
During initial conversations about the
topic of this article, it became evident
that we can’t identify the top compiler
algorithm of the century if, as the

CiSE editors originally intended, we consider only
the parsing, analysis, and code optimization algo-
rithms found in undergraduate compiler text-
books and the research literature. Making such a
selection seemed, at first, the natural thing to do,
because fundamental compiler algorithms belong
to the same class as the other algorithms discussed
in this special issue. In fact, fundamental compiler
algorithms, like the other algorithms in this issue,
are often amenable to formal descriptions and, as
a result, to mathematical treatment. 

However, in the case of compilers the difficulty
is that, paraphrasing John Donne, no algorithm is
an island, entire of itself. A compiler’s components
are designed to work together to complement each
other. Furthermore, next to this conceptual objec-
tion, there is the very practical issue that we don’t
have enough information to decide whether any
of the fundamental compiler algorithms have had
a determinant impact on the quality of compilers. 

At the same time, it is almost universally
agreed that the most important event of the 20th
century in compiling—and in computing—was
the development of the first Fortran compiler
between 1954 and 1957. By demonstrating that
it is possible to automatically generate quality
machine code from high-level descriptions, the
IBM team led by John Backus opened the door
to the Information Age. 

The impressive advances in scientific comput-
ing, and in computing in general, during the past
half century would not have been possible with-
out high-level languages. Although the word al-
gorithm is not usually used in that sense, from
the definition it follows that a compiler is an al-
gorithm and, therefore, we can safely say that the
Fortran I translator is the 20th century’s top
compiler algorithm.

The language

The IBM team not only developed the com-
piler but also designed the Fortran language, and
today, almost 50 years later, Fortran is still the
language of choice for scientific programming.
The language has evolved, but there is a clear
family resemblance between Fortran I and to-
day’s Fortran 77, 90, and 95. Fortran’s influence
is also evident in the most popular languages to-
day, including numerically oriented languages
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generate efficient machine code from high-level languages. It has thus been enormously
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compiler for the parsing of expressions, loop optimization, and register allocation.
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such as Matlab as well as general-purpose lan-
guages such as C and Java.

Ironically, Fortran has been the target of crit-
icism almost from the beginning, and even
Backus voiced serious objections: “‘von Neuman
languages’ [like Fortran] create enormous, un-
necessary intellectual roadblocks in thinking
about programs and in creating the higher-level
combining forms required in a powerful pro-
gramming methodology.”1

Clearly, some language features, such as implicit
typing, were not the best possible choices, but For-
tran’s simple, direct design enabled the develop-
ment of very effective compilers. Fortran I was the
first of a long line of very good Fortran compilers
that IBM and other companies developed. These
powerful compilers are perhaps the single most
important reason for Fortran’s success.

The compiler

The Fortran I compiler was fairly small by to-
day’s standards. It consisted of 23,500 assembly
language instructions and required 18 person-
years to develop. Modern commercial compilers
might contain 100 times more instructions and
require many more person-years to develop.
However, its size not withstanding, the compiler
was a very sophisticated and complex program. It
performed many important optimizations—some
quite elaborate even by today’s standards—and it
“produced code of such efficiency that its output
would startle the programmers who studied it.”1

However, as expected, the success was not uni-
versal.2 The compiler seemingly generated very
good code for regular computations; however, ir-
regular computations, including sparse and sym-
bolic computations, are generally more difficult to
analyze and transform. Based on my understand-
ing of the techniques used in the Fortran I com-
piler, I believe that it did not do as well on these
types of computations. A manifestation of the dif-
ficulties with irregular computations is that sub-
scripted subscripts, such as A(M(I,J),N(I,J)),
were not allowed in Fortran I. 

The compiler’s sophistication was driven by
the need to produce efficient object code. The
project would not have succeeded otherwise. Ac-
cording to Backus:

It was our belief that if Fortran, during its first
months, were to translate any reasonable scientific
source program into an object program only half
as fast as its hand-coded counterpart, the accep-
tance of our system would be in serious danger.1

The flip side of using novel and sophisticated
compiler algorithms was implementation and
debugging complexity. Late delivery and many
bugs created more than a few Fortran skeptics,
but Fortran eventually prevailed: 

It gradually got to the point where a program in
Fortran had a reasonable expectancy of compiling
all the way through and maybe even of running.
This gradual change in status from an experimen-
tal to a working system was true of most compil-
ers. It is stressed here in the case of Fortran only
because Fortran is now almost taken for granted,
as if it were built into the computer hardware.2

Optimization techniques

The Fortran I compiler was the first major
project in code optimization. It tackled problems
of crucial importance whose general solution
was an important research focus in compiler
technology for several decades. Many classical
techniques for compiler analysis and optimiza-
tion can trace their origins and inspiration to the
Fortran I compiler. In addition, some of the ter-
minology the Fortran I implementers used al-
most 50 years ago is still in use today. Two of the
terms today’s compiler writers share with the
1950s IBM team are basic block (“a stretch of pro-
gram which has a single entry point and a single
exit point”3) and symbolic/real registers. Symbolic
registers are variable names the compiler uses in
an intermediate form of the code to be gener-
ated. The compiler eventually replaces symbolic
registers with real ones that represent the target
machine’s registers.

Although more general and perhaps more
powerful methods have long since replaced those
used in the Fortran I compiler, it is important to
discuss Fortran I methods to show their ingenu-
ity and to contrast them with today’s techniques. 

Parsing expressions
One of the difficulties designers faced was how

to compile arithmetic expressions taking into 
account the precedence of operators. That is, 
in the absence of parentheses, exponentiation
should be evaluated first, then products and di-
visions, followed by additions and subtractions.
Operator precedence was needed to avoid ex-
tensive use of parentheses and the problems as-
sociated with them. For example, IT, an experi-
mental compiler completed by A. Perlis and J.W.
Smith in 1956 at the Carnegie Institute of Tech-
nology,4 did not assume operator precedence. As
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Donald Knuth pointed out: “The lack of operator
priority (often called precedence or hierarchy) in
the IT language was the most frequent single
cause of errors by the users of that compiler.”5

The Fortran I compiler would expand each
operator with a sequence of parentheses. In a
simplified form of the algorithm, it would

• replace + and – with ))+(( and ))-((, 
respectively;

• replace * and / with )*( and )/(, respec-
tively; 

• add (( at the beginning of each expression
and after each left parenthesis in the original
expression; and 

• add )) at the end of the expression and be-
fore each right parenthesis in the original
expression.

Although not obvious, the
algorithm was correct, and, in
the words of Knuth, “The re-
sulting formula is properly
parenthesized, believe it or
not.”5 For example, the expres-
sion A + B * C was expanded 
as ((A))+((B)*(C)). The
translation algorithm then
scanned the resulting expres-
sion from left to right and in-
serted a temporary variable for
each left parenthesis. Thus, it

translated the previous expression as follows: 

u1=u2+u4; u2=u3; u3=A; u4=u5*u6;

u5=B; u6=C.

Here, variable ui (2 ≤ i ≤ 5) is generated when
the (i – 1)th left parenthesis is processed. Vari-
able u1 is generated at the beginning to contain
the expression’s value. These assignment state-
ments, when executed from right to left, will
evaluate the original expression according to the
operator precedence semantics. A subsequent
optimization eliminates redundant temporaries.
This optimization reduces the code to only two
instructions: 

u1=A+u4; u4=B*C. 

Here, variables A, B, and C are propagated to
where they are needed, eliminating the instruc-
tions rendered useless by this propagation. 

In today’s terminology, this optimization was
equivalent to applying, at the expression level,

copy propagation followed by dead-code elimination.6

Given an assignment x = a, copy propagation
substitutes a for occurrences of xwhenever it can
determine it is safe to do so. Dead-code elimina-
tion deletes statements that do not affect the pro-
gram’s output. Notice that if a is propagated to
all uses of x, x = a can be deleted. 

The Fortran I compiler also identified permu-
tations of operations, which reduced memory ac-
cess and eliminated redundant computations re-
sulting from common subexpressions.3 It is
interesting to contrast the parsing algorithm of
Fortran I with more advanced parsing algorithms
developed later on. These algorithms, which are
much easier to understand, are based on syntac-
tic representation of expressions such as:7 

expression = term [ [ + | −] term]...
term = factor [ [ * |  / ] factor]...
factor = constant | variable | (expression )

Here, a factor is a constant, variable, or expression
enclosed by parentheses. A term is a factor possibly
followed by a sequence of factors separated by *
or /, and an expression is a term possibly followed
by a sequence of terms separated by + or −. The
precedence of operators is implicit in the notation:
terms (sequences of products and divisions) must
be formed before expressions (sequences of addi-
tions and subtractions). When represented in this
manner, it is easy to build a recursive descent
parser with a routine associated with each type of
object, such as term or factor. For example, the
routine associated with term will be something like

procedure term(){

call factor()

while token is * or / {

get next token

call factor()

}

}

Multiplication and division instructions could be
generated inside the while loop (and addition or
subtraction in a similar routine written to repre-
sent expressions) without redundancy, thus avoid-
ing the need for copy-propagation or dead-code-
elimination optimization within an expression. 

DO loop optimizations and subscript 
computations

One of the Fortran I compiler’s main objectives
was “to analyze the entire structure of the program
in order to generate optimal code from DO state-

It is interesting to

contrast the parsing

algorithm of Fortran I

with more advanced

parsing algorithms. 
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ments and references to subscripted variables.”1

For example, the address of the Fortran array ele-
ment A(I,J,c3*K+6) could take the form 

base_A+I-1+(J-1)*di+(c3*K+6-1)

*di*dj

where di and dj are the length of the first two
dimensions of A, and these two values as well as
the coefficient c3 are assumed to be constant.
Clearly, address expressions such as this can slow
down a program if not computed efficiently. 

It is easy to see that there are constant subex-
pressions in the address expression that can be in-
corporated in the address of the instruction that
makes the reference.3 Thus, an instruction making
reference to the previous array element could in-
corporate the constant base_A+(6-1)*di*dj-
di-1. It is also important to evaluate the variant
part of the expression as efficiently as possible. The
Fortran I compiler used a pattern-based approach
to achieve this goal. For the previous expression,
every time “K is increased by n (under control of a
DO), the index quantity is increased by c3didjn,
giving the correct new value.”3

Today’s compilers apply removal of loop invari-
ants, induction-variable detection, and strength re-
duction to accomplish similar results.6,8 The idea
of induction-variable detection is to identify those
variables within a loop that assume a sequence of
values forming an arithmetic sequence. After
identifying these induction variables, strength re-
duction replaces multiplications of induction-
variable and loop-invariant values with additions. 

The Fortran I compiler applied, instead, a sin-
gle transformation that simultaneously moved
subexpressions to the outermost possible level
and applied strength reduction. A limitation of
the Fortran I compiler, with respect to modern
methods, was that it only recognized loop in-
dices as induction variables:

It was decided that it was not practical to track
down and identify linear changes in subscripts
resulting from assignment statements. Thus, the
sole criterion for linear changes, and hence for
efficient handling of array references, was to be
that the subscripts involved were being con-
trolled by DO statements.1

Register allocation
The IBM 704, the Fortran I compiler’s target

machine, had three index registers. The com-
piler applied register allocation strategies to re-
duce the number of load instructions needed to

bring values to the index registers. The compiler
section that Sheldon Best designed, which per-
formed index-register allocation, was extremely
complex and probably had the greatest influence
on later compilers.1 Indeed, seven years after
Fortran I was delivered, Saul Rosen wrote:

Part of the index register optimization fell into
disuse quite early, but much of it was carried
along into Fortran II and is still in use on the
704/9/90. In many programs it still contributes
to the production of better code than can be
achieved on the new Fortran IV compiler.2 

The register allocation section was preceded by
another section whose objective was to create
what today is called a control-flow graph. The
nodes of this graph are basic blocks and its arcs
represent the flow of execution.
Absolute execution frequencies
were computed for each basic
block using a Monte Carlo
method and the information
provided by Frequency state-
ments. Fortran I programmers
had to insert the Frequency
statements in the source code
to specify the branching proba-
bility of IF statements, com-
puted GOTO statements, and av-
erage iteration counts for DO
statements that had variable
limits.9

Compilers have used Frequency information
for register allocation and for other purposes.
However, modern compilers do not rely on pro-
grammers to insert information about frequency
in the source code. Modern register allocation
algorithms usually estimate execution frequency
using syntactic information such as the level of
nesting. When compilers used actual branching
frequencies, as was the case with the Multiflow
compiler,10 they obtained the information from
actual executions of the source program.

Although the Monte Carlo Algorithm deliv-
ered the necessary results, not everybody liked
the strategy:

The possibility of solving the simultaneous equa-
tions determining path frequency in terms of tran-
sition frequency using known methods for solv-
ing sparse matrix equations was considered, but
no methods which would work in the presence of
DO-loops and assigned GOTO statements [were] hit
upon, although IF-type branches alone could

Although the Monte

Carlo algorithm 

delivered the necessary

results, not everybody

liked the strategy.
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have been handled without explicit interpretation.
The frequency estimating simulation traced the
flow of control in the program through a fixed
number of steps, and was repeated several times
in an effort to secure reliable frequency statistics.
Altogether an odd method!9

With the estimated value of execution fre-
quency at hand, the compiler proceeded to cre-
ate connected regions, similar to the traces used
many years later in the Multiflow compiler. Re-
gions were created iteratively. In each iteration,
the control flow graph was scanned one at a time
by finding at each step the basic block with the
highest absolute execution frequency. Then,
working backwards and forward, a chain was
formed by following the branches with the high-
est probability of execution as specified in the
Frequency statements. Then, registers were al-
located in the new region

… by simulating the action of the program.
Three cells are set aside to represent the object
machine index registers. As each new tagged in-
struction is encountered, these cells are examined
to see if one of them contains the required tag; if
not, the program is searched ahead to determine
which of the index registers is the least undesir-
able to replace.3

The new regions could connect with old regions
and subsume them into larger regions. 

In processing a new path connecting two previously
disconnected regions, register usage was matched
by permuting all the register designations of one
region to match those of the other as necessary.9

The process of dealing with loops was somewhat
involved. 

In processing a new path linking a block to itself
and thus defining a loop, the loop was first con-
sidered to be concatenated with a second copy of
itself, and straight-line register allocation carried
out in normal fashion through the first of the two
copies, with look-ahead extending into the second
copy. …Straight-line allocation was carried out for
a second loop copy in essentially normal fashion.9

The only difference was that the look-ahead
procedure employed during this allocation was
a modified version of the original look-ahead
procedure to account for register reuse across
loop iterations. Finally, “the allocation produced

for the second loop was that ultimately used in
generating machine code.”9

The “least undesirable” register the look-ahead
procedure identified was one whose value was
dead or, if all registers were live, the one reused
most remotely within the region. This strategy
is the same as that proved optimal by Laszlo A.
Belady in a 1965 paper for page replacement
strategies.11 Belady’s objective was to minimize
the number of page faults; as a result, the algo-
rithm is optimal “as long as one is concerned only
with minimizing the number of loads of symbolic
indexes into actual registers and not with mini-
mizing the stores of modified indexes.”9

The goal, of course, was not to prove or even
achieve optimality of the register allocation al-
gorithm. In fact, 

[i]n order to simplify the index register alloca-
tion, it was implicitly assumed that calculations
were not to be reordered. The contrary assump-
tion would have introduced a new order of diffi-
culty into the allocation process, and required the
abstraction of additional information from the
program to be processed.9

This assumption meant that the result is not
always optimal because, in some cases, “… there
is much advantage to be had by reordering com-
putations.”7 Nevertheless, “… empirically, Best’s
1955–1956 procedure appeared to be optimal.”1

During the last decade, the relative im-
portance of traditional programming
languages as the means to interact
with computers has rapidly declined.

The availability of powerful interactive applica-
tions has made it possible for many people to use
computers without needing to write a single line
of code. 

Although traditional programming languages
and their compilers are still necessary to imple-
ment these applications, this is bound to change. I
do not believe that 100 years hence computers will
still be programmed the same way they are today.
New applications-development technology will
supersede our current strategies that are based on
conventional languages. Then, the era of compil-
ers that Fortran I initiated will come to an end. 

Technological achievements are usually of in-
terest for a limited time only. New techniques
or devices rapidly replace old ones in an endless



cycle of progress. All the techniques used in the
Fortran I compiler have been replaced by more
general and effective methods. However, For-
tran I remains an extraordinary achievement that
will forever continue to impress and inspire. 
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