
170170

Frederick P. Brooks
Kenan Professor of Computer Science
University of North Carolina at Chapel Hill
brooks@cs.unc.edu

Ph.D. in Computer Science, Harvard

IBM: Corporate Project Manager

University of North Carolina: Chair of
Department of Computer Science

National Medal of Technology,
IEEE John von Neumann Medal,
ACM Turing Award, Bower Science
Award

Member of National Academy
of Engineering

Fellow of the American Academy
of Arts and Sciences

Major contributions: architecture of
the IBM Stretch and Harvest computers
and the System/360 hardware,
development of the OS/360 operating
system

Current interests: computer
architecture, software engineering,
virtual reality

The /360 Architecture and Its Operating System

171171

Frederick P. Brooks

The IBM Operating System/360

The System/360 Computer Family

From its inception in 1961 until mid-1965, I had the once-in-a-lifetime
opportunity to manage the IBM System/360 Computer Family Project –
first the hardware and then the Operating System/360 software. This com-
puter family, announced on April 7, 1964, and first shipped in February,
1965, defined “third-generation” computers and introduced (semi-)inte-
grated-circuit technology into off-the-shelf computer products.

Context

Since many of my audience weren’t born then, let me briefly set the con-
text and, in particular, IBM’s computer product situation as of 1961. IBM’s
first-generation (vacuum-tube technology) computers – the 701 large
scientific machine, the 702 large commercial machine, and the 650 small
universal machine had each evolved a whole family of successors, by 1961
all second-generation (discrete-transistor-technology): 701�7094,
702�7080 III, 650�7074, 650�1620. These had been joined by new
second-generation sibling families: the 1401 small commercial and fast

M. Broy, E. Denert (Eds.): Software Pioneers
© Springer-Verlag Berlin Heidelberg 2002

172172 Frederick P. Brooks

I/O machine and successors, 1401-1410-7010, and the Stretch (7030)
supercomputer. Each of these families had reached an end-of-the-line
architecturally, chiefly because the instruction formats could not address
as much memory as users needed and could afford.

Therefore IBM decided in 1961 to define and build a single new product
family intended ultimately to replace all six of the extant families. The
family would be the carrier of a new and substantially cheaper circuit tech-
nology – wafer-fabricated transistors and diodes. Seven simultaneously
engineered models, ranging from the cheapest and slowest to a competi-
tive supercomputer, were undertaken, along with a host of new I/O
devices.

A radical conceptual innovation was that all of these models (except the
cheapest, Model 20) would be logically identical, upward-and-downward-
compatible implementations of a single architecture. In software enginee-
ring terms, a computer architecture is an abstract data type. It defines
the set of valid data, their abstract representations, and the syntax and
semantics of the set of operations proper to that type. Each implementa-
tion then is an instance of that type. In practice, our first implementations
ranged from 8 to 64 bits wide and had various memory and circuit speeds.

Since a computer architecture defines exactly what programs will run and
what results they will produce, the product family’s strict compatibility en-
abled us to design a single software support package that would support
the whole product family, and could be cost-shared across the entire family,
with its large combined market forecast. This in turn enabled building a
software support package of unprecedented richness and completeness.
In those days, manufacturers gave away operating systems and compilers
to stimulate the sale and use of hardware. Within this context, the atta-
ched set of slides gives a great amount of detail about this undertaking.
Rather than restate all this in prose, I provide elaborating comments keyed
to the slides.

This figure is essentially the table of
contents for what follows. The concepts
marked with an asterisk are the most
important and novel.

Just as the first-generation operating
systems were developed for second-gener-
ation computers, so OS/360 is the first of
the second-generation operating systems,
and it was developed for the first of the
third-generation computers. First-genera-
tion operating systems were sharply differ-
entiated by the application areas; OS/360
was designed to cover the entire spectrum
of applications.

173173The /360 Architecture and Its Operating System

The name Operating System/360 is some-
times used to describe the entire software
support set. The same name is also used,
more properly, to describe the control
program alone. We shall use it hereafter
only in this more restrictive sense. I like
to think of the entire set as one big peach
(the control program) and a bowl full of
independent cherries (the compilers and
utilities). OS/360 is modular; at system
generation one can configure it to contain
various functions, and to fit various resi-

dent memory sizes and resident disk sizes.

Several Fortran and Cobol compilers, optimized for different memory sizes,
were built concurrently. Fortran H (for 256K configurations) was an ex-
ceptionally fine optimizing compiler, setting new standards for the quality
of global optimization. The team was coherent and super-experienced–
I think this was their fourth Fortran compiler.

The new availability of an inexpensive
disk drive, the IBM 2311, with its then-
immense capacity of 7 MB, meant that we
could design the operating system to as-
sume operating system residence on a
“random-access” device rather than on
magnetic tape, as in most first-generation
operating systems. This made the biggest
single difference in the design concepts.

Late-first-generation IBM operating sys-
tems provided for Simultaneous Peripheral
Operation On Line (SPOOL), so that at any
given time a second-generation computer
could be executing one main application
and several card-to-tape, tape-to-card,
tape-to-printer utilities. The latter were
“trusted programs,” carefully written so
as not to corrupt or intrude on the main
application, which usually ran tape-to-
tape. OS/360 made the big leap to con-
current operation of independent, untrust-

ed programs – a leap made possible by the architectural supervisory capa-
bilities of the System/360 computers. Early OS/360 versions supported
multiple tasks of fixed sizes for which memory allocation was straightfor-
ward. Within two years the MVS version supported multiprogramming in
full generality.

174174 Frederick P. Brooks

A key new concept, now routine, is that
the OS, not the operator, controls the com-
puter. As late as 1987, some supercom-
puters, such as the CDC-ETA 10, were still
running under operator manual control.
A corollary of OS control, pioneered in
Stretch and routine today, is that the key-
board or console is just another I/O
device, with very few buttons (e.g. Power,
Restart) that directly do anything.

OS/360 was designed from the ground
up as a teleprocessing system, but not
really a terminal-based time-sharing
system. This concept contrasts with that of
the contemporary MIT Multics System.
OS/360 was designed for industrial-
strength high-volume scientific and data
processing applications; Multics was de-
signed as an exploratory system, primarily
for program development.

Although strict program compatibility was
the most distinctive new concept of the
System/360 computer family, the rich set
of I/O devices was its most important
system attribute in terms of market
breadth and performance enhancement.
The single standard I/O interface radically
reduced the engineering cost for new I/O
devices, radically simplified system confi-
guration, and radically eased configura-
tion growth and change.

The check sorters, curiously enough, posed the most rigid constraint on
operating system performance, since they alone of all I/O devices rigidly
demanded a quick response – the time of flight between the reading
head and the pocket gate is fixed.

175175The /360 Architecture and Its Operating System

The crucial software innovation corres-
ponding to the standard hardware I/O
interface was a single system of I/O
control and data management for all
kinds of I/O devices. This was a radical
departure from earlier operating systems.
I consider it the most important innova-
tion in OS/360.

OS/360, more explicitly than any of its
predecessors, recognized scheduling time
as a binding occasion distinct from com-
pile time and run time. Not only were
program modules bound to each other
at schedule time, dataset names were
bound to particular datasets on particular
devices at scheduling time. This binding
was specified by the Job Control Lan-
guage, which was executed by the
scheduler.

Four access methods were designed
especially for exploitation of the fleet of
new disk types, across the range of disk
applications. Two other access methods
were designed especially to provide full
flexibility and ease of use for telecommu-
nications.

In OS/360, three independent streams of
control program evolution come together.
The system structure mirrors this diverse
ancestry. The Supervisor evolved from ear-
ly interrupt-handling routines; the Data
Management System from earlier pack-
ages of I/O subroutines; the Scheduler
from earlier tape-based job schedulers.

176176 Frederick P. Brooks

The Job Control Language is the worst
programming language ever designed by
anybody anywhere – it was designed under
my management. The very concept is
wrong; we did not see it as a programming
language but as “a few control cards to
precede the job.” I have elaborated on its
flaws in my Turing lecture [2].

We should have cut loose from the key-
count-data variable-length block structure
established for IBM’s earlier disks and
designed for one or two sizes of fixed-length blocks on all random-access
devices.

The I/O device-control unit-channel attachment tree is unnecessarily com-
plex [3]. We should have specified one (perhaps virtual) channel and one
(perhaps virtual) control unit per device. I believe we could have invented
one sequential disk access method that would have combined the opti-
mizations of the three: SAM, PAM, ISAM.

Two radically different debugging systems are provided, one conceived
for interactive use from terminals with rapid recompilation, the other
conceived for batch operation. It was the best batch debugging system
ever designed, yet totally obsolete from birth.

OS/360 is too rich. Systems residence on a disk removed the size con-
straint that had disciplined earlier OS designers – we put in many
functional goodies of marginal usefulness [4, Chap. 5]. Featuritis is even
now not yet dead in the software community.

The system-generation process for OS/360 is wondrously flexible and won-
drously onerous. We should have configured a small number of standard
packages to meet the needs of most users, and offered these to supple-
ment the fully flexible configuration process.

I have treated this topic at length in The
Mythical Man-Month [4]. Here I will only
elaborate a little. I am firmly convinced
that if we had built the whole thing in
PL/I, the best high-level language avai-
lable at the time, the OS would have been
just as fast, far cleaner and more reliable,
and built more swiftly. In fact, it was built
in PLS, a syntactically sugared assembler
language. Using PL/I would have requi-
red careful training of our force in how to
write good PL/I code, code that would
compile to fast run-time code.

177177The /360 Architecture and Its Operating System

We should have maintained rigid architectural control over all the inter-
faces, insisting that all declarations of external variables be included from
libraries, not crafted anew in each instance.

About 1000 people worked on the entire
OS/360 software package. Here I identify
both the teams and those individuals
who contributed most to the conceptual
structure.

References

[1] IBM Systems Journal, 5, 1 (1966)

[2] Brooks, F.P. Jr., “The Design of Design.” ACM 1999 Turing Award Lecture,
Communications of the ACM, to appear.

[3] Blaauw, G.A., and F.P. Brooks, Jr., 1997. Computer Architecture: Concepts and Evolution.
Addison-Wesley, Boston, Section 8.22

[4] Brooks, F.P. Jr., 1995. The Mythical Man-Month: Essays on Software Engineering, 20th
Anniversary Edition. Addison-Wesley, Boston.

178178 Frederick P. Brooks

