROW-type column in a SET clause, see “Updating
ROW-Type Columns” on page 2-707. The following examples illustrate the
single-column format of the SET clause.
UPDATE customer

SET address1 = ’1111 Alder Court’, city = ’Palo Alto’,
zipcode = ’94301’ WHERE customer_num = 103;

UPDATE stock
SET unit_price = unit_price * 1.07;

Using a Subquery to Update a Single Column

You can update the column specified in the SET clause with the value that a
subquery returns.
UPDATE orders

SET ship_charge =
(SELECT SUM(total_price) * .07 FROM items

WHERE orders.order_num = items.order_num)
WHERE orders.order_num = 1001;

If you are updating a supertable in a table hierarchy, the SET clause cannot include
a subquery that references a subtable. If you are updating a subtable in a table
hierarchy, a subquery in the SET clause can reference the supertable if it references
only the supertable. That is, the subquery must use the SELECT ... FROM ONLY
(supertable) syntax.

Updating a Column to NULL

Use the NULL keyword to modify a column value when you use the UPDATE
statement. For example, for a customer whose previous address required two
address lines but now requires only one, you would use the following entry:
UPDATE customer

SET address1 = ’123 New Street’,
SET address2 = null,
city = ’Palo Alto’,
zipcode = ’94303’
WHERE customer_num = 134;

Updating the Same Column Twice

You can specify the same column more than once in the SET clause. If you do so,
the column is set to the last value that you specified for the column. In the next
example, the fname column appears twice in the SET clause. For the row where
the customer number is 101, the user sets fname first to gary and then to harry.
After the UPDATE statement executes, the value of fname is harry.

Chapter 2. SQL statements 2-705

UPDATE customer
SET fname = "gary", fname = "harry"

WHERE customer_num = 101;

Multiple-Column Format

Use the multiple-column format of the SET clause to list multiple columns and set
them equal to corresponding expressions.

Multiple-Column Format:

�

,

(column)
*

= �

�

,

(expression)
,

(singleton_select)
NULL

Element Description Restrictions Syntax

column Name of a column to be
updated

Cannot have a serial or ROW type. The number of
column names must equal the number of values
returned to the right of the = sign.

“Identifier”
on page 5-21

expression Expression that returns a
value for a column

Cannot include aggregate functions “Expression”
on page 4-40

singleton_ select Subquery that returns
exactly one row

Values that the subquery returns must correspond
to columns in the column list

“SELECT
statement” on
page 2-536

SPL function SPL routine that returns one
or more values

Returned values must have a 1-to-1 correspondence
to columns in the column list

“Identifier”
on page 5-21

The multiple-column format of the SET clause offers the following options for
listing a set of columns that you intend to update:
v Explicitly list each column, placing commas between columns and enclosing the

set of columns between parentheses.
v Implicitly list all columns in the table by using an asterisk (*).

You must list each expression explicitly, placing comma (,) separators between
expressions and enclosing the set of expressions between parentheses. The number
of columns must equal the number of values returned by the expression list, unless
the expression list includes an SQL subquery.

The following examples show the multiple-column format of the SET clause:
UPDATE customer

SET (fname, lname) = (’John’, ’Doe’) WHERE customer_num = 101;

UPDATE manufact
SET * = (’HNT’, ’Hunter’) WHERE manu_code = ’ANZ’;

Using a Subquery to Update Multiple Column Values

The expression list can include one or more subqueries. Each must return a single
row containing one or more values. The number of columns that the SET clause

2-706 IBM Informix Guide to SQL: Syntax

explicitly or implicitly specifies must equal the number of values returned by the
expression (or expression list) that follows the equal (=) sign in the
multiple-column SET clause.

The subquery must be enclosed between parentheses. These parentheses are nested
within the parentheses that immediately follow the equal (=) sign. If the
expression list includes multiple subqueries, each subquery must be enclosed
between parentheses, with a comma (,) separating successive subqueries:
UPDATE ... SET ... = ((subqueryA),(subqueryB), ... (subqueryN))

The following examples show the use of subqueries in the SET clause:
UPDATE items

SET (stock_num, manu_code, quantity) =
((SELECT stock_num, manu_code FROM stock

WHERE description = ’baseball’), 2)
WHERE item_num = 1 AND order_num = 1001;

UPDATE table1
SET (col1, col2, col3) =

((SELECT MIN (ship_charge), MAX (ship_charge) FROM orders), ’07/01/2007’)
WHERE col4 = 1001;

If you are updating a supertable in a table hierarchy, the SET clause cannot include
a subquery that references one of its subtables. If you are updating a subtable in a
table hierarchy, a subquery in the SET clause can reference the supertable if it
references only the supertable. That is, the subquery must use the SELECT... FROM
ONLY (supertable) syntax.

Updating ROW-Type Columns

Use the SET clause to update a named or unnamed ROW-type column. For
example, suppose you define the following named ROW type and a table that
contains columns of both named and unnamed ROW types:
CREATE ROW TYPE address_t
(

street CHAR(20), city CHAR(15), state CHAR(2)
);
CREATE TABLE empinfo
(

emp_id INT
name ROW (fname CHAR(20), lname CHAR(20)),
address address_t

);

To update an unnamed ROW type, specify the ROW constructor before the
parenthesized list of field values.

The following statement updates the name column (an unnamed ROW type) of the
empinfo table:
UPDATE empinfo SET name = ROW(’John’,’Williams’) WHERE emp_id =455;

To update a named ROW type, specify the ROW constructor before the list (in
parentheses) of field values, and use the cast (::) operator to cast the ROW value
as a named ROW type. The following statement updates the address column (a
named ROW type) of the empinfo table:
UPDATE empinfo

SET address = ROW(’103 Baker St’,’Tracy’,’CA’)::address_t
WHERE emp_id = 3568;

Chapter 2. SQL statements 2-707

For more information on the syntax for ROW constructors, see “Constructor
Expressions” on page 4-81. See also “Literal Row” on page 4-185.

The ROW-column SET clause can only support literal values for fields. To use an
ESQL/C variable to specify a field value, you must select the ROW data into a row
variable, use host variables for the individual field values, then update the ROW
column with the row variable. For more information, see “Updating a Row
Variable (ESQL/C)” on page 2-714.

You can use Informix ESQL/C host variables to insert non-literal values as:
v An entire row type into a column

Use a row variable as a variable name in the SET clause to update all fields in a
ROW column at one time.

v Individual fields of a ROW type
To insert non-literal values into a ROW-type column, you can first update the
elements in a row variable and then specify the collection variable in the SET
clause of an UPDATE statement.

When you use a row variable in the SET clause, the row variable must contain
values for each field value. For information on how to insert values into a row
variable, see “Updating a Row Variable (ESQL/C)” on page 2-714.

You can use the UPDATE statement to modify only some of the fields in a row:
v Specify the field names with field projection for all fields whose values remain

unchanged.
For example, the following UPDATE statement changes only the street and city
fields of the address column of the empinfo table:
UPDATE empinfo

SET address = ROW(’23 Elm St’, ’Sacramento’, address.state)
WHERE emp_id = 433;

The address.state field remains unchanged.
v Select the row into an ESQL/C row variable and update the desired fields.

For more information, see “Updating a Row Variable (ESQL/C)” on page 2-714.

Updating Collection Columns
You can use the SET clause to update values in a collection column. For more
information, see “Collection Constructors” on page 4-82.

A collection variable can update a collection-type column. With a collection
variable, you can insert one or more individual elements of a collection. For more
information, see “Collection-Derived Table” on page 5-4.

For example, suppose you define the tab1 table as follows:
CREATE TABLE tab1
(

int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)

);

The following UPDATE statement updates a row in tab1:

2-708 IBM Informix Guide to SQL: Syntax

UPDATE tab1
SET list1 = LIST{ROW(2, ’zyxwv’),

ROW(POW(2,6), '=64’),
ROW(ROUND(ROOT(146)), '=12’)},

WHERE int1 = 10;

Collection column list1 in this example has three elements. Each element is an
unnamed ROW type with an INTEGER field and a CHAR(5) field. The first
element includes two literal values: an integer (2) and a quoted string (’zyxwv’).

The second and third elements also use a quoted string to indicate the value for
the second field. They each designate the value for the first field with an
expression, however, rather than with a literal value.

Updating Values in Opaque-Type Columns
Some opaque data types require special processing when they are updated. For
example, if an opaque data type contains spatial or multirepresentational data, it
might provide a choice of how to store the data: inside the internal structure or, for
large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function called
assign(). When you execute UPDATE on a table whose rows contain one of these
opaque types, the database server automatically invokes the assign() function for
the type. This function can make the decision of how to store the data. For more
information about the assign() support function, see IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Data Types in Distributed UPDATE Operations
The UPDATE statement (or any other SQL data-manipulation language statement)
that accesses a database of another Informix instance can reference only the
following data types:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of the built-in data types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any DISTINCT data type that appears in this list.

Cross-server distributed UPDATE operations can support these DISTINCT types
only if the DISTINCT types are cast explicitly to built-in types, and all of the
DISTINCT types, their data type hierarchies, and their casts are defined exactly the
same way in each participating database. For additional information about the data
types that Informix supports in cross-server DML operations, see “Data Types in
Cross-Server Transactions” on page 2-545.

Cross-database distributed UPDATE operations that access other databases of the
local Informix instance, however, can access the cross-server data types in the
preceding list, and also the following data types:
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-544
v DISTINCT of the built-in types that are referenced in the preceding line
v DISTINCT of any of the data types that are listed in either of the two preceding

lines

Chapter 2. SQL statements 2-709

v Opaque user-defined data types (UDTs) that are explicitly cast to built-in data
types.

Cross-database UPDATE operations can support these DISTINCT types and
opaque UDTs only if all the opaque UDTs and DISTINCT types are cast explicitly
to built-in types, and all of the opaque UDTs, DISTINCT types, data type
hierarchies, and casts are defined exactly the same way in each of the participating
databases.

Distributed UPDATE transactions cannot access the database of another Informix
instance unless both servers define TCP/IP or IPCSTR connections in their
DBSERVERNAME or DBSERVERALIASES configuration parameters and in the
sqlhosts file or SQLHOSTS registry subkey. The requirement, that both
participating servers support the same type of connection (either TCP/IP or else
IPCSTR), applies to any communication between Informix instances, even if both
reside on the same computer.

WHERE Clause of UPDATE
The WHERE clause lets you specify search criteria to limit the rows to be updated.
If you omit the WHERE clause, every row in the table is updated. For more
information, see the “WHERE Clause of SELECT” on page 2-566.

You can use a join to determine which column values to update by specifying a
FROM clause. Columns from any table in the FROM clause can appear in the
WHERE clause to provide values for the columns and rows to update. For
example, in the following UPDATE statement, a FROM clause introduces tables to
be joined in the WHERE clause:
UPDATE tab1 SET tab1.a = tab2.a FROM tab1, tab2, tab3

WHERE tab1.b = tab2.b AND tab2.c =tab3.c;

The next example uses WHERE and FROM clauses to update three columns (state,
zipcode, and phone) in each row of the customer table that has a corresponding
entry in a table of new addresses called new_address:
UPDATE customer

SET (state, zipcode, phone) =
((SELECT state, zipcode, phone FROM new_address N

WHERE N.cust_num = customer.customer_num))
WHERE customer_num IN

(SELECT cust_num FROM new_address);

SQLSTATE Values When Updating an ANSI-Compliant Database
If you update a table in an ANSI-compliant database with an UPDATE statement
that contains the WHERE clause and no rows are found, the database server issues
a warning.

You can detect this warning condition in either of the following ways:
v The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE field to

the value 02000. In an SQL API application, the SQLSTATE variable contains
this same value.

v In an SQL API application, the sqlca.sqlcode and SQLCODE variables contain
the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
UPDATE ... WHERE statement is part of a multistatement PREPARE and the
database server returns no rows.

2-710 IBM Informix Guide to SQL: Syntax

SQLSTATE Values When Updating a Non-ANSI Database
In a database that is not ANSI compliant, the database server does not return a
warning when it finds no matching rows for the WHERE clause of an UPDATE
statement. The SQLSTATE code is 00000 and the SQLCODE code is zero (0). If the
UPDATE ... WHERE statement is part of a multistatement PREPARE, however, and
no rows are returned, the database server issues a warning, and sets SQLSTATE to
02000 and sets SQLCODE to 100.

Client-server communication protocols of Informix, such as SQLI and DRDA,
support SQLSTATE code values. For a list of these codes, and for information
about how to get the message text, see “Using the SQLSTATE Error Status Code”
on page 2-391.

Subqueries in the WHERE Clause of UPDATE
The FROM clause of a subquery in the WHERE clause of the UPDATE statement
can specify as a data source the same table or view that the Table Options clause of
the UPDATE statement specifies. UPDATE operations with subqueries that
reference the same table object are supported only if all of the following conditions
are true:
v The subquery either returns a single row, or else has no correlated column

references.
v The subquery is in the UPDATE statement WHERE clause, using Condition with

Subquery syntax.
v No SPL routine in the subquery can reference the same table that UPDATE is

modifying.

Unless all of these conditions are satisfied, UPDATE statements that include
subqueries that reference the same table or view that the UPDATE statement
modifies return error -360.

The following example updates the stock table by reducing the unit_price value
by 5% for a subset of prices. The WHERE clause specifies which prices to reduce
by applying the IN operator to the rows returned by a subquery that selects only
the rows of the stock table where the unit_price value is greater than 50:
UPDATE stock SET unit_price = unit_price * 0.95

WHERE unit_price IN
(SELECT unit_price FROM stock WHERE unit_price > 50);

This subquery includes only uncorrelated column references, because its only
referenced column is in a table specified in its FROM clause. The requirements
listed above are in effect, because the data source of the subquery is the same
stock table that the Table Options clause of the outer UPDATE statement specifies.

The previous example produces the same results as issuing two separate DML
statements:
v The SELECT statement, to return a temporary table, tmp1, that contains the

same rows from the stock table that the subquery returned.
v The UPDATE statement, to issue a subquery of the temporary table as a

predicate in its WHERE clause to modify every row of the stock table where the
unit_price matches a value in the temporary table:

SELECT unit_price FROM stock WHERE unit_price > 50 INTO TEMP tmp1;
UPDATE stock SET unit_price = unit_price * 0.95

WHERE unit_price IN (SELECT * FROM tmp1);

Chapter 2. SQL statements 2-711

Here is an example of a more complex UPDATE statement that includes multiple
uncorrelated subqueries in its WHERE clause:
UPDATE t1 SET a = a + 10

WHERE a > ALL (SELECT a FROM t1 WHERE a > 1) AND
a > ANY (SELECT a FROM t1 WHERE a > 10) AND
EXISTS (SELECT a FROM t1 WHERE a > 5);;

If an enabled Select trigger is defined on a table that is the data source of a
subquery in the WHERE clause of an UPDATE statement that modifies the same
table, executing that subquery within the UPDATE statement does not activate the
Select trigger. Consider the following program fragment:
CREATE TRIGGER selt11 SELECT ON t1 BEFORE

(UPDATE d1
SET (c1, c2, c3, c4, c5) =

(c1 + 1, c2 + 1, c3 + 1, c4 + 1, c5 + 1));

UPDATE t2 SET c1 = c1 +1
WHERE c1 IN

(SELECT t1.c1 from t1 WHERE t1.c1 > 10);

In the example above, trigger selt11 is not activated as part of the UPDATE
operation on table t2.

A subquery in the WHERE clause of the UPDATE statement can include the
UNION or the UNION ALL operator, as in the following example.
UPDATE t1 SET a = a + 10 WHERE a in (SELECT a FROM t1 WHERE a > 1

UNION SELECT a FROM t1, t2 WHERE a < b);

If the table that the outer UPDATE statement modifies a typed table within a table
hierarchy, Informix supports all of the following operations that use valid
subqueries in the WHERE clause of UPDATE:
v UPDATE on target parent table with subquery (SELECT from parent table)
v UPDATE on target parent table with subquery (SELECT from child table)
v UPDATE on target child table with subquery (SELECT from parent table)
v UPDATE on target child table with subquery (SELECT from child table).

The following program fragment illustrates UPDATE operations with subqueries
on typed tables:
CREATE ROW TYPE r1 (c1 INT, c2 INT);
CREATE ROW TYPE r2 UNDER r1;
CREATE TABLE t1 OF TYPE r1; -- parent table
CREATE TABLE t2 OF TYPE r2 UNDER t1; -- child table

UPDATE t1 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t1.c1 FROM t1 WHERE t1.c1 > 10);

UPDATE t1 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t2.c1 FROM t2 WHERE t2.c1 > 10);

UPDATE t2 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t2.c1 FROM t2 WHERE t2.c1 > 10);

UPDATE t2 SET c1 = c1 + 1 WHERE c1 IN
(SELECT t1.c1 FROM t1 WHERE t1.c1 > 10);

See the “Condition with Subquery” on page 4-16 topic for more information about
how to use subqueries that return multiple rows as predicates in the WHERE
clause of the UPDATE statement.

2-712 IBM Informix Guide to SQL: Syntax

Using the WHERE CURRENT OF Clause (ESQL/C, SPL)
Use the WHERE CURRENT OF clause to update the current row of a cursor that
was declared FOR UPDATE, or to update the current element of a Collection
cursor.

Here the cursor name cannot be specified as a host variable.

The current row is the most recently fetched row. Because the UPDATE statement
does not advance the cursor to the next row, the current row position within the
active set of the cursor is not changed by this operation.

For table hierarchies of Informix, you cannot use this clause if you are selecting
from only one table in a table hierarchy. That is, you cannot use this option if you
use the ONLY keyword.

In ESQL/C routines, to include the WHERE CURRENT OF keywords, you must
have previously used the DECLARE statement to define the cursor with the FOR
UPDATE option. If the DECLARE statement that created the cursor specified one
or more columns in the FOR UPDATE clause, you are restricted to updating only
those columns in a subsequent UPDATE ... WHERE CURRENT OF statement. The
advantage to specifying columns in the FOR UPDATE clause of a DECLARE
statement is speed. The database server can usually perform updates more quickly
if columns are specified in the DECLARE statement.

In SPL routines, you can specify a cursor after the WHERE CURRENT OF
keywords in an UPDATE statement only if you declared the cursor_id in the
FOREACH statement of SPL. You cannot use the DECLARE statement in an SPL
routine to declare the name of a dynamic cursor and to associate that cursor with
the statement identifier of a prepared object that the PREPARE statement has
declared in the same SPL routine.

Note: An Update cursor can perform updates that are not possible with the
UPDATE statement.

The following Informix ESQL/C example illustrates the CURRENT OF form of the
WHERE clause. In this example, updates are performed on a range of customers
who receive 10-percent discounts (assume that a new column, discount, is added
to the customer table). The UPDATE statement is prepared outside the WHILE
loop to ensure that parsing is done only once.
char answer [1] = ’y’;
EXEC SQL BEGIN DECLARE SECTION;

char fname[32],lname[32];
int low,high;

EXEC SQL END DECLARE SECTION;
main()
{

EXEC SQL connect to ’stores_demo’;
EXEC SQL prepare sel_stmt from

’select fname, lname from customer
where cust_num between ? and ? for update’;

EXEC SQL declare x cursor for sel_stmt;
printf("\nEnter lower limit customer number: ");
scanf("%d", &low);
printf("\nEnter upper limit customer number: ");
scanf("%d", &high);
EXEC SQL open x using :low, :high;
EXEC SQL prepare u from

’update customer set discount = 0.1 where current of x’;

Chapter 2. SQL statements 2-713

while (1)
{
EXEC SQL fetch x into :fname, :lname;
if (SQLCODE == SQLNOTFOUND) break;
}

printf("\nUpdate %.10s %.10s (y/n)?", fname, lname);
if (answer = getch() == ’y’)

EXEC SQL execute u;
EXEC SQL close x;

}

Updating a Row Variable (ESQL/C)

The UPDATE statement with the Collection-Derived Table segment allows you to
update fields in a row variable. The Collection-Derived Table segment identifies
the row variable in which to update the fields. For more information, see
“Collection-Derived Table” on page 5-4.

To update fields

1. Create a row variable in your Informix ESQL/C program.
2. Optionally, select a ROW-type column into the row variable with the SELECT

statement (without the Collection-Derived Table segment).
3. Update fields of the row variable with the UPDATE statement and the

Collection-Derived Table segment.
4. After the row variable contains the correct fields, you then use the UPDATE or

INSERT statement on a table or view name to save the row variable in the
ROW column (named or unnamed).

The UPDATE statement and the Collection-Derived Table segment allow you to
update a field or a group of fields in the row variable. Specify the new field values
in the SET clause. For example, the following UPDATE changes the x and y fields
in the myrect Informix ESQL/C row variable:
EXEC SQL BEGIN DECLARE SECTION;

row (x int, y int, length float, width float) myrect;
EXEC SQL END DECLARE SECTION;
. . .
EXEC SQL select into :myrect from rectangles where area = 64;
EXEC SQL update table(:myrect) set x=3, y=4;

Suppose that after the SELECT statement, the myrect2 variable has the values x=0,
y=0, length=8, and width=8. After the UPDATE statement, the myrect2 variable has
field values of x=3, y=4, length=8, and width=8. You cannot use a row variable in
the Collection-Derived Table segment of an INSERT statement.

You can, however, use the UPDATE statement and the Collection-Derived Table
segment to insert new field values into a row host variable, if you specify a value
for every field in the row.

For example, the following code fragment inserts new field values into the row
variable myrect and then inserts this row variable into the database:
EXEC SQL update table(:myrect)

set x=3, y=4, length=12, width=6;
EXEC SQL insert into rectangles

values (72, :myrect);

If the row variable is an untyped variable, you must use a SELECT statement before
the UPDATE so that Informix ESQL/C can determine the data types of the fields.
An UPDATE of fields in a row variable cannot include a WHERE clause.

2-714 IBM Informix Guide to SQL: Syntax

The row variable can store the field values of the row, but it has no intrinsic
connection with a database column. Once the row variable contains the correct
field values, you must then save the variable into the ROW column with one of the
following SQL statements:
v To update the ROW column in the table with contents of the row variable, use

an UPDATE statement on a table or view name and specify the row variable in
the SET clause. (For more information, see “Updating ROW-Type Columns” on
page 2-707.)

v To insert a row into a column, use the INSERT statement on a table or view
name and specify the row variable in the VALUES clause. (For more
information, see “Inserting Values into ROW-Type Columns” on page 2-442.)

For examples of SPL ROW variables, see the IBM Informix Guide to SQL: Tutorial.
For more information on using Informix ESQL/C row variables, see the discussion
of complex data types in the IBM Informix ESQL/C Programmer's Manual.

Examples
CREATE VIEW cust_view AS SELECT * FROM customer;
UPDATE cust_view SET customer_num=10001 WHERE customer_num=101;

Related Information

Related statements: “DECLARE statement” on page 2-290, “INSERT statement” on
page 2-435, “OPEN statement” on page 2-469, “SELECT statement” on page 2-536,
and “FOREACH” on page 3-22

For a task-oriented discussion of the UPDATE statement, see the IBM Informix
Guide to SQL: Tutorial.

For a discussion of the GLS aspects of the UPDATE statement, see the IBM Informix
GLS User's Guide.

For information on how to access row and collections with Informix ESQL/C host
variables, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer's Manual.

UPDATE STATISTICS statement
Use the UPDATE STATISTICS statement to update system catalog information that
the query optimizer uses for operations on objects in the local database. The
UPDATE STATISTICS statement is an extension to the ANSI/ISO standard for
SQL.

Syntax

�� UPDATE STATISTICS �

Chapter 2. SQL statements 2-715

�
LOW

Table and Column Scope
DROP DISTRIBUTIONS

ONLY
MEDIUM Table and Column Scope
HIGH (1)

Resolution Clause
(2)

Routine Statistics

��

Table and Column Scope:

�

�

FOR TABLE
table

'owner' . synonym ,

(column)
ONLY (table)

'owner' . synonym ,

(column)

Notes:

1 See “Resolution Clause” on page 2-722

2 See “Routine Statistics” on page 2-725

Element Description Restrictions Syntax

column A column in table or synonym Must exist. With MEDIUM or HIGH keywords, the
column cannot be of BYTE or TEXT data type

“Identifier” on
page 5-21

owner The owner of table or
synonym

Must be the owner of table or synonym “Owner Name” on
page 5-45

synonym A synonym for a table whose
statistics are to be updated

The synonym and the table to which it points must
exist in the current database

“Identifier” on
page 5-21

table Table for which statistics are
to be updated

Must exist in the current database or be a
temporary table created in the current session

“Identifier” on
page 5-21

Usage

Use the UPDATE STATISTICS statement to perform any of the following tasks:
v Calculate the distribution of column values .
v Update system catalog tables that the database server uses to optimize queries.
v Force reoptimization of SPL routines.
v Convert existing indexes when you upgrade the database server.

If you specify no table, no routine, and no Resolution clause, the default scope of
the UPDATE STATISTICS statement is all tables and all routines in the current
database. (See also the topic “Scope of UPDATE STATISTICS” on page 2-717.)

2-716 IBM Informix Guide to SQL: Syntax

Restriction: You cannot update the statistics for a table or the query plan of a
UDR in any database except the current database. That is, the database server
ignores remote database objects when executing the UPDATE STATISTICS
statement.

Scope of UPDATE STATISTICS
The scope of UPDATE STATISTICS is restricted by whatever tables, columns, or
SPL routines follow the FOR TABLE keywords or the FOR PROCEDURE
keywords.
v If you include no FOR PROCEDURE specification, no Table and Column Scope

clause, and no Resolution clause, then statistics are updated for every table and
SPL routine in the current database, including the system catalog tables.

v If you use the FOR TABLE keywords without also specifying the name or
synonym of a table, the database server recalculates distributions on all of the
tables in the current database, and on all of the temporary tables in your session.
(UPDATE STATISTICS has no effect, however, on objects defined by the
CREATE EXTERNAL TABLE statement.)

v If you specify a table after the FOR TABLE keywords without also specifying a
list of columns, the database server recalculates distributions on all of the
columns of the specified table.

v If you include the FOR PROCEDURE keywords, but do not specify the name of
any SPL routine, the database server reoptimizes the query plans of all SPL
routines in the current database.

Updating Statistics for Tables
Although a change to the database might make information in the systables,
syscolumns, sysindexes, and sysdistrib system catalog tables obsolete, the
database server does not automatically update those tables. Issue an UPDATE
STATISTICS statement in the following situations to ensure that the stored
distribution information reflects the state of the database:
v You perform extensive modifications to a table.
v An application changes the distribution of column values.

UPDATE STATISTICS reoptimizes queries on the modified objects.
v You upgrade a database for use with a newer database server.

The UPDATE STATISTICS statement converts the old indexes to conform to the
newer database server index format and implicitly drops the old indexes.
You can convert the indexes table by table or for the entire database at one time.
Follow the conversion guidelines in the IBM Informix Migration Guide.

If your application makes many modifications to the data in a particular table,
update the system catalog for that table routinely with UPDATE STATISTICS to
improve query efficiency. The term many modifications is relative to the resolution of
the distributions. If the data modifications have little effect on the distribution of
column values, you do not need to execute UPDATE STATISTICS.
Related concepts

Automatic statistics updating (Performance Guide)

Automated Table Statistics Maintenance
To simplify the complex and repetitive task of the DBA in maintaining current
table statistics from which the query plan optimizer can design efficient query
plans, Informix provides a table statistics maintenance system, called Auto Update
Statistics (AUS). This can automate the identification of tables whose statistics are

Chapter 2. SQL statements 2-717

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_742.htm#ids_prf_742.dita

stale, and can automate the construction and execution of the corresponding
UPDATE STATISTICS statements to recalculate their column distributions. The
AUS system is provided with built-in criteria for when table statistics should be
updated, but the DBA can modify these criteria to reflect current requirements and
workloads.

For more information, see the description of the Auto Update Statistics
maintenance system in the IBM Informix Performance Guide. See also the description
of the Scheduler, which the DBA can use to specify the policies, resources, and
frequency with which the AUS system recalculates table statistics, in the IBM
Informix Administrator's Guide.

The AUS maintenance system for table statistics is also available in the IBM
OpenAdmin Tool (OAT) for Informix. Refer to the OAT online help for detailed
information on how to configure the AUS maintenance system to provide current
table statistics automatically. OAT is available as an open source download from
the iiug.org website and from IBM websites.

Using the FOR TABLE ONLY Keywords
Use the FOR TABLE ONLY keywords to collect data for a single table within a
hierarchy of typed tables. If you do not include the ONLY keyword immediately
after FOR TABLE when the specified table has subtables, Informix creates
distributions for that table and also for every subtable under it in the hierarchy.

For example, suppose your database has the typed table hierarchy that appears in
Figure 2-3, which shows a supertable named employee that has a subtable named
sales_rep. The sales_rep table, in turn, has a subtable named us_sales_rep.

When the following statement executes, the database server generates statistics on
both the sales_rep and us_sales_rep tables:
UPDATE STATISTICS FOR TABLE sales_rep;

In contrast, the following example generates statistical data for each column in
table sales_rep but does not act on tables employee or us_sales_rep:
UPDATE STATISTICS FOR TABLE ONLY (sales_rep);

If you specify FOR TABLE ONLY, as in this example, the identifier of the table (or
owner.table) must be enclosed between parentheses.

Because neither of the previous examples specified the level at which to update the
statistical data, the database server uses the LOW mode by default.

us_sales_rep

employee

sales_rep

Table Hierarchy

Figure 2-3. Example of Typed Table Hierarchy

2-718 IBM Informix Guide to SQL: Syntax

Updating Statistics for Columns
The Table and Column Scope specification can also include the names of one or
more columns for which you want distributions calculated. For example, this
statement calculates the distributions for three columns of the orders table:
UPDATE STATISTICS FOR TABLE orders (order_num, customer_num, ship_date);

If you include no column name in the FOR TABLE clause, then distributions are
calculated for all columns of the specified table, using the LOW, MEDIUM, or
HIGH mode and the number of bins implied by the specified or default Resolution
clause percentage (for MEDIUM or HIGH mode) that you request.

Distributions are not calculated for BYTE or TEXT columns. See also “Updating
Statistics for Columns of User-Defined Types” for UPDATE STATISTICS restrictions
on columns that store UDTs.

Examining Index Pages
In Informix, when you execute the UPDATE STATISTICS statement in any mode,
the database server reads through index pages to:
v Compute statistics for the query optimizer
v Locate pages that have the delete flag marked as 1

If pages are found with the delete flag marked as 1, the corresponding keys are
removed from the B-tree cleaner list.

This operation is particularly useful if a system failure causes the B-tree cleaner list
(which exists in shared memory) to be lost. To remove the B-tree items that have
been marked as deleted but are not yet removed from the B-tree, run the UPDATE
STATISTICS statement. For information on the B-tree cleaner list, see your IBM
Informix Administrator's Guide.

Updating Statistics for Columns of User-Defined Types
To collect statistics for a column of a user-defined data type, you must specify
either MEDIUM or HIGH mode. The UPDATE STATISTICS statement does not
collect values for the colmin and colmax columns of the syscolumns system
catalog table for columns that hold user-defined data types.

To drop statistics for a column that holds one of these data types, you must
execute UPDATE STATISTICS in LOW mode with the DROP DISTRIBUTIONS
option. When you use this option, the database server deletes the row in the
sysdistrib system catalog table that corresponds to the tableid and colno values
for the column. In addition, the database server removes any large objects that
might have been created to store statistics for the specified opaque column.

Requirements for Statistics on Opaque Columns
UPDATE STATISTICS can collect statistics for columns of user-defined opaque data
types only if support routines for statcollect(), statprint(), and the selectivity
functions are defined for the UDTs. You must also hold Usage privilege on these
routines.

In some cases, UPDATE STATISTICS also requires an sbspace as specified by the
SYSSBSPACENAME configuration parameter. For information about how to
provide statistical data for a column whose data type is a UDT, refer to the IBM
Informix DataBlade API Programmer's Guide. For information about
SYSSBSPACENAME, refer to your IBM Informix Administrator's Reference.

Chapter 2. SQL statements 2-719

Related reference

SYSSBSPACENAME Configuration Parameter (Administrator's Reference)

Using the LOW Mode Option
Use the LOW option to generate and update some of the relevant statistical data
regarding table, row, and page count statistics in the systables system catalog
table. If you do not specify any mode, the LOW mode is the default.

In Informix, the LOW mode also generates and updates some index and column
statistics for specified columns in the syscolumns and the sysindexes system
catalog tables.

The LOW mode generates the least amount of information about the column. If
you want the UPDATE STATISTICS statement to do minimal work, specify a
column that is not part of an index. The colmax and colmin values in syscolumns
are not updated unless there is an index on the column.

The following example updates statistics on the customer_num column of the
customer table:
UPDATE STATISTICS LOW FOR TABLE customer (customer_num);

Because the LOW mode option does not update data in the sysdistrib system
catalog table, all distributions associated with the customer table remain intact,
even those that already exist on the customer_num column.

Using the DROP DISTRIBUTIONS Option
Use the DROP DISTRIBUTIONS option to force the removal of distribution
information from the sysdistrib system catalog table.

When you specify the DROP DISTRIBUTIONS option, the database server removes
the existing distribution data for the column or columns that you specify. If you do
not specify any columns, the database server removes all the distribution data for
that table.

You must have the DBA privilege or be owner of the table to use this option.

The following example shows how to remove distributions for the customer_num
column in the customer table:
UPDATE STATISTICS LOW

FOR TABLE customer (customer_num) DROP DISTRIBUTIONS;

As the example shows, you drop the distribution data at the same time you update
the statistical data that the LOW mode option generates.

Using the DROP DISTRIBUTIONS ONLY Option
Use the DROP DISTRIBUTIONS ONLY option to remove distribution information
from the sysdistrib table and update the systables.version column in the system
catalog for those tables whose distributions were dropped, without gathering any
LOW mode table and index statistics.

If you specify both the DROP DISTRIBUTIONS ONLY option and the FOR TABLE
clause, Informix removes the existing distribution data for the set of columns of the
table that the FOR TABLE clause specifies (or for all columns, if you provide no
column specification), but does not gather any LOW mode table and index
statistics.

2-720 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0174.htm#ids_adr_0174

You must have the DBA privilege or be owner of the table to use this option.

The following example removes distributions for the customer_num column in the
customer table:
UPDATE STATISTICS LOW

FOR TABLE customer (customer_num) DROP DISTRIBUTIONS ONLY;

This drops the customer.customer_num distribution data without updating the
statistical information that the LOW mode option generates when the ONLY
keyword does not follow the DROP DISTRIBUTIONS keywords. This example
deletes from the system catalog any row describing customer.customer_num from
the sysdistrib table, and updates the version number for customer in the systables
table. None of the other LOW mode updates are performed on systables, so the
nrow and npused column values are unchanged by this example, and the
syscolumns, sysfragments and sysindexes tables of the system catalog are not
updated. The LOW keyword has no effect in this example, but the DROP
DISTRIBUTIONS ONLY option is not available in MEDIUM or HIGH mode.

Because it specifies no FOR TABLE clause, the next example drops all rows from
the sysdistrib table and updates the systables.version column in the system
catalog for all tables in the database.
UPDATE STATISTICS DROP DISTRIBUTIONS ONLY;

Using the MEDIUM Mode Option
Use the MEDIUM mode option to update the same statistics that you can perform
with the LOW mode option and also generate statistics about the distribution of
data values for each specified column. The database server places distribution
information in the sysdistrib system catalog table.

If you use the MEDIUM mode option, the database server scans tables at least
once and takes longer to execute on a given table than the LOW mode option.

When you use the MEDIUM mode option, the data distributions are obtained by
sampling a percentage of data rows, using a statistical confidence level that you
specify, or else a default confidence level of 95 percent. You can also specify an
explicit minimum sampling size in the Resolution clause. Because the MEDIUM
sample size is usually much smaller than the actual number of rows, this mode
executes more quickly than the HIGH mode.

In distributions obtained by sampling, the results can vary, because different
samples of rows can have different sampling errors. If the results vary significantly,
you can use the Resolution clause to increase the sampling size, or to lower the
percent, or to increase the confidence level to obtain more consistent results.

If the Resolution clause specifies no percent of sampled rows per bin, the default
average percentage of the sample in each bin is 2.5, which divides the range into
40 intervals. If you do not specify a value for confidence level, the default level is
0.95. This value can be roughly interpreted to mean that 95 times out of 100, the
difference between the MEDIUM estimate and the exact value from HIGH
distributions is not statistically significant.

You must have the DBA privilege or be the owner of the table to create MEDIUM
mode distributions. For more information on the MEDIUM and HIGH mode
options, see the “Resolution Clause” on page 2-722.

Chapter 2. SQL statements 2-721

Using the HIGH Mode Option
Use the HIGH mode option to update the same statistics that you can perform
with the LOW mode option and also generate statistics about the distribution of
data values for each specified column. The database server places distribution
information in the sysdistrib system catalog table.

If you do not specify a Resolution clause, the default percentage of data distributed
to every bin is 0.5, a value that partitions the range of values for each column into
200 intervals.

The constructed distribution is exact. Because more information is gathered, this
mode executes more slowly than LOW or MEDIUM modes. If you use the HIGH
mode option of UPDATE STATISTICS, the database server can take considerable
time to gather the information across the database, particularly a database with
large tables. The HIGH mode might scan each table several times for each column.
To minimize processing time, specify a table name and column names within that
table, rather than accept the default scope of all tables.

You must have the DBA privilege or be the owner of the table to create HIGH
mode distributions. For more information on the MEDIUM and HIGH mode
options, see the “Resolution Clause.”

Resolution Clause

Use the Resolution clause in MEDIUM or HIGH mode to adjust the size of the
distribution bins and to avoid calculating data on indexes. In MEDIUM mode only,
you can also use the Resolution clause to specify a lower limit to the sampling size
and to adjust the confidence level.

Resolution Clause:

Resolution Clause for MEDIUM Mode
Resolution Clause for HIGH Mode

Resolution Clause for MEDIUM Mode:

SAMPLING SIZE min
�

�
RESOLUTION percent DISTRIBUTIONS ONLY

confidence

Resolution Clause for HIGH Mode:

RESOLUTION percent DISTRIBUTIONS ONLY

Element Description Restrictions Syntax

confidence Estimated likelihood that sampling in MEDIUM
mode produces results equivalent to the exact
HIGH mode. Default level is 0.95.

Must be within the range
from 0.80 (minimum) to 0.99
(maximum)

“Literal
Number”
on page
4-184

2-722 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

percent Average percentage of the sample in each
distribution bin. Default is 2.5 for MEDIUM and
0.5 for HIGH.

Minimum value is 1/nrows,
for nrows the number of rows
in the table

“Literal
Number”
on page
4-184

min The minimum integer number of randomly
selected rows on which to generate the data
distributions

Must be greater than zero but
cannot exceed nrows

“Literal
Number”
on page
4-184

A distribution is a mapping of the data in a column into a set of column values,
ordered by magnitude or by collation. The range of these sample values is
partitioned into disjunct intervals, called bins, each containing an approximately
equal portion of the sample of column values. For example, if one bin holds 2
percent of the data, 50 such intervals hold the entire sample.

Some statistical texts call these bins equivalence categories. Each contains a disjunct
subset of the range of the data values that are sampled from the column.

If you include the RESOLUTION keyword, it must be followed by a literal
number, specifying the percent of values in each bin. In MEDIUM mode, it can be
followed by either one or two literal numbers, with the optional second number
specifying the confidence level, as in this example:
UPDATE STATISTICS MEDIUM FOR TABLE orders

RESOLUTION 4 0.90 DISTRIBUTIONS ONLY;

This specifies 4% of the data per bin, implying 25 bins, and a confidence level of
90%, and no examination of index data. If the 0.90 value were omitted, then the
default level of confidence would have been in effect. If the RESOLUTION
keyword and both numeric values were omitted, then default values for percent
(2.5%) and for confidence (0.95) would be used.

The query optimizer estimates the selectivity of a WHERE clause by examining, for
each column included in the WHERE clause, the proportional occurrence of the
data values contained in the column.

You cannot create distributions for BYTE or TEXT columns. If you include a BYTE
or TEXT column in an UPDATE STATISTICS statement that specifies MEDIUM or
HIGH distributions, no distributions are created for those columns. Distributions
are constructed for other columns in the list, however, and the statement does not
return an error.

Columns of the VARCHAR data type do not use overflow bins, even when
multiple bins are being used for duplicate values.

You can use the first two parameters of the DBUPSPACE environment variable to
constrain the disk space and memory resources that the UPDATE STATISTICS
statement can use to sort data when it constructs column distributions. These
settings affect performance, because they determine how many times the database
server scans the specified table to construct each distribution. (A third
DBUPSPACE parameter can control whether UPDATE STATISTICS sorts with
indexes when calculating column distributions, and whether the sqexplain.out file
stores the plan by which the column distributions are calculated.)

Chapter 2. SQL statements 2-723

Specifying the SAMPLING SIZE
In MEDIUM mode, you can optionally use the SAMPLING SIZE keywords to
specify the minimum number of rows to sample for calculating column
distribution statistics. If the Resolution clause omits the RESOLUTION keyword
and specifies no confidence level and no percent value, then the number of rows that
Informix samples will be the larger of the following two values:
v The min value that you specify immediately after the SAMPLING SIZE

keywords
v The sampling size that is required for the default percent of rows in each bin

(2.5%) and for the minimum confidence level (0.80).

If a sampling size is specified in a Resolution clause that includes explicit values
for both the average percent of sampled rows per bin and for the confidence level,
then the number of sampled rows will be the larger of these two values:
v The min value that you specify immediately after the SAMPLING SIZE

keywords
v The sampling size that is required for the specified percent of rows and for the

specified confidence level.

If a sampling size is specified in a Resolution clause that includes an average
percentage value but sets no confidence level, then the minimum confidence value of
0.80 is used to calculate the actual sampling size for Informix to use if the specified
size is smaller.

For example, the following statement calculates statistics for two columns of the
customer table, without updating index information. At least 200 rows will be
sampled, but the actual size of the sample might be larger than 200 if more rows
are required to provide the default 0.80 confidence level for a sample distribution
that uses 50 equivalence categories, with an average percentage of 2% of the
sampled values in each bin.
UPDATE STATISTICS MEDIUM FOR TABLE customer (city, state)

SAMPLING SIZE 200 RESOLUTION 2 DISTRIBUTIONS ONLY;

Whether or not you include an explicit SAMPLING SIZE specification in the
Resolution clause, Informix records in the system catalog the actual sampling size
(as a percentage of the total number of rows in the table) at the time of MEDIUM
mode UPDATE STATISTICS creation.

Using the DISTRIBUTIONS ONLY Option to Suppress Index
Information
In Informix, when you specify the DISTRIBUTIONS ONLY option, you do not
update index information. This option does not affect existing index information.

Use this option to avoid the examination of index information that can consume
considerable processing time.

This option does not affect the recalculation of information on tables, such as the
number of pages used, the number of rows, and fragment information. UPDATE
STATISTICS needs this information to construct accurate column distributions and
requires little time and system resources to collect it.

Do not confuse this DISTRIBUTIONS ONLY option with the DROP
DISTRIBUTIONS ONLY option of LOW mode, whose syntax and semantics are not

2-724 IBM Informix Guide to SQL: Syntax

supported in MEDIUM or HIGH mode. For information on how to suppress the
collection of column distributions, see “Using the DROP DISTRIBUTIONS ONLY
Option” on page 2-720.

Using DBUPSPACE Settings to Suppress Index Information
You can also prevent indexes from being used by UPDATE STATISTICS operations
in sorting rows by setting the third parameter of the DBUPSPACE environment
variable to a value of 1. Refer to Chapter 3 of the IBM Informix Guide to SQL:
Reference for information about the DBSPACETEMP and DBUPSPACE
environment variables, which can restrict the system resources that are available
for UPDATE STATISTICS operations. (The database server uses the storage
locations that DBSPACETEMP specifies only when you use the HIGH option of
UPDATE STATISTICS.)
Related concepts

Environment Variables (SQL Reference)

Output for UPDATE STATISTICS from the SET EXPLAIN
Statement
The SET EXPLAIN statement can display the plan that UPDATE STATISTICS uses
to generate column distributions. The following output is based on the default
DBUPSPACE value of 15 megabytes of sort memory, which in this example
requires two passes to sort the 21.9 megabytes of data:
UPDATE STATISTICS:
==================

Table: zelaine.t1
Mode: HIGH
Number of Bins: 267 Bin size 2505
Sort data 21.9 MB Sort memory granted 15.0 MB
Estimated number of table scans 2
PASS #1 b
PASS #2 a
Scan 9 Sort 1 Build 2 Insert 0 Close 0 Total 12
Completed pass 1 in 0 minutes 12 seconds
Scan 5 Sort 2 Build 1 Insert 0 Close 0 Total 8
Completed pass 2 in 0 minutes 8 seconds

Routine Statistics
Before the database server executes a new SPL routine the first time, it optimizes
the statements in the SPL routine. Optimization makes the code depend on the
structure of tables referenced by the routine. If a DDL operation modifies the
schema of a referenced table after the routine is optimized, but before it is
executed, the routine can fail with an error.

This failure typically does not occur, however, if an index is added or dropped
while automatic recompilation is enabled for routines referencing tables that
ALTER TABLE, CREATE INDEX, or DROP INDEX operations have modified. This
is the default behavior of Informix. For more information about enabling or
disabling automatic reoptimization after changes to the schema of a table, see the
description of the IFX_AUTO_REPREPARE option to the SET ENVIRONMENT
statement.

When the AUTO_REPREPARE configuration parameter and the
IFX_AUTO_REPREPARE session environment variable are set to disable
recompilation of SPL routines that reference tables whose schema has been
modified, however, adding or dropping an index to a table that an SPL routine
references indirectly can cause the routine to return error -710. To avoid this error

Chapter 2. SQL statements 2-725

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_199.htm#ids_sqr_199

after DDL operations, or to reoptimize SPL routines after table distributions might
have been modified by DML operations, use the Routine Statistics segment of
UPDATE STATISTICS to update the execution plans of any SPL routines that
reference the table.

Routine Statistics:

FOR PROCEDURE
FUNCTION routine
ROUTINE ()

(1)
Routine Parameter List

(2)
SPECIFIC PROCEDURE Specific Name

FUNCTION
ROUTINE

Notes:

1 See “Routine Parameter List” on page 5-67

2 See “Specific Name” on page 5-73

Element Description Restrictions Syntax

routine Name declared for a SPL routine in a
CREATE FUNCTION or CREATE
PROCEDURE statement

Must reside in the database. In
ANSI-compliant databases, qualify
routine with owner if you are not owner.

“Identifier” on
page 5-21

The following table explains the keywords of the Routine Statistics segment.

Keyword
Which Execution Plan is Reoptimized

SPECIFIC
The plan for the SPL routine called specific name

FUNCTION
The plan for any SPL function with the specified name (and with
parameter types that match routine parameter list, if supplied). If you specify
the FUNCTION keyword, the UPDATE STATISTICS statement fails with
an error unless the specified routine returns a value or values, with or
without the WITH RESUME option.

PROCEDURE
The plan for any SPL procedure with the specified name (and parameter
types that match routine parameter list, if supplied)

ROUTINE
The plan for SPL functions and procedures with the specified name (and
parameter types that match routine parameter list, if supplied)

The parentheses symbols are optional if you include no argument list.

If you specify no routine, the execution plans are reoptimized for all SPL routines
in the current database.

The database server keeps a list of tables that the SPL routine references explicitly.
Whenever an explicitly referenced table is modified, the database server
reoptimizes the procedure the next time the procedure is executed.

2-726 IBM Informix Guide to SQL: Syntax

The sysprocplan system catalog table stores execution plans for SPL routines. Two
actions can update the sysprocplan system catalog table:
v Execution of an SPL routine that uses a modified table
v The UPDATE STATISTICS statement

If you change a table that an SPL routine references, you can run UPDATE
STATISTICS to reoptimize the procedures that reference the table, rather than
waiting until the next time an SPL routine that uses the table executes. (If a table
that an SPL routine references is dropped, however, running UPDATE STATISTICS
cannot prevent the SPL routine from failing with an error.)

Altered Tables that are Referenced Indirectly in SPL Routines
If the SPL routine depends on a table that is referenced only indirectly, however,
the database server cannot detect the need to reoptimize the procedure after that
table is modified. For example, a table can be referenced indirectly if the SPL
routine invokes a trigger. If the schema of a table that is referenced by the trigger
(but not directly by the SPL routine) is changed, the database server does not
know that it should reoptimize the SPL routine before running it. When the
procedure is run after the table has been changed, error -710 can occur.

Each SPL routine is optimized the first time that it is run (not when it is created).
This behavior means that an SPL routine might succeed the first time it is run but
fail later under virtually identical circumstances, if the schema of an indirectly
referenced table has been changed. The failure of an SPL routine can also be
intermittent, because failure during one execution forces an internal warning to
reoptimize the procedure before the next execution.

You can use either of two methods to recover from this error:
v Issue UPDATE STATISTICS to force reoptimization of the routine.
v Rerun the routine.

To prevent this error, you can force reoptimization of the SPL routine. To force
reoptimization, execute the following statement:
UPDATE STATISTICS FOR PROCEDURE routine;

You can add this statement to your program in either of the following ways:
v Issue UPDATE STATISTICS after each statement that changes the mode of an

object.
v Issue UPDATE STATISTICS before each invocation of the SPL routine.

For efficiency, you can put the UPDATE STATISTICS statement with the action that
occurs less frequently in the program (change of object mode or execution of the
procedure). In most cases, the action that occurs less frequently in the program is
the change of object mode.

When you follow this method of recovering from this error, you must execute
UPDATE STATISTICS for each procedure that indirectly references the altered
tables unless the procedure also references the tables explicitly.

You can also recover from error -710 after an indirectly referenced table is altered
simply by re-executing the SPL routine. The first time that the stored procedure
fails, the database server marks the procedure as in need of reoptimization. The
next time that you run the procedure, the database server reoptimizes the
procedure before running it. Running the SPL routine twice, however, might be

Chapter 2. SQL statements 2-727

neither practical nor safe. A safer choice is to use the UPDATE STATISTICS
statement to force reoptimization of the procedure.

Updating Statistics When You Upgrade the Database Server
When you upgrade a database to use with a newer database server, you can use
the UPDATE STATISTICS statement to convert the indexes to the form that the
newer database server uses. You can choose to convert the indexes one table at a
time or for the entire database at one time. Follow the conversion guidelines that
are outlined in the IBM Informix Migration Guide.

When you use the UPDATE STATISTICS statement to convert the indexes to use
with a newer database server, the indexes are implicitly dropped and re-created.
The only time that an UPDATE STATISTICS statement causes table indexes to be
implicitly dropped and re-created is when you upgrade a database for use with a
newer database server.

Performance
The more specific you make the list of objects that UPDATE STATISTICS examines,
the faster it completes execution. Limiting the number of columns distributed
speeds the update. Similarly, precision affects the speed of the update. If all other
keywords are the same, LOW works fastest, but HIGH examines the most data.

Examples
UPDATE STATISTICS MEDIUM;
UPDATE STATISTICS MEDIUM RESOLUTION 10;
UPDATE STATISTICS MEDIUM RESOLUTION 10 .95;
{ RESOLUTION 10, CONFIDENCE .95}
UPDATE STATISTICS MEDIUM RESOLUTION 10 DISTRIBUTIONS ONLY;
UPDATE STATISTICS MEDIUM RESOLUTION 10 .95 DISTRIBUTIONS ONLY;

UPDATE STATISTICS HIGH;
UPDATE STATISTICS HIGH RESOLUTION 10;
UPDATE STATISTICS HIGH RESOLUTION 10 DISTRIBUTIONS ONLY;

Resolution must be greater than 0.005 and less than or equal to 10.0. Confidence
must be in the range [0.80, 0.99] (inclusive).

Examples that follow are based on the company_proc procedure and
square_w_default function, as defined below:
CREATE PROCEDURE company_proc (no_of_items INT,

itm_quantity SMALLINT, sale_amount MONEY,
customer VARCHAR(50), sales_person VARCHAR(30))

SPECIFIC spec_cmpy

DEFINE salesperson_proc VARCHAR(60);

-- Update the company table
INSERT INTO company_tbl VALUES (no_of_items, itm_quantity,

sale_amount, customer, sales_person);

-- Generate the procedure name for the variable salesperson_proc
LET salesperson_proc = sales_person || "." || "tbl" ||

month(current) || "_" || year(current) || "_proc" ;

-- Execute the SPL procedure that the salesperson_proc
-- variable specifies
EXECUTE PROCEDURE salesperson_proc (no_of_items,

itm_quantity, sale_amount, customer);
END PROCEDURE;

2-728 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION square_w_default
(i INT DEFAULT 0) {Specifies default value of i}

RETURNING INT {Specifies return of INT value}
SPECIFIC spec_square

DEFINE j INT; {Defines routine variable j}
LET j = i * i; {Finds square of i and assigns it to j}
RETURN j; {Returns value of j to calling module}

END FUNCTION;

The UPDATE STATISTICS examples that follow reference the company_proc
procedure and square_w_default function:
UPDATE STATISTICS FOR PROCEDURE;
UPDATE STATISTICS FOR PROCEDURE company_proc1;
UPDATE STATISTICS FOR PROCEDURE

company_proc1(INT,SMALLINT,MONEY,VARCHAR(50), VARCHAR(30));
UPDATE STATISTICS FOR SPECIFIC PROCEDURE spec_cmpy;

UPDATE STATISTICS FOR FUNCTION;
UPDATE STATISTICS FOR FUNCTION square_w_default;
UPDATE STATISTICS FOR FUNCTION square_w_default(INT);
UPDATE STATISTICS FOR SPECIFIC FUNCTION spec_square;

Related Statements

Related statements: “SET EXPLAIN statement” on page 2-640 and “SET
OPTIMIZATION statement” on page 2-659

For a discussion of the performance implications of UPDATE STATISTICS, see your
IBM Informix Performance Guide.

For a discussion of how to use the dbschema utility to view distributions created
with UPDATE STATISTICS, see the IBM Informix Migration Guide.

WHENEVER statement
Use the WHENEVER statement to trap exceptions that occur during the execution
of SQL statements. The WHENEVER statement is equivalent to placing an
exception-checking routine after every SQL statement.

Syntax

�� WHENEVER SQLERROR
NOT FOUND
(1)

SQLWARNING
(1)

ERROR

CONTINUE
GOTO :label
GO TO (1)

label
CALL routine
STOP

��

Notes:

1 Informix extension

Element Description Restrictions Syntax

label Statement label to which program control
transfers when an exception occurs

Must exist in the same
source-code module.

Language-specific

Chapter 2. SQL statements 2-729

Element Description Restrictions Syntax

routine Name of a user-defined routine (UDR) to be
invoked when an exception occurs

No arguments; UDR must exist
at compile time.

“Identifier” on page
5-21

Usage

Important: Use this statement only with Informix ESQL/C.

The following table summarizes the types of exceptions that you can check with
the WHENEVER statement.

Type of exception WHENEVER Keyword For More Information

Errors SQLERROR or ERROR “SQLERROR Keyword”
on page 2-731

Warnings “SQLWARNING Keyword”
on page 2-731

Not Found or End of Data “NOT FOUND Keywords” on
page 2-732

Programs that do not use the WHENEVER statement do not automatically abort
when an exception occurs. Such programs must explicitly check for exceptions and
take whatever corrective action their logic specifies. If you do not check for
exceptions, the program simply continues running. If errors occur, however, the
program might not perform its intended purpose.

The first keyword that follows WHENEVER specifies some type of exceptional
condition; the last part of the statement specifies some action to take when the
exception is encountered (or no action, if CONTINUE is specified). The following
table summarizes possible actions that WHENEVER can specify.

Type of action WHENEVER keyword For more information

Continue program execution “CONTINUE
Keyword” on page
2-732

Stop program execution “STOP Keyword” on
page 2-732

Transfer control to a specified label GOTO GO TO “GOTO Keyword” on
page 2-732

Transfer control to a UDR “CALL Clause” on
page 2-733

The Scope of WHENEVER
WHENEVER is a preprocessor directive, rather than an executable statement. The
Informix ESQL/C preprocessor, not the database server, handles the interpretation
of the WHENEVER statement. When the preprocessor encounters a WHENEVER
statement in an Informix ESQL/C source file, it inserts appropriate code into the
preprocessed code after each SQL statement, based on the exception and the action
that WHENEVER specifies. The scope of the WHENEVER statement begins where
the statement appears in the source module and remains in effect until the
preprocessor encounters one or the other of the following things while sequentially
processing the source module:

2-730 IBM Informix Guide to SQL: Syntax

v The next WHENEVER statement with the same condition (SQLERROR,
SQLWARNING, or NOT FOUND) in the same source module

v The end of the source module

The following Informix ESQL/C example program has three WHENEVER
statements, two of which are WHENEVER SQLERROR statements. Line 4 uses
STOP with SQLERROR to override the default CONTINUE action for errors.

Line 8 specifies the CONTINUE keyword to return the handling of errors to the
default behavior. For all SQL statements between lines 4 and 8, the preprocessor
inserts code that checks for errors and halts program execution if an error occurs.
Therefore, any errors that the INSERT statement on line 6 generates cause the
program to stop.

After line 8, the preprocessor does not insert code to check for errors after SQL
statements. Therefore, any errors that the INSERT statement (line 10), the SELECT
statement (line 11), and DISCONNECT statement (line 12) generate are ignored.
The SELECT statement, however, does not stop program execution if it does not
locate any rows; the WHENEVER statement on line 7 tells the program to continue
if such an exception occurs:
1 main()
2 {
3 EXEC SQL connect to ’test’;
4 EXEC SQL WHENEVER SQLERROR STOP;
5 printf("\n\nGoing to try first insert\n\n");
6 EXEC SQL insert into test_color values (’green’);
7 EXEC SQL WHENEVER NOT FOUND CONTINUE;
8 EXEC SQL WHENEVER SQLERROR CONTINUE;
9 printf("\n\nGoing to try second insert\n\n");
10 EXEC SQL insert into test_color values (’blue’);
11 EXEC SQL select paint_type from paint where color=’red’;
12 EXEC SQL disconnect all;
13 printf("\n\nProgram over\n\n");
14 }

SQLERROR Keyword

If you use the SQLERROR keyword, any SQL statement that encounters an error is
handled as the WHENEVER SQLERROR statement directs. If an error occurs, the
sqlcode variable (sqlca.sqlcode, SQLCODE) is set to a value less than zero (0) and
the SQLSTATE variable is set to a class code with a value greater than 02.

The next example terminates program execution if an SQL error is detected:
WHENEVER SQLERROR STOP

If you do not include any WHENEVER SQLERROR statements in a program, the
default action for WHENEVER SQLERROR is CONTINUE.

ERROR Keyword

Within the WHENEVER statement (and only in this context), the keyword ERROR
is a synonym for the SQLERROR keyword.

SQLWARNING Keyword

If you use the SQLWARNING keyword, any SQL statement that generates a
warning is handled as the WHENEVER SQLWARNING statement directs. If a

Chapter 2. SQL statements 2-731

warning occurs, the first field (sqlca.sqlwarn.sqlwarn0) of the warning structure in
SQLCA is set to W, and the SQLSTATE variable is set to a class code of 01.

Besides the first field of the warning structure, a warning also sets an additional
field to W. The field that is set indicates what type of warning occurred.

The next statement causes execution to stop if a warning condition exists:
WHENEVER SQLWARNING STOP

If you do not use any WHENEVER SQLWARNING statements in a program, the
default action for WHENEVER SQLWARNING is CONTINUE.

NOT FOUND Keywords

If you use the NOT FOUND keywords, exception handling for SELECT and
FETCH statements (including implicit SELECT and FETCH statements in
FOREACH and UNLOAD statements) is treated differently from other SQL
statements. The NOT FOUND keyword checks for the following cases:
v The End of Data condition: a FETCH statement that attempts to get a row

beyond the first or last row in the active set
v The Not Found condition: a SELECT statement that returns no rows

In each case, the sqlcode variable is set to 100, and the SQLSTATE variable has a
class code of 02. For the name of the sqlcode variable in each IBM Informix
product, see the table in “SQLERROR Keyword” on page 2-731.

The following statement calls the no_rows() function each time the NOT FOUND
condition exists:
WHENEVER NOT FOUND CALL no_rows

If you do not use any WHENEVER NOT FOUND statements in a program, the
default action for WHENEVER NOT FOUND is CONTINUE.

CONTINUE Keyword

Use the CONTINUE keyword to instruct the program to ignore the exception and
to continue execution at the next statement after the SQL statement. The default
action for all exceptions is CONTINUE. You can use this keyword to turn off a
previously specified action for an exceptional condition.

STOP Keyword

Use the STOP keyword to instruct the program to stop execution when the
specified exception occurs. The following statement halts execution of an Informix
ESQL/C program each time that an SQL statement generates a warning:
EXEC SQL WHENEVER SQLWARNING STOP;

GOTO Keyword

Use the GOTO clause to transfer control to the statement that the label identifies
when a specified exception occurs. The GOTO and GO TO keywords are
ANSI-compliant syntax for this feature of embedded SQL languages like ESQL/C.

2-732 IBM Informix Guide to SQL: Syntax

The following Informix ESQL/C code fragment shows a WHENEVER statement
that transfers control to the label missing each time that the NOT FOUND
condition occurs:
query_data()

...
EXEC SQL WHENEVER NOT FOUND GO TO missing;

...
EXEC SQL fetch lname into :lname;
...
missing:

printf("No Customers Found\n");

Within the scope of the WHENEVER GOTO statement, you must define the
labeled statement in each routine that contains SQL statements. If your program
contains more than one user-defined function, you might need to include the
labeled statement and its code in each function.

If the preprocessor encounters an SQL statement within the scope of a
WHENEVER ... GOTO statement, but within a routine that does not have the
specified label, the preprocessor tries to insert the code associated with the labeled
statement, but generates an error when it cannot find the label.

To correct this error, either put a labeled statement with the same label name in
each UDR, or issue another WHENEVER statement to reset the error condition, or
use the CALL clause to call a separate function.

CALL Clause

Use the CALL clause to transfer program control to the specified UDR when the
specified type of exception occurs. Do not include parentheses after the UDR
name. The following WHENEVER statement causes the program to call the
error_recovery() function if the program detects an error:
EXEC SQL WHENEVER SQLERROR CALL error_recovery;

When the UDR returns, execution resumes at the next statement after the line that
is causing the error. If you want to halt execution when an error occurs, include
statements that terminate the program as part of the specified UDR.

Observe the following restrictions on the specified routine:
v The UDR cannot accept arguments nor can it return values. If it needs external

information, use global variables or the WHENEVER ... GOTO option to transfer
program control to a label that calls the UDR.

v You cannot specify the name of an SPL routine in the CALL clause. To call an
SPL routine, use the CALL clause to invoke a UDR that contains the EXECUTE
FUNCTION (or EXECUTE PROCEDURE) statement.

v Make sure that all functions within the scope of WHENEVER ... CALL
statements can find a declaration of the specified function.

Related Statements

Related statements: “EXECUTE FUNCTION statement” on page 2-361, “EXECUTE
PROCEDURE statement” on page 2-369, and “FETCH statement” on page 2-372

For discussions on exception handling and error checking, see the IBM Informix
ESQL/C Programmer's Manual.

Chapter 2. SQL statements 2-733

2-734 IBM Informix Guide to SQL: Syntax

Chapter 3. SPL Statements

You can use Stored Procedure Language (SPL) statements to write SPL routines,
and you can store these routines in the database as user-defined routines (UDRs).

In This Chapter

SPL routines (formerly referred to as stored procedures) are effective tools for
controlling SQL activity. This chapter contains descriptions of the SPL statements.
The description of each statement includes the following information:
v A brief introduction that explains the effect of the statement
v A syntax diagram that shows how to enter the statement correctly
v A syntax table that explains each input parameter in the syntax diagram
v Rules of usage, including examples that illustrate these rules

If a statement is composed of multiple clauses, the statement description provides
information about each clause.

For an overview of the SPL language and task-oriented information about creating
and using SPL routines, see the IBM Informix Guide to SQL: Tutorial.

Informix can create an SPL function with the CREATE PROCEDURE or CREATE
PROCEDURE FROM statement, but requires the CREATE FUNCTION or CREATE
FUNCTION FROM statement for external functions. It is recommended, however,
that you use the CREATE FUNCTION or CREATE FUNCTION FROM statement to
create new user-defined functions.

<< Label >>

Use the <<label>> statement of SPL to declare a statement label or a loop label.
v A statement label is an SQL identifier, delimited by double angle-brackets,

immediately preceding a statement within a statement block to which the GOTO
statement of SPL can transfer control of program execution.

v A loop label is an SQL identifier, delimited by double angle-brackets, immediately
preceding a loop statement of SPL. The same label, without double angle-bracket
delimiters, can follow the END LOOP keywords, or END FOR keywords, or
END WHILE keywords that terminate the labeled loop. The EXIT label statement
can pass control of program execution to whatever statement immediately
follows the undelimited loop label.

Note that label is not a keyword of the <<label>> statement, but is a placeholder for
some specific user-defined identifier of the statement label or loop label that the
<<label>> statement declares.

Syntax

�� <<label>> ��

© Copyright IBM Corp. 1996, 2010 3-1

Element Description Restrictions Syntax

label Name that you
declare here for
a statement
label or for a
loop label

Must be unique among the identifiers of
statement labels and of loop labels within the
SPL routine

“Identifier”
on page
5-21

Usage

You can use the <<Label>> statement in two ways:
v To declare a statement label before an executable statement to which the GOTO

statement of SPL can transfer control of execution. The SPL statement that
immediately follows the statement label declaration is called a labeled statement.

v To declare a loop label immediately before a LOOP, FOR, or WHILE statement of
SPL. The LOOP, FOR, or WHILE statement that immediately follows the loop
label declaration is called a labeled loop.

The EXIT label or EXIT label WHEN (condition) statement can exit from the labeled
loop, passing control of execution to the statement immediately following an END
LOOP label statement. The label specified in the EXIT statement can match the label
identifier of the labeled loop of the EXIT statement, or if loops are nested, this label
can match the label of an outer labeled loop. In either case, the EXIT label
statement passes control to a statement that follows an END LOOP label statement
that specifies the same loop label. This EXIT label behavior differs from that of the
GOTO label statement, which passes control to the statement that follows the
declaration of the specified statement label.

The following restrictions apply to labels in SPL routines:
v The name of a statement label must be within the scope of reference of the

GOTO statement.
v The GOTO option of the WHENEVER statement of SQL cannot reference an SPL

statement label, because the WHENEVER statement is valid only in ESQL/C
applications.

v The GOTO statement of SPL cannot reference a loop label.
v The GOTO statement cannot reference a statement label within an ON

EXCEPTION statement block.
v A statement label cannot be declared within an ON EXCEPTION statement

block.
v The label name must be unique among statement labels and loop labels within

the SPL routine.

Examples of Labels

The following example illustrates a statement label called increment_x within an
SPL routine:
DEFINE x INT;
LET x = 0;
BEGIN

<<increment_x>>
BEGIN

LET x = x + 1;
END;
IF x < 10 THEN

3-2 IBM Informix Guide to SQL: Syntax

GOTO increment_x;
END IF;

END;
END PROCEDURE;

The following program fragment shows an example of a labeled FOR loop:
<<lb_for>>
FOR i IN 1..5

i := i +1 ;
END FOR lb_for;

The following program fragment illustrates a labeled loop from which an EXIT
label statement can exit:
<<outer>>
LOOP
...
LOOP
...
EXIT outer WHEN ... -- exit from both loops
END LOOP;
...
END LOOP outer;

Related Statements

“EXIT” on page 3-16, “FOR” on page 3-18, “GOTO” on page 3-26, “LOOP” on
page 3-33, “WHILE” on page 3-49

CALL

Use the CALL statement to execute a user-defined routine (UDR) from within an
SPL routine.

Syntax

�� CALL �

�

�

�

�

�

procedure ()
,

(1)
Argument

,

function () RETURNING data_var
,

(1)
Argument

routine_var
,

RETURNING data_var

��

Notes:

1 See “Arguments” on page 5-1

Chapter 3. SPL Statements 3-3

Element Description Restrictions Syntax

data_var Variable to receive the
values function returns

The data type of data_var must be appropriate
for the returned value

“Identifier” on page
5-21

function,
procedure

User-defined function or
procedure

The function or procedure must exist “Identifier” on page
5-21

routine_var Variable that contains the
name of a UDR

Must be a character data type that contains the
non-NULL name of an existing UDR

“Identifier” on page
5-21

Usage

The CALL statement invokes a UDR. The CALL statement is identical in behavior
to the EXECUTE PROCEDURE and EXECUTE FUNCTION statements, but you
can only use CALL from within an SPL routine.

You can use CALL in an Informix ESQL/C program or with DB-Access, but only if
the statement is in an SPL routine that the program or DB-Access executed.

If you CALL a user-defined function, you must specify a RETURNING clause.

The CALL statement cannot invoke a TABLE function within a subquery in the
FROM clause of the SELECT statement.

Receiving Input from the Called UDR
The RETURNING clause specifies the variable that receives values that a called
function returns.

The following example shows two UDR calls:
CREATE PROCEDURE not_much()

DEFINE i, j, k INT;
CALL no_args (10,20);
CALL yes_args (5) RETURNING i, j, k;

END PROCEDURE;

The first routine call (no_args) expects no returned values. The second routine call
is to a function (yes_args), which expects three returned values. The not_much()
procedure declares three integer variables (i, j, and k) to receive the returned
values from yes_args.

Receiving Input from the Called UDR
The RETURNING clause specifies the variable that receives values that a called
function returns.

The following example shows two UDR calls:
CREATE PROCEDURE not_much()

DEFINE i, j, k INT;
CALL no_args (10,20);
CALL yes_args (5) RETURNING i, j, k;

END PROCEDURE;

The first routine call (no_args) expects no returned values. The second routine call
is to a function (yes_args), which expects three returned values. The not_much()
procedure declares three integer variables (i, j, and k) to receive the returned
values from yes_args.

3-4 IBM Informix Guide to SQL: Syntax

CONTINUE

Use the CONTINUE statement to start the next iteration of the innermost FOR,
LOOP, WHILE, or FOREACH loop.

Syntax

�� CONTINUE
FOR
FOREACH
LOOP
WHILE

; ��

Usage

When control of execution passes to a CONTINUE statement, the SPL routine skips
the rest of the statements in the innermost loop of the specified type. Execution
continues at the top of the loop with the next iteration.

In the following example, the loop_skip function inserts values 3 through 15 into
the table testtable. The function also returns values 3 through 9 and 13 through 15
in the process. The function does not return the value 11 because it encounters the
CONTINUE FOR statement. The CONTINUE FOR statement causes the function to
skip the RETURN WITH RESUME statement:
CREATE FUNCTION loop_skip()

RETURNING INT;
DEFINE i INT;
...
FOR i IN (3 TO 15 STEP 2)

INSERT INTO testtable values(i, null, null);
IF i = 11

CONTINUE FOR;
END IF;
RETURN i WITH RESUME;

END FOR;

END FUNCTION;

Just as with the EXIT statement, (“EXIT” on page 3-16), in FOREACH statements
and in FOR or WHILE statements that do not include the LOOP keyword, the
FOR, WHILE, or FOREACH keyword must immediately follow the CONTINUE
keyword to specify the type of loop. Errors are generated if the specified type of
loop does not match the context in which the CONTINUE statement is issued.

In the LOOP, FOR LOOP, and WHILE LOOP statements, whether labeled or
unlabeled, a keyword indicating the type of loop is optional after the CONTINUE
keyword, but Informix issues an error if you specify a keyword that does not
correspond to the type of loop.

Related Statements

“FOR” on page 3-18, “FOREACH” on page 3-22, “LOOP” on page 3-33, “WHILE”
on page 3-49

Chapter 3. SPL Statements 3-5

DEFINE

Use the DEFINE statement to declare local variables that an SPL routine uses, or to
declare global variables that can be shared by several SPL routines.

Syntax

�� DEFINE �

�

,
(1)

GLOBAL SPL_var data_type DEFAULT Default Value
REFERENCES BYTE DEFAULT NULL

TEXT
,

SPL_var data_type
REFERENCES BYTE

TEXT
LIKE view . column

synonym
table

PROCEDURE
BLOB
CLOB

(2)
Subset of Complex Data Types

distinct_type
opaque_type

; ��

Notes:

1 See “Default Value” on page 3-8

2 See “Subset of Complex Data Types” on page 3-11

Element Description Restrictions Syntax

column Column name Must already exist in the table or view “Identifier” on page
5-21

data_type Type of SPL_var See “Declaring Global Variables” on page 3-7 “Data Type” on page
4-21

distinct_type A distinct type Must already be defined in the database “Data Type” on page
4-21

opaque_type An opaque type Must already be defined in the database “Data Type” on page
4-21

SPL_var New SPL variable Must be unique within statement block “Identifier” on page
5-21

synonym, table,
view

Name of a table,
view, or synonym

Synonym and the table or view to which it points
must exist when DEFINE is issued

“Identifier” on page
5-21

Usage

The DEFINE statement is not an executable statement. The DEFINE statement
must appear after the routine header and before any other statements. If you
declare a local variable (by using DEFINE without the GLOBAL keyword), its
scope of reference is the statement block in which it is defined. You can use the

3-6 IBM Informix Guide to SQL: Syntax

variable within the statement block. Another variable outside the statement block
with a different definition can have the same name.

A variable with the GLOBAL keyword is global in scope and is available outside
the statement block and to other SPL routines. Global variables can be any built-in
data type except BIGSERIAL, BLOB, BYTE, CLOB, SERIAL, SERIAL8, or TEXT.
Local variables can be any built-in data type except BIGSERIAL, BYTE, SERIAL,
SERIAL8, or TEXT. If column is of the BIGSERIAL, SERIAL, or SERIAL8 data type,
declare a BIGINT, INT, or INT8 variable to store its value.

Referencing TEXT and BYTE Variables
The REFERENCES keyword lets you use BYTE and TEXT variables. These do not
contain the actual data but are pointers to the data. The REFERENCES keyword
indicates that the SPL variable is just a pointer. You can use BYTE and TEXT
variables exactly as you would use any other variable in SPL.

Redeclaration or Redefinition
If you define the same variable twice in the same statement block, you receive an
error. You can redefine a variable within a nested block, in which case it
temporarily hides the outer declaration. This example produces an error:
CREATE PROCEDURE example1()

DEFINE n INT; DEFINE j INT;
DEFINE n CHAR (1); -- redefinition produces an error

Redeclaration is valid in the following example. Within the nested statement block,
n is a character variable. Outside the block, n is an integer variable.
CREATE PROCEDURE example2()

DEFINE n INT; DEFINE j INT;
...
BEGIN
DEFINE n CHAR (1); -- character n masks global integer variable
...

END;

Declaring Global Variables

Use the following syntax for declaring global variables:

�� DEFINE GLOBAL �

,

SPL_var �

�
(1)

data_type DEFAULT Default Value
REFERENCES BYTE DEFAULT NULL

TEXT

; ��

Notes:

1 See “Default Value” on page 3-8

Element Description Restrictions Syntax

data_type Type of SPL_var See “Declaring Global Variables.” “Data Type” on page
4-21

Chapter 3. SPL Statements 3-7

Element Description Restrictions Syntax

SPL_var New SPL variable Must be unique within statement block “Identifier” on page
5-21

The GLOBAL keyword indicates that the variables that follow have a scope of
reference that includes all SPL routines that run in a given DB-Access or SQL
administration API session. The data types of these variables must match the data
types of variables in the global environment. The global environment is the memory
that is used by all the SPL routines that run in a given DB-Access or SQL
administration API session. The values of global variables are stored in memory.

SPL routines that are running in the current session share global variables. Because
the database server does not save global variables in the database, the global
variables do not remain when the current session closes.

The first declaration of a global variable establishes the variable in the global
environment; subsequent global declarations simply bind the variable to the global
environment and establish the value of the variable at that point.

The following example shows two SPL procedures, proc1 and proc2; each has
defined the global variable gl_out:
v SPL procedure proc1

CREATE PROCEDURE proc1()
...
DEFINE GLOBAL gl_out INT DEFAULT 13;
...
LET gl_out = gl_out + 1;

END PROCEDURE;

v SPL procedure proc2
CREATE PROCEDURE proc2()

...
DEFINE GLOBAL gl_out INT DEFAULT 23;
DEFINE tmp INT;
...
LET tmp = gl_out

END PROCEDURE;

If proc1 is called first, gl_out is set to 13 and then incremented to 14. If proc2 is
then called, it sees that gl_out is already defined, so the default value of 23 is not
applied. Then, proc2 assigns the existing value of 14 to tmp. If proc2 had been
called first, gl_out would have been set to 23, and 23 would have been assigned to
tmp. Later calls to proc1 would not apply the default of 13.

Databases of different database server instances do not share global variables, but
all the databases of the same database server instance can share global SPL
variables in a single session. The database server and any application development
tools, however, do not share global variables.

Default Value
Global variables can have literal, NULL, or system constant default values.

Default Value:

3-8 IBM Informix Guide to SQL: Syntax

(1)
Literal Number

(2)
Quoted String

(3)
Literal Interval

(4)
Literal Datetime
CURRENT
SYSDATE (5)

DATETIME Field Qualifier
DBSERVERNAME
SITENAME
TODAY
USER
NULL

Notes:

1 See “Literal Number” on page 4-184

2 See “Quoted String” on page 4-188

3 See “Literal INTERVAL” on page 4-182

4 See “Literal DATETIME” on page 4-180

5 See “DATETIME Field Qualifier” on page 4-38

If you specify a default value, the global variable is initialized with the specified
value.

CURRENT

CURRENT is a valid default only for a DATETIME variable. If the YEAR TO
FRACTION(3) is its declared precision, no qualifier is needed. Otherwise, you must
specify the same DATETIME qualifier when CURRENT is the default, as in the
following example of a DATETIME variable:
DEFINE GLOBAL d_var DATETIME YEAR TO MONTH

DEFAULT CURRENT YEAR TO MONTH;

SYSDATE

SYSDATE is a valid default only for a DATETIME variable. If the YEAR TO
FRACTION(5) is the declared precision of the variable, no qualifier is needed.
Otherwise, you must specify the same DATETIME qualifier when SYSDATE is the
default, as in the following example of a DATETIME variable:
DEFINE GLOBAL dt_var DATETIME YEAR TO DAY

DEFAULT SYSDATE YEAR TO DAY;

USER

If you use the value that USER returns as the default, the variable must be defined
as a CHAR, VARCHAR, NCHAR, or NVARCHAR data type. It is recommended
that the length of the variable be at least 32 bytes. You risk getting an error
message during INSERT and ALTER TABLE operations if the length of the variable
is too small to store the default value.

Chapter 3. SPL Statements 3-9

TODAY

If you use TODAY as the default, the variable must be a DATE value. (See
“Constant Expressions” on page 4-70 for descriptions of TODAY and of the other
system constants that can appear in the Default Value clause.)

BYTE and TEXT

The only default value valid for a BYTE or TEXT variable is NULL. The following
example defines a TEXT global variable that is called l_blob:
CREATE PROCEDURE use_text()

DEFINE i INT;
DEFINE GLOBAL l_blob REFERENCES TEXT DEFAULT NULL;
...

END PROCEDURE

Here the REFERENCES keyword is required, because the DEFINE statement
cannot declare a BYTE or TEXT data type directly; the l_blob variable is a pointer
to a TEXT value that is stored in the global environment.

SITENAME or DBSERVERNAME
If you use the SITENAME or DBSERVERNAME keyword as the default, the
variable must be a CHAR, VARCHAR, NCHAR, NVARCHAR, or LVARCHAR
data type. Its default value is the name of the database server at runtime. It is
recommended that the size of the variable be at least 128 bytes long. You risk
getting an error message during INSERT and ALTER TABLE operations if the
length of the variable is too small to store the default value.

The following example uses the SITENAME keyword to specify a default value.
This example also initializes a global BYTE variable to NULL:
CREATE PROCEDURE gl_def()

DEFINE GLOBAL gl_site CHAR(200) DEFAULT SITENAME;
DEFINE GLOBAL gl_byte REFERENCES BYTE DEFAULT NULL;
...

END PROCEDURE

Declaring Local Variables
A local variable has as its scope of reference the routine in which it is declared. If
you omit the GLOBAL keyword, any variables declared in the DEFINE statement
are local variables, and are not visible in other SPL routines.

For this reason, different SPL routines that declare local variables of the same name
can run without conflict in the same DB-Access or SQL administration API session.

If a local variable and a global variable have the same name, the global variable is
not visible within the SPL routine where the local variable is declared. (In all other
SPL routines, only the global variable is in scope.)

The following DEFINE statement syntax is for declaring local variables:

3-10 IBM Informix Guide to SQL: Syntax

�� DEFINE �

,

SPL_var data_type
REFERENCES BYTE

TEXT
LIKE view . column

synonym
table

PROCEDURE
BLOB
CLOB

(1)
Subset of Complex Data Types

distinct_type
opaque_type

; ��

Notes:

1 See “Subset of Complex Data Types”

Element Description Restrictions Syntax

column Column name Must already exist in the table or view “Identifier” on page
5-21;

data_type Type of SPL_var Cannot be BIGSERIAL, BYTE, SERIAL, SERIAL8, or
TEXT

“Data Type” on page
4-21

distinct_type A distinct type Must already be defined in the database “Identifier” on page
5-21

opaque_type An opaque type Must already be defined in the database “Identifier” on page
5-21

SPL_var New SPL variable Must be unique within statement block “Identifier” on page
5-21;

synonym, table,
view

Name of a table,
view, or synonym

Synonym and the table or view to which it points
must already exist when the statement is issued

“Database Object
Name” on page 5-16

Local variables do not support default values. The following example shows some
typical definitions of local variables:
CREATE PROCEDURE def_ex()

DEFINE i INT;
DEFINE word CHAR(15);
DEFINE b_day DATE;
DEFINE c_name LIKE customer.fname;
DEFINE b_text REFERENCES TEXT;

END PROCEDURE

Subset of Complex Data Types
You can use the following syntax to declare an SPL variable as a typed or generic
collection, or as a named, unnamed, or generic ROW data type.

Complex Data Types (Subset):

Chapter 3. SPL Statements 3-11

�

COLLECTION
SET (data_type NOT NULL)
MULTISET SET (data_type NOT NULL)
LIST MULTISET

LIST
row
ROW

,

(field data_type)

Element Description Restrictions Syntax

data_type Type of elements of a
collection or of fields of an
unnamed ROW type

Must match the data type of the values that the
variable will store. Cannot be BIGSERIAL,
BLOB, BYTE, CLOB, SERIAL, SERIAL8, or
TEXT.

“Data Type” on page
4-21

field Field of unnamed ROW Must exist in the database “Identifier” on page
5-21

row Named ROW data type Must exist in the database “Identifier” on page
5-21

Declaring Collection Variables
A local variable of type COLLECTION, SET, MULTISET, or LIST can hold a
collection of values fetched from the database. You cannot define a collection
variable as global (with the GLOBAL keyword) or with a default value.

A variable declared with the keyword COLLECTION is an untyped (or generic)
collection variable that can hold a collection of any data type.

A variable declared as type SET, MULTISET, or LIST is a typed collection variable. It
can hold a collection of its specified data type only.

You must use the NOT NULL keywords when you define the elements of a typed
collection variable, as in the following examples:
DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,
b2 CHAR(50)

) NOT NULL);

DEFINE c LIST(SET(INTEGER NOT NULL) NOT NULL);

With variable c, both the INTEGER values in the SET and the SET values in the
LIST are defined as NOT NULL.

You can define collection variables with nested complex types to hold matching
nested complex type data. Any type or depth of nesting is allowed. You can nest
ROW types within collection types, collection types within ROW types, collection
types within collection types, ROW types within collection and ROW types, and so
on.

If you declare a variable as COLLECTION type, the variable acquires varying data
type declarations if it is reassigned within the same statement block, as in the
following example:

3-12 IBM Informix Guide to SQL: Syntax

DEFINE a COLLECTION;
LET a = setB;
...
LET a = listC;

In this example, varA is a generic collection variable that changes its data type to
the data type of the currently assigned collection. The first LET statement makes
varA a SET variable. The second LET statement makes varA a LIST variable.

Declaring ROW Variables
ROW variables hold data from named or unnamed ROW types. You can define a
generic ROW variable, a named ROW variable, or an unnamed ROW variable.

A generic ROW variable, defined with the ROW keyword, can hold data from any
ROW type. A named ROW variable holds data from the named ROW type that
you specified in the declaration of the variable.

The following statements show examples of generic ROW variables and named
ROW variables:
DEFINE d ROW; -- generic ROW variable

DEFINE rectv rectangle_t; -- named ROW variable

A named ROW variable holds named ROW types of the same type in the
declaration of the variable.

To define a variable that will hold data stored in an unnamed ROW type, use the
ROW keyword followed by the fields of the ROW type, as in:
DEFINE area ROW (x int, y char(10));

Unnamed ROW types are type-checked only by structural equivalence. Two
unnamed ROW types are considered equivalent if they have the same number of
fields, and if the fields have the same type definitions. Therefore, you could fetch
either of the following ROW types into the variable area defined above:
ROW (a int, b char(10))
ROW (area int, name char(10))

ROW variables can have fields, just as ROW types have fields. To assign a value to
a field of a ROW variable, use the qualifier notation variableName.fieldName,
followed by an expression, as in the following example:
CREATE ROW TYPE rectangle_t (start point_t, length real, width real);

DEFINE r rectangle_t;
-- Define a variable of a named ROW type

LET r.length = 45.5;
-- Assign a value to a field of the variable

When you assign a value to a ROW variable, you can use any valid expression.

Declaring Opaque-Type Variables
Opaque-type variables hold data retrieved from opaque data types, which you
create with the CREATE OPAQUE TYPE statement. An opaque-type variable can
only hold data of the same opaque type on which it is defined. The following
example defines a variable of the opaque type point, which holds the x and y
coordinates of a two-dimensional point:
DEFINE b point;

Chapter 3. SPL Statements 3-13

Declaring Variables LIKE Columns
If you use the LIKE clause, the database server assigns the variable the same data
type as a specified column in a table, synonym, or view.

The data types of variables that are defined as database columns are resolved at
runtime; therefore, column and table do not need to exist at compile time.

You can use the LIKE keyword to declare that a variable is like a serial column.
This declares:
v An INTEGER variable if the column is of the SERIAL data type
v An INT8 variable if the column is of the SERIAL8 data type
v A BIGINT variable if the column is of the BIGSERIAL data type

For example, if the column serialcol in the mytab table has the SERIAL data type,
you can create the following SPL function:
CREATE FUNCTION func1()
DEFINE local_var LIKE mytab.serialcol;
RETURN;
END FUNCTION;

The variable local_var is treated as an INTEGER variable.

Defining Variables with Logical Character Semantics

When the SQL_LOGICAL_CHAR configuration parameter has specified for the
current session) is set to 'ON' or to a value greater than 1, Informix interprets size
declarations as logical characters, rather than as bytes, in declarations of SPL
variables of the following data types:
v CHAR or CHARACTER
v CHARACTER VARYING or VARCHAR
v LVARCHAR
v NCHAR
v NVARCHAR
v DISTINCT types whose base types are built-in character data types
v DISTINCT types whose base types are the previously listed data types
v ROW data type fields of any of the previously listed data types.
v Elements of these data types in LIST, MULTISET, or SET collection data types.

Enabling logical character semantics for the database locale guarantees that
sufficient storage is available for the data type to store the specified number of
logical characters. The resulting size in bytes of the SPL variable is the product of
the declared size of the data type multiplied by the SQL_LOGICAL_CHAR value,
if this is 2, 3, or 4, or (if SQL_LOGICAL_CHAR is set to 'ON') by the number of
bytes of storage that the largest logical character in the code set of the database
locale requires.

If a client session connects to a database in which the SQL_LOGICAL_CHAR
configuration parameter was enabled at the time of database creation, that setting
takes effect at connection time.

DEFINE statements that use the LIKE keyword in datatype declarations create SPL
variables whose data types match the schema of the column that the LIKE

3-14 IBM Informix Guide to SQL: Syntax

specification references. The SQL_LOGICAL_CHAR setting, if any is defined, has
no effect on the size in memory of variables that DEFINE declares with the LIKE
keyword.

For more information about the effect of the SQL_LOGICAL_CHAR setting in
locales that use a multibyte code set, such as UTF-8, where a single logical
character can require more than one byte of storage, see the description of the
SQL_LOGICAL_CHAR configuration parameter in your IBM Informix
Administrator's Reference. For additional information about multibyte locales and
logical characters, see the IBM Informix GLS User's Guide.
Related reference

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

Declaring Variables as the PROCEDURE Type
The PROCEDURE keyword indicates that in the current scope, the variable is a call
to a UDR.

The DEFINE statement does not support a FUNCTION keyword. Use the
PROCEDURE keyword, whether you are calling a user-defined procedure or a
user-defined function.

Declaring a variable as PROCEDURE type indicates that in the current statement
scope, the variable is not a call to a built-in function. For example, the following
statement defines length as an SPL routine, not as the built-in LENGTH function:
DEFINE length PROCEDURE;
...
LET x = length (a,b,c)

This definition disables the built-in LENGTH function within the scope of the
statement block. You would use such a definition if you had already created a
user-defined routine with the name length.

If you create an SPL routine with the same name as an aggregate function (SUM,
MAX, MIN, AVG, COUNT) or with the name extend, you must qualify the routine
name with the owner name.

Declaring Variables for BYTE and TEXT Data
The keyword REFERENCES indicates that the variable does not contain a BYTE or
TEXT value but is a pointer to the BYTE or TEXT value. Use the variable as
though it holds the data.

The following example defines a local BYTE variable:
CREATE PROCEDURE use_byte()

DEFINE i INT;
DEFINE l_byte REFERENCES BYTE;

END PROCEDURE --use_byte

If you pass a variable of BYTE or TEXT data type to an SPL routine, the data is
passed to the database server and stored in the root dbspace or dbspaces that the
DBSPACETEMP environment variable specifies, if it is set. You do not need to
know the location or name of the file that holds the data. BYTE or TEXT
manipulation requires only the name of the BYTE or TEXT variable as it is defined
in the routine.

Chapter 3. SPL Statements 3-15

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076

Related Information

Declaring the names of SQL keywords or the identifiers of other database objects
as SPL variables can produce errors or unexpected results in some contexts. See the
sections “Variables that Conflict with Column Names” on page 5-31, “Declaring
Keywords or Routine Names as SPL Variables” on page 5-31, “Using NULL and
SELECT in a Condition” on page 5-30 and “Using CURRENT, DATETIME,
INTERVAL, and NULL in INSERT” on page 5-30 for discussions of some potential
problems of name conflicts that involve SPL variables.

EXIT

The EXIT statement can terminate FOR, FOREACH, LOOP, or WHILE statements.

Syntax

�� EXIT FOREACH

FOR WHEN condition
LOOP label
WHILE

; ��

Element Description Restrictions Syntax

condition Loop terminates
when this evaluates
to TRUE.

If condition evaluates to FALSE, the loop continues. “Condition” on page
4-5

label Label of a loop from
which to exit

Must be the label of a loop statement that includes
the EXIT statement

“Identifier” on page
5-21

Usage

The EXIT statement transfers control of execution from an iterative statement,
causing the innermost loop of the enclosing statement type (FOR, FOREACH,
LOOP, or WHILE) to terminate. If no loop label or WHEN condition is specified,
execution resumes at the first statement that follows the current FOR, FOREACH,
LOOP, or WHILE statement.

EXIT From FOREACH Statements
If the EXIT statement has the FOREACH statement as its innermost enclosing
statement, the FOREACH keyword must immediately follow the EXIT keyword.
The EXIT FOREACH statement unconditionally terminates the FOREACH
statement, or else returns an error, if no FOREACH statement encloses the EXIT
FOREACH statement.

The following program fragment includes the EXIT FOREACH statement:
FOREACH cursor1 FOR

SELECT * INTO a FROM TABLE(b);
IF a = 4 THEN

DELETE FROM TABLE(b)
WHERE CURRENT OF cursor1;4

EXIT FOREACH;
END IF;

END FOREACH;

3-16 IBM Informix Guide to SQL: Syntax

EXIT From FOR, LOOP, and WHILE Loops
If the EXIT statement is issued outside the FOREACH statement, it returns an error
unless it is issued from the FOR, FOR LOOP, LOOP, WHILE LOOP, or WHILE
statement as its innermost enclosing statement. In FOR or WHILE statements that
do not include the LOOP keyword, the corresponding FOR or WHILE keyword is
required after the EXIT keyword. Execution resumes at the first executable
statement that follows the innermost loop from which the EXIT statement was
issued.

The EXIT statement requires no other keyword when it is issued from the FOR
LOOP, LOOP, or WHILE LOOP statement, with or without a loop label, but if you
include the FOR, LOOP, or WHILE keyword after the EXIT keyword, that keyword
must correspond to the type of loop from which the EXIT statement is issued.

If the EXIT keyword is followed by the identifier of a loop label, and no condition
is specified, execution resumes at the first executable statement that follows the
FOR, FOR LOOP, LOOP, WHILE LOOP, or WHILE statement whose label is
specified. This enables the EXIT statement to exit from nested loops, if an outer
loop is labeled.

If a WHEN condition follows the EXIT or EXIT label specification, EXIT has no
effect unless the condition is true. If the condition is true, execution resumes after
the labeled loop, or after the innermost loop, if no label is specified.

If the database server cannot find the specified loop or loop label, the EXIT
statement fails. If EXIT is issued outside any FOR, FOREACH, LOOP, or WHILE
statement, it generates errors.

The following example uses an EXIT FOR statement. In the FOR loop, when j
becomes 6, the IF condition i = 5 in the WHILE loop is true. The FOR loop stops
executing, and the SPL procedure continues at the next statement outside the FOR
loop (in this case, the END PROCEDURE statement). In this example, the
procedure ends when j equals 6:
CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;
FOR j = 1 TO 20

IF j > 10 THEN
CONTINUE FOR;

END IF
LET i,s = j,0;
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT FOR;
END IF

END WHILE
END FOR

END PROCEDURE;

The following program fragment shows two conditional EXIT statements in a
labeled WHILE LOOP statement that is nested within another labeled LOOP
statement:

<<outer>>
LOOP
LET x = x+1;

<<inner>>
WHILE (i >10) LOOP

LET x = x+1;
EXIT inner WHEN x = 2;

Chapter 3. SPL Statements 3-17

EXIT outer WHEN x > 3;
END LOOP inner;

LET x = x+1;
END LOOP outer;

When the x=2 condition is true, the EXIT inner statement transfers control to the
LET statement that follows the loop whose label is inner. When the x>3 condition
is true, the EXIT outer statement terminates execution of the outer loop.

Related Statements

“<< Label >>” on page 3-1, “FOR,” “FOREACH” on page 3-22, “LOOP” on page
3-33, “WHILE” on page 3-49

FOR

Use the FOR statement to initiate a controlled (definite) loop when you want to
guarantee termination of the loop. The FOR statement uses expressions or range
operators to specify a finite number of iterations for a loop.

Syntax

�� FOR loop_var
<< label >>

�

�

,

IN (Range)
,

expression
= Range

�

�
(1)

Statement Block END FOR
(2)

label
(1)

LOOP Statement Block END LOOP
(2)

label

;
��

Range:

left_expr TO right_expr
STEP increment_expr

Notes:

1 See “Statement Block” on page 5-74

2 Valid only if <<label>> precedes the first FOR keyword

Element Description Restrictions Syntax

expression Value to compare with loop_var Must match loop_var data type “Expression” on page
4-40

3-18 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

increment_expr Positive or negative value by
which loop_var is incremented.
Default is either 1 (if left_expr <
right_expr), or else -1 (if left_expr >
right_expr).

Must return an integer. Cannot
return 0.

“Expression” on page
4-40

label Name of the loop label for this
loop

Must exist and must be unique
among label names in this SPL
routine

“Identifier” on page
5-21

left_expr Starting expression of a range Value must match SMALLINT or
INT data type of loop_var, but
left_expr must not equal right_expr

“Expression” on page
4-40

loop_var Variable that determines how
many times the loop executes

Must be defined and in scope
within this statement block

“Identifier” on page
5-21

right_expr Ending expression in the range Same as for left_expr “Expression” on page
4-40

Usage

The database server evaluates all expressions before the FOR statement executes. If
one or more of the expressions are variables whose values change during the loop,
the change has no effect on the iterations of the loop.

You can use the output from a SELECT statement as the expression.

The FOR loop terminates when loop_var is equal to the values of each element in
the expression list or range in succession, or when it encounters an EXIT FOR
statement. An error is issued, however, if an assignment within the body of the
FOR statement attempts to modify the value of loop_var.

The size of right_expr relative to left_expr determine whether the range is stepped
through by positive or by negative increments:
v The increments are positive if left_expr < right_expr.
v The increments are negative if left_expr > right_expr.

If you specify no increment_expr, the default size of each step is 1, with a positive
or negative sign determined by the rules above.

Using the TO Keyword to Define a Range
The TO keyword implies a range operator. The range is defined by left_expression
and right_expression, and the STEP increment_expr option implicitly sets the number
of increments. If you use the TO keyword, loop_var must be an INT or SMALLINT
data type.

The next example shows two equivalent FOR statements. Each uses the TO
keyword to define a range. The first uses the IN keyword, and the second uses an
equal sign (=). Each statement causes the loop to execute five times:
FOR index_var IN (12 TO 21 STEP 2)

-- statement block
END FOR;

FOR index_var = 12 TO 21 STEP 2
-- statement block

END FOR;

Chapter 3. SPL Statements 3-19

If you omit the STEP option, the database server gives increment_expr the value of
-1 if right_expression is less than left_expression, or +1 if right_expression is more than
left_expression. If increment_expr is specified, it must be negative if right_expression is
less than left_expression, or positive if right expression is more than left_expression.

The two statements in the following example are equivalent. In the first statement,
the STEP increment is explicit. In the second statement, the STEP increment is
implicitly 1:
FOR index IN (12 TO 21 STEP 1)

-- statement block
END FOR;

FOR index = 12 TO 21
-- statement block

END FOR;

The database server initializes the value of loop_var to the value of left_expression.
In subsequent iterations, the server adds increment_expr to the value of loop_var and
checks increment_expr to determine whether the value of loop_var is still between
left_expression and right_expression. If so, the next iteration occurs. Otherwise, an
exit from the loop takes place. Or, if you specify another range, the variable takes
on the value of the first element in the next range.

Specifying Two or More Ranges in a Single FOR Statement
The following example shows a statement that traverses a loop forward and
backward and uses different increment values for each direction:
FOR index_var IN (15 to 21 STEP 2, 21 to 15 STEP -3)

-- statement body
END FOR;

Using an Expression List as the Range
The database server initializes the value of loop_var to the value of the first
expression specified. In subsequent iterations, loop_var takes on the value of the
next expression. When the database server has evaluated the last expression in the
list and used it, the loop stops.

The expressions in the IN list do not need to be numeric values, as long as you do
not use range operators in the IN list. The following example uses a character
expression list:
FOR c IN (’hello’, (SELECT name FROM t), ’world’, v1, v2)

INSERT INTO t VALUES (c);
END FOR;

The following FOR statement shows the use of a numeric expression list:
FOR index IN (15,16,17,18,19,20,21)

-- statement block
END FOR;

Mixing Range and Expression Lists in the Same FOR
Statement

If loop_var is an INT or SMALLINT value, you can mix ranges and expression lists
in the same FOR statement. The following example shows a mixture that uses an
integer variable. Values in the expression list include the value that is returned
from a SELECT statement, a sum of an integer variable and a constant, the values
that are returned from an SPL function named p_get_int, and integer constants:

3-20 IBM Informix Guide to SQL: Syntax

CREATE PROCEDURE for_ex ()
DEFINE i, j INT;
LET j = 10;
FOR i IN (1 TO 20, (SELECT c1 FROM tab WHERE id = 1),

j+20 to j-20, p_get_int(99),98,90 to 80 step -2)
INSERT INTO tab VALUES (i);

END FOR;
END PROCEDURE;

Specifying a Labelled FOR Loop

To create a labeled FOR loop, declare a loop label before the initial FOR keyword,
and repeat the label after the END FOR keywords, as in this example:
CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;
<<for_lab>>
FOR j = 1 TO 20

IF j > 10 THEN
CONTINUE FOR;

END IF
LET i,s = j,0;
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT for_lab;
END IF

END WHILE
END FOR for_lab

END PROCEDURE;

Here the EXIT for_lab statement has the same effect that the EXIT or EXIT FOR
keywords would have, terminating both the FOR loop and the routine. In this
example, the statement that includes the EXIT for_lab statement has the same
effect that EXIT for_lab WHEN i = 5 would have.

You can also label a LOOP statement that begins with a loop <<label>>
specification that immediately precedes the initial FOR keyword. In this type of
loop, the CONTINUE LOOP, EXIT LOOP, and END LOOP keywords replace the
CONTINUE FOR, EXIT FOR, and END FOR keywords. Both the LOOP and FOR
keywords are optional after the CONTINUE and EXIT keywords, but the END
LOOP keywords are required in SPL loop statements that include the LOOP
keyword.

You can use similar syntax to create an unlabeled loop that omits the <<label>>
specification that immediately precedes the initial FOR keyword. In this case, you
must also omit the undelimited loop label identifier that follows the END LOOP
keywords. See the LOOP statement for a description and examples of these forms
of labeled and unlabeled loop statements that enable you to combine FOR
statement syntax, with a finite number of loop iterations, with the "loop forever"
syntax of the LOOP statement.

Related Statements

“<< Label >>” on page 3-1, “CONTINUE” on page 3-5, “EXIT” on page 3-16,
“LOOP” on page 3-33, “FOREACH” on page 3-22, “WHILE” on page 3-49

Chapter 3. SPL Statements 3-21

FOREACH

Use the FOREACH statement to select and manipulate more than one row or
collection.

Syntax

�� FOREACH

�

(1)
SELECT ... INTO Statement

WITH HOLD
cursor FOR

WITH HOLD
Routine Call

,

INTO data_var

�

�
(2)

Statement Block END FOREACH
;

��

Routine Call:

EXECUTE PROCEDURE procedure
SPL_var
function

FUNCTION SPL_var
function

�

()
,

(3)
Argument

Notes:

1 See “Using a SELECT ... INTO Statement” on page 3-23

2 See “Statement Block” on page 5-74

3 See “Arguments” on page 5-1

Element Description Restrictions Syntax

cursor Identifier that you supply as a name for
this FOREACH loop

Each cursor name within a routine
must be unique

“Identifier” on page
5-21

data_var SPL variable in the calling routine that
receives the returned values

Data type of data_var must be
appropriate for returned value

“Identifier” on page
5-21

function,
procedure

SPL function or procedure to execute Function or procedure must exist “Database Object
Name” on page 5-16

SPL_var SPL variable that contains the name of a
routine to execute

Must be a CHAR, VARCHAR,
NCHAR, or NVARCHAR type

“Identifier” on page
5-21

Usage

A FOREACH loop is the procedural equivalent of using a cursor. To execute a
FOREACH statement, the database server takes these actions:
1. It declares and implicitly opens a cursor.
2. It obtains the first row from the query contained within the FOREACH loop, or

else the first set of values from the called routine.

3-22 IBM Informix Guide to SQL: Syntax

3. It assigns to each variable in the variable list the value of the corresponding
value from the active set that the SELECT statement or the called routine
creates.

4. It executes the statement block.
5. It fetches the next row from the SELECT statement or called routine on each

iteration, and it repeats steps 3 and 4.
6. It terminates the loop when it finds no more rows that satisfy the SELECT

statement or called routine. It closes the implicit cursor when the loop
terminates.

Because the statement block can contain additional FOREACH statements, cursors
can be nested. No limit exists on the number of nested cursors.

An SPL routine that returns more than one row, collection element, or set of values
is called a cursor function. An SPL routine that returns only one row or value is a
noncursor function.

This SPL procedure illustrates FOREACH statements with a SELECT ... INTO
clause, with an explicitly named cursor, and with a procedure call:
CREATE PROCEDURE foreach_ex()

DEFINE i, j INT;
FOREACH SELECT c1 INTO i FROM tab ORDER BY 1

INSERT INTO tab2 VALUES (i);
END FOREACH
FOREACH cur1 FOR SELECT c2, c3 INTO i, j FROM tab

IF j > 100 THEN
DELETE FROM tab WHERE CURRENT OF cur1;
CONTINUE FOREACH;

END IF
UPDATE tab SET c2 = c2 + 10 WHERE CURRENT OF cur1;

END FOREACH
FOREACH EXECUTE PROCEDURE bar(10,20) INTO i

INSERT INTO tab2 VALUES (i);
END FOREACH

END PROCEDURE; -- foreach_ex

A Select cursor is closed when any of the following situations occur:
v The cursor returns no further rows.
v The cursor is a Select cursor without a HOLD specification, and a transaction

completes using COMMIT or ROLLBACK statements.
v An EXIT statement executes, which transfers control out of the FOREACH

statement.
v An exception occurs that is not trapped inside the body of the FOREACH

statement. (See “ON EXCEPTION” on page 3-37.)
v A cursor in the calling routine that is executing this cursor routine (within a

FOREACH loop) closes for any reason.

Using a SELECT ... INTO Statement
As indicated in the diagram for “FOREACH” on page 3-22, not all clauses and
options of the SELECT statement are available for you to use in a FOREACH
statement. The SELECT statement in the FOREACH statement must include the
INTO clause. It can also include UNION and ORDER BY clauses, but it cannot use
the INTO TEMP clause. For a complete description of SELECT syntax and usage,
see “SELECT statement” on page 2-536. The data type and count of each variable
in the variable list must match each value that the SELECT ... INTO statement
returns.

Chapter 3. SPL Statements 3-23

Using the ORDER BY Clause of the SELECT Statement
The ORDER BY clause of the SELECT statement implies that the query returns
more than one row. The database server issues an error if you specify the ORDER
BY clause without a FOREACH loop to process the returned rows individually
within an SPL routine.

Using Hold Cursors
The WITH HOLD keywords specify that the cursor should remain open when a
transaction closes (by being committed or by being rolled back).

Updating or Deleting Rows Identified by Cursor Name
Specify a cursor name in the FOREACH statement if you intend to use the WHERE
CURRENT OF cursor clause in UPDATE or DELETE statements that operate on the
current row of cursor within the FOREACH loop. Although you cannot include the
FOR UPDATE keywords in the SELECT ... INTO segment of the FOREACH
statement, the cursor behaves like a FOR UPDATE cursor.

For a discussion of locking, see the section on “Locking with an Update Cursor”
on page 2-296. For a discussion of isolation levels, see the description of “SET
ISOLATION statement” on page 2-648.

Using Collection Variables
The FOREACH statement allows you to declare a cursor for an SPL collection
variable. Such a cursor is called a Collection cursor. Use a collection variable to
access the elements of a collection (SET, MULTISET, LIST) column. Use a cursor
when you want to access one or more elements in a collection variable.

Restrictions
When you use a Collection cursor to fetch individual elements from a collection
variable, the FOREACH statement has the following restrictions:
v It cannot contain the WITH HOLD keywords.
v It must contain a restricted SELECT statement in the FOREACH loop.

In addition, the SELECT statement that you associate with the Collection cursor
has the following restrictions:
v Its general structure is SELECT... INTO ... FROM TABLE. The statement selects

one element at a time from a collection variable specified after the TABLE
keyword into another variable called an element variable.

v It cannot contain an expression in the projection list.
v It cannot include the following clauses or options: WHERE, GROUP BY, ORDER

BY, HAVING, INTO TEMP, and WITH REOPTIMIZATION.
v The data type of the element variable must be the same as the element type of

the collection.
v The data type of the element variable can be any opaque, distinct, or collection

data type, or any built-in data type except BIGSERIAL, BLOB, BYTE, CLOB,
SERIAL, SERIAL8, or TEXT.

v If the collection contains opaque, distinct, built-in, or collection types, the
projection list must be an asterisk (*) symbol.

v If the collection contains ROW types, the projection list can be a list of one or
more field names.

3-24 IBM Informix Guide to SQL: Syntax

Examples
The following excerpt from an SPL routine shows how to fill a collection variable
and then how to use a cursor to access individual elements:
DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);
SELECT numbers INTO b FROM table1 WHERE id = 207;
FOREACH cursor1 FOR

SELECT * INTO a FROM TABLE(b);
...
END FOREACH;

In this example, the SELECT statement selects one element at a time from the
collection variable b into the element variable a. The projection list is an asterisk,
because the collection variable b contains a collection of built-in types. The variable
b is used with the TABLE keyword as a Collection-Derived Table. For more
information, see “Collection-Derived Table” on page 5-4.

The next example also shows how to fill a collection variable and then how to use
a cursor to access individual elements. This example, however, uses a list of
ROW-type fields in its projection list:
DEFINE employees employee_t;
DEFINE n VARCHAR(30);
DEFINE s INTEGER;

SELECT emp_list into employees FROM dept_table
WHERE dept_no = 1057;

FOREACH cursor1 FOR
SELECT name,salary

INTO n,s FROM TABLE(employees) AS e;
...
END FOREACH;

Here the collection variable employees contains a collection of ROW types. Each
ROW type contains the fields name and salary. The collection query selects one
name and salary combination at a time, placing name into n and salary into s. The
AS keyword declares e as an alias for the collection-derived table employees. The
alias exists as long as the SELECT statement executes.

Modifying Elements in a Collection Variable
To update an element of a collection within an SPL routine, you must first declare
a cursor with the FOREACH statement.

Then, within the FOREACH loop, select elements one at a time from the collection
variable, using the collection variable as a collection-derived table in a SELECT
query.

When the cursor is positioned on the element to be updated, you can use the
WHERE CURRENT OF clause, as follows:
v The UPDATE statement with the WHERE CURRENT OF clause updates the

value in the current element of the collection variable.
v The DELETE statement with the WHERE CURRENT OF clause deletes the

current element from the collection variable.

Using Select Cursors with FOREACH
When using the FOREACH statement, if the result set from a query is to be
modified, do not use this result set as an exit criterion for the FOREACH loop. For
example, if the FOREACH statement declares a Select cursor that is expected to

Chapter 3. SPL Statements 3-25

return 30 rows, but DELETE, INSERT, or UPDATE operations within the
FOREACH loop modify the result set of the query, this might cause unexpected
behavior. To ensure that a FOREACH loop works as intended, make sure that any
Select cursor in the FOREACH statement completes its execution before you begin
modifying its result set.

One way to avoid unexpected results from a FOREACH loop that performs DML
operations on the rows returned by a query is to use an ORDER BY clause in the
SELECT statement to materialize the result set.

Calling a UDR in the FOREACH Loop
In general, use these guidelines for calling another UDR from an SPL routine:
v To call a user-defined procedure, use EXECUTE PROCEDURE procedure name.
v To call a user-defined function, use EXECUTE FUNCTION function name (or

EXECUTE PROCEDURE function name if the user-defined function was created
with the CREATE PROCEDURE statement).

If you use EXECUTE PROCEDURE, the database server looks first for a
user-defined procedure of the name you specify. If it finds the procedure, the
database server executes it. If it does not find the procedure, it looks for a
user-defined function of the same name to execute. If the database server finds
neither a function nor a procedure, it issues an error message. If you use EXECUTE
FUNCTION, the database server looks for a user-defined function of the name you
specify. If it does not find a function of that name, the database server issues an
error message.

An SPL function can return zero (0) or more values or rows.

The data type and count of each variable in the variable list must match each value
that the function returns.

Related Statements

“CONTINUE” on page 3-5, “EXIT” on page 3-16, “FOR” on page 3-18, “LOOP” on
page 3-33,“WHILE” on page 3-49

GOTO

Use the GOTO statement to transfer control of program execution to the statement
that has a specified statement label.

Syntax

�� GOTO label ; ��

Element Description Restrictions Syntax

label Name of the loop label for this
loop

Must be unique among labels in
this SPL routine

“Identifier” on page
5-21

3-26 IBM Informix Guide to SQL: Syntax

Usage

The GOTO statement branches to a statement label unconditionally. The statement
label must be unique within its scope and must precede an executable statement.
When successfully executed, the GOTO statement transfers control to the labeled
statement or statement block.

In the following program fragment, the jump_back function transfers control to a
LET statement that has the statement label back if the value of variable j is greater
than 100.
CREATE FUNCTION jump_back()

RETURNING INT;
DEFINE i,j INT;
...
<<back>>
LET j = j + i
FOR i IN (1 TO 52 STEP 5)

IF i < 11 THEN
LET j = j + 3
CONTINUE FOR;

END IF;
IF j > 100 THEN

GOTO back
END IF;
RETURN j WITH RESUME;

END FOR;
END FUNCTION;

The GOTO statement is not valid in an ON EXCEPTION statement block.

The identifier of the statement label that the GOTO statement references must exist
in the database, must be unique among statement labels and loop labels the SPL
routine, and must be within a scope that the GOTO statement can reach.

Related Statements

“<< Label >>” on page 3-1

IF

Use the IF statement to create a logical branch within an SPL routine.

Syntax

�� IF
(1)

Condition THEN
(2)

IF Statement List

�

�

�
(1)

ELIF Condition THEN
(2)

IF Statement List

�

Chapter 3. SPL Statements 3-27

�
(2)

ELSE IF Statement List

END IF
;

��

Notes:

1 See “Condition” on page 4-5

2 See “IF Statement List” on page 3-29

Usage

The database server processes the IF statement by the following steps:
1. If the condition that follows the IF keyword is true, any statements that follow

the first THEN keyword of the IF statement execute, and the IF statement
terminates.

2. If the result of the initial IF condition is false, but an ELIF clause exists, the
database server evaluates the condition that follows the ELIF keyword.

3. If the result of the ELIF condition is true, any statements that follow the THEN
keyword of the ELIF clause execute, and the IF statement terminates.

4. If the result of the condition in the first ELIF clause is also false, but one or
more additional ELIF clauses exist, the database server evaluates the condition
in the next ELIF clause, and proceeds as in the previous step if it is true. If it is
false, the database server evaluates the condition in successive ELIF clauses,
until it finds a condition that is true, in which case it executes the statement list
that follows the THEN keyword of that ELIF clause, and the IF statement
terminates.

5. If no condition in the IF statement is true, but the ELSE clause exists,
statements that follow the ELSE keyword execute, and the IF statement
terminates.

6. If none of the conditions in the IF statement are true, and no ELSE clause
exists, the IF statement terminates without executing any statement list.

ELIF Clause
Use the ELIF clause to specify one or more additional conditions to evaluate. If the
IF condition is false, the ELIF condition is evaluated. If the ELIF condition is true,
the statements that follow the THEN keyword in the ELIF clause execute.

If no statement follows the THEN keyword of the ELIF clause when the ELIF
condition is true, program control passes from the IF statement to the next
statement.

ELSE Clause
The ELSE clause executes if no true previous condition exists in the IF clause or
any of the ELIF clauses.

In the following example, the SPL function uses an IF statement with both an ELIF
clause and an ELSE clause. The IF statement compares two strings.

The function displays 1 to indicate that the first string comes before the second
string alphabetically, or -1 if the first string comes after the second string
alphabetically. If the strings are the same, a zero (0) is returned.

3-28 IBM Informix Guide to SQL: Syntax

CREATE FUNCTION str_compare (str1 CHAR(20), str2 CHAR(20))
RETURNING INT;
DEFINE result INT;

IF str1 > str2 THEN LET result =1;
ELIF str2 > str1 THEN LET result = -1;
ELSE LET result = 0;

END IF
RETURN result;

END FUNCTION -- str_compare

Conditions in an IF Statement
Just as in the WHILE statement, if any expression in the condition evaluates to
NULL, then the condition cannot be true, unless you are explicitly testing for
NULL using the IS NULL operator. The following rules summarize NULL values
in conditions:
1. If the expression x evaluates to NULL, then x is not true by definition.

Furthermore, NOT (x) is also not true .
2. IS NULL is the only operator that can return true for x. That is, x IS NULL is

true, and x IS NOT NULL is not true.

If an expression in the condition has an UNKNOWN value from an uninitialized
SPL variable, the statement terminates and raises an exception.

You can specify a trigger-type Boolean operator (DELETING, INSERTING,
SELECTING, or UPDATING) as a condition in an IF statement only within a
trigger routine.

IF Statement List

IF Statement List:

(1)
BEGIN Statement Block END

(2)
Subset of SPL Statements

(3)
Subset of SQL Statements ;

Notes:

1 See “Statement Block” on page 5-74

2 See “Subset of SPL Statements Allowed in the IF Statement List”

3 See “SQL Statements Not Valid in an IF Statement” on page 3-30

Subset of SPL Statements Allowed in the IF Statement List

You can use any of the following SPL statements in the IF statement list:
v CALL
v CONTINUE
v EXIT FOR
v FOREACH
v GOTO
v IF
v LET

Chapter 3. SPL Statements 3-29

v LOOP
v RAISE EXCEPTION
v RETURN
v SYSTEM
v TRACE
v WHILE

The “Subset of SPL Statements” syntax diagram for the “IF Statement List” on
page 3-29 refers to the SPL statements that are listed in the preceding table.

SQL Statements Not Valid in an IF Statement

The “Subset of SQL Statements” element in the syntax diagram for the “IF
Statement List” on page 3-29 refers to all SQL statements, except for the following
SQL statements, which are not valid in the IF statement list.
v ALLOCATE DESCRIPTOR
v CLOSE DATABASE
v CONNECT
v CREATE DATABASE
v CREATE PROCEDURE
v DATABASE
v DEALLOCATE DESCRIPTOR
v DESCRIBE
v DISCONNECT
v EXECUTE
v FLUSH
v GET DESCRIPTOR
v GET DIAGNOSTICS
v INFO
v LOAD
v OUTPUT
v PUT
v SET AUTOFREE
v SET CONNECTION
v SET DESCRIPTOR
v UNLOAD
v WHENEVER

You can use a SELECT statement only if you use the INTO TEMP clause to store
the result set of the SELECT statement in a temporary table.

Related Statements

“WHILE” on page 3-49

3-30 IBM Informix Guide to SQL: Syntax

LET

Use the LET statement to assign values to variables or to call a user-defined SPL
routine and assign the returned value or values to SPL variables.

Syntax

�� LET �

,

SPL_var = �

�

�

�

,

function ()
,

(1)
Argument

,
(2)

Expression
,

(3)
(SELECT Statement)

; ��

Notes:

1 See “Arguments” on page 5-1

2 See “Expression” on page 4-40

3 See “SELECT statement” on page 2-536

Element Description Restrictions Syntax

function SPL function to be invoked Must exist in the database “Identifier” on page
5-21

SPL_var SPL variable to receive a value that the
function, expression, or query returns

Must be defined and in scope
within the statement block

“Identifier” on page
5-21;

Usage

The LET statement can assign a value returned by an expression, function, or
query to an SPL variable. At runtime, the value to be assigned is calculated first.
The resulting value is cast to the data type of SPL_var, if possible, and the
assignment occurs. If conversion is not possible, an error occurs, and the value of
the variable remains undefined. (A LET operation that assigns a single value to a
single SPL variable is called a simple assignment.)

A compound assignment assigns multiple expressions to multiple SPL variables. The
data types of expressions in the expression list do not need to match the data types
of the corresponding variables in the variable list, because the database server
automatically converts the data types. (For a detailed discussion of casting, see the
IBM Informix Guide to SQL: Reference.)

In multiple-assignment operations, the number of variables to the left of the equal
(=) sign must match the number of values returned by the functions, expressions,
and queries listed on the right of the equal (=) sign. The following example
shows several LET statements that assign values to SPL variables:

Chapter 3. SPL Statements 3-31

LET a = c + d ;
LET a,b = c,d ;
LET expire_dt = end_dt + 7 UNITS DAY;
LET name = ’Brunhilda’;
LET sname = DBSERVERNAME;
LET this_day = TODAY;

You cannot use multiple values to the right of the equal (=) sign to operate on
other values. For example, the following statement is not valid:
LET a,b = (c,d) + (10,15); -- INVALID EXPRESSION

Using a SELECT Statement in a LET Statement
The examples in this section use a SELECT statement in a LET statement. You can
use a SELECT statement to assign values to one or more variables on the left side
of the equals (=) operator, as the following example shows:
LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
LET a,b,c = (SELECT c1,c2 FROM t WHERE id = 1), 15;

You cannot use a SELECT statement to make multiple values operate on other
values. The following example is invalid:
LET a,b = (SELECT c1,c2 FROM t) + (10,15); -- INVALID CODE

Because a LET statement is equivalent to a SELECT ... INTO statement, the two
statements in the following example have the same results: a=c and b=d:
CREATE PROCEDURE proof()

DEFINE a, b, c, d INT;
LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
SELECT c1, c2 INTO c, d FROM t WHERE id = 1

END PROCEDURE

If the SELECT statement returns more than one row, you must enclose the SELECT
statement in a FOREACH loop.

For a description of SELECT syntax and usage, see “SELECT statement” on page
2-536.

Calling a Function in a LET Statement
You can call a user-defined function in a LET statement and assign the returned
values to an SPL variable that receives the values that the function returns.

An SPL function can return multiple values (that is, values from multiple columns
in the same row) into a list of variable names. In other words, the function can
have multiple values in its RETURN statement and the LET statement can have
multiple variables to receive the returned values.

When you call the function, you must specify all the necessary arguments to the
function unless the arguments of the function have default values. If you specify
the name of one of the parameters in the called function with syntax such as name
= 'smith', you must name all of the parameters.

An SPL function that selects and returns more than one row must be enclosed in a
FOREACH loop.

The following two examples show valid LET statements:
LET a, b, c = func1(name = ’grok’, age = 17);
LET a, b, c = 7, func2(’orange’, ’green’);

3-32 IBM Informix Guide to SQL: Syntax

The following LET statement is not valid because it tries to add the output of two
functions and then assign the sum to two variables, a and b.
LET a, b = func1() + func2(); -- INVALID CODE

You can easily split this LET statement into two valid LET statements:
LET a = (func1() + func2());
LET b = a; -- VALID CODE

A function called in a LET statement can have an argument of COLLECTION, SET,
MULTISET, or LIST. You can assign the value that the function returns to a
variable, for example:
LET d = function1(collection1);
LET a = function2(set1);

In the first statement, the SPL function function1 accepts collection1 (that is, any
collection data type) as an argument and returns its value to the variable d. In the
second statement, the SPL function function2 accepts set1 as an argument and
returns a value to the variable a.

LOOP

Use the LOOP statement to define a loop with an indeterminate number of
iterations.

Syntax

��
<< label >> (1)

WHILE Condition
FOR loop_var IN (Range)

expression
= Range

�

�
(2)

LOOP Statement Block END LOOP
(3)

label
;

��

Range:

left_expression TO right_expression
STEP increment_expr

Notes:

1 See “Condition” on page 4-5

2 See “Statement Block” on page 5-74

3 Valid only if <<label>> precedes the first keyword

Element Description Restrictions Syntax

expression Value to compare with loop_var Must match loop_var data type “Expression” on page
4-40

Chapter 3. SPL Statements 3-33

Element Description Restrictions Syntax

increment_expr Positive or negative value by
which loop_var is incremented

Must return an integer. Cannot
return 0.

“Expression” on page
4-40

label Name of the loop label for this
loop

Must be unique among labels in
this SPL routine

“Identifier” on page
5-21

left_expression Starting expression of a range Value must match SMALLINT or
INT data type of loop_var

“Expression” on page
4-40

loop_var Variable that determines how
many times the loop executes

Must be defined and in scope
within this statement block

“Identifier” on page
5-21

right_expression Ending expression in the range Same as for left_expression “Expression” on page
4-40

Usage

The LOOP statement is an iterative statement that resembles the FOR and WHILE
statements. Like FOR and WHILE, the LOOP statement can have an optional loop
label, It can include the CONTINUE statement to specify another iteration, and the
EXIT statement to terminate execution of the loop.

Besides resembling FOR and WHILE in its functionality, the LOOP statement can
use the syntax of FOR or WHILE that precedes the statement block. Sections that
follow describe several forms of the LOOP statement, including these:
v Simple LOOP statements that iterate a statement loop indefinitely
v FOR LOOP statements, that use FOR statement syntax specify a finite number of

iterations
v WHILE LOOP statements, that iterate while a specified condition is true
v Labeled versions of each of these LOOP statements, which can terminate deeply

nested loops.

Simple LOOP Statements

The following program fragment illustrates a simple form of the LOOP statement.
LOOP
LET i = i + 1;

IF i = 5 THEN EXIT;
ELSE
CONTINUE;
END IF

END LOOP;

In this example the IF statement limits the number of iterations. Here the
CONTINUE and EXIT statements omit the optional LOOP keyword, but the END
LOOP statement is required at the end of the statement loop. A similar FOR or
WHILE keyword would have required the FOR or WHILE keywords, respectively,
in the CONTINUE and EXIT statements.

The next example uses a conditional EXIT statement to terminate the loop:
LOOP
LET i = i + 1;

EXIT WHEN i = 4;
END LOOP;

3-34 IBM Informix Guide to SQL: Syntax

No keyword identifying the type of loop statement is required after the EXIT
statement, as would be the case for an EXIT statement in a FOR, WHILE, or
FOREACH statement. When the i = 4 condition becomes true, program control
passes from the LOOP statement to whatever statement follows the END LOOP
keywords.

FOR LOOP Statements

The FOR LOOP statement uses FOR statement syntax to specify a variable and a
range of values that the variable can take. The loop iterates until the specified limit
to these values is reached, or until control is transferred outside the loop, as by the
unconditional EXIT statement in the following example:
FOR i IN (1 TO 5) LOOP

IF i = 5 THEN EXIT;
ELSE
CONTINUE;

END LOOP;

In the FOR LOOP statement, the FOR keyword can follow the EXIT or CONTINUE
keyword, but the FOR keyword is not required, as it is in an ordinary FOR
statement.

The following example replaces the IF statement with a functionally equivalent
conditional EXIT statement:
FOR i IN (1 TO 5) LOOP

EXIT WHEN i = 5;
END LOOP;

WHILE LOOP Statements

To create a WHILE LOOP statement, loop, you can immediately follow a WHILE
condition specification with a LOOP statement. The resulting loop terminates after
the condition becomes false, or when some other statement transfers program
control from the loop. In the following WHILE LOOP statement, the condition
specifies that the loop terminates after the loop variable i has been incremented to
the value of 6:
WHILE (i < 6) LOOP

LET i = i + 1;
IF i = 5 THEN EXIT;
ELSE
CONTINUE;
END IF

END LOOP;

As in the FOR LOOP statement, the EXIT and CONTINUE keywords do not need
to specify the type of loop statement, but the example would not be affected if
EXIT WHILE and CONTINUE WHILE replaced the EXIT and CONTINUE
keywords. The END LOOP keywords are required, however, because Informix
treats the WHILE LOOP (and FOR LOOP) statements as LOOP statements, despite
their initial FOR and WHILE specifications.

Labeled LOOP Statements

All forms of the LOOP statement, including the FOR LOOP, WHILE LOOP, and
simple LOOP statements can have statement labels. You can create a labeled LOOP
statement in the following steps:

Chapter 3. SPL Statements 3-35

1. Write a valid LOOP, FOR LOOP, or WHILE LOOP statement.
2. Create a statement label by enclosing an SQL identifier (that is not already the

name of a label in the same SPL routine) between angle brackets
(<<loop_label>>) immediately before the first line of the LOOP, FOR LOOP, or
WHILE LOOP statement.

3. Enter the same SQL identifier, but without angle bracket delimiters,
immediately after the END LOOP keywords that terminate the statement,
which is now a labeled loop statement.

One advantage of labeled LOOP statements is that they can be referenced in EXIT
statements. When the EXIT label statement executes, program control passes from
the EXIT statement to the statement that follows the specified loop label.

In the following example, a labeled WHILE LOOP loop, whose loop label identifier
is endo, is part of the statement block of a labeled LOOP statement whose loop
label identifier is voort. If the conditional EXIT statement EXIT endo WHEN x = 7:
detects that its condition is true, program control passes to the LET x = x + 1
statement that follows the END LOOP endostatement. If the conditional EXIT
statement EXIT voort WHEN x > 9: detects that its condition is true, program
control passes to the LET x = x + 1 statement that follows the END LOOP
voortstatement, and the value of x is not incremented by the LET statement,
<<voort>>
LOOP

LET x = x+1;
<<endo>>
WHILE (i < 10) LOOP

LET x = x+1;
EXIT endo WHEN x = 7;
EXIT voort WHEN x > 9;
END LOOP endo;

LET x = x+1;
END LOOP voort;

uses FOR statement syntax to specify a variable and a range of values that the
variable can take. The loop iterates until the specified limit to these values is
reached, or until control is transferred outside the loop, as by the unconditional
EXIT statement in the following example:
FOR i IN (1 TO 5) LOOP

IF i = 5 THEN EXIT;
ELSE
CONTINUE;

END LOOP;

In the FOR LOOP statement, the FOR keyword can follow the EXIT or CONTINUE
keyword, but the FOR keyword is not required, as it is in an ordinary FOR
statement.

The following example replaces the IF statement with a functionally equivalent
conditional EXIT statement:
FOR i IN (1 TO 5) LOOP

EXIT WHEN i = 5;
END LOOP;

Related Statements

“<< Label >>” on page 3-1, “FOR” on page 3-18, “WHILE” on page 3-49

3-36 IBM Informix Guide to SQL: Syntax

ON EXCEPTION

Use the ON EXCEPTION statement to specify actions to be taken for any error, or
for a list of one or more specified errors, during execution of a statement block.

Syntax

�� ON EXCEPTION

�

,

IN (error_number)

�

�
SET SQL_error_var

, ISAM_error_var
, error_data_var

(1)
Statement Block �

� END EXCEPTION
WITH RESUME ;

��

Notes:

1 See “Statement Block” on page 5-74

Element Description Restrictions Syntax

error_data_var SPL variable to receive a string returned
by an SQL error or by a user-defined
exception

Must be a character type to receive
the error information. Must be valid
in current statement block.

“Identifier”
on page 5-21

error_number SQL error number or a number defined
by a RAISE EXCEPTION statement that
is to be trapped

Must be of integer type. Must be
valid in current statement block.

“Literal
Number” on
page 4-184

ISAM_error_var SPL variable that receives the ISAM
error number of the exception raised

Same as for error_number “Identifier”
on page 5-21

SQL_error_var SPL variable that receives the SQL error
number of the exception raised

Same as for ISAM_error_var “Identifier”
on page 5-21

Usage

The ON EXCEPTION statement, together with the RAISE EXCEPTION statement,
provides an error-trapping and error-recovery mechanism for SPL routines. ON
EXCEPTION can specify the errors that you want to trap as the SPL routine
executes, and specifies the action to take if the error occurs within the statement
block. The ON EXCEPTION statement can list one or more specific error numbers
in the IN clause, or it can trap all errors (or any error) if the IN clause is omitted.

A statement block can include more than one ON EXCEPTION statement. The
exceptions that are trapped can be either system-defined or user-defined.

The scope of the ON EXCEPTION statement is the statement block that contains it,
and any statement blocks that are nested within that statement block, unless one of
the nested statement blocks provides an ON EXCEPTION statement that overrides
the outer one.

Chapter 3. SPL Statements 3-37

When an exception is trapped, the error status is cleared.

If you specify a variable to receive an ISAM error, but no accompanying ISAM
error exists, a zero (0) is assigned to the variable. If you specify a variable to
receive the error text, but none exists, the variable stores an empty string.

No ON EXCEPTION Support in Triggered Actions

The ON EXCEPTION statement has no effect when it is issued from an SPL
routine in the following calling contexts:
v in a trigger routine,
v in the Action clause or the Correlated Action clause of a trigger on a table,
v in the Action clause of an INSTEAD OF trigger on a view.

When a UDR includes ON EXCEPTION in any of these contexts, the database
server ignores the ON EXCEPTION statement.

Placement of the ON EXCEPTION statement
The ON EXCEPTION statement is a declarative statement, not an executable
statement. For this reason, ON EXCEPTION must follow immediately after any
DEFINE statements, and must precede any executable statement within the same
SPL statement block.

Because the body of the SPL routine is a statement block, the ON EXCEPTION
statement often appears at the top of the routine, and applies to all of the code in
the routine.

The following example positions an ON EXCEPTION statement so that a
FOREACH statement can continue processing rows after an error occurs.
Procedure X() reads customer numbers from table A and inserts them into table B.
Because the INSERT statement is in scope of the ON EXCEPTION statement, any
error during an INSERT operation causes control of execution to move to the next
row of the FOREACH cursor, without terminating the FOREACH loop.
CREATE PROCEDURE X()

DEFINE v_cust_num CHAR(20);

FOREACH cs_insert FOR SELECT cust_num INTO v_cust_num FROM A
BEGIN

ON EXCEPTION
END EXCEPTION WITH RESUME;
INSERT INTO B(cust_num) VALUES(v_cust_num);

END
END FOREACH

END PROCEDURE

In the next example, function add_salesperson() inserts a set of values into a
table. If the table does not exist, it is created, and the values are inserted. The
function also returns the total number of rows in the table after the insert occurs:
CREATE FUNCTION add_salesperson(last CHAR(15), first CHAR(15))

RETURNING INT;
DEFINE x INT;
ON EXCEPTION IN (-206) -- If no table was found, create one

CREATE TABLE emp_list
(lname CHAR(15),fname CHAR(15), tele CHAR(12));

INSERT INTO emp_list VALUES -- and insert values
(last, first, ’800-555-1234’);

3-38 IBM Informix Guide to SQL: Syntax

END EXCEPTION WITH RESUME;
INSERT INTO emp_list VALUES (last, first, ’800-555-1234’);
SELECT count(*) INTO x FROM emp_list;
RETURN x;

END FUNCTION;

When an error occurs, the database server searches for the last ON EXCEPTION
statement that traps the error code. If the database server finds no pertinent ON
EXCEPTION statement, the error code is passed back to the calling context (the
SPL routine, application, or interactive user), and execution terminates.

In the previous example, the minus sign (-) is required in the IN clause that
specifies error -206; most error codes are negative integers.

The next example uses two ON EXCEPTION statements with the same error
number so that error code 691 can be trapped in two levels of nesting. All of the
DELETE statements except the one that is marked { 6 } are within the scope of
the first ON EXCEPTION statement. The DELETE statements that are marked { 1
} and { 2 } are within the scope of the inner ON EXCEPTION statement:
CREATE PROCEDURE delete_cust (cnum INT)

ON EXCEPTION IN (-691) -- children exist
BEGIN -- Begin-end so no other DELETEs get caught in here.

ON EXCEPTION IN (-691)
DELETE FROM another_child WHERE num = cnum; { 1 }
DELETE FROM orders WHERE customer_num = cnum; { 2 }

END EXCEPTION -- for error -691
DELETE FROM orders WHERE customer_num = cnum; { 3 }

END
DELETE FROM cust_calls WHERE customer_num = cnum; { 4 }
DELETE FROM customer WHERE customer_num = cnum; { 5 }

END EXCEPTION
DELETE FROM customer WHERE customer_num = cnum; { 6 }

END PROCEDURE

Using the IN Clause to Trap Specific Exceptions
An error is trapped if the SQL error code or the ISAM error code matches an
exception code in the list of error numbers. The search through the list of errors
begins from the left and stops with the first match. You can use a combination of
an ON EXCEPTION statement without an IN clause and one or more ON
EXCEPTION statements with an IN clause. When an error occurs, the database
server searches for the last declaration of the ON EXCEPTION statement that traps
the particular error code.
CREATE PROCEDURE ex_test()

DEFINE error_num INT;
...
ON EXCEPTION SET error_num
-- action C
END EXCEPTION
ON EXCEPTION IN (-300)
-- action B
END EXCEPTION
ON EXCEPTION IN (-210, -211, -212) SET error_num
-- action A
END EXCEPTION

A summary of the sequence of statements in the previous example would be:
1. Test for an error.
2. If error -210, -211, or -212 occurs, take action A.
3. If error -300 occurs, take action B.

Chapter 3. SPL Statements 3-39

4. If any other error occurs, take action C.

Receiving Error Information in the SET Clause
If you use the SET clause, when an exception occurs, the SQL error code and
(optionally) the ISAM error code are inserted into the variables that are specified in
the SET clause. If you provide an error_data_var, any error text that the database
server returns is put into the error_data_var. Error text includes information such as
the offending table or column name.

Forcing Continuation of the Routine
The first example in “Placement of the ON EXCEPTION statement” on page 3-38
includes the WITH RESUME keyword to specify that if the ON EXCEPTION
statement traps an error, execution of the FOREACH loop resumes on the next row
of the cs_insert cursor, the row immediately following the row on which the error
was raised. If an error is issued on the last row of the active set, the procedure
exits. After procedure X completes execution, table B contains a copy of every
customer number in table A on which no error was issued during the INSERT
operation.

The second example in “Placement of the ON EXCEPTION statement” on page
3-38 uses the WITH RESUME keyword to indicate that after the statement block in
the ON EXCEPTION statement executes, execution is to continue at the SELECT
COUNT(*) FROM emp_list statement, which is the line following the line that raised
the error. For this function, the result is that the count of salespeople names occurs
even if the error occurred.

Continuing Execution After an Exception Occurs
If you omit the WITH RESUME keywords, the next statement that executes after
an exception occurs depends on the placement of the ON EXCEPTION statement,
as the following scenarios describe:
v If the ON EXCEPTION statement is inside a statement block with a BEGIN and

an END keyword, execution resumes with the first statement (if any) after that
BEGIN ... END block. That is, it resumes after the scope of the ON EXCEPTION
statement.

v If the ON EXCEPTION statement is inside a loop (FOR, WHILE, FOREACH),
the rest of the loop is skipped, and execution resumes with the next iteration of
the loop.

v If no statement or block, but only the SPL routine, contains the ON EXCEPTION
statement, the routine executes a RETURN statement with no arguments,
returning a successful status and no values.

To prevent an infinite loop, if an error occurs during execution of the statement
block, then the search for another ON EXCEPTION statement to trap the error
does not include the current ON EXCEPTION statement.

Related Statements

“RAISE EXCEPTION”

RAISE EXCEPTION

Use the RAISE EXCEPTION statement to simulate the generation of an error.

3-40 IBM Informix Guide to SQL: Syntax

Syntax

�� RAISE EXCEPTION SQL_error_var
, ISAM_error

, error_text

; ��

Element Description Restrictions Syntax

error_text SPL variable or expression that
contains error message text for error
-746

Must be a character data type and be
valid in the statement block

“Identifier” on page
5-21; “Expression” on
page 4-40

ISAM_error SPL variable or other expression
that represents an ISAM error
number. The default is 0.

Must return a value in SMALLINT
range. You can specify a unary minus
sign before error number.

“Expression” on page
4-40

SQL_error SPL variable or other expression
that represents an SQL error
number

Same as for ISAM_error “Expression” on page
4-40

Usage

Use the RAISE EXCEPTION statement to simulate an error or to generate an error
with a custom message. An ON EXCEPTION statement can trap the generated
error.

If you omit ISAM_error, the database server sets the ISAM error code to zero (0)
when the exception is raised. If you want to specify error_text but not specify a
value for ISAM_error, specify zero (0) as the value of ISAM_error.

The RAISE EXCEPTION statement can raise either system-generated exceptions or
user-generated exceptions. For example, the following statement raises the error
number -208:
RAISE EXCEPTION -208, 0;

Here the minus (-) symbol is required after the EXCEPTION keyword for error
-208; most error codes are negative integers.

Special Error Number -746

The special error number -746 allows you to produce a customized message. For
example, the following statement raises the error number -746 and returns the
quoted text:
RAISE EXCEPTION -746, 0, ’You broke the rules’;

In the following example, a negative value for alpha raises exception -746 and
provides a specific message that describes the problem. The code should contain an
ON EXCEPTION statement that traps for an exception of -746.
FOREACH SELECT c1 INTO alpha FROM sometable
IF alpha < 0 THEN
RAISE EXCEPTION -746, 0, ’a < 0 found’ -- emergency exit
END IF
END FOREACH

When the SPL routine executes and the IF condition is met, the database server
returns the following error:
-746: a < 0 found.

Chapter 3. SPL Statements 3-41

For more information about the scope and compatibility of exceptions, see “ON
EXCEPTION” on page 3-37.

Related Statements

“ON EXCEPTION” on page 3-37

RETURN

Use the RETURN statement to specify what values (if any) the SPL function
returns to the calling context.

Syntax

�� RETURN

�

,
(1)

Expression
WITH RESUME

; ��

Notes:

1 See “Expression” on page 4-40

Usage

In Informix, for backward compatibility, you can use the RETURN statement inside
a CREATE PROCEDURE statement to create an SPL function. By only using
RETURN in CREATE FUNCTION statements, however, you can maintain the
convention of using CREATE FUNCTION to define routines that return a value,
and CREATE PROCEDURE for other routines.

All RETURN statements in the SPL function must be consistent with the
RETURNING clause of the CREATE FUNCTION (or CREATE PROCEDURE)
statement that defines the function. Any RETURN list of expressions must match
in cardinality (and be of data types compatible with) the ordered list of data types
in the RETURNING clause of the function definition.

Alternatively, however, the RETURN statement can specify no expressions, even if
the RETURNING clause lists one or more data types. In this case, a RETURN
statement that specifies no expression is equivalent to returning the expected
number of NULL values to the calling context. A RETURN statement without any
expressions exits only if the SPL function is declared as not returning any values.
Otherwise it returns NULL values.

The following SPL function has two valid RETURN statements:
CREATE FUNCTION two_returns (stockno INT) RETURNING CHAR (15);

DEFINE des CHAR(15);
ON EXCEPTION (-272) -- if user does not have select privilege

RETURN; -- return no values.
END EXCEPTION;
SELECT DISTINCT descript INTO des FROM stock

WHERE stock_num = stockno;
RETURN des;

END FUNCTION;

3-42 IBM Informix Guide to SQL: Syntax

A program that calls the function in the previous example should test whether no
values are returned and act accordingly.

WITH RESUME Keyword

If you use the WITH RESUME keywords, then after the RETURN statement
completes execution, the next invocation of the SPL function (upon the next
FETCH or FOREACH statement) starts from the statement that follows the
RETURN statement. Any function that executes a RETURN WITH RESUME
statement must be invoked within a FOREACH loop, or else in the FROM clause
of a SELECT statement. If an SPL routine executes a RETURN WITH RESUME
statement, a FETCH statement in an Informix ESQL/C application can call the SPL
routine.

The following example shows a cursor function that another UDR can call. After
the RETURN WITH RESUME statement returns each value to the calling UDR or
program, the next line of series executes the next time series is called. If the
variable backwards equals zero (0), no value is returned to the calling UDR or
program, and execution of series stops:
CREATE FUNCTION series (limit INT, backwards INT) RETURNING INT;

DEFINE i INT;
FOR i IN (1 TO limit)

RETURN i WITH RESUME;
END FOR;
IF backwards = 0 THEN

RETURN;
END IF;
FOR i IN (limit TO 1 STEP -1)

RETURN i WITH RESUME;
END FOR;

END FUNCTION; -- series

Returning Values from Another Database
If an SPL function uses the Return clause to return values from another database of
the local Informix instance, the following data types are supported as the returned
data type:
v Built-in data types that are not opaque
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-544
v DISTINCT of the built-in types that are referenced in the two lines above
v DISTINCT of any DISTINCT data type in this list
v Any opaque user-defined type (UDT) that is cast explicitly to one of the built-in

data types in this list.

The definitions of the UDF and of the type hierarchies, casts, DISTINCT types, and
UDTs must be exactly the same in each of the participating databases. The same
data-type restrictions apply to a value that an external function returns from
another database of the local Informix instance. For more information about data
types that are supported in distributed operations across two or more databases of
the same database server, see “Data Types in Cross-Database Transactions” on page
2-544.

UDRs can return only the following data types from tables in databases of other
database servers:
v Any non-opaque built-in data type
v BOOLEAN

Chapter 3. SPL Statements 3-43

v LVARCHAR
v DISTINCT of non-opaque built-in types
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of any DISTINCT type that appears in this list.

UDRs can return these DISTINCT types from databases of other Informix instances
only if the DISTINCT types are cast explicitly to built-in types. The definitions of
the DISTINCT data types, their type hierarchies, and their casts must be exactly the
same in all databases that participate in the distributed operations. For queries or
other DML operations in cross-server UDRs that use the data types in the
preceding list as parameters or as returned data types, the UDR must be defined in
each participating database, and the participating Informix instances must support
the data type as a returned value in cross-server operations.

For additional information about the data types that Informix can access in
distributed operations, see “Data Types in Distributed Queries” on page 2-543.

External Functions and Iterator Functions: In an SPL program, you can use a C
or Java language external function as an expression in a RETURN statement,
provided that the external function is not an iterator function. An iterator function is
an external function that returns one or more rows of data (and therefore requires
a cursor to execute).

SPL iterator functions must include the RETURN WITH RESUME statement. For
information about using an iterator function with a virtual table interface in the
FROM clause of a query, see “Iterator Functions” on page 2-557.

SYSTEM

Use the SYSTEM statement to issue an operating-system command from within an
SPL routine.

Syntax

�� SYSTEM expression
SPL_var

; ��

Element Description Restrictions Syntax

expression Evaluates to a user-executable
operating-system command

You cannot specify that the
command run in the background

Operating-system
dependent

SPL_var SPL variable containing a command Must be of a character data type “Identifier” on page
5-21;

Usage

If the specified expression is not a character expression, it is converted to a character
expression and passed to the operating system for execution.

3-44 IBM Informix Guide to SQL: Syntax

The command that SYSTEM specifies cannot run in the background. The database
server waits for the operating system to complete execution of the command before
it continues to the next statement in the SPL routine. The SPL routine cannot use
any returned values from the command.

If the operating-system command fails (that is, returns a nonzero status for the
command), an exception is raised that contains the returned operating-system
status as the ISAM error code and an appropriate SQL error code.

A rollback does not terminate a system call, so a suspended transaction can wait
indefinitely for the call to return. For instructions on recovery from a deadlock
during a long transaction rollback, see the IBM Informix Administrator's Guide.

The dynamic log feature of Informix automatically adds log files until the long
transaction completes or rolls back successfully.

In DBA- and owner-privileged SPL routines that contain SYSTEM statements, the
command runs with the access privileges of the user who executes the routine.

Executing the SYSTEM statement on UNIX
In SPL procedures for UNIX platforms, a specification that evaluates to a valid
UNIX operating system command must immediately follow the SYSTEM keyword.

Both of the program fragments that follow use the SYSTEM statement of SPL to
send a message to the system administrator.
v In the first example, the sensitive_update routine defines an SPL variable called

mailcall to store a character string that specifies the name of the mail utility, and
the user ID of the message recipient, and the message text.

v In the second example, the sensitive_update2 routine similarly invokes the mail
utility with a SYSTEM statement. The expression constructs a valid command
line by concatenating three quoted strings and the SPL variables user1 and user2
to send to the system administrator a file called violations_file.

Sending email using the SYSTEM statement
The SYSTEM statement in the following example of an SPL routine causes the
UNIX operating system to send a mail message to the system administrator whose
user ID is headhoncho:
CREATE PROCEDURE sensitive_update()

...
LET mailcall = ’mail headhoncho < alert’;
-- code to execute if user tries to execute a specified
-- command, then sends email to system administrator
SYSTEM mailcall;
...

END PROCEDURE; -- sensitive_update

You can use a double-pipe symbol (||) to concatenate expressions within a
SYSTEM statement, as the following example shows:
CREATE PROCEDURE sensitive_update2()

DEFINE user1 char(15);
DEFINE user2 char(15);
LET user1 = ’joe’;
LET user2 = ’mary’;
...
-- code to execute if user tries to execute a specified
-- command, then sends email to system administrator

Chapter 3. SPL Statements 3-45

SYSTEM ’mail -s violation’ || user1 || ’ ’ || user2
|| ’< violation_file’;

...
END PROCEDURE; --sensitive_update2

In both examples above, blank spaces separate elements of the command line, so
the expression that follows the SYSTEM keyword evaluates to a character string
that conforms to the syntax requirements of the operating system mail utility.

Executing the SYSTEM statement on Windows
On Windows systems, any SYSTEM statements in an SPL routine are executed only
if the current user who is executing the SPL routine has logged on with a
password.

The database server must have the password and login name of the user in order
to execute a command on behalf of that user.

The first SYSTEM statement in the following example of an SPL routine causes
Windows to send an error message to a temporary file and to put the message in a
system log that is sorted alphabetically. The second SYSTEM statement causes the
operating system to delete the temporary file:
CREATE PROCEDURE test_proc()

...
SYSTEM ’type errormess101 > %tmp%tmpfile.txt |

sort >> %SystemRoot%systemlog.txt’;
SYSTEM ’del %tmp%tmpfile.txt’;
...

END PROCEDURE; --test_proc

The expressions that follow the SYSTEM statements in this example contain
variables %tmp% and %SystemRoot% that are defined by Windows.

Setting Environment Variables in SYSTEM Commands

When the operating-system command that SYSTEM specifies is executed, no
guarantee exists that any environment variables that the user application sets are
passed to the operating system. If you set an environment variable in a SYSTEM
command, the setting is only valid during that SYSTEM command.

To avoid this potential problem, the following method is recommended to ensure
that any environment variables that the user application requires are carried
forward to the operating system.

To Change Environment Settings for an Operating System Command

1. Create a shell script (on UNIX systems) or a batch file (on Windows platforms)
that sets up the desired environment and then executes the operating system
command.

2. Use the SYSTEM command to execute the shell script or batch file.

This solution has an additional advantage: if you subsequently need to change the
environment, you can modify the shell script or the batch file without needing to
recompile the SPL routine.

For information about operating system commands that set environment variables,
see the IBM Informix Guide to SQL: Reference.

3-46 IBM Informix Guide to SQL: Syntax

TRACE

Use the TRACE statement to control the generation of debugging output.

Syntax

�� TRACE ON
OFF
PROCEDURE

(1)
Expression

; ��

Notes:

1 See “Expression” on page 4-40

Usage

The TRACE statement generates output that is sent to the file that the SET DEBUG
FILE TO statement specifies. Tracing writes to the debug file the current values of
the following program objects:
v SPL variables
v Routine arguments
v Return values
v SQL error codes
v ISAM error codes

The output of each executed TRACE statement appears on a separate line.

If you use the TRACE statement before you specify a DEBUG file to contain the
output, an error is generated.

Any routine that the SPL routine calls inherits the trace state. That is, a called
routine (on the same database server) assumes the same trace state (ON, OFF, or
PROCEDURE) as the calling routine. The called routine can set its own trace state,
but that state is not passed back to the calling routine.

A routine that is executed on a remote database server does not inherit the trace
state.

TRACE ON
If you specify the keyword ON, all statements are traced. The values of variables
(in expressions or otherwise) are printed before they are used. To turn tracing ON
implies tracing both routine calls and statements in the body of the routine.

TRACE OFF
If you specify the keyword OFF, all tracing is turned off.

TRACE PROCEDURE
If you specify the keyword PROCEDURE, only the routine calls and return values,
but not the body of the routine, are traced.

Chapter 3. SPL Statements 3-47

The TRACE statement supports no ROUTINE or FUNCTION keywords. Use the
TRACE PROCEDURE keywords when the SPL routine that you trace is a function.

Displaying Expressions
You can use the TRACE statement with a quoted string or an expression to display
values or comments in the output file. If the expression is not a literal expression,
the expression is evaluated before it is written to the output file.

You can use the TRACE statement with an expression even if you used a TRACE
OFF statement earlier in a routine. You must first, however, use the SET DEBUG
statement to establish a trace output file.

The next example uses a TRACE statement with an expression after using a
TRACE OFF statement. The example uses UNIX file naming conventions:
CREATE PROCEDURE tracing ()

DEFINE i INT;
BEGIN

ON EXCEPTION IN (1)
END EXCEPTION; -- do nothing
SET DEBUG FILE TO ’/tmp/foo.trace’;
TRACE OFF;
TRACE ’Forloop starts’;
FOR i IN (1 TO 1000)

BEGIN
TRACE ’FOREACH starts’;
FOREACH SELECT...INTO a FROM t

IF <some condition> THEN
RAISE EXCEPTION 1 -- emergency exit

END IF
END FOREACH -- return some value

END
END FOR -- do something

END;
END PROCEDURE

Example Showing Different Forms of TRACE
The following example shows several different forms of the TRACE statement. The
example uses Windows file naming conventions:
CREATE PROCEDURE testproc()

DEFINE i INT;
SET DEBUG FILE TO ’C:\tmp\test.trace’;
TRACE OFF;
TRACE ’Entering foo’;
TRACE PROCEDURE;
LET i = test2();

TRACE ON;
LET i = i + 1;

TRACE OFF;
TRACE ’i+1 = ’ || i+1;
TRACE ’Exiting testproc’;

SET DEBUG FILE TO ’C:\tmp\test2.trace’;

END PROCEDURE

3-48 IBM Informix Guide to SQL: Syntax

Looking at the Traced Output

To see the traced output, use a text editor or similar utility to display or read the
contents of the file.

WHILE
Use the WHILE statement to establish a loop with variable end conditions.

Syntax

��
<< label >>

WHILE
(1)

Condition �

�
(2)

Statement Block END WHILE
(3)

label
(2)

LOOP Statement Block END LOOP
(3)

label

;
��

Notes:

1 See “Condition” on page 4-5

2 See “Statement Block” on page 5-74

3 Valid only if <<label>> precedes the first WHILE keyword

Element Description Restrictions Syntax

label Name of the loop label for this
loop

Must be unique among labels in
this SPL routine

“Identifier” on page
5-21

Usage

The condition is evaluated before the statement block first runs and before each
subsequent iteration. Iterations continue as long as the condition remains true. The
loop terminates when the condition evaluates to not true.

If any expression within the condition evaluates to NULL, the condition becomes not
true unless you are explicitly testing for NULL with the IS NULL operator.

If an expression within the condition has an UNKNOWN value because it
references uninitialized SPL variables, an immediate error results. In this case, the
loop terminates, raising an exception.

Example of WHILE Loops in an SPL Routine

The following example illustrates the use of WHILE loops in an SPL routine. In the
SPL procedure, simp_while, the first WHILE loop executes a DELETE statement.
The second WHILE loop executes an INSERT statement and increments the value
of an SPL variable.

Chapter 3. SPL Statements 3-49

CREATE PROCEDURE simp_while()
DEFINE i INT;
WHILE EXISTS (SELECT fname FROM customer

WHERE customer_num > 400)
DELETE FROM customer WHERE id_2 = 2;

END WHILE;
LET i = 1;
WHILE i < 10

INSERT INTO tab_2 VALUES (i);
LET i = i + 1;

END WHILE;
END PROCEDURE;

Labeled WHILE Loops

To create a labeled WHILE loop, you can declare a loop label before the initial
WHILE keyword, and repeat the label after the END WHILE keywords, as in the
two WHILE loops of the following example:
CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;
<<while_jlab>>
WHILE j < 20

IF j > 10 THEN
CONTINUE WHILE;

END IF
LET i,s = j,0;
<<while_slab>>
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT while_jlab;
END IF

END WHILE while_slab
END WHILE while_jlab

END PROCEDURE;

Here the EXIT while_jlab statement has the same effect that the EXIT or EXIT FOR
keywords would have, terminating both the outer WHILE loop and the routine. In
this example, the statement that includes the EXIT while_jlab statement has the
same effect that EXIT while_jlab WHEN i = 5 would have.

You can also label a LOOP statement that begins with a loop <<label>>
specification that immediately precedes the initial WHILE keyword and condition.
In this type of loop, the CONTINUE LOOP, EXIT LOOP, and END LOOP
keywords replace the CONTINUE WHILE, EXIT WHILE, and END WHILE
keywords. Both the LOOP and WHILE keywords are optional after the
CONTINUE and EXIT keywords, but the END LOOP keywords are required in
SPL loop statements that include the LOOP keyword.

You can use similar syntax to create an unlabeled loop that omits the <<label>>
declaration that immediately precedes the WHILE condition specification. In this
case, you must also omit the undelimited loop label identifier that follows the END
LOOP keywords. See the LOOP statement for a description and examples of these
forms of labeled and unlabeled loop statements that enable you to combine
WHILE statement syntax, with its condition-based number of loop iterations, with
the "loop forever" syntax of the LOOP statement.

3-50 IBM Informix Guide to SQL: Syntax

Related Statements

“<< Label >>” on page 3-1, “CONTINUE” on page 3-5, “EXIT” on page 3-16,
“LOOP” on page 3-33

Chapter 3. SPL Statements 3-51

3-52 IBM Informix Guide to SQL: Syntax

Chapter 4. Data Types and Expressions

In This Chapter

This chapter describes the data types and expressions that Informixsupports. These
fundamental syntax segments can appear in data definition language (DDL) and
data manipulation language (DML) statements, and in other types of SQL
statements. Some SPL statements can also specify data types or expressions. You
can use these features of a relational or object-relational database in various
contexts, such as to define the schema of a table, to specify the signature and
arguments of a routine, or to represent or calculate specific data values.

Scope of Segment Descriptions
The description of each segment includes the following information:
v A brief introduction that explains the effect of the segment
v A syntax diagram that shows how to enter the segment correctly
v A table that explains the terms in the syntax diagram for which you must

substitute names, values, or other specific information
v Rules of usage, typically including examples that illustrate these rules

If a segment consists of multiple parts, the segment description provides similar
information about each part. Some descriptions conclude with references to related
information in this document and in other documents.

Use of Segment Descriptions
The syntax diagram within each segment description is not a stand-alone diagram.
Rather, it is a subdiagram of the syntax of the SQL statements (in Chapter 2, “SQL
statements,” on page 2-1) or of SPL statements (in Chapter 3, “SPL Statements,” on
page 3-1) that can include the segment.

SQL or SPL syntax descriptions can refer to segment descriptions in two ways:
v A subdiagram reference in a syntax diagram can list a segment name and the page

in this document where the segment description begins.
v The Syntax column of the table that immediately follows a syntax diagram can

list a segment name and the page where the segment description begins.

If the syntax diagram for a statement includes a reference to a segment, turn to
that segment description to see the complete syntax for the segment.

For example, if you want to write a CREATE VIEW statement that includes a
database and database server qualifiers of the view name, first look up the syntax
diagram for the “CREATE VIEW statement” on page 2-277. The table beneath that
diagram refers to the Database Object Name segment for the syntax of view. Then
use the Database Object Name segment syntax to enter a valid CREATE VIEW
statement that also specifies the database and database server name for the view. In
the following example, the CREATE VIEW statement defines a view called
name_only in the sales database on the boston database server:
CREATE VIEW sales@boston:name_only AS

SELECT customer_num, fname, lname FROM customer;

© Copyright IBM Corp. 1996, 2010 4-1

Besides the Data Types and Expressions syntax segments that this chapter
documents, Chapter 5, “Other Syntax Segments,” on page 5-1 provides additional
syntax segments that are referenced in the syntax diagrams of this document.

Segments in This Chapter

This chapter describes Data Type and Expression segments, including the
following:
v Data Type
v DATETIME Field Qualifier
v INTERVAL Field Qualifier
v Expression
v Aggregate Expression
v AVG, COUNT, MAX, MIN, SUM, RANGE, STDEV, VARIANCE, and

User-Defined Aggregates
v Arithmetic Expressions
v Binary (+, -, *, /) Operators, Operator Functions, and Unary (+, -) Operators
v Cast Expressions
v CAST function and Cast (::) Operator
v Collection Subquery
v Column Expressions
v Column Name, ROWID, and Substring ([...]) Operator
v CONCAT Function and Concatenation (||) Operator
v Condition Segment and Conditional Expressions
v Comparison Condition: AND, OR, NOT, BETWEEN, IS NULL, LIKE, MATCHES,

and Relational Operators
v Condition with Subquery: IN, EXISTS, ALL, ANY, and SOME Operators
v Boolean UDF
v CASE Expressions
v NVL Function
v DECODE Function
v Constant Expressions: CURRENT, TODAY, DBSERVERNAME, SITENAME,

UNITS, and USER
v Literal Value
v Literal Collection
v Literal DATETIME
v Literal INTERVAL
v Literal Number
v Literal Row
v Quoted String
v Constructor Expressions
v Collection Constructor
v ROW Constructor Function Expressions
v Algebraic Functions: ABS, MOD, POW, POWER ROOT, ROUND, SQRT, and

TRUNC Functions
v CARDINALITY Function
v DBINFO Function

4-2 IBM Informix Guide to SQL: Syntax

v Encryption and Decryption Functions: DECRYPT_BINARY, DECRYPT_CHAR,
ENCRYPT_AES, ENCRYPT_TDES, and GETHINT Functions

v Exponential and Logarithmic Functions: EXP, LOGN, and LOG10 Functions
v HEX Function
v Hierarchical Query Operators and Functions: CONNECT_BY_ROOT, PRIOR, and

SQL_CONNECT_BY_PATH
v IFX_ALLOW_NEWLINE Function
v Length Functions: CHARACTER_LENGTH, CHAR_LENGTH, LENGTH, and

OCTET_LENGTH Functions
v Sequence Operators: CURRVAL, NEXTVAL
v Smart Large Object Functions: FILETOBLOB, FILETOCLOB, LOCOPY, and

LOTOFILE Functions
v String-Manipulation Functions: LPAD, RPAD, TRIM, REPLACE, SUBSTR,

SUBSTRING, INITCAP, LOWER, and UPPER Functions
v Time Functions: DATE, DAY, EXTEND, MDY, MONTH, TO_CHAR, TO_DATE,

WEEKDAY, and YEAR Functions
v Trigger-Type Boolean Operators: DELETING, INSERTING, SELECTING, and

UPDATING
v Trigonometric Functions: ACOS, ASIN, ATAN, ATAN2, COS, SIN, and TAN

Functions
v User-Defined Functions
v Statement-Local Variable Expressions

You can also use host variables or SPL variables as expressions. For an alphabetic
list of expressions with page references, see “List of Expressions” on page 4-42.

Collection Subquery

You can use a Collection Subquery to create a MULTISET collection from the
results of a subquery. This syntax is an extension to the ANSI/ISO standard for
SQL.

Syntax

Collection Subquery:

(1)
MULTISET (subquery)

SELECT ITEM singleton_select

Notes:

1 Informix extension

Element Description Restrictions Syntax

singleton
_select

Subquery returning exactly
one row

Subquery cannot repeat the SELECT keyword, nor
include the ORDER BY clause

“SELECT
statement” on page
2-536

subquery Embedded query Cannot contain the ORDER BY clause “SELECT
statement” on page
2-536

Chapter 4. Data Types and Expressions 4-3

Usage

The MULTISET and SELECT ITEM keywords have the following significance:
v MULTISET specifies a collection of elements that can contain duplicate values,

but that has no specific order of elements.
v SELECT ITEM supports only one expression in the projection list. You cannot

repeat the SELECT keyword in the singleton subquery.

You can use a collection subquery in the following contexts:
v The Projection clause and WHERE clause of the SELECT statement
v The VALUES clause of the INSERT statement
v The SET clause of the UPDATE statement
v Wherever you can use a collection expression (that is, any expression that

evaluates to a single collection)
v As an argument passed to a user-defined routine

The following restrictions apply to a collection subquery:
v The Projection clause cannot contain duplicate column (field) names.
v It cannot contain aliases for table names. (But it can use aliases for column

(field) names, as in some of the examples that follow.)
v It is read-only.
v It cannot be opened twice.
v It cannot contain NULL values.
v It cannot contain syntax that attempts to seek within the subquery.

A collection subquery returns a multiset of unnamed ROW data types. The fields
of this ROW type are elements in the projection list of the subquery. Examples that
follow access the tables and the ROW types that these statements define:
CREATE ROW TYPE rt1 (a INT);
CREATE ROW TYPE rt2 (x int, y rt1);
CREATE TABLE tab1 (col1 rt1, col2 rt2);
CREATE TABLE tab2 OF TYPE rt1;
CREATE TABLE tab3 (a ROW(x INT));

The following examples of collection subqueries return the MULTISET collections
that are listed to the right of the subquery.

Collection Subquery Resulting Collections

MULTISET (SELECT * FROM tab1)... MULTISET(ROW(col1 rt1, col2 rt2))

MULTISET (SELECT col2.y FROM tab1)... MULTISET(ROW(y rt1))

MULTISET (SELECT * FROM tab2)... MULTISET(ROW(a int))

MULTISET(SELECT p FROM tab2 p)... MULTISET(ROW(p rt1))

MULTISET (SELECT * FROM tab3)... MULTISET(ROW(a ROW(x int)))

The following is another collection subquery:
SELECT f(MULTISET(SELECT * FROM tab1 WHERE tab1.x = t.y))

FROM t WHERE t.name = ’john doe’;

The following collection subquery includes the UNION operator:

4-4 IBM Informix Guide to SQL: Syntax

SELECT f(MULTISET(SELECT id FROM tab1
UNION
SELECT id FROM tab2 WHERE tab2.id2 = tab3.id3)) FROM tab3;

Table Expressions in the FROM Clause
Informix supports ANSI/ISO standard syntax for table expressions in the FROM
clause of SELECT queries and subqueries as a substitute for the Informix-extension
collection subquery syntax. The keywords TABLE and MULTISET are required in
version 10.00 and in earlier releases. These extensions to the ANSI/ISO standard
for SQL are supported but are no longer required for collection subqueries in the
FROM clause of SELECT statements.

The following two queries return the same result set, but only the second query
complies with the ANSI/ISO standard:
SELECT * FROM TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 100))

AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1) ORDER BY c1;

SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1)
ORDER BY c1;

The same SELECT statement can combine instances of both the Informix-extension
and ANSI/ISO syntax for collection subqueries:
SELECT * FROM (select col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),

TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 10)) AS vtab1(vc1)
ORDER BY c1;

The collection subquery must be delimited by parentheses in both formats, but the
outer set of parentheses (()) that immediately follows the TABLE keyword and
encloses the MULTISET collection subquery specification is an extension to the
ANSI/ISO syntax. This ANSI/ISO syntax is valid only in the FROM clause of the
SELECT statement. You cannot omit these keywords and parentheses from a
collection subquery specification in any other context.

Condition

Use a condition to test whether data meets certain qualifications. Use this segment
wherever you see a reference to a condition in a syntax diagram.

Syntax

Condition:

�

Logical_Operator
(1)

Comparison Conditions
NOT (2)

Condition with Subquery
(3)

User-Defined Function

Notes:

1 See “Comparison Conditions (Boolean Expressions)” on page 4-6

2 See “Condition with Subquery” on page 4-16

Chapter 4. Data Types and Expressions 4-5

3 See “User-Defined Functions” on page 4-160

Element Description Restrictions Syntax

Logical
_Operator

Combines two
conditions

Valid options are OR (= logical union) or
AND (= logical intersection)

“Conditions with AND or OR”
on page 4-20

Usage

A condition is a search criterion, optionally connected by the logical operators AND
or OR. Conditions can be classified into the following categories:
v Comparison conditions (also called filters or Boolean expressions)
v Conditions with a subquery
v User-defined functions (Informix only)

A condition can contain an aggregate function only if it is used in the HAVING
clause of a SELECT statement or in the HAVING clause of a subquery.

No aggregate function can appear in a condition in the WHERE clause of a
DELETE, SELECT, or UPDATE statement unless both of the following are TRUE:
v Aggregate is on a correlated column originating from a parent query.
v The WHERE clause appears in a subquery within a HAVING clause.

In Informix, user-defined functions are not valid as conditions in the following
contexts:
v In the HAVING clause of a SELECT statement
v In the definition of a check constraint

SPL routines are not valid as conditions in the following contexts:
v In the definition of a check constraint
v In the ON clause of a SELECT statement
v In the WHERE clause of a DELETE, SELECT, or UPDATE statement

External routines are not valid as conditions in the following contexts:
v In the definition of a check constraint
v In the ON clause of a SELECT statement
v In the WHERE clause of a DELETE, SELECT, or UPDATE statement
v In the WHEN clause of CREATE TRIGGER
v In the IF, CASE, or WHILE statements of SPL

Comparison Conditions (Boolean Expressions)
Comparison conditions are often called Boolean expressions because they return a
TRUE or FALSE result.

Six kinds of Boolean operators can specify a comparison condition:
v Relational operators
v [NOT] BETWEEN ... AND operators
v [NOT] IN operators
v IS [NOT] NULL operators
v Trigger-type operators

4-6 IBM Informix Guide to SQL: Syntax

v [NOT] LIKE or MATCHES operators

Their syntax is summarized in this diagram and explained in the sections that
follow.

Comparison Conditions:

(1) (2) (1)
Expression Relational Operator Expression

(1) (1) (1)
Expression BETWEEN Expression AND Expression

NOT
(3) (4)

IN Condition
column IS NULL
expression NOT
(5) (6)

Trigger-Type Operator
string LIKE string
column NOT (3) ESCAPE 'char'

MATCHES column

Notes:

1 See “Expression” on page 4-40

2 See “Relational Operator” on page 4-192

3 Informix extension

4 See “IN Condition” on page 4-10

5 SPL trigger routines only

6 See “Trigger-Type Boolean Operator” on page 4-12

Element Description Restrictions Syntax

char An ASCII character to be the nondefault escape
character in the quoted string. Single (') and
double (") quotation marks are not valid as
char.

See “ESCAPE with LIKE” on
page 4-15 and “ESCAPE with
MATCHES” on page 4-15

“Quoted String”
on page 4-188

column Name of a column (or a field of a ROW-type
column) whose data value is compared to
NULL, to string, or to another column

Can be qualified by the
identifier, synonym, or alias of
a table or view

See “Column
Name” on page
4-8

expression An SQL expression that returns a single value None “Expression” on
page 4-40See
“Quoted String”
on page 4-188

string A string delimited by single (') or double (")
quotation marks

Both delimiters must be
identical

See “Quoted
String” on page
4-188

The following sections describe the different types of comparison conditions:
v “Relational-Operator Condition” on page 4-9
v “BETWEEN Condition” on page 4-9
v “IN Condition” on page 4-10
v “IS NULL and IS NOT NULL Conditions” on page 4-12

Chapter 4. Data Types and Expressions 4-7

v “LIKE and MATCHES Condition” on page 4-13.

For a discussion of comparison conditions in the context of the SELECT statement,
see “Using a Condition in the WHERE Clause” on page 2-567.

Warning: A literal DATE or DATETIME value in a comparison condition should
specify 4 digits for the year. When you specify a 4-digit year, the DBCENTURY
environment variable has no effect on the result. When you specify a 2-digit year,
DBCENTURY can affect how the database server interprets the comparison
condition, which might not work as you intended. For more information about
DBCENTURY, see the IBM Informix Guide to SQL: Reference.
Related reference

DBCENTURY (SQL Reference)

Column Name
The Column Name segment can be an element in comparison conditions. The
name of a column (or of one or more fields within a column of a ROW data type)
is not the subject of the comparison, but the database server uses this SQL
identifier to access the data value in the specified column or field of a row in a
database table or view.

Column Name:

table .
view .
synonym .
alias . �

column
row_column

(1)
.field

Notes:

1 Repeat no more than three times

Element Description Restrictions Syntax

alias Temporary alternative
name for table or view

Must be defined in the FROM clause of the
SELECT statement

“Identifier” on page
5-21

column Name of a column Must exist in the specified table “Identifier” on page
5-21

field A field to compare in a
ROW type column

Must be a component of row-column name or
field name (for nested rows)

“Identifier” on page
5-21

row_column A column of type ROW Must be an existing named ROW type or
unnamed ROW type

“Identifier” on page
5-21

synonym, table,
view

Name of a synonym,
table, or view

The synonym and the table or view to which it
points must exist in the database

“Identifier” on page
5-21

For more information on the meaning of the column name in these conditions, see
the “IS NULL and IS NOT NULL Conditions” on page 4-12 and the “LIKE and
MATCHES Condition” on page 4-13.

Quotation Marks in Conditions
When you compare a column expression with a constant expression in any
comparison condition, observe the following rules:

4-8 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_209.htm#ids_sqr_209

v If the column has a numeric data type, do not enclose the constant expression
between quotation marks.

v If the column has a character data type, enclose the constant expression between
quotation marks.

v If the column has a time data type, enclose the constant expression between
quotation marks.

Otherwise, you might get unexpected results.

The following example shows the correct use of quotation marks in comparison
conditions. Here the ship_instruct column has a character data type, the
order_date column has a date data type, and the ship_weight column has a
numeric data type.
SELECT * FROM orders

WHERE ship_instruct = ’express’
AND order_date > ’05/01/98’
AND ship_weight < 30;

Relational-Operator Condition
The following examples show some relational-operator conditions:
city[1,3] = ’San’

o.order_date > ’6/12/98’

WEEKDAY(paid_date) = WEEKDAY(CURRENT- (31 UNITS DAY))

YEAR(ship_date) < YEAR (TODAY)

quantity <= 3

customer_num <> 105

customer_num != 105

If an expression within the condition has an UNKNOWN value because it
references an uninitialized variable, the database server raises an exception.

If any expression within the condition evaluates to NULL, the condition cannot be
true, unless you are explicitly testing for NULL by using the IS NULL operator. For
example, if the paid_date column has a NULL value, then neither of the following
statements can retrieve that row:
SELECT customer_num, order_date FROM orders

WHERE paid_date = ’’;

SELECT customer_num, order_date FROM orders
WHERE NOT (paid_date !=’’);

The IS NULL operator tests for a NULL value, as the next example shows. The IS
NULL operator is described in “IS NULL and IS NOT NULL Conditions” on page
4-12.
SELECT customer_num, order_date FROM orders

WHERE paid_date IS NULL;

BETWEEN Condition
For a BETWEEN test to be TRUE, the value of the expression on the left of the
BETWEEN keyword must be in the inclusive range of the values of the two
expressions on the right of the BETWEEN keyword.

Chapter 4. Data Types and Expressions 4-9

NULL values do not satisfy the condition, and you cannot use NULL for either
expression that defines the range.

The following examples show some BETWEEN conditions:
order_date BETWEEN ’6/1/97’ and ’9/7/97’

zipcode NOT BETWEEN ’94100’ and ’94199’

EXTEND(call_dtime, DAY TO DAY) BETWEEN
(CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

lead_time BETWEEN INTERVAL (1) DAY TO DAY
AND INTERVAL (4) DAY TO DAY

unit_price BETWEEN loprice AND hiprice

IN Condition
The IN condition is satisfied when the expression to the left of the keyword IN is
included in the list of items.

IN Condition:

(1)
Expression

NOT
IN �

� �

�

,
(2)

(Literal Number)
(3)

Literal DATETIME
(4)

Quoted String
(5)

Literal INTERVAL
USER
TODAY
CURRENT

(6)
DATETIME Field Qualifier

SITENAME
DBSERVERNAME

(6)
Literal Row

collection_col
,

(7)
(Literal Collection)

(7)
Literal Collection

Notes:

1 See “Expression” on page 4-40

2 See “Literal Number” on page 4-184

3 See “Literal DATETIME” on page 4-180

4 See “Quoted String” on page 4-188

4-10 IBM Informix Guide to SQL: Syntax

5 See “Literal INTERVAL” on page 4-182

6 See “DATETIME Field Qualifier” on page 4-38

7 See “Literal Row” on page 4-185

Element Description Restrictions Syntax

collection_col Name of a collection column that is
used in an IN condition

The column must exist in the
specified table

“Identifier” on page
5-21

If you specify the NOT operator, the IN condition is TRUE when the expression is
not in the list of items. NULL values do not satisfy the IN condition.

The following examples show some IN conditions:
WHERE state IN (’CA’, ’WA’, ’OR’)
WHERE manu_code IN (’HRO’, ’HSK’)
WHERE user_id NOT IN (USER)
WHERE order_date NOT IN (TODAY)

In Informix ESQL/C, the built-in TODAY function is evaluated at execution time.
The built-in CURRENT function is evaluated when a cursor opens or when the
query executes, if it is a singleton SELECT statement.

The built-in USER function is case sensitive; for example, it interprets minnie and
Minnie as different values.

Using the IN Operator with Collection Data Types
You can use the IN operator to determine if an element is contained in a collection.
The collection can be a simple or nested collection. (In a nested collection type, the
element type of the collection is also a collection type.) When you use IN to search
for an element of a collection, the expression to the left or right of the IN keyword
cannot contain a BYTE or TEXT data type.

Suppose you create the following table that contains two collection columns:
CREATE TABLE tab_coll
(
set_num SET(INT NOT NULL),
list_name LIST(SET(CHAR(10) NOT NULL) NOT NULL)
);

The following statement fragments show how you might use the IN operator for
search conditions on the collection columns of the tab_coll table:
WHERE 5 IN set_num
WHERE 5.0::INT IN set_num
WHERE "5" NOT IN set_num
WHERE set_num IN ("SET{1,2,3}", "SET{7,8,9}")
WHERE "SET{’john’, ’sally’, ’bill’}" IN list_name
WHERE list_name IN ("LIST{""SET{’bill’,’usha’}"",

""SET{’ann’ ’moshi’}""}",
"LIST{""SET{’bob’,’ramesh’}"",

""SET{’bomani’ ’ann’}""}")

In general, when you use the IN operator on a collection data type, the database
server checks whether the value on the left of the IN operator is an element in the
set of values on the right of the IN operator.

Chapter 4. Data Types and Expressions 4-11

IS NULL and IS NOT NULL Conditions
The IS NULL condition is satisfied if the term that immediately precedes the IS
keyword specifies one of the following undefined values:
v The name of a column that contains a null value.
v An expression that evaluates to null.

Conversely, if you use the IS NOT NULL operator, the condition is satisfied when
the column contains a value that is not null, or when the expression that
immediately precedes the IS NOT NULL keywords does not evaluate to null.

Suppose that you wish to perform an arithmetic computation on a column that can
contain NULL values. You can create a table, insert values into the table, and then
perform a query that uses a generic CASE expression that converts null values to 0
for the purpose of arithmetic calculations:
CREATE TABLE employee (emp_id INT, savings_in_401k INT, total_salary INT);

INSERT INTO employee VALUES(1, 5000, 40000);
INSERT INTO employee VALUES(2, 0, 40000);
INSERT INTO employee VALUES(3, NULL, 100000);

SELECT emp_id, savings_in_401k AS employer_match FROM employee WHERE
CASE WHEN(savings_in_401k IS NULL) THEN 0

ELSE savings_in_401k END * 0.06 > 0;

This example shows that by using IS NULL in the CASE expression, you can
provide a value for the entries that otherwise are not computable because null is
not a valid numeric value.

The IS NULL condition is satisfied if the column contains a null value or if the
expression cannot be evaluated because it contains one or more null values. If you
use the IS NOT NULL operator, the condition is satisfied when the operand is
column value that is not null, or an expression that does not evaluate to null.

Trigger-Type Boolean Operator
The trigger-type Boolean operators of Informix can test at runtime whether the
currently executing triggered action was triggered by the specified type of DML
event. These operators take no operands.

Trigger-Type Boolean Operator:

DELETING
INSERTING
SELECTING
UPDATING

These operators return TRUE ('t') if the triggering event of the currently executing
trigger is the DML operation corresponding to the name of the operator, and they
return FALSE ('f') otherwise. These operators are valid in IF statements, in CASE
expressions, and in other contexts within an SPL trigger routines where a Boolean
condition is valid.

For example, in the following statement fragment, the LET statement in the first
THEN clause is executed only if the currently executing trigger was activated by

4-12 IBM Informix Guide to SQL: Syntax

an INSERT event, and the LET statement in the second THEN clause is executed
only if the trigger was activated by a DELETE event:
IF (INSERTING = ’t’) THEN

LET square = NEW.X * NEW.X
ELIF (DELETING = ’t’) THEN

LET square = 0

The SELECTING, DELETING, INSERTING, and UPDATING operators are valid
only in trigger UDRs that are invoked in the FOR EACH ROW triggered action of
a trigger on a table, or (for the DELETING, INSERTING, and UPDATING
operators) of an INSTEAD OF trigger on a view. An error is issued if you attempt
to use a trigger-type Boolean operator in any other context.

If a trigger routine is invoked by a Delete, Insert, or Update trigger that the
MERGE statement has activated,
v DELETING returns TRUE while MERGE is deleting a row from the target table.
v INSERTING returns TRUE while MERGE is inserting a row into the target table.
v UPDATING returns TRUE while MERGE is updating a row of the target table.

LIKE and MATCHES Condition
A LIKE or MATCHES condition tests for matching character strings. The condition
is TRUE, or satisfied, when either of the following tests is TRUE:
v The value of the column on the left matches the pattern that the quoted string

specifies. You can use wildcard characters in the string. NULL values do not
satisfy the condition.

v The value of the column on the left matches the pattern that the column on the
right specifies. The value of the column on the right serves as the matching
pattern in the condition.

You can use the single quotation mark (’) only with the quoted string to match a
literal single quotation mark; you cannot use the ESCAPE clause. You can use the
single quotation mark character as the escape character in matching any other
pattern if you write it as this: ''''.

Important: Columns that you specify in LIKE or MATCHES conditions should be
simple character data types, like CHAR, LVARCHAR, NCHAR, NVARCHAR, or
VARCHAR. You cannot, for example, specify a complex data type, such as a
ROW-type column, in a LIKE or MATCHES condition. (A ROW-type column is a
column that is declared as a named or unnamed ROW type.) Similarly, the
database server cannot evaluate a condition that uses LIKE or MATCHES with a
simple or smart large object column, such as a CLOB column; a query that
includes this condition fails with error -640.

NOT Operator
The NOT operator makes the search condition successful when the column on the
left has a value that is not NULL and that does not match the pattern that the
quoted string specifies.

For example, the following conditions exclude all rows that begin with the
characters Baxter in the lname column:
WHERE lname NOT LIKE ’Baxter%’
WHERE lname NOT MATCHES ’Baxter*’

LIKE Operator
The LIKE operator supports these wildcard characters in the quoted string.

Chapter 4. Data Types and Expressions 4-13

|

Wildcard
Effect

% Matches zero or more characters

_ Matches any single character

\ Removes the special significance of the next character (to match a literal %
or _ or \ by specifying \% or _ or \\)

Using the backslash (\) symbol as the default escape character is an Informix
extension to the ANSI/ISO-standard for SQL.

In an ANSI-compliant database, you can only use an escape character to escape a
percent sign (%), an underscore (_), or the escape character itself.

The following condition tests for the string tennis, alone or in a longer string, such
as tennis ball or table tennis paddle:
WHERE description LIKE ’%tennis%’

The next example tests for description rows containing an underscore. Here
backslash (\) is necessary because underscore (_) is a wildcard character.
WHERE description LIKE ’%_%’

The LIKE operator has an associated operator function called like(). You can
define a like() function to handle your own user-defined data types. See also IBM
Informix User-Defined Routines and Data Types Developer's Guide.

MATCHES Operator
The MATCHES operator supports wildcard characters in the quoted string.

Wildcard
Effect

* Matches any string of zero or more characters

? Matches any single character

[. . .] Matches any of the enclosed characters, including ranges, as in [a-z].
Characters within the brackets cannot be escaped.

^ As first character within the brackets, matches any character that is not
listed. Thus, [^abc] matches any character except a, b, or c.

\ Removes the special significance of the next character (to match a literal \
or any other wildcard by specifying \\ or* or \? and so forth)

The following condition tests for the string tennis, alone or within a longer string,
such as tennis ball or table tennis paddle:
WHERE description MATCHES ’*tennis*’

The following condition is TRUE for the names Frank and frank:
WHERE fname MATCHES ’[Ff]rank’

The following condition is TRUE for any name that begins with either F or f:
WHERE fname MATCHES ’[Ff]*’

The next condition is TRUE for any name that ends with the letters a, b, c, or d:
WHERE fname MATCHES ’*[a-d]’

4-14 IBM Informix Guide to SQL: Syntax

MATCHES has an associated matches() operator function. You can define a
matches() function for your own user-defined data types. For more information,
see IBM Informix User-Defined Routines and Data Types Developer's Guide.

If DB_LOCALE or SET COLLATION specifies a nondefault locale supporting a
localized collation, and you specify a range for the MATCHES operator using
bracket ([. . .]) symbols, the database server uses the localized collating order,
instead of code-set order, to interpret the range and to compare values that have
CHAR, CHARACTER VARYING, LVARCHAR, NCHAR, NVARCHAR, and
VARCHAR data types.

This behavior is an exception to the usual rule that only NCHAR and NVARCHAR
data types can be compared in a localized collating order. For more information on
the GLS aspects of conditions that include the MATCHES or LIKE operators, see
the IBM Informix GLS User's Guide.

ESCAPE with LIKE
The ESCAPE clause can specify a nondefault escape character. For example, if you
specify z in the ESCAPE clause, then a quoted string operand that included z_ is
interpreted as including a literal underscore (_) character, rather than _ as a
wildcard. Similarly, z% is interpreted as a literal percent (%) sign, rather than % as
a wildcard. Finally, the characters zz in a string would be interpreted as single
literal z. The following statement retrieves rows from the customer table in which
the company column includes a literal underscore character:
SELECT * FROM customer WHERE company LIKE ’%z_%’ ESCAPE ’z’;

You can also use a host variable that contains a single character. The next
statement uses a host variable to specify an escape character:
EXEC SQL BEGIN DECLARE SECTION;

char escp=’z’;
char fname[20];

EXEC SQL END DECLARE SECTION;
EXEC SQL select fname from customer

into :fname where company like ’%z_%’ escape :escp;

ESCAPE with MATCHES
The ESCAPE clause can specify a nondefault escape character. Use this as you
would the backslash to include a question mark (?), an asterisk (*), a caret (^),
or a left ([) or right (]) bracket as a literal character within the quoted string, to
prevent them from being interpreted as special characters. If you choose to use z as
the escape character, the characters z? in a string stand for a literal question mark (
?). Similarly, the characters z* stand for a literal asterisk (*). Finally, the
characters zz in the string stand for the single character z.

The following example retrieves rows from the customer table in which the value
of the company column includes the question mark (?):
SELECT * FROM customer WHERE company MATCHES ’*z?*’ ESCAPE ’z’;

Stand-Alone Condition
A stand-alone condition can be any expression that is not explicitly listed in the
syntax for the comparison condition. Such an expression is valid as a condition
only if it returns a BOOLEAN value. For example, the following example returns a
value of the BOOLEAN data type:
funcname(x)

Chapter 4. Data Types and Expressions 4-15

Condition with Subquery
Include a SELECT statement within a condition specifies a condition with
subquery. You can use a subquery in a SELECT, INSERT, DELETE, or UPDATE
statement to perform tasks like the following:
v Compare an expression to the result of the query.
v Determine if an expression is included in the results of the query.
v Ask whether the query selects any rows.

Condition with Subquery:

(1)
EXISTS Subquery

(2)
IN Subquery

(3)
ALL, ANY, SOME Subquery

Notes:

1 See “EXISTS Subquery” on page 4-18

2 See “IN Subquery” on page 4-17

3 See “ALL, ANY, and SOME Subqueries” on page 4-18

The subquery can depend on the current row that the outer SELECT statement is
evaluating; in this case, the subquery is called a correlated subquery. (For a
discussion of correlated subqueries and their impact on performance, see the IBM
Informix Guide to SQL: Tutorial.)

The following sections describe subquery conditions and their syntax.
v For a discussion of types of subquery conditions in the context of the SELECT

statement, see “Using a Condition in the WHERE Clause” on page 2-567.
v For a discussion of types of subquery conditions in the context of the INSERT

statement, see “Subset of SELECT Statement” on page 2-446..
v For a discussion of types of subquery conditions in the context of the DELETE

statement, see “Subqueries in the WHERE Clause of DELETE” on page 2-310..
v For a discussion of types of subquery conditions in the context of the UPDATE

statement, see “Subqueries in the WHERE Clause of UPDATE” on page 2-711.

A subquery can return a single value, no value, or a set of values, depending on its
context. If a subquery returns a value, it must select only a single column. If the
subquery simply checks whether a row (or rows) exists, it can select any number
of rows and columns.

A subquery cannot reference BYTE or TEXT columns, nor can it contain an ORDER
BY clause. A subquery that specifies a table expression in the FROM clause,
however, can include the ORDER BY clause.

A subquery and its outer DML statement operate on the same table object if the
FROM clause of the subquery specifies the same table or view that the outer
statement references in one of these clauses:
v in the FROM clause of the DELETE or SELECT statement
v in the INTO clause of the INSERT statement

4-16 IBM Informix Guide to SQL: Syntax

v in the Table Options or Collection Derived Table specification of the UPDATE
statement.

Subqueries that return more than one row and that operate on the same table or
view as the enclosing DML statement are valid only in the WHERE clause of the
DELETE or UPDATE statement. Even in this context, such subqueries return error
-360 unless all of the following conditions are satisfied:
v The subquery does not reference any column name in its FROM list that is in a

table not specified in the projection list
v The subquery is specified using the Condition with Subquery syntax.
v Any SPL routines within the subquery cannot reference the table that is being

modified.

The following program fragment includes examples of conditions with subqueries
in UPDATE and DELETE statements:
CREATE TABLE t1 (a INT, a1 INT)
CREATE TABLE t2 (b INT, b1 INT) ;
. . .
UPDATE t1 SET a = a + 10 WHERE EXISTS

(SELECT a FROM t1 WHERE a > 1);
UPDATE t1 SET a = a + 10 WHERE a IN

(SELECT a FROM t1, t2 WHERE a > b
AND a IN

(SELECT a FROM t1 WHERE a > 50));
DELETE FROM t1 WHERE EXISTS

(SELECT a FROM t1);

For more information about subqueries in the DELETE statement, see “Subqueries
in the WHERE Clause of DELETE” on page 2-310.

For more information about subqueries in the UPDATE statement, see “Subqueries
in the WHERE Clause of UPDATE” on page 2-711.

IN Subquery
An IN subquery condition is TRUE if the value of the expression matches one or
more of the values from the subquery. (The subquery must return only one row,
but it can return more than one column.) The keyword IN is equivalent to the
=ANY specification. The keywords NOT IN are equivalent to the !=ALL
specification. See the “ALL, ANY, and SOME Subqueries” on page 4-18.

IN Subquery:

(1)
Expression

NOT
IN (subquery)

Notes:

1 See “Expression” on page 4-40

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST nor the ORDER BY clause “SELECT
statement” on page
2-536

Chapter 4. Data Types and Expressions 4-17

The following example of an IN subquery finds the order numbers for orders that
do not include baseball gloves (stock_num = 1):
WHERE order_num NOT IN

(SELECT order_num FROM items WHERE stock_num = 1)

Because the IN subquery tests for the presence of rows, duplicate rows in the
subquery results do not affect the results of the main query. Therefore, the
UNIQUE or DISTINCT keyword in the subquery has no effect on the query
results, although not testing duplicates can improve query performance.

EXISTS Subquery
An EXISTS subquery condition evaluates to TRUE if the subquery returns a row.
With an EXISTS subquery, one or more columns can be returned. The subquery
always contains a reference to a column of the table in the main query. If you use
an aggregate function in an EXISTS subquery that includes no HAVING clause, at
least one row is always returned.

EXISTS Subquery:

NOT
EXISTS (subquery)

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST nor the ORDER BY clause “SELECT
statement” on page
2-536

The following example of a SELECT statement with an EXISTS subquery returns
the stock number and manufacturer code for every item that has never been
ordered (and is therefore not listed in the items table). You can appropriately use
an EXISTS subquery in this SELECT statement because you use the subquery to
test both stock_num and manu_code in items.
SELECT stock_num, manu_code FROM stock

WHERE NOT EXISTS (SELECT stock_num, manu_code FROM items
WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code);

The preceding example works equally well if you use SELECT * in the subquery in
place of the column names, because the existence of the entire row is tested;
specific column values are not tested.

ALL, ANY, and SOME Subqueries
Use the ALL, ANY, and SOME keywords to specify what makes the condition TRUE
or FALSE. A search condition that is TRUE when the ANY keyword is used might
not be TRUE when the ALL keyword is used, and vice versa.

ALL, ANY, SOME Subquery:

(1)
Expression

(2)
Relational Operator

ALL
ANY
SOME

(subquery)

4-18 IBM Informix Guide to SQL: Syntax

Notes:

1 See “Expression” on page 4-40

2 See “Relational Operator” on page 4-192

Element Description Restrictions Syntax

subquery Embedded query Cannot contain the FIRST or the ORDER BY clause “SELECT
statement” on page
2-536

Using the ALL Keyword: The ALL keyword specifies that the search condition is
TRUE if the comparison is TRUE for every value that the subquery returns. If the
subquery returns no value, the condition is TRUE.

In the following example, the first condition tests whether each total_price is
greater than the total price of every item in order number 1023. The second
condition uses the MAX aggregate function to produce the same results.
total_price > ALL (SELECT total_price FROM items

WHERE order_num = 1023)

total_price > (SELECT MAX(total_price) FROM items
WHERE order_num = 1023)

Using the NOT keyword with an ALL subquery tests whether an expression is not
TRUE for at least one element that the subquery returns. For example, the following
condition is TRUE when the expression total_price is not greater than all the
selected values. That is, it is TRUE when total_price is not greater than the highest
total price in order number 1023.
NOT total_price > ALL (SELECT total_price FROM items

WHERE order_num = 1023)

Using the ANY or SOME Keywords: The ANY keyword denotes that the search
condition is TRUE if the comparison is TRUE for at least one of the values that is
returned. If the subquery returns no value, the search condition is FALSE. The
SOME keyword is a synonym for ANY.

The following conditions are TRUE when the total price is greater than the total
price of at least one of the items in order number 1023. The first condition uses the
ANY keyword; the second uses the MIN aggregate function:
total_price > ANY (SELECT total_price FROM items

WHERE order_num = 1023)

total_price > (SELECT MIN(total_price) FROM items
WHERE order_num = 1023)

Using the NOT keyword with an ANY subquery tests whether an expression is not
TRUE for all elements that the subquery returns. For example, the following
condition is TRUE when the expression total_price is not greater than any selected
value. That is, it is TRUE when total_price is greater than none of the total prices in
order number 1023.
NOT total_price > ANY (SELECT total_price FROM items

WHERE order_num = 1023)

Omitting the ANY, ALL, or SOME Keywords: You can omit the keywords ANY,
ALL, or SOME in a subquery if you know that the subquery will return exactly
one value. If you omit the ANY, ALL, or SOME keywords, and the subquery

Chapter 4. Data Types and Expressions 4-19

returns more than one value, you receive an error. The subquery in the following
example returns only one row because it uses an aggregate function:
SELECT order_num FROM items

WHERE stock_num = 9 AND quantity =
(SELECT MAX(quantity) FROM items WHERE stock_num = 9);

NOT Operator
If you preface a condition with the keyword NOT, the test is TRUE only if the
condition that NOT qualifies is FALSE. If the condition that NOT qualifies has a
NULL or an UNKNOWN value, the NOT operator has no effect.

The following truth table shows the effect of NOT with 3–valued Boolean
operands. Here T represents a TRUE condition, F represents a FALSE condition, and a
question mark (?) represents an UNKNOWN condition. (An UNKNOWN value can occur
when an operand is NULL).

NOT

T F

F T

? ?

The left column shows the value of the operand of the NOT operator, and the right
column shows the returned value after NOT is applied to the operand.

Conditions with AND or OR
You can combine simple conditions with the logical operators AND or OR to form
complex conditions. The following SELECT statements contain examples of
complex conditions in their WHERE clauses:
SELECT customer_num, order_date FROM orders

WHERE paid_date > ’1/1/97’ OR paid_date IS NULL;
SELECT order_num, total_price FROM items

WHERE total_price > 200.00 AND manu_code LIKE ’H
SELECT lname, customer_num FROM customer

WHERE zipcode BETWEEN ’93500’ AND ’95700’
OR state NOT IN (’CA’, ’WA’, ’OR’);

The following truth tables show the effect of the AND and OR operators. The letter
T represents a TRUE condition, F represents a FALSE condition, and the question
mark (?) represents an UNKNOWN value. An UNKNOWN value can occur when part of an
expression that uses a logical operator is NULL.

OR

T

T

T

F T

? T

F

T

F

?

?

T

?

?

AND

T

T

T

F F

? ?

F

F

F

F

?

?

F

?

The marginal values at the left represent the first operand, and values in the top
row represent the second operand. Values within each 3x3 matrix show the
returned value after the operator is applied to operands of those values.

If the Boolean expression evaluates to UNKNOWN, the condition is not satisfied.

Consider the following example within a WHERE clause:

4-20 IBM Informix Guide to SQL: Syntax

WHERE ship_charge/ship_weight < 5
AND order_num = 1023

The row where order_num = 1023 is a row where ship_weight is NULL. Because
ship_weight is NULL, ship_charge/ship_weight is also NULL; therefore, the truth
value of ship_charge/ship_weight < 5 is UNKNOWN. Because order_num = 1023 is
TRUE, the AND table states that the truth value of the entire condition is UNKNOWN.
Consequently, that row is not chosen. If the condition used an OR in place of the
AND, the condition would be TRUE.

Related Information

For discussions of comparison conditions in the SELECT statement and of
conditions with a subquery, see the IBM Informix Guide to SQL: Tutorial. For
information on the GLS aspects of conditions, see the IBM Informix GLS User's
Guide.

Data Type

The Data Type segment specifies the data type of a column, of a component of a
collection, of a field within a ROW type, of a routine parameter, or of a value
returned by an expression or by a cast function. Use this segment whenever you
see a reference to a data type in a syntax diagram.

Syntax

Data Type:

(1)
Built-In Data Type
(2) (3)

User-Defined Data Type
(4)

Complex Data Type

Notes:

1 See “Built-In Data Types”

2 Informix extension

3 See “User-Defined Data Type” on page 4-32

4 See “Complex Data Type” on page 4-34

Usage

Sections that follow summarize these data types. For more information, see the
chapter about data types in the IBM Informix Guide to SQL: Reference.

Built-In Data Types

Built-in data types are data types that are defined by the database server.

Built-In Data Type:

Chapter 4. Data Types and Expressions 4-21

(1)
Character Data Type

(2)
Numeric Data Type
(3) (4)

Large-Object Data Type
(5)

Time Data Type
BOOLEAN
IDSSECURITYLABEL

Notes:

1 See “Character Data Types” on page 4-23

2 See “Numeric Data Types” on page 4-26

3 Informix extension

4 See “Large-Object Data Types” on page 4-29

5 See “Time Data Types” on page 4-31

These are “built into the database server” in the sense that the information and
support functions required to interpret and transfer these data types is part of the
database server software, which supports character, numeric, large-object, and time
categories of built-in data types. These are described in sections that follow.

BOOLEAN and Other Built-In Opaque Data Types
Informix also supports the BOOLEAN data type, which is a built-in opaque data type
that can store true, false, or NULL values. The symbol t represents a literal
BOOLEAN true value, and f represents a literal BOOLEAN false value.

BOOLEAN and LVARCHAR are the only built-in opaque data types that can be
returned by cross-server distributed queries or by other cross-server distributed
DML operations. Column values of other built-in opaque data types cannot be
retrieved by a distributed query (nor modified by INSERT, DELETE, or UPDATE
operations on a remote database) unless all of the tables that the DML operation
accesses are in databases of the local Informix instance.

Similarly, in UDRs that perform distributed operations on databases of other
Informix instances, BOOLEAN and LVARCHAR are the only built-in opaque types
that are valid as a parameter or as the returned data type of the UDR, which must
be defined in all participating databases.

Besides the BOOLEAN type, other built-in opaque data types of Informix include
BLOB, CLOB, LVARCHAR, IFX_LO_SPEC, IFX_LO_STAT, INDEXKEYARRAY,
POINTER, RTNPARAMTYPES, SELFUNCARGS, STAT, CLIENTBINVAL, and XID
data types. These twelve built-in opaque types are supported in the local database
and in distributed operations across databases of the same server instance. The first
three of these types are discussed in subsequent sections of this chapter.

Informix also supports the built-in opaque data types LOLIST, IMPEX, IMPEXBIN,
and SENDRECV. These types cannot, however, be accessed in a remote database
by DML operations, nor returned from a remote database by a UDR, because these
data types do not have the required support functions. For more information about
the data types that Informix supports in distributed transactions, see “Data Types
in Distributed Queries” on page 2-543.

4-22 IBM Informix Guide to SQL: Syntax

Character Data Types

The character data types enable the database server to store text strings.

Character Data Type:

(1)
CHAR (size)
CHARACTER
(1)

NCHAR
(1) , 0

NVARCHAR (max , reserve)
VARCHAR
CHARACTER VARYING

(2048)
LVARCHAR (max)

Notes:

1 Localized Collation

Element Description Restrictions Syntax

max Maximum size in bytes. For
VARCHAR, this is required.
LVARCHAR default is 2048

VARCHAR: Integer; 1 ≤ max ≤ 255 (or
1 ≤ max ≤ 254, if indexed)
LVARCHAR: 1 ≤ max ≤ 32,739

“Literal Number” on page
4-184

reserve Bytes reserved. Default is 0. Integer; 0 ≤ reserve ≤ max “Literal Number” on page
4-184

size Size in bytes. Default is 1. Integer; 1 ≤ size ≤ 32,767 “Literal Number” on page
4-184

The database server issues an error if the data type declaration includes empty
parentheses, such as LVARCHAR(). To declare a CHAR or LVARCHAR data type
of the default length, simply omit any (size) or (max) specification. The CREATE
TABLE statement of Informix accepts VARCHAR and NVARCHAR column
declarations that have no (max) nor (max, reserve) specifications, using (1, 0) as the
(max, reserve) defaults for the column.

The following table summarizes the built-in character data types.

Data Type Description

CHAR Stores single-byte or multibyte text strings of fixed length (up to 32,767 bytes);
supports code-set order in collation of text data. Default size is 1 byte.

CHARACTER Synonym for CHAR

CHARACTER VARYING ANSI-compliant synonym for VARCHAR

LVARCHAR Stores single-byte or multibyte text strings of varying length (up to 32,739 bytes). The
size of other columns in the same table can further reduce this upper limit. Default
size is 2,048 bytes.

NCHAR Stores single-byte or multibyte text strings of fixed length (up to 32,767 bytes);
supports localized collation of text data.

NVARCHAR Stores single-byte or multibyte text strings of varying length (up to 255 bytes);
supports localized collation of text data.

VARCHAR Stores single-byte or multibyte text strings of varying length (up to 255 bytes);
supports code-set order collation of text data.

Chapter 4. Data Types and Expressions 4-23

Single-Byte and Multi-Byte Characters and Locales
All built-in character data types can support single- and multibyte characters in the
code set that the DB_LOCALE setting specifies. Locales for most European and
Middle Eastern languages support only single-byte code sets, but the UTF-8 code
set for the Unicode locale, and code sets for some East Asian locales, such as the
Chinese GB18030-2000 locale, support multibyte logical characters.

When the SQL_LOGICAL_CHAR configuration parameter is enabled, you can
instruct the database server to interpret explicit or default size parameters in
declarations of built-in character data types as specifying the number of logical
characters that can be stored, rather than the number of bytes. These logical
character semantics are also applied to DISTINCT types whose base types are
built-in character types, and to fields of built-in character types in declarations of
named or unnamed ROW data types. This feature does not, however, support
user-defined data types (UDTs) that store character strings. For more information
about this feature, see the IBM Informix Administrator's Reference description of the
SQL_LOGICAL_CHAR configuration parameter.

The TEXT and CLOB data types also support single-byte or multibyte character
data, but most built-in functions for manipulating character strings do not support
TEXT nor CLOB data. For more information, see “Large-Object Data Types” on
page 4-29.
Related reference

SQL_LOGICAL_CHAR Configuration Parameter (Administrator's Reference)

Fixed- and Varying-Length Character Data Types
The database server supports storage of fixed-length and varying-length character
data. A fixed-length column requires the defined number of bytes regardless of the
actual size of the data. The CHAR data type is of fixed-length. For example, a
CHAR(25) column requires 25 bytes of storage for all values, so the string “This is
a text string” uses 25 bytes of storage.

A varying-length column size can be the number of bytes occupied by its data.
NVARCHAR, VARCHAR, and the LVARCHAR data types are varying-length
character data types. For example, a VARCHAR(25) column reserves up to 25 bytes
of storage for the column value, but the character string “This is a text string”
uses only 21 bytes of the reserved 25 bytes. The VARCHAR data type can store up
to 255 bytes of data. For information about the IFX_PAD_VARCHAR environment
variable, whose setting controls how the database server sends and receives
VARCHAR and NVARCHAR data values, see IBM Informix Guide to SQL: Reference.

Because of the maximum row size limit of 32,767 bytes, a single table cannot be
created with more than approximately 195 varying-length or ROW type columns.
Related reference

IFX_PAD_VARCHAR (SQL Reference)

LVARCHAR Data Type

The LVARCHAR type of Informix can store up to 32,739 bytes of text, but if you
specify no size in an LVARCHAR data type declaration, the default length is 2,048
bytes. LVARCHAR is a built-in opaque data type. Unlike most of the built-in
opaque types, LVARCHAR column values can be accessed in a database of a
non-local Informix instance in a distributed query or other DML operations, and

4-24 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_1076.htm#ids_adr_1076
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_252.htm#ids_sqr_252

LVARCHAR can be the data type of a parameter or of a returned value of a UDR
that accesses data outside the local database.

Informix uses the LVARCHAR data type in cross-server I/O operations on opaque
data types. In this context, the maximum size of the LVARCHAR data value is
limited only by the operating system.

Light scans are not supported on tables that include LVARCHAR columns.

NCHAR and NVARCHAR Data Types
The character data types CHAR, LVARCHAR, and VARCHAR support code-set
order collation of data. The database server collates text data in columns of these
types by the order that their characters are defined in the code set of the locale,
which the DB_LOCALE environment variable specifies.

For information on how the settings (or the default values) of the DB_LOCALE,
CLIENT_LOCALE , and SERVER_LOCALE environment variables determine
which locale is used for collation, see the IBM Informix GLS User's Guide.

Some locales specify an order of collation that is not identical to the code-set order.
To support any locale-specific order of collation, you can use the NCHAR and
NVARCHAR data types. The NCHAR data type is a fixed-length character data
type that supports localized collation. The NVARCHAR data type is a
varying-length character data type that can store up to 255 bytes of text data and
supports localized collation.

For NCHAR or NVARCHAR values, the SET COLLATION statement of SQL can
override the localized collation order of the current session, by specifying another
locale. Indexes on NCHAR or NVARCHAR columns sort values according to the
localized collation order that was in effect when the index was created, if that is
different from the current collation order.

In Informix, if you specify no parameters in CREATE TABLE or ALTER TABLE
statements that declare VARCHAR or NVARCHAR columns, then the new
columns default to a max size of 1 byte and a reserve size of zero.

IDSSECURITYLABEL Data Type

The IDSSECURITYLABEL type of Informix stores a security label in a table that is
protected by a security policy. Only a user who holds the DBSECADM role can
create, alter, or drop a column of this data type. This is a built-in DISTINCT OF
VARCHAR(128) data type, but it is not classified as a character data type because
its use is restricted to label-based access control. A table that has a security policy
can have no more than one IDSSECURITYLABEL column, and a table associated
with no security policy can have none.

The DBSECADM can use the GRANT statement to associate a specific security
label with a user, and the REVOKE statement can cancel a security label that a user
holds. For a given security policy, a user can have no more than one label that
supports both read and write access, or no more than one label for write access
and no more than one label for read access. For data protected by a security policy,
but for which the user has been granted discretionary access privileges, the
database server determines whether a specific user can access the data by
comparing the security label of the data with the security label of the user, while
also taking into consideration any exemptions to the security policy rules that the
user holds.

Chapter 4. Data Types and Expressions 4-25

For information on how to specify an IDSSECURITYLABEL value, see “Security
Label Support Functions” on page 4-118.

For a discussion of security policies, security components, security labels, and
other concepts of label-based access control (LBAC), see the IBM Informix Security
Guide.

Numeric Data Types

Numeric data types enable the database server to store numbers such as integers
and real numbers in a column.

Numeric Data Type:

(1)
Exact Numeric Data Type

(2)
Approximate Numeric Data Type

Notes:

1 See “Exact Numeric Data Types”

2 See “Approximate Numeric Data Types” on page 4-28

The values of numbers are stored either as exact numeric data types or as
approximate numeric data types.

Exact Numeric Data Types

An exact numeric data type stores numbers of a specified precision and scale.

Exact Numeric Data Type:

DECIMAL
DEC , 0
NUMERIC (precision)

, scale
(1) (16, 2)

MONEY
, 2

(precision)
, scale

BIGINT
INT
INTEGER
(1)

INT8
SMALLINT
(1) (1)

BIGSERIAL
SERIAL (start)
SERIAL8

Notes:

1 Informix extension

4-26 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

precision Significant digits Must be an integer; 1 ≤ precision ≤ 32 “Literal Number” on page
4-184

scale Digits in fractional
part

Must be an integer; 1 ≤ scale ≤ precision “Literal Number” on page
4-184

start Integer starting
value

For SERIAL: 1 ≤ start ≤ 2,147,483,64; For BIGSERIAL
and SERIAL8: 1 ≤ start ≤ 9,223,372,036,854,775,807

“Literal Number” on page
4-184

The precision of a data type is the number of digits that the data type stores. The
scale is the number of digits to the right of the decimal separator.

The following table summarizes the exact numeric data types available.

Data Type Description

DEC(p,s) Synonym for DECIMAL(p,s)

DECIMAL(p,s) Stores fixed-point decimal values of real numbers, with up to 30
significant digits in the fractional part, or up to 32 significant digits to
the left of the decimal point.

INT Synonym for INTEGER

INTEGER Stores a 4-byte integer value. These values can be in the range from
-(231-1) to 231-1 (from -2,147,483,647 to 2,147,483,647).

BIGINT and INT8 Stores an 8-byte integer value. These values can be in the range from
-(263-1) to 263-1 (the range -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807). BIGINT has storage and processing
advantages over INT8.

MONEY(p,s) Stores fixed-point currency values. These values have same internal
data format as a fixed-point DECIMAL(p,s) value.

NUMERIC(p,s) ANSI-compliant synonym for DECIMAL(p,s)

SERIAL Stores a 4-byte positive integer that the database server generates.
Values can range from 1 to 231-1 (that is, from 1 to 2,147,483,647).

BIGSERIAL and
SERIAL8

Stores an 8-byte positive integer value that the database server
generates. Values can range from 1 to 263-1 (that is, from 1 to
9,223,372,036,854,775,807). BIGSERIAL has storage and processing
advantages over SERIAL8.

SMALLINT Stores a 2-byte integer value. These values can be in the range from
-(215-1) to 215-1 (that is, from -32,767 to 32,767).

DECIMAL(p,s) Data Types:

The p parameter specifies the precision (the total number of digits) and the second
parameter, (s), specifies the scale (the number of digits in the fractional part). If you
provide only one parameter, an ANSI-compliant database interprets it as the
precision of a fixed-point number and the default scale is 0. If you specify no
parameters, and the database is ANSI-compliant, then by default the precision is 16
and the scale is 0.

If the database is not ANSI-compliant, and you specify fewer than 2 parameters,
you declare a floating-point DECIMAL, which is not an exact number data type.
(See instead the section “Approximate Numeric Data Types” on page 4-28.)

Chapter 4. Data Types and Expressions 4-27

DECIMAL(p, s) values are stored internally with the first byte representing a sign
bit and a 7-bit exponent in excess-65 format. The other bytes express the mantissa
as base-100 digits. This implies that DECIMAL(32, s) data types store only s-1
decimal digits to the right of the decimal point, if s is an odd number.

Serial Data Types:

You can declare columns of SERIAL, BIGSERIAL, or SERIAL8 data types. If
user-defined routines require whole-number values for variables, arguments, or
returned data types, specify INT, BIGINT, or INT8 as the data types, rather than
SERIAL, BIGSERIAL, or SERIAL8. These data types are integer data types that
differ primarily in their names, their range, and their storage requirements.
Columns of serial data types cannot store values less than 1. A table can have no
more than one SERIAL column and no more than one BIGSERIAL or SERIAL8
column. Because the serial values are assigned by the database server, you cannot
use the UPDATE statement to change an existing serial value in the database.

To insert an explicit value into a SERIAL, BIGSERIAL, or SERIAL8 column, specify
any integer greater than zero. For details of an alternative way to generate integer
values, see “CREATE SEQUENCE statement” on page 2-191.

A SERIAL, BIGSERIAL, or SERIAL8 column is unique only if you set a unique
index on the column. (The index can also be in the form of a primary key or a
unique constraint.) With a unique index, values in serial data type columns are
guaranteed to be unique, but successive values are not necessarily contiguous.

Approximate Numeric Data Types

An approximate numeric data type represents numeric values approximately.

Approximate Numeric Data Type:

(1)
(16)

DECIMAL (precision)
DEC
NUMERIC
FLOAT
DOUBLE PRECISION (float_precision)
(1)

SMALLFLOAT
REAL

Notes:

1 Informix extension

Element Description Restrictions Syntax

float_precision The float_precision is ignored, but
is ANSI/ISO compliant.

Must be a positive integer.
Specified value has no effect.

“Literal Number” on page
4-184

precision Significant digits. Default is 16. An integer; 1 ≤ precision ≤ 32 “Literal Number” on page
4-184

Use approximate numeric data types for very large and very small numbers that
can tolerate some degree of rounding during arithmetic operations.

4-28 IBM Informix Guide to SQL: Syntax

The following table summarizes the built-in approximate numeric data types.

Data Type Description

DEC(p) Synonym for DECIMAL(p)

DECIMAL(p)
Stores floating-point decimal values in the approximate range from
1.0E-130 to 9.99E+126

The p parameter specifies the precision. If no precision is specified, the
default is 16. This floating-point data type is available as an approximate
numeric type only in a database that is not ANSI-compliant. In an
ANSI-compliant database, DECIMAL(p) is implemented as a fixed-point
DECIMAL; see “Exact Numeric Data Types” on page 4-26.

DOUBLE
PRECISION

ANSI-compliant synonym for FLOAT. The float_precision term is not
valid when you use this synonym in data type declarations.

FLOAT Stores double-precision floating-point numbers with up to 16 significant
digits. The float-precision parameter is accepted in data-type declarations
for compliance with the ANSI/ISO standard for SQL, but this parameter
has no effect on the actual precision of values that the database server
stores.

NUMERIC(p) ANSI-compliant synonym for DECIMAL(p) In an ANSI-compliant
database, this is implemented as an exact numeric type, with the
specified precision and a scale of zero, rather than an approximate
numeric (floating-point) data type.

REAL ANSI-compliant synonym for SMALLFLOAT

SMALLFLOAT Stores single-precision floating-point numbers with approximately 8
significant digits

The built-in number data types of Informix database servers support real numbers.
They cannot directly store imaginary or complex numbers.

In Informix, you must create a user-defined data type for applications that support
values that can have an imaginary part.

No more than nine arguments to an external UDR can be DECIMAL data types of
SQL that the UDR declares as BigDecimal data types of the Java language.

Large-Object Data Types

Large-object data types can store extremely large column values, such as images
and documents, independently of the column.

Large-Object Data Type:

TEXT
BYTE IN TABLE

blobspace
(1)

family_name
BLOB
CLOB

Notes:

1 Optical Subsystem only

Chapter 4. Data Types and Expressions 4-29

Element Description Restrictions Syntax

blobspace Name of an existing blobspace Must exist “Identifier” on page 5-21

family_name Family name or variable in the optical family Must exist “Quoted String” on page
4-188.

The large object data types can be classified in two categories:
v Simple large objects: TEXT and BYTE
v Smart large objects: CLOB and BLOB

Simple-Large-Object Data Types:

These are the simple-large-object data types:

Data Type
Description

TEXT Stores text data of up to 231 bytes

BYTE Stores any digitized data of up to 231 bytes

Do not supply a BYTE value where TEXT is expected. No built-in cast supports
BYTE to TEXT data-type conversion.

Because of the maximum row size limit of 32,767 bytes, you cannot create a table
with more than approximately 195 BYTE or TEXT columns. (This restriction also
applies to all varying-length and ROW data types.)

Storing BYTE and TEXT Data:

A simple-large-object data type can store text or binary data in blobspaces or in
tables. The database server can access a BYTE or TEXT value in one piece. When
you specify a BYTE or TEXT data type, you can specify the location in which it is
stored. You can store data with the table or in a separate blobspace.

If you are creating a named ROW data type that has a BYTE or TEXT field, you
cannot use the IN clause to specify a separate storage space.

The following example shows how blobspaces and dbspaces are specified. The user
creates the resume table. The data values are stored in the employ dbspace. The
data in the vita column is stored with the table, but the data associated with the
photo column is stored in a blobspace named photo_space.
CREATE TABLE resume

(
fname CHAR(15),
lname CHAR(15),
phone CHAR(18),
recd_date DATETIME YEAR TO HOUR,
contact_date DATETIME YEAR TO HOUR,
comments VARCHAR(250, 100),
vita TEXT IN TABLE,
photo BYTE IN photo_space
)
IN employ;

Smart Large Object Data Types:

4-30 IBM Informix Guide to SQL: Syntax

A smart large object data type stores text or binary data in sbspaces. The database
server can provide random access to a smart largeobject value. That is, it can
access any portion of the smart large object value. These data types are
recoverable. The following table summarizes the smart large object data types that
Informix supports.

Data Type
Description

BLOB Stores binary data of up to 4 terabytes (4*240 bytes)

CLOB Stores text data of up to 4 terabytes (4*240 bytes)

Both of these are built-in opaque data types. Like most opaque types, they cannot
be accessed in a database of a non-local database server by a distributed query or
by other DML operations, nor can they be returned from a database of another
database server by a UDR. For information on accessing BLOB or CLOB values in
other databases of the local server, however, see “BOOLEAN and Other Built-In
Opaque Data Types” on page 4-22.

Smart large object data types are not parallelizable. The PDQ feature of Dynamic
Serve has no effect on operations that load or unload BLOB or CLOB values, or
that process them in queries or in other DML operations.

For more information about these smart large object data types, see the IBM
Informix Guide to SQL: Reference.

For information on how to create blobspaces, see your IBM Informix Administrator's
Guide.

For information about optical families, see the IBM Informix Optical Subsystem
Guide.

For information about the built-in functions that you can use to import, export,
and copy smart large objects, see “Smart-Large-Object Functions” on page 4-121
and the IBM Informix Guide to SQL: Tutorial.
Related concepts

Blobspaces (Administrator's Guide)

Time Data Types

The time data types allow the database server to store calendar dates, points in
time, and intervals of time.

Time Data Types:

DATE
(1)

INTERVAL INTERVAL Field Qualifier
(2) (3)

DATETIME DATETIME Field Qualifier

Notes:

1 See “INTERVAL Field Qualifier” on page 4-175

2 Informix extension

Chapter 4. Data Types and Expressions 4-31

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0490.htm#ids_admin_0490

3 See “DATETIME Field Qualifier” on page 4-38

The following table summarizes the built-in time data types.

Data Type
Description

DATE Stores a date value as a Julian date in the range from January 1 of the year
1 up to December 31, 9999.

DATETIME
Stores a point-in-time date (year, month, day) and time-of-day (hour, minute,
second, and fraction of second), in the range of years 1 to 9999. Also
supports contiguous subsets of these time units.

INTERVAL
Stores spans of time, in years and/or months, or in smaller time units (days,
hours, minutes, seconds, and/or fractions of second), with up to 9 digits of
precision in the largest time unit, if this is not FRACTION. Also supports
contiguous subsets of these time units.

User-Defined Data Type

A user-defined data type is one that a user defines for the database server.
Informix supports two categories of user-defined data types, namely distinct data
types and opaque data types. This is the declaration syntax for user-defined data
types:

User-Defined Data Type:

(1)
Owner Name .

opaque_type
distinct_type

Notes:

1 See “Owner Name” on page 5-45

Element Description Restrictions Syntax

distinct_type Distinct data type with same
structure as an existing data type

Must be unique among data type
names in the database

“Identifier” on page
5-21

opaque_type Name of the opaque data type Must be unique among data type
names in the database

“Identifier” on page
5-21

In this document, user-defined data type is usually abbreviated as UDT.

Distinct Data Types

A DISTINCT data type is a user-defined data type that is based on one of the
following data types:
v a built-in type (including built-in opaque types)
v a user-defined opaque type
v a named ROW type
v an existing DISTINCT type.

The base type of a DISTINCT type cannot be any of the following data types:

4-32 IBM Informix Guide to SQL: Syntax

v an unnamed ROW type
v a LIST, MULTISET, SET, or generic COLLECTION type.

The DISTINCT type inherits the length and the alignment of its base type in
storage. Informix automatically creates explicit casts between the DISTINCT type
and its base type. To create a DISTINCT type, you must use the CREATE
DISTINCT TYPE statement. (For more information, see “CREATE DISTINCT TYPE
statement” on page 2-100.)

DISTINCT Types in Distributed Operations:

DISTINCT column values cannot be retrieved from another database of the same
Informix instance by a distributed query (nor modified by INSERT, DELETE, or
UPDATE cross-database distributed operations) unless all of the following
conditions are true:
v the DISTINCT type is defined on one of the following base types:

– a non-opaque built-in data type
– a BOOLEAN or LVARCHAR data type
– a DISTINCT type defined on BOOLEAN, on LVARCHAR, or on a

non-opaque built-in data type.

(This condition also applies recursively to DISTINCT types of DISTINCT types,
where the ultimate base type is BOOLEAN, or LVARCHAR, or a non-opaque
built-in data type.)

v the DISTINCT type is explicitly cast to BOOLEAN, to LVARCHAR, or to a
non-opaque built-in type

v the DISTINCT type, its type hierarchy, and its explicit cast to a built-in type are
defined exactly the same way in all participating databases.

For DISTINCT data types in distributed operations, the data type hierarchy must
have one of these forms, which cannot vary across the participating databases:

��

�

DISTINCT OF BOOLEAN
(2048)

LVARCHAR (max)
built-in_non-opaque_type

DISTINCT OF

��

The IDSSECURITYLABEL data type, which stores the security label in rows of
protected tables, is a built-in DISTINCT type that satisfies this requirement,
because its base type is the built-in VARCHAR(128) data type.

A user-defined routine can return to the local database a DISTINCT data type from
another database of the same Informix instance only if all of the conditions listed
above are true, and the UDR is defined in all of the participating databases.

The same rules that apply to DISTINCT data types in distributed operations across
databases of the same Informix instance also apply to DISTINCT data types in
cross-server distributed operations on databases of different Informix instances.

For additional information about the data types that Informix supports in
distributed operations, see “Data Types in Distributed Queries” on page 2-543.

Chapter 4. Data Types and Expressions 4-33

Opaque Data Types

An opaque data type is a user-defined data type that can be used in the same way
as a built-in data type. To create an opaque type, you must use the CREATE
OPAQUE TYPE statement. Because an opaque type is encapsulated, you create
support functions to access the individual components of an opaque type. The
internal storage details of the type are hidden or opaque.

For more information about how to create an opaque data type and its support
functions, see IBM Informix User-Defined Routines and Data Types Developer's Guide.

Because of the maximum row size limit of 32,767 bytes, when you create a new
table, no more than approximately 195 columns can be varying-length opaque or
distinct user-defined data types. (The same restriction applies to BYTE, TEXT,
VARCHAR, LVARCHAR, NVARCHAR, and ROW type columns. See “ROW Data
Types” on page 4-35 for additional information about ROW data types.)

Complex Data Type

Complex data types are ROW types or COLLECTION types that you create from
built-in types, opaque types, distinct types, or other complex types.

Complex Data Type:

(1)
Row Data Types

(2)
Collection Data Types

Notes:

1 See “CREATE ROW TYPE statement” on page 2-176

2 See “Collection Data Types” on page 4-36

A single complex data type can include multiple components. When you create a
complex type, you define the components of the complex type. Unlike an opaque
type, however, a complex type is not encapsulated. You can use SQL to access the
individual components of a complex data type. The individual components of a
complex data type are called elements.

Informix supports the following categories of complex data types:
v ROW data types: Named ROW types and unnamed ROW types
v COLLECTION data types: SET, MULTISET, and LIST

The elements of a COLLECTION data type must all be of the same data type. You
can use the keyword COLLECTION in SPL data type declarations to specify an
untyped collection variable. NULL values are not supported in elements of
COLLECTION data types.

The elements of a ROW data type can be of different data types, but the pattern of
data types from the first to the last element cannot vary for a given ROW data
type. NULL values are supported in elements of ROW data types, unless you
specify otherwise in the data type declaration or in a constraint.

4-34 IBM Informix Guide to SQL: Syntax

ROW Data Types

This is the syntax to define a column as a named or unnamed ROW type.

Row Data Types:

row_type
(1)

Owner Name
(2)

Unnamed Row Types

Unnamed Row Types:

ROW

�

,

(field data_type)

Notes:

1 See “Owner Name” on page 5-45

2 See “CREATE ROW TYPE statement” on page 2-176

Element Description Restrictions Syntax

data_type Data type of field Any data type except BYTE or TEXT “Data Type” on page
4-21

field Name of a field within row_type Must be unique among fields of the
same ROW type

“Identifier” on page
5-21

row_type Some ROW data type defined by
CREATE ROW TYPE statement

ROW type must exist in the database “Identifier” on page
5-21; “Data Type” on
page 4-21

You can assign a named ROW type to a table, to a column, or to an SPL variable.
A named ROW type that you use to create a typed table or to define a column
must already exist. For information on how to create a named ROW data type, see
“CREATE ROW TYPE statement” on page 2-176.

To specify a named ROW data type in an ANSI-compliant database, you must
qualify the row_type with its owner name, if you are not the owner of row_type.

An unnamed ROW data type is identified by its structure, which specifies fields
that you create with its ROW constructor. You can define a column or an SPL
variable as an unnamed ROW data type. For the syntax to specify values for an
unnamed ROW type, see “ROW Constructors” on page 4-81.

Because of the maximum row size limit of 32,767 bytes, a single table cannot be
created with more than approximately 195 ROW type columns.

Chapter 4. Data Types and Expressions 4-35

Collection Data Types

This diagram shows the syntax to define a column or an SPL variable as a
collection data type. (A table can include no more than 97 columns of collection
data types.) For the syntax to specify values of collection elements, see “Collection
Constructors” on page 4-82.

Collection Data Type:

COLLECTION
SET (data_type NOT NULL)
MULTISET (data_type NOT NULL)
LIST

Element Description Restrictions Syntax

data_type Data type of each of the elements of
the collection

Can be any data type except BIGSERIAL,
BYTE, SERIAL, or SERIAL8, or TEXT

“Data Type”
on page 4-21

A SET is an unordered collection of elements, each of which has a unique value.
Define a column as a SET data type when you want to store collections whose
elements contain no duplicate values and have no associated order.

A MULTISET is an unordered collection of elements that can have duplicate
values. You can define a column as a MULTISET collection type when you want to
store collections whose elements might not be unique and have no specific order
associated with them.

A LIST is an ordered collection of elements that can include duplicate elements. A
LIST differs from a MULTISET in that each element in a LIST collection has an
ordinal position in the collection. You can define a column as a LIST collection type
when you want to store collections whose elements might not be unique but have
a specific order associated with them.

The keyword COLLECTION can be used in SPL data type declarations to specify
an untyped collection variable.

If you attempt to insert a collection that includes one or more duplicate values into
a SET column, Informix issues no error, but the duplicate values are ignored, and
only the unique values are inserted.

Duplicate Elements in DML Operations on SET Columns: The SET data type
does not allow duplicate element values in the same collection. If you attempt to
insert duplicate elements into a SET data type, or to update a SET column or
variable to a value that includes duplicate elements, the database server issues no
error or warning when the INSERT or UPDATE statement executes, but only one
of the duplicate elements is stored in the SET column or variable.

For example, suppose you create table t3 with column a of the SET data type, and
then you insert four rows, some of which include elements that have identical
values:

> CREATE TABLE t3(a SET(INT NOT NULL));

Table created.

> INSERT INTO t3 VALUES(SET{10, 20, 30});

4-36 IBM Informix Guide to SQL: Syntax

1 row(s) inserted.

> INSERT INTO t3 VALUES(SET{10, 20, 10});

1 row(s) inserted.

> INSERT INTO t3 VALUES(SET{10, 10, 10});

1 row(s) inserted.

> INSERT INTO t3 VALUES(SET{10,10,10});

1 row(s) inserted.

When you look at the data values that were inserted into column t3.a, the four
inserted rows include no duplicate element values:
> SELECT * FROM t3;

a SET{10 ,20 ,30 }
a SET{10 ,20 }
a SET{10 }
a SET{10 }

4 row(s) retrieved.

In this example, Informix silently discarded all but one instance of the duplicated
elements from what the VALUES clause of the INSERT statement specified for each
SET value.

Similar behavior occurs if the SET clause of the UPDATE statement includes
duplicate elements within the same SET value. Declare collection columns of the
MULTISET data type, rather than of the SET data type, if you want the database to
store unordered sets that can include duplicate elements within the same collection

Defining the Element Type:

The element type can be any data type except TEXT, BYTE, SERIAL, SERIAL8, or
BIGSERIAL. You can nest collection types, using elements of a collection type.

Every element must be of the same type. For example, if the element type of a
collection data type is INTEGER, every element must be of type INTEGER.

An exception to this restriction occurs if the database server determines that some
elements of a collection of character strings are VARCHAR data types (whose
length is limited to 255 or fewer bytes) but other elements are longer than 255
bytes. In this case, the collection constructor can assign a CHAR(n) data type to all
elements, for n the length in bytes of the longest element. If this is undesirable,
you can cast the collection to LVARCHAR, to prevent padding extra length in
elements of the collection, as in this example:
LIST {’first character string longer than 255 bytes . . . ’,

’second character string longer than 255 bytes . . . ’,
’another character string’} ::LIST (LVARCHAR NOT NULL)

See “Collection Constructors” on page 4-82 for additional information.

If the element type of a collection is an unnamed ROW type, the unnamed ROW
type cannot contain fields that hold unnamed ROW types. That is, a collection
cannot contain nested unnamed ROW data types.

Chapter 4. Data Types and Expressions 4-37

The elements of a collection cannot be NULL. When you define a column as a
collection data type, you must use the NOT NULL keywords to specify that the
elements of the collection cannot be NULL.

Privileges on a collection data type are those of the database column. You cannot
specify privileges on individual elements of a collection.

Related Information

For more information about choosing a data type for your database, see the IBM
Informix Database Design and Implementation Guide.

For more information about the specific qualities of individual data types, see the
chapter on data types in the IBM Informix Guide to SQL: Reference.

For more information about data types for storing character data in multibyte
locales, see the discussion of the NCHAR and NVARCHAR data types and the
GLS aspects of other character data types in the IBM Informix GLS User's Guide.

DATETIME Field Qualifier

Use a DATETIME Field Qualifier to specify the largest and smallest unit of time in
a DATETIME column or value. Use this segment whenever you see a reference to a
DATETIME Field Qualifier in a syntax diagram.

Syntax

DATETIME Field Qualifier:

4-38 IBM Informix Guide to SQL: Syntax

YEAR TO YEAR
TO MONTH
TO DAY
TO HOUR
TO MINUTE
TO SECOND
TO FRACTION

(scale)
MONTH TO MONTH

TO DAY
TO HOUR
TO MINUTE
TO SECOND
TO FRACTION)

(scale)
DAY TO DAY

TO HOUR
TO MINUTE
TO SECOND
TO FRACTION

(scale)
HOUR TO HOUR

TO MINUTE
TO SECOND
TO FRACTION

(scale)
MINUTE TO MINUTE

TO SECOND
TO FRACTION

(scale)
SECOND TO SECOND

TO FRACTION
(scale)

FRACTION TO FRACTION
(scale)

Element Description Restrictions Syntax

scale Fraction of a second. Default is 3. Integer (1 ≤ scale ≤ 5) “Literal Number” on page 4-184

Usage

This segment specifies the precision and scale of a DATETIME data type.

Specify, as the first keyword, the largest time unit that the DATETIME column will
store. After the keyword TO, specify the smallest unit as the last keyword. These
can be the same keyword. If they are different, the qualifier implies that any
intermediate time units between the first and last are also recorded by the
DATETIME data type.

The keywords can specify the following time units for the DATETIME column.

Unit of Time
Description

YEAR Specifies a year, in the range from A.D. 1 to 9999

MONTH
Specifies a month, in the range from 1 (January) to 12 (December)

Chapter 4. Data Types and Expressions 4-39

DAY Specifies a day, in the range from 1 to 28, 29, 30, or 31 (depending on the
specific month)

HOUR
Specifies an hour, in the range from 0 (midnight) to 23

MINUTE
Specifies a minute, in the range from 0 to 59

SECOND
Specifies a second, in the range from 0 to 59

FRACTION
Specifies a fraction of a second, with up to five decimal places

The default scale is three digits (thousandth of a second).

Unlike INTERVAL qualifiers, DATETIME qualifiers cannot specify nondefault
precision (except for FRACTION, when FRACTION is the smallest unit in the
qualifier). Some examples of DATETIME qualifiers follow:
YEAR TO MINUTE MONTH TO MONTH
DAY TO FRACTION(4) MONTH TO DAY

On some platforms, the system clock cannot support precision greater than
FRACTION(3).

An error results if the first keyword represents a smaller time unit than the last, or
if you use the plural form of a keyword (such as MINUTES).

Operations on DATETIME values that do not include YEAR in their qualifier use
values from the system clock-calendar to supply any additional precision. If the
first term in the qualifier is DAY, and the current month has fewer than 31 days,
unexpected results can occur.

Related Information

For an explanation of the DATETIME Field Qualifier, see the discussion of the
DATETIME data type in the IBM Informix Guide to SQL: Reference.

For important differences between the syntax of DATETIME and INTERVAL field
qualifiers, see “INTERVAL Field Qualifier” on page 4-175.
Related reference

DATETIME (SQL Reference)

Expression

Data values in SQL statements must be represented as expressions. An expression is
a specification, which can include operators, operands, and parentheses, that the
database server can evaluate to one or more values, or to a reference to some
database object.

Expressions can refer to values already in a table of the database, or to values
derived from such data, but some expressions (such as TODAY, USER, or literal
values) can return values that are independent of the database. You can use
expressions to specify values in data-manipulation statements, to define
fragmentation strategies, and in other contexts. Use the Expression segment
whenever you see a reference to an expression in a syntax diagram.

4-40 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_110.htm#ids_sqr_110

In most contexts, however, you are restricted to expressions whose returned value
is of some specific data type, or of a data type that can be converted by the
database server to some required data type.

For an alphabetical listing of the built-in operators and functions that are described
in this segment, see “List of Expressions” on page 4-42.

Syntax of SQL Expressions

The sections that follow describe SQL expressions, which are specifications that
return one or more values or references to database objects. IBM Informix database
servers support the following categories of expressions:

SQL Expressions:

�

Binary Operators
(1)

Cast Expressions
- (2)
+ Column Expressions

(3)
Conditional Expressions

(4)
Constant Expressions

(5)
Constructor Expressions

(6)
Function Expressions

(7)
Statement-Local Variable Expressions

(8)
Aggregate Expressions

NULL
variable
(9)

SPL_variable
(Expression)

Binary Operators:

+
-
*
/
||

Notes:

1 See “Cast Expressions” on page 4-58

2 See “Column Expressions” on page 4-59

3 See “Conditional Expressions” on page 4-65

4 See “Constant Expressions” on page 4-70

5 See “Constructor Expressions” on page 4-81

6 See “Function Expressions” on page 4-86

Chapter 4. Data Types and Expressions 4-41

7 See “Statement-Local Variable Expressions” on page 4-163

8 See “Aggregate Expressions” on page 4-164

9 Stored Procedure Language only

Element Description Restrictions Syntax

SPL_variable In an SPL routine, a variable that
contains some expression type that the
syntax diagram shows

Must conform to the rules for
expressions of that type

“Identifier” on page
5-21

variable Host or program variable that contains
some expression type that the syntax
diagram shows

Must conform to the rules for
expressions of that type

Language-specific
rules for names

Usage

The following table lists the types of SQL expressions, as identified in the diagram
for “Expression” on page 4-40, and describes what each type returns.

Expression Type Description

Aggregate functions Returns values from built-in or from user-defined aggregates

Arithmetic operators Supports arithmetic operations on one (unary operators) or two
(binary operators) numeric operands

Concatenation operator Concatenates two string values

Cast operators Explicit casts from one data type to another

Column expressions Full or partial column values

Conditional expressions Returns values that depend on conditional tests

Constant expressions Literal values in data manipulation (DML) statements

Constructor expressions Dynamically creates values for complex data types

Function expressions Returns values from built-in or user-defined functions

Statement-Local Variable
expressions

References a statement-local variable (SLV) in the same SQL
statement where it was declared

You can also use host variables or SPL variables as expressions. For a complete list
with page references to this chapter, see the following "“List of Expressions.”"

List of Expressions
Each category of SQL expression includes many individual expressions.

The following table lists all the SQL expressions (and some operators) in
alphabetical order. The columns in this table have the following meanings:
v Name gives the name of each expression.
v Description gives a short description of each expression.
v Syntax lists the page that shows the syntax of the expression.
v Usage shows the page that describes the usage of the expression.

Name Description Syntax Usage

ABS function Returns absolute value of a
numeric argument

“Algebraic Functions” on
page 4-87

“ABS Function” on page 4-88

4-42 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

ACOS function Returns the arc cosine of a
numeric argument

“Trigonometric Functions”
on page 4-138

“ACOS Function” on page
4-139

ADD_MONTHS
function

Adds a specified number of
months

“Time Functions” on page
4-126

“ADD_MONTHS Function”
on page 4-127

Addition (+) operator Returns the sum of two
numeric operands

“Expression” on page 4-40 “Arithmetic Operators” on
page 4-51

ASCII function Returns the ASCII codepoint
of the first character in its
string argument

“String-Manipulation
Functions” on page 4-140

“ASCII Function” on page
4-144

ASIN function Returns the arc sine of a
numeric argument

“Trigonometric Functions”
on page 4-138

“ASIN Function” on page
4-139

ATAN function Returns the arc tangent of
numeric argument

“Trigonometric Functions”
on page 4-138

“ATAN Function” on page
4-139

ATAN2 function Computes the angular
component of the polar
coordinates (r, q) associated
with (x, y)

“Trigonometric Functions”
on page 4-138

“ATAN2 Function” on page
4-139

AVG function Returns the mean of a set of
numeric values

“Aggregate Expressions” on
page 4-164

“AVG Function” on page
4-167

BITAND Returns the bitwise AND of
two arguments

“Bitwise Logical Functions”
on page 4-52

“BITAND Function” on page
4-53

BITANDNOT Returns the bitwise ANDNOT
of two arguments

“Bitwise Logical Functions”
on page 4-52

“BITANDNOT Function” on
page 4-55

BITNOT Returns the bitwise NOT of
two arguments

“Bitwise Logical Functions”
on page 4-52

“BITNOT Function” on page
4-55

BITOR Returns the bitwise OR of two
arguments

“Bitwise Logical Functions”
on page 4-52

“BITOR Function” on page
4-54

BITXOR Returns the bitwise XOR of
two arguments

“Bitwise Logical Functions”
on page 4-52

“BITXOR Function” on page
4-54

CARDINALITY
function

Returns the number of
elements in a collection data
type (SET, MULTISET, or LIST)

“CARDINALITY Function”
on page 4-97

“CARDINALITY Function”
on page 4-97

CASE expression Returns a value that depends
on which of several
conditional tests evaluates to
true

“CASE Expressions” on
page 4-65

“CASE Expressions” on page
4-65

CAST expression Converts an expression to a
specified data type

“Cast Expressions” on page
4-58

“Cast Expressions” on page
4-58

Cast (::) operator See "Double-colon (::) cast
operator"

“Cast Expressions” on page
4-58

“Cast Expressions” on page
4-58

CEIL function Returns the smallest integer
that is greater than or equal to
its single argument

“Algebraic Functions” on
page 4-87

“CEIL Function” on page
4-89

CHARACTER_
LENGTH function

See CHAR_LENGTH function.
(In multibyte locales, this
replaces the LENGTH
function.)

“Length Functions” on page
4-117

“CHAR_LENGTH Function”
on page 4-117

CHAR_LENGTH
function

Returns count of logical
characters in a string

“Length Functions” on page
4-117

“CHAR_LENGTH Function”
on page 4-117

Chapter 4. Data Types and Expressions 4-43

Name Description Syntax Usage

Column expression Complete or partial column
value from a table

“Column Expressions” on
page 4-59

“Column Expressions” on
page 4-59

CONCAT() operator
function

Concatenates the results of
two expressions

“String-Manipulation
Functions” on page 4-140

“CONCAT Function” on
page 4-141

Concatenation (||)
operator

Concatenates the results of
two expressions

“Expression” on page 4-40 “Concatenation Operator” on
page 4-56

Constant expression Expression with a literal, fixed,
or variant value

“Constant Expressions” on
page 4-70

“Constant Expressions” on
page 4-70

COS function Returns the cosine of a radian
expression

“Trigonometric Functions”
on page 4-138

“COS Function” on page
4-139

COUNT (as a set of
functions)

Functions that return
frequency counts Each form of
the COUNT function is listed
below.

“Aggregate Expressions” on
page 4-164

“Overview of COUNT
Functions” on page 4-167

COUNT (ALL column)
function

See COUNT (column) function. “Aggregate Expressions” on
page 4-164

“COUNT column Function”
on page 4-168

COUNT (column)
function

Returns the number of
non-NULL values in a
specified column

“Aggregate Expressions” on
page 4-164

“COUNT column Function”
on page 4-168

COUNT DISTINCT
function

Returns the number of unique
non-NULL values in a
specified column

“Aggregate Expressions” on
page 4-164

“COUNT DISTINCT and
COUNT UNIQUE Functions”
on page 4-168

COUNT UNIQUE
function

See COUNT DISTINCT
function.

“Aggregate Expressions” on
page 4-164

“COUNT DISTINCT and
COUNT UNIQUE Functions”
on page 4-168

COUNT (*) function Returns the cardinality of the
set of rows that satisfy a query

“Aggregate Expressions” on
page 4-164

“COUNT(*) Function” on
page 4-167

CURRENT operator Returns the current time as a
DATETIME value that consists
of the date and the time of day

“Constant Expressions” on
page 4-70

“CURRENT Operator” on
page 4-75

CURRENT_ROLE
operator

Returns the currently enabled
role of the user

“Constant Expressions” on
page 4-70

“CURRENT_ROLE Operator”
on page 4-73

sequence.CURRVAL Returns the current value of
specified sequence

“Constant Expressions” on
page 4-70

“Using CURRVAL” on page
4-78

DATE function Converts a nondate argument
to a DATE value

“Time Functions” on page
4-126

“DATE Function” on page
4-128

DAY function Returns the day of the month
as an integer

“Time Functions” on page
4-126

“DAY Function” on page
4-129

DBINFO (option) Functions for retrieving
database and session
information. Each option is
listed below.

“DBINFO Function” on
page 4-98

“DBINFO Options” on page
4-99

DBINFO ('bigserial') Returns most recently inserted
BIGSERIAL value

“DBINFO Function” on
page 4-98

“Using the 'serial8' and
'bigserial' options” on page
4-104

DBINFO ('serial8') Returns most recently inserted
SERIAL8 value

“DBINFO Function” on
page 4-98

“Using the 'serial8' and
'bigserial' options” on page
4-104

4-44 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

DBINFO ('dbhostname') Returns the host name of the
database server to which a
client application is connected

“DBINFO Function” on
page 4-98

“Using the ‘dbhostname’
Option” on page 4-102

DBINFO ('dbname') Returns the identifier of the
database to which a client
application is connected

“DBINFO Function” on
page 4-98

“Using the ‘dbname' Option”
on page 4-102

DBINFO ('dbspace',
tblspace_number)

Returns the name of a dbspace
corresponding to a tblspace
number

“DBINFO Function” on
page 4-98

“Using the ('dbspace',
tblspace_num) Option” on
page 4-100

DBINFO ('get_tz') Returns the time zone of the
current session

“DBINFO Function” on
page 4-98

“Using the 'get_tz' Option”
on page 4-104

DBINFO ('serial8') Returns most recently inserted
SERIAL8 value

“DBINFO Function” on
page 4-98

“Using the 'serial8' and
'bigserial' options” on page
4-104

DBINFO ('sessionid') Returns the session ID of the
current session

“DBINFO Function” on
page 4-98

“Using the 'sessionid'
Option” on page 4-101

DBINFO
('sqlca.sqlerrd1')

Returns the last serial value
inserted in a table

“DBINFO Function” on
page 4-98

“Using the 'sqlca.sqlerrd1'
Option” on page 4-100

DBINFO
('sqlca.sqlerrd2')

Returns the number of rows
processed by DML statements,
and by EXECUTE
PROCEDURE and EXECUTE
FUNCTION statements

“DBINFO Function” on
page 4-98

“Using the 'sqlca.sqlerrd2'
Option” on page 4-101

DBINFO ('utc_current') Returns the current
Coordinated Universal Time
(UTC) value.

“DBINFO Function” on
page 4-98

“Using the 'utc_current'
Option” on page 4-105

DBINFO
('utc_to_datetime',
expression)

Returns the DATETIME value
of an integer or column
expression that specifies a UTC
value.

“DBINFO Function” on
page 4-98

“Using the 'utc_to_datetime'
Option” on page 4-105

DBINFO ('version',
parameter)

Returns all or part, as specified
by the parameter, of the exact
version of the database server
to which the client application
is connected.

“DBINFO Function” on
page 4-98

“Using the ‘version' Option”
on page 4-103

DBSERVERNAME
function

Returns the name of the
database server

“Constant Expressions” on
page 4-70

“DBSERVERNAME and
SITENAME Operators” on
page 4-74

DECODE function Evaluates one or more
expression pairs and compares
the when expression in each
pair with a specified value
expression

“DECODE Function” on
page 4-69

“DECODE Function” on page
4-69

DECRYPT_CHAR
function

Returns a plain-text string or
CLOB after processing an
encrypted argument

“Encryption and decryption
functions” on page 4-106

“DECRYPT_CHAR Function”
on page 4-112

DECRYPT_ BINARY
function

Returns a plain-text BLOB data
value after processing an
encrypted BLOB argument

“Encryption and decryption
functions” on page 4-106

“DECRYPT_BINARY
Function” on page 4-112

DEFAULT_ROLE
operator

Returns the default role of the
current user

“Constant Expressions” on
page 4-70

“DEFAULT_ROLE Operator”
on page 4-73

Chapter 4. Data Types and Expressions 4-45

Name Description Syntax Usage

DELETING Boolean
operator

Returns 't' if triggering event is
a DELETE

“Trigger-Type Boolean
Operator” on page 4-12

“Trigger-Type Boolean
Operator” on page 4-12

Division (/) operator Returns the quotient of two
numeric operands

“Expression” on page 4-40 “Arithmetic Operators” on
page 4-51

Double-colon (::) cast
operator

Converts the value of an
expression to a specified data
type

“Cast Expressions” on page
4-58

“Cast Expressions” on page
4-58

Double-pipe (||)
concatenation operator

Returns a string that joins one
string operand to another
string operand

“Expression” on page 4-40 “Concatenation Operator” on
page 4-56

ENCRYPT_AES
function

Returns an encrypted string or
BLOB after processing a
plain-text string, BLOB, or
CLOB

“Encryption and decryption
functions” on page 4-106

“ENCRYPT_AES Function”
on page 4-113

ENCRYPT_TDES
function

Returns an encrypted string or
BLOB after processing a
plain-text string, BLOB, or
CLOB

“Encryption and decryption
functions” on page 4-106

“ENCRYPT_TDES Function”
on page 4-114

EXP function Returns the exponent of a
numeric expression

“Exponential and
Logarithmic Functions” on
page 4-115

“EXP Function” on page
4-115

EXTEND function Resets precision of DATETIME
or DATE value

“Time Functions” on page
4-126

“EXTEND Function” on page
4-133

FILETOBLOB function Creates a BLOB value from
data stored in a specified
operating-system file

“Smart-Large-Object
Functions” on page 4-121

“FILETOBLOB and
FILETOCLOB Functions” on
page 4-121

FILETOCLOB function Creates a CLOB value from
data stored in a specified
operating-system file

“Smart-Large-Object
Functions” on page 4-121

“FILETOBLOB and
FILETOCLOB Functions” on
page 4-121

FLOOR function Returns the largest integer that
is smaller than or equal to its
single argument

“Algebraic Functions” on
page 4-87

“FLOOR Function” on page
4-89

FORMAT_UNITS
function

Returns a character string that
specifies a number and the
names of abbreviated units of
memory or of storage

“FORMAT_UNITS
Function” on page 4-156

“FORMAT_UNITS Function”
on page 4-156

GETHINT function Returns a plain-text hint string
after processing an encrypted
data-string argument

“Encryption and decryption
functions” on page 4-106

“GETHINT Function” on
page 4-115

HEX function Returns the hexadecimal
encoding of a base-10 integer
argument

“HEX Function” on page
4-116

“HEX Function” on page
4-116

Host variable See Variable. “Syntax of SQL
Expressions” on page 4-41

“Syntax of SQL Expressions”
on page 4-41

INSERTING Boolean
operator

Returns 't' if triggering event is
an INSERT

“Trigger-Type Boolean
Operator” on page 4-12

“Trigger-Type Boolean
Operator” on page 4-12

IFX_ALLOW_
NEWLINE function

Sets a newline session mode
that allows or disallows
newline characters in quoted
strings

“IFX_ALLOW_NEWLINE
Function” on page 4-159

“IFX_ALLOW_NEWLINE
Function” on page 4-159

4-46 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

INITCAP function Converts a string argument to
a string in which only the
initial letter of each word is
uppercase

“Case-Conversion
Functions” on page 4-154

“INITCAP Function” on page
4-156

LAST_DAY function Returns the date of the last
day of the month that its
argument specifies

“Time Functions” on page
4-126

“LAST_DAY Function” on
page 4-131

LENGTH function Returns the number of bytes in
a character column, not
including any trailing blank
spaces

“Length Functions” on page
4-117

“LENGTH Function” on page
4-117

LIST collection
constructor

Constructor for collections
whose elements are ordered
and can contain duplicate
values

“Collection Constructors”
on page 4-82

“Collection Constructors” on
page 4-82

Literal BOOLEAN Literal representation of a
BOOLEAN value

“Constant Expressions” on
page 4-70

“Constant Expressions” on
page 4-70

Literal collection Represents elements in a
collection data type

“Constant Expressions” on
page 4-70

“Literal Collection” on page
4-80

Literal DATETIME Represents a DATETIME value “Constant Expressions” on
page 4-70

“Literal DATETIME” on page
4-77

Literal INTERVAL Represents an INTERVAL
value

“Constant Expressions” on
page 4-70

“Literal INTERVAL” on page
4-77

Literal number Represents a numeric value “Constant Expressions” on
page 4-70

“Literal Number” on page
4-72

Literal opaque type Represents an opaque data
type

“Constant Expressions” on
page 4-70

“Constant Expressions” on
page 4-70

Literal row Represents the elements in a
ROW data type

“Constant Expressions” on
page 4-70

“Literal Row” on page 4-80

LOCOPY function Creates a copy of a smart large
object

“Smart-Large-Object
Functions” on page 4-121

“LOCOPY Function” on page
4-125

LOGN function Returns the natural log of a
numeric argument

“Exponential and
Logarithmic Functions” on
page 4-115

“LOGN Function” on page
4-116

LOG10 function Returns the base-10 logarithm
of an argument

“Exponential and
Logarithmic Functions” on
page 4-115

“LOG10 Function” on page
4-116

LOTOFILE function Copies a BLOB or CLOB value
to a file

“Smart-Large-Object
Functions” on page 4-121

“LOTOFILE Function” on
page 4-123

LOWER function Converts uppercase letters to
lowercase

“Case-Conversion
Functions” on page 4-154

“LOWER Function” on page
4-156

LPAD function Returns a string that is
left-padded by a specified
number of pad characters

“String-Manipulation
Functions” on page 4-140

“LPAD Function” on page
4-153

LTRIM function Removes specified leading pad
characters from a string.

“String-Manipulation
Functions” on page 4-140

“LTRIM Function” on page
4-147

MAX function Returns the largest in a
specified set of values

“Aggregate Expressions” on
page 4-164

“MAX Function” on page
4-170

MDY function Returns a DATE value from
integer arguments

“Time Functions” on page
4-126

“MDY Function” on page
4-133

Chapter 4. Data Types and Expressions 4-47

Name Description Syntax Usage

MIN function Returns the smallest in a
specified set of values

“Aggregate Expressions” on
page 4-164

“MIN Function” on page
4-170

MOD function Returns the modulus (the
integer-division remainder
value) from two numeric
arguments

“Algebraic Functions” on
page 4-87

“MOD Function” on page
4-89

MONTH function Returns the month value from
a DATE or DATETIME
argument

“Time Functions” on page
4-126

“MONTH Function” on page
4-129

MONTHS_ BETWEEN
function

Returns the difference in
months between two time
values

“Time Functions” on page
4-126

“MONTHS_BETWEEN
Function” on page 4-130

Multiplication (*)
operator

Returns the product of two
numeric operands

“Expression” on page 4-40 “Arithmetic Operators” on
page 4-51

MULTISET collection
constructor

Constructor for a non-ordered
collection of elements that can
contain duplicate value

“Collection Constructors”
on page 4-82

“Collection Constructors” on
page 4-82

NEXT_DAY function Returns the earliest calendar
date that satisfies each of two
conditions

“Time Functions” on page
4-126

“NEXT_DAY Function” on
page 4-132

sequence.NEXTVAL Increments value of the
specified sequence

“Constant Expressions” on
page 4-70

“Using NEXTVAL” on page
4-78

NULL keyword Unknown, missing, or logically
undefined value

“NULL Keyword” on page
4-84

“NULL Keyword” on page
4-84

NULLIF function Returns NULL if both
arguments are equal

“NULLIF Function” on
page 4-68

“NULLIF Function” on page
4-68

NVL function Returns the value of a
not-NULL argument, or a
specified value if the argument
is NULL

“NVL Function” on page
4-68

“NVL Function” on page
4-68

OCTET_LENGTH
function

Returns the number of bytes in
a character column, including
any trailing blank spaces

“Length Functions” on page
4-117

“OCTET_LENGTH Function”
on page 4-117

POW function Raises a base value to a
specified power

“Algebraic Functions” on
page 4-87

“POW Function” on page
4-89

POWER function Synonym for POW function “Algebraic Functions” on
page 4-87

“POW Function” on page
4-89

Procedure-call
expression

See user-defined function. “User-Defined Functions”
on page 4-160

“User-Defined Functions” on
page 4-160

Program variable See variable. “Syntax of SQL
Expressions” on page 4-41

“Syntax of SQL Expressions”
on page 4-41

Quoted string Literal character string “Constant Expressions” on
page 4-70

“Quoted String” on page 4-72

RANGE function Returns the range of a
specified set of values

“Aggregate Expressions” on
page 4-164

“RANGE Function” on page
4-171

REPLACE function Replaces specified characters
in a source string

“String-Manipulation
Functions” on page 4-140

“REPLACE Function” on
page 4-152

ROOT function Returns the root value of a
numeric argument

“Algebraic Functions” on
page 4-87

“ROOT Function” on page
4-90

4-48 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

ROUND function Returns the rounded value of
an argument

“Algebraic Functions” on
page 4-87

“ROUND Function” on page
4-90

ROW constructor Constructor for a named ROW
data type

“Constructor Expressions”
on page 4-81

“ROW Constructors” on page
4-81

RPAD function Returns a string that is
right-padded by a specified
number of pad characters

“String-Manipulation
Functions” on page 4-140

“RPAD Function” on page
4-153

RTRIM function Removes trailing pad
characters from a string

“String-Manipulation
Functions” on page 4-140

“RTRIM Function” on page
4-148

SECLABEL_BY_ COMP
function

Returns the individual
components of a row security
label for INSERT and UPDATE
operations

“Security Label Support
Functions” on page 4-118

“SECLABEL_BY_NAME
Function” on page 4-119

SECLABEL_BY_ NAME
function

Returns the identifier of a row
security label for INSERT and
UPDATE operations

“Security Label Support
Functions” on page 4-118

“SECLABEL_BY_COMP
Function” on page 4-119

SECLABEL_TO_ CHAR
function

Returns the details of the
individual components of a
row security label for SELECT
operations

“Security Label Support
Functions” on page 4-118

“SECLABEL_TO_CHAR
Function” on page 4-120

SELECTING Boolean
operator

Returns 't' if triggering event is
a SELECT

“Trigger-Type Boolean
Operator” on page 4-12

“Trigger-Type Boolean
Operator” on page 4-12

SET collection
constructor

Constructor for an unordered
collection of elements in which
each value is unique

“Collection Constructors”
on page 4-82

“Collection Constructors” on
page 4-82

SIN function Returns the sine of a radian
expression

“Trigonometric Functions”
on page 4-138

“SIN Function” on page
4-139

SITENAME function See DBSERVERNAME
function.

“Constant Expressions” on
page 4-70

“DBSERVERNAME and
SITENAME Operators” on
page 4-74

SPL routine expression See "User-defined functions" “User-Defined Functions”
on page 4-160

“User-Defined Functions” on
page 4-160

SPL variable SPL variable that stores an
expression

“Syntax of SQL
Expressions” on page 4-41

“Syntax of SQL Expressions”
on page 4-41

SQLCODE function Returns sqlca.sqlcode value to
an SPL UDR

“SQLCODE Function (SPL)”
on page 4-97

“SQLCODE Function (SPL)”
on page 4-97

SQRT function Returns the square root of a
numeric argument

“Algebraic Functions” on
page 4-87

“SQRT Function” on page
4-90

STDEV function Returns the standard deviation
of a data set

“Aggregate Expressions” on
page 4-164

“STDEV Function” on page
4-171

SUBSTR function Returns a substring of a string
argument

“SUBSTR Function” on
page 4-150

“SUBSTR Function” on page
4-150

SUBSTRING function Returns a substring of a source
string

“SUBSTRING Function” on
page 4-149

“SUBSTRING Function” on
page 4-149

Substring ([x, y])
operator

Returns a substring of a string
operand

“Column Expressions” on
page 4-59

“Using the Substring
Operator” on page 4-63

Subtraction (-)
operator

Returns the difference between
two numbers

“Expression” on page 4-40 “Arithmetic Operators” on
page 4-51

SUM function Returns the sum of a specified
set of values

“Aggregate Expressions” on
page 4-164

“SUM Function” on page
4-171

Chapter 4. Data Types and Expressions 4-49

Name Description Syntax Usage

SLV expression A statement-local variable
(SLV) whose scope is the SQL
statement that declares it

“Statement-Local Variable
Declaration” on page 4-161

“Statement-Local Variable
Expressions” on page 4-163

SYSDATE operator Returns the current
DATETIME value from the
system clock.

“Constant Expressions” on
page 4-70

“SYSDATE Operator” on
page 4-76

TAN function Returns the tangent of a
radian expression

“Trigonometric Functions”
on page 4-138

“TAN Function” on page
4-139

TO_CHAR function Converts a time or number to
a string

“Time Functions” on page
4-126

“TO_CHAR Function” on
page 4-134

TO_DATE function Converts a string to a
DATETIME value

“Time Functions” on page
4-126

“TO_DATE Function” on
page 4-137

TO_NUMBER function Converts two numbers or two
strings to DECIMAL

“TO_NUMBER Function”
on page 4-137

“TO_NUMBER Function” on
page 4-137

TODAY operator Returns the current system
date

“Constant Expressions” on
page 4-70

“TODAY Operator” on page
4-75

TRIM function Drops pad characters from a
string argument

“String-Manipulation
Functions” on page 4-140

“TRIM Function” on page
4-145

TRUNC function Returns a truncated numeric
or time value

“Algebraic Functions” on
page 4-87

“TRUNC Function” on page
4-93

Unary minus (-) sign Specifies a negative (< 0)
numeric value

“Expression” on page 4-40 “Arithmetic Operators” on
page 4-51

Unary plus (+) sign Specifies a positive (> 0)
numeric value .

“Expression” on page 4-40 “Arithmetic Operators” on
page 4-51

UNITS operator Convert an integer to an
INTERVAL value

“Constant Expressions” on
page 4-70

“UNITS Operator” on page
4-77

UPDATING Boolean
operator

Returns 't' if triggering event is
an UPDATE

“Trigger-Type Boolean
Operator” on page 4-12

“Trigger-Type Boolean
Operator” on page 4-12

UPPER function Converts lowercase letters to
uppercase

“Case-Conversion
Functions” on page 4-154

“UPPER Function” on page
4-156

User-defined aggregate Aggregate that you define (as
opposed to built-in aggregates
that Informix provides)

“User-Defined Aggregates”
on page 4-174

“User-Defined Aggregates”
on page 4-174

User-defined function Function that you write (as
opposed to built-in functions
that the database server
provides)

“User-Defined Functions”
on page 4-160

“User-Defined Functions” on
page 4-160

USER operator Returns the login name of the
current user

“Constant Expressions” on
page 4-70

“USER Operator” on page
4-72

Variable Host or program variable that
stores a value

“Syntax of SQL
Expressions” on page 4-41

“Syntax of SQL Expressions”
on page 4-41

VARIANCE function Returns the variance for a set
of values

“Aggregate Expressions” on
page 4-164

“VARIANCE Function” on
page 4-172

WEEKDAY function Returns an integer code for the
day of the week

“Time Functions” on page
4-126

“WEEKDAY Function” on
page 4-129

YEAR function Returns a 4-digit integer
representing a year

“Time Functions” on page
4-126

“YEAR Function” on page
4-129

* symbol See "Multiplication (*)
operator"

“Syntax of SQL
Expressions” on page 4-41

“Arithmetic Operators” on
page 4-51

4-50 IBM Informix Guide to SQL: Syntax

Name Description Syntax Usage

+ symbol See "Addition" and "Unary
plus (+) sign"

“Syntax of SQL
Expressions” on page 4-41

“Arithmetic Operators”

- symbol See "Subtraction" and "Unary
minus (-) sign"

“Syntax of SQL
Expressions” on page 4-41

“Arithmetic Operators”

/ symbol See "Division operator" “Syntax of SQL
Expressions” on page 4-41

“Arithmetic Operators”

:: symbols See "Double-colon (::) cast
operator"

“Cast Expressions” on page
4-58

“Cast Expressions” on page
4-58

|| symbol See "Double-pipe (||)
concatenation operator"

“Syntax of SQL
Expressions” on page 4-41

“Concatenation Operator” on
page 4-56

[first, last] symbols See "Substring operator" “Column Expressions” on
page 4-59

“Using the Substring
Operator” on page 4-63

Sections that follow describe the syntax and usage of each expression that appears
in the preceding table.

Arithmetic Operators

Binary arithmetic operators can combine expressions that return numbers.

Arithmetic
Operation

Arithmetic
Operator

Operator
Function

Arithmetic
Operation

Arithmetic
Operator

Operator
Function

Addition + plus() Multiplication * times()

Subtraction – minus() Division / divide()

The following examples use binary arithmetic operators:
quantity * total_price
price * 2
COUNT(*) + 2

If you combine a DATETIME value with one or more INTERVAL values, all the
fields of the INTERVAL value must be present in the DATETIME value; no implicit
EXTEND function is performed. In addition, you cannot use YEAR to MONTH
intervals with DAY to SECOND intervals. For additional information about binary
arithmetic operators, see the IBM Informix Guide to SQL: Reference.

The binary arithmetic operators have associated operator functions, as the
preceding table shows. Connecting two expressions with a binary operator is
equivalent to invoking the associated operator function on the expressions. For
example, the following two statements both select the product of the total_price
column and 2. In the first statement, the * operator implicitly invokes the times()
function.
SELECT (total_price * 2) FROM items

WHERE order_num = 1001;
SELECT times(total_price, 2) FROM items

WHERE order_num = 1001;

You cannot use arithmetic operators to combine expressions that use aggregate
functions with column expressions.

Chapter 4. Data Types and Expressions 4-51

The database server provides the operator functions associated with the relational
operators for all built-in data types. You can define new versions of these operator
functions to handle your own user-defined data types.

For more information, see IBM Informix User-Defined Routines and Data Types
Developer's Guide.

The database server also supports the following unary arithmetic operators.

Sign of Number Unary Arithmetic Operator Operator Function

Positive + positive()

Negative – negate()

The unary arithmetic operators have the associated operator functions that the
preceding table shows. You can define new versions of these functions to handle
your own user-defined data types. For more information on this topic, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

If any value that participates in an arithmetic expression is NULL, the value of the
entire expression is NULL, as the following example shows:
SELECT order_num, ship_charge/ship_weight FROM orders

WHERE order_num = 1023;

If either ship_charge or ship_weight is NULL, the value returned for the
expression ship_charge/ship_weight is also NULL. If the NULL expression
ship_charge/ship_weight is used in a condition, its truth value cannot be TRUE,
and the condition is not satisfied (unless the NULL expression is an operand of the
IS NULL operator).

Bitwise Logical Functions

Use the bitwise logical functions to perform named bit operations.

Bitwise Logical Functions:

(1)
BITAND (int8_expr , int8_expr)
BITOR
BITXOR
BITANDNOT

BITNOT (int8_expr)

Notes:

1 Informix extension

Element Description Restrictions Syntax

int8_expr Number expression that can be
converted to an INT8 value

For BITNOT the maximum size is
reduced by 1

“Expression” on page 4-40

The arguments to these functions can be any numeric data type that can be
converted to the INT8 data type.

4-52 IBM Informix Guide to SQL: Syntax

Except for BITNOT, which takes a single argument, these bitwise logical functions
take two arguments that can be converted to an INT8 value.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the two arguments are of different integer
types, the returned value is the integer type with the greater precision. For
example, if the first argument is of type INT, and the second argument is of type
INT8, the returned value is of type INT8.

If the arguments are any other numeric type, such as DECIMAL, SMALLFLOAT,
FLOAT, or MONEY, or some combination of those types, the returned data type is
DECIMAL(32).

If using host variables, and the data types of the arguments are not known at
prepare time, the data type INTEGER is assumed for both arguments, and the
returned value is INTEGER. If, after prepare, at execution time, a different data
type value is supplied for the host variable, Informix issues a -9750 error. To
prevent such an occurrence, you can specify the host variable data type by using a
cast, as in the following ESQL/C program fragment:
sprintf(query1, “,

bitand(?::int8, ?::int8) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor

using :hostvar_int8_input1, :hostvar_int8_input2;

EXEC SQL fetch select_cursor into :var_int8_output;

BITAND Function

The BITAND function takes two arguments. The arguments can be any number
type value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the AND for
the two arguments.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the data type with the greater precision is returned.
If the arguments are any other numeric type, such as DECIMAL, SMALLFLOAT,
FLOAT, or MONEY, or some combination of those types, the returned data type is
DECIMAL(32).

The following example illustrates a query that calls the BITAND function:
select task_id, task_status,
decode(bitand(task_status,1), 1, ’ Y’, ’ N’) as task_a,
decode(bitand(task_status,2), 2, ’ Y’, ’ N’) as task_b,
decode(bitand(task_status,4), 4, ’ Y’, ’ N’) as task_c
from tasks;

The following table shows the output of this SELECT statement.

Chapter 4. Data Types and Expressions 4-53

task_id task_status task_a task_b task_c

100 1 Y N N
101 1 Y N N
102 2 N Y N
103 4 N N Y
104 6 N Y Y
105 3 Y Y N
106 5 Y N Y
107 7 Y Y Y

BITOR Function

The BITOR function takes two arguments. The arguments can be any number type
value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the bitwise
OR of its two arguments.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the returned type is the type with the greater
precision. If the arguments are any other numeric type, such as DECIMAL,
SMALLFLOAT, FLOAT, or MONEY, or some combination of those types, the
returned data type is DECIMAL(32)

The following example illustrates a query that calls the BITOR function:
SELECT BITOR(8, 20) AS bitor FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitor

28

BITXOR Function

The BITXOR function takes two arguments. The arguments can be any number
type value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the bitwise
XOR of its two arguments.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the returned type is the type with the greater
precision. If the arguments are any other numeric type, such as DECIMAL,
SMALLFLOAT, FLOAT, or MONEY, or some combination of those types, the
returned data type is DECIMAL(32).

The following example illustrates a query that calls the BITXOR function:
SELECT BITXOR(41, 33) AS bitxor FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

4-54 IBM Informix Guide to SQL: Syntax

bitxor

8

This query calls the BITXOR function with negative arguments:
SELECT BITXOR(-20, -41) AS bitxor FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitxor

59

BITANDNOT Function

The BITANDNOT function takes two arguments. The arguments can be any
number type value that can be converted to an INT8 value.

Fractional values are truncated before the bit operation. The result is the same as
BITAND(arg1, BITNOT(arg2)) for the two arguments.

If both arguments have the same integer types, the data type of the returned value
is the same type as the arguments. If the arguments are of different integer types
(for example, INT and INT8), the returned type is the type with the greater
precision. If the arguments are any other numeric type, such as DECIMAL,
SMALLFLOAT, FLOAT, or MONEY, or some combination of those types, the
returned data type is DECIMAL(32).

The query in the following example calls the BITANDNOT function:
SELECT BITANDNOT(20,-20) AS bitandnot FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitandnot

16

The following query calls the equivalent BITAND and BITNOT functions for the
arguments in the previous example:
select bitand(20, bitnot(-20)) as bitandnot from systables

where tabid = 1;

The following table shows the output of this SELECT statement.

bitandnot

16

BITNOT Function

The BITNOT function can take any number type value that is one less than the
maximum INT8 value.

Fractional values are truncated before the bit operation. The result is the bitwise
NOT of its argument.

Chapter 4. Data Types and Expressions 4-55

The returned data type is the same type as the argument if the argument is
SMALLINT, INT, BIGINT, or INT8. Otherwise the returned data type is
DECIMAL(32).

The following query calls the BITNOT function:
SELECT BITNOT(8) AS bitnot FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitnot

-9

The next query calls the BITNOT function with a negative argument:
SELECT BITNOT(-20) AS bitnot FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

bitnot

19

Concatenation Operator

The concatenation operator is a binary operator, whose syntax is shown in the
general diagram for an SQL “Expression” on page 4-40. You can use the
concatenation operator (||) to concatenate two expressions that evaluate to
character data types or to numeric data types. These examples show some possible
concatenated expression combinations.
v The first example concatenates the zipcode column to the first three letters of the

lname column.
v The second example concatenates the suffix .dbg to the contents of a host

variable called file_variable.
v The third example concatenates the value that the TODAY operator returns to

the string Date.
lname[1,3] || zipcode

:file_variable || ’.dbg’

’Date:’ || TODAY

You cannot use the concatenation operator in the following embedded-language
statements:
v ALLOCATE COLLECTION
v ALLOCATE DESCRIPTOR
v ALLOCATE ROW
v CREATE FUNCTION FROM
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM
v DEALLOCATE COLLECTION
v DEALLOCATE DESCRIPTOR
v DEALLOCATE ROW DESCRIBE

4-56 IBM Informix Guide to SQL: Syntax

v DESCRIBE INPUT
v EXECUTE
v FLUSH
v GET DESCRIPTOR
v GET DIAGNOSTICS
v PUT
v SET AUTOFREE
v SET CONNECTION
v SET DESCRIPTOR
v WHENEVER

Except as noted for the DECLARE and PREPARE statement, routines written in
external languages, such as the Informix ESQL/C language, cannot use the
concatenation operator in the following dynamic SQL statements:
v CLOSE
v DECLARE
v EXECUTE IMMEDIATE
v FETCH
v FREE
v OPEN
v PREPARE

Although input parameters of the DECLARE statement, such as a cursor_id
specification, cannot be expressions that include the concatenation operator,
Informix ESQL/C routines can use this operator in a SELECT, INSERT, EXECUTE
FUNCTION, or EXECUTE PROCEDURE statement within the DECLARE
statement.

Informix ESQL/C routines can use the concatenation operator in the text of the
SQL statement or statements that you pass to the PREPARE statement.

In SPL routines, you can include the concatenation operator in an expression that
specifies the text of the SQL statement that you pass to the EXECUTE IMMEDIATE
statement or to the PREPARE statement, even if the calling context of the SPL
routine is an Informix ESQL/C routine.

You cannot use the concatenation operator directly with user-defined data types,
with complex or large-object data types, nor with operands that are not built-in
character or number data types. You must explicitly cast UDTs or other
unsupported data types to a built-in character or numeric data type before you can
pass the result to the concatenation operator.

The data type of the result of a concatenation operation depends of the data types
of the operands and on the length of the resulting string, using the return type
promotion rules that the section Return Types from the CONCAT Function
describes.

The concatenation operator (||) has an associated operator function called
CONCAT. The CONCAT function cannot be overloaded.

Chapter 4. Data Types and Expressions 4-57

When you define a text-based UDT, you can define a CONCAT function to
concatenate objects of that user-defined data type. For more information, see IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Cast Expressions

You can use the CAST and AS keywords or the double-colon cast operator (::) to
cast an expression to another data type. Both the operator and the keywords
invoke a cast from the data type of the expression to the specified target data type.

To invoke an explicit cast, you can use either the cast operator or the CAST AS
keywords. If you use the cast operator or the CAST and AS keywords, but no
explicit or implicit cast was defined to perform the conversion between two data
types, the statement returns an error.

Cast Expressions:

�

�

(1)
CAST (Expression AS target_data_type)

:: target_data_type

(1)
Expression :: target_data_type

Notes:

1 See “Expression” on page 4-40

Element Description Restrictions Syntax

target_data_type Data type returned by cast See "Rules for the Target Data Type" “Data Type” on page
4-21

Rules for the Target Data Type

The following rules restrict the target data type in cast expressions:
v The target data type must be either a built-in type, a user-defined type, or a

named row type in the database.
v The target data type cannot be an unnamed row or a collection type.
v The target data type can be a BLOB data type under the following conditions:

– The source expression (the expression to be cast to another data type) is a
BYTE data type.

– The source expression is a user-defined type and the user has defined a cast
from the user-defined type to the BLOB type.

v The target data type can be a CLOB type under these conditions:
– The source expression is a TEXT data type.
– The source expression is a user-defined type and the user has defined a cast

from the user-defined type to the CLOB type.
v You cannot cast a BLOB data type to a BYTE data type.
v You cannot cast a CLOB data type to a TEXT data type.
v An explicit or implicit cast must exist that can convert the data type of the

source expression to the target data type.

4-58 IBM Informix Guide to SQL: Syntax

Examples of Cast Expressions

The following examples show two different ways to convert the sum of x and y to
a user-defined data type, user_type. The two methods produce identical results.
Both require the existence of an explicit or implicit cast from the type returned by
(x + y) to the user-defined type:
CAST ((x + y) AS user_type)
(x + y)::user_type

The following examples show two different ways of finding the integer equivalent
of the expression expr. Both require the existence of an implicit or explicit cast
from the data type of expr to the INTEGER data type:
CAST (expr AS INTEGER)
expr::INTEGER

In the following example, the user casts a BYTE column to the BLOB type and
copies the BLOB data to an operating-system file:
SELECT LOTOFILE(mybytecol::blob, ’fname’, ’client’)

FROM mytab
WHERE pkey = 12345;

In the following example, the user casts a TEXT column to a CLOB value and then
updates a CLOB column in the same table to have the CLOB value derived from
the TEXT column:
UPDATE newtab SET myclobcol = mytextcol::clob;

The Keyword NULL in Cast Expressions
Cast expressions can appear in the projection list, including expressions of the form
NULL::datatype, where datatype is any data type known to the database:
SELECT newtable.col0, null::int FROM newtable;

The keyword NULL has a global scope of reference within expressions. In SQL, the
keyword NULL is the only syntactic mechanism for accessing a NULL value. Any
attempt to redefine or restrict the global scope of the keyword NULL (for example,
declaring an SPL variable called null) disables any cast expression that involves a
NULL value. Make sure that the keyword NULL receives its global scope in all
expression contexts.

Column Expressions

A column expression specifies a data value in a column in the database, or a
substring of the value, or a field within a ROW-type column. This is the syntax for
column expressions.

Column Expressions:

Chapter 4. Data Types and Expressions 4-59

�

�

table. column
view. (1)
synonym. [first, last]
alias. (1)

ROWID
row_column

.*

(2)
. field_name

row_col_expr
.*

(2)
. field_name

Notes:

1 Informix extension

2 Use path no more than three times

Element Description Restrictions Syntax

alias Temporary alternative name for a
table or view, declared in the
FROM clause of a query

Must return a string. Restrictions depend
on the clause of the SELECT statement in
which alias occurs

“Identifier” on
page 5-21

column Name of a column Restrictions depend on the SQL
statement where column occurs

“Identifier” on
page 5-21

field_name Name of a ROW field in the ROW
column or ROW-column expression

Must be a member of the row that
row-column name or row_col_expr or field
name (for nested rows) specifies

“Identifier” on
page 5-21

first, last Integers indicating positions of first
and last characters within column

The column must be of type CHAR,
VARCHAR, NCHAR, NVARCHAR,
BYTE, or TEXT, and 0 < first ≤ last

“Literal Number”
on page 4-184

row_col_expr Expression that returns ROW-type
values

Must return a ROW data type “Expression” on
page 4-40

row_column Name of a ROW-type column Must be a named ROW data type or an
unnamed ROW data type

“Identifier” on
page 5-21

synonym, table,
view

Table, view, or synonym (for the
table or view) that contains column

Synonym and the table or view to which
it points must exist

Database Object
Name, p.
“Database Object
Name” on page
5-16

The following examples show column expressions:
company

items.price

cat_advert [1,15]

You must qualify the column name with a table name or alias whenever it is
necessary to distinguish between columns that have the same name but are in
different tables. The SELECT statements that the following example shows use

4-60 IBM Informix Guide to SQL: Syntax

customer_num from the customer and orders tables. The first example precedes
the column names with table names. The second example precedes the column
names with table aliases.
SELECT * FROM customer, orders

WHERE customer.customer_num = orders.customer_num;

SELECT * FROM customer c, orders o
WHERE c.customer_num = o.customer_num;

Using Dot Notation
Dot notation (sometimes called the membership operator) allows you to qualify an
SQL identifier with another SQL identifier of which it is a component. You separate
the identifiers with the period (.) symbol. For example, you can qualify a column
name with any of the following SQL identifiers:
v Table name: table_name.column_name

v View name: view_name.column_name

v Synonym name: syn_name.column_name

These forms of dot notation are called column projections.

You can also use dot notation to directly access the fields of a named or unnamed
ROW column, as in the following example:
row-column name.field name

This use of dot notation is called a field projection. For example, suppose you have a
column called rect with the following definition:
CREATE TABLE rectangles
(

area float,
rect ROW(x int, y int, length float, width float)

);

The following SELECT statement uses dot notation to access field length of the
rect column:
SELECT rect.length FROM rectangles

WHERE area = 64;

Selecting All Fields of a Column with Asterisk Notation: If you want to select
all fields of a column that has a ROW type, you can specify the column name
without dot notation. For example, you can select all fields of the rect column as
follows:
SELECT rect FROM rectangles

WHERE area = 64;

You can also use asterisk (*) notation to project all the fields of a column that has
a ROW data type. For example, if you want to use asterisk notation to select all
fields of the rect column, you can enter the following statement:
SELECT rect.* FROM rectangles

WHERE area = 64;

Asterisk notation is easier than specifying each field of the rect column
individually:
SELECT rect.x, rect.y, rect.length, rect.width

FROM rectangles
WHERE area = 64;

Chapter 4. Data Types and Expressions 4-61

Asterisk notation for ROW fields is valid only in the projection list of a SELECT
statement. It can specify all fields of a ROW-type column or the data that a
ROW-column expression returns.

Asterisk notation is not necessary with ROW-type columns because you can
specify the column name alone to project all of its fields. Asterisk notation is quite
helpful, however, with ROW-type expressions such as subqueries and user-defined
functions that return ROW-type values. For more information, see “Using Dot
Notation with Row-Type Expressions.”

You can use asterisk notation with columns and expressions of ROW data types in
the projection list of a SELECT statement only. You cannot use asterisk notation
with columns and expressions of ROW type in any other clause of a SELECT
statement.

Selecting Nested Fields: When the ROW type that defines a column itself
contains other ROW types, the column contains nested fields. Use dot notation to
access these nested fields within a column.

For example, assume that the address column of the employee table contains the
fields: street, city, state, and zip. In addition, the zip field contains the nested
fields: z_code and z_suffix. A query on the zip field returns values for the z_code
and z_suffix fields. You can specify, however, that a query returns only specific
nested fields. The following example shows how to use dot notation to construct a
SELECT statement that returns rows for the z_code field of the address column
only:
SELECT address.zip.z_code

FROM employee;

Rules of Precedence: The database server uses the following precedence rules to
interpret dot notation:
1. schema name_a . table name_b . column name_c . field name_d

2. table name_a . column name_b . field name_c . field name_d

3. column name_a . field name_b . field name_c . field name_d

When the meaning of an identifier is ambiguous, the database server uses
precedence rules to determine which database object the identifier specifies.
Consider the following two tables:
CREATE TABLE b (c ROW(d INTEGER, e CHAR(2));
CREATE TABLE c (d INTEGER);

In the following SELECT statement, the expression c.d references column d of table
c (rather than field d of column c in table b) because a table identifier has a higher
precedence than a column identifier:
SELECT *

FROM b,c
WHERE c.d = 10;

For more information about precedence rules and how to use dot notation with
ROW columns, see the IBM Informix Guide to SQL: Tutorial.

Using Dot Notation with Row-Type Expressions: Besides specifying a column of
a ROW data type, you can also use dot notation with any expression that evaluates
to a ROW type. In an INSERT statement, for example, you can use dot notation in
a subquery that returns a single row of values. Assume that you created a ROW
type named row_t:

4-62 IBM Informix Guide to SQL: Syntax

CREATE ROW TYPE row_t (part_id INT, amt INT);

Also assume that you created a typed table named tab1 that is based on the row_t
ROW type:
CREATE TABLE tab1 OF TYPE row_t;

Assume also that you inserted the following values into table tab1:
INSERT INTO tab1 VALUES (ROW(1,7));
INSERT INTO tab1 VALUES (ROW(2,10));

Finally, assume that you created another table named tab2:
CREATE TABLE tab2 (colx INT);

Now you can use dot notation to insert the value from only the part_id column of
table tab1 into the tab2 table:
INSERT INTO tab2

VALUES ((SELECT t FROM tab1 t
WHERE part_id = 1).part_id);

The asterisk form of dot notation is not necessary when you want to select all
fields of a ROW-type column because you can specify the column name alone to
select all of its fields. The asterisk form of dot notation can be quite helpful,
however, when you use a subquery, as in the preceding example, or when you call
a user-defined function to return ROW-type values.

Suppose that a user-defined function named new_row returns ROW-type values,
and you want to call this function to insert the ROW-type values into a table.
Asterisk notation makes it easy to specify that all the ROW-type values that the
new_row() function returns are to be inserted into the table:
INSERT INTO mytab2 SELECT new_row (mycol).* FROM mytab1;

References to the fields of a ROW-type column or a ROW-type expression are not
allowed in fragment expressions. A fragment expression is an expression that
defines a table fragment or an index fragment in SQL statements like CREATE
TABLE, CREATE INDEX, and ALTER FRAGMENT.

Using the Substring Operator
You can use the substring operator on CHAR, VARCHAR, NCHAR, NVARCHAR,
BYTE, and TEXT columns to define a column substring as the portion of the column
that is specified by the expression. After the identifier of a character column, when
a pair of bracket ([]) symbols enclose a comma-separated pair of unsigned
integers in which the first integer is greater than zero but not greater than the last
integer, Informix interprets the brackets as the substring operator. The expression
returns the first through last characters of the data value in the column, where first
and last define a substring. For example, in the expression cat_advert [6,15], the
returned value is the 6th through 15th characters of column cat_advert.

In the default locale, if the data value occupies at least 15 bytes, this expression
evaluates to a substring that includes ten bytes of the column value, but in a
multibyte locale this expression returns a string of ten consecutive logical
characters whose storage length might exceed 10 bytes, beginning with the sixth
logical character. For more information on the GLS aspects of column substrings,
see the IBM Informix GLS User's Guide.

In the following example, if a value in the lname column of the customer table is
Greenburg, the following expression evaluates to burg:

Chapter 4. Data Types and Expressions 4-63

lname[6,9]

A conditional expression can include a column expression that uses the substring
operator ([first, last]), as in the following example:
SELECT lname FROM customer WHERE phone[5,7] = ’356’;

Here the quotation marks are required, to prevent the database server from
applying a numeric filter to the digits in the criterion value.

See also the section “String-Manipulation Functions” on page 4-140, which
describes two built-in SQL functions, SUBSTR() and SUBSTRING() that can
specify a substring expression within an SQL statement.

Using Rowids
In Informix, you can use the rowid column that is associated with a table row as a
property of the row. The rowid column is essentially a hidden column in
nonfragmented tables and in fragmented tables that were created with the WITH
ROWIDS clause. The rowid column is unique for each row, but it is not necessarily
sequential. It is recommended, however, that you use primary keys as an access
method rather than exploiting the rowid column.

The following examples use the ROWID keyword in a SELECT statement:
SELECT *, ROWID FROM customer;

SELECT fname, ROWID FROM customer ORDER BY ROWID;

SELECT HEX(rowid) FROM customer WHERE customer_num = 106;

The last example shows how to get the page number (the first six digits after 0x)
and the slot number (the last two digits) of the location of your row.

You cannot use the ROWID keyword in the select list of the Projection clause of a
query that contains an aggregate function.

Using Smart Large Objects
The SELECT, UPDATE, and INSERT statements do not manipulate the values of
smart large objects directly. Instead, they use a handle value, which is a type of
pointer, to access the BLOB or CLOB value, as follows:
v The SELECT statement returns a handle value to the BLOB or CLOB value that

the projection list specifies. SELECT does not return the actual data for the BLOB
or CLOB column that the projection list specifies. Instead, it returns a handle
value to the column data.

v The INSERT and UPDATE statements do not send the actual data for the BLOB
or CLOB column to the database server. Instead, they accept a handle value to
this data as the value to be inserted or updated.

To access the data of a smart-large-object column, you must use one of the
following application programming interfaces (APIs):
v From within an IBM Informix ESQL/C program, use the Informix ESQL/C

library functions that access smart large objects. For more information, see the
IBM Informix ESQL/C Programmer's Manual.

v From within a C program such as a DataBlade module, use the Client and
Server API. For more information, see your IBM DataBlade Developers Kit User's
Guide.

4-64 IBM Informix Guide to SQL: Syntax

You cannot use the name of a smart-large-object column in expressions that
involve arithmetic operators. For example, operations such as addition or
subtraction on the smart-large-object handle value have no meaning.

When you select a smart-large-object column, you can assign the handle value to
any number of columns: all columns with the same handle value share the CLOB
or BLOB value. This storage arrangement reduces the amount of disk space that
the CLOB or BLOB value, but when several columns share the same
smart-large-object value, the following conditions result:
v The chance of lock contention on a CLOB or BLOB column increases. If two

columns share the same smart-large-object value, the data might be locked by
either column that needs to access it.

v The CLOB or BLOB value can be updated from a number of points.

To remove these constraints, you can create separate copies of the BLOB or CLOB
data for each column that needs to access it. You can use the LOCOPY function to
create a copy of an existing smart large object.

You can also use the built-in functions LOTOFILE, FILETOCLOB, and
FILETOBLOB to access smart-large-object values, as described in
“Smart-Large-Object Functions” on page 4-121. For more information on the BLOB
and CLOB data types, see the IBM Informix Guide to SQL: Reference.
Related concepts

Description of Data Types (SQL Reference)

Conditional Expressions

Conditional expressions return values that depend on the outcome of conditional
tests. This diagram shows the syntax for Conditional Expressions.

Conditional Expressions:

(1)
CASE Expressions

(2)
NVL Function

(3)
NULLIF Function

(4)
DECODE Function

Notes:

1 See “CASE Expressions”

2 See “NVL Function” on page 4-68

3 See “NULLIF Function” on page 4-68

4 See “DECODE Function” on page 4-69

CASE Expressions
The CASE expression allows an SQL statement such as the SELECT statement to
return one of several possible results, depending on which of several conditions
evaluates to true. The CASE expression has two forms: generic CASE expressions
and linear CASE expressions.

Chapter 4. Data Types and Expressions 4-65

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_095.htm#ids_sqr_095

CASE Expressions:

(1)
Generic CASE Expression

(2)
Linear CASE Expression

Notes:

1 See “Generic CASE Expressions”

2 See “Linear CASE Expressions” on page 4-67

You must include at least one WHEN clause in the CASE expression. Subsequent
WHEN clauses and the ELSE clause are optional. You can use a generic or linear
CASE expression wherever you can use a column expression in an SQL statement
(for example, in the Projection clause a SELECT statement).

Expressions in the search condition or the result value expression can contain
subqueries, and you can nest a CASE expression in another CASE expression.
When a CASE expression appears in an aggregate expression, you cannot use
aggregate functions in the CASE expression.

You can specify a trigger-type Boolean operator (DELETING, INSERTING,
SELECTING, or UPDATING) as a condition in a CASE expression only within a
trigger routine.

Generic CASE Expressions:

A generic CASE expression tests for a true condition in a WHEN clause. If it finds
a true condition, it returns the result specified in the THEN clause.

Generic CASE Expression:

CASE �
(1)

WHEN Condition THEN expr
NULL ELSE expr

NULL

END

Notes:

1 See “Condition” on page 4-5

Element Description Restrictions Syntax

expr Expression that returns
some data type

Data type of expr in a THEN clause must be compatible
with data types of expressions in other THEN clauses

“Expression”
on page 4-40

The database server processes the WHEN clauses in the order that they appear in
the statement. If the search condition of a WHEN clause evaluates to TRUE, the
database server uses the value of the corresponding THEN expression as the result,
and stops processing the CASE expression.

If no WHEN condition evaluates to TRUE, the database server uses the ELSE
expression as the overall result. If no WHEN condition evaluates to TRUE, and no
ELSE clause was specified, the returned CASE expression value is NULL. You can

4-66 IBM Informix Guide to SQL: Syntax

use the IS NULL condition to handle NULL results. For information on how to
handle NULL values, see “IS NULL and IS NOT NULL Conditions” on page 4-12.

The next example shows a generic CASE expression in the Projection clause.

In this example, the user retrieves the name and address of each customer as well
as a calculated number that is based on the number of problems that exist for that
customer:
SELECT cust_name,

CASE
WHEN number_of_problems = 0

THEN 100
WHEN number_of_problems > 0 AND number_of_problems < 4

THEN number_of_problems * 500
WHEN number_of_problems >= 4 and number_of_problems <= 9

THEN number_of_problems * 400
ELSE

(number_of_problems * 300) + 250
END,
cust_address

FROM custtab

In a generic CASE expression, all the results should be of the same data type, or
they should evaluate to a common compatible data type. If the results in all the
WHEN clauses are not of the same data type, or if they do not evaluate to values
of mutually compatible types, an error occurs.

Linear CASE Expressions:

A linear CASE expression compares the value of the expression that follows the
CASE keyword with an expression in a WHEN clause.

Linear CASE Expression:

CASE expr � WHEN expr THEN expr
NULL ELSE expr

NULL

END

Element Description Restrictions Syntax

expr Expression that
returns a value
of some data
type

Data type of expr that follows the WHEN keyword must be
compatible with data type of the expression that follows the CASE
keyword. Data type of expr in the THEN clause must be compatible
with data types of expressions in other THEN clauses.

“Expression”
on page 4-40

The database server evaluates the expression that follows the CASE keyword, and
then processes the WHEN clauses sequentially. If an expression after the WHEN
keyword returns the same value as the expression that follows the CASE keyword,
the database server uses the value of the expression that follows the THEN
keyword as the overall result of the CASE expression. Then the database server
stops processing the CASE expression.

If none of the WHEN expressions return the same value as the expression that
follows the CASE keyword, the database server uses the expression of the ELSE
clause as the overall result of the CASE expression (or, if no ELSE clause was
specified, the returned value of the CASE expression is NULL).

Chapter 4. Data Types and Expressions 4-67

The next example shows a linear CASE expression in the projection list of the
Projection clause of a SELECT statement. For each movie in a table of movie titles,
the query returns the title, the cost, and the type of the movie. The statement uses
a CASE expression to derive the type of each movie:
SELECT title, CASE movie_type

WHEN 1 THEN ’HORROR’
WHEN 2 THEN ’COMEDY’
WHEN 3 THEN ’ROMANCE’
WHEN 4 THEN ’WESTERN’
ELSE ’UNCLASSIFIED’

END,
our_cost FROM movie_titles;

In linear CASE expressions, the data types of WHEN clause expressions must be
compatible with that of the expression that follows the CASE keyword.

NVL Function

The NVL expression returns different results, depending on whether its first
argument evaluates to NULL.

NVL Function:

NVL (expr1 , expr2)

Element Description Restrictions Syntax

expr1 expr2 Expressions that return values of a
compatible data type

Cannot be a host variable or a BYTE or
TEXT data type

“Expression”
on page 4-40

NVL evaluates expression1. If expression1 is not NULL, then NVL returns the value
of expression1. If expression1 is NULL, NVL returns the value of expression2. The
expressions expression1 and expression2 can be of any data type, as long as they can
be cast to a common compatible data type.

Suppose that the addr column of the employees table has NULL values in some
rows, and the user wants to be able to print the label Address unknown for these
rows. The user enters the following SELECT statement to display the label Address
unknown when the addr column has a NULL value:
SELECT fname, NVL (addr, ’Address unknown’) AS address

FROM employees;

NULLIF Function

The NULLIF expression returns different results, depending on whether its two
arguments are equal.

NULLIF Function:

NULLIF (expr1 , expr2)

Element Description Restrictions Syntax

expr1 expr2 Expressions that return values of a
compatible data type

Cannot be a BYTE or TEXT data type “Expression”
on page 4-40

4-68 IBM Informix Guide to SQL: Syntax

NULLIF evaluates its two arguments, expr1 and expr2.
v If their values are equal. then NULLIF returns NULL.
v If their values are not equal. then NULLIF returns expr1.

The expr1 and expr2 arguments can be of any data type for which a built-in
comparison function exists, or any two data types that can be cast to a compatible
data type that has a built-in comparison function.

The following example uses the NULLIF function to convert Boolean FALSE values
('f') to NULL values:
SELECT name, answer, NULLIF(answer, ’f’) FROM booktab;

Here the first argument is a Boolean column expression that can have true ('t') or
false ('f') values, and the second Boolean argument is always 'f" (for FALSE). For
rows that have 'f' in the answer column, the value returned by the NULLIF
function will be NULL (because the NULL value is returned when the arguments
are equal). For rows that have 't' as the first argument, however, the value returned
by NULLIF is always 't', because the two arguments cannot be equal when one is
't' and the other is 'f'; the first argument is returned when the two values are not
equal.

DECODE Function

The DECODE expression is similar to the CASE expression in that it can print
different results depending on the values found in a specified column.

DECODE Function:

�

,
, NULL

DECODE (expr , when_expr , then_expr)
NULL , else_expr

Element Description Restrictions Syntax

expr, else_expr,
then_expr, when_expr

Expressions whose
values and data types
can be evaluated

Data types of when_expr and expr must be
compatible, as must then_expr and else_expr.
Value of when_expr cannot be a NULL.

“Expression”
on page 4-40

The expressions expr, when_expr, and then_expr are required. DECODE evaluates
expr and compares it to when_expr. If the value of when_expr matches the value of
expr, then DECODE returns then_expr.

The expressions when_expr and then_expr are an expression pair, and you can
specify any number of expression pairs in the DECODE function. In all cases,
DECODE compares the first member of the pair against expr and returns the
second member of the pair if the first member matches expr.

If no expression matches expr, DECODE returns else_expr. If no expression matches
expr and you specified no else_expr, then DECODE returns NULL.

You can specify any data type for the arguments, but two restrictions exist:
v All instances of when_expr must have the same data type, or a common

compatible type must exist. All instances of when_expr must also have the same
(or a compatible) data type as expr.

Chapter 4. Data Types and Expressions 4-69

v All instances of then_expr must have the same data type, or a common
compatible type must exist. All instances of then_expr must also have the same
(or a compatible) data type as else_expr.

Suppose that a user wants to convert descriptive values in the evaluation column
of the students table to numeric values in the output. The following table shows
the contents of the students table.

firstname evaluation firstname evaluation

Edward Great Mary Good

Joe Not done Jim Poor

The user now enters a query with the DECODE function to convert the descriptive
values in the evaluation column to numeric equivalents:
SELECT firstname, DECODE(evaluation,

’Poor’, 0,
’Fair’, 25,
’Good’, 50,
’Very Good’, 75,
’Great’, 100,
-1) as grade

FROM students;

The following table shows the output of this SELECT statement.

firstname evaluation firstname evaluation

Edward 100 Mary 50

Joe -1 Jim 0

Constant Expressions

Certain expressions that return a fixed value are called constant expressions. These
include variant function operators that read the system clock, but that are valid in
contexts where literal constants are also valid. Among these expressions are the
following operators (or system constants) whose returned values are determined at
runtime:
v CURRENT returns the current time and date from the system clock.
v CURRENT_ROLE returns the name of the role, if any, whose privileges are

enabled for the current user.
v DEFAULT_ROLE returns the name of the role, if any, that is the default role for

the current user.
v DBSERVERNAME returns the name of the current database server.
v SITENAME is a synonym for DBSERVERNAME.

v SYSDATE reads the DATETIME value from the system clock like the
CURRENT operator, but has a different default precision.

v TODAY returns the current calendar date from the system clock.
v USER returns the login name (also called the authorization identifier) of the

current user.

Besides these operators, the term constant expression can also refer to a quoted
string, to a literal value, or to the UNITS operator with its operands.

4-70 IBM Informix Guide to SQL: Syntax

The Constant Expression segment has the following syntax.

Constant Expressions:

(1)
Quoted String

(2)
Literal Number
USER
(3)

CURRENT_ROLE
DEFAULT_ROLE

(3)
SITENAME
DBSERVERNAME

TODAY
CURRENT
SYSDATE precision

(4)
Literal DATETIME

(5)
Literal INTERVAL

num UNITS time_unit
sequence . CURRVAL

owner . synonym NEXTVAL
(6)

Literal Collection
(7)

Literal Row
literal opaque type
literal BOOLEAN

Notes:

1 See “Quoted String” on page 4-188

2 See “Literal Number” on page 4-184

3 Informix extension

4 See “Literal DATETIME” on page 4-180

5 See “Literal INTERVAL” on page 4-182

6 See “Literal Collection” on page 4-177

7 See “Literal Row” on page 4-185

Element Description Restrictions Syntax

literal Boolean Literal representation of a BOOLEAN
value

Must be either t (TRUE) or f
(FALSE)

“Quoted String” on
page 4-188

literal opaque
type

Literal representation of value of an
opaque data type

Must be recognized by the input
support function of opaque type

Defined by UDT
developer

num How many of specified time units. See
“UNITS Operator” on page 4-77.

If num is not an integer, the
fractional part is truncated

“Literal Number”
on page 4-184

owner Name of the owner of sequence Must own sequence “Owner Name” on
page 5-45

precision Precision of the returned DATETIME
expression

On Windows systems the
maximum scale of seconds is
FRACTION(3).

“DATETIME Field
Qualifier” on page
4-38

Chapter 4. Data Types and Expressions 4-71

Element Description Restrictions Syntax

sequence Name of a sequence Must exist in current database “Identifier” on page
5-21

synonym Synonym for the name of a sequence Must exist in current database “Identifier” on page
5-21

time_unit Keyword to specify time unit: YEAR,
MONTH, DAY, HOUR, MINUTE,
SECOND, or FRACTION

Must be one of the keywords at
left. Case insensitive but cannot be
enclosed within quotes

See the Restrictions
column.

Quoted String

The following examples show quoted strings as expressions:
SELECT ’The first name is ’, fname FROM customer;

INSERT INTO manufact VALUES (’SPS’, ’SuperSport’);

UPDATE cust_calls SET res_dtime = ’2007-1-1 10:45’
WHERE customer_num = 120 AND call_code = ’B’;

For more information, see “Quoted String” on page 4-188.

Literal Number

The following examples show literal numbers as expressions:
INSERT INTO items VALUES (4, 35, 52, ’HRO’, 12, 4.00);

INSERT INTO acreage VALUES (4, 5.2e4);

SELECT unit_price + 5 FROM stock;

SELECT -1 * balance FROM accounts;

For more information, see “Literal Number” on page 4-184.

USER Operator

The USER operator returns a string containing the login name (also called the
authorization identifier) of the current user who is running the process.

The following statements show how you might use the USER operator:
INSERT INTO cust_calls VALUES

(221,CURRENT,USER,’B’,’Decimal point off’, NULL, NULL);

SELECT * FROM cust_calls WHERE user_id = USER;

UPDATE cust_calls SET user_id = USER WHERE customer_num = 220;

The USER operator does not change the lettercase of a user ID. If you use USER in
an expression and the current user is Robertm, the USER operator returns
Robertm, not robertm or ROBERTM.

If you specify USER as a default column value, column must be of type CHAR,
VARCHAR, NCHAR, NVARCHAR, or LVARCHAR.

4-72 IBM Informix Guide to SQL: Syntax

If you specify USER as the default value for a column, the size of column should
not be less than 32 bytes. You risk getting an error during operations such as
INSERT or ALTER TABLE if the column length is too small to store the default
value.

In an ANSI-compliant database, if you do not enclose the owner name in quotation
marks, the name of the table owner is stored as uppercase letters. If you use the
USER operator as part of a condition, you must be sure that the way the user
name is stored matches what the USER operator returns with respect to lettercase.

CURRENT_ROLE Operator

The CURRENT_ROLE operator returns a string that contains the name of the
currently enabled role of the user who is running the session. This role was either
set in the session explicitly, using the SET ROLE statement, or else implicitly as a
default role when the current user connected to the database. If the user holds no
role, or if no role that was granted to the user is currently enabled,
CURRENT_ROLE returns a NULL value. If the user has been granted no role
individually, but a default role has been granted to PUBLIC, and this default role
has been explicitly or implicitly enabled, CURRENT_ROLE returns the name of
this default role.

The next statement shows how you might use the CURRENT_ROLE operator:
select CURRENT_ROLE FROM systables WHERE tabid = 1;

The CURRENT_ROLE operator does not change the lettercase of the identifier of a
role. If you use CURRENT_ROLE in an expression and your current role is
Czarina, the CURRENT_ROLE operator returns Czarina, not czarina.

If you specify CURRENT_ROLE as the default value for a column, the column
must have a CHAR, VARCHAR, LVARCHAR, NCHAR, or NVARCHAR data type.
Because the name of a role is an authorization identifier, truncation might occur if
the column length is less than 32 bytes.

DEFAULT_ROLE Operator

The DEFAULT_ROLE operator evaluates to a string that contains the name of the
default role that has been granted to the user who is running the session. This
default role need not be currently enabled, but it must not have been revoked since
the most recent GRANT DEFAULT ROLE statement that referenced the user or
PUBLIC in the TO clause.

If no default role is explicitly defined for the current user, but PUBLIC has a
default role, DEFAULT_ROLE returns the default role of PUBLIC.

If the user has no default role, or if the default role that was most recently granted
to the user explicitly, or as PUBLIC, was subsequently revoked by the REVOKE
DEFAULT ROLE statement, DEFAULT_ROLE returns a NULL value. If the user
has been granted no default role individually, but a default role has been granted
to PUBLIC, the DEFAULT_ROLE operator returns the name of this default role. If
no default role is currently defined for the user nor for PUBLIC, however,
DEFAULT_ROLE returns NULL.

Chapter 4. Data Types and Expressions 4-73

The SET ROLE statement has no effect on the DEFAULT_ROLE operator, but any
access privileges of the default role are not necessarily available to the user if SET
ROLE has activated some other role, or if SET ROLE specified NULL or NONE as
the current role of the user.

The next statements show how you might use the DEFAULT_ROLE operator:
select DEFAULT_ROLE from systables where tabid = 1;

DEFAULT_ROLE does not change the lettercase of the identifier of a role.

If you specify DEFAULT_ROLE as the default value for a column, the column
must have a CHAR, VARCHAR, LVARCHAR, NCHAR, or NVARCHAR data type.
Because the name of a role is an authorization identifier, truncation might occur if
the column width is less than 32 bytes. (See “Owner Name” on page 5-45 for the
syntax of authorization identifiers.)

DBSERVERNAME and SITENAME Operators
The DBSERVERNAME operator returns the SQL identifier of the database server,
as defined by the DBSERVERNAME parameter in the ONCONFIG file for the
Informix instance where the current database resides, or as specified in the
INFORMIXSERVER environment variable. SITENAME is a keyword synonym for
the DBSERVERNAME operator.

You can use the DBSERVERNAME operator to specify the location of a table, to
put information into a table, or to extract information from a table. You can insert
DBSERVERNAME into a simple character field or use it as a default value for a
column.

If you specify DBSERVERNAME as a default column value in the CREATE
TABLE or ALTER TABLE statements, the column must be a CHAR, VARCHAR,
LVARCHAR, NCHAR, or NVARCHAR data type.

If you specify DBSERVERNAME or SITENAME as the default value for a
column, the size of the column should be at least 128 bytes long. You risk getting
an error message during INSERT and ALTER TABLE operations if the length of the
column is too small to store the default value.

The following examples use DBSERVERNAME or SITENAME in DML
statements.
v The first SELECT statement returns the name of the database server instance

where the customer table resides. (Because the query is not restricted by a
WHERE clause, it returns the same DBSERVERNAME value for every row in
the table. If you include the DISTINCT keyword in the projection clause, the
query returns DBSERVERNAME only once.)

v The second statement adds a row that contains the name of the current database
server to a table.

v The third statement returns all rows that have the name of the current database
server in the host_tab.site_col column.

v The last statement changes to the name of the current database server the value
of the customer.company column in the row whose SERIAL value of
customer_num is 120:

SELECT DBSERVERNAME FROM customer;

INSERT INTO host_tab VALUES (’1’, SITENAME);

4-74 IBM Informix Guide to SQL: Syntax

SELECT * FROM host_tab WHERE site_col = DBSERVERNAME;

UPDATE customer SET company = SITENAME
WHERE customer_num = 120;

TODAY Operator

Use the TODAY operator to return the system date as a DATE data type. If you
specify TODAY as a default column value, the column must be a DATE column.

The following examples show how you might use the TODAY operator in an
INSERT, UPDATE, or SELECT statement:
UPDATE orders (order_date) SET order_date = TODAY

WHERE order_num = 1005;

INSERT INTO orders VALUES
(0, TODAY, 120, NULL, N, ’1AUE217’, NULL, NULL, NULL, NULL);

SELECT * FROM orders WHERE ship_date = TODAY;

For code examples of setting non-default time zones, see “CURRENT Operator.”

CURRENT Operator

The CURRENT operator returns a DATETIME value with the date and time of
day, showing the current instant.

If you do not specify a DATETIME qualifier, the default qualifier is YEAR TO
FRACTION(3). The USEOSTIME configuration parameter specifies whether or not
the database server uses subsecond precision when it obtains the current time from
the operating system. For more information on the USEOSTIME configuration
parameter, see your IBM Informix Administrator's Reference.

You can use CURRENT in any context where a literal DATETIME is valid. (See
“Literal DATETIME” on page 4-180). If you specify CURRENT as the default value
for a column, it must be a DATETIME column and the qualifier of CURRENT
must match the column qualifier, as the following example shows:
CREATE TABLE new_acct (col1 INT, col2 DATETIME YEAR TO DAY

DEFAULT CURRENT YEAR TO DAY);

CURRENT is always evaluated in the database server where the current database
is located. If the current database is in a remote database server, the returned value
is from the remote host.

SQL is not a procedural language, and CURRENT might not execute in the lexical
order of its position in a statement. You should not use CURRENT to mark the
start, the end, nor a specific point in the execution of an SQL statement.

If you use the CURRENT operator in more than once in a single statement,
identical values might be returned by each instance of CURRENT. You cannot rely
on CURRENT to return distinct values each time it executes.

The returned value is based on the system clock and is fixed when the SQL
statement that specifies CURRENT starts execution. For example, any call to
CURRENT from inside the SPL function that an EXECUTE FUNCTION (or
EXECUTE PROCEDURE) statement invokes returns the value of the system clock
when the SPL function starts.

Chapter 4. Data Types and Expressions 4-75

On UNIX and Linux systems, the precision of the value returned by the CURRENT
operator is determined by its DATETIME Qualifier, which can range from a single
time unit (such as MONTH TO MONTH) up to YEAR TO FRACTION (5). The
system clock on Windows, however, returns only millisecond precision. Even if
you specify "FRACTION(5)" in the DATETIME Qualifier, the CURRENT operator
on Windows supports no greater than "FRACTION(3)" precision.

If your platform does not provide a system call that returns the current time with
subsecond precision, CURRENT returns a zero for the FRACTION field.

In the following example, the first statement uses CURRENT in a WHERE
condition. The second statement uses CURRENT as an argument to the DAY
function. The last query selects rows whose call_dtime value is within a range
from the beginning of 2007 to the current instant:
DELETE FROM cust_calls WHERE res_dtime < CURRENT YEAR TO MINUTE;

SELECT * FROM orders WHERE DAY(ord_date) < DAY(CURRENT);

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN ’2007-1-1 00:00:00’ AND CURRENT;

For more information, see “DATETIME Field Qualifier” on page 4-38.
Related reference

USEOSTIME Configuration Parameter (Administrator's Reference)

SYSDATE Operator

The SYSDATE operator returns the current DATETIME value from the system
clock. SYSDATE is identical to the CURRENT operator, except that the default
precision of SYSDATE is YEAR TO FRACTION(5), while the default precision of
CURRENT is YEAR TO FRACTION(3).

On Windows platforms that do not support a seconds scale greater than
FRACTION(3), SYSDATE is in effect a synonym for the CURRENT operator,

You can use SYSDATE in any context where the CURRENT operator is valid.

The SQL statements in the following example use the SYSDATE operator to
specify the default values for two DATETIME columns of a database table, and to
insert a new row into the table:
CREATE TABLE tab1 (
id SERIAL,
value CHAR(20),
time1 DATETIME YEAR TO FRACTION(5) DEFAULT SYSDATE,
time2 DATETIME YEAR TO SECOND DEFAULT SYSDATE YEAR TO SECOND
);

INSERT INTO tab1 VALUES (0, 'description’, SYSDATE, SYSDATE);

The following query accesses the table that was created in the previous example:
SELECT SYSDATE AS sysdate, * FROM tab1;

The results are sensitive to the date and time when the INSERT and SELECT
statements are issued, but the query could return these values on September 23,
2007:

4-76 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0187.htm#ids_adr_0187

sysdate 2007-09-23 21:30:23.00000
id 1
value description
time1 2007-09-23 21:29:27.00000
time2 2007-09-23 21:29:27

The next query accesses the same table, using SYSDATE in the WHERE clause as
an argument to the DAY function:
SELECT *, DAY(time1) AS day FROM tab1

WHERE DAY(time1) = DAY(SYSDATE);

The query could return these values on September 23, 2007:
id 1
value description
time1 2007-09-23 21:29:27.00000
time2 2007-09-23 21:29:27
day 23

Only Informix supports SYSDATE. Except for its name and its default precision,
the description of the CURRENT operator in this document also describes the
SYSDATE operator.

Literal DATETIME

The following examples show literal DATETIME as an expression:
SELECT DATETIME (2007-12-6) YEAR TO DAY FROM customer;

UPDATE cust_calls SET res_dtime = DATETIME (2008-07-07 10:40)
YEAR TO MINUTE

WHERE customer_num = 110
AND call_dtime = DATETIME (2008-07-07 10:24) YEAR TO MINUTE;

SELECT * FROM cust_calls
WHERE call_dtime
= DATETIME (2008-12-25 00:00:00) YEAR TO SECOND;

For more information, see “Literal DATETIME” on page 4-180.

Literal INTERVAL

The following examples each use a literal INTERVAL as an expression:
INSERT INTO manufact VALUES (’CAT’, ’Catwalk Sports’,

INTERVAL (16) DAY TO DAY);

SELECT lead_time + INTERVAL (5) DAY TO DAY FROM manufact;

The second example adds five days to each value of lead_time selected from the
manufact table.

For more information, see “Literal INTERVAL” on page 4-182.

UNITS Operator

The UNITS operator specifies an INTERVAL value whose precision includes only
one time unit. You can use UNITS in arithmetic expressions that increase or
decrease one of the time units in an INTERVAL or DATETIME value.

If the num operand is not an integer, it is truncated to the largest whole number
that is the same as (or nearer to zero than) the specified value when the database
server evaluates the expression.

Chapter 4. Data Types and Expressions 4-77

In the following example, the first SELECT statement uses the UNITS operator to
select all the manufacturer.lead_time values, increased by five days. The second
SELECT statement finds all the calls that were placed more than 30 days ago.

If the expression in the WHERE clause returns a value greater than 99 (maximum
number of days), the query fails. The last statement increases the lead time for the
ANZA manufacturer by two days:
SELECT lead_time + 5 UNITS DAY FROM manufact;

SELECT * FROM cust_calls WHERE (TODAY - call_dtime) > 30 UNITS DAY;

UPDATE manufact SET lead_time = 2 UNITS DAY + lead_time
WHERE manu_code = ’ANZ’;

NEXTVAL and CURRVAL Operators

You can access the value of a sequence using the NEXTVAL or CURRVAL
operators in SQL statements. You must qualify NEXTVAL or CURRVAL with the
name (or synonym) of a sequence object that exists in the same database, using the
format sequence.NEXTVAL or sequence.CURRVAL. An expression can also qualify
sequence by the owner name, as in zelaine.myseq.CURRVAL. You can specify the
SQL identifier of sequence or a valid synonym, if one exists.

In an ANSI-compliant database, you must qualify the name of the sequence with
the name of its owner (owner.sequence) if you are not the owner.

To use NEXTVAL or CURRVAL with a sequence, you must have the Select
privilege on the sequence or have the DBA privilege on the database. For
information about sequence-level privileges, see the “GRANT statement” on page
2-401 statement.

Using NEXTVAL:

To access a sequence for the first time, you must refer to sequence.NEXTVAL before
you can refer to sequence.CURRVAL. The first reference to NEXTVAL returns the
initial value of the sequence. Each subsequent reference to NEXTVAL increments
the value of the sequence by the defined step and returns a new incremented value
of the sequence.

You can increment a given sequence only once within a single SQL statement. Even
if you specify sequence.NEXTVAL more than once within a single statement, the
sequence is incremented only once, so that every occurrence of sequence.NEXTVAL
in the same SQL statement returns the same value.

Except for the case of multiple occurrences within the same statement, every
sequence.NEXTVAL expression increments the sequence, regardless of whether you
subsequently commit or roll back the current transaction.

If you specify sequence.NEXTVAL in a transaction that is ultimately rolled back,
some sequence numbers might be skipped.

Using CURRVAL:

Any reference to CURRVAL returns the current value of the specified sequence,
which is the value that your last reference to NEXTVAL returned. After you
generate a new value with NEXTVAL, you can continue to access that value using
CURRVAL, regardless of whether another user increments the sequence.

4-78 IBM Informix Guide to SQL: Syntax

If both sequence.CURRVAL and sequence.NEXTVAL occur in an SQL statement, the
sequence is incremented only once. In this case, each sequence.CURRVAL and
sequence.NEXTVAL expression returns the same value, regardless of the order of
sequence.CURRVAL and sequence.NEXTVAL within the statement.

Concurrent Access to a Sequence:

A sequence always generates unique values within a database without perceptible
waiting or locking, even when multiple users refer to the same sequence
concurrently. When multiple users use NEXTVAL to increment the sequence, each
user generates a unique value that other users cannot see.

When multiple users concurrently increment the same sequence, gaps occur
between the values that each user sees. For example, one user might generate a
series of values, such as 1, 4, 6, and 8, from a sequence, while another user
concurrently generates the values 2, 3, 5, and 7 from the same sequence object.

Restrictions:

NEXTVAL and CURRVAL are valid only in SQL statements, not directly in SPL
statements. (But SQL statements that use NEXTVAL and CURRVAL can be used in
SPL routines.) The following restrictions apply to these operators in SQL
statements:
v You must have Select privilege on the sequence.
v In a CREATE TABLE or ALTER TABLE statement, you cannot specify NEXTVAL

or CURRVAL in the following contexts:
– In the Default clause of a column definition
– In the definition of a check constraint.

v In a SELECT statement, you cannot specify NEXTVAL or CURRVAL in the
following contexts:
– In the projection list when the DISTINCT keyword is used
– In the WHERE, GROUP BY, or ORDER BY clauses
– In a subquery
– When the UNION operator combines SELECT statements.

v You also cannot specify NEXTVAL or CURRVALL in these contexts:
– In fragmentation expressions
– In reference to a remote sequence object in another database.

Examples:

In the following examples, it is assumed that no other user is concurrently
accessing the sequence and that the user executes the statements consecutively.

These examples are based on the following sequence object and table:
CREATE SEQUENCE seq_2

INCREMENT BY 1 START WITH 1
MAXVALUE 30 MINVALUE 0
NOCYCLE CACHE 10 ORDER;

CREATE TABLE tab1 (col1 int, col2 int);
INSERT INTO tab1 VALUES (0, 0);

You can use NEXTVAL (or CURRVAL) in the Values clause of an INSERT
statement, as the following example shows:

Chapter 4. Data Types and Expressions 4-79

INSERT INTO tab1 (col1, col2)
VALUES (seq_2.NEXTVAL, seq_2.NEXTVAL);

In the previous example, the database server inserts an incremented value (or the
first value of the sequence, which is 1) into the col1 and col2 columns of the table.

You can use NEXTVAL (or CURRVAL) in the SET clause of the UPDATE
statement, as the following example shows:
UPDATE tab1

SET col2 = seq_2.NEXTVAL
WHERE col1 = 1;

In the previous example, the incremented value of the seq_2 sequence, which is 2,
replaces the value in col2 where col1 is equal to 1.

The following example shows how you can use NEXTVAL and CURRVAL in the
Projection clause of the SELECT statement:
SELECT seq_2.CURRVAL, seq_2.NEXTVAL FROM tab1;

In the previous example, the database server returns two rows of incremented
values, 3 and 4, from both the CURRVAL and NEXTVAL expressions. For the first
row of tab1, the database server returns the incremented value 3 for CURRVAL
and NEXTVAL; for the second row of tab1, it returns the incremented value 4.

For more examples on how to use NEXTVAL and CURRVAL, see the IBM Informix
Guide to SQL: Tutorial.

Literal Row

The syntax for a literal representation of the value of a named or unnamed ROW
data type is described in the section “Literal Row” on page 4-185. The following
examples show literal rows as expressions:
INSERT INTO employee VALUES

(ROW(’103 Baker St’, ’San Francisco’,
’CA’, 94500));

UPDATE rectangles
SET rect = ROW(8, 3, 7, 20)
WHERE area = 140;

EXEC SQL update table(:a_row)
set x=0, y=0, length=10, width=20;

SELECT row_col FROM tab_b
WHERE ROW(17, ’abc’) IN (row_col);

For the syntax of expressions that evaluate to field values of a ROW data type, see
“ROW Constructors” on page 4-81.

Literal Collection

Informix supports expressions that are literal representations of the values of
built-in or user-defined collection data types. The following examples show literal
collections as expressions:
INSERT INTO tab_a (set_col) VALUES ("SET{6, 9, 3, 12, 4}");

INSERT INTO TABLE(a_set) VALUES (9765);

4-80 IBM Informix Guide to SQL: Syntax

UPDATE table1 SET set_col = "LIST{3}";

SELECT set_col FROM table1
WHERE SET{17} IN (set_col);

For more information, see “Literal Collection” on page 4-177. For the syntax of
element values, see “Collection Constructors” on page 4-82.

Constructor Expressions

A constructor is a function that the database server uses to create an instance of a
specific data type. The database server supports ROW constructors and collection
constructors.

Constructor Expressions:

�

,
(1)

ROW (Expression)
(2)

Collection Constructors

Notes:

1 See “Expression” on page 4-40

2 See “Collection Constructors” on page 4-82

ROW Constructors

You use ROW constructors to generate values for ROW-type columns. Suppose you
create the following named ROW type and a table that contains the named ROW
type row_t and an unnamed ROW type:
CREATE ROW TYPE row_t (x INT, y INT);
CREATE TABLE new_tab
(
col1 row_t,
col2 ROW(a CHAR(2), b INT)
);

When you define a column as a named ROW type or unnamed ROW type, you
must use a ROW constructor to generate values for the ROW-type column. To
create a value for either a named ROW type or unnamed ROW type, you must
complete the following steps:
v Begin the expression with the ROW keyword.
v Specify a value for each field of the ROW type.
v Enclose the comma-separated list of field values within parentheses.

The format of the value for each field must be compatible with the data type of the
ROW field to which it is assigned.

You can use any kind of expression as a value with a ROW constructor, including
literals, functions, and variables. The following examples show the use of different
types of expressions with ROW constructors to specify values:
ROW(5, 6.77, ’HMO’)

ROW(col1.lname, 45000)

Chapter 4. Data Types and Expressions 4-81

ROW(’john davis’, TODAY)

ROW(USER, SITENAME)

The following statement uses literal numbers and quoted strings with ROW
constructors to insert values into col1 and col2 of the new_tab table:
INSERT INTO new_tab
VALUES
(
ROW(32, 65)::row_t,
ROW(’CA’, 34)
);

When you use a ROW constructor to generate values for a named ROW type, you
must explicitly cast the ROW value to the appropriate named ROW type. The cast
is necessary to generate a value of the named ROW type. To cast the ROW value
as a named ROW type, you can use the cast operator (::) or the CAST AS
keywords, as the following examples show:
ROW(4,5)::row_t
CAST (ROW(3,4) AS row_t)

You can use a ROW constructor to generate ROW type values in INSERT,
UPDATE, and SELECT statements. In the next example, the WHERE clause of a
SELECT statement specifies a ROW type value that is cast as type person_t:
SELECT * FROM person_tab

WHERE col1 = ROW(’charlie’,’hunter’)::person_t;

For more information on using ROW constructors in INSERT and UPDATE
statements, see the INSERT and UPDATE statements in this document. For
information on named ROW types, see the CREATE ROW TYPE statement. For
information on unnamed ROW types, see the discussion of the ROW data type in
the IBM Informix Guide to SQL: Reference. For task-oriented information on named
ROW types and unnamed ROW types, see the IBM Informix Database Design and
Implementation Guide.

Collection Constructors

Use a collection constructor to specify values for a collection column.

Collection Constructors:

SET
MULTISET
LIST

�

{ }
,

(1)
Expression

Notes:

1 See “Expression” on page 4-40

You can use collection constructors in the WHERE clause of the SELECT statement
and the VALUES clause of the INSERT statement. You can also pass collection
constructors to UDRs.

This table differentiates the types of collections that you can construct.

4-82 IBM Informix Guide to SQL: Syntax

Keyword Description

SET Indicates a collection of elements with the following qualities:

v The collection must contain unique values.

v Elements have no specific order associated with them.

MULTISET Indicates a collection of elements with the following qualities:

v The collection can contain duplicate values.

v Elements have no specific order associated with them.

LIST Indicates a collection of elements with the following qualities:

v The collection can contain duplicate values.

v Elements have ordered positions.

The element type of the collection can be any built-in or extended data type. You
can use any kind of expression with a collection constructor, including literals,
functions, and variables.

When you use a collection constructor with a list of expressions, the database
server evaluates each expression to its equivalent literal form and uses the literal
values to construct the collection.

You specify an empty collection with a set of empty braces ({ }).

Elements of a collection cannot be NULL. If a collection element evaluates to a
NULL value, the database server returns an error.

The element type of each expression must all be exactly the same data type. To
accomplish this, cast the entire collection constructor expression to a collection
type, or cast individual element expressions to the same type. If the database
server cannot determine that the collection type and the element types are
homogeneous, then the collection constructor returns an error. In the case of host
variables, this determination is made at bind time when the client declares the
element type of the host variable.

An exception to this restriction can occur when some elements of a collection are
VARCHAR data types but others are longer than 255 bytes. Here the collection
constructor can assign a CHAR(n) type to all elements, for n the length in bytes of
the longest element. (But see “Collection Data Types” on page 4-36 for an example
based on this exception, where the user avoids fixed-length CHAR elements by an
explicit cast to the LVARCHAR data type.)

Examples of Collection Constructors:

The following example shows that you can construct a collection with various
expressions, if the resulting values are of the same data type:
CREATE FUNCTION f (a int) RETURNS int;

RETURN a+1;
END FUNCTION;
CREATE TABLE tab1 (x SET(INT NOT NULL));
INSERT INTO tab1 VALUES
(
SET{10,

1+2+3,
f(10)-f(2),
SQRT(100) +POW(2,3),
(SELECT tabid FROM systables WHERE tabname = 'sysusers’),
'T’::BOOLEAN::INT}

Chapter 4. Data Types and Expressions 4-83

);
SELECT * FROM tab1 WHERE

x=SET{10,
1+2+3,
f(10)-f(2),
SQRT(100) +POW(2,3),

(SELECT tabid FROM systables WHERE tabname = 'sysusers’),
'T’::BOOLEAN::INT}

};

This assumes that a cast from BOOLEAN to INT exists. (For a more restrictive
syntax to specify collection values , see “Literal Collection” on page 4-177.)

NULL Keyword

The NULL keyword is valid in most contexts where you can specify a value. What
it specifies, however, is the absence of any value (or an unknown or missing
value).

NULL Keyword:

NULL

Within SQL, the keyword NULL is the only syntactic mechanism for accessing a
NULL value. NULL is not equivalent to zero, nor to any specific value. In
ascending ORDER BY operations, NULL values precede any non-NULL value; in
descending sorts, NULL values follow any non-NULL value. In GROUP BY
operations, all NULL values are grouped together. (Such groups might in fact be
logically heterogeneous, if they include missing or unknown values.)

The keyword NULL is a global symbol in the syntactic context of expressions,
meaning that its scope of reference is global.

Every data type, whether built-in or user-defined, can represent a NULL value.
IBM Informix supports cast expressions in the projection list. This means that users
can write expressions of the form NULL::datatype, in which datatype is any data
type known to the database server.

IBM Informix supports the typed NULL keyword in general expressions. NULL
alone in these scenarios results in a -201 syntax error. As a result, if null is defined
as a column name or a procedure name, it must be referenced with a table alias.
Otherwise, it returns a -201 syntax error. The behavior is summarized in the
following examples and results:
create table tab1 (a int, null int);
create table tab2 (a int, b int);

Table 4-1. NULL behavior

Statement Result

select null from tab1 where a = 1 -201 syntax error

select * from tab1 where null = a -201 syntax error

select * from tab1 where tab1.null = a Valid syntax

select * from tab1 where a = null -201 syntax error

select * from tab2 where a = null -201 syntax error

4-84 IBM Informix Guide to SQL: Syntax

Table 4-1. NULL behavior (continued)

Statement Result

select * from tab2 where null = a -201 syntax error

select * from tab2 where null = a -201 syntax error

select NULL::int from tab1 Valid syntax

select NULL::int from tab1 Valid syntax

select 1 + NULL::int from tab1 Valid syntax

select 1 + NULL::int from tab2 Valid syntax

select NULL::int + 1 from tab1 Valid syntax

IBM Informix prohibits the redefinition of NULL, because allowing such definition
would restrict the global scope of the NULL keyword. For this reason, any
mechanism that restricts the global scope or redefines the scope of the keyword
NULL will syntactically disable any cast expression involving a NULL value. You
must ensure that the occurrence of the keyword NULL receives its global scope in
all expression contexts.

For example, consider the following SQL code:
CREATE TABLE newtable
(
null int
);

SELECT null, null::int FROM newtable;

The CREATE TABLE statement is valid, because the column identifiers have a
scope of reference that is restricted to the table definition; they can be accessed
only within the scope of a table.

The SELECT statement in the example, however, poses some syntactic ambiguities.
Does the identifier null appearing in the projection list refer to the global keyword
NULL, or does it refer to the column identifier null that was declared in the
CREATE TABLE statement?
v If the identifier null is interpreted as the column name, the global scope of cast

expressions with the NULL keyword will be restricted.
v If the identifier null is interpreted as the NULL keyword, the SELECT statement

must generate a syntactic error for the first occurrence of null because the NULL
keyword can appear only as a cast expression in the projection list.

A SELECT statement of the following form is valid because the NULL column of
newtable is qualified with the table name:
SELECT newtable.null, null::int FROM newtable;

More involved syntactic ambiguities arise in the context of an SPL routine that has
a variable named null. An example follows:
CREATE FUNCTION nulltest() RETURNING INT;

DEFINE a INT;
DEFINE null INT;
DEFINE b INT;
LET a = 5;
LET null = 7;

Chapter 4. Data Types and Expressions 4-85

LET b = null;
RETURN b;

END FUNCTION;

EXECUTE FUNCTION nulltest();

When the preceding function executes in DB-Access, in the expressions of the LET
statement, the identifier null is treated as the keyword NULL. The function returns
a NULL value instead of 7.

Using null as a variable of an SPL routine would restrict the use of a NULL value
in the body of the SPL routine. Therefore, the preceding SPL code is not valid, and
causes IBM Informix to return the following error:
-947 Declaration of an SPL variable named ’null’ conflicts

with SQL NULL value.

In ESQL/C, you should use an indicator variable if there is the possibility that a
SELECT statement will return a NULL value.

Function Expressions

A function expression can return one or more values from built-in SQL functions
or from user-defined functions, as the following diagram shows.

Function Expressions:

(1) (2)
Algebraic Functions

(3)
CARDINALITY Function

(4)
SQLCODE Function

(5)
DBINFO Function

(6)
Encryption and Decryption Functions

(7)
Exponential and Logarithmic Functions

(8)
HEX Function

(9)
Length Functions

(10)
Security Label Support Functions

(10)
Smart-Large-Object Functions

(11)
Time Functions

(12)
Trigonometric Functions

(13)
String-Manipulation Functions

(14)
IFX_ALLOW_NEWLINE Function

(15)
User-Defined Functions

4-86 IBM Informix Guide to SQL: Syntax

Notes:

1 Informix extension

2 See “Algebraic Functions”

3 See “CARDINALITY Function” on page 4-97

4 See “SQLCODE Function (SPL)” on page 4-97

5 See “DBINFO Function” on page 4-98

6 See “Encryption and decryption functions” on page 4-106

7 See “Exponential and Logarithmic Functions” on page 4-115

8 See “Aggregate Expressions” on page 4-164

9 See “Length Functions” on page 4-117

10 See “Smart-Large-Object Functions” on page 4-121

11 See “Time Functions” on page 4-126

12 See “Trigonometric Functions” on page 4-138

13 See “String-Manipulation Functions” on page 4-140

14 See “IFX_ALLOW_NEWLINE Function” on page 4-159

15 See “User-Defined Functions” on page 4-160

The following examples show function expressions:
EXTEND (call_dtime, YEAR TO SECOND)

HEX (LENGTH(123))

MDY (12, 7, 1900 + cur_yr)

TAN (radians)

DATE (365/2)

ABS (-32)

LENGTH (’abc’) + LENGTH (pvar)

EXP (3)

HEX (customer_num)

MOD (10,3)

Algebraic Functions
Algebraic functions take one or more arguments of numeric data types. Besides
supporting numeric arguments, the CEIL and FLOOR functions can also take
character string arguments that can be converted to DECIMAL values, and the
ROUND and TRUNC functions can also take DATE or DATETIME arguments.

Algebraic Functions:

Chapter 4. Data Types and Expressions 4-87

ABS (num_expression)
CEIL
FLOOR

MOD (dividend, divisor)
POW (base, exponent)
POWER

, 2
ROOT (radicand)

, index
, 0

ROUND (num_expression)
TRUNC date_expression , factor
ROUND (date_expression , ' DD ')
TRUNC DAY

MONTH
YEAR

, 'DD'
ROUND (datetime_expression)
TRUNC , ' MI '

HH
DAY
MONTH
YEAR

SQRT (sqrt_radicand)

Element Description Restrictions Syntax

base Value to be raised to the power
specified in exponent

Must return a real number “Expression” on
page 4-40

date_expression Expression that evaluates to (or is cast
to) a DATE value

Must return a DATE value “Expression” on
page 4-40

datetime_expression Expression that evaluates to (or is cast
to) a DATETIME value

Must return a DATETIME
value

“Expression” on
page 4-40

dividend Value to be divided by divisor A real number “Expression” on
page 4-40

divisor Value by which to divide dividend A nonzero real number “Expression” on
page 4-40

exponent Power to which to raise base A real number “Expression” on
page 4-40

factor Number of significant digits to replace
with zero in the returned value. Default
is to return the rounded or truncated
integer part of the first argument.

Integer in range +32 to -32.
Positive or unsigned values are
applied to the right of the
decimal point, and negative
values are applied to the left.

“Literal Number”
on page 4-184

index Root to extract. The default is 2. A nonzero real number “Expression” on
page 4-40

num_expression Expression that evaluates to (or is cast
to) a numeric value

A real number “Expression” on
page 4-40

radicand Value whose root is to be returned A real number “Expression” on
page 4-40

sqrt_radicand Number with a real square root A nonnegative real number “Expression” on
page 4-40

ABS Function:

4-88 IBM Informix Guide to SQL: Syntax

The ABS function returns the absolute value of its numeric argument, returning
the same data type as its argument. The query in the following example returns all
orders for which a ship_charge greater than $20 was paid in cash (+) or as store
credit (-). .
SELECT order_num, customer_num, ship_charge

FROM orders WHERE ABS(ship_charge) > 20;

CEIL Function:

The CEIL function takes as its argument a numeric expression, or a string that can
be converted to a DECIMAL data type, and returns the DECIMAL(32)
representation of the smallest integer that is greater than or equal to its single
argument. The following query returns 33 as the smallest integer that is larger than
or equal to the CEIL argument of 32.3:
SELECT CEIL(32.3) FROM systables WHERE tabid = 1;

The next example returns -32 as the smallest integer that is larger than or equal to
the CEIL argument of -32.3 :
SELECT CEIL(-32.3) FROM systables WHERE tabid = 1;

FLOOR Function:

The FLOOR function takes as its argument a numeric expression, or a string that
can be converted to a DECIMAL data type, and returns the DECIMAL(32)
representation of the largest integer that is smaller than or equal to its single
argument. The following query returns 32 as the largest integer that is smaller than
or equal to the FLOOR argument of 32.3:
SELECT FLOOR(32.3) FROM systables WHERE tabid = 1;

The next example returns -33 as the largest integer that is smaller than or equal to
the FLOOR argument of -32.3 :
SELECT FLOOR(-32.3) FROM systables WHERE tabid = 1;

These examples illustrate how the FLOOR and CEIL functions provide upper and
lower bounds that differ by 1 when they have the same argument that has a
nonzero fractional part. For an integer argument, FLOOR and CEIL return the
same DECIMAL(32) representation of their argument.

MOD Function:

The MOD function takes as arguments two real number operands, and returns the
remainder from integer division of the integer part of the first argument (the
dividend) by the integer part of the second argument (the divisor). The value
returned is an INT data type (or INT8 for remainders outside the range of INT).
The quotient and any fractional part of the remainder are discarded. The divisor
cannot be 0. Thus, MOD (x,y) returns y (modulo x). Make sure that any variable
that receives the result is of a data type that can store the returned value.

This example tests to see if the current date is within a 30-day billing cycle:
SELECT MOD(TODAY - MDY(1,1,YEAR(TODAY)),30) FROM orders;

POW Function:

The POW function raises its first numeric argument, the base, to the power of its
second numeric argument, the exponent. The returned value is a FLOAT data type.

Chapter 4. Data Types and Expressions 4-89

The following example returns all rows from the circles table in which the radius
column value implies an area less than 1,000 square units, using an approximation
to pi with a scale of 4:
SELECT * FROM circles WHERE (3.1416 * POW(radius,2)) < 1000;

The function identifier POWER is a synonym for POW.

To use e, the base of natural logarithms, see “EXP Function” on page 4-115.

ROOT Function:

The ROOT function extracts a positive real root value, returned as a FLOAT data
type, from its first numeric expression argument, the radicand. If you specify a
second numeric argument, the index, which cannot be zero, then the returned value
to the power index is equal (within rounding error) to the radicand argument. If
only the radicand argument is supplied, 2 is the default index value. You cannot
specify zero as the value of index.

The first SELECT statement in the following example, which uses the default index
value of 2, returns the positive square root of the literal number 9. The second
example returns the cube root of the literal number 64.
SELECT ROOT(9) FROM angles; -- square root of 9
SELECT ROOT(64,3) FROM angles; -- cube root of 64

SQRT Function:

The SQRT function returns the positive square root of its argument, which must be
a non-negative numeric expression. The following example returns the square root
of 9 for each row of the angles table:
SELECT SQRT(9) FROM angles;

The SQRT function is equivalent to ROOT(x).

ROUND Function:

The ROUND function can reduce the precision of its first numeric, DATE, or
DATETIME argument, and returns the rounded value. If the first argument is
neither a number nor a point in time, it must be cast to a numeric, DATE, or
DATETIME data type.

The ROUND function resembles the TRUNC function, but differs in how it treats
any portion of its first argument that is smaller than the least significant digit or
time unit within the precision that its second argument specifies.
v If the absolute value of this portion is greater than half of the smallest unit

within the precision, the value of that digit or time unit is incremented by 1 in
the value returned by ROUND. If this portion is less than half of a unit,
however, it is discarded, and only the digits or time units of the first argument
within the specified or default precision are returned.

v The TRUNC function, in contrast, replaces with zero any digits less than the
specified precision for numeric expressions, and for DATE or DATETIME
expressions replaces any time units smaller than the specified format string with
1 for month or day time units, or with zero for time units smaller than day.

4-90 IBM Informix Guide to SQL: Syntax

The ROUND function can accept an optional second argument that specifies the
precision of the returned value. The syntax and semantics of the second argument
depend on whether the first argument is a number expression, a DATETIME
expression, or DATE expression.
v When the first argument is a numeric expression, the returned value is a

DECIMAL and the second argument can be an integer in the range from -32 to
+32 inclusive, specifying the position (relative to the decimal point) of the last
significant digit of the returned value. If you omit the factor specification when
the first argument is numeric, ROUND returns the value of the first argument
rounded to a scale of zero, or to the units place.
Positive-digit values specify rounding to the right of the decimal point;
negative-digit values specify rounding to the left of the decimal point, as
Figure 4-1 shows.

The following example uses the ROUND function with a column expression as
its first argument and no second argument, so that the numeric expression is
rounded to a scale of zero. This query returns the order number and rounded
total price of items whose total price (rounded to the default scale of zero
decimal places) is equal to $124.00.
SELECT order_num , ROUND(total_price) FROM items

WHERE ROUND(total_price) = 124.00;

If you use a MONEY data type as the argument for the ROUND function and
you round to an explicit or default scale of zero, the returned value is
represented with .00 as the fractional part. The SELECT statement in the
following example rounds 125.46 and a MONEY column value. The query
returns 125 and a rounded price in the form xxx.00 for each row in the items
table.
SELECT ROUND(125.46), ROUND(total_price) FROM items;

v When the first argument to ROUND is a DATETIME expression, the returned
value is a DATETIME YEAR TO MINUTE data type and the second argument
must be a quoted string that specifies the smallest significant time unit in the
returned value. If you omit the second argument, the default format string is
’DD’, specifying the nearest day, with the hour and minute rounded to 00:00.
The following format strings are valid as the second argument:

Table 4-2. Format strings for DATETIME arguments to the ROUND function

Format String Effect on Returned DATETIME Value

'YEAR' Rounded to the beginning of the nearest year, with dates after
June 30 rounded up to the next year. The month, day, hour, and
minute values round to -01-01 00:00.

'MONTH' Rounded to the beginning of the nearest month. Dates after the
15th are rounded up to the next month. The day, hour, and minute
values round to 01 00:00.

'DD' Rounded to the beginning (00:00 = midnight) of the nearest day.
DATETIME values later than 12:00 noon are rounded up to the
next day.

2

Expression:

ROUND (24,536.8746, -2) = 24,500.00

ROUND (24,536.8746, 0) = 24,537.00

ROUND (24,536.8746, 2) = 24,536.87
-2

2 4 5 3 6 . 8 7 4 6

0

Figure 4-1. Examples of negative, zero, and positive rounding factors

Chapter 4. Data Types and Expressions 4-91

Table 4-2. Format strings for DATETIME arguments to the ROUND function (continued)

Format String Effect on Returned DATETIME Value

'DAY' Rounded to the beginning of the nearest Sunday. Dates that fall on
Wednesday, Thursday, Friday, or Saturday are rounded up to the
next Sunday.

'HH' Rounded to the beginning of the nearest hour. Time of day values
with minute:second later than 29:59 are rounded up to the next
hour. Minutes round to zero.

'MI' Rounded to the beginning of the nearest minute. Time of day
values with second later than 30 are rounded up to the next
minute.

If you omit the format string specification after an initial DATETIME expression
argument, the returned value is the value of the first argument rounded to the
nearest day, as if you had specified 'DD' as the format string.
Examples that follow use the ROUND function with a column expression that
returns a DATETIME YEAR TO FRACTION(5) value in a SELECT statement. In
these queries, table mytab has only a single row, and in that row the value of
mytab.col_dt is 2006-12-07 14:30:12.12300.
The following query specifies ’YEAR’ as the DATETIME format string:
SELECT ROUND(col_dt, ’YEAR’) FROM mytab;

The value returned is 2007-01-01 00:00.
The next query resembles the previous query, but casts the returned value to a
DATE data type:
SELECT ROUND(col_dt, ’YEAR’)::DATE FROM mytab;

The value returned is 01/01/2007.
This example specifies ’MONTH’ as the DATETIME format string:
SELECT ROUND(col_dt, ’MONTH’) FROM mytab;

The value returned is 2006-12-01 00:00.
This example rounds the DATETIME expression to YEAR TO HOUR precision:
SELECT ROUND(col_dt, ’HH’) FROM mytab;

The value returned is 2006-12-07 15:00.
v When the first argument is a DATE expression, the returned value is also a

DATE data type if the second argument is a quoted string that specifies the
smallest time unit in the returned value. These are the same format strings as for
rounding DATETIME values, except that ’HH’ and ’MI’ are not valid for dates.
There is no default format string for rounding DATE arguments.
To return formatted DATE values, you must specify one of the following quoted
strings as the second argument to the ROUND function:

Table 4-3. Format strings for DATE arguments to the ROUND function

Format String Effect on Returned DATE Value

'YEAR' Rounded to the beginning of the nearest year. Dates after June 30
are rounded up to the next year. The month and day values each
round to 01.

'MONTH' Rounded to the beginning of the nearest month. Dates after the
15th are rounded up to the next month. The returned day value is
01.

4-92 IBM Informix Guide to SQL: Syntax

Table 4-3. Format strings for DATE arguments to the ROUND function (continued)

Format String Effect on Returned DATE Value

'DD' The DATE value of the first date_expression argument is returned.

'DAY' The value is rounded to the nearest Sunday. If the first argument
is a Sunday, that date is returned. Dates that fall on Wednesday,
Thursday, Friday, or Saturday are rounded up to the next Sunday.

If you specify no format string as the second argument when the first argument is
a DATE data type, no format string takes effect as the default. No error is issued,
but the first argument is treated as numeric expression that evaluates to an integer,
rather than as a DATE value. Informix stores DATE values internally as the integer
count of days since 31 December 1899. For dates in the 21st century, integer
equivalents to DATE values are 5-digit integers, ranging between approximately
37,000 and 74,000.

For example, the query SELECT ROUND(TODAY) FROM systables provides no format
string for a DATE expression, and returns the integer 39538 if the query is issued
on 1 April 2008.

If you apply a numeric format specification as the second argument, nonnegative
numbers have no effect on DATE values, but the following example rounds the last
two digits of the returned value to zero:
SELECT ROUND(TODAY, -2) FROM systables;

For applications where integer-format dates like 39500 are unhelpful, you can use
the 'YEAR', 'MONTH', 'DAY', or 'DD' format strings as the second argument to the
ROUND function to prevent the DATE argument from being processed as if it
were a number expression. On 1 April 2008, the following query returns the DATE
value 04/01/2008 if MDY4/ is the DBDATE environment variable setting:
SELECT ROUND(TODAY, ’DD’) FROM systables WHERE tabid = 1;

In the following example, a query is issued on Tuesday, April 3, 2007:
SELECT ROUND(TODAY, ’DAY’) FROM mytab;

The returned value is 04/01/2007, the current date rounded to the nearest Sunday.

If you are using a host variable to store a rounded point-in-time value in dynamic
SQL, and the data type of the first argument is not known at prepare time,
Informix assumes that a DATETIME data type is the first argument to the ROUND
function and returns a DATETIME YEAR TO MINUTE rounded value. At
execution time, after the statement is prepared, error -9750 is issued if a DATE
value is supplied for the host variable. To prevent this error, you can specify the
data type for the host variable by using a cast, as in this program fragment.
sprintf(query1, “,

“select round(?::date, 'DAY’) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

TRUNC Function:

Chapter 4. Data Types and Expressions 4-93

The TRUNC function can reduce the precision of its first numeric, DATE, or
DATETIME argument by returning the truncated value. If the first argument is
neither a number nor a point in time, it must be cast to a numeric, DATE, or
DATETIME data type.

The TRUNC function resembles the ROUND function, but truncates (rather than
rounds to the nearest whole number) any portion of its first argument that is
smaller than the least significant digit or time unit within the precision that its
second argument specifies.
v For numeric expressions, TRUNC replaces with zero any digits less than the

specified precision.
v For DATE or DATETIME expressions, TRUNC replaces any time units smaller

than the format specification with 1 for month or day time units, or with 0 for
time units smaller than day.

The TRUNC function can accept an optional second argument that specifies the
precision of the returned value.
v When the first argument is a numeric expression, the second argument must be

an integer in the range from -32 to +32 inclusive, specifying the position (relative
to the decimal point) of the last significant digit of the returned value. If you
omit the factor specification when the first argument is numeric, TRUNC returns
the value of the first argument truncated to a scale of zero, or to the units place.
Positive digit values specify truncation to the right of the decimal point; negative
digit values specify truncation to the left, as Figure 4-2 shows.

The following example calls the TRUNC function with a column expression that
returns a numeric value in a SELECT statement. This statement displays the
order number and truncated total price of items whose total price (truncated to
the default scale of zero decimal places) is equal to $124.00.
SELECT order_num , TRUNC(total_price) FROM items

WHERE TRUNC(total_price) = 124.00;

If a MONEY data type is the argument in a call to the TRUNC function that
specifies a scale of zero, the fractional part becomes .00 in the returned value.
For example, the following SELECT statement truncates 125.46 and a MONEY
column value. It returns 125 and a truncated price in the form xxx.00 for each
row in the items table.
SELECT TRUNC(125.46), TRUNC(total_price) FROM items;

v When the first argument to TRUNC is a DATETIME expression, the second
argument must be a quoted string that specifies the smallest significant time unit
in the returned value. Only the following format strings are valid as the second
argument:

Figure 4-2. Examples of negative, zero, and positive truncation factors

4-94 IBM Informix Guide to SQL: Syntax

Table 4-4. Format strings for DATETIME arguments to the TRUNC function

Format String Effect on Returned Value

'YEAR' Truncated to the beginning of the year. The month, day, hour, and
minute values truncate to 01-01 00:00.

'MONTH' Truncated to the beginning of the first day of the month. The hour
and minute values round to 00:00.

'DD' Truncated to the beginning (00:00 = midnight) of the same day.

'DAY' If the first argument is a Sunday, midnight (00:00) on that date is
returned. For any other day of the week, midnight on the previous
Sunday is returned.

'HH' Truncated to the beginning of the hour. The minute value truncates
to zero.

'MI' Truncated to the beginning of the nearest minute. As for all of
these format strings, time units smaller than minute are discarded.

If you omit the format string specification after an initial DATETIME expression
argument, the returned value is the value of the first argument truncated to the
day, as if you had specified ’DD’ as the format string.
Examples that follow invoke the TRUNC function with a column expression that
returns a DATETIME YEAR TO FRACTION(5) value in a SELECT statement. In
these examples, table mytab has only a single row, and in that row the value of
mytab.col_dt is 2006-12-07 14:30:12.12300.
This query specifies ’YEAR’ as the DATETIME format string:
SELECT TRUNC(col_dt, ’YEAR’) FROM mytab;

The value returned is 2006-01-01 00:00.
The next query resembles the previous query, but casts the truncated value to a
DATE data type:
SELECT TRUNC(col_dt, ’YEAR’)::DATE FROM mytab;

The value returned is 01/01/2006.
This example specifies ’MONTH’ as the DATETIME format string:
SELECT TRUNC(col_dt, ’MONTH’) FROM mytab;

The value returned is 2006-12-01 00:00.
The following example truncates the DATETIME expression to YEAR TO HOUR
precision:
SELECT TRUNC(col_dt, ’HH’) FROM mytab;

The value returned is 2006-12-07 14:00.
v When the first argument is a DATE expression, the second argument should

generally be a quoted string that specifies the smallest time unit in the returned
value. These are the same format strings as for truncating DATETIME values,
except that ’HH’ and ’MI’ are not valid for dates, and there is no default format
string for truncating DATE expression arguments.
To return formatted DATE values, you must use one of the following quoted
strings as the second argument to the TRUNC function:

Chapter 4. Data Types and Expressions 4-95

Table 4-5. Format strings for DATE arguments to the TRUNC function

Format String Effect on Returned Value

'YEAR' Truncated to the beginning of the year. The month and day values
are each 01.

'MONTH' Truncated to the beginning of the month. The day value is 01.

'DD' The DATE value of the first date_expression argument is returned.

'DAY' If the first argument is a Sunday, that date is returned. For any
other day of the week, the date of the previous Sunday is
returned.

If you specify no format string as the second argument when the first argument is
a DATE data type, no format string takes effect as the default. No error is issued,
but the first argument is treated as numeric expression that evaluates to an integer,
rather than as a DATE value. Informix stores DATE values internally as the integer
count of days since 31 December 1899.

For example, the query SELECT ROUND(TODAY) FROM systables provides no format
string for a DATE expression, and returns the integer 39538 if the query is issued
on 1 April 2008.

If you apply a numeric format specification as the second argument, nonnegative
numbers have no effect on DATE values, but the following example rounds the last
two digits of the returned value to zero:
SELECT TRUNC(TODAY, -2) FROM systables;

For applications where integer dates like 39500 are unhelpful, use the ’YEAR’,
’MONTH’, ’DAY', or ’DD’ format strings as the second argument to the TRUNC
function, to prevent the DATE expression from being processed as if it were a
number expression. On 1 April 2008, the following query returns the DATE value
04/01/2008 if MDY4/ is the setting of the DBDATE environment variable:
SELECT TRUNC(TODAY, ’DD’) FROM systables;

If you are using a host variable to store a truncated point-in-time value in dynamic
SQL, and the data type of the first argument is not known at prepare time,
Informix assumes that a DATETIME data type is the first argument to the TRUNC
function and returns a DATETIME YEAR TO MINUTE truncated value. At
execution time, after the statement is prepared, error -9750 is issued if a DATE
value is supplied for the host variable. To prevent this error, you can specify the
data type for the host variable by using a cast, as in this program fragment.
sprintf(query2, "%s",

"select trunc(?::date, ’DAY’) from mytab");
EXEC SQL prepare selectq from :query2;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

Note that the TRUNC function name is based on a use of the English word
"truncate" that is different from its meaning in the TRUNCATE statement of SQL.
The TRUNC function replaces the value of its first argument with another value
that has a smaller precision or the same precision. The TRUNCATE statement
deletes all of the rows from a database table, without dropping the table schema.

4-96 IBM Informix Guide to SQL: Syntax

CARDINALITY Function

The CARDINALITY function returns the number of elements in a collection
column (SET, MULTISET, LIST).

CARDINALITY Function:

CARDINALITY (collection_col)
collection_var

Element Description Restrictions Syntax

collection_col An existing collection column Must be declared as a
collection data type

“Identifier” on page
5-21

collection_var Host or program collection variable Must be declared as a
collection data type

Language specific

Suppose that the set_col SET column contains the following value:
{3, 7, 9, 16, 0}

The following SELECT statement returns 5 as the number of elements in the
set_col column:
SELECT CARDINALITY(set_col)

FROM table1;

If the collection contains duplicate elements, CARDINALITY counts each
individual element.

SQLCODE Function (SPL)

The SQLCODE function takes no arguments, but returns to its calling context the
value of sqlca.sqlcode for the most recently executed SQL statement (whether
static or dynamic) that the current SPL routine has executed:

SQLCODE:

SQLCODE

You can use SQLCODE in expressions within SPL routines to identify the state of
a dynamic cursor. This built-in function is useful in error handling and in contexts
such as determining whether a query or function call has returned no rows, or
when a cursor has reached the last row of the active set, or other conditions when
SPL program control should exit from a loop.

The following SPL program fragment illustrates the use of SQLCODE to detect the
end of the active set of a cursor within a WHILE loop.
CREATE PROCEDURE ...
...
DEFINE myc1 ...
...
PREPARE p FOR "SELECT c1 FROM t1";
DECLARE cur FROM s;
OPEN cur;

FETCH cur INTO myc1;
WHILE (SQLCODE != 100)

Chapter 4. Data Types and Expressions 4-97

FETCH cur INTO myc1;
-- process myc1

...
END WHILE;

END PROCEDURE;

The SQLCODE function is not needed in UDRs written in ESQL/C, which have
direct access to the SQL Communications Area (SQLCA) through the GET
DIAGNOSTICS statement of Dynamic SQL and by other mechanisms. The
database server issues an error if the calling context of the built-in SQLCODE
function is not an SPL routine.

DBINFO Function

The following diagram shows the syntax of the DBINFO function.

DBINFO Function:

DBINFO ('dbspace' , tblspace_num)
expression

'sqlca.sqlerrd1'
'sqlca.sqlerrd2'
(1)

'sessionid'
'dbname'
'dbhostname'
'serial8'
'bigserial'
'get_tz'
'utc_current'
'utc_to_datetime' , utc_value

table.column
'version' , 'parameter'

Notes:

1 Informix extension

Element Description Restrictions Syntax

column Name of a column in the table Must exist in table “Identifier” on
page 5-21

expression Expression that evaluates to
tblspace_num

Can contain column names, SPL
variables, host variables, or subqueries,
but must return a numeric value

“Expression” on
page 4-40

parameter Quoted string that specifies which
part of the version string to return

For valid parameter values, see “Using the
‘version' Option” on page 4-103

See the
Restrictions
column.

table Table for which to display the
dbspace name or containing an
integer column of UTC values.

Must match the name of a table in the
FROM clause of the query

“Identifier” on
page 5-21

tblspace_num Tblspace number (partition
number) of a table

Must exist in the partnum column of the
systables table for the database

“Literal
Number” on
page 4-184

4-98 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

utc_value A UTC value to be converted to the
DATETIME equivalent

Must be a numeric expression that
evaluates to the number of seconds since
1970-01-01 00:00:00+00:00

“Expression” on
page 4-40,
“Literal
Number” on
page 4-184

DBINFO Options:

The DBINFO function is actually a set of functions that return different types of
information about the database. To invoke each function, specify a particular
option after the DBINFO keyword. You can use any DBINFO option anywhere
within SQL statements and within UDRs.

The following table shows the categories of database and database server
information that Informix can retrieve with valid DBINFO options.
v The Arguments column shows the parentheses-delimited argument list of each

valid DBINFO option.
v The Information Returned column shows the type of database information that

the Arguments option retrieves.
v The Page column shows where you can find more information about the

Arguments option.

Arguments Information Returned Page

('dbhostname') The host name of the database
server to which a client
application is connected

“Using the ‘dbhostname’
Option” on page 4-102

('dbname') The identifier of the database to
which a client application is
connected

“Using the ‘dbname' Option”
on page 4-102

('dbspace' tblspace_num) The name of a dbspace
corresponding to a tblspace
number

“Using the ('dbspace',
tblspace_num) Option” on
page 4-100

('get_tz') The time zone of the session, $TZ,
as specified as a string by the
client.

“Using the 'get_tz' Option” on
page 4-104

('serial8') The last SERIAL8 value inserted in
a table

“Using the 'serial8' and
'bigserial' options” on page
4-104

('bigserial') The last BIGSERIAL value inserted
in a table

“Using the 'serial8' and
'bigserial' options” on page
4-104

('sessionid') The session ID number of the
current session

“Using the 'sessionid' Option”
on page 4-101

('sqlca.sqlerrd1') The last SERIAL value inserted in
a table

“Using the 'sqlca.sqlerrd1'
Option” on page 4-100

('sqlca.sqlerrd2') The number of rows processed by
SELECT, INSERT, DELETE,
UPDATE, EXECUTE
PROCEDURE, and EXECUTE
FUNCTION statements

“Using the 'sqlca.sqlerrd2'
Option” on page 4-101

Chapter 4. Data Types and Expressions 4-99

Arguments Information Returned Page

('utc_current') The current UTC time value (as an
integer number of seconds since
1970-01-01 00:00:00+00:00) when
the SQL statement began to
execute.

“Using the 'utc_current'
Option” on page 4-105

('utc_to_datetime',
table.column)

The DATETIME value
corresponding to a specified
integer column containing a UTC
time value (as an integer number
of seconds since 1970-01-01
00:00:00+00:00).

“Using the 'utc_to_datetime'
Option” on page 4-105

('utc_to_datetime',
utc_value)

The DATETIME value
corresponding to a specified UTC
time value (as an integer number
of seconds since 1970-01-01
00:00:00+00:00).

“Using the 'utc_to_datetime'
Option” on page 4-105

('version', 'parameter') Type of the database server and its
release version to which the client
application is connected. (The call
to DBINFO fails with an error if
no parameter specifies a format for
the version information.)

“Using the ‘version' Option”
on page 4-103

Using the ('dbspace', tblspace_num) Option: The 'dbspace' option returns a
character string that contains the name of the dbspace that corresponds to a
tblspace number. You must supply an additional parameter, either tblspace_num or
an expression that evaluates to tblspace_num. The following example uses the
'dbspace' option. First, it queries the systables system catalog table to determine
the tblspace_num for the table customer, then it executes the function to determine
the dbspace name.
SELECT tabname, partnum FROM systables

where tabname = ’customer’;

If the query returns a partition number of 1048892, you insert that value into the
second argument to find which dbspace contains the customer table, as the
following example shows:
SELECT DBINFO (’dbspace’, 1048892) FROM systables

where tabname = ’customer’;

If the table for which you want to know the dbspace name is fragmented, you
must query the sysfragments system catalog table to find out the tblspace number
of each table fragment. Then you must supply each tblspace number in a separate
DBINFO query to find out all the dbspaces across which a table is fragmented.

Using the 'sqlca.sqlerrd1' Option:

The 'sqlca.sqlerrd1' option returns a single integer that provides the last serial
value that is inserted into a table. To ensure valid results, use this option
immediately following a singleton INSERT statement that inserts a single row with
a serial value into a table.

Tip: To obtain the value of the last SERIAL8 value that is inserted into a table, use
the 'serial8' option of DBINFO. For more information, see “Using the 'serial8' and
'bigserial' options” on page 4-104.

4-100 IBM Informix Guide to SQL: Syntax

The following example uses the 'sqlca.sqlerrd1' option:
EXEC SQL create table fst_tab (ordernum serial, partnum int);
EXEC SQL create table sec_tab (ordernum serial);
EXEC SQL insert into fst_tab VALUES (0,1);
EXEC SQL insert into fst_tab VALUES (0,4);
EXEC SQL insert into fst_tab VALUES (0,6);
EXEC SQL insert into sec_tab values (dbinfo(’sqlca.sqlerrd1’));

This example inserts a row that contains a primary-key serial value into the fst_tab
table, and then uses the DBINFO function to insert the same serial value into the
sec_tab table. The value that the DBINFO function returns is the serial value of
the last row that is inserted into fst_tab.

Because the SQLCA structure does not record serial values that are inserted by
triggers, you cannot call the DBINFO function with the 'sqlca.sqlerrd1', 'bigserial',
or 'serial8' options to return a serial value that a triggered action inserts.

For more information about the SQL Communications Area (SQLCA) data
structure, within which sqlca.sqlerrd1 is a field, see the IBM Informix Guide to SQL:
Tutorial.

Using the 'sqlca.sqlerrd2' Option: The 'sqlca.sqlerrd2' option returns a single
integer that provides the number of rows that SELECT, INSERT, DELETE,
UPDATE, EXECUTE PROCEDURE, and EXECUTE FUNCTION statements
processed. To ensure valid results, use this option after SELECT, EXECUTE
PROCEDURE, and EXECUTE FUNCTION statements have completed executing.
In addition, to ensure valid results when you use this option within cursors, make
sure that all rows are fetched before the cursors are closed.

The following example shows an SPL routine that uses the 'sqlca.sqlerrd2' option
to determine the number of rows that are deleted from a table:
CREATE FUNCTION del_rows (pnumb INT)
RETURNING INT;

DEFINE nrows INT;

DELETE FROM fst_tab WHERE part_number = pnumb;
LET nrows = DBINFO(’sqlca.sqlerrd2’);
RETURN nrows;

END FUNCTION;

For more information about the SQL Communications Area (SQLCA) data
structure, within which sqlca.sqlerrd2 is a field, see the IBM Informix Guide to SQL:
Tutorial.

Using the 'sessionid' Option: The 'sessionid' option of the DBINFO function
returns the session ID of your current session. When a client application makes a
connection to the database server, the database server starts a session with the
client and assigns a session ID for the client. The session ID serves as a unique
identifier for a given connection between a client and a database server.

The database server stores the value of the session ID in a data structure in shared
memory that is called the session control block. The session control block for a given
session also includes the user ID, the process ID of the client, the name of the host
computer, and a variety of status flags.

Chapter 4. Data Types and Expressions 4-101

When you specify the 'sessionid' option, the database server retrieves the session
ID of your current session from the session control block and returns this value to
you as an integer. Some of the System-Monitoring Interface (SMI) tables in the
sysmaster database include a column for session IDs, so you can use the session ID
that the DBINFO function obtained to extract information about your own session
from these SMI tables. For further information on the session control block, see the
IBM Informix Administrator's Guide. For further information on the sysmaster
database and the SMI tables, see the IBM Informix Administrator's Reference.

In the following example, the user specifies the DBINFO function in a SELECT
statement to obtain the value of the current session ID. The user poses this query
against the systables system catalog table and uses a WHERE clause to limit the
query result to a single row.
SELECT DBINFO(’sessionid’) AS my_sessionid

FROM systables
WHERE tabname = ’systables’;

In the preceding example, the SELECT statement queries against the systables
system catalog table. You can, however, obtain the session ID of the current session
by querying against any system catalog table or user table in the database. For
example, you can enter the following query to obtain the session ID of your
current session:
SELECT DBINFO(’sessionid’) AS user_sessionid

FROM customer
WHERE customer_num = 101;

You can use the DBINFO 'sessionid' option not only in SQL statements but also in
SPL routines. The following example shows an SPL function that returns the value
of the current session ID to the calling program or routine:
CREATE FUNCTION get_sess()

RETURNING INT;
RETURN DBINFO(’sessionid’);

END FUNCTION;

Using the ‘dbname' Option: You can use the 'dbname' option to retrieve the
name of the current database. This option returns the identifier of the database to
which the client session is currently connected.

In the following example, the user enters the 'dbname' option of DBINFO in a
SELECT statement to retrieve the name of the database to which DB-Access is
connected:
SELECT DBINFO(’dbname’)

FROM systables
WHERE tabid = 1;

The following table shows the result of this query.

(constant)

stores_demo

Using the ‘dbhostname’ Option: You can use the 'dbhostname' option to retrieve
the host name of the database server to which a database client is connected. This
option retrieves the physical computer name of the computer on which the
database server is running.

4-102 IBM Informix Guide to SQL: Syntax

In the following example, the user enters the 'dbhostname' option of DBINFO in a
SELECT statement to retrieve the host name of the database server to which
DB-Access is connected:
SELECT DBINFO(’dbhostname’)

FROM systables
WHERE tabid = 1;

The following table shows the result of this query.

(constant)

rd_lab1

Using the ‘version' Option: You can use the 'version' option of the DBINFO
function to retrieve information from the message log about the type of database
server (and about its release version) against which the client application is
running. You must include a 'parameter' specification after the 'version' option to
indicate which part of the version string you want to retrieve.

If after 'version' you specify 'full' as the parameter value, DBINFO returns the
complete version string, which is the same value that the -V option of the oninit
utility displays. The following table lists all the valid parameter arguments
toDBINFO that can retrieve version information about the database server:
v The Arguments column shows the parentheses-delimited argument list of each

valid DBINFO ('version', 'parameter') combination.
v The Part of Version String Returned column shows which part of the version

string each Arguments list returns.
v The Example of Returned Value column shows gives an example of what is

returned by each value of parameter for the Arguments option.

Each example returns part of the complete version string Informix Version
11.50.UC6.

Arguments Part of Version String Returned Example of Returned Value

('version',
'server-type')

Type of database server Informix

('version', 'major') Major version number of the current database server version 11

('version', 'minor') Minor version number of the current database server version 50

('version', 'os') Operating-system identifier within the version string: U

T = 32-bit Windows platforms

U = UNIX 32-bit running on a 32-bit operating
system

H = UNIX 32-bit running on a 64-bit operating
system

F = All 64-bit platforms

('version', 'level') Interim release level of the current database server version C6

('version', 'full') Complete version string as it would be returned by oninit
-V

Informix, Version 11.50.UC6

Important: Not all UNIX environments fit the word-length descriptions of
operating- system (os) codes in the preceding table. For example, some U versions

Chapter 4. Data Types and Expressions 4-103

can run on 64-bit operating systems. Similarly, some F versions can run on
operating systems with 32-bit kernels that support 64-bit applications.

The following example shows how to use the 'version' option of DBINFO in a
SELECT statement to retrieve the major version number of the database server that
the DB-Access client is connected to:
SELECT DBINFO(’version’, ’major’)

FROM systables
WHERE tabid = 1;

The following table shows the result of this query.

(constant)

7

Using the 'serial8' and 'bigserial' options:

The 'bigserial' and 'serial8' options respectively return a single integer that
specifies the last SERIAL8 or BIGSERIAL value that was inserted into a table. To
ensure valid results, use this option immediately following an INSERT statement
that inserts a SERIAL8 or BIGSERIAL value.

Tip: To obtain the value of the last SERIAL value that is inserted into a table, use
the 'sqlca.sqlerrd1' option of DBINFO(). For more information, see “Using the
'sqlca.sqlerrd1' Option” on page 4-100.

The following example uses the 'serial8' option:
EXEC SQL CREATE TABLE fst_tab

(ordernum SERIAL8, partnum INT);
EXEC SQL CREATE TABLE sec_tab (ordernum SERIAL8);

EXEC SQL INSERT INTO fst_tab VALUES (0,1);
EXEC SQL INSERT INTO fst_tab VALUES (0,4);
EXEC SQL INSERT INTO fst_tab VALUES (0,6);

EXEC SQL INSERT INTO sec_tab
SELECT dbinfo(’serial8’)
FROM fst_tab WHERE partnum = 6;

This example inserts a row that contains a primary-key SERIAL8 value into the
fst_tab table and then uses the DBINFO function to insert the same SERIAL8
value into the sec_tab table. The value that the DBINFO function returns is the
SERIAL8 value of the last row that is inserted into fst_tab. The subquery in the
last line contains a WHERE clause so that a single value is returned.

The SQLCA structure does not record serial values that are inserted by triggers.
You cannot call the DBINFO function with the 'bigserial' option to return the most
recent BIGSERIAL value that was inserted directly by the triggered action of a
trigger on a table (nor of an INSTEAD OF trigger on a view). For the same reason,
the DBINFO ('serial8') function cannot return a SERIAL8 value that was inserted
by a trigger on a table, nor by an INSTEAD OF trigger on a view.

Using the 'get_tz' Option: The 'get_tz' option returns the $TZ string that shows
the time zone of the current session.

The following example uses the 'get_tz' option in a query of the cust_calls table of
the stores_demo database:

4-104 IBM Informix Guide to SQL: Syntax

EXEC SQL select first call_dtime, dbinfo(’get_tz’)
from cust_calls where customer_num = 106;

This example returns a string value of the session time zone and the first
call_dtime value in the cust_calls table for which the customer_num value is 106.

Using the 'utc_current' Option: The 'utc_current option returns the current value
of Coordinated Universal Time (UTC) as an integer value that shows the number
of seconds that have elapsed between 1970-01-01 00:00:00+00:00) and when the
current SQL statement began to execute. Unlike Universal Time (UT), which
calculates the duration of seconds from the earth's rotation, UTC uses seconds of a
fixed length, based on high-precision atomic clocks.

Because of variation in the earth's gradually diminishing rotation rate, intercalary
leap seconds are introduced from time to time in UTC to reduce discrepancies with
UT time. By default, Informix ignores leap seconds in DATETIME and INTERVAL
arithmetic. When Informix is supported by an operating system that takes leap
seconds into account, however, the leap seconds are reflected in subsequent
DATETIME and INTERVAL operations after the operating system adjusts the
system clock for leap seconds.

Using the 'utc_to_datetime' Option:

The 'utc_to_datetime' option of the DBINFO function returns the UTC seconds to
DATETIME value that the server would generate if the UNIX time() system call
returned the value of the second parameter, taking into account the time zone of
the database server.

The 'utc_to_datetime' option casts to a DATETIME value its last argument, which
must be a numeric expression representing a Coordinated Universal Time (UTC)
value. If this evaluates to a number with a fractional part, any fractional seconds
are ignored.

In the first example below, the last argument is a UTC value represented as a
literal integer. In the second example, the last argument is a column expression
specifying an integer column that stores UTC values. In both examples, DBINFO
casts the UTC value to a DATETIME value in the time zone of the database server:
DBINFO (’utc_to_datetime’, 1299912999)

DBINFO (’utc_to_datetime’, timesheet.utc_checkin)

If the value of the last argument is negative, the function returns a DATETIME
value from an earlier UNIX epoch, as in the next example:
SELECT DBINFO("utc_to_datetime", -2134567890.91234)

FROM ’sysmaster:"informix".sysdual’;

This query returns the DATETIME value 1902-05-12 08:28:30.

These example times all assume that the server is in a specific time zone. The
following query returns four DATETIME values:
SELECT

DBINFO(’utc_to_datetime’, -32767) AS min_smallint,
DBINFO(’utc_to_datetime’, +32767) AS max_smallint,
DBINFO(’utc_to_datetime’, 1299912999),
DBINFO("utc_to_datetime", -2134567890.91234)

FROM ’sysmaster:"informix".sysdual’;

Chapter 4. Data Types and Expressions 4-105

These are the returned DATETIME values from a server in the United States Pacific
time zone:
1969-12-31 06:53:53 1970-01-01 01:06:07 2011-03-11 22:56:39

1902-05-12 01:28:30
Server running in TZ=US/Pacific

These are the returned DATETIME values from the same query from a server in
the UTC0 time zone:
1969-12-31 14:53:53 1970-01-01 09:06:07 2011-03-12 06:56:39

1902-05-12 08:28:30
Server running in TZ=UTC0

Note that the DAY component in the third DBINFO result is different for the
United States Pacific time zone and for the UTC0 time zone, because of the 8-hour
offset between those two time zones.

The database server time zone can similarly affect the return value from other
expressions for points in time, such as CURRENT, SYSDATE, and TODAY, whose
DATETIME YEAR TO SECOND or DATE representation depends on the time zone
of the server.

Encryption and decryption functions
Informix supports built-in encryption and decryption functions.

The encryption functions ENCRYPT_AES and ENCRYPT_TDES return an
encrypted_data value that encrypts the data argument. Conversely, decryption
functions DECRYPT_CHAR and DECRYPT_BINARY return a plain-text data value
from the encrypted_data argument. Use this syntax to call these functions:

Encryption and Decryption Functions:

ENCRYPT_AES (data)
ENCRYPT_TDES , password

, hint
DECRYPT_CHAR (encrypted_data)
DECRYPT_BINARY , password

GETHINT (encrypted_data)

Element Description Restrictions Syntax

data A plain text character string, variable, or large object of
type BLOB or CLOB to be encrypted

Must be a character or
BLOB data type

“Expression” on
page 4-40

encrypted
_data

A character string or variable containing output from
ENCRYPT_AES or from ENCRYPT_TDES

Decryption requires the
encryption password

“Expression” on
page 4-40

hint A character string that you define here. Default is the
value from the WITH HINT clause of the SET
ENCRYPTION statement that defined password.

No more than 32 bytes “Quoted String”
on page 4-188

password A character string that the encryption function defines.
Default is the session password value defined by the
SET ENCRYPTION statement

At least 6 bytes, but no
more than 128 bytes

“Quoted String”
on page 4-188

You can invoke these encryption and decryption functions from within DML
statements or with the EXECUTE FUNCTION statement.

4-106 IBM Informix Guide to SQL: Syntax

For distributed operations over a network, all participating database servers must
support these (or equivalent) functions. If the network is not secure, the DBSA
must enable the encryption communication support module (ENCCSM) to provide data
encryption between the database server and client systems, in order to avoid
transmitting passwords as plain text.

Encryption or decryption calls slow the performance of the SQL statement within
which these functions are invoked, but have no effect on other statements.
However, if you store encrypted data in a column that is an index key, or in a
column on which a constraint is defined, Informix cannot enforce the constraint,
and DML statements cannot use the index.

You cannot encrypt the security label in a column of type IDSSECURITY label.

Column Level and Cell Level Encryption: The encryption and decryption
functions can support two ways of using data encryption features, namely column
level and cell level encryption.
v Column level encryption means that all values in a given column are encrypted

with the same password (which can be a word or phrase), the same cipher, and
the same cipher mode.
Users of this form of encryption should consider not using the hint feature of
these functions, but instead store a mnemonic hint for remembering the
password in some other location. Otherwise, the same hint will occupy disk
space in every row that contains an encrypted value.

v Cell level encryption means that within a column of encrypted data many
different passwords (or different ciphers or cipher modes) are used.
This use of encryption is also called row-column level or set-column level
encryption. Compared to column-level encryption, this makes the task of data
management more complex, because if different passwords are required for
decrypting different rows of the same table, it is not possible to write a single
SELECT statement to fetch all the decrypted data. In some situations, however,
individual users may need this technique to protect personal data.

To protect data security and confidentiality, the database server does not store
information in the system catalog to indicate whether any table (or any column or
row) includes encrypted data. Similarly, the logical logs of Informix do not record
SET ENCRYPTION statements, nor calls to encryption or decryption functions.
(The Trusted Facility feature for secure auditing, however, can use the 'STEP'
audit-event mnemonic to record execution of the SET ENCRYPTION statement,
and can use the 'CRPT' audit-event mnemonic to record successful or unsuccessful
calls to DECRYPT_CHAR or DECRYPT_BINARY.)

The Password and Hint Specifications: The SET ENCRYPTION statement or an
encryption function can define a password and hint for the current session. The
password must be specified as a character expression that returns at least 6 bytes,
but no more than 128. The optional hint is specified as a character expression that
returns no more than 32 bytes.

The purpose of the hint is to help users to remember the password. When you call
ENCRYPT_AES or ENCRYPT_TDES with a hint argument, it is encrypted and
embedded in the encrypted_data, from which GETHINT can retrieve it. But if you
define hint as NULL, or omit hint when SET ENCRYPTION specified no default
hint for the session password, no hint is embedded in the encrypted_data.

Chapter 4. Data Types and Expressions 4-107

The password used for encryption and decryption is either the password argument to
the function, or if you omit this argument, it is the session password specified in the
last SET ENCRYPTION statement executed before you invoke the function.

The DECRYPT_CHAR, DECRYPT_BINARY, or GETHINT function call fails with
an error if the encrypted_data argument is not in an encrypted format, or if the
password argument to a decryption function is omitted when no session password
value was set by SET ENCRYPTION. An error also results if the password used for
decryption is not the same password used for encryption.

Encryption key management, which is critical to the secure operation of the
database, is delegated entirely to the application. This implementation means that
the password itself is not stored in the database. Without help from the user
through the application, the database server cannot decrypt the encrypted data.

If you invoke any of these functions from a UDR, you might prefer to set a session
password in the SET ENCRYPTION statement. Otherwise, password will be visible to
users who can view the sysprocbody.data column in the system catalog.

Data Types, Encoding, and Size of Encrypted Values: The data and
corresponding encrypted_data arguments can be of any built-in character type
(CHAR, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR), or can be a smart
large object of type BLOB or CLOB. (Use CLOB in place of TEXT, which these
functions do not support.)

Corresponding data and encrypted_data values that the encryption or decryption
functions return have the same character, BLOB, or CLOB data type, except in
cases where encryption of a VARCHAR or NVARCHAR string would return an
overflow error. For operations on CHAR, LVARCHAR, NCHAR, NVARCHAR, or
VARCHAR data and on encrypted_data values, the encryption and decryption
functions follow the data-type promotion rules of CONCAT and the other SQL
string manipulation functions for the data type of their return value, as in the
following examples.
v If the VARCHAR data argument to ENCRYPT_TDES (with no hint) is a 200 byte

string, then Informix automatically promotes the returned value to an
LVARCHAR data type, because the encrypted value exceeds the 255 byte limit
for VARCHAR objects.

v If the NVARCHAR encrypted_data argument to ENCRYPT_AES (with a hint) is a
string 200 bytes long, then Informix automatically promotes the returned value
to an NCHAR data type, because the encrypted value exceeds the 255 byte limit
for NVARCHAR objects.

For more information about return type promotion for character strings that the
encryption, decryption, and certain other string-manipulation functions return, see
Return Types from the CONCAT Function. The first table in that section describes
data or encrypted_data arguments that are not smart large objects. (For smart large
object arguments, the return type is a BLOB or CLOB object.)

The encryption or decryption function call returns overflow error -881, however, if
the return value exceeds the 32,767-byte limit for CHAR, NCHAR strings, or the
32,739-byte limit for LVARCHAR strings. To avoid this error, use BLOB or CLOB
objects as the data or encrypted_data argument, rather than a character data type,
when the encryption or decryption operation requires an argument or a return
value that might be larger than the (approximately 32Kb) limit for character data
types.

4-108 IBM Informix Guide to SQL: Syntax

Except for original data of BLOB or CLOB data types, the encrypted_data value is
encoded in BASE64 format. An encrypted value requires more space than the
corresponding plain text, because the database must also store the information
(except for the encryption key) that is needed for decryption. If a hint is used, it
adds to the length of encrypted_data.

The BASE64 encoding scheme stores 6 bits of input data as 8 bits of output. To
encode N bytes of data, BASE64 requires at least ((4N+3)/3) bytes of storage,
where the slash character (/) represents integer division. Padding and headers
can increase BASE64 storage requirements above this ((4N+3)/3) ratio. “Example of
Column Level Encryption” lists formulae to estimate the size of data values
encrypted in BASE64 format. It typically requires changes to the schema of an
existing table that will store BASE64 format encrypted data, especially if a hint will
also be stored.

The following table shows how the data type of the input string corresponds to the
data type of the value that ENCRYPT_AES or ENCRYPT_TDES returns:

Table 4-6. Data Types for ENCRYPT_AES and ENCRYPT_TDES Functions

Plain Text Data Type Encrypted Data Type Decryption Function

CHAR CHAR DECRYPT_CHAR

NCHAR NCHAR DECRYPT_CHAR

VARCHAR VARCHAR or CHAR DECRYPT_CHAR

NVARCHAR NVARCHAR or NCHAR DECRYPT_CHAR

LVARCHAR LVARCHAR DECRYPT_CHAR

BLOB BLOB DECRYPT_BINARY

CLOB BLOB DECRYPT_CHAR

Columns of type VARCHAR and NVARCHAR store no more than 255 bytes. If the
data string is too long for these data types to store both the encrypted data and
encryption overhead, then the value returned by the encryption function is
automatically changed from VARCHAR or NVARCHAR into a fixed CHAR or
NCHAR value, with no trailing blanks in the encoded encrypted value.

Encrypted values of type BLOB or CLOB are not in BASE64 encoding format, and
their size increase after encryption is independent of the original data size. For
BLOB or CLOB values, the encrypted size (in bytes) has the following formula,
where N is the original size of the plain text, and H is the size of the unencrypted
hint string, if encryption is performed by ENCRYPT_TDES:
N + H + 24 bytes.

For BLOB or CLOB values that ENCRYPT_AES encrypts, the overhead is larger:
N + H + 32 bytes.

Example of Column Level Encryption:

The following example illustrates how to use the built-in encryption and
decryption functions of Informix to create and use a table that stores encrypted
credit card numbers in a column that has a character data type.

Chapter 4. Data Types and Expressions 4-109

For purposes of this example, assume that the plain text of the values to be
encrypted consists of strings of 16 digits. Because encryption functions support
character data types, these values are stored in a CHAR column rather than in an
INT, BIGINT, or INT8 column.

Calculating storage requirements for encrypted data:

The LENGTH function provides a convenient way to calculate the storage
requirements of encrypted data directly:
EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password"));

This returns 55.
EXECUTE FUNCTION LENGTH(ENCRYPT_TDES("1234567890123456", "simple password",
"12345678901234567890123456789012"));

This returns 107.
EXECUTE FUNCTION LENGTH(ENCRYPT_AES("1234567890123456", "simple password"));

This returns 67.
EXECUTE FUNCTION LENGTH(ENCRYPT_AES("1234567890123456", "simple password",
"12345678901234567890123456789012"));

This returns 119.

The required storage size for encrypted data is sensitive to three factors:
v N, the number of bytes in the plain text
v whether or not a hint is provided
v which encryption function you use (ENCRYPT_TDES or ENCRYPT_TDES)

The following formulae describe the four possible cases, and are not simplified:
v Encryption by ENCRYPT_TDES() with no hint:

Encrypted size = (4 x ((8 x((N + 8)/8) + 10)/3) + 11)

v Encryption by ENCRYPT_AES() with no hint:
Encrypted size = (4 x ((16 x((N + 16)/16) + 10)/3) + 11)

v Encryption by ENCRYPT_TDES() with a hint:
Encrypted size = (4 x ((8 x((N + 8)/8) + 50)/3) + 11)

v Encryption by ENCRYPT_AES() with a hint:
Encrypted size = (4 x ((16 x((N + 16)/16) + 50)/3) + 11)

The integer division (/) returns an integer quotient and discards any remainder.

Based on these formulae, the following table shows the encrypted size (in bytes)
for selected ranges of values of N:

N
ENCRYPT_TDES
No Hint

ENCRYPT_AES
No Hint

ENCRYPT_TDES
With Hint

ENCRYPT_AES
With Hint

1 to 7 35 43 87 99

8 to 15 43 43 99 99

16 to 23 55 67 107 119

24 to 31 67 67 119 119

32 to 39 75 87 131 139

40 to 47 87 87 139 139

4-110 IBM Informix Guide to SQL: Syntax

N
ENCRYPT_TDES
No Hint

ENCRYPT_AES
No Hint

ENCRYPT_TDES
With Hint

ENCRYPT_AES
With Hint

100 163 171 215 227

200 299 299 355 355

500 695 707 747 759

If the column size is smaller than the data size returned by encryption functions,
the encrypted value is truncated when it is inserted. In this case, it will not be
possible to decrypt the data, because the header will indicate that the length
should be longer than the data value that the column contains.

These formulae and the values returned by the LENGTH function, however,
indicate that the table schema in the next example can store the encrypted form of
16-digit credit card numbers (with a hint).

Implementing column-level encryption:

The following steps create a table from which a user who knows the password can
retrieve rows that include one column of encrypted data.
1. Create a database table containing at least one column of type BLOB, CLOB, or

a character data type of sufficient length to store the encrypted values. For
example, the following statement creates a table called customer in which the
column creditcard can store encrypted credit card numbers:
CREATE TABLE customer (id CHAR(20), creditcard CHAR(107));

2. Specify a password (and optional hint) and insert encrypted data:
SET ENCRYPTION PASSWORD ’credit card number is encrypted’

WITH HINT ’Why is this difficult to read?’;
INSERT INTO customer VALUES (’Alice’,

encrypt_tdes(’1234567890123456’));
INSERT INTO customer VALUES (’Bob’,

encrypt_tdes(’2345678901234567’));

3. Query the encrypted data, using a decryption function:
SELECT id, DECRYPT_CHAR(creditcard,

’credit card number is encrypted’) FROM customer;

The following query calls a decryption function in the WHERE clause, using
the session password default, rather than an explicit password argument:
SELECT id FROM customer

WHERE DECRYPT_CHAR(creditcard) = ’2345678901234567’;

Column level encryption offers the coding convenience of passing the implicit
session password for all rows with encrypted columns, and in multiple encryption
and decryption function calls in the same SQL statement. Confidentiality of the
data, however, requires users who know the password on encrypted columns to
avoid compromising its secrecy. Triggers and UDRs, for example, should always
use the session password, rather than explicit password arguments if they invoke the
encryption or decryption functions.

The DBSA can manage highly confidential data with column level encryption.
Informix does not, however, prevent users with sufficient privileges from entering
data encrypted by some other password into a table whose other rows use the
designated column level encryption password.

Chapter 4. Data Types and Expressions 4-111

DECRYPT_CHAR Function

The DECRYPT_CHAR function accepts as its first argument an encrypted_data
character string that can have any character type (CHAR, LVARCHAR, NCHAR,
NVARCHAR, or VARCHAR). You must specify a password as its second argument,
unless the SET ENCRYPTION statement has specified for this session the same
session password by which the first argument was encrypted.

The DECRYPT_CHAR function also accepts as its first argument an encrypted_data
large object of type BLOB or CLOB. You must specify a password as its second
argument, unless the SET ENCRYPTION statement has specified as the default for
this session the same password by which the first argument was encrypted. If the
call to DECRYPT_CHAR is successful, it returns a CLOB large object that contains
the plain text version of the encrypted_data argument.

If the call to DECRYPT_CHAR with an encrypted string argument is successful, it
returns a character string that contains the plain text version of the encrypted_data
argument. The following example returns a character string containing a decrypted
value from the ssid column of the engineers table for the row whose empno value
is 287:
SELECT DECRYPT_CHAR (ssid) FROM engineers WHERE empno = 287;

If the first argument to DECRYPT_CHAR is not an encrypted value, or if the
second argument (or the default password specified by SET ENCRYPTION) is not
the password that was used when the first argument was encrypted, Informix issues
an error, and the call to DECRYPT_CHAR fails. (See the description of the
“GETHINT Function” on page 4-115 for one possible action to take when you
cannot remember the password that was used for encryption.)

Do not use DECRYPT_CHAR (or any other decryption function) to create a
functional index on an encrypted column. This would store the decrypted values
as plain text data in the database, defeating the purpose of encryption.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-106, and
“SET ENCRYPTION PASSWORD statement” on page 2-626.

DECRYPT_BINARY Function

The DECRYPT_BINARY function accepts as its first argument an encrypted_data
large object of type BLOB or CLOB. You must specify a password as its second
argument, unless the SET ENCRYPTION statement has specified as the default for
this session the same password by which the first argument was encrypted.

If the call to DECRYPT_BINARY is successful, it returns a BLOB or CLOB large
object that contains the plain text version of the encrypted_data argument. The
decrypted BLOB or CLOB object is temporarily stored in the default sbspace that
the SBSPACENAME configuration parameter setting specifies.

If the first argument to DECRYPT_BINARY is an encrypted value of a character
data type, Informix invokes the DECRYPT_CHAR function and attempts to
decrypt the specified value.

If the first argument to DECRYPT_BINARY is not an encrypted value, or if the
second argument (or the default password specified by SET ENCRYPTION) is not
the password that was used when the first argument was encrypted, Informix issues

4-112 IBM Informix Guide to SQL: Syntax

an error, and the call to DECRYPT_BINARY fails. (See the description of the
“GETHINT Function” on page 4-115 for one possible action to take when you
cannot remember the password that was used for encryption.)

Do not use DECRYPT_BINARY (or any other decryption function) to create a
functional index on an encrypted column. This would store the decrypted values
as plain text data in the database, defeating the purpose of encryption.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-106, and
“SET ENCRYPTION PASSWORD statement” on page 2-626.

ENCRYPT_AES Function

The ENCRYPT_AES function returns an encrypted value that it derives by
applying the AES (Advanced Encryption Standard) algorithm to its first argument,
which must be an unencrypted character expression or a smart large object (that is,
a BLOB or CLOB data type). A character argument can have a length of up to
32640 bytes if an explicit or default hint is used, or 32672 bytes if no hint (or a
NULL hint) is specified. Theoretical size limits on BLOB or CLOB arguments are
many orders of magnitude larger, but practical limits might be imposed by your
hardware, or by time required for encryption and decryption. The encrypted BLOB
or CLOB object is temporarily stored in the default sbspace that the
SBSPACENAME configuration parameter specifies.

You must specify a password as its second argument, unless a SET ENCRYPTION
statement has specified a session password, which the database server uses by
default if you omit the second argument. If a session password has been set, any
password that you specify overrides the session password for the returned value of
this function call. The explicit or default password will also be required for any
subsequent decryption of the returned encrypted value. A valid password must
have at least 6 bytes but no more than 128.

You can optionally specify a hint as the third argument. If the SET ENCRYPTION
statement specified a default hint for this session, and you specify no hint, that
default hint is stored in an encrypted form within the returned value. Any hint that
you specify overrides the default hint. A valid hint can be no longer than 32 bytes.
You can use consecutive quotation marks ('') to specify a NULL hint. If you
specify an explicit hint, you must also specify an explicit password.

The purpose of the hint is to help users to remember the password. For example, if
the password is "buggy," you might define the hint as "whip." Neither string is
restricted to a single word, but the size of the hint contributes to the size of the
returned value. If you subsequently cannot remember the hint, use the returned
value from ENCRYPT_AES as the argument to GETHINT to retrieve the hint.

The following example calls ENCRYPT_AES from the VALUES clause of an
INSERT statement that stores in tab1 a plain-text string and an encrypted_data value
that ENCRYPT_AES returns from its 12-byte first argument. Here SET
ENCRYPTION defines a session password and hint that are used as default second
and third arguments to the ENCRYPT_AES function:
EXEC SQL SET ENCRYPTION PASSWORD ’CHARYBDIS’ WITH HINT ’messina’;
EXEC SQL INSERT INTO tab1 VALUES ('abcd’, ENCRYPT_AES(“111-222-3333”));

Chapter 4. Data Types and Expressions 4-113

The call to ENCRYPT_AES fails with an error if the password argument is omitted
when no session password has been set, or if the length of an explicit password
argument is shorter than 6 bytes or longer than 128 bytes.

In some contexts, an error is issued if the encrypted returned value is too large to
be stored by the data type that receives it.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-106, and
“SET ENCRYPTION PASSWORD statement” on page 2-626.

ENCRYPT_TDES Function

The ENCRYPT_TDES function returns a value that is the result of encrypting a
character expression, or a BLOB or CLOB value, by applying the TDES (Triple Data
Encryption Standard, which is sometimes also called DES3) algorithm to its first
argument. This algorithm is slower than the AES algorithm that is used by the
ENCRYPT_AES function, but is considered somewhat more secure. The disk space
required as encryption overhead resembles that of ENCRYPT_AES, but is
somewhat smaller because of the smaller block size of ENCRYPT_TDES. (See
"Calculating storage requirements for encrypted data" “Calculating storage
requirements for encrypted data” on page 4-110 for a discussion of how to estimate
the size of encrypted character strings.) For BLOB or CLOB values, the encrypted
object is temporarily stored in the default sbspace that the SBSPACENAME
configuration parameter specifies.

Those differences in performance, tamper-resistance, and in the returned
encrypted_data size that the previous paragraph lists are the practical differences
between the ENCRYPT_TDES and ENCRYPT_AES functions, which otherwise
follow the same rules, defaults, and restrictions that appear in the description of
ENCRYPT_AES on the previous page in regard to the following features:
v The required first argument (the plain text data value to be encrypted)
v The explicit or default second argument (the password string that must also be an

argument to DECRYPT_CHAR or DECRYPT_BINARY to decrypt the returned
encrypted_data value). This must be specified unless a default session password has
been set by the SET ENCRYPTION statement

v The optional third argument (the hint value) that might assist users who forget
the password. If you subsequently cannot remember an explicit or default hint
that was defined for password, you can use the returned value from
ENCRYPT_TDES as the argument to GETHINT to retrieve the hint.

The following example calls ENCRYPT_TDES from the SET clause of an UPDATE
statement. Here the session password is 'PERSEPHONE' and the hint string is
"pomegranate", with column colU of table tabU the data argument. Because the
WHERE clause condition of "1=1" is true for all rows of tabU, the effect of this
statement is to replace every plain text colU value with encrypted strings returned
by the algorithm that ENCRYPT_TDES implements:
EXEC SQL SET ENCRYPTION PASSWORD ’PERSEPHONE’ WITH HINT ’pomegranate’;
EXEC SQL UPDATE tabU SET colU = ENCRYPT_TDES (colU) WHERE 1=1;

This example assumes that the character data type of colU is of sufficient size to
store the new encrypted values without truncation. (A more cautious example
might execute an appropriate ALTER TABLE statement before the UPDATE.)

4-114 IBM Informix Guide to SQL: Syntax

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-106, and
“SET ENCRYPTION PASSWORD statement” on page 2-626.

GETHINT Function

The GETHINT function returns a character string that a previously executed SET
ENCRYPTION PASSWORD statement defined for the password that was used when
encrypted_data was encrypted by the ENCRYPT_AES function or by the
ENCRYPT_TDES function. This hint string typically provides information that
helps the user to specify the password needed to return the plain text version of
encrypted_data with the DECRYPT_CHAR or DECRYPT_BINARY decryption
function. The hint string, however, should not be the same as the password. In the
following example, a query returns the hint string into a host variable called
myhint:
EXEC SQL SELECT GETHINT(creditcard) INTO :myhint

FROM customer WHERE id = :myid;

An error is returned, rather than a hint string, if the encrypted_data argument to the
GETHINT function is not an encrypted string or an encrypted large object.

For additional information about using data encryption in column values of
Informix databases, see “Encryption and decryption functions” on page 4-106, and
“SET ENCRYPTION PASSWORD statement” on page 2-626.

Exponential and Logarithmic Functions
Exponential and logarithmic functions take at least one argument and return a
FLOAT data type.

Exponential and Logarithmic Functions:

EXP (float_expression)
LOGN (float_expression)
LOG10 (float_expression)

Element Description Restrictions Syntax

float_expression An argument to the EXP, LOGN, or LOG10
functions. For the meaning of float_expression in
these functions, see the individual heading for each
function on the pages that follow.

The domain is the set of
real numbers, and the
range is the set of
positive real numbers

“Expression”
on page 4-40

EXP Function:

The EXP function returns the exponent of a numeric expression. The following
example returns the exponent of 3 for each row of the angles table:
SELECT EXP(3) FROM angles;

For this function, the base is always e, the base of natural logarithms, as the
following example shows:
e=exp(1)=2.718281828459

When you want to use the base of natural logarithms as the base value, use the
EXP function. If you want to specify a particular value to raise to a specific power,
see the “POW Function” on page 4-89.

Chapter 4. Data Types and Expressions 4-115

LOG10 Function:

The LOG10 function returns the log of a value to base 10. The following example
returns the log base 10 of distance for each row of the travel table:
SELECT LOG10(distance) + 1 digits FROM travel;

LOG10 Function:

The LOG10 function returns the log of a value to base 10. The following example
returns the log base 10 of distance for each row of the travel table:
SELECT LOG10(distance) + 1 digits FROM travel;

LOGN Function:

The LOGN function returns the natural logarithm of a numeric argument. This
value is the inverse of the exponential value. The following query returns the
natural log of population for each row of the history table:
SELECT LOGN(population) FROM history WHERE country=’US’

ORDER BY date;

HEX Function

The HEX function returns the hexadecimal encoding of an integer expression.

HEX Function:

HEX (int_expression)

Element Description Restrictions Syntax

int_expression Expression for which you want the
hexadecimal equivalent

Must be a literal integer or some other
expression that returns an integer

“Expression”
on page 4-40

The next example displays the data type and column length of the columns of the
orders table in hexadecimal format. For MONEY and DECIMAL columns, you can
then determine the precision and scale from the lowest and next-to-the-lowest
bytes. For VARCHAR and NVARCHAR columns, you can determine the minimum
space and maximum space from the lowest and next-to-the-lowest bytes. For more
information about encoded information, see the IBM Informix Guide to SQL:
Reference.
SELECT colname, coltype, HEX(collength)

FROM syscolumns C, systables T
WHERE C.tabid = T.tabid AND T.tabname = ’orders’;

The following example lists the names of all the tables in the current database and
their corresponding tblspace number in hexadecimal format.
SELECT tabname, HEX(partnum) FROM systables;

The two most significant bytes in the hexadecimal number constitute the dbspace
number. They identify the table in oncheck output in Informix.

The HEX function can operate on an expression, as the next example shows:
SELECT HEX(order_num + 1) FROM orders;

4-116 IBM Informix Guide to SQL: Syntax

Length Functions

Use length functions to determine the length of a column, string, or variable.

Length Functions:

(1)
LENGTH

CHAR_LENGTH
CHARACTER_LENGTH

OCTET_LENGTH

(2)
(Quoted String)

(3) (4)
variable_name

column
table.

Notes:

1 Informix extension

2 See “Quoted String” on page 4-188

3 ESQL/C

4 Stored Procedure Language

Element Description Restrictions Syntax

column Name of a column in table Must have a character data type “Identifier” on page 5-21

table Name of the table in which the
specified column occurs

Must exist “Identifier” on page 5-21

variable Host variable or SPL variable that
contains a character string

Must have a character data type See language-specific rules
for names.

Each of these functions has a distinct purpose:
v LENGTH

v OCTET_LENGTH

v CHAR_LENGTH (also known as CHARACTER_LENGTH)

LENGTH Function:

The LENGTH function returns the number of bytes in a character column, not
including any trailing blank spaces. For BYTE or TEXT columns, LENGTH returns
the full number of bytes, including any trailing blank spaces.

In Informix ESQL/C, LENGTH can also return the length of a character variable.

The next example illustrates the use of the LENGTH function:
SELECT customer_num, LENGTH(fname) + LENGTH(lname),

LENGTH(’How many bytes is this?’)
FROM customer WHERE LENGTH(company) > 10;

See also the discussion of LENGTH in the IBM Informix GLS User's Guide.

OCTET_LENGTH Function:

The OCTET_LENGTH returns the number of bytes in a character column,
including any trailing spaces. See also the IBM Informix GLS User's Guide.

CHAR_LENGTH Function:

Chapter 4. Data Types and Expressions 4-117

The CHAR_LENGTH function (also called CHARACTER_LENGTH) returns the
number of logical characters (which can be distinct from the number of bytes in
some East Asian locales) in a character column value. For a discussion of this
function, see the IBM Informix GLS User's Guide.

Security Label Support Functions

The security label support functions enable users to manipulate security labels. A
security label can be referenced in three different ways:
v A name, as declared in the CREATE SECURITY LABEL or RENAME SECURITY

LABEL statement.
v A list of values for each component of the security policy of the security label.
v An internal encoded value that the IDSSECURITYLABEL data type stores.

These functions can convert between the various forms of a security label. They are
typically used to specify a label in DML operations on data rows that are secured
by label-based access control (LBAC). In these operations, however, the security
label support functions do not provide any more access to protected data than is
already provided by the security credentials of the user who invokes the function.

Security Label Support Function:

�

�

SECLABEL_TO_CHAR (' policy ' , column)
:

SECLABEL_BY_COMP (' policy ' , ' component ')
,

(element)
SECLABEL_BY_NAME (' policy ' , ' label ')

Element Description Restrictions Syntax

column A column of type
IDSSECURITYLABEL

Must exist and must store a label of the
policy

“Identifier” on
page 5-21

component Value of a component of the policy Must exist and must be a component of
the policy

“Quoted String”
on page 4-188

element Value of an element within a list of
values of the component

Must exist and must be elements of a
single component of the policy

“Quoted String”
on page 4-188

label Identifier of the security label whose
value the function returns

Must exist and must be a label of the
policy

“Quoted String”
on page 4-188

policy The security policy supported by the
security label whose value the
function returns

Must exist and must be the security policy
that secures the table

“Quoted String”
on page 4-188

These functions return a security label of the specified security policy. They can be
used within DML statements that reference a protected database table, but they can
also evaluate to a security label in other calling contexts. Each of these functions
requires a different argument list:
v SECLABEL_TO_CHAR requires the security policy name and an expression that

returns a IDSSECURITYLABEL object, such as the name of a column of that data
type.

v SECLABEL_BY_COMP requires the security policy name and the values of the
individual components of the security label.

4-118 IBM Informix Guide to SQL: Syntax

v SECLABEL_BY_NAME requires the names of the security policy and of the
security label.

SECLABEL_BY_NAME Function:

The SECLABEL_BY_NAME function enables users to provide a security label
directly by specifying its name.

The following INSERT statement inserts a row into table T1, which is protected by
the security policy called ‘MegaCorp’. The VALUES clause of the INSERT
statement provides the security label ‘mylabel’ for the row to be inserted by using
the SECLABEL_BY_NAME function.
INSERT INTO T1 VALUES (SECLABEL_BY_NAME (’MegaCorp’, ’mylabel’), 1, ’xyz’);

The success of this SECLABEL_BY_NAME function call does not guarantee
success of the INSERT operation in this example, because whether or not the user
has sufficient security credentials to insert the label mylabel into the row is subject
to the IDSLBACWRITE rules of the MegaCorp security policy.

SECLABEL_BY_COMP Function:

The SECLABEL_BY_COMP function returns an IDSSECURITYLABEL object,
which is a security label in its internal encoded string format. This function enables
users to provide a security label directly by specifying its component values.

If a security label component requires multiple values, then such multiple values
can be specified by putting those values between parenthesis as in (value_1,
value_2, ...). When a component in a particular security label needs to be empty,
it can be specified by putting nothing between an opening and a closing
parenthesis, as in (). Because the blank space (ASCII 32) is a valid character in an
element value for a security component, any blank space appearing in the security
label string is treated as part of the element value for that component.

The security label string is limited to a maximum of 32 kilobytes. An error is
returned if the string length exceeds this limit.

The following INSERT statement inserts a row into table T1 which is protected by
the security policy called ‘MegaCorp’ that has three components: 'level',
'compartments', and 'groups'. Here the user provides a security label for the row to
be inserted by specifying the SECLABEL_BY_COMP function. The security label
in this example has the value 'VP' for the level component, the value 'Marketing'
for the compartments component, and the value 'West' for the groups component.
In the arguments to SECLABEL_BY_COMP. colon symbols separate these security
component element values, and quotation marks delimit the list of component
values of the security label.
INSERT INTO T1

VALUES (SECLABEL_BY_COMP (’MegaCorp’, ’VP:Marketing:West’), 1, ’xyz’;

In the next example, the INSERT statement inserts a row in table T1 which is
protected by the same MegaCorp security policy, which has the same three
components as in the previous example: level, compartments, and groups. The
user provides the security label for the row to be inserted by specifying the policy
name and a list of security component elements as arguments to the
SECLABEL_BY_COMP function. Here the security label has the value 'Director'
for the level component, the values 'HR' and 'Finance' for the compartments
component, and the value 'East' for the groups component.

Chapter 4. Data Types and Expressions 4-119

INSERT INTO T1
VALUES (SECLABEL_BY_COMP (’MegaCorp’, ’Director:(HR,Finance):East’), 1, ’xyz’);

The following example inserts a row into table T1 which is protected by the
MegaCorp security policy, whose three components are level, compartments, and
groups. The SECLABEL_BY_COMP function specifies the security label for the
row to be inserted. The security label in this example has the value 'CEO' for level
component, the empty set for the compartments component, and the value
'EntireRegion' for the groups component.
INSERT INTO T1

VALUES (SECLABEL_BY_COMP (’MegaCorp’, ’CEO:():EntireRegion’), 3, ’abc’);

As in all of these examples, the success of the SECLABEL_BY_COMP function call
does not guarantee the success of the INSERT statement, because the security
credentials of the user are first compared to the security label that protects table
T1, using the IDSLBACRWRITE rules of the MegaCorp security policy, before the
database server allows or denies write access for inserting the new row.

SECLABEL_TO_CHAR Function:

The SECLABEL_TO_CHAR function returns a security label in the security label
string format.

The security credentials of the user executing this function can affect the output of
the function. An element of a security label component is not included in the
output if the user does not have read access to that element. A user has read access
to an element if the security credentials of the user provide read access to data that
is protected by a security label containing only that element and no other elements.

For the rule set IDSLBACRULES, only components of type TREE can contain
elements to which a user does not have read access to a subset of elements. For
other types of component, if any element blocks read access, then the user cannot
read the row at all. Thus, only security components of type TREE can have a
subset of security component elements excluded in this way.

For example, if the TREE type component of the security label of a user is {A} and
the TREE type component of a row security label is {A, B}, then only component A
is returned, and the user is not aware that B existed in the row security label. If the
user holds an exemption on the IDSLBACREADTREE rule, however, the returned
security components are both A and B.

In the next example, the MegaCorp security policy has a security label called
mylabel that consists of a level component whose value is 'Director', and a
compartments component with the values 'HR' and 'Finance.' A user to whom
‘mylabel’ was granted has inserted a row with that security label into table T1. In
this context, the security label string returned by the SECLABEL_TO_CHAR
function in the following SELECT statement on T1 is as follows.
SELECT SECLABEL_TO_CHAR (’MegaCorp', C1) FROM T1;

Row returned:

’Director:(HR,Finance)’

The success of this query implies that the SECLABEL_TO_CHAR function
succeeded, and that the security credentials of the user were sufficient, according

4-120 IBM Informix Guide to SQL: Syntax

to the IDSLBACREAD rules of the MegaCorp security policy, for the database
server to allow read access to the values of the security policy name and of the
security label components."

The security label string is limited to a maximum size of 32 kilobytes. If the length
of the security label string to be returned exceeds this upper limit, a warning is
issued, and a truncated 32 kilobyte string is returned.

Smart-Large-Object Functions

The smart-large-object functions support BLOB and CLOB data types:

Smart-Large-Object Functions:

FILETOBLOB ('pathname' , 'file_destination')
FILETOCLOB , 'table' , 'column'

LOTOFILE (BLOB_column , 'pathname' , 'file_destination')
CLOB_column

LOCOPY (BLOB_column)
CLOB_column , 'table' , 'column'

Element Description Restrictions Syntax

BLOB_column,
CLOB_column

A column of type BLOB; a column of
type CLOB

The column data type must be BLOB
or CLOB

“Identifier” on
page 5-21

column Column within table for the copy of
the BLOB or CLOB value

Must have CLOB or BLOB as its data
type

“Quoted String”
on page 4-188

file_destination The system on which to put or get
the smart large object

The only valid values are the strings
’server’ or ’client’

“Quoted String”
on page 4-188

pathname Directory path and filename to locate
the smart large object

No more than 256 bytes. Must exist
on file_destination system. See also
“Pathnames with Commas” on page
4-123.

“Quoted String”
on page 4-188

table Table containing column for the copy
of the BLOB or CLOB value

A comma (not a period) separates the
'table' and 'column' arguments

“Quoted String”
on page 4-188

FILETOBLOB and FILETOCLOB Functions:

The FILETOBLOB function creates a BLOB value for data that is stored in a
specified operating-system file. Similarly, the FILETOCLOB function creates a
CLOB value for a data value that is stored in an operating-system file.

These functions determine the operating-system file to use from the following
parameters:
v The pathname parameter identifies the directory path and name of the source file.
v The file destination parameter identifies the computer, ’client’ or ’server’, on

which this file resides:
– Set file destination to ’client’ to identify the client computer as the location of

the source file. The pathname can be either a full pathname or relative to the
current directory.

– Set file destination to ’server’ to identify the server computer as the location
of the source file. The pathname must be a full pathname.

The table and column parameters are optional:

Chapter 4. Data Types and Expressions 4-121

v If you omit table and column, the FILETOBLOB function creates a BLOB value
with the system-specified storage defaults, and the FILETOCLOB function
creates a CLOB value with the system-specified storage defaults.
These functions obtain the system-specific storage characteristics from either the
ONCONFIG file or the sbspace. For more information on system-specified
storage defaults, see the IBM Informix Administrator's Guide.

v If you specify table and column, the FILETOBLOB and FILETOCLOB functions
use the storage characteristics from the specified column for the BLOB or CLOB
value that they create.

The FILETOBLOB function returns a handle value (a pointer) to the new BLOB
value. Similarly, FILETOCLOB returns a handle value to the new CLOB value.
Neither function actually copies the smart-large-object value into a database
column. You must assign the BLOB or CLOB value to the appropriate column.

The FILETOCLOB function performs any code-set conversion that might be
required when it copies the file from the client or server computer to the database.

The following INSERT statement uses the FILETOCLOB function to create a CLOB
value from the value in the smith.rsm file:
INSERT INTO candidate (cand_num, cand_lname, resume)

VALUES (2, ’Smith’, FILETOCLOB(’smith.rsm’, ’client’));

In the preceding example, the FILETOCLOB function reads the smith.rsm file in
the current directory on the client computer and returns a handle value to a CLOB
value that contains the data in this file. Because the FILETOCLOB function does
not specify a table and column name, this new CLOB value has the
system-specified storage characteristics. The INSERT statement then assigns this
CLOB value to the resume column in the candidate table.

The following INSERT statement uses the FILETOBLOB function to create a BLOB
value from the value in the photos.xxx file on the local database server, and insert
that value into the election2008 table of the rdb database, which is another
database of the local database server:
INSERT INTO rdb@:election2008 (cand_pic)

VALUES (FILETOBLOB(’C:\tmp\photos.xxx’, ’server’,
’candidate’, ’cand_photo’));

In the preceding example, the FILETOBLOB function reads the photos.xxx file in
the specified directory on the local database server and returns a handle value to a
BLOB value that contains the data in this file. The INSERT statement then assigns
this BLOB value to the cand_pic column in the election2008 table in the rdb
database of the local database server. This new BLOB value has the storage
characteristics of the cand_photo column in the candidate table in the local
database.

In the following example, the new BLOB value has the storage characteristics of
the cand_pix column in the election96 table in the rdb2 database, where rdb1 and
rdb2 are databases of the local Informix instance:
INSERT INTO rdb1:election2008 (cand_pic)

VALUES (FILETOBLOB(’C:\tmp\photos.xxx’, ’server’,
’rdb2:election96’, ’cand_pix’));

When you qualify the FILETOBLOB or FILETOCLOB function with the name of a
remote database and a remote database server, the pathname and the file destination
become relative to the remote database server.

4-122 IBM Informix Guide to SQL: Syntax

When you specify server as the file destination, as the following example shows,
the FILETOBLOB function looks for the source file (in this case, photos.xxx) on the
remote database server:
INSERT INTO rdb@rserv:election (cand_pic)

VALUES (rdb@rserv:FILETOBLOB(’C:\tmp\photos.xxx’, ’server’));

When you specify client as the file destination, however, as in the following
example, the FILETOBLOB function looks for the source file (in this case,
photos.xxx) on the local client computer:
INSERT INTO rdb@rserv:election (cand_pic)

VALUES (rdb@rserv:FILETOBLOB(’photos.xxx’, ’client’));

Pathnames with Commas: If a comma (,) symbol is within the pathname of the
function, the database server expects the pathname to have the following format:
"offset, length, pathname"

For pathnames that contain a comma, you must also specify an offset and length,
as in the following example:
FILETOBLOB("0,-1,/tmp/blob,x","server");

The first term in the quoted pathname string is an offset of 0, which instructs the
database server to begin reading at the start of the file.

The second term is a length of -1, which instructs the database server to continue
reading until the end of the entire file.

The third term is the /tmp/blob,x pathname, specifying which file to read. (Notice the
comma symbol that precedes the x.)

Because the pathname includes a comma, the comma-separated offset and length
specifications are necessary in this example to avoid an error when FILETOBLOB
is called. You do not need to specify offset and length for pathnames that include no
comma, but including 0,-1, as the initial characters of the pathname string avoids
this error for any valid pathname.

LOTOFILE Function:

The LOTOFILE function copies a smart large object to an operating-system file.
The first parameter specifies the BLOB or CLOB column to copy. The function
determines what file to create from the following parameters:
v The pathname identifies the directory path and the source file name.
v The file destination identifies the computer, ’client’ or ’server’, on which this

file resides:
– Set file destination to ’client’ to identify the client computer as the location of

the source file. The pathname can be either a full pathname or a path relative
to the current directory.

– Set file destination to ’server’ to identify the server computer as the location
of the source file. The full pathname is required.

By default, the LOTOFILE function generates a filename of the form:
file.hex_id

Chapter 4. Data Types and Expressions 4-123

In this format, file is the filename you specify in pathname and hex_id is the unique
hexadecimal smart-large-object identifier. The maximum number of digits for a
smart-large-object identifier is 17. Most smart large objects, however, would have
an identifier with fewer digits.

For example, suppose that you specify a UNIX pathname value as follows:
’/tmp/resume’

If the CLOB column has the identifier 203b2, then LOTOFILE creates the file:
/tmp/resume.203b2

For another example, suppose that you specify a Windows pathname value as
follows:
’C:\tmp\resume’

If the CLOB column has an identifier of 203b2, the LOTOFILE function would
create the file:
C:\tmp\resume.203b2

To change the default filename, you can specify the following wildcards in the
filename of the pathname:
v One or more contiguous question mark (?) characters in the filename can

generate a unique filename.
The LOTOFILE function replaces each question mark with a hexadecimal digit
from the identifier of the BLOB or CLOB column.
For example, suppose that you specify a UNIX pathname value as follows:
’/tmp/resume??.txt’

The LOTOFILE function puts 2 digits of the hexadecimal identifier into the
name. If the CLOB column has an identifier of 203b2, the LOTOFILE function
would create the file:
/tmp/resume20.txt

If you specify more than 17 question marks, LOTOFILE ignores them.
v An exclamation (!) point at the end of the filename indicates that the filename

does not need to be unique.
For example, suppose that you specify a Windows pathname value as follows:
’C:\tmp\resume.txt!’

The LOTOFILE function does not use the smart-large-object identifier in the
filename, so it generates the following file:
C:\tmp\resume.txt

If the filename that you specify already exists, LOTOFILE returns an error.

The LOTOFILE function performs any code-set conversion that might be required
when it copies a CLOB value from the database to a file on the client or server
computer.

When you qualify LOTOFILE with the name of a remote database and a remote
database server, the BLOB or CLOB column, the pathname, and the file destination
become relative to the remote database server.

When you specify server as the file destination, as in the next example, the
LOTOFILE function copies the smart large object from the remote database server
to a source file in the specified directory on the remote database server:

4-124 IBM Informix Guide to SQL: Syntax

rdb@rserv:LOTOFILE(blob_col, ’C:\tmp\photo.gif!’, ’server’)

If you specify client as the file destination, as in the following example, the
LOTOFILE function copies the smart large object from the remote database server
to a source file in the specified directory on the local client computer:
rdb@rserv:LOTOFILE(clob_col, ’C:\tmp\essay.txt!’, ’client’)

LOCOPY Function:

The LOCOPY function creates a copy of a smart large object. The first parameter
specifies the BLOB or CLOB column to copy. The table and column parameters are
optional.
v If you omit table and column, the LOCOPY function creates a smart large object

with system-specified storage defaults and copies the data in the BLOB or CLOB
column into it.
The LOCOPY function obtains the system-specific storage defaults from either
the ONCONFIG file or the sbspace. For more information on system-specified
storage defaults, see the IBM Informix Administrator's Guide.

v When you specify table and column, the LOCOPY function uses the storage
characteristics from the specified column for the BLOB or CLOB value that it
creates.

The LOCOPY function returns a handle value (a pointer) to the new BLOB or
CLOB value. This function does not actually store the new smart-large-object value
into a column in the database. You must assign the BLOB or CLOB value to the
appropriate column.

The following Informix ESQL/C code fragment copies the CLOB value in the
resume column of the candidate table to the resume column of the interview
table:
/* Insert a new row in the interviews table and get the
* resulting SERIAL value (from sqlca.sqlerrd[1])
*/
EXEC SQL insert into interviews (intrv_num, intrv_time)

values (0, ’09:30’);
intrv_num = sqlca.sqlerrd[1];

/* Update this interviews row with the candidate number
* and resume from the candidate table. Use LOCOPY to
* create a copy of the CLOB value in the resume column
* of the candidate table.
*/
EXEC SQL update interviews

SET (cand_num, resume) =
(SELECT cand_num,

LOCOPY(resume, ’candidate’, ’resume’)
FROM candidate
WHERE cand_lname = ’Haven’)

WHERE intrv_num = :intrv_num;

In the preceding example, the LOCOPY function returns a handle value for the
copy of the CLOB resume column in the candidate table. Because the LOCOPY
function specifies a table and column name, this new CLOB value has the storage
characteristics of this resume column. If you omit the table (candidate) and column
(resume) names, the LOCOPY function uses the system-defined storage defaults
for the new CLOB value. The UPDATE statement then assigns this new CLOB
value to the resume column in the interviews table.

Chapter 4. Data Types and Expressions 4-125

In the following example, the LOCOPY function executes on the local database
and returns a handle value on the local server for the copy of the BLOB cand_pic
column in the election2008 table in rdb, which is another database of the local
database server. The INSERT statement then assigns this new BLOB value to the
cand_photo column in the local candidate table.
INSERT INTO candidate (cand_photo)

SELECT LOCOPY(cand_pic) FROM rdb:election2008;

When the LOCOPY function executes on the same database server as the original
BLOB or CLOB column in a distributed query, it produces two copies of the BLOB
or CLOB value, one in the remote database and the other in the local database, as
the following two examples show.

In the first example, the LOCOPY function executes on the remote rdb database
and returns a handle value in the remote database for the copy of the BLOB
cand_pic column in the remote election2008 table. The INSERT statement then
assigns this new BLOB value to the cand_photo column in the local candidate
table:
INSERT INTO candidate (cand_photo)

SELECT rdb:LOCOPY(cand_pic)
FROM rdb:election2008;

In the second example, the LOCOPY function executes on the local database and
returns a handle value on the local database for the copy of the BLOB cand_photo
column in the local candidate table. The INSERT statement then assigns this new
BLOB value to the cand_pic column in the election2008 table in the remote rdb
database:
INSERT INTO rdb:election2008 (cand_pic)

SELECT LOCOPY(cand_photo) FROM candidate;

The BLOB and CLOB arguments of the built-in LOCOPY function are built-in
opaque data types. These can be values returned by cross-database DML
operations or by cross-database function calls, but built-in opaque types do not
support distributed operations across database server instances. If the local
database and the rdb database are databases of different Informix instances, the
INSERT statements in the previous two examples fail with error -999.

Time Functions
The time functions of Informix accept DATE or DATETIME arguments, or
character representation of a DATE or DATETIME value. They typically return
DATE or DATETIME values, or convert information that they extract from DATE
or DATETIME values into character strings.

See also the descriptions of the ROUND and TRUNC functions, which can change
the precision of DATE or DATETIME values, in the section “Algebraic Functions”
on page 4-87.

Time Functions:

4-126 IBM Informix Guide to SQL: Syntax

DATE (non_date_expr)
DAY (date/dtime_expr)
MONTH
WEEKDAY
YEAR
LAST_DAY

EXTEND (date/dtime_expr)
, first TO last

MDY (month , day , year)
ADD_MONTHS (date/dtime_expr , integer)
MONTHS_BETWEEN (date/dtime_expr , date/dtime_expr)
NEXT_DAY (date/dtime_expr , weekday)

TO_CHAR (date/dtime_expr)
num_expr , format_string

TO_DATE (char_expression

Element Description Restrictions Syntax

char _expression Expression to be converted to a
DATE or DATETIME value

Must be a literal, host variable, expression, or
column of a character data type

“Expression” on
page 4-40

date/dtime _expr Expression that returns a DATE
or DATETIME value

Can be host variable, expression, column, or
constant.

“Expression” on
page 4-40

day Expression that returns the
number of a day of the month

Must return integer > 0 but no greater than
the number of days in the specified month

“Expression” on
page 4-40

first Largest time unit in the result. If
you omit first and last, the
default first is YEAR.

Must be a DATETIME qualifier keyword that
specifies a time unit no smaller than last

“DATETIME
Field Qualifier”
on page 4-38

format_string String that contains a format
mask for the first argument

Must be a character data type that specifies a
valid format. Can be a column, host variable,
expression, or constant

“Quoted String”
on page 4-188

integer Expression that specifies a whole
number of months

Must evaluate to positive or negative integer “Expression” on
page 4-40

last Smallest time unit in the result Must be a DATETIME qualifier keyword that
specifies a time unit no smaller than first

“DATETIME
Field Qualifier”
on page 4-38

month Expression that represents the
number of the month

Must evaluate to an integer in the range from
1 to 12, inclusive

“Expression” on
page 4-40

non _date_expr Expression that represents a
value to be converted to a DATE
data type

Typically an expression that returns a CHAR,
DATETIME, or INTEGER value that can be
converted to a DATE data type

“Expression” on
page 4-40

num_expr Expression that evaluates to a
real number

Must return a numeric data type “Expression” on
page 4-40

weekday Abbreviated name of a day of
the week

A character data type containing a valid
abbreviation for a day of the week

“Quoted String”
on page 4-188

year Number expression that
represents a year

Must evaluate to a 4-digit integer. You cannot
use a 2-digit abbreviation.

“Expression” on
page 4-40

ADD_MONTHS Function:

The ADD_MONTHS function takes a DATETIME or DATE expression as its first
argument, and requires a second integer argument, specifying the number of
months to add to the first argument value. The second argument can be positive or
negative.

Chapter 4. Data Types and Expressions 4-127

The value returned is the sum of the DATE or DATETIME value of the first
argument and an INTERVAL UNITS MONTH value that is based on the number
of months that the second argument specifies.

The returned data type depends on the data type of the first argument:
v If the first argument evaluates to a DATE value, ADD_MONTHS returns a

DATE value.
v If the first argument evaluates to a DATETIME value, ADD_MONTHS returns a

DATETIME YEAR TO FRACTION(5) value, with the same values for time units
smaller than day as in the first argument.

If the day and month time units in the first argument specify the last day of the
month, or if the resulting month has fewer days than the day in the first argument,
then the returned value is the last day of the resulting month. Otherwise, the
returned value has the same day of the month as the first argument.

The returned value can be in a different year, if the resulting month is later than
December (or for negative second arguments, earlier than January) of the year in
the first argument.

The following query calls the ADD_MONTHS function twice in the Projection
clause, using column expressions as arguments. Here the column names indicate
the column data types, and the DBDATE setting is MDY4/:
SELECT a_serial, b_date, ADD_MONTHS(b_date, a_serial),

c_datetime, ADD_MONTHS(c_datetime, a_serial)
FROM mytab WHERE a_serial = 7;

In this example ADD_MONTHS returns DATE and DATETIME values:
a_serial 7
b_date 07/06/2007
(expression) 02/06/2008
c_datetime 2007-10-06 16:47:49.00000
(expression) 2008-05-06 16:47:49.00000

If you use a host variable to store the argument to ADD_MONTHS, but the data
type of the argument is not known at prepare time, Informix assumes that the data
type is DATETIME YEAR TO FRACTION(5). If at runtime, after the statement has
been prepared, the user supplies a DATE value for the host variable, error -9750 is
issued. To prevent this error, specify the data type of the host variable by using a
cast, as in this program fragment:
sprintf(query, “,

“select add_months(?::date, 6) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

DATE Function:

The DATE function converts its argument to a DATE value. Its non-DATE
argument can be any expression that can be converted to a DATE value, usually a
CHAR, DATETIME, or INTEGER value. The following WHERE clause specifies a
quoted string as its CHAR argument:
WHERE order_date < DATE(’12/31/07’)

4-128 IBM Informix Guide to SQL: Syntax

When the DATE function interprets a CHAR non-DATE expression, it expects this
expression to conform to any DATE format that the DBDATE environment
variable specifies. For example, suppose DBDATE is set to Y2MD/ when you
execute the following query:
SELECT DISTINCT DATE(’02/01/2008’) FROM ship_info;

This SELECT statement generates an error, because the DATE function cannot
convert this string expression. The DATE function interprets the first part of the
date string (02) as the year and the second part (01) as the month.

For the third part (2008), the DATE function encounters four digits when it expects
a two-digit day (valid day values must be between 01 and 31). It therefore cannot
convert the value. For the SELECT statement to execute successfully with the Y2MD/
value for DBDATE, the argument would need to be '08/02/01'. For information on
the format of DBDATE, see the IBM Informix Guide to SQL: Reference.

When you specify a positive INTEGER value for the non-DATE expression, the
DATE function interprets this as the number of days after December 31, 1899.

If the integer value is negative, the DATE function interprets the value as the
number of days before December 31, 1899. The following WHERE clause specifies
an INTEGER value for the non-DATE expression:
WHERE order_date < DATE(365)

The database server searches for rows with an order_date value less than
December 31, 1900 (which is 12/31/1899 plus 365 days).
Related reference

DBDATE (SQL Reference)

DAY Function:

The DAY function takes a DATE or DATETIME argument and returns the day of
the month as an integer in the range from 1 to the number of days in the current
month. The following statement fragment calls the DAY function with the
CURRENT function as its argument to compare order_date column values to the
current day of the month:
WHERE DAY(order_date) > DAY(CURRENT)

MONTH Function:

The MONTH function returns an integer corresponding to the month portion of its
DATE or DATETIME argument. The following example returns a number that can
range from 1 through 12 to indicate the month when the order was placed:
SELECT order_num, MONTH(order_date) FROM orders;

WEEKDAY Function:

The WEEKDAY function takes a DATE or DATETIME argument and returns an
integer in the range from 0 to 6 that represents the day of the wee. Zero (0)
represents Sunday, one (1) represents Monday, and so on. The following example
lists all the orders that were paid on the same day of the week as the current day:
SELECT * FROM orders

WHERE WEEKDAY(paid_date) = WEEKDAY(CURRENT);

YEAR Function:

Chapter 4. Data Types and Expressions 4-129

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_212.htm#ids_sqr_212

The YEAR function takes a DATE or DATETIME argument and returns a four-digit
integer that represents the year.

The following example lists orders in which the ship_date is earlier than the
beginning of the current year:
SELECT order_num, customer_num FROM orders

WHERE year(ship_date) < YEAR(TODAY);

Similarly, because a DATE value is a simple calendar date, you cannot add or
subtract a DATE value with an INTERVAL value whose last qualifier is smaller
than DAY. In this case, convert the DATE value to a DATETIME value.

MONTHS_BETWEEN Function:

The MONTHS_BETWEEN function requires two arguments, each of which can be
a DATE or DATETIME expression.

The value returned is a DECIMAL data type, representing the difference between
the two arguments, expressed as a DECIMAL value in units based on 31-day
months. If the first argument is a point in time later than the second argument, the
sign of the returned value is positive. If the first argument is earlier than the
second argument, the sign of the returned value is negative

If the dates of the arguments are both the same days of a month or are both the
last days of a months, the result is a whole number. Otherwise, the fractional
portion of the result is calculated, based on a month of 31 days . This fractional
part can also include the difference in hour, minute, and second time units, unless
both arguments are DATE expressions.

The following query calls the MONTHS_BETWEEN function in the Projection
clause, using two DATE values returned by TO_DATE expressions as arguments.
SELECT MONTHS_BETWEEN(TO_DATE(’2-2-2005’, ’%m-%d-%Y’),

TO_DATE(’1-1-2005’, ’%m-%d-%Y’))
AS months FROM systables WHERE tabid = 1;

The value returned by the query expresses the 32-day difference between the two
DATE arguments as a positive number of 31-day months:

months
1.03225806451613

The next example returns the DATETIME column expression arguments to
MONTHS_BETWEEN expressions, and their differences in months for two rows
of a table:
SELECT d_datetime, e_datetime,

MONTHS_BETWEEN(d_datetime, e_datetime) AS months_between
FROM mytab1;

d_datetime 2007-11-01 09:00:00.00000
e_datetime 2007-12-07 14:30:12.12345
months_between -1.2009453405018

d_datetime 2007-12-13 09:40:30.00000
e_datetime 2007-11-13 08:40:30.00000
months_between 1.00000000000000

4-130 IBM Informix Guide to SQL: Syntax

Here the first MONTHS_BETWEEN result includes differences in time units
smaller than days. The second result has no fractional part, because the day time
units of the arguments had the same value.

The MONTHS_BETWEEN expressions in the next example compares DATE and
DATETIME values:
SELECT col_datetime, col_date,

MONTHS_BETWEEN(col_datetime, col_date) AS months_between
FROM mytab2;

col_datetime 2008-12-13 08:40:30.00000
col_date 11/13/2007
months_between 13.0000000000000

Because both arguments specify the same day of the month, the result has no
fractional part.

LAST_DAY Function:

The LAST_DAY function requires a DATE or DATETIME expression as its only
argument. It returns the date of the last day of the month that its argument
specifies. The data type of this returned value is the same data type as the
argument. The difference between the returned value and the argument is the
number of days remaining in that month.

The following query returns the DATE representation of the current date, the date
of the last day in the current month, and the integer number of days (calculated by
subtracting the first DATE value from second) before the last day in the current
month:
SELECT TODAY AS today, LAST_DAY(TODAY) AS last,

LAST_DAY(TODAY) - TODAY AS days_left
FROM systables WHERE tabid = 1;

If the query were issued on 12 April 2008, with MDY4/ as the DBDATE setting for
the default locale, it would return the following information:
today last days_left

03/12/2008 03/31/2008 19

In the SELECT statement of this example, there is no name conflict in the
Projection clause between the TODAY operator and the identifier today, because
the AS keyword indicates to Informix that today is a display label.

If you use a host variable to store the argument to LAST_DAY, but the data type
of the argument is not known at prepare time, Informix assumes that the data type
is DATETIME YEAR TO FRACTION(5). If at runtime, after the statement has been
prepared, the user supplies a DATE value for the host variable, error -9750 is
issued. To prevent this error, specify the data type of the host variable by using a
cast, as in this program fragment:
sprintf(query, “,

“select last_day(?::date) from mytab”);
EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

Chapter 4. Data Types and Expressions 4-131

NEXT_DAY Function:

The NEXT_DAY function requires a DATE or DATETIME expression as its first
argument, and requires a second weekday argument that is a quoted string
representing the abbreviation of the English name for a day of the week. Successful
execution of this function returns the earliest calendar date that satisfies each of
two conditions:
v The date is later than the date specified by the first argument.
v The date falls on the day of the week specified by the second argument.

NEXT_DAY accepts the following abbreviation strings for days of the week:

Table 4-7. Weekday abbreviations valid as arguments to NEXT_DAY function

Day of Week Abbreviation Day of Week Abbreviation

Sunday ’SUN’ Wednesday ’WED’

Monday ’MON’ Thursday ’THU’

Tuesday ’TUE’ Friday ’FRI’

Saturday ’SAT’

Any characters that follow the 3rd character of these abbreviation strings are
ignored. For example, both ’MONDAY’ and ’MONTAG’ are valid specification for the
2nd argument, each specifying the next Monday after the date in the first
argument. Informix issues an error, however, if the second argument is a string
such as ’MODNAY’whose first three characters do not match one of the weekday
abbreviations in Table 4-7.

The following query, for example, includes a valid NEXT_DAY expression:
SELECT ship_date, NEXT_DAY(ship_date, ’SAT’) AS next_saturday,

NEXT_DAY(ship_date, ’SAT’) - ship_date AS num_days FROM orders;

The result set of this query might include the following data from the orders table:
ship_date next_saturday num_days

06/01/2006 06/03/2006 2
02/12/2007 02/17/2007 5
05/31/2007 06/02/2007 2
05/23/2007 05/26/2007 3

The value returned by NEXT_DAY has the same data type as the first argument. If
this argument is a DATE type, NEXT_DAY returns a DATE value. If the first
argument is a DATETIME type, NEXT_DAY returns a DATETIME YEAR TO
FRACTION(5) value.

Because ship_date in the preceding example is a DATE column, the returned dates
are formatted as DATE values, rather than in DATETIME format.

If you use a host variable to store the argument to NEXT_DAY, but the data type
of the argument is not known at prepare time, Informix assumes that the data type
is DATETIME YEAR TO FRACTION(5). If at runtime, after the statement has been
prepared, the user supplies a DATE value for the host variable, error -9750 is
issued. To prevent this error, specify the data type of the host variable by using a
cast, as in this program fragment:

4-132 IBM Informix Guide to SQL: Syntax

sprintf(query, “,
“select next_day(?::date, ’SUN’) from mytab”);

EXEC SQL prepare selectq from :query;
EXEC SQL declare select_cursor cursor for selectq;
EXEC SQL open select_cursor using :hostvar_date_input;

EXEC SQL fetch select_cursor into :var_date_output;

EXTEND Function:

The EXTEND function adjusts the precision of a DATETIME or DATE value. The
expression cannot be a quoted string representation of a DATE value.

If you do not specify first and last qualifiers, the default qualifiers are YEAR TO
FRACTION(3).

If the expression contains fields that are not specified by the qualifiers, those fields
are discarded.

If the first qualifier specifies a larger (that is, more significant) time unit than what
exists in the expression, the new fields are filled in with values returned by the
CURRENT function. If the last qualifier specifies a smaller time unit (that is, less
significant) than what exists in the expression, the new fields are filled in with
constant values. A missing MONTH or DAY field is filled in with 1, and the
missing HOUR to FRACTION fields are filled in with 0.

In the following expression, the EXTEND call returns the call_dtime column value
with YEAR TO SECOND precision:
EXTEND (call_dtime, YEAR TO SECOND)

You can use the EXTEND function to perform addition or subtraction with a
DATETIME value and an INTERVAL value that do not have the same time unit
qualifiers. The next expression expands a literal DATETIME YEAR TO DAY value
to a precision of YEAR TO MINUTE so that an interval YEAR TO MINUTE value
can be subtracted from it:
EXTEND (DATETIME (2009-8-1) YEAR TO DAY, YEAR TO MINUTE)

- INTERVAL (720) MINUTE (3) TO MINUTE

You can use the EXTEND function to selectively update a subset of the time units
in a DATETIME value. The UPDATE statement in the next example updates only
the hour and minute time unit values in a DATETIME YEAR TO MINUTE column.
UPDATE cust_calls SET call_dtime = call_dtime -

(EXTEND(call_dtime, HOUR TO MINUTE) - DATETIME (11:00)
HOUR TO MINUTE) WHERE customer_num = 106;

Subtracting 11:00 from the DATETIME HOUR TO MINUTE value returned by
EXTEND yields a positive or negative INTERVAL HOUR TO MINUTE value.
Subtracting this difference from the original value in the call_dtime column forces
the updated hour and minute time unit values to 11:00 in the cust_calls.call_dtime
column.

MDY Function:

The MDY function takes as its arguments three integer expressions that represent
the month, day, and year, and returns a type DATE value.
v The first argument represents the number of the month (1 to 12).

Chapter 4. Data Types and Expressions 4-133

v The second argument represents the number of the day of the month (1 to 28,
29, 30, or 31, as appropriate for the month)

v The third expression represents the 4-digit year. You cannot use a 2-digit
abbreviation.

The following example finds the paid_date for the order number 8052 and sets its
value to the first day of the present month:
UPDATE orders SET paid_date = MDY(MONTH(TODAY), 1, YEAR(TODAY))

WHERE po_num = ’8052’;

TO_CHAR Function:

The TO_CHAR function converts an expression that evaluates to a DATE,
DATETIME or numeric value to a character string. The returned character string
represents the data value that was specified in the first argument, using a
formatting mask that the second argument, a format_string argument specifies.

The first argument to this function must be of a DATE, DATETIME, or built-in
numeric data type, or a character string that can be converted to one of these data
types. If the value of the initial DATE, DATETIME or numeric argument is NULL,
the function returns a NULL value.

The second argument to this function is a character string that specifies a
formatting mask. What characters that are appropriate for the formatting mask
primarily depend on whether the first argument to the TO_CHAR function
represents a point in time or a number.
v Formatting DATE and DATETIME expressions

The format_string argument does not need to imply the same time units as the
value in the first argument to the TO_CHAR function. When the precision implied
in the format_string is different from the DATETIME qualifier in first argument, the
TO_CHAR function extends the DATETIME value as if it had called the EXTEND
function.

In the following example, the user wants to convert the begin_date column of the
tab1 table to a character string. The begin_date column is defined as a DATETIME
YEAR TO SECOND data type. The user uses a SELECT statement with the
TO_CHAR function to perform this conversion:
SELECT TO_CHAR(begin_date, ’%A %B %d, %Y %R’) FROM tab1;

The symbols in the format_string parameter in this example have the following
meanings.

Symbol
Meaning

%A Full weekday name as defined in the locale

%B Full month name as defined in the locale

%d Day of the month as a decimal number

%Y Year as a 4-digit decimal number

%R Time in 24-hour notation

Note that the comma (,) that follows the %dspecification in this example is a
literal character, rather than a separator of arguments to the TO_CHAR function.

4-134 IBM Informix Guide to SQL: Syntax

For a complete list of DATE and DATETIME format symbols and their meanings,
see the GL_DATE and GL_DATETIME environment variables in the IBM Informix
GLS User's Guide.

Applying this format_string to the begin_date column returns this result:
Wednesday July 25, 2007 18:45

The query in the next example calls TO_CHAR to apply the same format string to
an ADD_MONTHS expression, and shows the results of the query:
SELECT ship_date, TO_CHAR(ADD_MONTHS(ship_date, 1), ’%A %B %d, %Y’)
AS survey_date FROM orders;

ship_date 03/12/2007
survey_date Thursday April 12, 2007

If you omit the format_string argument when a DATETIME or DATE expression is
the first argument, the TO_CHAR function uses as a default the setting of the
DBTIME or DBDATE environment variables to format the value represented in
the first argument. In non-default locales, the default format for DATETIME and
DATE values is specified by environment variables such as GL_DATETIME and
GL_DATE.
v Formatting numeric and MONEY expressions

The format_string argument to the TO_CHAR function supports the same numeric
formatting masks that are used for ESQL functions like rfmtdec(), rfmtdouble(),
and rfmtlong(). A detailed description of the Informix numeric-formatting masks
for numeric values (when formatting numeric expressions as strings) is in the IBM
Informix ESQL/C Programmer's Manual. Below is a short summary description of the
formatting masks.

A numeric-formatting mask specifies a format to apply to some numeric value
when formatting a numeric expression as a string. This mask is a combination of
the following formatting characters:

Symbol
Meaning

* This character fills with asterisks any positions in the display field that
would otherwise be blank

& This character fills with zeros any positions in the display field that would
otherwise be blank

This character changes leading zeros to blanks. Use this character to
specify the maximum leftward extent of a field.

< This character left-justifies the numbers in the display field. It changes
leading zeros to a null string.

, This character indicates the symbol that separates groups of three digits
(counting leftward from the units position) in the whole-number part of
the value. By default, this symbol is a comma. You can set the symbol with
the DBMONEY environment variable. In a formatted number, this symbol
appears only if the whole-number part of the value has four or more
digits.

. This character indicates the symbol that separates the whole-number part
of a money value from the fractional part. By default, this symbol is a

Chapter 4. Data Types and Expressions 4-135

period. You can set the symbol with the DBMONEY environment variable.
You can have only one period in a format string.

- This character is a literal. It appears as a minus sign when expr1 is less
than zero. When you group several minus signs in a row, a single minus
sign floats to the rightmost position that it can occupy; it does not interfere
with the number and its currency symbol.

+ This character is a literal. It appears as a plus sign when expr1 is greater
than or equal to zero and as a minus sign when expr1 is less than zero.
When you group several plus signs in a row, a single plus or minus sign
floats to the rightmost position that it can occupy; it does not interfere with
the number and its currency symbol

(This character is a literal. It appears as a left parenthesis to the left of a
negative number. It is one of the pair of accounting parentheses that
replace a minus sign for a negative number. When you group several in a
row, a single left parenthesis floats to the rightmost position that it can
occupy; it does not interfere with the number and its currency symbol.

) This is one of the pair of accounting parentheses that replace a minus sign
for a negative value.

$ This character displays the currency symbol that appears at the front of the
numeric value. By default, the currency symbol is the dollar sign ($). You
can set the currency symbol with the DBMONEY environment variable.
When you group several dollar signs in a row, a single currency symbol
floats to the rightmost position that it can occupy; it does not interfere with
the number.

Any other characters in the formatting mask are reproduced literally in the
formatted value that the TO_CHAR function returns.

In the next three examples, the value of the d_int column expression argument to
the TO_CHAR function is -12344455.

This query specifies no formatting mask in a call toTO_CHAR:
SELECT TO_CHAR(d_int) FROM tab_numbers;

The following table shows the output of this SELECT statement.

(expression)

-12344455

The following query specifies a monetary format mask:
SELECT TO_CHAR(d_int, "$*********.**") FROM tab_numbers;

The following table shows the output of this SELECT statement.

(expression)

$12344455.00

SELECT TO_CHAR(d_int, "-$*********.**") FROM tab_numbers;

The query returns - $12344455.00.
SELECT TO_CHAR(12344455,"-$*********.**") FROM tab_numbers;

4-136 IBM Informix Guide to SQL: Syntax

The following table shows the output of this SELECT statement.

(constant)

$12344455.00

The currency ($) symbol from the formatting mask argument is applied, but the
minus (-) symbol has no effect, because the value of the first argument is greater
than zero.

Note that the TO_CHAR function is a time expression only when its first
argument is a DATE or DATETIME expression, or is a character string that can be
formatted as a DATE or DATETIME expression, When a numeric or monetary
value is its first argument, TO_CHAR returns a representation of the value of that
argument as a character string, but it does not return a time expression.

TO_DATE Function:

The TO_DATE function converts a character string to a DATETIME value. The
function evaluates the char_expression parameter as a date according to the date
format you specify in the format_string parameter and returns the equivalent date.
If char_expression is NULL, then a NULL value is returned.

Any argument to the TO_DATE function must be of a built-in data type.

If you omit the format_string parameter, the TO_DATE function applies the default
DATETIME format to the DATETIME value. The default DATETIME format is
specified by the GL_DATETIME environment variable.

In the following example, the user wants to convert a character string to a
DATETIME value in order to update the begin_date column of the tab1 table with
the converted value. The begin_date column is defined as a DATETIME YEAR TO
SECOND data type. The user uses an UPDATE statement that contains a
TO_DATE function to accomplish this result:
UPDATE tab1

SET begin_date = TO_DATE(’Wednesday July 25, 2007 18:45’,
’%A %B %d, %Y

The format_string parameter in this example tells the TO_DATE function how to
format the converted character string in the begin_date column. For a table that
shows the meaning of each format symbol in this format string, see “TO_CHAR
Function” on page 4-134.

TO_NUMBER Function

The TO_NUMBER function can convert a number or a character expression
representing a number value to a DECIMAL data type.

TO_NUMBER Function:

TO_NUMBER (char_expr)
num_expr

Chapter 4. Data Types and Expressions 4-137

Element Description Restrictions Syntax

char _expression Expression to be converted to a
DECIMAL value

Must be a literal, host variable, expression, or
column of a character data type

“Expression”
on page 4-40

num_expression Expression that evaluates to a
real number

Must return a numeric data type “Expression”
on page 4-40

The TO_NUMBER function converts its argument to a DECIMAL data type. The
argument can be the character string representation of a number or a numeric
expression.

The following example retrieves a DECIMAL value that the TO_NUMBER
function returns from the literal representation of a MONEY value:
SELECT TO_NUMBER(’$100.00’) from mytab;

The following table shows the output of this SELECT statement.

(expression)

100.000000000000

In this example, the currency symbol is discarded from the ’$100.00’ string.

The TO_NUMBER function is not required in most contexts, because by default,
Informix converts numbers that include a decimal point (and quoted strings in the
format of a literal number that has a decimal point) to a DECIMAL data type. This
function can be useful, however, when you are migrating SQL applications that
were originally written for other database servers, if the application makes calls to
a function of this name that returns a DECIMAL value.

Trigonometric Functions
The built-in trigonometric functions have the following syntax.

Trigonometric Functions:

COS (radian_ expr)
SIN
TAN

ASIN (numeric_expr)
ACOS
ATAN

ATAN2 (y, x)

Element Description Restrictions Syntax

numeric_expr Expression that serves as an argument to the
ASIN, ACOS, or ATAN functions

Must return a value between -1
and 1, inclusive

“Expression”
on page 4-40

radian_expr Expression that represents the number of radians Must return a numeric value “Expression”
on page 4-40

x Expression that represents the x coordinate of the
rectangular coordinate pair (x, y)

Must return a numeric value “Expression”
on page 4-40

y Expression that represents the y coordinate of
the rectangular coordinate pair (x, y)

Must return a numeric value “Expression”
on page 4-40

4-138 IBM Informix Guide to SQL: Syntax

Formulas for Radian Expressions: The COS, SIN, and TAN functions take the
number of radians (radian_expr) as an argument. If you are using degrees and want
to convert degrees to radians, use the following formula:
degrees * p/180= # radians

To convert radians to degrees, use the following formula:
radians * 180/p = # degrees

COS Function:

The COS function returns the cosine of a radian expression. The following example
returns the cosine of the values of the degrees column in the anglestbl table. The
expression passed to the COS function in this example converts degrees to radians.
SELECT COS(degrees*180/3.1416) FROM anglestbl;

SIN Function:

The SIN function returns the sine of a radian expression. This example returns the
sine of the values in the radians column of the anglestbl table:
SELECT SIN(radians) FROM anglestbl;

TAN Function:

The TAN function returns the tangent of a radian expression. This example returns
the tangent of the values in the radians column of the anglestbl table:
SELECT TAN(radians) FROM anglestbl;

ACOS Function:

The ACOS function returns the arc cosine of a numeric expression. The following
example returns the arc cosine of the value (-0.73) in radians:
SELECT ACOS(-0.73) FROM anglestbl;

ASIN Function:

The ASIN function returns the arc sine of a numeric expression. The following
example returns the arc sine of the value (-0.73) in radians:
SELECT ASIN(-0.73) FROM anglestbl;

ATAN Function:

The ATAN function returns the arc tangent of a numeric expression. The following
example returns the arc tangent of the value (-0.73) in radians:
SELECT ATAN(-0.73) FROM anglestbl;

ATAN2 Function:

The ATAN2 function computes the angular component of the polar coordinates (r,
q) associated with (x, y). The following example compares angles to q for the
rectangular coordinates (4, 5):
WHERE angles > ATAN2(4,5) --determines q for (4,5) and

--compares to angles

You can determine the length of the radial coordinate r using the expression that
the following example shows:

Chapter 4. Data Types and Expressions 4-139

SQRT(POW(x,2) + POW(y,2)) --determines r for (x,y)

You can determine the length of the radial coordinate r for the rectangular
coordinates (4,5) using the expression that the following example shows:
SQRT(POW(4,2) + POW(5,2)) --determines r for (4,5)

String-Manipulation Functions

String-manipulation functions perform various operations on strings of characters.
The syntax for string-manipulation functions is as follows.

String-Manipulation Functions:

(1)
CONCAT Function

(2)
ASCII Function

(3)
TRIM Function
(4) (5)

LTRIM Function
(4) (6)

RTRIM Function
(7)

SUBSTRING Function
(4) (8)

SUBSTR Function
(4) (9)

REPLACE Function
(4) (10)

LPAD Function
(4) (11)

RPAD Function
(4) (12)

Case-Conversion Functions

Notes:

1 See “CONCAT Function” on page 4-141

2 See “ASCII Function” on page 4-144

3 See “TRIM Function” on page 4-145

4 Informix extension

5 See “LTRIM Function” on page 4-147

6 See “RTRIM Function” on page 4-148

7 See “SUBSTRING Function” on page 4-149

8 See “SUBSTR Function” on page 4-150

9 See “REPLACE Function” on page 4-152

10 See “LPAD Function” on page 4-153

11 See “RPAD Function” on page 4-153

12 See “Case-Conversion Functions” on page 4-154

Sections that follow describe each of the built-in string manipulation functions.

4-140 IBM Informix Guide to SQL: Syntax

CONCAT Function:

The CONCAT function accepts two expressions as arguments, and returns a single
character string that appends the string representation of the value returned by its
second argument to the string representation of the value returned by its first
argument.

CONCAT Function:

CONCAT (expr_1 , expr_2)

Element Description Restrictions Syntax

expr_1,
expr_2

Expressions whose string representations
of their values are to be concatenated

Cannot return a complex, user-defined, or
large object type. If a host variable, it must
be long enough to store the resulting
combined strings.

“Expression”
on page 4-40

Each arguments to the CONCAT function can evaluate to a character, number, or
time data type. If either or both of the concatenated arguments is null, the function
returns a NULL value.

Unlike other built-in string manipulation functions of Informix, the CONCAT
function cannot be overloaded.

CONCAT is the operator function of the concatenation (||) operator, For a given
pair of expression arguments, CONCAT returns the same string as that operator
returns from the same expressions as operands. See “Concatenation Operator” on
page 4-56 for additional information about concatenation operations, and for
restrictions on the SQL and Dynamic SQL statements in which you can invoke the
CONCAT function.

Return Types from CONCAT and String Functions:

The data type of the return value from a successful call to the CONCAT function
(or from the concatenation (||) operator, or from a call to other built-in
string-manipulation functions that follow the same rules as CONCAT for
determining their return type) depends on the data types of the arguments and on
the length of the resulting string. The order of the two arguments is not significant
in determining the return type.

Informix applies the following rules for the return type from operations that
concatenate values that arguments of more than one data type specify:
v If one of the types is National Language Support (namely NCHAR and

NVARCHAR):
– the return type is NVARCHAR if the resulting length is less than 255 bytes
– the return type is NCHAR otherwise.

v If one of the arguments is VARCHAR or a number type,
– the return type is VARCHAR if the resulting length is less than 255 bytes
– the return type is LVARCHAR otherwise.

v An exception to these rules, however, can occur in certain cross-server
operations in which a remote routine is executed locally, and a concatenation
expression is evaluated locally before its return value is sent to a remote
database server. For remote servers that do not support the LVARCHAR data

Chapter 4. Data Types and Expressions 4-141

type in distributed transactions, the concatenated result is sent as a CHAR data
type if sending the LVARCHAR type returns an error. Informix database server
instances earlier than Version 11.10 require a CHAR return value in this scenario.
(See also “Return String Types in Distributed Transactions” on page 4-143 for the
data types that can be returned from concatenation expressions that are
evaluated by remote Informix database server instances earlier than Version
11.50.xC2.)

In the following table, the rows list the valid data types of the first argument to the
CONCAT function, and the columns list the type of the second argument. The cell
at the intersection of each row and column shows the possible returned type or
types. The row and the column labelled as Other represent arguments that
evaluate to non-character types, such as number or time data types like DECIMAL
or DATE.

Table 4-8. Return Types from Operations on Two Arguments (in Version 11.50.xC2 or Later)

NCHAR NVARCHAR CHAR VARCHAR LVARCHAR Other

NCHAR nchar nvarchar or
nchar

nchar nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

NVARCHAR nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

nvarchar or
nchar

CHAR nchar nvarchar or
nchar

char varchar or
lvarchar

lvarchar varchar or
lvarchar

VARCHAR nvarchar or
nchar

nvarchar or
nchar

varchar or
lvarchar

varchar or
lvarchar

lvarchar varchar or
lvarchar

LVARCHAR nvarchar or
nchar

nvarchar or
nchar

lvarchar lvarchar lvarchar lvarchar

Other nvarchar or
nchar

nvarchar or
nchar

varchar or
lvarchar

varchar or
lvarchar

lvarchar varchar or
lvarchar

For string manipulation functions other than CONCAT, arguments of DATE,
DATETIME, or MONEY data types always return an NVARCHAR or NCHAR
value, depending on the length of the resulting string.

This table is symmetrical, because the order of arguments has no affect on the
return data type. User-defined data types, large-object types, complex types, and
other extended data types are not valid as arguments to the built-in
string-manipulation functions or operators.

This table also describes the return data types of expressions that use the
concatenation (||) operator.

Not shown here is the result of concatenation operations in which the sum of the
argument lengths exceeds the approximately 32Kb limit for CHAR, NCHAR, and
LVARCHAR data types. This returns error -881, rather than a concatenated data
value. Because the maximum LVARCHAR size is 32.739 bytes, and the CHAR and
NCHAR limits are both 32,767 bytes, error -881 is usually associated with
VARCHAR and NVARCHAR objects, whose limit is 255 bytes, but automatic
return type promotion can reduce the incidence of this error.

The following string-manipulation functions support the same rules as CONCAT
for return type promotion:
v LPAD

v RPAD
4-142 IBM Informix Guide to SQL: Syntax

v REPLACE

v SUBSTR

v SUBSTRING

v TRIM

v LTRIM

v RTRIM

The following table summarizes how Informix determines the return type from
these string manipulating functions, based on the argument types:

Table 4-9. String Manipulation Functions that Support Return Type Promotion

Function How the Return Type of the Function is Determined

CONCAT, || Return type is based on both arguments. Refer to Table 4-8 on page
4-142..

SUBSTR,
SUBSTRING

Return type is the same as the source string type. If source string is a
host variable, the return type is NVARCHAR or NCHAR,
depending on the length of the result.

TRIM, LTRIM,
RTRIM

Return type depends on the source type and the returned length:

v NVARCHAR returns NVARCHAR

v VARCHAR returns VARCHAR

v CHAR returns VARCHAR (if length <= 255 bytes)

v CHAR returns LVARCHAR (if length > 255 bytes)

v NCHAR returns NVARCHAR (if length <= 255 bytes)

v NCHAR returns LVARCHAR (if length > 255 bytes)

v LVARCHAR returns LVARCHAR

LPAD, RPAD Return type is based on the source_string and pad_string arguments.
If pad_string is not specified, the return type is based on the data
type of source_string.

REPLACE Return type is based on the source_string and old_string arguments
(and on the new_string argument, if that is specified). If any
argument is a host variable, the return type is NCHAR.

ENCRYPT_AES,
ENCRYPT_TDES,
DECRYPT_BINARY,
DECRYPT_CHAR,

For arguments that are not BLOB or CLOB variables, the return
type is based on the data types of the data and encrypted_data
arguments. Refer to Table 4-8 on page 4-142.

Return String Types in Distributed Transactions:

In cross-database distributed queries that access tables in different databases of the
same InformixInformix instance, the same types are returned by CONCAT (and by
other built-in string manipulation functions that follow the same rules for return
type promotion) that the section Return Types from the CONCAT Function
describes.

The same types are also returned in cross-server distributed queries, if every
participating Informix instance that evaluates these string-manipulation function
expressions is no earlier than Version 11.50.xC2.

For cross-server distributed operations in which the return value is evaluated on a
remote Informix instance earlier than Version 11.50.xC2, the following table (in the
same format as the table for Version 11.50.xC2 and later) lists the possible return

Chapter 4. Data Types and Expressions 4-143

data types (or -881 overflow error) for the specified data types of arguments to the
string-manipulation function (or for operands of the concatenation (||) operator:

Table 4-10. Return Types from Distributed Operations (in Version 11.50.xC1 and earlier)

NCHAR NVARCHAR CHAR VARCHAR LVARCHAR Other

NCHAR nchar nvarchar or
EM -881

nchar nchar nchar nchar

NVARCHAR nchar or EM
-881

nvarchar or
EM -881

nvarchar or
EM -881

nvarchar or
EM -881

nvarchar or
EM -881

nvarchar or
EM -881

CHAR nchar nvarchar or
EM -881

char varchar or EM
-881

char char

VARCHAR nchar nvarchar or
EM -881

varchar or EM
-881

varchar or EM
-881

varchar or EM
-881

varchar or EM
-881

LVARCHAR nchar nvarchar or
EM -881

char varchar or EM
-881

char char

Other nchar nvarchar or
EM -881

char varchar or EM
-881

char char

The following are among the differences between the return values in this release
and what Informix versions earlier than 11.50.xC2 return:
v Earlier releases accept LVARCHAR arguments, but cannot return LVARCHAR

values.
v If the result is longer than the maximum size of the argument of the longest data

type, earlier releases do not support data-type promotion, but issue error -881.
(This is typically with VARCHAR or NVARCHAR arguments, if the length of
the resulting string would be greater than 255 bytes.)

For all versions of Informix, error -881 is issued if the length of a returned string
exceeds 32Kb.

ASCII Function:

The ASCII function returns the decimal representation of the first character in a
character string, based on its codepoint in the ASCII character set.

ASCII Function:

ASCII (char_expr)

Element Description Restrictions Syntax

char_expr Expression that evaluates to a character
data type

Must be of type CHAR, LVARCHAR,
NCHAR, NVARCHAR, or VARCHAR

“Identifier”
on page 5-21

The ASCII function takes a single argument of any character data type. It returns
an integer value, based on the first character of the argument, corresponding to the
decimal representation of the codepoint of that character within the ASCII
character set.

If the argument is NULL, or if the argument is an empty string, the ASCII
function returns a NULL value.

4-144 IBM Informix Guide to SQL: Syntax

The following query returns the ASCII value of uppercase H:
SELECT ASCII("HELLO") FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

(constant)

72

The following query returns the ASCII value of lowercase h:
SELECT ASCII("hello") FROM systables WHERE tabid = 1;

The following table shows the output of this SELECT statement.

(constant)

104

The following query returns the ASCII output from an empty string argument:
SELECT ASCII("") FROM systables WHERE tabid = 1;

The following table shows the NULL output of this SELECT statement.

(constant)

The following query returns the ASCII output from a NULL argument:
SELECT ASCII(NULL) FROM systables WHERE tabid = 1;

The following table shows the NULL output of this SELECT statement.

(constant)

The ASCII function interprets this argument as a NULL expression, rather than as
a value that begins with uppercase N.

For a table of the numeric values of the codepoints in the ASCII character set, see
“Collating Order for U.S. English Data” on page 4-194.

TRIM Function:

The TRIM function removes specified leading or trailing pad characters from a
string. (See also the descriptions of the LTRIM and RTRIM functions, which
provide similar functionality, but support a different syntax.)

TRIM Function:

TRIM (source_expression)
BOTH
TRAILING FROM
LEADING pad_char

Chapter 4. Data Types and Expressions 4-145

Element Description Restrictions Syntax

pad_char Expression that evaluates to a single character or
NULL. The default is a blank space (= ASCII 32).

Must be a character
expression

“Expression” on
page 4-40

source
_expression

Character expression, including a character column
name, or a call to another TRIM function

Cannot be a DISTINCT
data type

“Expression” on
page 4-40

The TRIM function returns a character string identical to its source_expression
argument, except that any leading or trailing pad characters, as specified by the
LEADING, TRAILING, or BOTH keywords, are deleted. If no trim qualifier
(LEADING, TRAILING, or BOTH) is specified, BOTH is the default. If no pad_char
is specified, a single blank space is the default, and leading or trailing blank
spaces, as specified by the qualifying keyword, are deleted from the returned
value.

If either the pad_char or the source_expression evaluates to NULL, the result of the
TRIM function is NULL.

The data type of the returned value depends on the source_expression argument:
v

If the argument is longer than 255 bytes, the returned value is of type
LVARCHAR.

v If the argument has 255 bytes or fewer, the data type of the returned value
depends on the data type of the argument:
– If the argument is of type CHAR or VARCHAR, a VARCHAR value is

returned.
– If the argument is of type NCHAR or NVARCHAR, an NVARCHAR value is

returned.
– If the argument is of type LVARCHAR, an LVARCHAR value is returned.

The length of the returned value is 255 bytes or fewer for VARCHAR or
NVARCHAR source_expression arguments, and no more than 32,739 bytes for
CHAR, NCHAR, or LVARCHAR arguments.

The following example shows some generic uses for the TRIM function:
SELECT TRIM (c1) FROM tab;
SELECT TRIM (TRAILING ’#’ FROM c1) FROM tab;
SELECT TRIM (LEADING FROM c1) FROM tab;
UPDATE c1=’xyz’ FROM tab WHERE LENGTH(TRIM(c1))=5;
SELECT c1, TRIM(LEADING ’#’ FROM TRIM(TRAILING ’%’ FROM

’###abc%%%’)) FROM tab;

In Dynamic SQL, when you use the DESCRIBE statement with a SELECT
statement that calls the TRIM function in the projection list, the data type of the
trimmed column that DESCRIBE returns depends on the data type of the
source_expression, for SQL data type constants defined in the sqltypes.h header file
of the Informix ESQL/C source file. For further information on the GLS aspects of
the TRIM function in Informix ESQL/C, see the IBM Informix GLS User's Guide.

Fixed Character Columns:

The TRIM function can be specified on fixed-length character columns. If the
length of the string is not completely filled, the unused characters are padded with
blank space. Figure 4-3 on page 4-147 shows this concept for the column entry
'##A2T##', where

4-146 IBM Informix Guide to SQL: Syntax

the column is defined as CHAR(10).

If you want to trim the sharp sign (#) pad_char from the column, you need to
consider the blank padded spaces as well as the actual characters.

For example, if you specify the keyword BOTH, the result from the trim operation
is A2T##, because the TRIM function does not match the blank padded space that
follows the string. In this case, the only sharp signs (#) trimmed are those that
precede the other characters. The SELECT statement is shown, followed by
Figure 4-4, which presents the result.
SELECT TRIM(LEADING ’#’ FROM col1) FROM taba;

This SELECT statement removes all occurrences of the sharp (#) sign:
SELECT TRIM(BOTH ’#’ FROM TRIM(TRAILING ’ ’ FROM col1)) FROM taba;

LTRIM Function:

The LTRIM function removes specified leading pad characters from a string.

LTRIM Function:

LTRIM (source_string)
, pad_string

Element Description Restrictions Syntax

pad_string Expression that specifies one or
more characters to delete from
source_string

Must be a character expression “Expression”
on page 4-40

source_string Expression that specifies a character
string from which characters in
pad_string are deleted

Pad characters to the right of any character
not in pad_string are not deleted

“Expression”
on page 4-40

The first argument to the LTRIM function must be a character expression from
which to delete leading pad characters. The optional second argument is a

2 T #A## #

Blank paddedCharacters

21 3 4 5 6 7 8 9 10

Figure 4-3. Column Entry in a Fixed-Length Character Column

#T2A

Blank paddedCharacters

21 3 4 5 6 7 8 9 10

Figure 4-4. Result of TRIM Operation

Chapter 4. Data Types and Expressions 4-147

character expression that evaluates to a string of pad characters. If no second
argument is provided, only blank characters are regarded as pad characters.

The return data type of the LTRIM function is based on its source_string
argument, using the return type promotion rules that the section Return Types
from the CONCAT Function describes.

The value returned contains a substring of source_string, but from which any
leading pad characters to the left of the first non-pad character have been removed.
If a host variable is used, an LVARCHAR data type is returned.

The LTRIM function scans a copy of the source_string from the left, deleting any
leading characters that appear in the pad_string. If no pad_string argument is
specified, only leading blanks are deleted from the returned value. When the first
non-pad character is encountered, the function returns its result string and
terminates.

In the following example, the pad_string is ’Hello’:
SELECT LTRIM(’Hellohello world!’, ’Hello’) FROM mytab;

The following table shows the output of this SELECT statement.

(constant)

hello world!

Here the first five characters of the source_string were dropped because they
matched characters in the pad_string , but the function terminated after it
encountered the lowercase h character, which preserved the trailing ’ello’ pad
characters to its right.

RTRIM Function:

The RTRIM function removes specified trailing pad characters from a string.

RTRIM Function:

RTRIM (source_string)
, pad_string

Element Description Restrictions Syntax

pad_string Expression that specifies one or
more characters to delete from
source_string

Must be a character expression “Expression”
on page 4-40

source_string Expression that specifies a character
string from which characters in
pad_string are deleted

Pad characters to the left of any character
not in pad_string are not deleted

“Expression”
on page 4-40

The first argument to the RTRIM function must be a character expression from
which to delete trailing pad characters. The optional second argument is a
character expression that evaluates to a string of pad characters. If no second
argument is provided, only blank characters are regarded as pad characters.

4-148 IBM Informix Guide to SQL: Syntax

The return data type of the LTRIM function is based on its source_string argument,
using the return type promotion rules that the section Return Types from the
CONCAT Function describes.

The value returned contains a substring of source_string, but from which any
trailing pad characters to the right of the first non-pad character have been
removed. If a host variable is used, an LVARCHAR data type is returned.

The RTRIM function scans a copy of the source_string from the right, deleting any
trailing characters that appear in the pad_string. If no pad_string argument is
specified, only trailing blanks are deleted from the returned value. When the first
non-pad character is encountered, the function returns its result string and
terminates.

In the following example, the pad_string is ’ theend!*#?’:
SELECT RTRIM(’good night... *!#?theend ’, ’ theend!*#?’) AS closing FROM mytab;

The following table shows the output of this SELECT statement.

(constant)

good night...

Here the last fifteen characters of the source_string were dropped because they
matched characters in the pad_string, but the function terminated after it
encountered the period (.) characters, which preserved the leading ’thn’ pad
characters to the left.

SUBSTRING Function:

The SUBSTRING function returns a subset of a character string.

SUBSTRING Function:

SUBSTRING (source_string FROM start_position)
FOR length

Element Description Restrictions Syntax

length Number of characters to
return from source_string

Must be an expression, constant, column, or
host variable that returns an integer

“Literal Number”
on page 4-184

source_string String argument to the
SUBSTRING function

Must be an expression, constant, column, or
host variable whose value can be converted
to a character data type

“Expression” on
page 4-40

start_position Position in source_string of
first returned character

Must be an expression, constant, column, or
host variable that returns an integer

“Literal Number”
on page 4-184

Any argument to the SUBSTRING function must be of a built-in data type.

The return data type is that of the source_string argument. If a host variable is the
source, the return value is either NVARCHAR or NCHAR, according to the length
of the returned string, using the return type promotion rules that the section
Return Types from the CONCAT Function describes.

Chapter 4. Data Types and Expressions 4-149

The subset begins at the column position that start_position specifies. The following
table shows how the database server determines the starting position of the
returned subset based on the input value of the start_position.

Value of
Start_Position

How the Database Server Determines the Starting Position of the
Return Subset

Positive
Counts forward from the first character in source_string

For example, if start_position = 1, the first character in the source_string is
the first character in the returned subset.

Zero (0)
Counts from one position before (that is, to the left of) the first character
in source_string

For example, if start_position = 0 and length = 1, the database server
returns NULL, whereas if length = 2, the database server returns the first
character in source_string.

Negative
Counts backward from one position after (that is, to the right of) the last
character in source_string

For example, if start_position = -1, the starting position of the returned
subset is the last character in source_string.

In locales for languages with a right-to-left writing direction, such as Arabic, Farsi,
or Hebrew, right should replace left in the preceding table.

The size of the subset is specified by length. The length parameter refers to the
number of logical characters, rather than to the number of bytes. If you omit the
length parameter, or if you specify a length that is greater than the number of
characters from start_position to the end of source_string, the SUBSTRING function
returns the entire portion of source_ string that begins at start_position. The
following example specifies that the subset of the source string that begins in
column position 3 and is two characters long should be returned:
SELECT SUBSTRING(’ABCDEFG’ FROM 3 FOR 2) FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

CD

In the following example, the user specifies a negative start_position for the return
subset:
SELECT SUBSTRING(’ABCDEFG’ FROM -3 FOR 7)

FROM mytable;

The database server starts at the -3 position (four positions before the first
character) and counts forward for 7 characters. The following table shows the
output of this SELECT statement.

(constant)

ABC

SUBSTR Function:

4-150 IBM Informix Guide to SQL: Syntax

The SUBSTR function has the same purpose as the SUBSTRING function (to
return a subset of a source string), but it uses different syntax.

SUBSTR Function:

SUBSTR (source_string , start_position)
, length

Element Description Restrictions Syntax

length Number of characters to be
returned from source_string

Must be an expression, literal, column, or
host variable that returns an integer

“Expression”
on page 4-40

source_string String that serves as input to the
SUBSTR function

Must be an expression, literal, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-40

start_position Column position in source_string
where the SUBSTR function starts
to return characters

Must be an integer expression, literal,
column, or host variable. Can have a plus
sign (+), a minus sign (-), or no sign.

“Literal
Number” on
page 4-184

Any argument to the SUBSTR function must be of a built-in data type.

The SUBSTR function returns a subset of source_string. The subset begins at the
column position that start_position specifies. The following table shows how the
database server determines the starting position of the returned subset based on
the input value of the start_position.

Value of
Start_Position

How the Database Server Determines the Starting Position of the
Returned Subset

Positive Counts forward from the first character in source_string

Zero (0) Counts forward from the first character in source_string (that is, treats a
start_position of 0 as equivalent to 1)

Negative Counts backward from an origin that immediately follows the last
character in source_string A value of -1 returns the last character in
source_string.

The length parameter specifies the number of logical characters (not the number of
bytes) in the subset. If you omit the length parameter, the SUBSTR function returns
the entire portion of source_string that begins at start_position.

If you specify a negative start_position whose absolute value is greater than the
number of characters in source_string, or if length is greater than the number of
characters from start_position to the end of source_string, SUBSTR returns NULL.
(In this case, the behavior of SUBSTR is different from that of the SUBSTRING
function, which returns all the characters from start_position to the last character of
source_string, rather than returning NULL.)

The return data type is that of the source_string argument. If a host variable is the
source, the return value is either NVARCHAR or NCHAR, according to the length
of the returned string, using the return type promotion rules that the section
Return Types from the CONCAT Function describes.

The following example specifies that the string of characters to be returned begins
at a starting position 3 characters before the end of a 7-character source_string. This
implies that the starting position is the fifth character of source_string. Because the

Chapter 4. Data Types and Expressions 4-151

user does not specify a value for length, the database server returns a string that
includes all characters from character-position 5 to the end of source_string.
SELECT SUBSTR(’ABCDEFG’, -3)

FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

EFG

REPLACE Function:

The REPLACE function replaces specified characters within a source string with
different characters.

REPLACE Function:

REPLACE (source_string , old_string)
, new_string

Element Description Restrictions Syntax

new_string Character or characters that replace
old_string in the return string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-40

old_string Character or characters in
source_string that are to be replaced
by new_string

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-40

source_string String of characters argument to
the REPLACE function

Must be an expression, constant, column, or
host variable of a data type that can be
converted to a character data type

“Expression”
on page 4-40

Any argument to the REPLACE function must be of a built-in data type.

The REPLACE function returns a copy of source_string in which every occurrence
of old_string is replaced by new_string. If you omit the new_string option, every
occurrence of old_string is omitted from the return string.

The return data type is its source_string argument. If a host variable is the source,
the return value is either NVARCHAR or NCHAR, according to the length of the
returned string, using the return type promotion rules that the section Return
Types from the CONCAT Function describes.

In the following example, the REPLACE function replaces every occurrence of xz
in the source string with t:
SELECT REPLACE(’Mighxzy xzime’, ’xz’, ’t’)

FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

Mighty time

4-152 IBM Informix Guide to SQL: Syntax

LPAD Function:

The LPAD function returns a copy of source_string that is left-padded to the total
number of characters specified by length.

LPAD Function:

LPAD (source_string , length)
, pad_string

Element Description Restrictions Syntax

length Integer value that specifies
total number of characters in
the returned string

Must be an expression, constant, column, or host
variable of a data type that can be converted to an
integer data type

“Literal
Number” on
page 4-184

pad_string String that specifies the pad
character or characters

Must be an expression, constant, column, or host
variable of a data type that can be converted to a
character data type

“Expression”
on page 4-40

source_string String that serves as input to
the LPAD function

Must be an expression, constant, column, or host
variable of a data type that can be converted to a
character data type

“Expression”
on page 4-40

Any argument to the LPAD function must be of a built-in data type.

The pad_string parameter specifies the character or characters to be used for
padding the source string. The sequence of pad characters occurs as many times as
necessary to make the return string the length specified by length.

The series of pad characters in pad_string is truncated if it is too long to fit into
length. If you specify no pad_string, the default value is a single blank.

The return data type is based on the three arguments, using the return type
promotion rules that the section Return Types from the CONCAT Function
describes.

In the following example, the user specifies that the source string is to be
left-padded to a total length of 16 characters. The user also specifies that the pad
characters are a series consisting of a hyphen and an underscore (-_).
SELECT LPAD(’Here we are’, 16, ’-_’) FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

-_-_-Here we are

RPAD Function:

The RPAD function returns a copy of source_string that is right-padded to the total
number of characters that length specifies.

Chapter 4. Data Types and Expressions 4-153

RPAD Function:

RPAD (source_string , length)
, pad_string

Element Description Restrictions Syntax

length The number of characters in
the returned string

Must be an expression, constant, column, or
host variable that returns an integer

“Literal Number”
on page 4-184

pad_string String that specifies the pad
character or characters

Must be an expression, column, constant, or
host variable of a data type that can be
converted to a character data type

“Expression” on
page 4-40

source_string String that serves as input to
the RPAD function

Same as for pad_string “Expression” on
page 4-40

Any argument to the RPAD function must be of a built-in data type.

The pad_string parameter specifies the pad character or characters to be used to
pad the source string.

The series of pad characters occurs as many times as necessary to make the return
string reach the length that length specifies. The series of pad characters in
pad_string is truncated if it is too long to fit into length. If you omit the pad_string
parameter, the default value is a single blank space.

The return data type is based on the source_string and pad_stringarguments, if both
are specified. If a host variable is the source, the return value is either NVARCHAR
or NCHAR, according to the length of the returned string, using the return type
promotion rules that the section Return Types from the CONCAT Function
describes.

The UNLOAD feature of DB-Access truncates trailing blanks in CHAR or NCHAR
columns, even if the RPAD function has appended blank characters to the data
value. You must explicitly cast the CHAR or NCHAR value to a VARCHAR,
LVARCHAR, or NVARCHAR data type if you need UNLOAD to preserve trailing
blank characters or nonprintable characters in a value that RPAD returns.

In the following example, the user specifies that the source string is to be
right-padded to a total length of 18 characters. The user also specifies that the pad
characters to be used are a sequence consisting of a question mark and an
exclamation point (?!)
SELECT RPAD(’Where are you’, 18, ’?!’)

FROM mytable;

The following table shows the output of this SELECT statement.

(constant)

Where are you?!?!?

Case-Conversion Functions
The case-conversion functions perform lettercase conversion on alphabetic
characters. In the default locale, only the ASCII characters A - Z and a - z can be
modified by these functions, which enable you to perform case-insensitive searches
in your queries and to specify the format of the output.

4-154 IBM Informix Guide to SQL: Syntax

The case-conversion functions are UPPER, LOWER, and INITCAP. The following
diagram shows the syntax of these case-conversion functions.

Case-Conversion Functions:

UPPER
LOWER
INITCAP

(expression)

Element Description Restrictions Syntax

expression Expression returning a
character string

Must be a character type. If a host variable, its length must
be long enough to store the converted string.

“Expression”
on page 4-40

The expression must return a character data type. When the column is described,
the data type returned by the database server is that of expression. For example, if
the input type is CHAR, the output type is also CHAR.

Argument to these functions must be of the built-in data types.

In all locales, the byte length returned from the description of a column with a
case-conversion function is the input byte length of the source string. If you use a
case-conversion function with a multibyte expression argument, the conversion
might increase or decrease the length of the string. If the byte length of the result
string exceeds the byte length expression, the database server truncates the result
string to fit into the byte length of expression.

Only characters designated as ALPHA class in the locale file are converted, and
this occurs only if the locale recognizes the construct of lettercase.

If expression is NULL, the result of a case-conversion function is also NULL.

The database server treats a case-conversion function as an SPL routine in the
following instances:
v If it has no argument
v If it has one argument, and that argument is a named argument
v If it has more than one argument
v If it appears in a projection list with a host variable as an argument

If none of the conditions in the preceding list are met, the database server treats a
case-conversion function as a system function.

The following example uses all the case-conversion functions in the same query to
specify multiple output formats for the same value:
Input value:

SAN Jose

Query:

SELECT City, LOWER(City), LOWER("City"),
UPPER (City), INITCAP(City)

FROM Weather;

Chapter 4. Data Types and Expressions 4-155

Query output:

SAN Jose san jose city SAN JOSE San Jose

UPPER Function:

The UPPER function accepts an expression argument and returns a character string
in which every lowercase alphabetical character in the expression is replaced by a
corresponding uppercase alphabetic character.

The following example uses the UPPER function to perform a case-insensitive
search on the lname column for all employees with the last name of Curran:
SELECT title, INITCAP(fname), INITCAP(lname) FROM employees

WHERE UPPER (lname) = "CURRAN"

Because the INITCAP function is specified in the projection list, the database
server returns the results in a mixed-case format. For example, the output of one
matching row might read: accountant James Curran.

LOWER Function:

The LOWER function accepts an expression argument and returns a character string
in which every uppercase alphabetic character in the expression is replaced by a
corresponding lowercase alphabetic character.

The following example shows how to use the LOWER function to perform a
case-insensitive search on the City column. This statement directs the database
server to replace all instances (that is, any variation) of the words san jose, with
the mixed-case format, San Jose.
UPDATE Weather SET City = "San Jose"

WHERE LOWER (City) = "san jose";

INITCAP Function:

The INITCAP function returns a copy of the expression in which every word in the
expression begins with an uppercase letter. With this function, a word begins after
any character other than a letter. Thus, in addition to a blank space, symbols such
as commas, periods, colons, and so on, introduce a new word.

For an example of the INITCAP function, see “UPPER Function.”

FORMAT_UNITS Function
The FORMAT_UNITS function can interpret strings that specify a number and the
abbreviated names of units of memory or of mass storage.

This built-in function can accept one, two, or three quoted string arguments. You
can invoke FORMAT_UNITS in SQL statements that process size specifications
expressed by standard abbreviations for bytes or for larger units (such as kilobytes,
megabytes, gigabytes, and so forth) of memory or of mass storage.

The FORMAT_UNITS function can also be called internally in the sysadmin
database by the SQL administration API ADMIN and TASK functions, which are
described in the IBM Informix Administrator's Reference.

4-156 IBM Informix Guide to SQL: Syntax

FORMAT_UNITS Function:

FORMAT_UNITS (' number units ')
' number ' , ' units '
number , ' precision '

precision

Element Description Restrictions Syntax

number Expression that evaluates to the
number of storage or memory units

Must be a literal number or a quoted string
specifying a number that can be converted
to FLOAT

“Expression” on
page 4-40

precision Integer number of significant digits
to return from number

Must be a literal number or a quoted string
specifying an integer

“Expression” on
page 4-40

units Abbreviation of a unit of storage or
memory; the default is 'B' (for
bytes)

Must begin with 'B', 'K', 'M', 'G', 'T', 'P', or
'PB' (or the lowercase forms of these
letters). Any trailing characters are ignored.

“Quoted String” on
page 4-188

This built-in function can accept one, two, or three arguments. The returned value
is a character string that shows the specified number and an appropriate format
label that shows the storage units. If you specify a precision as the last argument,
the number is returned with that precision. Otherwise, the number is formatted to
precision 3 (%3.3lf) by default.

The same notation also applies to arguments to all SQL administration API
ADMIN and TASK commands (except for commands that emulate the Enterprise
Replication cdr utility) that specify sizes of memory, of disk storage, or of address
offsets:

Notation
Corresponding Units

'B' or 'b'
Bytes (= 2 to the power 0)

'K' or 'k'
Kilobytes (= 2 to the power 10)

'M' or 'm'
Megabytes (= 2 to the power 20)

'G' or 'g'
Gigabytes (= 2 to the power 30)

'T' or 't'
Terabytes (= 2 to the power 40)

'PB' Petabytes (= 2 to the power 50)

'P' Pages (= 2 kilobytes or 4 kilobytes, depending on the base page size of the
system)

The initial letter in the unit specification (’B’, ’K’, ’M’, ’G’ or 'T’) determines the
units of measure, and any trailing characters are ignored. An exception, however, is
if the initial letter ’P’ (or ’p’) is immediately followed by 'B' or 'b' in the string,
because in this case the string is interpreted as petabytes. Any other string starting
with "P" (such as "PA", "pc", "PhD", "papyrus" and so forth) is interpreted as
specifying pages, rather than petabytes.

Chapter 4. Data Types and Expressions 4-157

If one argument provides both the number and units specifications, Informix
ignores any whitespace that separates the number specification from the units
specification within the same argument to the FORMAT_UNITS, or SQL
administration API ADMIN or TASK functions. For example, the specifications
’128M’ and ’128 m’ are both interpreted as 128 megabytes.

The following examples invoke the FORMAT_UNITS function with a single
argument:
EXECUTE FUNCTION FORMAT_UNITS(’1024 M’);

The following character string value is returned.

(expression)

1.00 GB

SELECT FORMAT_UNITS(’1024 k’) FROM systables WHERE tabid=1;

The following character string value is returned.

(expression)

1.00 MB

SELECT FORMAT_UNITS(tabid || ’M’) FROM systables WHERE tabid=100;

The following character string value is returned.

(expression)

100 MB

The following examples show calls to the FORMAT_UNITS function with two
arguments:
EXECUTE FUNCTION FORMAT_UNITS(1024, ’k’);

The following character string value is returned.

(expression)

1.00 MB

SELECT FORMAT_UNITS(SUM(chksize), ’P’) SIZE,
FORMAT_UNITS(SUM(nfree), ’p’) FREE FROM syschunks;

size 117 MB
free 8.05 MB

This query returns the string values size 117 MB and free 8.05 MB.

The following examples show calls to the FORMAT_UNITS function with three
arguments:
EXECUTE FUNCTION FORMAT_UNITS(1024, ’k’, 4);

The following character string value is returned.

(expression)

1.000 MB

4-158 IBM Informix Guide to SQL: Syntax

SELECT FORMAT_UNITS(SUM(chksize), ’P’, 4), SIZE,
FORMAT_UNITS(SUM(nfree), ’p’, 4) FREE FROM syschunks;

size 117.2 MB
free 8.049 MB

This query returns the string values size 117.2 MB and free 8.047 MB. These
results differ from the previous example of a query only in their non-default
precision, which the last argument to FORMAT_UNITS specifies.

IFX_ALLOW_NEWLINE Function

The IFX_ALLOW_NEWLINE function sets a newline mode that allows newline
characters in quoted strings or disallows newline characters in quoted strings
within the current session.

IFX_ALLOW_NEWLINE Function:

IFX_ALLOW_NEWLINE (' t ')
' f '

If you enter ’t’ as the argument of this function, you enable newline characters in
quoted strings in the session. If you enter ’f’ as the argument, you disallow
newline characters in quoted strings in the session.

You can set the newline mode for all sessions by setting the ALLOW_NEWLINE
parameter in the ONCONFIG file to a value of 0 (newline characters not allowed)
or to a value of 1 (newline characters allowed). If you do not set this configuration
parameter, the default value is 0. Each time you start a session, the new session
inherits the newline mode set in the ONCONFIG file. To change the newline mode
for the session, execute the IFX_ALLOW_NEWLINE function. Once you have set
the newline mode for a session, the mode remains in effect until the end of the
session or until you execute the IFX_ALLOW_NEWLINE function again within the
session.

In the following example, assume that you did not specify any value for the
ALLOW_NEWLINE parameter in the ONCONFIG file, so, by default, newline
characters are not allowed in quoted strings in any session. After you start a new
session, you can enable newline characters in quoted strings in that session by
executing the IFX_ALLOW_NEWLINE function:
EXECUTE PROCEDURE IFX_ALLOW_NEWLINE(’t’);

In ESQL/C, the newline mode that is set by the ALLOW_NEWLINE parameter in
the ONCONFIG file or by the execution of the IFX_ALLOW_NEWLINE function
in a session applies only to quoted-string literals in SQL statements. The newline
mode does not apply to quoted strings contained in host variables in SQL
statements. Host variables can contain newline characters within string data
regardless of the newline mode currently in effect.

For example, you can use a host variable to insert data that contains newline
characters into a column even if the ALLOW_NEWLINE parameter in the
ONCONFIG file is set to 0.

Chapter 4. Data Types and Expressions 4-159

For further information on how the IFX_ALLOW_NEWLINE function affects
quoted strings, see “Quoted String” on page 4-188. For further information on the
ALLOW_NEWLINE parameter in the ONCONFIG file, see the IBM Informix
Administrator's Reference.
Related reference

ALLOW_NEWLINE Configuration Parameter (Administrator's Reference)

User-Defined Functions
A user-defined function (UDF) is a function that you write in SPL or in a language
external to the database, such as C or Java. A UDF as an expression has the
following syntax:

User-Defined Functions:

function (�

,

(1)
Expression

parameter =

�

�
(2)

, Statement-Local Variable Declaration

)

Notes:

1 See “Expression” on page 4-40

2 See “Statement-Local Variable Declaration” on page 4-161

Element Description Restrictions Syntax

function Name of the function Function must exist “Database Object
Name” on page
5-16

parameter Name of an argument that was
declared in a CREATE FUNCTION
statement

If you use the parameter = option for any
argument in the called function, you must
use it for all arguments

“Identifier” on page
5-21

You can call user-defined functions within SQL statements. Unlike built-in
functions, user-defined functions can only be invoked by the creator of the
function, by the DBA, and by users who have been granted the Execute privilege
on the function. For more information, see “GRANT statement” on page 2-401.

The following examples show some user-defined function expressions. The first
example omits the parameter option when it lists the function argument:
read_address(’Miller’)

This second example uses the parameter option to specify the argument value:
read_address(lastname = ’Miller’)

4-160 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0021.htm#ids_adr_0021

When you use the parameter option, the parameter name must match the name of
the corresponding parameter in the function registration. For example, the
preceding example assumes that the read_address() function had been registered
as follows:
CREATE FUNCTION read_address(lastname CHAR(20))

RETURNING address_t ... ;

A statement-local variable (SLV) enables you to transmit a value from a user-defined
function call to another part of the same SQL statement.

To use an SLV with a call to a user-defined function

1. Write one or more OUT parameters (and for UDRs written in the Java
language, INOUT parameters) for the user-defined function.
For information on how to write a UDR with OUT or INOUT parameters, see
IBM Informix User-Defined Routines and Data Types Developer's Guide.

2. When you register the user-defined function, specify the OUT keyword before
each OUT parameter, and the INOUT keyword before each INOUT parameter.
For more information, see “Specifying INOUT Parameters for a User-Defined
Routine” on page 5-70, and “Specifying OUT Parameters for User-Defined
Routines” on page 5-69.

3. Declare the SLV in a function expression that calls the user-defined function
with each OUT and INOUT parameter.
The call to the user-defined function must be made within a WHERE clause.
For information about the syntax to declare the SLV, see “Statement-Local
Variable Declaration.”

4. Use the SLV that the user-defined function has initialized within the SQL
statement.
Once the call to the user-defined function has initialized the SLV, you can use
this value in other parts of the same SQL statement in which the SLV was
declared, including subqueries of the query whose WHERE clause includes the
SLV declaration. For information about the use of an SLV within the SELECT
statement, see “Statement-Local Variable Expressions” on page 4-163.

You cannot use SLVs and OUT parameters in SPL functions.

Statement-Local Variable Declaration:

The Statement-Local Variable Declaration declares a statement-local variable (SLV)
in a call to a user-defined function that defines one or more OUT or INOUT
parameters.

Statement-Local Variable Declaration:

slv_name #
(1)

Built-In Data Type
opaque_data_type
distinct_data_type

(2)
Complex Data Type

Notes:

1 See “Built-In Data Types” on page 4-21

2 See “Complex Data Type” on page 4-34

Chapter 4. Data Types and Expressions 4-161

Element Description Restrictions Syntax

distinct_data_type Name of a distinct data type The distinct data type must already exist
in the database

“Identifier”
on page 5-21

opaque_data_type Name of an opaque data type The opaque data type must already exist
in the database

“Identifier”
on page 5-21

slv_name Name of a statement local variable
you are defining

The slv_name is valid only for the life of
the statement, and must be unique within
the statement

“Identifier”
on page 5-21

You can declare an SLV in a call to a user-defined function if both of the following
conditions are true:
v The UDF has one or more OUT or INOUT parameters
v The SLV is declared when the UDF is invoked in the WHERE clause of a query.

The SLV declaration in the WHERE clause assigns the value of an OUT or INOUT
parameter to the SLV, with the sharp (#) symbol between the identifier of the SLV
and its declared data type. The UDF can be written in the SPL, C, or Java
language. For example, if you register a function with the following CREATE
FUNCTION statement, you can assign the value of its y parameter, which is an
OUT parameter, to an SLV in a WHERE clause:
CREATE FUNCTION find_location(a FLOAT, b FLOAT, OUT y INTEGER)

RETURNING VARCHAR(20)
EXTERNAL NAME "/usr/lib/local/find.so"

LANGUAGE C;

In this example, find_location() accepts two FLOAT values that represent a
latitude and a longitude and return the name of the nearest city with an extra
value of type INTEGER that represents the population rank of the city.

You can now call find_location() in a WHERE clause:
SELECT zip_code_t FROM address

WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

The function expression passes two FLOAT values to find_location() and declares
an SLV named rank of type INT. In this case, find_location() will return the name
of the city nearest latitude 32.1 and longitude 35.7 (which might be a heavily
populated area) whose population rank is between 1 and 100. The statement then
returns the zip code that corresponds to that city.

The SLV can be declared only in a call to the UDF in the WHERE clause of the
SELECT statement. The scope of reference of the SLV includes other parts of the
same SELECT statement. The following SELECT statement, however, is invalid
because the SLV declaration is in the projection list of the Projection clause, rather
than in the WHERE clause:
-- invalid SELECT statement
SELECT title, contains(body, ’dog and cat’, rank # INT), rank

FROM documents;

The data type that you specify when you declare the SLV must be the same data
type as the corresponding OUT or INOUT parameter in the CREATE FUNCTION
statement. If you use different but compatible data types, such as INTEGER and
FLOAT, the database server automatically performs the cast between the data
types.

4-162 IBM Informix Guide to SQL: Syntax

SLVs share the name space with UDR variables and the column names of the table
involved in the SQL statement. Therefore, the database uses the following
descending order of precedence to resolve name conflicts among the following
objects:
v UDR variables
v Column names
v SLVs

After the call to the UDF assigns the value of an OUT or INOUT parameter to the
SLV, you can reference the SLV in other parts of the same query. For more
information, see “Statement-Local Variable Expressions.”

Statement-Local Variable Expressions

The Statement-Local Variable Expression specifies a statement-local variable (SLV)
that you can use elsewhere in the same SELECT statement.

Statement-Local Variable Expressions:

SLV_variable

Element Description Restrictions Syntax

SLV_variable Statement-local variable (SLV) assigned
in a call to a user-defined function in
the same query

The SLV_variable exists only while the
query is executing. Its name must be
unique within the query

“Identifier” on
page 5-21

You define an SLV in the call to a user-defined function in the WHERE clause of
the SELECT statement. This user-defined function must be defined with one or
more OUT or INOUT parameters. The call to the user-defined function assigns the
value of the OUT or INOUT parameters to the SLVs. For more information, see
“Statement-Local Variable Declaration” on page 4-161.

Once the user-defined function assigns its OUT or INOUT parameters to the SLVs,
you can use these values in other parts of the same SELECT statement, subject to
the following scope-of-reference rules:
v The SLV is read-only throughout the query (or subquery) in which it is defined.
v The scope of an SLV extends from the query in which the SLV is defined down

into all nested subqueries.
v In nested queries, the scope of an SLV does not extend upwards.

In other words, if a query contains one or more subqueries, an SLV that is
defined in the query is also visible to all the subqueries of that query. But if the
SLV is defined in the subquery, it is not visible to the parent query.

v In queries that include the UNION operator, the SLV is only visible in the query
in which it is defined.
The SLV is not visible to any other queries specified in the UNION.

v For INSERT, DELETE, and UPDATE statements, an SLV is not visible outside the
SELECT portion of the statement.
Within this SELECT portion of a DML statement, all the above scoping rules
apply.

Chapter 4. Data Types and Expressions 4-163

Important: A statement-local variable is in scope only for the duration of a single
SQL statement.

The following SELECT statement calls the find_location() function in a WHERE
clause and defines the rank SLV. Here find_location() accepts two values that
represent a latitude and a longitude and return the name of the nearest city with
an extra value of type INTEGER that represents the population rank of the city.
SELECT zip_code_t FROM address

WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

When execution of the find_location() function completes successfully, the function
has initialized the rank SLV. The SELECT then uses this rank value in a second
WHERE clause condition. In this example, the Statement-Local Variable Expression
is the variable rank in the second WHERE clause condition:
rank < 101

The number of OUT and INOUT parameters and SLVs that a UDF can have is not
restricted. (Releases of Informix earlier than Version 9.4 restricted user-defined
functions to a single OUT parameter and no INOUT parameters, thereby restricting
the number of SLVs to no more than one.)

If the user-defined function that initializes the SLVs is not executed in an iteration
of the statement, the SLVs each have a value of NULL. Values of SLVs do not
persist across iterations of the statement. At the start of each iteration, the database
server sets the SLV values to NULL.

The following partial statement calls two user-defined functions with OUT
parameters, whose values are referenced with the SLV names out1 and out2:
SELECT...

WHERE func_2(x, out1 # INTEGER) < 100
AND (out1 = 12 OR out1 = 13)
AND func_3(a, out2 # FLOAT) = "SAN FRANCISCO"
AND out2 = 3.1416;

If a function assigns one or more OUT or INOUT parameter values from another
database of the local database server to SLVs, the values must be of built-in data
types, or DISTINCT data types whose base types are built-in data types (and that
you cast explicitly to built-in data types), or must be opaque UDTs that you cast
explicitly to built-in data types. All the opaque UDTs, DISTINCT types, type
hierarchies, and casts must be defined exactly the same way in all of the
participating databases.

For more information on how to write a user-defined function with OUT or
INOUT parameters, see IBM Informix User-Defined Routines and Data Types
Developer's Guide.

Aggregate Expressions

An aggregate expression uses an aggregate function to summarize selected
database data. The built-in aggregate functions have the following syntax.

Aggregate Expressions:

4-164 IBM Informix Guide to SQL: Syntax

COUNT(*)
AVG (
MAX Aggregate Scope Qualifiers)
MIN ALL (1)
SUM Subset of Expression)
RANGE
STDEV
VARIANCE

(2)
User-Defined Aggregates

Aggregate Scope Qualifiers:

ALL
column

DISTINCT table .
UNIQUE alias .

view .
synonym .

Notes:

1 See “Subset of Expressions Valid in an Aggregate Expression” on page 4-166

2 See “User-Defined Aggregates” on page 4-166

Element Description Restrictions Syntax

column Column to which aggregate function
is applied

See headings for individual
keywords on pages that follow

“Identifier” on page 5-21

alias,
synonym,
table, view

Synonym, table, view, or alias that
contains column

Synonym and the table or view to
which it points must exist

“Identifier” on page 5-21

You cannot use an aggregate expression in a condition that is part of a WHERE
clause unless you use the aggregate expression within a subquery. You cannot
apply an aggregate function to a BYTE or TEXT column. For other general
restrictions, see “Subset of Expressions Valid in an Aggregate Expression” on page
4-166.

An aggregate function returns one value for a set of queried rows. The following
examples show aggregate functions in SELECT statements:
SELECT SUM(total_price) FROM items WHERE order_num = 1013;

SELECT COUNT(*) FROM orders WHERE order_num = 1001;

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer;

If you use an aggregate function and one or more columns in the projection list of
the Projection clause, you must include all the column names that are not used as
part of an aggregate or time expression in the GROUP BY clause.

Types of Aggregate Expressions
SQL statements can include built-in aggregates and user-defined aggregates. The
built-in aggregates include all the aggregates shown in the syntax diagram in
“Aggregate Expressions” on page 4-164 except for the “User-Defined Aggregates”
category. User-defined aggregates are any new aggregates that the user creates
with the CREATE AGGREGATE statement.

Chapter 4. Data Types and Expressions 4-165

Built-in Aggregates: Built-in aggregates are aggregate functions that are defined
by the database server, such as AVG, SUM, and COUNT. These aggregates work
only with built-in data types, such as INTEGER and FLOAT. You can extend these
built-in aggregates to work with extended data types. To extend built-in
aggregates, you must create UDRs that overload several binary operators.

After you overload the binary operators for a built-in aggregate, you can use that
aggregate with an extended data type in an SQL statement. For example, if you
have overloaded the plus operator for the SUM aggregate to work with a specified
row type and assigned this row type to the complex column of the complex_tab
table, you can apply the SUM aggregate to the complex column:
SELECT SUM(complex) FROM complex_tab;

For more information on how to extend built-in aggregates, see IBM Informix
User-Defined Routines and Data Types Developer's Guide. For information on how to
invoke built-in aggregates, see the descriptions of individual built-in aggregates in
the following pages.

User-Defined Aggregates: A user-defined aggregate is an aggregate that you
define to perform an aggregate computation that the database server does not
provide. For example, you can create a user-defined aggregate named SUMSQ that
returns the sum of the squared values of a specified column. User-defined
aggregates can work with built-in data types or extended data types or both,
depending on how you define the support functions for the user-defined
aggregate.

To create a user-defined aggregate, use the CREATE AGGREGATE statement. In
this statement you name the new aggregate and specify the support functions for
the aggregate. Once you create the new aggregate and its support functions, you
can use the aggregate in SQL statements. For example, if you created the SUMSQ
aggregate and specified that it works with the FLOAT data type, you can apply the
SUMSQ aggregate to a FLOAT column named digits in the test table:
SELECT SUMSQ(digits) FROM test;

For more information on how to create user-defined aggregates, see “CREATE
AGGREGATE statement” on page 2-92 and the discussion of user-defined
aggregates in IBM Informix User-Defined Routines and Data Types Developer's Guide.
For information on how to invoke user-defined aggregates, see “User-Defined
Aggregates” on page 4-174.

Subset of Expressions Valid in an Aggregate Expression

As indicated in the diagrams for “Aggregate Expressions” on page 4-164 and
“User-Defined Aggregates” on page 4-174, not all expressions are available when
you use an aggregate expression. The argument of an aggregate function, for
example, cannot itself contain an aggregate function. You cannot use aggregate
functions in the following contexts:
v In a WHERE clause, unless it is contained in a subquery, or unless the aggregate

is on a correlated column from a parent query and the WHERE clause is in a
subquery within a HAVING clause

v As an argument to an aggregate function
The following nested aggregate expression is invalid:
MAX (AVG (order_num))

v On a BYTE or TEXT column

4-166 IBM Informix Guide to SQL: Syntax

You cannot use a column that is a collection data type as an argument to the
following aggregate functions:
v AVG

v SUM

v MIN

v MAX

Expression or column arguments to built-in aggregates (except for COUNT, MAX,
MIN, and RANGE) must return numeric or INTERVAL data types, but RANGE
also accepts DATE and DATETIME arguments.

For SUM and AVG, you cannot use the difference between two DATE values
directly as the argument to an aggregate, but you can use DATE differences as
operands within arithmetic expression arguments. For example:
SELECT . . . AVG(ship_date - order_date);

returns error -1201, but the following equivalent expression is valid:
SELECT . . . AVG((ship_date - order_date)*1);

Including or Excluding Duplicates in the Row Set
The DISTINCT keyword restricts the argument to unique values from the specified
column. The UNIQUE and DISTINCT keywords are synonyms.

The ALL keyword specifies that all values selected from the column or expression,
including any duplicate values, are used in the calculation.

AVG Function

The AVG function returns the average of all values in the specified column or
expression. You can apply the AVG function only to number columns. If you use
the DISTINCT keyword, the average (meaning the mean) is calculated from only
the distinct values in the specified column or expression. The query in the
following example finds the average price of a helmet:
SELECT AVG(unit_price) FROM stock WHERE stock_num = 110;

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the AVG function returns a NULL for that column.

Overview of COUNT Functions
The COUNT function is actually a set of functions that enable you to count
column values in different ways, according to arguments after the COUNT
keyword. Each form of the COUNT function is explained in the following
subsections. For a comparison of the different forms of the COUNT function, see
“Arguments to the COUNT Functions” on page 4-168.

COUNT(*) Function

The COUNT (*) function returns the number of rows that satisfy the WHERE
clause of a SELECT statement. The following example finds how many rows in the
stock table have the value HRO in the manu_code column:
SELECT COUNT(*) FROM stock WHERE manu_code = ’HRO’;

The following example queries one of the System Management Interface (SMI)
tables to find the number of extents in the customer table:
SELECT COUNT(*) FROM sysextents WHERE dbs_name = ’stores’ AND tabname = customer";

Chapter 4. Data Types and Expressions 4-167

You can use COUNT(*) as the Projection clause in queries of this general format to
obtain information from the SMI tables. For information about sysextents and
other SMI tables, see the IBM Informix Administrator's Reference chapter that
describes the sysmaster database.

If the SELECT statement does not have a WHERE clause, the COUNT (*) function
returns the total number of rows in the table. The following example finds how
many rows are in the stock table:
SELECT COUNT(*) FROM stock;

If the SELECT statement contains a GROUP BY clause, the COUNT (*) function
reflects the number of values in each group. The following example is grouped by
the first name; the rows are selected if the database server finds more than one
occurrence of the same name:
SELECT fname, COUNT(*) FROM customer GROUP BY fname

HAVING COUNT(*) > 1;

If the value of one or more rows is NULL, the COUNT (*) function includes the
NULL columns in the count unless the WHERE clause explicitly omits them.

COUNT DISTINCT and COUNT UNIQUE Functions

The COUNT DISTINCT function returns the number of unique values in the
column or expression, as the following example shows. If the COUNT DISTINCT
function encounters NULL values, it ignores them:
SELECT COUNT (DISTINCT item_num) FROM items;

NULLs are ignored unless every value in the specified column is NULL. If every
column value is NULL, the COUNT DISTINCT function returns zero (0).

The UNIQUE keyword has the same meaning as the DISTINCT keyword in
COUNT functions. The UNIQUE keyword instructs the database server to return
the number of unique non-NULL values in the column or expression. The
following example calls the COUNT UNIQUE function, but it is equivalent to the
preceding example that calls the COUNT DISTINCT function:
SELECT COUNT (UNIQUE item_num) FROM items;

COUNT column Function

The COUNT column function returns the total number of non-NULL values in the
column or expression, as the following example shows:
SELECT COUNT (item_num) FROM items;

The ALL keyword can precede the specified column name for clarity, but the query
result is the same whether you include the ALL keyword or omit it.

The following example shows how to include the ALL keyword in the COUNT
column function:
SELECT COUNT (ALL item_num) FROM items;

Arguments to the COUNT Functions
You can use the different forms of the COUNT function to retrieve different types
of information about a table. The table below summarizes the meaning of each of
the following forms of the COUNT function with an asterisk or column name
argument.

4-168 IBM Informix Guide to SQL: Syntax

COUNT Function Description

COUNT (*) Returns the number of rows that satisfy the query If you do not
specify a WHERE clause, this function returns the total number
of rows in the table.

COUNT (DISTINCT) or
COUNT (UNIQUE)

Returns the number of unique non-NULL values in the specified
column

COUNT (column) or
COUNT (ALL column)

Returns the total number of non-NULL values in the specified
column

Some examples can help to show the differences among the various forms of the
COUNT function that reference a column. Most of the following examples query
against the ship_instruct column of the orders table in the demonstration database.
For information on the schema of the orders table and the data values in the
ship_instruct column, see the description of the demonstration database in the
IBM Informix Guide to SQL: Reference.

Examples of the COUNT(*) Function:

In the following example, the user wants to know the total number of rows in the
orders table. So the user calls the COUNT(*) function in a SELECT statement
without a WHERE clause:
SELECT COUNT(*) AS total_rows FROM orders;

The following table shows the result of this query.

total_rows

23

In the following example, the user wants to know how many rows in the orders
table have a NULL value in the ship_instruct column. The user calls the
COUNT(*) function in a SELECT statement with a WHERE clause, and specifies
the IS NULL condition in the WHERE clause:
SELECT COUNT (*) AS no_ship_instruct FROM orders

WHERE ship_instruct IS NULL;

The following table shows the result of this query.

no_ship_instruct

2

In the following example, the user wants to know how many rows in the orders
table have the value express in the ship_instruct column. So the user calls the
COUNT(*) function in the projection list and specifies the equals (=) relational
operator in the WHERE clause.
SELECT COUNT (*) AS ship_express FROM ORDERS

WHERE ship_instruct = ’express’;

The following table shows the result of this query.

ship_express

6

Chapter 4. Data Types and Expressions 4-169

Examples of the COUNT DISTINCT Function:

In the next example, the user wants to know how many unique non-NULL values
are in the ship_instruct column of the orders table. The user calls the COUNT
DISTINCT function in the projection list of the SELECT statement:
SELECT COUNT(DISTINCT ship_instruct) AS unique_notnulls

FROM orders;

The following table shows the result of this query.

unique_notnulls

16

Examples of the COUNT column Function:

In the following example the user wants to know how many non-NULL values are
in the ship_instruct column of the orders table. The user invokes the
COUNT(column) function in the Projection list of the SELECT statement:
SELECT COUNT(ship_instruct) AS total_notnulls FROM orders;

The following table shows the result of this query.

total_notnulls

21

A similar query for non-NULL values in the ship_instruct column can include the
ALL keyword in the parentheses that follow the COUNT keyword:
SELECT COUNT(ALL ship_instruct) AS all_notnulls FROM orders;

The following table shows that the query result is the same whether you include or
omit the ALL keyword (because ALL is the default).

all_notnulls

21

MAX Function

The MAX function returns the largest value in the specified column or expression.
Using the DISTINCT keyword does not change the results. The query in the
following example finds the most expensive item that is in stock but has not been
ordered:
SELECT MAX(unit_price) FROM stock

WHERE NOT EXISTS (SELECT * FROM items
WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code);

NULLs are ignored unless every value in the column is NULL. If every column
value is NULL, the MAX function returns a NULL for that column.

MIN Function

The MIN function returns the lowest value in the column or expression. Using the
DISTINCT keyword does not change the results. The following example finds the
least expensive item in the stock table:

4-170 IBM Informix Guide to SQL: Syntax

SELECT MIN(unit_price) FROM stock;

NULL values are ignored unless every value in the column is NULL. If every
column value is NULL, the MIN function returns a NULL for that column.

SUM Function

The SUM function returns the sum of all the values in the specified column or
expression, as the following example shows. If you use the DISTINCT keyword,
the sum is for only distinct values in the column or expression:
SELECT SUM(total_price) FROM items WHERE order_num = 1013;

NULL values are ignored unless every value in the column is NULL. If every
column value is NULL, the SUM function returns a NULL for that column. You
cannot use the SUM function with a non-numeric column.

RANGE Function

The RANGE function computes the range of returned values. It calculates the
difference between the maximum and the minimum values, as follows:
range(expr) = max(expr) - min(expr);

You can apply the RANGE function only to numeric columns. The following query
finds the range of ages for a population:
SELECT RANGE(age) FROM u_pop;

As with other aggregates, the RANGE function applies to the rows of a group
when the query includes a GROUP BY clause, as the next example shows:
SELECT RANGE(age) FROM u_pop GROUP BY birth;

Because DATE values are stored internally as integers, you can use the RANGE
function on DATE columns. With a DATE column, the return value is the number
of days between the earliest and latest dates in the column.

NULL values are ignored unless every value in the column is NULL. If every
column value is NULL, the RANGE function returns a NULL for that column.

Important: All computations for the RANGE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

STDEV Function

The STDEV function computes the standard deviation of a data set, which is the
square root of the VARIANCE function. You can apply the STDEV function only
to numeric columns. The next query finds the standard deviation:
SELECT STDEV(age) FROM u_pop WHERE u_pop.age > 0;

As with the other aggregates, the STDEV function applies to the rows of a group
when the query includes a GROUP BY clause, as this example shows:
SELECT STDEV(age) FROM u_pop GROUP BY birth WHERE STDEV(age) > 0;

NULL values are ignored unless every value in the specified column is NULL. If
every column value is NULL, STDEV returns a NULL for that column.

Chapter 4. Data Types and Expressions 4-171

Important: All computations for the STDEV function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

You cannot use this function on columns of type DATE.

Within a SELECT Statement with GROUP BY clause, STDEV returns a zero
variance for a count of 1. You can omit this special case through appropriate query
construction (for example, "HAVING COUNT(*) > 1"). Otherwise, a data set that has
only a few cases might block the rest of the query result.

VARIANCE Function

The VARIANCE function returns an estimate of the population variance, as the
standard deviation squared. VARIANCE calculates the following value:
(SUM(Xi

2) - (SUM(Xi)
2)/N)/(N - 1)

In this formula, Xi is each value in the column and N is the total number of
non-NULL values in the column (unless all values are NULL, in which case the
variance is logically undefined, and the VARIANCE function returns NULL).

You can apply the VARIANCE function only to numeric columns.

The following query estimates the variance of age values for a population:
SELECT VARIANCE(age) FROM u_pop WHERE u_pop.age > 0;

As with the other aggregates, the VARIANCE function applies to the rows of a
group when the query includes a GROUP BY clause, as in this example:
SELECT VARIANCE(age) FROM u_pop GROUP BY birth

WHERE VARIANCE(age) > 0;

As previously noted, VARIANCE ignores NULL values unless every qualified row
is NULL for a specified column. If every value is NULL, then VARIANCE returns
a NULL result for that column. (This typically indicates missing data, and is not
necessarily a good estimate of underlying population variance.)

If N, the total number of qualified non-NULL column values, equals one, then the
VARIANCE function returns zero (another implausible estimate of the true
population variance). To omit this special case, you can modify the query. For
example, you might include a HAVING COUNT(*) > 1 clause.

Important: All calculations for the VARIANCE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

Although DATE values are stored internally as an integer, you cannot use the
VARIANCE function on columns of data type DATE.

Error Checking in ESQL/C
Aggregate functions always return exactly one row. If no rows are selected, the
function returns a NULL. You can use the COUNT (*) function to determine
whether any rows were selected, and you can use an indicator variable to
determine whether any selected rows were empty. Fetching a row with a cursor

4-172 IBM Informix Guide to SQL: Syntax

that is associated with an aggregate function always returns one row; hence, 100
for end of data is never returned into the sqlcode variable for a first FETCH
attempt.

You can also use the GET DIAGNOSTICS statement for error checking.

Summary of Aggregate Function Behavior
An example can help to summarize the behavior of the aggregate functions.
Assume that the testtable table has a single INTEGER column that is named num.
The contents of this table are as follows.

num

2

2

2

3

3

4

(NULL)

You can use aggregate functions to obtain information about the num column and
the testtable table. The following query uses the AVG function to obtain the
average of all the non-NULL values in the num column:
SELECT AVG(num) AS average_number FROM testtable;

The following table shows the result of this query.

average_number

2.66666666666667

You can use the other aggregate functions in SELECT statements that are similar to
the preceding example. If you enter a series of SELECT statements that have
different aggregate functions in the projection list and do not include a WHERE
clause, you receive the results that the following table shows.

Function Results Function Results

COUNT (*) 7 MAX 4

COUNT (DISTINCT) 3 MAX(DISTINCT) 4

COUNT (ALL num) 6 MIN 2

COUNT (num) 6 MIN(DISTINCT) 2

AVG 2.66666666666667 RANGE 2

AVG (DISTINCT) 3.00000000000000 SUM 16

STDEV 0.74535599249993 SUM(DISTINCT) 9

VARIANCE 0.55555555555556

Chapter 4. Data Types and Expressions 4-173

User-Defined Aggregates
You can create your own aggregate expressions with the CREATE AGGREGATE
statement and then invoke these aggregates wherever you can invoke the built-in
aggregates. The following diagram shows the syntax for invoking a user-defined
aggregate.

User-Defined Aggregates:

aggregate (
ALL

column
DISTINCT table.
UNIQUE view.

synonym.
ALL (1)

Subset of Expression

, setup_expr
�

�)

Notes:

1 See “Subset of Expressions Valid in an Aggregate Expression” on page 4-166

Element Description Restrictions Syntax

aggregate Name of the user-defined
aggregate to invoke

The aggregate and the support functions
defined for aggregate must exist

“Identifier” on page
5-21

column Name of a column within table Must exist and have a numeric data type “Quoted String” on
page 4-188

setup_expr Set-up expression that
customizes aggregate for a
specific invocation

Cannot be a lone host variable. Any
columns referenced in setup_expr must be in
the GROUP BY clause of the query

“Expression” on
page 4-40

synonym, table,
view

Synonym, table, or view in
which column occurs

The synonym and the table or view to which
it points must exist

“Identifier” on page
5-21

Use the DISTINCT or UNIQUE keywords to specify that the user-defined
aggregate is to be applied only to unique values in the named column or
expression. Use the ALL keyword to specify that the aggregate is to be applied to
all values in the named column or expression.

If you omit the DISTINCT, UNIQUE, and ALL keywords, ALL is the default. For
further information on the DISTINCT, UNIQUE, and ALL keywords, see
“Including or Excluding Duplicates in the Row Set” on page 4-167.

When you specify a setup expression, this value is passed to the INIT support
function that was defined for the user-defined aggregate in the CREATE
AGGREGATE statement.

In the following example, you apply the user-defined aggregate named my_avg to
all values of the quantity column in the items table:
SELECT my_avg(quantity) FROM items

In the following example, you apply the user-defined aggregate named my_sum to
unique values of the quantity column in the items table. You also supply the value
5 as a setup expression. This value might specify that the initial value of the sum
that my_avg will compute is 5.

4-174 IBM Informix Guide to SQL: Syntax

SELECT my_sum(DISTINCT quantity, 5) FROM items

In the following example, you apply the user-defined aggregate named my_max to
all values of the quantity column in the remote items table:
SELECT my_max(remote.quantity) FROM rdb@rserv:items remote

If the my_max aggregate is defined as EXECUTEANYWHERE, then the distributed
query can be pushed to the remote database server, rserv, for execution. If the
my_max aggregate is not defined as EXECUTEANYWHERE, then the distributed
query scans the remote items table and computes the my_max aggregate on the
local database server.

You cannot qualify a user-defined aggregate with the name of a remote database
server, as the following example shows. In this case, the database server returns an
error:
SELECT rdb@rserv:my_max(remote.quantity)
FROM rdb@rserv:items remote

For further information on user-defined aggregates, see “CREATE AGGREGATE
statement” on page 2-92 and the discussion of user-defined aggregates in IBM
Informix User-Defined Routines and Data Types Developer's Guide.

Related Information

For a discussion of expressions in the context of the SELECT statement, see the
IBM Informix Guide to SQL: Tutorial.

For discussions of column expressions, length functions, and the TRIM function,
see the IBM Informix GLS User's Guide.

INTERVAL Field Qualifier

The INTERVAL field qualifier specifies the precision, in time units, for an
INTERVAL value. Use the INTERVAL Field Qualifier segment whenever you see a
reference to an INTERVAL field qualifier in a syntax diagram.

Syntax

INTERVAL Field Qualifier:

Chapter 4. Data Types and Expressions 4-175

DAY TO DAY
(precision) TO HOUR

TO MINUTE
TO SECOND
TO FRACTION

(scale)
HOUR TO HOUR

(precision) TO MINUTE
TO SECOND
TO FRACTION

(scale)
MINUTE TO MINUTE

(precision) TO SECOND
TO FRACTION

(scale)
SECOND TO SECOND

(precision) TO FRACTION
FRACTION TO FRACTION

(scale)
YEAR TO YEAR

(precision) TO MONTH
MONTH TO MONTH

(precision)

Element Description Restrictions Syntax

scale Integer number of digits in FRACTION field. Default is 3. Must be in the
range from 1 to 5

“Literal Number”
on page 4-184

precision Integer number of digits in the largest time unit that the
INTERVAL includes. For YEAR, the default is 4. For all
other time units except FRACTION, the default is 2.

Must be in the
range from 1 to 9

“Literal Number”
on page 4-184

Usage

This segment specifies the precision and scale of an INTERVAL data type.

A keyword specifying the largest time unit must be the first keyword, and a
keyword specifying the smallest time unit must follow the TO keyword. These can
be the same keyword. This segment resembles the syntax of a “DATETIME Field
Qualifier” on page 4-38, but with these exceptions:
v If the largest time unit keyword is YEAR or MONTH, the smallest time unit

keyword cannot specify a time unit smaller than MONTH.
v You can specify up to 9-digit precision after the first time unit, unless FRACTION

is the first time unit (in which case no precision is valid after the first FRACTION
keyword, but you can specify up to 5 digits of scale after the second FRACTION
keyword).

Because year and month are not fixed-length units of time, the database server
treats INTERVAL data types that include the YEAR or MONTH keywords in their
qualifiers as incompatible with INTERVAL data types whose qualifiers are time
units smaller than MONTH. The database server supports no implicit casts
between these two categories of INTERVAL data types.

The next two examples show YEAR TO MONTH qualifiers of INTERVAL data
types. The first example can hold an interval of up to 999 years and 11 months,

4-176 IBM Informix Guide to SQL: Syntax

because it gives 3 as the precision of the YEAR field. The second example uses the
default precision on the YEAR field, so it can hold an interval of up to 9,999 years
and 11 months.
YEAR (3) TO MONTH

YEAR TO MONTH

When you want a value to specify only one kind of time unit, the first and last
qualifiers are the same. For example, an interval of whole years is qualified as
YEAR TO YEAR or YEAR (5) TO YEAR, for an interval of up to 99,999 years.

The following examples show several forms of INTERVAL field qualifiers:
YEAR(5) TO MONTH

DAY (5) TO FRACTION(2)

DAY TO DAY

FRACTION TO FRACTION (4)

Related Information

For information about how to specify INTERVAL field qualifiers and how to use
INTERVAL data in arithmetic and relational operations, see the discussion of the
INTERVAL data type in the IBM Informix Guide to SQL: Reference.

Literal Collection

Use the Literal Collection segment to specify values for a collection data type. For
the syntax of expressions that return values of individual elements within a
collection, see “Collection Constructors” on page 4-82.

Syntax

Literal Collection:

SET { Literal Data }
MULTISET
LIST

Literal Data:

�

,
(1)

Element Literal Value
(2) (2)

Nested Quotation Marks Literal Collection Nested Quotation Marks

Notes:

1 See “Element Literal Value” on page 4-178

2 See “Nested Quotation Marks” on page 4-179

Usage

You can specify literal collection values for SET, MULTISET, or LIST data types.

Chapter 4. Data Types and Expressions 4-177

To specify a single literal-collection value, specify the collection type and the literal
values. The following SQL statement inserts four integer values into a column
called set_col that was declared as SET(INT NOT NULL):
INSERT INTO table1 (set_col) VALUES (SET{6, 9, 9, 4});

Specify an empty collection with an empty pair of braces ({ }) symbols. This
example inserts an empty list into a column list_col that was declared as LIST(INT
NOT NULL):

INSERT INTO table2 (list_col) VALUES (’LIST{}’);

A pair of single (') or double (") quotation marks can delimit the collection.
Double quotation marks are not valid, however, in databases where delimited
identifiers are enabled, except to delimit SQL identifiers.

If you are passing a literal collection as an argument to an SPL routine, make sure
that there is a blank space between the parentheses that surround the arguments
and quotation marks that indicate the beginning and end of the literal collection.

Element Literal Value

The diagram for “Literal Collection” on page 4-177 refers to this section. Elements
of a collection can be literal values for the following data types.

For a Collection of Type Literal Value Syntax

BOOLEAN t or f, representing TRUE or FALSE as a quoted string

CHAR, VARCHAR, NCHAR,
NVARCHAR, CHARACTER
VARYING, LVARCHAR, DATE

“Quoted String” on page 4-188

DATETIME “Literal DATETIME” on page 4-180

DECIMAL, MONEY, FLOAT,
INTEGER, INT8, SMALLFLOAT,
SMALLINT

“Literal Number” on page 4-184

INTERVAL “Literal INTERVAL” on page 4-182

Opaque data types “Quoted String” on page 4-188. The string literal must
be recognized by the input support function for the
associated opaque type.

Row Type “Literal Row” on page 4-185. When the collection
element type is a named ROW type, you do not need
to cast the inserted values to the named ROW type.

Important: You cannot specify the simple-large-object data types (BYTE and TEXT)
as the element type for a collection.

Quoted strings must be specified with a different type of quotation mark than the
quotation marks that encompass the collection, so that the database server can
parse the quoted strings. Thus, if you use double (") quotation marks to specify
the collection, use single (') quotation marks to specify individual, quoted-string
elements. (In databases where delimited identifiers are enabled, however, double
quotation marks are not valid, except to delimit SQL identifiers.)

4-178 IBM Informix Guide to SQL: Syntax

Nested Quotation Marks
The diagram for “Literal Collection” on page 4-177 refers to this section.

A nested collection is a collection that is the element type for another collection.

Whenever you nest collection literals, use nested quotation marks. In these cases,
you must follow the rule for nesting quotation marks. Otherwise, the database
server cannot correctly parse the strings.

The general rule is that you must double the number of quotation marks for each
new level of nesting. For example, if you use double (") quotation marks for the
first level, you must use two double quotation marks for the second level, four
double quotation marks for the third level, eight for the fourth level, sixteen for the
fifth level, and so on.

Likewise, if you use single (') quotation marks for the first level, you must use
two single quotation marks for the second level and four single quotation marks
for the third level. There is no limit to the number of levels you can nest, as long
as you follow this rule.

The following examples illustrate the case for two levels of nested collection
literals, using double (") quotation marks. Here table tab5 is a single-column table
whose only column, set_col, is a nested collection type.

The following statement creates the tab5 table:
CREATE TABLE tab5 (set_col SET(SET(INT NOT NULL) NOT NULL));

The following statement inserts values into the table tab5:
INSERT INTO tab5 VALUES ("SET{""SET{34, 56, 23, 33}""}");

For each literal value, the opening quotation mark and the closing quotation mark
must match. Thus, if you open a literal with two double quotation marks, you
must close that literal with two double quotation marks (""a literal value"").

To specify nested quotation marks within an SQL statement in an Informix
ESQL/C program, use the C escape character for every double quotation mark
inside a string that is delimited by single quotation marks. Otherwise, the Informix
ESQL/C preprocessor cannot correctly interpret the literal collection value. For
example, the preceding INSERT statement on the tab5 table would appear in an
Informix ESQL/C program as follows:
EXEC SQL insert into tab5

values (’set{\"set{34, 56, 23, 33}\"}’);

For more information, see the chapter on complex data types in the IBM Informix
ESQL/C Programmer's Manual.

If the collection is a nested collection, you must include the collection-constructor
syntax for each level of collection type. Suppose you define the following column:
nest_col SET(MULTISET (INT NOT NULL) NOT NULL);

The following statement inserts three elements into the nest_col column:
INSERT INTO tabx (nest_col)

VALUES ("SET{’MULTISET{1, 2, 3}’}");

Chapter 4. Data Types and Expressions 4-179

Related Information

To learn how to use quotation marks in INSERT statements, see “Nested Quotation
Marks” on page 4-179.

Literal DATETIME

The Literal DATETIME segment specifies a DATETIME value. Use this segment
when you see a reference to a literal DATETIME in a syntax diagram.

Syntax

Literal DATETIME:

(1)
DATETIME (Numeric Date and Time) DATETIME Field Qualifier

Numeric Date and Time:

yyyy
- mo

- dd
space hh

: mi
: ss

. fffff
mo

- dd
space hh

: mi
: ss

. fffff
dd

space hh
: mi

: ss
. fffff

hh
: mi

: ss
. fffff

mi
: ss

. fffff
ss

. fffff
fffff

Notes:

1 See “DATETIME Field Qualifier” on page 4-38

Element Description Restrictions Syntax

dd Day of month, expressed in digits 1 ≤ dd ≤ 28, 29, 30, or 31 “Literal Number” on page
4-184

4-180 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

fffff Fraction of a second, in digits 0 ≤ fffff ≤ 9999 “Literal Number” on page
4-184

hh Hour of day, expressed in digits 0 ≤ hh ≤ 23 “Literal Number” on page
4-184

mi Minute of hour, expressed in digits 0 ≤ mi ≤ 59 “Literal Number” on page
4-184

mo Month of year, expressed in digits 1 ≤ mo ≤ 12 “Literal Number” on page
4-184

space Blank space (ASCII 32) Exactly 1 blank character Literal blank space

ss Second of minute, in digits 0 ≤ ss ≤ 59 “Literal Number” on page
4-184

yyyy Year, expressed in digits No more than 4 digits “Literal Number” on page
4-184

Usage

You must specify both a numeric date and a DATETIME field qualifier for this
date in the Literal DATETIME segment. The DATETIME field qualifier must
correspond to the numeric date you specify. For example, if you specify a numeric
date that includes a year as the largest unit and a minute as the smallest unit, you
must also specify YEAR TO MINUTE as the DATETIME field qualifier.

If you specify two digits for the year, the database server uses the setting of the
DBCENTURY environment variable to expand the abbreviated year value to four
digits. If the DBCENTURY is not set, the first two digits of the current year are
used to expand the abbreviated year value.

The following examples show literal DATETIME values:
DATETIME (07-3-6) YEAR TO DAY

DATETIME (09:55:30.825) HOUR TO FRACTION

DATETIME (07-5) YEAR TO MONTH

The following example shows a literal DATETIME value used with the EXTEND
function:
EXTEND (DATETIME (2007-8-1) YEAR TO DAY, YEAR TO MINUTE)

- INTERVAL (720) MINUTE (3) TO MINUTE

Casting Numeric Date and Time Strings to DATE Data Types

The database server provides a built-in cast to convert DATETIME values to DATE
values, as in the following SPL program fragment:
DEFINE my_date DATE;
DEFINE my_dt DATETIME YEAR TO SECOND;
. . .
LET my_date = CURRENT;

Here the DATETIME value that CURRENT returns is implicitly cast to DATE. You
can also cast DATETIME to DATE explicitly:
LET my_date = CURRENT::DATE;

Chapter 4. Data Types and Expressions 4-181

Both of these LET statements assign the year, month, and day information from the
DATETIME value to the local SPL variable my_date of type DATE.

Similarly, you can cast explicitly a string that has the format of the Numeric Date
and Time segment, as defined in the “Literal DATETIME” on page 4-180 syntax
diagram, to a DATETIME data type, as in the following example:
LET my_dt =

(’2008-02-22 05:58:44.000’)::DATETIME YEAR TO SECOND;

There is neither an implicit nor an explicit built-in cast, however, for directly
converting a character string that has the Numeric Date and Time format to a
DATE value. Both of the following statements, for example, fail with error -1218:
LET my_date = (’2008-02-22 05:58:44.000’);
LET my_date = (’2008-02-22 05:58:44.000’)::DATE;

To convert a character string that specifies a valid numeric date and time value to
a DATE data type, you must first cast the string to DATETIME, and then cast the
resulting DATETIME value to DATE, as in this example:
LET my_date =

(’2008-02-22 05:58:44.000’)::DATETIME YEAR TO SECOND::DATE;

A direct string-to-DATE cast can succeed only if the string specifies a valid DATE
value.

Related Information

For discussions of the DATETIME data type and the DBCENTURY environment
variable, see the IBM Informix Guide to SQL: Reference.

For a discussion of how to use the GL_DATETIME environment variable to
customize the display format of DATETIME values in non-default locales, see the
IBM Informix GLS User's Guide.

Literal INTERVAL

The Literal INTERVAL segment specifies a literal INTERVAL value. Use this
whenever you see a reference to a literal INTERVAL in a syntax diagram.

Syntax

Literal INTERVAL:

(1)
INTERVAL (Numeric Time Span) INTERVAL Field Qualifier

Numeric Time Span:

4-182 IBM Informix Guide to SQL: Syntax

+
- dd

space hh
: mi

: ss
. fffff

hh
: mi

: ss
. fffff

mi
: ss

. fffff
ss

. fffff
. fffff

+
- yyyy

- mo
mo

Notes:

1 See “INTERVAL Field Qualifier” on page 4-175

Element Description Restrictions Syntax

dd Number of days -10**10 < dd < 10**10 “Literal Number” on page
4-184

fffff Fractions of a second 0 ≤ fffff ≤ 9999 “Literal Number” on page
4-184

hh Number of hours If not first, 0 ≤ hh ≤ 23 “Literal Number” on page
4-184

mi Number of minutes If not first, 0 ≤ mi ≤ 59 “Literal Number” on page
4-184

mo Number of months If not first, 0 ≤ mo ≤ 11 “Literal Number” on page
4-184

space Blank space (ASCII 32) Exactly 1 blank character is required Literal blank space

ss Number of seconds If not first, 0 ≤ ss ≤ 59 “Literal Number” on page
4-184

yyyy Number of years -10**10 < yyyy < 10**10 “Literal Number” on page
4-184

Usage

Unlike DATETIME literals, INTERVAL literals can include the unary plus (+) or
unary minus (-) sign. If you specify no sign, the default is plus.

The precision of the first time unit can be specified by the INTERVAL qualifier.
Except for FRACTION, which can have no more than 5 digits of precision, the first
time unit can have up to 9 digits of precision, if you specified a nondefault
precision in the declaration of the INTERVAL column or variable.

The following examples show literal INTERVAL values:
INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40 5) DAY TO HOUR
INTERVAL (299995.2567) SECOND(6) TO FRACTION(4)

Only the last of these examples has nondefault precision. For the syntax of
declaring the precision of INTERVAL data types and the default values for each
time unit, refer to “INTERVAL Field Qualifier” on page 4-175.

Chapter 4. Data Types and Expressions 4-183

Related Information

For information on how to use INTERVAL data in arithmetic and relational
operations, see the discussion of the INTERVAL data type in the IBM Informix
Guide to SQL: Reference.

Literal Number

A literal number is the base-10 representation of a real number as an integer, as a
fixed-point decimal number, or in exponential notation. Use the Literal Number
segment whenever you see a reference to a literal number in a syntax diagram.

Syntax

Literal Number:

+
- �

�

�

digit
.

. digit

. digit

�
+

e - digit
E

Element Description Restrictions Syntax

digit Integer in range 0 through 9 Must be an ASCII digit Literal entered from the keyboard.

Usage

You cannot include comma (,) or blank (ASCII 32) character. The unary plus (+)
or minus (-) sign can precede a literal number, mantissa, or exponent.

You cannot include non-ASCII digits in literal numbers, such as the Hindi numbers
that some nondefault locales support.

Integer Literals
An integer has no fractional part and cannot include a decimal point. Built-in data
types of SQL that can be exactly represented as literal integers include BIGINT,
BIGSERIAL, DECIMAL(p, 0), INT, INT8, SERIAL, SERIAL8, and SMALLINT.

If you use the representation of a number in a base other than 10 (such as a binary,
octal, or hexadecimal) in any context where a literal integer is valid, the database
server will attempt to interpret the value as a base-10 literal integer. For most data
values, the result will be incorrect.

The following examples show some valid literal integers:
10 -27 +25567

Thousands separators (such as comma symbols) are not valid in literal integers,
nor in any other literal number.

4-184 IBM Informix Guide to SQL: Syntax

Fixed-Point Decimal Literals

Fixed-point decimal literals can exactly represent DECIMAL(p,s) and MONEY
values. These can include a decimal point:
-123.456 00123456 +123456.0

The digits to the right of the decimal point in these examples are the fractional
portions of the numbers.

Floating-Point Decimal Literals

Floating-point literals can exactly represent FLOAT, SMALLFLOAT, and
DECIMAL(p) values, using a decimal point or exponential notation, or both. They
can approximately represent real numbers in exponential notation. The next
examples show floating point numbers:
-123.45E6 1.23456E2 123456.0E-3

The E in the previous examples is the symbol for exponential notation. The digit
that follows E is the value of the exponent. For example, the number 3E5 (or 3E+5)
means 3 multiplied by 10 to the fifth power, and the number 3E-5 means 3
multiplied by the reciprocal of 10 to the fifth power.

Literal Numbers and the MONEY Data Type
When you use a literal number as a MONEY value, do not include a currency
symbol or include commas. The DBMONEY environment variable or the locale file
can format how MONEY values are displayed in output.

Related Information

For discussions of numeric data types, such as DECIMAL, FLOAT, INTEGER, and
MONEY, see the IBM Informix Guide to SQL: Reference.

Literal Row

The Literal Row segment specifies the syntax for literal values of named and
unnamed ROW data types.

For expressions that evaluate to field values within a ROW data type, see “ROW
Constructors” on page 4-81.

Syntax

Literal Row:

�

�

,

' ROW (Field Literal Value) '
,

ROW (Field Literal Value)

Chapter 4. Data Types and Expressions 4-185

Field Literal Value:

(1)
Quoted String

(2)
Literal Number

USER
(3)

Literal DATETIME
(4)

Literal INTERVAL
(5)

Literal Collection
literal_opaque_type
'literal_BOOLEAN'
ROW(Literal Row)

Notes:

1 See “Quoted String” on page 4-188

2 See “Literal Number” on page 4-184

3 See “Literal DATETIME” on page 4-180

4 See “Literal INTERVAL” on page 4-182

5 See “Literal Collection” on page 4-177

Element Description Restrictions Syntax

literal_opaque_type Literal representation for
an opaque data type

Must be a literal that is recognized by the
input support function for the associated
opaque data type

Defined by the
developer of the
opaque data type

literal_BOOLEAN Literal representation of a
BOOLEAN value

Must be either ’t’ (= TRUE) or ’f’ (=
FALSE) specified as a quoted string

“Quoted String” on
page 4-188

Usage

You can specify literal values for named ROW and unnamed ROW data types. A
ROW constructor introduces a literal ROW value, which can optionally be enclosed
between quotation marks.

The format of the value for each field of the ROW type must be compatible with
the data type of the corresponding field.

Important: You cannot specify simple-large-object data types (BYTE or TEXT) as
the field type for a row.

Fields of a row can be literal values for the data types in the following table.

For a Field of Type Literal Value Syntax

BOOLEAN t or f, representing TRUE or FALSE

CHAR, VARCHAR, LVARCHAR,
NCHAR, NVARCHAR, CHARACTER
VARYING, DATE

“Quoted String” on page 4-188

DATETIME “Literal DATETIME” on page 4-180

4-186 IBM Informix Guide to SQL: Syntax

For a Field of Type Literal Value Syntax

DECIMAL, MONEY, FLOAT, INTEGER,
INT8, SMALLFLOAT, SMALLINT

“Literal Number” on page 4-184

INTERVAL “Literal INTERVAL” on page 4-182

Opaque data types “Quoted String” on page 4-188

The string must be a literal that is recognized by
the input support function for the associated
opaque type.

Collection type (SET, MULTISET, LIST)
“Literal Collection” on page 4-177

For information on literal collection values as
variable or column values, see “Nested Quotation
Marks” on page 4-179. For information on literal
collection values for a ROW type, see “Literals for
Nested Rows” on page 4-188.

Another ROW type (named or
unnamed)

For information on ROW type values, see
“Literals for Nested Rows” on page 4-188.

Literals of an Unnamed Row Type

To specify a literal value for an unnamed ROW type, introduce the literal row with
the ROW constructor; you must enclose the values between parentheses. For
example, suppose that you define the rectangles table as follows:
CREATE TABLE rectangles
(

area FLOAT,
rect ROW(x INTEGER, y INTEGER, length FLOAT, width FLOAT),

)

The following INSERT statement inserts values into the rect column of the
rectangles table:
INSERT INTO rectangles (rect)

VALUES ("ROW(7, 3, 6.0, 2.0)")

Literals of a Named Row Type

To specify a literal value for a named ROW type, introduce the literal row with the
ROW type constructor and enclose the literal values for each field in parentheses.
In addition, you can cast the row literal to the appropriate named ROW type to
ensure that the row value is generated as a named ROW type. The following
statements create the named ROW type address_t and the employee table:
CREATE ROW TYPE address_t
(
street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)
);

CREATE TABLE employee
(

name CHAR(30),
address address_t

);

Chapter 4. Data Types and Expressions 4-187

The following INSERT statement inserts values into the address column of the
employee table:
INSERT INTO employee (address)
VALUES (
"ROW(’103 Baker St’, ’Tracy’,’CA’, 94060)"::address_t)

Literals for Nested Rows

If the literal value is for a nested row, specify the ROW type constructor for each
row level. If you include quotation marks as delimiters, they should enclose the
outermost row. For example, suppose that you create the emp_tab table:
CREATE TABLE emp_tab
(

emp_name CHAR(10),
emp_info ROW(stats ROW(x INT, y INT, z FLOAT))

);

The following INSERT statement adds a row to the emp_tab table:
INSERT INTO emp_tab VALUES (’joe boyd’, "ROW(ROW(8,1,12.0))");

Similarly, if the row-string literal contains a nested collection, only the outermost
literal row can be enclosed between quotation marks. Do not put quotation marks
around an inner, nested collection type.

Related Information

Related statements: CREATE ROW TYPE, INSERT, UPDATE, and SELECT

For information on ROW constructors, see the Expression segment. See also the
Collection Literal segment.

Quoted String

A quoted string is a string literal between quotation marks. Use this segment
whenever you see a reference to a quoted string in a syntax diagram.

Syntax

Quoted String:

�

�

' '

character
''

(1)
" "

character
""

Notes:

1 Informix extension

4-188 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

character Code set element within
quoted string

Cannot enclose between double quotation marks
if the DELIMIDENT environment variable is set

Literal value from the
keyboard

Usage

Use quoted strings to specify string literals in data-manipulation statements and
other SQL statements. For example, you can use a quoted string in an INSERT
statement to insert a value into a column of a character data type.

Restrictions on Specifying Characters in Quoted Strings
You must observe the following restrictions on character in quoted strings:
v If you are using the ASCII code set, you can specify any printable ASCII

character, including a single (') quotation mark or double (") quotation mark.
For restrictions that apply to using quotation marks in quoted strings, see “
Using Quotation Marks in Strings” on page 4-191.

v In some locales, you can specify non-ASCII characters, including multibyte
characters, that the locale supports. See the discussion of quoted strings in the
IBM Informix GLS User's Guide.

v If you enable newline characters for quoted strings, you can embed newline
characters in quoted strings. For further information, see “ Newline Characters
in Quoted Strings” on page 4-190.

v You can enter DATETIME and INTERVAL data values as quoted strings. For the
restrictions that apply to entering DATETIME and INTERVAL data in
quoted-string format, see “DATETIME and INTERVAL Values as Strings” on
page 4-191.

v Quoted strings that are used with the LIKE or MATCHES keyword in a search
condition can include wildcard characters that have a special meaning in the
search condition. For further information, see “LIKE and MATCHES in a
Condition” on page 4-191.

v When you insert a value that is a quoted string, you must observe a number of
restrictions. For further information, see “Inserting Values as Quoted Strings” on
page 4-191.

The DELIMIDENT Environment Variable

If the DELIMIDENT environment variable is set on the database server, you
cannot use double quotation marks (") to delimit literal strings. If DELIMIDENT
is set, the database server interprets strings enclosed in double quotation marks as
SQL identifiers, not as literal strings. If DELIMIDENT is not set, a string between
double quotation marks is interpreted as a literal string, not an identifier. For
further information, see “ Using Quotation Marks in Strings” on page 4-191, and
the description of DELIMIDENT in IBM Informix Guide to SQL: Reference.

DELIMIDENT is also supported on client systems, where it can be set to y, to n,
or to no setting.
v y specifies that client applications must use single quotation mark (') symbols

to delimit literal strings, and must use double quotation mark (") symbols only
around delimited SQL identifiers. Delimited identifiers can support a larger
character set than is valid for undelimited identifiers. Letters within delimited
strings or delimited identifiers are case-sensitive.

Chapter 4. Data Types and Expressions 4-189

v n specifies that client applications can use double quotation mark (") or single
quotation mark (') symbols to delimit character strings, but not to delimit SQL
identifiers. If the database server encounters a string delimited by double or
single quotation mark symbols in a context where an SQL identifier is required,
it issues an error. An owner name, however, that qualifies an SQL identifier can
be delimited by single quotation mark (') symbols. You must use a pair of the
same quotation mark symbols to delimit a character string.

v Specifying DELIMIDENT with no value on the client system requires client
applications to use the DELIMIDENT setting that is the default for their
application programming interface (API).

Client APIs of Informix use the following default DELIMIDENT settings:
v For OLE DB and .NET, the default DELIMIDENT setting is y

v For ESQL/C, JDBC, and ODBC, the default DELIMIDENT setting is n

v APIs that have ESQL/C as an underlying layer, such as Informix 4GL, the
DataBlade API (LIBDMI), and the C++ API, behave as ESQL/C, and use 'n' as
the default if no value for DELIMIDENT is specified on the client system.

Even if DELIMIDENT is set, you can use single quotation mark (') symbols to
delimit authorization identifiers as the owner name component of a database object
name, as in the following example:
RENAME COLUMN ’Owner’.table2.collum3 TO column3;

The general rule, however, is that when DELIMIDENT is set, the SQL parser
interprets strings delimited by single quotation marks as string literals, and
interprets character strings delimited by double quotation marks (") as SQL
identifiers.
Related reference

DELIMIDENT environment variable (SQL Reference)

Newline Characters in Quoted Strings
By default, the string constant must be written on a single line. That is, you cannot
use embedded newline characters in a quoted string. You can, however, override
this default behavior in one of two ways:
v To enable newline characters in quoted strings in all sessions, set the

ALLOW_NEWLINE parameter to 1 in the ONCONFIG file.
v To enable newline characters in quoted strings for the current session, execute

the built-in function IFX_ALLOW_NEWLINE.

This enables newline characters in quoted strings for the current session:
EXECUTE PROCEDURE IFX_ALLOW_NEWLINE(’T’);

If newline characters in quoted strings are not enabled for a session, the following
statement is invalid and returns an error:
SELECT ’The quick brown fox

jumped over the old gray fence’
FROM customer
WHERE customer_num = 101;

If you enable newline characters in quoted strings for the session, however, the
statement in the preceding example is valid and executes successfully.

4-190 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_233.htm#ids_sqr_233

For more information on the IFX_ALLOW_NEWLINE function, see
“IFX_ALLOW_NEWLINE Function” on page 4-159. For more information on the
ALLOW_NEWLINE parameter in the ONCONFIG file, see your IBM Informix
Administrator's Reference.
Related reference

ALLOW_NEWLINE Configuration Parameter (Administrator's Reference)

Using Quotation Marks in Strings
The single quotation mark (') has no special significance in string literals
delimited by double quotation marks. Conversely, double quotation mark (") has
no special significance in strings delimited by single quotation marks. For example,
these strings are valid:
"Nancy’s puppy jumped the fence"
’Billy told his kitten, "No!" ’

A string delimited by double quotation marks can include a double quotation
mark character by preceding it with another double quotation mark, as the
following string shows:
"Enter ""y"" to select this row"

When the DELIMIDENT environment variable is set, double quotation marks can
only delimit SQL identifiers, not strings. For more information on delimited
identifiers, see “Delimited Identifiers” on page 5-23.

DATETIME and INTERVAL Values as Strings
You can enter DATETIME and INTERVAL data in the literal forms described in the
“Literal DATETIME” on page 4-180 and “Literal INTERVAL” on page 4-182, or you
can enter them as quoted strings.

Valid literals that are entered as character strings are converted automatically into
DATETIME or INTERVAL values.

These statements enter INTERVAL and DATETIME values as quoted strings:
INSERT INTO cust_calls(call_dtime) VALUES (’2007-5-4 10:12:11’);
INSERT INTO manufact(lead_time) VALUES (’14’);

The format of the value in the quoted string must exactly match the format
specified by the INTERVAL or DATETIME qualifiers of the column. For the first
INSERT in the preceding example, the call_dtime column must be defined with
the qualifiers YEAR TO SECOND for the INSERT statement to be valid.

LIKE and MATCHES in a Condition
Quoted strings with the LIKE or MATCHES keyword in a condition can include
wildcard characters. For a complete description of how to use wildcard characters,
see “Condition” on page 4-5.

Inserting Values as Quoted Strings

In the default locale, if you are inserting a value that is a quoted string, you must
adhere to the following restrictions:
v Enclose CHAR, VARCHAR, NCHAR, NVARCHAR, DATE, DATETIME,

INTERVAL, and LVARCHAR values in quotation marks.

Chapter 4. Data Types and Expressions 4-191

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0021.htm#ids_adr_0021

v Specify DATE values in the mm/dd/yyyy format (or in the format that the
DBDATE or GL_DATE environment variable specifies, if set).

v You cannot insert strings longer than 32 kilobytes.
v Numbers with decimal values must include a decimal separator. Comma (,) is

not valid as a decimal separator in the default locale.
v MONEY values cannot include a dollar sign ($) or commas.
v You can enter NULL in a column only if it accepts null values.

Numeric Operations on Character Columns
Avoid comparing number literals to character columns. It requires that all of the
strings compared be converted to numbers, which takes much longer than
comparing two strings. For example, suppose that you wish to find all customers
within the 356 telephone exchange code:
SELECT lname FROM customer WHERE phone [5,7] = ’356’;

Notice that the operand whose value is 356 is enclosed in quotes. The quotes
indicate that the database server must handle the filter as a character string. By
contrast, when the operand is not in quotes, the server treats each retrieved value
as a number, and must implicitly cast each value retrieved from the table to a
numeric data type.

The following example causes implicit data type conversion of the substrings:
SELECT lname FROM customer WHERE phone [5,7] = 356;

When the phone column has a distribution that an UPDATE STATISTICS MEDIUM
or by an UPDATE STATISTICS HIGH statement, the query fails with a -1213
conversion error. To avoid this error, you can take any one of the following actions:
v Be sure to enclose the operand between quotes. (This is equivalent to the rule

"Do not apply numeric filters to character columns.")
v Store only characters in the range ASCII 0x30 through 0x39, and decimal point

(ASCII 0x2e). This range is also known as "semi-numeric."
v When developing your schema and UPDATE STATISTICS strategy, ensure that

character columns contain either semi-numerics, or characters, but not both, if
you expect that numeric filters will be useful.

Related Information

For a discussion of the DELIMIDENT environment variable, see the IBM Informix
Guide to SQL: Reference.

For a discussion of the GLS aspects of quoted strings, see the IBM Informix GLS
User's Guide.
Related reference

DELIMIDENT environment variable (SQL Reference)

Relational Operator

A relational operator compares two expressions quantitatively. Use the Relational
Operator segment whenever you see a reference to a relational operator in a syntax
diagram.

4-192 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_233.htm#ids_sqr_233

Syntax

Relational Operator:

<
<=
>

=
==

>=
<>
(1)

!=

Notes:

1 Informix extension

Usage

The relational operators of SQL have the following meanings.

Relational Operator
Meaning

< Less than

<= Less than or equal to

> Greater than

= or ==
Equal to

>= Greater than or equal to

<> or !=
Not equal to

Usage

For number expressions, greater than means to the right on the real line.

For DATE and DATETIME expressions, greater than means later in time.

For INTERVAL expressions, greater than means a longer span of time.

For CHAR, VARCHAR, and LVARCHAR expressions, greater than means after in
code-set order. (For NCHAR and NVARCHAR expressions, greater than means after
in the localized collation order, if one exists; otherwise, it means in code-set order.)

Locale-based collation order, if defined for the locale, is used for NCHAR and
NVARCHAR expressions. So for NCHAR and NVARCHAR expressions, greater
than means after in the locale-based collation order. For more information on
locale-based collation order and the NCHAR and NVARCHAR data types, see the
IBM Informix GLS User's Guide.

Chapter 4. Data Types and Expressions 4-193

Using Operator Functions in Place of Relational Operators
Each relational operator is bound to a particular operator function, as the table
shows. The operator function accepts two values and returns a boolean value of
true, false, or unknown.

Relational Operator
Associated Operator Function

< lessthan()

<= lessthanorequal()

> greaterthan()

>= greaterthanorequal()

= or ==
equal()

<> or !=
notequal()

Connecting two expressions with a relational operator is equivalent to invoking the
operator function on the expressions. For example, the next two statements both
select orders with a shipping charge of $18.00 or more.

The >= operator in the first statement implicitly invokes the greaterthanorequal()
operator function:
SELECT order_num FROM orders

WHERE ship_charge >= 18.00;

SELECT order_num FROM orders
WHERE greaterthanorequal(ship_charge, 18.00);

The database server provides the operator functions associated with the relational
operators for all built-in data types. When you develop a user-defined data type,
you must define the operator functions for that type for users to be able to use the
relational operator on the type.

If you define lessthan(), greaterthan(), and the other operator functions for a
user-defined type, then you should also define compare(). Similarly, if you define
compare(), then you should also define lessthan(), greaterthan(), and the other
operator functions. All of these functions must be defined in a consistent manner,
to avoid the possibility of incorrect query results when UDT values are compared
in the WHERE clause of a SELECT.

Collating Order for U.S. English Data

If you are using the default locale (U.S. English), the database server uses the
code-set order of the default code set when it compares the character expressions
that precede and follow the relational operator.

On UNIX, the default code set is the ISO8859-1 code set, which consists of the
following sets of characters:
v The ASCII characters have code points in the range of 0 to 127.

This range contains control characters, punctuation symbols, English-language
characters, and numerals.

v The 8-bit characters have code points in the range 128 to 255.

4-194 IBM Informix Guide to SQL: Syntax

This range includes many non-English-language characters (such as é, â, ö, and
ñ) and symbols (such as £, ©, and ¿).

In Windows, the default code set is Microsoft 1252. This code set includes both the
ASCII code set and a set of 8-bit characters.

This table lists the ASCII code set. The Num columns show ASCII code point
numbers, and the Char columns display corresponding ASCII characters. In the
default locale, ASCII characters are sorted according to their code-set order. Thus,
lowercase letters follow uppercase letters, and both follow digits. In this table,
ASCII 32 is the blank character, and the caret symbol (^) stands for the CTRL key.
For example, ^X means CONTROL-X.

Num Char Num Char Num Char Num Char Num Char Num Char Num Char

0 ^@ 20 ^T 40 (60 < 80 P 100 d 120 x

1 ^A 21 ^U 41) 61 = 81 Q 101 e 121 y

2 ^B 22 ^V 42 * 62 > 82 R 102 f 122 z

3 ^C 23 ^W 43 + 63 ? 83 S 103 g 123 {

4 ^D 24 ^X 44 , 64 @ 84 T 104 h 124 |

5 ^E 25 ^Y 45 - 65 A 85 U 105 i 125 }

6 ^F 26 ^Z 46 . 66 B 86 V 106 j 126 ~

7 ^G 27 esc 47 / 67 C 87 W 107 k 127 del

8 ^H 28 ^\ 48 0 68 D 88 X 108 l

9 ^I 29 ^] 49 1 69 E 89 Y 109 m

10 ^J 30 ^^ 50 2 70 F 90 Z 110 n

11 ^K 31 ^_ 51 3 71 G 91 [111 o

12 ^L 32 52 4 72 H 92 \ 112 p

13 ^M 33 ! 53 5 73 I 93] 113 q

14 ^N 34 " 54 6 74 J 94 ^ 114 r

15 ^O 35 # 55 7 75 K 95 _ 115 s

16 ^P 36 $ 56 8 76 L 96 ` 116 t

17 ^Q 37 % 57 9 77 M 97 a 117 u

18 ^R 38 & 58 : 78 N 98 b 118 v

19 ^S 39 ' 59 ; 79 O 99 c 119 w

Support for ASCII Characters in Nondefault Code Sets (GLS)
Most code sets for nondefault locales (called nondefault code sets) support the ASCII
characters. In a nondefault locale, the database server uses ASCII code-set order for
ASCII data in CHAR and VARCHAR expressions, if the code set supports these
ASCII characters. If the current collation (as specified by DB_LOCALE or by SET
COLLATION) supports a localized collating order, however, that localized order is
used when the database server sorts NCHAR or NVARCHAR values.

Literal Numbers as Operands
You might obtain unexpected results if a literal number that you specify as an
operand is not in a format that can exactly represent the data type of another value
with which it is compared by a relational operator. Because of rounding errors, for
example, a relational operator like = or the equals() operator function generally

Chapter 4. Data Types and Expressions 4-195

cannot return TRUE if one operand returns a FLOAT value and the other an
INTEGER. For information about which of the built-in data types store values that
can be exactly represented as literal numbers, see the section “Literal Number” on
page 4-184.

Related Information

For a discussion of relational operators in the SELECT statement, see the IBM
Informix Guide to SQL: Tutorial.

For a discussion of the GLS aspects of relational operators, see the IBM Informix
GLS User's Guide.

4-196 IBM Informix Guide to SQL: Syntax

Chapter 5. Other Syntax Segments

In This Chapter

Syntax segments are language elements, such as database object names or optimizer
directives, that appear as a subdiagram reference in the syntax diagrams of some
SQL or SPL statements. Most segments that can occur in only one statement are
described in Chapter 2, “SQL statements,” on page 2-1 or Chapter 3, “SPL
Statements,” on page 3-1 within the description of the statement. For the sake of
clarity, ease of use, and comprehensive treatment, however, most segments that can
occur in various SQL or SPL statements, and that are not data types nor
expressions, are discussed separately here.

The previous chapter described the syntax segments that specify data types and
expressions. This chapter describes additional syntax segments that are neither
data types, expressions, nor complete SQL statements or SPL statements. These
segments are referenced in various syntax diagrams that appear in Chapter 2, “SQL
statements,” on page 2-1 and in other chapters of this document.

Arguments

Use the Argument segment to pass a specific value as input to a routine. Use this
segment wherever you see a reference to an argument in a syntax diagram.

Syntax

Argument:

parameter =

(1)
Subset of Expression

NULL
(singleton_select)

Notes:

1 See “Subset of Expressions Valid as an Argument” on page 5-3

Element Description Restrictions Syntax

parameter A parameter whose value
you specify

Must match a name that CREATE FUNCTION or
CREATE PROCEDURE statement declared

“Identifier” on
page 5-21

singleton
_select

Embedded query that
returns a single value

Must return exactly one value of a data type and
length compatible with parameter

“SELECT
statement” on
page 2-536

Usage

The CREATE PROCEDURE or CREATE FUNCTION statement can define a
parameter list for a UDR. If the parameter list is not empty, you must enter
arguments when you invoke the UDR. An argument is a specific value whose data
type is compatible with that of the corresponding UDR parameter.

When you execute a UDR, you can enter arguments in either of two ways:

© Copyright IBM Corp. 1996, 2010 5-1

v With a parameter name (in the form parameter name = expression), even if the
arguments are not in the same order as the parameters

v By position, with no parameter name, where each expression is in the same order
as the parameter to which the argument corresponds. (This is sometimes called
ordinal format.)

You cannot mix these two ways of specifying arguments within a single invocation
of a routine. If you specify a parameter name for one argument, for example, you
must use parameter names for all the arguments.

In the following example, both statements are valid for a user-defined procedure
that expects three character arguments, t, d, and n:
EXECUTE PROCEDURE add_col (t =’customer’, d =’integer’,

n =’newint’);

EXECUTE PROCEDURE add_col (’customer’,’newint’,’integer’) ;

Comparing Arguments to the Parameter List
When you create or register a UDR with CREATE PROCEDURE or CREATE
FUNCTION, you declare a parameter list with the names and data types of the
parameters that the UDR expects. (Parameter names are optional for external
routines written in the C or Java languages.) See “Routine Parameter List” on page
5-67 for details of declaring parameters.

User-defined routines can be overloaded, if different routines have the same
identifier, but have different numbers of declared parameters. For more
information about overloading, see “Routine Overloading and Routine Signatures”
on page 5-18.

If you attempt to execute a UDR with more arguments than the UDR expects, you
receive an error.

If you invoke a UDR with fewer arguments than the UDR expects, the omitted
arguments are said to be missing. The database server initializes missing arguments
to their corresponding default values. This initialization occurs before the first
executable statement in the body of the UDR.

If missing arguments have no default values, Informix issues an error.

Named parameters cannot be used to invoke UDRs that overload data types in
their routine signatures. Named parameters are valid in resolving non-unique
routine names only if the signatures have different numbers of parameters:

func(x::integer, y); -- VALID if only these 2 routines
func(x::integer, y, z); -- have the same ’func’ identifier

func(x::integer, y); -- NOT VALID if both routines have
func(x::float, y ; -- same identifier and 2 parameters

For both ordinal and named parameters, the routine with the fewest parameters is
executed if two or more UDR signatures have multiple numbers of defaults:

func(x, y default 1)
func(x, y default 1, z default 2)

If two registered UDRs that are both called func have the signatures shown above,
then the statement EXECUTE func(100) invokes func(100,1).

5-2 IBM Informix Guide to SQL: Syntax

You cannot supply a subset of default values using named parameters unless they
are in the positional order of the routine signature. That is, you cannot skip a few
arguments and rely on the database server to supply their default values.

For example, given the signature:
func(x, y default 1, z default 2)

you can execute:
func(x=1, y=3)

but you cannot execute:
func(x=1, z=3)

Subset of Expressions Valid as an Argument
The diagram for “Arguments” on page 5-1 refers to this section.

You can use any expression as an argument, except an aggregate function. If you
use a subquery or function call as an argument, the subquery or function must
return a single value of the appropriate data type and size. For the syntax and
usage of SQL expressions, see “Expression” on page 4-40.

Arguments to UDRs in Remote Databases
UDRs are valid in cross-database and in cross-server distributed operations in most
contexts where a UDR is valid in the local database, but every participating
database must have the same logging mode.

Excluding BIGSERIAL, BYTE, SERIAL, SERIAL8, and TEXT, the data types that are
valid as arguments to cross-server UDRs include the built-in SQL data types that
are not opaque, as listed in “Data Types in Distributed Queries” on page 2-543,
and these additional built-in opaque and DISTINCT data types:
v BOOLEAN
v LVARCHAR
v DISTINCT of built-in types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of the DISTINCT types listed above.

These data types can be arguments to SPL, C, or Java language UDRs, if the UDRs
are defined in all the participating databases. Any implicit or explicit casts defined
over these data types must be duplicated across all the participating Informix
instances. The DISTINCT data types must have exactly the same data type
hierarchy defined in all databases that participate in the distributed query.

The same data types are valid as arguments in calls to UDRs in other databases of
the same Informix instance, as well as arguments of the following additional types:
v BLOB
v CLOB
v UDTs that you cast explicitly to built-in types

All the UDRs, UDTs, DISTINCT data types, DISTINCT type hierarchies, casts, and
cast functions must be registered in all of the participating databases. For more
information on DISTINCT types in distributed operations, see “DISTINCT Types in
Distributed Operations” on page 4-33.

Chapter 5. Other Syntax Segments 5-3

Related Information

Related Statements: “ALTER FUNCTION statement” on page 2-27, “ALTER
PROCEDURE statement” on page 2-30, “ALTER ROUTINE statement” on page
2-31, “Receiving Input from the Called UDR” on page 3-4, “CREATE FUNCTION
statement” on page 2-125, “CREATE FUNCTION FROM statement” on page 2-134,
“CREATE PROCEDURE FROM statement” on page 2-171, “EXECUTE FUNCTION
statement” on page 2-361, “EXECUTE PROCEDURE statement” on page 2-369.

Related Segments: “Routine Parameter List” on page 5-67

Collection-Derived Table

A collection-derived table is a virtual table in which the values in the rows of the
table are equivalent to elements of a collection. Use this segment where you see a
reference to Collection-Derived Table in a syntax diagram. This syntax is an
extension to the ANSI/ISO standard for SQL.

Syntax

Collection-Derived Table:

(1)
TABLE (�

�

�

collection_expr)
(1) ,

AS alias
alias (derived_column)

(2) (3)
collection_var)

(3)
row_var

Notes:

1 Informix extension

2 Stored Procedure Language

3 ESQL/C

Element Description Restrictions Syntax

alias Temporary name for a
collection-derived table whose scope
is a SELECT statement. The default
is implementation dependent.

If potentially ambiguous, you
must precede alias with the AS
keyword. See “The AS
Keyword” on page 2-553.

“Identifier” on page 5-21

collection_expr Any expression that evaluates to the
elements of a single collection

See “Restrictions with the
Collection-Expression Format”
on page 5-6.

“Expression” on page
4-40

collection_var,
row_var

Name of a typed or untyped
collection variable, or an Informix
ESQL/C row variable that holds the
collection-derived table

Must have been declared in an
Informix ESQL/C program or
(for collection_var) in an SPL
routine

See the IBM Informix
ESQL/C Programmer's
Manual or “DEFINE” on
page 3-6.

5-4 IBM Informix Guide to SQL: Syntax

Element Description Restrictions Syntax

derived _column Temporary name for a derived
column in a table

If the underlying collection is
not of a ROW data type, you
can specify only one
derived-column name

“Identifier” on page 5-21

Usage

A collection-derived table can appear where a table name is valid in the UPDATE
statement, in the FROM clause of the SELECT or DELETE statement, or in the
INTO clause of an INSERT statement.

Use the collection-derived-table segment to accomplish these tasks:
v Access the elements of a collection as you would the rows of a table.
v Specify a collection variable to access, instead of a table name.
v Specify an ESQL/C row variable to access, instead of a table name.

The TABLE keyword converts a collection into a virtual table. You can use the
collection expression format to query a collection column, or you can use the
collection variable or row variable format to manipulate the data in a collection
column.

Accessing a Collection Through a Virtual Table
When you use the collection expression format of the collection-derived table
segment to access the elements of a collection, you can select elements of the
collection directly through a virtual table. You can use this format in the FROM
clause of a SELECT statement. The FROM clause can be in either a query or a
subquery.

With this format you can use joins, aggregates, the WHERE clause, expressions, the
ORDER BY clause, and other operations that are not available when you use the
collection-variable format. This format reduces the need for multiple cursors and
temporary tables.

Examples of possible collection expressions include column references, scalar
subquery, dotted expression, functions, operators (through overloading), collection
subqueries, literal collections, collection constructors, cast functions, and so on.

The following example uses a SELECT statement in the FROM clause whose result
set defines a virtual table consisting of the fifty-first through seventieth qualifying
rows, ordered by the employee_id column value.
SELECT * FROM TABLE(MULTISET(SELECT SKIP 50 FIRST 20 * FROM employees

ORDER BY employee_id)) vt(x,y), tab2 WHERE tab2.id = vt.x;

The following example uses a join query to create a virtual table of no more than
twenty rows (beginning with the 41st row), ordered by value in the salary column
of the collection-derived table:
SELECT emp_id, emp_name, emp_salary

FROM TABLE(MULTISET(SELECT SKIP 40 LIMIT 20 id, name, salary
FROM e1, e2
WHERE e1.id = e2.id ORDER BY salary))

AS etab(emp_id, emp_name, emp_salary);

Chapter 5. Other Syntax Segments 5-5

Table Expressions in the FROM Clause

Informix supports ANSI/ISO standard syntax for table expressions in the FROM
clause of SELECT queries and subqueries as a substitute for the Informix-extension
collection-derived table syntax. The keywords TABLE and MULTISET were
required in version 10.00 and in earlier releases. These extensions to the ANSI/ISO
standard for SQL are supported but no longer required for collection-derived table
specifications in the FROM clause of SELECT statements.

The following two queries return the same result set, but only the second query
complies with the ANSI/ISO standard:
SELECT * FROM TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 100))

AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1) ORDER BY c1;

SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),
(SELECT col1 FROM tab1 WHERE col1 = 10) AS vtab1(vc1)

ORDER BY c1;

The same SELECT statement can combine instances of both the Informix-extension
and ANSI/ISO syntax for derived tables:
SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab(c1),

TABLE(MULTISET(SELECT col1 FROM tab1 WHERE col1 = 10)) AS vtab1(vc1)
ORDER BY c1;

The subquery must be delimited by parentheses in both formats, but the outer set
of parentheses (()) that immediately follows the TABLE keyword and encloses
the MULTISET collection subquery specification is an extension to the ANSI/ISO
syntax. This ANSI/ISO syntax is valid only in the FROM clause of the SELECT
statement. You cannot omit these keywords and parentheses from a collection
subquery specification in any other context.

Restrictions with the Collection-Expression Format
When you use the collection-expression format, certain restrictions apply:
v A collection-derived table is read-only.

– It cannot be the target of INSERT, UPDATE, or DELETE statements.
To perform insert, update, and delete operations, you must use the
collection-variable format.

– It cannot be the underlying table of an updatable cursor or view.
v In the FROM clause of the SELECT statement, the CALL keyword of SPL cannot

precede the TABLE keyword of a table expression.
v If the collection is a LIST data type, the resulting collection-derived table does

not preserve the order of the elements in the LIST.
v The underlying collection expression cannot evaluate to NULL.
v The collection expression cannot contain a reference to a collection on a remote

database server.
v The collection expression cannot contain column references to tables that appear

in the same FROM clause. That is, the collection-derived table must be
independent of other tables in the FROM clause.
For example, the following statement returns an error because the
collection-derived table, TABLE (parents.children), refers to the parents table,
which is also referenced in the FROM clause:

5-6 IBM Informix Guide to SQL: Syntax

SELECT COUNT(*)
FROM parents, TABLE(parents.children) c_table
WHERE parents.id = 1001;

To counter this restriction, you might write a query that contains a subquery in
the Projection clause:
SELECT (SELECT COUNT(*)

FROM TABLE(parents.children) c_table)
FROM parents WHERE parents.id = 1001;

Additional Restrictions That Apply to ESQL/C
In addition to the previously described restrictions, the following restrictions also
apply when you use the collection-expression format with Informix ESQL/C:
v You cannot specify an untyped COLLECTION as the host-variable data type.
v You cannot use the format TABLE(?).

The data type of the underlying collection variable must be determined
statically. To counter this restriction, you can explicitly cast the variable to a
typed collection data type (SET, MULTISET, or LIST) that the database server
recognizes. For example,
TABLE(CAST(? AS type))

v You cannot use the format TABLE(:hostvar).

To counter this restriction, you must explicitly cast the variable to a typed
collection data type (SET, MULTISET, or LIST) that the database server
recognizes. For example,
TABLE(CAST(:hostvar AS type))

Row Type of the Resulting Collection-Derived Table
If you do not specify a derived-column name, the behavior of the database server
depends on the data types of the elements in the underlying collection.

Although a collection-derived table appears to contain columns of individual data
types, these columns are, in fact, the fields of a ROW data type. The data type of
the ROW type as well as the column name depend on several factors.

If the data type of the elements of the underlying collection expression is type, the
database server determines the ROW type of the collection-derived table by the
following rules:
v If type is a ROW data type, and no derived-column list is specified, then the

ROW type of the collection-derived table is type.
v If type is a ROW data type and a derived column list is specified, then the ROW

type of the collection-derived table is an unnamed ROW type whose column
data types are the same as those of type and whose column names are taken
from the derived column list.

v If type is not a ROW data type, the ROW type of the collection-derived table is
an unnamed ROW type that contains one column of type and whose name is
specified in the derived column list. If no name is specified, the database server
assigns an implementation-dependent name to the column.

The extended examples that the following table shows illustrate these rules. The
table uses the following schema for its examples:
CREATE ROW TYPE person (name CHAR(255), id INT);
CREATE TABLE parents

(
name CHAR(255),
id INT,

Chapter 5. Other Syntax Segments 5-7

children LIST (person NOT NULL)
);

CREATE TABLE parents2
(
name CHAR(255),
id INT,
children_ids LIST (INT NOT NULL)
);

ROW
Type

Explicit
Derived-
Column List

Resulting ROW Type of the
Collection-Derived Table Code Example

Yes No Type
SELECT (SELECT c_table.name FROM
TABLE(parents.children) c_table WHERE c_table.id =
1002) FROM parents WHERE parents.id = 1001;

In this example, the ROW type of c_table is parents.

Yes Yes Unnamed ROW type of
which the column type is
Type and the column name is
the name in the
derived-column list

SELECT (SELECT c_table.c_name FROM
TABLE(parents.children) c_table(c._name, c_id) WHERE
c_table.c_id = 1002) FROM parents WHERE parents.id =
1001;

In this example, the ROW type of c_table is ROW(c_name
CHAR(255), c_id INT).

No No Unnamed ROW that contains
one column of Type that is
assigned an
implementation-dependent
name

In the following example, if you do not specify c_id, the
database server assigns a name to the derived column. In
this case, the ROW type of c_table is
ROW(server_defined_name INT).

No Yes Unnamed ROW type that
contains one column of Type
whose name is in the
derived-column list

SELECT(SELECT c_table.c_id FROM
TABLE(parents2.child_ids) c_table (c_id) WHERE
c_table.c_id = 1002) FROM parents WHERE parents.id =
1001;

Here the ROW type of c_table is ROW(c_id INT).

The following program fragment creates a collection-derived table using an SPL
function that returns a single value:
CREATE TABLE wanted(person_id int);
CREATE FUNCTION

wanted_person_count (person_set SET(person NOT NULL))
RETURNS INT;
RETURN(SELECT COUNT (*)

FROM TABLE (person_set) c_table, wanted
WHERE c_tabel.id = wanted.person_id);

END FUNCTION;

The next program fragment shows the more general case of creating a
collection-derived table using an SPL function that returns multiple values:
-- Table of categories and child categories,
-- allowing any number of levels of subcategories
CREATE TABLE CategoryChild (

categoryId INTEGER,
childCategoryId SMALLINT

);

INSERT INTO CategoryChild VALUES (1, 2);

5-8 IBM Informix Guide to SQL: Syntax

INSERT INTO CategoryChild VALUES (1, 3);
INSERT INTO CategoryChild VALUES (1, 4);
INSERT INTO CategoryChild VALUES (2, 5);
INSERT INTO CategoryChild VALUES (2, 6);
INSERT INTO CategoryChild VALUES (5, 7);
INSERT INTO CategoryChild VALUES (7, 8);
INSERT INTO CategoryChild VALUES (7, 9);
INSERT INTO CategoryChild VALUES (4, 10);

-- "R" == ROW type
CREATE ROW TYPE categoryLevelR (

categoryId INTEGER,
level SMALLINT);

-- DROP FUNCTION categoryDescendants (
-- INTEGER, SMALLINT);
CREATE FUNCTION categoryDescendants (

pCategoryId INTEGER,
pLevel SMALLINT DEFAULT 0)

RETURNS MULTISET (categoryLevelR NOT NULL)

-- "p" == Prefix for Parameter names
-- "l" == Prefix for Local variable names
DEFINE lCategoryId LIKE CategoryChild.categoryId;
DEFINE lRetSet MULTISET (categoryLevelR NOT NULL);
DEFINE lCatRow categoryLevelR;

-- TRACE ON;
-- Must initialize collection before inserting rows
LET lRetSet = ’MULTISET{}’ :: MULTISET (categoryLevelR NOT NULL);

FOREACH
SELECT childCategoryId INTO lCategoryId

FROM CategoryChild WHERE categoryId = pCategoryId;
INSERT INTO TABLE (lRetSet)

VALUES (ROW (lCategoryId, pLevel+1)::categoryLevelR);

-- INSERT INTO TABLE (lRetSet);
-- EXECUTE FUNCTION categoryDescendantsR (lCategoryId,
-- pLevel+1);
-- Need to iterate over results and insert into SET.
-- See the SQL Tutorial, pg. 10-52:
-- "Tip: You can only insert one value at a time
-- into a simple collection."

FOREACH
EXECUTE FUNCTION categoryDescendantsR (lCategoryId, pLevel+1)

INTO lCatRow;
INSERT INTO TABLE (lRetSet)

VALUES (lCatRow);
END FOREACH;

END FOREACH;

RETURN lRetSet;
END FUNCTION
;
-- "R" == recursive
-- DROP FUNCTION categoryDescendantsR (INTEGER, SMALLINT);
CREATE FUNCTION categoryDescendantsR (

pCategoryId INTEGER,
pLevel SMALLINT DEFAULT 0

)
RETURNS categoryLevelR;
DEFINE lCategoryId LIKE CategoryChild.categoryId;
DEFINE lCatRow categoryLevelR;

FOREACH
SELECT childCategoryId
INTO lCategoryId

Chapter 5. Other Syntax Segments 5-9

FROM CategoryChild
WHERE categoryId = pCategoryId
RETURN ROW (lCategoryId, pLevel+1)::categoryLevelR WITH RESUME;

FOREACH
EXECUTE FUNCTION categoryDescendantsR (lCategoryId, pLevel+1)

INTO lCatRow
RETURN lCatRow WITH RESUME;

END FOREACH;
END FOREACH;
END FUNCTION;

-- Test the functions:
SELECT lev, col
FROM TABLE ((

categoryDescendants (1, 0)
)) AS CD (col, lev);

Accessing a Collection Through a Collection Variable
When you use the collection-variable format of the collection-derived table
segment, you use a host or program variable to access and manipulate the
elements of a collection. This format allows you to modify the contents of a
variable as you would a table in the database, and then update the actual table
with the contents of the collection variable.

You can use the collection-variable format (the TABLE keyword preceding a
collection variable) in place of the name of a table, synonym, or view in the
following SQL statements (or in the FOREACH statement of SPL):
v The FROM clause of the SELECT statement to access an element of the

collection variable
v The INTO clause of the INSERT statement to add a new element to the

collection variable
v The DELETE statement to remove an element from the collection variable
v The UPDATE statement to modify an existing element in the collection variable
v The DECLARE statement to declare a Select or Insert cursor to access multiple

elements of an Informix ESQL/C collection host variable
v The FETCH statement to retrieve a single element from a collection host

variable that is associated with a Select cursor
v The PUT statement to retrieve a single element from a collection host variable

that is associated with an Insert cursor
v The FOREACH statement to declare a cursor to access multiple elements of an

SPL collection variable and to retrieve a single element from this collection
variable

Using a Collection Variable to Manipulate Collection Elements

When you use data manipulation statements (SELECT, INSERT, UPDATE, or
DELETE) of Informix in conjunction with a collection variable, you can modify
one or more elements in a collection.

To modify elements in a collection

1. Create a collection variable in your SPL routine or Informix ESQL/C program.
For information on how to declare a collection variable in Informix ESQL/C,
see the IBM Informix ESQL/C Programmer's Manual. For information on how to
define a COLLECTION variable in SPL, see “DEFINE” on page 3-6.

5-10 IBM Informix Guide to SQL: Syntax

2. In Informix ESQL/C, allocate memory for the collection; see “ALLOCATE
COLLECTION statement” on page 2-1.

3. Optionally, use a SELECT statement to select a COLLECTION column into the
collection variable. If the variable is an untyped COLLECTION variable, you
must perform a SELECT from the COLLECTION column before you use the
variable in the collection-derived table segment. The SELECT statement allows
the database server to obtain the collection data type.

4. Use the appropriate data manipulation statement with the collection-derived
table segment to add, delete, or update elements in the collection variable. To
insert more than one element or to update or delete a specific element of a
collection, you must use a cursor for the collection variable.
v For more information on how to use an update cursor with ESQL/C, see

“DECLARE statement” on page 2-290.
v For more information on how to use an update cursor with SPL, see

“FOREACH” on page 3-22.
5. After the collection variable contains the correct elements, use an INSERT or

UPDATE statement on the table or view that holds the actual collection column
to save the changes that the collection variable holds.
v With UPDATE, specify the collection variable in the SET clause.
v With INSERT, specify the collection variable in the VALUES clause.

The collection variable stores the elements of the collection. It has no intrinsic
connection, however, with a database column. Once the collection variable contains
the correct elements, you must then save the variable into the actual collection
column of the table with either an INSERT or an UPDATE statement.

Example of Deleting from a Collection in ESQL/C

Suppose that the set_col column of a row in the table1 table is defined as a SET
and for one row contains the values {1,8,4,5,2}. The following Informix ESQL/C
code fragment uses an update cursor and a DELETE statement with a WHERE
CURRENT OF clause to delete the element whose value is 4:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(smallint not null) a_set;
int an_int;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from table1 where int_col = 6;
EXEC SQL declare set_curs cursor for

select * from table(:a_set) for update;

EXEC SQL open set_curs;
while (i<coll_size)
{

EXEC SQL fetch set_curs into :an_int;
if (an_int = 4)
{

EXEC SQL delete from table(:a_set) where current of set_curs;
break;

}
i++;

}

EXEC SQL update table1 set set_col = :a_set
where int_col = 6;

EXEC SQL deallocate collection :a_set;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

Chapter 5. Other Syntax Segments 5-11

After the DELETE statement executes, this collection variable contains the elements
{1,8,5,2}. The UPDATE statement at the end of this code fragment saves the
modified collection into the set_col column. Without this UPDATE statement,
element 4 of the collection column is not deleted.

Example of Deleting from a Collection

Suppose that the set_col column of a row in the table1 table is defined as a SET
and one row contains the values {1,8,4,5,2}. The following SPL code fragment
uses a FOREACH loop and a DELETE statement with a WHERE CURRENT OF
clause to delete the element whose value is 4:
CREATE_PROCEDURE test6()

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);
SELECT set_col INTO b FROM table1

WHERE id = 6;
-- Select the set in one row from the table
-- into a collection variable

FOREACH cursor1 FOR
SELECT * INTO a FROM TABLE(b);

-- Select each element one at a time from
-- the collection derived table b into a

IF a = 4 THEN
DELETE FROM TABLE(b)

WHERE CURRENT OF cursor1;
-- Delete the element if it has the value 4

EXIT FOREACH;
END IF;

END FOREACH;

UPDATE table1 SET set_col = b
WHERE id = 6;
-- Update the base table with the new collection

END PROCEDURE;

This SPL routine declares two SET variables, a and b, each to hold a set of
SMALLINT values. The first SELECT statement copies a SET column from one row
of table1 into variable b. The routine then declares a cursor called cursor1 that
copies one element at a time from b into SET variable a. When the cursor is
positioned on the element whose value is 4, the DELETE statement removes that
element from SET variable b. Finally, the UPDATE statement replaces the row of
table1 with the new collection that is stored in variable b.

For information on how to use collection variables in an SPL routine, see the IBM
Informix Guide to SQL: Tutorial.

Example of Updating a Collection

Suppose that the set_col column of a table called table1 is defined as a SET and
that it contains the values {1,8,4,5,2}. The following Informix ESQL/C program
changes the element whose value is 4 to a value of 10:
main
{

EXEC SQL BEGIN DECLARE SECTION;
int a;
collection b;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :b;

5-12 IBM Informix Guide to SQL: Syntax

EXEC SQL select set_col into :b from table1
where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:b) for update;

EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)
{

EXEC SQL fetch set_curs into :a;
if (a = 4)
{

EXEC SQL update table(:b)(x)
set x = 10 where current of set_curs;

break;
}

}
EXEC SQL update table1 set set_col = :b

where int_col = 6;
EXEC SQL deallocate collection :b;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

}

After you execute this Informix ESQL/C program, the set_col column in table1
contains the values {1,8,10,5,2}.

This Informix ESQL/C program defines two collection variables, a and b, and
selects a SET from table1 into b. The WHERE clause ensures that only one row is
returned. Then the program defines a Collection cursor, which selects elements one
at a time from b into a. When the program locates the element with the value 4,
the first UPDATE statement changes that element value to 10 and exits the loop.

In the first UPDATE statement, x is a derived-column name used to update the
current element in the collection-derived table. The second UPDATE statement
updates the base table table1 with the new collection.

For information on how to use collection host variables in an Informix ESQL/C
program, see the discussion of complex data types in the IBM Informix ESQL/C
Programmer's Manual.

Example of Inserting a Value into a Multiset Collection

Suppose the Informix ESQL/C host variable a_multiset has the following
declaration:
EXEC SQL BEGIN DECLARE SECTION;

client collection multiset(integer not null) a_multiset;
EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new MULTISET element of 142,323 to
a_multiset:
EXEC SQL allocate collection :a_multiset;
EXEC SQL select multiset_col into :a_multiset from table1

where id = 107;
EXEC SQL insert into table(:a_multiset) values (142323);
EXEC SQL update table1 set multiset_col = :a_multiset

where id = 107;

EXEC SQL deallocate collection :a_multiset;

When you insert elements into a client-collection variable, you cannot specify a
SELECT statement or an EXECUTE FUNCTION statement in the VALUES clause

Chapter 5. Other Syntax Segments 5-13

of the INSERT. When you insert elements into a server-collection variable,
however, the SELECT and EXECUTE FUNCTION statements are valid in the
VALUES clause. For more information on client- and server-collection variables,
see the IBM Informix ESQL/C Programmer's Manual.

Accessing a Nested Collection
If the element of the collection is itself a complex type (collection or row type), the
collection is a nested collection. For example, suppose the Informix ESQL/C
collection variable, a_set, is a nested collection that is defined as follows:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(list(integer not null)) a_set;
client collection list(integer not null) a_list;
int an_int;

EXEC SQL END DECLARE SECTION;

To access the elements (or fields) of a nested collection, use a collection or row
variable that matches the element type (a_list and an_int in the preceding code
fragment) and a Select cursor.

Accessing a Row Variable
The TABLE keyword can make an Informix ESQL/C row variable a
collection-derived table. That is, a row appears as a table in an SQL statement. For
a row variable, think of the collection-derived table as a table of one row, with
each field of the row type being a column of the row. Use the TABLE keyword in
place of the name of a table, synonym, or view in these SQL statements:
v The FROM clause of the SELECT statement to access a field of the row variable
v The UPDATE statement to modify an existing field in the row variable

The DELETE and INSERT statements do not support a row variable in the
collection-derived-table segment.

For example, suppose an ESQL/C host variable a_row has the following
declaration:
EXEC SQL BEGIN DECLARE SECTION;

row(x int, y int, length float, width float) a_row;
EXEC SQL END DECLARE SECTION;

The following ESQL/C code fragment adds the fields in the a_row variable to the
row_col column of the tab_row table:
EXEC SQL update table(:a_row)

set x=0, y=0, length=10, width=20;
EXEC SQL update rectangles set rect = :a_row;

Related Information

“DECLARE statement” on page 2-290, “DELETE statement” on page 2-307,
“DESCRIBE statement” on page 2-314, “FETCH statement” on page 2-372,
“INSERT statement” on page 2-435, “PUT statement” on page 2-487, “SELECT
statement” on page 2-536, “UPDATE statement” on page 2-700, “DEFINE” on page
3-6, and “FOREACH” on page 3-22.

For information on how to use COLLECTION variables in an SPL routine, see the
IBM Informix Guide to SQL: Tutorial.

5-14 IBM Informix Guide to SQL: Syntax

For information on how to use collection or row variables in an Informix ESQL/C
program, see the chapter on complex data types in the IBM Informix ESQL/C
Programmer's Manual.

Database Name

Use the Database Name segment to specify the name of a database. Use this
segment when you see a reference to a database name in a syntax diagram.

Syntax

Database Name:

dbname
@dbservername

'//dbservername/ dbname'
(1)

db_var

Notes:

1 ESQL/C only

Element Description Restrictions Syntax

dbname Database name (with no pathname
nor database server name)

Must be unique among the names of
databases of the database server

“Identifier”
on page 5-21

dbservername Database server on which the
database dbname resides

Must exist. No blank space can separate @
from dbservername.

“Identifier”
on page 5-21

db_var Host variable whose value specifies a
database environment

Variable must be a fixed-length character
data type

Language
specific

Usage

Database names are not case sensitive. You cannot use delimited identifiers for a
database name.

The identifiers dbname and dbservername can each have a maximum of 128 bytes.

If the name of a database server is a delimited identifier or if it includes uppercase
letters, that database server cannot participate in cross-server distributed DML
operations. To avoid this restriction, use only undelimited names that include no
uppercase letters when you declare the name or the alias of a database server.

In a nondefault locale, dbname can include alphabetic characters from the code set
of the locale. In a locale that supports a multibyte code set, keep in mind that the
maximum length of the database name refers to the number of bytes, not the
number of characters. For more information on the GLS aspects of naming
databases, see the IBM Informix GLS User's Guide.

Using Keywords as Table Names
You can choose a database on another database server as your current database by
specifying a database server name. The database server that dbservername specifies
must match the name of a database server that is listed in your sqlhosts
information.

Chapter 5. Other Syntax Segments 5-15

Using the @ Symbol
The @ symbol is a literal character. If you specify a database server name, blank
spaces are not valid between the @ symbol and the database server name. Either
put a blank space between dbname and the @ symbol, or omit the blank space.

The following examples show valid database specifications, qualified by the
database server name:
empinfo@personnel
empinfo @personnel

In these examples, empinfo is the name of the database and personnel is the name
of the database server.

Using a Path-Type Naming Notation
If you specify a pathname, do not put blank spaces between the quotation marks,
slashes, and names. The following example specifies a valid UNIX pathname:
’//personnel/empinfo’

Here empinfo is the dbname and personnel is the name of the database server.

Using a Host Variable
You can use a host variable within an Informix ESQL/C application to store a
value that represents a database environment.

Database Object Name

Use the Database Object Name segment to specify the name of a database object,
such as a column, table, view, or user-defined routine. Use this segment whenever
you see a reference to a database object name.

Syntax

Database Object Name:

(1)
database :

@dbservername

(2)
Owner Name .

�

� object
. object

Notes:

1 Informix extension

2 See “Owner Name” on page 5-45

Element Description Restrictions Syntax

database Database where object resides Must exist. “Database Name” on page 5-15

dbservername Database server of database Must exist. No space after @. “Identifier” on page 5-21

object Name of a database object See “Usage” on page 5-17. “Identifier” on page 5-21

5-16 IBM Informix Guide to SQL: Syntax

Usage

A database object name can include qualifiers and separator symbols to specify a
database, a server, an owner, and (for some objects) another object of which the
current database object is a component. For example, this expression specifies the
unit-price column of the stock table, owned by user informix, in the stores_demo
database of a database server called butler:
stores_demo@butler:informix.stock.unit_price

If you are creating or renaming a database object, the new name that you declare
must be unique among objects of the same type in the database. Thus, the name of
a new view must be unique among the names and synonyms of tables, views, and
sequence objects that already exist in the same database. (But a view can have the
same name as a view in a different database of the same server, or the same name
as a trigger, for example, because these are different types of objects.)

In an ANSI-compliant database, the owner.object combination must be unique in the
database for the type of object. A database object specification must include the
owner name for a database object that you do not own. For example, if you specify
a table that you do not own, you must also specify the owner of the table. The
owner of all the system catalog tables is informix.

In Informix, the uniqueness requirement does not apply to the name of a user
defined routine (UDR). For more information, see “Routine Overloading and
Routine Signatures” on page 5-18.

Characters from the code set of your database locale are valid in database object
names. For more information, see IBM Informix GLS User's Guide.

Specifying a Database Object in an External Database
Besides objects in the local database to which you are currently connected, you can
also specify a database object in another database of the local database server, or in
a database of a remote database server.

Specifying a Database Object in a Cross-Database Query
To specify an object in another database of the local database server, you must
qualify the identifier of the object with the name of the database (and of the owner,
if the external database is ANSI compliant), as in this example:
corp_db:hrdirector.executives

In this example, the name of the external database is corp_db. The name of the
owner of the table is hrdirector. The name of the table is executives. Here the
colon (:) separator is required after the database qualifier.

In Informix, queries and other data manipulation language (DML) operations on
other databases of the local database server can access most of the built-in opaque
data types, as listed in “Data Types in Cross-Database Transactions” on page 2-544.
DML operations can also access user-defined data types (UDTs) that can be cast to
built-in types, as well as DISTINCT types that are based on built-in types, if each
DISTINCT types and UDT is cast explicitly to a built-in type, and if all the
DISTINCT types, UDTs, and casts are defined in all of the participating databases.
The same data-type restrictions also apply to the arguments and to the returned
values of a user-defined routine (UDR) that accesses other databases of the local
Informix instance, if the UDR is defined in all of the participating databases.

Chapter 5. Other Syntax Segments 5-17

Specifying a Database Object in a Cross-Server Query
To specify an object in a database of a remote database server, you must use a
fully-qualified identifier that specifies the database, database server, and owner (if the
external database is ANSI compliant) in addition to the database object name. For
example, hr_db@remoteoffice:hrmanager.employees is a fully-qualified table
name.

Here the database is hr_db, the database server is remoteoffice, the table owner is
hrmanager, and the table name is employees. The at (@) separator, with no blank
spaces, is required between the database and database server qualifiers. Cross-server
queries can access columns of built-in data types that are not opaque data types,
but they cannot access UDTs nor complex data types. (For a list of the DISTINCT
and built-in OPAQUE data types that Informix supports in cross-server operations,
see “Data Types in Cross-Server Transactions” on page 2-545.)

In Informix, if a UDR exists on a remote database server, you must specify a
fully-qualified identifier for the UDR. Like cross-server DML operations, a remote
UDR is limited to built-in data types for its arguments, parameters, and returned
values. (For a list of the data types that Informix supports in cross-database
operations, see “Data Types in Cross-Database Transactions” on page 2-544.)

You can refer to a remote database object in the following statements only. For
information on the support in these statements across databases of the local server,
or across database servers, refer to the IBM Informix Guide to SQL: Tutorial.
v CREATE DATABASE
v CREATE SYNONYM
v CREATE VIEW
v DATABASE
v DELETE
v EXECUTE FUNCTION
v EXECUTE PROCEDURE
v INFO
v INSERT
v LOAD
v LOCK TABLE
v SELECT
v UNLOAD
v UNLOCK TABLE
v UPDATE

If the name of a database server is a delimited identifier or if it includes uppercase
letters, that database server cannot participate in distributed DML operations. To
avoid this restriction, use only undelimited names that include no uppercase letters
when you declare the name or the alias of a database server.

Routine Overloading and Routine Signatures
Because of routine overloading, the name of a user-defined routine does not need
to be unique to the database. You can define more than one UDR with the same
name, provided that the routine signature for each UDR is different.

UDRs are uniquely identified by their signatures. The signature of a UDR includes
the following items of information:

5-18 IBM Informix Guide to SQL: Syntax

v The type of routine (function or procedure)
v The identifier of the routine
v The cardinality, data type, and order of the parameters
v In an ANSI-compliant database, the owner name

For any given UDR, at least one item in the routine signature must be unique
among all the UDRs registered in the database.

In a database that is not ANSI-compliant, two routines that have different owners
cannot have the same signature, except in the special cases of the sysdbopen() and
sysdbclose() routines. For information about the effects of these session
configuration routines when their owners connect to or disconnect from a database
where these routines are defined, see “IFX_REPLACE_MODULE Function” on
page 6-10.

Specifying an Existing UDR
To reference an existing UDR by a name that does not uniquely identify the UDR,
you must also specify the parameter data types after the UDR name, in the same
order that they were declared when the UDR was created. Informix then uses
routine resolution rules to identify the instance of the UDR to alter, drop, or
execute. As an alternative, you can specify its specific name, if one was declared
when the UDR was created. Specific names are described in the section “Specific
Name” on page 5-73. For more details of routine resolution, see “Comparing
Arguments to the Parameter List” on page 5-2, and IBM Informix User-Defined
Routines and Data Types Developer's Guide.

Owners of Objects Created by UDRs
When a DDL statement within an owner-privileged UDR creates a new database
object, the owner of the routine (rather than the user who executes it, if that user is
not the owner of the routine) becomes the owner of the new database object. For a
DBA-privileged UDR, however, the user who executes the routine (and who must
hold DBA privilege) becomes the owner of any objects that the UDR creates.

External Routine Reference

Use an External Routine Reference when you write an external routine.

Syntax

External Routine Reference:

EXTERNAL NAME
(1)

Shared-Object Filename LANGUAGE C
JAVA

�

�
INFORMIX

PARAMETER STYLE
(2) (3) VARIANT

NOT VARIANT

Notes:

1 See “Shared-Object Filename” on page 5-70

2 C

Chapter 5. Other Syntax Segments 5-19

3 Java

Usage

If the IFX_EXTEND_ROLE configuration parameter is set to ON, authorization to
use this segment is available only to the Database Server Administrator (DBSA),
and to users whom the DBSA has granted the EXTEND role. By default, the DBSA
is user informix.

This segment specifies the following information about an external routine:
v Pathname to the executable object code, stored in a shared-object file

For C routines, this file is either a DLL or a shared library, depending on your
operating system.
For Java routines, this file is a jar file. Before you can create a UDR written in
the Java language, you must assign a jar identifier to the external jar file with
the sqlj.install_jar procedure. For more information, see “sqlj.install_jar” on
page 6-14.

v The name of the programming language in which the UDR is written
v The parameter style of the UDR

By default, the parameter style is INFORMIX. (This implies that if you specify
OUT or INOUT parameters, the OUT or INOUT values are passed by reference.)

v The VARIANT or NOT VARIANT option, if you specify one. (This option is not
available for SPL routines.)

VARIANT or NOT VARIANT Option

A function is variant if it can return different results when it is invoked with the
same arguments or if it modifies the state of a database or of a variable. For
example, a function that returns the current date or time is a variant function.

By default, user-defined functions are variant. If you specify NOT VARIANT when
you create or modify a function, it cannot contain any SQL statements.

If the function is nonvariant, the database server might cache the return variant
functions. For more information on functional indexes, see “CREATE INDEX
statement” on page 2-135.

To register a nonvariant function, add the NOT VARIANT option in this clause or
in the Routine Modifier clause that is discussed in “Routine Modifier” on page
5-59. If you specify the modifier in both contexts, however, you must use the same
modifier (either VARIANT or NOT VARIANT) in both clauses.

Example of a C User-Defined Function

The next example registers an external function named equal() that takes two
point data type values as arguments. In this example, point is an opaque data type
that specifies the x and y coordinates of a two-dimensional point.
CREATE FUNCTION equal(a point, b point) RETURNING BOOLEAN;

EXTERNAL NAME "/usr/lib/point/lib/libbtype1.so(point1_equal)"
LANGUAGE C

END FUNCTION;

The function returns a single value of type BOOLEAN. The external name specifies
the path to the C shared-object file where the object code of the function is stored.

5-20 IBM Informix Guide to SQL: Syntax

The external name indicates that the library contains another function,
point1_equal(), which is invoked while equal() executes.

Examples

The following example includes an external routine reference for a Java language
UDR. You must first register demo_jar using the procedure install_jar(<absolute
path><jar file name>,<internal registered name>).
CREATE FUNCTION delete_order(int) RETURNING int

EXTERNAL NAME ’informix.demo_jar:delete_order.delete_order()’
LANGUAGE JAVA;

Identifier
An identifier specifies the unqualified name of a database object, such as an access
method, aggregate, alias, blobspace, cast, column, constraint, correlation, data type,
index, operator class, partition, procedure, table, trigger, sequence, synonym, or
view. Use the Identifier segment whenever you see a reference to an identifier in a
syntax diagram.

Syntax

Identifier:

�

letter
underscore

letter
digit
underscore
dollar_sign

(1)
Delimited Identifier

Notes:

1 See “Delimited Identifiers” on page 5-23

Element Description Restrictions Syntax

digit Integer in range 0 to 9 Cannot be the first character “Literal Number” on page
4-184

dollar_sign Dollar ($) symbol Cannot be the first character Literal symbol entered from
the keyboard.

letter Upper- or lowercase
letter of the alphabet

In the default locale, must be an ASCII
character in the range A to Z or a to z

Literal symbol entered from
the keyboard.

underscore Underscore (_) character Cannot substitute a space, hyphen, or other
non-alphanumeric character

Literal symbol entered from
the keyboard.

Usage

This is a logical subset of “Database Object Name” on page 5-16, a segment that
can specify the owner, database, and database server of external objects.

To include other non-alphanumeric symbols, such as a blank space (ASCII 32), in
an identifier, you must use a delimited identifier. It is recommended that you do

Chapter 5. Other Syntax Segments 5-21

not use the dollar sign ($) in identifiers, because this symbol is a special character
whose inclusion in an identifier might cause conflicts with other syntax elements.
For more information, see “Delimited Identifiers” on page 5-23.

An identifier must have a length of at least 1 byte, but no more than 128 bytes. For
example, employee_information is valid as a table name. If you are using a
multibyte code set, keep in mind that the maximum length of an identifier refers to
the number of bytes, not to the number of logical characters.

For letter characters in nondefault locales, see “Support for Non-ASCII Characters
in Identifiers” on page 5-23. For further information on the GLS aspects of
identifiers, see Chapter 3 of the IBM Informix GLS User's Guide.

When you use ESQL/C with Informix , the database server checks the internal
version number of the client application and the setting of the IFX_LONGID
environment variable to determine whether a client application supports long
identifiers (up to 128 bytes in length). For more information, see the IBM Informix
Guide to SQL: Reference.

When the database server uses long identifiers, you might encounter error
messages, warning messages, or other messages that truncate trailing characters in
SQL identifiers or elsewhere in the message text. Truncation can usually be
avoided, however, if identifiers have 18 or fewer bytes. Your code might be
difficult to read or to maintain if identifiers of different SQL objects are identical in
their first 18 characters.

Use of Uppercase Characters
You can specify the name of a database object with uppercase characters, but the
database server shifts these to lowercase characters unless the DELIMIDENT
environment variable is set and the identifier of the database object is enclosed
between double (") quotation marks. In this case, the database server treats the
name of the database object as a delimited identifier and preserves the uppercase
characters in the name, as described in “Delimited Identifiers” on page 5-23.

If the name of a database server includes uppercase letters, that database server
cannot participate in distributed DML operations. To avoid this restriction, use
only undelimited names that include no uppercase letters when you declare the
name or the alias of a database server.

Use of Keywords as Identifiers
Although you can use almost any word as an identifier, syntactic ambiguities can
result from using keywords as identifiers in SQL statements. The statement might
fail or might not produce the expected results. For a discussion of the syntactic
ambiguities that can result from using keywords as identifiers and an explanation
of workarounds for these problems, see “Potential Ambiguities and Syntax Errors”
on page 5-25.

Delimited identifiers provide the easiest and safest way to use a keyword as an
identifier without syntactic ambiguities. No workarounds are necessary for a
keyword as a delimited identifier. For the syntax and usage of delimited
identifiers, see “Delimited Identifiers” on page 5-23. Delimited identifiers require,
however, that your code always use single (') quotation marks, rather than double
(") quotation marks, to delimit character-string literals.

5-22 IBM Informix Guide to SQL: Syntax

For the keywords of the implementation of SQL in Informix, see Appendix A,
“Keywords of SQL for IBM Informix,” on page A-1.

Tip: If an error message seems unrelated to the statement that caused the error,
check to see if the statement uses a keyword as an undelimited identifier.

Support for Non-ASCII Characters in Identifiers
In a nondefault locale, you can use any alphabetic character that your locale
recognizes as a letter in an SQL identifier. This feature enables you to use
non-ASCII characters in the names of some database objects. For objects that
support non-ASCII characters, see the IBM Informix GLS User's Guide.

Delimited Identifiers

By default, the character set of a valid SQL identifier is restricted to letters, digits,
underscore, and dollar-sign symbols. If you set the DELIMIDENT environment
variable, however, SQL identifiers can also include additional characters from the
code set implied by the setting of the DB_LOCALE environment variable.

Delimited Identifier:

" � letter
digit
underscore
other_character

"

Element Description Restrictions Syntax

digit Integer in the range 0 to 9 Cannot be the first character “Literal Number” on page 4-184

letter Letter that forms part of the
delimited identifier

Letters in delimited identifiers are
case-sensitive

Literal value entered from the
keyboard.

other
_character

Nonalphanumeric character,
such as #, $, or blank space

Must be an element in the code
set of the database locale

Literal value entered from the
keyboard.

underscore Underscore (_) symbol in the
delimited identifier

Cannot include more than 128 Literal value entered from the
keyboard.

If the database supports delimited identifiers, any double quotation marks (")
enclose an SQL identifier in your code, and only single (’) quotation marks,
rather than double (") quotation marks, delimit character-string literals.

Delimited identifiers enable you to declare names that are otherwise identical to
SQL keywords, such as TABLE, WHERE, DECLARE, and so on. The only type of
object for which you cannot specify a delimited identifier is a database name.

Letters in delimited identifiers are case sensitive. If you are using the default
locale, letter must be an upper- or lowercase character in the range a to z or A to Z
(in the ASCII code set). If you are using a nondefault locale, letter must be an
alphabetic character that the locale supports. For more information, see “Support
for Non-ASCII Characters in Delimited Identifiers (GLS)” on page 5-24.

Delimited identifiers are compliant with the ANSI/ISO standard for SQL.

Chapter 5. Other Syntax Segments 5-23

When you create a database object, avoid including leading blank spaces or other
white-space characters between the first delimiting quotation mark and the first
nonblank character of the delimited identifier. (Otherwise, you might not be able to
reference the object in some contexts.)

If the name of a database server is a delimited identifier or if it includes uppercase
letters, that database server cannot participate in distributed DML operations. To
avoid this restriction, use only undelimited names that include no uppercase letters
when you declare the name or the alias of a database server.

Support for Nonalphanumeric Characters
By default, ASCII letters, digits, and the underscore (ASCII 95) character are
supported in SQL identifiers and in storage object identifiers for all locales. To
include additional characters from the codeset implied by the DB_LOCALE setting
in the names of database objects, you must use delimited identifiers.

You cannot , however, use delimited identifiers, however, to specify characters that
are not letters, digits, or the underscore (_) character when you declare or
reference the names of storage objects, such as dbspaces, partitions, blobspaces, or
sbspaces.

Support for Non-ASCII Characters in Delimited Identifiers (GLS)
When you are using a nondefault locale whose code set supports non-ASCII
characters, you can specify those non-ASCII characters in most delimited
identifiers. The rule is that if you can specify non-ASCII characters in the
undelimited form of the identifier, you can also specify non-ASCII characters in the
delimited form of the same identifier. For a list of identifiers that support
non-ASCII characters and for information on non-ASCII characters in delimited
identifiers, see the IBM Informix GLS User's Guide.

Enabling Delimited Identifiers

To use delimited identifiers, you must set the DELIMIDENT environment variable.
While DELIMIDENTis set, strings enclosed in double quotation marks (") are
treated as identifiers of database objects, and strings enclosed in single quotation
marks (') are treated as literal strings. If the DELIMIDENT environment variable
is not set, however, strings enclosed in double quotation marks are also treated as
literal strings.

If DELIMIDENT is set, the SELECT statement in the following example must be in
single quotation marks in order to be treated as a quoted string:
PREPARE ... FROM ’SELECT * FROM customer’;

If a delimited identifier is used in the SELECT statement that defines a view, then
the DELIMIDENT environment variable must be set in order for the view to be
accessed, even if the view name itself contains no special characters.

On UNIX and Linux systems, you can set DELIMIDENT by the procedures for
setting environment variables that are described in IBM Informix Guide to SQL:
Reference.

On Windows systems, you can set DELIMIDENT in various ways, which
generally have the following descending order of precedence:
1. The setting of DELIMIDENT in the connection string when connecting

5-24 IBM Informix Guide to SQL: Syntax

2. The setting of the SQL_INFX_ATTR_DELIMIDENT connection attribute before
connecting

3. The setting of DELIMIDENT in setnet32 with the Use my settings box selected
4. The setting of DELIMIDENT in setnet32 with the Use my settings box cleared
5. The setting of DELIMIDENT on the command line before running the

application
6. The setting of DELIMIDENT in Windows as a user variable
7. The setting of DELIMIDENT in Windows as a system variable
8. The default value (of no support for delimited identifiers).

This general order of precedence for Windows clients is sensitive, however, to the
API through which you connect to the database, which can also affect the meaning
of the setting and the default value. Refer to the documentation of your specific
API for more information about the DELIMIDENT setting in Windows.

Examples of Delimited Identifiers

The next example shows how to create a table with a case-sensitive name:
CREATE TABLE "Proper_Ranger" (...);

The following example creates a table whose name includes a white-space
character. If the table name were not enclosed by double (") quotation marks, and
if DELIMIDENT were not set, you could not use a blank space in the identifier.
CREATE TABLE "My Customers" (...);

The next example creates a table that has a keyword as the table name:
CREATE TABLE "TABLE" (...);

The following example for Informix shows how to delete all the rows from a table
that is named FROM when you omit the keyword FROM in the DELETE
statement:
DELETE “FROM”;

Using Double Quotation Marks in a Delimited Identifier

To include a double quotation mark (") character within a delimited identifier,
you must precede the double quotation mark (") with another double quotation
mark ("). The following statement fragment specifies My "Good" Data as a table
name:
CREATE TABLE "My ""Good"" Data" (...);

Potential Ambiguities and Syntax Errors
IBM does not recommend using any keyword of SQL as an identifier, because to
do so tends to make your code more difficult to read and to maintain. If you
ignore this potential problem for human readers, however, you can use almost any
keyword as an SQL identifier, but various syntactic ambiguities can occur. An
ambiguous statement might not produce the desired results. The following sections
identify some potential ambiguities and workarounds when keywords are declared
as identifiers, or when different database objects have the same identifier.

Using the Names of Built-In Functions as Column Names
The following two examples show a workaround for using a built-in function as a
column name in a SELECT statement. This workaround applies to the built-in

Chapter 5. Other Syntax Segments 5-25

aggregate functions (AVG, COUNT, MAX, MIN, SUM) as well as the function
expressions (algebraic, exponential and logarithmic, time, HEX, length, DBINFO,
trigonometric, and TRIM functions).

Using avg as a column name causes the next example to fail because the database
server interprets avg as an aggregate function rather than as a column name:
SELECT avg FROM mytab; -- fails

If the DELIMIDENT environment variable is set, you could use avg as a column
name as the following example shows:
SELECT "avg" from mytab; -- successful

The workaround in the following example removes ambiguity by including a table
name with the column name:
SELECT mytab.avg FROM mytab;

If you use the keyword TODAY, CURRENT, SYSDATE, or USER as a column
name, ambiguity can occur, as the following example shows:
CREATE TABLE mytab (user char(10),

CURRENT DATETIME HOUR TO SECOND,TODAY DATE);

INSERT INTO mytab VALUES(’josh’,’11:30:30’,’1/22/2008’);

SELECT user,current,today FROM mytab;

The database server interprets user, current, and today in the SELECT statement as
the built-in functions USER, CURRENT, and TODAY. Thus, instead of returning
josh, 11:30:30,1/22/2008, the SELECT statement returns the current user name, the
current time, and the current date. The SYSDATE keyword has a similar effect in
databases of Informix.

If you want to select the actual columns of the table, you must write the SELECT
statement in one of the following ways:
SELECT mytab.user, mytab.current, mytab.today FROM mytab;

EXEC SQL select * from mytab;

Using Keywords as Column Names
Specific workarounds exist for using a keyword as a column name in a SELECT
statement or other SQL statement. In some cases, more than one suitable
workaround might be available.

Using ALL, DISTINCT, or UNIQUE as a Column Name
If you want to use the ALL, DISTINCT, or UNIQUE keywords as column names in
a SELECT statement, you can take advantage of a workaround.

First, consider what happens when you try to use one of these keywords without a
workaround. In the following example, using all as a column name causes the
SELECT statement to fail because the database server interprets all as a keyword
rather than as a column name:
SELECT all FROM mytab -- fails;

You must use a workaround to make this SELECT statement execute successfully.
If the DELIMIDENT environment variable is set, you can use all as a column

5-26 IBM Informix Guide to SQL: Syntax

name by enclosing all in double quotation marks. In the following example, the
SELECT statement executes successfully because the database server interprets all
as a column name:
SELECT "all" from mytab; -- successful

The workaround in the following example uses the keyword ALL with the column
name all:
SELECT ALL all FROM mytab;

The examples that follow show workarounds for using the keywords UNIQUE or
DISTINCT as a column name in a CREATE TABLE statement.

The next example fails to declare a column named unique because the database
server interprets unique as a keyword rather than as a column name:
CREATE TABLE mytab (unique INTEGER); -- fails

The following workaround uses two SQL statements. The first statement creates
the column mycol; the second statement renames the column mycol to unique:
CREATE TABLE mytab (mycol INTEGER);

RENAME COLUMN mytab.mycol TO unique;

The workaround in the following example also uses two SQL statements. The first
statement creates the column mycol; the second alters the table, adds the column
unique, and drops the column mycol:
CREATE TABLE mytab (mycol INTEGER);

ALTER TABLE mytab
ADD (unique INTEGER),
DROP (mycol);

Using INTERVAL or DATETIME as a Column Name
The examples in this section show workarounds for using the keyword INTERVAL
(or DATETIME) as a column name in a SELECT statement.

Using interval as a column name causes the following example to fail because the
database server interprets interval as a keyword and expects it to be followed by
an INTERVAL qualifier:
SELECT interval FROM mytab; -- fails

If the DELIMIDENT environment variable is set, you could use interval as a
column name, as the following example shows:
SELECT "interval" from mytab; -- successful

The workaround in the following example removes ambiguity by specifying a table
name with the column name:
SELECT mytab.interval FROM mytab;

The workaround in the following example includes an owner name with the table
name:
SELECT josh.mytab.interval FROM josh.mytab;

Chapter 5. Other Syntax Segments 5-27

Using rowid as a Column Name
Every nonfragmented table has a virtual column named rowid. To avoid
ambiguity, you cannot use rowid as a column name. Performing the following
actions causes an error:
v Creating a table or view with a column named rowid

v Altering a table by adding a column named rowid

v Renaming a column to rowid

You can, however, use the term rowid as a table name.
CREATE TABLE rowid (column INTEGER, date DATE, char CHAR(20));

Important: It is recommended that you use primary keys as an access method,
rather than exploiting the rowid column.

Using Keywords as Table Names
Examples in this section show workarounds that involve owner naming when the
keyword STATISTICS or OUTER is a table name. (This workaround also applies to
STATISTICS or OUTER as a view name or synonym.)

Using statistics as a table name causes the following example to fail because the
database server interprets it as part of the UPDATE STATISTICS syntax rather than
as a table name in an UPDATE statement:
UPDATE statistics SET mycol = 10;

The workaround in the following example specifies an owner name with the table
name, to avoid ambiguity:
UPDATE josh.statistics SET mycol = 10;

Using outer as a table name causes the following example to fail because the
database server interprets outer as a keyword for performing an outer join:
SELECT mycol FROM outer; -- fails

The following successful example uses owner naming to avoid ambiguity:
SELECT mycol FROM josh.outer;

Workarounds that Use the Keyword AS
In some cases, although a statement is not ambiguous and the syntax is correct, the
database server returns a syntax error. The preceding pages show existing syntactic
workarounds for several situations. You can use the AS keyword to provide a
workaround for the exceptions.

You can use the AS keyword in front of column labels or table aliases.

The following example uses the AS keyword with a column label:
SELECT column_name AS display_label FROM table_name;

The following example uses the AS keyword with a table alias:
SELECT select_list FROM table_name AS table_alias;

5-28 IBM Informix Guide to SQL: Syntax

Using AS with Column Labels
The examples in this section show workarounds that use the AS keyword with a
column label. The first two examples show how you can use the keyword UNITS
(or YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or FRACTION) as a
column label.

Using units as a column label causes the next example to fail because the database
server interprets it as part of an INTERVAL expression in which the mycol column
is the operand of the UNITS operator:
SELECT mycol units FROM mytab;

The workaround in the following example includes the AS keyword:
SELECT mycol AS units FROM mytab;

The following example uses the AS or FROM keyword as a column label.

Using as as a column label causes the following example to fail because the
database server interprets as as identifying from as a column label and thus finds
no required FROM clause:
SELECT mycol as from mytab; -- fails

The following successful example repeats the AS keyword:
SELECT mycol AS as from mytab;

Using from as a column label causes the following example to fail because the
database server expects a table name to follow the first from:
SELECT mycol from FROM mytab; -- fails

This example uses the AS keyword to identify the first from as a column label:
SELECT mycol AS from FROM mytab;

Using AS with Table Aliases
Examples in this section show workarounds that use the AS keyword with a table
alias. The first pair shows how to use the ORDER, FOR, GROUP, HAVING, INTO,
UNION, WITH, CREATE, GRANT, or WHERE keyword as a table alias.

Using order as a table alias causes the following example to fail because the
database server interprets order as part of an ORDER BY clause:
SELECT * FROM mytab order; -- fails

The workaround in the following example uses the keyword AS to identify order
as a table alias:
SELECT * FROM mytab AS order;

The next two examples show how to use the keyword WITH as a table alias.

Using with as a table alias causes the next example to fail because the database
server interprets with as part of the WITH CHECK OPTION syntax:
EXEC SQL select * from mytab with; -- fails

The workaround in the following example uses the keyword AS to identify with as
a table alias:
EXEC SQL select * from mytab as with; -- succeeds

Chapter 5. Other Syntax Segments 5-29

The next two examples use the keyword CREATE as a table alias. Using create as a
table alias causes the next example to fail because the database server interprets
the keyword as part of the syntax to create a new database object, such as a table,
synonym, or view:
EXEC SQL select * from mytab create; -- fails

EXEC SQL select * from mytab as create; -- succeeds

The workaround uses the keyword AS to identify create as a table alias. (Using
grant as an alias would similarly fail, but is valid after the AS keyword.)

Fetching Cursors that have Keywords as Names
In a few situations, no workaround exists for the syntactic ambiguity that occurs
when a keyword is used as an identifier in an SQL program.

In the following example, the FETCH statement specifies a cursor named next. The
FETCH statement generates a syntax error because the preprocessor interprets next
as a keyword, signifying the next row in the active set and expects a cursor name
to follow next. This occurs whenever the keyword NEXT, PREVIOUS, PRIOR,
FIRST, LAST, CURRENT, RELATIVE, or ABSOLUTE is used as a cursor name:
/* This code fragment fails */
EXEC SQL declare next cursor for

select customer_num, lname from customer;
EXEC SQL open next;
EXEC SQL fetch next into :cnum, :lname;

Fetching Cursors that have Keywords as Names
If you use any of the following keywords as identifiers for variables in a
user-defined routine (UDR), you can create ambiguous syntax:
v CURRENT
v DATETIME
v GLOBAL
v INTERVAL
v NULL
v OFF
v OUT
v PROCEDURE
v SELECT
v SYSDATE

Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT
A UDR cannot insert a variable that was declared using the CURRENT,
DATETIME, INTERVAL, or NULL keywords as the name. For example, if you
declare a variable called null, when you try to insert the value null into a column,
you receive a syntax error, as the following example shows:
CREATE PROCEDURE problem()
. . .
DEFINE null INT;
LET null = 3;
INSERT INTO tab VALUES (null); -- error, inserts NULL, not 3

Using NULL and SELECT in a Condition
If you declare a variable with the name null or select, including it in a condition
that uses the IN keyword is ambiguous. The following example shows three

5-30 IBM Informix Guide to SQL: Syntax

conditions that cause problems: in an IF statement, in a WHERE clause of a
SELECT statement, and in a WHILE condition:
CREATE PROCEDURE problem()
. . .
DEFINE x,y,select, null, INT;
DEFINE pfname CHAR[15];
LET x = 3; LET select = 300;
LET null = 1;
IF x IN (select, 10, 12) THEN LET y = 1; -- problem if

IF x IN (1, 2, 4) THEN
SELECT customer_num, fname INTO y, pfname FROM customer

WHERE customer IN (select , 301 , 302, 303); -- problem in

WHILE x IN (null, 2) -- problem while
. . .
END WHILE;

You can use the variable select in an IN list if you ensure it is not the first element
in the list. The workaround in the following example corrects the IF statement that
the preceding example shows:
IF x IN (10, select, 12) THEN LET y = 1; -- problem if

No workaround exists to using null as a variable name and attempting to use that
variable in an IN condition.

Declaring Keywords or Routine Names as SPL Variables
If you declare a variable with the same name as a keyword or as the name of a
routine, ambiguities can occur. Informix uses the following rules for resolving
name conflicts among SPL variables, UDR names, and built-in SQL function
names.
v Variable names that are declared in DEFINE statements take the highest

precedence.
v User-defined routines defined in CREATE PROCEDURE or CREATE

FUNCTION statements take precedence over built-in SQL functions.
v Procedures declared with the PROCEDURE keyword in the DEFINE statement

take precedence over built-in SQL functions.
v Built-in SQL functions take precedence over SPL procedures that exist in the

database but that are not explicitly identified as procedures in the DEFINE
statement.

Do not use the name of a built-in SQL function as an SPL variable if you might
need to invoke the SQL function. For example, do not declare a variable with the
name count or max, if you might also need to call those aggregate functions.

Variables that Conflict with Column Names
If you use the same identifier for an SPL variable and a column name, then within
the scope of reference of the variable, the database server interprets any instance of
the unqualified identifier as a variable. To use the identifier to specify a column
name, use table.column notation to qualify the column name with the table name. In
the following example, the procedure variable lname is the same as the column
name. In the following SELECT statement, customer.lname is a column in the
database and lname is an SPL variable:
CREATE PROCEDURE table_test()
DEFINE lname CHAR(15);
LET lname = "Miller";
SELECT customer.lname FROM customer INTO lname

WHERE customer_num = 502;

Chapter 5. Other Syntax Segments 5-31

This example is valid, but relying on the rules of precedence of Informix to resolve
name conflicts between SPL variables and column names might make your code
difficult for human readers to interpret and to maintain. An alternative to reusing
the same identifier as a variable and as a column name is for the DEFINE
statement to declare some prefix to the identifier, such as v_lname in this example,
to indicate that this variable stores the value of the column lname.

Using ON, OFF, or PROCEDURE with TRACE
If you define an SPL variable called on, off, or procedure, and you attempt to use
it in a TRACE statement, the value of the variable is not traced. Instead, the
TRACE ON, TRACE OFF, or TRACE PROCEDURE statements execute. You can
trace the value of the variable by specifying the variable in a more complex
expression.

The following example shows both the ambiguous syntax and workarounds that
use arithmetic or string expressions that evaluate to the variable:
DEFINE on, off, procedure INT;

TRACE on; --ambiguous
TRACE 0+ on; --ok
TRACE off; --ambiguous
TRACE ’’||off;--ok

TRACE procedure; --ambiguous
TRACE 0+procedure;--ok

Using GLOBAL as the Name of a Variable
If you attempt to define a variable with the name global, the define operation fails.
The syntax that the following example shows conflicts with the syntax for defining
global variables:
DEFINE global INT; -- fails;

If the DELIMIDENT environment variable is set, you could use global as a
variable name, as the following example shows:
DEFINE "global" INT; -- successful

Important: Although workarounds that the preceding sections show can avoid
compilation or runtime syntax conflicts from keywords used as identifiers, keep in
mind that such identifiers tend to make code more difficult to understand and to
maintain.

Using EXECUTE, SELECT, or WITH as Cursor Names
Do not use an EXECUTE, SELECT, or WITH keyword as the name of a cursor. If
you try to use one of these keywords as the name of a cursor in a FOREACH
statement, the cursor name is interpreted as a keyword in the FOREACH
statement. No workaround exists.

The following example does not work:
DEFINE execute INT;
FOREACH execute FOR SELECT col1 -- error, looks to parser like

INTO var1 FROM tab1; -- ’FOREACH EXECUTE PROCEDURE’

SELECT Statements in WHILE and FOR Statements

If you use a SELECT statement in a WHILE or FOR loop, and if you need to
enclose it in parentheses, enclose the entire SELECT statement in a BEGIN...END

5-32 IBM Informix Guide to SQL: Syntax

statement block. The SELECT statement in the first WHILE statement in the
following example is interpreted as a call to the procedure var1; the second WHILE
statement is interpreted correctly:
DEFINE var1, var2 INT;
WHILE var2 = var1

SELECT col1 INTO var3 FROM TAB -- error, interpreted as call var1()
UNION
SELECT co2 FROM tab2;

END WHILE;

WHILE var2 = var1
BEGIN

SELECT col1 INTO var3 FROM TAB -- ok syntax
UNION
SELECT co2 FROM tab2;

END
END WHILE;

SET Keyword in the ON EXCEPTION Statement

If you use a statement that begins with the keyword SET in ON EXCEPTION, you
must enclose it in a BEGIN ... END statement block. The following list shows some
of the SQL statements that begin with the keyword SET:
v SET ALL_MUTABLES
v SET AUTOFREE
v SET CONNECTION
v SET CONSTRAINTS
v SET DATASKIP
v SET DEBUG FILE
v SET Default Table Space
v SET Default Table Type
v SET DEFERRED_PREPARE
v SET DESCRIPTOR
v SET ENCRYPTION
v SET ENVIRONMENT
v SET EXPLAIN
v SET INDEX
v SET INDEXES
v SET ISOLATION
v SET LOCK MODE
v SET LOG
v SET OPTIMIZATION
v SET PDQPRIORITY
v SET PLOAD FILE
v SET ROLE
v SET SCHEDULE LEVEL
v SET SESSION AUTHORIZATION
v SET STATEMENT CACHE
v SET TABLE
v SET TRANSACTION
v SET TRIGGERS

Chapter 5. Other Syntax Segments 5-33

The following examples show the incorrect and correct use of a SET LOCK MODE
statement inside an ON EXCEPTION statement.

The following ON EXCEPTION statement returns an error because the SET LOCK
MODE statement is not enclosed in a BEGIN ... END statement block:
ON EXCEPTION IN (-107)

SET LOCK MODE TO WAIT; -- error, value expected, not ’lock’
END EXCEPTION;

The following ON EXCEPTION statement executes successfully because the SET
LOCK MODE statement is enclosed in a BEGIN ... END statement block:
ON EXCEPTION IN (-107)

BEGIN
SET LOCK MODE TO WAIT; -- ok
END

END EXCEPTION;

Related Information

For a discussion of owner naming, see your IBM Informix Performance Guide.

For a discussion of identifiers that support non-ASCII characters and a discussion
of non-ASCII characters in delimited identifiers, see the IBM Informix GLS User's
Guide.

Jar Name

Use the Jar Name segment to specify the name of a jar ID. Use this segment
whenever you see a reference to Jar Name in a syntax diagram.

Syntax

Jar Name:

package .
database .

jar_id

Element Description Restrictions Syntax

database Database in which to install or access
jar_id. Default is the current database.

Fully qualified database.package.jar_id
identifier must not exceed 255 bytes

“Database Name”
on page 5-15

jar_id The .jar file that contains the Java class
to be accessed

File must exist in database.package “Identifier” on page
5-21

package Name of the package Package must exist in database “Identifier” on page
5-21

If a jar name is specified as a character string argument to the sqlj.install_jar,
sqlj.replace_jar, or sqlj.remove_jar procedures, then any identifiers in the jar name
that are delimited identifiers will include the surrounding double quotation mark
characters.

Before you can access a jar_id in any way (including its use in a CREATE
FUNCTION or CREATE PROCEDURE statement), it must be defined in the
current database with the install_jar() procedure. For more information, see

5-34 IBM Informix Guide to SQL: Syntax

“EXECUTE PROCEDURE statement” on page 2-369.

Related Information

For information on how to update the three-part names of jar files after you
rename the database, see the J/Foundation Developer's Guide.

For descriptions of the sqlj.install_jar, sqlj.replace_jar, or sqlj.remove_jar
procedures, see “SQLJ Driver Built-In Procedures” on page 6-13.

Optimizer Directives
The Optimizer Directives segment specifies keywords that you can use to partially
or fully specify the query plan of the optimizer. Use this segment whenever you
see a reference to Optimizer Directives in a syntax diagram.

Syntax

Optimizer Directives:

--+
{+
/*+

�

,
(1)

Access-Method Directives
(2)

Join-Order Directive
(3)

Join-Method Directives
(4)

Optimization-Goal Directives
(5)

Explain-Mode Directives

}
*/

Notes:

1 See “Access-Method Directives” on page 5-37

2 See “Join-Order Directive” on page 5-39

3 See “Join-Method Directives” on page 5-40

4 See “Optimization-Goal Directives” on page 5-42

5 See “Explain-Mode Directives” on page 5-43

Usage

Use one or more optimizer directives to partially or fully specify the query plan of
the optimizer. The scope of the directive is the current query only.

Directives are enabled by default. To obtain information about how specified
directives are processed, view the output of the SET EXPLAIN statement. To
disable directives, set the IFX_DIRECTIVES environment variable to 0, or set the
DIRECTIVES parameter in the ONCONFIG file to 0.

The syntax diagram above is simplified, and does not show that the closing
comment indicator must follow the same comment style as the opening comment
indicator. For more information, see “Optimizer Directives as Comments” on page
5-36.

Chapter 5. Other Syntax Segments 5-35

Optimizer Directives as Comments
Optimizer directives require valid comment indicators as delimiters.

The closing delimiter you use depends on the opening delimiter:
v If { is the opening delimiter, you must use } as the closing delimiter.
v If /* are the opening delimiters, you must use */ as the closing delimiters.
v If -- are the opening delimiters, then no closing delimiter is needed.

An optimizer directive or a list of optimizer directives immediately follows the
DELETE, SELECT, or UPDATE keyword in the form of a comment. After the
comment symbol, the first character in an optimizer directive is always a plus (+)
sign. No blank space or other white-space character is allowed between the
comment indicator and the plus sign.

You can use any of the following comment indicators:
v A double hyphen (--) delimiter

The double hyphen needs no closing symbol because it specifies only the
remainder of the current line as comment. When you use this style, include the
optimizer directive on only the current line.

v Braces ({ . . . }) delimiters
The comment extends from the left brace ({) until the next right (}) brace; this
can be in the same line or in some subsequent line.

v C-language style slash and asterisk (/* . . . */) delimiters
The comment extends from the initial slash-asterisk (/*) pair until the next
asterisk-slash (*/) characters in the same line or in some subsequent line.
In Informix ESQL/C, the -keepccomment command option to the esql compiler
must be specified when you use C-style comments.

For additional information, see “How to Enter SQL Comments” on page 1-3.

If you specify multiple directives in the same query, you must separate them with
a blank space, a comma, or by any character that you choose. It is recommended
that you separate successive directives with a comma.

If the query declares an alias for a table, use the alias (rather than the actual table
name) in the optimizer directive specification. Because system-generated index
names begin with a blank character, use quotation marks to delimit such names.

Syntax errors in an optimizer directive do not cause a valid query to fail. You can
use the SET EXPLAIN statement to obtain information related to such errors.

In distributed queries, optimizer directives can reference objects in other databases
of the same server instance by using the database:table or database:owner.table
notation to qualify the name of a table in another database of the local database
server.

Restrictions on Optimizer Directives
You can specify optimizer directives for any query in a DELETE, SELECT, or
UPDATE statement, unless it includes any of the following syntax elements:
v A query accessing a table in a database of a remote database server instance
v In Informix ESQL/C, a statement with the WHERE CURRENT OF cursor clause

5-36 IBM Informix Guide to SQL: Syntax

For queries that use ANSI/ISO-compliant syntax to specify a join, the query
optimizer does not follow some directives:
v The join-method directives (USE_NL, AVOID_NL, USE_HASH, AVOID_HASH,

/BUILD, and /PROBE) are ignored, except in cases where the optimizer rewrites
the query so that it is no longer uses the ANSI/ISO syntax.

v The join-order directive (ORDERED) is ignored in ANSI-compliant joined queries
that specify the RIGHT OUTER JOIN or FULL OUTER JOIN keywords.

Access-Method Directives
Use the access-method directives to specify the manner in which the optimizer
should search the tables.

Access-Method Directives:

�

�

INDEX (Table Reference
,

index
"index"

,

AVOID_INDEX (Table Reference index
AVOID_INDEX_SJ "index"
INDEX_SJ
FULL (Table Reference
AVOID_FULL

)
comments

Table Reference:

alias
synonym
table

Element Description Restrictions Syntax

alias Temporary alternative table name
declared in the FROM clause

If an alias is declared, it must be used
(rather than table or synonym)

“Identifier” on page
5-21

comments Optional text that documents the
directive

Must be outside the parentheses but
inside the comment symbols

Character string

index Index for which to specify the directive Must exist. With AVOID_INDEX,
AVOID_INDEX_SJ, and INDEX_SJ, at
least one index is required

“Identifier” on page
5-21

synonym,
table

Name or synonym of a table to which
the directive applies

Synonym and the table to which it
points must exist

“Identifier” on page
5-21

Use commas or blank spaces to separate elements within the parentheses.

The following table describes each of the access-method directives and indicates
how it affects the query plan of the optimizer.

Chapter 5. Other Syntax Segments 5-37

Keywords Effect Optimizer Action

AVOID_FULL No full-table scan on the listed table The optimizer considers the various indexes it
can scan. If no index exists, the optimizer
performs a full-table scan.

AVOID_INDEX Does not use any of the specified
indexes

The optimizer considers the remaining indexes
and a full-table scan. If all indexes for a table
are specified, optimizer uses a full-table scan to
access the table.

AVOID_INDEX_SJ Does not use an index self-join path
for the specified indexes

The optimizer does not consider the specified
index for scanning the table in an index self-join
path.

FULL Performs a full-table scan Even if an index exists on a column, the
optimizer uses a full-table scan to access the
table.

INDEX Uses the index specified to access
the table

If more than one index is specified, the
optimizer chooses the index that yields the least
cost. If no indexes are specified, then all the
available indexes are considered.

INDEX_SJ Use the specified index to scan the
table in an index self-join path.

The optimizer is forced to scan the table using
an index self-join path with the specified index
(or to choose the least costly index in a list of
indexes for an index self-join path).

Both the AVOID_FULL and INDEX keywords specify that the optimizer should
avoid a full scan of a table. It is recommended, however, that you use the
AVOID_FULL keyword to specify the intent to avoid a full scan on the table.

Combinations of access method directives

In general, you can specify only one access-method directive per table. Only the
following combinations of access-method directives are valid for the same table in
the same query:
v INDEX, AVOID_INDEX_SJ
v AVOID_FULL, AVOID_INDEX
v AVOID_FULL, AVOID_INDEX_SJ
v AVOID_INDEX, AVOID_INDEX_SJ
v AVOID_FULL, AVOID_INDEX, AVOID_INDEX_SJ

When you specify both the AVOID_FULL and AVOID_INDEX access-method
directives, the optimizer avoids performing a full scan of the table and it avoids
using the specified index or indexes. This combination of negative directives allows
the optimizer to use indexes that are created after the access-method directives are
specified.

Because the optimizer automatically considers the index self-join path if you
specify the INDEX or AVOID_FULL directive, use the INDEX_SJ directive only to
force an index self-join path using the specified index (or choosing the least costly
index in a comma-separated list of indexes). The INDEX_SJ directive can improve
performance when a multicolumn index includes columns that provide only low
selectivity as index key filters.

Specifying the INDEX_SJ directive circumvents the usual optimizer requirement for
data distribution statistics on the lead keys of the index. This directive causes the

5-38 IBM Informix Guide to SQL: Syntax

optimizer to consider an index self-join path, even if data distribution statistics are
not available for the leading index key columns. In this case, the optimizer only
includes the minimum number of index key columns as lead keys to satisfy the
directive.

For example, if an index is defined on columns c1, c2, c3, c4, and the query
specifies filters on all four of these columns but no data distributions are available
on any column, then specifying INDEX_SJ on this index will result in column c1
being used as the lead key in an index self-join path. If you want the optimizer to
use an index but not to consider the index self-join path, then you must specify an
INDEX or AVOID_FULL directive to choose the index, and you must also specify
an AVOID_INDEX_SJ directive to prevent the optimizer from considering any
other index self-join path.

If AVOID_INDEX_SJ is used together with the INDEX directive, either as an
explicit INDEX directive or as the equivalent AVOID_FULL and AVOID_INDEX
combination, the indexes specified in the AVOID_INDEX_SJ directive must be a
subset of the indexes specified in the INDEX directive. For more information about
the effects of the INDEX_SJ and AVOID_INDEX_SJ directives, see the chapter of
theIBM Informix Performance Guide that describes optimizer directives.

Examples of Access Method Directives

Suppose that you have a table named emp that contains the columns emp_no,
dept_no, and job_no, and for which the following indexes ids_dept_no index is
defined on the dept_no column, and the idx_job_no index is defined on the
job_no column. When you perform a SELECT that includes the emp table in the
FROM clause, you might direct the optimizer to access the table in one of the
following ways:
v Example using a positive directive:

SELECT {+INDEX(emp idx_dept_no)} ...

In the example above, the access-method directive forces the optimizer to
consider an execution path that scans the idx_dept_no index on the dept_no
column.

v Example using negative directives:
SELECT {+AVOID_INDEX(emp idx_loc_no, idx_job_no), AVOID_FULL(emp)} ...

This example includes multiple access-method directives. These directives force a
scan of the idx_dept_no index on the dept_no column by instructing the
optimizer not to scan the idx_loc_no and idx_job_no indexes, and not to
perform a full scan of the emp table. If a new idx_emp_no index, however, is
created for table emp, these directives do not prevent the optimizer from
considering it.

Note also that the term negative directive refers to the string "AVOID_" in an access
method directive, and has nothing to do with the + symbol following the comment
indicator that begins every optimizer directive.
Related concepts

Optimizer directives (Performance Guide)

Join-Order Directive

Use the ORDERED join-order directive to force the optimizer to join tables or
views in the order in which they appear in the FROM clause of the query.

Chapter 5. Other Syntax Segments 5-39

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_554.htm#ids_prf_554

Join-Order Directive:

ORDERED
comments

Element Description Restrictions Syntax

comments Text to document the directive Must appear between comment symbols Character string

For example, the following query forces the database server to join the dept and
job tables and then join the result with the emp table:
SELECT --+ ORDERED

name, title, salary, dname
FROM dept, job, emp WHERE title = ’clerk’ AND loc = ’Palo Alto’
AND emp.dno = dept.dno
AND emp.job= job.job;

Because no predicates occur between the dept table and the job table, this query
forces the database server to construct a Cartesian product.

When your query involves a view, the placement of the ORDERED join-order
directive determines whether you are specifying a partial- or total-join order.
v Specifying partial-join order when you create a view

If you use the ORDERED directive when you create a view, the base tables are
joined contiguously in the order of the view definition.
For all subsequent queries on the view, the database server joins the base tables
contiguously in the order specified in the view definition. When used in a view,
the ORDERED directive does not affect the join order of other tables named in
the FROM clause in a query.

v Specifying total-join order when you query a view
When you specify the ORDERED join-order directive in a query that uses a
view, all tables are joined in the order specified, even those tables that form
views. If a view is included in the query, the base tables are joined contiguously
in the order of the view definition. For examples of ORDERED with views, refer
to your IBM Informix Performance Guide.

Because of ordering requirements for OUTER joins, in ANSI-compliant joined
queries that specify the RIGHT OUTER JOIN or FULL OUTER JOIN keywords, the
ORDERED join-order directive is ignored, but it is listed under Directives Not
Followed in the sqexplain.out file.

Join-Method Directives

Use join-method directives to influence how tables are joined in an
Informix-extension joined query.

Join-Method Directives:

5-40 IBM Informix Guide to SQL: Syntax

�

�

,
(1)

USE_NL (Table Reference
AVOID_NL

,
(1)

AVOID_HASH (Table Reference
USE_HASH /BUILD

/PROBE

)
comments

Notes:

1 See “Access-Method Directives” on page 5-37

Element Description Restrictions Syntax

comments Text to documents the directive Must appear between comment symbols Character string

Use commas or blank spaces to separate the elements within the parentheses.

The following table describes each of the join-method directives.

Keyword
Effect

USE_NL
Uses the specified tables as the inner table in a nested-loop join

If n tables are specified in the FROM clause, then at most (n-1) tables can
be specified in the USE_NL join-method directive.

USE_HASH
Uses a hash join to access the specified table

You can also choose whether the table will be used to create the hash table
or to probe the hash table.

AVOID_NL
Does not use the specified table as inner table in a nested loop join

A table listed with this directive can still participate in a nested loop join
as the outer table.

AVOID_HASH
Does not access the specified table using a hash join

You can optionally use a hash join, but impose restrictions on the role of
the table within the hash join.

A join-method directive takes precedence over the join method forced by the
OPTCOMPIND configuration parameter.

When you specify the USE_HASH or AVOID_HASH directives (to use or avoid a
hash join, respectively), you can also specify the role of each table:
v /BUILD

With the USE_HASH directive, this keyword indicates that the specified table be
used to construct a hash table. With the AVOID_HASH directive, this keyword
indicates that the specified table not be used to construct a hash table.

v /PROBE

Chapter 5. Other Syntax Segments 5-41

With the USE_HASH directive, this keyword indicates that the specified table be
used to probe the hash table. With the AVOID_HASH directive, this keyword
indicates that the specified table not be used to probe the hash table. You can
specify multiple probe tables as long as there is at least one table for which you
do not specify PROBE.

For the optimizer to find an efficient join query plan, you must at least run
UPDATE STATISTICS LOW for every table that is involved in the join, so as to
provide appropriate cost estimates. Otherwise, the optimizer might choose to
broadcast the entire table to all instances, even if the table is large.

If neither the /BUILD nor the /PROBE keyword is specified, the optimizer uses
cost estimates to determine the role of the table.

In this example, the USE_HASH directive forces the optimizer to construct a hash
table on the dept table and consider only the hash table to join dept with the other
tables. Because no other directives are specified, the optimizer can choose the least
expensive join methods for the other joins in the query.
SELECT /*+ USE_HASH (dept /BUILD)

The optimizer must use dept to construct a hash table */
name, title, salary, dname
FROM emp, dept, job WHERE loc = ’Phoenix’

AND emp.dno = dept.dno AND emp.job = job.job;

Join-method optimizer directives that you specify for an ANSI-compliant joined
query are ignored, but they are listed under Directives Not Followed in the
sqexplain.out file.

Optimization-Goal Directives

Use optimization-goal directives to specify the measure that is used to determine
the performance of a query result.

Optimization-Goal Directives:

ALL_ROWS
FIRST_ROWS comments

Element Description Restrictions Syntax

comments Text documenting the directive Must appear between comment symbols Character string

The two optimization-goal directives are:
v FIRST_ROWS

This tells the optimizer to choose a plan that optimizes the process of finding
only the first screenful of rows that satisfies the query. Use this option to
decrease initial response time for queries that use an interactive mode or that
require the return of only a few rows.

v ALL_ROWS
This directive tells the optimizer to choose a plan that optimizes the process of
finding all rows that satisfy the query.
This form of optimization is the default.

5-42 IBM Informix Guide to SQL: Syntax

An optimization-goal directive takes precedence over the OPT_GOAL environment
variable setting and over the OPT_GOAL configuration parameter.

For information about how to set the optimization goal for an entire session, see
the SET OPTIMIZATION statement.

You cannot use an optimization-goal directive in the following contexts:
v In a view definition
v In a subquery

The following query returns the names of the employees who earned the top fifty
bonuses. The optimization-goal directive directs the optimizer to return the first
screenful of rows as fast as possible.
SELECT {+FIRST_ROWS

Return the first screenful of rows as fast as possible}
LIMIT 50 fname, lname FROM employees ORDER BY bonus DESC;

Explain-Mode Directives

Use the explain-mode directives to test and debug query plans and to print
information about the query plan to the sqexplain.out file.

Explain-Mode Directives:

EXPLAIN
AVOID_EXECUTE

,
comments

Element Description Restrictions Syntax

comments Text documenting the directive Must appear between comment symbols Character string

The following table lists the effect of each explain-mode directive.

Keyword
Effect

EXPLAIN
Turns SET EXPLAIN ON for the specified query

AVOID_EXECUTE
Prevents the data manipulation statement from executing; instead, the
query plan is printed to the sqexplain.out file

The EXPLAIN directive is primarily useful for testing and debugging query plans.
It is redundant when SET EXPLAIN ON is already in effect. It is not valid in a
view definition or in a subquery.

The next query executes and prints the query plan to the sqexplain.out file:
SELECT {+EXPLAIN}

c.customer_num, c.lname, o.order_date
FROM customer c, orders o WHERE c.customer_num = o.customer_num;

The AVOID_EXECUTE directive prevents execution of a query on either the local
or remote site, if a remote table is part of the query. This directive does not prevent
nonvariant functions in a query from being evaluated.

Chapter 5. Other Syntax Segments 5-43

The next query does returns no data, but writes its query plan to file
sqexplain.out:
SELECT {+EXPLAIN, AVOID_EXECUTE} c.customer_num, c.lname, o.order_date

FROM customer c, orders o WHERE c.customer_num = o.customer_num;

You must use both the EXPLAIN and AVOID_EXECUTE directives to see the
query plan of the optimizer (in the sqexplain.out file) without executing the query.
The comma (,) separating these two directives is optional.

If you omit the EXPLAIN directive when you specify the AVOID_EXECUTE
directive, no error is issued, but no query plan is written to the sqexplain.out file
and no DML statement is executed.

You cannot use the explain-mode directives in the following contexts:
v In a view definition
v In a trigger
v In a subquery

They are valid, however, in a SELECT statement within an INSERT statement.

External Directives
You can use the SAVE EXTERNAL DIRECTIVES statement to store optimizer
directives in the sysdirectives table of the system catalog. Informix applies these
external directives automatically to subsequent queries and subqueries that match
a specified SELECT statement.

The EXT_DIRECTIVES configuration parameter and the IFX_EXTDIRECTIVES
environment variable can be set to control whether external directives are enabled
or disabled for the database server instance or for the session. Setting either of
these to zero disables external directives; setting both to 1 enables external
directives.

You can also use the EXTDIRECTIVES option of the SET ENVIRONMENT
statement to enable or disable external directives during a session. For more
information, see “Enabling or disabling external directives for a session” on page
2-531.

Related Information

For information about the sqexplain.out file, see SET EXPLAIN.

For information about how to create optimizer directives that the database server
stores in the sysdirectives system catalog table for use with subsequent queries,
see SAVE EXTERNAL DIRECTIVES.

For information about how to set optimization settings for an entire session, see
the description of SET OPTIMIZATION.

For a discussion about optimizer directives and performance, see your IBM
Informix Performance Guide.

For descriptions of the IFX_DIRECTIVES and IFX_EXTDIRECTIVES environment
variables, see the IBM Informix Guide to SQL: Reference.

5-44 IBM Informix Guide to SQL: Syntax

For information on the DIRECTIVES and EXT_DIRECTIVES parameters in the
onconfig file, see your IBM Informix Administrator's Reference.
Related reference

List of Environment Variables (SQL Reference)

Owner Name

The owner name specifies the owner of a database object. Use this segment
whenever you see a reference to Owner Name in a syntax diagram.

Syntax

Owner Name:

"owner"
owner
(1)

'owner'

Notes:

1 Informix extension

Element Description Restrictions Syntax

owner User name of the owner of an
object in a database

Maximum length is 32 bytes Must conform to the rules of your
operating system.

Usage

In an ANSI-compliant database, you must specify the owner of any database object
that you do not own. In reference to the owner of database objects, the ANSI/ISO
synonym for owner name is authorization identifier. (In reference to schema objects,
however, the ANSI/ISO term for what the Informix documentation calls an owner
name is schema name.)

In databases that are not ANSI-compliant, the owner name is optional. You do not
need to specify owner when you create database objects or use data access
statements. If you do not specify owner when you create a database object, the
database server assigns your login name as the owner of the object, in most cases.
For exceptions to this rule, see “Ownership of Created Database Objects” on page
2-133 in CREATE FUNCTION and “Ownership of Created Database Objects” on
page 2-170 in CREATE PROCEDURE. When a DDL statement in an
owner-privileged UDR creates a new database object, the owner of the routine
(rather than the user who executes it, if that user is not the owner of the routine)
becomes the owner of the new database object.

If you specify owner in data-access statements, the database server checks it for
correctness. Without quotation marks, owner is case insensitive. The following four
queries all can access data from the table kaths.tab1:
SELECT * FROM tab1;
SELECT * FROM kaths.tab1;
SELECT * FROM KATHS.tab1;
SELECT * FROM Kaths.tab1;

Chapter 5. Other Syntax Segments 5-45

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.sqlr.doc/ids_sqr_198.htm#ids_sqr_198

In an ANSI-compliant database, only the owner of the table, user kaths, can issue
the first of these example queries, which specifies an unqualified table name, but
any user who holds the Select privilege on tab1 can issue that query in a database
that is not ANSI-compliant. For more information about owner names in
ANSI-compliant databases, see “ANSI-Compliant Database Restrictions and Case
Sensitivity” on page 5-47.

A role that the CREATE ROLE statement declares is an authorization identifier, and
is therefore subject to the syntax restrictions on owner names, but a role cannot be
the owner of a database object. Similarly, the keyword PUBLIC, which specifies the
group of all users, cannot be the owner of a database object, except in the special
cases of the sysdbopen() and sysdbclose() procedures. For more information
about these built-in session configuration UDRs, see “IFX_REPLACE_MODULE
Function” on page 6-10.

Using Quotation Marks
Within quotation marks, owner is case sensitive. Quotation marks instruct the
database server to read or store the name exactly as typed when you create or
access a database object. For example, suppose that you have a table whose owner
is Sam. You can use either one of the following two statements to access data in the
table:
SELECT * FROM table1;
SELECT * FROM ’Sam’.table1;

The first query succeeds because the owner name is not required. The second
query succeeds because the specified owner name matches the owner name as it is
stored in the database.

Referencing Tables Owned by User informix
If you use the owner name as one of the selection criteria to access database object
information from one of the system catalog tables, the owner name is case
sensitive. To preserve lettercase, you must enclose owner in single or double
quotation marks, and you must type the owner name exactly as it is stored in the
system catalog table. Of the following two examples, only the second successfully
accesses information on the table Kaths.table1.
SELECT * FROM systables WHERE tabname = ’tab1’ AND owner = ’kaths’;
SELECT * FROM systables WHERE tabname = ’tab1’ AND owner = ’Kaths’;

User informix is the owner of the system catalog tables, and in an ANSI-compliant
database you must specify informix as a qualifier when SQL statements reference
system catalog tables, unless you are user informix:
SELECT * FROM "informix".systables WHERE tabname = ’tab1’ AND owner = ’Kaths’;

Informix accepts any of the following notations to specify a system catalog table of
an ANSI-compliant database:
v "informix".system_table

v informix.system_table

v ’informix’.system_table

Of these three formats, however, only the first, where the owner is specified as a
delimited identifier, is directly interoperable with most other database servers. For
the format with no delimiters, the ANSI/ISO standard for SQL upshifts the
lowercase letters to INFORMIX, and the same standard does not support single (')
quotation marks as valid delimiters for owner names or for schema names.

5-46 IBM Informix Guide to SQL: Syntax

In contrast, Informix treats the name informix as a special case, and preserves
lowercase letters when informix is specified, with or without delimiters, whether
or not the database is ANSI-compliant. To write SQL code that is portable to
non-Informix database servers, however, you should always delimit the owner
names of database objects between double (") quotation marks.

The following SQL examples use undelimited owner names:
CREATE TABLE informix.t1(i SERIAL NOT NULL);
CREATE TABLE someone.t1(i SERIAL NOT NULL);

If these statements execute successfully, the first table has informix registered in
systables as the owner, and the second has SOMEONE registered as the owner. When
the owner name is delimited by quotation marks in SQL statements, the specified
lettercase of owner is preserved, but the lettercase does not matter when the owner
name is undelimited, because Informix upshifts most undelimited owner names,
but downshifts the undelimited informix (or INFORMIX) owner name to
informix.

For example, suppose that after the previous two CREATE TABLE statements
execute successfully, user informix issues the following statement:
CREATE TABLE INFORMIX.t1(i SERIAL NOT NULL);

This statement fails, because the combination of owner name and table name is not
unique, if the previously registered table t1 that is owned by informix already
exists in the database.

Tip: The USER operator returns the login name of the current user exactly as it is
stored on the system. If the owner name is stored differently from the login name
(for example, a mixed-case owner name and an all lowercase login name), the
owner = USER syntax fails.

ANSI-Compliant Database Restrictions and Case Sensitivity

The following table describes how the database server reads and stores owner when
you create, rename, or access a database object.

Owner Name
Specification What the ANSI-Compliant Database Server Does

Omitted Reads or stores owner exactly as the login name is stored in the
system, but returns an error if the user is not the owner.

Specified without
quotation marks

Reads or stores owner in uppercase letters

Enclosed between
quotation marks

Reads or stores owner exactly as entered. See also “Using Quotation
Marks” on page 5-46 and “Referencing Tables Owned by User
informix” on page 5-46.

If you specify the owner name when you create or rename a database object in an
ANSI-compliant database, you must include the owner name in data access
statements. You must include the owner name when you access a database object
that you do not own.

Chapter 5. Other Syntax Segments 5-47

Because the database server automatically shifts owner to uppercase letters if not
between quotation marks, case-sensitive errors can cause queries to fail. For
example, if you are user nancy and you use the following statement, the resulting
view has the name nancy.njcust:
CREATE VIEW ’nancy’.njcust AS

SELECT fname, lname FROM customer WHERE state = ’NJ’;

The following SELECT statement fails because it tries to match the name
NANCY.njcust to the actual owner and table name of nancy.njcust:
SELECT * FROM nancy.njcust;

In an Informix distributed query, if the owner name is not between quotation
marks, the remote database follows the lettercase convention of the local database.
If the local database is ANSI-compliant, then the remote database processes the
owner name in uppercase. If the local database is not ANSI compliant, then the
remote database processes the owner name in lowercase.

Tip: When you use the owner name as one of the selection criteria in a query (for
example, WHERE owner = ’kaths’), make sure that the quoted string matches the
owner name exactly as it is stored in the database. If the database server cannot
find the database object or database, you might need to modify the query so that
the quoted string uses uppercase letters (for example, WHERE owner = ’KATHS’).

Because owner name is an authorization identifier, rather than an SQL identifier,
you can enclose owner between single-quotation marks (') in SQL statements of a
database where the DELIMIDENT environment variable specifies support for
delimited identifiers, thereby requiring double-quotation marks (") around SQL
identifiers.

Setting ANSIOWNER for an ANSI-Compliant Database

The default behavior of an ANSI-compliant database is to replace any lowercase
letters with uppercase letters in any owner specification that is not enclosed in
quotation marks. You can prevent this by setting the ANSIOWNER environment
variable to 1 before the database server is initialized. This preserves whatever
lettercase you use when you specify the owner string without quotation marks.

Default Owner Names
If you create a database object without explicitly specifying an owner name in a
database that is not ANSI-compliant, your authorization identifier (as the default
owner of the object) is stored in the system catalog of the database as if you had
specified your authorization identifier within quotation marks (that is, preserving
the lettercase).

If you create a database object without explicitly specifying an owner name in a
database that is ANSI-compliant, any lowercase letters in your authorization
identifier (as the default owner of the object) are stored in the system catalog of the
database in uppercase characters, unless the ANSIOWNER environment variable
was set to 1 before the database server was initialized. If ANSIOWNER was set to
1, however, the database stores the default owner of the object as your
authorization identifier, with its lettercase preserved.

5-48 IBM Informix Guide to SQL: Syntax

Summary of Lettercase Rules for Owner Names
To create a database object, such as a table called mytab, a user whose login name
is Otho can declare the name of the new database object in any of the following
ways:
1. CREATE TABLE mytab . . .

2. CREATE TABLE Otho.mytab . . .

3. CREATE TABLE "Otho".mytab . . .

The format in which an undelimited owner name (as in the second example) is
stored in the owner column of the systables system catalog table is dependent on
whether or not the local database is an ANSI-compliant database.
v In case 1, no owner name is specified. The implicit owner of the table is Otho,

the user who created the table, and that owner name is stored in the systables
table in the same format (Otho) as the user ID of the owner, independent of the
ANSI-compliance status of the database.

v In case 2, an undelimited owner name is specified. The systables table stores all
letters in the owner name in lowercase (here as otho) for databases that are not
ANSI-compliant databases. For ANSI-compliant databases in which
ANSIOWNER is not set to 1, systables table stores all owner name letters in
uppercase (here as OTHO). If ANSIOWNER is set to 1, however, the name is
stored in the same lettercase as specified in the DDL statement (here as Otho).

v In case 3, the delimited owner name is stored in the systables table in the same
format in which it was specified (here as Otho), independent of the
ANSI-compliance status of the database.

Note that user identifiers are case sensitive, but database object names are case
insensitive. Therefore, the same user cannot own both a table tab and a table TAB.

In addition to the CREATE TABLE statement in these examples, all SQL statements
and SPL statements follow these rules where a table name can be specified. For
example, when using DROP TABLE, the format in which owner name appears
while the statement is being processed is dependent upon the same conditions:
v whether an explicit owner name is specified.
v if an explicit owner name is specified, whether quotation marks delimit the

owner name.
v if an explicit owner name is not delimited by quotation marks, whether or not

the database is ANSI compliant.
v if the database is ANSI compliant, whether or not ANSIOWNER was set to 1

before the database was initialized.

Purpose Options

The CREATE ACCESS_METHOD, CREATE XADATASOURCE TYPE, and ALTER
ACCESS_METHOD statements of Informix can specify purpose options for
user-defined routines with the following syntax.

Chapter 5. Other Syntax Segments 5-49

Syntax

Purpose Options:

task = external_routine
value = string_value

numeric_value
flag

Element Description Restrictions Syntax

external
_routine

User-defined routine that
performs a task

Must be registered in the database “Database Object Name”
on page 5-16

flag Keyword indicating which
feature a flag enables

The interface specifies flag names Flag Purpose Category in
the table in “Purpose
Functions, Methods, Flags,
and Values” on page 5-51.

numeric
_value

A value of a real number Must be within the range of a numeric data
type

“Literal Number” on page
4-184

string
_value

A value that is expressed as
one or more characters

Characters must be from the code set of the
database

“Quoted String” on page
4-188.

task Keyword that identifies a
purpose function

Keywords to which you can assign a
function (whose name cannot match the
keyword)

Task Purpose Category in
the table in “Purpose
Functions, Methods, Flags,
and Values” on page 5-51.

value Keyword that identifies
configuration information

Predefined configuration keywords to
which you can assign values

Value Purpose Category in
the table in “Purpose
Functions, Methods, Flags,
and Values” on page 5-51.

Usage

Informix supports purpose options in two contexts:
v Defining or modifying primary and secondary access methods for local or

remote tables, views, and indexes
v Defining access methods for XA-compliant external data sources.

Purpose Options for Access Methods

A registered access method is a set of attributes, including a name and options
called purpose options, that you can use to accomplish the following tasks:
v Specify which functions perform data access and manipulation tasks, such as

opening, reading, and closing a data source.
v Set configuration options, such as a storage-space type.
v Set flags, such as enabling rowid interpretation.

You specify purpose options when you create an access method with the CREATE
ACCESS_METHOD statement. To change the purpose options of an access method,
use the ALTER ACCESS_METHOD statement.

Each task, value, or flag keyword corresponds to a column name in the sysams
system catalog table. The keywords let you set the following attributes:
v Purpose function

5-50 IBM Informix Guide to SQL: Syntax

A purpose-function attribute maps the name of a user-defined function or method
to a task keyword, such as am_create, am_beginscan, or am_getnext. For a
complete list of these keywords, see the “Task” category in the table in “Purpose
Functions, Methods, Flags, and Values.” The external_routine specifies the
corresponding function (C) that you supply for the access method. Example
setting:
am_create = FS_create

v Purpose flag
A purpose flag indicates whether an access method supports a given SQL
statement or keyword. Example setting:
am_rowids

v Purpose value
These string, character, or numeric values provide configuration information that
a flag cannot supply. Example setting:
am_sptype = ’X’

To enable a user-defined function or method as a purpose function, you must first
register the C function or Java method that performs the appropriate tasks, using
the CREATE FUNCTION statement, and then set the purpose keyword equal to
the registered function or method name. This creates a new access method. An
example on page “Example” on page 2-6 adds a purpose method to an existing
access method.

To enable a purpose flag, specify the name without a corresponding value.

To clear a purpose-option setting in the sysams table, use the DROP clause of the
ALTER ACCESS_METHOD statement.

Purpose Functions, Methods, Flags, and Values

The following table describes the possible settings for the sysams columns that
contain purpose functions or methods, flags, and values. The entries appear in the
same order as the corresponding sysams columns.

Keyword Explanation Category Default

am_sptype A character that specifies from what type of storage space a primary
or secondary-access method can access data. The am_sptype
character can have any of the following settings:

v 'X' indicates the method accesses only extspaces.

v 'S ' indicates the method accesses only sbspaces.

v 'A' indicates the method can access extspaces and sbspaces.

Valid only for a new access method. You cannot change or add an
am_sptype value with ALTER ACCESS_METHOD. Do not set
am_sptype to 'D' or attempt to store a virtual table in a dbspace.

Value Virtual-
Table
Interface
(C): 'A'

am_defopclass The default operator class for a secondary-access method. The access
method must exist before you can define its operator class, so you
set this value in the ALTER ACCESS_METHOD statement.

Value None

am_keyscan A flag that, if set, indicates that am_getnext returns rows of index
keys for a secondary-access method. If a query selects only the
columns in the index key, the database server uses the row of index
keys that the secondary-access method puts in shared memory,
without reading the table.

Flag Not set

Chapter 5. Other Syntax Segments 5-51

Keyword Explanation Category Default

am_unique A flag to set if a secondary-access method checks for unique keys Flag Not set

am_cluster A flag that you set if a primary- or secondary-access method
supports clustering of tables

Flag Not set

am_rowids A flag that you set if a primary-access method can retrieve a row
from a specified address

Flag Not set

am_readwrite A flag to set if a primary-access method supports data changes. The
default setting, not set, indicates that the virtual data is read-only.
For the C Virtual-Table Interface, set this flag if your application will
write data, to avoid the following problems:

v An INSERT, DELETE, UPDATE, or ALTER FRAGMENT statement
causes an SQL error.

v Function am_insert, am_delete, or am_update is not executed.

Flag Not set

am_parallel A flag that the database server sets to indicate which purpose
functions or methods can execute in parallel in a primary or
secondary-access method. If set, the hexadecimal am_parallel bitmap
contains one or more of the following bit settings:

v The 1 bit is set for parallelizable scan.

v The 2 bit is set for parallelizable delete.

v The 4 bit is set for parallelizable update.

v The 8 bit is set for parallelizable insert.

Insertions, deletions, and updates are not supported in the Java
Virtual-Table Interface.

Flag Not set

am_costfactor A value by which the database server multiplies the cost that the
am_scancost purpose function or method returns for a primary or
secondary-access method. An am_costfactor value from 0.1 to 0.9
reduces the cost to a fraction of the value that am_scancost
calculates. An am_costfactor value of 1.1 or greater increases the
am_scancost value.

Value 1.0

am_create A keyword that you associate with a user-defined function or
method (UDR) name that creates a virtual table or virtual index

Task None

am_drop A keyword that you associate with the name of a UDR that drops a
virtual table or virtual index

Task None

am_open A keyword that you associate with the name of a UDR that makes a
fragment, extspace, or sbspace available

Task None

am_close A keyword that you associate with the name of a UDR that reverses
the initialization that am_open performs

Task None

am_insert A keyword that you associate with the name of a UDR that inserts a
row or an index entry

Task None

am_delete A keyword that you associate with the name of a UDR that deletes a
row or an index entry

Task None

am_update A keyword that you associate with the name of a UDR that changes
the values in a row or key

Task None

am_stats A keyword that you associate with the name of a UDR that builds
statistics based on the distribution of values in storage spaces

Task None

am_scancost A keyword that you associate with the name of a UDR that
calculates the cost of qualifying and retrieving data

Task None

am_check A keyword that you associate with the name of a UDR that tests the
physical structure of a table or performs an integrity check on an
index

Task None

5-52 IBM Informix Guide to SQL: Syntax

Keyword Explanation Category Default

am_beginscan A keyword that you associate with the name of a UDR that sets up a
scan

Task None

am_endscan A keyword that you associate with the name of a UDR that reverses
the setup that am_beginscan initializes

Task None

am_rescan A keyword that you associate with the name of a UDR that scans for
the next item from a previous scan to complete a join or subquery

Task None

am_getnext A keyword that you associate with the name of the required UDR
that scans for the next item that satisfies a query

Task None

am_getbyid A keyword that you associate with the name of a UDR that fetches
data from a specific physical address; am_getbyid is available only
for primary-access methods

Task None

am_truncate A keyword that you associate with the name of a UDR that deletes
all rows of a virtual table (primary-access method) or that deletes all
corresponding keys in a virtual index (secondary-access method)

Task None

The following rules apply to the purpose-option specifications in the CREATE
ACCESS_METHOD and ALTER ACCESS_METHOD statements:
v To specify multiple purpose options in one statement, separate them with

commas.
v The CREATE ACCESS_METHOD statement must specify a user-defined function

or method name that corresponds to the am_getnext keyword.
The ALTER ACCESS_METHOD statement cannot drop the function or method
name that corresponds to am_getnext but can modify it.

v The ALTER ACCESS_METHOD statement cannot add, drop, or modify the
am_sptype value.

v You can specify the am_defopclass value only with the ALTER
ACCESS_METHOD statement.
You must first register a secondary-access method with the CREATE
ACCESS_METHOD statement before you can assign a default operator class.

Purpose Options for XA Data Source Types

The CREATE XADATASOURCE TYPE statement specifies purpose functions that
provide access to data from external data sources that comply with the X/Open
XA standards. These functions also enable external data to be processed in
accordance with the transactional semantics of Informix. Only databases that use
transaction logging, such as ANSI-compliant databases and Informix databases that
support explicit transactions, can support transaction coordination.

The following statement creates a new XA data source type called MQSeries,
owned by user informix.
CREATE XADATASOURCE TYPE ’informix’.MQSeries(

xa_flags = 1,
xa_version = 0,
xa_open = informix.mqseries_open,
xa_close = informix.mqseries_close,
xa_start = informix.mqseries_start,
xa_end = informix.mqseries_end,
xa_rollback = informix.mqseries_rollback,
xa_prepare = informix.mqseries_prepare,
xa_commit = informix.mqseries_commit,

Chapter 5. Other Syntax Segments 5-53

xa_recover = informix.mqseries_recover,
xa_forget = informix.mqseries_forget,

xa_complete = informix.mqseries_complete);

These values represent the fields in the XA Switch Structure, as listed in the file
$INFORMIXDIR/incl/public/xa.h. The order of specifications in this example
follows the order of column names in the sysxasourcetypes system catalog table,
but they can be listed in any order, provided that no item is repeated. The xa_flags
and xa_version values must be numbers; the rest must be names of UDRs that the
Transaction Manager can invoke. These UDRs must already exist in the database
before you can issue a CREATE XADATASOURCE TYPE statement that references
them among its purpose option specifications.

The DROP FUNCTION or DROP ROUTINE statement cannot drop a UDR that is
listed among the purpose options of a CREATE XADATASOURCE TYPE statement
until all of the XA datasource types that were defined using the UDR are dropped.

For information about how to use the UDRs in the previous example to coordinate
transactions with external XA data sources, see the IBM Informix DataBlade API
Programmer's Guide.

For information about the MQDataBlade module, see the IBM Informix Database
Extensions User's Guide.

Related Information

Related statements: “ALTER ACCESS_METHOD statement” on page 2-5, “CREATE
ACCESS_METHOD statement” on page 2-90, “CREATE OPCLASS statement” on
page 2-158, and “CREATE XADATASOURCE TYPE statement” on page 2-284

For the following topics, see the IBM Informix Virtual-Table Interface Programmer's
Guide (for C):
v Managing storage spaces, executing in parallel, and calculating statement costs
v Registering the access method and purpose functions
v Purpose-function reference

For the following topics, see the IBM Informix Virtual-Index Interface Programmer's
Guide (for C):
v Managing storage spaces, executing in parallel, calculating statement costs,

bypassing table scans, and enforcing unique-index constraints
v Registering the access method and purpose functions
v Purpose-function reference

Return Clause

The Return clause specifies the data type of a value or values that a user-defined
function returns. You can use this segment in UDR definitions.

Syntax

Return Clause:

5-54 IBM Informix Guide to SQL: Syntax

RETURNING
RETURNS

�

(1)
Subset of SQL Data Types

REFERENCES BYTE AS parameter
TEXT

,
(2) (1)

Subset of SQL Data Types
REFERENCES BYTE AS parameter

TEXT

Notes:

1 See “Subset of SQL Data Types”

2 Stored Procedure Language only

Element Description Restrictions Syntax

parameter Name that you declare here for a
returned parameter of the UDR

Must be unique among returned parameter names
of the UDR. If any returned value of the UDR
has a name, then all must have names.

“Identifier”
on page 5-21

Usage

For compatibility with earlier Informix releases, you can create SPL functions with
the CREATE PROCEDURE statement. (That is, you can include a Return clause in
CREATE PROCEDURE statements.) Use CREATE FUNCTION, however, to create
new SPL routines that return one or more values.

After the Return clause has indicated what data types are to be returned, you can
use the RETURN statement of SPL at any point in the statement block to return
SPL variables that correspond to the values in the Return clause.

Limits on Returned Values
An SPL function can specify more than one data type in the Return clause.

An external function (a function written in the C or the Java language) can specify
only one data type in the Return clause, but an external function can return more
than one row of data if it is an iterator function. For more information, see
“ITERATOR” on page 5-63.

Subset of SQL Data Types

Not all data types are valid in the Return clause. For more information, see the
table that follows. See also “Data Type” on page 4-21.

In Informix, a UDF can return values of any built-in data type except the complex,
serial, and large object types that are not blank in the following table.

Data Type C Java SPL

BIGSERIAL X X X

BLOB X X

CLOB X X

BYTE X X X

TEXT X X X

Chapter 5. Other Syntax Segments 5-55

Data Type C Java SPL

COLLECTION X

LIST X

MULTISET X

ROW X

SET X

SERIAL X X X

SERIAL8 X X X

In Informix, if you use a complex data type in the Return clause, the calling
user-defined routine must define variables of the appropriate complex types to
hold the values that the C or SPL user-defined function returns.

User-defined functions can return a value of opaque or distinct data types that are
defined in the database.

The default precision of a DECIMAL value that an SPL function returns is 16
digits. For a function to return a DECIMAL with a different number of significant
digits, you must specify the returned precision explicitly in the data type
specification of the Return clause.

Using the REFERENCES Clause to Point to a Simple Large
Object

A user-defined function cannot return a BYTE or TEXT value (collectively called
simple large objects) directly. A user-defined function can, however, use the
REFERENCES keyword to return a descriptor that contains a pointer to a BYTE or
TEXT object. The following example shows how to select a TEXT column within an
SPL routine and then return the value:
CREATE FUNCTION sel_text()

RETURNING REFERENCES text;
DEFINE blob_var REFERENCES text;
SELECT blob_col INTO blob_var

FROM blob_table WHERE key_col = 10;
RETURN blob_var;

END FUNCTION;

For simple large objects that are column values from the Projection list of a query,
as in this example, the pointer in the returned descriptor references the
sysblobs.spacename value from the system catalog, based on the BYTE or TEXT
column definition.

For simple large objects that do not correspond to columns of permanent tables,
however, the pointer references the dbspace of the database in which the UDR is
defined. This is the default storage location for a BYTE or TEXT object that a UDR
returns, when no location from the sysblobs table is known to the database server.

The DB-Access session in the following example creates two routines, udr1 and
udr2, that each return the descriptor of a TEXT object:
CREATE DATABASE db WITH LOG;

CREATE TABLE t (c2 TEXT);
CREATE TABLE t1 (c2 TEXT);
LOAD FROM "t.unl" INSERT INTO t;

5-56 IBM Informix Guide to SQL: Syntax

|
|
|
|

|
|
|
|

CREATE FUNCTION udr1 (param_1
REFERENCES TEXT DEFAULT NULL)
RETURNING REFERENCES TEXT

WITH (NOT VARIANT)
DEFINE var1 REFERENCES TEXT;
ON EXCEPTION

RETURN param_1;
END EXCEPTION;
SELECT t.c2 udr1_col1

INTO var1 FROM t;
RETURN var1;

END FUNCTION;

CREATE PROCEDURE udr2 (OUT param_1
REFERENCES TEXT DEFAULT NULL)

RETURNING INT;
SELECT t.c2 udr1_col1

INTO param_1 FROM t;
RETURN 1;

END PROCEDURE;

SELECT udr1(t.c2) query_1_col1 FROM t
INTO TEMP mytemp;

SELECT c2, slv1 FROM t1
WHERE udr2(slv1#TEXT) > 0
INTO TEMP mytemp;

In the SELECT statements that call these UDRs, the TEXT object that each query
returns to the mytemp temporary table are stored in the dbspace of the db
database.

Returning a Value from Another Database
For UDRs that access tables or views outside the local database, only the following
data types are valid as return values:

��

�

built-in_non-opaque
(1)

opaque_UDT
BLOB
CLOB

BOOLEAN
(2048)

LVARCHAR (max)
DISTINCT OF BOOLEAN

(2048)
LVARCHAR (max)
built-in_non-opaque

DISTINCT OF

��

Notes:

1 Not valid in cross-server operations

Element Description Restrictions Syntax

built-in _
non-opaque

Name of a built-in data type that is
not opaque

Cannot be BIGSERIAL, BYTE, SERIAL,
SERIAL8, or TEXT

“Data Type” on page
4-21

max Maximum size in bytes. Default is
2048.

Must be an integer, where 1 ≤ max ≤
32,739

“Literal Number” on
page 4-184

Chapter 5. Other Syntax Segments 5-57

Element Description Restrictions Syntax

opaque_UDT Name of a user-defined opaque data
type

Must be cast explicitly to a built-in type
by a cast defined in every participating
database

“Identifier” on page
5-21

If the Return clause to return a value (or multiple values, in the case of an SPL
function) from another database of the local Informix instance, the following data
types are supported as the returned data type:
v Built-in data types that are not opaque
v Most of the built-in opaque data types, as listed in “Data Types in Cross-Database

Transactions” on page 2-544
v Any DISTINCT type based on one of the built-in types that are identified in this

list
v Any DISTINCT type based on one of the DISTINCT types in this list
v Any user-defined type (UDT) that is cast explicitly to one of the data types in

this list.

The UDF and all of the DISTINCT types, opaque UDTs, data type hierarchies, and
casts must have exactly the same definitions in each of the participating databases.
The same data-type restrictions apply to a value that an external function returns
from another database of the local Informix instance. For more information about
data types that are supported in distributed operations across two or more
databases of the same database server, see “Data Types in Cross-Database
Transactions” on page 2-544. For the data type hierarchies that are valid for
DISTINCT data types in distributed transactions, see “DISTINCT Types in
Distributed Operations” on page 4-33.

From databases of other Informix instances, however, UDFs can specify only the
following as a parameter or as a returned data type:
v Built-in data types that are not opaque
v BOOLEAN
v LVARCHAR
v DISTINCT of built-in types that are not opaque
v DISTINCT of BOOLEAN
v DISTINCT of LVARCHAR
v DISTINCT of the DISTINCT types in this list.

The definitions of the UDF and of any data type hierarchies, casts, and DISTINCT
types must be exactly the same in each of the participating databases. Except for
the BOOLEAN, DISTINCT, and LVARCHAR data types that are identified in the
previous list, UDFs cannot return any other built-in opaque data type or opaque
UDTs in cross-server function calls.

For more information about data types that are supported in distributed operations
across two or more Informix instances, see “Data Types in Cross-Server
Transactions” on page 2-545. For the data type hierarchies that are valid for
DISTINCT data types in distributed transactions, see “DISTINCT Types in
Distributed Operations” on page 4-33.

Named Return Parameters
You can declare names for the returned parameters of an SPL routine, or a name
for the single value that an external function can return.

5-58 IBM Informix Guide to SQL: Syntax

If an SPL routine returns more than one value, you must either declare names for
all of the returned parameters, or else none of them can have names. The names
must be unique. Here is an example of named parameters:
CREATE PROCEDURE p (inval INT DEFAULT 0)
RETURNING INT AS serial_num,

CHAR(10) AS name,
INT AS points;

RETURN (inval + 1002), “Newton”, 100;
END PROCEDURE;

Executing this UDR would return:
serial_num name points
1002 Newton 100

There is no relationship between the names of returned parameters and the names
of any variables in the body of the routine. For example, you can define a function
to return an INTEGER as xval, but in the body of the same function, a variable
declared as xval could be of the data type INTERVAL YEAR TO MONTH.

Cursor and Noncursor Functions

A cursor function can fetch returned values one by one by iterating the generated
result set of returned values. Such a function is an implicitly iterated function.

A function that returns only one set of values (such as one or more columns from a
single row of a table) is a noncursor function.

The Return clause is valid in a cursor function or in a noncursor function. In the
following example, the Return clause can return zero (0) or one value in a
noncursor function. In a cursor function, however, it returns more than one row
from a table, and each returned row contains zero or one value:
RETURNING INT;

In the following example, the Return clause can return zero (0) or two values if it
occurs in a noncursor function. In a cursor function, however, it returns more than
one row from a table, and each returned row contains zero or two values:
RETURNING INT, INT;

In both of the preceding examples, the receiving function or program must be
written appropriately to accept the information that the function returns.

Routine Modifier

A routine modifier specifies characteristics of how a user-defined routine (UDR)
behaves.

Syntax

(1)
Adding or Modifying a Routine Modifier
Dropping a Routine Modifier

Chapter 5. Other Syntax Segments 5-59

Dropping a Routine Modifier:

(2) (3)
VARIANT

NOT
NEGATOR
(4)

CLASS
ITERATOR
PARALLELIZABLE

(2)
HANDLESNULLS
INTERNAL
PERCALL_COST

SELFUNC
SELCONST

STACK

Notes:

1 See “Adding or Modifying a Routine Modifier”

2 C only

3 SPL only

4 External routines only

Element Description Restrictions Syntax

parameter Name that you declare here for a
returned parameter of the UDR

Must be unique among returned parameters of
UDRs. If any returned value of the UDR has a
name, then all must have names.

“Identifier”
on page 5-21

Usage

If you drop an existing modifier in an ALTER FUNCTION, ALTER PROCEDURE,
or ALTER ROUTINE statement, the database server sets the value of the modifier
to the default value, if a default exists.

Some modifiers are available only with user-defined functions. For information on
whether a specific routine modifier applies only to user-defined functions (that is,
if it does not apply to user-defined procedures), see the description of the modifier
in the sections that follow. In these sections, as elsewhere in this document, external
refers to UDRs written in the C or Java languages. Features valid for only one
language are so designated in the previous diagrams.

Except for VARIANT and NOT VARIANT modifiers, none of the options in this
segment are valid for SPL routines.

Adding or Modifying a Routine Modifier

Use this segment in the ALTER FUNCTION, ALTER PROCEDURE, or ALTER
ROUTINE statement to add or modify values for routine modifiers of a UDR.

Adding or Modifying a Routine Modifier:

5-60 IBM Informix Guide to SQL: Syntax

(1) (2)
VARIANT

NOT
NEGATOR =neg_func
(3)

CLASS =class_name
ITERATOR
PARALLELIZABLE
(1)

HANDLESNULLS
INTERNAL

0
PERCALL_COST = cost
COSTFUNC =cost_func
SELFUNC =sel_func
SELCONST =selectivity

STACK =stack_size

Notes:

1 C language

2 Stored Procedure Language

3 External routines only

Element Description Restrictions Syntax

class_name Virtual processor (VP) class in which to
run the external routine

Any C UDR must run in the CPU VP
or in a user-defined VP class

“Quoted String”
on page 4-188.

cost CPU use cost for each invocation of a C
language UDR. Default is 0.

Integer; 1 ≤ cost ≤ 231-1 (highest cost). “Literal Number”
on page 4-184

cost_func Name of a companion user-defined cost
function to invoke

Must have same owner as the UDR.
Execute privilege needed to invoke

“Identifier” on
page 5-21

neg_func Negator function that can be invoked
instead of the UDR

Must have same owner as the UDR.
Execute privilege needed to invoke

“Identifier” on
page 5-21

sel_func Name of a companion user-defined
selectivity function to invoke

Must have same owner as the UDR.
Execute privilege needed to invoke

“Identifier” on
page 5-21

selectivity CPU use cost for each invocation of a C
language UDR. Default is 0.

See “Concept of Selectivity” on page
5-65.

“Literal Number”
on page 4-184

stack_size Size (in bytes) of stack of the thread
that executes the C-language UDR

Must be a positive integer “Literal Number”
on page 4-184

You can add these modifiers in any order. If you list the same modifier more than
once, the last setting overrides any previous values.

Modifier Descriptions
The following sections describe the modifiers that you can use to help the database
server optimally execute a UDR.

CLASS
Use the CLASS modifier to specify the name of a virtual-processor (VP) class in
which to run an external routine. A user-defined VP class must be defined before
the UDR can be invoked.

Chapter 5. Other Syntax Segments 5-61

You can execute C UDRs in the following types of VP classes:
v The CPU virtual-processor class (CPU VP)
v A user-defined virtual-processor class.

If you omit the CLASS modifier to specify a VP class for a UDR written in C, the
UDR runs in the CPU VP. User-defined VP classes protect the database server from
ill-behaved C UDRs. An ill-behaved C UDR has at least one of the following
characteristics:
v It runs in the CPU VP for a long time without yielding.
v It is not thread safe.
v It calls an unsafe operating-system routine.

A well-behaved C UDR has none of these characteristics. Execute only
well-behaved C UDRs in the CPU VP.

Warning: Execution of an ill-behaved C UDR in the CPU VP can cause serious
interference with the operation of the database server, and the UDR might not
produce correct results. For a discussion of ill-behaved UDRs, see the IBM Informix
DataBlade API Programmer's Guide.

By default, a UDR written in Java runs in a Java virtual processor class (JVP).
Therefore, the CLASS modifier is optional for a UDR written in Java. However, use
the CLASS modifier when you register a UDR written in Java to improve
readability of your SQL statements.

COSTFUNC

Use the COSTFUNC modifier to specify the cost of a C UDR. The cost of the UDR
is an estimate of the time required to execute it.

Occasionally, the cost of a UDR depends on its inputs. In that case, you can use a
user-defined function to calculate a cost that depends on input values.

To execute cost_func, you must have Execute privilege on it and on the UDR.

HANDLESNULLS

Use the HANDLESNULLS modifier to specify that a C UDR can handle NULL
values that are passed to it as arguments. If you do not specify HANDLESNULLS
for a C language UDR, and if you pass to it an argument that has a NULL value,
the UDR does not execute and returns a NULL value.

By default, a C language UDR does not handle NULL values.

The HANDLESNULLS modifier is not available for SPL routines because SPL
routines handle NULL values by default.

INTERNAL

Use the INTERNAL modifier with an external routine to specify that an SQL or
SPL statement cannot call the external routine. An external routine that is specified
as INTERNAL is not considered during routine resolution. Use the INTERNAL
modifier for external routines that define access methods, language managers, and
so on.

5-62 IBM Informix Guide to SQL: Syntax

By default, an external routine is not internal; that is, an SQL or SPL statement can
call the routine.

ITERATOR

Use the ITERATOR modifier with external functions to specify that the function is
an iterator function. An iterator function is a function that returns a single element
per function call to return a set of data; that is, it is called with an initial call and
zero or more subsequent calls until the set is complete.

By default, an external C or Java language function is not an iterator function.

An SPL iterator function requires the RETURN WITH RESUME statement, rather
than the ITERATOR modifier.

In ESQL/C, an iterator function requires a cursor. The cursor allows the client
application to retrieve the values one at a time with the FETCH statement.

For more information on how to write iterator functions, see IBM Informix
User-Defined Routines and Data Types Developer's Guide and the IBM Informix
DataBlade API Programmer's Guide.

For information about using an iterator function with a virtual table interface in
the FROM clause of a query, see “Iterator Functions” on page 2-557.

NEGATOR

Use the NEGATOR modifier with UDRs that return Boolean values.

The NEGATOR modifier designates another user-defined function, called a negator
function, as a companion to the current function. A negator function takes the same
arguments as its companion function, in the same order, but returns the Boolean
complement.

That is, if a function returns TRUE for a given set of arguments, its negator function
returns FALSE when passed the same arguments, in the same order. For example,
the following functions are negator functions:
equal(a,b)
notequal(a,b)

Both functions take the same arguments, in the same order, but return
complementary Boolean values. When it is more efficient to do so, the query
optimizer can use the negator function instead of the function that you specify.

To invoke a user-defined function that has a negator function, you must have the
Execute privilege on both functions. In addition, the function must have the same
owner as its negator function.

PARALLELIZABLE

Use the PARALLELIZABLE modifier to indicate that an external routine can be
executed in parallel in the context of a parallelizable data query (PDQ).

By default, an external routine is non-parallelizable; that is, it executes in sequence.

Chapter 5. Other Syntax Segments 5-63

If your UDR has a complex or smart large object data type as either a parameter or
a returned value, you cannot use the PARALLELIZABLE modifier.

If you specify the PARALLELIZABLE modifier for an external routine that cannot
be parallelizable, the database server returns a runtime error.

A C language UDR that calls only PDQ thread-safe DataBlade API functions is
parallelizable. These categories of DataBlade API functions are PDQ thread safe:
v Data handling

An exception in this category is that collection manipulation functions
(mi_collection_*) are not PDQ thread safe.

v Session, thread, and transaction management
v Function execution
v Memory management
v Exception handling
v Callbacks
v Miscellaneous

For details of the DataBlade API functions that are included in each category, see
the IBM Informix DataBlade API Function Reference.

If your C language UDR calls a function that is not included in one of these
categories, it is not PDQ thread safe and is therefore not parallelizable.

To parallelize Java language UDR calls, the database server must have multiple
instances of JVPs. UDRs written in the Java language and that open a JDBC
connection are not parallelizable.

PERCALL_COST (C)

Use the PERCALL_COST modifier to specify the approximate CPU usage cost that
a C language UDR incurs each time it executes. The optimizer uses the cost you
specify to determine the order in which to evaluate SQL predicates in the UDR for
best performance. For example, the following query has two predicates joined by a
logical AND:
SELECT * FROM tab1 WHERE func1() = 10 AND func2() = ’abc’;

In this example, if one predicate returns FALSE, the optimizer need not evaluate the
other predicate.

The optimizer uses the specified cost to order the predicates so that the least
expensive predicate is evaluated first. The CPU usage cost must be an integer
between 1 and 231-1, with 1 the lowest cost and 231-1 the most expensive.

To calculate an approximate cost per call, add the following two figures:
v The number of lines of code executed each time the C UDR is called
v The number of predicates that require an I/O access

The default cost per execution is 0. When you drop the PERCALL_COST modifier,
the cost per execution returns to 0.

5-64 IBM Informix Guide to SQL: Syntax

SELCONST (C)

Use the SELCONST modifier to specify the selectivity of a C UDR. The selectivity
of the UDR is an estimate of the fraction of the rows that the query will select.

The value of selectivity constant, selconst, is a floating-point number between 0
and 1 that represents the fraction of the rows for which you expect the UDR to
return TRUE.

SELFUNC (C)

Use the SELFUNC modifier with a C UDR to name a companion user-defined
function, called a selectivity function, to the current UDR. The selectivity function
provides selectivity information about the current UDR to the optimizer.

The selectivity of a UDR is an estimate of the fraction of the rows that the query
will select. That is, it is an estimate of the number of times the UDR will execute.

To execute sel_func, you must have Execute privilege on it and on the UDR.

Concept of Selectivity
Selectivity is an attribute of queries that performs a search based on an equality
condition. The selectivity of the query depends inversely on the proportion of
qualifying rows. The smaller the proportion of qualifying rows among all the rows
in FROM clause table objects, the more selective is the query.

For example, the following query has a search condition based on the
customer_num column in the customer table:
SELECT * FROM customer WHERE customer_num = 102;

Because each row in the table has a different customer number, this query is highly
selective. In contrast, the following query has low selectivity:
SELECT * FROM customer WHERE state = ’CA’;

Because most of the rows in the customer table are for customers in California,
more than half of the rows in the table would be returned.

Restrictions on the SELFUNC Modifier
The selectivity function that you specify must satisfy the following criteria:
v It must take the same number of arguments as the current C UDR.
v The data type of each argument must be SELFUNCARGS.
v It must return a value of type FLOAT between 0 and 1, which represents the

percentage of selectivity of the function. (1 is highly selective; 0 is not at all
selective.)

v It can be written in any language that the database server supports.

A user who invokes the C UDR must have the Execute privilege both on that UDR
and on the selectivity function that the SELFUNC modifier specifies.

Both the C UDR and the selectivity function must have the same owner.

For information on how to use the mi_funcarg* functions to extract information
about the arguments of a selectivity function, see the IBM Informix DataBlade API
Programmer's Guide.

Chapter 5. Other Syntax Segments 5-65

STACK (C)

Use the STACK modifier with a C UDR to override the default stack size that the
STACKSIZE configuration parameter specifies.

The STACK modifier specifies the size (in bytes) of the thread stack, which a user
thread that executes the UDR uses to hold information such as routine arguments
and returned values from functions.

A UDR needs to have enough stack space for all its local variables. For a particular
UDR, you might need to specify a stack size larger than the default size to prevent
stack overflow.

When a UDR that includes the STACK modifier executes, the database server
allocates a thread-stack size of the specified number of bytes. Once the UDR
completes execution, subsequent UDRs execute in threads with a stack size that the
STACKSIZE configuration parameter specifies (unless any of these subsequent
UDRs have also specified the STACK modifier).

For more information about the thread stack, see your IBM Informix Administrator's
Guide and the IBM Informix DataBlade API Function Reference.
Related concepts

Stacks (Administrator's Guide)

VARIANT and NOT VARIANT

Use the VARIANT and NOT VARIANT modifiers with C user-defined functions
and SPL functions. A function is variant if it returns different results when it is
invoked with the same arguments or if it modifies a database or variable state. For
example, a function that returns the current date or time is a variant function.

By default, user-defined functions are variant. If you specify NOT VARIANT when
you create or modify a user-defined function, the function cannot contain any SQL
statements.

If the user-defined function is nonvariant, the database server might cache the
returned values of expensive functions. You can create functional indexes only on
nonvariant functions. For more information on functional indexes, see “CREATE
INDEX statement” on page 2-135.

In ESQL/C, you can specify VARIANT or NOT VARIANT in this clause or in the
EXTERNAL Routine Reference. For more information, see “External Routine
Reference” on page 5-19. If you specify the modifier in both places, however, you
must use the same modifier in both clauses.

Examples

The following statement includes an external routine reference for a Java language
UDR. You must first register demo_jar using the procedure install_jar(<absolute
path><jar file name>,<internal registered name>).
CREATE FUNCTION delete_order(int) RETURNING int

WITH (NOT VARIANT)
EXTERNAL NAME ’informix.demo_jar:delete_order.delete_order()’
LANGUAGE JAVA;

5-66 IBM Informix Guide to SQL: Syntax

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.admin.doc/ids_admin_0380.htm#ids_admin_0380

Related Information

For more information on user-defined routines, see IBM Informix User-Defined
Routines and Data Types Developer's Guide and the IBM Informix DataBlade API
Programmer's Guide.

For more information about how these modifiers can affect performance, see your
IBM Informix Performance Guide.

Routine Parameter List

Use the appropriate part of the Routine Parameter List segment whenever you see
a reference to a Routine Parameter List in a syntax diagram.

Syntax

Routine Parameter List:

�

,

Parameter
OUT
INOUT

Parameter:

parameter
(1)

(2)
Subset of SQL Data Type

LIKE table . column DEFAULT value
REFERENCES BYTE

TEXT DEFAULT NULL

Notes:

1 External routines only

2 See “Subset of SQL Data Types” on page 5-68

Element Description Restrictions Syntax

column Name of a column whose data type
is declared for parameter

Must exist in the specified table “Database Object
Name” on page 5-16

parameter Name of a parameter of the UDR Name is required for SPL routines “Identifier” on page
5-21

table Table that contains column The table must exist in the database “Identifier” on page
5-21

value Default used if UDR is called with
no value for parameter

Must be a literal, of the same data type
as parameter. For opaque types, an input
function must be defined

“Literal Number” on
page 4-184

Usage

A parameter is a formal argument in the declaration of a UDR. (When you
subsequently invoke a UDR that has parameters, you must substitute an actual
argument for the parameter, unless the parameter has a default value.)

Chapter 5. Other Syntax Segments 5-67

The name of the parameter is optional for external routines of Informix.

When you create a UDR, you declare a name and data type for each parameter. You
can specify the data type directly, or use the LIKE or REFERENCES clause to
specify the data type. You can optionally specify a default value.

You can define any number of SPL routine parameters, but the total length of all
parameters passed to an SPL routine must be less than 64 kilobytes.

No more than nine arguments to a UDR written in the Java language can be
DECIMAL data types of SQL that the UDR declares as BigDecimal data types of
the Java language.

Any C language UDR that returns an opaque data type must specify opaque_type
in the var binary declaration of the C host variable.

Subset of SQL Data Types
Serial and large-object data types are not valid as parameters. A UDR can declare a
parameter of any other data type defined in the database, including any built-in
data types except BIGSERIAL, BLOB, BYTE, CLOB, SERIAL, SERIAL8, or TEXT.

On Informix, a parameter can also be a complex data type or a UDT, but complex
data types are not valid for parameters of external UDRs written in the Java
language.

For information about the data types of Informix that are valid as parameters or
return values of routines that access tables or views outside the local database, see
“Returning a Value from Another Database” on page 5-57.

Using the LIKE Clause
Use the LIKE clause to specify that the data type of a parameter is the same as a
column defined in the database. If the ALTER TABLE statement changes the data
type of the column, the data type of the parameter also changes.

In Informix, if you use the LIKE clause to declare any parameter, you cannot
overload the UDR. For example, suppose you create the following user-defined
procedure:
CREATE PROCEDURE cost (a LIKE tableX.colY, b INT)
. . .
END PROCEDURE;

You cannot create another procedure named cost() in the same Informix database
with two arguments. You can, however, create a procedure named cost() with a
number of arguments other than two. (Another way to circumvent this restriction
on the LIKE clause is through user-defined data types.)

Using the REFERENCES Clause
Use the REFERENCES clause to specify that a parameter contains BYTE or TEXT
data. The REFERENCES keyword allows you to use a pointer to a BYTE or TEXT
object as a parameter. If you use the DEFAULT NULL option in the REFERENCES
clause, and you call the UDR without a parameter, a NULL value is used as the
default value.

5-68 IBM Informix Guide to SQL: Syntax

Using the DEFAULT Clause
Use the DEFAULT keyword followed by an expression to specify a default value
for a parameter. If you provide a default value for a parameter, and the UDR is
called with fewer arguments than were defined for that UDR, the default value is
used. If you do not provide a default value for a parameter, and the UDR is called
with fewer arguments than were defined for that UDR, the calling application
receives an error.

The following example shows a CREATE FUNCTION statement that specifies a
default value for a parameter. This function finds the square of the i parameter. If
the function is called without specifying the argument for the i parameter, the
database server uses the default value 0 for the i parameter.
CREATE FUNCTION square_w_default

(i INT DEFAULT 0) {Specifies default value of i}
RETURNING INT; {Specifies return of INT value}
DEFINE j INT; {Defines routine variable j}
LET j = i * i; {Finds square of i and assigns it to j}
RETURN j; {Returns value of j to calling module}

END FUNCTION;

Warning: When you specify a date value as the default value for a parameter,
make sure to specify 4 digits instead of 2 digits for the year. When you specify a
2-digit year, the DBCENTURY environment variable setting can affect how the
database server interprets the date value, so the UDR might not use the default
value that you intended. For more information, see the IBM Informix Guide to SQL:
Reference.

Specifying OUT Parameters for User-Defined Routines
When you register a user-defined routine of Informix, you can use the OUT
keyword to specify that any parameter in the list is an OUT parameter. Each OUT
parameter corresponds to a value the routine returns indirectly, through a pointer.
The value that the routine returns through the pointer is an extra value, in addition
to any values that it returns explicitly.

After you have registered a user-defined function that has one or more OUT
parameters, you can use the function with a statement-local variable (SLV) in a
SELECT statement. (For information about statement-local variables, see
“Statement-Local Variable Expressions” on page 4-163.)

If you specify any OUT parameters, and you use Informix-style parameters, the
arguments are passed to the OUT parameters by reference. The OUT parameters
are not significant in determining the routine signature.

For example, the following declaration of a C user-defined function allows you to
return an extra value through the y parameter:
int my_func(int x, int *y);

Register the C function with a CREATE FUNCTION statement similar to this:
CREATE FUNCTION my_func(x INT, OUT y INT)

RETURNING INT
EXTERNAL NAME "/usr/lib/local_site.so"
LANGUAGE C

END FUNCTION;

In the next example, this Java method returns an extra value by passing an array:

Chapter 5. Other Syntax Segments 5-69

public static String allVarchar(String arg1, String[] arg2)
throws SQLException
{
arg2[0] = arg1;
return arg1;
}

To register this as a UDF, use a statement similar to the following example:
CREATE FUNCTION all_varchar(VARCHAR(10), OUT VARCHAR(7))

RETURNING VARCHAR(7)
WITH (class = "jvp")
EXTERNAL NAME ’informix.testclasses.jlm.Param.allVarchar(java.lang.String,
java.lang.String[])’
LANGUAGE JAVA;

Specifying INOUT Parameters for a User-Defined Routine
UDRs of Informix that are written in the SPL, C, or Java languages can also
support INOUT parameters. When the UDR is invoked, a value for each INOUT
parameter is passed by reference as an argument to the UDR. When the UDR
completes execution, it can return a modified value for the INOUT parameter to
the calling context. The INOUT parameter can be of any data type that Informix
supports, including user-defined and complex data types.

In the following example, the CREATE PROCEDURE statement registers a C
routine that has a single INOUT parameter:
CREATE PROCEDURE CALC (INOUT param1 float)

EXTERNAL NAME "$INFORMIXDIR/etc/myudr.so(calc)"
LANGUAGE C;

You can assign INOUT parameters to statement-local variables (SLVs), which the
section “Statement-Local Variable Expressions” on page 4-163 describes.

Shared-Object Filename

Use a shared-object filename to specify a pathname to an executable object file
when you register or alter an external routine.

Syntax

Shared-Object File:

(1) (2)
C Shared-Object File

(3) (4)
Java Shared-Object File

Notes:

1 C only

2 See “C Shared-Object File” on page 5-71

3 Java only

4 See “Java Shared-Object File” on page 5-72

5-70 IBM Informix Guide to SQL: Syntax

Usage

If the IFX_EXTEND_ROLE configuration parameter is set to 1 or to ON, only users
to whom the DBSA has granted the built-in EXTEND role are authorized to use
this segment.

The Database Server Administrator should include in the DB_LIBRARY_PATH
configuration parameter settings every file system where the security policy
authorizes DataBlade modules and UDRs to reside. Unless DB_LIBRARY_PATH is
absent or has no setting, the database server cannot access a file that this segment
specifies unless its pathname begins with a string that exactly matches one of the
values of DB_LIBRARY_PATH.

For example, if "$INFORMIXDIR/extend" is one of the DB_LIBRARY_PATH
values on a Linux system, then shared-object files can have pathnames within the
$INFORMIXDIR/extend file system or its subdirectories. (This is also the file
system where built-in DataBlade modules reside, and the default location where
the DataBlade Developers Kit creates user-defined DataBlade modules.)

The syntax by which you specify a shared-object filename depends on whether the
external routine is written in the C language or in the Java language. Sections that
follow describe each of these external languages.

C Shared-Object File

To specify the location of a C shared-object file, specify the path to the dynamically
loaded executable file within a quoted pathname or as a variable.

C Shared-Object File:

quote pathname quote
$environment_var (symbol)
/
.

$variable

Element Description Restrictions Syntax

environment_var Platform-independent indicator Must begin with a dollar sign ($) “Identifier” on page
5-21

pathname Pathname to the file See notes that follow this table Must conform to
operating system
conventions

quote Either single (') or double ('')
quotation mark symbol

Opening and closing quotation
mark symbols must match

Literal symbol
(either ' or '')

symbol Entry point to the file Must be enclosed in parentheses Must conform to
operating system
conventions

variable Platform-independent indicator Must begin with a dollar sign ($) Must conform to C
language
conventions

The following rules affect pathname and filename specifications in C:
v A filename (with no pathname) can specify an internal function.

Chapter 5. Other Syntax Segments 5-71

v You can omit the period (.) symbol if pathname is relative to the current
directory when the CREATE or ALTER statement is run.

v On UNIX, an absolute pathname must begin with a slash (/) symbol, and each
directory name must end with a slash (/) symbol.

v On Windows, an absolute pathname must begin with a backslash (\) symbol,
and each directory name must end with a backslash (\) symbol.

v The filename at the end of pathname must have the .so file extension and must
refer to an executable file in a shared object library.

v Use a symbol only if the entry point to the dynamically loadable executable
object file has a different name from the UDR that you are registering with
CREATE FUNCTION or CREATE PROCEDURE.

v If you specify a variable, it must contain the full pathname to the executable file.
v You can include white-space characters, such as blank spaces or tab characters,

within a quoted pathname.

Java Shared-Object File

To specify the name of a Java shared-object file, specify the name of the static Java
method to which the UDR corresponds and the location of the Java binary that
defines the method.

Java Shared-Object File:

quote
(1)

Jar Name : �

package_id .
class_id . method_id �

�

�

,

() RETURNS java_type
java_type

quote

Notes:

1 See “Jar Name” on page 5-34

Element Description Restrictions Syntax

class_id Java class whose method
implements the UDR

Class must exist in the .jar file that
Jar Name identifies

Must conform to rules for
Java identifiers

java_type Java data type for a parameter in
the Java-method signature

Must be defined in a JDBC class or
by an SQL-to-Java mapping

Must conform to rules for
Java identifiers

method_id Name of the Java method that
implements the UDR

Must exist in the Java class that
java_class_name specifies

Must conform to rules for
Java identifiers

package_id Name of package that contains the
Java class

Must exist Must conform to rules for
Java identifiers

quote Single (') or double ('')
quotation mark delimiters

Opening and closing quotation
marks must match

Literal symbol (' or '')
entered at the keyboard

5-72 IBM Informix Guide to SQL: Syntax

Before you can create a UDR written in the Java language, you must assign a jar
identifier to the external jar file with the sqlj.install_jar procedure. (For more
information, see “sqlj.install_jar” on page 6-14.) You can include the Java signature
of the method that implements the UDR in the shared-object filename.
v If you do not specify the Java signature, the routine manager determines the

implicit Java signature from the SQL signature in the CREATE FUNCTION or
CREATE PROCEDURE statement.
It maps SQL data types to the corresponding Java data types with the JDBC and
SQL-to-Java mappings. For information on mapping user-defined data types to
Java data types, see “sqlj.setUDTextName” on page 6-18.

v If you do specify the Java signature, the routine manager uses this explicit Java
signature as the name of the Java method to use.

For example, if the Java method explosiveReaction() implements the Java UDR
sql_explosive_reaction() as discussed in “sqlj.install_jar” on page 6-14, its
shared-object filename could be:
course_jar:Chemistry.explosiveReaction

The preceding shared-object filename provides an implicit Java signature. The
following shared-object filename is the equivalent with an explicit Java signature:
course_jar:Chemistry.explosiveReaction(int)

Related Information

See the “External Routine Reference” on page 5-19 segment for the context in
which a shared-object filename appears within EXTERNAL NAME clause of the
ALTER FUNCTION, ALTER PROCEDURE, ALTER ROUTINE, CREATE
FUNCTION, and CREATE PROCEDURE statements. For further information on
the DB_LIBRARY_PATH parameter in the ONCONFIG file, see the IBM Informix
Administrator's Reference.
Related reference

DB_LIBRARY_PATH Configuration Parameter (Administrator's Reference)

Specific Name

Use a specific name to declare an identifier for a UDR that is unique in the
database or name space. Use the Specific Name segment whenever you see a
reference to a specific name in a syntax diagram.

Syntax

Specific Name:

owner .
specific_id

Element Description Restrictions Syntax

owner Owner of the
UDR

No more than 32 bytes. Must be same as owner of function or
procedure name of this UDR. See also “Restrictions on the Owner
Name” on page 5-74.

“Owner Name”
on page 5-45

specific_id Unique name
of the UDR

Must be no more than 128 bytes long. See also “Restrictions on the
Specific Name” on page 5-74.

“Identifier” on
page 5-21

Chapter 5. Other Syntax Segments 5-73

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.adref.doc/ids_adr_0043.htm#ids_adr_0043

Usage

A specific name is a unique identifier that the CREATE PROCEDURE or CREATE
FUNCTION statement declares as an alternative name for a UDR.

Because you can overload routines, a database can have more than one UDR with
the same name and different parameter lists. You can assign a UDR a specific
name that uniquely identifies the specific UDR.

If you declare a specific name when you create the UDR, you can later use that
name when you alter, drop, grant, or revoke privileges, or update statistics on that
UDR. Otherwise, you need to include the parameter data types with the UDR
name, if the name alone does not uniquely identify the UDR.

Restrictions on the Owner Name
When you declare a specific name, the owner must be the same authorization
identifier that qualifies the function name or procedure name of the UDR that you
create. That is, whether or not you specify the owner name to qualify either the
UDR name or the specific name or both, the names of the owner must match.

When you specify no owner name in the DDL statement that creates a UDR,
Informix uses the login name of the user who creates the UDR. Therefore, if you
specify the owner name in one location and not the other, the owner name that
you specify must match your user ID.

Restrictions on the Specific Name
In a database that is not ANSI-compliant, specific_id must be unique among routine
names within the database. Two UDRs cannot have the same specific_id, even if
they have different owners.

In an ANSI-compliant database, the combination owner.specific_id must be unique.
That is, the specific name must be unique among UDRs that have the same owner.

Statement Block

Use a statement block to specify SPL and SQL operations to take place when an
SPL statement that includes this segment is executed.

Syntax

Statement Block:

�

(1)
DEFINE Statement

�

(2)
ON EXCEPTION Statement

�

5-74 IBM Informix Guide to SQL: Syntax

� �

(3)
EXECUTE FUNCTION Statement

(4)
EXECUTE PROCEDURE Statement

(5)
Subset of SPL Statements

(6)
Subset of SQL Statements ;

BEGIN Statement Block END

Notes:

1 See “DEFINE” on page 3-6

2 See “ON EXCEPTION” on page 3-37 and “Identifier” on page 5-21

3 See “EXECUTE FUNCTION statement” on page 2-361

4 See “EXECUTE PROCEDURE statement” on page 2-369

5 See “Subset of SPL Statements Valid in the Statement Block”

6 See “SQL Statements Valid in SPL Statement Blocks” on page 5-76

Usage

SPL and SQL statements can appear in a statement block, a set of zero or more
statements that can define the scope of a variable or of the ON EXCEPTION
statement. If a statement block is empty, no operation takes place when control of
execution within the SPL routine passes to the empty SPL statement block.

Subset of SPL Statements Valid in the Statement Block

The diagram for the “Statement Block” on page 5-74 refers to this section. You can
use any of the following SPL statements in the statement block:
v <<Label >>
v CALL
v CONTINUE
v EXIT
v FOR
v FOREACH
v GOTO
v IF
v LET
v LOOP
v RAISE EXCEPTION
v RETURN
v SYSTEM
v TRACE
v WHILE

GOTO and << Label >>, however, are not valid in ON EXCEPTION statement
blocks.

Chapter 5. Other Syntax Segments 5-75

SQL Statements Valid in SPL Statement Blocks

The diagram for the “Statement Block” on page 5-74 refers to this section. Most
SQL statements are valid in SPL statement blocks, except for the statements that
are listed below. The following SQL statements are not valid in an SPL statement
block:
v CLOSE DATABASE
v CONNECT
v CREATE DATABASE
v CREATE FUNCTION
v CREATE FUNCTION FROM
v CREATE PROCEDURE
v CREATE PROCEDURE FROM
v CREATE ROUTINE FROM DATABASE
v DISCONNECT
v EXECUTE
v FLUSH
v INFO
v LOAD
v OUTPUT
v PUT
v RENAME DATABASE
v SET AUTOFREE
v SET CONNECTION
v UNLOAD
v UNLOAD

For example, you cannot close the current database or connect to a new database
within an SPL routine. Similarly, you cannot drop the current SPL routine within
the same routine. You can, however, drop another SPL routine.

Only two forms of the SELECT statement are valid in queries within SPL routines:
v You can use the INTO TEMP clause to put the results of the SELECT statement

into a temporary table.
v You can use the SELECT ... INTO form of the SELECT statement to put the

resulting values into SPL variables.

When you include the ORDER BY clause in the SELECT ... INTO TEMP or the
SELECT ... INTO variable statement, you imply that the query returns more than
one row. The database server issues an error if you specify the ORDER BY clause
without a FOREACH loop to process the returned rows individually within the
SPL routine.

If an SPL routine is called as part of a data-manipulation language (DML)
statement, additional restrictions exist. For more information, see “Restrictions on
SPL Routines in Data-Manipulation Statements” on page 5-77.

Nested Statement Blocks
You can use the BEGIN and END keywords to delimit a statement block that is
nested within another statement block.

5-76 IBM Informix Guide to SQL: Syntax

Scope of Reference of SPL Variables and Exception Handlers
The BEGIN and END keywords can limit the scope of SPL variables and exception
handlers. Declarations of variables and definitions of exception handlers inside a
BEGIN and END statement block are local to that statement block and are not
visible from outside the statement block. The following code uses a BEGIN and
END statement block to delimit the scope of reference of variables:
CREATE DATABASE demo;
CREATE TABLE tracker (

who_submitted CHAR(80), -- Show what code was running.
value INT, -- Show value of the variable.
sequential_order SERIAL -- Show order of statement execution.
);

CREATE PROCEDURE demo_local_var()
DEFINE var1, var2 INT;

LET var1 = 1;
LET var2 = 2;
INSERT INTO tracker (who_submitted, value)
VALUES (’var1 param before sub-block’, var1);

BEGIN
DEFINE var1 INT; -- same name as global parameter.
LET var1 = var2;
INSERT INTO tracker (who_submitted, value)
VALUES (’var1 var defined inside the "IF/BEGIN".’, var1);

END
INSERT INTO tracker (who_submitted, value)

VALUES (’var1 param after sub-block (unchanged!)’, var1);
END PROCEDURE;
EXECUTE PROCEDURE demo_local_var();
SELECT sequential_order, who_submitted, value FROM tracker
ORDER BY sequential_order;

This example declares three variables, two of which are named var1. (Name
conflicts are created here to illustrate which variables are visible. Using the same
name for different variables is generally not recommended, because conflicting
names of variables can make your code more difficult to read and to maintain.)

Because of the statement block, only one var1 variable is in scope at a time.

The var1 variable that is declared inside the statement block is the only var1
variable that can be referenced from within the statement block.

The var1 variable that is declared outside the statement block is not visible within
the statement block. Because it is out of scope, it is unaffected by the change in
value to the var1 variable that takes place inside the statement block. After all the
statements run, the outer var1 still has a value of 1.

The var2 variable is visible within the statement block because it was not
superseded by a name conflict with a block-specific variable.

Restrictions on SPL Routines in Data-Manipulation Statements
If you call the SPL routine in a SQL statement that is not a data-manipulation
language (DML) statement (namely EXECUTE FUNCTION or EXECUTE
PROCEDURE), the SPL routine can execute any statement that is not listed in the
section “SQL Statements Valid in SPL Statement Blocks” on page 5-76.

If you call the SPL routine as part of a DML statement (namely, an INSERT,
UPDATE, DELETE, MERGE, or SELECT statement), the routine cannot execute any
of the following SQL statements:
v ALTER ACCESS_METHOD

Chapter 5. Other Syntax Segments 5-77

v ALTER FRAGMENT
v ALTER INDEX
v ALTER OPTICAL CLUSTER
v ALTER SEQUENCE
v ALTER TABLE
v BEGIN WORK
v COMMIT WORK
v CREATE ACCESS_METHOD
v CREATE AGGREGATE
v CREATE DISTINCT TYPE
v CREATE OPAQUE TYPE
v CREATE OPCLASS
v CREATE ROLE
v CREATE ROW TYPE
v CREATE SEQUENCE
v CREATE TRIGGER
v DELETE
v DROP ACCESS_METHOD
v DROP AGGREGATE
v DROP INDEX
v DROP OPCLASS
v DROP OPTICAL CLUSTER
v DROP ROLE
v DROP ROW TYPE
v DROP SEQUENCE
v DROP SYNONYM
v DROP TABLE
v DROP TRIGGER
v DROP TYPE
v DROP VIEW
v INSERT
v MERGE
v RENAME COLUMN
v RENAME DATABASE
v RENAME SEQUENCE
v RENAME TABLE
v ROLLBACK WORK
v SET CONSTRAINTS
v TRUNCATE
v UPDATE

Informix issues error -675 if an SPL routine whose calling context is a DML
statement attempts to execute any of the SQL statements listed above.

These restrictions do not apply to an SPL routine that is invoked by a trigger,
because in this case the SPL routine is not called by the DML statement, and

5-78 IBM Informix Guide to SQL: Syntax

therefore can include any SQL statement, such as UPDATE, INSERT and DELETE,
that is not listed among the “SQL Statements Valid in SPL Statement Blocks” on
page 5-76.

Transactions in SPL Routines
In a database that is not ANSI-compliant, you can use the BEGIN WORK and
COMMIT WORK statements in an SPL statement block to start a transaction, to
finish a transaction, or start and finish a transaction in the same SPL routine. If you
start a transaction in a routine that is executed remotely, you must finish the
transaction before the routine exits.

As previously noted, however, the ROLLBACK WORK statement is not valid in an
SPL statement block.

Support for roles and user identity
You can use roles with SPL routines. You can execute role-related SQL statements
(CREATE ROLE, DROP ROLE, GRANT, REVOKE, and SET ROLE) and a user who
holds the SETSESSIONAUTH privilege can issue SET SESSION AUTHORIZATION
statements within an SPL routine. Within an SPL routine, these statements can also
grant discretionary access privileges, or grant label-based access credentials, or
grant other roles to roles options to the GRANT statement. An SPL routine can also
use the REVOKE statement to cancel the access privileges (or roles) of roles.

Access privileges, roles, and LBAC credentials that a user has acquired in an SPL
routine by enabling a role or by a SET SESSION AUTHORIZATION statement are
not automatically relinquished after the SPL routine that granted the privilege, role,
or LBAC credential completes execution. What was granted persists until a
subsequent REVOKE operation cancels the effect of the GRANT operation.

For further information about roles, see the “CREATE ROLE statement” on page
2-173, “DROP ROLE statement” on page 2-338, “GRANT statement” on page 2-401,
“REVOKE statement” on page 2-502, and “SET ROLE statement” on page 2-662 in
Chapter 2.

Chapter 5. Other Syntax Segments 5-79

5-80 IBM Informix Guide to SQL: Syntax

Chapter 6. Built-In Routines

This chapter describes routines whose identifiers are known to the database server
when a database is created, but whose usage differs in various ways from the
built-in SQL functions that Chapter 4 describes.

In This Chapter

These built-in routines can be classified according to the tasks that they perform:
v Session configuration procedures

– SYSDbClose()

– SYSDbOpen()

v DataBlade module management functions
– SYSBldPrepare()

– SYSBldRelease()

v Visual Explain output generation function
– Explain_SQL()

v UDR definition routines
– ifx_Replace_Module()

– ifx_Unload_Module()

– jvpControl()

– sqlj.Alter_Java_Path()

– sqlj.Install_jar()

– sqlj.Remove_jar()

– sqlj.Replace_jar()

– sqlj.SetUDTExtName()

– sqlj.UnsetUDTExtName()

– sysibm.Metadata()

– sysibm.sqlcaMessage()

The Metadata and sqlcaMessage routines are created automatically if the database
server is configured to support the DRDA protocol. The SYSDbOpen and
SYSDbClose routines can be defined in every Informix database.

Sections that follow describe these categories and the individual routines within
each category.

Session Configuration Procedures
These built-in SPL procedures enable the Database Administrator to execute SQL
and SPL statements automatically when a user connects to or disconnects from the
database.

These routines are called "built-in" procedures in this document because the
database server recognizes their names and treats them differently from how it
treats other routines, but the database server does not create these routines
automatically. To use their features, the DBA must issue the CREATE PROCEDURE

© Copyright IBM Corp. 1996, 2010 6-1

statement or the CREATE PROCEDURE FROM statement to define the actions of
these routines and to register them in the database. Only the DBA or user informix
can create, alter, or drop these routines.

If the DBA specifies the login ID of a user as the owner of one of these procedures,
the database server executes it when the specified user connects to or disconnects
from the database. If the DBA specifies PUBLIC as the owner, that routine is
automatically executed when a user who is not the owner of any of these built-in
session configuration procedures connects to or disconnects from the database.
Different databases of the same database server instance can specify either the
same or different session configuration procedures for individual users or for
PUBLIC. These built-in procedures are useful in setting the session environment or
activating a role for users of applications whose code cannot easily be modified.

These are the built-in session configuration procedures:
v sysdbclose

v sysdbopen

Using SYSDBOPEN and SYSDBCLOSE Procedures
To set the initial environment for one or more sessions, create and install the
sysdbopen() SPL procedure. The typical effect of this procedure is to initialize the
properties of a session without requiring the properties to be explicitly defined
within the session.

Setting the initial environment for one or more sessions is useful if users access
databases through client applications that cannot modify application code or set
environment options or environment variables.

The sysdbopen procedure is executed whenever users successfully issue the
DATABASE or CONNECT statement to explicitly connect to a database where the
procedures are installed. (But when a user who is connected to the local database
calls a remote UDR or performs a distributed DML operation that references a
remote database object by using the database:object or database@server:object notation,
no sysdbopen procedure is invoked in the remote database.)

These procedures are exceptions to the general rule that Informix ignores the name
of the owner of a UDR when a routine is invoked in a database that is not
ANSI-compliant. For UDRs other than sysdbopen and sysdbclose, multiple
versions of UDRs that have the same SQL identifier but that have different owner
names cannot be registered in the same database unless the CREATE DATABASE
statement that created the database also included the WITH LOG MODE ANSI
keywords.

You can also create the sysdbclose SPL procedure, which is executed when a user
issues the CLOSE DATABASE or DISCONNECT statement to disconnect from the
database. If a PUBLIC.sysdbclose procedure is registered in the database, and no
user.sysdbclose procedure is registered for the current user, then the
PUBLIC.sysdbclose procedure is executed automatically when that user
disconnects from the database.

You can include valid SQL or SPL language statements that are appropriate when a
database is opened or closed. The general restrictions on SQL statements that are
valid in SPL procedures also apply to these routines. See the following sections for
restrictions on SQL and SPL statements within SPL routines:
v “Subset of SPL Statements Valid in the Statement Block” on page 5-75.

6-2 IBM Informix Guide to SQL: Syntax

v “SQL Statements Valid in SPL Statement Blocks” on page 5-76.
v “Restrictions on SPL Routines in Data-Manipulation Statements” on page 5-77.

Important: The sysdbopen and sysdbclose procedures are exceptions to the scope
rule for stored procedures. In ordinary UDR procedures, the scope of variables and
statements is local. SET PDQPRIORITY and SET ENVIRONMENT statement
settings do not persist when these SPL procedures exit. In sysdbopen and
sysdbclose procedures, however, statements that set the session environment
remain in effect until another statement resets the options, or the session ends.

For example, the following procedure sets the transaction isolation level to
Repeatable Read, and sets the OPTCOMPIND environment variable to instruct the
query optimizer to prefer nested-loop joins. When a user who owns no
user.sysdbopen procedure connects to the database, this routine will be executed:
CREATE PROCEDURE public.sysdbopen()

SET ISOLATION TO REPEATABLE READ;
SET ENVIRONMENT OPTCOMPIND ’1’;

END PROCEDURE;

Procedures do not accept arguments or return values. The sysdbopen and
sysdbclose procedures must be registered in each database in which you want to
execute them. The DBA can create the following four categories of sysdbopen and
sysdbclose procedures.

Procedure Name
Description

user.sysdbopen
This procedure is executed when the specified user opens the database as
the current database.

public.sysdbopen
If no user.sysdbopen procedure applies, this procedure is executed when
any user opens the database as the current database. To avoid duplicating
SPL code, you can call this procedure from a user-specific procedure.

user.sysdbclose
This procedure is executed when the specified user closes the database,
disconnects from the database server, or the user session ends. If
user.sysdbclose did not exist when the session opened the database,
however, the procedure is not executed when the session closes the
database.

public.sysdbclose
If no user.sysdbclose procedure applies, this procedure is executed when
the user closes or disconnects from the database server, or when the
session ends. If public.sysdbopen did not exist when the session opened
the database, however, the procedure is not executed when the session
closes the database.

The database server calls user.sysdbclose procedure, if it exists in the database, or
public.sysdbclose if this exists and no version owned by user exists, when the
CLOSE DATABASE or DISCONNECT statement explicitly terminates the
connection. If the application terminates without issuing the CLOSE DATABASE or
DISCONNECT statement, the database server forces an implicit close of the
database and executes the sysdbclose procedure, if a UDR with that name is
owned by the user or by PUBLIC.

Chapter 6. Built-In Routines 6-3

Make sure that you set file access permissions appropriately to allow intended
users to execute the SPL procedure statements. For example, if the SPL procedure
executes a command that writes output to a local directory, permissions must be
set to allow users to write to this directory. If you want the procedure to continue
if permission failures occur, include an ON EXCEPTION error handler for this
condition.

For more information about the SQL statements that can appear in SPL routines,
and about SPL support for transactions and for roles, see the section “Statement
Block” on page 5-74.

Warning: If a sysdbclose procedure fails, the failure is ignored. If a sysdbopen
procedure fails, however, the database cannot be opened.

To avoid situations in which a database cannot be opened, take the following
precaution while you are writing and debugging a sysdbopen procedure:
v Set the IFX_NODBPROC environment variable before you connect to the

database. When IFX_NODBPROC is set, the procedure is not executed, and
failures cannot prevent the database from opening.

Failures from these procedures can be generated by the system or simulated within
the procedures by the RAISE EXCEPTION statement of SPL. If the sysdbopen
routine that is invoked for a user at connection time includes this statement, that
user cannot connect to the database. For more information, refer to the description
of “RAISE EXCEPTION” on page 3-40.

For security reasons, non-DBAs cannot prevent execution of these procedures. For
some applications, however, such as ad hoc query applications, users can execute
commands and SQL statements that subsequently change the environment.

A default role defined in the sysdbopen procedure take precedence over any other
role that the user holds when a user establishes a connection to a database in
which sysdbopen successfully specifies a default role for that user.

Any database objects that are created by DDL statements in a user.sysdbopen or
user.sysdbclose procedure are owned by the connected user, and any object created
within PUBLIC.sysdbopen or within PUBLIC.sysdbclose is owned by the PUBLIC
userid, unless the object name is fully qualified by some other owner name when
the object name is declared in the DDL statement.

For ANSI-compliant databases, an explicit COMMIT WORK statement is required
at the end of the sysdbopen or sysdbclose definition in the CREATE PROCEDURE
statement, to prevent any implicit transactions of SQL statements that the
sysdbopen or sysdbclose procedure executes from being rolled back when the
procedure terminates. (Omitting the COMMIT WORK statement does not cause the
connection to fail, but does waste resources in opening and then rolling back the
transactions.)

For a list of SQL statements that are not valid in these procedures, see “SQL
Statements Valid in SPL Statement Blocks” on page 5-76. For a list of the SPL
statements that are valid in these procedures, see “Subset of SPL Statements Valid
in the Statement Block” on page 5-75.

For general information about how to write and install SPL procedures, refer to the
section about SPL routines in IBM Informix Guide to SQL: Tutorial.

6-4 IBM Informix Guide to SQL: Syntax

DataBlade Module Management Functions
From sessions connected to Informix databases that support explicit transaction
logging, you can register or unregister DataBlade modules by issuing SQL
statements that call the built-in SYSBldPrepare() function. Another built-in
function, SYSBldRelease(), returns the version string of the SYSBldPrepare()
function in the local database.

Registration and unregistration of DataBlade modules through SQL function calls
is an alternative to using the BladeManager utility of the DataBlade Developer's
Kit (DBDK). The BladeManager utility can perform various DataBlade module
tasks that include registering, unregistering, and displaying information about
DataBlade modules. This utility supports both a command-line interface and a
graphical user interface. For more information about using the BladeManager
utility, see your IBM Informix DataBlade Module Installation and Registration
Guide.

The SYSBldPrepare Function
SYSBldPrepare() is a function signature that Informix defines in all databases. You
can use it to register or to unregister DataBlade modules, as an alternative to using
the BladeManager utility.

The SYSBldPrepare() function has this definition:
CREATE FUNCTION informix.sysbldprepare (CHAR(64), CHAR(18))

RETURNS INTEGER
EXTERNAL NAME ’$INFORMIXDIR/extend/ifxmngr/ifxmngr.bld(SYSBldCustomPrepare)’
LANGUAGE C;

The returned integer shows whether the function call succeeded (0) or failed (
nonzero).

The following restrictions apply to the database in which you invoke this built-in
function:
v The minimum STACKSIZE in the configuration file of the Informix instance

should be at least 64K. (On some systems, the default stack size is 32K, but 64K
is recommended for databases that use the SYSBldPrepare() function.

v The function call cannot reference a remote database. You can only register or
unregister a DataBlade module in the local database to which you are currently
connected.

v The database must support explicit transactions. You cannot invoke this function
in an ANSI/ISO-compliant database, or in a database that does not support
transaction logging.

v In an Enterprise Replication cluster environment, the Informix instance that
supports the database cannot be a remote secondary server, because such servers
cannot directly support DDL operations, like those that this function performs. If
a DataBlade module needs to be registered or unregistered on a secondary
server, you must register or unregister that module on the primary server that
the secondary server replicates.

.

This is the calling syntax of SYSBldPrepare():

Chapter 6. Built-In Routines 6-5

SYSBldPrepare Function

�� EXECUTE FUNCTION SYSBLDPREPARE (' Module Reference ' , ' CREATE
file
builtin
Module Reference ' , ' DROP

') ; ��

Module Reference:

module . major . minor . os_code C interim
. major . minor . os_code C *
. major . minor . os_code *
. major . minor . *
. major . minor *
. major . *
. major *
. *
*

Element Description Restrictions Syntax

module Name of a DataBlade module to register
or unregister

For ‘CREATE' module must be installed in
$INFORMIXDIR/extend. For ‘DROP' it
must be registered in the current database.

String literal

file Name of a file that lists one or more
DataBlade modules, each in Module
Reference format

Must exist in directory
$INFORMIXDIR/extend/ifxmngr

Character string
with no suffix

major Integer specifying a major Informix
release version

Must match the major version of an
installed or registered DataBlade module
or wildcard

Literal number

minor Integer specifying a minor Informix
release version

Must match the minor version of an
installed or registered DataBlade module
or wildcard

Literal number

os_code Uppercase letter code for a supported
operating system

Valid options are F, H, T, or U. These codes
are described in Chapter 1 of DataBlade
Module Installation and Registration Guide.

Literal character

interim Integer specifying an interim Informix
release version

Must match the interim version of an
installed or registered DataBlade module
or wildcard

Literal number

You can invoke this function with the EXECUTE FUNCTION statement of SQL, or
with the CALL statement of SPL. .

The first argument to SYSBldPrepare() specifies what DataBlade module or file to
process. The second argument specifies whether to register ('CREATE') or to
unregister (‘DROP') what the first argument specifies. If ‘DROP' is the second
argument, the first argument must specify a DataBlade module, not a file.

Specifying a File as the First Argument

If ‘CREATE' is the second argument, the first argument must be either a single
module reference or the name of a text file that specifies a list of one or more
module references, each in the format of the Module Reference syntax segment in
the syntax diagram above. (The text file cannot, however, list the name of another

6-6 IBM Informix Guide to SQL: Syntax

text file that lists module references.) By specifying a valid file as the first
argument, you can register a set of DataBlade modules by a single call to the
SYSBldPrepare() function.

The file can be one that you created, or it can be the builtin file that the database
server creates. The builtin file includes a list of DataBlade modules that Informix
classifies as built-in. These built-in DataBlade modules are distributed with
Informix and are installed in the $INFORMIXDIR/extend file system, but they
cannot be accessed until they are registered in the database. Updates by users to
this builtin file, which the database server maintains, are not supported.

Version Strings and Asterisk (*) Notation in Module References

When the first argument begins with the name of a DataBlade module, you can
also specify the complete version string after a period (.) separator. A complete
version string has in the same format as the return value of the DBINFO('version
full') function of SQL or of the oninit -V utility, but is based on DataBlade module
release versions.

The DataBlade module name or version string can be truncated with the asterisk (
*) wildcard. How SYSBldPrepare() interprets the asterisk symbol depends on the
second argument:
v If 'CREATE' is the second argument, the asterisk matches the highest installed

version of the specified module.
v If 'DROP' is the second argument, the asterisk matches the registered version of

the module among the DataBlade modules that are registered in the local
database. No more than one version of a given DataBlade module can be
registered in the database, so an asterisk that replaces the version string specifies
the version that is registered.

Any asterisk symbol in a Module Reference that is not the last character is
interpreted as a literal character, rather than as a wildcard.

Where SYSBldPrepare() searches for a module that the first argument specifies
depends on the second argument:
v If 'CREATE' is the second argument, the function searches among the modules

that are installed in the $INFORMIXDIR/extend directory.
v If 'DROP' is the second argument, the function searches for the specified version

of the module among the DataBlade modules that are registered in the local
database. Because no more than one version of a given DataBlade module can be
registered in the database, an asterisk that replaces the version string specifies
the version that is registered.

Registering and Unregistering DataBlade Modules

The second argument to this function must be either 'CREATE' or 'DROP':
v Use 'CREATE' to register the installed DataBlade module (or the set of installed

DataBlade modules listed in a file) that the first argument specifies.
v Use 'DROP' to unregister the registered DataBlade module that the first

argument specifies. The 'DROP' option cannot unregister more than one
DataBlade module in a single call to SYSBldPrepare().

Successful invocation of the SYSBldPrepare() function with ‘CREATE' as its
second argument also registers any DataBlade modules on which the module

Chapter 6. Built-In Routines 6-7

specified in the first argument is dependent. For example, the following SQL
statement registers version 8.21.FC2 of the Spatial DataBlade module, and
implicitly registers in the current database the most recent installed version of the
R-tree DataBlade module on which the Spatial Datablade module has a
dependency, if the R-tree DataBlade module is not already registered in the
database:
EXECUTE FUNCTION sysbldprepare (’spatial.8.21.FC2’, ’create’);

If a different release version of the same DataBlade module is already registered in
the database, however, SYSBldPrepare() performs an upgrade if ‘CREATE' is its
second argument. The function call above, for example, would upgrade version
8.20.FC1 of the Spatial DataBlade module to version 8.21.FC2, if version 8.20.FC1
was already registered in the same database when you called SYSBldPrepare(),
but the R-tree DataBlade module would not be implicitly upgraded.

The following SQL statement uses asterisk notation to unregister the highest
version of the Node DataBlade module that is registered in the database:
EXECUTE FUNCTION sysbldprepare (’Node.*’, ’drop’);

Unlike registration operations, a call to SYSBldPrepare() that specifies 'DROP' as
the second argument has no automatic effect on any DataBlade module that the
first argument does not specify. The 'DROP' argument does not implicitly
unregister other DataBlade modules that have dependency relationships with the
module specified by the first argument.

Using SYSBldPrepare() in Transactions

The SYSBldPrepare()function internally uses explicit transactions. If you issue the
BEGIN WORK statement to begin a transaction in which you invoke
SYSBldPrepare(), the status of any changes to the database by DML or DDL
statements in the same transaction, but before the call to SYSBldPrepare(), is
unpredictable. Changes from your DML or DDL operations might be committed
when the internal transaction of SYSBldPrepare() is committed, thereby depriving
you of any opportunity to roll back these changes by error-handling logic that
follows the function call in the lexical order of SQL statements. To avoid this
situation, do not invoke SYSBldPrepare() within transactions that you begin
explicitly.

Exceptions in Calls to SYSBldPrepare()

The SYSBldPrepare() function issues an error if you attempt to use the 'DROP'
option to unregister a DataBlade module on which another DataBlade module that
is currently registered in the database depends. For example, you cannot use this
function to unregister the R-tree DataBlade module while the Spatial DataBlade
module is still registered.

Informix also issues an error if SYSBldPrepare() attempts to unregister a
DataBlade module that is not registered in the database.

The next example shows an attempt to register a DataBlade module that is not
installed and the resulting error message:
EXECUTE FUNCTION sysbldprepare (’node.2.33’, ’create’);

(U0001) - registerBlade - Unable to register node.2.33
– DataBlade module not found
- check online log and sysblderrorlog table for more information

6-8 IBM Informix Guide to SQL: Syntax

If the IFX_EXTEND_ROLE configuration parameter is set to ON, authorization to
invoke this routine is available only to the Database Server Administrator (DBSA),
and others to whom the DBSA has granted the EXTEND role. By default, the
DBSA is user informix.

Exceptions that occur while this function is executing can result in diagnostic error
messages from SYSBldPrepare() that are not Informix error messages. Refer to the
IBM Informix DataBlade Module Installation and Registration Guide for information
about error messages that SYSBldPrepare() can issue.

The SYSBldRelease Function
SYSBldRelease() is a function signature that Informix defines in all databases of
the server instance. You can invoke this function with the EXECUTE FUNCTION
statement of SQL or with the CALL statement of SPL to return the version string of
the SYSBldPrepare() function.

The SYSBldRelease() function has this definition:
CREATE FUNCTION informix.sysbldrelease()

RETURNS LVARCHAR
EXTERNAL NAME

’$INFORMIXDIR/extend/%SYSBLDDIR%/ifxmngr.bld(MackRelease)’
LANGUAGE C NOT VARIANT;

GRANT EXECUTE ON FUNCTION SYSBldRelease() TO PUBLIC;

This function takes no arguments. It returns the version string and compilation
date of the SYSBldPrepare() function. The returned version string has this format:
major.minor.os_codeCinterim

Here C is a literal character, and the major, minor, os_code, and interim version string
elements have the same semantics that these terms have in the Module Reference
segment of the SYSBldPrepare() function, but with no asterisk (*) wildcard
notation.

SYSBldRelease() is useful when you contact IBM Support with SYSBldPrepare()
issues.

The SYSBldPrepare() function needs to have been called at least once in the same
database before SYSBldRelease() can return the correct version string of
SYSBldPrepare(). The call to SYSBldPrepare() does not need to be in the same
session as the call to SYSBldRelease().

The EXPLAIN_SQL Routine
The IBM Data Studio Administration Edition can use the EXPLAIN_SQL routine to
obtain a query plan in XML format, interpret the XML, and render the plan
visually.

IBM Data Studio consists of a set of tools to use for administration, data modeling,
and building queries from data that comes from data servers. The EXPLAIN_SQL
routine prepares a query and returns a query plan in XML.

If you plan to use IBM Data Studio to obtain Visual Explain output, you must
create and specify a default sbspace name for the SBSPACENAME configuration
parameter in your ONCONFIG file. The EXPLAIN_SQL routine creates BLOB
objects in this sbspace.

Chapter 6. Built-In Routines 6-9

For information on using IBM Data Studio, see the IBM Data Studio
documentation.

UDR Definition Routines
The UDR definition routines are built-in routines that enable users to perform
various tasks for developing or modifying external user-defined routines of
Informix, or for enabling IBM Data Server Driver for JDBC and SQL procedures to
access Informix and DB2® databases through the Distributed Relational Database
Architecture (DRDA) protocol.

These are the built-in UDR definition routines:
v ifx_replace_module()

v ifx_unload_module()

v jvpcontrol()

v sqlj.alter_java_path()

v sqlj.install_jar()

v sqlj.remove_jar()

v sqlj.replace_jar()

v sqlj.setUDTextName()

v sqlj.unsetUDTextName()

v sysibm.Metadata()

v sysibm.SQLCAMessage()

Authorization to Use UDR Definition Routines

If the IFX_EXTEND_ROLE configuration parameter is set to ’On’ or 1,
authorization to use the built-in routines that manipulate shared objects is available
only to the Database Server Administrator, and to users to whom the DBSA has
granted the EXTEND role. For Informix 10.00.xC4 and later releases,
IFX_EXTEND_ROLE is enabled by default.

For databases in which this security feature is not needed, see the description of
IFX_EXTEND_ROLE in your IBM Informix Administrator's Reference for information
on how the DBSA can disable this configuration parameter by resetting it. For the
syntax of granting the EXTEND role to individual users or to the PUBLIC group,
see the topic “Granting the EXTEND Role” on page 2-417.

IFX_REPLACE_MODULE Function
The IFX_REPLACE_MODULE function replaces a loaded shared-object file of a
UDR written in the C language with a new version that has a different name or
location. If the IFX_EXTEND_ROLE configuration parameter is set to ’On’ or 1,
authorization to use this function is available only to the Database Server
Administrator (DBSA), and to users whom the DBSA has granted the EXTEND
role.

IFX_REPLACE_MODULE Function:

IFX_REPLACE_MODULE (old_module , new_module , "C")

6-10 IBM Informix Guide to SQL: Syntax

Argument Description Restrictions Syntax

new_module Full pathname of the new shared-object
file to replace the shared-object file that
old_module specifies

The shared-object file must exist with the
specified pathname, which can be no more
than 255 bytes long

“Quoted
String” on
page 4-188

old_module Full pathname of the shared-object file to
replace with the shared-object file that
new_module specifies

The shared-object file must exist with the
specified pathname, which can be no more
than 255 bytes long

“Quoted
String” on
page 4-188

The IFX_REPLACE_MODULE function is a DBA-privileged function that returns
an integer value to indicate the status of the shared-object-file replacement
operation:
v Zero (0) to indicate success
v A negative integer to indicate an error.

Do not use the IFX_REPLACE_MODULE function to reload a module of the same
name. If the full names of the old and new modules that you send to
IFX_REPLACE_MODULE are the same, then unpredictable results can occur.

After IFX_REPLACE_MODULE completes execution, the database server ages out
the old_module shared-object file; that is, all statements subsequent to the
IFX_REPLACE_MODULE function will use UDRs in the new_module shared-object
file, and the old module will be unloaded when any statements that were using it
are complete. Thus, for a brief time, both the old_module and the new_module
shared-object files could be resident in memory. If this aging out behavior is
undesirable, use the IFX_UNLOAD_MODULE function to unload the
shared-object file completely.

On UNIX, for example, suppose you want to replace the circle.so shared library,
which contains UDRs written in the C language. If the old version of this library
resides in the /usr/apps/opaque_types directory and the new version in the
/usr/apps/shared_libs directory, then the following EXECUTE FUNCTION
statement executes the IFX_REPLACE_MODULE function:
EXECUTE FUNCTION ifx_replace_module(

"/usr/apps/opaque_types/circle.so",
"/usr/apps/shared_libs/circle.so", "C");

On Windows, for another example, suppose you want to replace the circle.dll
dynamic link library, which contains C UDRs. If the old version of this library
resides in the C:\usr\apps\opaque_types directory and the new version in the
C:\usr\apps\DLLs directory, then the following EXECUTE FUNCTION statement
executes the IFX_REPLACE_MODULE function:
EXECUTE FUNCTION ifx_replace_module(

"C:\usr\apps\opaque_types\circle.dll",
"C:\usr\apps\DLLs\circle.dll", "C");

To execute the IFX_REPLACE_MODULE function in an IBM Informix ESQL/C
application, you must associate the function with a cursor.

For more information on how to use IFX_REPLACE_MODULE to replace a
shared-object file, see the chapter on how to design a UDR in IBM Informix
User-Defined Routines and Data Types Developer's Guide. For information on how to
use the IFX_UNLOAD_MODULE function, see the section
“IFX_UNLOAD_MODULE Function” on page 6-12.

Chapter 6. Built-In Routines 6-11

IFX_UNLOAD_MODULE Function
The IFX_UNLOAD_MODULE function unloads the shared-object file of a UDR
written in the C language from shared memory.

IFX_UNLOAD_MODULE Function:

IFX_UNLOAD_MODULE (module_name , "C")

Argument Description Restrictions Syntax

module_name Full pathname of file
to unload

Shared-object file must exist and be unused. Pathname
can be up to 255 bytes long.

“Quoted String”
on page 4-188

The IFX_UNLOAD_MODULE function is an owner-privileged function whose
owner is user informix. It returns an integer value to indicate the status of the
shared-object-file unload operation:
v Zero (0) to indicate success
v A negative integer to indicate an error.

The IFX_UNLOAD_MODULE function can only unload an unused shared-object
file; that is, when no executing SQL statements (in any database) are using any
UDRs in the specified shared-object file. If any UDR in the shared-object file is
currently in use, then IFX_UNLOAD_MODULE raises an error.

On UNIX, for example, suppose you want to unload the circle.so shared library,
which contains C UDRs. If this library resides in the /usr/apps/opaque_types
directory, you can use the following EXECUTE FUNCTION statement to execute
the IFX_UNLOAD_MODULE function:
EXECUTE FUNCTION ifx_unload_module

(“/usr/apps/opaque_types/circle.so”, “C”);

On Windows, for example, suppose you want to unload the circle.dll dynamic link
library, which contains C UDRs. If this library is in the C:\usr\apps\opaque_types
directory, you can use the following EXECUTE FUNCTION statement to execute
the IFX_UNLOAD_MODULE function:
EXECUTE FUNCTION ifx_unload_module

(“C:\usr\apps\opaque_types\circle.dll”, “C”);

For more information about using the built-in IFX_REPLACE_MODULE() and
IFX_UNLOAD_MODULE() UDR definition routines, see the IBM Informix
User-Defined Routines and Data Types Developer's Guide and the IBM Informix
DataBlade API Programmer's Guide.

jvpcontrol Function

The jvpcontrol() function is a built-in iterative function that you can use to obtain
information about a Java Virtual Processor (JVP) class.

The jvpcontrol Function:

informix.jvpcontrol (" MEMORY jvp_id ")
THREADS

6-12 IBM Informix Guide to SQL: Syntax

Argument Description Restrictions Syntax

jvp_id Name of the Java Virtual Processor (JVP) class about
which you seek information

The specified Java Virtual
Processor class must exist

“Identifier”
on page 5-21

You must associate this function with the equivalent of a cursor in the Java
language.

Using the MEMORY Keyword
When you specify the MEMORY keyword, the jvpcontrol function returns the
memory usage on the JVP class that you specify. The following example requests
information about the memory usage of the JVP class named 4:
EXECUTE FUNCTION INFORMIX.JVPCONTROL ("MEMORY 4");

Using the THREADS Keyword
When you specify the THREADS keyword, the jvpcontrol function returns a list of
the threads running on the JVP class that you specify. The following example
requests information about the threads running on the JVP class named 4:
EXECUTE FUNCTION INFORMIX.JVPCONTROL ("THREADS 4");

For more information about using jvpcontrol() and the built-in sqlj routines, see
the J/Foundation Developer's GuideJ/Foundation Developer's Guide.

SQLJ Driver Built-In Procedures
Use the SQLJ Driver built-in procedures for one of the following tasks:
v To install, replace, or remove a set of Java classes
v To specify a path for Java class resolution for Java classes that are included in a

JAR file
v To map or remove the mapping between a user-defined type and the Java type

to which it corresponds

SQLJ Driver Built-In Procedures:

(1)
sqlj.install_JAR

(2)
sqlj.replace_JAR

(3)
sqlj.remove_JAR

(4)
sqlj.alter_java_path

(5)
sqlj.SetUDTextName

(6)
sqlj.unsetUDTextName

Notes:

1 See “sqlj.install_jar” on page 6-14

2 See “sqlj.replace_jar” on page 6-15

3 See “sqlj.remove_jar” on page 6-16

4 See “sqlj.alter_java_path” on page 6-16

Chapter 6. Built-In Routines 6-13

5 See “sqlj.setUDTextName” on page 6-18

6 See “sqlj.unsetUDTextName” on page 6-18

A client application must specify the 'sqli' owner name to invoke these functions
from an ANSI-compliant database.

The SQLJ built-in procedures are stored in the sysprocedures system catalog table.
They are grouped under the sqlj schema.

Tip: For any Java static method, the first built-in procedure that you execute must
be the sqlj.install_jar() procedure. You must install the JAR file before you can
create a UDR or map a user-defined data type to a Java type. Similarly, you cannot
use any of the other SQLJ built-in procedures until you have used sqlj.install_jar(
).

sqlj.install_jar

Use the sqlj.install_jar() procedure to install a JAR file in the current database and
assign to it a JAR identifier.

sqlj.install_jar:

sqlj.install_jar
(1) 0

(jar_file , Jar Name , deploy)

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

deploy Integer that causes the procedure to search for
deployment descriptor files in the JAR file

None “Literal Number” on
page 4-184

jar_file URL of the JAR file that contains the Java language
UDR

Maximum length of the
URL is 255 bytes

“Quoted String” on
page 4-188

For example, consider a Java class Chemistry that contains the following static
method explosiveReaction():
public static int explosiveReaction(int ingredient)

Here the Chemistry class resides in this JAR file on the server computer:
/students/data/Courses.jar

You can install all classes in the Courses.jar file in the current database with the
following call to the sqlj.install_jar() procedure:
EXECUTE PROCEDURE

sqlj.install_jar("file://students/data/Courses.jar", "course_jar");

The sqlj.install_jar() procedure assigns the JAR ID, course_jar, to the Courses.jar
file that it has installed in the current database.

After you define a JAR ID in the database, you can use that JAR ID when you
create and execute a UDR written in the Java language.

6-14 IBM Informix Guide to SQL: Syntax

When you specify a nonzero number for the third argument, the database server
searches through any included deployment descriptor files. For example, you
might want to include descriptor files that include SQL statements to register and
grant privileges on UDRs in the JAR file.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.install_jar() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute sqlj.install_jar().

File Permissions on Jar Files
Aftersqlj.install_jar() installs a JAR file in the database and declares a JAR ID for
the file, Informix can access that JAR file only if the user who installed the
Informix instance (typically, user 'informix') has permission to read the directory
where the JAR file resides. On UNIX systems, for example, this implies that an
attempt to read a JAR file that has 600 permissions fails with a FILENOTFOUND
exception. The same operation can succeed, however, after the chmod utility sets
the permissions to 660 (rw-rw----).

sqlj.replace_jar

Use the sqlj.replace_jar() procedure to replace a previously installed JAR file with
a new version. When you use this syntax, you provide only the new JAR file and
assign to it the JAR ID for which you want to replace the file.

sqlj.replace_jar:

sqlj.replace_jar
(1)

(jar_file , Jar Name)

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

jar_file URL of the JAR file that contains the
UDR written in Java

The maximum length of the URL is 255
bytes

“Quoted String” on
page 4-188

If you attempt to replace a JAR file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs before
replacing the JAR file.

For example, the following call replaces the Courses.jar file, which had previously
been installed for the course_jar identifier, with the Subjects.jar file:
EXECUTE PROCEDURE

sqlj.replace_jar("file://students/data/Subjects.jar",
"course_jar");

Before you replace the Course.jar file, you must drop the user-defined function
sql_explosive_reaction() with the DROP FUNCTION (or DROP ROUTINE)
statement.

Chapter 6. Built-In Routines 6-15

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.replace_jar() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute sqlj.replace_jar().

sqlj.remove_jar

Use the sqlj.remove_jar() procedure to remove a previously installed JAR file
from the current database.

sqlj.remove_jar:

sqlj.remove_jar
(1) 0

(Jar Name , deploy)

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

deploy Integer that causes the procedure to search for deployment
descriptor files in the JAR file

None “Literal Number” on
page 4-184

If you attempt to remove a JAR file that is referenced by one or more UDRs, the
database server generates an error. You must drop the referencing UDRs before
you replace the JAR file. For example, the following SQL statements remove the
JAR file associated with the course_jar JAR ID:
DROP FUNCTION sql_explosive_reaction;
EXECUTE PROCEDURE sqlj.remove_jar("course_jar");

When you specify a nonzero number for the second argument, the database server
searches through any included deployment descriptor files. For example, you
might want to include descriptor files that include SQL statements to revoke
privileges on UDRs in the associated JAR file and drop them from the database.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.remove_jar() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute sqlj.remove_jar().

sqlj.alter_java_path

Use sqlj.alter_java_path() to specify the jar-file path to use when the routine
manager resolves related Java classes for the JAR file of a UDR written in the Java
language.

sqlj.alter_java_path:

sqlj.alter_java_path �

6-16 IBM Informix Guide to SQL: Syntax

� �
(1) (1)

(Jar Name (package_id. * , Jar Name))
class_id

Notes:

1 See “Jar Name” on page 5-34

Argument Description Restrictions Syntax

class_id Java class that contains method to
implement the UDR

Java class must exist in the JAR file that jar_id
specifies. Identifier must not exceed 255 bytes.

Language
specific

package_id Name of the package that contains
the Java class

The fully qualified identifier of package_id.class_id
must not exceed 255 bytes

Language
specific

The JAR IDs that you specify, namely the JAR ID for which you are altering the
JAR-file path and the resolution JAR ID, must both have been installed with the
sqlj.install_jar procedure. When you invoke a UDR written in the Java language,
the routine manager attempts to load the Java class in which the UDR resides. At
this time, it must resolve the references that this Java class makes to other Java
classes.

The three types of such class references are these:
1. References to Java classes that the JVPCLASSPATH configuration parameter

specifies (such as Java system classes like java.util.Vector)
2. References to classes that are in the same JAR file as the UDR
3. References to classes that are outside the JAR file that contains the UDR.

The routine manager implicitly resolves classes of type 1 and 2 in the preceding
list. To resolve type 3 references, it examines all the JAR files in the JAR file path
that the latest call to sqlj.alter_java_path() specified.

The routine manager issues an exception if it cannot resolve a class reference. The
routine manager checks the JAR file path for class references after it performs the
implicit type 1 and type 2 resolutions.

If you want a Java class to be loaded from the JAR file that the JAR file path
specifies, make sure the Java class is not present in the JVPCLASSPATH
configuration parameter. Otherwise, the system loader picks up that Java class first,
which might result in a different class being loaded than what you expect.

Suppose that the sqlj.install_jar() procedure and CREATE FUNCTION have been
executed as the preceding sections describe. The following SQL statement invokes
sql_explosive_reaction() function in the course_jar JAR file:
EXECUTE PROCEDURE alter_java_path("course_jar",

"(professor/*, prof_jar)");
EXECUTE FUNCTION sql_explosive_reaction(10000);

The routine manager attempts to load the class Chemistry. It uses the path that the
call to sqlj.alter_java_path() specifies to resolve any class references. Therefore, it
checks the classes that are in the professor package of the JAR file that prof_jar
identifies.

Chapter 6. Built-In Routines 6-17

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
sqlj.alter_java_path() procedure. When IFX_EXTEND_ROLE is disabled, any user
can execute sqlj.alter_java_path().

sqlj.setUDTextName

Use the sqlj.setUDTextName() procedure to define the mapping between a
user-defined data type and a Java class.

sqlj.SetUDTextName:

sqlj.SetUDTextName �(data_type , class_id)
package_id,

Argument Description Restrictions Syntax

class_id Java class that contains the
Java data type

Qualified name package_id.class_id must
not exceed 255 bytes

Language-specific rules for
Java identifiers

data_type User-defined type for which to
create a mapping

Name must not exceed 255 bytes “Identifier” on page 5-21

package_id Name of package that contains
the class_id Java class

Same length restrictions as class_id Language-specific rules for
Java identifiers

You must have registered the user-defined data type in the CREATE DISTINCT
TYPE, CREATE OPAQUE TYPE, or CREATE ROW TYPE statement.

To look up the Java class for a user-defined data type, the database server searches
in the JAR-file path, which the sqlj.alter_java_path() procedure has specified. For
more information on the JAR-file path, see “sqlj.alter_java_path” on page 6-16.

The SQLJ Driver looks in the path that CLASSPATH specifies in the client
environment before it asks the database server for the name of the Java class.

The setUDTextName() routine is an extension to the SQLJ:SQL Routines Using the
Java Programming Language specification.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
setUDTextName() procedure. When IFX_EXTEND_ROLE is disabled, any user can
execute setUDTextName().

sqlj.unsetUDTextName

Use the sqlj.unsetUDTextName() routine to remove the mapping from a
user-defined data type to a Java class.

sqlj.unsetUDTextName:

sqlj.unsetUDTextName (data_type)

6-18 IBM Informix Guide to SQL: Syntax

Argument Description Restrictions Syntax

data_type User-defined data type for which to remove the mapping Must exist “Identifier” on page
5-21

This routine removes the SQL-to-Java mapping and consequently removes any
cached copy of the Java class from shared memory of the database server.

The unsetUDTextName() routine is an extension to the SQLJ:SQL Routines Using
the Java Programming Language specification.

If the IFX_EXTEND_ROLE configuration parameter is enabled (which is its default
setting), only the DBSA or users who hold the EXTEND role are able to execute the
unsetUDTextName() procedure. When IFX_EXTEND_ROLE is disabled, any user
can execute unsetUDTextName().

DRDA Support Functions
Informix provides built-in functions that support the Distributed Relational
Database Architecture (DRDA) protocol when the Informix instance is configured
as a DRDA application server. (This is accomplished by setting
DBSERVERALIASES to DRDA in the configuration file.)
v The sysibm.Metadata function provides database metadata information to IBM

Data Server Driver for JDBC and SQL client applications.
v The sysibm.SCLCAMessage function supports DRDA error handling.

The Informix implementation of these functions conforms to the DR Level 5
SQLAM 7 standard

Metadata Function

The sysibm.Metadata function is an SPL routine that can be called by IBM Data
Server Driver for JDBC and SQL applications to dynamically retrieve database
metadata. The Metadata routine is automatically created in every database of
Informix instances that are configured as DRDA application servers. The client
application must specify the 'sysibm' owner name to invoke this function from an
ANSI-compliant database.

It has the following routine definition:
create procedure sysibm.METADATA() returning

integer as allProceduresAreCallable,
integer as allTablesAreSelectable,
integer as nullsAreSortedHigh,
integer as nullsAreSortedLow,
integer as nullsAreSortedAtStart,
integer as nullsAreSortedAtEnd,
integer as usesLocalFiles,
integer as usesLocalFilePerTable,
integer as storesUpperCaseIdentifiers,
integer as storesLowerCaseIdentifiers,
integer as storesMixedCaseIdentifiers,
integer as storesLowerCaseQuotedIdentifiers,
integer as storesMixedCaseQuotedIdentifiers,
lvarchar(4096) as getSQLKeywords,
varchar(100) as getNumericFunctions,
varchar(100) as getStringFunctions,
varchar(100) as getSystemFunctions,
varchar(100) as getTimeDateFunctions,

Chapter 6. Built-In Routines 6-19

varchar(25) as getSearchStringEscape,
varchar(25) as getExtraNameCharacters,
integer as supportsAlterTableWithAddColumn,
integer as supportsAlterTableWithDropColumn,
integer as supportsConvert,
varchar(255) as supportsConvertType,
integer as supportsDifferentTableCorrelationNames,
integer as supportsExpressionsInOrderBy,
integer as supportsOrderByUnrelated,
integer as supportsGroupBy,
integer as supportsGroupByUnrelated,
integer as supportsGroupByBeyondSelect,
integer as supportsMultipleResultSets,
integer as supportsMultipleTransactions,
integer as supportsCoreSQLGrammar,
integer as supportsExtendedSQLGrammar,
integer as supportsANSI92IntermediateSQL,
integer as supportsANSI92FullSQL,
integer as supportsIntegrityEnhancementFacility,
integer as supportsOuterJoins,
integer as supportsFullOuterJoins,
integer as supportsLimitedOuterJoins,
varchar(50) as getSchemaTerm,
varchar(50) as getProcedureTerm,
varchar(50) as getCatalogTerm,
integer as isCatalogAtStart,
varchar(50) as getCatalogSeparator,
integer as supportsSchemasInDataManipulation,
integer as supportsSchemasInProcedureCalls,
integer as supportsSchemasInTableDefinitions,
integer as supportsSchemasInIndexDefinitions,
integer as supportsSchemasInPrivilegeDefinitions,
integer as supportsCatalogsInDataManipulation,
integer as supportsCatalogsInProcedureCalls,
integer as supportsCatalogsInTableDefinitions,
integer as supportsCatalogsInIndexDefinitions,
integer as supportsCatalogsInPrivilegeDefinitions,
integer as supportsPositionedDelete,
integer as supportsPositionedUpdate,
integer as supportsSelectForUpdate,
integer as supportsStoredProcedures,
integer as supportsSubqueriesInComparisons,
integer as supportsUnion,
integer as supportsUnionAll,
integer as supportsOpenCursorsAcrossCommit,
integer as supportsOpenCursorsAcrossRollback,
integer as supportsOpenStatementsAcrossCommit,
integer as supportsOpenStatementsAcrossRollback,
integer as getMaxBinaryLiteralLength,
integer as getMaxCharLiteralLength,
integer as getMaxColumnNameLength,
integer as getMaxColumnsInGroupBy,
integer as getMaxColumnsInIndex,
integer as getMaxColumnsInOrderBy,
integer as getMaxColumnsInSelect,
integer as getMaxColumnsInTable,
integer as getMaxConnections,
integer as getMaxCursorNameLength,
integer as getMaxIndexLength,
integer as getMaxSchemaNameLength,
integer as getMaxProcedureNameLength,
integer as getMaxCatalogNameLength,
integer as getMaxRowSize,
integer as doesMaxRowSizeIncludeBlobs,
integer as getMaxStatementLength,
integer as getMaxStatements,
integer as getMaxTableNameLength,

6-20 IBM Informix Guide to SQL: Syntax

integer as getMaxTablesInSelect,
integer as getMaxUserNameLength,
integer as getDefaultTransactionIsolation,
integer as supportsTransactions,
varchar(50) as supportsTransactionIsolationLevel,
integer as supportsDataDefinitionAndDataManipulationTransactions,
integer as supportsDataManipulationTransactionsOnly,
integer as dataDefinitionCausesTransactionCommit,
integer as dataDefinitionIgnoredInTransactions,
varchar(100) as supportsResultSetType,
varchar(100) as supportsResultSetConcurrency,
varchar(100) as ownUpdatesAreVisible,
varchar(100) as ownDeletesAreVisible,
varchar(100) as ownInsertsAreVisible,
varchar(100) as othersUpdatesAreVisible,
varchar(100) as othersDeletesAreVisible,
varchar(100) as othersInsertsAreVisible,
varchar(100) as updatesAreDetected,
varchar(100) as deletesAreDetected,
varchar(100) as insertsAreDetected,
integer as supportsBatchUpdates,
integer as supportsSavepoints,
integer as supportsGetGeneratedKeys

sysibm.SQLCAMessage Function
By default, IBM Data Server Driver for JDBC and SQL for Informix does not return
localized error messages. Detailed and localized error messages from the server are
expected, however, when property
“retrieveMessagesFromServerOnGetMessage=true” is set in the connection URL.

The SQLCAMessage function is an SPL routine that supports the retrieval of
detailed error message text from remote DB2 or Informix database servers to client
applications that use the Distributed Relational Database Architecture (DRDA)
protocol. The SQLCAMessage routine is automatically created in every database of
Informix instances that are configured as DRDA application servers. The IBM Data
Server Driver for JDBC and SQL client application must specify the 'sysibm' owner
name to invoke this function from an ANSI-compliant database.

The SQLCAMessage function retrieves localized error messages, based on the
SQLSTATE code in the SQL Communications Area (SQLCA).

The definition of this function uses IN, OUT, and INOUT parameters:
CREATE function sysibm.SQLCAMessage (

IN SQLCode INTEGER,
IN SQLErrml SMALLINT,
IN SQLErrmc VARCHAR(70),
IN SQLErrp CHAR(8),
IN SQLErrd0 INTEGER,
IN SQLErrd1 INTEGER,
IN SQLErrd2 INTEGER,
IN SQLErrd3 INTEGER,
IN SQLErrd4 INTEGER,
IN SQLErrd5 INTEGER,
IN SQLWarn CHAR(11),
IN SQLState CHAR(5),
IN MessageFileName VARCHAR(20),
INOUT Locale VARCHAR(33),
OUT Message LVARCHAR(4096),
OUT Rcode INTEGER)
RETURNING INTEGER
EXTERNAL NAME '(SQLCAMessage)’
LANGUAGE C

Chapter 6. Built-In Routines 6-21

To invoke the function, you can use this syntax:

sysibm.SQLCAMessage:

'sysibm'.SQLCAMessage (error_code , input_locale , message_ file)

Argument Description Restrictions Syntax

error_number The SQLCODE value of the error, Must exist “Expression” on
page 4-40

input_locale Name of the input locale for receiving the message.
Default is the U.S. English locale (en_us).

Must exist “Identifier” on page
5-21

message_file Name of the message file Must exist Pathname

The function retrieves the text from the specified message_file for the specified
SQLCODE and input_locale. The return code indicates the success or failure of the
call to execute the SQLCAMessage routine.

The Informix DRDA application server attempts to retrieve the error message text
using the specified input parameters:
v SQLCODE

v input_locale, and
v message_file

The Informix DRDA application server attempts to retrieve the error message text
using the specified input parameters: The default message file (errmsgtxt) is used
if the MessageFileName argument message_file is NULL. The default locale (en_us)
is used to retrieve the error message if retrieval using the specified input_locale is
unsuccessful. The token array is used to replace the tokens in the retrieved
message text, if applicable.

If the retrieval is successful,
v SQLCODE is removed from the error message,
v the error message is copied to the OUT parameter ‘Message'
v the locale used for retrieving the message is copied to INOUT parameter

‘Locale'.

If the retrieval is unsuccessful, the error message text "Message not found" is
copied to the Message parameter.

For both cases, the OUT parameter Rcod is set to the return code for executing this
SPL routine.

Detailed message for ISAM errors are supplied from the SQLERRD[0] value.
ISAM error messages are concatenated to actual error message string and returned
to the application.

For the codes of SQLSTATE values for which the SQLCAMessage function can
return the corresponding error message text, see “List of SQLSTATE Codes” on
page 2-392.

6-22 IBM Informix Guide to SQL: Syntax

Appendix A. Keywords of SQL for IBM Informix

This appendix lists the keywords in the IBM Informix implementation of SQL for
Informix.

The ISO standard SQL language has many keywords. Some are designated as
reserved words and others as non-reserved words. In ISO SQL, reserved words cannot
be used as identifiers for database objects (like tables, columns, and so forth). To
use such a name in a valid SQL statement requires a delimited identifier
(“Delimited Identifiers” on page 5-23) that you enclose between double (" ")
quotation marks.

In contrast, the dialect of SQL that IBM Informix database servers implement has
very few reserved words in the sense of a character string that obeys the rules for
identifiers (“Identifier” on page 5-21) but always produces a compilation error or
runtime error when used as an identifier. Your application might encounter
restricted functionality, however, or unexpected results, if you define an SPL
routine that has the same name as a built-in SQL function, expression, or operator.

Do not declare any of the keywords in this appendix as SQL identifiers. If you do,
errors or syntactic ambiguities can occur if the identifier appears in a context
where the keyword is valid. In addition, your code will be more difficult to read
and to maintain. Do not use keywords of C or C++ (or of any other programming
language that you will be using in an embedded mode) in your database
structures.

If you receive an error message that seems unrelated to the SQL statement that
caused the error, you might wish to review this appendix to see if a keyword has
been used as an identifier.

To avoid using a keyword as an identifier, you can qualify the identifier with an
owner name or modify the identifier. For example, rather than name a database
object CURRENT, you might name it o_current or juanita.current. For a
discussion of potential problems in using keywords as identifiers, and of additional
workarounds for specific keywords, see “Use of Keywords as Identifiers” on page
5-22. See also IBM Informix Guide to SQL: Tutorial for more information about using
keywords as identifiers in SQL applications.

© Copyright IBM Corp. 1996, 2010 A-1

A

ABS
ABSOLUTE
ACCESS
ACCESS_METHOD
ACOS
ACTIVE
ADD
ADDRESS
ADD_MONTHS
ADMIN
AFTER
AGGREGATE
ALIGNMENT
ALL
ALL_ROWS
ALLOCATE
ALTERE

AND
ANSI
ANY
APPEND
ARRAY
AS
ASC
ASCII
ASIN
AT
ATAN
ATAN2
ATTACH
ATTRIBUTES
AUDIT
AUTHENTICATION
AUTHID

AUTHORIZATION
AUTHORIZED
AUTO
AUTOFREE
AUTO_REPREPARE
AUTO_STAT_MODE
AVG
AVOID_EXECUTE
AVOID_FACT
AVOID_FULL
AVOID_HASH
AVOID_INDEX
AVOID_INDEX_SJ
AVOID_MULTI_INDEX
AVOID_NL
AVOID_SUBQF
AVOID_STAR_JOIN

B

BASED
BEFORE
BEGIN
BETWEEN
BIGINT
BIGSERIAL
BINARY

BITAND
BITANDNOT
BITNOT
BITOR
BITXOR
BLOB
BLOBDIR

BOOLEAN
BOTH
BOUND_IMPL_PDQ
BUFFERED
BUILTIN
BY
BYTE

C

CACHE
CALL
CANNOTHASH
CARDINALITY
CASCADE
CASE
CAST
CEIL
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLASS
CLASS_ORIGIN
CLIENT
CLOB
CLOBDIR
CLOSE

CLUSTER
CLUSTERSIZE
COBOL
CODESET
COLLATION
COLLECTION
COLUMN
COLUMNS
COMMIT
COMMITTED
COMMUTATOR
COMPONENT
COMPONENTS
CONCAT
CONCURRENT
CONNECT
CONNECTION
CONNECTION_NAME
CONNECT_BY_ISCYCLE

CONNECT_BY_ISLEAF
CONNECT_BY_ROOTCONST
CONSTRAINT
CONSTRAINTS
CONSTRUCTOR
CONTEXT
CONTINUE
COPY
COS
COSTFUNC
COUNT
CRCOLS
CREATE
CROSS
CURRENT
CURRENT_ROLE
CURRVAL
CURSOR
CYCLE

A-2 IBM Informix Guide to SQL: Syntax

D

DATABASE
DATAFILES
DATASKIP
DATE
DATETIME
DAY
DBA
DBDATE
DBINFO
DBPASSWORD
DBSERVERNAME
DBSECADM
DEALLOCATE
DEBUG
DEBUGMODE
DEBUG_ENV
DEC
DECIMAL
DECLARE

DECODE
DECRYPT_BINARY
DECRYPT_CHAR
DEC_T
DEFAULT
DEFAULT_ROLE
DEFERRED
DEFERRED_PREPARE
DEFINE
DELAY
DELETE
DELETING
DELIMITED
DELIMITER
DELUXE
DESC
DESCRIBE
DESCRIPTOR

DETACH
DIAGNOSTICS
DIRECTIVES
DIRTY
DISABLE
DISABLED
DISCONNECT
DISK
DISTINCT
DISTRIBUTEBINARY
DISTRIBUTESREFERENCES
DISTRIBUTIONS
DOCUMENT
DOMAIN
DONOTDISTRIBUTE
DORMANT
DOUBLE
DROP
DTIME_T

E

EACH
ELIF
ELSE
ENABLED
ENCRYPT_AES
ENCRYPT_TDES
ENCRYPTION
END
ENUM
ENVIRONMENT

ERROR
ESCAPE
EXCEPTION
EXCLUSIVE
EXEC
EXECUTE
EXECUTEANYWHERE
EXEMPTION
EXISTS

EXIT
EXP
EXPLAIN
EXPLICIT
EXPRESS
EXPRESSION
EXTDIRECTIVES
EXTEND
EXTENT
EXTERNAL

F

FACT
FALSE
FAR
FETCH
FILE
FILETOBLOB
FILETOCLOB
FILLFACTOR
FILTERING
FIRST
FIRST_ROWS

FIXCHAR
FIXED
FLOAT
FLOOR
FLUSH
FOR
FORCE
FORCED
FORCE_DDL_EXEC
FOREACH
FOREIGN

FORMAT
FORMAT_UNITS
FORTRAN
FOUND
FRACTION
FRAGMENT
FRAGMENTS
FREE
FROM
FULL
FUNCTION

G

GENERAL
GET
GETHINT

GLOBAL
GO
GOTO

GRANT
GREATERTHAN
GREATERTHANOREQUAL
GROUP

Appendix A. Keywords of SQL for IBM Informix A-3

H

HANDLESNULLS
HASH
HAVING
HDR

HEX
HIGH
HINT

HOLD
HOME
HOUR

I

IDSLBACREADARRAY
IDSLBACREADSET
IDSLBACREADTREE
IDSLBACRULES
IDSLBACWRITEARRAY
IDSLBACWRITESET
IDSLBACWRITETREE
IDSSECURITYLABEL
IF
IFX_AUTO_REPREPARE
IFX_BATCHEDREAD_TABLE
IFX_INT8_T
IFX_LO_CREATE_SPEC_T
IFX_LO_STAT_T
IMMEDIATE
IMPLICIT

IMPLICIT_PDQ
IN
INACTIVE
INCREMENT
INDEX
INDEXES
INDEX_ALL
INDEX_SJ
INDICATOR
INFORMIX
INIT
INITCAP
INLINE
INNER
INOUT
INSERT

INSERTING
INSTEAD
INT
INT8
INTEG
INTEGER
INTERNAL
INTERNALLENGTH
INTERVAL
INTO
INTRVL_T
IS
ISCANONICAL
ISOLATION
ITEM
ITERATOR

J - K

JAVA
JOIN

KEEP KEY

L

LABEL
LABELEQ
LABELGE
LABELGLB
LABELGT
LABELLE
LABELLT
LABELLUB
LABELTOSTRING
LANGUAGE
LAST
LAST_DAY
LEADING
LEFT

LENGTH
LESSTHAN
LESSTHANOREQUAL
LET
LEVEL
LIKE
LIMIT
LIST
LISTING
LOAD
LOCAL
LOCATOR
LOCK
LOCKS

LOCOPY
LOC_T
LOG
LOG10
LOGN
LONG
LOOP
LOTOFILE
LOW
LOWER
LPAD
LTRIM
LVARCHAR

A-4 IBM Informix Guide to SQL: Syntax

M

MATCHED
MATCHES
MAX
MAXERRORS
MAXLEN
MAXVALUE
MDY
MEDIAN
MEDIUM
MEMORY

MEMORY_RESIDENT
MERGE
MESSAGE_LENGTH
MESSAGE_TEXT
MIDDLE
MIN
MINUTE
MINVALUE
MOD
MODE

MODERATE
MODIFY
MODULE
MONEY
MONTH
MONTHS_BETWEEN
MOUNTING
MULTISET
MULTI_INDEX

N

NAME
NCHAR
NEGATOR
NEW
NEXT
NEXT_DAY
NEXTVAL
NO
NOCACHE
NOCYCLE

NOMAXVALUE
NOMIGRATE
NOMINVALUE
NONE
NON_RESIDENT
NON_DIM
NOORDER
NORMAL
NOT
NOTEMPLATEARG

NOTEQUAL
NULL
NULLIF
NUMERIC
NUMROWS
NUMTODSINTERVAL
NUMTOYMINTERVAL
NVARCHAR
NVL

O

OCTET_LENGTH
OF
OFF
OLD
ON
ONLINE
ONLY

OPAQUE
OPCLASS
OPEN
OPTCOMPIND
OPTICAL
OPTIMIZATION
OPTION

OR
ORDER
ORDERED
OUT
OUTER
OUTPUT
OVERRIDE

P

PAGE
PARALLELIZABLE
PARAMETER
PARTITION
PASCAL
PASSEDBYVALUE
PASSWORD
PDQPRIORITY
PERCALTL_COS

PIPE
PLI
PLOAD
POLICY
POW
POWER
PRECISION
PREPARE
PREVIOUS

PRIMARY
PRIOR
PRIVATE
PRIVILEGES
PROCEDURE
PROPERTIES
PUBLIC
PUT

Appendix A. Keywords of SQL for IBM Informix A-5

R

RAISE
RANGE
RAW
READ
REAL
RECORDEND
REFERENCES
REFERENCING
REGISTER
REJECTFILE
RELATIVE
RELEASE
REMAINDER
RENAME
REOPTIMIZATION
REPEATABLE

REPLACE
REPLICATION
RESERVE
RESOLUTION
RESOURCE
RESTART
RESTRICT
RESUME
RETAIN
RETAINUPDATELOCKS
RETURN
RETURNED_SQLSTATE
RETURNING
RETURNS
REUSE
REVOKE

RIGHT
ROBIN
ROLE
ROLLBACK
ROLLFORWARD
ROOT
ROUND
ROUTINE
ROW_COUNT
ROW
ROWID
ROWIDS
ROWS
RPAD
RTRIM
RULE

S

SAMEAS
SAMPLES
SAMPLING
SAVE
SAVEPOINT
SCHEMA
SCROLL
SECLABEL_BY_COMP
SECLABEL_BY_NAME
SECLABEL_TO_CHAR
SECOND
SECONDARY
SECURED
SECURITY
SECTION
SELCONST
SELECT
SELECTING
SELFUNC
SELFUNCARGS
SEQUENCE
SERIAL
SERIAL8
SERIALIZABLE
SERVER_NAME
SERVERUUID
SESSION
SET

SETSESSIONAUTH
SHARE
SHORT
SIBLINGS
SIGNED
SIN
SITENAME
SIZE
SKALL
SKINHIBIT
SKIP
SKSHOW
SMALLFLOAT
SMALLINT
SOME
SPECIFIC
SQL
SQLCODE
SQLCONTEXT
SQLERROR
SQLSTATE
SQLWARNING
SQRT
STABILITY
STACK
STANDARD
START
STAR_JOIN

STATCHANGE
STATEMENT
STATIC
STATISTICS
STATLEVEL
STATUS
STDEV
STEP
STOP
STORAGE
STORE
STRATEGIES
STRING
STRINGTOLABEL
STRUCT
STYLE
SUBCLASS_ORIGIN
SUBSTR
SUBSTRING
SUM
SUPPORT
SYNC
SYNONYM
SYSDATE
SYSDBCLOSE
SYSDBOPEN
SYSTEM
SYS_CONNECT_BY_PATH

A-6 IBM Informix Guide to SQL: Syntax

T

TABLE
TABLES
TAN
TASK
TEMP
TEMPLATE
TEST
TEXT
THEN
TIME
TIMEOUT
TO

TODAY
TO_CHAR
TO_DATE
TO_DSINTERVAL
TO_NUMBER
TO_YMINTERVAL
TRACE
TRAILING
TRANSACTION
TRANSITION
TREE

TRIGGER
TRIGGERS
TRIM
TRUE
TRUNC
TRUNCATE
TRUSTED
TYPE
TYPEDEF
TYPEID
TYPENAME
TYPEOF

U

UID
UNCOMMITTED
UNDER
UNION
UNIQUE
UNITS
UNKNOWN

UNLOAD
UNLOCK
UNSIGNED
UPDATE
UPDATING
UPON
UPPER

USAGE
USE
USELASTCOMMITTED
USER
USE_HASH
USE_NL
USE_SUBQF
USING

V

VALUE
VALUES
VAR
VARCHAR

VARIABLE
VARIANCE
VARIANT
VARYING

VERCOLS
VIEW
VIOLATIONS
VOID
VOLATILE

W - Z

WAIT
WARNING
WEEKDAY
WHEN
WHENEVER
WHERE

WHILE
WITH
WITHOUT
WORK
WRITE
WRITEDOWN

WRITEUP
XADATASOURCE
XID
XLOAD
XUNLOAD
YEAR

Appendix A. Keywords of SQL for IBM Informix A-7

A-8 IBM Informix Guide to SQL: Syntax

Appendix B. Keywords of SQL for IBM Informix Extended
Parallel Server

This appendix lists the keywords in the IBM Informix implementation of SQL for
Extended Parallel Server.

The ISO standard SQL language has many keywords. Some are designated as
reserved words and others as non-reserved words. In ISO SQL, reserved words cannot
be used as identifiers for database objects (like tables, columns, and so forth). To
use such a name in a valid SQL statement requires a delimited identifier
(“Delimited Identifiers” on page 5-23) that you enclose between double (" ")
quotation marks.

By contrast, the dialect of SQL that IBM Informix database servers implement has
very few reserved words in the sense of a character string that obeys the rules for
identifiers (“Identifier” on page 5-21) but always produces a compilation error or
runtime error when used as an identifier. Your application might encounter
restricted functionality, however, or unexpected results, if you define an SPL
routine that has the same name as a built-in SQL function, expression, or operator.

Do not declare any of the keywords in this appendix as SQL identifiers. If you do,
errors or syntactic ambiguities can occur if the identifier appears in a context
where the keyword is valid. In addition, your code will be more difficult to read
and to maintain. Do not use keywords of C or C++ (nor of any other programming
language that you will be using in an embedded mode) in your database
structures.

If you receive an error message that seems unrelated to the SQL statement that
caused the error, you might wish to review this appendix to see if a keyword has
been used as an identifier.

To avoid using a keyword as an identifier, you can qualify the identifier with an
owner name or modify the identifier. For example, rather than name a database
object CURRENT, you might name it o_current or 'juanita'.current. For a
discussion of potential problems in using keywords as identifiers, and of additional
workarounds for specific keywords, see “Use of Keywords as Identifiers” on page
5-22. See also IBM Informix Guide to SQL: Tutorial for more information about using
keywords as identifiers in SQL applications.

A

ABS
ACOS
ADD
AFTER
ALL
ALL_MUTABLES
ALTER

AND
ANSI
ANY
APPEND
AS
ASC
ASCII

AT
ATAN
ATAN2
ATTACH
AUDIT
AUTHORIZATION
AVG
AVOID_EXECUTE

© Copyright IBM Corp. 1996, 2010 B-1

B

BEFORE
BEGIN
BETWEEN
BIGINT

BIGSERIAL
BINARY
BITMAP
BOTH

BOUND_IMPL_PDQ
BUFFERED
BY
BYTE

C

CACHE
CALL
CASCADE
CASE
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLIENT_TZ

CLOSE
CLUSTER
CLUSTERSIZE
COARSE
COBOL
CODESET
COLUMN
COMMIT
COMMITTED
COMPUTE_QUOTA

CONNECT
CONSTRAINT
CONSTRAINTS
CONTINUE
COPY
COUNT
CREATE
CURRENT
CURRENT_ROLE
CURSOR

D

DATABASE
DATAFILES
DATASKIP
DATE
DATETIME
DAY
DB2
DBA
DBDATE
DBSERVERNAME
DEBUG

DEC
DECIMAL
DECLARE
DECODE
DEFAULT
DEFAULT_ROLE
DEFERRED
DEFINE
DELETE
DELIMITER

DELUXE
DESC
DETACH
DIRTY
DISCONNECT
DISTINCT
DISTRIBUTIONS
DOCUMENT
DOUBLE
DROP
DS_CLASS

E

EACH
ELIF
ELSE
END
ENVIRONMENT
ERROR
ESCAPE

EXCEPTION
EXCLUSIVE
EXEC
EXECUTE
EXISTS
EXIT

EXPLAIN
EXPRESS
EXPRESSION
EXTEND
EXTENT
EXTERNAL

F

FETCH
FILE
FILLFACTOR
FILTERING
FIRST

FLOAT
FOR
FORCE_DDL_EXEC
FOREACH
FOREIGN
FORMAT

FORTRAN
FOUND
FRACTION
FRAGMENT
FROM
FUNCTION

B-2 IBM Informix Guide to SQL: Syntax

G

GET
GK
GLOBAL

GO
GOTO

GRANT
GROUP

H

HASH
HAVING

HEX
HIGH
HOLD

HOUR
HYBRID

I

IF
IMMEDIATE
IMMUTABLE
IMPLICIT_PDQ
IN
INDEX

INDEX_ALL
INDICATOR
INIT
INITCAP
INNER
INSERT

INT
INT8
INTEGER
INTERVAL
INTO
IS
ISOLATION

J-K

JOIN KEY

L

LABELEQ
LABELGE
LABELGT
LABELLE
LABELLT
LANGUAGE

LEADING
LEFT
LET
LEVEL
LIKE
LISTING
LOAD

LOCAL
LOCK
LOCKS
LOG
LOW
LOWER

M

MATCHES
MAX
MAXERRORS
MAXSCAN
MEDIUM
MEMORY_RESIDENT

MERGE
MIDDLE
MIN
MINUTE
MODE
MODIFY

MODULE
MONEY
MONTH
MOUNTING
MOVE
MUTABLE

N

NCHAR
NEW
NEXT
NO

NON_RESIDENT
NONE
NORMAL
NOT

NULL
NUMERIC
NVARCHAR
NVL

Appendix B. Keywords of SQL for IBM Informix Extended Parallel Server B-3

O

OCTET_LENGTH
OF
OFF
OLD
ON

ONLY
OPEN
OPERATIONAL
OPTICAL
OPTIMIZATION

OPTION
OR
ORDER
OUTER

P

PAGE
PARTITION
PASCAL
PDQPRIORITY

PLI
PLOAD
PRECISION
PREPARE
PRIMARY

PRIVATE
PRIVILEGES
PROCEDURE
PUBLIC

R

RAISE
RANGE
RAW
READ
REAL
RECORDEND
RECOVER
REFERENCES
REFERENCING
REJECTFILE
RELEASE

REMAINDER
RENAME
REPEATABLE
RESERVE
RESOLUTION
RESOURCE
RESTRICT
RESUME
RETAIN
RETURN
RETURNING

RETURNS
REVOKE
RIDLIST
ROBIN
ROLLBACK
ROLLFORWARD
ROLE
ROUND
ROW
ROWS

S

SAMEAS
SAMPLES
SCHEDULE
SCHEMA
SCRATCH
SCROLL
SECOND
SECTION
SELECT
SERIAL
SERIAL8
SERIALIZABLE
SET
SHARE

SITENAME
SIZE
SKALL
SKINHIBIT
SKSHOW
SMALLFLOAT
SMALLINT
SOME
SQL
SQLCODE
SQLERROR
SQLSTATE
SQLWARNING
STANDARD

START
STATIC
STATISTICS
STDEV
STEP
STOP
SUBSTR
SUBSTRING
SUM
SYNC
SYNONYM
SYSDBOPEN
SYSDBCLOSE
SYSTEM

T

TABLE
TEMP
TEMP_TABLE_EXT_SIZE
TEMP_TABLE_NEXT_SIZE
TEXT
THEN

TIMEOUT
TMPSPACE_LIMIT
TO
TODAY
TRACE
TRAILING

TRANSACTION
TRIGGER
TRIM
TRUNC
TRUNCATE
TYPE

B-4 IBM Informix Guide to SQL: Syntax

U

UNCOMMITTED
UNION
UNIQUE
UNITS

UNLOAD
UNLOCK
UPDATE

UPPER
USABLE_SPACES
USER
USING

V

VALUES
VARCHAR
VARIANCE

VARIANT
VARYING

VIEW
VIOLATIONS

W

WAIT
WARNING
WHEN

WHENEVER
WHERE
WHILE

WITH
WORK
WRITE

X-Z

XLOAD XUNLOAD YEAR

Appendix B. Keywords of SQL for IBM Informix Extended Parallel Server B-5

B-6 IBM Informix Guide to SQL: Syntax

Appendix C. Accessibility

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

Accessibility features for IBM Informix products
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM Informix
products. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers.
v The attachment of alternative input and output devices.

Tip: The information center and its related publications are accessibility-enabled
for the IBM Home Page Reader. You can operate all features by using the keyboard
instead of the mouse.

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

Related accessibility information
IBM is committed to making our documentation accessible to persons with
disabilities. Our publications are available in HTML format so that they can be
accessed with assistive technology such as screen reader software.

You can view the publications in Adobe Portable Document Format (PDF) by using
the Adobe Acrobat Reader.

IBM and accessibility
See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the IBM commitment to accessibility.

Dotted decimal syntax diagrams
The syntax diagrams in our publications are available in dotted decimal format,
which is an accessible format that is available only if you are using a screen reader.

In dotted decimal format, each syntax element is written on a separate line. If two
or more syntax elements are always present together (or always absent together),
the elements can appear on the same line, because they can be considered as a
single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read
punctuation. All syntax elements that have the same dotted decimal number (for
example, all syntax elements that have the number 3.1) are mutually exclusive

© Copyright IBM Corp. 1996, 2010 C-1

http://www.ibm.com/able

alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can
include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, the word or symbol is preceded by
the backslash (\) character. The * symbol can be used next to a dotted decimal
number to indicate that the syntax element repeats. For example, syntax element
*FILE with dotted decimal number 3 is read as 3 * FILE. Format 3* FILE
indicates that syntax element FILE repeats. Format 3* * FILE indicates that
syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol that provides information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, that element is defined elsewhere.
The string following the % symbol is the name of a syntax fragment rather than a
literal. For example, the line 2.1 %OP1 means that you should refer to a separate
syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:

? Specifies an optional syntax element. A dotted decimal number followed
by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax
elements, are optional. If there is only one syntax element with a dotted
decimal number, the ? symbol is displayed on the same line as the syntax
element (for example, 5? NOTIFY). If there is more than one syntax element
with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if
you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that syntax
elements NOTIFY and UPDATE are optional; that is, you can choose one or
none of them. The ? symbol is equivalent to a bypass line in a railroad
diagram.

! Specifies a default syntax element. A dotted decimal number followed by
the ! symbol and a syntax element indicates that the syntax element is the
default option for all syntax elements that share the same dotted decimal
number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines
2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In this example, if you include the
FILE keyword but do not specify an option, default option KEEP is applied.
A default option also applies to the next higher dotted decimal number. In

C-2 IBM Informix Guide to SQL: Syntax

this example, if the FILE keyword is omitted, default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP only applies to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and
does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* Specifies a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data-area, you know that
you can include more than one data area or you can include none. If you
hear the lines 3*, 3 HOST, and 3 STATE, you know that you can include
HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is
only one item with that dotted decimal number, you can repeat that
same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item
from the list, but you cannot use the items more than once each. In the
previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax
diagram.

+ Specifies a syntax element that must be included one or more times. A
dotted decimal number followed by the + symbol indicates that this syntax
element must be included one or more times. For example, if you hear the
line 6.1+ data-area, you must include at least one data area. If you hear
the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST,
STATE, or both. As for the * symbol, you can only repeat a particular item if
it is the only item with that dotted decimal number. The + symbol, like the
* symbol, is equivalent to a loop-back line in a railroad syntax diagram.

Appendix C. Accessibility C-3

C-4 IBM Informix Guide to SQL: Syntax

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1996, 2010 D-1

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,

D-2 IBM Informix Guide to SQL: Syntax

modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and PostScript are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Intel, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices D-3

http://www.ibm.com/legal/copytrade.shtml

D-4 IBM Informix Guide to SQL: Syntax

Index

Special characters
.jar filename extension 2-132
([]), brackets

array subscripts 2-551
range delimiters 4-14
substring operator 2-588, 4-64

(@), at symbol 5-18
(>) greater than symbol 4-193
(<) less than symbol 4-193
(|), pipe character 2-107, 2-448, 2-596, 2-699
(||), concatenation operator 4-41, 4-56
({ }), braces

collection delimiters 4-177
comment indicators 1-3, 5-36
specifying empty collection 4-83

(_), underscore
as wildcard character 4-14
in SQL identifiers 5-23

(--), double hyphen, comment indicator 1-3
(-), hyphen symbol

DATETIME separator 4-180
INTERVAL separator 4-182

(-), minus sign
binary operator 4-40
INTERVAL literals 4-182
unary operator 4-183

(::), cast operator 4-58
(:), colon symbol

DATETIME separator 4-180
INTERVAL separator 4-182

(!), exclamation point 4-193
in smart-large-object filename 4-124

(?), question mark
as placeholder in PREPARE 2-472, 2-478
as wildcard 4-14
dynamic parameters 2-320
generating unique large-object filename 4-124
variables in PUT 2-490

(/), slash symbol
arithmetic operator 4-41
UNIX path separator 5-71

(/* */), slash and asterisk
comment indicator 1-4, 2-480, 5-36

(.), decimal point
DATETIME separator 4-180
INTERVAL separator 4-176
literal numbers 4-184, 4-192

(.), period symbol
DATETIME separator 4-180
DECIMAL values 4-185
dot notation 4-61
INTERVAL separator 4-183
MONEY values 4-185

($), dollar sign
in SQL identifiers 5-23

(*), asterisk
all columns of a table 2-539, 2-706
all fields of a collection variable 3-24
all fields of a ROW column 2-548
all fields of a ROW value 4-61
all fields of a ROW variable 2-556

(*), asterisk (continued)
all labels of a security policy 2-521
arithmetic operator 4-41
in Projection clause 2-539
wildcard character 4-14

(\), backslash
as wildcard character 4-14
escape character 2-699

(’), single quotation marks
literal in a quoted string 4-191

(%), percent sign
as wildcard 4-14

(+), plus sign
binary operator 4-41
in optimizer directives 5-36
unary operator 4-183, 4-184

(=), equal sign
assignment operator 2-706
relational operator 4-193, 4-194

('), single quotation marks
quoted string delimiter 4-188

("), double quotation marks
delimiting SQL identifiers 4-189
literal in a quoted string 4-191
quoted string delimiter 4-188, 4-191
with delimited identifiers 5-24, 5-25

(^), caret
as wildcard character 4-14

<<label>> statement 3-1

A
ABS function 4-87, 4-88
ABSOLUTE keyword, in FETCH statement 2-372
ACCESS keyword

in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225
in GRANT statement 2-423
in INFO statement 2-433
in REVOKE statement 2-521

Access method
attributes 5-50
configuring 5-50
default operator class, assigning 5-51
defined 5-50
directives 5-37
index 2-135
modifying 2-5
primary 2-229
privileges to alter 2-5
privileges to create 2-90
privileges to drop 2-326
purpose options 5-50
registering 2-90
secondary 2-135
specifying for a table 2-228
sysams system catalog table settings 5-50

Access mode for transactions 2-673
ACCESS_METHOD keyword

in ALTER ACCESS_METHOD statement 2-5
in CREATE ACCESS_METHOD statement 2-90

© Copyright IBM Corp. 1996, 2010 X-1

ACCESS_METHOD keyword (continued)
in DROP ACCESS_METHOD statement 2-325

Accessibility C-1
dotted decimal format of syntax diagrams C-1
keyboard C-1
shortcut keys C-1
syntax diagrams, reading in a screen reader C-1

ACOS function 4-138, 4-139
Action clause, in CREATE TRIGGER statement

action list 2-260
syntax 2-254

Active connection 2-324, 2-612
ACTIVE keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-531
Active set

constructing with OPEN statement 2-470
empty 2-380
retrieving with FETCH 2-374
sequential cursor 2-298

ADD CONSTRAINT keywords
in ALTER TABLE statement 2-66

ADD CRCOLS keywords
in ALTER TABLE statement 2-45

ADD keyword
in ALTER ACCESS_METHOD statement 2-5
in ALTER FRAGMENT statement 2-22
in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in ALTER TABLE statement 2-45, 2-46, 2-47, 2-72

ADD REPLCHECK keywords
in ALTER TABLE statement 2-45

ADD ROWIDS keywords
in ALTER TABLE statement 2-46

ADD TYPE keywords
in ALTER TABLE statement 2-72

ADD VERCOLS keywords
in ALTER TABLE statement 2-47

ADD_MONTHS function 4-126, 4-127
Adding end-of-line character 2-121
ADMIN function 4-156
Advanced Encryption Standard (AES) 4-113
AES (Advanced Encryption Standard) 4-113
AFTER keyword

in ALTER FRAGMENT statement 2-10, 2-22
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in CREATE TRIGGER statement 2-254, 2-260

Aggregate functions
arguments 4-166
as arguments 5-3
AVG 4-164, 4-167
COUNT 4-164, 4-167
in ESQL 4-172
in EXISTS subquery 4-18
in expressions 2-547
in GROUP BY Clause 2-585
in ORDER BY clause 2-588
in SELECT statement 2-547
MAX 4-164, 4-170
MIN 4-164, 4-170
RANGE 4-171
STDEV 4-171
SUM 4-164, 4-171
summary 4-173

Aggregate functions (continued)
syntax of built-in aggregates 4-164
using DISTINCT 4-167
VARIANCE 4-172

AGGREGATE keyword
in CREATE AGGREGATE statement 2-92
in DROP AGGREGATE statement 2-326

Algebraic functions
ABS 4-88
CEIL 4-89
FLOOR 4-89
MOD 4-89
POW 4-90
POWER 4-90
ROOT 4-90
ROUND 4-90
SQRT 4-90
TRUNC 4-94

Alias
for a collection in SELECT statement 3-25
for a table in SELECT statement 2-553, 5-4
in optimizer directives 5-36

ALIGNMENT keyword, in CREATE OPAQUE TYPE
statement 2-155

ALL keyword 2-429
beginning a subquery 2-569
in Condition segment 4-18
in CREATE VIEW statements 2-280
in DISCONNECT statement 2-323
in Expression segment 4-164, 4-174
in GRANT statement 2-413, 2-421, 2-423
in REVOKE FRAGMENT statement 2-526
in REVOKE statement 2-506, 2-513, 2-519, 2-521
in SELECT statement 2-543
in SET ENVIRONMENT statement 2-630, 2-635, 2-638
in SET Transaction Mode statement 2-614, 2-674
with UNION operator 2-536, 2-598

ALL_ROWS keyword
in optimizer directives 5-42
in SET OPTIMIZATION statement 2-659

ALLOCATE COLLECTION statement 2-1
ALLOCATE DESCRIPTOR statement 2-3
ALLOCATE ROW statement 2-4
Allocating memory

for a collection variable 2-1
for system-descriptor area 2-3

ALLOW_NEWLINE configuration parameter 4-190
Allowing newline characters in quoted strings 4-190
ALPHA class 4-155
ALTER ACCESS_METHOD statement 2-5
ALTER FRAGMENT statement

am_readwrite purpose flag 5-52
INIT clause 2-16
privileges required 2-7
restrictions 2-9
reverting to nonfragmented table

with DETACH 2-16
with INIT 2-18

syntax 2-7
when FORCE_DDL_EXEC is enabled 2-632
with generalized-key index 2-16

ALTER FUNCTION statement 2-27
ALTER INDEX statement

reclustering a table 2-29
ALTER keyword

in GRANT statement 2-406, 2-413
in REVOKE statement 2-506, 2-512

X-2 IBM Informix Guide to SQL: Syntax

ALTER privilege 2-406, 2-413, 2-506
ALTER PROCEDURE statement 2-30
ALTER ROUTINE statement 2-31
ALTER SECURITY LABEL COMPONENT statement 2-34
ALTER SEQUENCE statement 2-38
ALTER TABLE statement

cascading deletes 2-53
changing column data type 2-59
dropping a column 2-57
privileges needed 2-41
restrictions

ADD clause 2-48
DROP Column clause 2-58
general 2-41
MODIFY clause 2-59

am_beginscan purpose task 5-53
am_check purpose task 5-52
am_close purpose task 5-52
am_cluster purpose flag 5-52
am_create purpose task 5-52
am_defopclass purpose value 5-51
am_delete purpose task 5-52
am_drop purpose task 5-52
am_endscan purpose task 5-53
am_getbyid purpose task 5-53
am_getnext purpose task 5-53
am_insert purpose task 5-52
am_keyscan purpose flag 5-51
am_open purpose task 5-52
am_parallel purpose flag 5-52
am_readwrite purpose flag 5-52
am_rescan purpose task 5-53
am_rowids purpose flag 5-52
am_scancost purpose task 5-52
am_sptype purpose value 5-51
am_stats purpose task 5-52
am_truncate access method 2-694
am_truncate purpose task 5-53
am_unique purpose flag 5-52
am_update purpose task 5-52
Ambiguities in non-unique identifiers 5-25
AND bitwise logical operation 4-53
AND keyword

in ANSI Joined Tables segment 2-561
in Condition segment 4-6, 4-20
with BETWEEN keyword 2-567

ANDNOT bitwise logical operation 4-55
Angle bracket (<< ,,, >>) symbols

loop label delimiters 3-1
statement label delimiters 3-1

ANSI compliance
-ansi compilation flag 2-292
-ansi flag 2-182, 2-198, 2-234
comment symbols 1-4
creating views 2-279
list of SQL statements 1-10
privileges on UDRs 2-410
renaming a table 2-500
table privileges 2-430
unbuffered logging 2-658

ansi flag 2-100
ANSI keyword

in CREATE DATABASE statement 2-97
ANSI-compliance

escape character 4-14
implicit transactions 2-666
isolation level 2-378, 2-673

ANSI-compliance (continued)
owner names 5-17
SQLSTATE codes 2-392
update cursors 2-294, 2-295, 2-311
warning after DELETE 2-313

ANSI-compliant database
creating 2-99
database object naming 5-47
fixed-point DECIMAL values 2-100
implicit transactions 2-308
opaque-type naming 2-155
procedure name 2-726
table privileges 2-233
upshifting owner names 5-48
warning after opening 2-286
with BEGIN WORK 2-75

ANSIOWNER environment variable 1-1, 2-99, 2-526, 5-48
ANY keyword

in Condition segment 4-18
in SELECT statement 2-569

APPEND keyword
in SET DEBUG FILE statement 2-617
in SET EXPLAIN statement 2-640

Application
comment indicators 1-4
single-threaded 2-612
thread-safe 2-324, 2-612, 2-614

Argument segment 5-1
Arguments 5-1
Arithmetic operators

binary 4-51
syntax 4-41
unary 4-52

ARRAY keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in CREATE SECURITY LABEL COMPONENT

statement 2-185
Array, with FETCH 2-377
AS keyword 2-539, 5-4

in ALTER FRAGMENT statement 2-10
in CONNECT statement 2-83
in CREATE CAST statement 2-95
in CREATE DISTINCT TYPE statement 2-100
in CREATE TRIGGER statement 2-244

Delete triggers 2-257
Insert triggers 2-258
Select triggers 2-259
Update triggers 2-259
view column values 2-274

in CREATE VIEW statement 2-277
in DROP CAST statement 2-327
in explicit casts 4-58
in GRANT FRAGMENT statement 2-428
in GRANT statement 2-418
in Iterator segment 2-558
in MERGE statement 2-458
in Return Clause segment 5-54
in REVOKE FRAGMENT statement 2-525
in REVOKE statement 2-502, 2-516
in SELECT statement

ANSI table reference 2-561
FROM clause 2-553
in Iterator segment 2-558

with display labels 2-549
with table aliases 2-553

Index X-3

AS PARTITION keywords, in ALTER FRAGMENT
statement 2-10

AS REMAINDER keywords, in ALTER FRAGMENT
statement 2-10

ASC keyword
in CREATE INDEX statement 2-138
in SELECT statement 2-586, 2-588
order with nulls 2-589

Ascending sequence 2-39, 2-193
ASCII code set 4-195
ASCII function 4-144
ASCII keyword

DELIMITED keyword
in SELECT statement 2-596

in SELECT statement 2-596
INFORMIX keyword

in SELECT statement 2-596
ASIN function 4-138, 4-139
Assign support function 2-157, 2-442, 2-450, 2-453, 2-709
Associated statement 2-607
Asterisk (*)

argument to COUNT function 4-167
arithmetic operator 4-41
in C-style comment indicators 1-4
in projection list 3-24
Projection clause 2-539
wildcard character 4-14

AT keyword, in INSERT statement 2-435
At symbol (@) 5-16
ATAN function 4-138, 4-139
ATAN2 function 4-138, 4-139
ATTACH keyword, in ALTER FRAGMENT statement 2-10
Attached indexes 2-147, 2-610
AUDIT keyword

in CREATE TABLE statement 2-217
Audit-event mnemonics 4-107
Authorization identifier 2-173, 2-338, 2-664, 4-72, 5-45
AUTHORIZATION keyword

in CREATE SCHEMA statement 2-180
in SET SESSION AUTHORIZATION statement 2-664

AUTHORIZED keyword
in CREATE SECURITY POLICY statement 2-189

AUTO keyword
in UPDATE STATISTICS statement 2-715

Auto Update Statistics (AUS) xxii, 2-717
AUTO_REPREPARE configuration parameter 2-475, 2-487,

2-725
Autofree feature, in SET AUTOFREE 2-606
Automatic recompilation after table schema changes 2-633
AVG function 4-164, 4-167
AVOID_EXECUTE keyword

in optimizer directives 5-43
in SET EXPLAIN statement 2-641

AVOID_FULL keyword, in optimizer directives 5-37
AVOID_HASH keyword, in optimizer directives 5-40
AVOID_INDEX keyword, in optimizer directives 5-37
AVOID_INDEX_SJ keyword, in optimizer directives 5-37
AVOID_MULTI_INDEX keyword, in optimizer

directives 5-37
AVOID_NL keyword, in optimizer directives 5-40

B
B abbreviation for byte 4-156
B-tree cleaner list 2-719
B-tree index

btree_ops operator class 2-162

B-tree index (continued)
default operator class 2-162
uses 2-144

B-tree secondary-access method 2-144, 2-158
B18030-2000 code set 2-609
Background mode 3-45
Backslash (\)

as escape character 4-14
as wildcard character 4-14
escape character 2-699

Base-100 format 4-28
BASE64 encoding of encrypted data 2-627, 4-108
Batch file 3-46
BEFORE keyword

in ALTER FRAGMENT statement 2-10, 2-22
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in ALTER TABLE statement 2-47
in CREATE TRIGGER statement 2-254, 2-260

BEGIN keyword 3-29
in Statement Block segment 5-74

BEGIN WORK statement 2-74
BETWEEN keyword

in Condition segment 4-6, 4-9
BigDecimal data type of Java 4-29, 5-68
BIGINT data type 4-27
BIGSERIAL data type

inserting values 2-441
invalid default 2-203
last inserted value 4-104
value range 4-27

Binary operator 2-93, 4-51
Bit-hashing function 2-585
BITAND function 4-52, 4-53
BITANDNOT function 4-52, 4-55
BITNOT function 4-52, 4-55
BITOR function 4-52, 4-54
Bitwise functions 4-52
BITXOR function 4-52, 4-54
BladeManager utility 6-5
Blank characters

DATETIME separator 4-180
in index names 2-332
in literal numbers 4-184
INTERVAL separator 4-182

BLOB data type 4-29, 4-30
copying to a file 4-123
copying to a smart large object 4-125
creating from a file 4-121
default value 2-204
handle values 4-64
size limit 4-31
storing 2-64, 2-225
unloading 2-696, 2-697
unreferenced 2-692

BLOB keyword
in Data Type segment 4-29
in DEFINE statement 3-6

Blobspace 2-16
BOOLEAN data type

defined 4-22
literal values 2-204
unloading 2-696

Boolean expression 4-6
BOTH keyword, in TRIM expressions 4-145
Braces ({ })

collection delimiters 4-177

X-4 IBM Informix Guide to SQL: Syntax

Braces ({ }) (continued)
comment indicator 1-3, 5-36
specifying empty collection 4-83

Brackets ([])
range delimiters 4-14

bts index
uses 2-143

BTS secondary-access method 2-143
BTSCANNER configuration parameter xxii
BUFFERED keyword

in CREATE DATABASE statement 2-97
in SET LOG statement 2-658

BUFFERED LOG keyword
in CREATE DATABASE 2-99

Buffered logging 2-658
Build table for hash joins 2-644
Built-in aggregates

contrasted with user-defined 2-93
defined 4-166
extending 2-93

Built-in data types
opaque 4-22
owner 2-100
privileges on 2-409
syntax 4-21

Built-in roles
DBSECADM 2-419, 2-518
EXTEND 2-417

Built-in routines
ALTER_JAVA_PATH 6-16
EXPLAIN_SQL 6-9
IFX_REPLACE_MODULE 6-10
IFX_UNLOAD_MODULE 6-12
INSTALL_JAR 6-14
JVPCONTROL 6-12
METADATA 6-19
REMOVE_JAR 6-16
REPLACE_JAR 6-15
SETUDTEXTNAME 6-18
SQLCAMESSAGE 6-21
SYSBldPrepare 6-5
SYSBldRelease 6-9
SYSDBCLOSE 6-1
SYSDBOPEN 6-1
UNSETUDTEXTNAME 6-18

Built-in secondary-access method 2-144
BY keyword

in ALTER FRAGMENT statement 2-18, 2-20
in ALTER SEQUENCE statement 2-39
in CREATE INDEX statement 2-148
in CREATE SEQUENCE statement 2-193
in CREATE TABLE statement 2-222
in CREATE TEMP TABLE statement 2-238
in SELECT statement 2-576, 2-584, 2-586

BYTE and TEXT columns, fragment storage 2-16
BYTE column

modifying 2-60
BYTE data

effect of isolation on retrieval 2-654, 2-674
loading 2-449
storage location 4-30
unloading 2-696, 2-697

BYTE data type
declaration syntax 4-30
default value 2-204
with SET DESCRIPTOR 2-626
with SPL routines 3-7, 3-15

BYTE keyword
in Data Type segment 4-29
in DEFINE statement 3-6
in Return Clause segment 5-54

C
C keyword, in External Routine Reference segment 5-19
C++ API 4-190
Cache cohesion 2-668
CACHE keyword

in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194
in SET STATEMENT CACHE statement 2-666

Calculated expression
restrictions with GROUP BY 2-585

Calendar 4-70
CALL keyword, in WHENEVER statement 2-729
CALL statement 3-3
Callbacks 5-64
CANNOTHASH keyword, in CREATE OPAQUE TYPE

statement 2-155
CANNOTHASH modifier 2-585
CARDINALITY function 4-97
Caret (^)

as wildcard character 4-14
use with brackets 4-14

Cartesian product 5-40
CASCADE keyword

in ALTER TABLE statement 2-52
in CREATE TABLE statement 2-208
in DROP SECURITY POLICY statement 2-342
in DROP TABLE statement 2-347
in DROP VIEW statement 2-351
in REVOKE statement 2-502

Cascading deletes 2-53
CREATE TABLE with 2-53, 2-54
locking associated with 2-309
logging 2-309
multiple child tables 2-309

Cascading triggers
and triggering table 2-267
triggered actions 2-256

Case conversion
functions

INITCAP 4-154
LOWER 4-155
UPPER 4-154

CASE keyword
in Expression segment 4-66, 4-67

CAST keyword
in CREATE CAST statement 2-95
in DROP CAST statement 2-327
in explicit casts 4-58

Casts
built-in 2-96, 2-327
creating 2-95
dropping 2-327
explicit 2-96, 4-58
function for 2-97
implicit 2-96, 4-58
operator (::) 2-96, 4-58
privileges 2-95
registering 2-95
symbol 4-58

cdrserver shadow column 2-45
cdrserver, replication column name 2-218

Index X-5

cdrtime shadow column 2-45
cdrtime, replication column name 2-218
CEIL function 4-87, 4-89
Chaining synonyms 2-197
CHAR data type

defined 4-22
in INSERT 4-191
syntax 4-23

CHAR keyword
in CREATE EXTERNAL TABLE statement 2-104

CHAR_LENGTH function 4-117
CHARACTER data type

syntax 4-23
Character data types

fixed and varying length 4-22, 4-24
multibyte characters 4-24
syntax 4-23

CHARACTER VARYING data type
syntax 4-23

CHARACTER_LENGTH function 4-117
Check constraints

defining 2-211
reject files 2-111

CHECK keyword
in ALTER TABLE statement 2-54
in CREATE TABLE statement 2-211
in CREATE VIEW statement 2-277

Child table 2-461
chmod utility 6-15
CLASS keyword, in Routine Modifier segment 5-60
CLASS_ORIGIN keyword, in GET DIAGNOSTICS

statement 2-396
CLASSPATH environment variable 6-18
Client APIs 4-190
CLIENT_LOCALE environment variables 4-25
CLIENT_TZ keyword

in SET ENVIRONMENT statement 4-75
CLIENTBINVAL data type 2-544, 4-22
CLOB data type

copying to a file 4-123
copying to a smart large object 4-125
creating from a file 4-121
default value 2-204
handle values 4-64
size limit 4-31
unloading 2-696, 2-697
unreferenced 2-692

CLOB keyword
in Data Type segment 4-29
in DEFINE statement 3-6

CLOSE DATABASE statement 2-80
CLOSE statement

closing a collection cursor 2-78
closing a select cursor 2-77
closing an insert cursor 2-77
cursors affected by transaction end 2-78
syntax 2-77

CLUSTER keyword
in ALTER INDEX statement 2-28
in CREATE INDEX statement 2-137

Clustered index 2-29, 2-138
Clustering, specifying support for 5-52
Code points, ASCII 4-195
Code set 2-609, 4-24
Code sets xxi
CODESET keyword

in SELECT statement 2-596

Collation
localized 2-608
with relational operators 4-194

COLLATION keyword, in SET COLLATION statement 2-608
Collection constructors

example 4-83
restrictions 4-83

Collection cursor
closing 2-78
DECLARE for ESQL/C variable 2-302
declaring 3-24
defined 2-302
in SPL 3-24
inserting into 2-379, 2-491
INTO clause 2-379
opening 2-472

Collection data type 4-36
allocating memory 2-1
defining a column 4-36
deleting 2-312
element, searching for with IN 4-11
IN operator 4-11
LIST 4-36
loading 2-452
MULTISET 4-36
returning number of elements 4-97
selecting from 2-556
SET 4-36
unloading 2-696
updating 5-10

COLLECTION keyword
in ALLOCATE COLLECTION statement 2-1
in DEALLOCATE COLLECTION statement 2-287
in DEFINE statement 3-6
untyped collection variable 2-556

Collection Subquery segment 4-3
Collection variable

accessing 5-10
accessing values 5-10
associating cursor with 2-302
cursor for 2-379
deallocating memory for 2-287
in SELECT statement 2-556
manipulating values 5-10
opening a cursor 2-472
selecting from 2-556
selecting, inserting elements 2-302
untyped 2-2, 2-288
updating 2-380, 5-10
with DESCRIBE INPUT statement 2-322
with DESCRIBE statement 2-317

Collection-derived table 5-4
collection cursor 2-303, 2-379, 2-491
collection variables with 5-10
FOREACH statement 3-25
in SELECT statement 5-10
INSERT statement with 2-304, 2-447
row types in 5-7
row variables with 5-14
SELECT statement with 2-556

fields from row variable 2-556
TABLE keyword 5-5, 5-10, 5-14
UPDATE statement with 2-714, 5-10, 5-14
where allowed 5-14

Collection-Derived Table segment 5-4
Collections

accessing a nested collection 5-14

X-6 IBM Informix Guide to SQL: Syntax

Collections (continued)
accessing elements 5-5
allocating memory 2-1
constructors 4-82
deleting elements from 2-312
example of deleting elements 5-11
example of inserting elements 5-13
example of updating 5-12
generating values for 4-82
inserting values into 2-442
nested 4-179
restrictions when accessing elements 5-6
restrictions when defining 4-37
restrictions with inserting null values 2-442
selecting from 2-556
specifying literal values 4-178
untyped 2-1
updating 2-708

Colon symbol (:)
cast operator (::) 4-58
DATETIME separator 4-180
INTERVAL separator 4-182
with database qualifier 5-17

Column definition clause 2-201
Column expression 2-593
COLUMN keyword

in ALTER TABLE statement 2-55, 2-63
in CREATE TABLE statement 2-201

COLUMN keyword, in RENAME COLUMN statement 2-495
Column name

dot notation 4-61
using functions as names 5-25, 5-26
using keywords as names 5-26

Column substring 4-63
Column-level encryption 2-628, 4-107
Columns

adding 2-47
adding a NOT NULL constraint 2-62
changing the data type 2-62
check constraints 2-211
defining as primary key 2-208
dropping 2-57, 2-58
expression 2-547, 4-59
inserting into 2-437
modifying with ALTER TABLE 2-59
number, effect on triggers 2-250
order in Projection list 2-539
primary or foreign key 2-208
privileges 2-406
projection 4-61
referenced and referencing 2-209
removing a NOT NULL constraint 2-62
renaming 2-495
specifying a subscript 2-588, 4-63
virtual 2-280

COLUMNS keyword, in INFO statement 2-433
COMBINE keyword

in CREATE AGGREGATE statement 2-92
Comma (,) symbol in pathnames 4-123
Command file 1-4
Comment symbol

braces ({ }) 1-3
double hyphen (--) 1-3
in application programs 1-4
in optimizer directives 5-36
in prepared statements 2-480
slash and asterisk (/* */) 1-4

COMMIT WORK statement
in ANSI-compliant databases 2-82
in non-ANSI databases 2-82
syntax 2-81

COMMITTED keyword
in SET ENVIRONMENT statement 2-630, 2-635, 2-638
in SET ISOLATION statement 2-648, 2-651
in SET TRANSACTION statement 2-672

Committed Read isolation level 2-635, 2-638, 2-651
COMMITTED READ keywords

in SET ENVIRONMENT statement 2-630, 2-635, 2-638
in SET ISOLATION statement 2-648

COMMITTED READ setting, of USELASTCOMMITTED
configuration parameter 2-651

Compacted index 2-145
Companion functions 2-362, 5-63
Compare support function 2-158
Complete-connection level settings

of SET EXPLAIN 2-644
of SET ISOLATION 2-650
of SET LOCK MODE 2-657

Complex data type
invalid in distributed queries 2-545
loading element values 2-452
unloading 2-698

Complex numbers 4-29
Complex table expression 2-554
Complex view 2-270
compliance with standards xxxiii
COMPONENT keyword

in ALTER SECURITY LABEL COMPONENT
statement 2-34

in CREATE SECURITY LABEL COMPONENT
statement 2-185

in CREATE SECURITY LABEL statement 2-183
in DROP SECURITY statement 2-342
in RENAME SECURITY statement 2-499

COMPONENTS keyword
in CREATE SECURITY POLICY statement 2-189

Composite key 2-216
Compound assignment 3-31
CONCAT function 4-141
CONCAT() operator function 4-57
Concatenation operator (||) 4-41, 4-56
Concurrency

with CREATE INDEX 2-152
with DROP INDEX 2-333
with SET ENVIRONMENT statement 2-635, 2-638
with SET ISOLATION 2-648
with SET TRANSACTION 2-673
with START VIOLATIONS TABLE 2-679

CONCURRENT keyword, in CONNECT statement 2-83
Condition segment

DELETING 4-12
INSERTING 4-12
IS NOT NULL 4-12
IS NULL 4-12
join conditions 2-570
keywords

ALL 4-18
ANY 4-18
BETWEEN 4-9
EXISTS 4-18
LIKE 4-13
MATCHES 4-13
NOT 4-13
SOME 4-18

Index X-7

Condition segment (continued)
null values 4-20
SELECTING 4-12
subquery in SELECT 4-16
syntax 4-5
UPDATING 4-12

Conditional expressions
CASE 4-65
DECODE 4-65
NVL 4-65

Conditions
comparison 4-6, 4-8
IN operator 4-10
NOT IN operator 4-10

Configuration parameters
ALLOW_NEWLINE 4-190
AUTO_REPREPARE 2-475, 2-487, 2-725
BTSCANNER xxii
DATASKIP 2-616
DB_LIBRARY_PATH 5-71
DBCREATE_PERMISSION 2-97
DBSERVERALIASES 2-83, 2-312, 2-443, 2-545, 2-709, 6-19
DBSERVERNAME 2-312, 2-443, 2-545, 2-709, 4-74
DBSPACETEMP 2-239
DEADLOCK_TIMEOUT 2-333
DEF_TABLE_LOCKMODE 2-72, 2-230, 2-457, 2-651
DIRECTIVES 5-35
DS_NONPDQ_QUERY_MEM 2-588
EXPLAIN_STAT 2-644
EXT_DIRECTIVES xxii, 2-531, 2-631, 5-44
FILLFACTOR 2-145
IFX_EXTEND_ROLE 2-125, 2-134, 2-417, 2-515, 6-5, 6-10
JVPCLASSPATH 6-17
LOCKS 2-329, 2-456
MAX_PDQPRIORITY 2-661
OPT_GOAL 5-43
OPTCOMPIND 2-667, 5-41
SBSPACENAME 2-226, 4-112, 4-114, 6-9
SEQ_CACHE_SIZE 2-40, 2-194
SQL_LOGICAL_CHAR 2-48, 2-61, 3-14
STACKSIZE 5-66, 6-5
STMT_CACHE 2-667
STMT_CACHE_HITS 2-668
STMT_CACHE_NOLIMIT 2-669
STMT_CACHE_SIZE 2-669
SYSSBSPACENAME 2-719
TEMPTAB_NOLOG 2-235
UPDATABLE_SECONDARY 2-655
USELASTCOMMITTED 2-455, 2-638, 2-651, 2-672
USEOSTIME 4-75

Conflict resolution 2-45
CONNECT BY clause

in SELECT statement 2-576
CONNECT keyword 2-403

in REVOKE statement 2-504
in SELECT statement 2-576

Connect privilege
granting 2-404
revoking 2-504

CONNECT statement 2-83
CONNECT_BY_ISLEAF keyword

in SELECT statement 2-578
CONNECT_BY_ROOT operator 2-578
CONNECTION keyword, in SET CONNECTION

statement 2-610
Connection URL 6-21

CONNECTION_NAME keyword, in GET DIAGNOSTICS
statement 2-396

Connections
active 2-324, 2-612
closing 2-80
context 2-323, 2-611
current 2-83, 2-324, 2-613
default 2-88, 2-323, 2-613
dormant 2-83, 2-323, 2-611
explicit 2-88, 2-328
implicit 2-80, 2-88, 2-97, 2-285, 2-323, 2-613
returning connection names 2-398
single-threaded applications 2-612
specifying connection names 2-86, 2-613

considerations for MERGE 2-465
Consistency checking 2-45
Constant expression 4-70

in SELECT 2-547
inserting with PUT 2-489

CONSTRAINT keyword
in ALTER TABLE statement 2-52, 2-66, 2-69
in CREATE TABLE statement 2-212

Constraints
adding primary-key 2-68
adding referential 2-68
adding to a column with data 2-63
adding unique 2-68
adding with ALTER TABLE 2-66, 2-67
affected by dropping a column from table 2-58
B-tree indexes 2-137
checking 2-271, 2-461, 2-674
detached checking 2-217
disabled 2-66, 2-213, 2-603
dropping 2-69
enabled 2-66, 2-213
encountering violations while adding 2-69
filtering 2-213
filtering to violations table 2-603
foreign key 2-517
limit on size 2-214
mode 2-213
modifying a column that has constraints 2-59
multiple-column 2-214
name 2-212
number of columns allowed 2-214
privileges needed to create 2-68
referential 2-208, 2-686
renaming 2-497
single-column 2-205
system catalog tables 2-212
transaction mode 2-674

CONSTRAINTS keyword
in SET CONSTRAINTS statement 2-614
in SET Database Object Mode statement 2-600, 2-601
in SET Transaction Mode statement 2-674

constrid column 2-16
Constructors

functions
collections 4-82
row 4-81

CONTINUE keyword
in WHENEVER statement 2-729

CONTINUE statement 3-5
Coordinated Universal Time (UTC) 4-105
Correlated subquery 2-554

defined 4-16
Correlation name 2-553

X-8 IBM Informix Guide to SQL: Syntax

Correlation name (continued)
declaring 2-128, 2-165, 2-257
in routines 2-268
qualifying values 2-264
scope of reference 2-264

COS function 4-138, 4-139
COSTFUNC keyword, in Routine Modifier segment 5-60
COUNT field

in ALLOCATE DESCRIPTOR statement 2-3
in GET DESCRIPTOR statement 2-385
with DESCRIBE INPUT statement 2-320
with DESCRIBE statement 2-316

COUNT function
defined 4-167
restriction with CREATE TRIGGER statement 2-264
syntax 4-164

COUNT keyword
in SET DESCRIPTOR statement 2-621

CPU usage cost 5-64
CPU VP class 5-61
CRCOLS keyword

in ALTER TABLE statement 2-45
in CREATE TABLE statement 2-217, 2-218

CREATE ACCESS_METHOD statement 2-90
CREATE AGGREGATE statement 2-92
CREATE CAST statement 2-95
CREATE DATABASE statement

ANSI compliance 2-99
syntax 2-97
using with PREPARE 2-97

CREATE DISTINCT TYPE statement 2-100
CREATE EXTERNAL TABLE statement 2-103

adding a newline 2-122
adding an end-of-line character 2-121
delimited format example 2-115, 2-117
deluxe load example 2-116
fixed format example 2-118
refreshing a data warehouse table 2-119

CREATE FUNCTION FROM statement 2-134
CREATE FUNCTION statement 2-125
CREATE INDEX statement

cluster with fragments 2-138
composite indexes 2-140
disabled indexes 2-151
index-type options 2-137
sort order 2-141
specifying object modes 2-149
storage options 2-146

CREATE OPAQUE TYPE statement 2-154
CREATE OPCLASS statement 2-158
CREATE PROCEDURE FROM statement 2-171
CREATE PROCEDURE statement 2-162
CREATE ROLE statement 2-173
CREATE ROUTINE FROM statement 2-175
CREATE ROW TYPE statement 2-176
CREATE SCHEMA statement 2-180
CREATE SECURITY LABEL COMPONENT statement 2-184
CREATE SECURITY LABEL statement 2-183
CREATE SECURITY POLICY statement 2-189
CREATE SEQUENCE statement 2-191
CREATE SYNONYM statement 2-195
CREATE TABLE statement

access-method option 2-228
column definition clause 2-201
constraints

check 2-211
composite keys 2-214, 2-216

CREATE TABLE statement (continued)
constraints (continued)

defining 2-205
distinct 2-207
example 2-215
NOT NULL 2-204, 2-206
primary key 2-208
referential 2-208
restrictions 2-206
unique 2-207

creating composite columns 2-214
defining constraints 2-214
fragmenting

by expression 2-223
round-robin 2-223

locking options 2-229
newline example 2-122
ON DELETE CASCADE keywords 2-53
PUT clause 2-225
RAW keyword 2-201
specifying cascading deletes 2-210
specifying column-default values 2-203
specifying storage location 2-221
STANDARD keyword 2-201
syntax 2-198
WITH ROWIDS keywords 2-223

CREATE TEMP TABLE statement 2-234
column-level constraints 2-236

CREATE TRIGGER statement 2-241
CREATE VIEW statement 2-277, 2-554
CREATE XADATASOURCE statement 2-283
CREATE XADATASOURCE TYPE statement 2-284
Creation-time settings of environment variables 2-261
Cross joins 2-559
CROSS keyword in SELECT statement 2-562
Cross-database DML operations 2-272, 2-312, 2-443, 2-465,

2-545, 2-709
Cross-server DML operations 2-272, 2-709
CRPT audit-event mnemonic 4-107
CSN encryption 4-106
CTRL-J

newline
preserving in quoted strings 4-190

Culture-specific conventions xxi
Current database, name returned by DBINFO 4-102
Current database, specifying with DATABASE 2-285
Current date 4-75
CURRENT DORMANT keywords, in SET CONNECTION

statement 2-610
CURRENT function

as an argument 4-76
as constant expression 4-70
in ALTER TABLE statement 2-49
in Condition segment 4-10
in CREATE TABLE statement 2-203
in DEFINE statement 3-8
in INSERT statement 2-444
in WHERE condition 4-76

CURRENT keyword
in DELETE statement 2-307
in DISCONNECT statement 2-324
in FETCH statement 2-372
in SET CONNECTION statement 2-610
in UPDATE statement 2-713

CURRENT_ROLE operator
defined 4-73
syntax 4-70

Index X-9

CURRENT_ROLE operator (continued)
usage 4-73

CURRVAL operator 2-191, 4-78
Cursor

activating with OPEN 2-469
affected by transaction end 2-78
characteristics 2-298
closing 2-77
closing with ROLLBACK WORK 2-528
declaring 2-290
direct 2-77
for update

restricted statements 2-300
using in ANSI-mode databases 2-300, 2-301
using in non-ANSI databases 2-300, 2-301

freeing automatically with SET AUTOFREE 2-606
implicit 3-22
manipulation statements 1-8
opening 2-470
prepared statement with 2-301
read-only

restricted statements 2-300
using in ANSI-mode databases 2-300, 2-301
using in non-ANSI databases 2-300, 2-301
where required 2-592

retrieving values with FETCH 2-372
select hold examples 2-299
sequence of program operations 2-293
stability 2-671
statement identifier with 2-301
types of 2-469
with INTO keyword in SELECT 2-550
with transactions 2-304

Cursor function 3-23, 5-59
CURSOR keyword

in DECLARE statement 2-290
in SET ENVIRONMENT statement 2-630
in SET ISOLATION statement 2-648

Cursor Stability isolation level 2-635, 2-652
CURSOR STABILITY keywords

in SET ENVIRONMENT statement 2-630, 2-635
in SET ISOLATION statement 2-648

CYCLE keyword
in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

D
Dangling child records 2-309
Data

access statements 1-9
confidentiality 2-627
data definition statements 1-6
data manipulation statements 1-8
encryption 4-106
inserting with LOAD 2-448
integrity statements 1-8

Data buffering 2-382
data column of sysprocbody table 4-108
Data distributions

confidence level 2-721
on temporary tables 2-717

DATA field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-320
with DESCRIBE statement 2-316

Data replication 2-45
Data type segment 4-21
Data types 2-465, 4-21

alignment 2-102
casting 2-95, 4-58
changing with ALTER TABLE 2-62
collection 4-36
complex 4-34
considerations for INSERT 2-441, 4-191
distinct 4-32
opaque 2-154
promotion 4-108
representation 2-102
simple large object 4-30, 5-56
specifying with CREATE VIEW 2-279
varying-length 4-24

Data warehouse tables
initial load 2-119
loading from other database servers 2-120
refreshing tables

periodically 2-119
Data-integrity violations 2-677, 2-689
Data-type promotion 4-141
Database administrator 2-404
Database administrator (DBA)

granting privileges 2-401
revoking privileges 2-504

DATABASE keyword
in CLOSE DATABASE statement 2-80
in CREATE DATABASE statement 2-97
in DATABASE statement 2-285
in DROP DATABASE statement 2-328
in RENAME DATABASE statement 2-497

Database object
naming 5-16
owner 5-45

Database object mode
for triggers 2-245, 2-603
privileges required 2-600
specifying 2-599

Database Object Name segment 5-16
Database Server Administrator 5-20
Database Server Administrator (DBSA) 2-125, 2-174, 2-331,

2-337, 2-340, 2-417, 2-515
Database servers

returning the SQL identifier 4-74
DATABASE statement

determining database type 2-286
exclusive mode 2-286
specifying current database 2-285
SQLWARN after 2-286
syntax 2-285

Database statements 2-88
database-level 2-403
Database-level privilege 2-417

not available for roles 2-505
revoking 2-504

Databases
ANSI-compliant 2-286
closing with CLOSE DATABASE 2-80
data warehousing 2-201
default isolation levels 2-653, 2-673
dropping 2-328
external 5-17
global variables 3-8
isolation level 2-670
lock 2-286

X-10 IBM Informix Guide to SQL: Syntax

Databases (continued)
naming conventions 5-15
nonlogging 2-674
nonlogging database 2-270
OLTP 2-201
opening in exclusive mode 2-286
optimizing queries 2-717
read-only mode 2-592
remote 5-16
renaming 2-497
running in secondary mode 2-286

DataBlade API 5-64
DataBlade API (LIBDMI) 4-190
DataBlade Developers Kit 5-71
DataBlade Module Developer's Kit (DBDK) 6-5
DataBlade module management functions 6-5
DataBlade module registration 6-5
DataBlade modules 2-162
DATAFILES keyword

in CREATE EXTERNAL TABLE statement 2-105
in SELECT statement 2-593

DATASKIP configuration parameter 2-616
DATASKIP keyword

in SET DATASKIP statement 2-615
DATE data type

declaration syntax 4-32
functions 4-126
literal DATE values 2-204

DATE function 4-126, 4-128
DATETIME data type 4-32, 4-38, 4-180

as quoted string 4-191
cast to Coordinated Universal Time (UTC) 4-105
functions 4-126
in INSERT 4-191
literal values 4-77

DATETIME data types 4-180
DATETIME Field Qualifier segment 4-38
DATETIME keyword, in Literal DATETIME 4-180
datetime.h header file 2-624
DAY function 4-126, 4-129
DAY keyword 4-38, 4-175

for INTERVAL 4-182
in DATETIME Field Qualifier 4-40
in Literal DATETIME 4-180

DB_LIBRARY_PATH configuration parameter 5-71
DB_LOCALE environment variable 2-286, 2-608, 2-644, 5-23
DB_LOCALE environment variables 4-25
DBA keyword 2-403

in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162
in REVOKE statement 2-504

DBA privilege
with CREATE ACCESS_METHOD statement 2-90
with CREATE SCHEMA 2-182
with DROP DATABASE 2-328
with DROP TRIGGER statement 2-349
with REVOKE statement 2-504

DBA-privileged UDR 2-127, 2-165
DBA. 2-404
DBACCNOIGN environment variable 2-75
DBANSIWARN environment variable 2-100, 2-182, 2-198,

2-234, 2-279
DBBLOBBUF environment variable 2-451, 2-697
DBCENTURY environment variable 2-14, 2-261, 2-449, 4-180
DBCREATE_PERMISSION configuration parameter 2-97
DBDATE environment variable 2-204, 2-696, 4-192
DBDELIMITER environment variable 2-453, 2-699

dbhostname option of DBINFO 4-102
DBINFO function 4-98
DBMONEY environment variable 2-449, 2-696, 4-185
dbname option of DBINFO 4-102
DBPATH environment variable 2-86, 2-88
DBSA group 2-417
DBSA. 2-417
dbschema utility 2-39
DBSECADM keyword

in GRANT statement 2-419
in REVOKE statement 2-518

DBSECADM role 2-16
dbsendrecv data type 2-156
DBSERVERALIASES configuration parameter 2-83, 2-312,

2-443, 2-545, 2-709, 6-19
DBSERVERNAME configuration parameter 2-312, 2-443,

2-545, 2-709
DBSERVERNAME function

constant expression 4-74
in ALTER TABLE statement 2-49
in Condition segment 4-10
in CREATE TABLE statement 2-203
in DEFINE statement 3-8

dbspace
renaming with onspaces 2-7
the database dbspace 5-56

dbspaces
number 4-116
skipping if unavailable 2-615

DBSPACETEMP configuration parameter 2-239, 2-595
DBSPACETEMP environment variable 2-149, 2-239, 2-595,

2-725, 3-15
DBTIME environment variable 2-450, 2-696
DBUPSPACE environment variable 2-723, 2-725
DDL (Data Definition Language) statements

listed 1-6
Deadlock 2-379, 3-45
Deadlock detection 2-656
DEADLOCK_TIMEOUT configuration parameter 2-333
DEADLOCK_TIMEOUT setting in ONCONFIG 2-657
DEALLOCATE COLLECTION statement 2-287
DEALLOCATE DESCRIPTOR statement 2-288
DEALLOCATE ROW statement 2-289
DEBUG environment variable 6-4
DEBUG keyword

in SET DEBUG FILE statement 2-617
Debugging sysdbopen() routines 6-4
DECIMAL data type 4-27, 4-29

literal values 4-185
Decimal point (.)

DATETIME separator 4-180
INTERVAL separator 4-176
literal numbers 4-184, 4-192

declaration syntax 4-29
Declarative statements 3-38
DECLARE statement

cursor characteristics 2-298
CURSOR keyword 2-298
cursors with prepared statements 2-301
cursors with transactions 2-304
FOR UPDATE keywords 2-294
function cursor 2-293
insert cursor 2-296, 2-300
restrictions with SELECT with ORDER BY 2-589
SCROLL keyword 2-298
select cursor 2-293
syntax 2-290

Index X-11

DECLARE statement (continued)
updating specified columns 2-295
WHERE CURRENT OF clause 2-295
WITH HOLD keywords 2-299
with SELECT statement 2-551

DECODE function 4-69
DECRYPT_BINARY function 4-112
DECRYPT_CHAR function 4-112
DEF_TABLE_LOCKMODE configuration parameter 2-72,

2-457, 2-651
Default connection 2-88, 2-323
Default database server 2-88, 2-323, 2-398
Default escape character 2-699
Default isolation level 2-673
DEFAULT keyword

in ALTER TABLE statement 2-49
in CONNECT statement 2-83
in CREATE EXTERNAL TABLE statement 2-107
in CREATE TABLE statement 2-203
in DEFINE statement 3-6
in DISCONNECT statement 2-323
in GRANT statement 2-416
in REVOKE statement 2-502, 2-514
in SET CONNECTION statement 2-610, 2-613
in SET ENVIRONMENT statement 2-630, 2-631, 2-634
in SET PDQPRIORITY statement 2-661
in SET ROLE statement 2-664

Default locale xxi
Default role 2-174, 2-416, 2-514
Default user ID 2-88
DEFAULT_ATTACH environment variable 2-147
DEFAULT_ROLE operator

defined 4-73
syntax 4-70
usage 4-73

DEFERRED keyword, in SET Transaction Mode
statement 2-674

DEFERRED_PREPARE keyword
in SET DEFERRED_PREPARE statement 2-619

Deferred-Prepare feature 2-618
DEFINE keyword, in Statement Block segment 5-74
DEFINE statement

default value clause 3-8
syntax 3-6

Delete clause in MERGE statement 2-459
DELETE keyword 2-429

in CREATE TABLE statement 2-209
in CREATE TRIGGER statement 2-248, 2-274
in GRANT statement 2-406
in MERGE statement 2-458
in REVOKE FRAGMENT statement 2-526
in REVOKE statement 2-506

Delete privilege 2-406, 2-506
DELETE statements

and triggers 2-262
cascading 2-309
collection columns with 2-312
cursor with 2-295
distributed 2-312
OUT parameter 4-163
syntax 2-307
with SELECT... FOR UPDATE 2-591
with update cursor 2-311
within a transaction 2-307

Delete trigger 2-247, 2-274
Deleting from a specific table in a table hierarchy 2-309
DELETING operator 2-129, 2-167, 4-12

DELIMIDENT environment variable 2-85, 2-307, 2-694, 4-189,
4-191, 5-22, 5-23, 5-24

Delimited format
loading 2-117
unloading 2-120

Delimited identifiers
in database server names 5-18
multibyte characters 5-24
non-ASCII characters 5-24

DELIMITED keyword
in CREATE EXTERNAL TABLE statement 2-107

Delimiter
for LOAD input file 2-453
specifying with UNLOAD 2-699

DELIMITER keyword
in CREATE EXTERNAL TABLE statement 2-107
in LOAD statement 2-448
in SELECT statement 2-596
in UNLOAD statement 2-695

DELUXE keyword
in CREATE EXTERNAL TABLE statement 2-107

Deluxe-mode load
procedure 2-116

DES3 (Triple Data Encryption Standard) 4-114
DESC keyword

in CREATE INDEX statement 2-138
in SELECT statement 2-586, 2-588
order with nulls 2-589

Descending sequence 2-39, 2-193
DESCRIBE INPUT statement 2-318
DESCRIBE statement

collection variable with 2-317
distinct data type with 2-389
opaque data type with 2-389
relation to GET DESCRIPTOR 2-387
syntax 2-314
with SET DESCRIPTOR 2-626

DESCRIPTOR keyword
in ALLOCATE DESCRIPTOR statement 2-3
in DEALLOCATE DESCRIPTOR statement 2-288
in DESCRIBE INPUT statement 2-320
in DESCRIBE statement 2-316
in EXECUTE statement 2-355, 2-358, 2-360
in FETCH statement 2-372
in GET DESCRIPTOR statement 2-385
in OPEN statement 2-469
in PUT statement 2-488

Descriptors of simple large objects 5-56
destroy() support function 2-157, 2-312, 2-348, 2-694
DETACH keyword, in ALTER FRAGMENT statement 2-15
Detached index 2-21, 2-148
Detached statement 2-607
Diagnostics area 2-391
DIAGNOSTICS keyword, in GET DIAGNOSTICS

statement 2-391
Diagnostics table

creating 2-677
declaring a name 2-679
default name 2-679
examples 2-689
filtering mode 2-603
how to stop 2-689
relationship to target table 2-681
relationship to violations table 2-681
restriction on dropping 2-348
schema 2-685

Direct cursor 2-77

X-12 IBM Informix Guide to SQL: Syntax

DIRECTIVES configuration parameter 5-35
DIRECTIVES keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-531
Dirty Read isolation level 2-152, 2-332, 2-333, 2-635, 2-638,

2-650
DIRTY READ keywords

in SET ENVIRONMENT statement 2-630, 2-635, 2-638
in SET ISOLATION statement 2-648

DIRTY READ setting, of USELASTCOMMITTED configuration
parameter 2-651

Disabilities, visual
reading syntax diagrams C-1

Disability C-1
DISABLED keyword

in ALTER TABLE statement 2-52
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212, 2-213
in CREATE TRIGGER statement 2-245, 2-274
in SET AUTOFREE statement 2-606
in SET Database Object Mode statement 2-602, 2-605
in SET DEFERRED_PREPARE statement 2-618
in SET INDEXES statement 2-647

DISCONNECT statement 2-323
DISK keyword

in CREATE EXTERNAL TABLE statement 2-105
Display labels

in CREATE VIEW statement 2-279
in Projection clause 2-548
in SELECT statement 2-549, 2-593

Distinct data types 4-32
base types 4-32
casting 2-102
casts and DROP TYPE 2-350
creating with CREATE DISTINCT TYPE 2-100
DESCRIBE with 2-389
distributed queries 2-544, 2-545
dropping 2-350
dynamic SQL with 2-389
GET DESCRIPTOR with 2-389
in dynamic SQL 2-625
privileges 2-100, 2-409, 2-509
restrictions on source type 2-101
source data type 2-389, 2-625
Usage privilege 2-409
with SET DESCRIPTOR 2-625

DISTINCT data types
distributed queries 4-33

DISTINCT keyword
in ALTER TABLE statement 2-50, 2-67
in CREATE DISTINCT TYPE statement 2-101
in CREATE INDEX statement 2-137
in CREATE TABLE statement 2-205, 2-214
in CREATE TEMP TABLE statement 2-236, 2-237
in Expression segment 4-164, 4-174
in SELECT statement 2-543
in subquery 4-18

Distributed DML operations 2-312, 2-443, 2-709
Distributed queries 2-544, 2-545

cross-database queries 2-544
cross-server queries 2-545

Distributed Relational Database Architecture (DRDA) 6-19
Distribution bins 2-723
Distributions 2-722

dropping 2-720
privileges required to create 2-721

DISTRIBUTIONS keyword, in UPDATE STATISTICS
statement 2-715, 2-722

divide() operator function 4-51
Division (/) symbol, arithmetic operator 4-41
DML (Data Manipulation Language) statements 1-8
DOCUMENT keyword

in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162

Dollar ($) symbol
in SQL identifiers 5-23
White space characters

delimited identifiers 5-23
Dollar ($) symbol

in MONEY values 4-192
in prepared statements 2-480
in SQL identifiers 5-21
prefix for C variables 5-71
prefix in pathnames 5-71

Dominant table 2-559
DORMANT keyword, in SET CONNECTION

statement 2-610
Dot notation 4-61
Dotted decimal format of syntax diagrams C-1
Double hyphen (--) comment indicator 1-3, 5-36
DOUBLE PRECISION data type 4-29
Double quotation marks (")

delimiting SQL identifiers 4-189
literal in a quoted string 4-191
quoted string delimiter 4-188, 4-191

DRDA application server 6-19, 6-21
DRDA client-server communication protocol 2-392, 2-465
DROP ACCESS_METHOD statement 2-325
DROP AGGREGATE statement 2-326
DROP CAST statement 2-327
DROP CONSTRAINT keywords, in ALTER TABLE

statement 2-69
DROP CRCOLS keywords

in ALTER TABLE statement 2-45
DROP DATABASE statement 2-328
DROP DISTRIBUTIONS keywords, in UPDATE STATISTICS

statement 2-715
DROP FUNCTION statement 2-329
DROP INDEX statement 2-332
DROP keyword

in ALTER ACCESS_METHOD statement 2-5
in ALTER FRAGMENT statement 2-23
in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in ALTER TABLE statement 2-45, 2-46, 2-47, 2-57, 2-63
in TRUNCATE statement 2-690
in UPDATE STATISTICS statement 2-715

DROP OPCLASS statement 2-334
DROP PARTITION keywords, in ALTER FRAGMENT

statement 2-23
DROP PROCEDURE statement 2-336
DROP REPLCHECK keywords

in ALTER TABLE statement 2-45
DROP ROLE statement 2-338
DROP ROUTINE statement 2-339
DROP ROW TYPE statement 2-341
DROP ROWIDS keywords

in ALTER TABLE statement 2-46
DROP SECURITY LABEL COMPONENT statement 2-342
DROP SECURITY LABEL statement 2-342
DROP SECURITY POLICY statement 2-342
DROP SECURITY statement 2-342
DROP SEQUENCE statement 2-344
DROP SYNONYM statement 2-346

Index X-13

DROP TABLE statement 2-347
DROP TRIGGER statement 2-349
DROP TYPE statement 2-350
DROP VERCOLS keywords

in ALTER TABLE statement 2-47
DROP VIEW statement 2-351
DROP XADATASOURCE statement 2-352
DROP XADATASOURCE TYPE statement 2-352
DS_NONPDQ_QUERY_MEM configuration parameter 2-588
Duplicate values

in a query 2-543
in a UNION ALL query 2-598

Dynamic cursor names 2-292
Dynamic link library 5-20
Dynamic log feature 3-45
Dynamic management statement 1-8
Dynamic parameters 2-320
Dynamic routine-name specification 2-365

of SPL functions 2-365
of SPL procedures 2-372

E
EACH keyword, in CREATE TRIGGER statement 2-254,

2-260
East Asian locales 4-118
EBCDIC keyword

in SELECT statement 2-596
Element variable 3-24
ELIF keyword, in IF statement 3-27
ELSE keyword

in Expression segment 4-66, 4-67
in IF statement 3-27

ENABLED keyword
in ALTER TABLE statement 2-52
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212, 2-213
in CREATE TRIGGER statement 2-245, 2-274
in SET AUTOFREE statement 2-606
in SET Database Object Mode statement 2-602, 2-605
in SET DEFERRED_PREPARE statement 2-618
in SET INDEXES statement 2-647

ENCRYPT_AES function 4-113
ENCRYPT_TDES function 4-114
Encrypted data 2-205, 4-106, 4-108
Encryption and decryption functions

DECRYPT_BINARY 4-112
DECRYPT_CHAR 4-112
ENCRYPT_AES 4-113
ENCRYPT_TDES 4-114
GETHINT 4-115
syntax 4-106

Encryption communication support module 2-627
Encryption communication support module (ENCCSM) 4-106
ENCRYPTION keyword

in SET ENCRYPTION PASSWORD statement 2-626
END EXCEPTION keywords, in ON EXCEPTION

statement 3-37
END FOR keywords, in FOR statement 3-18
END FOREACH keywords, in FOREACH statement 3-22
END FUNCTION keyword

in CREATE FUNCTION statement 2-125
END IF keywords, in IF statement 3-27
END keyword

in Expression segment 4-66, 4-67
in Statement Block segment 5-74

END PROCEDURE keywords
in CREATE PROCEDURE statement 2-162

END WHILE keywords, in WHILE statement 3-33, 3-49
Enterprise Replication

creating shadow columns 2-218, 2-219
ENVIRONMENT keyword

in SET ENVIRONMENT statement 2-630
in SET OPTIMIZATION statement 2-659

Environment variables 4-75
ANSIOWNER 1-1, 2-526, 5-48
CLASSPATH 6-18
CLIENT_LOCALE 4-25
DB_LOCALE 2-186, 2-286, 2-608, 2-644, 4-25, 5-23
DBACCNOIGN 2-75
DBANSIWARN 2-100, 2-182, 2-279, 2-292
DBBLOBBUF 2-451, 2-697
DBCENTURY 2-14, 2-261, 2-449, 4-180
DBDATE 2-204, 2-449, 2-696, 4-192
DBDELIMITER 2-453, 2-699
DBMONEY 2-449, 2-696
DBPATH 2-88
DBSPACETEMP 2-149, 2-239, 2-725
DBTIME 2-450, 2-696
DBUPSPACE 2-723, 2-725
DEBUG 6-4
DEFAULT_ATTACH 2-147
DELIMIDENT 2-85, 2-307, 2-694, 4-189, 5-23, 5-24, 5-32
GL_DATE 2-204, 2-449, 2-696, 4-192
GL_DATETIME 2-450, 2-696, 4-182
GL_USEGLU 2-609
IFX_DEF_TABLE_LOCKMODE 2-72, 2-230, 2-651
IFX_DIRECTIVES 5-35
IFX_DIRTY_WAIT 2-455, 2-692
IFX_EXTDIRECTIVES 2-531, 2-631, 5-44
IFX_LONGID 5-22
IFX_MULTIPREPSTMT 2-594
IFX_NODBPROC 6-4
IFX_PAD_VARCHAR 4-24
IFX_TABLE_LOCKMODE 2-457
IFX_UPDDESC 2-315, 2-319
INFORMIXCONCSMCFG 2-630
INFORMIXSERVER 2-88, 4-74
NODEFDAC 2-127, 2-165, 2-510
OPT_GOAL 5-43
OPTCOMPIND 2-630, 2-634, 2-667, 6-3
PDQPRIORITY 2-661, 2-667
SERVER_LOCALE 4-25
setting with SYSTEM statement 3-46
STMT_CACHE 2-667
USETABLENAME 2-41, 2-347, 2-692

Equal sign (=)
assignment operator 2-706
relational operator 4-193, 4-194

equal() operator function 2-207, 4-194
Error checking

continuing after error in SPL routine 3-40
error status with ON EXCEPTION 3-37
with SYSTEM 3-45
with WHENEVER 2-731

ERROR keyword
in ALTER TABLE statement 2-52
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212
in SET CONSTRAINTS statement 2-614
in SET Database Object Mode statement 2-602
in SET INDEXES statement 2-647
in WHENEVER statement 2-729

X-14 IBM Informix Guide to SQL: Syntax

ERROR keyword (continued)
synonym for SQLERROR 2-731

ESCAPE keyword
in Condition segment 4-6, 4-13
in CREATE EXTERNAL TABLE statement 2-107
in SELECT statement 2-596
with LIKE keyword 2-568, 4-15
with MATCHES keyword 2-569, 4-15

esql compiler 5-36
ESQL/C

collection cursor with FETCH 2-379
collection cursor with PUT 2-491
cursor example 2-299
deallocating collection-variable memory 2-287
deallocating row-variable memory 2-289
error checking for aggregate functions 4-172
inserting collection variables with 2-442
inserting row variables 2-443, 2-444
SQL statements valid only in ESQL/C 4-57
statements valid only in ESQL/C 4-56

ESQL/C API 4-190
Exception handler 5-77
EXCEPTION keyword

in GET DIAGNOSTICS statement 2-396
in ON EXCEPTION statement 3-37
in RAISE EXCEPTION statement 3-40

Excess-65 format 4-28
Exclamation point (!) 4-193

in smart-large-object filename 4-124
EXCLUSIVE keyword

in DATABASE statement 2-285
in LOCK TABLE statement 2-454

Exclusive lock mode 2-135, 2-152, 2-333, 2-454, 2-635, 2-638,
2-651

Executable file location 5-70
Executable statements 3-38
EXECUTE FUNCTION keywords 3-22

in DECLARE statement 2-290
in INSERT statement 2-446
in Statement Block segment 5-74

EXECUTE FUNCTION statement 2-363
and triggers 2-262
how it works 2-362
preparing 2-364
syntax 2-361

EXECUTE IMMEDIATE statement 2-365
restricted statement types 2-366

EXECUTE ON keywords
in GRANT statement 2-410
in REVOKE statement 2-510

EXECUTE PROCEDURE keywords 3-22
in DECLARE statement 2-290
in INSERT statement 2-446
in Statement Block segment 5-74

EXECUTE PROCEDURE statement 3-22
in triggered action 2-262
syntax 2-369

EXECUTE statement
INTO clause 2-355
INTO SQL DESCRIPTOR clause 2-357
parameterizing a statement 2-358
returned SQLCODE values 2-358
syntax 2-353
USING DESCRIPTOR clause 2-360
with USING keyword 2-358

EXEMPTION keyword
in GRANT statement 2-421

EXEMPTION keyword (continued)
in REVOKE statement 2-519

EXISTS keyword
beginning a subquery 2-569
in Condition segment 4-18
in Condition subquery 4-18

EXIT statement 3-16
EXP function 4-115
EXPLAIN keyword

in optimizer directives 5-43
SET EXPLAIN statement 2-640

EXPLAIN_SQL routine 6-9
EXPLAIN_STAT configuration parameter 2-644
EXPLICIT keyword

in CREATE CAST statement 2-95
Exponential function 4-115
Exponential number 4-185
Export support function 2-157, 2-696
exportbinary support function 2-696
Exportbinary support function 2-157
Express-mode load

procedure 2-115
Expression

Boolean 4-6, 4-8
casting 4-58
constant 4-70
list of 4-42
ordering by 2-589
smart large objects in 4-65

Expression Fragment Clause 2-225
EXPRESSION keyword

in ALTER FRAGMENT statement 2-18, 2-20
in CREATE INDEX statement 2-148
in CREATE TABLE statement 2-222

Expression segment
aggregate expressions 4-164
cast expressions 4-58
column expressions 4-59
combined expressions 4-51
list of expressions 4-42
syntax 4-41

EXT_DIRECTIVES configuration parameter xxii, 2-531, 2-631,
5-44

EXTDIRECTIVES keyword, in SET ENVIRONMENT
statement 2-531, 2-631, 5-44

EXTEND function 4-126, 4-133
EXTEND keyword

in GRANT statement 2-417
in REVOKE statement 2-515

EXTEND role 2-125, 2-134, 2-170, 2-171, 2-174, 2-176, 2-331,
2-337, 2-338, 2-340

EXTENT keyword
in ALTER TABLE statement 2-64, 2-69
in CREATE TEMP TABLE statement 2-238

EXTENT SIZE keywords
in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225, 2-227

Extents
counting how many in a table 4-167

External function
as operator-class support function 2-161
CREATE FUNCTION 2-131
dropping 2-331
executing 2-361, 2-480
limits on return values 5-55
non-variant 5-20
OUT parameter 4-163

Index X-15

External function (continued)
registering 2-131
strategy functions 2-161
variant 5-20

EXTERNAL keyword
in CREATE EXTERNAL TABLE statement 2-103, 2-104
in External Routine Reference segment 5-19
in SAVE EXTERNAL DIRECTIVES statement 2-531
in SELECT statement 2-593

External language 2-131
EXTERNAL NAME keywords

in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162

External optimizer directives 2-531
External procedure

creating body of 2-169
dropping 2-337
executing 2-480

External Routine Reference segment 5-19
External routines

as triggered action 2-262
built-in routines for defining 6-10
CREATE PROCEDURE FROM statement in 2-171
creating a function in 2-134
defined 2-164
dropping 2-340
EXTEND role 2-515
pathname syntax 5-70
preparing 2-480
referencing 5-20

External synonym 2-347
External tables 2-646

adding end-of-line character 2-121
adding newline character 2-122
creating 2-103
loading

from a delimited file 2-117
tables with the same schema 2-118
to a fixed text file 2-118

NULL values 2-105
restrictions in joins and subqueries 2-555
restrictions on calculating statistics 2-715
restrictions on optimizer directives 5-36
unloading

to a delimited file 2-120
to a fixed text file 2-121
to Informix internal format 2-120

with SELECT statement 2-595
EXTYPEID field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

EXTYPELENGTH field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

EXTYPENAME field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

EXTYPEOWNERLENGTH field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

EXTYPEOWNERNAME field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

F
FETCH statement 2-372
Field projection 2-708, 4-61
Field qualifier 4-38, 4-175

for INTERVAL 4-182
field qualifiers 4-38
FILE keyword

in SET DEBUG FILE statement 2-617
FILE TO keywords

in SET DEBUG FILE statement 2-617
in SET EXPLAIN statement 2-640

Files
for LOAD input 2-696
in FIXED format 2-105
saving output from UNLOAD 2-696
saving output from UPDATE STATISTICS 2-723
saving query plans in sqexplain.out 2-642
sending output with the OUTPUT statement 2-476

FILETOBLOB function 4-121
FILETOCLOB function 4-121
FILLFACTOR configuration parameter 2-145
FILLFACTOR keyword

in CREATE INDEX statement 2-145
FILTERING keyword

in ALTER TABLE statement 2-52
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212, 2-213
in SET Database Object Mode statement 2-602
with diagnostics tables 2-688

FINAL keyword
in CREATE AGGREGATE statement 2-92

FIRST keyword
in FETCH statement 2-372
in SELECT statement 2-541, 2-542
invalid in INSERT 2-446

FIRST_ROWS keyword
in optimizer directives 5-42
in SET OPTIMIZATION statement 2-659

FIXED keyword
in CREATE EXTERNAL TABLE statement 2-107

Fixed text files
unloading 2-118, 2-121

Fixed-length opaque data type 2-155
Fixed-point numbers 4-185
Fixed-text files

adding end-of-line character 2-121
FLOAT data type 4-29

literal values 4-185
systems not supporting 2-286

Floating-point numbers 4-185
FLOOR function 4-87, 4-89
FLUSH statement 2-382
Flushing an insert buffer 2-492
for DATETIME 4-38

X-16 IBM Informix Guide to SQL: Syntax

FOR EACH ROW keywords, in CREATE TRIGGER
statement 2-254, 2-260

for INTERVAL 4-175
FOR keyword 3-22

in CONTINUE statement 3-5
in CREATE FUNCTION statement 2-125
in CREATE OPCLASS statement 2-158
in CREATE PROCEDURE statement 2-162
in CREATE SYNONYM statement 2-195
in CREATE TRIGGER statement 2-254, 2-260
in DECLARE statement 2-290
in EXIT statement 3-16
in GRANT statement 2-421, 2-423
in INFO statement 2-433
in REVOKE statement 2-519, 2-521
in SAVE EXTERNAL DIRECTIVES statement 2-531
in SELECT statement 2-591, 2-592
in SET AUTOFREE statement 2-606
in SET CONSTRAINTS statement 2-614
in SET Database Object Mode statement 2-601
in SET INDEXES statement 2-647
in SET TRIGGERS statement 2-677
in START VIOLATIONS TABLE statement 2-677
in STOP VIOLATIONS TABLE statement 2-689
in UPDATE STATISTICS statement 2-715, 2-725

FOR READ ONLY keywords
in DECLARE statement 2-290
in SELECT statement 2-592

FOR statement 3-18
FOR TABLE keywords, in UPDATE STATISTICS

statement 2-715
FOR UPDATE keywords

in DECLARE statement 2-290
in SELECT statement 2-536, 2-591
with column list 2-295

FORCE keyword
in UPDATE STATISTICS statement 2-715

FORCE_DDL_EXEC Environment Option 2-632
FOREACH keyword

in CONTINUE statement 3-5
in EXIT statement 3-16

FOREACH statement
syntax 3-22

Foreign key
dropping 2-69
establishing 2-53, 2-208
examples 2-54, 2-216
multiple columns 2-215

Foreign key constraint 2-215, 2-517
FOREIGN KEY keywords

in ALTER TABLE statement 2-67
in CREATE TABLE statement 2-214, 2-231

FORMAT keyword
in CREATE EXTERNAL TABLE statement 2-107
in SELECT statement 2-593, 2-596

FORMAT_UNITS function 4-156
FRACTION keyword 4-175

as DATETIME field qualifier 4-180
as INTERVAL field qualifier 4-182
in DATETIME Field Qualifier segment 4-38

FRAGMENT BY keywords
in ALTER FRAGMENT statement 2-18, 2-20
in CREATE INDEX statement 2-148
in CREATE TABLE statement 2-222
in CREATE TEMP TABLE statement 2-238

FRAGMENT keyword
in ALTER FRAGMENT statement 2-7, 2-18

FRAGMENT keyword (continued)
in GRANT FRAGMENT statement 2-428
in REVOKE FRAGMENT statement 2-525

Fragment-level privilege
granting 2-428
revoking 2-525

Fragmentation
adding a fragment 2-22
adding rowids 2-45, 2-46
altering fragments 2-7
arbitrary rule 2-223
by expression 2-14, 2-24
combining tables 2-10
Dataskip feature 2-615
detaching a table fragment 2-15
dropping an existing fragment 2-23
dropping rowids 2-46
insufficient log space or disk space 2-9
list of dbspaces 2-616
modifying an existing fragment expression 2-24
nonremainder fragment 2-24
number of rows in fragment 2-9
of indexes 2-148
of tables 2-222
of temporary tables 2-238
reinitializing strategy 2-20
remainder 2-23
reverting to nonfragmented 2-18
round-robin 2-14
rowid 2-17
rowid columns with 2-223
strategy

by expression 2-223, 2-616
by round-robin 2-223, 2-616
range rule 2-223

TEXT and BYTE data types 2-13
Fragmentation strategy, modifying 2-16
FRAGMENTS keyword, in INFO statement 2-433
FREE statement 2-384
FROM keyword

in DELETE statement 2-307
in LOAD statement 2-448
in PREPARE statement 2-477
in PUT statement 2-488
in REVOKE FRAGMENT statement 2-525
in REVOKE statement 2-502, 2-518, 2-519, 2-521, 2-523
in SELECT statement 2-551
in TRIM expressions 4-145

FULL keyword
in optimizer directives 5-37
in SELECT statement 2-563

Full outer joins 2-559
Function

companion 2-362
negator 2-362
selectivity 5-65

Function cursor
defined 3-23
opening 2-471
reopening 2-471

Function expressions 4-86
FUNCTION keyword

in ALTER FUNCTION statement 2-27
in DECLARE statement 2-290
in DROP FUNCTION statement 2-329
in EXECUTE FUNCTION statement 2-361
in GRANT statement 2-410

Index X-17

FUNCTION keyword (continued)
in REVOKE statement 2-510
in SELECT statement 2-558
in UPDATE STATISTICS statement 2-725

Functional index 2-139, 2-140, 2-152, 2-629
Functions

casting 2-97
collection manipulation 5-64
creating indirectly from a stored file 2-134
creating with CREATE FUNCTION 2-125
creating with CREATE FUNCTION FROM 2-134
cursor 3-23
distributed transactions 3-43, 5-57
dropping with DROP ROUTINE 2-339
modifying

path to executable file 2-28
modifying routine modifiers 2-28
noncursor 3-23
nonvariant 5-20
protected 2-329, 2-339
smart large object 4-121
specific name 5-73
system catalog tables 2-131
thread-safe 5-64
trigger 2-128
unregistering with DROP FUNCTION 2-329
user-defined

defined 2-164
variant 5-20

Functions,
security label support 4-118

Functions, SQL
ABS 4-88
ACOS 4-139
ADD_MONTHS 4-127
ASCII 4-144
ASIN 4-139
ATAN 4-139
ATAN2 4-139
AVG 4-167
BITAND 4-52
BITANDNOT 4-52
BITNOT 4-52
BITOR 4-52
BITXOR 4-52
CARDINALITY 4-97
CASE 4-65
CAST 4-58
CEIL 4-89
CHAR_LENGTH 4-117
CHARACTER_LENGTH 4-117
CONCAT 4-141
COS 4-139
COUNT 4-167
CURRENT 4-75
CURRENT_ROLE 4-73
CURRVAL 4-78
DATE 4-128
DAY 4-129
DBINFO 4-98
DECODE 4-69
DECRYPT_BINARY 4-112
DECRYPT_CHAR 4-112
DEFAULT_ROLE 4-73
ENCRYPT_AES 4-113
ENCRYPT_TDES 4-114
Encryption and decryption 4-106

Functions, SQL (continued)
EXP 4-115
Exponential 4-115
EXTEND 4-133
FILETOBLOB 4-121
FILETOCLOB 4-121
FLOOR 4-89
FORMAT_UNITS 4-156
GETHINT 4-115
HEX 4-116
IFX_REPLACE_MODULE 6-10
INITCAP 4-155
LAST_DAY 4-131
LENGTH 4-117
LOCOPY 4-125
LOG10 4-116
Logarithmic 4-115
LOGN 4-116
LOTOFILE 4-123
LOWER 4-155
LPAD 4-153
LTRIM 4-147
MAX 4-170
MDY 4-133
MIN 4-170
MOD 4-89
MONTH 4-129
MONTHS_BETWEEN 4-130
NEXT_DAY 4-132
NEXTVAL 4-78
NULLIF 4-68
NVL 4-68
OCTET_LENGTH 4-117
POW 4-90
POWER 4-90
RANGE 4-171
REPLACE 4-152
ROOT 4-90
ROUND 4-90
RPAD 4-153
RTRIM 4-148
SECLABEL_BY_COMP 4-119
SECLABEL_BY_NAME 4-119
SECLABEL_TO_CHAR 4-120
SIN 4-139
SQLCODE 4-97
SQRT 4-90
STDEV 4-171
SUBSTR 4-150
SUBSTRING 4-149
SUM 4-171
SYS_CONNECT_BY_PATH 2-578
SYSDATE 4-76
TAN 4-139
Time 4-126
TO_CHAR 4-134
TO_DATE 4-137
TO_NUMBER 4-137
TODAY 4-75
TRIM 4-145
TRUNC 4-94
UPPER 4-155
USER 4-72
VARIANCE 4-172
WEEKDAY 4-129
YEAR 4-129

Fuzzy index 2-161

X-18 IBM Informix Guide to SQL: Syntax

G
G abbreviation for gigabyte 4-156
GB18030-2000 locale 4-24
Generalized-key index

no renamed table 2-500
Generic B-tree index 2-144
Generic CASE expressions 4-66
GET DESCRIPTOR statement

use with FETCH statement 2-377
GET DIAGNOSTICS statement

SQLSTATE codes 2-392
syntax 2-391

GET keyword
in GET DESCRIPTOR statement 2-385
in GET DIAGNOSTICS statement 2-391

GET_TZ option of DBINFO 4-104
GETHINT function 4-115
GL_DATE environment variable 2-204, 2-449, 2-696, 4-192
GL_DATETIME environment variable 2-450, 2-696, 4-182
GL_USEGLU environment variable 2-609
Global environment 3-7
GLOBAL keyword, in DEFINE statement 3-6
Global Language Support (GLS) xxi
Global variables 3-7
GO TO keywords, in WHENEVER statement 2-729
GOTO keyword, in WHENEVER statement 2-732
GOTO statement 3-26
GRANT FRAGMENT statement 2-428
GRANT keyword

in GRANT FRAGMENT statement 2-428
GRANT statement 2-401
Greater than (>) symbol 4-193
greaterthan() operator function 4-194
greaterthanorequal() operator function 4-194
GROUP BY keywords, in SELECT statement 2-584

H
Handle value 4-64, 4-122
HANDLESNULLS keyword

in CREATE AGGREGATE statement 2-92
in Routine Modifier segment 5-60

Hash join 2-634, 2-644, 5-41
HASH keyword

in ALTER FRAGMENT statement 2-18
HAVING keyword

in SELECT statement 2-585
HEADINGS keyword, in OUTPUT statement 2-476
HEX function 4-64, 4-116
Hexadecimal digits 2-699
Hexadecimal dump format 2-697
Hexadecimal smart-large-object identifier 2-697, 4-124
Hierarchical queries

ORDER SIBLINGS BY clause 2-590
HIGH INTEG keywords

in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225

HIGH keyword
in SET OPTIMIZATION statement 2-659
in SET PDQPRIORITY statement 2-661
in UPDATE STATISTICS statement 2-715

High-availability data replication server (HDR) 2-655
High-Performance Loader 2-157, 2-592
HINT keyword

in SET ENCRYPTION PASSWORD statement 2-626

Hold cursor
defined 2-298
insert cursor with hold 2-300
update cursor with hold 2-296

HOLD keyword 3-22
in DECLARE statement 2-290

hosts.equiv file 2-88
HOUR keyword 4-38, 4-175

as DATETIME field qualifier 4-180
as INTERVAL field qualifier 4-182

HYBRID keyword
in ALTER FRAGMENT statement 2-18

Hyphen symbol (-)
DATETIME separator 4-180
INTERVAL separator 4-182

I
IBM Data Server Driver for JDBC and SQL 6-19, 6-21
IBM Data Studio 6-9
IBM OpenAdmin Tool (OAT) for Informix 2-717
IDATA field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with X/Open programs 2-388

Identifier
column names 5-29
connection name 2-86
cursor name 5-30, 5-32
defined 5-21
delimited identifiers 5-24
multibyte characters 5-23
non-ASCII characters 5-23
non-unique 5-25
routines 5-30
storage objects 5-24
syntax 5-21
table names 5-28, 5-29, 5-30
undelimited identifiers 5-23
uppercase characters 5-22
using keywords 5-22
using keywords as column names 5-26
variable name 5-32

IDSLBACREADARRAY keyword
in GRANT statement 2-421
in REVOKE statement 2-519

IDSLBACREADSET keyword
in GRANT statement 2-421
in REVOKE statement 2-519

IDSLBACREADTREE keyword
in GRANT statement 2-421
in REVOKE statement 2-519

IDSLBACRULES
granting exemptions 2-422, 2-520
in distributed queries 2-545

IDSLBACRULES keyword
in CREATE SECURITY POLICY statement 2-189

IDSLBACWRITEARRAY keyword
in GRANT statement 2-421
in REVOKE statement 2-519

IDSLBACWRITESET keyword
in GRANT statement 2-421
in REVOKE statement 2-519

IDSLBACWRITETREE keyword
in GRANT statement 2-421
in REVOKE statement 2-519

Index X-19

IDSSECURITYLABEL data type
in distributed queries 2-422, 2-520, 2-545

IF NOT EXISTSI keywords
in CREATE DATABASE statement 2-97

IF statement 3-27
IFX_ALLOW_NEWLINE function

effect on quoted strings 4-190
syntax 4-159

IFX_AUTO_REPREPARE keyword, in SET ENVIRONMENT
statement 2-633

IFX_AUTO_REPREPARE session environment variable 2-475,
2-487, 2-725

IFX_BATCHEDREAD_TABLE environment option 2-634
IFX_DEF_TABLE_LOCKMODE environment variable 2-72,

2-230, 2-651
IFX_DIRECTIVES environment variable 5-35
IFX_DIRTY_WAIT environment variable 2-455, 2-692
IFX_EXTDIRECTIVES environment variable 2-531, 2-631, 5-44
IFX_EXTEND_ROLE configuration parameter 2-28, 2-30, 2-33,

2-125, 2-134, 2-170, 2-171, 2-176, 2-417, 2-515, 5-71, 6-5, 6-10
ifx_insert_checksum shadow column 2-47
IFX_LO_SPEC data type 2-544, 4-22
IFX_LO_STAT data type 2-544, 4-22
IFX_LONGID environment variable 5-22
IFX_MULTIPREPSTMT environment variable 2-594
IFX_NODBPROC environment variable 6-4
IFX_PAD_VARCHAR environment variables 4-24
IFX_REPLACE_MODULE function 6-10
ifx_replcheck replication column 2-219
ifx_replcheck shadow column 2-45
ifx_row_version shadow column 2-47
IFX_TABLE_LOCKMODE environment variable 2-457
IFX_UPDDESC environment variable 2-315, 2-319
ILENGTH field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with X/Open programs 2-388

Ill-behaved C UDR 5-62
Imaginary numbers 4-29
IMMEDIATE keyword

in EXECUTE IMMEDIATE statement 2-365
in SET Transaction Mode statement 2-674

IMMUTABLE keyword
in SET ENVIRONMENT statement 2-630

IMPEX data type 2-545, 4-22
IMPEXBIN data type 2-545, 4-22
Implicit connection 2-88

closing 2-80
Implicit cursor 3-22, 5-37
Implicit inner join 2-563
IMPLICIT keyword

in CREATE CAST statement 2-95
Implicit transactions 2-666
Import support function 2-157, 2-450
Importbinary support function 2-157, 2-450
in != relational operator 4-193
in Collection Subquery segment 4-3
in Collection-Derived Table segment 5-4
in Collection-Subquery segment 4-3
in DATETIME data type 4-38
in DATETIME Field Qualifier 4-38
in DATETIME Field Qualifier segment 4-38
in EXECUTE FUNCTION statement 2-363
in FOR statement 3-18
in FOREACH 3-22
in FOREACH statement 3-22
in GET DESCRIPTOR statement 2-385

in GRANT FRAGMENT statement 2-429
in GRANT statement 2-403
in IF statement 3-29
in INTERVAL field qualifier 4-175
in INTERVAL Field Qualifier 4-175
IN keyword 3-18

as a condition 4-17
in ALTER FRAGMENT statement 2-18, 2-20, 2-22, 2-24
in ALTER TABLE statement 2-64
in Condition segment 4-6, 4-10, 4-17
in CREATE DATABASE statement 2-97
in CREATE FUNCTION statement 2-125
in CREATE INDEX statement 2-146, 2-147, 2-148
in CREATE PROCEDURE statement 2-162
in CREATE TABLE statement 2-221, 2-222, 2-225
in CREATE TEMP TABLE statement 2-238
in Data Type segment 4-29
in LOCK TABLE statement 2-454
in ON EXCEPTION statement 3-37
in SELECT statement 2-567

in Literal Row segment 4-185
in relational operators 4-193
in SELECT statement 2-539
in SET EXPLAIN output 2-646
IN TABLE keywords, in CREATE INDEX statement 2-147
INACTIVE keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-531
INCREMENT keyword

in ALTER SEQUENCE statement 2-39
in CREATE SEQUENCE statement 2-193

Index
access method 2-158
altering table fragmentation 2-12
attached 2-24, 2-147
B-tree 2-139
B-tree index 2-50
bidirectional traversal 2-141
clustered fragments 2-138
compacted 2-145
composite 2-140, 2-214
converting during upgrade 2-715, 2-728
creating 2-135
delete flag 2-719
detached 2-21, 2-148
disabled 2-151, 2-603
displaying index information 2-433
dropping with ALTER TABLE . . . DROP

CONSTRAINT 2-332
dropping with DROP INDEX 2-332
filtering to violations table 2-603
fragmented 2-7, 2-148, 2-217
functional 2-139, 2-152
fuzzy 2-161
internal 2-217
key filter 2-644
maximum key size 2-139, 2-140
multilingual index 2-609
nonfragmented 2-18
on ORDER BY columns 2-590
on temporary tables 2-595
online 2-152
privilege 2-7
provide for expansion 2-145
R-Tree 2-139
renaming 2-497
ROOT argument 4-90
self-join keys 2-644

X-20 IBM Informix Guide to SQL: Syntax

Index (continued)
self-join path 5-37
shared 2-50, 2-53, 2-68
side-effect 2-161
system-generated 2-217, 5-36
unique 2-150

restrictions 2-21
unique keys 5-52
virtual 2-152, 2-333

INDEX keyword
in ALTER FRAGMENT statement 2-7
in ALTER INDEX statement 2-28
in CREATE INDEX statement 2-135
in DROP INDEX statement 2-332
in GRANT statement 2-406
in optimizer directives 5-37
in RENAME INDEX statement 2-497
in REVOKE statement 2-506

INDEX optimizer directive 5-38
Index privilege 2-406, 2-506
INDEX_SJ keyword, in optimizer directives 5-37
INDEXES keyword

in INFO statement 2-433
in SET Database Object Mode statement 2-600, 2-601
in SET INDEXES statement 2-647

INDEXKEYARRAY data type 2-544, 4-22
INDICATOR field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622

INDICATOR keyword 2-363
in EXECUTE statement 2-355, 2-358
in FETCH statement 2-372
in PUT statement 2-488
in SELECT statement 2-550

Indicator variable
in expression 4-172

Indirect typing 3-14
industry standards xxxiii
INFO statement 2-433
Informix 4GL 4-190
Informix internal format

unloading 2-120
INFORMIX keyword

in CREATE EXTERNAL TABLE statement 2-107
in External Routine Reference segment 5-19

INFORMIX parameter style 5-20
informix user name 2-328, 2-404, 5-17
INFORMIX_SQLCODE keyword, in GET DIAGNOSTICS

statement 2-396
Informix-Admin group 2-419
INFORMIX.JVPCONTROL function 6-12
INFORMIXCONCSMCFG environment variable 2-630
INFORMIXSERVER environment variable 2-86, 2-88, 4-74
Inheritance hierarchy

dropping tables 2-348
named ROW types 2-178, 2-341

INIT keyword
in ALTER FRAGMENT statement 2-16
in CREATE AGGREGATE statement 2-92

INITCAP function 4-155
Initial-cap characters, converting to 4-155
Inner joins 2-559
INNER keyword in SELECT statement 2-563
INOUT parameter 4-161
INOUT parameters 5-20, 5-70
Input support function 2-156
Insert buffer 2-492

Insert buffer (continued)
filling with constant values 2-489
inserting rows

with a cursor 2-438
storing rows with PUT 2-488
triggering flushing 2-492

Insert clause in MERGE statement 2-459
Insert cursor 2-297

benefits 2-297
closing 2-77
declaring 2-293
in INSERT 2-438
in PUT 2-489
opening 2-472
reopening 2-472
result of CLOSE in SQLCA 2-77
with hold 2-300

INSERT INTO keywords
in LOAD 2-453

INSERT keyword 2-429
in CREATE TRIGGER statement 2-248, 2-274
in DECLARE statement 2-290
in GRANT statement 2-405
in LOAD statement 2-448
in MERGE statement 2-458
in REVOKE FRAGMENT statement 2-526
in REVOKE statement 2-506

Insert privilege 2-405, 2-506
INSERT statement 2-435
INSERT statements

and triggers 2-262
AT clause 2-437
collection-column values 2-442
collection-derived table, with 2-447
effect of transactions 2-439
ESQL/C 2-442, 2-443, 2-444
filling insert buffer with PUT 2-488
in dynamic SQL 2-447
insert cursor compared with 2-297
insert triggers 2-247
inserting

rows through a view 2-437
rows with a cursor 2-438

into collection cursor 2-491
nulls 2-444
OUT parameter and SLVs 4-163
protected tables 2-445
row type field values 2-442
row variables 2-447
SERIAL and SERIAL8 columns 2-441
smart large objects with 4-64
specifying values to insert 2-439
using functions 2-444
VALUES clause, expressions with 2-444
with DECLARE statement 2-290
with insert cursor 2-296
with SELECT statement 2-446

Insert trigger 2-247, 2-274
INSERTING operator 2-129, 2-167, 4-12
install_jar() procedure 2-132, 2-169
INSTEAD OF keywords, in CREATE TRIGGER

statement 2-241
INSTEAD OF trigger 2-274
INT8 data type 4-27
INTEG keyword

in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225

Index X-21

INTEGER data type 4-27
literal values 4-184

INTERNAL keyword, in Routine Modifier segment 5-60
INTERNALLENGTH keyword, in CREATE OPAQUE TYPE

statement 2-154
INTERVAL data type 4-182

as quoted string 4-191
field qualifier 4-175
in expression 4-77
in INSERT 4-191
literal 4-182
loading 2-450
precision 4-175
syntax 4-32

INTERVAL keyword
in CREATE TABLE statement 2-222

INTERVAL keyword, in literal INTERVAL 4-182
INTO clause 2-363
INTO DESCRIPTOR keywords, in EXECUTE 2-357
INTO EXTERNAL keywords

in SELECT statement 2-595
INTO keyword 2-363, 3-22

in DESCRIBE INPUT statement 2-318
in DESCRIBE statement 2-314
in EXECUTE FUNCTION statement 2-361
in EXECUTE PROCEDURE statement 2-369
in EXECUTE statement 2-355
in FETCH statement 2-372
in INSERT statement 2-435
in LOAD statement 2-448
in MERGE statement 2-458
in SELECT statement 2-549, 2-593

INTO SQL DESCRIPTOR keywords, in EXECUTE
statement 2-357

INTO TEMP clause
in SELECT statement 2-594
invalid in INSERT 2-446
with UNION operator 2-597

IPCSTR connection 2-312, 2-443, 2-545, 2-709
IS keyword

in Condition segment 4-6
in WHERE clause 2-568

IS NOT NULL keywords
Condition segment 4-12
in WHERE clause of a query 2-568

IS NULL keywords
Condition segment 4-12
in ALTER FRAGMENT statement 2-10, 2-22
in WHERE clause of a query 2-568

ISAM error code 3-37, 3-41, 3-44
ISOLATION keyword

in SET ISOLATION statement 2-649
in SET TRANSACTION statement 2-670

Isolation level
defined 2-650, 2-671
with FETCH statement 2-378

Item descriptor 2-3
ITEM keyword 4-3
ITER keyword

in CREATE AGGREGATE 2-92
Iterator functions 2-557, 2-644, 3-44, 5-63
ITERATOR keyword, in Routine Modifier segment 5-60
ITYPE field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with X/Open programs 2-388

J
Jagged rows 2-231
Jar files

installing in the database 6-15
name of a jar ID 5-34
read permissions 6-15
renaming 2-497

Java class
installing 6-14
jar file where defined 5-34
mapping to a UDT 6-18
package where defined 5-72
removing a jar file 6-16
replacing a jar file 6-15

JAVA keyword, in External Routine Reference segment 5-19
Java UDRs 6-14, 6-16

CLASS routine modifier 5-60
getting JVP memory information 6-13
Getting JVP thread information 6-13
installing a Jar file 6-14
Java signature 5-73
jvpcontrol function 6-12
shared-object file 5-72
sqlj.alter_java_path procedure 6-16
sqlj.replace_jar procedure 6-15
sqlj.setUDTextName procedure 6-18
sqlj.unsetUDTextName procedure 6-18
static method 5-72
unmapping a user-defined type 6-18

Java Virtual Processor Class
CLASS modifier 5-62
getting memory information 6-13
getting thread information 6-13

Java Virtual-Table Interface 2-90
JDBC API 4-190
JDBC connection 5-64
JDBC Driver built-in function 6-12
Join

condition 2-559
hash join 2-634, 2-644, 5-41
in Condition segment 2-570
in MERGE statement 2-459
in UPDATE statement 2-710
index self-join path 5-37
multiple-table join 2-571
nested loop join 5-41
nested-loop join 2-634, 2-644
outer 2-566
outer, Informix extension syntax 2-572
self-join 2-571
sort-merge join 2-634

Join filter 2-460, 2-563
JOIN keyword

in SELECT statement 2-559, 2-561
Join-method directive 2-563, 5-40
Join-order directive 5-39
JVPCLASSPATH configuration parameter 6-17
jvpcontrol function 6-12

K
K abbreviation for kilobyte 4-156
KEEP ACCESS TIME keywords

in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225

X-22 IBM Informix Guide to SQL: Syntax

KEEP keyword
in ALTER TABLE statement 2-64

keepccomment option of esqlc 5-36
KEY keyword

CREATE TABLE statement 2-231
in ALTER TABLE statement 2-50, 2-67
in CREATE TABLE statement 2-205, 2-214
in CREATE TEMP TABLE statement 2-236, 2-237
KEY keyword

in CREATE TEMP TABLE statement 2-237
Key management for encrypted data 4-108
Keywords

as identifiers 5-22
list for Extended Parallel Server B-1
list for Informix A-1

L
Label

column security label 2-201
data security label 2-183, 2-342
loop label 3-1
statement label 3-1, 3-26
user security label 2-183, 2-342, 2-423, 2-521

LABEL COMPONENT keywords
in DROP SECURITY statement 2-342
in RENAME SECURITY statement 2-499

LABEL keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in CREATE SECURITY LABEL COMPONENT

statement 2-185
in CREATE SECURITY LABEL statement 2-183
in CREATE SECURITY POLICY statement 2-189
in DROP SECURITY statement 2-342
in GRANT statement 2-423
in RENAME SECURITY statement 2-499
in REVOKE statement 2-521

Language
external 2-131
privileges on 2-410, 2-511

LANGUAGE keyword
in External Routine Reference segment 5-19
in GRANT statement 2-410
in REVOKE statement 2-511

Large objects 4-29
constraints 2-206, 2-215
pointer structure 2-157

LAST COMMITTED keywords, in SET ISOLATION
statement 2-648, 5-37

LAST keyword
in FETCH statement 2-372
in SET ISOLATION statement 2-651

LAST_DAY function 4-126, 4-131
LEADING keyword, in TRIM expressions 4-145
Leap second 4-105
LEFT keyword in SELECT statement 2-563
Left outer joins 2-559
LENGTH field 2-385

in SET DESCRIPTOR statement 2-622
with DATETIME and INTERVAL types 2-624
with DECIMAL and MONEY types 2-624
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

Length function 4-117
LENGTH function 2-547, 4-117
Less than (<) symbol 4-193

lessthan() operator function 4-194
lessthanorequal() operator function 4-194
LET statement 3-31
Lettercase conversion 4-154
LEVEL keyword

in SELECT statement 2-578
in SET TRANSACTION statement 2-670

Level-0 backup 2-201, 2-593
Light appends 2-245
Light scan 4-25
LIKE keyword

in Condition segment 4-6, 4-13
in DEFINE statement 3-6
in Routine Parameter List segment 5-68
in SELECT statement 2-568
wildcard characters 2-568

like() operator function 4-14
LIST data type

columns, generating values for 4-82
defined 4-83
deleting elements from 2-312
unloading 2-696
updating elements 2-714

LIST keyword
in CREATE TABLE statement 2-222
in DEFINE statement 3-11
in Expression segment 4-82
in Literal Collection 4-177

LISTING keyword
in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162

Literal
BOOLEAN 2-204
DATE 2-204
DATETIME 4-180

in ALTER TABLE statement 2-49
in INSERT statement 2-439
with IN keyword 2-567

INTERVAL 4-182
in expression 4-77
in INSERT statement 2-439

nested row 4-188
number 4-72
Number 4-184

in INSERT 2-439
with IN keyword 4-11

Literal collection
nested 4-179

Literal number, exponential notation 4-185
Literal Row segment 4-185
literal values 4-180
Literal values, specifying as default values 2-204
LOAD statement 2-448
Loading data with external tables

data warehouse table
initial load 2-119
refreshing periodically 2-119

deluxe-mode procedure 2-116
express-mode procedure 2-115
from a delimited file 2-117
from other database servers 2-120
serial columns 2-118
tables with the same schema 2-118
to a fixed text file 2-118

loading from another database server 2-120
local option to esqlc command 2-292, 2-354
Local variable 3-10

Index X-23

Locales xxi
Localized collation order 2-588, 2-608, 4-15, 4-195
LOCK keyword

in ALTER TABLE statement 2-71
in SET LOCK MODE statement 2-655

LOCK MODE keywords
in ALTER TABLE statement 2-71
in CREATE TABLE statement 2-229

Lock table overflow 2-296
LOCK TABLE statement

syntax 2-454
Locking

blobspaces 2-16
during

inserts 2-439
updates 2-296, 2-703

effect of FORCE_DDL_EXEC setting 2-7
exclusive locks 2-7, 2-296, 2-454, 2-635, 2-638, 2-651
granularity 2-71, 2-229, 2-457, 2-635, 2-638
in transactions 2-74
overriding row-level 2-456
promotable lock 2-296
releasing with COMMIT WORK statement 2-81, 2-296
releasing with ROLLBACK WORK statement 2-528
shared locks 2-454
types of locks 2-229
update cursors effect on 2-296
update locks 2-635, 2-654, 2-703
waiting period 2-656
when creating a referential constraint 2-54, 2-210
with

SET LOCK MODE statement 2-655
UNLOCK TABLE statement 2-699

with FETCH statement 2-378
with SET ISOLATION statement 2-648
with SET TRANSACTION statement 2-670
write lock 2-296

Locking granularity 2-457, 2-651
LOCKS configuration parameter 2-329, 2-456
LOCKS keyword, in SET ISOLATION statement 2-653
LOCOPY function 4-121, 4-125
LOG keyword

ALTER TABLE statement 2-64
in CREATE DATABASE statement 2-97
in CREATE TABLE statement 2-225
in CREATE TEMP TABLE statement 2-234
in SELECT statement 2-593
in SET LOG statement 2-658

LOG10 function 4-115
Logarithmic functions

LOG10 function 4-115
LOGN function 4-116

Logging
buffered versus unbuffered 2-658
cascading deletes 2-309
changing mode with SET LOG 2-658
in CREATE DATABASE statement 2-97
log space requirements 2-9
table type options 2-201
temporary tables 2-240
with triggers 2-273

Logical character semantics 2-201, 3-14
Logical operator, in Condition segment 4-20
LOGN function 4-115
Lohandles support function 2-157
LOLIST data type 2-545, 4-22
Long transaction rollback 3-45

Loop
controlled 3-18
indefinite with WHILE 3-33, 3-49

LOOP keyword 3-18
in CONTINUE statement 3-5
in EXIT statement 3-16

LOOP statement 3-33
LOTOFILE function 4-121, 4-123
LOW keyword

in SET OPTIMIZATION statement 2-659
in SET PDQPRIORITY statement 2-661
in UPDATE STATISTICS statement 2-715

LOWER function 4-155
Lower index filter 2-644
Lowercase characters, converting to 4-155
LPAD function 4-153
LTRIM function 4-147
LVARCHAR data type 4-22, 4-24

syntax 4-23

M
M abbreviation for megabyte 4-156
mail utility, accessing from an SPL routine 3-45
Mail, sending from SPL routines 3-45
Mantissa 4-184
Master replicate 2-694
MATCHED keyword in MERGE statement 2-458
MATCHES keyword

in Condition segment 4-6, 4-13
in SELECT statement 2-568
wildcard characters 2-569

matches() operator function 4-15
Materialized table expression 2-554
Materialized view 2-279
MAX function 4-164, 4-170
MAX keyword

in ALLOCATE DESCRIPTOR statement 2-3
in START VIOLATIONS TABLE statement 2-677

MAX ROWS keywords, in START VIOLATIONS TABLE
statement 2-677

MAX_PDQPRIORITY configuration parameter 2-661
MAXERRORS keyword

in CREATE EXTERNAL TABLE statement 2-107
MAXLEN keyword, in CREATE OPAQUE TYPE

statement 2-155
MAXVALUE keyword

in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-193

MDY function 4-126, 4-133
MEDIUM keyword, in UPDATE STATISTICS statement 2-715
MEDIUM mode 2-722
Membership (.) operator 4-61
Memory

allocating for collection variable 2-1
allocating for ROW variable 2-4
deallocating cursors 2-385
deallocating for collection variable 2-287
deallocating for cursors 2-606
deallocating for row variable 2-289
deallocating prepared objects 2-385, 2-607

MEMORY keyword, in EXECUTE FUNCTION
statement 6-12

MERGE statement 2-458
MESSAGE_LENGTH keyword, in GET DIAGNOSTICS

statement 2-396

X-24 IBM Informix Guide to SQL: Syntax

MESSAGE_TEXT keyword, in GET DIAGNOSTICS
statement 2-396

Metadata function 6-19
mi_collection* functions 5-64
mi_trigger*() functions 2-262
MIN function 4-164, 4-170
Minus (-) sign

binary operator 4-40
Minus sign (-)

INTERVAL literals 4-182
unary operator 4-183

minus() operator function 4-51
MINUTE keyword 4-38, 4-175
MINVALUE keyword

in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

Missing arguments 5-2
Mixed-case characters, converting to 4-155
MOD function 4-87, 4-89
MODE keyword

in ALTER TABLE statement 2-71
in CREATE DATABASE statement 2-97
in CREATE TABLE statement 2-229
in LOCK TABLE statement 2-454
in SET LOCK MODE statement 2-655

MODIFY EXTENT SIZE keyword
in ALTER TABLE statement 2-69

MODIFY EXTERNAL NAME keywords
in ALTER FUNCTION statement 2-28
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-33

MODIFY keyword
in ALTER ACCESS_METHOD statement 2-5
in ALTER FRAGMENT statement 2-24
in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in ALTER TABLE statement 2-59

MODIFY NEXT SIZE keyword
in ALTER TABLE statement 2-70

Modifying routine modifiers
with ALTER FUNCTION statement 2-28
with ALTER PROCEDURE statement 2-30
with ALTER ROUTINE statement 2-31

Modulus 4-89
MONEY data type

literal values 4-185
loading 2-449
syntax 4-26

MONTH function 4-126, 4-129
MONTH keyword 4-38, 4-175
MONTHS_BETWEEN function 4-126, 4-130
MORE keyword, in GET DIAGNOSTICS statement 2-395
MQ DataBlade module 5-54
Multi-index scan path 5-37
Multibyte characters 4-24
Multibyte code set 2-48, 2-61
Multibyte locales 4-118
Multilingual index 2-609
Multiple triggers

example 2-250
preventing overriding 2-272

Multiple-column constraints
in ALTER TABLE statement 2-67
in CREATE TABLE statement 2-214
KEY keyword

in CREATE TABLE statement 2-214

Multiplication sign (*), arithmetic operator 4-41
Multirepresentational data 2-348, 2-442, 2-709
Multirow query 2-375
MULTISET columns, generating values for 4-82
MULTISET data type

collection subqueries 4-4
defined 4-83
deleting elements from 2-312
unloading 2-696
updating elements 2-714

MULTISET keyword 4-3
in DEFINE statement 3-11
in Expression segment 4-82
in FROM clause of SELECT statement 4-5
in Literal Collection 4-177

MUTABLE keyword
in SET ENVIRONMENT statement 2-630

N
NAME field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

NAME keyword
External Routine Reference segment 5-19
in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162

Named row type
assigning with ALTER TABLE 2-72
associating with a column 4-35
creating with CREATE ROW TYPE 2-176
dropping with DROP ROW TYPE 2-341
inheritance 2-178
privileges on 2-410
Under privilege 2-516
unloading 2-696, 2-698
updating fields 2-714

Naming convention
database 5-15
database objects 5-17

National Language Support (NLS) 4-141
Natural logarithms 4-115
NCHAR data type 4-25

syntax 4-23
negate() operator function 4-52
Negator functions 2-362, 2-410, 2-510, 5-63
NEGATOR keyword

Routine Modifier segment 5-60, 5-63
Nested loop join 2-634, 2-644, 5-41
Nested ordering

in SELECT statement 2-589
NET API 4-190
NEW keyword

in CREATE FUNCTION statement 2-128
in CREATE PROCEDURE statement 2-165
in CREATE TRIGGER statement 2-259, 2-274

Insert triggers 2-258
Update triggers 2-259

NEW keyword, in CREATE TRIGGER statement 2-257
Newline character

adding 2-122
Newline characters in quoted strings 4-190

Index X-25

NEXT keyword
in ALTER TABLE statement 2-70
in CREATE TABLE statement 2-227
in CREATE TEMP TABLE statement 2-238
in FETCH statement 2-372

NEXT SIZE keywords
Extents

revising the size 2-70
in ALTER TABLE statement 2-70
in CREATE TABLE statement 2-227

NEXT_DAY function 4-126, 4-132
NEXTVAL operator 2-191, 4-78
NO KEEP ACCESS TIME keywords

in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225

NO keyword
in CREATE TEMP TABLE statement 2-234
in SELECT statement 2-593
in SET COLLATION statement 2-608

NO LOG keywords
in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225
in SELECT statement 2-593

NOCACHE keyword
in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

NOCYCLE keyword
in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194
in SELECT statement 2-576, 2-578

NODBPROC setting of DEBUG environment variable 6-4
NODEFDAC environment variable 2-127, 2-165, 2-408, 2-510

effects on new routine 2-127, 2-165
effects on new table 2-233
GRANT statement with 2-410

NOMAXVALUE keyword
in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

NOMINVALUE keyword
in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

Non-reserved words A-1, B-1
Nonalphanumeric characters 5-24
Noncursor function 5-59
Nondefault code sets 4-195
NONE keyword

in SET ENVIRONMENT statement 2-630, 2-635, 2-638
in SET ROLE statement 2-662

NONE role 2-174, 2-338
Nonlogging temporary tables

creating 2-235
duration 2-240

Nonvariant functions 5-20
NOORDER keyword

in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

NOT AUTHORIZED keywords
in CREATE SECURITY POLICY statement 2-189

NOT bitwise logical operation 4-55
NOT FOUND keywords, in WHENEVER statement 2-729
NOT keyword

in ALTER INDEX statement 2-28, 2-29
in Condition segment 4-6, 4-10, 4-13, 4-18
in MERGE statement 2-458
in SELECT statement 2-567, 2-568
in SET LOCK MODE statement 2-655
Routine Modifier segment 5-60

NOT keyword (continued)
with BETWEEN keyword 2-567
with IN keyword 2-569

NOT NULL keywords
in ALTER TABLE statement 2-50
in collection data type declarations 4-38
in CREATE ROW TYPE statement 2-179
in CREATE TABLE statement 2-205
in CREATE TEMP TABLE statement 2-236
in DEFINE statement 3-11
in SELECT statement 2-567

NOT VARIANT keywords, in External Routine Reference
segment 5-19

NOT WAIT keywords in SET LOCK MODE 2-656
notequal() operator function 4-194
NULL keyword 5-1

ambiguous as a routine variable 5-30
in ALTER FRAGMENT statement 2-10, 2-22
in ALTER TABLE statement 2-49, 2-50
in Condition segment 4-6, 4-9
in CREATE ROW TYPE statement 2-179
in CREATE TABLE statement 2-203, 2-205
in CREATE TEMP TABLE statement 2-236
in DEFINE statement 3-6
in Expression segment 4-66, 4-67, 4-69
in INSERT statement 2-439
in SELECT statement 2-567
in SET ROLE statement 2-662
in UPDATE statement 2-704, 2-705

Null values
checking for in SELECT statement 2-355, 2-359
in IF statement 3-29
inserting with the VALUES clause 2-444
invalid for collection types 4-38
loading 2-449
returned implicitly by SPL function 3-42
updating a column 2-705
used in Condition with NOT operator 4-20
used in the ORDER BY clause 2-589
WHILE statement 3-49
with AND and OR keywords 4-20
with NULLIF function 4-68
with NVL function 4-68

NULLABLE field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

NULLIF function 4-68
NUMBER keyword, in GET DIAGNOSTICS statement 2-395
Numeric data types 4-26
NUMROWS keyword

in CREATE EXTERNAL TABLE statement 2-107
NVARCHAR data type 4-25

syntax 4-23
NVL function 4-68

O
Object-List format, in SET Database Object Mode

statement 2-600
Octal numbers 2-596
OCTET_LENGTH function 4-117
ODBC API 4-190
OF keyword

in CREATE TRIGGER statement 2-241, 2-250, 2-251, 2-274
in CREATE VIEW statement 2-277

X-26 IBM Informix Guide to SQL: Syntax

OF keyword (continued)
in DECLARE statement 2-290
in DELETE statement 2-307
in SELECT statement 2-591
in UPDATE statement 2-700

OF TYPE keywords
in CREATE TABLE statement 2-230
in CREATE VIEW statement 2-277

OFF keyword
in SET ENVIRONMENT statement 2-630, 2-633
in SET EXPLAIN statement 2-640
in SET PDQPRIORITY statement 2-661
in SET STATEMENT CACHE statement 2-666
in TRACE statement 3-47

OLD keyword
in CREATE FUNCTION statement 2-128
in CREATE PROCEDURE statement 2-165
in CREATE TRIGGER statement 2-274

Delete triggers 2-257
Select triggers 2-259
Update triggers 2-259

OLEDB API 4-190
OLTP 2-332
OLTP (on-line transaction processing) 2-201
ON DELETE CASCADE keywords

in ALTER TABLE statement 2-52
in CREATE TABLE statement 2-208
restrictions with triggers 2-247

ON EXCEPTION keywords
in Statement Block segment 5-74

ON EXCEPTION statement 3-37
ON keyword

in ALTER FRAGMENT statement 2-7
in CREATE INDEX statement 2-135
in CREATE TABLE statement 2-210
in CREATE TRIGGER statement 2-244, 2-248, 2-249, 2-251,

2-274
in GRANT FRAGMENT statement 2-428
in GRANT statement 2-409, 2-410, 2-413, 2-421, 2-427
in MERGE statement 2-458
in ON EXCEPTION statement 3-37
in REVOKE FRAGMENT statement 2-525
in REVOKE statement 2-506, 2-509, 2-510, 2-511, 2-512,

2-519, 2-523
in SELECT statement 2-561
in SET ENVIRONMENT statement 2-630, 2-633
in SET EXPLAIN statement 2-640
in SET STATEMENT CACHE statement 2-666
in TRACE statement 3-47

on triggering view 2-275
oncheck utility 2-157, 4-116
ONCONFIG parameters

AUTO_REPREPARE 2-475, 2-487, 2-725
BTSCANNER xxii
DATASKIP 2-616
DBCREATE_PERMISSION 2-97
DBSERVERALIASES 2-83, 2-312, 2-443, 2-545, 2-709, 6-19
DBSERVERNAME 2-312, 2-443, 2-545, 2-709
DEADLOCK_TIMEOUT 2-657
DEF_TABLE_LOCKMODE 2-72, 2-230, 2-457, 2-651
DIRECTIVES 5-35
DS_NONPDQ_QUERY_MEM 2-588
EXPLAIN_STAT 2-644
EXT_DIRECTIVES xxii, 2-531, 2-631, 5-44
FILLFACTOR configuration parameter 2-145
IFX_EXTEND_ROLE 2-417, 2-515, 6-5, 6-10
JVPCLASSPATH 6-17

ONCONFIG parameters (continued)
LOCKS 2-329, 2-456
MAX_PDQPRIORITY 2-661
OPT_GOAL 5-43
OPTCOMPIND 2-667, 5-41
SBSPACENAME 2-226, 4-112, 4-114, 6-9
SQL_LOGICAL_CHAR 3-14
STACKSIZE 5-66, 6-5
STMT_CACHE 2-667
STMT_CACHE_HITS 2-668
STMT_CACHE_NOLIMIT 2-669
STMT_CACHE_NUMPOOL 2-669
STMT_CACHE_SIZE 2-669
SYSSBSPACENAME 2-719
TEMPTAB_NOLOG 2-235
UPDATABLE_SECONDARY 2-655
USELASTCOMMITTED 2-455, 2-638, 2-651, 2-672
USEOSTIME 4-75

ondblog utility 2-658
oninit utility 4-103
ONLINE keyword

in CREATE INDEX statement 2-152
in DROP INDEX statement 2-332, 2-333

Online transaction processing 2-332
ONLY keyword

in DECLARE statement 2-290
in DELETE statement 2-307, 2-309
in SAVE EXTERNAL DIRECTIVES statement 2-531
in SELECT statement 2-551, 2-555
in SET TRANSACTION statement 2-670
in UPDATE statement 2-700, 2-702
in UPDATE STATISTICS statement 2-715, 2-720, 2-722

onmode utility 2-667
onspaces utility 2-7, 2-146, 2-431, 2-526
onstat utility 2-616
onutil utility 4-116
Opaque data types

alignment of 2-156
as argument 2-156
associating with a column 4-34
creating 2-154
DESCRIBE with 2-389
dropping 2-350
extended identifier 2-389, 2-625
GET DESCRIPTOR with 2-389
in DELETE 2-312
in DROP TABLE 2-348
in dynamic SQL 2-625
in INSERT 2-441
in LOAD 2-452
in UPDATE 2-709
loading 2-450, 2-452
modifiers 2-155
name of 2-389, 2-625
naming 2-155
owner name 2-389, 2-625
support functions 2-156
unloading 2-696
with SET DESCRIPTOR 2-625

OPEN statement 2-469
Open-Fetch-Close Optimization 2-620
OPERATIONAL keyword

in ALTER TABLE statement 2-43
in SELECT statement 2-593

Operator class
btree_ops 2-162
creating 2-158

Index X-27

Operator class (continued)
default 2-162, 5-51
default for B-Tree 2-161
defined 2-143, 2-158
dropping with DROP OPCLASS 2-334
rtree_ops 2-162
specifying with CREATE INDEX 2-138, 2-143

Operator function
concat() 4-56, 4-141
divide() 4-51
equal() 4-194
greaterthan() 4-194
greaterthanorequal() 4-194
lessthan() 4-194
lessthanorequal() 4-194
like() 4-14
matches() 4-15
minus() 4-51
negate() 4-52
notequal() 4-194
plus() 4-51
positive() 4-52
times() 4-51

OPT_GOAL configuration parameter 5-43
OPT_GOAL environment variable 5-43
OPTCOMPIND configuration parameter 5-41
OPTCOMPIND environment variable 2-630, 2-634, 2-667, 6-3
OPTCOMPIND keyword, in SET ENVIRONMENT

statement 2-634
Optical Subsystem

list of statements 1-10
Optimization

specifying a high or low level 2-659
OPTIMIZATION keyword

in SET OPTIMIZATION statement 2-659
Optimizer

and SAVE EXTERNAL DIRECTIVES statement 2-531
and SET OPTIMIZATION statement 2-659
Optimizer Directives segment 5-35
strategy functions 2-160
with UPDATE STATISTICS 2-727

Optimizer directives
/BROADCAST 5-40
/BUILD 5-40
/PROBE 5-40
access-method 5-37
ALL_ROWS 5-42
AVOID_EXECUTE 5-43
AVOID_FULL 5-38
AVOID_HASH 5-40
AVOID_INDEX 5-38
AVOID_INDEX_SJ 5-38
AVOID_NL 5-40
comment symbols 5-36
EXPLAIN 5-43
explain-mode 5-43
external 2-531
FIRST_ROWS 5-42
FULL 5-38
INDEX 5-38
INDEX_SJ 5-38
inline 2-531
join-method 5-40
join-order 5-39
not followed 2-563
optimization-goal 5-42
ORDERED 5-39

Optimizer directives (continued)
restrictions 5-36, 5-37
segment 5-35
USE_HASH 5-40
USE_NL 5-40

Optimizing
a database server 2-659
a query 2-531, 2-640
across a network 2-660

OPTION keyword
in CREATE TRIGGER statement 2-277
in CREATE VIEW statement 2-281
in GRANT FRAGMENT statement 2-428
in GRANT statement 2-401
OPTION keyword 2-401

OR bitwise logical operation 4-54
OR keyword

defined 4-20
in ANSI Joined Tables segment 2-561
in Condition segment 4-6

ORDER BY keywords
in SELECT statement 2-586
restricted in INSERT 2-446

ORDER BY SIBLINGS keywords
in SELECT statement 2-590

ORDER keyword
in ALTER SEQUENCE statement 2-40
in CREATE SEQUENCE statement 2-194

ORDERED keyword, in optimizer directives 5-39
OUT keyword 5-67
OUT parameter

default parameter style 5-20
user-defined function 5-69
with a statement-local variable 4-161, 4-163

OUTER keyword in SELECT statement 2-561
OUTPUT statement 2-476
Output support function 2-156
Overflow bin 2-723
Overloaded routine 5-2, 5-18
OVERRIDE keyword

in CREATE SECURITY POLICY statement 2-189
Owner 5-16

ANSI-compliant database 5-47
case-sensitivity 2-431, 2-502, 2-514, 2-526, 5-46
Database Object Name segment 5-45
in ANSI-compliant database 2-431, 2-502, 2-514, 2-526
in CREATE SYNONYM 2-197
in DROP SEQUENCE 2-344
in RENAME TABLE statement 2-500
in system catalog table 2-69
Owner Name segment 5-45

Owner Name segment 5-45
Owner-privileged UDR 2-127, 2-165

P
P abbreviation for page 4-156
Package, jar name component 5-34
PAGE keyword

DEF_TABLE_LOCKMODE setting 2-651
IFX_DEF_TABLE_LOCKMODE setting 2-651
in ALTER TABLE statement 2-71
in CREATE TABLE statement 2-229

Page number 4-64
Page-level locking

in ALTER TABLE statement 2-71
in CREATE TABLE statement 2-229

X-28 IBM Informix Guide to SQL: Syntax

Parallel distributed queries
SET PDQPRIORITY statement 2-661

Parallelizable data query 5-63
PARALLELIZABLE keyword, in Routine Modifier

segment 5-60, 5-62
Parameter

BYTE or TEXT in SPL 3-15
dynamic 2-320
Java method 5-72
UDRs 5-2

PARAMETER keyword
External Routine Reference segment 5-19

Parameterizing
prepared statements 2-358

Parameterizing a statement, with SQL identifiers 2-483
Parent-child relationship 2-209, 2-461
PARTITION BY keywords

in ALTER FRAGMENT statement 2-18
in CREATE TABLE statement 2-222
in CREATE TEMP TABLE statement 2-238

PARTITION keyword
in ALTER FRAGMENT statement 2-10, 2-15, 2-18, 2-20,

2-22, 2-24
in CREATE INDEX statement 2-148
in CREATE TABLE statement 2-222

Partition number 4-100
Partitions 2-431, 2-526
PASSEDBYVALUE keyword, in CREATE OPAQUE TYPE

statement 2-155
passwd file 2-87
PASSWORD keyword

in SET ENCRYPTION PASSWORD statement 2-626
Pathnames with commas 4-123
PB abbreviation for petabyte 4-156
PDQ

SET ENVIRONMENT statement 2-630
SET PDQPRIORITY statement 2-661

PDQ thread safe functions 5-64
PDQPRIORITY environment variable 2-661, 2-667
PDQPRIORITY keyword

in SET PDQPRIORITY statement 2-661
PERCALL_COST keyword, Routine Modifier segment 5-60
Percent (%) sign

as wildcard 4-14
Period symbol (.)

DATETIME separator 4-180
DECIMAL values 4-185
INTERVAL separator 4-183
membership operator 4-61
MONEY values 4-185

Phantom row 2-650, 2-673
Pipe character (|) 2-107, 2-448, 2-596, 2-699
PIPE keyword

in CREATE EXTERNAL TABLE statement 2-105
in OUTPUT statement 2-476

Plus (+) sign
arithmetic operator 4-41

Plus operator (+)
unary 4-183, 4-184

Plus sign (+)
in optimizer directives 5-36
unary operator 4-183, 4-184

plus() operator function 4-51
POINTER data type 2-544, 4-22
Pointer to a BYTE or TEXT object 5-56
Polar coordinates 4-139

POLICY keyword
in ALTER TABLE statement 2-55
in CREATE SECURITY POLICY statement 2-189
in CREATE TABLE statement 2-220
in DROP SECURITY statement 2-342
in RENAME SECURITY statement 2-499

positive() operator function 4-52
POW function 4-87, 4-90
POWER function 4-87, 4-90
Precedence in dot notation 4-62
PRECISION field

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316

PREPARE statement
deferring 2-618
for collection variables 2-480
increasing efficiency 2-486
multistatement text 2-367, 2-485
parameterizing a statement 2-482
parameterizing for SQL identifiers 2-483
question (?) mark as placeholder 2-478
releasing resources with FREE 2-385
restrictions with SELECT 2-480
statement identifier 2-301
statement identifier use 2-478
syntax 2-477
valid statement text 2-479
with external routines 2-480
with SPL routines 2-480

Prepared statement
comment symbols in 2-480
DESCRIBE statement with 2-314
executing 2-353
parameterizing 2-358
prepared object limit 2-292, 2-478
setting PDQ priority 2-661
valid statement text 2-479
with DESCRIBE INPUT statement 2-319

Preserving newline characters in quoted strings 4-190
PREVIOUS keyword, in FETCH statement 2-372
Primary access methods

modifying 2-5
Primary key column, no NULL default 2-204
PRIMARY KEY keywords

in ALTER TABLE statement 2-50, 2-67
in CREATE TABLE statement 2-205, 2-214, 2-231
in CREATE TEMP TABLE statement 2-237
in CREATE Temporary TABLE statement 2-236

PRIMARY keyword
in CREATE ACCESS_METHOD statement 2-90

Primary server 2-635
Primary-key constraint

data type conversion 2-62
defining column as 2-208
dropping 2-69
requirements for 2-50, 2-208
rules of use 2-209
using 2-208

PRIOR keyword
in SELECT statement 2-578

PRIOR keyword, in FETCH statement 2-372
PRIVATE keyword

in CREATE SYNONYM statement 2-195
Privilege 2-403

Alter 2-406

Index X-29

Privilege (continued)
chaining grantors 2-515
column-specific 2-508
Connect 2-404
database-level 2-504
DBA 2-404, 2-505
effect of NODEFDAC 2-408
Execute 2-410, 2-510
for triggered action 2-269
fragment-level 2-428

revoking 2-525
granting 2-401
in system calls 3-45
needed to create a cast 2-95
on a synonym 2-195
on a view 2-278
on languages 2-410, 2-511
on named row type 2-410
on remote objects 2-662
on sequences 2-412, 2-512
on table fragments 2-428
on UDRs called by a trigger 2-269
Resource 2-404
table-level 2-506

ANSI-compliant 2-408
column-specific 2-405
effect on view 2-408

Usage 2-509
PRIVILEGES keyword

in GRANT statement 2-406
in INFO statement 2-433
in REVOKE statement 2-506

Procedural language 4-75
Procedure

creating from file 2-171
dropping with DROP PROCEDURE 2-336
dropping with DROP ROUTINE 2-339
modifying path to executable file 2-30
modifying routine modifiers 2-30
modifying with ALTER PROCEDURE 2-30
privileges 2-164
protected 2-336, 2-339
specific name 5-73
system catalog tables for 2-169
trigger 2-165
user-defined, definition 2-164

Procedure cursor
opening 2-470

PROCEDURE keyword
DEFINE statement 3-6
in ALTER PROCEDURE statement 2-30
in CREATE PROCEDURE statement 2-162
in DECLARE statement 2-290
in DROP PROCEDURE statement 2-336
in EXECUTE PROCEDURE statement 2-369
in GRANT statement 2-410
in REVOKE statement 2-510
in TRACE statement 3-47
in UPDATE STATISTICS statement 2-725

Projection
clause 2-539
column with dot notation 4-61
field projection 4-61

Projection clause 2-539
Projection list 2-539
Promotable lock 2-296
Protected routines 2-329, 2-336, 2-339

Protection granularity 2-55
Pseudo-table 2-463
Pseudo-users 2-516
PUBLIC keyword

in CREATE SYNONYM statement 2-195
in GRANT FRAGMENT statement 2-431
in GRANT statement 2-413, 2-427
in REVOKE FRAGMENT statement 2-526
in REVOKE statement 2-502, 2-513, 2-523

Purpose flags
adding and deleting 2-5
list 5-51

Purpose functions
adding, changing, and dropping 2-5
for access methods 2-693, 5-52
for XA data source types 5-53
parallel-execution indicator 5-52

Purpose options
specifying 5-50
valid settings 5-51

Purpose values
adding, changing, and dropping 2-5

PUT keyword
in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225
in CREATE TEMP TABLE statement 2-238

PUT statement
FLUSH with 2-488
source of row values 2-488
syntax 2-487
use in transactions 2-488

Q
Qualifier, field 4-38, 4-175

for DATETIME 4-180
for INTERVAL 4-182

Qualifying rows 2-536
Query

distributed 2-544, 2-545, 2-627, 4-22, 4-33, 5-17
execution path 5-37
external databases 5-17
external directives 2-533
optimizer directives 5-35
optimizing prepared statements 2-669
optimizing with SAVE EXTERNAL DIRECTIVES 2-531
optimizing with SET OPTIMIZATION 2-659
piping results to another program 2-477
priority level 2-661
qualifying rows 2-536
remote databases 5-18
result set 2-536
sending results to an operating-system file 2-476
sending results to another program 2-477
statistics 2-644

Query optimizer
recalculating distributions 2-715

Query optimizer directive 5-35
Question mark (?)

as placeholder in PREPARE 2-478
as wildcard 4-14
dynamic parameters 2-320
generating unique large-object filename 4-124
naming variables in PUT 2-490

Question Mark (?)
placeholder in PREPARE 2-472

X-30 IBM Informix Guide to SQL: Syntax

Quotation marks
delimited identifiers 5-24
double 5-25
effects of DELIMIDENT environment variable 5-24
literal in a quoted string 4-191
literal nested collection 4-179
owner name 5-46
quoted string delimiter 4-188, 4-191
single 5-24
with delimited identifiers 5-23

Quoted Pathname segment 5-70
Quoted string 4-188

as constant expression 4-72
DATETIME values as strings 4-191
effects of DELIMIDENT environment variable 5-24
in INSERT 2-439, 4-191
INTERVAL values as strings 4-191
maximum length 4-192
newline characters 4-159
newline characters in 4-190
wildcards 4-191
with LIKE keywords 2-568

R
R-tree index

creating 2-144, 2-152
default operator class 2-162
dropping 2-333
rtree_ops operator class 2-162
uses 2-144

R-tree secondary-access method 2-144, 2-158
Radicand 4-90
Radix-64 encryption format 2-627
RAISE EXCEPTION statement 3-40
Range fragmentation 2-41
RANGE function 4-164, 4-171
RANGE keyword

in CREATE INDEX statement 2-148
in CREATE TABLE statement 2-222

RAW keyword
in ALTER TABLE statement 2-43
in CREATE TABLE 2-201
in CREATE TABLE statement 2-198
in SELECT statement 2-593

RAW table
express-mode loads 2-115, 2-119
loading from another database server 2-120

Read Committed isolation level 2-638, 2-672
READ COMMITTED keywords, in SET TRANSACTION

statement 2-670
READ keyword

in GRANT statement 2-423
in REVOKE statement 2-521
in SET ENVIRONMENT statement 2-630, 2-635, 2-638
in SET ISOLATION statement 2-650, 2-651
in SET TRANSACTION statement 2-670

READ ONLY keywords
in DECLARE statement 2-290
in SELECT statement 2-592
in SET TRANSACTION statement 2-670

Read permission 6-15
Read Uncommitted isolation level 2-638, 2-671
READ UNCOMMITTED keywords, in SET TRANSACTION

statement 2-670
READ WRITE keywords, in SET TRANSACTION

statement 2-670

REAL data type 4-29
Real numbers 4-29
Receive support function 2-157
RECORDEND environment variable 2-596
RECORDEND keyword 2-117

in CREATE EXTERNAL TABLE statement 2-107
in SELECT statement 2-596

REFERENCES keyword
in ALTER TABLE statement 2-52
in CREATE TABLE statement 2-208
in DEFINE statement 3-6
in EXECUTE FUNCTION statement 2-361
in EXECUTE PROCEDURE statement 2-369
in GRANT statement 2-406
in INFO statement 2-433
in Return Clause segment 5-54
in REVOKE statement 2-506

References privilege
defined 2-406
displaying 2-433
revoking 2-506

REFERENCING keyword
in CREATE FUNCTION statement 2-128
in CREATE PROCEDURE statement 2-165
in CREATE TRIGGER statement 2-274

Delete triggers 2-257
Insert triggers 2-258
Select triggers 2-259
Update triggers 2-259
view column values 2-274

Referential constraint
B-tree index 2-137
Dataskip feature 2-616
defining 2-209
delete triggers 2-247
dropping 2-69
locking 2-210

Referential integrity 2-309
Registering DataBlade modules 6-5
REJECTFILE keyword

in CREATE EXTERNAL TABLE statement 2-107
Relational operators 4-193

with WHERE keyword in SELECT 2-567
RELATIVE keyword, in FETCH statement 2-372
RELEASE keyword

in RELEASE SAVEPOINT statement 2-494
RELEASE SAVEPOINT statement 2-494
REMAINDER IN keywords

in ALTER FRAGMENT statement 2-18, 2-20, 2-22, 2-24
in CREATE INDEX statement 2-148
in CREATE TABLE statement 2-222

REMAINDER keyword
in ALTER FRAGMENT statement 2-10

Remote procedure
restrictions on optimizing 2-715

Remote query 2-544, 2-545
Remote standalone secondary server (RSS) 2-655
RENAME COLUMN statement 2-495
RENAME DATABASE statement 2-497
RENAME INDEX statement 2-497
RENAME SECURITY LABEL COMPONENT statement 2-499
RENAME SECURITY LABEL statement 2-499
RENAME SECURITY POLICY statement 2-499
RENAME SECURITY statement 2-499
RENAME SEQUENCE statement 2-500
RENAME TABLE statement 2-500
REOPTIMIZATION keyword in OPEN statement 2-469

Index X-31

Reoptimizing query plans 2-717
Repeatable Read isolation level 2-100, 2-634, 2-652, 2-672
Repeatable Read isolation level, emulating during

update 2-379
REPEATABLE READ keywords

in SET ISOLATION statement 2-648
in SET TRANSACTION statement 2-670

REPLACE function 4-152
REPLCHECK keyword

in ALTER TABLE statement 2-45
in CREATE TABLE statement 2-217, 2-219

REPLICATION keyword
in BEGIN WORK statement 2-74

Reserved words
delimited identifiers 5-23
identifiers 5-22
of SQL A-1, B-1
using in triggered action 2-262

RESOLUTION keyword, in UPDATE STATISTICS
statement 2-722

RESOURCE keyword 2-403
in REVOKE statement 2-504

Resource privilege 2-404
with CREATE ACCESS_METHOD statement 2-90

RESTART keyword, in ALTER SEQUENCE statement 2-39
RESTRICT keyword

in CREATE SECURITY POLICY statement 2-189
in DROP ACCESS_METHOD statement 2-325
in DROP OPCLASS statement 2-334
in DROP ROW TYPE statement 2-341
in DROP SECURITY statement 2-342
in DROP TABLE statement 2-347
in DROP TYPE statement 2-350
in DROP VIEW statement 2-351
in DROP XADATASOURCE statement 2-352
in DROP XADATASOURCE TYPE statement 2-352
in REVOKE statement 2-502

RESTRICTED mode of UDRs 2-664
Restrictions

external tables 2-122
Result sets 2-536, 2-558
RESUME keyword

in ON EXCEPTION statement 3-37
in RETURN statement 3-42

RETAIN UPDATE LOCKS keywords
in SET ISOLATION statement 2-648

RETAINUPDATELOCKS keyword, in SET ENVIRONMENT
statement 2-635

Return Clause segment 5-54
RETURN statement 3-42
Return value

declaring in CREATE FUNCTION 5-54
REFERENCES keyword 5-56

RETURNED_SQLSTATE field 2-313, 2-380
RETURNED_SQLSTATE keyword, in GET DIAGNOSTICS

statement 2-396
RETURNING keyword

example 2-132
in CALL statement 3-4
in Return Clause Segment 5-54

RETURNS keyword
in Java Shared-Object-File segment 5-72
in Return Clause segment 5-54

REUSE keyword
in TRUNCATE statement 2-690

REVOKE FRAGMENT statement 2-525
REVOKE statement 2-502

RIGHT keyword
in ANSI Joined Tables segment 2-561
in SELECT statement 2-563

Right outer joins 2-559
ROBIN keyword

in ALTER FRAGMENT statement 2-18
in CREATE TABLE statement 2-222

Role
activating with SET ROLE 2-662
built-in 2-174, 2-338
case-sensitivity 2-402
creating with CREATE ROLE 2-173
currently enabled 4-70
default 2-416, 2-514, 4-70
default roles 2-664
definition 2-173
dropping with DROP ROLE statement 2-338
enabling with SET ROLE 2-662
establishing with CREATE, GRANT, SET 2-414
EXTEND 2-417, 2-515
granting privileges with GRANT 2-415
granting role with GRANT 2-414
revoking privileges 2-514
scope of 2-662

ROLE keyword
in CREATE ROLE statement 2-173
in DROP ROLE statement 2-338
in GRANT statement 2-416, 2-427
in REVOKE statement 2-502, 2-514, 2-523
in SET ROLE statement 2-662

ROLLBACK WORK statement 2-74, 2-528
with WHENEVER 2-80

root dbspace 2-97
ROOT function 4-87, 4-90
ROOT keyword

in CREATE SECURITY LABEL COMPONENT
statement 2-185

ROUND function 4-87, 4-90
ROUND ROBIN keywords

in ALTER FRAGMENT statement 2-18
in CREATE TABLE statement 2-222

Rounding error 4-195
ROUTINE keyword

in ALTER ROUTINE statement 2-31
in DROP ROUTINE statement 2-339
in GRANT statement 2-410
in REVOKE statement 2-510
in UPDATE STATISTICS statement 2-725

Routine manager 6-17
Routine modifier

CLASS 5-60
COSTFUNC 5-62
HANDLESNULLS 5-62
INTERNAL 5-62
ITERATOR 5-63
NEGATOR 5-63
NOT VARIANT 5-66
PARALLELIZABLE 5-63
PERCALL_COST 5-64
SELCONST 5-65
SELFUNC 5-65
STACK 5-66
VARIANT 5-66

Routine Parameter List segment 5-67
Routine signature 5-18, 5-69
Routines

altering with ALTER ROUTINE 2-31

X-32 IBM Informix Guide to SQL: Syntax

Routines (continued)
built-in 6-1
checking references 2-269
creating with CREATE ROUTINE FROM 2-175
dropping with DROP ROUTINE 2-339
modifying

path to executable file 2-30
routine modifiers 2-31

modifying path to executable file 2-33
overloading 5-18
privileges 2-164
protected 2-329, 2-336, 2-339
restrictions in triggered action 2-268
specific name 5-73
trigger 2-128, 2-165

ROW constructor, in Expression segment 4-81
ROW data types

collection-derived tables 5-7
constructor syntax 4-81
dot notation 4-61
loading field values 2-449, 2-452
nested 4-188
privileges 2-410
selecting fields 2-548, 2-557
selecting from 2-556
unloading 2-696, 2-698
updating 2-707, 2-714

ROW keyword 4-185
in ALLOCATE ROW statement 2-4
in ALTER TABLE statement 2-71
in CREATE ROW TYPE statement 2-176
in CREATE TABLE statement 2-229
in CREATE TRIGGER statement 2-254, 2-260
in DROP ROW TYPE statement 2-341
in Expression segment 4-81

Row variable
accessing 5-14
allocating memory 2-4
deallocating memory for 2-289
inserting 2-442
inserting into 2-447
selecting from 2-556
updating 2-714

ROW_COUNT keyword, in GET DIAGNOSTICS
statement 2-395

Row-column level encryption 4-107
Row-level locking

in ALTER TABLE statement 2-71
in CREATE TABLE statement 2-229
in SET ENVIRONMENT RETAINUPDATELOCKS

statement 2-635
in SET ENVIRONMENT USELASTCOMMITTED

statement 2-638
Row-type columns, generating values for 4-81
ROWID

adding column with INIT clause 2-17
adding with ALTER TABLE 2-46
dropping from fragmented tables 2-46
specifying support 5-52
use in a column expression 4-64
use in fragmented tables 2-17
used as column name 5-28

rowid column 2-17, 2-223, 2-589
ROWID keyword, in Expression segment 4-59
ROWIDS keyword

in ALTER FRAGMENT statement 2-17
in ALTER TABLE statement 2-46

ROWIDS keyword (continued)
in CREATE TABLE statement 2-222

Rows
deleting 2-307
finding location 4-64
inserting

through a view 2-437
with a cursor 2-438

order of qualifying rows 2-540
phantom row 2-650
retrieving with FETCH 2-375
rowid defined 2-375
uncommitted row 2-650
updating through a view 2-702
waiting for a locked row 2-656
writing buffered rows with FLUSH 2-382

ROWS keyword, in START VIOLATIONS TABLE
statement 2-677

RPAD function 4-153
RSAM access method 2-594
RTNPARAMS data type 2-544
RTNPARAMTYPES data type 4-22
RTRIM function 4-148
RULE keyword

in GRANT statement 2-421
in REVOKE statement 2-519

S
SAMEAS keyword

in CREATE EXTERNAL TABLE statement 2-104
SAMPLING keyword, in UPDATE STATISTICS

statement 2-722
SAVE EXTERNAL DIRECTIVES statement 2-531
SAVEPOINT keyword

in RELEASE SAVEPOINT statement 2-494
in ROLLBACK WORK statement 2-529
in SAVEPOINT statement 2-534

SAVEPOINT statement 2-534
Savepoints

destroying 2-494
setting 2-534

SBSPACENAME configuration parameter 2-226, 4-112, 4-114,
6-9

sbspaces
specifying in ALTER TABLE 2-64
specifying in CREATE TABLE 2-225

SCALE field, with DESCRIBE INPUT statement 2-321
SCALE field, with DESCRIBE statement 2-316
SCALE keyword

in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622

Scan cost 2-5
Schema name 5-45
Scope of reference

global 2-292, 2-354, 3-7
in subqueries with UNION 2-599
local 3-10
module 2-292, 2-354
static 2-264

SCRATCH keyword
in SELECT statement 2-593

Screen reader
reading syntax diagrams C-1

Scroll cursors
defined 2-298
with FETCH 2-374

Index X-33

Scroll cursors (continued)
WITH HOLD 2-655

SCROLL keyword, in DECLARE statement 2-290
SECLABEL_BY_COMP function 4-119
SECLABEL_BY_NAME function 4-119
SECLABEL_TO_CHAR function 4-120
SECOND keyword 4-38, 4-175
Secondary access methods

altering 2-5
user-defined 2-5

Secondary data replication server 2-655
SECONDARY keyword

in CREATE ACCESS_METHOD statement 2-90
Secondary server 2-635
Secondary-access methods

B-tree 2-144, 2-158
bts 2-143
default operator class 2-161
defined 2-135, 2-158
R-Tree 2-158
R–tree 2-144
registering 2-90
USING clause 2-144

Secure auditing 2-463, 4-107
SECURED WITH keywords

in ALTER TABLE statement 2-55, 2-63
in CREATE TABLE statement 2-201

SECURITY keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in ALTER TABLE statement 2-55, 2-63
in CREATE SECURITY LABEL COMPONENT

statement 2-185
in CREATE SECURITY LABEL statement 2-183
in CREATE SECURITY POLICY statement 2-189
in CREATE TABLE statement 2-220
in DROP SECURITY statement 2-342
in GRANT statement 2-423
in RENAME SECURITY statement 2-499
in REVOKE statement 2-521

Security label
assigning to a column 2-55, 2-63, 2-201
creating 2-183
dropping from a column 2-63
identifier 4-119
in DML operations 2-463
renaming 2-342, 2-499
string format 4-120

Security label component
for a security policy 2-189
renaming 2-342, 2-499

SECURITY LABEL COMPONENT keywords
in DROP SECURITY statement 2-342
in RENAME SECURITY statement 2-499

Security label components
creating 2-185

SECURITY LABEL keywords
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in CREATE SECURITY LABEL COMPONENT

statement 2-185
in CREATE SECURITY LABEL statement 2-183
in CREATE SECURITY POLICY statement 2-189
in DROP SECURITY statement 2-342
in GRANT statement 2-423
in RENAME SECURITY statement 2-499
in REVOKE statement 2-521

Security label support functions
SECLABEL_BY_COMP 4-119
SECLABEL_BY_NAME 4-119
SECLABEL_TO_CHAR 4-120
syntax 4-118

Security policy
associating with an existing table 2-55
creating 2-189
renaming 2-342, 2-499

SECURITY POLICY keywords
in ALTER TABLE statement 2-55
in CREATE SECURITY POLICY statement 2-189
in CREATE TABLE statement 2-220
in DROP SECURITY statement 2-342
in RENAME SECURITY statement 2-499

Segment
defined 4-1, 5-1

SELCONST keyword routine modifier 5-60
Select cursor

declaring 2-293
opening 2-470, 2-471
reopening 2-471

SELECT INTO clause
no table expressions 2-554

SELECT ITEM keywords, in Collection-Subquery
segment 4-3

SELECT keyword 4-3
ambiguous use as routine variable 5-30
in Condition segment 4-17, 4-18
in CREATE TRIGGER statement 2-250
in CREATE VIEW statement 2-279
in DECLARE statement 2-290
in GRANT statement 2-413
in LET statement 3-31
in OUTPUT statement 2-476
in REVOKE statement 2-506, 2-512
in UNLOAD statement 2-695

Select list 2-539
Select privilege 2-406, 2-413, 2-506, 2-512
SELECT statements 3-22

aggregate functions in 4-164
BETWEEN condition 2-567
collection with 2-556
column numbers 2-589
cursor for 2-591, 2-592
FIRST clause 2-541, 2-542
FOR READ ONLY clause 2-592
FOR UPDATE clause 2-591
FROM clause 2-551
GROUP BY clause 2-584
HAVING clause 2-585
IN condition 2-567
in FOR EACH ROW trigger 2-256
in INSERT 2-446
indicator variables 2-364
INTO clause with ESQL 2-549
INTO EXTERNAL clause 2-595
INTO TEMP clause 2-594
IS NULL condition 2-568
joining tables in WHERE clause 2-570
LIKE or MATCHES condition 2-569
null values in the ORDER BY clause 2-589
ORDER BY clause 2-586
outer join 2-566
Projection clause 2-539
relational-operator condition 2-567
restrictions in SPL routines 5-76

X-34 IBM Informix Guide to SQL: Syntax

SELECT statements (continued)
restrictions with INTO clause 2-480
row type 2-548, 2-556
ROWID keyword 4-64
select numbers 2-589
singleton 2-550
SKIP option 2-540
smart large objects with 4-64
SPL routine in 2-547
subquery with WHERE keyword 2-567
syntax 2-536
UNION operator 2-597
use of expressions 2-546
user-defined routine in 2-547
with DECLARE 2-290
with LET 3-32
WITH NO LOG keywords 2-595
writing rows retrieved to an ASCII file 2-695

Select triggers 2-251
Selecting from a specific table in a table hierarchy 2-555
SELECTING operator 2-129, 2-167, 4-12
Selectivity

functions 5-65
of the WHERE clause 2-723

Selectivity functions 2-719
Selectivity of an index key 5-38
Self-join

defined 2-571
path 2-644
with aliases 2-553

SELFUNC keyword routine modifier 5-60
SELFUNCARGS data type 2-544, 4-22, 5-65
Semantic integrity 2-245, 2-445
Semicolon (;)

SPL statement block delimiter 2-169
statement terminator 2-182

Send support function 2-157
SENDRECV data type 2-545, 4-22
SEQ_CACHE_SIZE configuration parameter 2-40, 2-194
Sequence

cache 2-194
creating a synonym for 2-195
dropping a synonym 2-346
generator 2-191
privileges on 2-412, 2-512

SEQUENCE keyword
in ALTER SEQUENCE statement 2-38
in CREATE SEQUENCE statement 2-191
in DROP SEQUENCE statement 2-344
in RENAME SEQUENCE statement 2-500

Sequential cursor
with DECLARE 2-298
with FETCH 2-374

SERIAL columns
resetting counter 2-60

Serial columns, loading 2-118
SERIAL data type

inserting values 2-441
invalid default 2-203
last inserted value 4-104
length 4-27
resetting counter 2-60, 2-441
value range 4-27

Serial key 2-616
SERIAL8 data type

inserting values 2-441
invalid default 2-203

SERIAL8 data type (continued)
last inserted value 4-104
value range 4-27

SERIALIZABLE keyword, in SET TRANSACTION
statement 2-670

SERVER_LOCALE environment variables 4-25
SERVER_NAME keyword, in GET DIAGNOSTICS

statement 2-396
Session

get the client time zone 4-104
set initial environment for 6-2

Session control block 4-101
Session ID 4-101
SESSION keyword, in SET SESSION AUTHORIZATION

statement 2-664
Session password 2-626
SET AUTOFREE statement 2-606
SET COLLATION statement 2-608
SET columns, generating values for 4-82
SET CONNECTION statement 2-610
SET CONSTRAINTS statements 2-614
SET data type

defined 4-83
deleting elements from 2-312
unloading 2-696
updating elements 2-714

SET Database Object Mode statement
syntax 2-599
with

CREATE TRIGGER statement 2-271
SET DATASKIP statement 2-615
SET DEBUG FILE statement

syntax 2-617
with TRACE statement 3-47

SET DEFERRED_PREPARE statement 2-618
SET DESCRIPTOR statement 2-620
SET ENCRYPTION PASSWORD statement

audit-event mnemonic 4-107
syntax 2-626

SET ENVIRONMENT statement 2-630
SET EXPLAIN output 2-643
SET EXPLAIN statement 2-643

output 2-646
SET INDEXES statement 2-647
SET ISOLATION statement

isolation levels defined 2-671
similarities to SET TRANSACTION statement 2-670

SET keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in CREATE SECURITY LABEL COMPONENT

statement 2-185
in DEFINE statement 3-11
in Expression segment 4-82
in Literal Collection 4-177
in MERGE statement 2-458
in ON EXCEPTION statement 3-37
in UPDATE statement 2-704

SET LOCK MODE statement 2-632, 2-655
SET LOG statement 2-658
SET OPTIMIZATION statement

ALL_ROWS option 2-659
FIRST_ROWS option 2-659
HIGH option 2-659
LOW option 2-659
syntax 2-659

SET PDQPRIORITY statement 2-661

Index X-35

SET ROLE statement 2-662
SET SESSION AUTHORIZATION statement 2-664
SET STATEMENT CACHE statement 2-666
SET Transaction Mode statement 2-674
SET TRANSACTION statement 2-670

default database levels 2-673
effects of isolation 2-674
similarities to SET ISOLATION statement 2-671

SET TRIGGERS statement 2-677
Set-column level encryption 4-107
setenv utility 2-86
setnet32 utility 2-85
SETSESSIONAUTH keyword

in GRANT statement 2-427
in REVOKE statement 2-523

SETSESSIONAUTH privilege 2-664
SETUDTEXTNAME procedure 6-18
setUDTextName() procedure 2-132
setUDTExtName() procedure 2-169
Shadow columns 2-45, 2-47, 2-218, 2-219
SHARE keyword, in LOCK TABLE statement 2-454
Shared library functions 2-417, 5-20
Shared lock mode 2-454
Shared-disk secondary server (SDS) 2-655
Shared-object files 2-132, 5-20
Shell script 3-46
Shortcut keys

keyboard C-1
SIBLINGS keyword

in SELECT statement 2-590
Side-effect index 2-161
Signatures 5-18
Simple assignment 3-31
Simple join 2-559
Simple large objects 4-29

loading 2-449, 2-451
unloading 2-696, 2-697

Simple table expression 2-553
Simple view 2-275
SIN function 4-138, 4-139
Single quotation marks

literal in a quoted string 4-191
quoted string delimiter 4-188

Single-byte characters 4-24
Single-threaded application 2-612
Singleton SELECT statement 2-542, 2-550, 2-706
SITENAME function

constant expression 4-74
in ALTER TABLE statement 2-49
in Condition segment 4-10
in CREATE TABLE statement 2-203
in DEFINE statement 3-8

SIZE keyword
in ALTER TABLE statement 2-69, 2-70
in CREATE EXTERNAL TABLE statement 2-107
in CREATE TABLE statement 2-225, 2-227
in CREATE TEMP TABLE statement 2-238
in SELECT statement 2-593
in UPDATE STATISTICS statement 2-722

Size specifications 4-156
SKIP keyword in SELECT statement 2-540
Slash and asterisk (/* */) comment indicator 1-4, 2-480, 5-36
Slot number 4-64
SLV. 4-162
SMALLFLOAT data type 4-29

literal values 4-185
systems not supporting 2-286

SMALLINT data type, literal values 4-184
Smart large objects 4-30

accessing column data 4-64
copying to a file 4-123
copying to a smart large object 4-125
creating from a file 4-121, 6-10
data integrity 2-226
expressions with 4-64
extent size 2-226
functions for copying 4-121
generating filename for 4-124
handle values 4-64
loading values 2-449, 2-451
logging 2-227
storing 2-64, 2-225
unloading 2-696, 2-697

SMI. 4-102
SOME keyword

beginning a subquery 2-569
in Condition segment 4-18

Sort-merge join 2-634
Sorting

in a combined query 2-597
in SELECT 2-586

SOURCEID field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622

SOURCETYPE field
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-622

Spatial data 2-348, 2-709
SPECIFIC FUNCTION keywords

in ALTER FUNCTION statement 2-27
in GRANT statement 2-410
in REVOKE statement 2-510
in UPDATE STATISTICS statement 2-725

SPECIFIC keyword
EXTERNAL keyword

in ALTER FUNCTION statement 2-27
Functions

altering with ALTER FUNCTION 2-27
in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162
in DROP FUNCTION statement 2-329
in DROP PROCEDURE statement 2-336
in DROP ROUTINE statement 2-339
in GRANT statement 2-410
in REVOKE statement 2-510
in UPDATE STATISTICS statement 2-725

Specific Name segment 5-73
SPECIFIC PROCEDURE keywords

in ALTER PROCEDURE statement 2-30
in GRANT statement 2-410
in REVOKE statement 2-510
in UPDATE STATISTICS statement 2-725

SPECIFIC ROUTINE keywords
in ALTER ROUTINE statement 2-31
in GRANT statement 2-410
in REVOKE statement 2-510
in UPDATE STATISTICS statement 2-725

SPL function
CREATE FUNCTION 2-131
cursors 3-22
dropping 2-329

X-36 IBM Informix Guide to SQL: Syntax

SPL function (continued)
dynamic routine-name specification 2-365
executing 2-361, 2-480
optimization 2-131
registering 2-131
registering from inside an external routine 2-134

SPL keyword
in GRANT statement 2-410
in REVOKE statement 2-511

SPL procedure
creating with CREATE PROCEDURE 2-169
dynamic routine-name specification 2-372
executing 2-480
optimization 2-169, 2-717
registering with CREATE PROCEDURE 2-169
sysdbclose() 6-2
sysdbopen() 6-2

SPL routines
as triggered action 2-262
BYTE and TEXT data types 3-15
comment indicators 1-4
debugging 3-47
defined 3-1
definition 2-164
dropping with DROP PROCEDURE 2-336
executing operating-system commands 3-44
handling multiple rows 3-43
header 3-6
in SELECT statement 2-547
limits on parameters 5-68
output file for TRACE statement 2-617
ownership of created objects 2-170
preparing 2-480
receiving data from SELECT 2-549
reoptimizing 2-717
restrictions when used with DML statements 5-77
sending mail 3-45
setting environment variables 3-46
simulating errors 3-40
SQL statements not supported 5-76

SPL statements, defined 3-1
sqexplain.out file 2-533, 2-563, 2-642, 2-725, 5-43
SQL

comments 1-3
compliance of statements with ANSI standard 1-10
reserved words A-1, B-1
statement types 1-5

SQL administration API 4-156
SQL Communications Area 2-78

result after CLOSE 2-77
result after DATABASE 2-286
result after DATASKIP event 2-616
result after DELETE 2-313, 4-101
result after DESCRIBE 2-315
result after DESCRIBE INPUT 2-319
result after EXECUTE 2-358, 2-485
result after FETCH 2-380
result after FLUSH 2-382
result after INSERT 2-245, 4-100
result after OPEN 2-471
result after PUT 2-493
result after SELECT 2-551, 4-101
result after UPDATE 4-101
sqlca.sqlerrd1 4-100
sqlca.sqlerrd2 4-101
sysibm.SQLCAMessage function 6-21

SQL DESCRIPTOR keywords
in DESCRIBE INPUT statement 2-318
in DESCRIBE statement 2-314
in EXECUTE statement 2-355, 2-358
in FETCH statement 2-372
in OPEN statement 2-469
in PUT statement 2-488

SQL Function. 4-89
SQL keyword

in DESCRIBE INPUT statement 2-320
in DESCRIBE statement 2-316
in EXECUTE statement 2-360
in OPEN statement 2-469

SQL statement cache
disabling 2-668
enabling 2-667
prepared statements 2-669
qualifying criteria 2-668

SQL statements
restrictions within SPL routines 5-76

SQL_INFX_ATTR_DELIMIDENT connection attribute 5-25
SQL_LOGICAL_CHAR configuration parameter 2-48, 2-61
SQL-99 standard 1-4
SQLCA. 2-286, 4-104, 4-107
sqlca.sqlerrd1 2-245, 2-275
SQLCAMessage function 6-21
SQLCODE function 4-97
SQLCODE variable 2-78, 2-313, 2-380, 2-383, 2-471, 2-731
sqld value 2-378
sqlda structure

in DESCRIBE 2-314, 2-316
in DESCRIBE INPUT 2-319
in EXECUTE 2-356
in EXECUTE ... INTO 2-357
in FETCH 2-378
in OPEN 2-355, 2-359, 2-469, 2-488, 2-489
in OPEN...USING DESCRIPTOR 2-474

SQLERRD array
last inserted BIGSERIAL value 4-104
last inserted SERIAL8 value 4-104
number of inserted rows 2-382
value of inserted SERIAL8 value 4-107

SQLERROR keyword, in WHENEVER statement 2-729
sqlhosts file 2-85, 2-312, 2-545
SQLHOSTS registry key 2-545
SQLI client-server communication protocol 2-392
SQLJ driver built-in procedures

ALTER_JAVA_PATH 6-16
JVPCONTROL 6-13
REMOVE_JAR 6-16
REPLACE_JAR 6-15
SETUDTEXTNAME 6-18
SQLJ.INSTALL_JAR 6-14
UNSETUDTEXTNAME 6-18

sqlj schema 6-14
SQLJ.ALTER_JAVA_PATH procedure 6-16
SQLJ.INSTALL_JAR procedure 5-20, 5-73, 6-14
SQLJ.REMOVE_JAR procedure 6-16
SQLJ.REPLACE_JAR procedure 6-15
SQLNOTFOUND

error conditions with EXECUTE statement 2-358
with INSERT statement 2-446

SQLNOTFOUND value 2-594
SQLSTATE

after FETCH 2-380
after FLUSH 2-383
after REVOKE 2-508

Index X-37

SQLSTATE (continued)
list of codes 2-392
not found condition 2-313, 2-380, 2-732
runtime errors 2-731
warnings 2-731

sqlstypes.h header file 2-315, 2-319
sqltypes.h file 2-389
sqltypes.h header file 2-623
SQLUNKNOWN data type 2-320
sqlvar structures 2-378
SQLWARNING keyword, in WHENEVER statement 2-729
sqlxtype.h header file 2-624
SQRT function 4-87, 4-90
srvsendrecv data type 2-156
STABILITY keyword

in SET ENVIRONMENT statement 2-630, 2-635
STABILITY keyword, in SET ISOLATION statement 2-652
STACK keyword

Routine Modifier segment 5-60
STACKSIZE configuration parameter 5-66, 6-5
STANDARD keyword

in ALTER TABLE statement 2-43
in CREATE TABLE statement 2-198, 2-201
in SELECT statement 2-593

STANDARD table
deluxe-mode load 2-115, 2-116
loading data 2-119

standards xxxiii
START keyword

in CREATE SEQUENCE statement 2-193
in SELECT statement 2-576

START VIOLATIONS TABLE statement 2-677
START WITH clause

in SELECT statement 2-576
STAT data type 2-544, 4-22
statcollect() function 2-719
Statement block segment 5-74
Statement identifier

cursor for 2-301
defined 2-478
in DECLARE 2-290
in FREE 2-384, 2-385
in PREPARE 2-478
releasing 2-479

STATEMENT keyword, in SET STATEMENT CACHE
statement 2-666

Statement Local Variables
data type of 4-162
declaration 4-161
expression 4-163
name space of 4-163
OUT parameter 5-69
precedence of 4-163
scope of 4-163
using 4-163

Statements
SQL

ANSI-compliant 1-10
entering 1-1
extensions to ANSI standard 1-11

Statements, SQL
valid only in ESQL/C 4-56

STATIC keyword
in ALTER TABLE statement 2-43
in SELECT statement 2-593

STATIC table
loading data 2-119

STATISTICS keyword
UPDATE STATISTICS statement 2-715

statprint() function 2-719
STATUS keyword, in INFO statement 2-433
Status, displaying with INFO statement 2-433
STDEV function 4-164, 4-171
STEP keyword 3-18

audit-event mnemonic 4-107
STMT_CACHE configuration parameter 2-667
STMT_CACHE environment variable 2-667
STMT_CACHE_HITS configuration parameter 2-668
STMT_CACHE_NOLIMIT configuration parameter 2-669
STMT_CACHE_SIZE configuration parameter 2-669
STOP keyword, in WHENEVER statement 2-729
STOP VIOLATIONS TABLE statement 2-689
STORAGE keyword

in TRUNCATE statement 2-690
Storage options, CREATE TEMP TABLE 2-238
STORE keyword

in CREATE TABLE statement 2-222
Stored Procedure Language 3-1
Storing smart large objects 2-225
STRATEGIES keyword, in CREATE OPCLASS

statement 2-160
Strategy functions 2-160
Stream pipe connection 2-545, 2-709
String-manipulation functions 4-140
STYLE keyword

External Routine Reference segment 5-19
SUBCLASS_ORIGIN keyword, in GET DIAGNOSTICS

statement 2-396
Subdiagram reference 4-1
Subordinate table 2-559
Subquery 4-3

beginning with ALL, ANY, SOME keywords 2-569
beginning with EXISTS keyword 2-569, 4-18
beginning with IN keyword 2-569, 4-17
correlated 4-16
defined 2-567
estimated cost 2-643
in a table hierarchy 2-707
in Condition segment 4-16
in WHERE clause of UPDATE statement 2-711
no FIRST keyword 2-541, 2-542
updating a column 2-705
updating multiple columns 2-706
with DISTINCT keyword 2-543
with UNION or UNION ALL 2-598

Subscripting character columns 2-588, 4-63
Subsecond precision 4-76
SUBSTR function 4-150
Substring

in ORDER BY clause of SELECT 2-588
operator in column expression 4-63

SUBSTRING function 4-149
Subtable

inherited properties 2-232
restrictions 2-180

Subtype
creating 2-178
dropping 2-341

SUM function 4-164, 4-171
Supertable

updating 2-707
Supertype

creating 2-178
dropping 2-341

X-38 IBM Informix Guide to SQL: Syntax

Support functions
assigning 2-157, 2-442, 2-453, 2-709
comparing 2-158
defined 2-161
defining 2-156
destroy 2-157, 2-312, 2-348
export 2-157
exportbinary 2-157
import 2-157
importbinary 2-157
input 2-156
lohandles 2-157
output 2-156
receive 2-157
send 2-157
specifying in CREATE OPCLASS 2-161

SUPPORT keyword, in CREATE OPCLASS statement 2-158
Synonym

chaining 2-197, 2-346
creating 2-195
difference from alias 2-195
dropping 2-346
external 2-347

SYNONYM keyword
in DROP SYNONYM statement 2-346

syntax 4-182, 4-193
Syntax diagrams

reading in a screen reader C-1
syntax for views 2-275
SYS_CONNECT_BY_PATH function 2-578
sysadmin database 4-156
sysaggregates system catalog table 2-92, 2-327
sysams system catalog table 2-5, 2-90, 2-144, 2-325

columns 5-50
SYSBldPrepare function 6-5
SYSBldRelease function 6-9
sysblobs system catalog table 2-233, 5-56
syscasts system catalog table 2-95, 2-327
syschecks system catalog table 2-496
syscolattribs system catalog table 2-226
syscolauth system catalog table 2-177
syscolumns system catalog table 2-233, 2-342, 2-437, 2-623,

2-717
sysconstraints system catalog table 2-66, 2-332, 2-497
SYSDATE function

as constant expression 4-70
in ALTER TABLE statement 2-49
in CREATE TABLE statement 2-203
in DEFINE statement 3-8
in INSERT statement 2-444

SYSDATE operator
defined 4-76

sysdbclose() procedure 6-2, 6-3
sysdbopen() procedure 2-635
sysdbopen() procedure 2-661, 6-2, 6-4
sysdirectives system catalog table 2-533, 5-44
sysdistrib system catalog table 2-152, 2-717, 2-719
sysecpolicies system catalog table 2-189, 2-342, 2-499
sysextcols system catalog table 2-233
sysextdfiles system catalog table 2-233
sysexternal system catalog table 2-233
sysfragauth system catalog table 2-173, 2-430, 2-432
sysfragments system catalog table 2-9, 2-14, 2-233, 2-497,

4-100
sysindexes system catalog table 2-212, 2-332, 2-497, 2-717,

2-720
sysinherits system catalog table 2-233, 2-342

sysmaster database 2-233, 4-102, 4-167
sysobjstate system catalog table 2-497, 2-599
sysprocauth system catalog table 2-131, 2-169, 2-171, 2-173,

2-233
sysprocbody system catalog table 2-131, 2-168, 4-108
sysprocedures system catalog table 2-131, 2-169, 2-171, 2-336,

2-339, 2-664, 6-14
sysprocplan system catalog table 2-131, 2-169, 2-171, 2-727
sysroleauth system catalog table 2-173
SYSSBSPACENAME onconfig parameter 2-719
sysseclabelauth system catalog table 2-427, 2-523
sysseclabelcomponentelements system catalog table 2-186
sysseclabelcomponents system catalog table 2-34, 2-186,

2-342, 2-499
sysseclabels system catalog table 2-183, 2-342, 2-499
syssecpolicycomponentrules system catalog table 2-189
syssequences system catalog table 2-38, 2-39, 2-191, 2-344
syssynonyms system catalog table 2-346
syssyntable system catalog table 2-346
systabauth system catalog table 2-173, 2-178, 2-430
systables system catalog table 2-233, 2-332, 2-346, 2-509,

2-717, 2-720, 4-100
System catalog tables

owner informix 5-17
sysaggregates 2-92
sysams 2-5, 2-90
sysams s 2-5
sysblobs 5-56
syscasts 2-95, 2-327
syschecks 2-496
syscolauth 2-173
syscolumns 2-342, 2-717
sysconstraints 2-212, 2-332, 2-497
sysdepend 2-351
sysdirectives 2-531, 5-44
sysdistrib 2-152, 2-717
sysecpolicies 2-189, 2-342, 2-499
sysextcols 2-233
sysextdfiles 2-233
sysexternal 2-233
sysfragauth 2-173, 2-430, 2-432
sysfragments 2-9, 2-233, 2-497
sysindexes 2-212, 2-497, 2-717
sysinherits 2-342
sysobjstate 2-497, 2-599
sysprocauth 2-131, 2-169, 2-171, 2-173
sysprocbody 2-131, 2-169, 2-171, 4-108
sysprocedures 2-131, 2-169, 2-171, 2-336, 2-339, 2-664
sysprocplan 2-131, 2-169, 2-171, 2-727
sysroleauth 2-173
sysseclabelauth 2-427, 2-523
sysseclabelcomponentelements 2-34, 2-186
sysseclabelcomponents 2-34, 2-186, 2-342, 2-499
sysseclabels 2-183, 2-342, 2-499
syssecpolicycomponentrules 2-189
syssequences 2-38, 2-39, 2-41, 2-191, 2-344
syssynonyms 2-346
syssyntable 2-346
systabauth 2-173, 2-178, 2-418, 2-430
systables 2-332, 2-342, 2-346, 2-509, 2-717
systriggers 2-245, 2-349
sysusers 2-173, 2-179
sysviews 2-279, 2-496, 2-500
sysviolations 2-677, 2-690
sysxadatasources 2-283, 2-352
sysxasourcetypes 2-284, 2-352
sysxtdtypeauth 2-154, 2-174, 2-178, 2-233, 2-409

Index X-39

System catalog tables (continued)
sysxtdtypes 2-154, 2-178, 2-341, 2-389, 2-409

System catalogs
creating 2-97
dropping tables 2-348

System clock 4-70
System constants 4-70
System index 2-149, 5-36
System name

database qualifier 5-16
SYSTEM statement 3-44
System-descriptor area

assigning values 2-620
creating 2-3
deallocating 2-289
item descriptors 2-3
OPEN using 2-359, 2-473, 2-490
resizing 2-621
use with EXECUTE statement 2-360
with ALLOCATE DESCRIPTOR 2-3
with DESCRIBE 2-316
with DESCRIBE INPUT 2-321
with EXECUTE ... INTO 2-356

System-diagnostics area 2-380
System-monitoring interface tables 4-102
System-Monitoring Interface tables 2-694, 4-167
systriggers system catalog table 2-245, 2-349
sysusers system catalog table 2-173, 2-179, 2-233, 2-433
sysviews system catalog table 2-279, 2-496, 2-500
sysviolations system catalog table 2-677, 2-690
sysxadatasources system catalog table 2-283, 2-352
sysxasourcetypes system catalog table 2-284, 2-352
sysxtdtypeauth system catalog table 2-101, 2-154, 2-174,

2-233, 2-409
sysxtdtypes system catalog table 2-101, 2-154, 2-179, 2-233,

2-341, 2-350, 2-389, 2-409, 2-625
DESCRIBE and GET DESCRIPTOR with 2-389

T
T abbreviation for terabyte 4-156
tabid column 2-16
Table

adding a constraint 2-66, 2-67
adding a constraint to a column with data 2-63
alias in SELECT 2-551
build 2-644
child 2-209
creating 2-198
creating a synonym for 2-195
default privileges 2-430
defining fragmentation strategy 2-222
deleting all rows 2-690
derived 2-553, 4-5, 5-6
diagnostics 2-245, 2-462, 2-685
diagnostics table 2-689
dominant 2-559
dropping 2-347
dropping a synonym 2-346
dropping a system table 2-348
external 2-103, 2-122, 2-245, 2-595, 5-36
fragmented 2-7
hash 2-644
inheritance 2-246, 2-253
inheritance hierarchy 2-231, 2-702
isolating 2-221
joins in Condition segment 2-570

Table (continued)
loading data with the LOAD statement 2-448
locking

with ALTER INDEX 2-29
with LOCK TABLE 2-454

logging 2-235
nonfragmented 2-18
operational 2-245
parent 2-209
permanent 2-240
privileges

granting 2-405
privileges on 2-233, 2-506
protected 2-16, 2-445
qualifiers 5-18
raw 2-245, 2-703
renaming 2-500
scratch 2-245
static 2-245, 2-671
subordinate 2-559
system catalog 2-245
target 2-677, 2-681, 2-689
temporary 2-234, 2-245, 2-594, 2-717
temporary table name 2-235
typed 2-177, 2-232, 2-718
unlocking 2-699
untyped 2-232
updating statistics 2-717
violations 2-245, 2-462, 2-680
violations table 2-689
virtual 5-5
waiting for a locked table 2-656

Table expression 2-553, 4-5, 5-6
Table format, in SET Database Object Mode statement 2-601
TABLE keyword 5-4

in ALTER FRAGMENT statement 2-7
in ALTER TABLE statement 2-71
in CREATE EXTERNAL TABLE statement 2-103
in CREATE INDEX statement 2-147
in Data Type segment 4-29
in DROP TABLE statement 2-347
in LOCK TABLE statement 2-454
in RENAME TABLE statement 2-500
in SELECT statement 2-558
in START VIOLATIONS TABLE statement 2-677
in STOP VIOLATIONS TABLE statement 2-689
in TRUNCATE statement 2-690
in UNLOCK TABLE statement 2-699
in UPDATE STATISTICS statement 2-715

Table-level privileges 2-417
TABLES keyword, in INFO statement 2-433
TAN function 4-138, 4-139
Target table

relationship to diagnostics table 2-681, 2-689
relationship to violations table 2-681, 2-689

TASK function 4-156
TCP/IP connection 2-312, 2-443, 2-545, 2-709
TDES (Triple Data Encryption Standard) 4-114
TEMP keyword

in CREATE TEMP TABLE statement 2-234
in SELECT statement 2-593

Temporary dbspace 2-239
Temporary tables

and fragmentation 2-238
constraints allowed 2-236
creating 2-234
creating constraints for 2-236

X-40 IBM Informix Guide to SQL: Syntax

Temporary tables (continued)
defining columns 2-235
differences from permanent tables 2-240
duration 2-240
INFO statement restrictions 2-240
storage 2-239
updating statistics 2-717
when deleted 2-240

TEMPTAB_NOLOG configuration parameter 2-235
TEST keyword, in SAVE EXTERNAL DIRECTIVES

statement 2-531
TEXT column, modifying 2-60
TEXT data type

declaration syntax 4-30
default value 2-204
loading 2-449
SPL routines 3-7, 3-15
storage location 4-30
unloading 2-696, 2-697
with SET DESCRIPTOR 2-626

TEXT keyword
in Data Type segment 4-29
in DEFINE statement 3-6
in Return Clause segment 5-54

THEN keyword
in Expression segment 4-66, 4-67
in IF statement 3-27
in MERGE statement 2-458

Thread-safe application
defined 2-324, 2-612, 2-614

THREADS keyword, in EXECUTE FUNCTION
statement 6-12

Time and date, getting current 4-75
Time data types 4-31
Time function

restrictions with GROUP BY 2-585
use in Function Expressions 4-126
use in SELECT 2-547

TIME keyword
in ALTER TABLE statement 2-64
in CREATE TABLE statement 2-225

Time unit 4-180
INTERVAL data types 4-176

Time zone
of DBINFO function 4-104, 4-105
of TODAY operator 4-75

times() operator function 4-51
TO CLUSTER keywords, in ALTER INDEX statement 2-28
TO keyword 3-18

in ALTER FRAGMENT statement 2-24
in ALTER INDEX statement 2-28
in CONNECT statement 2-83
in CREATE SECURITY POLICY statement 2-189
in DATETIME field qualifier 4-39
in EXTEND function 4-126
in GRANT FRAGMENT statement 2-428
in GRANT statement 2-419, 2-421, 2-423, 2-427
in INTERVAL Field Qualifier segment 4-175
in OUTPUT statement 2-476
in RENAME COLUMN statement 2-495
in RENAME DATABASE statement 2-497
in RENAME INDEX statement 2-497
in RENAME SECURITY statement 2-499
in RENAME SEQUENCE statement 2-500
in RENAME TABLE statement 2-500
in ROLLBACK WORK statement 2-529
in SET DEBUG FILE statement 2-617

TO keyword (continued)
in SET EXPLAIN statement 2-640
in SET ISOLATION statement 2-648
in SET LOCK MODE statement 2-655
in SET SESSION AUTHORIZATION statement 2-664
in UNLOAD statement 2-695
in WHENEVER statement 2-732

TO_CHAR function 4-126, 4-134
TO_DATE function 4-126, 4-137
TO_NUMBER function 4-137
TODAY function

as expression 4-70
in ALTER TABLE statement 2-49
in Condition segment 4-10
in CREATE TABLE statement 2-203
in DEFINE statement 3-8
in INSERT 2-439, 2-444

TRACE statement 3-47
specifying the output file 2-617

TRAILING keyword, in TRIM expressions 4-145
TRANSACTION keyword

in CONNECT statement 2-83
in SET TRANSACTION statement 2-670

Transaction mode
constraints 2-674

Transactions
access mode 2-673
example 2-299
partial rollback 2-529
read-only 2-673
rollback 2-528
statements that initiate 2-666
using cursors in 2-304
without error handling 2-75

TREE keyword
in ALTER SECURITY LABEL COMPONENT

statement 2-34
in CREATE SECURITY LABEL COMPONENT

statement 2-185
Trigger

inherited 2-246, 2-253
overriding 2-253

Trigger action 2-241
Trigger event 2-241

DELETE 2-248, 2-274
INSERT 2-248, 2-258, 2-274, 2-277
privileges on 2-248
SELECT 2-250, 2-275
UPDATE 2-249, 2-274

Trigger functions 2-128
TRIGGER keyword

in DROP TRIGGER statement 2-349
in EXECUTE FUNCTION statement 2-361
in EXECUTE PROCEDURE statement 2-369

Trigger procedures 2-165
Trigger routines 2-128, 2-165
Trigger UDR 2-128, 2-165
Trigger-type Boolean operator 4-12
Triggered action 2-275

action statements 2-262
cascading 2-256
correlation names 2-268
effect of cursors 2-248
for multiple triggers 2-256, 2-276
list of actions 2-261
WHEN condition 2-261

Index X-41

Triggering statement
consistent results 2-262
performance 2-248
UPDATE 2-250

Triggering view 2-275
Triggers

affected by dropping a column from table 2-58
affected by modifying a column 2-64
enabling or disabling 2-603
overriding 2-272

TRIGGERS keyword, in SET Database Object Mode
statement 2-600, 2-601, 2-677

Trigonometric function
ACOS function 4-139
ASIN function 4-139
ATAN function 4-139
ATAN2 function 4-139
COS function 4-139
SIN function 4-139
TAN function 4-139

TRIM function 4-145
Triple Data Encryption Standard (TDES or DES3) 4-114
TRUNC function 4-87
TRUNCATE statement 2-690
Trusted Facility feature 4-107
Two-phase commit operations 2-283
TYPE field 2-385

changing from BYTE or TEXT 2-626
in SET DESCRIPTOR statement 2-622
setting in X/Open programs 2-624
with DESCRIBE INPUT statement 2-321
with DESCRIBE statement 2-316
with X/Open programs 2-388

Type hierarchy 2-178
TYPE keyword

in ALTER TABLE statement 2-43, 2-72
in CREATE DISTINCT TYPE statement 2-100
in CREATE ROW TYPE statement 2-177
in CREATE TABLE statement 2-230
in CREATE VIEW statement 2-277
in CREATE XADATASOURCE TYPE statement 2-284
in DROP ROW TYPE statement 2-341
in DROP TYPE statement 2-350
in DROP XADATASOURCE TYPE statement 2-352
in GRANT statement 2-409
in REVOKE statement 2-509

Typed collection variable 2-1, 3-12
Typed table

ADD TYPE clause 2-72
altering 2-73
altering serial columns 2-61, 2-180
inheritance 2-232
NOT NULL constraint 2-179

Typed view 2-279

U
U.S. English format conventions xxi
UDR Definition Procedures

ALTER_JAVA_PATH 6-10
INSTALL_JAR 6-10
REMOVE_JAR 6-10
REPLACE_JAR 6-10
SETUDTEXTNAME 6-10
UNSETUDTEXTNAME 6-10

UDR definition routines
IFX_REPLACE_MODULE 6-10

UDR definition routines (continued)
JVPCONTROL 6-12

UDR Definition Routines
IFX_UNLOAD_MODULE 6-12

Unary CONNECT_BY_ROOT operator 2-578
Unary minus operator (-) 4-183, 4-184
Unary plus operator (+) 4-183, 4-184
Unary PRIOR operator 2-578
Unbuffered logging 2-658
UNCOMMITTED keyword

in SET TRANSACTION statement 2-671
Uncommitted row 2-650
Uncorrelated subquery 2-554
UNDEFINED parameter value 5-2
UNDER keyword

in ALTER SECURITY LABEL COMPONENT
statement 2-34

in CREATE ROW TYPE statement 2-176
in CREATE SECURITY LABEL COMPONENT

statement 2-185
in CREATE TABLE statement 2-230
in GRANT statement 2-409
in REVOKE statement 2-506, 2-509

UNDER ON TYPE keywords
in GRANT statement 2-409
in REVOKE statement 2-509

Under privilege 2-406, 2-410, 2-506, 2-509
Underscore (_)

as wildcard 4-14
in SQL identifiers 5-21, 5-23
in storage object identifiers 5-24

Unicode 2-205, 2-609, 4-24
UNION operator

in collection subquery 4-4
in SELECT statement 2-536, 2-597
OUT parameter and 4-163
restrictions on use 2-446, 2-597

UNION subquery 2-597
Union view 2-280
Unique constraint

dropping 2-69
rules of use 2-207

UNIQUE keyword
in ALTER TABLE statement 2-50, 2-67
in CREATE INDEX statement 2-137
in CREATE TABLE statement 2-205, 2-214
in CREATE TEMP TABLE statement 2-236, 2-237
in Expression segment 4-164, 4-174
in SAVEPOINT statement 2-534
in SELECT 2-543
in subquery 4-18

Units of storage size 4-156
Units of time, INTERVAL values 4-182
UNITS operator 4-70
Universal Time (UT) 4-105
UNIX operating system

chmod utility 6-15
epochs 4-105
home directory 2-131
mail utility 3-45
shell script 3-46

UNKNOWN truth values 4-20
UNLOAD statement 2-695
UNLOAD TO file 2-696
Unloading data

from a fixed-text file 2-121
to a delimited file 2-120

X-42 IBM Informix Guide to SQL: Syntax

Unloading data (continued)
to an Informix file 2-120

UNLOCK TABLE statement 2-699
Unnamed row data types

field definition 4-35
unloading 2-696, 2-698
updating fields 2-714

Unregistering DataBlade modules 6-5
UNSETUDTEXTNAME procedure 6-18
Untyped collection variable 2-1, 2-288, 2-556, 4-36, 5-7, 5-11
Untyped row variable 2-4
Untyped view 2-279
Updatable view 2-282
Update clause in MERGE statement 2-459
Update cursor

locking considerations 2-296
opening 2-470
restricted statements 2-300
use in DELETE 2-311
use in UPDATE 2-713

UPDATE keyword 2-429
in CREATE TRIGGER statement 2-249, 2-274
in DECLARE statement 2-290
in GRANT statement 2-406
in MERGE statement 2-458
in REVOKE FRAGMENT statement 2-526
in REVOKE statement 2-506
in SELECT statement 2-536, 2-591
in SET ISOLATION statement 2-653
in UPDATE statement 2-700
in UPDATE STATISTICS statement 2-715

Update locks 2-635, 2-654
Update privilege 2-406, 2-506
Update privilege, with a view 2-702
UPDATE statement 2-700
UPDATE statements

and triggers 2-262
collection variables 5-10
cursor with 2-295
distributed 2-443, 2-709
OUT parameter and SLVs 4-163
SET clause 2-704
single-column SET clause 2-704
smart large objects with 4-64
update triggers 2-247
updating through a view 2-702
with FETCH 2-378
with SELECT...FOR UPDATE 2-591

UPDATE STATISTICS statement 2-715
dropping data distributions 2-720
examining index pages 2-719
specifying distributions only 2-724
upgrading the database server 2-728

Update trigger 2-249, 2-274
Updating a specific table in a table hierarchy 2-702
UPDATING operator 2-129, 2-167, 4-12
Upgrading the database server 2-717, 2-728
UPPER function 4-155
Upper index filter 2-644
Uppercase characters

converting from lowercase 4-155
in database server names 2-85, 5-18

USAGE keyword
in GRANT statement 2-409, 2-410
in REVOKE statement 2-509, 2-511

USAGE ON LANGUAGE keywords
in GRANT statement 2-410

USAGE ON LANGUAGE keywords (continued)
in REVOKE statement 2-511

USAGE ON TYPE keywords
in GRANT statement 2-409
in REVOKE statement 2-509

USE_HASH keyword, in optimizer directives 5-40
USE_NL keyword, in optimizer directives 5-40
USELASTCOMMITTED configuration parameter 2-455, 2-638,

2-651
USELASTCOMMITTED configuration parameters 2-672
USELASTCOMMITTED environment option 2-651, 2-655,

2-657, 2-672
USELASTCOMMITTED keyword, in SET ENVIRONMENT

statement 2-455, 2-638
USEOSTIME configuration parameter 4-75
USER function

as constant expression 4-70
defined 4-73
in ALTER TABLE statement 2-49
in Condition segment 4-10
in CREATE TABLE statement 2-203
in DEFINE statement 3-8
in INSERT statement 2-439, 2-444
in Literal Row segment 4-185

User informix 2-100, 2-327, 2-417, 2-515, 5-46
privileges associated with 2-404

USER keyword
in CONNECT statement 2-87
in GRANT statement 2-419, 2-421, 2-423, 2-427
in REVOKE statement 2-518, 2-519, 2-521, 2-523

User name
case-sensitivity 2-402, 2-664
using another name 2-664

User-defined access method
creating 2-90
modifying 2-5

User-defined aggregates
creating 2-92
defined 4-166
dropping 2-326
invoking 4-174

User-defined data types 4-32
maximum in one row 2-201, 4-34
privileges 2-409, 2-509

User-defined function 4-160
arguments 5-1
cursor 2-364
inserting data with 2-446
iterator 5-63
negator 2-362, 5-63
noncursor 2-363
OUT parameter 4-163
selectivity 5-65
variant 5-20, 5-66

User-defined routines
arguments 2-156, 5-1
defined 2-164
dropping with DROP ROUTINE 2-339
EXTEND role 2-417, 2-515
ill-behaved 5-62
in SELECT statements 2-547
inserting data with 2-446
ownership of created objects 2-133, 5-19
privileges 2-410, 2-510
REFERENCES keyword with BYTE or TEXT data

type 3-15
reoptimization 2-725

Index X-43

User-defined routines (continued)
RESTRICTED mode 2-664
return values 5-54
VP class 5-61

User-defined VP class 5-61
USETABLENAME environment variable 2-41, 2-347, 2-692
USING DESCRIPTOR keywords

in EXECUTE 2-358
in FETCH 2-378
in OPEN 2-469
in PUT 2-360

USING keyword
in CONNECT statement 2-87
in CREATE EXTERNAL TABLE statement 2-103
in CREATE INDEX statement 2-135, 2-143
in CREATE TABLE statement 2-228
in CREATE XADATASOURCE statement 2-283
in DELETE statement 2-307
in DESCRIBE INPUT statement 2-320
in DESCRIBE statement 2-316
in EXECUTE statement 2-355, 2-358, 2-360
in FETCH statement 2-372
in INTO EXTERNAL clause 2-593
in MERGE statement 2-458
in OPEN statement 2-469, 2-472
in PUT statement 2-488
in START VIOLATIONS TABLE statement 2-677

USING SQL DESCRIPTOR keywords
in DESCRIBE INPUT statement 2-318, 2-320
in DESCRIBE statement 2-314, 2-316
in EXECUTE statement 2-360

UT (Universal Time) 4-105
UTC (Coordinated Universal Time) 4-105
UTC_CURRENT option of DBINFO 4-105
UTC_TO_DATETIME option of DBINFO 4-105
UTF-8 code set 2-609
UTF-8 locale 2-205, 4-24
Utilities

chmod 6-15
dbschema 2-39
oncheck 2-157, 4-116
ondblog 2-658
oninit 4-103
onmode 2-669
onspaces 2-7, 2-146, 2-431, 2-526
onstat 2-616, 2-669
onutil 4-116
setenv 2-86
setnet32 2-85

V
V option of oninit 4-103
VALUE clause

after null value is fetched 2-388
relation to FETCH 2-388
use in GET DESCRIPTOR 2-387
use in SET DESCRIPTOR 2-622

VALUE keyword
in GET DESCRIPTOR statement 2-385
in SET DESCRIPTOR statement 2-621

VALUES clause
effect with PUT 2-489
in INSERT statement 2-439
in MERGE statement 2-459

VALUES keyword
in ALTER FRAGMENT statement 2-10, 2-22

VALUES keyword (continued)
in MERGE statement 2-458

VALUES keyword, in INSERT statement 2-439
VARCHAR data type 4-22, 4-24

in LOAD statement 2-451
in UNLOAD statement 2-697
syntax 4-23

VARIABLE keyword, in CREATE OPAQUE TYPE
statement 2-154

Variable-length UDT 2-201, 4-34
Variables

declaring in SPL 3-6
default values in SPL 3-8, 3-11
global 3-7
local 3-6, 3-10
PROCEDURE type 3-15
uninitialized 3-49, 4-9
unknown values in IF 3-29

VARIANCE function 4-164, 4-172
Variant function 2-55, 5-20, 5-66
VARIANT keyword

External Routine Reference segment 5-19
Routine Modifier segment 5-60

Varying-length opaque data type 2-155, 2-156
VERCOLS keyword

in ALTER TABLE statement 2-47
in CREATE TABLE statement 2-217, 2-219

version option of DBINFO 4-103
Version string

of SYSBldRelease 6-9
View

affected by dropping a column 2-58
affected by modifying a column 2-64
creating a synonym for 2-195
creating a view 2-277
dependent 2-351
dropped by ALTER FRAGMENT statement 2-13
dropping 2-351
dropping a synonym 2-346
materialized 2-279
privileges 2-408
typed 2-177, 2-279
union 2-280
untyped 2-279
updatable 2-282
updating 2-702

VIEW keyword
in CREATE VIEW statement 2-277
in DROP VIEW statement 2-351

VIOLATIONS keyword
in START VIOLATIONS TABLE statement 2-677
in STOP VIOLATIONS TABLE statement 2-689

Violations table
creating 2-677
declaring a name 2-679
default name 2-679
effect on transactions 2-679
examples 2-683, 2-689
how to stop 2-689
privileges 2-682
relationship to diagnostics table 2-213, 2-681
relationship to target table 2-681
restriction on dropping 2-348
schema 2-680
security label protection 2-680

Virtual column 2-280
Virtual index 2-90

X-44 IBM Informix Guide to SQL: Syntax

Virtual table 5-5
Virtual-processor class 5-61
Visual disabilities

reading syntax diagrams C-1
Visual Explain output 6-9

W
WAIT keyword, in SET LOCK MODE statement 2-655
WARNING keyword

in SET ISOLATION statement 2-650
Weekday argument to ADD_MONTHS function 4-127, 4-130
Weekday argument to NEXT_DAY function 4-132
WEEKDAY function 4-126
Well-behaved C UDRs 5-62
WHEN keyword

in CREATE TRIGGER statement 2-261
in EXIT statement 3-16
in Expression segment 4-66, 4-67
in MERGE statement 2-458

WHENEVER statement
syntax and use 2-729

WHERE clause
estimated selectivity 2-723
in SELECT statement 2-536
in system-descriptor area 2-3
joining tables 2-570
with a subquery 2-567
with ALL keyword 2-569
with ANY keyword 2-569
with BETWEEN keyword 2-567
with IN keyword 2-567
with IS keyword 2-568
with relational operator 2-567
with SOME keyword 2-569

WHERE CURRENT OF keywords
in DELETE statement 2-307
in UPDATE statement 2-700, 2-713
optimizer directives 5-36

WHERE keyword
in DELETE statement 2-307
in SELECT statement 2-566
in UPDATE statement 2-700

WHILE keyword
in CONTINUE statement 3-5
in EXIT statement 3-16

WHILE statement 3-49
White space characters

in delimited identifiers 5-23
SQL statements 1-1

Wildcard character
asterisk (*) 4-14
backslash (\) 4-14
brackets ([]) 4-14
caret (^) 4-14
percent sign (%) 4-14
question mark (?) 4-14
underscore (_) 4-14
with LIKE 2-568, 4-13
with LIKE or MATCHES 4-191
with MATCHES 2-568, 4-14

Windows
batch file 3-46
sqlhosts subkey 2-85
system commands 3-46

WITH APPEND keywords
in SET DEBUG FILE statement 2-617

WITH APPEND keywords (continued)
in SET EXPLAIN statement 2-640

WITH BUFFERED LOG keywords
in CREATE DATABASE statement 2-97

WITH CHECK OPTION keywords, in CREATE VIEW
statement 2-277, 2-281

WITH CONCURRENT TRANSACTION keywords
in CONNECT statement 2-89

WITH CRCOLS keywords
in CREATE TABLE statement 2-218

WITH ERROR keywords
in ALTER TABLE statement 2-52
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212, 2-213
in SET Database Object Mode statement 2-602

with FOREACH 3-22
WITH GRANT OPTION keywords

in GRANT FRAGMENT statement 2-428
in GRANT statement 2-401

WITH HOLD keywords 3-22
in DECLARE statement 2-290

WITH IDSLBACRULES keywords
in CREATE SECURITY POLICY statement 2-189

WITH keyword
in ALLOCATE DESCRIPTOR statement 2-3
in ALTER FRAGMENT statement 2-17
in ALTER FUNCTION statement 2-27
in ALTER PROCEDURE statement 2-30
in ALTER ROUTINE statement 2-31
in ALTER SEQUENCE statement 2-39
in ALTER TABLE statement 2-55, 2-63
in CONNECT statement 2-83
in CREATE AGGREGATE statement 2-92
in CREATE CAST statement 2-95
in CREATE DATABASE statement 2-97
in CREATE FUNCTION statement 2-125
in CREATE INDEX statement 2-149
in CREATE PROCEDURE statement 2-162
in CREATE SECURITY POLICY statement 2-189
in CREATE SEQUENCE statement 2-193
in CREATE TABLE statement 2-201, 2-217, 2-218, 2-219
in CREATE VIEW statement 2-277, 2-281
in DECLARE statement 2-290
in EXECUTE FUNCTION statement 2-361
in EXECUTE PROCEDURE statement 2-369
in GRANT FRAGMENT statement 2-428
in GRANT statement 2-401
in OPEN statement 2-469
in SELECT statement 2-576
in SET CONSTRAINTS statement 2-614
in SET Database Object Mode statement 2-602
in SET DEBUG FILE statement 2-617
in SET ENCRYPTION PASSWORD statement 2-626
in SET EXPLAIN statement 2-640
in SET INDEXES statement 2-647
in SET ISOLATION statement 2-650

WITH LISTING IN keywords
in CREATE FUNCTION statement 2-125
in CREATE PROCEDURE statement 2-162

WITH LOG keyword
in CREATE DATABASE statement 2-97

WITH LOG MODE ANSI keywords
in CREATE DATABASE statement 2-97

WITH MAX keywords
in ALLOCATE DESCRIPTOR statement 2-3

WITH NO LOG keywords
in CREATE TEMP TABLE statement 2-234

Index X-45

WITH NO LOG keywords (continued)
in SELECT statement 2-593, 2-595

WITH REOPTIMIZATION keywords in OPEN
statement 2-469

WITH REPLCHECK keywords
in CREATE TABLE statement 2-219

WITH RESUME keywords
in ON EXCEPTION statement 3-37
in RETURN statement 3-42

WITH ROWIDS keywords
in ALTER FRAGMENT statement 2-17
in CREATE TABLE statement 2-222

WITH TRIGGER REFERENCES keywords
in EXECUTE FUNCTION statement 2-361
in EXECUTE PROCEDURE statement 2-369

WITH VERCOLS keywords
in CREATE TABLE statement 2-219

WITH WARNING keywords
in SET ISOLATION statement 2-650

WITHOUT ERROR keywords
in ALTER TABLE statement 2-52
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212, 2-213
in SET Database Object Mode statement 2-602

WITHOUT HEADINGS keywords
in OUTPUT statement 2-476

WITHOUT keyword
in ALTER TABLE statement 2-52
in BEGIN WORK statement 2-74
in CREATE INDEX statement 2-149
in CREATE TABLE statement 2-212
in OUTPUT statement 2-476
in SET CONSTRAINTS statement 2-614
in SET Database Object Mode statement 2-602
in SET INDEXES statement 2-647

Word length (32-bit or 64-bit) 4-103
WORK keyword

in BEGIN WORK statement 2-74
in COMMIT WORK statement 2-81
in ROLLBACK WORK statement 2-529

WORK WITHOUT REPLICATION keywords, in BEGIN
WORK statement 2-74

WRITE keyword
in CREATE SECURITY POLICY statement 2-189
in GRANT statement 2-423
in REVOKE statement 2-521
in SET TRANSACTION statement 2-670

Write lock 2-296
Write-access rules for label-based access 2-189
WRITEDOWN keyword

in GRANT statement 2-421
in REVOKE statement 2-519

WRITEUP keyword
in GRANT statement 2-421
in REVOKE statement 2-519

Writing direction 4-150

X
X for storage in an extent space 2-91, 5-51
X/Open DTP XA standard 2-283, 2-284
X/Open mode

CONNECT statement 2-87
FETCH statement 2-374
GET DESCRIPTOR statement 2-388
OPEN statement 2-473
SET DESCRIPTOR statement 2-624

XA data source
privileges to create 2-283
privileges to drop 2-352

XA data source type
creating 2-284
dropping 2-352

XA Switch Structure 5-54
xa.h file 5-54
XADATASOURCE keyword

in CREATE XADATASOURCE statement 2-283
in CREATE XADATASOURCE TYPE statement 2-284
in DROP XADATASOURCE statement 2-352
in DROP XADATASOURCE TYPE statement 2-352

XID data type 2-544, 4-22
XML format query optimizer plans 6-9
xopen compiler option 2-624
XOR bitwise logical operation 4-54

Y
Y

value of MORE field 2-395
YEAR function 4-129
YEAR keyword 4-38, 4-175

as DATETIME field qualifier 4-180
as INTERVAL field qualifier 4-182

YES
NODEFDAC setting 2-408

Z
Zero

AUTO_REPREPARE setting 2-633
DIRECTIVES setting 5-35
EXT_DIRECTIVES setting 2-531
IFX_AUTO_REPREPARE setting 2-633
IFX_EXTDIRECTIVES setting 2-531
in UNLOAD file 2-696
invalid divisor 2-394
OPTCOMPIND setting 2-634
prohibited MOD divisor 4-89
returned IFX_REPLACE_MODULE value 6-11
returned IFX_UNLOAD_MODULE value 6-12
scale and ROUND function 4-90
scale and TRUNC function 4-94
setting of STMT_CACHE_NOLIMIT 2-669
sqlca value after INSERT 2-446
sqlcode value after ALLOCATE COLLECTION 2-1
subseconds and CURRENT function 4-76
Sunday and WEEKDAY function 4-129
sysdirectives.active value 2-533
time unit value returned by EXTEND 4-133
to specify next serial value 2-441
variance and STDEV function 4-172
variance and VARIANCE function 4-172

X-46 IBM Informix Guide to SQL: Syntax

����

Printed in USA

SC27-3611-01

Sp
in
e
in
fo
rm
at
io
n:

IB
M

In
fo

rm
ix

Ve
rs

io
n

11
.5

0
IB

M
In

fo
rm

ix
Gu

id
e

to
SQ

L:
Sy

nt
ax

�
�

�

	Contents
	Introduction
	In This Introduction
	About This Publication
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Databases

	What's New in SQL Syntax for Informix, Version 11.50
	Example code conventions
	Additional documentation
	Compliance with industry standards
	Syntax diagrams
	How to read a command-line syntax diagram
	Keywords and punctuation
	Identifiers and names

	How to provide documentation feedback

	Chapter 1. Overview of SQL Syntax
	How to Enter SQL Statements
	Using Syntax Diagrams and Syntax Tables
	Using Examples
	Using Related Information

	How to Enter SQL Comments
	Examples of SQL Comments
	Non-ASCII Characters in SQL Comments

	Categories of SQL Statements
	Data Definition Language Statements
	Data Manipulation Language Statements
	Data Integrity Statements
	Cursor Manipulation Statements
	Dynamic Management Statements
	Data Access Statements
	Optimization Statements
	Routine Definition Statements
	Auxiliary Statements
	Client/Server Connection Statements
	Optical Subsystem Statements

	ANSI/ISO Compliance and Extensions
	ANSI/ISO-Compliant Statements
	ANSI/ISO-Compliant Statements with Informix Extensions
	Statements that are Extensions to the ANSI/ISO Standard

	Chapter 2. SQL statements
	ALLOCATE COLLECTION statement
	Examples

	ALLOCATE DESCRIPTOR statement
	WITH MAX Clause

	ALLOCATE ROW statement
	ALTER ACCESS_METHOD statement
	Example

	ALTER FRAGMENT statement
	Restrictions on the ALTER FRAGMENT Statement
	ALTER FRAGMENT and Transaction Logging
	Determining the Number of Rows in the Fragment
	ATTACH Clause
	General Restrictions for the ATTACH Clause
	Using the BEFORE, AFTER, and REMAINDER options
	Combining Nonfragmented Tables to Create a Fragmented Table
	Attaching a Table to a Fragmented Table
	Effect of the ATTACH Clause

	DETACH Clause
	Detach with BYTE and TEXT Columns
	Detach from a Protected Table
	Detach That Results in a Nonfragmented Table

	INIT Clause
	WITH ROWIDS Option
	Converting a Fragmented Table to a Nonfragmented Table
	FRAGMENT BY Clause for Tables
	FRAGMENT BY Clause for Indexes

	ADD Clause
	Adding a New Dbspace to a Round-Robin Distribution Scheme
	Adding a New Named Fragment to a Round-Robin Distribution Scheme
	Adding an expression-based fragment
	Using the BEFORE and AFTER Options
	Using the REMAINDER Option

	DROP Clause
	MODIFY Clause
	Examples of ALTER FRAGMENT ON INDEX statements

	ALTER FUNCTION statement
	Keywords That Introduce Modifications

	ALTER INDEX statement
	TO CLUSTER Option
	TO NOT CLUSTER Option

	ALTER PROCEDURE statement
	ALTER ROUTINE statement
	Restrictions
	Keywords That Introduce Modifications
	Example of Altering Routine Modifiers

	ALTER SECURITY LABEL COMPONENT statement
	The ADD ARRAY Clause
	The ADD SET Clause
	The ADD TREE Clause

	ALTER SEQUENCE statement
	INCREMENT BY Option
	RESTART WITH Option
	MAXVALUE or NOMAXVALUE Option
	MINVALUE or NOMINVALUE Option
	CYCLE or NOCYCLE Option
	CACHE or NOCACHE Option
	ORDER or NOORDER Option
	Examples

	ALTER TABLE statement
	Logging TYPE Options
	Basic Table Options
	Enterprise Replication shadow columns
	Using the ADD ROWIDS Keywords
	Using the DROP ROWIDS Keywords
	Using the ADD VERCOLS Keywords
	Using the DROP VERCOLS Keywords

	ADD Column Clause
	Logical Character Support in Character Columns
	Using the BEFORE Option

	DEFAULT Clause
	DEFAULT Labels

	Single-Column Constraint Format
	Using NOT NULL Constraints with ADD
	Constraint Definition
	REFERENCES Clause
	Restrictions on Referential Constraints
	Default Column for the References Clause
	Using the ON DELETE CASCADE Option
	Locks Held During Creation of a Referential Constraint
	CHECK Clause
	Add Column Security

	SECURITY POLICY Clause
	DROP Column Clause
	How Dropping a Column Affects Constraints
	How Dropping a Column Affects Triggers
	How Dropping a Column Affects Views

	MODIFY Clause
	Using the MODIFY Clause
	Altering BYTE and TEXT Columns
	Altering the Next Serial Value
	Altering Character Columns
	Altering the Structure of Tables
	Modifying Tables for NULL Values
	Adding a Constraint on a Non-Opaque Column
	Modify Column Security
	Adding a Constraint That Existing Rows Violate
	How Modifying a Column Affects Triggers
	How Modifying a Column Affects Views
	PUT Clause

	ADD CONSTRAINT Clause
	Multiple-Column Constraint Format
	Adding a Primary-Key or Unique Constraint
	Recovery from Constraint Violations

	DROP CONSTRAINT Clause
	MODIFY EXTENT SIZE
	MODIFY NEXT SIZE Clause
	LOCK MODE Clause
	Precedence and Default Behavior

	ADD TYPE Clause
	Options Valid on Typed Tables
	Altering Subtables and Supertables

	BEGIN WORK statement
	BEGIN WORK and ANSI-Compliant Databases
	BEGIN WORK WITHOUT REPLICATION (ESQL/C)
	Example of BEGIN WORK

	CLOSE statement
	Closing a Select or Function Cursor
	Closing an Insert Cursor
	Closing a Collection Cursor
	Using End of Transaction to Close a Cursor
	Examples

	CLOSE DATABASE statement
	COMMIT WORK statement
	Issuing COMMIT WORK in a Database That Is Not ANSI Compliant
	Explicit DB-Access Transactions

	Issuing COMMIT WORK in an ANSI-Compliant Database

	CONNECT statement
	Privileges for Executing the CONNECT Statement
	Connection Context
	Database Environment
	Restrictions on dbservername
	Specifying the Database Environment

	Declaring a Connection Name
	Connection Identifiers

	USER Validation Clause
	Restrictions on the Validation Variable Parameter
	Restrictions on the User Identifier Parameter
	Use of the Default User ID

	The DEFAULT Connection Specification
	The Implicit Connection with DATABASE Statements

	WITH CONCURRENT TRANSACTION Option

	CREATE ACCESS_METHOD statement
	CREATE AGGREGATE statement
	Extending the Functionality of Aggregates
	Example of Creating a User-Defined Aggregate

	Parallel Execution

	CREATE CAST statement
	Source and Target Data Types
	Explicit and Implicit Casts
	Explicit Casts
	Implicit Casts

	WITH Clause

	CREATE DATABASE statement
	Logging Options
	Specifying Buffered Logging
	ANSI-Compliant Databases

	CREATE DISTINCT TYPE statement
	Privileges on Distinct Types
	Support Functions and Casts
	Manipulating Distinct Types

	CREATE EXTERNAL TABLE Statement
	Column Definition
	Using the SAMEAS Clause
	Using the EXTERNAL Keyword
	Manipulating Data in Fixed Format Files

	DATAFILES Clause
	Using Formatting Characters with External Tables

	Table options
	Reject Files
	External Table Examples
	Loading Data from External Tables into Informix
	Unloading Data to External Tables from Informix

	Restrictions on External Tables

	CREATE FUNCTION statement
	Privileges Necessary for Using CREATE FUNCTION
	DBA Keyword and Privileges on the Created Function
	The REFERENCING and FOR Clauses
	Overloading the Name of a Function
	Using the SPECIFIC Clause to Specify a Specific Name

	DOCUMENT Clause
	WITH LISTING IN Clause
	SPL Functions
	External Procedures
	Example of Registering a C User-Defined Function
	Example of Registering a UDR Written in the Java Language
	Ownership of Created Database Objects
	Examples

	CREATE FUNCTION FROM statement
	CREATE INDEX statement
	Index-Type Options
	UNIQUE or DISTINCT Option
	How Indexes Affect Primary-Key, Unique, and Referential Constraints

	CLUSTER option
	Index-Key Specification
	Using a Column or Column List as the Index Key
	Using a Function as an Index Key
	Creating Composite Indexes
	Using the ASC and DESC Sort-Order Options
	Effects of Unique Constraints on Sort Order Options
	Bidirectional Traversal of Indexes
	Restrictions on the Number of Indexes on a Set of Columns

	Using an Operator Class
	USING Access-Method Clause
	FILLFACTOR Option
	Providing a Low Percentage Value
	Providing a High Percentage Value
	Storage options
	IN Clause
	Storing an Index in a dbspace
	Storing an Index Fragment in a Named Partition
	Storing Data in an extspace
	Creating an Index with the IN TABLE Keywords

	FRAGMENT BY Clause for Indexes
	Restrictions on fragmentation expressions
	Fragmentation of System Indexes
	Fragmentation of Unique Indexes
	Fragmentation of Indexes on Temporary Tables
	Index Modes
	Specifying Modes for Unique Indexes
	Adding a Unique Index When Duplicate Values Exist in the Column

	Specifying Modes for Duplicate Indexes
	How the Database Server Treats Disabled Indexes
	The ONLINE keyword of CREATE INDEX
	Automatic Calculation of Distribution Statistics

	CREATE OPAQUE TYPE statement
	Declaring a Name for an Opaque Type
	INTERNALLENGTH Modifier
	Fixed-Length Opaque Types
	Varying-Length Opaque Types

	Opaque-Type Modifier
	Defining an Opaque Type

	CREATE OPCLASS statement
	STRATEGIES Clause
	Strategy Specification
	Indexes on Side-Effect Data
	SUPPORT Clause
	Default Operator Classes

	CREATE PROCEDURE statement
	Using CREATE PROCEDURE Versus CREATE FUNCTION
	Relationship Between Routines, Functions, and Procedures
	Privileges Necessary for Using CREATE PROCEDURE
	DBA Keyword and Privileges on the Procedure
	The REFERENCING and FOR Clauses
	Procedure Names in Informix
	Using the SPECIFIC Clause to Specify a Specific Name

	DOCUMENT Clause
	Using the WITH LISTING IN Option
	SPL Procedures
	External Procedures
	Registering a User-Defined Procedure
	Ownership of Created Database Objects
	Examples

	CREATE PROCEDURE FROM statement
	Default Directory That Holds the File

	CREATE ROLE statement
	CREATE ROUTINE FROM statement
	Examples

	CREATE ROW TYPE statement
	Privileges on Named Row Data Types
	Inheritance and Named ROW Types
	Creating a Subtype
	Type Hierarchies
	Procedure for Creating a Subtype
	Field Definition
	Restrictions on Serial and Simple-Large-Object Data Types

	CREATE SCHEMA statement
	Creating Database Objects Within CREATE SCHEMA

	CREATE SECURITY LABEL statement
	Components and Elements of a Security Label

	CREATE SECURITY LABEL COMPONENT statement
	Types and Elements of Security Label Components
	ARRAY Components
	SET Components
	TREE Components

	CREATE SECURITY POLICY statement
	Security Label Components of a Security Policy
	Rules Associated with a Security Policy

	CREATE SEQUENCE statement
	INCREMENT BY Option
	START WITH Option
	MAXVALUE or NOMAXVALUE Option
	MINVALUE or NOMINVALUE Option
	CYCLE or NOCYCLE Option
	CACHE or NOCACHE Option
	ORDER or NOORDER Option
	Examples

	CREATE SYNONYM statement
	Synonyms for objects outside the current database
	PUBLIC and PRIVATE Synonyms
	Synonyms with the Same Name
	Chaining Synonyms

	CREATE TABLE statement
	Logging Options
	Column Definition
	DEFAULT Clause
	Using NULL as a Default Value
	Using a Literal as a Default Value
	Using a Built-in Function as a Default Value

	Single-Column Constraint Format
	Restrictions on Using the Single-Column Constraint Format
	Using the NOT NULL Constraint
	Using UNIQUE or DISTINCT Constraints
	Differences Between a Unique Constraint and a Unique Index
	Using the PRIMARY KEY Constraint

	REFERENCES Clause
	Restrictions on Referential Constraints
	Default Values for the Referenced Column
	Referential Relationships Within a Table
	Locking Implications of Creating a Referential Constraint
	Example That Uses the Single-Column Constraint Format
	Using the ON DELETE CASCADE Option

	CHECK Clause
	Using a Search Condition
	Restrictions When Using the Single-Column Constraint Format

	Constraint Definition
	Declaring a Constraint Name
	Choosing a Constraint-Mode Option

	Multiple-Column Constraint Format
	Restrictions with the Multiple-Column Constraint Format
	Using the FOREIGN KEY Constraint
	Examples of the Multiple-Column Constraint Format
	Default Index Creation Strategy for Constraints

	Options clauses
	Using the WITH CRCOLS Option
	Using the WITH REPLCHECK Keywords
	Using the WITH VERCOLS Option
	SECURITY POLICY Clause

	Storage Options
	Using the IN Clause

	FRAGMENT BY clause
	Using the WITH ROWIDS Option
	Fragmenting by ROUND ROBIN
	Fragmenting by EXPRESSION

	Expression Fragment Clause
	PUT Clause
	Alternative to Full Logging

	EXTENT SIZE Options
	USING Access-Method Clause
	LOCK MODE Options
	Precedence and Default Behavior

	OF TYPE Clause
	Using Large-Object Data in Typed Tables
	Using the UNDER Clause
	Access Privileges on Tables
	System Catalog Information

	CREATE TEMP TABLE statement
	Using the TEMP Option
	Naming a Temporary Table
	Using the WITH NO LOG Option
	Column Definition
	Single-Column Constraint Format
	Multiple-Column Constraint Format
	Temporary Table Options
	Storage Options
	Where Temporary Tables are Stored
	Differences between temporary and permanent tables
	Duration of temporary tables

	CREATE TRIGGER statement
	Defining a Trigger Event and Action
	Restrictions on Triggers
	Trigger Modes
	Trigger Inheritance in a Table Hierarchy
	Triggers and SPL Routines
	Trigger Events
	Trigger Events with Cursors
	Privileges on the Trigger Event
	Performance Impact of Triggers

	INSERT Events and DELETE Events
	UPDATE Event
	Defining Multiple Update Triggers
	SELECT Event
	Circumstances When a Select Trigger Is Activated
	Stand-alone SELECT Statements
	SELECT Statements Within UDRs in the Select List
	UDRs That EXECUTE PROCEDURE and EXECUTE FUNCTION Call
	Subqueries in the Select List
	Subqueries in the FROM Clause of SELECT
	Subqueries in the WHERE Clause of DELETE or UPDATE
	Select Triggers in Table Hierarchies
	Circumstances When a Select Trigger Is Not Activated
	Action Clause
	BEFORE Actions
	FOR EACH ROW Actions
	AFTER Actions
	Actions of Multiple Triggers

	Guaranteeing Row-Order Independence
	REFERENCING Clauses
	REFERENCING Clause for Delete
	REFERENCING Clause for Insert
	REFERENCING Clause for Update
	REFERENCING Clause for Select

	Correlated Table Action
	Triggered Action
	WHEN Condition
	Action Statements

	Using Correlation Names in Triggered Actions
	When to Use Correlation Names
	Qualified Versus Unqualified Value

	Re-Entrancy of Triggers
	Re-Entrancy and Cascading Triggers

	Rules for SPL Routines
	Privileges to Execute Trigger Actions
	Creating a Trigger Action That Anyone Can Use

	Cascading Triggers
	Constraint Checking
	Preventing Triggers from Overriding Each Other

	Tables in Remote Databases
	Logging and Recovery
	INSTEAD OF Triggers on Views
	The Action Clause of INSTEAD OF Triggers
	Restrictions on INSTEAD OF Triggers on Views
	Updating Views
	Example of an INSTEAD OF Trigger on a View

	CREATE VIEW statement
	Typed Views
	Subset of SELECT Statements Valid in View Definitions
	Union Views
	Naming View Columns
	Using a View in the SELECT Statement
	WITH CHECK OPTION Keywords
	Updating Through Views

	CREATE XADATASOURCE statement
	CREATE XADATASOURCE TYPE statement
	DATABASE statement
	SQLCA.SQLWARN Settings Immediately after DATABASE Executes (ESQL/C)
	EXCLUSIVE keyword

	DEALLOCATE COLLECTION statement
	DEALLOCATE DESCRIPTOR statement
	DEALLOCATE ROW statement
	DECLARE statement
	Overview of Cursor Types
	Select Cursor or Function Cursor
	Using the FOR READ ONLY Option
	Using the FOR UPDATE Option
	Subset of INSERT Statement with a Sequential Cursor
	Insert Cursor

	Cursor Characteristics
	Creating a Sequential Cursor by Default
	Using the SCROLL Keyword to Create a Scroll Cursor
	Using the WITH HOLD Keywords to Create a Hold Cursor
	Subset of SELECT Statement Associated with Cursors
	Examples of Cursors in Non-ANSI Compliant Databases
	Examples of Cursors in ANSI-Compliant Databases

	Associating a Cursor with a Prepared Statement
	Select with a Collection-Derived Table
	Insert with a Collection-Derived Table

	Using Cursors with Transactions
	Declaring a Dynamic Cursor in an SPL Routine
	Syntax
	Usage

	DELETE statement
	Using the ONLY Keyword
	Considerations When Tables Have Cascading Deletes
	Restrictions on DELETE When Tables Have Cascading Deletes
	Locking and Logging Implications of Cascading Deletes

	Using the WHERE Keyword to Specify a Condition
	Subqueries in the WHERE Clause of DELETE
	Using the WHERE CURRENT OF Keywords (ESQL/C, SPL)
	Deleting Rows That Contain Opaque Data Types
	Deleting Rows That Contain Collection Data Types
	Data Types in Distributed DELETE Operations
	SQLSTATE Values in an ANSI-Compliant Database
	SQLSTATE Values in a Database That Is Not ANSI-Compliant

	DESCRIBE statement
	The OUTPUT Keyword
	Describing the Statement Type
	Checking for the Existence of a WHERE Clause
	Describing a Statement with Runtime Parameters
	Using the SQL DESCRIPTOR Keywords
	Using the INTO sqlda Pointer Clause
	Describing a Collection Variable

	DESCRIBE INPUT statement
	Describing the Statement Type
	Checking for Existence of a WHERE Clause
	Describing a Statement with Dynamic Runtime Parameters
	Using the SQL DESCRIPTOR Keywords
	Using the INTO sqlda Pointer Clause
	Describing a Collection Variable

	DISCONNECT statement
	DEFAULT Option
	Specifying the CURRENT Keyword
	When a Transaction is Active
	Disconnecting in a Thread-Safe Environment
	Specifying the ALL Option

	DROP ACCESS_METHOD statement
	Examples

	DROP AGGREGATE statement
	DROP CAST statement
	Examples

	DROP DATABASE statement
	DROP FUNCTION statement
	Dropping External Functions
	Examples

	DROP INDEX statement
	The ONLINE keyword of DROP INDEX
	Examples

	DROP OPCLASS statement
	DROP PROCEDURE statement
	Dropping an External Procedure

	DROP ROLE statement
	DROP ROUTINE statement
	Restrictions
	Dropping an External Routine

	DROP ROW TYPE statement
	The RESTRICT Keyword

	DROP SECURITY statement
	Restrictions on Dropping Security Objects
	Examples of Dropping Security Objects

	DROP SEQUENCE statement
	Examples

	DROP SYNONYM statement
	DROP TABLE statement
	Effects of the DROP TABLE Statement
	Specifying CASCADE Mode
	Specifying RESTRICT Mode
	Dropping a Table That Contains Opaque Data Types
	Tables That Cannot Be Dropped

	DROP TRIGGER statement
	DROP TYPE statement
	DROP VIEW statement
	DROP XADATASOURCE statement
	DROP XADATASOURCE TYPE statement
	EXECUTE statement
	Scope of Statement Identifiers
	Restrictions with the INTO Clause
	Replacing Placeholders with Parameters
	Saving Values In Host or Program Variables
	Saving Values in a System-Descriptor Area
	Saving Values in an sqlda Structure (ESQL/C)
	The sqlca Record and EXECUTE
	Returned SQLCODE Values with EXECUTE
	Supplying Parameters Through Host or Program Variables
	Supplying Parameters Through a System Descriptor
	Supplying Parameters Through an sqlda Structure (ESQL/C)

	EXECUTE FUNCTION statement
	Negator Functions and Their Companions
	How the EXECUTE FUNCTION Statement Works
	Data Variables
	INTO Clause with Indicator Variables (ESQL/C)
	INTO Clause with Cursors
	Alternatives to PREPARE ... EXECUTE FUNCTION ... INTO
	Dynamic Routine-Name Specification of SPL Functions

	EXECUTE IMMEDIATE statement
	EXECUTE IMMEDIATE and Restricted Statements
	Restrictions on Valid Statements
	Handling Exceptions from EXECUTE IMMEDIATE Statements
	Examples of the EXECUTE IMMEDIATE Statement

	EXECUTE PROCEDURE statement
	Causes of Errors
	Using the INTO Clause
	The WITH TRIGGER REFERENCES Keywords
	Example of Invoking a Trigger Procedure

	Dynamic Routine-Name Specification of SPL Procedures

	FETCH statement
	FETCH with a Sequential Cursor
	FETCH with a Scroll Cursor
	How the Database Server Implements Scroll Cursors
	Specifying Where Values Go in Memory
	Using the INTO Clause
	Using Indicator Variables
	When the INTO Clause of FETCH is Required
	Using a System-Descriptor Area (X/Open)
	Using sqlda Structures
	Fetching a Row for Update
	Fetching from a Collection Cursor
	Checking the Result of FETCH

	FLUSH statement
	Error Checking FLUSH Statements
	Examples

	FREE statement
	GET DESCRIPTOR statement
	Using the COUNT Keyword
	Using the VALUE Clause
	Using the VALUE Clause After a DESCRIBE
	Using the VALUE Clause After a FETCH
	Fetching a NULL Value

	Using LENGTH or ILENGTH
	Describing an Opaque-Type Column
	Describing a Distinct-Type Column
	Examples

	GET DIAGNOSTICS statement
	Using the SQLSTATE Error Status Code
	Class and Subclass Codes
	SQLSTATE Support for the ANSI/ISO Standard for SQL
	List of SQLSTATE Codes
	Using SQLSTATE in Applications

	Statement Clause
	Using the MORE Keyword
	Using the ROW_COUNT Keyword
	Using the NUMBER Keyword

	EXCEPTION Clause
	Using the RETURNED_SQLSTATE Keyword
	Using the INFORMIX_SQLCODE Keyword
	Using the CLASS_ORIGIN Keyword
	Using the SUBCLASS_ORIGIN Keyword
	Using the MESSAGE_TEXT Keyword
	Using the MESSAGE_LENGTH Keyword
	Using the SERVER_NAME Keyword

	The Contents of the SERVER_NAME Field
	The DATABASE Statement
	Using the CONNECTION_NAME Keyword
	When the CONNECTION_NAME Keyword Is Updated
	When the CONNECTION_NAME Is Not Updated

	The Contents of the CONNECTION_NAME Field
	Using GET DIAGNOSTICS for Error Checking

	GRANT statement
	Database-Level Privileges
	Table-Level Privileges
	Effect of the ALL Keyword

	Table Reference
	Privileges on Tables and Synonyms
	Privileges on a View

	Type-Level Privileges
	USAGE Privilege
	UNDER Privilege

	Routine-Level Privileges
	Language-Level Privileges
	Usage Privilege in Stored Procedure Language

	Sequence-Level Privileges
	Alter Privilege
	Select Privilege
	ALL Keyword
	The User List

	Role Name
	Granting a Role to a User or to Another Role
	Granting privileges to a role
	Granting a Default Role
	Granting the EXTEND Role

	WITH GRANT OPTION Keywords
	AS grantor Clause
	Security Administration Options
	DBSECADM Clause
	EXEMPTION Clause
	SECURITY LABEL Clause
	SETSESSIONAUTH Clause

	GRANT FRAGMENT statement
	Fragment-Level Privileges
	Definition of Fragment-Level Authorization
	Effect of Fragment-Level Authorization in Statement Validation
	Duration of Fragment-Level Privileges
	Specifying Fragments
	The TO Clause

	Granting Privileges to One User or a List of Users
	Granting One Privilege or a List of Privileges
	WITH GRANT OPTION Clause
	AS grantor Clause
	Omitting the AS grantor Clause

	INFO statement
	Examples

	INSERT statement
	Specifying Columns
	Using the AT Clause (ESQL/C, SPL)
	Inserting Rows Through a View
	Inserting Rows with a Cursor
	Inserting Rows into a Database Without Transactions
	Inserting Rows into a Database with Transactions
	VALUES Clause
	Considering Data Types
	Inserting Values into Serial Columns
	Inserting Values into Opaque-Type Columns
	Inserting Values into Collection Columns
	Inserting Values into ROW-Type Columns
	Data Types in Distributed INSERT Operations
	Using Expressions in the VALUES Clause
	Inserting NULL Values
	Inserting Values into Protected Tables
	Truncated CHAR Values
	Subset of SELECT Statement

	Execute Routine Clause
	Number of Values Returned by SPL, C, and Java Functions
	Inserting into a Row Variable (ESQL/C, SPL)
	Using INSERT as a Dynamic Management Statement

	LOAD statement
	LOAD FROM File
	Loading Simple Large Objects
	Loading Smart Large Objects
	Loading Complex Data Types
	Loading Opaque-Type Columns
	DELIMITER Clause
	INSERT INTO Clause

	LOCK TABLE statement
	Concurrent Access to Tables with Shared Locks
	Concurrent Access to Tables with Exclusive Locks
	Databases with transaction logging
	Databases without transaction logging
	Locking Granularity

	MERGE statement
	Restrictions on Source and Target Tables
	Handling Duplicate Rows
	Examples of MERGE Statements

	OPEN statement
	Opening a Select Cursor
	Opening an Update Cursor Inside a Transaction
	Opening a Function Cursor
	Reopening a Select or Function Cursor
	Errors Associated with Select and Function Cursors
	Opening an Insert Cursor (ESQL/C)
	Example of Opening an Insert Cursor
	Reopening an Insert Cursor

	Opening a Collection Cursor (ESQL/C)
	USING Clause
	Specifying a System Descriptor Area (ESQL/C)
	Specifying a Pointer to an sqlda Structure (ESQL/C)
	Example of Specifying a Pointer to an sqlda Structure

	Using the WITH REOPTIMIZATION Option (ESQL/C)
	Relationship Between OPEN and FREE
	DDL Operations on Tables Referenced by Cursors

	OUTPUT statement
	Sending Query Results to a File
	Displaying Query Results Without Column Headings
	Sending Query Results to Another Program

	PREPARE statement
	Restrictions
	Declaring a Statement Identifier
	Scope of Statement Identifiers

	Releasing a Statement Identifier
	Statement Text
	Preparing and Executing User-Defined Routines
	Restricted Statements in Single-Statement Prepares
	Preparing Statements When Parameters Are Known
	Preparing Statements That Receive Parameters
	Preparing Statements with SQL Identifiers
	Obtaining SQL Identifiers from User Input

	Preparing Multiple SQL Statements
	Restricted Statements in Multistatement Prepared Objects

	Using Prepared Statements for Efficiency
	DDL Operations on Tables Referenced in Prepared Objects

	PUT statement
	Supplying Inserted Values
	Using Constant Values in INSERT
	Naming Program Variables in INSERT
	Naming Program Variables in PUT

	Using the USING Clause
	Specifying a System-Descriptor Area
	Specifying an sqlda Structure

	Inserting into a Collection Cursor
	Writing Buffered Rows
	Error Checking

	RELEASE SAVEPOINT statement
	RENAME COLUMN statement
	How Views and Check Constraints Are Affected
	How Triggers Are Affected
	Example of RENAME COLUMN

	RENAME DATABASE statement
	RENAME INDEX statement
	RENAME SECURITY statement
	RENAME SEQUENCE statement
	RENAME TABLE statement
	REVOKE statement
	Database-Level Privileges
	Table-Level Privileges
	When to Use REVOKE Before GRANT
	Effect of the ALL Keyword

	Effect of Uncommitted Transactions
	Type-Level Privileges
	Usage Privilege
	Under Privilege

	Routine-Level Privileges
	Language-Level Privileges
	Sequence-Level Privileges
	Alter Privilege
	Select Privilege
	ALL Keyword

	User List
	Role Name
	Revoking a Default Role
	Revoking the EXTEND Role

	Revoking Privileges Granted WITH GRANT OPTION
	The AS Clause
	Effect of CASCADE Keyword on UNDER Privileges

	Controlling the Scope of REVOKE with the RESTRICT Option
	Security Administration Options
	DBSECADM Clause
	EXEMPTION Clause
	SECURITY LABEL Clause
	SETSESSIONAUTH Clause

	REVOKE FRAGMENT statement
	Specifying Fragments
	The FROM Clause
	Fragment-Level Privileges
	The AS Clause
	Examples of the REVOKE FRAGMENT Statement
	Revoking Privileges on One Fragment
	Revoking Privileges on More Than One Fragment
	Revoking Privileges from More Than One User
	Revoking Privileges Without Specifying Fragments

	ROLLBACK WORK statement
	WORK Keyword
	TO SAVEPOINT Clause

	SAVE EXTERNAL DIRECTIVES statement
	External optimizer directives
	Enabling or disabling external directives for a session
	The directive Specification
	The ACTIVE, INACTIVE, and TEST ONLY Keywords
	The query Specification

	SAVEPOINT statement
	SELECT statement
	Projection Clause
	The Order of Qualifying Rows
	Using the SKIP Option
	Using the FIRST Option
	The LIMIT Keyword
	Using SKIP, FIRST, LIMIT, or MIDDLE as a Column Name
	Using the SKIP Option with the FIRST Option
	Allowing Duplicates
	Data Types in Distributed Queries
	Expressions in the Select List
	Declaring a Display Label

	INTO Clause
	INTO Clause with Indicator Variables
	INTO Clause with Cursors
	Preparing a SELECT ... INTO Query
	Using Array Variables with the INTO Clause
	Error Checking

	FROM Clause
	Aliases for Tables or Views
	Table Expressions
	Restrictions on External Tables in Joins and Subqueries
	The ONLY Keyword
	Selecting from a Collection Variable
	Selecting from a Row Variable (ESQL/C)
	Iterator Functions
	Queries that Join Tables
	ANSI-Compliant Joins
	Using the ON Clause
	Informix-Extension Outer Joins

	WHERE Clause of SELECT
	Using a Condition in the WHERE Clause
	Specifying a Join in the WHERE Clause

	Hierarchical Clause
	START WITH Clause
	CONNECT BY Clause
	Conditions in the CONNECT BY Clause

	GROUP BY Clause
	Relationship of GROUP BY and Projection Clauses
	NULL Values in the GROUP BY Clause
	Using Select Numbers

	HAVING Clause
	ORDER BY Clause
	Ordering by a Column or by an Expression
	Ordering by a Substring
	Ascending and Descending Orders
	Nested Ordering
	Using Select Numbers
	Ordering by Rowids
	ORDER BY Clause with DECLARE
	Placing Indexes on ORDER BY Columns
	ORDER SIBLINGS BY Clause

	FOR UPDATE Clause
	Syntax incompatible with the FOR UPDATE clause

	FOR READ ONLY Clause
	Using the FOR READ ONLY Clause in Read-Only Mode
	Syntax That Is Incompatible with the FOR READ ONLY Clause

	INTO Table Clauses
	Results When No Rows are Returned
	Restrictions with INTO Table Clauses in ESQL/C
	INTO TEMP Clause
	Using the WITH NO LOG Option
	INTO EXTERNAL Clause

	UNION Operator
	Restrictions on a Combined SELECT
	UNION ALL operator
	UNION in Subqueries

	SET Database Object Mode statement
	Privileges Required for Changing Database Object Modes
	Object-List Format
	Table Format
	Modes for Constraints and Unique Indexes
	Definitions of Database Object Modes
	Enabled Mode
	Disabled Mode
	Filtering Mode
	Modes for Triggers and Duplicate Indexes
	Examples

	SET AUTOFREE statement
	Globally Affecting Cursors with SET AUTOFREE
	Using the FOR Clause to Specify a Specific Cursor
	Associated and Detached Statements
	Closing Cursors Implicitly

	SET COLLATION statement
	Specifying a Collating Order with SET COLLATION
	Restrictions on SET COLLATION
	Collation Performed by Database Objects

	SET CONNECTION statement
	Making a dormant connection as the current connection
	Making a current connection as the dormant connection
	Dormant Connections in a Single-Threaded Environment
	Dormant Connections in a Thread-Safe Environment
	Identifying the Connection
	DEFAULT Option
	CURRENT Keyword
	When a Transaction is Active

	SET CONSTRAINTS statement
	SET DATASKIP statement
	Circumstances When a Dbspace Cannot Be Skipped
	Examples

	SET DEBUG FILE statement
	Using the WITH APPEND Option
	Closing the Output File
	Redirecting Trace Output
	Location of the Output File

	SET DEFERRED_PREPARE statement
	Example of SET DEFERRED_PREPARE
	Using Deferred-Prepare with OPTOFC

	SET DESCRIPTOR statement
	Using the COUNT Clause
	Using the VALUE Clause
	Item Descriptor
	Setting the TYPE or ITYPE Field
	Setting the DATA or IDATA Field
	Setting the LENGTH or ILENGTH Field
	Setting the INDICATOR Field
	Setting Opaque-Type Fields
	Setting Distinct-Type Fields

	Modifying Values Set by the DESCRIBE Statement

	SET ENCRYPTION PASSWORD statement
	Storage Requirements for Encryption
	Specifying a Session Password and Hint
	Levels of Encryption
	Protecting Passwords

	SET ENVIRONMENT statement
	EXTDIRECTIVES Environment Option
	FORCE_DDL_EXEC Environment Option
	IFX_AUTO_REPREPARE Environment Option
	IFX_BATCHEDREAD_TABLE Environment Option
	OPTCOMPIND Environment Option
	RETAINUPDATELOCKS Environment Option
	USELASTCOMMITTED Environment Option

	SET EXPLAIN statement
	Using the AVOID_EXECUTE Option
	Using the FILE TO Option
	Default Name and Location of the Output File on UNIX
	Default Name and Location of the Output File on Windows
	SET EXPLAIN output
	Complete-Connection Level Settings and Output Examples
	External Table Operations in SET EXPLAIN Output

	SET INDEXES statement
	SET ISOLATION statement
	Complete-Connection Level Settings
	Informix Isolation Levels
	Using the Dirty Read Isolation Level
	Using the Committed Read Isolation Level
	Using the Cursor Stability Isolation Level
	Using the Repeatable Read Isolation Level
	Default Isolation Levels
	Using the RETAIN UPDATE LOCKS Option

	Effects of Isolation Levels
	Isolation Levels for Secondary Data Replication Servers

	SET LOCK MODE statement
	WAIT Clause
	Complete-Connection Level Settings

	SET LOG statement
	SET OPTIMIZATION statement
	HIGH and LOW Options
	FIRST_ROWS and ALL_ROWS Options
	Optimizing SPL Routines
	Examples

	SET PDQPRIORITY statement
	Allocating Database Server Resources

	SET ROLE statement
	Setting the Default Role

	SET SESSION AUTHORIZATION statement
	SET SESSION AUTHORIZATION and Transactions

	SET STATEMENT CACHE statement
	Precedence and Default Behavior
	Turning the Cache ON
	Restrictions on Matching Entries in the SQL Statement Cache

	Turning the Cache OFF
	Statement Qualification
	Requiring Re-Execution Before Cache Insertion
	Enabling or Disabling Insertions After Size Exceeds Configured Limit
	Prepared Statements and the Statement Cache
	Examples

	SET TRANSACTION statement
	Comparing SET TRANSACTION with SET ISOLATION
	Informix Isolation Levels
	Using the Read Uncommitted Option
	Using the Read Committed Option
	Using the Repeatable Read and Serializable Options

	Default Isolation Levels
	Access Modes
	Effects of Isolation Levels

	SET Transaction Mode statement
	Statement-Level Checking
	Transaction-Level Checking
	Duration of Transaction Modes
	Specifying All Constraints or a List of Constraints
	Specifying Remote Constraints
	Examples of Setting the Transaction Mode for Constraints

	SET TRIGGERS statement
	START VIOLATIONS TABLE statement
	Relationship to the SET Database Object Mode statement
	Effect on concurrent transactions
	Stopping the Violations and Diagnostics Tables
	USING Clause
	Using the MAX ROWS clause
	Specifying the maximum number of rows in the diagnostics table
	Privileges required for starting violations or diagnostics tables
	Structure of the violations table
	Examples of START VIOLATIONS TABLE Statements
	Violations and Diagnostics Tables with Default Names
	Violations and Diagnostics Tables with Explicit Names

	Relationships Among the Target, Violations, and Diagnostics Tables
	Initial Privileges on the Violations Table
	Example of Privileges on the Violations Table
	Using the Violations Table
	Example of a Violations Table
	Structure of the diagnostics table
	Initial privileges on the diagnostics table
	Using the Diagnostics Table

	STOP VIOLATIONS TABLE statement
	Example of Stopping the Violations and Diagnostics Tables
	Example of Dropping the Violations and Diagnostics Tables
	Privileges Required for Stopping a Violations Table

	TRUNCATE statement
	The TABLE Keyword
	The Table Specification
	The Storage Specification
	The AM_TRUNCATE Purpose Function
	Performance Advantages of TRUNCATE
	Restrictions

	UNLOAD statement
	UNLOAD TO File
	Unloading Character Columns
	Unloading Simple Large Objects
	Unloading Smart Large Objects
	Unloading Complex Types

	DELIMITER Clause

	UNLOCK TABLE statement
	UPDATE statement
	Using the ONLY Keyword
	Updating Rows Through a View
	Updating Rows in a Database Without Transactions
	Updating Rows in a Database with Transactions
	Locking Considerations
	SET Clause
	Single-Column Format
	Using a Subquery to Update a Single Column
	Updating a Column to NULL
	Updating the Same Column Twice
	Multiple-Column Format
	Using a Subquery to Update Multiple Column Values
	Updating ROW-Type Columns
	Updating Collection Columns
	Updating Values in Opaque-Type Columns
	Data Types in Distributed UPDATE Operations
	WHERE Clause of UPDATE
	SQLSTATE Values When Updating an ANSI-Compliant Database
	SQLSTATE Values When Updating a Non-ANSI Database
	Subqueries in the WHERE Clause of UPDATE
	Using the WHERE CURRENT OF Clause (ESQL/C, SPL)
	Updating a Row Variable (ESQL/C)
	Examples

	UPDATE STATISTICS statement
	Scope of UPDATE STATISTICS
	Updating Statistics for Tables
	Automated Table Statistics Maintenance
	Using the FOR TABLE ONLY Keywords
	Updating Statistics for Columns
	Examining Index Pages

	Updating Statistics for Columns of User-Defined Types
	Requirements for Statistics on Opaque Columns

	Using the LOW Mode Option
	Using the DROP DISTRIBUTIONS Option
	Using the DROP DISTRIBUTIONS ONLY Option

	Using the MEDIUM Mode Option
	Using the HIGH Mode Option
	Resolution Clause
	Specifying the SAMPLING SIZE
	Using the DISTRIBUTIONS ONLY Option to Suppress Index Information
	Using DBUPSPACE Settings to Suppress Index Information
	Output for UPDATE STATISTICS from the SET EXPLAIN Statement

	Routine Statistics
	Altered Tables that are Referenced Indirectly in SPL Routines

	Updating Statistics When You Upgrade the Database Server
	Performance

	WHENEVER statement
	The Scope of WHENEVER
	SQLERROR Keyword
	ERROR Keyword
	SQLWARNING Keyword
	NOT FOUND Keywords
	CONTINUE Keyword
	STOP Keyword
	GOTO Keyword
	CALL Clause

	Chapter 3. SPL Statements
	<< Label >>
	Examples of Labels

	CALL
	Receiving Input from the Called UDR
	Receiving Input from the Called UDR

	CONTINUE
	DEFINE
	Referencing TEXT and BYTE Variables
	Redeclaration or Redefinition
	Declaring Global Variables
	Default Value
	CURRENT
	SYSDATE
	USER
	TODAY
	BYTE and TEXT
	SITENAME or DBSERVERNAME

	Declaring Local Variables
	Subset of Complex Data Types
	Declaring Collection Variables
	Declaring ROW Variables
	Declaring Opaque-Type Variables
	Declaring Variables LIKE Columns
	Defining Variables with Logical Character Semantics
	Declaring Variables as the PROCEDURE Type
	Declaring Variables for BYTE and TEXT Data

	EXIT
	EXIT From FOREACH Statements
	EXIT From FOR, LOOP, and WHILE Loops

	FOR
	Using the TO Keyword to Define a Range
	Specifying Two or More Ranges in a Single FOR Statement

	Using an Expression List as the Range
	Mixing Range and Expression Lists in the Same FOR Statement
	Specifying a Labelled FOR Loop

	FOREACH
	Using a SELECT ... INTO Statement
	Using the ORDER BY Clause of the SELECT Statement
	Using Hold Cursors
	Updating or Deleting Rows Identified by Cursor Name
	Using Collection Variables
	Restrictions
	Examples
	Modifying Elements in a Collection Variable

	Using Select Cursors with FOREACH
	Calling a UDR in the FOREACH Loop

	GOTO
	IF
	ELIF Clause
	ELSE Clause
	Conditions in an IF Statement
	Subset of SPL Statements Allowed in the IF Statement List
	SQL Statements Not Valid in an IF Statement

	LET
	Using a SELECT Statement in a LET Statement
	Calling a Function in a LET Statement

	LOOP
	Simple LOOP Statements
	FOR LOOP Statements
	WHILE LOOP Statements
	Labeled LOOP Statements

	ON EXCEPTION
	Placement of the ON EXCEPTION statement
	Using the IN Clause to Trap Specific Exceptions
	Receiving Error Information in the SET Clause
	Forcing Continuation of the Routine
	Continuing Execution After an Exception Occurs

	RAISE EXCEPTION
	Special Error Number -746

	RETURN
	WITH RESUME Keyword
	Returning Values from Another Database

	SYSTEM
	Executing the SYSTEM statement on UNIX
	Sending email using the SYSTEM statement

	Executing the SYSTEM statement on Windows
	Setting Environment Variables in SYSTEM Commands

	TRACE
	TRACE ON
	TRACE OFF
	TRACE PROCEDURE
	Displaying Expressions
	Example Showing Different Forms of TRACE
	Looking at the Traced Output

	WHILE
	Example of WHILE Loops in an SPL Routine
	Labeled WHILE Loops

	Chapter 4. Data Types and Expressions
	Scope of Segment Descriptions
	Use of Segment Descriptions
	Segments in This Chapter
	Collection Subquery
	Table Expressions in the FROM Clause

	Condition
	Comparison Conditions (Boolean Expressions)
	Column Name
	Quotation Marks in Conditions
	Relational-Operator Condition
	BETWEEN Condition
	IN Condition
	Using the IN Operator with Collection Data Types

	IS NULL and IS NOT NULL Conditions
	Trigger-Type Boolean Operator
	LIKE and MATCHES Condition
	NOT Operator
	LIKE Operator
	MATCHES Operator
	ESCAPE with LIKE
	ESCAPE with MATCHES

	Stand-Alone Condition
	Condition with Subquery
	IN Subquery
	EXISTS Subquery
	ALL, ANY, and SOME Subqueries

	NOT Operator
	Conditions with AND or OR

	Data Type
	Built-In Data Types
	BOOLEAN and Other Built-In Opaque Data Types
	Character Data Types
	Single-Byte and Multi-Byte Characters and Locales
	Fixed- and Varying-Length Character Data Types
	LVARCHAR Data Type
	NCHAR and NVARCHAR Data Types
	IDSSECURITYLABEL Data Type
	Numeric Data Types
	Exact Numeric Data Types
	Approximate Numeric Data Types
	Large-Object Data Types
	Time Data Types

	User-Defined Data Type
	Distinct Data Types
	Opaque Data Types

	Complex Data Type
	ROW Data Types
	Collection Data Types

	DATETIME Field Qualifier
	Expression
	Syntax of SQL Expressions
	Usage
	List of Expressions
	Arithmetic Operators
	Bitwise Logical Functions
	BITAND Function
	BITOR Function
	BITXOR Function
	BITANDNOT Function
	BITNOT Function

	Concatenation Operator
	Cast Expressions
	Rules for the Target Data Type
	Examples of Cast Expressions
	The Keyword NULL in Cast Expressions

	Column Expressions
	Using Dot Notation
	Using the Substring Operator
	Using Rowids
	Using Smart Large Objects

	Conditional Expressions
	CASE Expressions
	NVL Function
	NULLIF Function
	DECODE Function

	Constant Expressions
	Quoted String
	Literal Number
	USER Operator
	CURRENT_ROLE Operator
	DEFAULT_ROLE Operator
	DBSERVERNAME and SITENAME Operators
	TODAY Operator
	CURRENT Operator
	SYSDATE Operator
	Literal DATETIME
	Literal INTERVAL
	UNITS Operator
	NEXTVAL and CURRVAL Operators
	Literal Row
	Literal Collection

	Constructor Expressions
	ROW Constructors
	Collection Constructors

	NULL Keyword
	Function Expressions
	Algebraic Functions
	CARDINALITY Function
	SQLCODE Function (SPL)
	DBINFO Function
	Encryption and decryption functions
	DECRYPT_CHAR Function
	DECRYPT_BINARY Function
	ENCRYPT_AES Function
	ENCRYPT_TDES Function
	GETHINT Function
	Exponential and Logarithmic Functions
	HEX Function
	Length Functions
	Security Label Support Functions
	Smart-Large-Object Functions
	Time Functions
	TO_NUMBER Function
	Trigonometric Functions
	String-Manipulation Functions
	Case-Conversion Functions
	FORMAT_UNITS Function
	IFX_ALLOW_NEWLINE Function
	User-Defined Functions

	Statement-Local Variable Expressions
	Aggregate Expressions
	Types of Aggregate Expressions
	Subset of Expressions Valid in an Aggregate Expression
	Including or Excluding Duplicates in the Row Set
	AVG Function
	Overview of COUNT Functions
	COUNT(*) Function
	COUNT DISTINCT and COUNT UNIQUE Functions
	COUNT column Function
	Arguments to the COUNT Functions
	MAX Function
	MIN Function
	SUM Function
	RANGE Function
	STDEV Function
	VARIANCE Function
	Error Checking in ESQL/C
	Summary of Aggregate Function Behavior
	User-Defined Aggregates

	INTERVAL Field Qualifier
	Literal Collection
	Element Literal Value
	Nested Quotation Marks

	Literal DATETIME
	Casting Numeric Date and Time Strings to DATE Data Types

	Literal INTERVAL
	Literal Number
	Integer Literals
	Fixed-Point Decimal Literals
	Floating-Point Decimal Literals
	Literal Numbers and the MONEY Data Type

	Literal Row
	Literals of an Unnamed Row Type
	Literals of a Named Row Type
	Literals for Nested Rows

	Quoted String
	Restrictions on Specifying Characters in Quoted Strings
	The DELIMIDENT Environment Variable
	Newline Characters in Quoted Strings
	Using Quotation Marks in Strings
	DATETIME and INTERVAL Values as Strings
	LIKE and MATCHES in a Condition
	Inserting Values as Quoted Strings
	Numeric Operations on Character Columns

	Relational Operator
	Using Operator Functions in Place of Relational Operators
	Collating Order for U.S. English Data
	Support for ASCII Characters in Nondefault Code Sets (GLS)
	Literal Numbers as Operands

	Chapter 5. Other Syntax Segments
	Arguments
	Comparing Arguments to the Parameter List
	Subset of Expressions Valid as an Argument
	Arguments to UDRs in Remote Databases

	Collection-Derived Table
	Accessing a Collection Through a Virtual Table
	Table Expressions in the FROM Clause
	Restrictions with the Collection-Expression Format
	Additional Restrictions That Apply to ESQL/C

	Row Type of the Resulting Collection-Derived Table
	Accessing a Collection Through a Collection Variable
	Using a Collection Variable to Manipulate Collection Elements
	Example of Deleting from a Collection in ESQL/C
	Example of Deleting from a Collection
	Example of Updating a Collection
	Example of Inserting a Value into a Multiset Collection

	Accessing a Nested Collection
	Accessing a Row Variable

	Database Name
	Using Keywords as Table Names
	Using the @ Symbol
	Using a Path-Type Naming Notation
	Using a Host Variable

	Database Object Name
	Specifying a Database Object in an External Database
	Specifying a Database Object in a Cross-Database Query
	Specifying a Database Object in a Cross-Server Query

	Routine Overloading and Routine Signatures
	Specifying an Existing UDR

	Owners of Objects Created by UDRs

	External Routine Reference
	VARIANT or NOT VARIANT Option
	Example of a C User-Defined Function
	Examples

	Identifier
	Use of Uppercase Characters
	Use of Keywords as Identifiers
	Support for Non-ASCII Characters in Identifiers
	Delimited Identifiers
	Support for Nonalphanumeric Characters
	Support for Non-ASCII Characters in Delimited Identifiers (GLS)

	Enabling Delimited Identifiers
	Examples of Delimited Identifiers
	Using Double Quotation Marks in a Delimited Identifier

	Potential Ambiguities and Syntax Errors
	Using the Names of Built-In Functions as Column Names
	Using Keywords as Column Names
	Using ALL, DISTINCT, or UNIQUE as a Column Name
	Using INTERVAL or DATETIME as a Column Name
	Using rowid as a Column Name
	Using Keywords as Table Names
	Workarounds that Use the Keyword AS
	Using AS with Column Labels
	Using AS with Table Aliases
	Fetching Cursors that have Keywords as Names
	Fetching Cursors that have Keywords as Names
	Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT
	Using NULL and SELECT in a Condition
	Declaring Keywords or Routine Names as SPL Variables
	Variables that Conflict with Column Names
	Using ON, OFF, or PROCEDURE with TRACE
	Using GLOBAL as the Name of a Variable
	Using EXECUTE, SELECT, or WITH as Cursor Names
	SELECT Statements in WHILE and FOR Statements
	SET Keyword in the ON EXCEPTION Statement

	Jar Name
	Optimizer Directives
	Optimizer Directives as Comments
	Restrictions on Optimizer Directives
	Access-Method Directives
	Join-Order Directive
	Join-Method Directives
	Optimization-Goal Directives
	Explain-Mode Directives
	External Directives

	Owner Name
	Using Quotation Marks
	Referencing Tables Owned by User informix
	ANSI-Compliant Database Restrictions and Case Sensitivity
	Setting ANSIOWNER for an ANSI-Compliant Database
	Default Owner Names
	Summary of Lettercase Rules for Owner Names

	Purpose Options
	Purpose Options for Access Methods
	Purpose Functions, Methods, Flags, and Values
	Purpose Options for XA Data Source Types

	Return Clause
	Limits on Returned Values
	Subset of SQL Data Types
	Using the REFERENCES Clause to Point to a Simple Large Object
	Returning a Value from Another Database
	Named Return Parameters
	Cursor and Noncursor Functions

	Routine Modifier
	Adding or Modifying a Routine Modifier
	Modifier Descriptions
	CLASS
	COSTFUNC
	HANDLESNULLS
	INTERNAL
	ITERATOR
	NEGATOR
	PARALLELIZABLE
	PERCALL_COST (C)
	SELCONST (C)
	SELFUNC (C)
	Concept of Selectivity
	Restrictions on the SELFUNC Modifier

	STACK (C)
	VARIANT and NOT VARIANT
	Examples

	Routine Parameter List
	Subset of SQL Data Types
	Using the LIKE Clause
	Using the REFERENCES Clause
	Using the DEFAULT Clause
	Specifying OUT Parameters for User-Defined Routines
	Specifying INOUT Parameters for a User-Defined Routine

	Shared-Object Filename
	C Shared-Object File
	Java Shared-Object File

	Specific Name
	Restrictions on the Owner Name
	Restrictions on the Specific Name

	Statement Block
	Subset of SPL Statements Valid in the Statement Block
	SQL Statements Valid in SPL Statement Blocks
	Nested Statement Blocks
	Scope of Reference of SPL Variables and Exception Handlers

	Restrictions on SPL Routines in Data-Manipulation Statements
	Transactions in SPL Routines
	Support for roles and user identity

	Chapter 6. Built-In Routines
	Session Configuration Procedures
	Using SYSDBOPEN and SYSDBCLOSE Procedures

	DataBlade Module Management Functions
	The SYSBldPrepare Function
	The SYSBldRelease Function

	The EXPLAIN_SQL Routine
	UDR Definition Routines
	IFX_REPLACE_MODULE Function
	IFX_UNLOAD_MODULE Function

	jvpcontrol Function
	Using the MEMORY Keyword
	Using the THREADS Keyword

	SQLJ Driver Built-In Procedures
	sqlj.install_jar
	File Permissions on Jar Files

	sqlj.replace_jar
	sqlj.remove_jar
	sqlj.alter_java_path
	sqlj.setUDTextName
	sqlj.unsetUDTextName

	DRDA Support Functions
	Metadata Function
	sysibm.SQLCAMessage Function

	Appendix A. Keywords of SQL for IBM Informix
	Appendix B. Keywords of SQL for IBM Informix Extended Parallel Server
	Appendix C. Accessibility
	Accessibility features for IBM Informix products
	Accessibility features
	Keyboard navigation
	Related accessibility information
	IBM and accessibility

	Dotted decimal syntax diagrams

	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

