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For two decades, large parts of zSeries� firmware have been
written in the PL8 programming language. The existence of a
large amount of mature zSeries firmware source code and our
excellent experience with PL8 for system programming suggest
keeping this language. However, the firmware address space of
today�s zSeries servers may exceed 2 GB, raising the need for a
new 64-bit PL8 compiler, since the original implementation,
developed at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, supports only 32-bit platforms.
The GNU compiler collection (GCC) (GNU is a freeware
UNIX�-like operating system) has been used to translate those
parts of firmware written in C for some years and has also
proved successful in compiling Linux� for zSeries. This fact,
combined with the highly modular GCC design, suggested
reimplementing PL8 within the GCC framework. In this paper,
we report on the extension of PL8 to support 64-bit addressing,
its implementation as a GCC front end, and the validation
of the new compiler. We also evaluate PL8 as a language
for highly reliable low-level programming and give some
performance data. The paper documents the high level
of quality achieved by the GCC open-source project and
how such software fits into the traditional IBM software
development processes.

Introduction and overview
zSeries* firmware is the software layer between the
operating system (OS) and hardware. Its development is
characterized by two elements: a very high demand for
correct behavior, because firmware bugs could crash any
application program running on any OS, and the fact that
it requires low-level programming, i.e., accessing specific
addresses and dealing with individual bits. Firmware has
many interfaces to hardware registers and to assembler-
written routines implementing low-level services.

The next section of this paper gives an overview and
some background information concerning zSeries firmware

development and puts the GNU PL8 1 compiler project
into a larger context. We then discuss PL8 in more detail,
giving an overview of its features, its history, and a more
detailed discussion of its advantages for reliable low-level
programming. The section that follows is about the project
itself and gives details about the GNU compiler collection
(GCC), and in particular the PL8 compiler front end. The
important task of validating correctness and performance

1 The GNU Project was launched in 1984 to develop a complete UNIX-like
operating system which is free software: the GNU system. (GNU is a recursive
acronym for “GNU�s Not UNIX”; it is pronounced “guh-noo.” See http:
//www.gnu.org/.) Since there are a few differences between the original pl.8 and the
current GNU implementation, we avoid confusion by referring to the latter as PL8.
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of the new compiler is addressed in the next section. The
last section is about process issues, describing when and
how new versions of the compiler were released during
its development. This topic was of particular importance,
since the new compiler and the firmware being compiled
by it were developed in parallel.

zSeries firmware development and the role of
PL8
The high-level programming language pl.8 was first used
for developing the firmware of the 9377 Enterprise Server,
an S/370* machine, in the early 1980s. At that time almost
all firmware was written as horizontal microcode using
special assemblers. The idea of using high-level languages
and compilers for microcode resulted, as a matter of
course, in many complaints about performance
degradation.

Firmware performs the instruction interpretation of the
very complex z/Architecture* instructions. While RISC-
style instructions are directly implemented in processor
hardware, the next level of firmware, called millicode [1],
implements the medium-level instructions that occur
frequently and are highly performance-critical. The
internal 390 (i390) firmware layer performs the I/O
redundant path management, I/O load balancing, recovery
from hardware and firmware errors, and the system
management functions in zSeries. These functions in other
computer systems are typically implemented in operating-
system layers. The interpretation of the control blocks
associated with I/O instructions and system management
functions requires precise control over the data layout in
records and unions. Recovery functions provided by the
i390 firmware layer perform many low-level hardware
register accesses mainly in the hierarchical structure of
the I/O hardware paths. They also require precise bit
positioning in data structures, including arrays of bit-
strings smaller than a byte.

The superior optimization and instruction scheduling
of the Yorktown pl.8 compiler [2, 3] and the tremendous
enhancements in productivity accompanying the use of a
high-level language confirmed the validity of using a high-
level language for firmware implementation. Two decades
of using pl.8 to develop firmware demonstrated that this
high-level language could successfully handle bit-precise
data structure layout and provide reliability, both by
detecting errors at compile time and by reporting defects
such as array bounds violations at run time. Coupled with
achieving excellent performance, this proved that choosing
the pl.8 language back in the 1980s was the right decision
then and remains so today.

The z900, predecessor of the z990, provides a true 64-
bit z/Architecture for the hypervisor and the OS running
in the logical partitions. The i390 firmware on the z900
uses the 32-bit instruction set, compatibility features built

into the z/Architecture, and some special hardware
support in the processing unit to provide the 64-bit
z/Architecture.

For the z990, the greater number of CPUs, channels,
and logical partitions required the introduction of multiple
channel subsystems [4] and multiple subchannel sets. The
demand for a hardware system area (HSA), a part of the
system memory used by internal firmware, could increase
to more than 2 GB. This forced the i390 firmware to
extend into a true 64-bit implementation with fully
unconstrained addressing in the HSA. All other proposals
to implement multiple channel subsystems by some macros
and special hardware support in the processor turned out
to be either unacceptably complex or, because it would
involve porting all i390 code to PL/I or rewriting all
firmware code in C, not affordable. A total rewrite would
have thrown the z990 completely off schedule or even
caused a delivery pause of one system, while introducing a
lot of additional instability and firmware-caused outages.

The no-longer-supported Yorktown compiler could
neither use the new performance-boosting instructions of
the 32-bit S/390* architecture nor the z/Architecture 64-bit
instructions. This old compiler was also tied to the library
and build environment on VM/CMS, an old mainframe
operating system, as its only execution platform.
Altogether, this was a decade-long unmaintained dead
end. The quality of the Yorktown pl.8 compiler and the
development library system allowed us to focus on adding
many new functions to systems in the S/390 family and to
leverage the original tools investment.

The new GNU PL8 compiler runs on any GCC-
supported central processing unit (CPU) architecture and
OS as well as on the library and build environment on
VM/CMS, and generates code for any supported target
machine. It also immediately benefits from the instruction-
scheduling descriptions for performance optimization that
are provided for Linux** for zSeries on the GNU C
compiler, because it is based on the same target machine
description. The GNU-based PL8 compiler lays the
foundation for a true 64-bit i390 execution environment
and opens migration paths to modern development library
systems and build tools running under Linux for zSeries as
the development platform for the PL8-based i390 firmware
of the z990 machine.

PL8 programming language
The pl.8 language was an outgrowth of a subset of PL/I,
which was itself developed by IBM during the 1960s as
one of the first general-purpose languages [2, 5, 6].
Before that, the scientific community used Fortran, while
commercial applications were mostly written in COBOL.
PL/I combines elements from both languages to provide a
unified solution for both purposes. This was particularly
important because the distinction between business and
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scientific applications was becoming less sharp: Business
applications began including mathematical functionality,
such as regression analysis, while scientists began collecting
and organizing large files of data that required a kind of
functionality previously used only in commercial applications.

Development and history of pl.8
In 1976, a project was started at the Thomas J. Watson
Research Center to design and build the first RISC
machine, code-named 801. A significant part of the aim of
the project was to show that a high-level programming
language compiler could be built that would use the
general algorithmic techniques espoused by John Cocke
and others [7, 8] to generate very efficient code for the
RISC architecture. It was so efficient, in fact, that the OS,
running on general-purpose hardware, could be coded
largely in that high-level language without compromising
performance. That goal, also sought by several others at
about that time, was actually attained. An additional aim
was to investigate the extent to which linguistic means
could be used to achieve safe code, e.g., protected
accesses to data that eliminate illegal references, again
without materially compromising performance.

To make a convincing demonstration, it was decided to
use a high-level language, initially a restricted version of
PL/I, to code not only the OS, but the compiler itself. The
self-imposed restrictions were chosen to avoid those
features of PL/I that are unsafe and/or would create
difficulties for optimization: primarily aliasing and
pointers. Pointers to variables and reference parameters
are easy to abuse and create aliases in memory whose
disentanglement requires a level of sophistication of
program analysis that was not yet available.

Eventually, enough of the compiler had been
programmed to enable the use of the compiler itself as the
development tool. At this point, some of the linguistic
constraints and ideas that had been brewing could be
formally institutionalized in the language, since the team
had achieved complete control over the compiler.

The language was named pl.8, and was allowed to
evolve, but in a very controlled way. The “.8” originally
indicated that it was 8/10 of PL/I, but it became something
of a misnomer over time as features not present in PL/I
were added. These included value parameters, first-class
bit-field types, and an explicit storage model which
allowed for declarative overlays that were well-defined
(contrasted with the C union attribute) and that associated
data types only with symbols (contrasted with the C casts
of values). A limited form of data and function pointers
was added.

To achieve a measure of safe code, some semantic
additions were explicitly incorporated into the language.
Type checking was statically enforced. Array bounds and
area references were always guaranteed safe: The compiler

added code performing dynamic checks whenever it could
not prove this to be unnecessary. A by value parameter
attribute was added to the language to encourage safe
parameter passing where possible. The linker checked
function definition attributes (including by value) against
function declaration attributes (entry declarations)
providing link-time mismatch detection. The linkage
conventions were designed to be as efficient as possible
to encourage modular program development.

Parameter values were passed in registers whenever
possible, as were return values. There was even a
declaration-based in-lining capability. As an aside, since
the conventions were system-wide, it was possible to
compose programs from procedures written in different
languages. Optimizations included constant propagation,
common subexpression eliminations (CSEs),
reassociation, elimination of partial redundancy, some
loop optimizations, detection and elimination of dead
code, test subsumption (which made it feasible to leave
bounds checking always on at an estimated cost of less
than 10% performance degradation), and register
allocation based on graph coloring [3]. Later, more
optimizations were included, some specialized to target
architectures.

The experiment was regarded as successful in that the
pl.8 language was entirely adequate to write most of the
experimental OS and the compiler itself. The RISC
architecture proved to be an excellent target for the
optimizing compiler, resulting in code with outstanding
performance. Many of the programmers exposed to pl.8
became quite productive and even fond of it, not least
because the checking features were of enormous help in
debugging (no more “wild stores”). This experience also
made pl.8 a good choice as a language for firmware
development. We provide more details about reliability
issues in the next two sections.

While pl.8 was being reimplemented as a new GCC
language, some additions and changes were made. All data
types were extended to explicitly support 64 bit, and the
rules for type conversion were changed accordingly. Also,
a few changes were needed to meet certain constraints
imposed by the GCC framework.

Control structures in PL8
PL8 is a procedural language that more or less supports
the same control structures found in other programming
languages. It provides a rich set of loop statements and
several selection statements. Loops at any nesting level
can be terminated. The elaborate set of PL8 control
structures strongly reduces the programmer�s need to use
unstructured jump statements.

The so-called “GOTO density metric” is defined as the
average number of lines of code between two GOTO

statements. A comparison of Fortran programs written in
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the 1970s to today�s C and Ada code revealed GOTO

densities that differ by several orders of magnitude [9, 10].
Obviously, the more powerful the control structures of a
language, the less frequently programmers use GOTO. We
compared the reported values with those measured for
zSeries firmware written in PL8 (Table 1).

Most of the PL8 files do not contain any GOTO at all.
An (admittedly rough) analysis revealed that many of the
GOTOs were used for error handling, which is generally
considered acceptable. Since the GOTO density also
correlates to software error rates [10], the above results
suggest that the set of PL8 control structures contributes
to firmware quality. Similar statements hold for data
structuring, as is shown in the next section.

Low-level data structuring: PL8 compared with C
As was pointed out in the section on zSeries firmware
development, there are significant differences to the high-
level application programming. This also suggests
differences in the level of support required by the
programming language used. Here, PL8 has several
advantages over C, which is sometimes considered a
good choice for low-level programming. We discuss these
advantages using two examples. The term advantage means
that typical problems occurring in firmware development
can be solved more easily and in a less error-prone
manner in PL8.

Structure layout specification at bit level
Firmware must reference hardware registers and access data
that is mapped to a precisely defined storage layout at the
level of individual bits. These data areas introduce interfaces
to routines which are written in Assembler language.

As a first example, consider this data structure
declaration with redefinition in PL8:

DCL 1 DataRecord,
2 FullWord BIT (64),

.2 BitLayout,

3 Flag1 BIT (1),

3 * BIT (1),

3 Flag2 BIT (1);

3 * BIT (32),

3 Subreg BIT (29);

Here, DataRecord is a structure with FullWord as its
first field. The numbers indicate the level of structures
and substructures. The type of FullWord is a bit
string of length 64, which can also be viewed as an
unsigned 64-bit integer, i.e., a machine word. Machine
words are the unit of storage usually read and stored
by elementary instructions. A pattern typically found
in firmware development is that such a machine
word can hold quite a large amount of differing
information, usually made up of single bits or small
bit strings.

In the example, the 64-bit field is redefined with a
structure named BitLayout. The redefinition is indicated
using a dot before the level number. Such a redefining
field occupies the same storage as its redefinee. Thus, the
first bit of FullWord is given the name Flag1 and can be
accessed this way. The next bit of FullWord has, in our
example, no meaning and is thus explicitly not given a
name, as the star indicates. Next comes another bit named
Flag2, then 32 unused bits, and finally a bit string of
length 29 having the name Subreg. By using stars as
filler, the programmer can realize any storage layout. The
PL8 compiler generates all necessary bit masking to access
the required bits. In C, such a description of bit positions
is not possible. While C provides so-called bit fields, it
does not give the programmer control of their actual
position in memory, but leaves this issue implementation-
defined.

The PL8 concept of redefinitions is significantly
different from the union data type found in C or the so-
called variant records available in Pascal and Ada. These
approaches all share the concept of storing differently
typed fields at the same memory location, but the
semantics when accessing the overlapping fields is
different. Ada, Pascal, and C do not want programmers
to store a value using one variant and then read the
same data item using a differently typed field. C leaves
the semantics of doing so undefined, and Ada has an
elaborate mechanism which actually prevents this kind
of type conversion. By contrast, the PL8 redefinition
explicitly has the semantics of viewing the same storage
using different types at the same time. It is perfectly legal,
for example, to store a value in SubReg and then read
FullWord, which will have the respective bits changed.

Table 1 Comparison of Fortran programs written in the 1970s and today�s C, Ada, and zSeries firmware written in PL8, revealing
GOTO densities that differ by several orders of magnitude.

Fortran on punched
cards

C Ada PL8

Files without GOTO (none) 81.5% 99.4% 98.5%
Lines/GOTO About 10 (8 –13% of all

statements are GOTOs)
386 13614 1310
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Conversely, assigning 0 to FullWord clears all fields
belonging to BitLayout.

Local pointers
Explicitly dealing with pointers and addresses is error-
prone. The C language, for example, is rather liberal with
pointers, thus making pointers a frequent source of hard-
to-find problems. In contrast, the pointers of PL8 are
variables declared as OFFSET types. An offset variable is
bound to a particular AREA, which is simply a contiguous
sequence of bytes. The value of an offset variable is used
as a displacement local to that area and specifies the
storage location of a variable declared with storage class
BASED. Based variables have no memory of their own, but
are associated with a storage location using an offset
expression. A based variable is essentially a template,
much like a data type, describing how the data it
references is to be viewed. Hence, the absolute address
of a based reference is the address of the area plus
the value of the offset variable, conceptually similar to
an array reference. The following is an example of a
BASED/OFFSET declaration:

DCL IntVar INTEGER BASED (OffsVar),

OffsVar OFFSET (AreaVar),

AreaVar AREA (1024);

OffsVar � 512;

IntVar � 99;

Areas always have a certain size, and the PL8 compiler
guarantees that an access to a based variable accesses only
memory belonging to the appropriate area. When possible,
an error message is issued at compile time; otherwise, the
compiler generates a run-time check. Thus, the potential
risk of unwanted data access through pointers is limited.
For example, the PL8 source code shown in the
above example uses an area AreaVar consisting of
1024 bytes. The declarations associate IntVar with
OffsVar, and OffsVar with AreaVar. The PL8
checking mechanism would cause the above code to
terminate with a run-time error at the reference to
IntVar if OffsVar had the value 1022, since the
variable IntVar requires four bytes and must fit
completely into AreaVar.

The general form of pointers that contain real addresses
rather than displacements is also available by means of a
special, predefined area variable named $MEMORY, which
equals the system main storage. Pointer variables as used
in C are thus a special case of the more elaborate PL8
concept. The explicit syntax used in PL8 makes it easy
to check all cases in which real addresses are used—
for example, as part of a formal code review.

GNU compiler collection (GCC)
Compiling a PL8 file, prog.p18, with GNU PL8 consists
of the following steps:

1. The PL8 source file is preprocessed to expand all
macro calls and include files. The preprocessor output
is named prog.ipl. Source code not containing any
preprocessor directives can omit this step.

2. The GNU PL8 compiler translates the PL8 source code
into assembler source code. The example file is named
prog.s.

3. This assembler source code is assembled by the GNU
assembler, resulting in a file called prog.o.

4. All .o files belonging to the current project are linked
together, yielding an executable file.

GCC structure
The input to a compiler is program source code written
in a higher-level programming language that is more
reflective of the way a human being thinks. The purpose
of a compiler is to translate such source code into
machine-executable form.

Usually this translation process is organized into three
phases (Figure 1). The first phase, called the compiler
front end, analyzes the source code and checks whether
it conforms to the programming language specification.
Most of the compiler error messages and warnings are
generated by this phase. The source code analysis
results in an internal program representation. GCC
uses attributed syntax tree fragments for this purpose.

Figure 1

General structure of GCC and its intermediate program repre-
sentations.

      CHI  2,10
      JNH .LC0
      ...
.LC0: ...
      LR  2,10
      CHI 2,25 

IF x>10 THEN
  Write (y);

Front end
Scanner,
parser, ...

Middle end
Code optimizer

(CSE, unrolling, ...)

IF

Write>

x 10 y

Data flow

Internal representation

(SET (CC0) (CMP (REG 2)
           (CONST_INT 10))
(SET (PC) (LABEL_REF 0))
...
(CODE_LABEL 0)
(SET (REG 2) (REG 7))

Back end
Code

generator
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The second phase, called the middle end (ME), an
unfortunate oxymoron, translates the internal program
representation from tree format into a second internal
format, called register transfer language (RTL). The most
important building blocks are RTL instructions (called
INSNs in GCC terminology), which describe side effects
on registers. In particular, this means that the highly
recursive syntax-tree-based representation is replaced
by a purely sequential stream of INSNs.

At the beginning, a stream of INSNs is generated while
assuming an infinite number of registers. Each optimizer
pass transforms that INSN sequence into a semantically
equivalent sequence, which is supposed to be less
expensive with respect to a given cost function (usually
execution time, but GCC can also optimize for space).
Available optimizations include common subexpression
elimination (CSE), loop optimizations, jump optimizations,
and elimination of unreachable code. Most optimizations
are machine-independent, so very little platform-specific
information is needed.

In addition, a set of highly platform-dependent
optimizations exists. The instruction combiner attempts
to combine a group of dependent INSNs into fewer,
more efficient INSNs. This pass is capable of exploiting
even the most bizarre instructions available in
z/Architecture [11, 12]. The instruction scheduler
depends not only on the target architecture, but also
on the given implementation of this architecture; e.g.,
for a z990, the optimal instruction stream may differ
from that for the z900.

So far, the instruction stream still references an infinite
number of (virtual) registers and must be transformed to

an instruction stream using only the platform registers.
This register allocation also depends on the application
binary interface (ABI). Since the register allocator decides
which virtual registers are kept in memory, the process has
a profound influence on the efficiency of the generated
code. Finally, the third phase, named back end or code
generator, translates the INSN stream into assembler
source code.

Note that the three phases of the compiler
communicate via two data structures for internal
program representation. These data structures are almost
independent of both the programming language used as
input and the assembler source code to be output. This
modular approach allows front ends for many different
programming languages and code generators for many
different target architectures to be combined in a way
shown in Figure 2. It now becomes obvious why this
package is called the GNU compiler collection. Major
advantages of the highly modular GCC structure are that
adding a new language requires writing only a new front
end, while the code optimization and all existing back
ends can be reused, thus making the new language
immediately available on a large variety of machines.
Conversely, developing a new code generator makes
all languages supported by GCC available on the new
architecture. The next two sections describe our PL8
front end and the zSeries code generator.

PL8 front end
In contrast to most other GCC front ends, the PL8 front
end is itself organized in two passes. The reason is that
PL8 allows forward references to declarations. The two-
pass approach also simplifies certain other translations.
The first pass performs lexical and syntactic analysis,
which we implemented using the open-source compiler-
generating tools Flex and Bison, respectively. Flex
generates a program for the lexical analysis from a regular
specification describing how keywords, special characters,
identifiers, or numbers are defined in PL8. Bison converts
a specification containing the PL8 context-free grammar
rules into C source code. Flex and Bison specifications
allow definition of the actions to be taken if PL8
constructs are recognized (primarily storing and checking).
The PL8 front end is approximately 50K lines of code
(LOC) in size.

The output of pass 1 is a front-end internal
representation of the input program, which is a kind of
attributed syntax tree. Trees are implemented as records
with fields containing data or pointers to other tree nodes.
The most important kinds of trees are declarations, types,
expressions, and constants. Whenever possible, GCC
predefined tree nodes are used to represent PL8 constructs;
for example, this is done for IF, DO WHILE, and

Figure 2

Modular structure of the GNU compiler collection (GCC).

GNU debugger

(GDB) S/390*

M680x0

(many more)

RS/6000*

PowerPC*

i386

DEC Alpha**

C++

Java**

Fortran 77

Ada 95

PL8

C

(many more)

Middle end

Code optimizer

(CSE, unrolling,...)
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DO UNTIL statements. More elaborate statements,
such as SELECT and counting loops, are first translated
into PL8-specific nodes, as are most declarations
concerning PL8 features such as BASED, OFFSET, and
REDEFINES.

Pass 2 starts working on the data structures generated
by pass 1 and performs a couple of semantic checks.
These include type-compatibility checks to verify that
two variables are assignable. Implicit type conversions
are inserted if the PL8 language definition allows the
assignment of variables with different types. Range checks
are generated for array accesses, and for all accesses to
BASED variables via OFFSETs. Pass 2 also does some
optimizations, e.g., constant folding and elimination of
array bounds checks if it can determine at compile time
that an index will never be out of the valid range. Finally,
the PL8-specific nodes are translated into GCC-defined
tree nodes and are passed to the GCC middle end.

The example shown in the local pointers section
demonstrates how the PL8 concept of BASED variables is
handled by the compiler. When accessing IntVar, one
cannot simply build a normal declaration node and pass
it to the ME, because the concept of BASED variable is
unknown there. Rather, the access requires an expression
consisting only of tree nodes: Take the address of
AreaVar, add the value of OffsVar, do the bounds
check, and finally access the memory at the computed
location, treating the content as an integer value.

PL8 has its own rules describing how to pack arrays
of small bit strings. For example, in

DCL cpu(64) BIT(1);

cpu(17) � 1;

the array cpu is 64 bits long. There is no expression tree
known to the middle end with the semantic “take bit 17
from the left of a variable with a size of 64 bits and set it
to 1.” However, the middle end knows array references,
shift, and bitwise OR expressions. Thus, the PL8 front end
builds the following expression (simplified):

● Regard cpu as an array of eight bytes and build an
array reference that accesses the third byte from the
left.

● Build a shift expression that shifts the constant “1”
seven bits to the left.

● Build a bitwise OR expression with the array reference
of the third byte of cpu and the shift expression as
operands and assign the result to the third byte of
cpu.

This example also touches upon efficiency. A simple
assignment creates a number of expressions. It is
not sufficient merely to find a way to implement
PL8 specialties; the resulting code must also be efficient.

Integrating PL8 as an official GCC front end may generate
heretofore unseen code sequences that engender the
development of new middle-end optimizations to boost
the performance of the generated code.

In some cases, we were faced with subtle semantic
differences between PL8 and the C-based GCC. Recall
from the previous section that C leaves the semantics of
storing into one variant of a union type and then reading
a different variant undefined, while PL8 explicitly
describes how both variants of a redefinition are to be
mapped (overlaid). The problem was that the data-
dependence analysis exploits the C rules, assuming that
certain code movements were correct. Our first approach
to map PL8 redefinitions onto tree nodes designed for
union types failed for this reason.

Yielding the proper warning or error messages is also a
task of the front end. Precise line-number information is
sometimes difficult to obtain.

The quality of compiler warnings and error messages,
and in particular the precision of their references into the
faulty source code locations, have a significant impact on
customer satisfaction and on the productivity of the teams
using the compiler. Because of the two-pass structure of
the front end, generating line number information had to
be supported by the internal program representation.
Several new warnings were suggested by PL8
programmers.

GCC code generator for zSeries
The task of writing a target code generator for GCC is
to provide all information needed to generate INSNs,
optimize these INSNs, and generate assembler code for
the target platform. This is done for GCC by providing
two files: the machine description and the target macros.

The machine description is a file consisting of textual
RTL code fragments describing the target architecture.
This is done to enable the ME to extract the set of
available instructions, the explicit semantics, and the
assembler syntax of these instructions. The example
shown in Figure 3 demonstrates this more clearly.

The “addsi3” tells the ME that an add instruction
for “si” (single integer) is available. The terms in square
brackets describe the semantics. In this case, a register is
added to a second operand, which can be a register, an
immediate value, or a memory access. The result is stored
in the register given as first operand. As a second side
effect, the condition code is changed in an arbitrary way.
The term following the @ is the assembler code for the
different operand types, where the %i are replaced by the
specific operand i.

The target macros describe the ABI and architecture-
specific parameters to the ME. In particular, the available
registers, stack layout, calling conventions, and many more
issues are described as a set of C macros.
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Altogether, a back end consists of about 15K lines of
code, which is fairly small compared with the rest of the
compiler. This demonstrates again the effectiveness of the
modular structure of GCC, especially considering that
GCC on zSeries produces code with performance close to
that of commercial compilers specific to this platform.

Validation of GNU PL8
The term validation subsumes all activities to ensure that
the compiler behaves according to the PL8 language
reference manual. The first part of our validation effort
covers component and unit test and is performed by the
development team. It is called the development regression
test. The second step is part of the integration and final
product validation process. It covers complete product
validation in user scenarios, is performed by an
independent validation team, and is referred to as the
firmware focus test. Both steps are described in detail in
the following sections. As a third step, certain parts of the
compiler were checked by formal code reviews. (Note that
the actual hardware of the new machine was developed in
parallel with the firmware and was thus not available for
testing.)

Development regression test
The first step for the validation of GNU PL8 (GPL8) was
to develop a large set of small and specific test cases
that covered the complete language. These tests were
developed for component and unit test; later, the
complete set of test cases served as a regression test
package that was used to verify new compiler versions.
Based on the PL8 language reference manual (LRM),
parts of the language were assigned to experienced PL8
programmers who systematically wrote test cases for their
assigned language subset. This also included error test

cases to verify that the compiler detects erroneous
PL8 code constructs and properly reports them to the
programmer. The test coverage was later checked with
reviews.

A shell script, later replaced by a Perl program, was
used to compile all test cases, execute them, and check the
observed behavior and the compiler warning and error
messages against expected results. The results are stored
in a report text file. Thus, previous test reports can be
compared with others that result from a modified
compiler. A Perl program analyzes any differences
within the reports.

With respect to test strategies, our approach is a
combination of input coverage and equivalence class
testing. Although this may sound much like a black-box
strategy, taking care of only the compiler input– output
behavior, it also includes a glass-box-like strategy, since
compiler authors were involved in the test-case-coverage
reviews and made suggestions for useful additional tests
based on their knowledge of the compiler internals.

The regression test package was later extended in
several ways. As already mentioned, the original pl.8
compiler was developed at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York [2].
Another pl.8 compiler was later written at the IBM
Toronto Laboratory. We asked our colleagues for help,
and they kindly provided us all the pl.8 test cases they
had used to verify their pl.8 compilers. We had, of course,
to rewrite return code handling and related issues to
make those test cases fit into our automated evaluation
environment. Parts of that work were done by students
who, by the way, had no problem becoming familiar with
PL8. Also, for each compiler problem that was detected
in its production environment and during the i390 focus
test, a specific test case was developed and added to the

Figure 3

Example of an INSN as used in the GCC machine description.
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regression test package. At the end of the GNU PL8
project, the package consisted of roughly 3500 test
programs. This approach to testing proved to be extremely
valuable in verifying compiler modifications.

As a last step of the build validation test, a compile of
the complete PL8 i390 source code was performed. The
result had to achieve INITIAL MICROCODE LOAD
COMPLETE in the z/CECSIM simulator [13].

Code reviews
In addition to the test activities, formal code reviews were
conducted. This validation technique was developed three
decades ago by Michael Fagan, at that time an IBM
Senior Technical Staff Member. His original work has
recently been republished [14], together with the progress
achieved since then. Code reviews tend to reveal problems
that are difficult to find with testing, and vice versa, so
both are useful as a combination.

Because of the effort involved with code reviews, we did
not check the whole source code of GPL8, but only those
parts the team considered to be critical. The number of
defects found was limited, since we began code reviews
rather late.

Firmware focus test
As mentioned earlier, the firmware focus test was the
main part of an independent test activity to verify
correctness and completeness of the GPL8 compiler
deliverables for the zSeries firmware development teams.
This part of the validation activity is strictly a black-box
test strategy, as it focuses only on the validation of
the correct functionality as required for firmware
development.

The validation effort used the usual set of tools
required for zSeries firmware code generation [5, 13].
The major (and fundamentally new) part is the GPL8
front end to the GCC compiler, but it also covers the
whole tool chain (i.e., assembler and linker) needed for
processing PL8. A key element for testing was a special
VM/CMS-based simulation and debugging environment
called z/CECSIM [13]. For normal code development
and test purposes, about 1300 functional test cases are
available.

Goals and approach
Given the specific focus of the GPL8 compiler effort to
provide 64-bit support for the zSeries firmware execution
environment, the primary goal of the validation effort was
to ensure that correct object code is generated, specifically
for the zSeries firmware code, assuming that the source
code correctly implements the desired function. A
secondary goal of the validation effort was to ensure that
performance and throughput of the generated object code
is sufficient. Consequently, we did not plan to run a full

engineering system test (EST) with the generated code,
since EST is typically designed to verify correct function
implementation and requires significant effort and time.

The given firmware code on zSeries uses only a limited
subset of the GPL8 language constructs and syntax, and so
the focus of the independent GPL8 product validation was
to ensure that the compiler handles these constructs
correctly. While it is an important goal of a compiler to
provide extensive and strict error handling and reporting
for source code bugs, this was not a focus item of the
validation efforts. In particular, we did not plan any
systematic validation of this. We took a two-pronged
approach to achieve the above goals:

1. We defined a 32-bit reference environment to verify
the new GPL8 compiler in and for this reference
environment. We picked the 32-bit firmware
implementation of the z900 system as the reference
environment, both for functional and for performance
testing. For all practical purposes, this environment
is assumed to provide correct source code.

2. For validation of the 64-bit front end, we used
z/CECSIM simulation and a standard regression test
package of the firmware code under development.
Validation of compiler release criteria was always
performed on a stable driver level of 64-bit firmware
code.

As is not unusual for tool projects, the GPL8 compiler
project had to be run with a certain time overlap to the
actual z990 firmware code development project. This
implied that special consideration was required to ensure
a staged delivery of compiler functions and capabilities
with a high quality level in order to avoid hampering the
progress of the actual firmware code development.

Setup
The original pl.8 compiler is VM/CMS-based, supports
only a 32-bit environment, and is used to compile z900
32-bit firmware. The new GPL8 compiler is Linux-based,
supports both a 32-bit and a 64-bit environment, and is
needed to compile 64-bit i390 code. At the time this
compiler was developed, the 64-bit i390 code was not
complete, and it had not been verified in any environment.
Therefore, a special setup was required to verify the new
GPL8 compiler not only with the target 64-bit i390 code,
but with the existing and well-tested 32-bit i390 code as well.

VM/CMS-based testing
After a new version of the GPL8 compiler had passed
development tests, two VM/CMS versions of the compiler
were built: a 32-bit version and a 64-bit version. The 32-
bit version is used with the existing and well-tested 32-bit
i390 code, while the 64-bit version is used with the newly
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generated 64-bit i390 code. These two test environments
were used in parallel until the 64-bit i390 code achieved
a level of quality that allowed unique use of this
environment for tests. At this point, the 32-bit CMS
environment was dropped from the test cycle.

32-bit environment
The GPL8 compiler enhances code and data type checking
compared with the original pl.8 compiler. Therefore, the
32-bit i390 code could not be used as is, but, with a very
limited rewrite, the z900 32-bit i390 code could be used as
a validation aid for the GPL8 compiler. The following
steps were executed:

● Compile the 32-bit i390 code.
● Achieve power-on reset (POR, initial microcode load)

with this code complete in the VM/CMS-based 32-bit
z/CECSIM simulation environment.

● Run the complete 32-bit-based function regression
package error-free.

● Activate the 32-bit i390 code on a z900 system and
achieve a complete POR there.

64-bit environment
When the quality level of the 64-bit i390 code became
high enough, this code could also be used for compiler
validation. The same validation steps as with the 32-bit
code were then executed with the 64-bit code:

● Compile the 64-bit i390 code.
● Achieve POR complete with this code in the VM/CMS-

based 64-bit z/CECSIM simulation environment.
● Run the complete 64-bit function-based regression

package error-free.
● Activate the 64-bit i390 code on a zSeries machine

and achieve a complete POR there.

Results

Functional tests
From project start to end over a period of 12 months,
we released six versions of the GPL8 compiler to the
development process of the z990 system. The overall
stability was excellent, and the releases were smooth
phase-ins without impact to the integration and test efforts
for the program. The problem finding-and-solving rate
shows the usual asymptotic behavior, as can be seen in
Figure 4(a).

To have an indication of the potential impact on the
development process, we defined the term critical defect in
the compiler: A compiler defect was considered critical when
it generated incorrect object code for correct source code.
The critical defect statistics in the GPL8 compiler are
shown in Figure 4(b). In both Figures 4(a) and 4(b), the
slope of the envelope (the Total line) indicates that the
GPL8 compiler version 6 was mature and well prepared
to support z990 system shipment.

Performance tests
The performance considerations and goals for the GPL8
compiler are primarily related to the performance and
efficiency of the generated object code, again focusing
on the i390 firmware code in zSeries.

32-bit environment, z900
Within the 32-bit reference environment of the z900, the
goal was to achieve object code performance equal to
that delivered by the original pl.8 compiler. Since the
performance-relevant i390 code is channel subsystem code
executing on the system assist processors (SAPs), we chose
the SAP capacity as the metric for the i390 object code
performance. SAP capacity is measured in start subchannel
operations per second (SSCH/s) on a product-level zSeries
system, and for each production-level compiler release,
we have performed such SAP capacity measurements.
Table 2 shows the relative achieved SAP capacity,
per GPL8 production level release, compared with the

Figure 4

Functional tests performed on the GPL8 compiler: (a) Defect 

summary statistics. Problems detected weekly are shown as 

negative numbers.  (b) Critical defect statistics.
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reference SAP capacity measured on a z900 product,
which runs code generated with the original pl.8
compiler.

64-bit environment, z990
For the 64-bit target environment of the z990, the goal
was to reach the projected SAP capacities. This was based
on a projected increase in path length of 10%, mainly
because of architectural differences between a z900
and a z990 system. Using this path length, a prediction
of the SAP capacity on a z990 system compared with a
z900 system showed an increase of 38%. The final arbiter
of whether or not the anticipated SAP capacity had been
achieved was the SSCH/s measurement of the 64-bit
i390 code on a z990 system. The first results were not
satisfactory, and path-length analysis of the executed i390
code in z/CECSIM was used to identify the root cause for
this mismatch. Among other things, it turned out that the
64-bit compiler showed some performance weaknesses of
the generated code which were not seen with the 32-bit
compiler. On the basis of this analysis, some moderate
source code changes reduced the initial increase in path
length of one i390 I/O task from 23% to the expected
value of 11%. The final measurements on a z990 system
yielded an increase of 45%, which shows that the path
length of an I/O task is just one contributor to the SAP
capacity.

Path coverage analysis
The procedures described so far did not verify the GPL8
compiler directly, but permitted its correctness to be
inferred from the correctness of some functional code
that was compiled by it. One side effect of changing the
environment from VM/CMS to the open source world was
that many additional tools and utilities from the GNU
tools chain became available. It was therefore possible
to obtain additional evidence in the form of path-
coverage measurements for the GPL8 compiler source
code by using the test-coverage checking tool GCOV
[15, 16], while GPL8 was compiling the following code
buckets:

● The PL8 test-case suite under Linux.
● The complete i390 code under VM/CMS.
● Only those i390 procedures that are actually executed

during the functional test runs in z/CECSIM.

Figure 5 represents a snapshot taken from Release 4 of
the GPL8 compiler. Whereas the absolute figures might
have changed in the meantime, the relationship between
the different scenarios and, in turn, the significance of
the following statements should not depend on a special
version of the compiler. The number of lines of code that
were executed in the individual modules is shown in
Figure 5.

Referring to the figure, compiling the test cases showed
coverage patterns very similar to those of the GPL8
compiler in total, which suggests that the test-case suite
covers the PL8 language very well. An analysis of the
coverage measurements for weak spots (significant
deviation between the test-case line and the total line for
certain modules) was initiated, and the results were used
to improve the test-case suite.

In addition, it can be seen that there is only a small
difference between the i390 total line and the i390
executed line coverage pattern. In other words, when
the part of the i390 code that is not executed during the
z/CECSIM regression runs is compiled, it does not use
compiler source code that is significantly different from
that used to compile the i390 code that is “proved-to-be-
correct” by the z/CECSIM functional regression runs. This
is the main justification for using the validation procedure
described above rather than running a complete test cycle
on the raised floor with GPL8-compiled i390 code, and it
illustrates the efficiency of our validation procedures.

Figure 5

Path coverage for GPL8 compiler source code.
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Process considerations
Process issues were of particular importance, since part of
the compiler development and the firmware development
had to be done in parallel. From a process point of view,
the development of the GPL8 compiler was handled like
other code development projects in zSeries development.
In particular, the zSeries code development process was
applied, including design reviews, component and unit
test, source code repositories with version control, defect
tracking, and build tests.

In addition to these standard processes, special
consideration was necessary to satisfy two conflicting
objectives: on one hand, the capability for frequent
releases with rapid validation for the compiler development
team, and on the other, the requirement for stability and
high-quality functionality for the i390 code development
community.

Version control and beta releases
Compiler version releases to the user community have
been strictly tagged in the source-code repository. The
concept of beta releases was used for rapid delivery of
required fixes and functional enhancements. Only after a
beta release had seen substantial test coverage and user
experience was it released to the user community as a new
production-level version of the compiler.

Typically, the timing of beta releases throughout the
GPL8 compiler project was of the order of days, whereas
new production-level compilers were released only every
four to six weeks, maintaining the desired level of stability
for the i390 code development teams.

Acceptance procedures
After the GPL8 compiler development team had
successfully executed its regression test package for a new
compiler version, it was offered as a new beta version to
the independent validation process. Before this beta
version was released to the general user community, it
had to pass an acceptance filter that was defined on the
basis of i390 focus test activities. Similarly, for new
releases of production-level compilers, an extended
and more stringent acceptance filter was applied.

Typically, the acceptance procedures for a new beta
release involved extensive tests of the generated i390 code
in the z/CECSIM simulation environment [13], 32-bit as
well as 64-bit, whereas the acceptance procedures for
production-level compilers also involved functional tests of
the generated i390 code on the 32-bit environment of the
z900 target machine.

Observations and experience
Quality and stability of the GPL8 compiler has been
outstanding, especially in the new 64-bit environment. The

production version of the compiler, which was intended
to support i390 code generation for z990, was actually
released nine months prior to z990 shipment. We had
projected at that time less than ten test escapes, i.e.,
critical compiler defects that would be found during z990
product system test activities. The actual number turned
out to be five.

Though the error-handling and reporting capabilities
of the GPL8 compiler were not a focus of the validation
activities, a couple of observations made during the course
of the validation efforts throughout the project are worth
noting:

● The z/CECSIM environment proved again to be very
efficient, particularly for the rather special efforts for
the GPL8 validation. Most of the critical compiler
defects (defined above) were encountered in the
z/CECSIM environment, and even the remaining ones,
which were initially seen on the machine, could be
recreated in z/CECSIM, where they could be analyzed
with much higher productivity than on the target system.

● When the checking of array bounds was implemented
and enabled in the GPL8 compiler, 14 source-code bugs
were uncovered within the i390 source code under
development for z990. Four errors were detected at
compile time and ten errors at run time.

In summary, our validation methodology with the i390
focus test and parallel development of the GPL8 compiler
and the z990 product-level i390 code has posed its
challenges, but it has proved very successful and saved a
full EST validation cycle for the introduction of the new
compiler.

Summary and concluding remarks
The programming language pl.8 was originally developed
around 1980 for the then newly designed RISC architecture.
In this environment, the language was used for the
implementation of an operating system and for the
compiler itself, successfully avoiding a number of problems
that emerge when certain other languages are used.

In particular, pl.8 supports low-level programming with
certain elaborate concepts that reduce the risk of typical
errors. These advantages are also evident when the
language is compared with C. Therefore, pl.8 was chosen
for the implementation of zSeries firmware about a decade
ago. Unfortunately, there was no further development for
pl.8, and its original compiler was ultimately no longer
maintained. This, and the need for a 64-bit PL8 compiler,
led to the development of GNU PL8.

Future improvements to PL8 could be certain new
language features—in particular, features that support
modularity via more strictly defined interfaces. Although
the GNU PL8 compiler produces quite efficient code,
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some additional optimizations could be done. There also
is an ongoing discussion as to whether the compiler should
be released into the open-source community.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group,
Linus Torvalds, Hewlett-Packard Company, or Sun
Microsystems, Inc.
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