
Systems

File No. S370-36
Order No. GC20-1807-7

I BM Virtual Machine
Facilityi370:'
System Programmer's Guide

Release 6 PLC 17

This publication, intended for VM/370 system
programmers, contains:

• Detailed descriptions of procedures, commands,
and utility programs useful in debugging as
well as guidelines for reading dumps.

• A description of CP and how it works and
details of how to modify or better utilize CPo

• A description of CMS and how it works, as well
as details of some special features of CMS .

• A description of the Remote Spooling
Communications Subsytem (RSCS).

--...- ------ - ---- ~--- ~ ---- - - -~---------- -,,-

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

This edition (GC20-1807-7) together with Technical Newsletters
GN25-0492, dated August 1, 1979, and GN25-0829, dated April 1, 1981,
applies to Release 6 PLC 17 (Program Level Change) of the IB~ Virtual
Machine Facility/370, and to all subsequent releases unless otherwise
indicated in new editions or Technical Newsletters.

In Part 2 the entire section beaded "Functional Information" has been
deleted. This information now appears in the IBM !irtual ~achi~
FacilllYLJ.70: Syst~ LollS.9.D~ probl~ Determination Guide !olume 1,
SY20-0886.

Technical changes and addi tions to text and illustra tions are indicated
by a vertical bar to the left of the change.

Changes are periodically made to the information contained herein;
before using this publication in connection with the operation of IBM
systems, consult the IB! ~!~m/370 Bibliography, Order No. GC2o-0001,
for the editions that are applicatle and current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs), program.ing, or
services which are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce
such IBM products, programming; or services in your country.

Publications are not stocked at the address qiven below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication; if the form has been removed, comments may be addressed to
IBM Programming publications, Dept. G60, P.O. Box 6, Endicott, New York,
U.S.A. 13760. IBM may use or distribute any of the information you
supply in any way it relieves appropriate without incurrinq any
obligation whatever. You may, of course, continue to use the
information you supply.

© copyright International Eusiness Machines corporation 1972, 1973,
1974. 1975, 1976, 19"17, 1'9 7 9, 1981

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

This publication describes how to debug
VM/370 and how to modify, extend, or
implement Control Program (CP) and
Conversational Moni tor System (CMS)
funct ions. This informa tion is intended
for system programmers, system analysts,
and programming personnel.

This publication consists of four parts
an d three appendixes.

"Part 1. Debugging with VM/370"
discusses the CP and CMS detugging tools
and procedures to follow when debugging.
This part is logically divided into three
sections. The first section, "Introduct ion
to Debugging", tells you how to identify a
problem and lists guidelines to follow to
find the cause. The second section,
"Debugging with CP", describes the CP
debugging commands and utilities, debugging
CP in a virtual machine, the internal trace
table and restrictions. A detailed
description of CP dump reading is also
in cluded. The third section, "Debu gging
with CMS", describes the CMS debugging
commands and utilities, load maps, and
restrictions and tells you what fields to
examine when reading a CMS dump.

"Part 2. control. program (CP) " contains
an introductory and functional description
of CP as well as guidance in implementing
some CP features.

"Part 3. Conversational ~on itor Syste m
~MS) " contains an introductory and
functional description of CMS including how
CMS handles interrupts and SVC calls,
structures its nucleus and its storage, and
manages free storage. Information on
saving the CMS system and implementing the
Batch Facility is also included.

"Part 4. Remote Spooling Communications
Subsystem (RSCS)" descril:es the functions
and uses of the component of VM/370 that
handles the transmission of files between
VM/310 users and remote programmable and
nonprogrammable stations.

"Appendix A: Systemj370 Information"
describes the System/370 extended PSi and
extended control register usage.

"Appendix B: MULTI-LEAVING" provides a
detailed description of MUlTI-LEAVING1, a

1 Trademark of IBM

Preface

computer-to-computer
technique developed for use
system and used by the RSCS
VM/370.

communica tion s
by the HASP
componen t of

"Appendix C: VM Monitor Tape Format and
Con tents" describes the format and contents
of data records for classes and codes of
MONITOR CALL.

The followinq terms in this publica tion
refer to the indicated support devices:

• "2305" refers to IBM 2305 Fixed Head
Storage, Models 1 and 2.

• "3262" refers to the IBM 3262 Printer,
Models 1 and 11.

• "3210" refers to a series of displa y
devices, namely, the IBM 3275, 3276
(referred to as a Controller Displa y
Station), 3277, and 3278 Display
Stations. A specific device type is
used only when a distinction is required
between device types.

•

•

•

Information about display terminal usage
also applies to the IBM 3138, 3148, and
3158 Display Consoles when used in
display mode, unless otherwise noted.
Any information pertaining to the IBM
3284 or 3286 printer also pertains to
the IBM 3287, 3288, and 3289 printers,
unless otherwise noted.

"3330" refers to the IBM 3330 Disk
Storage, Models 1, 2, or 11; the IBM
3333 Disk Storage and Control, ftodels 1
or 11; and the 3350 Direct Access
Storage operating in 3330/3333 Model 1
cr 3330/3333 Model 11 compatibility
mode.

"3340" refers to the IB M 3340 Di sk
Storage, Models A2, Bl, and B2, and the
3344 Direct Access Storage Model B2.

"3350" refers to the
Access Storage Models
native mode.

IB M 3350
A2 and

Direc t
B2 in

• "370X" refers to IBM 3704 and 3705
Communications Controllers.

• "3705" refers to the 3705 I and the 3705
II unless otherwise noten.

• "2741" refers to the IBM 2741 and the
IBM 3767, unless otherwise specified.

Preface iii

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

An expanded glossary is available in the
IBl1 lirtual MachiM Facili!yL]70: §l.Qssary
and Maste£ ~~, GC20-1812.

Knowledge of Assembler language and
experience with programming concepts and
techniques are prerequisite to using this
publicat ion.

References to a program that produces a
standalone dump occur in several places in
this publication. One such program is the
BPS Storage Print program, Program No.
36 OP- UT- 056.

Information on the new IBM 3262 Printer,
Models 1 and 11, is for {:lannin 9 purposes
only until the availability of the product.

PREREQUI SI TE PUBLICATIONS

IB11 System/360 principles of ~ration,
GA22-6821.

IBM Systeml.J70 principles .Q..! Cperation,
GA22-7000.

IBM 0 S/VS and :LHL370 Ass.&.m tl~.I Pro gra mmer' s
Guide, GC33-4021.

IBM OS/l~, COSLVS, .snd VlV370 Assembler
Langyage, GC33-4010.

IB11 Virtual ~achi~ Facili!YL11~: ~erating
Systems in ~ lirtual Machin~, GC20-1821.

COREQUISITE PUBLICATIONS

Knowledge of the commands and system
functions of CP, CMS, and RSCS is
corequisite.

Planning and System .§§1!~.Iat.iQ!! Guide,
GC20-1801

~.f Co!!!.!!@nd Referen ce ..!cr §~ral Users,
GC20-1820

~MS ~2~2 Guide, GC20-1819.

Operator~2 Guide, GC20-1806

Terminal ~~§ Gui~~, GC20-1810

iv IBM YM/310 system Proqrammer's Guide

OLTSEP ~nd ~
GC20-1809.

Recording

This publication contains a
description of CPEREP. CPEREP is a CMS
command that invokes OS/VS EREP operands
to produce statistical reports from
error recording data of hardware and
software errors.

OS/VS Environmental Recordi~ ~gi1!~g
~nd Printing (EREP) Program, GC28-0772

This publication contains a detailed
description of the CPEREP operands, and
is required in order to make use of
CPER EP.

Remote Spooling Communications Sug§~§1~ID
(RSCS)]ser's Guide, GC20-1816

~ystem Logic ~nd Problem Determination,
SBOF-3802

Volume 1 Control
SY20-0886

Program

Volu~~ 1 Conversational
~ystem (C8S), SY20-0887

Volume 3
COiiiiBUii ic ation
SY20-0888

Remote
System

(£.R> ,

If the IBM 3767 Communication Terminal
is used by the system programmer as a
virtual machine console, the IB~ Jl§l
~ rator' s Guide, GA 18-2000 is a Iso a
corequisite publication.

If the IB8 3850 Mass storage System is
attached to the V8/370 system, the
following are corequisite pUblications:

IB8 J850 Ma§
Introduction ~nd
GA32-0038.

storage Syste~ (11~~)

Preinstalla tion Pl~..D-.!.l!.!.lg,

OS/VS Messa~ Library: ~~ Storage ~~§!~~
(MS~) Messages, GC38-1000.

IBM 3850 ~ass stor~~~ Svstem (~~~)
prInciples .Qf Operation: Theory, GA32-0035.

IBM 3850
Principles
GA32-0036.

Storage Syste~ (11~~)

OBeration: Ref§~~~~§,

OS/VS Mass ~!~~ System (MSS) Se!:!!g§§:
Reference lnfo~tion, GC35-0017.

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Q2~gtor 's Library: IBM]850 .!tEss Storage
~stem (~~~)]nd~ OS/VS, ~C35-0014.

Note: References in text to titles of
Gorequisite VM/370 publications are give n
in abbreviated form.

SUPPLEMENTAL PUBLICATIONS

OSLVS Data Management Macro Instructions,
GC 26-3793 ..

OS~ Supervisor Service
Instructions, GC27-6979.

IBM 2821 cont£Q! unit ~Qnonent],§scription
GA 24-3312.

IBl1 3211 ~£int~, 321.§ Interchangeable
Train. 9£.irid~, .ru!g 3811 i£in!g: Control
Unit Component Qescriptio,!! E1!..9 .9perator's
Guide, GA24-3543.

IB! 3262 Printers 1 and 11 Comp9n~BS
DescriPtion, GA24-3733.

IBM OS/VS
GC26-3813.

Linkage Editor

Introduction to the IBM]704 ~g ~lg~
Communications Controllers, GA27-3051.

IBM 3704 and 3705 Communications
Controllers operato~§ Guide, GA27--3055.

IBM Virtual Machi~ FacilitXLllQ:
Performance/Monitor Analysis ~~~~~~,
SB21-2101.

Preface v

April 1, 1981

vi IBM VM/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Contents

The entries in this Table of Contents are accumulative. They list additions to this
publication by the following VM/370 System Control Proqram Products:

• VM/370 Basic System Extensions, program Number 5748-XX8
• VM/370 System Extensions, program Nu mber 5748-XEl

However, the text within the publication is not accumulative; it only relates to the one
SCP program product that is installed on your system. Therefore, there may be topics ana
references listed in this Tarle of contents that are not contained in the body of this
P ubI ica tion.

Summary of Amendments. xiii

PART 1. DEBUGGING WITH VM/370. • • 1

INTRODUCTION TO DEEUGGING.. • .3
How To Start Debugging • • • • .3

Does a Problem Exist? •• 4
Identifying the Problem. • ••••• 7
Analyzing the Problem. • • 13

How To Use VM/370 Facilities To Debug •• 18
Abend. • • • • • • • • 18

CP Abend • • • • • • • • • 18
CMS Abend. • • • • • • • • 19
Virtual Machine Abend (other than

CM S). • • • • • •
Un exp ect ed Results • • • • • •

Unexpected Results in CP • •
Unexpected Results in a Virtual

• 23
• 24
• 24

Machine • • • • • 24
Loop • • • • • • • • • 25

CP Disabled Loop •• • • • • 25
wait • • • • • • • • 27

Summary of VM/370 Debugging ~ools. • 32
Comparison of CP and CMS Facilities for

Debugging • • • • • • • • • • • • • • • 37
An Overview of VM/370 Commands That Can

Be Used for Debugging • • • • • • • 38
Commands that Display or Dump
virt ual Machine Data. • • • • • • 38

Commands That Set and Query System
Features, Conditions, and EVents ••• 39

Commands To Collect and Analyze System
Information • • • • • • • • • • • • • 40

Commands That Trace EVents in Virtual
Machines ••••••••••••

Commands That Alter the Contents of
storage • • . • • • • • • • • •

Debugging CP on a Virtual Machine.
CP Internal Trace Table. • • •
Abend Dumps ••••••••••

• 40

• 41
• 42
• 42
• 44

How To Print a CP Abend Dump From Tape 45
Reading CP ABEN D Dumps

Reason for tbe Abend
Collect Information ••
Register Usage • • • • • •••

• 46
• 46
• 47
• 48

Save Area Conventions. •
Virtual and Real Control
Identifying and Locating

• 48
Elock Status. 50
a pageable

Module. • • • • ••••••••••• 63

VMDUMP Records: Format and Content 63
Locating Logical Dump Records. • 64

DEBUGGING WITH CMS • •
CMS Debugging Commands •

DEBUG. • • •• • • •

• 64.2
•• 64.2

• 65
Nucleus Load Map •••••
Load Map • • • • • • •
Reading CMS Abend Dumps ••

• • • • • 66

Reason for the Abend
Collect Inf ormation.
Register Usage •••

PART 2. CONTROL PROGRAM (CP)

VM/370 ••••••••••••••
Introduction to the VM/370 Control

• 68
• 68
• 69
• 70
• 72

• 73

• 75

Program • • • • • • • • • • • •• • 75
Virtual Machine Time Management. .' 76
Virtual Machine Storage Management • • 76
Virtual Storage Preservation
C~148-XX8) ••••••••••••• 78.1

Virtual Storage Preservation
(.2148-1 E i). • • • • • • • • •

Virtual Machine I/O Management •
Spooling Functions •

• 78.1
• 79
• 80

Spool File Recovery. • 81
CP Commands. • 82

PROGRAM STATES • • 83

USING PROCESSOR RESOURCES. 84
Queue 1 ••••••••••••••
Queue 2. • • • • • • • • • • • • •

• 84
• 84

Deadline Priority (~148-XX~)
Deadline Priority (~148-X~J)
Queue 3 (5748-Xl~) • • • •
Queue 3 (5748-XE1)

INTERRUPTION HANDLING ••
INTERRUPTION HANDLING (5748-XX8)
INTERRUPTION HANDLING (5748-X~1)
I/O Interrupts • • • • • • •
I/O InterrUpts (.2148-XX.m"-.

• • • 85
• 85
• 86
• 86

• 8E
86.1

• • • 86.1
• 86

• •• 86.1
• •• 86.1

· 86
• • • • • 86.1

I/O Interrupts (5748-XEj) ••
Program Interrupt. • • • • •
Program Interrupt (5748-XX8)
Program Interrupt (~748-X~l)
Machine Check Interrupt. • • •

86.1
• 86

Contents vii

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

~achine Check Interrupt (2I~~=!X~) •
Machine Check Interrupt (2I!§!.=X~1) •
svc Interrupt. • . • • • •••
External Interrupt • • • •••
Synchronous Interrupts In An Attached

Processor System ••
Real I/O Interrupts ••

PERFORMANCE GUIDELINES.

• 86. 1
• 86.1
• • 87
• • 87

• 87
• 87

• • 88
General Information •••
virtual Machine I/O •••
paqinq Considerations.

• • • • • 88
• 89

• • 90
Locked Pages Option ••
Peserved Page Frames Option.

• • • • • 91

virtual=Re al 0 pt ion. • • • •
vM/370 Performance Options.

F' a vored Execu t ion. • • • • •
Priority •••••••••
User priority (2148-Xl§) •
User Priority (2148-X~1)

• 92
92

• 93
• • 93

• 95
• 95

• • 95
• 95

. • • • • • 95
ReseL ved Paqe Fra mes •
Virtual=Real • • • • • ••
Affinity • • • • • • • •
Multiple Shadow Table Support

• 97

(Sl!~=K]l). . • • • • • • •• •• 98
Shadow Table Bypass (21!~=K~1). . 98.1
virtual Machine Assist Feature. • 98

(S148=!]1). • • • • • • • • • • 98.2
virtual Machine Assist Feature ••••• 98
rysing the Virtual Machine Assist
Peature • • • • • • • • • • • • • • • 99

Restr icted Use of the Virtual Machine
~ssist Feature •••••••••••• 99

V~/370 Extended Control-Program Support
(ECPS). • . • . • ••••••••••• 99
TJsinq the VM/370 Extended

Cont r01- proqram Support • • • • • • .101
The virtual Block Multiplexer Channel
Option. • • . • • • • • • • • • .102

Alternate Path Support •••••••• 102
qVS/System Extensions Support

(5748-XE1) •••••••••••••• 102.1
Lo;-iddress Protection Facility
(21~§=X].1). . • • • • • • • • • • • 10 2. 1

Common segment Facility (2.I!~=X~l) • 102.2
Special MVS Instruction Operation
Handlinq Facilities (2I!!l=X~1). • • 102.2

Enablinq MVS/System Extensions Support
(5748- X E 1). . . • • • • • • • • . • 102. 2

Sinqle-processor Mode (2I~§.=X~1). • 102. 2
Dynamic SCP Transition to or From

Native Mode (57!!8-1£:.1) •••••• 102.3

PERFORMANCE OBSERVATION AND ANALYSIS •• 103
Load Indicators. • • . • • • • • .103

'I'h e I n d i cat e Com man d • . • • • • 1 03
The Class G INDICATE Command. • .104
The Class E INDICATE Command. • .106
The Class E INDICATE FAVORED Command
CS1!!~:E~§l. . • • • • • • • • •••• 109

~he Class E INDICATE FAVORED Command
(51!!]:!£; 1). . • • • • • • • • • 109

':"he MIGRATE Command (2I~~:.XE1). .109
oueryin~ and Settinq the System
Resour~e ~anaaement Variables
LS1!!§:XX§). . • • • • • • • • • 109

Querying and Setting the System
Resource M anagem en t Va r iab Ie s
(2148-!E1). • • • • • 110

Querying and Setting the Paging
Variable (574~X!~) • • • 110

Querying and Setting the Paging
Variable (2748-X~1)

The MONITOR Command. • • •••
.110
.110

The MONITOR Command (5748-XX8) • .110.1
The MONITOR Command (5748-XE1) • .110.1

.119 Implemented Classes •• ~ ••
VM/370 Monitor Response to Unusual

Tape C ondi tions • • • • • • • •
VM/370 Monitor Consideratioas ••
VM/370 Monitor Data Volume and
Overhead. • • • • • • • • • •

Load Environments of VM/370.

ACCOUNTING RECORDS
Accounting Records for Virtual Machine

Resource Usage. •
Accounting Records for

Devices and Temporary
Accounting Records for
Devices and Temporary

Dedicated
Disk Space.
Dedicated
Disk Space

.121
• 122

.123

.124

.127

.127

.128

(.214 8- X X ~). • • • • • • • • • • • • • • 1 2 7
Accounting Records for Dedicated

Devices and Temporary Disk Space
(57 !is-XE1). • • • • • • • • • • •

Accounting Records for LOGON, AUTOLOG,
.127

and LINK Journaling •
Accounting Records Created
Operational Notes •••••
User Accounting Options ••

• •••••• 128
by the User .129

• • •• 130
• • • • • • • 130

GENERATING SAVED SYSTEMS. .132
The NAMESYS Macro For Saved Systems ••• 132
Using the SAVESYS Command •••••••• 134
Shared Segments ••••••••••••• 135

Special Considerations for Shared
Segments. • • • • • • • • .135

Discontiguous Saved Segments •••••• 135
User Reguirements ••••••••••• 136
The NAM ESYS Macro for D iscont iquous

Saved Segments. • • • • • • • • .137
Loading and Savinq Discontiquous

Shared Segments ••••••••••• 138
How The Interface Works. • • .139

Shared Segment Protection. • .140
Virtual Machine Operation. • .142

THE VIRTUAL MACHINE COMMUNICATION
FACILITY •••••••••••••••• 143

Using the Virt ual Machine C ommu nica ti on
Facility. • • • • • • • • • • .145

VMCF Applications. • • • • • .145
security and Data Integrity. .146
Performance Considerations. .147
General Considerations. • • • • .148

VMCF Protocol. • • • • • • • • • • .148
The SEN D Protocol. • • • .148
The SENDjRECV Protocol. • • • • .150
The SENDX Protocol • • • .151
The IDENTIFY Proto col. • • 152

Descriptions of VMCF Subfunctions. .153
The Control Subfunctions • • • .153
The Data Transfer Functions.. • • .155

PagE of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Invoking VMCF Subfunctions
Diagnose Code X'68' •••••••
The VMCPARM Parameter List • • •
External Interrupt Code X'4001'.
VMCF User Doubleword • • • • • • • •
DIAGNOSE X'68' Feturn COdES.
Data Transfer Error Codes ••

S PECI AL MESSAGE FACILITY •

VM/370 USE OF THE IBM 3850 MSS •
VM/370 Access to the MASS Stora9E
Control .. • • • .. • • • • • .. • •

Asynchronous MSS Mount Processing.
VM/370 Processinq of MSS Cylinder
Faults ••••••••••••••

Backup and Recovery of MSS Volumes
Logical Device Support Facility

(57 4 8-!I~). • .
Logical Device Support Facility

t21! 8-1111).. • • .. • • • • • •

"'IMERS IN A VIRTUAL MACHINE ••
Interval Timer " ..
Processor Timer ••
T OD Clock. • • • • • • •
Clock Comparator •
~seudo Timer • • • • • •

Pseudo Timer Start I/O •
Pseudo Timer DIAGNOSE.

CP In Attached Processor Mode.
PS A. • • • • • • • •
I/O Handling
Signaling. • • • • • •
Locking ••••
Affinity ••••••

DIAGNOSE INSTRUCTION IN A VIRTUAl
MACHINE • • • • • • • • • • •

DIAGNOSE Code X'OO' -- Store
Extended-Ident ification Code.

DIAG NOSE Code X' 04' -- Ex·amine Beal

.159

.159

.159

.1-6-q

.166
4,

• 10'

• 170

.171

.172

.172

.173

• 173
• 174

.174

.174

.175

.175

.176

.176
• 177
• 177
• 177
.178
.. 178
.178
.179
• 180
.180
• 181

.182

.183

Storage • • • • • • • • • • • • 184
DIAGNOSE Code X' 08' -- Virtual

Console Function. • • • • • • .184
DIAGNOSE Code X'08' -- Virtual

Console Function (274~-XX8) • • .184.1
DIAGNOSE Code X'08' -- Virtual

Console Function (5746-XE.1). • .184.1
DIAG NOSE Code X' Oct Pseudo Timer. • • 186
DIAGNOSE Code X'10' -- Release Pages •• 186
DIAGNOSE Code X'14' -- Input spool File

Manipulation. • • .187
Subcode 1'0000' • • • • .187
Subcode X'0004' .188
Subcode X·0008' .188
Subcode X'OOOC' .188
Subcode X' 001 0' .188
Subcode X'001Q' .189
Subcode X'0018' .. • .. • .189
Subcode X' 001 C' • • .. • • • 189
Subcode x'0020-. .189
Subcode X'OFFF' .1-90

bIAGNOSE Code X'18' -- Standard DASD
I/O • • • • • • • • • .190

DIAGNOSE Code X'1C' -- Clear Error
Recording Cylinders. .191

DIAGNOSE Code X'20' -- General I/O ••• 191
DIAGNOSE Code Xi 24; -- Device Type and

Features •••••••••••••••• 192
DIAGNOSE-Code X'28 ,-- Channel Program

Modification. • • • • • • • • • • .194
DIAGNOSE Code X'2C' -- Return DASD
Start of LOGREC • • • • • • • • • .195

DIAGNOSE Code X'30' -- Read One Page of
LOGREC Data •••••••••••••• 196

DIAGNOSE Code X'34' -- Read System Dump
Spool File ••••••••••••••• 196

DIAGNOSE Code X'38' -- Read System
Symbol Table •••••••••••••• 191

DIAGNOSE Code X'3C' -- VM/310 Directory. 191
DIAGNOSE Code X'40' -- Clean-Up After
virtual IPL by Device (~148-XX~) ••• 197

DIAGNOSE Code X'40' -- Clean-Up After
Virtual IPL by Device (5748-XE1i. 197

DIAGNOSE Code X'48' -- Issue SVC 16
From a Second Level VM/370
Virtual Machine. • • • • • • .197

DIAGNOSE Code X'4C' -- Generate
Accounting Cards for the Virtual
User. • • • • • • .. • • • • • • • .197

DIAGNOSE Code X'4C' -- Generate
Accounting Records for the Virtual
User (5748-!X8) •••••••••••• 198

DIAGNOSE Code X'4C' -- Generate
Accounting Records for the Virtual
User (5748-XE1) 198

DIAGNOSE Code X'50' -- Save the 370X
Control program Image ••••••••• 199

DIAGNOSE Code X'54' -- Control The
Function of the PA2 Function Key •••• 199

DIAGNOSE Code X'58' -- 3270 Virtual
Console Interface • • .. • • • .199

Displaying Data (5748-XX8) •••••• 200
Displaying Data (5 748- XE 1) • • • • • .200
Full Screen Mode {5748-XX8} ••••• 200.1
Full Screen Mode (~!E1) ••••• 200.1

DIAGNOSE Code X'5C' -- Error Message
Editing. • • • • • • • ••••• 200

DIAGNOSE Code X'5C' -- Error Message
Ed it i ng (57 .!i 8- X l~). • • • • • • 20 0 • 4

DIAGNOSE Code X'5C' -- Error Message
Editing (5748-XE.1). • " .. 200 .. 4

DIAGNOSE Code X' 60' -- Determining the
Virtual Machine Storage Size •••••• 201

DIAGNOSE Code X'64' -- Finding,
Loading, and purging a Named Segment •• 201

DIAGNOSE Code X'68' -- Virtual Machine
Ccmmunication Facility (VMCF) ••••• 203

DIAGNOSE Code X'6C' -- Special Diagnose
for Shadow Table Maintenance
(5748-XE.1) ••••••••••••••• 204

DIAGNOSE Code X'70' -- Activating the
Time-of-Day (TOD) Clock Accounting
Interface (~748-XE.1). • • • • • • .204

DIAGNOSE Code X'74' -- Saving or
Loading a 3800 Named System •••••• 204

DIAGNOSE Code X'74' -- Saving or
Loading a Named System (5748-XE1) •• 204.1

DIAGNOSE -Code X' 7S' -- ass
Communication • • • • • • • • .205

DIAGNOSE Code X'7C' -- Logical
Device Support Facility
(5748-XX~) ••••••••••••••• 206

Conte nts i x

I
i

I

I

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

DIAGNOSE Code X'7C' Loqical
Device Support Facility
(21~'§:.!];J). • • • • • • • • • • • • • • 206

DIAGNOSE code X'84' -- Directory Update
In-Place •••••••••••••••• 206

DIAGNOSE Code X'7C' -- Return
Codes and Condition Codes
(274~=!X~)· •••••••••

DI AGNOSE Code X' 7 C' -- Ret urn
Codes and Condition Codes
(S74~=-K~1)· • • • •••••

Descriptions of Logical Device
support Facility Subfunctions

.206. 1

• 206. 1

C21~]::!!!H. • • • • • • • • • • • • .206.2
Descriptions of Logical Device
~upport Facility Subfunctions
(5748-XE1) ••••••••••
Initiate: DIAGNOSE Code X'7C'

.206.2

subfucntion X'0001' (~74§:.!!~) ••• 206.2
Initiate: DIAG~lOSE Code X'7C'

Subfucntion X'0001' (~l!H~:.!];l) ••• 206.2
Accept: DIAGNOSE Code X'7C'

Subfucntion X'0002' (~1!H~:.!X~) ••• 206.2
Acceot: DIAGNOSE Code X'7~'
Subfucntion 1("10002' (~I~~:.!El) • •• 206.2

Present: DIAGNOSE Code X'7C'
C)u bfucnt ion X' 0003' (~l~~:.!!.§). • • 206.3

Present: DIAG~OSE Code X'7C'
Subfucntion ""0003' (57!~:.!~1) ••• 206.3

'T'erminate: DIAGNOSE Code X'7C'
Subfucntion X'0004' (5748-XX8) 206.3

Terminate: DIAGNOSE Code-X'7C'
subfucntion X'0004' (..2I~~:.X!;l) • •• 206.3

Terminate (all): DIAGNOSE Code X'7C'
su bfucnt ion X' 0005' (~I~~:.!X.§). • .206.3

Terminate (all): DIAGNOSE ~ode X'7C'
Subfucnt ion X' 00 05' (~1!~:.!~1). • .206.3

External Interupt Code X'2402'
(51~Jt.!!~)· • • • • • • • • •

External Interupt Code X'2402'
(.2I.9.~:..!!; J). • . • • • •
Loqical Device Festrictions
(21.9J~:.!!~)· . • • • • • • •

Loqical Device Restrictions
(21.9.~:.!~1)· ••••••••

DIAGNOSE Code X'84' -- Directory
In - Place (.21.9..§:.!.!!D • • • • • •

DIAGNOSE Code X'84' -- Directory
Tn -Place (21!~:.!]1) • • • • •

CD CONVENTIONS
r 0 Codinq Conventions ••
rp Loadlist Requirements

.206.3

• 206.3

• 206.4

.206.4
Up dat e
• • • 206. 4
Up dat e

.206. 4

• • • 211
• • 211
• .214

HOW TO ADD A CONSOLE FUNCTION TO CPo •• 215

PPIN'T' BUFFERS AND FORMS CONrROL.
~ddinq New Print Puffer Images

TJCS Buffer Images •••
UCSB Imaqes ••••••
FOB Imaaes (..2148:.!!~).
FOg Images (21~~:.XE1).

'lCorms Control Buffer. • •
Forms Control Buffer (..21~~:.!!!H.
Forms Control Buffer (~148=-!~1).
j20~ ~odel 4 and 5 Printer Forms

• .216
• .217
• .217
• .219

• •• 222
• •• 222

•••• 222
.222. 1
• 222.1

rontrol and Print Buffer •.•••• • .223

x IB~ V'1/370 svstem Proarammer's Gu:i.np

3203 Model 4 and 5 Printer and
3262 Model 1 and 11 Printer Forms
Control and Print Buffer (~XX~) •• 223

3203 Model 4 and 5 Printer and
3262 Model 1 and 11 Printer Forms
Control and Print Buffer (5748-XE1) •• 223

UCC Buffer Images ••• '. • •••••• 224

IBM 3800 PRINTING SUBSYSTEM 226
Using the 3800 Printer as a Dedicated

Device. • • • • • • • • • • • • • .226
Using the 3800 Printer as a Real

Spooling Device •••••••••••• 227
Specifyinq Printer Options. • •• .227
Creating Control Tables. • • • •• .227
Storing and Loading Control Tables .228
Recovering from I/O Errors. .228
Displaying printer Control
Information. • • • • • .228

JOURNALING LOGON, AUTOLOG, AND LINK
COMMANDS. • • • • • • .. • • • • .229

SUPPRESSING PASSWORDS ENTERED ON THE
COMMAND-LINE •••••••••••••• 230

PART 3. CONVERSATIONAL MONITOR SYSTEM
(CMS) • .. • • • • • • • • • • .231

I NTRO DUCT ION TO C MS. •
The CMS Command Lan guage •
The File System. • • .. • •
Program Development

.233
••• 233

.234

.235

INTERRUPT HANDLING IN C MS.
SVC Interruptions

Internal Linkage SVCs ••
Other SVCs. • • • • • •

Input/Output Interruptions
Terminal Interruptions • •
Reader/Punch/printer Interruptions
Use r- Controlled Device Interruptions •
Program Interruptions. • • • •
External Interruptions • • • •
Machine Check Interruptions ••

FUNCTIONAL INFORMATION
Register Usage • • • •
Structure of DMSNUC ••

USERSECT (User Are~ ••
DEVTAB (Device Table) ••••••

structure of CMS Storage •
Free Storage Management. •

GETMAIN Free Storage Management.
DMSFREE Free Storage Management.
Releasing Allocated Stora gee • • ••
DMSFREE Service Routines ••••
Error Codes from DMSFRES, DMSFREE,
and DMSFRET ••••••••••••

CMS Handling of PSW Keys ••••••
CMS SVC Handling • • • • • • • • • •
SVC Types and Linkage Conventions. •
Search Hierarchy for SVC 202 • •
User and Transient Progra m Area s ••
Called Routine Start-Up Table ••••
Returning to the Calling Routine ••

CMS Interface for Display Terminals ••

.236

.236

.236

.236

.237

.238

.238
• 238
.238
.239
.239

.240

.240

.240

.241

.241

.241

.243

.244

.247
• 252
.252

• 254
.255
.256
.257
.259
.263
.264
• 264
.267

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

HOw TO ADD A
']"0 CMS.

COMMAND OR EXEC PROCEDURE
• .269

OS MACRO SIMULATION UNDER CMS. • .270
o ~ Data Management Simulation. • • .270

Handling Files that Reside on CMS
Disks • • • • • • • • • • • • •.• • • 270

Handling Files that Reside on OS or
DO c) Dis ks • • • • • • • • • • • 271

Simulation ~!otes • • • • • • • • 273
Access Method SUpport. • • • .278
Reading OS Data Sets and DOS Files

Usinq OS Macros. • ••••• 280

D0 S/VS SUPPORT TJNDER CMS •• • • • .284
DOS/VSE SUPPORT UNDEF CMS (2I~~-X!~) •• 284
DnS/VSE SUPPORT UNDER eMS (2I~8-X~1) • Q284
Hardware Devices supported. •• • .285
~ '1S Support of DOS/VS Functions. • .285
C'1S support of DOS/VSE Functions

(5.1!! 8-XX§). • • • • • • • • • • • • • • 285
c~S support of DOS/VSE Functions

(5748-XE1) ••••••••••••••• 285
LoqicaI-Unit Assignment ••• * = =288

Dns/vs Supervisor and I/O M~cros
supported by CMS/DOS. • • • • • • • •• 289

DOS/VSE Supervisor and I/O Macros
c;upported by CMS/DOS (.274!i:.!!!i) • • • .289

DOS/VSE su perv isor and I/O Macros
c;upported by CMS/DOS (5748·XE1)

Supervisoe- Macros •• ~-~----
Sequential Access Method
Declarative "'acros •••

Sequential Access Method

• .289
• .290

.294

Imperative Macros •••
DOS/VS Transient Foutines.
nOS/VSE TLansient Routines
DOS/VSE Te-ansient Routines

• •• 304
• .304

(21~ 8-X!~). • 304
(21~~-XE1) •• 304

• .305 EXCP Support in CMS/DOS ••
DOS/VS supervisor Control Blocks

c;imulated by CMS/DOS •••••••••• 306
nOS/VSE Supervisor Control Blocks

Simulated by CMS/DOS C21!!!i:.!X!il •••• 306
nOS/VSE Supervisor Control Blocks

c;imulated by CMS/DOS (21~!i:.!~.lJ •••• 306
1ser Considerations and

Besponsibilities •••••••••••• 306
Dr) S/VS System Ge ner ation an d Up dat ing
considerations ••••••••••••• 306

DOS/VSE System Generation and (Jpdating
Considerations. (.2148-.!!!H ••••••• 306

nOS/VSE System Generation and Updating
ronsiderations. (5748-XE1) ••••••• 306

V'1/3 70 Die- ect ory En tries-. • • • • • • • 307
CMS/DOS Storage Fequirements • • • • • .308
~hen the DOS/VS System Must Be Online •• 308
~hen the DOS/VSE System Must Be Online
(21~,§=X!~n. • • • • • • • • • • • • • • 308

Wh en the DO S/VSF Sy stem Must Be On line
(21~'§:'x~.1)" = • eo. • • • 308

ryerformance. • • • • • • • .309
Ex-ecution Considerations and

Restrictions ••••••
~ape Label processing in CMS/DOS

(21!!.§:.XX§)· • • • • • • • • • •
Tape Label Processing in CMS/DOS

• .309

• .309

(21~'§=X£;.1). • • • • • • • • • • • • • • 309

CMS SUPPORT FOR OS AND DOS VSAM
FUNCTION S • • • • • • • • .310

Hardware devices Supported. .310
DOS/VS Supervisor l'!acros and Logical
Transients Support for VSAM •••••• 311

OOS/VSE supervisor Macros and Logical
Transients Support for VSAM (5748-XX~) .311

DOS/VSE Supervisor Macros and Logical
Transients Support for VSAM (.2748-X]l).311

Storage Requirements •••••••••• 312
Data Set Compatibility Considerations •• 312
Data Set Compatibility Considerations

(5748-XX]) •••••••••••••• 312.1
Data Set Compatibility Considerations

(5748-XEj). • • • • • " ,,312 .. 1
ISAM Interface Program (lIP) •• 312
ISAM Interface Program (lIP)

(57.9.8-XX.§). • • • • • • .312.1
ISAM Interface Program (lIP)

(5748- Xj..1).. = • • • • .312.1

SAVING THE CMS SYSTEM. • • • • • • .313
The CMSSEG Discontiguous Saved Segment .313

CMS SEG Usage Options • .313
Saved System Restrictions for CMS •••• 315

CMS BATCH FACILITY ••••••••••• 316
Resetting the CMS Batch Facility System
Limits ••• " : e e _ ••••••••• 316

Writing Routines To Handle Spec ia 1
Installation Input ••••••••••• 317

BATEXIT1: Processing User-Specified
Control Language. • • • • • • • • • • 317

BATEXIT2: Processing the Batch
Facility /JOB Control Card •••••• 317

EXEC Procedures for the Batch Facility
Virtual Machine •••••••••••• 318

Data Security under the Batch Facility .318
Improved IPL Performance Using a Saved

System. • • • • • • • • • • • • • .318

AUXILIARY DIRECTORIES. • • • • • • .319
How To Add an Auxiliary Directory. .319

Generation of the Auxiliary Directory. 319
Initializing the Auxiliary Directory .320
Establishing the Proper Linkage •••• 320

An Example of Creating an Auxiliary
Directory ••••••••••••••• 321

ASSEMBLER VIRTUAL STORAGE REQUIREMENTS .324
Overlay Structures. • • • .324

Pre structured Over lay. • • • • • • • .324
Dynamic Load Overlay ••••••••• 326

PART 4. REMOTE SPOOLING COMMUNICATIONS
SUBSYSTEM (RSCS). • .327

INTRODUCTION TO RSCS
Locations And Links.

.329

.329
Remote Stations. • • • • • • • • .329

.330

.330
VM/370 Spool System Interface.
RSCS Command Language. • • • •

STRUCTURE OF RSCS VIRTUAL STORAGE.
RSCS Supervisor. • • •••
Supervisor Queue Extension.
Free Storage • • • • •
System Control Task •••••

• 332
••• 333
••• 333

.333

.334

Contents xi

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Free Storaqe and Line Drivers.
tine Allocation Task ••
Spool File Access Task • •

FUNCTIONAL INFORMATION •••
Virtual storage Manaqement •••

Paqe Allocation •••••
Queue Element Management •

File ~anaqement •••••••

• .334
.. .334
• .334

• .335
.335

• .335
• .. 335
• .336
• .336 Taq Slot Queues. • • .. •

Spool File Access •••••
~ask-to-Task Communication •
RSCS Command Processinq ••

• • • • • • 337

~SCS Messaqe Handling ••
Interruption Handling ••

External Interruptions
SVC Interruptions •••
I/O Tnterruptions.

LOGGING I/O ACTIVITY ••
The SML Loq Record • • • •
The NPT Log Record •

• •• 337
• .337
• .338
• .338
• .338
• .339
• .339

• .340
• .341
• .342

xii I9~ VM/370 System Proqrammer's Guide

APPENDIXES •••

APPENDIX A: SYSTE8/370 INFORMATION
Control Registers. .. •

APPENDIX B: MULTI-LEAVING,.
MULTI-LEAVI.G in V8/370. ..
MULTI-LEAVING Philosophy •••••••
MULTI-LEAVING Control Specification ••

Record Control Byte (RCB). .. • •
Sub-Record Control Byte (SRCB) •
Strinq Control Byte (SCB)oo •••
Block Control Bvte (BCB)
Function Control Sequence (FCS).

APPENDIX C: VM/370 MONITOR TAPE FORMAT
AND CONTENT · · · .. · Header Record. · · · · · · . · Data Records · · · · · · · . ·

INDEX. . . . · · · · · ·

.343

.345

.345

.349

.349

.349
• 351
.352
.353
.35~
.355
.356

.357

.357

.358

.367

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

FI G URES

Fiqure 1.
Fiqure 2.
Fiqure 3.
F iqure 4.

Fiqure 5.

Fiqure 6.

viqure 7.

"F'iqure 8.
Fiqure 9.

Fiqure 10.

Fiqure 10.1.
Figure 11.
Figure 12.
Fiqure 13.

Fiqure 13.1.

Fiqnre 14.

Fiqure 15.
Fiqure 16.
F iqllr e 17.
Fiqure 18.
Fiqure 19.

Fiqnr e 20.

Fiqure 21.

Fiqure 21A.

Fiqure 21A.

Fiq'lr e 22.

Fiqure 23.

Fiqure 24.

Fiqure 25.

Fiqure 26.

Abend ~essages •••••••••••••• 4
VM/370 ProDlem Types •••••••• 8
Does a Problem Exist? ••••• i5
Debuq Procedures for Waits
a no Loops ••••••••• ,. •••••••• 16
Debuq Pro cedar es for
'Jnexpected Results and an
abend •••••••••••••••••••••• 17
Summary of VM/370 Debugqing
Tools •••••••••••••••••••••• 32
Comparison of CP and eMS
Facilities f~r Debugging ••• 37
CP Trace Table Entries ••••• 44
CP Control Block
Relationships •••••••••••••• 51
CP Device Classes, Types,
t1odels, and Features 60
VMDUMP Record Format ••••• 64.1
sample CMS L~ad Map •••••••• 67
CMS Control Blocks ••••••••• 70
storaqe in a Virtaal=Real
'1 ach ine •••••••••••••••••••• 96
Functions and Instructions
that ECPS Supports •••••• 100.1
virtual Machine Communication
Facility (VMCF)
Subfunctions •••••••••••••• 144
The SEND protocol ••••••••• 149
The SEND/RECV protocol •••• 150
The SENDX Protocol •••••••• 151
The IDENTIFY Protocol ••••• 152
VMCF Subfunctions,
Parameters, and
Return Codes •••••••••••••• 163
DIAGNOSE Code X'68'
RetUrn Codes •••••••••••••• 167
DIAGNOSE Code X'68'
Data Tr ansf er Error Codes .170
Logical Device Support
Facility Subfunctions
(5 7 ~ 8-XX ~) • • • • • • • • • • • • • • 1 7 4. 1
Loqical Device Support
Faci Ii ty Subfunct ions
(.21~8-1~1) •••••••••••••• 174. 1
Form ats of Ps eudo Timer
Information ••••••••••••••• 177
storaqe in a Virtual=Real
Machine ••••••••••••••••••• 179
Addressable Storage Before
and After a LOADSYS
Function o202
UCSB Associative Field
Chart ••••••••••••••••••••• 220

Devices Supported by a CMS
Virtual Machine •••••••••••• 242

Figure 26.

Figure 26.

Figure 27.
Figure 28.

Figure 29.

Fig ure 30 ..

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Fig ure 34.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Fig ure 41.

Figure 41.

Figure 41.

Figure 42.
Figure 43.
Figure 44.
Figure 45.

Figure 46.

Figure 47.

Fig ure 48.

Devices Supported by a CMS
virtual Machine
(57.!!~-XX8) ,,, •••••• 242.1
Devices Supported by a CMS
virtual Machine
(5748-XE1) ••••••••••••••• 242.1
CMS Storage Mapp ••••••••••• 245
CMS Command (and Request)
processing ••••••••••••••••• 261
P SW Fields When Called
Routine Starts ••••••••••••• 264
Register Contents When
Called Routine Starts •••••• 264
Simulated OS Supervisor
Calls ••••••••••••• ~ •••••••• 272
Summary 0 f Changes to C MS
Commands to Support
C M S/D 0 S •••••••••••• ,. ••••••• 286
Physical IOCS Macros
Supported by CMS/DOS ••••••• 290
DOS/VS Macros Supported'
Under CMS •••••••••••••••••• 291
DOS/VSE Macros Supported
Under CMS (~148-XX8) ••••••• 291
DOS/VSE Macros Supported
Under CMS (~148-X~1) ••••••• 291
CMS/DOS Support of DTFCD
Macro •••••••••••••••••••••• 295
CMS/DOS Support of DTFCN
Macro •••••••••••••••••••••• 296
CMS/DOS Support of DTFDI
Macro •••••••••••••••••••••• 297
CMS/DOS Support of DTFMT
Macro •••••••••••••••••••••• 299
CM SIDOS Support of DTFPB
Macro •••••••••• ~ ••••••••••• 301
CMS/DOS Support of DTFSD
Macro •••••••••••••••••••••• 302
DOS/VS VSAM Macros Supported
by eMS •• ' '," .. " ,. •••• ' •••••• 311
DOS/VSE VSAM Macros Supported
by C M S (~ 7 4 8- XX 8) •••••••••• 3 11
DOS/VSE VSAM Macros Supported
by CMS (5748::ID) •••••••••• 311
An Overlay Structure ••••••• 324
RSCS Command Summary ••••••• 331
RSCS Storage Allocation •••• 332
Control Register
Allocation ••••••••••••••••• 345
Control Register
Assignments •••••••••••••••• 346
The Extended Control PSi'
(Program Status Word} •••••• 348
A Typical MULTI-LEAVING
Transmission Block ••••••••• 350

Con ten ts xiii

I ,

I
I

Apr il 1, 1981

xiv IBM VM/370 System Proqrammer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

MI SCELLAN EOUS

f~anggg: Documentation Only

~n~~ Technical Newsletter incorporates
minor technical and editorial changes.

Summa ry of A mend me nts
for GC20-1807-7

VM/310 Re lea se 6 PLC 11

Summary of Amendments xv

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Summary of Amendments
for GC20-1807-7
VM/370 Release 6 PLC 4

3031AP EX~ENDED CONTROL PROGRAM SUPPORT

]~~: Proqram Feature

The 3031 and 3031AP now provide Extended
Control Program Support for specific
instructions and VM/370 functions.

CO DryMP SERVICES FOR VIRTUAL MACHINES

Ne~: Proqram Feature

~ new command, VMDUMP, dumps virtual
storaqe to a specified reader spool
file. The dump is in a format that is
acceptable as input to the
VM/Interactive ~roblem Control System
Extensions proqral product.
Installations that have not installed
this proqram product may process the
dump with a user-written proqram.

xvi rBM VM/370 System Proqrammer's Guide

Page of GC20-1807-7 As Updated rtpril 1, 1981 by TNL GN25-0829

3800 PRINTING SUBSYSrEM

Ne~: Proqram Feature

V"1/370 now supports the 3800 printinq
subsystem as a dedicated device or as a
real spooling device. A new diagnose
code (X'74') allows an installation to
save or to load a 3800 named system.
This support is described in Part 2.

SPECIAL ~ESSAGE FACILITY

Ne~: Proqram Feature

The special message facility allows one
virtual machine to send messages to
another virtual machine by issuing a new
comm3.nd, SMSG. The special message
facility is described in Part 2.

3850 MSS SUPPORT

Ne~: Proqram Feature

Virtual machines may now access mass
storage volumes that contain VM/370
minidisks, or they may access entire
mass storaqe volumes. A new diagnose
code (X'78') enables MSS to communicate
with VM/370. This support is described
in P3.rt 2.

DIRECTORY UPDATE IN-PLACE

Ng~: Proqram Feature

'Now, a new diaqnose code (X' 84') enables
a victual machine to update the VM/370
dire::;t orv. Th is support is des cr ibed in
P3. rt 2.

LOGON, AUTOLOG, AND LINK JOcrRNALING

]g~: Program Feature

Now, VM/370 will optionally attempt to
detect and record certain occurrences of
the LOGON, AUTOLOG, and LINK commands.
Th is support is desc[' i bed in Part 2.

Summary of Amendments
for GC20-1807-7

VM/370 Release 6 PLC 1

Also, the topic "Accounting Records", in
Part 2, has been upda ted to include ne w
record types used by this facility.

SUPPRESSING PASSWORDS ENTERED
COMMA ND-LINE

New: Program FeatUre

ON THE

Installations may optionally request
that VM/370 reject LOGON or LINK
commands when the password is entered on
the same lin e as t he comma nd.. Thi s
support is described in Part 2.

MONITORING FACILITIES

New: Program FeatUre

The VM/370 Monitor command has been
changed as follows:

• New operands have been added to the
INTERVAL parameter and to the LIMIT
parameter.

• A new parameter, SEEKS, is now
supported.

These changes are described in Part 2.

Also, the content of the VM monitor tape
has been ch anged.. This cha nqe is
described in Appendix C.

SHARED SEGMENT· PROTECTION

New: Program Feature

NOW, VM/370 allows an installation to
optionally protect or not protect shared
segments. A new parameter has been
added to the NAMESYS macro for thi s
support. Shared segment protection and
the NAMESYS macro are discussed in Par~
2.

EDITORIAL UPDATES

ChanE~g: Documentation

Extensive editorial updates have been
made throughout this publication.

Summary of A mend me nts xvii

April 1, 1981

xviii IEM V!/370 System ?roqrammer's Guide

Part 1. Debugging With VM/370

This debugging section contains the following information:

!ntrogygtory !nformg!i2D

• How to start debugging
• How to use VM/370 facilities to de tug abends, unexpected

results, loops, and waits
• Summary of VM/370 debugging tools
• Comparison of CP and CMS debugging tools

• Debugging CP on a virtual machine
• Commands useful in debugging
• DASD Dump Restore program
• Internal trace table
• Restrictions
• Abend dumps
• Reading CP abend dumps
• Control block summary

• Debugging commands
• DASD Dump Restore Program
• Nucleus load map
• Reading CMS abend dumps
• Control block summary

Part 1. Debugging with VM/370 1

TrY,I')"'7"
l- f.,J,1)! , v

Introduction to Debugging

The VM/370 Control Program manages the resources of a single computer
such that multiple computing systems appear to exist. Each "virtual
computing system,!! or virtual machine, is the functional equivalent of
an IBM System/370. Therefore, the person trying to determine the cause
of a VM/370 software problem must consider three separate areas:

1. The Control Program (CP), which controls the resources of the real
machine.

2. The virtual machine operating system running under the control of
CP, such as CMS, RSCS, OS, or DOS~

3. The problem program, which executes under the control of a virtual
machine operating system~

Information that explains how to debug CP or CMS is contained in this
book; information explaining how to debug applications programs is in
the VMLJ70 ~~~ g~~§ Guid~. For information that explains how to use
the VM/370 Interactive Problem Control System (IPCS) for debugging,
refer to the !~L37Q JD1~f~g!!X~ ~£Q~lem ~~nt!~l ~~§1~~ (IPCS) Q§~!~§
~uide

If an IPCS problem is caused by a virtual machine operating system
(other than CMS and RSCS), refer to the publications pertaining to that
operating system for specific information. However, use the CP debugging
facilities, such as the CP commands, to perform the recommended
debugging procedures discussed in the other publication.

If it becomes necessary to apply a PTF (program Temporary Fix) to a
component of VM/370, refer to the VMLJ70 Pl~nni~g ~ng ~yst~! Gen~!i£n
~:!!id~ for detailed information on applying PTFs,.

How to Start Debugging

Before you can correct any problem 6 you must recognize that one existse
Next, you must identify the problem, collect informaticn, and determine
the cause so that the problem can be fixed. When running VM/3701 you
must also decide whether the problem is in CP, the virtual machine, or
the problem program.

A good approach to debugging is:

1. Recognize that a problem exists.

2. Identify the problem type and the area affected.

3. Analyze the data you have available, collect more data if you need
it, then isolate the data that pertains to your problem.

4. Finally, determine the cause of the problem and correct it.

Part 1. Debugging with VM/370 3

DOES A PROBLEM EXIST?

There are four types of problems:

1. Loop
2. Wait state
3. Abend (abnormal end)
4. Incorrect results

The most obvious indication of a problem is the abnormal termination
of a program. Whenever a program abnormally terminates, a message is
issued. Figure 1 lists the possible abend messages and identifies the
type of abend for these messages.

Message

(Alarm rings)
DMKDMP9081 SYSTEM FAILURE CODE xxxxxx

DMKDMP905W SYSTEM DUMP FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM FAILURE; MACHINE
CHECK, RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
I/O ERROR

DMKCKP900W SYSTEM RECOVERY FAILURE;
PROGRAM CHECK

DMKCKP901W SYSTEM RECOVERY FAILURE;
MACHINE CHECK, RUN SEREP

DMKCKP902W SYSTEM RECOVERY FAILURE;
FATAL I/O ERROR - NUCL CYL

- WARM CYL
DMKCKP922W SYSTEM RECOVERY FAILURE;

INVALID SPOOLING DATA
DMKCKP910W SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE;

WARM START AREA FULL

DMKCKS903W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

DMKCKS912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKCKS915E PERMANENT I/O ERROR ON
CHECKPOINT CYLINDER

DMKCKS916E ERROR ALLOCATING SPOOL FILE
BUFFERS

DMKCKS917E CHECKPOINT CYLINDER INVALID;
CLEAR STORAGE AND COLD START

Figure 1. Abend Messages (Part 1 of 3)

Type of Abend

CP abend, system dumps to
disk. Restart is automatic.

If the dump program encoun
ters a program check, ma
chine check, or fatal I/O
error, a message is issued
indicating the error. CP
enters the wait state with
code 003 in the PSW.

If the checkpcint program
encounters a program check,
a machine check, a fatal I/O
error, or an error relating
to a certain warm start
cylinder or warm start data
conditions, a message is
issued indicating the error
and CP enters the wait state
with code 007 in the PSW.

If the checkpoint start
program encounters a severe
error, a message is issued
indicating the error and CP
enters the wait state with
code OOE in the PSi.

r
Message

DMKWRM921i SYSTEM RECOVERY FAILURE;
UNRECOVERABLE I/O ERROR

DMKWRM903W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

DMKWRM90QW SYSTEM RECOVERY FAILURE;
INVALID WARM START DATA

DMKWRM912W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx NOT MOUNTED

DMKWRM920W NO WARM START DATA; CKPT
START FOR RETRY

DMKDMP90BI SYSTEM FAILURE, CODE xxxxxx
DMKCKP9601 SYSTEM WARM START DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN COMPLETE

DMKDMP905W SYSTEM DUMP FAILURE;
PROGRAM CH ECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK, RUN SEREP

DMKDMP907W SYSTEM DUMP FAILURE; FATAL
1/0 ERROR

DMKMCH610W MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCT610W MACHINE CHECK SUPERVISOR
DAMAGE

DMKMCH611W MACHINE CHECK SYSTEM
INTEGRITY LOST

April 1, 1981

Type of Abend I
----I

IIf the warm start program I
t encOtlnteFsa severa error, a I
I message is issued indicating,
i the error and CP enters the
I wait state with code 009
, in the PSi.
I
I
I
I
I

CP abend, system dumps to
tape or printer. The system
stops; the operator must 1Pt
the system to start again.

If the dump program encoun
ters a program check, a ma
chine check, or fatal I/O
error, a message is issued
indicating the error. CP
enters the wait state with
code 003 in the PSW.

If the dump cannot find a
defined dump device and if
no printer is defined for
the dump, CP enters a dis
abled wait state with code
004 in the PSi.

CP termination with wait
state.

The machine check handler en
countered an unrecoverable
error with the VM/370 con
trol program ..

The machine check handler en
countered an error that
cannot be diagnosed; system
integrity, at this point,
is not reliable.

Part 1. Debugging with VM/370 5

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN2S-0829

r------
, Messaqe
I
I DMKMCH612W MACHINE CHECK; TIMING
I FACILITIES DAMAGE; RUN SEREP
I ,
I DMKMcr620I MACHINE CHECK; ATTACHED
I PROCESSOR NOT BEING USED

DMKCCH603W CHANNEL ERROR, RUN SEREP,
RESTART SYSTEM

DMKCPI955W INSUFFICIENT STORAGE FOR
VM/370

DMKMCH622W MACHINE CHECK; MULTIPLE
CHANNEL ERRORS

DMSABN148T SYSTEM ABEND xxx
CALLED FROM xxxxxx

Others
Refer to OS and DOS publications
for the abnormal termination
messages.

Type of Abend I
--------I

An error has occurred in the I
timing facilities. Probable I
hard error. I

A malfunction alert, clock
clock error or instruction
processing error occurred on
the attached processor.
The system continues to run
in uniprocessor mode.

CP termination without auto
matic restart.

There was a channel check
condition from which the
channel check handler could
not recover. CP enters the
wait state with code 002 in

I the Psw.
IThe generated system requires
I more real storage than is
I available. CP enters the
I disabled wait state with
I code OOD in the PSW.
IThere was a group error
I machine check from which the
I machine check handler could
I not recover. CP enters a
I wait state with code 001 in
1 in the PSW.

I
I

,eMS abend, system will acceptl
commands from the terminal. I
Enter the DEBUG command and I
then the DUMP subcommand to 1
have CMS dump storage on thel
printer. I

I
IWhen OS or DOS abnormally I
I terminates on a virtual I
t machine, the messages issuedl
I and the dumps taken are the 1
I same as they would be if OS I
I or DOS abnormally terminatedl
I on a real machine. I

L
__-J

Fiqure 1. Abend Messages (Part 3 of 3)

Another obvious indication of a problem is unexpected output. If your
output is missinq, incorrect, or in a different format than expected,
some problem exists.

Unproductive processing
problem is not as easily
environment.

time is another symptom of a
recognized, especially in a

6 IBM VM/370 System proqrammer's Guide

problem. This
time-sharing

IDENTIFYING THE PROBLEM

Two types of problems are eas1lY identified: abnormal termination is
indicated by an error message, and unexpected results become apparent
onoe the output is examined. The looping and wait state conditions are
not as easily identified.

When using VM/370, you are nor.ally sitting at a terminal and do not
have the lights of the processor control panel to help you. You may have
a looping condition if your program takes longer to execute than you
anticipated. Also, check your output. If the number of output records or
print lines is greater than expected, the output may really be the same
information repeated many times. Repetitive output usually indicates a
program loop_

Another way to identify a loop is to periodically examine the current
PSW~ If the PSW instruction address always has the same value, or if the
instruction address has a series of repeating values, the program
probably is looping.

The wait state is also difficult to recognize when at the terminal.
Again, the console lights are unavailable~ If your program is taking
longer than expected to execute, the virtual machine may be in a wait
state. Display the current PSW on the terminal. Periodically, issue the
CP command

QUERY TIME

and compare the elapsed processing time. When the elapsed processing
time does not increase, the wait state probably exists.

Figure 2 helps you to identify problem types and the areas where they
may occur.

Part 1. Debugging with VM/370 7

r,---,
tProblemt Where t
I Type tAbend Occurst Distinguishing Characteristics

Abend CP abend

CP abend

The alarm rings and the message

DMKDMP9081 SYSTEM FAILURE, CODE XXX XXX

appears on the processor console. In this
instance, the system dump device is a disk, so
the system dumps to disk and automatically
restarts. If an error occurs in the dump,
checkpoint, or warmstart program, CP enters the
wait state after issuing ene or more of the
following messages:

DMKDMP905W SYSTEM DUMP FAILURE; PROGRAM CHECK
DMKDMP906W SYSTEM DUMP FAILURE; MACHINE CHECK,

RUN SEREP
DMKDMP907W SYSTEM DUMP FAILURE; FATAL I/O ERROR
DMKCKP900W SYSTEM RECOVERY FAILURE; PROGRAM

CHECK
DMKCKP901W SYSTEM RECOVERY FAILURE; MACHINE

CHECK, RUN SEREP
DMKCKP902W SYSTEM RECOVERY FAILURE; FATAL I/O

ERROR
DMKCKP922W SYSTEM RECOVERY FAILURE;

INVALID SPOOLING DATA
DMKCKP910W SYSTEM RECOVERY FAILURE;

INVALID WARM START CYLINDER
DMKCKP911W SYSTEM RECOVERY FAILURE;

WARM START AREA FULL
DMKCKS903W SYSTEM RECOVERY FAILURE; VOLID

xxxxxx ALLOCATION ERROR CYLINDER
xxx n

DMKCKS912W SYSTEM RECOVERY FAILURE; VOLID
xxxxxx NOT MOUNTED

DMKCKS915E PERMANENT I/O ERROR ON CHECKPOINT
CYLINDER

DMKCKS917E CHECKPOINT CYLINDER INVALID; CLEAR
STORAGE AND CCLD START

DMKWRM921W SYSTEM RECOVERY FAILURE; UNRECOVER
ABLE I/O ERROR

DMKWRM903W SYSTEM RECOVERY FAILURE;
VOLID xxxxxx ALLOCATION ERROR
CYLINDER xxx

DMKWRM904W SYSTEM RECOVERY FAILURE; INVALID
WARM START DATA

DMKWRM912W SYSTEM RECOVERY FAILURE; VOLID
xxxxxx NOT MOUNTED

tThe following messages appear on the processor
t console:
I
I DMKDMP9081 SYSTEM FAILURE, CODE xxx xxx
I DMKDMP9601 SYSTEM WARM START DATA SAVED
I DMKDMP961W SYSTEM SHUTDOWN COMPLETE

Figure 2~ VM/370 Problem Types (Part 1 of 6)

8 IBM 1M/370 System Programmerfs Guide

~.---,
IProblem
I Type

Where
Abend Occurs Distinguishing Characteristics

1--
I Abend
1 (cont.)

l

CP abend
(cont.)

IThe system dumps to tape or printer and
stops. The operator must I~~ the system
to restart. If an error occurs in the dump
or checkpoint programs, CP enters the wait
state after issuing one or more of the
following messages:

DMKDMP905W SYSTEM DU~P FAILURE;
PROGRAM CHECK

DMKDMP906W SYSTEM DUMP FAILURE;
MACHINE CHECK, RUN SEREP

DMKDMP901W SYSTEM DU~P FAILURE;
FATAL I/C ERROR

DMKCKP900W SYSTEM RECOVERY FAILURE;
PROGRAM CHECK

DMKCKP901W SYSTEM RECOVERY FAILURE;
PROGRAM CHECK RUN SEREP

DMKCKP902W SYSTEM RECOVERY FAILURE; FATAL
I/O ERROR

DMKCKP910W SYSTEM RECOVERY FAILURE;
INVALID WARM START CYLINDER

DMKCKP911W SYSTEM RECOVERY FAILURE;
WARM START AREA FULL

CP termination An unrecoverable machine check error has
with wait occurred. One of the following messages:
state

DMKMCH610W MACHINE CHECK SUPERVISOR DAMAGE
DMKMCT610W MACHINE CHECK SUPERVISOR DAMAGE
DMKMCH611W MACHINE CHECK INTEGRITY LOST
DMKMCT611W MACHINE CHECK INTEGRITY LOST
DMKMCH612W MACHINE CHECK; TIMING

FACILITIES DAMAGE;
RUN SEREF

DMKMCT612W MACHINE CHECK;
TIMING FACILITIES DAMAGE;
RUN SEREF

appears on the processor console. The
system enters a wait state.

A machine check occurred on the attached
processor. The message:

DMKMCT6201 MACHINE CHECK; ATTACHED
PROCESSOR NOT BEING USED

appears on the console. The system
continues in uniprocessor mode.

Figure 2. VM/310 Problem Types (Part 2 of 6)

Part 1. Debugging with VM/310 9

r
Problem

Type

Abend
(cont.)

Where
Abend Occurs Distinguishing Characteristics

ICP terminationlAn unrecoverable channel check error has
I without auto-I occurred. The message:
I matic restartl
I I DMKCCH603W CHANNEL ERROR, RUN SEREP,
I I RESTART SYSTEM
I I
I I appears on the processor console, and CP
I I enters wait state.
I------------------~--------------~------------------------
Virtual

machine
abend (CMS)

IThe CMS message
I
I DMSABM148T SYSTEM ABEND xxx CALLED FROM
I
I
I
I
I
I
I

xxxxxx

appears on the terminal~ The system stops
and waits for a command to be entered on
the terminal. In order to have a dump
taken, issue the CMS DEBUG command and then
the DUMP subcommand~

Virtual IWhen OS or DOS abnormally terminates on a
machine abend virtual machine~ the messages issued and
(other than the dumps taken are the same as they would
CMS) be if OS or DOS abnor.ally terminated on a

real machine .•

VM/370 .ay terminate or reset a virtual
machine if a nonrecoverable channel check
or machine check occurs in that virtual
machine. One of the following .essages:

DMKMCH616I MACHINE CHECK; USER userid
TERMINATED

DMKCCH604I CHANNEL ERROR; DEV xxx; USER
userid; ~ACHINE RESET

is sent to the system operator at the
processor console~ Also, the virtual
user is notified by cne of the following
messages that his virtual machine was
terminated or reset:

DMKMCH619I MACHINE CHECK; OPERATION
TERMINATED

DMKCCH606I CHANNEL ERROR; OPERATOR
TERMINATED

UnexpectedlCP
Results I

IIf an operating system, other than CMS,
executes properly on a real machine, but

I not properly with CP, a problem exists~
I Inaccurate data on disk or system files

I
I
I I (such as spool files) is an error.
1--
IVirtual
I machine
I
I
I

IIf a program executes properly under the
I control of a particular operating system
I on a real machine, but does not execute
I correctly under the same operating system
I with VM/370, a problem exists.

Figure 2. VM/370 Problem Types (Part 3 of 6)

1 n 'T' 1':) u ,..,. U .I., -"J" ("I """ _.A. ___ '""'"' T"!o _________ .- _ I) _ ,. '"' .. ~ ,!Ii _

.v ~J..i" II.J/.JIV oJlo::t ... ew t v'.::!.&.Q.wwt::::.&. o::t \3u u.;:;:

f
IProble.
I Type

Where
Abend Occurs Distinguishing Characteristics

I----------------------------------~------------------------------
IWait
I
I
I
I
I

Disabled CP
wait

The processor wait light is on~ Also,
pressing the REQUEST key on the operator's
console, or the equivalent action, leaves
the REQUEST PENDING light on~ If the
message

DKKKCH610W KACHINE CHECK SUPERVISOR
DAKAGE

DMKMCT610W KACHINE CHECK SUPERVISOR
DAMAGE

DKKKCH611W KACHINE CHECK SYSTEK
INTEGRITY LOST

DKKMCH612W MACHINE CHECK; TIMING
FACILITIES DAMAGE; RUN SEREP

DKKKCH612W MACHINE CHECK; TIMING
FACILITIES DAKAGE; RUN SEREP

appears on the processor console, a machine
check (probable hardware error) caused the
CP disabled wait state. If the message

DKKCCH603W CHANNEL ERROR, RUN SEREP,
RESTART SYSTEM

appears on the processor console, a channel
check (probable hardware error) caused the
CP disabled wait state~ If the message

DMKCPI955W INSUFFICIENT STORAGE FOR VK/370

appears on the processor console, the
control program has entered a disabled wait
state with code OOD in the PSi. Either the
generated system is larger than the real
machine size, or a hardware machine mal
function prevents VK/370 from using the
necessary amount of storage. If the message

DMKPAG415E CONTINUOUS PAGING ERRORS FROK
DASD xxx

appears on the processor console, the
control program (CP) has entered a disabled
wait state with code OOF in the PSW.
Consecutive hardware errors are occurring
on one or more VK/370 paging devices.

If the system is being controlled at an
alternate console, messages DMKCKP910I,
DMKCKP911W, and DMKCKP960I are not
generated before the system goes into a
wait state.

figure 2. VK/370 Problem Types (Part 4 of 6)

Part 1. Debugging with VK/370 11

r
IProblem
I Type

Where
Abend Occurs Distinguishing Characteristics

1--
Wait

(cont.)

,

Enabled CP IThe processor console light is on, but the
wait I system accepts interrupts from I/O devices.

Disabled
virtual
machine wait

Enabled
virtual
machine wait

Disabled RSCS
wait

IThe VM/370 Control program does not allow a
virtual machine to enter a disabled wait
state or certain program loops. Instead, CP
issues one of the following messages:

DMKDSP450W CP ENTERED; DISABLED WAIT PSW
DMKDSP451W CP ENTERED; INVALID PSW
DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT

LOOP
DMKDSP453W CP ENTERED; PROGRAM INTERRUPT

LOOP

A PSW enabled for I/O interrupts is loaded.
Nothing happens if an I/O device fails to
issue an I/O interru~t. If a program is
taking longer to execute than expected,
periodically issue the CP command~ QUERY
TIME. If the processing time remains un
changed, there is probably a virtual
machine enabled wait.

CMS types a blip character fer every 2
seconds of elapsed processing time. If the
program does not end and blip characters
stop typing, an enabled wait state probably
exists~

The RSCS operator is notified of the wait
state by CP issuing the message

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

If, in addition, the .essage

DMTINI402T IPL DEVICE READ I/O ERROR

appears on the RSCS console, an unrecover
able error has occurred while reading the
RSCS nucleus fro. DASD storage. RSCS
enters a disabled wait state with a code
of 011 in the PSW.

If a program check occurs before the
program check handler is activated, RSCS
enters a disabled wait state with a code of
007 in the PSW.

Figure 2. VM/370 Problem Types (Part 5 of 6)

12 IBM 9h/37G System programmer·s Guide

,

r
Problem

Type
Where

Abend Occurs Distinguishing Characteristics

Wait IDisabled RSCS IIf a program check occurs after the program
(cont.) I wait (cont.) I check handler is activated, RSCS enters a

Loop

I disabled wait state with a code of 001 in
the PSi. One of the following messages may
also appear on the RSCS console:

DMTREX090T PROGRAM CHECK IN SUPERVISOR
RSCS SHUTDOWN

DMTREX091T INITIALIZATION FAILURE -- RSCS
SHUTDOWN

Enabled RSCS IRSCS has no task ready for execution. A
wait I PSW, ~nabled for external and I/O

CP disabled
loop

I interrupts, is loaded with a wait code of
i all zeros.

IThe processor console wait light is off~ The
I problem state bit of the real PSi is off.
I No I/O interrupts are accepted.

IThe program is taking longer to execute than
I anticipated. Signaling attention from the

Virtual
machine
disabled loopl terminal does not cause an interrupt in the

I virtual machine~ The virtual machine opera
I tor cannot communicate with the virtual

Virtual
machine
enabled loop

I machine's operating system by signalling
I attention.

IExcessive processing time is often an indi
I cation of a loop_ Use the CP QUERY TIME
I command to check the elapsed processing
I time. In CMS, the continued typing of the
I blip characters indicates that processing
I time is elapsing. If time has elapsed,
I periodically display the virtual PSi and
I check the instruction address. If the same
1 instruction, or series of instructions,
I continues to appear in the PSi, a loop
I probably exists~

Figure 2~ VM/370 Problem Types (Part 6 of 6)

ANALYZING THE PROBLEM

Once the type of problem is identified, its cause must be determined.
There are recommended procedures to follow. These procedures are
helpful, but do not identify the cause of the Froblem in every case. fe
resourceful. Use whatever data you have available. If the cause of the
problem is not found after the recommended debugging procedures are
followed, it may be necessary to undertake the tedious job of
desk-checking.

The section "How To Use VM/370 Facilities To Debug" describes
procedures to follow in determining the cause of various problems that
can occur in the Control Program or in the virtual machine. See the
VM/370 £MS Q2~£~2 §yig~ for information on using VM/370 facilities to
debug a problem program.

Part 1. Debugging with VM/370 13

If it becomes necessary to apply a program Temporary Fix (PTF) to a
YM/370 component, refer to the !~Ll1Q flaDniD~ gDQ ~yst~! Generation
~yid~ for detailed information on applying PTFs. Figure 3. -Plgure-4;
and Figure 5 summarize the debugging process from identifying the
problem to finding the cause.

14 IEM iM/370 System Programmerls Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNt GN25-0829

Ii
Is there an ABEND condition?

II If the message
DMKDMP9081 SYSTEM FAILURE, COOE XXX XXX
appears on the console and

I
the alarm rings,

this is a CP ABEND.
The svstem dumps to disk or to the
printer if the set dump E command

has been issued, and automaticallv ~

performs IPL. • V
II If the messages

DMKDMP9081 SYSTEM FAILURE, COOE XXXXXX
DMKCKP9601 SYSTEM WARMSTART DATA SAVED
DMKCKP961W SYSTEM SHUTDOWN COMPLETE
appear on the console,

this is a CP ABEND.
The system dumps to tape

!l!' p!inte, .nd stops. - C5J

II If the message
DMSABNI48T SYSTEM ABEND XXX,
CALLE!;) FROM YYYYYY
appears on the terminal,

this is a CMS ABEND.-C51

II If an ABEND message
from the virtual machine appears
on the terminal,

START
DEBUGGING

,_,w,_ ~ __________

I. has elapsed

II If pressing the REOUEST key on the operator's
console leaves the REOUEST PENDING light on,

a CP disabled wait state exists.

The CPU console light will be on. --- C5J

II If the CPU oonscle wait light is on,
the system is in a CP enabled wait state.

II If the real PSW problem bit is OFF, f4;l
there is a CP loop. ---_ ~

II If anv of the following messages
. DMKDSP450W CP ENTERED; DISABLED WAIT PSW

DMKDSP451W CP ENTERED; INVALID PSW
DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT

LOOP
DMKPRG453W Ci' ENTERED; PROGRAM INTERRUPT

LOOP
appears on the terminal,

there i. a disabled wait or an interrupt loop in the

this is an ABEND in the No problem exists
virtual machine. -------__ '\

operating svstem controlling

this virtual machine._C5J

II Otherwise, an ABEND
condition does not exist,

I Fiqure

GOTO~ ____________________ ~

0)

3.

fI
Unexpected Results?

II If an operating system which
executes properly on a real machine
fails to execute properlv under VM/370,

there are unexpected results r--"""\

inCP. • l5A J

II I! a program which executes under V
the control of an operating svstem on
a real machine fails to execute correctly
with the same operating svstem under
VM/370,

there are unexpected results rs;l
in the virtual machine. ~ V

II I! the program's output is
Inaccurate or miSSIng,

there are unexpected results
in the problem program.

If the output is redundant r-::'\
check for a loop. - 0

II ~~r~e, check for a wait or

o

Does a Problem Exist?

II I! preSSing the ATTN key once does not cause ~
an mterrupt, V

there is a disabled loop in the virtual machine.)

II I! processing has ceased in the virtual
machine without reaching end-of·job,

the virtual machine is in an

GJ
enabled wait state and no 1/0 interrupt

------------~.- ~ has ocwrred.

li lt processing time exceeds normal expectations,
the virtual machine mav have an enabled loop.)

Part 1. Debugging with VM/370 15

Fiqure

April 1, 1981

Debug Procedures for a Wait

4.

CP Disabled Wait -----------------------------~

• •
Use AL TER/DISPLAY console mode (if available), to display real PSW and CSW. Also,
display general and extended control registers and storage locations X·OO·-X·l00·.

Press SYSTEM RESTART button to cause a CP ABEND
dump to be taken.

IPL.

CP Enabled Wait --------------------------------4

•
Press SYSTEM RESTART button to cause a
CP ABEND dump to be taken.

Use the dump to check the status of each VMBLOK. Also,
check RCHBLOK. RCUBLOK. and RDEVBLOK for each device.

Virtual Machine Disabled Wait --------------------------1

•
Use CP commands (CMS users may use the CMS DEBUG command) to display
the PSW, CSW, general registers, and control registers.

Use the CP DUMP command (or CMS DUMP subcommand) to
take a dump.

Virtual Machine Enabled Wait --------------------------/

Take adump.

Debug Procedures for a Loop

CPLoop--~

• •
Use ALTER/DISPLAY console mode (if available) tei
display real PSW, general registers. control
registers, and storage locations X·OO·-X·l00·.

Press SYSTEM RESTART button to cause a CP
ABEND dump to be taken.

Examine the CP internal trace table to see where the loop is.

Virtual Machine Disabled Loop --------------------------1

• • •

Use the CP TRACE command to trace the loop.

Display the general registers and control llegisters
via the CP DrSPLA Y command.

Take a dump using the CP DUMP command.

Examine the source code.

Virtual Machine Enabled Loop --------------------------1

Trace the loop. Display the PSW, general registers,
and extended control registers.

• Take a dump.

• Examine source code.

Debug Procedures for Waits and Loops

16 IBM VM/J70 System programmer's Guide

Figure 5.

Debug Procedures for Unexpected Results

Unexpected Results in CP --------------------------..,

II
II

•

Check that the program is not violating any
CP restrictions.

Chec* that the f}fogram and {}j)efating system ftmfling
on the virtual machine are exactly the same as those
that ran on the real machine.

Use the CP TRACE command to trace CCWs, SIOs, and interrupts.
Look for an error in CCW translation or interrupt reflection .

If disk I/O error, use the CP DDR (DASD Dump Restore)
program to print the contents of any disk.

Unexpected results in a virtual machine ----------------------1

l!
Check that the program executing on the virtual machine is
exactly the same as the one that ran on the real machine.

Make sure that operating system restrictions
are not violated.

Use CP TRACE to trace all I/O operations.

--~

Debug Procedures for an ABEND

CPABEND--~

II
II

Find out why CP abnormally terminated. Examine the
PROPSW, INTPR, SVCOPSW, and CPABEND fields in the PSA
from the dump.

Identify the module that caused the ABEND.

Examine the SAVEAREA, BALRSAVE, and FREESAVE areas of the dump.

If I/O operation, examine the real and virtual I/O
control blocks.

CMSABEND--~

II

Determine reason for ABEND from code in ABEND
message DMSABN148T.

Enter debug environment or CP console function mode
to use the commands, to display the PSW, and to examine
low storage areas:

LASTLMOD and LASTTMOD
LASTCMND and PREVCMND
LAST EXEC and PREVEXEC and DEVICE

Look at the last instruction executed.
Take dump if need be.

Virtual Machine ABEND (other than CMS) ---------------------;

II
II

Examine dump. if there is one.

Use CP commands to examine registers and
control words.

Use CP TR,a,CE ~() ~race the ~rocess:r:£ '.....j.:; t~

the point where the error occurred.

Debug Procedures for Unexpected Results and an Abend

Part 1. Debugging with Vft/370 17

How to Use VM/370 Facilities to Debug

Once the problem and the area where it occurs are identified, you can
gather the information needed to determine the cause of the problem. The
type of information you want to look at varies with the type of problem.
The tools used to gather the information vary depending upon the area in
which the problem occurs. For example, if the problem is a loop
condition, you will want to examine the PSW. For a CP loop, you have to
use the operator's console to display the PSW, but for a virtual machine
loop you can display the PSW via the CP DISPLAY command.

The following sections describe specific debugging procedures for the
various error conditions. The procedures will tell you what to do and
what debug tool to use. For example, the procedure may say dump storage
using the CP DUMP command. The procedure will not tell you how to use
the debug tool. Refer to the "CP Commands to Debug the Virtual Machine"
and "CMS Debugging Commands" sections for a detailed description of each
debug tool, including how to invoke it.

ABEND

Three types of abnormal terminations (ABEND) can occur on V8/370: CP
abends, CMS abends, or virtual machine abends. The following
description provides guidelines for debugging each type of ABEND.

When the 'M/370 Control Program abnormally terminates, a dump is taken.
This dump can be directed to tape or printer, cr dynamically allocated
to a direct access storage device. The output device for a CP abend dump
is specified by the CP SET command. See the "Abend Dumps" section for a
description of the SET and VMFDUMP commands.

Use the dump to determine why the control program terminated and then
determine how to correct the condition. See the "Reading CP Abend
Dumps" discussion for detailed information on reading a CP abend dump.

REASON FOR THE ABEND: CP will terminate and take an abnormal
termIriation dump under-three conditions:

1. Program Check in CP

Examine the PROPSi and INTPR fields in the prefix storage area
(PSA) to determine the failing module.

2. Module Issuing an SVC 0

Examine the SVC old PSW (SVCOPSW) and abend code (CPABEND) fields
in the Prefix Storage Area to determine the module that issued the
SVC 0 and the reason it was issued.

CPABEND contains an abnormal termination code. The first three
characters identify the failing module (fer example, abend code
TRCOOl indicates DMKTRC is the failing module).

18 IEH iM/37C System Plugrammer=s Guide

Page of GC20-1S07-7 As Updated April 1, 19S1 by TNL GN25-0S29

3. Operator Pressinq SYSTEM RESTART Button on Processor Console

Examine the old PSi at location X'OS' to find the location of the
instruction that was executing when the operator pressed SISTEK
RESTART. The operator presses SYSTEIi~EST-1RT when CP- is in a
disabled wait state or loop.

~g~g: The conditions that cause an abnormal termination of an
attached processor configuration are the same as those that cause a
uniprocessor configuration to abnormally terminate.

EXAM!!~ bQ! ~TOEAGE AR~A~: The information in low storage specifies the
status of the system at the time CP terminated. Status information is
stored in the PSA. Iou should be able to tell the module that was
executing by looking at the PSA. Refer to the appropriate save ar~a
(SAVEAREA# BALRSAVE, or FREESAVE) to see how that module started to
execute. The PSA is described in the !~l37Q Dat§-!~~!~ aB~-Cant~ol
~1Q£~ 199if-publication.

Examine the real and virtual control blocks to find the status of I/O
operations. Fiqure 9 shows the relationship of CP Control Blocks.

Examine the CP internal trace table~ This table can be extremely
helpful in determining the events that preceded the abend. The "CP
Internal Trace Table" description tells you how to use the trace table.

The values in the general registers can help you to locate the
current IOBLOK and VMBLOK and the save area. Refer to "Reading CP Abend
Dumps" for detailed information on the contents of the general
register-s.

If the program check old PSi (PROPSW) or the SVC old PSW (SVCOPSW)
points to an address beyond the end of the resident nucleus, the module
that caused the abend is a pageable module. Refer to "Reading CP Abend
Dumps" to find out how to identify that pageable module. Use the CP load
map that was created when the VM/370 system was generated to find the
address of the end of the resident nucleus.

When CMS abnormally terminates, the following error message appears on
-the terminal:

DMSABN14ST SYSTEM ABEND xxx CALLED FROM yyyyyy

wher-e xxx is the abend code and yyyyyy is the address of the instruction
causing the abend. The DMSABN module issues this message. Then, CKS
waits for a command to be entered from the terminal.

Because CMS is an interactive system, you will probably want to use
its debug facilities to examine status. You may be able to determine the
cause of the abend without taking a dump.

The d.ebug program is located in the resident nucleus of CMS and has
its own save and work areas. Because the debug program itself does not
alter the status of the system, you can use its options knowing that
routines and data cannot be overlaid unless you specifically request it.
Likewise, you can use the CP commands in debugging knowing that you
cannot inadvertently overlay storaqe because the CP and eMS storage
areas are completely separate.

Part 1. Debugging with VM/370 19

April 1, 1981

RE!~Q] fQR IM~ !~~N~: First determine the reason CMS abnormally
terminated. There are four types of CMS abnormal terminations:

1. Program Exception

control is given to the DMSITP routine whenever a hardware program
exception occurs. If a routine other than a SPIE exit routine is in
control, DMSITP issues the message

DMSITP141T xxxxxxxx EXCEPTION OCCURRED AT xxxxxx IN ROUTINE
xxxxxxxx

and invokes DMSABN (the abend routine). The abend code is
where x is the program exception number (0 through F).
possible programming exceptions are:

~Qgg
o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Meaning
Imprecise
Operation
privileged operation
Execute
Protection
Addressinq
Specifica t ion
Decimal data
Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point divide

2. ABEND Macro

OCx,
The

control is qiven to the DMSSAB routine whenever a user routine
executes the ABEND macro. The abend code specified in the ABEND
macro appears in the abnormal termination message DMSABN148T.

3. Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types
HX, CMS terminates and types "CMS".

4. System Abend

A CMS system routine can abnormally terminate by issuing the DMSABN
macro. The first three hexadecimal digits of the system abend code
type in the eMS abend message, DMSABN148T. The format of the
DMSABN macro is:

r
I
I (label J DMSABN
I
I
'----

code
(reg)

r r"
i,TYPCALL=i~Y~ I'

IBALRII
L L J,J

20 IBM VM/370 System proqrammer's Gut~p

!h~:

label

code

(reg)

TYPCALL=SVC
TYPCALL=BALR

is any valid Assembler language label.

is the abnormal te~mination code (0 through- FFP)
that appears in the DMSABN148T system termination
message.

is the register containing the abnermal termination
code.

specifies how control is passed to the abnormal
termination routine, DMSABN. Routines that do not
reside in the nucleus should use TYPCALL=SVC to
generate CMS SVC 203 linkage. Nucleus-resident
routines should specify TYPCALL=EALR so that a
direct branch to DMSABN is generated.

If a CMS SVC handler abnormally terminates, that routine can set an
abend flag and store an abend code in NUCON (the CMS nucleus
constant area). After the SVC handler has finished processing, the
abend condition is recognized,. The DMSABN abend routine types the
abend message, DMSABN148T, with the abend cede stored in NUCON.

WHAT TO DO !~!! £MS !~!ORMALLY TERMINATES: After an abend, two courses
of actIon are available in CMS. In addition, by signalling attention,
you can enter the CP command mode and use CP's debugging facilities.

Two courses of action available in CMS are:

1. Issue the DEBUG command and enter the debug environment. After
using all the DEBUG subco •• ands that you wish, exit from the debug
environment. Then, either issue the RETURN command to return to
DMSABN so that abend recovery will occur, cr issue the GO command
to resume processing at the point the abend occurred.

2. Issue a CMS command other than DEBUG and the abend routine, DMSABN,
performs its abend recovery and then passes control to the DMSINT
routine to process the command just entered.

The abend recovery function performs the follcwing:

1~ The SVC handler, DMSITS, is reinitialized, and all stacked save
areas are released.

2. "FINIS * * *" is invoked by means of SVC 202, to close all files,
and to update the .aster file directory.

3. If the EXECTOR module is in real storage, it is released.

4. All link blocks allocated by DMSSLN are freed.

5. All FCB pointers are set to zero.

6. All user storage is released.

7. The amount of system free storage which §~Q~lQ
computed. This figure is compared with the amount
that is actually allocated.

8. The console input stack is purged.

be al:;"ocated is
of free storage

Part 1. Debugging with VM/370 21

When the amount of storage actually allocated is less than the amount
that should be allocated, the message

DMSABN149T xxxx DOUBLEWORDS OF SYSTEM STORAGE HAVE BEEN DESTROYED

appears on the terminal. If the amont of storage actually allocated is
greater than the amount that should be allocated, the message

DMSABN150W nnn (HEX xxx) DOUBLEWORDS OF SYSTEM STORAGE WERE NeT
RECOVERED

appears on the terminal.

A DEBUGGING PROCEDURE: When a CMS abend occurs, use the DEBUG
subcommands-or-Cp-Commands to examine the PSW and specific areas of low
storage. For instructions on how to use the C~S debug commands, see
"CMS Debugging Commands" in this section. For instructions on how to
use the CP commands, see an "An Overview of VM/370 Commands that can be
Used for Debugging" in this section. See Figure 7 for a comparison of
the CP and CMS debugging facilities.

The following procedure may be useful in determining the cause of a
CMS abend:

1. Display the PSi. (Use the CP DISPLAY command or CMS debug PSW
subcommand.) Compare the PSW instruction address with the current
CMS load map trying to determine the module that caused the abend.
The CMS storage-resident nucleus routines reside in fixed storage
locations.

Also check the interruption code in the PSW.

2. Examine areas of low storage. The information in low storage can
tell you more about the cause of the abend.

Contents
Contains the name of the last module
storage via the LOADMOD command.

loaded into

LASTTMOD Contains the name of the last module loaded into the
transient area .•

LASTCMND Contains the name of the last command issued.

PREVCMND Contains the name of the next-to-last command issued.

LASTEXEC Contains the name of the last EXEC procedure.

PREVEXEC Contains the name of the next-to-last EXEC procedure.

DEVICE Identifies the device that
interrupt.

caused the last I/O

The low storage areas examined depend on the type of abend.

3~ Once you have identified the module that caused the abend, examine
the specific instruction. Refer to the listing.

4. If you have not identified the problem at this time, take a dump by
issuing the debug DUMP subcommand. Refer to "Reading CMS Abend
Dumps" for information on reading a CMS dump. If you can reproduce
the problem, try the CP or CMS tracing facilities.

22 IB! VM/370 Systs: Programmer's

Page of GC20-1807-7 As Updated Aug 1, 1979 by TNL GN25-0492

The abnormal termination of an operating system (such as as or DOS)
running under VM/370 appears the same as termination of the operating
system on a real machine. Refer to publications for that operating
system for debugging information. However, all of the CP debugging
facilities may be used to help you gather the information you need.
Because certain operating systems (OS/VS1, OS/VS2, and DOS/VS) manage
their virtual storage themselves, CP commands that examine or alter
virtual storage locations should be used only in virtual=real storage
space with OS/VS1, OS/VS2, and DOS/VS.

If a dump was taken, it was sent to the virtual printer. Issue a
CLOSE command to the virtual printer to have the dump print on the real
printer.

The VMDUMP command dumps virtual storage to a specified virtual
machine's reader spool file. Installations that have installed the
VM/Interactive Problem Control System (IPCS) Extensions program product
may use it to process the dump. Other installations may process the
dump with a user-written program.

If you choose to run a standalone dump program to dump the storage in
your virtual machine, be sure to specify the NOCLEAR option when you
issue the CP 1PL command. At any rate, a portion of your virtual
storage is overlaid by CP's virtual IPL simulationa

If the problem can be reproduced, it may be helpful to trace the
processing using the CP TRACE command. Also, you can set address stops,
and display and alter registers, control words (such as the PSW), and
data areas. The CP commands can be very helpful in debugging because you
can gather information at various stages in processing. A dump is static
and represents the system at only one particular time. Debugging on a
virtual machine can often be more flexible than debugging on a real
machine.

VM/370 may terminate or reset a virtual machine if a non-recoverable
machine check occurs in that virtual machine. Hardware errors usually

cause this type of virtual machine termination. The following message:

DMKMCH616I MACHINE CHECK; USER userid TERMINATED

appears on the processor console.

If the message:

DMKMCT621I MACHINE CHECK; AFFINITY SET OFF

appears, then a machine check has occurred on the attached processor,
and the attached processor is no longer being used. The virtual machine
is placed into console function mode and can be made to continue
processing on the main processor by the entry of a BEGIN command.

Channel checks no longer cause the virtual machine to be reset as
they did in earlier releases of VM/370. If the problem appears to be
associated with attempts to recover from a channel check, see the
channel model-dependent functions described in the ~LJ70 Pl~ning ~g

System Q~.§g1!.Q1! Quig.§.

Part 1. Debugging with VK/370 23

Aug 1, 1919

UNEXPECTED RESULTS

The type of errors classified as unexpected results vary from operating
systems improperly functioning under VM/310 to printed output in the
wrong format.

If an operating system executes properly on a real machine but does not
execute properly with VM/370, a problem exists. Also, if a program
executes properly under control of a particular operating system on a
real machine but does not execute correctly under the same operating
system with VM/370, a problem exists.

First, there are conditions (such as time-dependent programs) that CP
does not support. Be sure that one of these conditions is not causing
the unexpected results in CP. Refer to the !M/370 Pl~ning ~~g Syste~
2~~ratiQn Gujg~ for a list of the restrictions.

Next, be sure that the program and operating system running on the
virtual machine are the same as those that ran on the real machine.
Check for:

• The same job stream
• The same copy of the operating system (and program)
• The same libraries

If the problem still is not found, look for an I/O problem. Try to
reproduce the problem, while tracing all CCWs, SIOs, and interrupts via
the CP TRACE command. Compare the real and virtual CCWs from the trace.
A discrepancy in the CCWs may indicate that one of the CP restrictions
was violated, or that an error occurred in the Control Program.

When a program executes correctly under control of a particular
operating system on a real machine but has unexpected results executing
under control of the same operating system with VM/370, a problem
exists. Usually you will find that something was changed. Check that the
job stream, the operating system, and the system libraries are the same.

If unexpected results occur (such as TEXT records interspersed in
printed output), you may wish to examine the contents of the system or
user disk files. Non-CMS users may execute any of the utilities
included in the operating system they are using to examine and rearrange
files. Refer to the utilities publication for the operating system
running in the virtual machine for information on how to use the
utilities.

24 IBM VM/370 System Programmer's Guide

CMS users should use the DASD Dump Restore (DDR) service program to
print or move the data stored on direct access devices. The VM/370 DASD
Dump Restore (DDR) program can be invoked by the CMS DDR command in a
virtual machine controlled by CMS~ The DDR program has the following
functions:

QQ~g -- dumps part, or all, of the data from a DASD device to
magnetic tape.

!~~TOR~ -- transfers data from tapes created by DDR DUMP to a
direct access device. The direct access device to which the data
is being restored must be the same type of device as the direct
access device originally containing that data.

£QPY -- copies data from one device to another device of the same
type~ Data may be reordered, by cylinder, when copied from disk to
disk~ In order to copy one tape to another, the original tape must
have been created by the DDR DUMP function.

l!INT selectively prints the hexadecimal and EBCDIC
representation of DASD and tape records on the virtual printer.

!IPE selectively displays the hexadecimal and EBCDIC
representation of DASD and tape records on the terminal.

CMS users should refer to the "Debugging with CMS" section fer
instructions on using the DDR command. The "Debugging with CP" section
contains information about executing the DDR program in a real or
virtual machine and a description of the DDR control statements.

LOOP

The real cause of a loop usually is an instruction that sets or branches
on the condition code incorrectly. The existence of a loop can usually
be recognized by the ceasing of productive processing and a continual
returning of the PSi instruction address to the same address. If I/O
operations are involved, and the loop is a very large one, it may be
extremely difficult to define, and may even comprise nested loops.
Probably, the most difficult case of looping to determine is entry to
the loop from a wild branch. The problem in leop analysis is finding
either the instruction that should open the loop or the instruction that
passed control to the set of looping instructions.

The processor o.perator should perform the following sequence when
gathering information to find the cause of a disabled loop.

1. Use the alter/display console mode to display the real PSi, general
registers, control registers and storage locations X'OO' - X'100'.

On an attached processor system, you must add the prefix value for
the PSA of each processor to display, dump, or alter low core
storage for each processor, or use the M or N operand prefixes
described under the DCP, DMCP, and STCP commands.

2. Press the SYSTEM RESTART button to caUse an Abend dump to be taken.

3. Save the information collected for the system programmer or system
support personnel.

Part 1. Debugging with VM/370 25

After the processor operator has collected the information, the
system programmer or system support personnel examine it. If the cause
of the loop is not apparent,

1. Examine the CP internal trace table to determine the modules that
may be involved in the loop.

2. If the cause is not
caused the loop entry
branch,.

yet determined, assume that a wild branch
and search the source code for this wild

When a disabled loop in a virtual machine exists, the virtual machine
operator cannot communicate with the virtual machine's operating system.
That means that signalling attention does not cause an interrupt.

Enter the CP console function mode.

1. Use the CP TRACE command to trace the entire loop. Display general
and extended control registers via the CP DISPLAY command.

2. Take a dump via the CP DUMP command.

3. Examine the source code.

Use the information just gathered, along with listings, to try to
find the entry into the loop_

!Qte: You can IPL a standalone dump program such as the BPS Storage
Print to dump the storage of your virtual machine. If you choose to use
a standalone dump program, be sure to specify NOCLEAR on the IPL
command. Also, be aware that the CP IPL simulation destroys a page of
storage in your virtual machine and the standalone dump alters your
virtual storage while the CP DUMP command does net.

However, if the operating system in the virtual machine itself
manages virtual storage, it is usually better to use that operating
system's dump program. CP does not retrieve pages that exist only on
the virtual machine's paging device.

The virtual machine operator should perform the following sequence when
attempting to find the cause of an enabled loop:

1. Use the CP TRACE command to trace the entire loop. Display the PSi
and the general registers.

2. If your virtual machine has the Extended Control (EC) mode and the
EC option, also display the control registers.

3. Use the CP DUMP command to dump your virtual storage. CMS users
can use the debug DUMP subcommand. A standalone dump may be used.
but be aware that such a dump destroys the contents of some areas
of storage.

4. Consult the source code to search for the faulty instructions,
exam1n1ng previously executed modules if necessary. Begin by
scanning for instructions that set the condition code or branch en
it.

5. If the manner of loop entry is still undetermined. assume that a
wild branch has occurred and begin a search for its origin.

WAIT

No processing occurs in the virtual machine when it is in a wait state.
When the wait state is an enabled one, an I/O interrupt causes
processing to resume. Likewise r when the Contrel Program is in a wait
state, its processing ceases.

A disabled wait state usually results from a hardware malfunction.
During the 1PL process; normally correctable hardware errors may cause a
wait state because the operating system error recovery procedures are
not accessible at this point. These conditions are recorded in the
current PSW.

CP may be in an enabled wait state with channel 0 disabled when it is
attempting to acquire more free storage. Examine EC register 2 to see
whether or not the multiplexer channel is disabled. A severe .achine
check could also cause a CP disabled wait state.

Three types of severe machine checks can cause the V~/370 Control
Program to terminate or cause a CP disabled wait state.

• An unrecoverable machine check in the control program
• A machine check that cannot be diagnosed
• Timing facilities damage

A machine check error cannot be diagnosed if either the machine check
old PSi or the machine check interrupt code is invalid. These severe
machine checks cause the control program to terminate.

If a severe machine check or channel check caused a CP disabled wait
state, one of the following messages will appear:

D~KCCH603 CHANNEL ERROR, RUN SEREP, RESTART SYSTEM

D~KMCH612i MACHINE CHECK TIMING FACILITIES tAMAGE; RUN SEREP

DMKMCT612i MACHINE CHECK TIMING FACILITIES DAMAGE; RUN SEREP

Part 1. Debugging with VM/370 27

If an unrecoverable machine check occurs in the control program, the
message

DMKMCH610W MACHINE CHECK SUPERVISOR DAMAGE

--or--

DMKMCT610i MACHINE CHECK SUPERVISOR DAMAGE

appears on the processor console. The control program is terminated and
enters a wait state 001 or wait state 013.

If the machine check handler cannot diagnose a certain machine check,
the integrity of the system is questionable~ The message

DMKMCH611i MACHINE CHECK SYSTEM INTEGRITY LeST

--or--

DMKMCT611i MACHINE CHECK SYSTEM INTEGRITY LOST

appears on the processor console. The control program is terminated and
enters wait state 001 or wait state 013.

Hardware errors are probably the cause of these severe machine
checks. The system operator should run the CPEREP program and save the
output for the installation hardware maintenance personnel.

If the generated system cannot run on the real machine because of
insufficient storage, CP enters the disabled wait state with code OOD in
the PSi. The insufficient storage condition occurs if:

• The generated system is larger than the real machine size

--or--

• A hardware malfunction occurs which reduces the available amount of
real storage to less than that required by the generated system

The message

DMKCPI955i INSUFFICIENT STORAGE FOR VM/370

appears on the processor console.

If CP cannot continue because consecutive hardware errors are
occurring on one or more V8/310 paging devices, the message

D8KPAG415E CONTINUOUS PAGING ERRORS FROM DASD xxx

appears on the processor console and CP enters the disabled wait state
with code OOF in the PSi.

If more than one paging device is available, disable the device cn
which the hardware errors are occurring and IPt the system again. If
the VM/370 system is encountering hardware errors on its only paging
device, move the paging volume to another physical device and IPL again.

Bote: This error condition may occur if the VM/370 paging volume was not
properly formatted.

28 IB!

The following procedure should be followed by the processor operator
to record the needed information.

1. Using the alter/display mode of the processcr console, display the
real PSW and CSW. Also, display the general registers and the
control registers.

2. Press the SYSTEM RESTART button in order to get a system abend dump.

3. IPL the system.

Examine this information and attempt to find what caused the wait.
If you cannot find the cause, attempt to reconstruct the situation that
existed just before the wait state was entered.

If you determine that CP is in an enabled wait state, but that no IIO
interrupts are occurring, there may be an error in the CP routine or CP
aay be failing to get an interrupt from a hardware device. Press the
SYSTEM RESTART button on the operator's console to cause an abend dump
to he taken. Use the ahend dump to determine the cause of the enabled
(and noninterrupted) wait state. After the dump is taken, IPL the
system.

Using the dump, examine the VMBLOK for each user and the real device,
channel, and control unit blocks.. If each user is waiting because of a
request for storage and no more storage is available, there is an error
in CP. There may be looping in a routine that requests storage. Refer to
-Reading CP Abend Dumps" for specific information on how to analyze a CP
du.p.

The VM/370 Control Program does not allow the virtual machine to enter a
disabled wait state or certain interrupt loops& Instead, CP notifies
the virtual machine operator of the condition with one of the following
aessages:

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

DMKDSP451W CP ENTERED; INVALID PSi

DMKDSP452W CP ENTERED; EXTERNAL INTERRUPT LOOP

DMKPRG453W CP ENTERED; PROGRAM INTERRUPT LOOP

and enters the console function .ode. Use the CP commands to display the
following information on the terminal.

• PSW
• CSW
• General registers
• Control registers

Then use the CP DUMP command to take a dump.

Part 1. Debugging with V8/370 29

If you cannot find the cause of the wait or lcop from the information
just gathered, try to reproduce the problem, this time tracing the
processing via the CP TRACE command.

If CMS is running in the virtual machine, the CMS debugging
facilities may also be used to display information, take a dump, or
trace the processing. The CMS SVCTRACE and the CP TRACE commands record
different information. Figure 7 compares the two.

If the virtual machine is in an enabled wait state, try to find out why
no I/O interrupt has occurred to allow processing to resume.

The Control Program treats one case of an enabled wait in a virtual
machine the same as a disabled wait. If the virtual machine does not
have the "real timer" option and loads a PSW enabled only for external
interrupts, CP issues the message

DMKDSP450W CP ENTERED; DISABLED WAIT STATE

Since the virtual timer is not decreased while the virtual machine is
in a wait state, it cannot cause the external interrupt. A "real timer"
runs in both the problem state and wait state and can cause an external
interrupt which will allow processing to resume. The clock comparator
can also cause an external interrupt.

Three disabled wait conditions can occur during the operation of the
RSCS component of VM/370. They can result from either hardware
malfunctions or system generation errors. CP notifies the RSCS operator
of the wait condition by issuing the message

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

to the RSCS operator's console. Using CP
display the virtual machine's PSW. The
characters indicate the error condition.

commands, the operator can
rightmost three hexadecimal

!!IT ~!!TE ~Q~~ !~Ql~: If no RSCS message was issued, a program check
interrupt occurred during the execution of the program check handler. A
programming error is the probable cause.

If the RSCS message

DMTREX091T INITIALIZATION FAILURE -- RSCS SHUTDOWN

was issued, RSCS operation has been terminated due to an error in the
loading of DMTAXS or DMTLAX. A dump of virtual storage is automatically
taken. Verify that the CMS files DMTAXS TEXT and DMTLAX TEXT are
correctly written and resident on the RSCS system-residence device.

30 IBM V~/37U System Programmer's Guide

Aug 1, 1979

If the RSCS message

DMTREX090T PROGRAM CHECK IN SUPERVISOR -- RSCS SHUTDOWN

was issued, the program check handler has terminated RSCS due to a
program check interrupt in other than a dispatched line driver. A dump
of virtual storage is automatically taken. A programming error is the
probable cause.

The wait state code is loaded by DMTREX at RSCS termination or
automatically during program check handling.

If neither of the last two messages was issued, use the CP DUMP
command to dump the contents of virtual storage. Do an IPL to restart
the system. If the problem persists, notify the system support
personnel.

!AI1 STATE ~ODE X'QQ1~: A program check interrupt has occurred during
initial processing, before the program check handler could be activated.
This may be caused by a programming error or by an attempt to load RSCS
into an incompatible virtual machine. The latter case can occur if the
virtual machine has (1) an incomplete instruction set, (2) less than
512K of virtual storage, or (3) does not have the required VM/370
DIAGNOSE interface support. The wait state code is loaded automatically
during the initial loading and execution of the RSCS supervisor, DMTINI,
DMTREX, DMTAXS, or DMTLAX.

Verify that the RSCS virtual machine configuration has been correctly
specified and that the "retrieve subsequent file descriptor" function of
DIAGNOSE Code X'14' is supported. Dump the contents of virtual storage
via the CP DUMP command. If the problem persists, notify the
installation support personnel.

!AI! ST!~ CODE X'Ol1~: An unrecoverable error occurred when reading the
RSCS nucleus from DASD storage. This may be caused by a hardware
malfunction of the DASD. It may also be the result of an incorrect
virtual DASD definition, an attempt to use a system residence device
unsupported by RSCS, incorrect RSCS system generation procedures, or the
subsequent overwriting of the RSCS nucleus on the system residence
device. The wait state code is loaded by DMTINI after an attempt,
successful or not, to issue the message:

DMTINI402T IPL DEVICE READ I/O ERROR

Verify that the RSCS system residence device has been properly
defined as a virtual DASD and that the real DASD is mounted and
operable. If the problem persists, dump virtual storage via the CP DUMP
command and notify the installation support personnel. The RSCS system
residence device may have to be restored or the RSCS system may have to
be regenerated.

Whenever RSCS has no task ready for execution, DMTDSP loads a masked-on
wait state PSW with a code of hexadecimal zeros. This occurs during
normal RSCS operation and does not indicate an error condition. An
external interrupt due to command entry or an I/O interrupt due to the
arrival of files automatically resumes processing.

Part 1. Debugging with VM/370 31

Aug 1, 1979

Summary of VM/370 Debugging Tools

Figure 6 summarizes the VM/370 commands that are useful for debugging programs in a
virtual machine. The CP and CMS commands are classified by the function they perform •

r , Function comments

Stop execu-ISet the ad- ADSTOP
tion at a , dress stop
specified 1 before the
location , program

1 reaches the , specified , address. , CMS allows
1 16 address , stops to
I be active , while CP
I allows only , one ,

Resume I Resume BEGIN
execution I execution

I where pro
I gram was I
1 interrupted I

CP Command

hexloc DEBUG

BREAK

DEBUG
GO

..,
CMS Command 1

id {Symbol}
hexloc

1--

I Dump ,
1 ,
I
I
I
I
1
L

data

IContinue BEGIN hexloc
I execution I
1 at a speci-I
I fic loca- I
1 tion I

\Dump the , r r ,
I contents ofiDUMP {heXloc1 } I {-} Ihexloc21
I specific I Lhexloc'. I : I~ND I
I storage I I L .J

I locations I I r ,
I I , (.) ,bytecount,
I I I I END 1
I I L L .J

I I [*dllmpid]

DEBUG

GO {SymbOl}
hexloc

, I DEBUG
II
, IDUMP
II

" " II
.J I

I

r , r ,
Isymbol11 Isymbol21
Ihexloc11 Ihexloc21
I Q I 1 * I
L .. 1 11& I

L .J

(ident]
______ -1

Figure 6. Summary of VM/370 Debugging Tools (Part' of 5)

32 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated Aug 1. 1979 by TNL GN25-0492

r---,
Function I Comments I CP Command I CMS Command t

------.---- -- ----------------------------1
Dump data VMDUMP pre>- I r ,

vides the tVKDUKPlhexloc11
same infe>- I I Q I
mation thatl L .J

DUMP pre>- 1
vides but t
in a dif- I
ferent for-I
mat; the I
format is I
compatible I
with the I
VK/lnter- I
active ,

r ,

IIQ! I
I TO userid I
ISYSTEM i
L .J

r .,

{
-} I hexloc21
: I!;ND I

L .J

r ,
{.} I bytecount I

1m I
L .J

Problem I [FORi'iAT
[DSS]

vmtype]
control I
System Ex- I
tensions I
program ,
product. 1

[*dumpid)

~--Figure 6. Summary of VM/370 Debugging Tools (Part 1A of 5)

Part 1. Debugging with VM/370 32.1

Aug 1, 1979

32.2 IBM VM/370 System Proqrammer's Guide

L

Function

Display
data

Coaaents

Display I
contents oflDISPLAY
storage 10- I
cations (inl
hexadeci- I
mal) I

Display

I
I

contents oflDISPLAY
storage I
locations I
(in hexa- I
decimal andl
EBCDIC) I

I

Display
storage keylDISPLAY
of specific I
storage I
locations I
in hexa- I
decimal I

Display
general
registers

Display
floating
point
registers

Display
control
registers

I

I
IDISPLAY
I
I
I
I
I

I
IDISPLAY
i
I
I
I
I
I

I
IDISPLAY
I
I
I
I
I
I

Display jDISPLAY
contents ofl
current I
virtual PSil
in hexa- I
decimal I
format I

CP Command eftS Command

r r " i DEBUG r ,
hexloc1 I{-}I hexloc21 II X

I : 11B!12 I II
I L .I II
I r , II
1{.}lbytecountlll
I I!ND III
L L .1.1 I

r r " I
T.hexlOc11{-}lheXlOc21 II

I : I!ND I II
I L .I II
I r , II
1{.}lbytecountlll
I lEND III
L L .1.1 I

r r " I
KheXlOC11{-}lheXlOc21 II

I : I!!Q I II
I L .I II
I r , II
1{.}lbytecountlll
I I!!Q III
L L .J.J I

r r , ,
Greg1 1{-}lreg2 1 I

I : lEND I I
I r , I
I{ • 11 regcount I I
I I!ND II
L L .J.I

r r , ,
Yreg 111-}1 reg21 I

it: I END i I
I L .I I
I r , I
I{ • } I regccunt I I
I I!ND II
L L .1.1

r r , ,
Xreg 11{ -}I reg21 I

I : I END I I
I L .I I
I r , I
I{ • } I regcount I I
I I!ND II
L L .1.1

PSi

DEBUG

symboll n I
11!!!!g1.h1
L .I

r ,
I n I

hexlocl 4 I
L .I

GPR reg1 (reg2]

DEBUG
PSi

1

I

Figure 6. Summary of VM/370 Debugging Tools (Part 2 of 5)

Part 1. Debugging with VM/370 33

r
I Function Comments CMS Command
1---
,Display
I data
, (cont.)
I
I
I
I

I Display
1 contents
1 CAW

IDISPLAY
ofl

1

CAW DEBUG
CAW

1---
1 Display
1 contents
1 CSW

IDISPLAY
ofl

I

CSW DEBUG
CSW

1---
Store data Store

specified ISTORE Shexloc hexdata •••
information I
into con- I
secutive 1
storage ,
locations I
without 1
alignment 1

Store I
specified ISTORE {heXIOC }
words of 1 Lhexloc
information I
into con- 1 {hexword1[hexword2 •••]}
secutive 1
fullword 1
storage 1
locations I

Store ISTORE Greg hexword1
specified I [hexword2 •••)
words of I
information I
into con- I
secutive 1
general 1
registers I

Store ISTORE Yreg hexword1
specified 1 [hexword2 •••]
words of 1
information I
into con- I
secutive 1
floating- 1
point 1
registers I

DEBUG
STORE {SymbOl}

hexloc

hexinfo[hexinfo[bexinfo]]

I DEBUG
ISET GPR reg hexinfo(hexinfo]
I ,
I
I , ,

igure 6. Summary of VM/370 Debugging Tools (Part 3 of 5)

34 IBa iH/37G 5ystem ?rogrammeL:s Guide

Function

Store data
(cant.)

Trace
execution

Figure 6.

Comments CP Command

Store ISTORE Xreg hexword1 [hexword2 •• ~]
specified I
words of I
data into I
consecutive I
control I
registers I

Store ISTORE PSi [hexword1] hexword2
information I
into PSi I

Store !
informationl
in CSi I

Store I
information!
in CAi I

Trace all
instruc
tions, I
interrupts, I
and I
branches I

Trace SVC
interrupts

Trace I/O
interrupts

Trace
program
interrupts

Trace
external
interrupts

Trace
privileged
instruc-
tions

Trace all
user I/O
operations

TRACE ALL

TRACE SVC

TRACE I/O

TRACE PROGRAft

TRACE EXTERNAL

TRACE PRIV

TRACE SIO

Summary of VM/370 Debugging Tools (Part 4 of 5)

CftS Command

I DEBUG
ISET PSi hexinfo [hexinfo]
I

,DEBUG
ISET CSi hexinfo [hexinfo]
I

IDEEUG
!SET CAW hexinfo
I

SVCTRACE ON

Part 1. Debugging with Vft/370 35

I

I Function comments CP Command CMS Command
1--
ITrace
1 execution
I (cont.)

Trace real
machine
events

Trace 1 TRACE SIO
CCll virtual andl TRACE

real CClls I

Trace
all user
interrupts
and suc
cessful
branches

Trace
all in
structions

End all
tracing
activity

ITrace
1 events in
I real
1 machine

TRACE BRANCH

TRACE INSTRUCTION

TRACE END

MONITOR START CPTRACE

SVCTRACI OFF

1---
IStop tracingl MONITOR STOP CPTRACE
I events in I
I the real I
1 machine I

Figure 6. Summary of VM/370 Debugging Tools (Part 5 of 5)

tTM J'")"'f n
ii •• / ...,J. v

.,...-_ _- -",!,,>--.$.-

.L :f.a...u..wwG.a... ..;:)
,-'<01 ,~..,.: ;:J -..
V\..l,..J-Io.L"

Aug 1, 1979

Comparison of CP and C!VIS Facilities for Debugging

If you are debugging problems while running CMS, you can choose the CP
or CMS debugging tools. Refer to Figure 7 for a comparison of the CP
and CMS debugging tools,

r---~
Function CP CMS 1

---1
Setting
address
stops

ICan set only one address stoplCan set up to 16 address
I at a time. I stops at a time.
I I

I
I
I

--1

L

Dumping
storage
contents
to the
printer

IThe dump is printed in hexa- IThe dump is printed in hexa- 1
decimal format with EBCDIC i decimal format. The storage 1
translation. The storage ad-I address of the first byte of
dress of the first byte of ! each line is identified at
each line is identified at I the left. The contents of
the left. The control blocksl general and floating-point
are formatted. i registers are printed at the

I beginning of the dump.

DisplayingiThe display is typed in hexa-IThe display is typed in hexa
the con- i decimal format with EBCDIC I decimal format. The CMS com
tents of I translation. The CP command I mands QQ n01 display storage
storage I displays storage keys, I keys, floating-point regis
and I floating-point registers andl ters, or control registers,
control ,control registers. , as the CP command does:
registers, I
at the I I
terminal , I

Storing
informa
tion

Tracing
informa
tion.

The amount of information
stored by the CP command is
limited only by the length
of the input line. The in
formation can be fullword
aligned when stored. CP
stores data in the PSW, but
not in the CAW or CSW. How-

,The CMS command stores up to
, 12 bytes of information. CMS
, stores data in the general
I registers but not in the
I floating-point or control
I registers. CMS stores data
, in the PSW, CAW, and CSW.
I

ever, data can be stored in I
the CSW or CAW by specifyingl
the hardware address in the ,
STORE command. CP also I
stores the status of the ,
virtual machine in the ,
extended logout area. ,

ICP traces:
I • All interrupts, instruc-
, tions, and branches
I & SVC interrupts
I • I/O interrupts
I • Program interrupts
f • External interrupts
, • Privileged instructions
I • All user I/O operations
I • Virtual and real CCW's
I • All instructions ,
IThe CP trace is interactive.
I You can stop and display
I other fields.

ICMS traces all SVC inter
rupts. CMS displays the
contents of general and
floating-point registers
before and after a routine
is called. The parameter
list is recorded before a
routine is called.

________________________ ----________ ~ __________________ --___________________ __J

Figure 7. Comparison of CP and eMS Facilities for Debugging

Part 1. Debugging with VM/370 37

Page of GC20-1807-7 As Updated Aug 1, 1979 by TNL GN25-0492

An Overview of VM/370 Commands that Can Be
Used for Debugging

The VM/370 Control Program provides interactive commands that control
the VM/370 system and enable the user to control his virtual machine and
associated control program facilities. The virtual machine operator
using these commands can gather much the same information about his
virtual machine as the operator of a real machine gathers using the
processor console.

Several of these commands (for example, STORE or DISPLAY) examine or
alter virtual storage locations. When CP is in complete control of
virtual storage (as in the case of DOS, MFT, MVT, PCP, CMS, and RSCS)
these commands execute as expected. However, when the operating system
in the virtual machine itself manipulates virtual storage (as in the
case of OS/VS1, OS/VS2, or DOS/VS) these CP commands should not be used.

This section presents an overview of the VM/370 commands used for
debugging. It supplements the preceding section which discussed
debugging procedures and techniques. Instructions for using the
commands discussed in this section are in the following publications:

• VM/370 CP Command Reference for General Users
• VM/370 Operator's Guide
• VM/370 CMS Command and Macro Reference

The following categories of commands are discussed:

• Commands that display VM/370 control information
• Commands that set and query system features, conditions, and events
• Commands that collect and analyze system information
• Commands that trace events in virtual machines
• Commands that alter the contents of storage

, COMMANDS THAT DISPLAY OR DUMP VIRTUAL MACHINE DATA

Commands that display or dump virtual machine data are: DUMP, VMDUMP,
DISPLAY, DCP, and DMCP.

The DUMP and DISPLAY commands of CP are privilege class
and are used to display control information describing the
virtual machines.

G commands
status of

The DUMP command spools the following information to your virtual
printer:

• Virtual program status word (PSW)
• General registers
• Floating-point registers
• Control reqisters (if your VM/370 directory has the ECMODE option)
• Storage keys
• Virtual storage locations (first-level storage only)

The DISPLAY command displays at your terminal the following kinds of
control information:

• Virtual storage locations {first-level storage only}
• Storage keys
• General registers
• Floating-pcint reaisters

36 13M VM/370 System Frograocrner's Guide

Page of GC20-1807-7 As Updated Aug 1, 1979 by TNL GN25-0492

• control registers
• Program status word (PSW)
• Channel address word (CAW)
• Channel status word (CSW)

The DCP and DMCP commands of CP are privilege class C and E commands
and are used to display real storage locations. The DMCP command spools
the contents of real storage to your virtual printer. The DCP command
displays at your terminal the contents of real storage locations.

The class G VMDUMP command dumps virtual storage to a specified
reader spool file. VMDUMP provides the same dump information that the
DUMP command provides but in a different format. For example, if a tyte
of storage contains X'OC', DUMP records it in printable format, X'FOFO';
VMDUMP records it as it appears in storage, X'OO'. The VM/lnteractive
Problem Control System Extensions program product can process records
written by VMDUMP. For a description of the format and contents of the
VMDUMP records, see "VMDUMP Records: Format and Content" in this
section.

COMMANDS THAT SET AND QUERY SYSTEM FEATURES, CONDITIONS, AND EVENTS

The SYSTEM and SET commands set system-controlled functions and events;
the QUERY command allows you to determine the status of those settingse

The SYSTEM command is a privilege class G command that simulates the
RESET and RESTART buttons on the real computer console. It can also be
used to clear storage.

The functions of the SET command are described in detail in the
YlU370 fR f om.!Q3: nd B.§i~l!f.g fo£ g.§neral. Qsef:.§. For debugging, the SET
command provides the MSG, WNG, and EMSG operands. These provide
messages that may be useful while you are debugging.

The SET MSG function determines whether you receive messages set by
other users via the MSG command. Also, the MSG operand determines
whether you receive messages from CP when other users spool reader,
printer, or punch files to your virtual machine.

The SET SMSG command turns on or off a virtual machines special
message flag. If the virtual machine has issued DIAGNOSE Code X'68'
(Authorize), this flag determines whether the virtual machine accepts or
rejects messages sent via the SMSG command -- when the flag is on,
messages are accepted.

The SET WNG function determines whether you receive warning messages
from the system operator.

The
operand
message
specify
spooled

SET EMSG function controls error message handling. The EMSG
gives you the ability to specify that you want message code,
text, or both to be displayed at your terminal. You can also
that no messages be displayed (except in the case where you have
your console output).

When you are debugging, it is useful to have all messages displayed
a t your terminal.

The QUERY command displays the status of features and conditions set
by the SET command for your virtual machine. ON is the default for the
MSG, WNG, and EMSG operands of the SET command; OFF is the default for
the SMSG operand. To verify these settings, use the QUERY command.

Part 1. Debugging with VM/370 39

Aug 1, 1979

COMMANDS TO COLLECT AND ANALYZE SYSTEM INFORMATION

This section discusses five commands to collect and analyze
information when you are debugging. These are the ADSTOP and
commands and the LOCATE, MONITOR, and TRACE commands.

syste m
BEGIN

The ADS TOP command stops the execution of a virtual machine at a
specific address; B~GIN causes the virtual machine to resume execution.

Execution halts when the instruction at the address specified in the
ADSTOP command is reached. At this point, you may invoke other CP
debugging commands.

The address stop should be set after the program is loaded but before
it executes. When the specified location is reached during program
execution, execution halts and the CP command environment is entered.
You may then enter other CP commands to examine and alter the status of
the program.

Set an address stop at a location where you suspect the error in the
program. You can then display the registers, control words, and data
areas to check the program at that point in its execution. This
procedure helps you locate program errors. You may be able to alter the
contents of storage in such a way that the program will execute
correctly. You can then correct the error you have detected and, if
necessary, compile and execute the program again.

To successfully set an address stop, the virtual instruction address
must be in real storage at the time the ADSTOP command is issued.

Use the LOCATE command to find the address of CP control blocks
associated with a particular user, a user's device, or a real system
device. The control blocks and their functions are described in the
XnLllQ ~Q!~ !£~~§ ~ng £Qnt£Ql Blg£! Logic.

Once you know the location of the control blocks, you can examine
(DUMP or DISPLAY) the block you want to look at. When you want to
examine specific control blocks, use the LOCATE and DUMP or DISPLAY
commands to examine the control blocks instead of taking a dump. A
discussion of the most important fields of the VMBLOK, VCUBLOK,
VDEVBLOK, RCHBLOK, RCUBLOK, and RDEVBLOK are included in "Reading CP
Abend Dumps."

COMMANDS THAT TRACE EVENTS IN VIRTUAL MACHINES

Use the TRACE command to trace the following virtual machine events:

• SVC interruption
• I/O interruption
• Program interruption
• External interruption

40 IB~ V~/370 System Programmer's Guide

Page of GC20-1807-7 As Updated Aug 1, 1979 by TNL GN25-0492

• Non-I/O privileged instructions
• 510, 5IOF, TIO, CLRIO, HIO, HDV, and TCH instructions.
• Branch instructions
• CCW and C5W instructions

The results collected by the TRACE command are spooled to your virtual
printer and to your terminal and/or real printer.

Part 1. Debugging with VM/370 40.1

Aug 1. 1979

40.2 IBM VM/370 System Programmer;s Guide

April 1, 1981

COMMANDS THAT ALTER THE CONTENTS OF STORAGE

You can use the STORE, STCP, and ZAP commands to alter the contents of
storage:

Use the STORE command to alter the contents of specified registers and
locations in virtual machine storage. The contents of the following can
be altered:

e Virtual machine storaqe locations (first-level virtual storage only)
• General registers
• Floating-point registers
• Control registers (if available)
• Program Status Word

The STORE STATUS command can save certain information contained in low
storaqe.

When debugging, you may find it advantageous to alter storage,
registers, or the PSW and then continue execution. This is a good
procedure for testing a proposed change. Also, you can make a temporary
correction and then continue to ensure that the rest of execution is
trouble-free. A procedure for using the STORE STATUS command when
debugging is as follows:

• Issue the STORE STATUS command before entering a routine you wish to
debug.

• When execution stops (because an address stop was reached or because
of failure), display the extended logout area. This area contains
the status that was stored before entering the routine.

• Issue STORE STATUS again and display the extended logout area again.
You now have the status information before and after the failure.
This information should help you solve the problemc

Use the STCP command to alter the contents of real storage.
command cannot alter the real PSW or real registers.

The STCP

U~e the ZAP command to modify or dump MODULE, LOADLIB, or TITLIB files.
ZA-Pcan be used to modify either fixed- or variable-length r.ODULE files.
It is for use bV system support personnel only.

Part 1. Debugging with VM/370 41

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

ZAP makes use of control records to control processing. These
records can be submitted either from the terminal or from a disk file.
Using the VER and REP control records, you can verify and replace
records or instructions in a control section (CSECT). Using the DUMP
control record, you can dump all or part of a CSECT, an entire member of
a LOADLIB or TXTLIB file, or an entire MODULE file.

Debugging CP on a Virtual Machine

Many CP problems can be isolated without standalone machine testing. It
is possible to debug CP by running it in a virtual machine. In most
instances, the virtual machine system is an exact replica of the system
running on the real machine. To set up a CP system on a virtual
machine, use the same procedure that is used to generate a CP system on
a real machine. However, remember that the entire procedure of running
service programs is now done on a virtual machine. Also, the virtual
machine must be described in the ~eal VM/370 directory. See VML11Q
QQ~£gtirrg ~Igigm§ in g Virtual ~gchiD~ for directions on how to set up
the virtual machine.

CP Internal Trace Table

CP has an internal trace table that records events that occur in the
real machine. The events that are traced are:

• External interruptions
• SVC interruptions
• Program interruptions
• Machine check interruptions
• I/O interruptions
• Free storage requests
• Release of free storage
• Entry into scheduler
• Qlleue drop
• Run user requests
• Start IIO
• Unstack I/O interruptions
• Storing a virtual CSW
• Test I/O
• Halt Device
• Unstack IOBLOK or TRQBLOK
• NCP BTU (Network Control Program Basic Transmission Unit)
• Spinning on a lock (attached processor environment)
• SIGP (X'13')
• Clear Channel instruction

An installation may optionally specify the size of
table. To do so, use the SYSCOR macro instruction in
Information on using this macro instruction is in the
ang §.y§~g!! QgngratiQ!! Qyid~.

the CP trace
module DMKSYS.

!UJIQ-Planning·

If an installation does not specify the trace table size or the size
specified is smaller than the default size, CP assigns the default size.

For each 256K bytes (or part thereof) of real storage available at
IPL time, one page (4096 bytes) is allocated to the CP trace table.
Each entry in the CP trace table is 16 bytes long. There are trace
table entries for each type of event recorded. The first byte of each

42 IBM VM/370 System programmer's Guide

trace table entry, the identification code, identifies the type of event
being recorded. Figure 8 describes the format of each type of trace
table entry.

Some trace table entries are generated by ECPS:VM. The first bit of
these entries is set to 1 to indicate the entry was generated by the
hardware assist. For example, a trace table entry of type X'86' (FREE)
is the same as an entry of type X'06'. The only difference is that the
first entry was generated by the hardware assist.

The trace table is allocated by the main initialization routine,
D8KCPI. The first event traced is placed in the lowest trace table
address. Each subsequent event is recorded 1n the next available trace
table entry. Once the trace table is full, events are recorded at the
lowest address (overlaying the data previously recorded there). Tracing
continues with each new entry replacing an entry from a previous cycle.

Use the trace table to determine the events that preceded a CP systea
failure. An abend dump contains the CP internal trace table and the
Fointers to it. The address of the start of the. trace table, TRACSTRT,
is at location X'OC'. The address of the byte f~llowing the end of the
trace table, TRACEND, is at location X'10'. And the address of the next
available trace table entry, TRACCURR, is at lecation X'14'. Subtract
16 bytes (X'10') from the address stored at X'14' (TRACCUBR) to obtain
the trace table entry for the last event completed.

The CP internal trace table is initialized during IPL. If you do not
wish to record events in the trace table, issue the MONITOR STOP command
to suppress recording. The pages allocated to the trace table are not
released and recording can be restarted at any time by issuing the
MONITOR START command. If the V8/370 system should abnormally terminate
and automatically restart, the tracing of events on the real machine
will be active. After a V8/370 IPL (manual or automatic), CP internal
tracing is always active.

Part 1. Debugging vith 15/370 43

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

your viLtual machine cannot continue, it terminates and, in some cases,
attempts to issue a dump. In the VM/370 environment, the problem
proq-r-am-dum-palwa-ys- goes -t-othe- v-irtllal- _printer. De-ItendiJ)_q _3~n_
installation operating procedures, the virtual machine operating system
dump may also go to the virtual printer. A CLOSE must be issued to the
virtual printer to have either dump print on the real printer.

The third type of dump occurs when the CP system cannot continue.
The CP abnormal termination dumps can be directed to a printer or tape
or be dynamically allocated to DASD. If the dump is directed to a tape,
the dumped data must fit on one reel of tape. Multiple tape volumes are
not supported by VM/370. The historical data on the tape is in print
line format and can be processed by user-created programs or via CMS
commands. specify the output device for CP abend dumps with the CP SET
command.

When the CP abend dump is sent to a disk, use the CMS VMFDUMP command
to print the dump on the real printer.

Use the VMFDUMP command to format and print a current or previous
VM/370 system abend dump. Specify

VMFDUMP

to obtain a complete formatted, hexadecimal printout.

When the dump has been printed, one of two messages will be printed.

DUMP FILE - DUMP xx - PRINTED AND KEPT

-- or --

DUMP FILE - DUMP xx - PRINTED AND ERASED.

HOW TO PRINT A CP ABEND DUMP FROM TAPE

When the CP abend dump is sent to a tape, the records are 131 characters
long, unblocked, and contain carriage control characters.

To pLint the tape, first make sure the tape drive is attached to your
system. Next, define the printer and tape file.

FILEDEF ddname1 PRINTER (RECFM FM LRECL 131)

FILEDEF ddname2 {TAP2} (DEN 1600 RECFM U LRECL 132)
TAP1

Then use the MOVEFILE command to print the tape:

MOVEFILE ddname2 ddname1

An extended form of the VMFDUMP command may be used via the
facilit.les cit IPCS (In-teracti-v-e-- Problem Cont.rolSystem)- by- Field
EnqineeLing Program Systems Representatives, and by installation system
programmers. For information on IPCS, refer to the publication !K/31g
!~te~££iiyg R~Q~lem ~Qn1rol ~yst~ (lgcS) Usgr~§ Guig~.

Part 1. Debugging with VM/370 45

April 1, 19S1

Reading CP Abend Dumps

Two types of printed dumps occur when CP abnormally ends, depending upon
the options specified in the CP SET DUMP command. When the dump is
directed to a direct access device, VMFDUMP must be used to format and
print the dump. VMFDUMP formats and prints:

• Control blocks
• General registers
• Floating-point registers
• Control registers
• TOD (Time-of~Day) Clock
• Processor Timer
• Storage
• If in attached processor mode, formats and prints both PSAs' storage

Storage is printed in hexadecimal notation, eight words to the line,
with EBCDIC translation at the right. The hexadecimal address of the
first byte printed on each line is indicated at the left.

If the CP SET DUMP command directed the dump to
the printed format of the dump is the same as with
the control blocks are not formatted and printed.
attached processor, all of the registers, etc.,
abending processor. Also, each PSA is printed
storage.

tape or the printer,
VMFDUMP, except that
If the system was an

are printed for the
before printing main

When the Control Program can no longer continue and abnormally
terminates, you must first determine the condition that caused the
abend, and then find the cause of that condition. You should know the
structure and function of the Control program. "Part 2: Control Program
(CP)" contains information that will help you understand the major
functions of CP. The following discussion on reading CP dumps includes
many references to CP control blocks and control block fields. Refer to
VMLJ1Q Q~1s·!~~§ s~S Control Block 1Qgic for a description of the CP
control blocks. Figure 9 shows the CP control block relationships.
Also, you will need the current load map for CP to be able to identify
the modules from their locations.

REASON FOR THE ABEND

Determine the immediate reason for the abend. You need to examine
several fields in the PSA (prefix Storage Area), to find the reason for
the abend. In a uniprocessor system, the PSA is in locations 0 to 4095.
In an attached processor system, each processor has its own PSA.

1. Examine the program old PSi and program interrupt code to find
whether or not a program check occurred in CP. The program old PSW
(PROPSW) is located at X'2S' and the program interrupt code (INTPR)
is at X'SE'. If a program check has occurred in supervisor mode,
use the CP system load map to identify the module. If you cannot
find the module using the load map, refer to "Identifying a
Pageable Module." Figure 47 in "Appendix A: System/370
Information" describes the format of an Extended Control PSi.

46 !B~ VM/370 System Programmeris Guide

2. Examine the SVC old PSi, the SVC interrupt code, and the abend code
to find whether or not a CP routine issued an SVC O. The SVC old
PSi {SVCOPSW} is located at 1'20', the SVC interrupt code (INTSVC)
is at X'8A', and the abend code (CPABEND) is at X'314'.

The abend code (CPABEND) is a fullword. The first three bytes
identify the module that issued the SVC 0 and the fourth bite is a
binary field whose value indicates the reascn for issuing an SVC O.

Use the CP system load map to identify the module issuing the SVC
O. If you cannot find the module using the CP system load map.
refer to "Identifying a Pageable Module". Figure 41 in Appendix A
describes the format of an Extended Control PSi.

3. Examine the old PSi at X1 08'. If an abnormal termination occurs
because the operator pressed the system restart button, the old PSi
at location X'08' points to the instruction that was executing when
CP recognized the abnormal termination. Figure 41 in Appendix A
describes the format of an Extended Control PSi.

4. For a machine check, examine the machine check old PSi and the
logout area. The machine check old PSi (8COPSi) is found at X'30'
and the fixed logout area is at X1 100'. Also examine the machine
check interrupt code (INTMC) at X'E8'.

COLLECT INFORMATION

Examine several other fields in the PSA to analyze the status of the
system. As you progress in reading the dump, you may return to the PSA
to pick up pointers to specific areas (such as pointers to the real
control blocks) or to examine other status fields.

The following areas of the
information.

PSA may contain useful debugging

1. CP Running Status Field

The CP running status is stored in CPSTAT at location X'348'. The
value of this field indicates the running status of CP since the
last entry to the dispatcher.

Value of
CP~I!I

X'80'
X'40'
X'20'
X'08'

2. Current User

Comments cp-Is-In wait state
CP is running the user in RONUSER
CP is executing a stacked request
CP is running in supervisor state

The PSi that was most recently loaded by the dispatcher is saved in
RUNPSW at location X'330', and the address of the dispatched V~BLOK
is saved in RUNUSER at location X'338'. Also, examine the contents
of control registers 0 and 1 as they were when the last PSi was
dispatched. See RUNCRO (X'340') and RONCR1 (X'344') for the
control registers.

Part 1. Debugging with V8/310 41

Also, examine the CP internal trace table to determine the events
that preceded the abnormal termination. Start with the last event
recorded in the trace table and read backward through the trace table
entries. The last event recorded is the last event that was completed.

The TRACSTRT field (location X'OC') contains the address of the start
of the trace table. The TRACEND field (location X'10') contains the
address of the byte following the end of the trace table. The address
of the next available trace table entry is found in the TRACCURR field
(location X'14'). To find the last recorded trace table entry, subtract
X'10' from the value at location X'14',. The result is the address of
the last recorded entry. Figure 8, earlier in this section, describes
the format of each type of trace table entry.

Igte: If the system was in attached processor mode, the trace table
pointers are in absolute page zero.

REGISTER USAGE

In order to trace control blocks and modules, it is necessary to know
the CP register usage conventions.

The 16 general registers have many
operation. The following table shows
registers.

uses that vary depending upon the
the use of some of the general

!!~gi§ter
GR 1
GR 2
GR 6,7,8

GR 10
GR 14,15

Contents
The-virtual address to be translated.
The real address or parameters.
The virtual or real channel, centrol unit, and device

control blocks.
The address of the active IOBLOK.
The external branch linkage.

The following general registers usually contain the same information.

!!~i§teI
GR 11
GR 12
GR 13

Contents
The-address of the active iMBLOK.
The base register for the module
The address of the current save

called via an SiC.

executing.
area if the module was

Use these registers along with the CP control blocks and the data in
the prefix storage area to determine the error that caused the CP abend.

SAVE AREA CONVENTIONS

There are three save areas that may be helpful in debugging CP. If a
module was called by an SVC, examine the SAVEAREA storage area.
SAVEAREA is not in the PSA; the address of the SAVEAREA is found in
general register 13. If a module was called by a branch and link, the
general registers are saved in the PSA in an area called BALRS1VE
(X'240'). The DMKFRE save area and work area is also in the PSI: these
areas are used only by the DMKFREE and DMKFRET routines. The DMKFRE
save area (FREESAVE) is at location X'280' and its work area (FREEWCRK)
follows at location X'2CO'.

Save areas used by attached processor support are DUKPSAVE, SIGSAVE,
LOKSAVE, KFASAVE, SWTHSAVE, LOCKSAVE, and SVCREGS. These save areas are
all in the PSA. All except LOCKSAVE and and SVCREGS are 16 words in
size.

Use the save areas to trace backwards and find the previous module
executed.

1. SAVEAREA

An active save area contains the caller's return address in
SAVERETN (displacement X'OO'). The caller's base register is saved
in SAVER12 (displacement X'04'), and the address of the save area
for the caller is saved in SAVER13 (displacement X'OS'). Using
SAVER13, you can trace backwards again.

2. BALRSAVE

All the general registers ar~ saved in BALRSAVE after branching and
linking (via BALR) to another routine. Look at BALR14 for the
return address saved, BALR13 for the caller's save area, and BALR12
for the caller's base register, and you can trace module control
backwards.

3. FREESAVE

All the general registers are saved in FREESAVE before DKKFRE
executes. Use this address to trace module control backwards.

Field
FREER15
FREER14
FREER13

FREER12
FREER1
FREERO

4. DUMPSAVE

Contents
Theentry point (DMKFREE or DKKFRET) '.
The saved return address.
The caller's save area (unless the caller was called via

BALR).
The caller's base register.
Points to the block returned (for calls to DKKFRET).
Contains the number of doublewords requested or returned.

All the general registers at the time of the error are saved in
DUMPSAVE (displacement X'500') before DMKDMP is called. They are
saved by DMKPSA after a restart, by DMKSVC after an SVC 0, and by
DMKPRG. The registers are stored in DUMPSAVE in the order GRO
through GR15. GR12 usually contains the base register for the
module executing at the time of the error.

5. SIGSAVE

SIGSAVE (displacement X'540') is used as a save/work area by
DMKEXT, an attached processor-only module that handles all
signaling requests. When a signal request is issued, DMKEXTSP is
called. On entry, DMKEXTSP stores GR12 through GR15~ and GRO
through GR6. GR7 through GR11 are not saved. The remainder of
SIGSAVE is used as a work area. GR14 contains the caller's return
address.

Part 1. Debugging with VM/370 49

6. LOKSAVE

registers are stored in LOKSAVE (displacement
DMKLOK executes. DMKLOK is an attached

module that manipulates certain attached

All the general
X'580') before
processor-only
processor-only
through GR15.

locks. The registers are stored in the order GRO
GR14 contains the caller's return address.

7. MFASAVE

All the general registers are stored in MFASAVE (displacement
X'5CO') before DMKMCTMA executes. DftKMCTMA is the entry into
DftKMCT, an attached processor-only module,that handles malfunction
alert interrupts. The registers are stored space in the order GRO
through GR15. GR14 and GR1S contain the caller's return address.

8. SWTHSAVE

All the general registers are stored in SWTHSAVE (displacement
X'600') by DMKSTK and DMKVMASW. DftKVftASW is an entry that is used
only in an attached processor system to switch a user's page table
pointers. The registers are stored in the order GRO through GR15.
GR14 contains the caller's return address. All entries to DftKSTK
store registers GRO through GR15 in SWTHSAVE.

9. LOCKSAVE

LOCKSAVE (displacement X'640') is a four-word save area used by the
LOCK macro to save GR14, GR15, GRO, and GRl if the SAVE option of
the LOCK macro is specified.

10. SVCREGS

SVCREGS (displacement X'650') is a four-word save area used to save
GR12 through GR15 at the time of an SVC interrupt.

VIRTUAL AND REAL CONTROL BLOCK STATUS

Examine the virtual and real control blocks for more information on the
status of the CP system. Figure 9 describes the relationship of the CP
control blocks; several are described in detail in the following
Faragraphs.

The address of the VMBLOK is in general register 11.

1.

50

Examine the following VMBLOK fields:

The virtual machine
(displacement X'58').
running status:

IBM VM/3 7 Q System

running status
The value of

is contained in VMRSTAT
this field indicates the

~
"'l
d
H
CD

1.0

n
I'd

n
0
~
r+
H
0
......
t;x:j
......
0
C'l
~

!;tI
CD
......
PI
r+

I'd 0
PI ~
H rn
r+ t:r' - I'd

rn
to
tD
t:r'
d

"'l
"'l
~

"'l

C
r+
t:r'

<S
tJ:

" W
..,J
0

U1 ...

PSA (Prefix Storage Are~SYSIM ------ ~------
----~

ACORETBL

~--

DMKPTR

(

DMKPTRF1 __ ,\ . __ -----.~~ __ ----~
DMKPTRU1 CORFPNT CORBPNT
DMKPTRFL _ ~--

1------

CORFPNT ----
1--------

CORSWPNT···
CORPGPNT .-----4----

IOBFPNT IOBBPNT TREXT

VC~K' ~_V_C_H_B_L_O;KS

VMBLOK

VMOBPNT

ECBLOK

VSf~8
~ V R RB LO K ... T_R_O_B_L_O_K

VCONCTL

SHADOWN';HADOW
PAGTABLE ~

IOBLOK
VSPSFBLK

-....
IOBLINK I-...;..~--.;,., .- TRQBLOK

CON,.'K ~
[~

2.

Value of
VMRSTAT
-i'80'-

X'40'
X'20'
X' 10'
X'08'
X'04'
X'02'
X' 01'

comments
wiIting- executing console function
Waiting page operation
Waiting -- scheduled IOBLOK start
Waiting -- virtual PSi wait state
Waiting -- instruction simulation
User not yet logged on
User logging off
Virtual machine in idle wait state

The virtual machine dispatching status is
(displacement X'59'). The value of this
dispatching status:

contained in VftDSTAT
field indicates the

Value of
VMDSTAT
--xtSO'-

X'40'
X'20'
X'10'
X'08'
X'04'
X'02'
X' 01'

£oml!!!nt§
Virtual machine is dispatched RUN USER
Virtual machine is compute bound
Virtual machine in-queue time slice end
Virtual machine in TIO/SIO busy loop
Virtual machine runnable
Virtual machine in a queue
Virtual machine in eligible list
Reflect an external interrupt to a virtual machine

3. Examine the virtual PSW and the last virtual machine privileged
instruction. The virtual machine PSi is saved in VftPSW
(displacement X'A8') and the virtual machine privileged or tracing
instruction is saved in VftINST (displacement X'98').

4. Find the name of the last CP command that executed in VftCOftND
(displacement X'148').

5. Check the status of I/O activity,.
pertinent information.

The following fields contain

a. VMPEND (displacement X'63') contains
summary flag. The value of VMPEND
interrupt.

the interrupt pending
identifies the type of

Value of
VMPEND

--i'80'-

X'40'

X'20'
X' 10'
x'08'
X'02'
X'Ol'

Comments Deferred task waiting for system lock
(attached processor mode)

Virtual PER (program Event Recording)
interrupt pending

Virtual program interrupt deferred
Virtual SVC interrupt deferred
Virtual pseudo page fault pending
Virtual I/O interrupt pending
Virtual external interrupt pending

b. VMFSTAT (displacement X'6S') contains the virtual machine
features.

Value of
!MFSTA!

X'SO'
Xi 40 i

X'20'

Value of
VMMLVL2
--VSO'

Comments
iIrtual-block multiplexer channles
Autopoll handshake option in use
User requested virtual timer request

Co,!!!men!§
Receiving all informational messages

c. VMIOINT (displacement X'6A') contains the I/O interrupt pending
flag. Each bit represents a channel (0 through 15)~ An
interrupt pending is indicated by a 1 in the corresponding bit
position.

d.

Value of
VMIOINT
10000000 00000000
01000000 00000000

00000000 00000001

CO.!!'!!!~Hlts
Interrupt pending channel 0
Interrupt pending channel 1

Interrupt pending channel 15

VMIOACTV (displacement X'36')
active channel is indicated
position.

is the active channel mask. An
by a 1 in the corresponding bit

The address of the VCHBLOK table is found in the VMCHSTRT field
(displacement X'1S') of the VMBLOK. General register 6 contains the
address of the active VCHBLOK. Examine the following fields:

1. The virtual channel address is contained in VCHADD (displacement
X'OO').

2. The status of the virtual channel is found in the VCHSTAT field
(displacement X'06'). The value of this field indicates the virtual
channel status:

Value of
VCHSTAT
if80'--
X'40'
X'01'

Comments
iIrtual-channel busy
Virtual channel class interrupt pending
Virtual channel dedicated

3. The value of the VCHTYPE field (displacement X'07') indicates the
virtual channel type:

Value of
VCHTYPE
i'80'--
X'40'

Comments
iIrtual-selector channel
Virtual block multiplexer

Part 1. Debugging with VM/370 53

The address of the VCUBLOK table is found in the VCUSTRT field
(displacement X'1C') of the VMBLOK. General register 7 contains the
address of the active VCUBLOK. Useful information is contained in the
following fields:

1. The virtual control unit address is found in the VCUADD field
(displacement X' 00') •

2. The value of the VCUSTAT field (displacement X'06') indicates the
status of the virtual control unit:

Value of
VCUSTAT Feo'--
X'40'
X'20'
X'10'
X'OS'
X'04'

comments
iIrtuaI-subchannel busy
Interrupt- pending in subchannel
Virtual control unit busy
Virtual control unit interrupt pending
Virtual control unit end pending
Virtual control unit active

3. The value of the VCUTYPE field (displacement X'07') indicates the
type of the virtual control unit:

Value of
VCUTYPE X'SO,--
X'40'

Comments
iIrtual-control unit on shared subchannel
Virtual control unit is a channel-to-channel

adapter

The address of the VDEVBLOK table is found in the VMDVSTRT field
(displacement X'20') of the VMBLOK. General register S contains the
address of the active VDEVBLOK. Useful information is contained in the
following fields:

1. The virtual device address is found in
(displacement X'OO').

the VDEVADD field

2. The value of the VDEVSTAT field (displacement X'06') describes the
status of the virtual device:

Value of
!R~!~I!I
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'04'
X'02'
X'01'

Comments
iIrtuaI-subchannel busy
Virtual channel interrupt pending
Virtual device busy
Virtual device interrupt pending
Virtual control unit end
Virtual device not ready
Virtual device attached by console function
VDEVREAL is dedicated to device RDEVBLOK

3. The value of the VDEVPLAG field (displacement X'01') indicates the
device-dependent information:

value of
VDTIPL!~
X'SO'
X'SO'
X'40'
X'40'
X'40'
X'20'
X'10'
X'10'
X'OS'
X'OS'
X'04'
X'02'
X'02'
X'01'

£2!!m!!§--
DASD -- read-only device
Virtual 2701/2702/2703 device line enabled
D1SD -- TDISK space allocated by CP
Virtual 2701/2702/2703 device line connected
Console -- activity spooled
DASD -- 2311 device simulated on top half of 2314
DASD -- 2311 device simulated on bottom half of 2314
Console and spooling device -- processing first ccw
DASD -- executing standalone seek
Console -- delay spooling
Virtual device is being attached
RESERVE/RELEASE are valid CCi operation codes
present attention with a single interrupt
Virtual device sense bytes present

4. The VDEVCSW field (displacement X'08') contains the virtual channel
status word for the last interrupt.

5. The VDEVREAL field (displacement X'24') contains the pointer to the
real device block, RDEVBLOK~

6. The VDEVIOB field (displacement X'34') contains the pointer to the
active IOBLOK.

7. For console devices, the value of the VDEVCFLG field (displacement
X'26') describes the virtual console flags:

Value of
~I1§
X'SO'
X'40'
X'20'
X'10'
X'OS'

COllments
user-SIgnalled attention tee many times
Last CCi processed was a TIC
Data transfer occurred during this channel program
Virtual console function in progress
Automatic carriage return on first read

8. For spooling devices, the value of the VDEVSFLG field (displacement
X'21') describes the virtual spooling flags:

Value of
VDE!~I1§
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'OS'
X'04'
X'02'
X'02'
X'01'

comments
spcor-output -- transferred to VSPXXUSR
Spool device -- continuous operation
Hold output -- save input
spool output -- for user and distribution
spool input -- set unit exception at EOP
Terminal output required for spooled console
Device closed by console function
Spool output -- purge file at close
spool input -- device opened by DIAGNOSE
Spool output -- DMKVSP entered via SVC

Part 1. Debugging with VM/370 55

9. For output spooling devices, the VDEVEXTN field (displacement
X'10') contains the pointer to the virtual spool extension block,
VSPXBLOK.

10. The value of the VDEVFLG2 field (displacement X'38') describes the
Reserve/Release flags.

Value of
VD~!X12l
X'80'
X'40'
X'20'
X'10'

Comments
Process-virtual Reserve/Release commands
Minidisk reserved by VDEVUSER
VDEVBLOK to get device end when minidisk released
Virtual I/O waiting for release on minidisk

11. For Reserve/Release minidisks, VDEVRRB (displacement X'3C') contains
the address of the VRRBLOK.

The address of the first RCHBLOK is found in the ARIOCH field
(displacement X'3B4') of the PSA (Prefix Storage Area). General register
6 contains the address of the active RCHBLOK. Examine the following
fields:

1. The real channel address is found in the RCHADD field (displacement
X'OO') •

2. The value of the RCHSTAT field (displacement X'04') describes the
status of the real channel.

Value of
RCHSTAT Comments
X'80'--ChanneI-busy
X'40' lOB scheduled on channel
X'20' Channel disabled
X'01' Channel dedicated

3. The value of the RCHTYPE field (displacement X'05') describes the
real channel type:

Value of
RCHIXg~ fg~~~nts
X'80' Selector channel
X'40' Block multiplexer channel
X'20' Byte multiplexer channel
X'01' S/370 type channel (S/370 instruction sUFport)

4. The RCHFIOB field (displacement X'08') is the pointer to the first
IOBLOK in the queue and the RCHLIOB field (displacement X'OC') is
the pointer to the last IOBLOK in the queue.

The address of the first RCUBLOK is found in the
(displacement X'3BS') of the PSA. General register 7
current RCUBLOK. Examine the following fields:

ARlOCU field
points to the

1. The RCUADD field (displacement X'OO') contains the real control
unit address.

2. The value of the RCUSTAT field (displacement X'04') describes the
status of the control unit:

3.

4.

5.

6.

7.

S.

Value of
RCUSTAT
X'SO,--
X'40'
X'20'
X'OS'
X'04'
X'02'
X' 0 l'

Comllents
Contror-unit busy
lOB scheduled On control unit
Control unit disabled
RCUCHA to RCHBLOK path not available
RCUCHB to RCHBLOK path not available
RCUCHC to RCHBLOK path not available
RCUCHD to RCHBLOK path not available

RCUCHA (displacement 1'10') points to the Primary RCHBLOK.

RCUCHB (displacement 1 1 14') points to the first alternate RCHELOK.

RCUCHC (displacement I'1S') points to the second altsrnate RCHBLOK.

RCUCHD (displacement X' 1C') points to the third alternate RCHBLOK.

The value of the RCUTYPE field (displacement X' 05') describes the
type of the real control unit:

Comments
Value of
RCUTYPE
X'SO'-- ThiS-Control unit can attach

Subordinate control unit
to only one subchannel

X'40'
X' 0 l'
X'02'
X'03'

TCU is a 2701
TCU is a 2702
TCU is a 2703

The RCUFlOB field (displacement I'OS') points to
in the queue and the RCULIOB field (displacement
the last lOBLOK in the queue.

the first IOBLCK
X'OC') points to

The address of the first RDEVBLOK is found in the ARIODV field
(displacement X'3BC') of the PSA. General register 8 points to the
current RDEVBLOK. Also, the VDEVREAL field (dis~lacement X'24') of each
YDEVBLOK contains the address of the associated RDEVBLOK. Examine the
following fields of the RDEVBLOK:

1. The RDEVADD field (displacement X'OO') contains the real device
address.

Part 1. Debugging with V"/370 57

2. The values of the RDEVSTAT (displacement X'04') and RDEVSTA2
(displacement X'45') fields describe the status of the real device:

3.

58

Value of
RDE!~I!I
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'04'
X'02'
X' 01'

Value of
RDEVSTA2 X'SO,---
X'40'
X'20'
X' 10'

The value of
device flags.

Value of
RDE!11!§
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'04'

Value of
RDEVFLAG
X '02'---
X'Ol'
X'SO'
X'40'
X'20'
X'10'
x'oS'
X'04'
X'02'
X' 01'
X'SO'
X'40'
X'20'
X'10'
X'OS'
X'04'
X'02'
X' 01'

Comments
DevIce-busy
lOB scheduled on device
Device disabled (offline)
Device reserved
Device in intensive error recording mode
Device intervention required
Graf-IOBLOK pending; queue requests
Dedicated device (attached to a user)

Comments
ActIve-device is being reset
Device is busy with the channel
Contingent connection present
Logdrop/loghold indicated

the RDEVFLAG field (displacement X'OS')
These flags are device-dependent.

Comments
nASD----ascending order seek que~ing
DASD volume preferred for pag1ng
DASD volume attached to system
DASD CP-owned volume
DASD volume mounted but not attached
Console terminal has print suppress

indicates

Console terminal executing prepare command
Console IOBLOK pending; queue request
Console 2741 terminal code identified
Console device is enabled
Console next interrupt from a halt I/O

Comments Console--
Console -
Spooling
Spooling
spooling
spooling
Spooling
Spooling
Spooling
Spooling
Special
Special
Special
Special
Special
Special
Special
Special

device is to be disabled
370X NCP resource in EP mode
device output drained
device output terminated
device busy with accounting
force printer to single space
restart current file
backspace the current file
print/punch job separator
UCS buffer verified

network control program is active
2701/2702/2703 emulation program is active
370X is in buffer slowdown mode
automatic dump/load is enabled
IOBLOK is pending; queue requests
emulator lines are in use by system
automatic dump/load process is active
basic terminal unit trace requested

IB~ V~/370 System Prcgram;er's

April 1, 1981

4. The value of the RDEVTYPC field (displacement X'06'; describes the
device type class and the value of the RDEVTYPE field (displacement
X~07') describes the device type. Refer to Figure 10 for the list
of possible device type class and device type values.

5. The RDEVAIOB field (displacement X'2ij') contains the address of the
active IOBLOK.

6. The RDEVUSER field (displacement X'2S') points to the VMBLOK for a
dedicated user.

7. The RDEVATT field (displacement X'2C') contains the attached
vit:'tual address.

S. The RDEVIOER field (displacement X'4S') contains the address of the
IOERBLOK for the last CP error.

9. Fot:' spooling unit record devices, the RDEVSPL field (displacement
X'1S') points to the active RSPLCTL block.

10. Fot:' real 370X Communications Controllers, several pointer fields
are defined. The RDEVEPDV field (displacement X'1C') points to the
start of the free RDEVBLOK list for EP lines. The RDEVNICL field
(displacement X'3S') points to the network control list and the
RDEVCKPT field (displacement X'3C') points to the CKPBLOK for
re-enable. Also, the RDEVMAX field (displacement X'2E') is the
hiqhest valid NCP resource name and the RDEVNCP field (displacement
X'30') is the reference name of the active 3705 NCP.

11.

12.

Fot:' terminal
the RDEVTFLG
flags:

Value of
]12E!ll1g
X'SO'
X'40'
X'20'
X'SO'
X'ijO'
X'20'
X' 10'
X'OS'
X'04'
X'02'

devices, additional flags are defined. The value of
field (displacement X'3E') describes the additional

comments TermInal
Terminal
Terminal
Graphic
Graphic
Graphic
Graphic
Graphic
Graphic
Graphic

logon process has been initiated
terminal in reset process
suppress attention signal

screen full, in "hold sta tus
screen full, more data waiting
screen in running status
read pending for screen input
last input not accepted
timer request pending
CP command interrupt pending

Fot:' terminals, an additional
RDEVTMCD field (displacement
translation to be used:

flag is
X'46')

defined. The value of
describes the line

the
code

Value of
RDEVTMCD
X'10'--
X'OC'
X'OS'
X'Oij'
X'OO'

comments
ASCII-== S level keyboard
APL correspondence keyboard
APL PTTC/EBCD keyboard
Correspondence keyboard
PTTC/EBCD keyboard

Part 1. Debuqging with VM/310 59

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

...--
DEVICE CLASS CODES

~Qg§
X' 80'
X'40'
X' 20'
X' 10'
X' 08'
X'04'
X'02'

DEVICE TYPE CODES

Device Class
Terminal Device
Graphics Device
unit Record Input Device
unit Record Output Device
Magnetic Tape Device
Direct Access storage Device
Special Device

• For Terminal Device Class

~Qg§
X'80'
X'40'
X'40'
X'20'
X'20'
X' 10'
X' 18'
X'18'
X' 14'
X' 1 C'
X'Ol'
X'OO'
X'OO'
X' 00'
X' 00'
X' 00'

Q~Y ice 1:.Y.E~
Binary Synchronous Line for Remo~e
2700 Binary Synchronous Line
2955 Communication Line
Telegraph Terminal Control Type II
Teletype Terminal
IBM Terminal Control Type I
IBM 2741 Communication Terminal
IBM 3767 Communication Terminal
IBM 1050 Data Communication System
undefined Terminal Device
Dial Feature
IBM 3210 Console
IBM 3215 Console
IBM 2150 Console
IBM 1052 Console
IBM 7412 Console

• For Graphics Device Class

~Qg§
X'80'
X' 40'
X'20'
X' 10'
X'08'
X' 04'
X'04'
X'04'
X' 04'
X'04'
X'04'
X' 0 l'
X'02'
X'02'
X' 02'
X'02'
X'02'

Figure 10.

Deyicg l~
IBM 2250 Display Unit
IBM 2260 Display Station
IBM 2265 Display Station
IBM 3066 Console
IBM 1053 Printer
IBM 3138 System Console
IBM 3148 System Console
IBM 3158 System Console
IBM 3275 Display Station
IBM 3276 Display Station
IBM 3277 Display Station
IBM 3278 Display Station
IBM 3284 Printer
IBM 3286 Printer
IBM 3287 Printer
IBM 3288 Printer
IBM 3289 Printer

CP Device Classes, Types, Models, and Features (Part 1 of 3)

60 IBM VM/370 System Programmer's Guide

Page of GC20-1S07-7 As Updated April 1, 19S1 by TNL GN25-0S29

• For Unit Record "Input Device Class

~Qg~
X'SO'
X'S1'
X'S2'
X'S4'
X'SS'
X'90'
X'40'
X'20'
X'21'
X'22'
X'24'

J2~yice !~
Card Reader
IBM 25fr1 Card Reader
IBM 2540 Card Reader
IBM 3505 Card Reader
IBM 1442 Card Reader/Punch
IBM 2520 Card Reader/Punch
Timer
Tape Reader
IBM 2495 Magnetic Tape cartridge Reader
IBM 2671 Paper Tape Reader
IBH 1017 Paper Tape Reader

• For unit Record Output Device Class

COQ~
X'SO'
X' S2'
X'S4'
X'8S'
X'90'
X'40'
X' 41 '
X'42'
X'43'
X'44'
X'45'
X' 20'
X'24'

J2~v ice !ll.§
Card Punch
IBM 2540 Card Punch
IBM 3525 Card Punch
IBM 1442 Card Punch
IBM 2520 Card Punch
Printer
IBM 1403 Printer
IBM 3211 Printer
IBM 3203 Printer
IBM 1443 Printer
IBM 3S00 printing Subsystem
Tape Punch
IBM 101S Paper Tape Punch

• For Magnetic Tape Device Class

~QQ~.
x'so'
X' 40'
X' 20'
X' 10 e

X' OS'

J2~ic~ Iape
IBM 2401 Tape Drive
IBM 2415 Tape Drive
IBM 2420 Tape Drive
IBM 3420 Tape Drive
IBM 3410/3411 Tape Drive

• For Direct Access storage Device Class

Code
X'SO'
X'SO'
X'SO'
X'SO'
X'40'
X'40'
X' 10'
X' 10'
X'OS'
X'02'
X' 01'

'-
Fiqure 10.

De.!ic~ I.I.P.§
IBM 2301 Parallel Drum
IBM 2303 Serial Drum
IBM 2311 Disk Storage Drive
IBM 2321 Data Cell Drive
IBM 2314 Disk Storage Facility
IBM 2319 Disk Storage Facility
IBM 3330 Disk Storage Facility
IBM 3333 Disk Storage and Control
IBM 3350 Disk Storage Facility
IBM 2305 Fixed Head storage Device
IBM 3340 Disk Storage Facility

CP Device Classes, Types, Models, and Features (Part 2 of 3)

part 1. Debugging with VM/370 61

r

April 1, 1981

• For Special Device Class

Code
i'eo'
X' 40'
X' 20'
X' ou·
X' 01'

~~Yi£~ Tll~
Channel-to-Channel Adapter (CTCA)
370x Programmable Communications Controller
3851 Mass storage Controller
S RF (7443) device
Device unsupported by VM/370

MODEL CODES (Column 35 in Accounting Card)

As specified in the RDEVICE macro at system generation.

FEATURE CODES (Column 36 in Accounting Card)

• For Printer Devices

~Qg~
X'01'

• For Magnetic Tape Devices

~Qg~
X· 80'
X'UO'
X' 20'
X' 10'

Igat.!IT.§
7-Track
Dual Density
Translate
Data Conversion

• For Direct Access storage Devices

~Qg~
X' 80'
X' 40'
X' 20'
X, 10'
X'08'
X' 04'
X' 02'
X' 01'

Feature
RotatIonal posit.ion Sensing (RPS)
Extended Sense Bytes (24 bytes)
Top Half of 2314 Used as 2311
Bottom Half of 2314 Used as 2311
35MB Data Module (mounted)
70MB Dat a Module (mounted)
Reserve/Felease are valid CCW operation codes
3330V virtual MSS volume

• For special devices

~Qg~
X' 10'
X'20'

Feature
Type-r-channel adapter for 370X
Type II channel adapter for 370X

L

Figure 10. CP Device Classes, Types, Models, and Features (Part 3 of 3)

n2 IBM V~/370 Syste~ Prcgra~mer's Gui1e

page of GC20-t801-7 As Updated April 1, 1981 by TNL GN25-0829

IDENTIFYING AND LOCATING A PAGEABLE MODULE

If a proqram check PSW or SVC PSi points to an address beyond the end of
the CP resident nucleus, the failing module is a pageable module. The
CP system load map identifies the end of the resident nucleus.

Go to the address indicated in the PSW. Backtrack to the beginning
of tggi paqe frame. The first eight bytes of that page frame (the page
frame containinq the address pointed to by the PSW) contains the name of
the first pageable module loaded into the page. If multiple modules
exist within the same page frame, identify the module using the load map
and failing address displacement within the page frame. In most cases,
register 12 will point directly to the name.

To locate a pageable module whose address 1S shown in the load map;
use the system VMBLOK segment and page tables. For example, if the
address in the load map is 55000, use the segment and page tables to
locate the module at segment 5, page 5.

VMDUMP RECORDS: FORMAT AND CONTENT

When a user issues the VMDUMP command, CP dumps virtual storage of the
user's virtual machine. CP stores this dump on the reader spool file of
a virtual machine that the user specified as an operand on the VMDUMP
command.

CP writes the storage dump to the spool file as a series of logical
records. Each spool file record and each logical dump record is
4096-bytes long. However, because each spool file record contains a
header, one logical dump record does not fit into one spool file record.
For this reason, CP splits a logical dump record into two parts. CP
writes one part to one spool file record and the other part to an
adjacent spool file record. The size of each part varies depending upon
the am~unt of space remaining in the spool file record that CP is
currently usinq. Thus, each logical dump record spans two spool file
records. Fiqure 10.1 shows the format of spool file records, the format
of loqical dump records, and how loqical dump records span spool file
records.

The first spool file record contains a spool page buffer linkage
block (SPLINK) followed by a TAG area followed by dump information. All
other spool file records contain only a SPLINK followed by dump
information.

A SPLINK, which contains data needed to locate information in the
associated spool file record, has the following format:

hexadecimal
Q!l§gi

o

4

8

C

lengih
4 bytes

4 bytes

4 bytes

4 bytes

content
the DASD location-(DCHR) of the next page
buffer

the DASD location (DCHR) of the previous
page buffer

binary zeros

the number of data records in the buffer

Part 1. Debugging with VM/310 63

April 1, 1981

The TAG area contains either binary zeros or user supplied data. If
a virtual machine program or the user has issued the TAG command, the
TAG area contains the information provided via this command. Otherwise
it contains binary zeros.

The first logical dump record contains a dump file information record
(DMPINREC). The second and third logical dump records each contain a
dump file key storage record, DMPKYREC1 and DMPKYREC2 respectively. The
dump file key storage records contain the value of the storage keys
assigned to each page of virtual storage. The remaining logical dump
records contain the virtual machine storage dump.

CP records the storage dump sequentially starting with the lowest
address dumped and ending with the highest address dumped. CP records
each byte as an untranslated 8-bit binary value.

For a description of the format and contents of DMPINREC, see !!L~l~
nsi! ![~§~ an! ~ont~ol-~ Logic. For a description of DMPKYREC1 and
DHPKYREC2, see DHPKYREC also in the natg ![~ gnd ~~U!I2!-~!Qck Logic
publicat ion.

To locate a specific logical dump record, use the algorithm:

240+16n+4096n
loc = ---------------

4096

where: n·is a number that identifies the dump record. For example, to
locate the first dump record, assign n a value of 1; to locate
the second record, assiqn ~ a value of 2, and so forth.

!Q~ is the quotient and remainder of the algorithm. Together
these values specify a spool file record and an offset into that
record where logical dump record ~ begins. The quotient
specifies the spool file record, and the remainder specifies the
offset into the spool file record.

The following example shows how to locate the third logical dump
record:

240+(16x3)+(4096x3)
loc = -----------4096

12576
loc = ----~-

4096

quotient = 3

remainder = 288

Thus, the third dump record starts 288 bytes into the third spool file
record.

64 IBM VM/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

first logical
header dump record

r-
first spool 10 116 1256 4095
file record I SPLINK I TAG 1 DKPINREC

I

16 240 3840
bytes bytes bytes

first logical
dump record second logical

header (continued) dump record

• second spool 10 116 1272 4095
4=';1"" record. SPLINK DMP!NREC DMPKYREC1 .L."~V

(continued)

16 256 3824
bytes bytes bytes

second logical
dump record third logical

header (continued) dump record ,
third spool 10 116 1288 4095
file record I SPLINK I DMPKYREC1 1 DKPKYREC2

I I (continued) I
I

16 272 3808
bytes bytes bytes

third logical
dump record fourth logical

header (continued) dump record
r-

fourth spool 10 116 1304 4095
file record SPLINK DMPKYREC2 virtual machine

(cont inued) storage dump

16 288 3792
bytes bytes bytes

fourth logical
dump record fifth logical

header (continued) dump record
r-

fifth logical 10 116 1320 4095
dump record I SPLINK I virtual machinel virtual machine

I I storage dump I storage dump
I

16 30Q 3776
bytes bytes bytes

Figure 1 o. 1 • VMDUMP Record Format

Part 1. Debugging with VK/370 64.1

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Debuggin~ with eMS

This section describes the debug tools that CMS provides. These tools
can be used to help you debug CMS or a problem program. In addition, a
CMS user can use the CP commands to debug. Information that is often
useful in debugging is also included. The following topics are
discussed in this section:

• CMS debugginq commands
• Load maps
• Reading CMS dumps
• Control block summary

CMS Debugging Commands

CMS provides two commands that are useful in debugging: DEBUG and
SVCTRACE. Both commands execute from the terminal.

The debug environment is ~Iltered whenever:

• The DEBUG command is issued
• A breakpoint is reached
• An external or program interrupt occurs

CMS will not accept other commands while
However, while in the debug environment,
command can be used to:

in the debug environment.
subcommands of the DEBUG

• set breakpoints (address stops) that stop program execution at
specific locations.

• Display the contents of the CAW (channel address word), CSW (channel
status word), old PSW (proqram status word), or general registers at
the terminal.

• Change the contents of the control words (CAW, CSW, and PSi) and
general registers.

• Dump all or part of virtual storage at the printer.

• Display the contents of . up to 56 bytes of virtual storage at the
terminal.

• store data in virtual storage locations.

• Allow an oriqin or base address to be specified for the program.

• Assign symbolic names to specific storaqe locations.

• Close all open files and I/O devices and update the master file
directory.

• Exit from the debug environment.

64_2 IBM VM/370 System programmer's Guide

The SVCTRACE command records information for all SVC calls. When the
trace is terminated, the information recorded up to that point is
printed at the system printer.

In addition, several CMS commands produce or print load maps. These
load maps are often used to locate storage areas while debugging
programs.

DEBUG

The DEBUG command provides support for debugging programs at a terminal.
The virtual machine operator can stop the program at a specified
location in order to examine and alter virtual storage, registers: and
various control words. Once CMS is in the debug environment, the
virtual machine operator can issue the various DEBUG subcommands.
However, in the debug environment, all of the other CMS commands are
considered invalid.

Any DEBUG subcommand may be entered if CMS is
environment if the keyboard is unlocked. The following
DEBUG subcommands:

1. No operand should be longer than eight characters.
longer than eight characters are left-justified and
the right after the eighth character.

in the debug
rules apply to

All operands
truncated on

2. The DEFINE subcommand must be used to create all entries in the
DEBUG symbol table.

3. The DEBUG subcommands can be truncated. The following is a list of
all valid DEBUG subcommands and their minimum truncation.

~Y!2£om'!!@llg
BREAK
CAi
CSi
DEFINE
DUMP
GO
GPR
HI
ORIGIN
PSi
RETURN
SET
STORE
I

Minimum
!!Yll£g!i21l

BR
CAi
CSW
DEF
DU
GO
GPR
HI
OR
PSi
RET
SET
ST
I

One way to enter the debug environment is to issue the DEBUG command.
The Ilessage

DMSDBG728I DEBUG ENTERED

appears at the terminal. Any of the DEBUG subcommands may be entered.
To continue norma-l processing, issue the RETURN subcomm-and. ihenevera
program check occurs, the DMSABN routine gains control. Issue the DEBUG
command at this time if you wish CMS to enter the debug environment.

Part 1. Debugging with VM/370 65

Whenever a breakpoint is encountered, a program check occurs. The
message

DMSDBG7281 DEBUG ENTERED
BREAKPOINT II AT IIIIX

appears on the terminal. Follow the same procedure to enter subcommands
and resume processing as with a regular program check.

An external interrupt, which occurs when the CP
issued, causes CMS to enter the debug environment.

DMSDBG7281 DEBUG ENTERED
EXTERNAL INTERRUPT

EITERNAL co.mand is
The message

appears on the console. Any of the DEBUG subcommands may be issued. To
exit from the debug environment after an external interrupt, use GO.

While CMS is in the debug environment, the control words and low
storage locations contain the debug program values. The debug program
saves the control words and low storage contents (X'OO' through X'100')
of the interrupted routine at location I'CO'.

Nucleus Load Map

Each time the CMS resident nucleus is loaded on a DASD and an IPL can be
perforaed on that DASD, a load map is produced. Save this load map. It
lists the virtual storage locations of nucleus-resident routines and
work areas. Transient modules will not be included in this load map.
When debugging CMS, you can locate routines using this map.

The load map aay be saved as a disk file and printed at any time. A
copy of the nucleus load map is contained on the system with file
identification of 'filename NUCMAP.' To determine the filename, issue
the command

LISTFILE * NUCMAP *
To obtain a copy of the current nucleus load map, issue the command

PRINT filename NUCMAP filemode

Figure 11 shows a sample CMS load map. Notice that the DEBUG work
area (DBGSECT) and DKSINM module have been located.

66 IBM VM/370 System Programmer's Guide

FILE: LOAD CMSMAP C CONVERSATIONAL MONITOR SYSTEM

INVALI!) CARD ••• :READ DMSNUC TEX'! C1 CMS191 9/21/72 9:01

* UPLIB MACLIB D1 CMS191 9/21/72 8:47

* CMSLIB MACLIB D1 CMS191 9/21/72 8:44

* OSMACRO MACLIB Y2 CMS19E 7/19/72 18:11

* DMSNUC ASSEMBLE C1 SOURCE 9/18/72 23:09
DMSNUC AT 000000
DMSNUCU AT 002800
NUCON AT 000000
SYSREF AT 000600
FEIBM AT 000274
CMNDLINE AT 0007AO
SUBFLAG AT 0005E9
IADT AT 000644
DEVICE AT 0OO26C
DEVTAB AT 000C90
CONSOLE AT 000C90
ADISK AT OOOCAO
DDISK AT OOOCDO
SDISK AT 000D10
YDISK AT 000D20
TABEND AT OOODFO
ADTSECT AT OOODFO
AFTSTART AT 001200
EXTSECT AT 001500
FXTPSW AT 0015A8
IOSECT AT 0015DO
IONTABL AT 001610
PGMSECT AT 001660
PIE AT 001668
SVCSECT AT 0016F8
DIOSECT AT 001998
iVS AT 001A88
ADTFVS AT 001E48
KXFLAG AT 001C2F
UFDBUSY AT 001C2E
CMSCVT AT 001C80
DBGSECT AT 001D80
DMSERT AT 002098
DMSFRT AT 002208
DMSABW AT 002258
OPSECT AT 002800
DMSFRL AT 002935
TSOBLKS AT 0029BO
SUBSECT AT 002A40
USERSECT AT 002AD8
INVALID CARD ••• :READ DMSINA TEXT C1 CMS191 mm/dd/yy 15:37
ABBREV AT 003000
USABRV AT 0030DO
INVALID CARD ••• :READ Dl'1SINM TEXT C1 Cl'1S191 mm/dd/yy 20:36
CMSTIMER AT 003200
GETCLK AT 003200
DMSINM AT 003200
INVALID CARD ••• :READ DMSTIO TEXT C1 CMS191 mrr./dd/yy 10:33
TAPEIO AT 003308
DMSTIO AT 003308

Figure 11. Sample CMS Load Map

Part 1. Debugging with VM/370 67

Load Map

The load map of a disk-resident command module contains the location of
control sections and entry points loaded into storage. It may also
contain certain messages and card images of any invalid cards or replace
cards that exist in the loaded files. The loadmap is contained in the
third record of the MODULE file.

This load map is useful in debugging. When using the Debug
environment to analyze a program, use the program's load map to help in
displaying information.

There are two ways to get a load map.

1. When loading relocatable object code into storage, make sure that
the MAP option is in effect when the LOAD command is issued. Since
MAP is the default option, just be sure that NOMAP is not
specified. A load map is then created on the primary disk each
time a LOAD command is issued.

2. When generating the absolute image form of files already loaded
into storage, make sure that the MAP option is in effect when the
GENMOD command is issued. Since MAP is the default option, just be
sure that NOMAP is not specified. Issue the MODMAP command to type
the load map associated with the specified MODULE file on the
terminal. The format of the MODMAP command is:

MODmap I filename

filename is the module whose map is to be displayed. The filetype must
be MODULE.

Reading eMS Abend Dumps

If an abend dump is desired when CMS abnormally terminates, the terminal
operator must enter the DEBUG command and then the DUMP subcommand. The
dump formats and prints:

• General registers
• Extended control registers
• Floating-paint registers
• Storage boundaries with their corresponding storage protect key
• Current PSW
• Selected storage

Storage is printed in hexadecimal representation, eight words to the
line, with EBCDIC translation at the right. The hexadecimal storage
address corresponding to the first byte of each line is printed at the
left ..

68 IBM VM/370 System programmer's Guide

ihen CMS can no longer continue, it abnormally terminates. To debug
CMS, first determine the condition that caused the abend and then find
why the condition occurred. In order to find the cause of aCeS
problem, you must be familiar with the structure and functions of CMS.
Refer to "Part 3: Conversational Monitor System (CMS)" for functional
information. The following discussion on reading CMS dumps refers to
several eMS control blocks and fields in the centrol blocks. Refer to
the VML11Q ~g!g !f~g~ gDQ £Q~!fQl ~loc! 1Qgi£ for details on CMS control
blocks. Figure 12 shows the CMS control block relationships. You will
also need a current CMS nucleus load map in order to analyze the dump.

REASON FOR THE ABEND

Determine the immediate reason for the abend and identify the failing
module. The abend message DMSABN148T contains an abend code and failing
address. The VML11Q ~Y2!~~ ~~~~gg~ manual lists all the CMS abend
codes, identifies the module that caused the module to abend, and
describes the action that should be taken whenever eMS abnormally
terminates.

You may have to examine several fields in the nucleus constant area
(NUCON) of low storage.

1. Examine the program old PSi (PGMOPSW) at location X'28'~ Using the
PSi and current CMS load map# determine the failing address.

2. Examine the SVC old PSi (SVCOPSi) at location X'20'.

3. Examine the external old PSi (EXTOPSi) at location X'18'. If the
virtual machine operator terminated CMS, this PSi points to the
instruction executing when the termination request was recognized.

4. For a machine check, examine the machine check old PSi (MCKOPSW) at
location X'30'. Refer to Figure 47 in "Appendix A: System/370
Information" for a description of the PSi.

Part 1. Debugging with VM/370 69

DMSNUC

USERSECT

SUBSECT

OPSECT

DMSABW

DMSFRT

DMSERT

DBGSECT (Debug work areal

CVTSECT(Some fields are filled in
at IPl.)

FVS

DIOSECT

SVCSECT

PGMSECT

IOSECT

EXTSECT

AFTSECT (Create when the file is
opened. There is room for 5 AFTs in
DMSNUC, others are in free storage.

ADTSECT (Space is allocated when
DMSNUC is assembled, fields are
filled in when ACCESS command is
issued. There is one ADT entry for
each of the 10 possible disks.)

DEVTAB

Terminal Buffers and Saveareas

NUCON

Figure 12. CMS Control Blocks

COLLECT INFORMATION

CMSCB

DCB DECB

I eM'AVE I B

Examine several other fields in NUCON to analyze the status of the CftS
system. As you proceed with the dump, you may return to NUCON to pick up
pointers to specific areas (such as pointers to file tables) or to
examine other status fields. The complete contents of NUCON and the
other CMS control blocks are described in the !~Ll1g ~g!g 1!~§ g~g
~gnt!Q! BlQ£~ ~gg1£. The following areas of NUCON may contain useful
debugging information.

April 1, 1981

e Save Area for Low Storage

Befo~e executing, DEBUG saves the first 160 bytes of low storage in a
NUCON field called LOWSAVE. LOWSAVE begins at X'CO'.

• Register Save Area

DMSABN, the abend routine, saves the user's floating-point and
general registers.

Kielg
FPRLOG
GPRLOG
ECRLOG

• Device

1ocati2!!
X'160'
X'1S0'
X'1CO'

contents
User floating-point registers
User general registers
User extended control registers

The name of the device causing the last I/O interrupt is in the
DEVICE field at X'26C'.

• Last Two Commands or procedures Executed

Figlg
LASTCMND
PREVC!1ND
LASTEXEC
PREVEXEC

1Qcati2!!
X'2AO'
X'2A'S'
X'2BO'
X' 2BS'

Cont~ts
Last CMS command issued
Next to last CMS command issued
Last EXEC procedure invoked
Next to last EXEC procedure invoked

• Last Module Loaded into Free Storage and the Transient Area

The name of the last module loaded into free storage via a LOADMOD is
in the field LASTL!10D (location X'2CO'). The name of the last module
loaded into the transient area via a LOADMOD is in the field LASTTMOD
(location X'2CS').

• Pointer to CMSCB

The pointer to the CMSCB is in the FCBTAB field located at X'SCO'.
CMSCB contains the simula·ted as control blocks. These simulated as
cont~ol blocks are in free storage. The CMSCB contains a PLIST for
CMS 1/0 functions, a simulated Job File Control Block (JFCB), a
simulated Data Event BlocK (DEB), and the first in a chain of I/O
Blocks (lOBs).

• The Last Command

The last command entered from the terminal is stored in an area
called CMNDLINE (X'7AO'), and its corresponding PLIST is stored at
CMNDLIST (X'S4S').

• Exte~nal Interrupt Work Area

EXTSECT (X'1SS0') is a work area for the external interrupt handler.
It contains:

The PSW, EXTPSW (X'1SFS')
Register save areas, EXSAVE1 (X'1SBSI)
separate area for timer interrupts, EXSAVE (X'1SS0')

Part 1. Debugging with VM/370 71

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

• I/O Interrupt Work Area

IOSECT (X'1620') is a work area for the I/O interrupt
oldest and newest PSW and CSW are saved. Also, there
save area.

handler. The
is a register

• Program Check Interrupt Work Area

PGMSECT (X'16BO') is a work area for the program check
handler. The old PSW and the address of register 13 save
stored in PGMSECT.

• SVC Work Area

interrupt
area are

SVCSECT (X'1748') is a work area for the SVC interrupt handler. It
also contains the first four register save areas assigned. The SFLAG
(X'1758') indicates the mode of the called routine.

Value of
_~~1AQ __

X'80'
X'40'
X'20'
X'Ol'

Description
SVC protect key is zero
Transient area routine
Nucleus routine
Invalid reentry flag

Also, the SVC abend code, SVCAB, is located at X'1751'.

• Simulated CVT (Communications Vector Table)

The CVT, as supported by CMS, is CVTSECT (X'lCC8'). Only the fields
supported by CMS are filled in.

• Active Device Table and Active File Table

For file system problems, examine the ADT (Active Device Table), or
1FT (Active File Table) in NUCON.

REGISTER USAGE

In order to trace control blocks and modules, it is important to know
the CMS reqister usaqe conventions.

~ggi~t~~
GRl
GR12
GR13
GR14
GR15

~Qnteni§
Address of the PLIST
proqram's entry point
Address of a 12-doubleword work area for an SVC call
Return address
Program entry point or the return code

The preceding information should help you to read a eMS dump. If it
becomes necessary to trace file system control blocks, refer to Figure
37 in "Part 3. Conversational Monitor System" for more"information. With
a dump, the control block diagrams, and a CMS load map you should be
able to find the cause of the abend.

72 IBM VM/370 System Progra~mer's Guide

Part 2. Control Program (CP)

Part 2 contains the following information:

• Introduction to VM/370
• Program States
• Using Processor Resources
• Interruption Handling
• Functional Information
• Performance Guidelines
• Virtual Machine Assist Feature
• VM/370 Extended Control-Program Support
• Performance Observation and Analysis
• Accounting Information
• Generating Named Systems and Saving Systems
• The Virtual Machine Communication Facility
• VM/VS Handshaking
• Timers
• DIAGNOSE Instruction
• CP Conventions
• How To Add a Console Function
• How To Add a New Print or Forms Buffer Image

Part 2. Control Program (CP) 73

74 IBM VM/370 System Programmer's Guide

VM/370

The V5/370 Control program manages the resources of a single computer in
such a manner that multiple computing systems appear to exist. Each
"virtual" computing system, or virtual machine, is the functional
equivalent of an IBM System/370.

A virtual machine is configured by recording appropriate information
in the VM/370 directory. The virtual machine configuration includes
counterparts of the components of a real IBM System/370:

• A virtual operator 1 s console
• Virtual storage
• A virtual processor
• Virtual I/O devices

CP makes these components appear real to whichever operating system
is controlling the work flow of the virtual machine.

The virtual machines
techniques. CP overlaps
execution in another.

operate
the idle

concurrently
time of one

via multiprogramming
virtual machine with

Each virtual machine is managed at two levels. The work to be done
by the virtual machine is scheduled and controlled by so.e System/360 or
System/370 operating system. The concurrent execution of multiple
virtual machines is managed by the Control Program.

VM/370 performs some functions differently when running in attached
processor mode. For a description of the additional processing performed
when in attached processor mode, see !~L]l~ EI§l~~ 199ic g~g prQ~!~~
~~term!~gl!g~ Qy!de.

Introduction to the VM/370 Control Program

A virtual machine is created for a user when he logs on VM/370, on the
basis of information stored in his VM/370 directory entry= The entry
for each user identification includes a list of the virtual input/output
devices associated with the particular virtual machine.

Additional information
VM/370 directory entry.
class, accounting data,
dispatching priority, and
as extended control mode.

about the virtual machine is kept in the
Included are the VM/370 command priv~lege
normal and maximum virtual storage s~zes,

optional virtual machine characteristics such

The Control Program supervises the execution of virtual machines by
(1) permitting only problem state execution except in its own routines,
and (2) receiving control after all real computing system interrupts.
CP intercepts each privileged instruction and simulates it if the
current program status word of the issuing virtual machine indicates a
virtual supervisor state; if the virtual machine is executing in
virtual problem state, the attemFt to execute the privileged instruction
is reflected to the virtual machine as a program interrupt. All virtual
machine interrupts (including those caused by attempting privileged
instructions) are first handled by CP, and are reflected to the virtual
machine if an analogous interrupt would have occurred on a real machine.

Part 2. Control Program (CP) 75

VIRTUAL MACHINE TIME MANAGEMENT

The real processor simulates multiple virtual processors. Virtual
machines that are executing in a conversational manner are given access
to the real processor more frequently than those that are not; these
conversational machines are assigned the smaller of two possible time
slices. CP determines execution characteristics of a virtual machine at
the end of each time slice on the basis of the recent frequency of its
console requests or terminal interrupts. The virtual machine is queued
for subsequent processor utilization according to whether it is a
conversational or nonconversational user of system resources.

A virtual machine can gain control of the processor only if it is not
waiting for some activity or resource. The virtual machine itself may
enter a virtual wait state after an input/output operation has begun.
The virtual machine cannot gain control of the real processor if it is
waiting for a page of storage, if it is waiting for an input/output
operation to be translated and started, or if it is waiting for a CP
command to finish execution.

A virtual machine can be assigned a priority of execution. Priority
is a parameter affecting the execution of a particular virtual machine
as compared with other virtual machines that have the same general
execution characteristics. Priority is a parameter in the virtual
machine's VM/370 directory entry. The system operator can reset the
value with the privilege class A SET command.

VIRTUAL MACHINE STORAGE MANAGEMENT

The normal and maximum storage sizes of a virtual machine are defined as
part of the virtual machine configuration in the V"/370 directory. You
may redefine virtual storage size to any value that is a multiple of 4K
and not greater than the maximum defined value. V"/370 implements this
storage as virtual storage. The storage may appear as paged or unpaged
to the virtual machine, depending upon whether or not the extended
control mode option was specified for that virtual machine. This option
is required if operating systems that control virtual storage, such as
OS/VS1 or VM/370, are run in the virtual machine.

Storage in the virtual machine is logically divided into 4096-byte
areas called pages. A complete set of segment and page tables is used
to describe the storage of each virtual machine. These tables are
updated by CP and reflect the allocation of virtual storage pages to
blocks of real storage. These page and segment tables allow virtual
storage addressing in a System/370 machine. Storage in the real machine
is logically and physically divided into 4096-byte areas called page
frames.

Only referenced virtual storage pages are teFt in real storage, thus
optimizing real storage utilization. Further, a page can be brought into
any available page frame; the necessary relccation is done during
program execution by a combination of VM/370 and dynamic address
translation on the System/370. The active pages from all logged on
virtual machines and from the pageable routines of CP compete for
available page frames. When the number of page frames available for
allocation falls below a threshold value, CP determines which virtual
storage pages currently allocated to real storage are relatively
inactive and initiates suitable page-out operations for them.

76 IBM V!/370 System Programmer's Guide

Inactive pages are kept on a direct access storage device. If an
inactive page bas been changed at some time during virtual machine
execution, CP assigns it to a paging device, selecting the fastest such
device with available space. If the page has not changed, it remains
allocated in its original direct access location and is paged into real
storaqe from there the next time the virtual machine references that
page. - A virtual machine program can use the DIAGNOSE instruction to
tell CP that the information from specific pages of virtual storage is
no longer needed; CP then releases the areas of the paging devices which
were assigned to hold the specified pages.

Paging is done on demand by CP. This means that a page of virtual
storage is not read (paged) from the paging device to a real storage
block until it is actually needed for virtual machine execution. CP
makes no attempt to anticipate what pages might te required by a virtual
.achine. While a paging operation is performed for one virtual machine,
another virtual machine can be executing. Any paging operation
initiated by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with
translate on, then two additional sets of segment and page tables are
kept. The virtual machine operating system is responsible for mapping
the virtual storage created by it to the storage of the virtual machine.
CP uses this set of tables and the page and segment tables created for
the virtual machine at logon time to build shadow page tables for the
virtual machine. These shadow tables Bap the virtual storage created by
the virtual machine operating system to the storage of the real
computing system. The tables created by the virtual machine operating
system may describe any page and segment size permissible in the IBM
System/370.

YM/370 provides both fetch and store protection for real storage. The
contents of real storage are protected from destruction or misuse caused
by erroneous or unauthorized storing or fetching by the program.
Storage is protected from improper storing or from both improper storing
and fetching, but not from improper fetching alone.

When protection applies to a storage access, the key in storage is
compared with the protection key associated with the request for storage
access. A store or fetch is permitted only when the key in storage
matches the protection key.

When a store access is prohibited because of Frotection, the contents
of the protected location remain unchanged. On fetching, the protected
information is not loaded into an addressable register, moved to another
storage location, or provided to an I/O device.

When a processor access is prohibited because of protection, the
operation is suppressed or terminated, and a program interruption for a
protection exception takes place. When a channel access is prohibited,
a protection-check condition is indicated in the channel status word
(CSW) stored as a result of the operation.

Part 2. Control program (CP) 77

When the access to storage is inhibited by the processor, and
protection applies, the protection key of the processor occupies bit
positions 8-11 of the PSW. When the reference is made by a channel, and
protection applies, the protection key associated with the I/O operation
is used as the comparand. The protection key for an I/O operation is
specified in bit positions 0-3 of the channel-address word (CAW) and is
recorded in bit positions 0-3 of the channel status word (CSW) stored as
a result of the I/O operation.

To use fetch protection, a virtual machine must execute the Set
Storage Key (SSK) instruction referring to the data areas to be
protected, with the fetch protect bit set on in the key. VM/370
subsequently:

1. Checks for a fetch protect violation in handling privileged and
nonprivileged instructions.

2. Saves and restores the fetch protect bit (in the virtual storage
key) when writing and recovering virtual machine pages from the
paging device.

3. Checks fer a fetch protection violation on a write CCW (except for
spooling or console devices).

The CMS nucleus resides in a shared segment. This presents a special
case for storage protection since the nucleus must be protected and
still shared among many CMS users. In order to protect the CMS nucleus
in the shared segment, user programs and disk-resident CMS commands run
with a different key than the nucleus code.

The system operator may assign the reserved page frames option to a
single virtual machine. This option, specified by the SET RESERVE
command, assigns a specific amount of the storage of the real machine to
the virtual machine. CP will dynamically build up a set of reserved
real storage page frames for this virtual machine during its execution
until the' maximum number "reserved" is reached. Since the pages of
other virtual machines are not allocated from this reserved set, the
effect is that most of the active pages of the selected virtual machine
remain in real storage.

During CP system generation, the installation may specify an option
called virtual=real. With this option, the virtual machine's storage is
allocated directly from real storage at the time the virtual machine
logs on (if it has the VIRT=REAL option in its directory). All pages
except page zero are allocated to the corresponding real storage
locations. In order to control the real computing system, real page
zero must be controlled by CP. Consequently, the real storage size must
be large enough to accommodate the CP nucleus, the entire virtual=real
virtual machine, and the remaining pageable storage requirements of CP
and the other virtual machines.

The virtual=real option improves performance in the selected virtual
machine since it removes the need for CP paging operations for the
selected virtual machine. The virtual=real option is necessary whenever
programs that contain dynamically modified channel programs (excepting
those of OS ISAM and OS/VS TCAM Level 5) are to execute under control of
CP. For additional information on running systems with dynamically
modified channel programs, see "Dynamically Modified Channel programs"
in "Part 1. Debugging with VM/370."

78 IBM VM/370 System Programmer's Guide

April 1, 1981

VIRTUAL MACHINE I/O MANAGEMENT

A real disk device can be shared among multiple virtual machines.
virtual device sharing is specified in the VK/370 directory entry or by
a user command. If specified by the user, an appropriate password must
be supplied before gaining access to the virtual device. A particular
virtual machine may be assigned read-only or read/write access to a
shared disk device. CP checks each virtual machine input/output
operation against the parameters in the virtual machine configuration to
ensure device integrity.

Virtual Reserve/Release support can be used to further enhance device
integrity for data on shared minidisks. Reserve/Release operation codes
are simulated on a virtual basis for minidisks, including full-extent
minidisks. For details on Reserve/Release su pport, refer to the VM/Jlg
~ystgm 1Qgi~ gng PrQ~!~m Determination Quide.

The virtual machine operating system is responsible for the operation
of all virtual devices associated with it. These virtual devices may be
defined in the VM/310 directory entry of the virtual machine, or they
may be attached to (or detached from) the virtual machine's
confiqu~ation, dynamically, for the duration of the t~rminal session.
virtual devices may be dedicat.ed, as when mapped to a fully equivalent
real device; shared, as when ~apped to a minidisk or when specified as a
shared virtual device; or spooled by CP to intermediate direct access
storage.

In a real machine runninq under control of as, input/output
operations are normally initiated when a problem program requests as to
issue a START I/O instruction to a specific device. Device error
recovery is handled by the operating system. In a virtual machine, os
can perform these same functions, but the device address specified and
the storaqe locations referenced will both be virtual. It is the
responsibility of CP to translate the virtual specifications to real.

Virtual I/O can be initiated by either processor; ho~ever, all real
I/O requests must be executed by the main processor, and all I/O
interrupts must be received on the main processor (the processor with
1/0 capability). Any I/O requests by the attached processor (the
processor without IIO capability) are transferred to the main processor.

In addition, the interrupts caused by the input/output operation are
reflected to the virtual machine for its interpretation and processing.
If input/output errors occur, CP records them but does not initiate
error recovery operations. The virtual machine operating system must
handle error recovery, but does not record the error (if SVC 76 is
used) •

Input/output operations initiated by CP
and spooling), are performed directly
tr ans lat ion.

for its own purposes (paging
and are not subject to

Virtual machines may access data on MSS mass storage
that virtual machine's standard 3330 device support.
faults, and associated asynchronous interruptions, are
the virtual machine in this situation.

volumes using
ftSS cylinder

transparent to

Part 2. ContrJl Program (CP) 79

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

In most cases, the I/O devices and control units on a channel are shared
among many virtual machines as minidisks and dedicated devices, and
shared with CP system functions such as paging and spooling. Because of
this sharing, CP has to schedule all the I/O requests to achieve a
balance between virtual machines. In addition! CP must reflect the
results of the subsequent I/O interruption to the appropriate storage
areas of each virtual machine.

By specifying a dedicated cb~nnel (or channels) for a virtual machine
via the Class B ATTACH CHANNEL command, the CP channel scheduling
function is bypassed for that virtual machine. A virtual machine
assigned a dedicated channel has that channel and all of its devices for
its own exclusive use. CP translates the virtual storage locations
specified in channel commands to real locations and performs any
necessary paging operations, but does not perform any device address
translations. The virtual device addresses on the dedicated channel
must match the real device addresses; thus, a minidisk cannot be used.

SPOOLING FUNCTIONS

A virtual unit record device~ which is mapped directly to a real unit
record device, is said to be dedicated. The real device is then
controlled completely by the virtual machine's operating system.

CP facilities allow multiple virtual machines to share unit record
devices. Since virtual machines controlled by CKS ordinarily have
modest requirements for unit record input/output devices, such device
sharing is advantageous, and it is the standard mode of system
operation.

Spooling operations cease if the direct access storage space assigned
to spooling is exhausted, and the virtual unit record devices appear in
a not-ready status. The system operator may make additional spooling
space available by purging existing spool files or by assigning
additional direct access storage space to the spooling fUnction.

Specific files can be transferred from the spooled card punch or
printer of a virtual machine to the card reader of the same or another
virtual machine. Files transferred between virtual unit record devices
by the spooling routines are not physically punched or printed. With
this method, files can be made available to multiple virtual machines,
or to different operating systems executing at different times in the
same virtual machine.

Files may also be spooled to remote stations via the Remote Spooling
Communications Subsystem (RSCS), a component of VK/370. For a
description of RSCS and the remote stations that it supports, see "Part
5. Remote Spooling communications Subsystem (RSCS)."

CP spooling includes many desirable options for the virtual machine
user and the real machine operator. These options include printing
multiple copies of a single spool file, backspacing any number of
printer pages, and defining spooling classes for the scheduling of real
output. Each output spool file has, associated with it, a 136-byte area
known as the spool file tag. The information contained in this area and
its syntax are determined by the originator and receiver of the file.
For example, whenever an output spool file is destined for transmission

80 IBM VM/370 System Proqrammer's Guide

to a remote location via the Remote Spooling Communications Subsystem,
RSCS expects to find the destination identification in the file tag. Tag
data is set, changed, and queried using the CP TAG command~

It ispdssibl~ to spool terminal input and output. All data sent to
the terminal, whether it be from the virtual machine, the control
program or the virtual machine operator, can be spooled. Spooling is
particularly desirable when a virtual machine is run with its console
disconnected. Console spooling is usually started via the command

SPOOL CONSOLE START

An exception to this is when a system operator logs on using a graphics
device. In this instance, console spooling is automatically started and
continues in effect even if the system operator should disconnect from
the graphics device and log on to a nongraphic device. In order to stop
automatic console spooling, the system operator must issue the command

SPOOL CONSOLE STOP

SPOOL FILE RECOVERY

If the system should suffer an abnormal termination, there are three
degrees of recovery for the system spool files; warm start (WARft),
checkpoint start (CKPT), and force start (FORCE). Warm start is
automatically invoked if SET DUMP AUTO is in effect. Otherwise, the
choice of recovery method is selected when the following message is
issued;

hh: mm: ss START «COLD I WARM I CKPT I FORCE) (DRAIN}) I (SHUTDOWN) :

Bote that a cold (COLD) start does not recover any spool files.

After a system failure, the warm start procedure copies spool file,
accounting, and system message data to warm start cylinders on an
auxiliary DASD. When the system is reloaded, this information is
retrieved and the spool file chains and other system data are restored
to their original status. If the warm start procedure cannot be
implemented because certain required areas of storage are invalid, the
operator is notified to take other recovery procedures.

Any new or revised status of spool file blocks, spooling devices, and
spool hold queue blocks is dynamically copied to checkpoint cylinders on
an auxiliary DASD as they occur. When a checkpoint (CKPT) start is
requested, this is the information that is used to recreate the spocl
file chains~ It differs from warm start data in that only spool file
data is restored; accounting and system messages information is not
recovered. Also, the order of spool files on any particular restored
chain is not the original sequence but a random one.

Part 2. Control Program (CP) 81

A force start is required when checkpoint start encounters I/O errors
while reading files, or invalid data. The procedure is the same as for
cbeckpoint start except that unreadable or invalid files are bypassed.

CP COM~ANDS

The CP commands allow you to control the virtual machine from the
terminal, much as an operator controls a real machine. Virtual machine
execution can be stopped at any time by use of the terminal's attention
key (for 3066 and 3270 terminals, the ENTER key is used); it can be
restarted by entering the appropriate CP command. External, attention,
and device ready interrupts can be simulated on the virtual machine.
Virtual storage and virtual machine registers can be inspected and
modified, as can status words such as the PSi and the CSW. Extensive
trace facilities are provided for the virtual machine, as well as a
single-instruction mode. Commands are available to invoke the spooling
and disk sharing functions of CP.

CP commands are classified by privilege classes. The V8/370
directory entry for each user assigns one or more privilege classes.
The classes are primary system operator (class A), system resource
operator (class B), system programmer (class C), spooling operator
(class D), system analyst (class E), service representative (class F),
and general user (class G). Commands in the system analyst class may be
used to inspect real storage locations, but may not be used to make
modifications to real storage. Commands in the operator class provide
real resource control capabilities. System operator commands include
all commands related to virtual machine performance options, such as
assigning a set of reserved page frames to a selected virtual machine.
For descriptions of all the CP commands, see the !~Ll1~ ~g ~omI!D~
~~fer~n£~ !£f ~§Derg! Q~£§ and the !~L37~ Q~~!g!££~§ ~yide.

82 IBM VM/370 System Programmer's Guide

Program States

When instructions in the Control Program are being executed, the real
computer is in the supervisor state; at all other times, when running
virtual machines, the real computer is in the problem state. Therefore,
privileged instructions cannot be executed by the virtual machine.
Programs running on a virtual machine can issue Frivileged instructions;
but such an instruction either (1) causes an interruption that is
handled by the Control program, or (2) is intercepted and handled by the
processor, if the virtual machine assist feature or VK/370 Extended
Control-program Support is enabled and supports that instruction. CP
examines the operating status of the virtual machine PSi. If the
virtual machine indicates that it is functioning in supervisor mode, the
privileged instruction is simulated according to its type. II the
virtual machine is in problem mode, the privileged interrupt is
reflected to the virtual machine.

Only the Control Program may operate in the supervisor state on the
real machine. All programs other than CP operate in the problem state
on the real machine. All user interrupts, including those caused by
attempted privileged operations, are handled by either the control
program or the processor (if the virtual machine assist feature or
VK/370 Extended Control-program Support is available). Only those
interrupts that the user program would expect from a real machine are
reflected to it. A problem program executes on the virtual machine in a
manner identical to its execution on a real System/370 processor l as
long as the problem program does not violate the CP restrictions. CP
restrictions are documented in the !~LJIQ Elg~!~g g~g ~Y21~! Ge~~ti£~
Qyid~.

Part 2. Control Program (CP) 83

Using Processor Resources

CP allocates the processor resource to virtual machines according to
their operating characteristics, priority, and the system resources
available.

Virtual machines are dynamically categorized at the end of each time
slice as interactive or noninteractive, depending upon the frequency of
operations to or from either the virtual system console or a terminal
controlled by the virtual machine.

Virtual machines are dispatched from one of two queues, called Queue
1 and Queue 2. In order to be dispatched from either queue, a virtual
machine must be considered executable (that is, not waiting for some
activity or for some other system resource). Virtual machines are not
considered dispatchable if the virtual machine:

• Enters a virtual wait state after an I/O operation has begun.
• Is waiting for a page frame of real storage.
• Is waiting for an I/O operation to be translated by CP and started.
• Is waiting for CP to simulate its privileged instructions.
• Is waiting for a CP console function to be performed.

Queue 1

Virtual machines in Queue 1 (Q1) are considered conversational or
interactive users, and enter this queue when an interrupt from a
terminal is reflected to the virtual machine. Users are considered fer
dispatching from this queue on a first-in-first-out (FIFO) basis. When
a virtual machine uses more than a certain amount of processor time
without entering a virtual wait state, that user is placed in Queue 2.

Virtual machines are dropped from Q1 when they complete their time
slice of processor usage, and are placed in an "eligible list". Virtual
machines entering CP command mode are also dropped from Q1. When the
virtual machine becomes executable again (returns to execution mode) it
is placed at the bottom of Q1.

Queue 2

Virtual machines in Queue 2 (Q2) are considered noninteractive users.
Users are selected to enter Q2 from a list of eligible virtual machines
(the "eligible list"). The list of eligible virtual machines is sorted
on a FIFO basis within user priority (normally defined in the user
record in the VM/370 directory, but may be altered by the system
operator).

usually, a virtual machine is selected to enter Q2 only if its
"working set" is not greater than the number of real page frames
available for allocation at the time. The working set of a virtual
machine is calculated and saved each time a user is dropped from Q2 and
is based on the number of virtual pages referred to by the virtual
machine during its stay in Q2, and the number of its virtual pages that
are resident in real storage at the time it is dropped from the queue.

84 IBM VM/37C System ProgrammeL's Guide

If the calculated working set of the highest priority virtual machine
in the eligible list is greater than the number of page frames available
for allocation, then 75 percent of the working set for that virtual
machine is calculated. If the pages required for 75 percent of the
working set are available, the virtual machine is placed on Q2.
Otherwise, the virtual machine remains on the eligible list until there
are no other users on Q1 or Q2.

Executable virtual machines are sorted by "dispatching priority".
This priority is calculated each time a user is dropped from a queue and
is the ratio of processor time used while in the queue to elapsed time
in the queue. Infrequent processor users are placed at the top of the
list and are followed by more frequent processor users. When a
nonexecutable user becomes executable, he is placed on the queue based
on his dispatching priority~

When a virtual machine completes its time slice of processor usage,
it is dropped from Q2 and placed in the eligible list by user priority.
When a user request in Q2 enters CP command mode, it is removed from Q2.
When the request becomes executable (returns to virtual machine
execution mode), it is placed in the eligible list based on user
priority.

If a user's virtual machine is not in Q1 or Q2, it is because:

• The virtual machine is on the "eligible list," waiting to be put on
Q2

-- or --

• The virtual machine execution is suspended because the user is in CP
mode executing CP coamands

To leave CP mode and return his virtual machine to the "eligible
list" for Q2, the user can issue one of the CP commands that transfer
control to the virtual machine operating system for execution (for
example, BEGIN, IPL, EXTERNAL, and RESTART).

In CP, interactive users (Q1), if any, are considered for dispatching
before noninteractive users (Q2). This means that CMS users entering
commands that do not involve disk or tape I/O operations should get fast
responses from the VM/370 system even with a large number of active
users.

An installation may choose to override the CP scheduling and
dispatching scheme and force allocation of the Frocessor resource to a
specified user, regardless of its priority or operating characteristics.
The favored execution facility allows an installation to:

1. Specify that one particular virtual machine is to receive up to a
specified percentage of processor time.

2. Specify that any number of virtual machines are to remain in the
queues at all times. Assignment of the favored execution option is
discussed in the "Preferred Virtual Machines" section.

Part 2. Control Program (CP) 85

Interruption Handling

I/O Interrupts

Input/output interrupts from completed I/O operations initiate various
completion routines and the scheduling of further I/O requests. The I/O
interrupt handling routine also gathers device sense information.

Program Interrupt

Program interrupts can occur in two states. If the processor is in
supervisor state, the interrupt indicates a system failure in the CP
nucleus and causes the system to abnormally terminate. If the processor
is in problem state, a virtual machine is executing. CP takes control
to perform any required paging operations to satisfy the exception, or
to simulate the instruction. The fault is transparent to the virtual
machine execution. Any other program interruFt is a result of the
virtual machine processing and is reflected to the machine for handling.

Machine Check Interrupt

When a machine check occurs, the CP Recovery Management Support (RMS)
gains control to save data associated with the failure for the Field
Engineer. RMS analyzes the failure to determine the extent of damage.

Damage assessment results in one of the following actions being
taken:

• System termination (CP disabled wait state)

• Attached processor disabled (system continues in uniprocessor mode)

• Selective virtual user termination

• Selective virtual machine reset

• Refreshing of
configuration

damaged information with no effect on system

• Refreshing of damaged information with the defective storage page
removed from further system use

• Error recording only for certain soft machine checks

The system operator is informed of all actions taken by the RMS
routines. When a machine check occurs during VM/370 startup (before the
system is sufficiently initialized to permit RMS to operate
successfully), the processor goes into a disabled wait state and places
a completion code of X'OOB' in the leftmost bytes of the current PSi.

86 IBM 7n/37C Sy£tem Programmeris Guide

SVC Interrupt

When an SVC interrupt occurs, the SVC interrupt routine is entered. If
the machine is in problem mode, the type of interrupt (if it is other
than an SVC 76 or ADSTOP SVC) is reflected to the pseudo-supervisor
(that is, the supervisor operating in ~ne user's virtual machine).
Control is transferred to the appropriate interrupt handler for IDSTOP
SVCs and all SVC 76s.

If the machine
determined, and a
handler.

is in supervisor mode,
branch is taken to the

External Interrupt

the SVC interrupt code is
aPFropriate SVC interrupt

If a timer interrupt occurs, CP processes it according to type. The
interval timer indicates time slice end for the running user. The clock
comparator indicates that a specified timer event occurred, such as
midnight, scheduled shutdown, or user event reached.

The external console interrupt invokes CP processing to switch from
the 3210 or 3215 to an alternate operator's console.

Synchronous Interrupts In an Attached Processor
System
Generally, when synchronous interrupts (such as program and SVC
interrupts) occur in an attached processor system, the first-level
interrupt handler (FLIH) atte.pts to gain the system lock before
proceeding. If it is already in use, the interrupt status is stacked
and deferred. The interrupted processor then attempts to run a user.

Real I/O Interrupts

In an attached processor configuration. only the main processor can
receive real 1/0 interrupts. To ensure this, the channel masks in
control register 2 on the main processor are initialized to ones to
enable for interrupts fro. any available channel. On the attached
processor, the channel masks in control register 2 are initialized to
zeros.

Part 2. Control program (CP) 87

Performance Guidelines

General Information

The performance characteristics of an operating system, when it is run
in a virtual machine environment, are difficult to predict. This
unpredictability is a result of several factors:

• The System/370 model used.

• The total number of virtual machines executing.

• The type of work being done by each virtual machine.

• The speed, capacity, and number of the paging devices.

• The amount of real storage available.

• The degree of channel and control unit contention, as well as arm
contention, affecting the paging device.

• The type and number of VM/370 performance options in use by one or
more virtual machines.

I • The degree of MSS 3330 volume use.

Performance of any virtual machine may be improved up
by the choice of hardware, operating system, and VM/370
topics discussed in this section address:

to some limit
options. The

1. The performance options available in VM/370 to improve the
performance of a particular virtual machine.

2. The system options and operational characteristics of operating
systems running in virtual machines that will affect their
execution in the virtual machine environment.

The performance of a specific virtual machine may never equal that of
the same operating system running standalone on the same System/370, but
the total throughput obtained in the virtual machine environment may
equal or better that obtained on a real machine.

When executing in a virtual machine, any function that cannot be
performed wholly by the hardware causes some degree of degradation in
the virtual machine's performance. As the control program for the real
machine, CP initially processes all real interrupts. A virtual machine
operating system's instructions are always executed in EfQ~le~ state.
Any privileged instruction issued by the virtual machine causes a real
privileged instruction exception interruption. 1he amount of work to be
done by CP to analyze and handle a virtual machine-initiated interrupt
depends upon the type and complexity of the interrupt.

The simulation effort required of CP may be trivial, as for a
supervisor call (SVC) interrupt (which is generally reflected back to
the virtual machine), or may be more complex, as in the case of a Start
I/O (SIO) interrupt, which initiates extensive CP processing.

88 IBM VM/370 System Programmer's Guide

When planning for the virtual machine environment, consideration
should be given to the number and type of privileged instructions to be
executed by the virtual machines. Any raduction in the number of
privileged ipstructions issued by the virtual machine's operating system
will reduce the amount of extra work CP must do to support the machine.

Virtual Machine I/O

To support I/O processing in a virtual machine, CP must translate all
virtual machine channel command word (CCi) sequences to refer to real
storage and real devices and, in the case of minidisks, real cylinders.
When a virtual machine issues an 510, CP must:

1. Intercept the virtual machine 510 interrupt.

2. Allocate real storage space to hold the real CCW list to be
created ..

3. Translate the virtual device addresses referred to in the virtual
CCWs to real addresses:

4. Page into real
operation, all
operation.

storage and lock, for the duration of the I/O
virtual storage pages required to support the I/O

5. Generate a new CCi sequence building a Channel Indirect Data
Address list if the real storage locations cross page boundaries.

6. If the real device is a 3330V, append an MSS cylinder fault prefix
to the CCW prefix to prevent the channel from doing channel command
retry.

7. Schedule the I/O request.

8. Present the SIO condition code to the virtual machine.

9~ Recognize an MSS cylinder fault, queue the I/O request, and
reschedule the request when the subsequent interruFtion is received
(indicating staging is complete).

10. Intercept, retranslate, and present the channel end and device end
interrupts to the appropriate virtual machine, where they must then
be processed by the virtual machine operating system.

CP's handling of SIOs for virtual machines can be one of the most
significant causes of reduced performance in virtual machines.

The number of 510 operations required by a virtual machine can be
significantly reduced in several ways:

• Use of large blocking factors (up to 4096 bytes) for user data sets
to reduce the total number of SIOs needed.

• Use of preallocated data sets.

• Use of virtual machine operating system options (such as chained
scheduling in OS) that reduce the number of 510 instructions.

Part 2. Control Program (CP) 89

• Substitution of a faster resource
operations, by building small temporary
rather than using an I/O device.

(virtual storage) for I/O
data sets in virtual storage

Frequently, there can be a performance gain when CP paging is
substituted for virtual machine I/O operations. The performance of an
operating system such as as can be improved by specifying as resident as
many frequently used as functions (transient sutroutines. ISlft indexes~
and so forth) as are possible. In this way, paging I/O is substituted
for virtual machine-initiated I/O. In this case, the only work to be
done by CP is to place into real storage the page that contains the
desired routine or data.

Three CP performance options are available to reduce the CP overhead
associated with virtual machine I/O instructions or other privileged
instructions used by the virtual machine's I/O Supervisor:

1. The virtual=real option removes the need
reference translation and paging before
specific virtual machine.

for CP to perform storage
each I/O operation for a

2. The virtual machine assist feature reduces the real supervisor
state tim~ used by VM/370. For a detailed description of the
feature, see "Virtual Machine Assist Feature" later in this
section. For a list of processors on which the feature is
available, see the !11LJ1Q g.!anning gnd ~.!§!~~ ~~!:ati~!! Guide,.

3. VM/370 Extended Control-Program Support (ECPS) further reduces the
real supervisor state tiae used by Vftj370. For a detailed
description of ECPS, see "Vft/370 Extended Control-Program support
(ECPS)" later in this section. For a list of processors on which
ECPS is available, see the VM/31Q g!gA!!!!!~ g!!g ~yste~ Ge!!~~!!
~.!!!de.

Assignment and use of these
Performance Options."

options is discussed in "Vft/370

Paging Considerations

When virtual machines refer to virtual storage addresses that
currently in real storage, they cause a paging exception
associated CP paging activity.

are not
and the

The addressing characteristics of programs executing in virtual
storage have a significant effect on the number of page exceptions
experienced by that virtual aachine. Routines that have widely
scattered storage reference tend to increase the paging load of a
particular virtual machine. When possible, modules of code that are
dependent upon each other should be located in the same page. Reference
tables, constants, and literals should also be located near the routines
that use them. Exception or error routines that are infrequently used
should not be placed within main routines, but located elsewhere.

When an available page of virtual storage contains only reenterable
code, paging activity can be reduced, since the page, although referred
to, is never changed, and thus does not cause a write operation to the
paging device. The first copy of that page is written on the paging
device when that frame is needed for some other more active page. Only
inactive pages that have changed must be paged out.

90 IBM VM/310 System Programmer's Guide

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Virtual machines that reduce their paging activity by controlling
their ~se of addressable space improye resource management for that
virtual machine, the VM/370 system, and all other virtual machines. The
total paqing load that must be handled by CP is reduced, and m{)re time
is available for productive virtual machine use.

Additional dynamic paging storage may be gained by controlling free
storage allocation. The amount of free storage allocated at V8/370
initialization time can be controlled by the installation. When the
System is being generated, the FREE operand of the SYSCOR macro
statement may be used to specify the number of free storage pages to be
allocated at system load time.

If, at IFL time, the amount of storage that these pages represent is
greater than 25 percent of the VM/370 storage size (not including the
V=R area, if any), a default number of pages is used. The default value
is 3 pages for the first 256K bytes of storage plus i page for each
additional 64K bytes (not including the V=R size, if any).

The SYSCOR macro definition can be found in VM/37Q-flanninq- g~~
~Y§~gm ~gng£ation Guigg.

CP pcovides three performance options, locked pages, reserved page
frames, and a virtual=real area, to reduce the paging requirements of
virtual machines. Generally, these facilities require some dedication
of real storaqe to the chosen virtual machine and, therefore, improve
its performance at the expense of other virtual machines.

LOCKED PAGES OPTION

The LOCK command, which is available to the system operator (with
privilege class A), can be used to permanently fix or lock specific
pages of virtual storage into real storage. In so doing, all paging IIO
for these page frames is eliminated.

Since this facility reduces total real storage resources (real page
frames) that are available to support other virtual machines, only
frequently used pages should be locked into real storage. Since page
zero (the first 4096 bytes) of a virtual machine storage is referred to
and changed frequently (for example, whenever a virtual machine
interrupt occurs or when a CSW is stored), it should be the first page
of a particular virtual machine that an installation considers locking.
The virtual machine interrupt handler paqes might also be considered
good candidates for locking.

Other pages to be locked depend upon the work being done by the
particular virtual machine and its usage of virtual storage.

The normal CP paging mechanism selects unreferenced page frames in
real storaqe for replacement by active pages. Page frames belonging to
inactive virtual machines will all eventually be selected and paged out
if the real storage frames are needed to support active virtual machine
pages.

When virtual machine activity is initiated on an infrequent or
irregular basis, such as from a remote terminal in a teleprocessing
inquiry s.ystem, some or all of its virtual storage may have been paged
out before the time the virtual machine must begin processing. Some
pages will then have to be paged in so that the virtual machine can
respond to the teleprocessing request compared with running the same
teleprocessing program on a real machine. This paging activity may cause
an increase in the time required to respond to the request compared with

Part 2. Control Program (CP) 91

April 1, 1981

running the teleprocessing program on
time is variable, depending upon the
must occur.

a real mac hine.
number of paging

Further response
operations that

Locking specific pages of the virtual machine's program into real
storage may ease this problem, but it is not always easy nor possible to
identify which specific pages will always be required.

Once a page 1s locked, it remains locked until either the user logs
off or the system operator (privilege class A) issues the UNLOCK command
for that page. If the "locked pages" option is in effect and the user
loads his system again (via IPL) or loads another system, the locked
pages are refreshed and the virtual machine's locked pages are unlocked
by the system. The SYSTEM CLEAR command, when invoked, clears virtual
machine storage, including the user's locked pages.

Note: In attached processor mode, no shared pages are locked. If the
system operator attempts to lock a shared page or an address range
containing one or more shared pages, he will receive the message

DMKCPV165I PAGE (hexloc) NOT LOCKED, SHARED PAGE

for each of the shared pages within the range.

RESERVED PAGE FRAMES OPTION

A more flexible approach than locked pages is the reserved pag~ frames
option. This option provides a specified virtual machine with an
essentially private set of real page frames, the number of frames being
designated by the system operator when he issues the CP SET RESERVE
command line. Pages will not be locked into these frames. They can be
paged out, but only for other active pages of the same virtual machine.
when a temporarilv inactive virtual machine having this option is
reactivated, these page frames are immediately available. If the
program code or data required to satisfy the request was in real storage
at the time the virtual machine became inactive, no paging activity is
required for the virtual machine to respond.

This option is usually more efficient than locked pages in that the
pages that remain in real storage are those pages with the greatest
amount of activity at that moment, as determined automatically by the
system. Althouqh multiple virtual machines may use the LOCK option,
only one virtual machine at a time may have the reserved page frames
option active. Assignment of this option is discussed further in
"VK/370 Performance Options."

The reserved page frames option provides performance that is
generally consistent from run to run with regard to paging activity.
This can be especially valuable for production-oriented virtual machines
with critical schedules, or those running teleprocessing applications
where response times must be kept as short as possible.

VIRTUAL=REAL OPTION

The VM/370 virtual=real option elimi~ates CP paging for the selected
virtual machine. All pages of virtual machine storage, except page
zero, are locked in the real storaqe locations they would use on a real
computer. CP controls real page zero, but the remainder of the CP

92 IBM VM/370 system Programmer's Guide

nucleus is relocated and placed beyond the virtual=real machine in real
storage. This option is discussed in more detail in "VM/370 Performance
nn";"ft"" "
"'r""'~""'.&A~·

Since the entire address space required by the virtual machine is
locked, these page frames are not available for use by other virtual
machines except when the virtual=real machine is not ~ogged on. This
option often increases the paging activity for other virtual machine
users, and in some cases for VM/370. (Paging activity on the system may
increase substantially, since all other virtual machine storage
requirements must be managed with fewer remaining real page frames.)

The virtual=real option may be desirable or mandatory in certain
situations. The virtual=real option is desirable when running a virtual
machine operating system (like DOS/VS or OS/VS) that performs paging of
its own because the possibility of double paging is eliminated. The
option must be used to allow programs that execute self-modifying
channel programs or have a certain degree of hardware timing
dependencies to run under VM/370.

VM/370 Performance Options

VM/370 provides a number of options an installation may use to improve
the performance of virtual machines and VM/370. Several options improve
the performance of installation specified virtual machines; other
options improve the performance of all virtual machines and VM/370. The
options, described in the following discussion are:

I • Favored execution
I • User priority
I • Reserved page frames
I • Virtual=real
I to.! Affinity
I • Virtual machine assist
I • Extended Control-Program Support

Specifying a performance option may mean making a performance
trade-off; improving the performance of one virtual machine at the
expense of VM/370 and other virtual machines. For example, after an
operator specifies favored execution for a virtual machine, that virtual
machine receives more processor time than other virtual machines=
Therefore, before specifying any performance option, identify the
option's performance trade-offs and assess their impact on system
performance.

FAVORED EXECUTION

The favored execution options allow an installation to modify the normal
scheduling algorithms and force the system to devote more of its
processor resources to a given virtual machine than would ordinarily be
the case. The options provided are:

• The basic favored execution option
• The favored execution percentage option

Part 2. Control Program (CP) 93

The basic favored execution option means that the virtual machine so
designated is not to be dropped from the active (in queue) subset by the
scheduler, unless it becomes nonexecutable. When the virtual machine is
executable, it is to be placed in the dispatchable list at its normal
priority position. However, any active virtual machine represents
either an explicit or implicit commitment of main storage. An explicit
storage commitment can be specified by either the virtual=real option or
the reserved page frames option. An implicit commitment exists if
neither of these options is specified, and the scheduler recomputes the
virtual machine's projected work-set at what it would normally have been
at queue-drop time. Multiple virtual machines can have the basic
favored execution option set. However, if their combined main storage
requirements exceed; the system's capacity, performance can suffer
because of thrashing.

If the favored task is highly compute bound and must compete for the
processor with many other tasks of the same type, an installation should
define the processor allocation to be made. In this case, the favored
execution percentage option can be selected for one virtual machine.
This option specifies that the selected virtual machine, in addition to
remaining in queue, is guaranteed a specified minimum percentage of the
total processor time if it can use it. To select the favored execution
option, specify the FAVORED operand on the class A, B, or F SET command.
After the option is invoked, VM/310 provides processor time for the
selected virtual machine as follows:

1. The in-queue time slice is multiplied by the specified percentage
to arrive at the virtual machine's guaranteed processor tiae.

2. The favored virtual machine, when it is executable, is always
placed at the top of the dispatchable list until it has obtained
its guaranteed processor time.

3. If the virtual machine obtains its guaranteed processor time before
the end of its in-queue time slice, it is placed in the
dispatchable list according to its calculated dispatching priority.

4. In either case (2 or 3), at the end of the in-queue time slice the
guarantee is recomputed as in step 1 and the process is repeated.

For a description of the SET command, see the !~LJIQ QE~rator~§
~y!g~.

Whether or not a percentage is specified, a virtual machine with the
favored execution option active is kept in the dispatching queues except
under the following conditions:

• Entering CP console function mode
• Loading a disabled PSW
• Loading an enabled PSW with no active I/O in process
• Logging on or off

When the virtual machine becomes executable again, it is put back on the
executable list in Q1. If dropped from Q1, the virtual machine is
placed directly in Q2 and remains there even though it may exhaust its
allotted amount of processor usage. Virtual machines with this option
are thus considered for dispatching more frequently than other virtual
machines.

Note, however, that these options can impact the response time of
interactive users and that only one favored percentage user is allowed
at any given time.

94 IBM VM/370 System Programmer's Guide

PRIORITY

The VM/370 operator can assign specific priority values to different
virtual machines. In so dOing, the virtual machine with a higher
priority is considered for dispatching before a virtual machine with a
lower priority. User priorities are set by the following class A
command:

SET PRIORITY userid nn

where userid is the user's identification and nn is an integer value
from 1 to 99. The value of nn affects the user's dispatching priority
in relation to other users in the system. The priority value (nn) is
one of the factors considered in VM/370's dispatching algorithm.
Generally, the lower the value of nn, the more favorable the user's
position in relation to other users in VM/370's dispatch queues.

RESERVED PAGE FRAMES

VM/370 uses chained lists of available and pageable Fages. Pages for
users are assigned from the available list, which is replenished frem
the pageable list.

Pages that are temporarily locked in real storage are not available
or pageable. The reserved page function gives a particular virtual
machine an essentially "private" set of pages. The pages are not
locked; they can be swaFped, but only for the specified virtual machine.
Paging proceeds using demand paging with a "reference bit" algorithm to
select the best page for swapping. The number of reserved page frames
for the virtual machine is specified as a maximum. The page selection
algorithm selects an available page frame for a reserved user and marks
that page frame "reserved" if the maximum specified for the user has not
been reached. If an available reserved page frame is encountered for the
reserved user selection, it is used whether or not the maximum has been
reached.

The maximum number of reserved page frames is specified by a class A
command of the following format:

SET RESERVE userid xxx

where xxx is the maximum number required. If the page selection
algorithm cannot locate an available page for other users because they
are all reserved, the algorithm forces the use of reserved pages. This
function can be specified in only one virtual machine at anyone time.

Note: xxx should never approach the total available pages, since CP
overhead is substantially increased in this situation, and excessive
paging activity is likely to occur in other virtual machines.

VIRTUAL=REAL

For this option, the VM/370 nucleus must be reorganized to provide an
area in real storage large enough to contain the entire virtual=real
machine. In the virtual machine, each page from page 1 to the end is in
its true real storage location; only its page zero is relocated. The

Part 2. Control Program (CP) 95

virtual machine is still run in dynamic address translation mode, but
since the virtual page address is the same as the real page address, no
ccw translation is required. Since CCW translation is not performed, no
check is made to ensure that I/O data transfer does not occur into page
zero or any page beyond the end of the virtual=real machine's storage.

Systems that are generated
system loader (DMKLDOOE).
virtual=real system, see the
§yid~.

with the virtual=real option use the
For information about generating a
!~L37Q ~l~~!~g s~£ ~!ste~ Ge~~s!i~n

Figure 13 is an
virtual=real option.

example of a real storage layout with
The V=R area is 128K and real storage is 512K.

Virtual Storage
Addresses

I CP PAGE 0 (MODULE DMKPSA)
4KI

I Virtual Page 1
I
I VIRTUAL=REAL AREA
/
/ SIZE = 128K BYTES
I (Minimum size is 32K bytes.)

128KI
OKI Virtual Page
4K,

132K,
/ REMAINDER OF CP NUCLEUS
/ ,
I
I
/ DYNAMIC PAGING AREA
/ and
I FREE STORAGE

I

I
I
I
I
I
/
/ ,
I

0 I
I
I
/
/
I
I
I
/
/
I

Real Storage
Addresses

OK

4K

128K

132K (DI1KSLC)

End of CP Nucleus
(DMKCPE)

512K (End of real
storage)

Figure 13. Storage Layout in a Virtual=Real Machine

the

There are several considerations for the virtual=real option that
affect overall system operation:

1. The area of contiguous storage built for the virtual=real machine
must be large enough to contain the entire addressing space of the
largest virtual=real machine. The virtual=real storage size that a
VM/370 system allows is defined during system generation when the
option is selected.

2. The storage reserved for the virtual=real machine can only be used
by a virtual machine with that option specified in the VM/370
directory_ It is not available to other users for paging space, nor
for VM/370 usage until released from virtual=real status by a
system operator via the CP UNLOCK command. Once released, VM/370
must be loaded again before the virtual=real option can become
active again.

96 Systeill P~0gramffie~·s Guid~

3. The virtual machine with the virtual=real option operates in the
preallocated storage area with normal CCW translation in effect
until the CP SET NOTRANS ON command is issued~ At that time; wiTh
several exceptions, all subsequent I/O operations are performed
from the virtual CCwsin the virtual=real space without
translation. The exceptions occur under any of the following
conditions:

• SIO tracing active
• First CCW not in the V=R region
• I/O operation is a sense command
• I/O device is a dial-up terminal
• I/O is for a nondedicated device

(spooled unit record console virtual CTCA
or minidisks that are less than a full volume)

• I/O device has an alternate path
• Pending device status

Any of the above conditions will force CCW translation. Since
minidisks are nondedicated devices, they may be used by programs
running in the V=R region even though CP SET NCTRANS ON is in
effect~

4. If the virtual=real machine performs a virtual reset or IPL, then
the normal CCW translation goes into effect until the CP SET
NOTRANS ON command is again issued. This permits simulation of an
IPL sequence by CP. Only the virtual=real virtual machine can
issue the command. A message is issued if normal translation mode
is entered.

5. A virtual=real machine is not allowed to IPL a named or shared
system. It must IPL by device address.

6. When NOTRANS is in effect for a virtual=real machine. no meaningful
SEEK data is collected by MONITOR operations.

AFFINITY

This option allows virtual machines that operate on attached processor
systems to select the processor of their choice for program execution.
To select the affinity option, use the directory OPTION statement. or
specify the AFFINITY operand on the class A. B. F. or G SET command.
The directory OPTION statement is described in the !~LJ70 Plgn~ing ~~g
~~st~~ Gen~fg!!B~ ~y!g~. The class A. B, and F SET commands are
described in the !~LJIQ QEergtof~§ gY!Q~, and the class G SET command is
described in the VML11Q ~B~~gn£ ~~feren~ fOf g~~~fg! Q~~£§.

In application, the affinity setting of a virtual machine implies a
preference of operation to either (or neither) processor. Affinity of
operation for a virtual machine means that the program of that virtual
.achine will be executed on the selected or named processor. It does
not imply that supervisory functions and the CP housekeeping functions
associated with that virtual machine will be handled by the same
processor.

Part 2. Control Program (CP) 97

In attached processor systeas, all real I/O operations and associated
interrupts are handled by the aain processor. Virtual I/O initiated on
the attached processor that is aapped to real devices must transfer
control to the main processor for real I/O execution. Therefore,
benefits may be realized in a virtual aachine "mix" by relegating those
virtual machines that have a high I/O-to-compute ratio to the main
processor, and those virtual machines that have a high compute-to-I/O
ratio to the attached processor. Such decisions should be carefully
weiahed as everv virtual machine is in contention with othp.r virtnal
machines-for resource~-~f the system.--- ----- -------

A more important use of the affinity setting would be in applications
where there are virtual machine program requirements for special
hardware features that are available on one processor and not the other.
Such features could be a performance enhancement such as virtual machine
assist (described later in the text) or a special RPQ that is a
requirement for a particular program's execution.

VIRTUAL MACHINE ASSIST FEATURE

The virtual machine assist feature is a processor hardware feature that
improves the performance of VM/370. Virtual storage operating systems.
which run in problem state under the control of VM/310, use many
privileged instructions and SVCs that cause interrupts that V!/310 aust
handle. When the virtual machine assist feature is used. many of these
interrupts are intercepted and handled by the processor. Consequently.
VM/310 performance is improved.

The Virtual Machine Assist Feature intercepts and handles
interruptions caused by SVCs (other than SVC 16), invalid page
conditions, and several privileged instructions. An SVC 16 is never
handled by the assist feature; it is always handled by CP. The
processing of the following privileged instructions is handled by this
feature:

LRA
STCTL
RRB
ISK
SSK
IPK
STNSM
STOSM
SSM
LPSW
SPKA

(load real address)
(store control)
(reset reference bit)
(insert storage key)
(set storage key)
(insert PSW key)
(store then AND system mask)
(store then OR system mask)
(set systea mask)
(load PSW)
(set PSW key froa address)

Although the assist feature was designed to improve the performance
of VM/370, virtual machines may see a performance improvement because
aore resources are available for virtual machine users. For a list of
processors on which the Virtual Machine Assist Feature is available, see
the !~LJIQ ~lg~~ing $~g ~I§1~! ~~~~!A1ig~ ~ide.

98 IBM 1M/370 System Programmer:s Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

USING THE VIRTUAL MACHINE ASSIST FEATURE

Whenever you IPL VM/370 on a processor with the virtual machine assist
feature, the feature is available for all VM/370 virtual machines.
However, the system operator's SET command can make the feature
unavailable to VM/370 and, subsequently, available again for all users.
If you do not know whether or not the virtual machine assist feature is
available to VM/370, use the class A and E QUERY command. For a
complete description of the Class A and E QUERY and SET commands, see
the !lXLJ1Q Q.Egrato~.§ gyid~.

If the virtual machine assist feature is available to VM/370 when you
log on your virtual machine, it is also supported for your virtual
machine unless you are running a second-level VM/370 system in your
virtual machine~ If your VH/370 directory entry has the SVCOFF option~
the SVC handling portion of the assist feature is not available when you
log on. The class G SET command can disable the assist feature (or only
disable SVC handling). It can also enable the assist feature, or if the
assist feature is available, enable the SVC handling. You can use the
class G QUERY SET command line to find whether you have full, partial,
or none of the assist feature available. For a complete description of
the Class G QUERY and SET commands, see the Y~170 fR ~Qmm~ng Refe~~£~
£2£ Geng£~! User.§.

RESTRICTED USE OF THE VIRTUAL MACHINE ASSIST FEATURE

Certain interrupts must be handled by VM/370. Consequently, the assist
feature is not available under certain circumstances. VM/370
automatically turns off the assist feature in a virtual machine that:

• Has set an instruction address stop
• Is tracing SVC and program interrupts

Since an address stop is recognized by an SVC interrupt, VM/370 must
handle SVC interrupts while address stops are set. Whenever you issue
the ADSTOP command, VM/370 automatically turns off the SVC handling
portion of the assist feature for your virtual machine. The assist
feature is turned on again after the instruction is encountered and the
address stop removed. If you issue the QUERY SET command line while an
address stop is in effect, the response will indicate that the SVC
handling portion of the assist feature is off.

Whenever a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is
automatically turned off for that virtual machine. The assist feature
is turned on again when the tracing is completed. If the QUERY SET
command line is issued while SVCs or program interrupts are being
traced, the response will indicate the assist feature is off.

The virtual machine assist feature is not available to a second-level
virtual machine, that is, a virtual machine that is running in a virtual
machine.

VM/370Extended Co-ntro-I .. P-rog-ram Support (ECPS)

VM/370 Extended Control-Program Support (ECPS) extends, for specific
privileged instructions, the hardware assistance that the virtual
machine assist feature provides. ECPS also provides hardware assistance

Part 2. Control Program (CP) 99

April 1, 1981

for frequently used VM/370 functions. The use of ECPS improves VM/370
performance beyond the performance gains that the virtual machine assist
feature provides.

ECPS consists of three functions:

• CP assist
e Expanded virtual machine assist
• Virtual interval timer assist

CP assist provides hardware assistance for frequeutly used paths of
specific CP functions.

Expanded virtual machine assist extends the hardware assistance that
the virtual machine assist feature provides for the instructions LPSW,
STNSM, STOSM, and SSM. In addition, expanded virtual machine assist
provides hardware assistance for certain other privileged instructions.

virtual interval timer assist provides hardware updating of the
virtual interval timer at virtual address X'50'. Virtual interval timer
assist updates the virtual timer at the same frequency hardware updates
the real timer, 300 times per second. Thus, virtual interval timer
assist updates the virtual timer more frequently than CP updates it.
Because the timer is updated more frequently, accounting routines may be
able to provide accounting data that is more accurate.

ECPS does not support the same functions and instructions on all
processors. Figure 13.1 lists the processors on which ECPS is
available, and identifies, by processor, the functions and instructions
ECPS supports.

100 IBM VM/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

r'----
I
I Functions and instructions

CP_Assi§.i
• Get free space (DMKFRE)
• Release free space (DMKFRE)
• Lock a page (DMKPTR)
• Unlock a page (DMKPTR)
• Test page status (DMKCC~)

• Test page status and
lock (DMKCCW)

• Store ECPS identification

• SVC 8 (LINK)
• SVC 12 (RETURN)
• Scan for changed shared

paqes (DMKVMA)
• Locate virtual I/O control

block (Dl'o!KSCN)
• Invalidate paqe table (DMKVAT)
• Invalid segment

table (DMKVAT)
• Untranslate CSW (DMKUNT)
• Free CCW storage (DMKUNT)
• Locate real I/O control)

block (DMKSCN)
• Common CCW command

processinq (DMKCCW)
• Decode first CCW (DMKCCW)
• Decode following CCW (DMKCCW)
• Main entry to dispatch (DMKDSP)
• Dispatch a block or a virtual

machine (DMKDSP)

EX2~~gg_yi£i~al m~£hine_assist
• LPSW
• STNSM
• STaSM
• SSM
• PTLB
• SIa
• SPT
• SCKC
• STPT
• TCH
• DIAGNOSE

Processor

135-3,138, 1q5-3
148, 4341

x
X
X
X
X
X

x
X

X
X

X

X
X

x
X
X

x

x
X
X
X

X

X
X
X
X
X
X
X
X
X
X
X

X

3031 I
3031API 4331

X
X
X
X
X
X

x
X

X
X

X

X
X

X

X

X
X

X

x
X

X

X

X
L- -I

Figure 13.1. Functions and Instructions that ECPS Supports

Part 2. Control Program (~P) 100.1

Apr il 1 f 1981

100.2 IBM V~/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN2S-0829

VIRTUAL INTERVAL TIMER ASSIST

virtual interval timer assist provides hardware updating of the virtual
interval timer at virtual location X'SO'. Timer updating occurs only
while the virtual machine is in control of the real processor. This
results in an update frequency of approximately 300 times per second,
the same as for the real interval timer. Procedures that use the
virtual interval timer for jot accounting, performance measurements, and
the like, will therefore generate more accurate and repeatable time data
than they would if the virtual timer was being updated by CP routines.

USING THE VM/370 EXTENDED CONiECI-PROGRAM SUPPORT

VM/370 Extended Control-Program Support (ECPS) is controlled at two
levels: the VM/370 system and the virtual machine.

At the VM/370 system level, ECPS is automatically enabled when the
system is loaded. The class A command:

set cpassist off

will disable both CP assist ana expanded virtual machine assist. The
class A com ma nd :

set sassist off

disables only the expanded virtual machine assist part of ECPS as well
as the virtual machine assist. CP assist is the only part of ECPS that
is truly independent.

At the virtual machine level, whenever ECPS is enabled on the system,
both expanded virtual machine assist and virtual interval timer assist
are automatically enableo when you log on. If you issue the class G
command:

set assist off

both assists as well as the existing virtual machine assist are
disabled. If you issue:

set assist notmr

only the virtual interval timer assist is disabled. If CP assist is
disabled for the system, the class A command:

set sassist on

will enable the virtual machjne assist. You
machine assist and virtual interval timer
machine by issuing the class G command:

set assist on tmr

can then
assist for

enable virtual
your virtual

The restrictions on the use of ECPS are the same as those described for
the virtual machine assist feature with one addition. Whenever a

Part 2. Control Proqram (CP) 101

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

virtual machine traces external interrupts, the virtual interval timer
assist is automatically disabled. When external interrupt tracing is
completed, virtual interval timer assist is reenabled.

THE VIRTUAL BLOCK MULTIPLEXER CHANNEL OPTION

virtual machine SIO operations are simulated by CP in three ways:
byte-multiplexer, selector, and block multiplexer channel mode.

virtual byte-multiplexer mode is reserved for I/O operations that
apply to devices allocated to channel zero.

Selector channel mode (the default mode) is the mode of operation for
any channel that has an attached Channel-to-Channel Adapter (CTCA),
regardless of the selected channel mode setting (the CTCA is treated as
a shared control unit and, therefore, it must be connected to a selector
channel). The user need not concern himself as to the location of the
CTCA since CP interrogates the related channel linkage and marks the
channel as being in selector mode. As in real selector channel
operations, CP reflects a busy condition (condition code 2) to the
virtual machine's operating system if the system attempts a second SIO
to the same device, or another device on the same channel, before the
first SIO is completed.

Block multiplexer channel mode is a CP simulation of real block
multiplexer operation; it allows the virtual machine's operating system
to overlap SIO requests to multiple devices connected to the same
channel. The selection of block multiplexer mode of operation may
increase the virtual machine's throughput, particularly for those
systems or programs that are designed to use the block multiplexer
channels.

Note: CP simulation of tlock multiplexer processing does not reflect
channel available interruptions (CAls) to the user's virtual machine.

Selecting the channel mode of operation for the virtual machine can
be accomplished by either a system generation DIRECTORY OPTION operand
or by use of the CP DEFINE command.

ALTERNATE PATH SUPPORT

Through the use of the Two-Channel Switch and Two-Channel Switch
Additional Features, alternate path support for DASD or tape provides
for up to four channels on one control unit to be attached to VM/370.
In addition, one device may te attached to two logical control units,
providing support for the String Switch feature. This allows the
control program up to eight paths to a given device when the maximum
number of alternate channels and alternate control units are specified.

When an I/O request is received for a device which has alternate
paths defined, the VM/370 lOS supervisor searches for an available path
beginning with the primary path to the device. If the primary path is
unavailable, the search continues with the first alternate path.
Successive alternate paths are examined if required until an available
path is found.

102 TOM
.J..J •. H . .l System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

In case where no available path to the device exists, alternate path
I/O sCheduling is implemented in such a way ~na~ ~ne request is queued
off multiple busy/scheduled paths and the first path to become available
is the path that the I/O request is started on.

The IDS supervisor determines that a path is "available" by analyzing
the busy and scheduled software indicators in the RDEVBLOK, RCUBLOK and
RCHBLOK as well as the chains of pending I/O requests which are queued
from the RCUBLOK and RCHBLOK. This processing is performed prior to
issuing the SIO.

!Qte: There is no alternate path scheduling after the SID if a control
unit busy, channel busy, or not operational condition is encountered.
The I/O request will be queued in the busy conditions on the busy
control unit or channel block to wait for an interrupt which will cause
the request to be restarted. The not operational condition is presented
to the second level interrupt handlers as a fatal condition. -

Part 2. control Program (CP) 102.1

April 1, 1981

102.2 IBM VM/370 System Programmer's Guide

Performance Observation and Analysis

Two commands, INDICATE and MONITOR, provide a way to dynamically measure
system performance.

l!DICA!!: Provides the system analyst and general user with a method to
observe the load conditions on the system while it is running.

~QNI!Q!: Provides the system analyst and the system operator with a data
collection tool designed for sampling and recording a wide range of
data. The collection of data is divided into functional classes. The
different data collection functions can be performed separately or
concurrently. Keywords in the MONITOR command enable the collection of
data and identify the various data collection classes. Other keywords
control the recording of collected data on tape for later examination
and reduction.

Load Indicators

The INDICATE com.and allows the system operator to check the system for
persistently heavy loads. He can, therefore, judge when it is best to
apply additional scheduling controls (if appropriate) or call a system
analyst to perform an analysis of the condition by using the INDICATE,
and MONITOR commands.

The system analyst has a set of operands in the INDICATE com.and that
enable him to understand the basic utilizations of and contentions for
major system resources (possible bottleneck conditions) and to identify
the userids and characteristics of the active users and the resources
that they use.

Virtual machine users can use the INDICATE command to observe the
basic smoothed conditions of contention and utilization of the primary
resources of processor and storage. The INDICATE command allows them to
base their use of the system on an intelligent guess of what the service
is likely to be. Over a period of time, virtual machine users relate
certain conditions of service to certain utilization and contention
figures, and know what kind of responses to expect when they start their
terminal session.

THE INDICATE COMMAND

The INDICATE command allows the general user and the system analyst to
display at their consoles, the usage of and contention for major system
resources.

The g.eneral __ usercan display usage _of and_contenti_on __ for _ the Jlajor
system resources of processor and storage. He can also display the total
amount of resources he has used during his terminal session and the
number of I/O requests. If he uses the INDICATE command before and after
the execution of a program, he can determine the execution

Part 2. Control Program (CP) 103

characteristics of that program in terms of resource usage.
spooling considerations, the INDICATE command may produce
results if entered while a program is issuing I/O requests.

Because of
unexpected

The system analyst can identify active users, the queues they are
using, their I/O activity, their paging activity, and many other user
characteristics and usage data.

The system analyst can use the data on system resource usage and
contention to monitor the performance of his system. He can thus be
aware of heavy load conditions or low performance situations that may
require the use of more sophisticated data collection, reduction, and
analysis techniques for resolution.

The VM/370 scheduler maintains smoothed values of processor usage and
main storage contention. Specifically, every 30 seconds, the scheduler
calculates the total wait time for the last interval and factors it into
a smoothed wait value in the following way:

(3 X old smoothed wait
value + current interval wait)

New smoothed wait value = --------------------------------
4

Thus, only 1/4 of the most recent interval wait is factored into the new
smoothed wait which makes it predominantly the old smoothed wait value.

The remaining INDICATE components are sampled prior to a user being
dropped from a queue. Because of the frequency of this event, the
remaining components are subject to a heavier smoothing than the wait
time. A general expression for the smoothing follows:

(15 X old smoothed value + last
interval value)

New smoothed value = ---------------------------------
16

Other operands of the command allow users to obtain other performance
information that enables them to understand the reasons for the observed
conditions.

THE CLASS G INDICATE COMMAND

The format of the class G INDICATE command is:

INDicate
r ,
ILOAQI
IUSERI
L J

INDICATE LOAD
-Produces the following response, where n is a decimal number:

CPU-nnn% APU-nnn% Q1-nn Q2-nn STORAGE-nnn% RATIO-nnn

The CPU figure indicates the percentage of time that the main
processor is running and is derived from the smoothed wait
value maintained by the scheduler.

The APU figure is the percentage of time the attached
processor is running.

The contention for the processor is represented
values of the numbers of users in queue1
maintained by the scheduler.

by smoothed
and queue2,

The next field, STORAGE, is a measure of the usage of real
storage. It is a smoothed ratio of the sum of the estimated
working sets of the users in queue1 and queue2, to the number
of pageable pages in the system, expressed as a percentage.

Due to the algorithm used by the scheduler in
entry to the active queues, the value of STORAGE
100%.

determining
can exceed

The scheduler contention ratio, RATIO, is a smoothed measure
of the contention for real storage, and is defined as:

E+M
RATIO =

M is the number of users in queue1 and queue2

E is the number of users waiting to be allocated real
storage by the scheduler and, therefore, temporarily
resident in the scheduler's eligible lists.

Thus, RATIO is the ratio of active users to users being
serviced, and is 1.0 for optimum response. Optimum response
occurs when enough real storage is available to accommodate
all active users, assuming the processor can process their
commands. If E and M are both zero, the value of RATIO is set
to 1.0.

Given the value of RATIO and ft, (Q1.Q2) the number of users in
the eligible list can be computed as:

E = M (RATIO-1)

INDICATE USER
allows a user to determine the resources used and occupied by
his virtual machine, and the I/O events that have taken place.

The following two line response is returned:

PAGES: RES-nnnn is-nnnn READS=nnnnnn WRITES=nnnnnn DISK-nnnn DRUM-nnnn
YTIME=nnn:nn TTIME=nnn:nn SIO=nnnnnn RDR-nnnnnn PRT-nnnnnn PCB-nnnnnn

The first line of the response displays the data from the user's VMBLeK
that ls relevant to his virtual machine's paging activity and resource
occupancy.

RES is the current number of the user's virtual storage pages
resident in real storage at the time the command is issued.

is is the most recent system estimate of the user's working
set size.

Part 2. Control Program (CP) 105

READS is the total number of page reads for this user since he
logged on or since the last ACNT command was issued for his
virtual machine.

WRITES is the total number of page writes for this user since
he logged on or since the last ACNT command was issued for his
virtual machine.

DISK is the current number of virtual pages allocated On the
system paging disk for this user.

DRUM is the current number of virtual pages allocated on the
system paging drum for this user.

The second line of the response gives the user his processor usage and
accumulated I/O activity counts since logon or since the last ACNT
command was issued for his virtual machine.

VTIME is the total virtual processor time for the user.

TTIME is the total virtual processor and simUlation time for
the user.

SIO is the total number of nonspooled I/O requests issued by
the user.

RDR is the total number of virtual cards read.

PRT is the total number of virtual lines printed.

PCH is the total number of virtual cards punched.

THE CLASS E INDICATE COMMAND

The format of the class E INDICATE command is:

r ,
INDicate I&Q!Q I

I r , I
IUSER I! II
I luseridll
I L ~ I
IQueues I
11/0 I
I r , I
IPAGing II!II II
I IALL " L L ~~

INDICATE LOAD
-provides the same output as the INDICATE 1Q!Q option described

under "The Class G Indicate Command."

106 IBM VM/370 System Programmer's Guide

Page of GC20-1&07-7 As Updated April 1, 1981 by TNL GN25-0829

INDICATE USER!
reflects ac~~v~~y O~ ~ne ~Is~~m afialyst~s own virtual wachine.
The output of this option is the same as that of the INDICATE
USER ! option descr ibed under "The Class G INDICATE Command. n

INDICATE USER userid
allows the system analyst to determine the activity of other
virtual machines in terms of the resources used and occupied
and events that have taken place. Users with class E authority
can access data from the VMBLOK of any user currently logged
onto the system in their attempts to understand an overload or
poor performance situation.

The output of this option is the same as that of the INDICATE
USER ! option descr ibed under liThe Class G INDICATE Command".

INDICATE QUEUES
displays the active users, the queues they are in, the storage
they are occupying, and the status they are in. The display
indicates those users currently dominating main storage. Users
waiting in eligible lists are included in the response because
they are contending for main storage and it is only by chance
that they were not occupying main storage at the time of the
command.

The response to the INDICATE QUEUES command is as follows:

userid1 aa bb ssslttt userid2 ••• (up to 3 userids per line)

useridn
is the user identification.

aa is the eligible list or queue that the user occupies.

bb is one of the following status indicators:

RU the current runuser in uniprocessor mode. In
attached processor configurations, the current
run user on the main processor.

RA in attached processor configurations, the current
runuser on the attached processor. (Not used in
uniprocessor mode).

DF in attached processor configurations, the processing
of a synchronous (program and SVC) interrupt for
this user has been deferred until the system lock is
available (not used in uniprocessor mode).

PG the user is not running because CP is attempting to
bring in a page from a paging device.

10 the user is in 1/0 wait because access to the device
is not available at the moment.

EX the user is waiting for the completion of an
instruction simulation.

PS the user is in an enabled wait state for high speed
1/0 devices.
waiting to be redispatched.

!Q1§: In cases where a virtual machine may be in more
than one of the above states, only one state is
displayed. The state displayed is the first one
encountered in the order of priority indicated above.

Part 2.. Control Program (CP) 107

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

sss is a hexadecimal number indicating the number of pages
resident in real storage

ttt is a hexadecimal number indicating the working set size.

Note: The order of the users in the INDICATE QUEUES response
is as follows:

1. Q1 and Q2 users in runlist priority order (that is,
dispatching priority order).

2. Eligible list El users in scheduling priority order.
3. Eligible list E2 users in scheduling priority order.

INDICATE 1/0
provides information about conditions leading to possible 1/0
contention within the system. The response gives the userids
of all the users in I/O wait state at that instant in time,
and the address of the real device to which the most recent
virtual SIO was mapped. Because the response indicates only
an instantaneous sample, use the command several times before
assuming a condition to be persistent. If it is persistent,
run the SEEKS option of the MONITOR command to conduct a
thorough investiqation of the suggested condition.

The response to the INDICATE 1/0 option is as follows:

useridl cuu userid2 cuu • •• (up to 5 userids per line)

useridn
is the user identification.

cuu indicates the real device address.

In the case where a virtual machine may have issued multiple
SIOs, the response indicates the real device address
corresponding to the most recent one issued.

INDICATE PAGING WAIT
is provided for installations that have 2305s as primary
paging devices and other direct access devices as secondary
paging devices. A full primary device and subsequent
allocation of paging space on the slower device may be
responsible for degradation in system performance. Use the
INDICATE PAGING WAIT option when the INDICATE QUEUES option
shows that a significant proportion of the users in queue1 and
queue2 are persistently in page wait. The response to the
command gives the userids of those users currently in page
wait and the numbers of page frames allocated on drum and on
disk.

The response to the INDICATE PAGING WAIT option is as follows:

userid 1 nnn: mmm userid2 nnn: mmm ••• (up to 4 userids per line)

useridn
is the user identification.

nnn is the hexadecimal number of pages allocated on drum for
these users.

108 IBM VM/370 System programmer!s Guide

mmm is the hexadecimal number of pages allocated on disk fer
these users.

H~!~: Consider, for example, the following response:

usera 010:054 userb 127:000

If the two users were to execute prograas of si.ilar
characteristics, then usera would be expected to experience
more pagewait than userb. Also, if the level of
multiprogramming were to be low during the execution of
usera's progra., then aore system page wait would occur than
during the execution of userb's program.

If users appear to have most of their pages allocated on disk,
it would be useful to know which users are occupying most of
the primary paging device space, and whether or not they are
still active. (That is, a virtual machine that is running a
large operating system aay have been allocated large a.ounts
of primary paging device space at IPt time but then may have
become inactive. Consequently, the machine is occupying a
critical resource that could be put to better use.

IBDICATE PAGING ALL
displays the page residency data of all users of the system
(including the system nucleus and pageable routines). The
response is identical to that of the INDICATE PAGING WAll
option.

NO USERS IN QUEUE
is issued for the INDICATE QUEUES option when appropriate.

NO USERS IN I/O WAIT
is issued for the INDICATE I/O option when appropriate.

NO USERS IN PAGEWAIT
is issued for the INDICATE PAGING WAIT option when appropriate.

Part 2. Control Program (CP) 109

The MONITOR Command

VM/370 Monitor collects data in two ways:

1. By handling interruptions caused by executinq MONITOR CALL (MC)
instructions.

2. By usinq timer interruptions to
sampling-routines.

rriuo :;,--- periodically to

MONITOR CALL instructions with appropriate classes and codes are
presently embedded in strategic places throughout the main body of
VM/370 code (CP). When a MONITOR CALL instruction executes, a program
interruption occurs if the particular class of ftONITOR CALL is enabled.
The classes of MONITOR CALL that are enabled are determined by the mask
in control register 8. For the format and function of the MONITOR CALL
instruction, refer to the ~.I§!~!!Ll1Q ~ri.!!ciEle§ of QE~glio.!!,. The
format of control register 8 is as follows:

1

I I I I I I I I
xxxx xxxx xxxx xxxx 0123 4567 89AB CDEF I

I I I I I I I I

x indicates unassigned bits.

O-F
(hexadecimal)

indicates the bit associated with each class of
the MONITOR CALL.

When a MONITOR CALL interruption occurs, the CP proqram interruption
handler (DMKPRG) transfers control to the VM/370 Monitor interruption
handler (DMKMON) where data collection takes place.

Sixteen classes of separately enabled MONITOR CALL instructions are
possible, but only eight are implemented in the VM/370 Monitor.

Monitor output consists of event data and sampled data. Event data
is obtained via MONITOR CALL instructions placed within the VM/370 code.
Sampled data is collected following timer interruptions. All data is
recorded as though it were obtained through a MONITOR CALL instruction.
This simplifies the identification of the records.

The following table indicates the type of collection mechanism for
each Monitor class:

Monitor Class Collection
~!g§§ NaJ!!~ Mechanism

0 PERFORM rIier-requests
1 RESPONSE MC instructions
2 SCHEDULE MC instructions
3 1

4 USER Timer requests
5 INSTSIM MC instructions
6 DASTAP Timer requests
7 SEEKS MC instructions
8 SYSPROF Collected via class 2

IThere is no class name for monitor class 3, but it is reserved.

110 IB~ V!/370 System ?rograillm~I~s Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Another function, separate from the VM/370 Monitor, is also handled
uy the MONITOR command. The MONITOR command can stop and start CP
internal trace table data collection, which is ~ot initiated by MONITOR
CALLs.

Note: The VM/370 Monitor record format and the contents of the record
are shown in "Appendix C. Monitor Tape Format and content ...

The MONITOR command:

• stops and starts CP internal trace table data collection.

• Displays the status of the internal trace table and each implemented
class of VM/370 Monitor data collection. Displays the specifications
for automatic monitoring defined by the SYSMON macro in DMKSYS. In
addition, it displays those specifications for automatic monitoring
that are overridden by Monitor commands. It also displavs~whether
the tape, or spool file is the recording medium.

• starts and stops VM/370 data collection using tape or spool filee It
also closes the spool file, if desired.

• specifies VM/370 monitor classes of data collection enabled, number
of buffers used, and time of data collection. It also specifies
other options which override the specifications for automatic
monitoring on the SYSMON macro contained in DMKSYS.

• Specifies the interval to be used for timer driven data collection.

• specifies direct access devices that are to be
from a list of devices. The list defines direct
which CP is to collect data for the SEEKs class.

included or excluded
access devices for

Part 2. Control Program (CP) 111

April 1, 1981

The format of the class A and E MONITOR command is:

r

MONitoc fOiSPlav

ENable

INTerval

STArt

STOP

CLOSE

AUTOdisk

TIME

LIMIT

SEEKS

r ,
ISPOQ11
I TAPE t
L .J

PERForm 1

RESPonse
SCHedule
USER
INSTsim
DAStap
SEEKs
SYSprof

r .,
nnnnn ,~~~, nn

I MINI
L J

r
I SPOOL [To userid] (BUFFS n]
I
ITAPE raddr
I
I
I
I CPTRACE
L

r .,2
ISPOOL I
ITAPE I
ICPTRACE I
L

{

FROM
FOR
ALL
NONE

n

.J

hl. ml to
hh.mm

r .,
I NOSTOP I
ISTOP ,
I SAMPLE I
L .J

r ,
I !lODE too } I
I 1600 I
I 6250 I
L J

{

INclude
EXclude
DELete
DISplay

raddr raddr •••• }
raddr raddr ••••

[BUFFS

l

.,
I
I
I

nll
I
I
I

.J

lSelect one or more of the classes subject to the cestrictions below.
2See operand description for defaults.

L--

112 IBM VM/3 70 System Programmer's Guide

~ ~ . .
DISPLAY 12E22bl

,TAPE 1
IALL 1

ENABLE

L J

displays the status of the applicable VM/370 Monitor variables
and the status of the internal trace table. SPOOL is the
default operand. Regardless of the SPOOL, TAPE, or ALL
operand selected, each class of MONITOR CALL and its current
enabled/disabled state is listed on the terminal~

If SPOOL is requested, the automatic monitoring specifications
are listed on the terminal, including whether or not automatic
monitoring has been requested, its start and stop times, the
number of monitor buffers to be used, the userid of the
virtual machine to receive the spool file, the spool
record limit and class, and which monitor classes are
enabled.

file
to be

If automatic monitoring is already in progress, the spool file
number is given together with the number of monitor buffer
records already written to it.

If the TAPE option is requested, only the status of monitor
classes and the CPTRACE table is indicated.

If ALL is specified, a combination of SPOOL and TAPE responses
are shown on the terminal.

PERForm
RESPonse
SCHedule
USER
INSTsim
DAStap
SEEKs
SYSprof

enables the specified classes of MONITOR
successful completion of this command creates a
control register 8. The function of each class
in the section "Implemented Classes."

CALL. Each
new mask for
is described

The effect of the MONITOR ENABLE command depends upon whether
data collection is active or inactive when the command is
issued. If data collection is active (MONITOR START has been
issued), the new mask is moved directly into control register
8, replacing the previous mask, and the new mask takes effect
immediately. Collection then continues with the classes just
entered. If data collection is not active at the time the
command is issued, the mask is saved until the MONITOR START
command is issued. If a MONITOR START command is issued
without a preceding MONITOR ENABLE, the SYSMON class
specifications are used. Any mask stays in effect only until
the next MONITOR STOP command.

Part 2. Control program (CP) 113

~Q!!IQ! ~NA~b~ !~2!ri£!!2~§:

Restrictions exist on issuing the MONITOR ENAELE command while
the VM/370 Monitor is collecting and recording data.

Every MONITOR ENABLE command yields a new mask. Thus, for
example, if PERFORM and USER classes are currently being
collected, and you enter MONITOR ENABLE INSTSI!, then PERFORM
and USER classes are stopped and INSTSI! is started.

The DASTAP operand in the MONITOR ENABLE command must be
specified prior to the MONITOR START TAPE command. DASTAP may
be disabled at any time by respecifying the MONITOR ENABLE
command with DASTAP absent from the class list.

The SYSPROF class cannot be activated unless both the DASTAP
and SCHEDULE classes are also active.

If data collection is in progress when you issue a MONITOR
ENABLE command and an error occurs in the command line during
processing, no change is made to the mon~to7ing status.
Unrecognizable keywords, conflicting or m~ss~ng operands
generate appropriately different error messages.

Due to the potential security exposure that exists with
collecting terminal input and output data, the RESPONSE class
of data collection does not occur unless the system programmer
sets the TRACE(1) bit in the LOCAL COPY file to a 1 and
reassembles the CP module DMKMCC. If this is not done, the
RESPONSE class is considered an invalid operand of the MONITOR
ENABLE command.

r ,
I INTERVAL nnnnn ISECI nn

IMINI
L J

specifies the time interval to be used for the three timer
driven data collection classes: PERFORM, USER, and DASTAP.
The value specified by nnnnn is the number of seconds or
minutes between data collections. If no interval is specified
'on the MONITOR INTERVAL command, an error message is
generated. If you give an interval but enter neither SEC nor
MIN, the default is SEC. The maximum allowatle interval is 9
hours (540 minutes or 32,400 seconds). The minimum is 30
seconds.

If the MONITOR INTERVAL command is not issued, the default
interval is 60 seconds. The MONITOR INTERVAL command can be
issued at any time; however, if data collection is already in
progress, the new interval does not take effect until the
current interval has elapsed.

nn specifies how frequently the VM/370 Monitor is to sample
channel status, control unit status, and device status for
the DASTAP class. The nn parameter specifies only seconds,
has a minimum value of 1, a maximum value of 99, and a
default value of 2. The amount of time specified by nn
must be less than the amount of time specified by nnnnn.

The value of nn and the value of nnnnn work together in the
following way. The VM/370 Monitor accumulates channel
status, control unit status, and device status in a buffer.
The value of nn determines the frequency of accumulation;
the value of nnnnn determines how frequently the buffer is

114 IBM VM/370 System programmer's Guide

START
r

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

written to tape. When the buffer is written to tape, it is
written as a class 6 (DASTAP) record under monitor code 02.

The MONITOR interval is reset to the default of 60 seconds
whenever any of the following occurs:

• The user issues MONITOR STOP,
automatically

or the monitor stops

• The system stops the MONITOR because of an unrecoverable
I/O error

• The end of tape or spool record limit is reached

,
!~~QQ~ [To userid] [BUFFS n] I
I r , I
ITAPE raddr '1I0DE{BOO }' I
I I 1600 I [BUFFS n] I
I I 6250 , I
I L .J I
ICPTRACE I
L .J

starts VM/370 Monitor data collection to the spool file or
tape, or starts the CP internal trace table. If no optional
parameter is provided, SPOOL is the default. KONITOR START
SPOOL starts the VM/370 Monitor data collection using a spool
file for storage.

When data collection is stopped and the spool is closed, the
spool file is added to the chain of reader files destined for
the virtual reader of the virtual machine defined by "userid."
Userid may be an asterisk (*) if the recipient virtual machine
is to be the one from which the START command is issued. If
the TO USERID option is omitted, the userid specified in the
SYSMON macro is used (See the VK/37Q f!g~ing ~g Sys!~~
~g~eration guig~. The TO USERID option overrides the SYSMON
specification and stays in effect until the system is
reinitialized or a new command is issued.

The monitor spool file is closed by a MONITOR STOP or MONITOR
CLOSE command, or when the record count limit is reached (as
specified in the SYSMON macro), or when a system restart or
system shutdown occurs.

The filename and filetype is generated internally with the
filetype identifying date and time of starting.

The class of spool file is specified in the SYSMON macro and
defaults to "M". If no classes of data collection have been
specified with an ENABLE command, then those specified with
the SYSMON macro are used.

The number of monitor buffers used are as specified in the
SYSMON macro, or as requested with the BUFFS option of the
START command. The BUFFS option overrides the SYSMON
specification only for the duration of the data collection
session. Future monitoring sessions subsequently return to

- t he -SY SftON-- sp-ec-i-fi-ea-t-io-n---- -u--nl-e-ss- --- -aija i n - o-verr-id-den. I-f - the
number of buffers specified in the SYSKON macro has been
defaulted, then the defaults described in the MONITOR START
TAPE command are adopted.

Part 2. Control Program (CP) 115

April 1, 1981

The START TAPE command starts the data collection by VK/370
Monitor onto a tape mounted on a 9-track tape drive. Specify
"raddr" as the real hexadecimal address of the tape drive that
you want to use. It activates data collection for those
classes of MONITOR CALL previously specified in a KONITOR
ENABLE command. The mask that was saved by the KONITOR ENABLE
command is moved into control register 8. The data is
collected in two buffer pages in real storage. These pages
are separate from the internal trace table pages. As each
data page is filled, it is written onto the tape.

Use BUFFS to specify the number of buffers to be used for
monit.orinq, where "nil may be 1 to 10 and specifies the number
of 4096-byte buffers to be used. If the option is omitted,
VM/370 assigns a default. The value of the default depends
upon the model number or type of processor as follows:

r -,
Model or Processor Default I

I
Model 135, 138, or 145 2 buffersl

I
4331 Processor 2 buffersl

I
Model 148, 155, or 158 3 buffersl

I
Model 165 or 168 4 buffersl

I
3031, 3032, 3033, or I
4341 processor 4 buffersl

It is valid to specify BUFFS 1 only if the PERFORM class of
data collection is the only one enabled with the MONITOR
ENABLE command. Once monitoring is in progress with just one
buffer, it is not possible to issue a MONITOR ENABLE command
with other than just the PERFORM class of data collection
specified.

single-buffer operation is useful for basic performance
analysis in minimum main storage confiqurations.

When the VM/370 Monitor is started, CP issues a REWIND command
followed by a Set Mode command for the reset value of tape
density.

The user can request a different mode setting by specifyinq
the MODE option in the MONITOR START TAPE command. Kode
values of 800, 1600, or 6250 bpi may be specified.

MQi~: If a user specifies a density mode that the tape cannot
handle, the control unit may not return an error condition.
In this case, the mode setting is ignored, and the default
control unit settinq is used.

The START CPTRACE command starts the tracing of events that
occur on the real machine. The events are recorded in the CP
internal trace t.able in chronological order. When the end of
the table is reached, recording continues at the beginning of
the table, overlayinq data previously recorded.

116 IBM V~/370 System Programmer;s Guide

r ,1
STOP ISPOOL I

ITA~~ i
ICPTRACEI
L ~

CLOSE

stops VM/370 Monitor data collection to a spool file or tape,
or stops the CP internal trace tab1e~ If no option is
specified and the VM/370 Monitor is active, then data
collection is terminated, whether or not a spool file or tape
is in use. Internal tracing can only be stopped by specific
use of the CPTRACE option. If automatic VM/370 Monitor data
collection is active when the MONITOR STOP SPOOL command is
issued, monitoring ceases and will not start again (even if
the current time is within the bounds of the TIME operand of
the SISMON macro) unless the system abnormally terminates or
is shut down and reloaded.

The STOP TAPE command stops data collection by VM/370 Monitor
onto tape. A zero mask is immediately stored in control
register 8, thus disabling MONITOR CALL interruptions~ The
last partially filled page is written out, two tape marks are
written, and the tape is rewound and unloaded. The two buffer
pages, which were obtained at the time the MONITOR START TAPE
command was issued, are released.

The STOP CPT RACE command terminates the tracing of events
occurring on the real machine. Event recording ceases but the
pages of storage containing the CP internal trace table are
not released. Tracing can be restarted at any time by issuing
MONITOR START CPTRACE.

!gl~: The CPTRACE and TAPE operands of the MONITOR command
have completely separate functions. Commands affecting the
status of one function have no effect on the other.

may be used when VM/370 Monitor is collecting performance data
using a spool file and it is desirable to reduce the data
collected thus far. The command closes the current spool file
(thereby making it available to the reader of the recipient
virtual machine) and causes monitoring to continue
uninterrupted with a new spool file.

AUTOdisk {ON }
OFF

may be used to override the specification for automatic
monitoring in the SISMON macro. Its only use is to affect the
automatic startup of monitoring. If automatic monitoring is
already active, it may only be stopped manually by a MONITOR
STOP command. Note that in general, any attempts to override
the definitions of the SISMON macro with commands are
temporary. No monitor checkpointing is attempted, so that an
IPL or abnormal termination causes full restoration of the
initial automatic monitoring definitions.

lThe default value is the active trace facility that is SPOOL or TAPE.

Part 2. Control program (CP) 117

TIME
r
IFROM
IFOR
IALL
INONE
L

,
h1.m1 to h2.m21
hh.mm I

I
I
~

specifies that the automatic monitoring start and stop times
defined by the SYSMON macro should be temporarily overridden
(until the next IPL or the next MONITOR TIME command). The
FROM, ALL, and NONE options are equivalent to their
counterparts in the TIME operand of the SISMON macro (see the
!~L1IQ PIg~~!~g gQ~ ~~21~ gen~£g!ion Quig~. The FOR option
is provided specifically to simplifY data collection during
benchmarking or testing. If AUTO ON is in effect, spool
monitoring will start immediately and run for the specified
period of time. Note that if automatic monitoring is imminent
and the FOR option is specified, the period of monitoring
defined by the SISMON macro will be overridden.

r ,
LIMIT n I!Q~!Q~I

,STOP ,
,SAMPLEI
L ~

specifies that the LIMIT options of the SISMON macro should be
temporarily overridden (until the next system IPL or the next
MONITOR LIMIT command) • The maximum buffer count in each
spool file may be changed with the n parameter (within the 10
to 50000 range of the SISMON macro). If it is necessary to
change whether or not automatic monitoring should continue
after the limit has been reached and the spool file closed,
then the STOP, NOSTOP options may te specified. If this
should be done without changing the limit number, an asterisk
(*) may be specified for "nne

When SAMPLE is specified, n defines how frequently the VM/370
Monitor is to close the monitor spool file and send it to the
virtual reader of the data reduction virtual machine. To
determine when to close the file, the VM/370 Monitor counts
the number of data samples it takes for the PERFORM, USER, and
DASTAP classes. When this count equals the value of n, the
VM/370 Monitor closes the file. After the file is closed,
monitoring continues using a new file.

The following example shows how the INTERVAL parameter and the
LIMIT parameter work together. If the INTERVAL parameter
specifies an interval of 30 seconds and the LIMIT parameter is
coded as LIMIT 10 SAMPLE, the VM/370 Monitor closes the spocl
file every 300 seconds (30x10).

The LIMIT parameter may be specified for automatic monitoring
by using the SISMON macro instruction in module DMKSIS.
Instructions for using this macro instruction are in the
!~LJIQ PIg~Qi~g g~g ~1§1~! Q~~£g1i2Q Q~ig~·

'18 IBM VM/370 System Programmer's Guide

SEEKS (INclude
J Exclude
'\ T\1:IT ..,.+..,.
(DIspi;y

raddr raddr
raddr raddr

...)
···l ,

allows an installation to establish and maintain a list of
real device addresses for DASD devices. The V~/310 Monitor
collects status information from the listed devices for the
SEEKS class and writes the information to a class 7 monitor
record. Appendix C defines the format and content of the
class 7 record. The length of the list is limited only by the
maximum number of device addresses that fit on one line of the
terminal at which the command is entered.

Use the INclude option to create a list or to add entries to
the existing list.

Use the EXclude option ~o exclude non-2305 devices from the
list. The VM/370 Monitor collects information for all
non-2305 devices not excluded.

Use the DELete option to delete the entire list. Deleting the
list frees the storage the list occupied.

Use the DISplay option to display the list. To reduce the
performance impact of collecting the status information, keep
the list as short as possible. CP retains the list from one
monitoring session to another. Therefore, periodically review
the list to ensure that it does not contain unnecessary
addresses.

The following response occurs if you issue the MCNITOR DISPLAY command:

CLS KEYWORD ~I!I.Y~ -0- PERFoRM
1 RESPOi~SE (ENABLED
2 SCHEDULE
4 USER or
5 INSTSI"
6 DASTAP DISABLED)
7 SEEKS
8 SYSPROF

CPTRACE

The following response occurs for MONITOR commands, except MONITOR
DISPLAY, that successfully execute:

COMMAND COMPLETE

IMPLEMENTED CLASSES

The following MONITOR CALL classes correlate with the corresponding
classes in control register 8. Refer to the ~Y§!~AL11Q pr!D£iple§ £!
gR~ati2~ for details of the Me instruction and the bits in control
register 8.

Part 2. Control Program (CP) 119

~onitor
Class --0--

1

2

3

4

5

6

~~I~rd
PERFOR~

RESPONSE

SCHEDULE

USER

INSTSI~

DASTAP

Da1~ £Qll~g1!Qn !ungtiQn
Samples system resource usage data by accessing
system counters of interest to system
performance analysts.

Collects data on terminal I/O. Simplifies
analyses of command usaqe. user. and system
response times. It can relate user activity to
system performance. This class is invalid and
no data can be collected for it unless the
system programmer changes the LOCAL COpy file
and reassembles DMKMCC.

Collects data about scheduler queue
manipulation, monitors flow of work through the
system, and indicates the resource allocation
strategies of the scheduler.

Reserved.

Periodically scans the chain of V~BLOKs in the
system, and extracts user resource utilization
and status data.

Records every virtual machine privileged
instruction handled by the control program
(CP) • Because simulation of privileged
instructions is a major source of overhead,
this data may lead to methods of improving
performance.

If the VMA feature is active, the number of
privileged instructions that are handled by the
control program is reduced for those virtual
machines that are running with the feature
activated.

Periodically samples device I/O activity counts
(SIOs), for tape and DASD devices only.

It is possible that the number of DASD and taFe
devices defined in DMKRIO may exceed 291 (the
maximum number of MONITOR DASTAP records that
fit in a MONITOR buffer). The following
algorithm determines which devices are
monitored:

1. If the total number of DASD and tape
devices that are online is less than or
equal to 291, all online DASD and tape
devices are monitored.

2. If the total number of online DASD devices
is less than or equal to 291, all online
DASD devices are monitored.

3. Otherwise, the first
devices are monitored.

291 online DASD

Monitor
~!~

7

8

!~y~~rd
SEEKS

SYSPROF

Data Collection Function
collects-aita -for-every I/O request to DASD.
Reveals channel, control unit, or device
contention and arm movement interference
problems.

Note: When
VIrtual=real
collected.

NOTRANS
machine,

is in effect
no meaningful

for
data

a
is

No data is collected for TIO or HIO operations.
For SIO operations, data is collected when the
request for the I/O operation is initially
handled and again when the request is
satisfied.

This means that a single SIO request could
result in two MONITOR CALLs. For example, if
the request gets queued because the device is
already busy, then a MONITOR CALL would be
issued as the request is queued. Later, when
the device becomes free and is restarted, a
second MONITOR CALL is issued.

In general, the data collected is the same
except that in the first case there will be
nonzero counts associated with queued requests.

If the request for I/O is satisfied when it is
initially handled without being queued, only
one MONITOR CALL results. In both this case
and the second of the two data collections
mentioned above, the count of I/O requests
queued for the device is zero.

Collects data complementary to the DASTAP and
SCHEDULE classes in order to provide a more
detailed "profile" of system performance
through a closer examination of DASD
utilization.

VM/370 MONITOR RESPONSE TO UNUSUAL TAPE CONDITIONS

When I/O to the tape is requested, the device may still be busy from the
previous request. If this occurs, two data pages are full and data
collection must be temporarily suspended. Control register 8 is saved
and then set to zero to disable MONITOR CALL program interruptions and
timer data collection. A running count is kept of the number of times
suspension occurs. The current Monitor event is disregarded. When the
current tape I/O operation ends, the next full data page is scheduled
for output. MONITOR CALL interruptions are reenatled (control register 8
is restored), a record containing the time of suspension, the time of
resumption, and the suspension count is recorded and data collection
continues. The suspension count is reset to zero when the MONITOR STOP
TAPE is issued.

Part 2. Control Program (CP) 121

When an unrecoverable error occurs, DMKMON receives control and attempts
to write two tape marks, rewind, and unload the tape. The use of the
tape is discontinued and data collection stops. The operator is informed
of the action taken. Whether or not the write-tape-marks, rewind, and
unload are successful, the tape drive is released.

When an end-of-tape condition occurs, DKKMON receives control. A tape
.ark is written on the tape and it is rewound and unloaded. The VM/310
Monitor is stopped and the operator is informed of the action taken.

VM/310 MONITOR CONSIDERATIONS

The system programmer may want to set the TRACE(1} bit to a 1 in the
LOCAL COpy file and reassemble DMKMCC to allow RESPONSE data (MOIITCH
class 1) to be collected. See the information about security exposure
in "MONITOR ENABLE Restrictions" in the MONITOR command description.

MONITOR START CPTRACE is active after real system IPL (manual or
automatic). The VM/370 Monitor tape data collection is off after IPL.
If automatic performance monitoring is specified in the SYSMON macro and
IPL occurs within the range of the TIME operand of the 5YS80N macro.
VM/370 monitor data collection to a spool file is started.

If the VM/370 Monitor data collection to a spool file is taking place, a
system shutdown causes closing of the file and termination of
monitoring. If data collection is to tape, a system shutdown implies a
MONITOR STOP TAPE command. Normal command processing for the MCIITOS
STOP TAPE function is performed by the system~

If the VM/370 system fails and data collection to a spool file is
active, the spool file is closed and preserved, except for the last
buffer. If the VM/370 system fails and data collection is active on
tape, an attempt is made to write two tape marks, rewind, and unload the
tape. If the tape drive fails to rewind and unload, be sure to write a
tape mark befere rewinding and unloading the taFe. VM/370 Monitor data
collection is terminated by the system failure.

122 IBM V~/370 System Programmer's Guide

If VM/370 monitor data collection is active using tape, a supported tape
drive must be dedicated to the system for the duration of the
monitoring. For accounting purposes, all 110 is charged to the system.

VM/370 MONITOR DATA VOLUME AND OVERHEAD

Use of the VM/370 Monitor usually requires that three pages be locked in
storage for the entire time the VM/370 Monitor is active; however, only
two pages are required if the single buffer option is used with only the
PERFORM class of data collection enabled. This reduces by three the
Dumper of page frames available for paging. This significantly affects
the performance Qf the rest of the system when there is a limited number
of page frames available for paging.

PERFORM This class of data collection is activated once every 60
seconds (or as defined by the MONITOR INTERVAL command). and
records system counters relevant to performance statistics.
It is, therefore, a very low overhead data collection option.

RESPONSE This class collects terminal interaction data and, because cf
the human factor, has a very low rate of occurrence relative
to processor speed~. Consequently, this class causes
negligible overhead and produces a low volume of data.

SCHEDULE This class records the queue manipulation activity of the
scheduler and generates a record every time a user is added to
the eligible list, added to queue1 or queue2, or removed from
queue. The recording overhead is very low.

USER This class of data collection is active once every 60 seconds
(or as defined by the MONITOR INTERVAL command). Data is
extracted from each user's VMBLOK, including the system
VMBLOK. The overhead incurred is comparable with that of the
statistical data of the PERFORM class; however, it increases
with the number of users logged onto the system.

INSTSIM This class of data collection can give rise to large volumes
of data because of the frequency of privileged instructions in
some virtual machines. This may incur significant overhead.
It should be activated for short periods of time and
preferably, though not necessarily, when other classes of data
collection are inactive. If the Virtual Machine Assist
feature is active for the virtual machine, the data volume
and, consequently, the CP overhead may be reduced.

DASTAP This class of data collection samples device activity counts
once every 60 seconds (or as defined by the MONITOR INTERVAL
command) and is a very low source of overhead, similar to the
PERFORM and USER classes.

SEEKS This class of data collection can give rise to large volumes
of data because every start I/O request to DASD is recorded
via a MONITOR CALL.

SYSPROF This class of data collection is complementary to the SCHEDULE
and DASTAP classes and results in a small amount of additional
overhead. It obtains more refined data on DASD resource
usage.

Part 2. Control Program (CP) 123

First you must determine how many similar users can be run concurrently
on a given configuration before the throughput of individual users
becomes unacceptable.

Every installation should use the automatic monitoring facilities to
simplify and automate the collection of performance data. A virtual
machine should also be set up to analyze and report the collected data.
The VM/370 Performance/Monitor Analysis program (VMAP) does such a task.
For more information about the capabilities of this program and for
details about ordering it, see the publication Virtygl !!£h!D~
!gcil!iIL1IQ ~~!fg!!~~£~L~Q~!1Q! !~aII§!§ R~g!~~. This program or
user-written analysis programs should be run on a daily basis to analyze
the collected data. Data reduction should preferably be run at off-peak
hours to minimize the effect on the performance of the system that is
doing data reduction. Initially, the data collected with MONITOR
default options should be analyzed to establish a familiarity with the
load environment and performance profile of each virtual machine system
and its effect on CP.

Once a performance profile is established for each system and
associated virtual machines, the analyst should be able to detect points
of contention between processor(s) storage, I/O, and paging subsystems.

Normally the spool file monitoring options should be used. However,
if large volumes of trace data are to be collected, then monitoring to
tape should be used. Tape is also useful if benchmarking is frequently
done and all of the new monitor trace and sampled data must be archived
for possible future use. The default mode of operation of the
Performance/Montior Analysis Program is to keep the condensed ACUM files
and not the raw data.

If SEEKs data is needed, a sampling technique is suggested. A simple
implementation might be to use a CMS EXEC procedure to enable SEEKs for
ten seconds every ten minutes. This would produce SEEKs data while
limiting the volume of data collected. An alternative is to create a
list of devices for which data for the SEEKs class is to be collected.
CP will collect data for only those devices in the list. To create the
list, use the INCLUDE or EXCLUDE options of the MONITOR command's SEEK
operand. If data is collected for only a few devices, consider
collecting data for longer periods of time.

LOAD ENVIRONMENTS OF VM/370

Two distinct uses of VM/370 can be readily identified and, consequently
some differences in criteria for acceptable performance may occur. The
system may be required to time share multiple batch-type virtual
machines with interactive machines performing minor support roles; or,
the system may be primarily required to provide good interactive
time-sharing services in the foreground, with a batch background
absorbing spare resources of real storage and processor.

124 IBM iM/370 5ys~em Programmer·s Guiae

After determining the minimum acceptable performance, perform
external observations of turnaround time on benchmarks and specify a
point beyond which the aQQ1t10n of more users would be unaccep~aD~e.
However, when that point is reached, more sophisticated internal
measurement is required to deter.ine the scarcest resource ana how the
bottleneck can be relieved by additional hardware.

Several possible
different bottlenecks.

conditions
They are:

can be identified resulting from

• Real storage levels of multiprogramming are low compared with the
number of contending users. Hence, each user is dispatched so
infrequently that running time or response time may become
intolerable.

• Storage may be adequate to contain the working sets of contending
nsers# but the processor is being shared among so many users that
each is receiving inadequate attention for good throughput.

• Real storage space may be adequate for the processor, and a high
speed drum is used for paging; however, some virtual storage pages of
some users have spilled onto slower paging devices because the drum
is full~ With low levels of multiprogramming, user page wait can
become a significant portion of system wait time. Consequently,
processor utilization falls and throughput deteriorates.

• Storage, processor, and paging resources are adequate, yet several
users are heavily I/O-bound on the same disk, control unit, or
channel. In these circumstances, real storage may be fully committed
because the correct level of multiprogramming is selected, yet device
contention is forcing high I/O wait times and unacceptable processor
utilization.

Estimates ef typical working set sizes are needed to determine how
well an application may run in a multiprogramming environment on a given
virtual storage system. A measure of the application's processor
requirements may be required for similar reasons. Measurements may be
required on the type and density of privileged instructions a certain
programming system may execute, because, in the virtual machine
environment, privileged instruction execution may be a major source of
overhead. If the virtual machine environment is used for programming
development, where the improvement in programmer productivity outweighs
the disadvantages of extra overheads, the above points may not be teo
critical. However, if throughput and turnaround time are important,
then the converse is true, and the points need close evaluation before
allocating resources to a virtual machine operation.

High levels of multiprogramming and overcommitment of real storage
space lead to high paging rates. High paging rates can indicate a
healthy condition; but be concerned about page stealing and get evidence
that this rate is maintained at an acceptable level. A system with a
high rate of page stealing is probably thrashing.

Part 2. Control Program (CP) 125

Most of the conditions for good performance, established for the
time-shared batch systems, apply equally well to mixed mode systems.
However, two major factors make any determination more difficult to
make. First, get evidence to show that, in all circumstances, priority
is given to maintaining good interactive response, and that nontrivial
tasks truly take place in the background. Second, background tasks, no
matter how large, inefficient, or demanding should not be allowed to
dominate the overall utiliZation of the time-sharing system. In other
words, in mixed mode operation, get evidence that users with poor
characteristics are discriminated against for the sake of maintaining a
healthy system for the remaining users.

A number of other conditions are more obvious and straightforward.
You need to measure response and determine at what point it becomes
unacceptable and why. Studies of time-sharing systems have shown that a
user's rate of working is closely correlated with the system response.
When the system responds quickly, the user is alert, ready for the next
interaction, and thought processes are uninterrupted. When the system
response is poor, the user becomes sluggish.

For interactive environments, a need exists to analyze command usage.
Average execution time of the truly interactive commands can provide
data for validation of the Queue 1 execution time.

126 IBM 1M/370 System Programmerls Guide

April 1, 1981

Accounting Records

The accounting data gathered by VM/370 can help in analysis of overall
system operation. Also, accountinq data can be used to bill V~/370
users for time and other system resources they use.

There are three types of accounting records: the virtual machine user
records, records for dedicated devices as well as T-disk space assigned
to virtual machine users, and accounting records generated as a result
of user initiated DIAGNOSE X'4C' instruction. A eMS batch virtual
machine creates an accounting record with the userid and account number
of the user who sent his job to the batch machinee Accounting records
are prepared as SO-character card images and sent to a punch file at
various times. output class C is reserved for accounting records.

If the amount of free storage (available page frames) is relatively
small and the card punch is not periodically assigned to punch CP's
accounting cards, it is possible for CP's accounting routine to
progressively use a significant percentage of the available page frames
and cause a paqe thrashing condition to occur in VM/370. This happens
because the accounting routine creates and maintains accounting records
in real storaqe, and does not free that storage space until the
accounting records are punched on the real system card punch.

To eliminate this problem, it is recommended that one punch pocket be
permanently dedicated to this accounting function, or if that is not
feasible, to punch all the accumulated records every 1 to 2 hours.

Accounting cards are punched and selected to pocket 2 of any class C
card punch when a user logs off of the system, detaches a dedicated
device or T-disk, or issues a DIAGNOSE code X' 4C' instruction. (If the
real punch is a 2540, the accounting cards are put in pocket 3.) These
records should be kept for system accounting purposes.

Accounting Records for Virtual Machine Resource
Usage
The inf~rmation punched in the accountinq card when a user ends his
terminal session (or when the ACNT command is invoked) is as follows
(columns 1-28 contain character data; all other data is in hexadecimal
form, except as noted):

~Q!!!m!!
1- 8
9-16

17-28
29-32
33- 36

37-40
41- 44
45- tH~

49-52

53-56
57- 60

Contents
Userid--
Account num1::er
Date and Time of Accou nting (mmddyyhhmmss)
Number of seconds connected to VM/370 System
~illiseconds of processor time used, including time

for VM/370 supervisor functions
Milliseconds of virtual processor time used
Number of page reads
Number of page writes
Number of virtual machine SIO instructions for

nonspooled I/O
Number of spool cards to virtual punch
Number of spool lines to virtual printer (this

includes one line for each carriage control command)

Part 2. Control Program (CP) 127

61-64
65-78
79- 80

April 1, 1981

Number of spool cards from virtual reader
Reserved
Accounting card identification code (01)

Accounting Records for Dedicated Devices and
Temporary Disk Space
Accounting cards are punched and selected to pocket 2 of any class C
card punch when a previously dedicated device and temporary disk space
is released by a user via DETACH, LOGOFF, or releasing from DIAL
(dedicated device only). A dedicated device is any device assigned to a
virtual machine for that machine's exclusive use. These include devices
dedicated by the ATTACH command, those being assigned at logon by
directocy entries, or by a user establishing a connection (via DIAL)
with a system that has virtual 2702 or 2703 lines. The information on
the accounting card is as follows (columns 1-28 contain character data;
all other data is in hexadecimal form, except as noted):

~oly!!!
1- 8
9-16

17-28
29-32

33
34
35
36

37-38

39-78
79-80

Conte1!ts
Userid
Account number
Date and Time of Accounting (mmddyyhhmmss)
Number of $econds connected to V"1370 system
Device class
Device type
Model (if any)
Feat ure (if any)
Number of cylinders of te~porary disk space used (if

any). This information appears only in a code 03
accoun tin g card.

Unused
Accounting card identification code (02, 03)

The device class, device type, model, and feature codes in columns
33-36 are shown in Figure 10.

Accounting Records for LOGON, AUTOLOG, and
LINK Journaling
When LOGON, AUTOLOG, and LINK journaling is on, V"1370 may write type
04, type OS, or type 06 records to the accounting data set. These
records are written under the following circumstances:

• Type 04 records are written when V8/370 detects that a user has
issued enough LOGON or AUTOLOG commands with an invalid password to
reach or exceed an installation defined threshold value.

• Type 05 records are written when V8/370 detects that a user has
successfully issued a LINK command to a protected minidisk not owned
by that user.

• Type 06 records are written when V8/370 detects that a user has
issued enough LINK commands with an invalid password to reach or
exceed an installation defined threshold value.

128 IBM VM/370 System Programmer's Guide

These records have the following formats:

!I~ Q!!

£.Qlumn
1- 8
9-16

17-28
29-32
33-40
41-48
49-51
52-53
54-55
56-78
79-80

II~ Q~

column
-1- 8-

9-16
17-28
29-32
33-40
41-48
49-51
52-78
79-80

II~ Q&

column -,=a
9-16

17-28
29-32
33-40
41-48
49-51
52-53
54-55
56-78
79-80

contents
USERID-specified on the command
Reserved for IBM use
Date and time of accounting (mmddyyhhmmss)
Terminal address
Invalid password
USERID that issued the AUTOLOG command
Reserved for IBM use
Current invalid password count
Accounting record limit (JPSLOGAR)
Reserved for IBM use
Accounting card identification code (04)

contents
usiiro-that issued the command
Account number
Date and time of accounting (mmddyyhhmmss)
Terminal address
Reserved for IBM use
USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued
Reserved for IBM use
Accounting card identification code (05)

£.Q1!!~1!!§
USERID that issued command
Account number
Date and time of accounting (mmddyyhhmmss)
Terminal address
Invalid password
USERID of user that owns the minidisk
Minidisk address for which the LINK command was issued
Invalid password count
Invalid password limit (JPSLNKAR)
Reserved for IBM use
Accounting card identification code (06)

Accounting Records Created by the User

A virtual machine user can initiate the punching of an accounting card
that contains up to 70 bytes of information of his own choosing. To do
this, he issues a DIAGNOSE code X'4C' instruction with the following
operands:

• The address of a data area in virtual storage containing the
information, in the actual format, that he wishes to have punched
into columns 9 through 78 of the card.

• A hexadecimal func-tien e-od-e of X·I 10'

• The length of the data area in bytes

Part 2. Control Program (CP) 129

The information on the accounting card is as follows:

Column -,=s Contents
Userid--
User formatted data 9-78

79-80 Accounting card identification code (CO)

Fer infor.ation On uSing DIAGNOSE code X'4C'
Instruction in a Virtual Machine" in this section.

Operational Notes

see """, ,.. ",." "JJ.l.AUllV;;JJj

If a punch is started for two classes with NOSEP specified, accounting
cards are not uniquely separated from data decks. If started with NOSEP
specified, the operator is prompted when a user has a deck to be
punched. The operator can thus remove any accounting cards before
starting the punch. After data is through punching, accounting cards may
be punched.

If the amount of free storage (available page frames) is relatively
small and the card punch is not periodically assigned to punch out CP's
accounting cards, it is possible for cpts accounting routine to
progressively use up a significant percentage of the available page
frames and cause a page thrashing condition to occur in VM/370. This is
because the accounting routine creates and updates accounting records in
real storage, and does not free that storage space until the accounting
records are punched out on the real system card punch. This situation
is further aggravated when the accounting option for a batch virtual
machine is in effect, due to the increased number of accounting records
generated.

To eliminate this problem, it is recommended that one punch pocket be
permanently dedicated to this accounting function, or, if that is not
feasible, to punch out all the accumulated accounting records every 1 to
2 hours.

User Accounting Options

You may insert your own accounting procedures in the accounting
routines. See the "CP Conventions" section for information on CP coding
conventions and loadlist requirements. Operator responsibilities in
such cases should be defined by the installation making the additions.
When designing such accounting procedures, you should understand that:

1. The accounting routines are designed to te expanded. The entry
point provided in the accounting module for installation use is
called DMKACON. If you want to perform additional accounting
functions, you should modify the following copy files:

ACCTON (account on) -- for action at logon time. This is provided
as a null file. It can be expanded to provide additional functions
at logon time. The ACCTON routine can request the system to force
the user off by returning a nonzero value in SAVER2. However, if
the operator is automatically logged on during system
initialization, the nonzero return code has no effect.

130 IBM VM/370 System Programmer's Guide

Note: The ACCTON COpy file distributed with Ve/370 contains the
basIc logic required to enhance system security based on the 3277
Operator Identification Card Rsadsr f€ature. Additional checking
may be added to examine or validate the data read from the
identification card.

ACCTOFF (account off) for action at logo!! time. Th1S section
contains the code that fills in the account card fields. It does
not reset any internal data. This file exists in both DMKICO and
DMKCKP (checkpoint). If the ICCTOFF copy file is changed, both
modules should be reassembled.

2. CP has no provision for writing the accounting records to disk.

3. In addition to CP accounting, your installation can use the
accounting routines to supply virtual machine operating systea
accounting records. This provides a means of job accounting and
operating system resource usage accounting.

4. If no punch is generated in the VM/370 system, accounting records
are not queued for punching. The ICCTON and lCCTOFF copy files are
still called, however.

Part 2. Control program (CP) 131

Generating Saved Systems

By taking advantage of the SAVESYS command, system resources are not
committed to perform an IPL each time a system is loaded. Instead, the
saved system is located and page tables are initialized according to its
system name table entry. The saved system is not automatically loaded
at IPL time; however, its pages are brought into storage on demand as
the virtual machine operating system executes.

In addition to saving time by avoiding an IPL, a saved system can
share segments of reenterable code, thus making more efficient use of
real storage. This technique is especially valuable when using CMS.
However, a shared segment cannot be initialized in the virtual = real
machine, via an IPL.

To generate a saved system:

I • Assemble the NAMESYS macro instruction in module DMKSNT.
I • Load a new control program nucleus.
I • Load the system to be saved and then issue the SAVESYS command.

When allocating DASD space for named systems, provide an extra page
for information purposes; do not overlay this area with subsequent named
systems.

The NAMESYS Macro for Saved Systems

The NAMESYS macro is assembled by the installation system programmer and
is used to describe the location of the saved system. Shared segments
may be specified, but they must consist of reenterable code.

When making additions, changes, or deletions to the system name
table, the DMKSNT module must be reassembled. The GENERATE EXEC
procedure has the facility to reassemble only the DMKSNT module. See
the description of the GENERATE EXEC procedure in the !~L11Q: Elgg~!~g
~1!g .§I2!~ Q.§1!.§gtig1! ~uide.

A DMKSNT ASSEMBLE module supplied with the system contains a dummy
NAME TABLE. Either edit or update this module to include the NAMESYS
macros describing your installation's named systems. Note that this
module may contain a PUNCH SPB card, which is used by the loader to
force this module to a 4K boundary when the CP system is built (a 12-2-9
multipunch must be specified in column 1 of an SPB).

The format of the NAMESYS macro is:

r
I label
I
I
I
I
I
I

NAMESYS

n'U ,I "')..,. 1'\
,;..,1./ ...JII V

SYSSIZE=nnnnnK,SYSNAME=name,VSYSRES=ccccCC,
VSYSADR={cuu },SYSVOL=cccccc,SYSCYL=nnn,
SYSSTRT=(cc,p) ,SYSPGCT=pppp,
SYSPGNM=(nn,nn,nn-nn, •••) ,
SYSHRSG=(s,s, •••),
PROTECT = {QJ! }

OFF

-- -- ,...,. -......,. ~ -- ..•. -, ~ .. -
J:,L V'j,;.r.:tii.I.,;.eJ.. .;:,

~.--! -..
~ U~h\'l,t!'

,
I
I
I
I
I
I
I

April 1, 1981

label is any desired user label.

SYSSIZE=nnnnnK
is the m~n~mum amount of storage you must have available in
order to load the saved system. K must be specified.

SYSNAME=name
is the name (up to eight alphameric characters) given to the
system to be used for identification by the SAVESYS command.

The name selected must never be one that could be interpreted
as a hexadecimal device address (for example~ "A" or "E").

VSYSRES=cccccc
is the real volume serial number of the DASD volume containing
the virtual disk that is the system residence volume for the
system to be saved.

VSYSADR=cuu
is the virtual address of the virtual disk that is the system
residence volume for the system to be saved.

SYSVOL=cccccc

SYSCYL=nnn

is the volume serial number (up to six alphameric characters)
of the DASD volume designated to receive the saved system.
This must be a CP-owned volume.

is the real starting cylinder of the virtual disk (specified
by VSYSRES and VSYSADR) that is the system residence volume
for the system to be saved.

SYSSTRT= (cc ,p)
designates the starting cylinder (cc) and page address (~ on
SYSVOL. at which this named system is to be saved. During the
SAVESYS and 1PL processing, this is used to generate the
"cylinder page and device" address for the DASD operations.
These numbers are specified in decimale

The number of pages written to this area is the total number
specified via the SYSPGNM operand, plus one information page.

SYSPGCT=pppp
is the total number of paqes
(that is, the total number
SYSPGNM operand). This is
diqits.

(pppp) you specify to be saved
of pages you indicate via the
a decimal number, up to four

The STSPGCT operand is not required when assembling the
NAMESYS macro us~ng VM/370 Release 3 MACLIBs. The macro
itself will calculate the number of pages to be saved.

SYSPGNM=(nn,nn,nn-nn, •••)
are the numbers of the pages to be saved. Pages may be
specified singly or in groups. For example: if pages 0, 4, and
10 throuqh 13 are to be saved, use the format:
SYSPGNM=(0,4,10-13).

Part 2. Control Program (CP) 133

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

SYSHRSG=(s,s, •••)
are the segment numbers designated as shared. The pages in
these segments are set up at load time to be used by any user
that uses this name. All segments to be shared must be
reenterable.

PR OTECT = {§Jp}

specifies whether CP is to protect shared segments. The
default is ON. To turn off segment protection, specify OFF.

For example, a DMKSNT module to create a named C"S system could be
coded as follows:

DMKSNTBL CSECT
FSTNAME NAMESYS

END

SYSS1ZE=384K,SYSNAME=C"S,VSYSRES=CPDSK1,
VSYSADR=190,SYSCYL=100,SYSVOL=CPDSK2,
SYSSTRT=(400,1),SYSPGCT=35,
SYSPGNM=(O-34) ,SYSHRSG=(l)

Using the SAVESYS Command

x
X
X

The system to be saved must first be loaded by device address in the
traditional manner. Before its page-format image can be saved, the
system to be saved must have its execution stopped. The point at which
the operatinq system is stopped should be determined by the installation
system programmer. The SAVESYS command must then be issued; its format
is:

r----
, SAVESYS systemname
L--

systemname corresponds to the identification of the saved system. This
is identical to the SYSNAME entry in the NA"ESYS macro.

The user must have a CP privilege class of E to issue the SAVESYS
command. Next, he should 1Pt the saved system. The virtual machine
will attempt to resume execution and immediately encounter a paqe fault.
The required page is brought into storage and execution continues. As
execution continues, subsequent page faults will bring the required
paqes into storage.

A system should be saved as soon after 1PL as possible. All pages to
be saved must be resident at the time the SAVESYS command is issued.
Also, before issuing the SAVESYS command, be sure that the system is
stopped.

CMS was designed to run under CP and it was.also designed so that it
could easily be saved by CP. See "Savinq the CMS System" in "Part 3.
Conversational Monitor System (CMS)" of this publication.

]Qig: The system being saved should not exceed X'79COOO' bytes.
Unpredictable results may occur if you save a larger system.

134 IB~ VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Shared Segments

If one -or more segments of a saved system are designated as being
"shared," a sing Ie copy of these segments in real storage can be used by
any virtual machine that loads the saved system by name. (In attached
processor mode, there are two sets of pages, page tables, and swap
tables maintained for each shared segment.) A shared segment must be
reenterable and the segment number must be included in the SYSHRSG
operand of the NAMESYS macro for the saved system.

In the previous example of a DMKSNT module to create a named CMS
system, the NAMESYS macro labeled FSTNAME contains the operand:

SYSHRSG= (1)

This indicates that segment 1 of CMS is to be shared. When eMS is
saved, via the SAVESYS command, the pages in segment 1 are set up so
that any user loading CMS by name will share the same set of these pages
in real storage. This results in a saving of both real and external
page storage. Also, the more virtual machines using the shared segment,
the more likely it is that these pages will be frequently referenced
and, thereby, kept in real storage. As a result, the number of page
faults and the corresponding time and resources expended in page
swappinq will be reduced.

SPECIAL CONSIDERATIONS FOR SHARED SEGMENTS

When a saved system containing one or more shared segments is again
saved, a problem can occur if the previous system has been loaded by
name and is still in use. If users of the "old" 'system continue to
reference pages that have already been brought into paging storage, no
problems will occur. However, if after the new system has been saved,
users of the old system reference pages that had not previously been
referenced, they receive the ~ version of the referenced page.

Any users who IPt the newly saved system share only the new copy of
the shared segment.

Also, the entire segment is saved by the SAVESYS command,
that portion occupied by the program (for example, eMS),
unwanted data may also be contained in the segment.

not just
so that

The use of shared segments is not allowed in a virtual=real machine.

The maximum number of shared segments that may be defined is 78.

Discontiguous Saved Segments

with discontiguous saved segment support, you can attach and detach
segments of storage to and from your virtual machine. These segments
contain reenterable code that can be shared by many users. Thus,
programs that are required sometimes: but not all the time, can be
shared and only loaded when they are needed.

Part 2. Control Proqram (CP) 135

April 1, 1981

Segments that are to be shared in this manner must be loaded at an
address bey~nd the normal end of your virtual machine and then must be
saved. The procedure for loading and saving discontiguous segments is
similar to the procedure that already exists for loading and saving
systems. Also, discontiguous saved segments can be attached to your
virtual machine in nonshared mode for testing and debugging. In
summary, a discontiquous saved segment is a segment that:

• Has a name associated with it
• Contains only reenterable code
• Was previously loaded and saved
• Can be shared by multiple virtual machines
• Can be loaded bV a particular virtual machine in nonshared mode for

testing and debugging

Note: A discontiguous saved segment must not be attached by a virtual
machine executing in the virtual=real area.

An example of a discontiguous saved segment is the segment of CMS
that supports DOS program development and testing under eKS. This
seqment is reenterable and is named CKSOOS. The VK/370 starter system
includes an EXEC procedure that helps you load and then save this
segment. CMS contains all the necessary linkage to load the CKSOOS
segment when it is needed.

USER REQUIREMENTS

In order to use discontiguous saved segments, you must:

• Allocate permanent space on a CP-owned volume to contain the saved
segment.

• Assign a name to the segment and specify where it is to be stored on
disk by defining an entry in the system name table (DKKSNTBL) with
the NAMESYS macro.

• Load and save the segment. The V"/370 starter system has EXEC
procedures to help you load and save the discontiguous saved segments
for CMS (one EXEC procedure to load and save CMS/DOS, one for
CMS/VSAM and AMSERV, and one for the CMS Editor, EXEC processor, and
OS simulation routines).

• Be sure that the proper linkage for attaching and detaching
disc~ntiguous saved segments is in the operating system that needs
the segment. CMS contains the linkage necessary to attach and detach
the discontiguous saved segments it supports.

Usually, the direct access storage space is allocated and the system
name table entries are created during system generation. You allocate
OASD space as permanent (PERM) by executing the Format/Allocate program.
This program is executed during system generation, but it is a
standalone proqram that can be executed at any time. During system
generation, you designate the CP-owned volumes by coding the SYSOWN
macro ~f the DMKSYS file. The system name table (OMKSNT) is also
created durinq system generation. If, at some time after system
generation, you wish to change the DMKSYS or OKKSNT files, you can do a
partial system generation and reassemble those files using the GENERATE
EXEC pr~cedure. GENERATE is described in the !~L~70 fl~nning gnd ~l§!~!
~gng£~~iQll ~~igg· You can also load and save a discontiguous saved
segment any time after system generation.

136 IBM VM/370 System Proqrammer's Guide

THE NAMESYS MACRO FOR DISCONTIGUOUS SAVED SEGMENTS

Use the NAMESYS macro to define the name and location of discontiguous
saved segments. The NAMESYS macro is the same one that is used to
define the name and location of saved systems except that two of the
operands are ignored and another has a mandatory set valuee
VSYSADR=IGNORE should be coded when the NAMESYS macro is describing a
discontiguous saved system. For discontiguous saved segments, the
format of the NAMESYS macro is:

label

label

NAMESYS SYSSIZE=nnnnnK,SYSNAME=name,VSYSRES=cccccc,
VSYSADR={IGNORE},SYSVOL=cccccc,SYSCYL=nnn,
SYSSTRT=(cc,p) ,SYSPGCT=pppp,
SYSPGNM=(nn,nn,nn-nn, ••• } ,
SYSHRSG=(5,5,~~.),

PROTECT = {Q! }
OFF

is any desired user label.

SYSSIZE=nnnnnK
is the minimum amount of storage you must have available in
order to load the saved system. K must be specified.
Although you must code this operand, it is not used for
discontiguous saved segments.

SYSNAME=name
is the name (up to eight alphameric characters) given to the
discontiguous segment to be used for identification by the
SAVESYS command and FINDSYS/LOADSYS DIAGNOSE instruction.

The name selected must never be one that could be interpreted
as a hexadecimal device address (for example, "A" or "E").

VSYSRES=cccccc
is the real volume serial number of the DASD volume containing
the virtual disk that is the system residence volume for the
system to be saved. This operand is ignored if
VSYSADR=IGNORE.

VSYSADR=IGNORE
indicates that the NAMESYS macro is describing a system or
segment that does not require a virtual system residence
vo:ume. Code VSYSAta=IGNORE .heL you are ~efining ~
discontiguous saved segment.

SYSVOL=cccccc
is the volume serial number (up to six alphameric characters)
of the DASD volume designated to receive the saved system.
This must be a CP-owned volume.

Part 2. Centrol Program (CP) 137

SYSCYL=nnn
is the real starting cylinder of the virtual disk (specified
by VSYSRES and VSYSADR) that is the system residence volume
for the system to be saved. This operand is ignored if
VSYSADR=IGNORE.

SYSSTRT= (cc, p)
designates the starting cylinder (cc) and paqe address (p) on
SYSVOL at which this named system is to be saved. During- the
processing of the SAVE and LOAD commands, this is used to
generate the "cylinder page and device" address for the DASD
operations. These numbers are specified in decimal.

The number of pages written to this area is the total number
specified via the SYSPGNM operand, plus one information page.

SYSPGCT=pppp
is the total number of pages (pppp) you specify to be saved
(that is, the total number of pages you indicate via the

SYSPGNM operand). This is a decimal number, up to four
digits. The number of pages specified does not have to be a
multiple of the number of pages in a segment, but can be some
portion of a segment(s).

SYSPGNM=(nn,nn,nn-nn, •••)
are the numbers of the pages to be saved. Pages may be
specified singly or in groups. For example: if pages 0, 4, and
10 through 13 are to be saved, use the format:
SYSPGNM:(0,4,10-13).

SYSHRSG=(S,S, •••)

PROTECT

are the segment numbers designated as shared. The pages in
these segments are set up at load time to be used by any user
loading by this name. All segments to be shared must be
reenterable.

= {§~F}
specifies whether CP
default value is ON.
OFF.

is
To

to protect shared segments. The
turn off segment protection, specify

!Qte: For each shared segment specified, 64K of virtual storage is
reserved. The number of pages actually saved (via the SAVESYS command)
can be less than a segment. However, only one saved system name can be
associated with each 64K request.

LOADING AND SAVING DISCONTIGUOUS SHARED SEGMENTS

Before a discontiguous saved segment can be attached and detached by
name, it must be loaded and saved. The discontiguous saved segment must
be loaded at an address that is beyond the highest address of any
virtual machine to which it will be attached. It is the system
programmer's responsibility to make sure the name segment is loaded at
an address that does not overlay the defined virtual machine or any
other named segment that may be attached at the same time.

138 IBM VM/370 System progr~mm~r's Guide

April 1, 1981

The load address for the discontiguous saved segment should be just
beyond the largest virtual machine that uses it. If the load address is
unnecessarily high, real storage is wasted because CP must have segment
table entries for storage that is neVer used.

For example, assume you have five CMS virtual machines in your
installation. Also assume that all five use the CMS support for DOS
program development and testing which is in a 32K segment named CHSDOS.
If each of your five CMS virtual machines has a machine size of 320K you
should load the CMSDOS segment just beyond 320K. If you load CMSDOS at
a much higher address, for example 512K, you are wasting real storage.
In this case, whenever one of your CMS virtual machines attaches the
CMSDOS segment, CP creates segment table entries for a 544K (512K + 32K)
virtual machine. Although the virtual machine cannot refer to storage
addresses beyond 320K or below 512K, CP still must have segment table
entries in nonpageable real storage for those virtual addresses.

Once the named segment is loaded at the correct address, you can save
it by issuing the CP SAVESYS command. To be sure that the CMS
discontiguous saved segment has segment protection, set the storage key
for the seqment, via the CMS SETKEY command: to something other than
X'F' before you save it.

The format of the eMS SETKEY command is:

r --,
SETKEY I key systemname [startadr] I

key

I

is the storage protection key, specified in decimal. The
valid keys are 0-15.

systemname is the name of the saved system or segment for which the
storage protection is being assigned.

startadr is the starting address (in hexadecimal) at which the keys
are to be assigned. The address must be within the address
range defined for the saved system or discontiguous saved
segments. Using the startadr operand, you can issue the
SETKEY command several times and, thus, assign different
keys to various portions of the saved system or segment~

HOW THE INTERFACE WORKS

The linkage to attach and detach discontiguous saved segments is
supported via several CP DIAGNOSE codes.

Since the virtual machine is responsible for insuring that the
discontiguous saved seqment it is attaching does not overlay other
programming code, it must know how much virtual storage it has. By
issu~nq -DI~GNOSEcode X'EO' during its initialization process, the
'virtual machine can determine its virtual machine storage size.

When the virtual machine needs to attach a discontiguous saved
segment, it must first ensure that the segment is available and that it
does not overlay existinq storage. By issuing the DIAGNOSE code X'64'

Part 2. Control Proqram (CP) 139

April 1, 1981

with a subcode of X'OC', it can verify that a loadable copy of the
discontiguous shared segment exists on a CP-owned volume. This DIAGNOSE
code is called the FINDSYS function. FINDSYS returns the starting
address of the segment. The virtual machine should compare the starting
address of the segment to its own ending address; if the segment does
not oveclay existing storage, it can be loaded.

A LOADSYS function is provided by the CP DIAGNOSE code X'64' and
subcodes X'OO' and X'04'. The section "Diagnose Instruction in a
Virtual Machine" contains a complete description of the Diagnose codes
used in the discontiguous saved segment interface. If you want CMS to
load the named segment in nonshared mode, you may do -so by issuing the
CMS command:

SET NONSHARE segment name

before eMS attaches the named segment. If the segment is loaded in
nonshared mode you can test and debug it usinq the CP TRACE, STORE, and
ADSTOP commands and the CMS DEBUG subcommands BREAK and STORE.

When eMS loads a named segment in shared mode, it issues the CP
DIAGNOSE code X'64' with subcode X'OO'. CMS also issues the same code
with subcode X'04' to load the named segment in nonshared mode.

When a discontiguous saved segment is loaded (or attached) to a
virtual machine, CP expands its segment table entries for that virtual
machine to reflect the highest address of the virtual machine.

When a named segment is successfully loaded, all of its storage is
addressable by the virtual machine. For example, when CMS attaches a
named segment, it can execute the routines contained in that segment.
All of the commands that are executable for CMS are also executable for
the attached named segment, with the following exceptions:

• The response for the CP QUERY VIRTUAL STORAGE command does not
reflect the storage occupied by the named segment.

• If you execute a command that alters storage (such as STORE), you are
given a nonshared copy of the named segment.

When the named segment is no longer needed, it can be detached. The
CP DIAGNOSE code X'64' subcode X'08', is called the PURGESYS function;
it detaches named segments. When a named segment is detached, its
storage is no longer addressable by the virtual machine and CP updates
its segment tables. The entries for segments beyond the original
virtual machine size are deleted and the associated real storage is
released.

Shared Segment Protection

Installations may optionally protect or not protect shared segments.
When segments are protected, CP ensures that a virtual machine does not
access a shared segment that another virtual machine has modified. When
segments are not protected, CP does not provide this capability.

If a victual machine modifies an unprotected shared segment, other
virtual machines sharing the segment may be affected by the
modification. Therefore, before running without shared segment
pcotection, ensure that none of the virtual machines modify shared
segments.

140 IBM VM/370 System Programmer's Guida

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Shared segments modified by the CP commands TRACE, ADSTOP, or STORE
are handled differently by CP. In this case, CP gives exclusive use of
the modified segment to the virtual machine that modified it. CP
provides an unmodified copy of the segment for other virtual machines.

The VM/370 default is to protect shared segments. To turn off
segment protection, use the NAMESYS macro instruction. This macro
instruction can also turn on segment protection. Instructions for using
the NAMESYS macro instruction are in the section "The NAMESYS Macro for
Saved System."

When segment protection is on, CP protects segments in the following
way. Before dispatching a virtual machine, CP determines if the current
virtual machine altered any pages within the shared segments. If a page
was altered, CP sends a message to the current virtual machine to
identify the altered page, makes the altered page inaccessible, and
stops the current virtual machine by placing it into console fUnction
mode. CP then dispatches another virtual machine. To resume execution
on the virtual machine that CP stopped, the operator of that machine
must issue the class G BEGIN command.

To make an altered page inaccessible, CP frees the storage the page
occupied. Later, when a virtual machine references the page, CP brings
a fresh copy of the page into storage.

Shared segment protection supports:

• The virtual machine assist feature and Extended Control-Program
support for named shared systems.

• The execution of all options of the CP STORE command in shared
segments, including branch and instruction tracing.

• The execution of the CP STORE and ADSTOP commands in shared segments.

• The execution of the STORE and BREAK subcommands of the eMS DEBUG
command.

CP's handling of storage keys includes the following:

• No distinction is made between shared and non$hared systems for
storage key fetch instruction simulation, DISPLAY command execution,
and page key handling.

• A mask in control register 6 prevents the ISK (insert storage key)
and SSK (set storage key) instructions from being handled by the VMA
feature. This is necessary because VMA updates the key on SSK
instructions (including the SWPTABLE fields), but the new value is
not detected by the hardware change bft monitoring.

CP does not permit a user of shared systems to set storage keys via
the Set Storage Key (SSK) instruction. Thus, one user cannot prevent
other users from accessing shared storage.

I/O activity into shared segments is monitored by
translators. A channel protection error occurs if a
attempts to read data into a shared segment.

channel program
virtual machine

Part 2. Control Program (CP) 1ij1

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

The STCP command may be used to alter shared segments~ When the STep
command is used to alter shared segments, the change is reflected to all
users of the shared segments; the altered shared system is not assigned
to the user issuing the STCP command. Whenever the STCP command is
issued for a shared segment, storage is updated and the page that
changed is written to the paging volume, thus reflecting the change to
all users of the shared segment.

VIRTUAL MACHINE OPERATION

If you issue a STORE, ADSTOP, or TRACE command that alters a storage
location within a shared segment, you receive the following message:

DMKVMA181E SHARED COpy SYSTEM name REPLACED WITH NON-SHARED COpy

Execution continues in your virtual machine; however, you are now
executing your own copy of the shared system in nonshared mode. The
nonshared system you are executing includes the change you just made;
all other users of the shared system continue to execute in shared mode
and are not affected by your change.

If you alter a shared page by any means other than the TRACE, ADSTOP,
or STORE command, you receive the following message:

DMKVMA456W CP ENTERED; name SHARED PAGE hexloc ALTERED

You must enter the BEGIN command to continue execution. The altered
page will be returned to free storage by CP, and you may continue with
an unaltered system in shared mode.

If you issue an STCP command that alters the storage of a shared
segment, storage is altered and the page altered is written to the
paging volume. All users, including you, remain in shared mode and the
change becomes part of the shared system. If operations overlap and you
issue a STCP command for a shared page that is about to be assigned to a
particular user as nonshared (because he just altered it), you receive
the following message:

DMKCDS161E SHARED PAGE hexloc ALTERED BY userid

You should check that you issued the STCP command correctly and then
wait until the fresh copy of the saved system is loaded before reissuing
the STCP command.

In attached processor systems it is invalid to issue the STep command
to a shared segment. The STORE function is not performed, and the user
rece~ves the following message:

DMKCDS004E INVALID HEXLOC - xxxxxx

142 IBM VM/370 System programmer's Guide

Apr il 1, 1981

The Virtual Machine Communication Facility

The Virtual Machine communication Facility (VMCF) is part of the CP
component of VM/370. VKCF provides virtual machines with the ability to
send data to and receive data from any other virtual machine.

VMCF is made up of five data transfer subfunctions, seven control
subfunctions, a special external interrupt (code X'4001') to
asynchronously alert virtual machines to pending messages, and an
external interrupt message header to pass control information (and data,
at times) to another user.

VMCF is implemented by means of subfunctions invoked using the
DIAGNOSE instruction with a code of X'68' and a special 40-byte
parameter list called VMCPARM. A VMCF subfunction is indicated by a
particular subfunction code in the VMCPFUNC field in the parameter list.
BQte: Before you can use any other VMCF subfunction, you must use the
AUTHORIZE subfunction for communications. Before you can communicate
with another user, that user must also have used the AUTHORIZE
su bfu nct ion.

A special external interrupt (code X'4001') is used by module DMKVKC
to notify one virtual machine of a pending transfer of data. This
interrupt is also used to synchronize sending and receiving of data.

Along with this interrupt, the virtual machine receives a message
header that is logged into a preassigned virtual storage area. This
message header is used to define the type of request and to provide data
transfer information, such as length of data. The message header is
also used to notify the originator of a transaction of the success or
failure of the transaction. In this case, the message header includes
such information as residual counts and data transfer return codes.

Figure 14 lists the VMCF subfunction$ and qives a brief description
of each. The subfunctions are described in detail in the section
"Descriptions of VMCF Subfunctions."

Messages and data are directed to other virtual machines logically
via the userid. Data is transferred in up to 2048-byte blocks from the
sending virtual machine's storage to the receiving virtual machine's
storage. The amount of data that can be moved in a single transfer is
limited only by the sizes of virtual machine storage of the respective
virtual machines. Use of real storage is minimal. Only one real storage
paqe need be locked during the data transfer.

The special message facility uses VKCF to send messages from one
virtual machine storage area to another virtual machine storage area.
For a description of the special message facility and how it uses VMCF,
see "Special Message Facility" in this section.

Part 2. Control Proqram (CP) 143

April 1, 1981

r- ------~-----------~---~
I Function I Codel comments I
~ ----,~------~------------- I

AUTHORIZE I Control Initializes VMCF for a given virtual machine. I

I
I

UNAUTHORIZE

SEND

SEND/RECV

SENDX

RECEIVE

CANCEL

REPLY

QUIESCE

RESUME

, IDENTIFY
I
I
, REJECT
I ,
..

, Once AUTHORIZE is executed, the virtual I
, machine can execute other VMCF subfunctions I
, and receive messages or requests from other I
I
I
,Control
I
, Data

Data

Data

Data

Control

Data

Control

Control

Control

Control

users.
I

Terminates VMCF activity. I
I

Directs a message or block of data to another
virtual machine.

Directs a message or block of data to another
virtual machine, and requests notification
of a reply.

Directs data to another virtual machine on a
faster but more restrictive protocol than
the SEND subfunction.

fAllows you to accept selective messages or
data sent via a SEND or SEND/RECV
subfunction.

Cancels a message or data transfer directed
to another user but not yet accepted by that
user.

Allows you to direct data back to the
originator of a SEND/RECV subfunction,
simUlating full duplex communication.

Temporarily rejects further SEND, SENDX,
SEND/RECV, or IDENTIFY requests from other
users.

Resets the status set by the QUIESCE
subfunction and allows execution of
subsequent requests from other users.

Notifies another user that your virtual
machine is available for VMCF communication.

Allows you to reject specific SEND or
SEND/RECV requests pending for your virtual
machine.

flThe word "Data" in this column indicates a data transfer subfunction
, whereas the word "Control" indicates a VMCF control subfunction.
L-

Figure 14. Virtual Machine Communication Facility (VMCF) Subfunctions

144 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Using the Virtual Machine Communication Facility

The following discussion presents ideas and suggestions for using the
virtual Machine communication Facility (VKCF).

VMCF APPLICATIONS

The VM/370 system with VMCF provides the user with the potential to
apply new and different techniques to current applications.

The VMeF functions may be used to multitask virtual machines. Each
virtual machine can become a subtask (parallel or otherwise) of another
virtual machine. A virtual machine task can be a simple program or a
larqe processor. The VMCF functions provide the WAIT/POST,
serialization and communication facilities to control such an
environment. The existinq VM/370 functions provide efficient
scheduling, dispatching and basic resource controls. The advantage of
such an environment is that a user is less restricted by operating
system (software) limitations and gains the flexibility of machine
languages and hardware.

VMCF provides a clear and concise method for sharing and serializing
resources between virtual machines. The resources can range anywhere
from multi-write minidisks to entire processors. The control functions
for resource sharing (resource management, serialization, and the like)
can be contained in a virtual machine.

It is conceivable that functions could be added to VK/370 without
altering the control program (CP). A special privilege class virtual
machine could be used to provide additional functions to non-privilege
class users using the VMCF interface. Similarly, CMS capabilities could
be expanded (or at least appear to be expanded) by linking CMS with
other virtual machines.

The program testing capabilities offered by VMCF can range from device
simulation to teleprocessing network simulation. In particular, VMCF
can be used to provide external interactions from one virtual machine to
another. A simulated teleprocessing network could be constructed with
virtual machine. Each virtual machine would effectively become a node
within the network. The network,structure could range from a simple

Part 2. Control Program (CP) 145

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

tree type structure to a complicated multi-path mesh type structure.
The program logic within each node virtual machine would be the same
logic as required for a real teleprocessing node. In theory, a
reasonably complicated structure could be simulated without requiring
the physical hardware.

The significant testing capability provided by VMCF is the ability to
link the test system with test/simulation routines in another virtual
machine.

Although the VMCF interface is intended for communication from one
virtual machine to another it can also be used to communicate within a
single virtual machine (wrap connection) • The VKCF interface could
conceivably be used to link one or more operating system tasks that are
logically separated by the software. This would allow task to task
communication rather than virtual machine to virtual machine
communicat ion.

The VMCF interface could possibly be used to simulate a virtual
multiprocessing environment.

SECURITY AND DATA INTEGRITY

The VMCF interface provides the following security aids:

• The user doubleword in the external interrupt message header can be
used to contain a security code to prevent unwarranted users from
accessing a shared data base or other confidential information.

• The AUTHORIZE SPECIFIC option allows a user to restrict messages sent
to his virtual machine. This option is useful when slave machines
are to communicate only with a host machine. The slave machines can
AUTHORIZE SPECIFIC with the host and prevent unwarranted users from
clogging their message queues.

• The design of VMCF prevents malicious users from intercepting
transactions in process for other users. (for example, user D can not
execute a RECEIVE, REPLY, REJECT or CANCEL to a message sent to user
B from user A).

The VMCF support module is designed such that a user is always informed
of conditions that could threaten the integrity of his own data. The
user is notified either with a DIAGNOSE X'006S' return code or data
transfer error code. There is no internal buffering of user data within
the control program (CP), a message is always retained by either the
SOURCE or SINK virtual machine. If a SEND type request fails, the
SOURCE still has a copy of the original message. If a SINK REPLY fails,
the SINK user still has a copy of the REPLY data. The Diagnose return
code or data transfer error code can indicate to a user that a
transaction failed. It is up to the user to preserve the associated
transaction data. The following are considerations which should be
noted by a VKCF user:

146 IBM VM/370 System Programmer's Guide

1 •

Page of GC20-1807-7 As Updated April 1, 19a1 by TNL GN25-0829

The buffer used for SOURCE data in a SEND,
request should not be freed or reused until
external interrupt is received by the SOURCE.

SENDX or SEND/RECV
the final response

2. The buffer used for SINK data in a REPLY function can be reused by
the SINK atLer the DIAGNOSE instruction (REPLY; has successfully
completed.

3. The user parameter list (VMCPARM) may be reused upon completion of
the Diagnose instruction. At that point the VMCPARM data has been
copied to a VMCF control block (VMCBLOK) by the control program. A
user should, however, maintain queues of VKCPARM data in order to
associate an external interrupt message header (VMCMHDR) with a
particular request.

4. A user should always interrogate the DIAGNOSE return code or data
transfer error code for possible error conditions. It is the
user's responsibility to determine the types and extent of error
recovery_ The DIAGNOSE return code 19 for a SOURCE SEND, SEND/RECV
or SENDX request indicates that an error was associated with the
SINK user and for a SINK RECEIVE or REPLY request indicates that an
error was associated with the SOURCE user. The user who receives
this return code does not have to invoke error recovery for himself
but only be aware that the transaction did not complete
successfully because of an error associated with the other user.

PERFORMANCE CONSIDERATIONS

There are several factors that can effect the performance of VMCF:

• The VMCF support module, DMKVMC, is a pageable CP module. If a user
has significant paging activity, it may be advantageous to either
lock the module in real storage (CP LOCK command) or alter the CP
LOADLIST to make DMKVMC resident.

• It is to a user's benefit to have the user parameter list, VMCPARM,
in the same 4K page as the DIAGNOSE X'0068' instruction. This may
eliminate a paging operation.

e User support modules using the VMCF interface should be written as
reentrant modules and be contained within a CP shared segment
whenever possible. This helps reduce CP paging overhead.

• The VMCF external interrupt masking is controlled by PSi bit 7 and
CRO bit 31. It is to a user's advantage to always have CRO bit 31
set to 1 (while VMCF is in use) and control the interrupts with PSi
bit 7 only. This reduces the number of LCTL instructions.

• For applications that involve serial message processing, the SENDX
function is the most efficient. The SENDX function eliminates the
need for the SINK to do a RECEIVE operation.

Note: Overall system VM/370 performance is not affected when VMCF is not
b~Ing used by an installation.

Part 2. Control Program (CP) 147

April 1, 1981

GENERAL CONSIDERATIONS

The SENDX function is a fast way to transfer messages or data and can be
used in place of the CP MSG command where the message length exceeds the
capacity of the terminal input line. Its use is somewhat restricted in
that the maximum data length must be agreed upon by all VMCF users and
then remains fixed unless reneqotiated.

The SEND and SEND/RECV functions are better suited to transfer high
volume data base type information. This type of data transfer requires
the flexibility of a wide range of data lengths along with rigorous
management and control techniques.

The QUIESCE function allows a virtual machine to discontinue
receiving messages. The virtual machine can process those messages
already stacked and then use the RESUME function to continue reception.
The QUIESCE function also allows a virtual machine to process all queued
messages prior to terminating VMCF operation.

The user parameter list, VMCPARM, is designed such that it can be
used foc any subfunction by simply varying the contents of its fields.

Users should keep copies of VMCPARMs for all requests made via the
SEND, SEND/RECV, or SENDX functions. When a final response interrupt is
received and the interrupt message header indicates no data transfer
errors, the corresponding VMCPARM copy can be released. If a data
tcansfec error is indicated, the copy can be used to reinitiate the
tr ansact ion.

VMCF Protocol

VMCF pcovides four types of protocol: SEND, SEND/RECV, SENDX, and
IDENTIFY. The protocol used to communicate between two virtual machines
depends on the application of VMCF and conventions established by
virtual machine users authorized to use VMCF. A virtual machine must
in voke the AUTHORIZE subfunct ion before it is allowed to use any of the
other subfunctions.

The types of transactions that virtual machines can be involved in
are described by a series of VMCF protocols. In these protocols the
originating virtual machine is called the "source" virtual machine. The
dest inat ion virtu al machine is called the "sink" virt ual machine.

The pcotocol for a transaction remains in effect for the duration of
the transaction.

THE SEND PROTOCOL

The SEND pcotocol defines a one-way transfer of data from source virtual
machine stocage to sink virtual machine storage. The SEND protocol uses
the SEND and RECEIVE subfunctions, as described in Figure 15. The
source victual machine first transfers data to the sink virtual machine.
This is done by executing the SEND subfunction which specifies the
userid of the sink virtual machine, a message ID, and the address and
length of the data being sent. The sink virtual machine receives an
external interrupt from CP notifying it of the data transfer request.
The sink virtual machine can then respond via the RECEIVE subfunction.
The RECEIVE request specifies the address and the length of the SINK
buffer that is to receive the data and causes the data to be transferred

148 IBM VM/370 System Programmer's Guide

from source virtual machine storage to sink virtual machine storage.
When the data transfer is complete, the source virtual machine receives

__ L ____ ' !_L _____ L &___ !_~! __ L! __ L~_L L~_ L ______ L! __

au ~A~~LllQ~ ~ll~~LLU~~ LLVW ~r, ~llU~~Q~~ll~ ~llQ~ ~llC ~LQll~Q~~~Vll 1S
complete and that the sink virtual machine has received the data.

All virtual machines authorized to use VMCF can send data using this
protocol.

The amount of data
storage size. Data
necessary) and only
transfer operation.

transferred is limited only by virtual machine
is transferred in blocks of up to 2K (when

one real page frame is locked during the data

Source
Virtual
Machine

DMKVMC

VMCF
Interface

Module

SEND-------)----------)

Sink
Virtual
Machine

External Interrupt--------)

<--------<----------RECEIVE

-----------------)Data Transfer---------------------)
I I

<--External Interrupt--I I
(Final Response) I I

I I
I I
I I

Figure 15. The SEND Protocol

Part 2. Centrol program (CP) 149

THE SEND/RECV PROTOCOL

The SEND/RECV protocol defines a transaction calling for two-way
transfer of data, as described in Figure 16. The SEND/RECV protocol
uses the SEND/RECV, RECEIVE, and REPLY subfunctions.

The source virtual machine initiates the transaction using the
SEND/RECV subfunction~ using an external interrupt, CP notifies the sink
virtual machine that there is a message waiting. The sink virtual
machine uses the RECEIVE subfunction to cause the data to be transfered
from the source virtual machine's storage to the sink virtual machine
storage. The sink virtual machine now uses the REPLY subfunction to
cause data to be transferred from its storage to the source virtual
.achine's storage. When the REPLY subfunction completes processing, CP
causes an external interrupt in the source virtual machine, notifying it
that the transaction is complete.

The SEND/RECV request requires that ·the source virtual machine
specify the address and length of the data to be transferred and the
address where data is expected from the REPLY subfunction. (Both
addresses are in source virtual machine storage.) These addresses,
along with the length of the data to be transferred, are specified via
the VMCPARM parameter list, described below.

When RECEIVE is issued by the sink virtual machine in response to the
SEND/RECV request, VMCPARM contains the address in sink virtual machine
storage where data is to be received. Finally, when the REPLY request
is issued, VMCPARM contains the address in the sink virtual machine
storage from which data is to be transferred.

£Q!TRQ~ ~!!QQ!!A~
r I

I DMKVMC I

• ~
I VMCF I
I Interface I
I Module I

Source
Virtual
Machine

L--

SEND/RECV-->---------->

-----------------)Data
I
I
I

(-----------------Data
I

(--External Interrupt-- I
(Final Response) I

I

Sink
Virtual
Machine

--External Interrupt------)

(--------(----------RECEIVE

Transfer-------------------)
I
I (------------(--------REPLY
I
Transfer-------(------------
I
I
I
I

Figure 16. The SEND/RECV Protocol

150 IBM iM/370 System Programmeris Guide

THE SENDI PROTOCOL

The SENDI protocol defines a transaction calling for an expedited
one-way transfer of data. Figure 17 shows the SENDX protocol
graphically. SENDI differs from the SEND protocol in that the sink
virtual machine need not issue the RECEIVE subfunction; data is
transferred from source virtual machine storage to sink virtual machine
storage at the same time the external interrupt from CP notifies the
sink virtual machine of the transaction. Data sent by the source
virtual machine is placed in the external interrupt buffer of the sink
virtual machine.

Virtual machines using the SENDX protocol are responsible for
specifying the userid for the sink virtual machine, a message ID, the
address and length of the data being sent, and the external interrupt
buffer address and data length for the sink virtual machine. A virtual
machine to be used as a sink virtual machine with the SENDX protoccl
aust specify this information ~ia VMCPARM when that virtual machine
issues the AUTHORIZE subfunction. The data length specified must be at
least as long as the maximum amount of data to be transferred during a
transaction; it need not be limited to the usual 40-byte external
interrupt buffer. Effective use of the SENDI protocol requires that
VMCF users agree on a maximum size for SEND X data and then issue the
AUTHORIZE subfunction with the appropriate external interrupt buffer
size.

If the sink virtual machine has not provided enough SENDX buffer area
in the external interrupt buffer, CP notifies the source virtual machine
that the transaction was not completed.

When a SENDI data transfer is complete, CP directs a response
external interrupt to the source virtual machine, notifying it that the
transaction is complete.

r
I DMKVMC
I
I VMCF
I Interface
I Module

Source
Virtual
Machine

,
I
I
I
I
I
I
I

SENDX------)----------)I
I

-----------------)Data
I
I
I
I

<--External Interrupt--I
(Final Response) t

I
I

Figure 17. The SENDX Protocol

I
I
I
I
I
I
I
I

Sink
Virtual
Machine

I
Transfer-------------------)
I
I --External Interrupt-----)
I (Buffer Contains Data)

Part 2. Control Program (CP) 151

THE IDENTIFY PROTOCOL

The IDENTIFY protocol defines a means for virtual machines to identify
themselves to other virtual machines by passing user-defined control
information via a standard VMCF message header. Figure 18 shows the
IDENTIFY protocol graphically.

When the IDENTIFY subfunction is issued, CP directs an external
interrupt to the sink virtual machine. Along with the external
interrupt, the sink virtual machine receives a standard VMCF message
header that contains user-defined information. The IDENTIFY protocol
does not cause a response external interrupt to be directed the source
virtual machine.

Source
Virtual
Machine

DMKVMC

VMCF
Interface

Module

I
I
I
I
I
I
I

I
I
I
I
I
I
I

Sink
Virtual
Machine

IDENTIFY--->---------->I I
I
I
I
I
I

I
I--External Interrupt------->
I (IDENTIFY Sequence Complete)
I
I

Figure 18. The IDENTIFY Protocol

152 IBM VM/370 System programmer's Guide

April 1, 1981

Descriptions of VMCF Subfunctions

There are two types of VMCF subfunctions: data transfer and control.

THE CONTROL SUBFUNCTIONS

The VMCF control subfunctions allow efficient management
transfer operations from your virtual machine console. The
subfunctions are: AUTHORIZE, UNAUTHORIZE, CANCEL, QUIESCE,
IDENTIFY, and REJECT.

of data
control
RESUME,

AUTHORIZE enables VMCF for a virtual machine; once AUTHORIZE has been
executed, the virtual machine can execute other VMCF subfunctions and
receive messaqes and data from other authorized VMCF virtual machines.
It is possible to specify three options with the AUTHORIZE subfunction:
SPECIFIC, PRIORITY, and VMCPSMSG.

The SPECIFIC option authorizes communication with a specific virtual
maCh~ne. Any messaqes sent to the virtual machine from other than the
specified virtual machine will be rejected. The SPECIFIC option can be
used in an application where virtual machines desire to communicate with
a master controller but not among themselves. Under the sp~cial message
facility, CP is authorized with every virtual machine that is to receive
messages sent via the SMSG command. Virtual machines that are to
receive messages must authorize themselves.

The PRIORITY option allows a virtual machine to authorize the receipt
of priority messaqes. A virtual machine is allowed to send priority
messages to another virtual machine only if the other virtual machine is
authorized to receive priority messages. A priority message is one that
will be queued ahead of nonpriority messages and therefore accepted
first.

When you execute the AUTHORIZE subfunction, you must specify the
address and length of the external interrupt buffer for your virtual
machine. The buffer must be large enough to contain a £ixed message
header (40 bytes). The message header identifies messages sent by other
virtual machines or responses to messages you might send to your own
virtual machine.

If you are going to accept SENDX-type communications, you must
specify the size of the external interrupt buffer as 40 plus the maximum
size of SENDX data that you plan to accept. This has the effect of
authorizing SENDX protocol. That is, a virtual machine may receive data
along with the external interrupt in its external interrupt buffer.
When a virtual machine sends data to another virtual machine via the
SENDX s~bfunction the data must fit in that virtual machine's externaJ
interrupt buffer or the subfunction will be rejected. Messages sent via
the special message facility require a buffer length of 169 bytes.

Any AUTHORIZE options in effect can
reexecuting the AUTHORIZE subfunction. If
execution of the AUTHORIZE subfunction,
authorization status is not changed.

be reset or changed by
there are errors during

a virtual machine's

Part 2. Control Program (CP) 153

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

UNAUTHORIZE terminates VHCF activity for a virtual machine. The
UNAUTHORIZE subfunction causes any stacked or queued messages associated
with the virtual machine to be purged. A virtual machine should execute
the QUIESCE subfunction before executing UNAUTHORIZE if messages that
are already queued are to be handled. When a virtual machine executing
UNAUTHORIZE has pending final response external interrupts, 'the
interrupts are purged. If a virtual machine has pending SEND external
interrupts from another source virtual machine, a RESPONSE interrupt is
reflected to the source indicating that the virtual machine is no longer
available.

CANCEL cancels a message or data transfer pending for but not accepted
by another VMCF virtual machine. A virtual machine can CANCEL ·messages
it oriqinates with SEND, SENDX, or SEND/RECV subfunctions. A message
cannot be canceled if any of the following conditions exist:

• The request was SENDXor IDENTIFY and the sink had already received
the SEND external interrupt.

• The request was SEND and the sink had already executed the RECEIVE or
REJECT subfunctions.

• The request was SEND/RECV and the sink had already executed the REPLY
or REJECT subfunctions.

If the original request was SEND/RECV and the sink virtual machine had
executed the RECEIVE subfunction but not the REPLY, the REPLY can be
canceled. A virtual machine is notified of this condition with a
DIAGNOSE return code. (For a description of the return codes, see
Figure 19).

QUIESCE temporarily rejects SEND, SENDX, SEND/RECV, or IDENTIFY requests
from other virtual machines. QUIESCE allows a virtual machine to
receive any stacked or queued messages but reject further SEND, SENDX,
IDENTIFY, or SEND/RECV requests from other virtual machines. QUIESCE
can be used to indicate to other virtual machines that the virtual
machine is in QUIESCE status, authorized for communication but not able
to accept messages at this time (e.g., entering slowdown, my buffers are
full, tryaqain later). The IDENTIFY subfunction could be used to
inform other virtual machines that a particular user is no longer in
QUIESCE status. You should execute the QUIESCE subfunction before
executing the UNAUTHORIZE subfunction to avoid losing messages (see
"UNAUTHORIZE: DIAGNOSE Code X '68' Subfunct"ion Code X· 0001"')... A virtual
machine can reset the OUIESCE status (exit slowdown) by executing the
RESUME subfunction. (See "RESUME: DIAGNOSE Code X'68' Subfunction Code
X'0009'''). A virtual machine in QOIESCE status may continue to send
messaqes to other virtual machines. QUIESCE status for a virtual
machine only affects messages sent from other virtual machines.

154 IBM VM/370 System Programmer's Guide

RESUME cancels the QUIESCE status, allowing your virtual machine to
resume reception of YMCF requests from other virtual machines. You can
use the IDENTIFY subfunction to inform other virtual machines that your
virtual machine is no longer in QUIESCE status. (see "IDENTIFY:
DIAGNOSE Code X'68' Subfunction Code X'OOOA'").

IDENTIFY notifies another virtual machine that your virtual machine is
available for YMCF communication. Use the IDENTIFY subfunction after
issuing the AUTHORIZE subfunction or after your virtual machine has been
in the VMCF QUIESCE state and you have issued the RESUME subfunction.
IDENTIFY causes an external interrupt to be stacked for a specified
virtual machine. The virtual machine executing the IDENTIFY subfuncticn
specifies the userid of the user to receive the external interrupt.. The
external interrupt identifies the virtual machine executing the IDENTIFY
subfunction. The IDENTIFY subfunction is provided to inform a host or
controller virtual machine that a virtual machine is activated (logged
on) and ready for VMCF communication. The IDENTIFY subfunction can also
be used to inform other virtual machines that ycur virtual machine has
exited QUIESCE state. There is no response external interrupt
associated with the IDENTIFY subfunction.

The IDENTIFY subfunction can also be used to pass virtual machine
defined control information. The fields in the VMCF parameter list
(VMCPARM) not used by the IDENTIFY subfunction may be used to contain
additional virtual machine data.

REJECT selectively rejects pending SEND or SEND/RECV requests from other
VMCF virtual machines. REJECT causes a response external interrupt to
be reflected to the originator of a message. The external interrupt
indicates to the originator that the message was rejected. The user
doubleword within the external interrupt header may tell a user why the
message was rejected. When the user of a virtual machine executes the
REJECT subfunction, he specifies within the YMCF parameter list
(YMCPARM) the message ID of the message to be rejected. A virtual
machine cannot reject a message sent with the SENDX subfunction since
the message is received at the same time the external interrupt is
received. The REJECT subfunction can be executed as response to either
SEND or SEND/RECY requests.

THE DATA TRANSFER FUNCTIONS

The data transfer operations are SEND, SEND/REeV, SENDX, RECEIVE, and
REPLY. These operations involve the movement of data from one virtual
machine storage to another virtual machine storage.

Part 2. Control program (CP) 155

SEND directs a message or block of data to another virtual machine.
Specify the virtual address and length of data to be sent within the
user parameter list (VMCPARM). Also, specify in the parameter list a
message ID to be associated with the message and the userid of the user
to receive the message (data). You can also send a doubleword of data
to be transmitted within the external interrupt message header (refer to
the section "VMCF User Doubleword"). If the SEND subfunction is
executed with a data length of zero, only the user doubleword is
transmitted to the sink virtual machine. The sink virtual machine can
then respond with a RECEIVE sub function (zero length) and pass back a
doubleword of data to the source virtual machine. The external
interrupt message header identifies the SEND request. When the sink
virtual machine executes a RECEIVE subfunction, the message is
transmitted from the source virtual machine storage to the sink virtual
storage. There is no internal buffering of data within the control
program {CPl. All data is transferred in 2K blocks from virtual storage
to virtual storage. Data is transferred in 2K blocks to test for
STORE/FETCH protection violations. When the data transfer subfunction
is complete, the source virtual machine receives a response external
interrupt indicating that the SEND request is complete. The sink
virtual machine receives a DIAGNOSE X'68' return code indicating that
the RECEIVE subfunction is complete. The return code can indicate error
conditions associated with the RECEIVE function or normal completion.

The sink virtual machine has the option to reject a message rather
than execute the RECEIVE subfunction (see "REJECT: DIAGNOSE Code X'68'
Subfunction Code X'0011'"). The source virtual machine may cancel a
SEND request before the sink virtual machine has executed a RECEIVE
subfunction or REJECT function (see "CANCEL: DIAGNOSE Code X'68'
Subfunction Code X'0006'").

If you are executing the SEND subfunction, you may specify the
PRIORITY option. The PRIORITY option causes the external interrupt for
the sink virtual machine to be queued ahead of all other nonpriority
external interrupts. If there are other PRIORITY external interrupts
pending for the sink virtual machine, the queuing is done in a first in
first out manner. That is, PRIORITY interrupts are queued FIFO among
themselves but ahead of all nonpriority interrupts.

SEND/RECV provides the capability to both send and receive data in a
single VMCF transaction. The SEND/RECV subfunction causes an external
interrupt to be queued for the sink virtual machine. When the sink
virtual machine receives the external interrupt, it can respond with the
RECEIVE subfunction. The RECEIVE subfunction causes data to be
transferred from the source virtual storage to sink virtual storage.
The sink virtual machine can then respond with a REPLY subfunction. The
REPLY subfunction causes data to be transferred from specified sink
virtual storage to a REPLY buffer in the source virtual s~orage. The
source virtual machine then receives a response external interrupt
indicating that the SEND/RECV request is complete.

When the source virtual machine executes the SEND/RECV function it
specifies the address and length of both the SEND buffer and REPLY
buffer. The address and length specifications are contained within the
user parameter list (VMCPARM). The user parameter list also contains a
message ID and userid of the user to receive the data (see the "VMCPABM
Parameter List").

156 IBM VM/310 System Programmer's Guide

April 1, 1981

The source virtual machine can cancel a previously executed SEND/RECV
request provided the sink virtual machine has not yet executed the REPLY
or REJECTsubfunction. If the sink vir~ua~ machine has already executed
the RECEIVE subfunction, only the REPLY c~n be canceled (see~CANtlt:
DIAGNOSE Code x'68' Subfunction Code X·0006'").

The sink virtual machine can execute the REJECT subfunction in
response to the SEND/RECV request and cause the entire operation to be
terminated (see "REJECT: DIAGNOSE Code X'68' Subfunction Code X·0011'").

The sink virtual machine can respond to a SEND/RECV request with the
REPLY subfunction without executing the RECEIVE subfunction~ This has
the effect of informing the source virtual machine that the sink virtual
machine cannot accept data but that it can send data. The source
virtual machine could have executed the SEND/RECV subfunction only as a
means to solicit data from the sink virtual machine. The application of
this protocol is up to VMCF users. The user doubleword can be used as a
means t::> control such an application (see "VMCF User Doubleword") ...

You can execute a SEND/RECV request using the PRIORITY option. The
PRIORITY option causes the sink external interrupt for the SEND/RECV
request to be queued ahead of any other nonpriority external interrupts.
Response external interrupts directed to the source of a PRIORITY
message are also queued in priority order.

SENDX directs data to another virtual machine via a faster but more
restrictive protocol than the SEND subfunction. SENDX subfunction data
reaches the sink virtual machine at the same time the SEND external
interrupt reaches the sink. In order to use the SENDX subfunction, the
sink virtual machine must have an external interrupt buffer large enough
to contain both the standard message header and the data. The size of
the external interrupt buffer is specified when you execute the
AUTHORIZE subfunction. Attempts to execute SENDX are rejected when the
sink virtual machine's external interrupt buffer is not large enough to
contain the data. After the sink virtual machine receives the SEND
external interrupt and data, a response external interrupt is directed
to the source virtual machine. The SENDX subfunction eliminates the
need for a sink virtual machine to execute a RECEIVE subfunction.

A SENDX request can be canceled by the source virtual machine
provided the SENDX external interrupt has not yet been reflected to the
sink virtual machine (see "CANCEL: DIAGNOSE Code X'68' Subfunction Code
X'0006· 1I).

Specify the SENDX buffer address and length in the user parameter
list (VMCPARM). The message ID and userid of the sink virtual machine
are also specified in VMCPARM.

The SENDX subfunction can be executed with the PRIORITY
allowing the SEND external interrupt to be queued ahead
nonpriority external interrupts for the sink virtual machine.

option
of all

A SENDX request cannot be rejected by the sink virtual machine since
t1re - mes~:nrqe- . is -- -rec-e iv-edat th-e-sa-me - ti-m-e - the -ext-eFn-a-l---i-n-t-e-£I'up-t- is
received.

You can execute the SENDX subfunction with a zero data length causing
only the message header and user doubleword to be transmitted.

Part 2. Control Program (CP) 157

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

RECEIVE allows you to selectively accept messages or data sent via the
SEND or SEND/RECV subfunctions. You must specify in the user parameter
list (VKCPARK) the virtual address and length of the RECEIVE buffer.
The parameter list also contains the message ID of the message to be
received and userid of the yirtual machine that originated the SEND or
SEND/RECV request. When a virtual machine has more than one message
pending, the RECEIVE function can be executed to select messages in any
order by message ID.

You can execute the REJECT function in order to reject messages sent
by other virtual machines. The REJECT subfunction terminates the SEND
or SEND/RECV request (see "REJECT: DIAGNOSE Code X'68' Subfunction Code
X' 00 11' ") •

You can execute the RECEIVE subfunction in response to a SEND/RECV
request and then execute a REJECT subfunction rather than a REPLY. The
user doubleword passed back with the REJECT subfunction could indicate
"RESEND", for example, if the original data was not received correctly
(depending on how you want to use the protocol).

REPLY allows you to direct data back to the sender of a SEND/RECV
subfunction. (This simulates full duplex communication.) The REPLY
subfunction is used with the SEND/RECV subfunction. A user who receives
a SEND/RECV external interrupt normally responds by executing the
RECEIVE subfunction. The RECEIVE subfunction causes data to be
transferred from the source virtual storage to the sink virtual storage.
The sink virtual machine can then respond with the REPLY subfunction
causing data to be transferred from specified sink virtual storage to
the source virtual storage. The REPLY subfunction causes a response
external interrupt to be reflected to the source virtual machine.

The user parameter list (VMCPARM) identifies the virtual buffer
address and length of reply data. When the REPLY subfunction is
executed, the user parameter list (VMCPARM) also contains the message ID
and the userid of the virtual machine to receive the reply.

The REPLY subfunction can be executed
indicating no response. You can transmit
otherwise) usinq the user doubleword.

with a zero data length
a reply {zero length or

A reply can be executed in response to a SEND/RECV request without
executing the RECEIVE subfunction. This indicates that you do not want
to receive the messaqe but may want to send a reply. A reply of zero
length could be executed simply to terminate the SEND/RECV request. The
application of the REPLY subfunction is a user decision. It must be
used to terminate a SEND/RECV request, however, unless the REJECT
subfunction is executed (see "REJECT: DIAGNOSE Code x'68' Subfunction
Code X' 0011''') • The REPLY subfunct ion is com plete when the source
virtual machine receives the external interrupt response.

A REPLY subfunction cannot be executed in response to a SEND request
(this is a protocol violation).

158 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Invoking VMCF Subfunctions

VMCF subfunctions are invoked by means of:

• DIAGNOSE code X'68' subfunction codes
• The VMCPARM parameter list
• Extecnal interrupt code X'4001'
• The external interrupt message header

DIAGNOSE CODE X'68'

All VKCF subfunctions are invoked from within assembler language
programs by means of DIAGNOSE code X'68':

83

Rx

Ry

CODE

<-------- 4 bytes ------->

83 I Rx I Ry , CODE

is X'83' and interpreted by the assembler as the DIAGNOSE
instruction.

NQ!~: There is no mnemonic for DIAGNOSE.

specifies a register containing the address of the VKCPARM
parameter list.

is a register that contains a return code.

is X'0068' and specifies that you are requesting execution of
a VMCF.

THE VMCPARM PARAMETER LIST

The Rx reqister of DIAGNOSE X'68' contains the address of a parameter
list (VKCPARM). This parameter list is used to specify the VKCF
subfunction to be executed, along with other information required by
VKCF to execute that function. The address of VMCPARK must be
doubleword-aligned. The following is the format of the VKCPARM
parameter list and a description of each of the fields in that list.

Part 2. Control Program (CP) 159

Apr il 1, 1981

0 r-
I V*1 I V*2 I VMCPFUNC VMCPMID

8 I
I VMCPUSER

10 I-
I VMCPVADA VMCPLENA

18 I , VliCPVADB VMCPLENB
20 I , VMCPUSE
28 L-

V* 1
(VMCPFLG1)

is a flaq byte used to specify options associated with a
particular subfunction.

This flaq byte can be set to the following values:

VMCPAUTS (X'SO')
Indicates, for the AUTHORIZE subfunction, an AUTHORIZE
SPECIFIC request. When this bit is set, the VMCPUSER field
must contain the userid of the sink virtual machine. The
status of the specified sink virtual machine is not checked
by the control program (CP) at this time.

VMCPPRTY (X'40')
Indicates, for SEND, SEND/RECV, SENDX, and IDENTIFY
requests, a PRIORITY message request. For an AUTHORIZE
request, it indicates an AUTHORIZE PRIORITY request. You
cannot send PRIORITY messages to another virtual machine
unless that virtual machine has been authorized for
PRIORITY messages. The SEND and RESPONSE external
interrupts for a PRIORITY' message are queued ahead of
pending nonpriority external interrupts.

VMCPSMSG (X'20')
Indicates that the virtual machine will accept messages
sent via the SMSG command.

Bits 3 through 7 are reserved for IBM use.

160 IBM V~/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

V*2
(VIiCPFLG2j

Reserved for IBM use.

VMCPFUNC contains the halfword DIAGNOSE X'68' subfunction code that
defines the VMCF subfunction being requested as follows:

VMCPMID

•
I
I Command

Hexadecimal
Code Subfunction

r-----------;-------------~------------------~
VMCPAUTH
VMCPUAUT
VMCPSEND
VMCPSENR
VMCPSENX
VMCPRECV
VMCPCANC
VMCPREPL
VMCPQUIE
VMCPRESM
VMCPIDEN
VMCPRJCT

X'OOOO'
X'0001'
X'0002'
X'0003'
X'0004'
X'0005'
X'0006'
X'0007'
X'0008'
X' 0009'
X'OOOA'
X'OOOB'

AUTHORIZE
UN AUTHORIZE
SEND
SEND/RECV
SENDX
RECEIVE
CANCEL
REPLY
QUIESCE
RESUME
IDENTIFY
REJECT L-__________ ~ ____________ . __ ~ ____________________ ~

Contains a unique message identifier associated with a
transaction. The source virtual machine must originate the
message ID for SEND, SEND/RECV, and SENDX requests. The
message ID is used by the sink virtual machine (along with
VMCPUSER) to respond to the source request with a RECEIVE,
REPLY, or REJECT request. The message ID allows the sink
virtual machine to selectively RECEIVE, REPLY, or REJECT
messages when more than one message is enqueued. The message
ID is used by both the source and sink as a unique
identification for all messages. You may send messages with
the same message ID to multiple users; you cannot send
multiple messages with the same message ID to one user. Once
a transaction is completed, however, the message ID may be
reused ..

VMCPUSER Specifies the userid of the sink virtual machine for SEND,
SEND/BECY, SENDX, IDENTIFY, and CANCEL requests and the userid
of the source virtual machine for RECEIVE, REPLY, and REJECT
requests. The sink virtual machine uses this field in
combination with the message ID (VMCPMID) to respond to source
requests. When the oriqinal source parameter list VMCPARM is
passed to the sink as the messaqe header VMCMHDR, the userid
is changed from sink to source.

This field is also used to specify the SPECIFIC userid for an
AUTHORIZE SPECIFIC request.

VMCPVADA Contains one of four addresses, depending upon which VMCF
subfunction is requested:

For SEND, SEND/RECV, and SENDX requests 6 VMCPVADA contains the
address of the source virtual machine data. For RECEIVE
requests,. VMCPVADA contains the addressof a sink virtual
machine RECEIVE buffer. For REPLY requests, VMCPVADA contains
the address in sink virtual machine storage where REPLY data
is located. For an AUTHORIZE request, VMCPVADA specifies the
address of the virtual machine external interrupt buffer.

Part 2. Control Proqram (CP) 161

April 1, 1981

The length of the associated data or buffer is specified in
the VMCPLENA field.

VMCPLENA contains the length of the data sent by a user, the length of
a RECEIVE buffer, or the length of an external interrupt
buffer, whichever is specified in the field VMCPVADA. The
size of the value specified in VMCPLENA is restricted only by
virtual machine storage size.

The sink virtual machine can use the value in this field as
the data length for RECEIVE operations.

VMCPVADB Contains the address of a source virtual machine's REPLY
buffer for a SEND/RECV request. When the sink virtual machine
issues a REPLY in response to a SEND/RECV from the source
virtual machine, the REPLY data is moved in this buffer. The
length of the REPLY buffer is contained in the field VMCPLENB.

VMCPLENB Specifies the length of the source virtual machine's REPLY
buffer. The sink virtual machine uses this field to determine
the maximum length of the REPLY. A corresponding field within
the response message header contains a residual data count.
The source virtual machine uses this residual co~nt to
determine the length of the sink reply. The original REPLY
buffer length (less the residual count) is the length of the
REPLY from the sink virtual machine.

VMCPUSE contains the VMCF user doubleword. The user doubleword is
transmitted to .the sink virtual machine in the SEND message
header for SEND, SEND/RECV, SENDX, and IDENTIFY requests. For
RECEIVE, REPLY, and REJECT requests, the user doubleword is
transmitted to the source virtual machine within the RESPONSE
message header. The sink virtual machine can transmit the
user doubleword to the source virtual machine with REJECT or
REPLY requests only if the original request was a SEND/RECV.
The user doubleword is transmitted only with requests that
result in 'SEND or RESPONSE external interrupts.

The following chart summarizes the VMCPARM fields required for
execution of each of the VMCF subfunctions. Possible return
codes associated with each subfunction are also listed. A
discussion of the return codes and their meanings can be found
in the section "DIAGNOSE X'0068' RETURN CODES."

162 IBM VM/3 7 0 System Programmer's Guide

April 1, 1981

r-
i VMCF i
ISubfunctionl Applicable VMCPARM Parameters Return Codes
l- -+-
I I
I AUTHORIZE I VMCPFLG1 - SPECIFIC/PRIORITY option 0,1,2,6,15
I I VMCPFUNC - X'OOOO' - subfunction code
I I VMCPITSER - SPECIFIC user id
I I VMCPVADA - external interrupt buffer address
I I VMCPLENA - external interrupt buffer length
.. ------+-
I UNAUTHORIZEI VMCPFUNC - X'OO01' - subfunction code 0,2,4,15
l- I
I SEND VMCPFLG1 - PRIORITY option 0,1,2,4,5,8
I I VMCPFUNC - X'OO02' - subfunction code 9,10,15,18
I I VMCPMID - message identifier
I I VMCPUSER - sink userid
I I VMCPVADA - SEND data address

I VMCPLENA - SEND data length
I I VMCPUSE - user doubleword
I I
I I (See Note)
r I
tSEND/RECV I VMCPFLG1 - PRIORITY option 0,1,2,4,5,8,9,
t I VMCPFTJNC - X'OOO3' - subfunction code 10,15,18
I t VMCPMID - message identifier
I I VMCPUSER - sink userid
I I VMCPVADA - SEND data address
I I VMCPLENA - SEND data length , I VMCPVADB - REPLY buffer address , 1 VMCPLENB - REPL Y buffer length
I I VMCPUSE - user doubleword
I I
I------+__
ISENDX t VMCPFLG1 - PRIORITY option 0,1,2,4,5,7,8,
I t VMCPFUNC - X'OO04' - subfunction code 9,10,15,18 , , VMCPMID - message identifier
I I VMCPUSER - sink userid
I I VMCPVADA - SEND data address
! VMCPLENA - SEND data length
t VMCPUSE - user doubleword t
I I
I I (See Note) I
r------+ -+
IRECEIVE t VMCPFUNC - X'0005' - subfunction code I 0,1,3,2,4,5,6,
I I VMcpr1ID - message identifier I 12,13,15,16,17
I I VMCPUSER - source user id I
I I VMCPVADA - RECEIVE buffer address t
I I VMCPLENA - RECEIVE buffer length I
I I VMCPUSE - user doubleword I
I I I
.. ----___ ~ ________________ LI __________________ ~

I Noi~: Fields within the user parameter list that are not used by a
I particular subfunction may be used to contain additional user data.
I The data, however, can only be passed to the sink virtual machine by
I the source virtual machine. The REPLY buffer address and length

fields (VMCPVADB+VMCPLENB) may be used to transmit additional user
data for SEND and SENDX requests. All fields except VMCPFL31,
VMCPFLG2, VMCPFUNC, and VMCPUSER may be used to pass control
information with an IDENTIFY request.

Figure 19. VMCF Subfunctions, Parameters, and Return Codes (Part 1 of 2)

Part 2. Control Proqram (CP) 163

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

r ~--~--------------~
I VMCF I I
I Subfunction I Applicable VMCPARM Fields I Return Codes
~ I --~I----------------~
,CANCEL I VMCPFUNC - X'0006' - subfunction code , 0,2,3,4,5,11,
I , VMCPMID - message identifier I 12,14,15,20
I I VMCPUSER - sink userid ,
1-'---- +-------------------------------~==~----.~~~~}=-~~~==~~~-==~ , ,
,REPLY VKCPFUNC - X'0007' - subfunction code 0,1,2,3,4,5,6, I
I VMCPMID - message identifier 12,13,15,16,17,19 I
I VMCPUSER - source userid ,
I VMCPVADA - REPLY data address I
I VMCPLENA - REPLY data length ,
I VMCPUSE - user doubleword I , ,
~----------~---~-----------------~I
IQUIESCE VMCPFUNC - X'0008' - subfunction code 0,2,4,15 t
I I
~ I
,RESUKE VMCPFUNC - X'0009' - subfunction code 0,2,4,15 I
I I
~-----------+---r---------------~I
IIDENTIFY VKCPFLG1 - PRIORITY option 0,2,4,5,9,10 I
, VKCPFUNC - X'OOOA' - subfunction code 15,18 I
, VKCPUSER - sink userid I
I VKCPUSE - user doublevord I
, I
, (See Note) I
~ I
,REJECT VMCPFUNC - X'OOOB' - subfunction code 0,2,3,4,12,13,15 I
I VKCPMID - message identifier t
, VMCPUSER - source userid I
I VMCPUSE - user doublevord I
I I
~ I
I Note: Fields within the user parameter list that are not used by a I
I particular subfunction may be used to contain additional user data. I
I The data, however, can only be passed to the sink virtual machine by I
I the source virtual machine. The REPLY buffer address and length I
I fields (VMCPVADB+VMCPLENB) may be used to transmit additional user I
, data for SEND and SENDX requests. All fields except VMCPFLG1, I
,VMCPFLG2, VMCPFUNC, and VKCPUSER may be used to pass control I
I information with an IDENTIFY request. I
, I

Figure 19. VKCF Subfunctions, Parameters, and Return Codes (Part 2 of 2)

EXTERNAL INTERRUPT CODE X'4001'

External interrupt code X'4001' is a special interrupt code recognized
by CP as part of a VMCF transaction. Just as virtual machines use the
DIAGNOSE instruction to communicate with CP, so too CP uses this
interrupt code to communicate with virtual machines. External interrupt
code X'4001' and DIAGNOSE code X'68' provide the mechanism VMCF uses to
synchronize message processing.

164 IBM VM/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Associated with external interrupt code X'4001' is a storage area
referred to as the external interrupt message header~ Thp external
interrupt message header (VMCMHDR) contains the control information
required to SEND and RECEIVE messages. The fields within the message
header are, for the most part, a copy of VMCPARM parameter list fields.

CP passes the external interrupt buffer (containing
interrupt message header) to the user's interrupt
processinq. The user must specify the address and length
when he executes the AUTHORIZE subfunction. Then, when
or receives messages, CP knows the address of the buffer
to the appropriate interrupt handler routine.

the external
handler for

of this buffer
the user sends

and passes it

Fields VMCMFUNC through VMCMUSE correspond to the fields VKCPFUNC
through VMCPUSE in the VMCPARM parameter list transmitted by the source
virtual machine. The format of the message header and optional SENDX
data buffer is:

0

8

10

18

20

28

V* 1
(VMCMSTAT)

.--.--~----,
I V*1 I
I
I ,
I
I
I
I
I
I
I

V*2 I VMCMFUNC VMCMMID

VMCMUSER

VMCMVADA VMCMLENA

VMCMVADB VMCMLEN B

VMCMUSE

VMCMBUF
Optional Message Buffer

L-__ __

is a status byte associated with the message header. The
bits within the status byte are defined as follows: .

Vl'!CMRESP (X'80')
Indicates final external interrupt (transaction
complete). This bit will be set for all RESPONSE
external interrupts and the SEND external interrupt
resultinq from an IDENTIFY request.

VMCMRJCT (X'40')
This bit is set in a RESPONSE external interrupt to
indicate that the sink virtual machine reiected the
messaqe via the REJECT subfunction.

VMCMPRTY (X'20')
This bit is -set in both SEND ami RESP-o-NSE external
interrupts to indicate a priority message. A virtual
machine must be authorized for priority messages before
it can receive them.

Part 2. Control Program (CP) 165

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

V*2
(VMCMEFLG)

VM CMFUNC

VMCMMID

VMCMUSER

VMCMVADA

VMCMLENA

VMCMVADB

VMCMLENB

VMCMUSE

VMCMBUF

Contains a data transfer error code indicating success or
errors associated with a data transfer operation. (Refer
to the section "Data Transfer Error Codes. ")

contains the subfunction code of the original request.
The sink virtual machine will use this field to determine
the type of request. The possible subfunction codes are:

VMCPSEND
VMCPSENR
VMCPSENX
VMCPIDEN

X' 000 2' - SEND
X'0003' - SEND/RECV
X'0004' - SENDX
X'OOOA' - IDENTIFY

contains the message ID associated with the original
source request.

contains the userid of the source virtual machine for SEND
external interrupts and the userid of the sink virtual
machine for RESPONSE external interrupts. If a SMSG
command was issued, 'SYSTEM' appears in this field.

Contains the address of the original SEND data for SEND
requests. This field would normally have no meaning to
the sink virtual machine.

Indicates the length of SEND data for
interrupts. It indicates a data transfer
for RESPONSE external interrUpts.

SEND externa I
residual count

Contains the virtual address of the REPLY buffer for
SEND/RECV requests. This field has no meaning to the sink
virtual machine.

contains the length of the source virtual machine REPLY
buffer for SEND/RECV external interrupts; contains the
residual REPLY count for RESPONSE external interrupts.
The sink virtual machine uses this field to determine the
maximum length of the REPLY; the source virtual machine
uses this field to determine the length of the sink
virtual machine REPLY data.

contains the
sink virtual
the source
interrupts.
contains the
command.

user doubleword, which is transmitted to the
machine with SEND external interrupts and to
virtual machine with RESPONSE external
If a SMSG command was issued, this field

user doubleword of the issuer of that

This is the optional data buffer used by the SENDX
subfunction. The data sent with the SENDX subfunction is
moved into this buffer. The buffer size is specified when
a virtual machine executes the VMCF AUTHORIZE subfunction.

VMCF USER DOUBLEWORD

VMCF pr~vides a doubleword for user data that can be transmitted within
the external interrupt message header. A user supplies the doubleword
of data within the parameter list (VMCPARM) for certain VMCF request
(that is, SEND, SENDX, SEND/RECV, RECEIVE, REPLY, IDENTIFY, and REJECT).
You can use the user doubleword in any manner you desire. The
doubleword is transmitted within the external interrupt message header
for both SEND and RESPONSE type external interrupts.

166 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

The user doubleword can be used for control information in a
user-defined higher level protocol. That is, you could have your own
message headers defined within the data transmitted from one virtual
machine to another. The user doubleword could be used to control such a
---~---, I-'.L. V\..V\...VJ..

Part 2. Control Proqram (CP) 166. 1

April 1, 1981

166.2 IBM VM/370 System Programmer's Guide

The user doubleword can also be used as a security code or provide
additional information for subfunctions such as IDENTIFY and REJECT.
Yeu can specify a zero data length for any V"CF transaction. The effect
of this is that only the external interrupt message header with user
doubleword is transmitted or received~

DIAGNOSE X'68' RETURN CODES

The virtual machine initiating a VMCF request receives a return code in
the general register specified as "Ry" in the DIAGNOSE instruction~ The
return code indicates successful completion of the request or error
conditions associated with the request. Figure 20 is a description cf
all possible return codes returned to a virtual machine executing the
DIAGNOSE X'68' subfunction.

I I I

I Return I I
I Code I Meaning I
, I ~
I 0 IThe normal response. Indicates successful completion of al
! Irequest or successful initiation of a request. For example, I
I Ifor an AUTHORIZE request, 0 indicates that the AUTHORIZEI
I Ifunction is complete; for a SEND request, 0 indicates that thel
I ISEND was successfully initiated. The SEND request, of course, I
I Iwould not be complete until the final RESPONSE externall
I iinterrupt was received by the source virtual machine. I
• I ~
I 1 IInvalid virtual buffer address or length. A virtual machinel
I lattempted to execute a VKCF subfunction but specified ani
I I invalid address or length: I
I I I
I I. External interrupt buffer not within virtual storage. I
I I. External interrupt buffer address not doubleword aligned. I
I I. Message data or buffer not within virtual storage. I
I I. External interrupt buffer less than the standard messagel
I I header length. I
I I ~
I 2 IInvalid subfunction code. A virtual machine attempted tol
I lexecute a VKCF subfunction but specified an unsupportedi
I Isubfunction code. I
~ I t
I 3 IProtocol violation. A virtual machine attempted to execute al
I Isubfunction which would violate the defined protocol: I
I I I
I I· Cancel a message it did not originate. I
I I. Reply to a message not sent via SEND/RECV. I
, ,. REJECT a message that it originated. I
I I. Executed more than one RECEIVE to a SEND or SEND/RECVI
, I request. I
~ I ~
,4 ,Source virtual machine not authorized. A virtual machinel
, lattempted to execute a subfunction (other than AUTHORIZE) butl
I Iwas not authorized to use VMCF (had not successfully executedl
lithe AUTHORIZE subfunction). I

J

Figure 20. DIAGNOSE Code X'68' Return Codes (Part 1 of 3)

Part 2. Control program (CP) 167

f i ,

I Return I Meaning ,
I Code , ,
I I ..
,5 IUser not available. A virtual machine attempted to execute al
I ,function and specified a virtual machine currently notl
I ,available for VMCF communication: I
, , I
I I. Not logged on. ,
I I· Not authorized for VMCF communication. I
I I. Virtual machine authorized SPECIFIC for some otherl
I I virtual machine. ,
I -r ~
I 6 Protection violation. A virtual machine attempted to execute al
I VMCF function that would result in a StORE or FETCH protectionl
I violation. The virtual machine specified a data or bufferl
I address that contained a storage key other than its current PSi,
I key (assume key was nonzero). This return code is also set if I
I a virtual machine attempts to receive data in a CP-owned sharedl
I segment. ,
I ..
I 7 SENDX data too large. A virtual machine attempted to execute al
I SEND X request but specified a SENDX data length larger than the,
I sink virtual machine external interrupt buffer. I
I I I
, 8 IDuplicate message. A virtual machine attempted to execute al
I ISEND-type function and specified a message ID and virtuall
I Imachine userid for which there was already an active message. ,
I I ~
I 9 ITarget virtual machine in QUIESCE status. A virtual machine,
I lattempted to execute a SEND-type function and specified a sinkl
I ,virtual machine userid of a virtual machine in QUIESCE status. I
I I -t
110 IMessage limit exceeded. A virtual machine attempted to executel
I la SEND sub function but already had 50 messages active. The,
I Ivirtual machine should clear any pending RESPONSE externall
I ,interrupts or CANCEL previously sent messages in order tol
I ,continue processing. ,
I I ..
111 IREPLY canceled. The source virtual machine executed a CANCEL,
I Ito a previous SEND/RECV request. The sink virtual machine had,
I lalready RECEIVED the message but had not yet executed a REPLy.t
1 IThe sink virtual machine REPLY in this case is canceled. The'
I Isink virtual machine will get return code 12 (message notl
, 'found) when it executes the REPLY subfuncticn. ,
I I ..
112 ,Message not found. A virtual machine attempted to execute al
I Isubfunction and specified a message ID and virtual machine,
I luserid for a message that does not exist. The message may have,
I lexisted at one time but could have been cancelled by tbet
I loriginator. ,
I -.I

Figure 20. DIAGNOSE Code X'68' Return Codes (Part 2 of 3)

168 IB" VM/370 System programmer's Guide

rr-------T--,
I Return Meaning I

Coda I
~.------+---~
113 Synchronization error. The sink virtual machine attempted tot
I respond to.a message for. which i~ ~ad not yet rece~ved the SENDI
I external 1nterrupt. Tn1S cond1t10n can occur 1f the sinkl
I virtual machine is anticipating certain messages but does notl
I wait for the SEND external interrupt. I

• I ~ 114 ICANCEL too late. A virtual machine attempted to CANCEL al
I Imessage that had already been processed. The sink virtuall
I Imachine had already responded with RECEIVE or REJECT (SENDI
I I request) or REPLY or REJECT (SEND/RECV request). This returnl
I Icode is also set if a virtual machine attempts to CANCEL al
I ISENDI request for which the sink virtual machine had alreadYI
1 Ireceived the SEND external interrupt. I

• I ~ 115 IPaging I/O error. A virtual machine attempted to execute al
I Isubfunction which resulted in an uncorrectable paging 1/01
I lerror. This is a hardware failure. I
I I I
116 I Incorrect length. A virtual machine executed a RECEIVE orl
I IREPLY function and specified a RECEIVE buffer length less thanl
I Ithe source virtual machine SEND data length or a REPLY datal
I Ilength larger than the source virtual machine REPLY bufferl
I Ilength. The source virtual machine will receive a datal
I Itransfer return code identifying the condition. I
t I I
1 17 IDestructive overlap. A virtual machine executed a RECEIVE orl
I IREPLY function and specified a RECEIVE buffer address whichl
I loverlapped the source virtual machine SEND data address or al
1 IREPLY data address that overlapped the source virtual machinel
I IREPLY buffer address. This condition can occur only when al
1 Ivirtual machine is sending messages to itself (a "wrapi
1 I connection") • I
I I I
118 IUser not authorized for PRIORITY messages. A virtual machinel
1 lattempted to send a PRIORITY message to a virtual machine thatl
I Iwas not authorized to accept PRIORITY messages (that is, hadl
I Inot executed the AUTHORIZE function with the PRIORITY option). I

• I -t 119 IData transfer error. A virtual machine executed a request thatl
I Iresulted in a data transfer error condition associated with thel
I lother virtual machine. The return code is returned to the sinkl
I Ivirtual machine to indicate that the transaction did notl
I Icomplete successfully. I

• I I I 20 ICANCEL - busy. A virtual machine attempted to cancel a messagel
I Ibeing processed. If this is a SENt/RECV request and thel
I IRECEIVE subfunction is in process, repeated retries may cancel,
I I the REPLY subfunction. I
, , -.J

Figure 20. DIAGNOSE Code 1'68' Return Codes (Part 3 of 3)

Part 2. Control Program (CP) 16q

DATA TRANSFER ERROR CODES

When a virtual machine executes a SEND, SEND!, or SEND/RECV subfunction,
the normal DIAGNOSE return code is zero, indicating that the request was
successfully initiated. However, when the actual data transfer takes
place, errors can occur. All errors occurring at data transfer time are
communicated to the source virtual machine in the RESPONSE external
interrupt message header, VMCMHDR. Figure 21 shows error codes
indicating conditions that are possible- after the SENDX, SEND, or
SEND/RECV request is initiated. The error codes correspond to DIAGNOSE
return code numbers.

, 1 ,

I Error I I
I Code I Meaning I
~~-----rl---- ~
I 0 IThe normal response (no errors) • ,
~ I ~
I 1 IInvalid buffer address or length. The SEND and/or RECEIVEI
I Ibuffers used for a data transfer operation are not within thel
, Ivirtual machine's virtual storage. The beginning and ending'
I I addresses were valid when a request was initiated but alII
I I addresses are not valid. I
~ I I
I 5 IUser not available. The sink virtual machine executed thel
I IUNAUTHORIZE function, reexecuted the AUTHORIZE SPECIFICI
I Isubfunction, or implicitly reset his virtual machine after thel
I Isource virtual machine request Was initiated. I
~ I ~
I 6 IProtection violation. The storage key for a virtual machine'sl
I ISEND or RECEIVE buffer did not match its PSi key at the timet
I Ithe transfer was initiated. (Assume the key was nonzero.) Thisl
I lerror code is also set if a virtual machine attempts to RECEIVEI
I I data into a CP-owned shared segment. I
I I -I
I 7 ISENDX data is too large. The sink virtual machine reexecutedl
I IAUTHORIZE and specified an external interrupt buffer size less,
I Ithan the buffer size at the time a SENDX subfunction wasl
I lexecuted. The SENDX data will no longer fit in the sink,
I Ivirtual machine buffer. I
~ I I
I 15 IPaging I/O error. An uncorrectable paging I/O error occurredl
I Iduring the data transfer operation attempting to fetch at
I ,virtual machine SEND or RECEIVE buffer. This is a hardware,
I Ifailure. I
I I I
I 16 IIncorrect length. The sink virtual machine executed a RECEIVEI
I Isubfunction with a data length (VMCPLENA) smaller than thel
I loriginal SEND data length or a REPLY subfunction with a REPLYI
I Idata length larger than the source virtual machine REPLY bufferl
I Ilength. I
, I --I
I 17 IDestructive overlap. A virtual machine was communicating withl
I litself in a "wrap connection" and his SEND or RECEIVE buffersl
I loverlapped one another (intra-virtual machine communication). I
I I I
I 19 IData transfer error. A data transfer error occurred which wasl
I lassociated with the other virtual machine. The transaction didl
I Inot complete successfully. I

I J

Figure 21. DIAGNOSE Code X'68' Data Transfer Error Codes

170 IB" VM/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Special Message Facility

The special message facility enables a virtual machine to send messages
to another virtual machine by issuing the SMSG command. The special
message facility uses the SENDX subfunction of the Virtual Machine
Communication Facility (VMCF) to send the messages. However, the
sending virtual machine does not need to perform the initialization
required by VMCF. Initialization is handled by CP and is described
later in this topic.

To send a message, a virtual machine need only prepare the message
text -- up to 129 bytes and issue the class G command, SMSG.
Parameters on the SMSG command identify the USERID of the receiving
virtual machine and specify the message text. The format of the message
text must be acceptable to the receiving virtual machine. The SMSG
command is described in the !~Ll70 CP ~Q!!gng Ref~ren£~ !or· Gene~~!
Us~£~ ..

Before the rece1v1ng virtual machine can receive special messages, it
must enable itself to receive external interrupts, must set bit 31 in
control register 0 to one, and must authorize itself. It authorizes
itself by issuing DIAGNOSE Code X'68', Authorize. The parameter list,
VMCPARM, specified with DIAGNOSE Code X'68' must contain a pointer to an
external-interrupt buffer, must specify a buffer length of 169 bytes,
and must have the special message flag (VMCPSMSG) turned on. The
receiving virtual machine may turn on this flag by setting VMCPS8SG to a
value of B'l'. Optionally, the receiving virtual machine may turn on
the special message flag by issuing the class G command, SET SMSG ON.
For information on using DIAGNOSE Code X'68', see "Description of V8CF
Subfunctions" and "Invoking VMCF Subfunctions."

To understand
virtual machine,
Pr otocol. "

how a
see

special message is presented to
"The SENDX Protocol" in the

the receiving
section "VMCF

When a virtual machine no longer wishes to accept special messages i

it may turn off the special message flag by issuing the command, SET
SMSG OFF. To resume receiving messages, the virtual machine may issue
the command, SET SMSG ON. CP sends an error message to any virtual
machine that attempts to send a special message to another virtual
machine that is not accepting special messages.

CP handles VMCF initialization and special message processing as
follows. When the SMSG command is issued, CP verifies that no invalid
options were specified and that a valid USE RID was specified. CP also
verifies that the receiving virtual machine is authorized and accepting
special messages. CP then obtains storage for the external-interrupt
buffer and builds the parameter list required by VMCF. Part of the
external interrupt buffer contains the external interrupt message
header. Descriptions of the fields contained in this message header are
described in the section "The External Interrupt Message Header." Note
that the VMCMUSER field contains the word "SYSTEM" while the user
doubleword of the user issuing the SMSG command is contained in the
VMCMUSE field.

Finally, CP uses the SENDX subfunction of VMCF to send the message to
the receiving virtual machine.

Part 2. Control Program (CP) 171

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

VM/370 Use of the IBM 3850 MSS

Virtual machines operating CMS, OS/VS1, or OS/VS2 (MVS) may access mass
storage volumes containing VM/370 minidisks or entire mass storage
volumes dedicated to the virtual machine. These volumes appear to the
virtual machine as 3330 volumes and are accessed using 3330 device
support in the virtual machine. VM/370 controls allocation, volume
mounting, and volume demounting. virtual machines that run OS/VS1 or
OS/VS2 (MVS) with MSS support can also access mass storage volumes using
dedicated device support.

VM/370 Access to the M,ass Storage Control

Whenevec an MSS 3330V volume must be mounted or demounted, the VM/370
control program first selects an appropriate device address. If a
volume mount is required, the device is selected from the pool of
available 3330V devices created at system generation time. If a volume
must be demounted, CP sele,cts the address of the device on which the
volume is currently mounted.

To pass mount, demount, and relinquish orders, the virtual machine
must have an MSC port dedicated to it via the ATTACH command or the
DEDICATE directory statement. An application program named DMKftSS is
distributed as part of VM/370i it acts as an interface between CP and
the MSC. After DMKMSS is started in an OS/VS1 or OS/VS2 (MVS) virtual
machine, it uses a special virtual I/O device and the VM/370 DIAGNOSE
interface to communicate with the VM/370 control program.

DMKMSS first issues a DIAGNOSE Code X'78' subcode X'OO' to inform CP
that the MSS is available. Until CP receives this interrupt, the
control program cannot mount or demount MSS volumes.

When CP receives the interrupt, DMKMSS then obtains from tables found
in the MSC (the configuration table), a list of all VUAs (virtual unit
addresses) associated with the processor (cpuid). After DMKMSS builds
the list, it issues DIAGNOSE Code X'78' subcode X'14' to pass this list
to CP. CP builds two tables from the list:

a. one table contains only shared VUAs
b. the other table contains only non-shared VUAs

Each table is also sorted according to SDG (staging drive qroup) number.
The two tables are written to DASD and their slot address (CCPDs) are
anchored in DMKMSS.

After DIAGNOSE Code X'78' subcode X'14' is issued with a mount or
demount request, CP generates an attention interrupt on the virtual I/O
device. When it receives this interrupt, DMKMSS issues another DIAGNOSE
Code X'78' to indicate that it is ready to process an MSS request. CP
places the required information into a buffer in the virtual machine.
The address of this buffer is contained in DIAGNOSE X'78' instruction.
The format of the information is described in the MSSCOM control block.

Aftec the request has been processed by the MSC, DMKMSS again issues
a DIAGNOSE Code X'78' that indicates that the MSS order is complete and
reflects the MSC endinq status.

172 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

The MSC handles volume mounts, demounts and relinquishes. If the MSC
order was for a volume demount, then normal ending status from the ~sc
indicates that the volume is demounted. The CP RDEVBLOK corresponding
to the device is reset to free status, and can now be used for
allocation to another task.

If the request is for a volume mount, DMKHSS examines the MSSRETRY
bit. This bit is turned on only when CP determines which VUA is used to
mount a volume. For example, CP makes the determination for normal
MDISKs, LINKs, and DEDICATEs of MSS volumes with no real address
specified. If the MSSRETRY bit is off, the mount order is sent to the
MSC and the resulting MSC return code is passed back to CP.

However, if CP determines which VUA will mount the volume, DMKMSS
scans the MSC mounted volume table (MVT) to see if the volume is already
staged in any SDG. If the volume is not staged, then DMKMSS sends the
mount order to the MSC and the resulting KSC return code is passed back
to CP. If the volume is staged in any SDG, DMKMSS compares that SDG
number with the SDG number of the VUA on which CP wants to mount the
volume. If a match is found, the mount order is sent to the MSC and the
resulting MSC return code is passed back to CP. In the case of a SDG
number match, there may be no cartridge picks required to fulfill the
mount request. This situation reduces the amount of time spent waiting
for a volume mount to complete. It also reduces the amount of
mechanical work the MSS has to do.

If the SDG numbers do not match, DMKMSS examines the mount status of
the volume. The volume mayor may not be mounted. This is because the
MVT shows that there are cylinders still allocated to that volume even
though it may not be mounted.

If the volume is mounted by another processor, the correct SDG number
is placed in the MSSCOM, the VOLMNTD bit in MSSCOM is turned on, and
reason code X'10' is returned to CP. If the volume is not mounted (but
still has cylinders in the staging space allocated to it), the correct
SDG number is placed in MSSCOM, the VOLMNTD bit is left off, and reason
code X'10' is returned to CP. For a mount that can be retried and has a
reason code of X'10', CP attempts to select a VUA from the correct SDG.
If CP finds one, MSSCOM is updated to reflect the new VUA and CP
reissues the request= If no VUAs are available in the correct SDG and
the VOLMN1D bit in MSSCOM is off, the MSSRETRY bit in MSSCOM is turned
off and the original mount request is reissued. If no VUAs in the
correct SDG are available, and the VOLMNTD bit is on, the request is
terminated with reason code X'10'.

If the MSC request was for a volume mount, the MSC ending status
indicated that the MSC was processed. If the MSC accepts the mount
order, the MSC will order the staging adapter to generate a pack change
interrupt (an unsolicited device end) on the device when that device has
been mo~nted. CP receives the pack change interrupt, the RDEVBLOK is
set to indicate that the volume is mounted, and any VM/370 task waiting
for the volume is marked dispatchable. If the mount order was rejected,
no further processinq of the mount request occurs. The previously
allocated RDEVBLOK is marked free and processing continues with the next
~ss request~

Part 2. Control Program (CP) 172.1

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

The VM/370 control program destages any changed cylinders on a volume
at detach time when the user count for the entire volume goes to zero.
Destaging is accomplished when CP issues a relinquish order to the MSS
via the central server application program (DMKMSS). A relinquish order
is issued at detach time for volids mounted on SYSVIRT virtual unit
addresses and VIRTUAL virtual unit addresses. This is the case only
when the volume was mounted by the control program on behalf of the
guest operating system. Refer to the !~Lll~ £lsn~igg ~n£ ~l§~~~
Generation Guide that identifies VS1/VS2 APARs to be applied to the
central-server--virtual machine operating system to support the VM/370
relinquish function (APAR 11344).

172.2 IBM VM/370 System Proarammer's Guide

Asynchronous MSS Mount Processing

When an MSS volume mount is required to satisfy a LINK or ATTACH command
or an MDISK or OED directory statement, CP returns control to the
virtual machine as soon as MSC accepts the mount request. The virtual
machine may continue to execute before the virtual device specified en
the MDISK, OED, LINK, or ATTACH is available.

The reasons for asynchronous MSS mount processing are the relatively
long time required to complete the mount, and the chance that an errcr
may occur in the MSS after the mount order is accepted. The virtual
device to be mounted may not be vital to the specific task to be
accomplished. Also, if an error occurs in the MSS (such as a permanent
read error on a cartridge) after the mount is accepted, the errcr
indication is passed from the MSC to the virtual machine. VM/370 cannot
determine that an error has occurred and that the mount will net
complete. If the virtual machine were not dispatchable until the mount
completed, it would be locked out until the MSS error was corrected.

With asynchronous mount processing, the virtual machine has the
flexibility to either continue processing without the affected virtual
device, or wait until the MSS mount completes. If the virtual machine
issues an SIO instruction to a virtual device that is defined on the
volume being mounted, VM/370 will queue the I/O request until the mount
completes. The virtual machine will be marked I/O wait nondispatchable
until the mount completes and the SIO is started.

I VM/370 Processing of MSS Cylinder Faults

VM/370 supports 3330V cylinder fault processing in two ways: real
channel programs directed to 3330Vs are constructed so that cylinder
faults can be recognized and the channel program restarted; and the
attention interruption (indicating that the cylinder fault has been
satisfied) is recognized and any I/O for that device restarted.

When the VM/370 processor issues a seek CCW to a 3330V device, the
staging adapter must translate the seek argument to the correct cylinder
of staging space. If the cylinder referenced in the seek is staged,
then the SIO is passed to the associated staging DASD drive. If the
referenced cylinder is not staged, the staging adapter initiates
cylinder fault processing. The staging adapter first passes a cylinder
fault indication to the MSC, requesting the cylinder of data to be
staged. It then returns a status modifier to the channel in response to
the seek, which causes the channel to skip one CCW in its CCW fetch
processing. That is, the channel does nQt fetch the next CCW after the
seek.

As a result of the cylinder fault, the MSC allocates staging space
for the requested data and causes it to be staged. The staging adapter
then generates a channel end/device end interruption to indicate that
the cylinder has been staged.

It is possible in error situations that the attention interruption
may not be received. Each time an I/O request is queued by VM/370 as a
result of a cylinder fault, a timer is set. If the timer expires before
the interruption is received, a message (DMKSSS074I) is written to the
VM/370 system operator and the request is retried.

Part 2. Control Program (CP) 173

Backup and Recovery of MSS Volumes

The process of creating backup copies of MSS volumes. and restoring frem
those backup copies, can be controlled through the OS/VS access methods
services COPYV command. This command can operate without system
operator intervention.

For each active volume in the MSS. there may be one or more cOFi
volu.es. At any time, the active volume may be copied to a copy volume
with the access method services COPYV command. All volume mounts and
data transfer are controlled by this command. If at any time it is
necessary to restore the level of a volume to that of a copy, the OS/VS
access methods services RECOVERV command is used.

All the OS/VS access methods services commands can be run from either
a real processor or a VS virtual machine. If the ess communicator
virtual machine is in operation, these commands can be run from that
virtual machine while it is acting as the communicator.

174 IBM VM/370 System programmer's Guide

Timers In a Virtual Machine

This section describes the results obtained in using timers in a virtual
machine created by CP.

Interval Timer

Virtual location 80 (X'50'), the interval timer, contains different
values than would be expected when operating in a real machine. On a
real machine, the interval timer is updated 300 times per second when
enabled and when the real machine is not in manual state. The interval
timer on a real machine thus reflects system time and wait state time.
In a virtual machine, the interval timer reflects only virtual processor
time, and not wait time. It is updated by CP whenever a virtual machine
passes control to CP, and this one updating reflects the entire time the
virtual machine had control. Note that during the time a virtual
machine has control, the virtual interval timer does not change; the
virtual processor time used is added to the virtual interval timer when
CP regains control. For some privileged instructions, CP may be able to
simulate the instruction and still return control to the virtual machine
before the end of that virtual machine's tiae slice. In such cases, the
virtual interval timer is updated but only for those privileged
instructions that require normal or fast reflect entry into the
dispatcher. For those privileged instructions that do not require entry
into the dispatcheL, the virtual interval timer is not updated until CP
gets control at the end of the time slice.

If the virtual machine assist feature or Extended Control - program
Support is ON, more time is charged to the virtual interval timer than
if the feature is OFF. When the virtual machine assist feature is OFF,
the time spent by CP to simulate privileged instructions is Bot charged
to the virtual interval timer; Whereas, with the feature ON, the time
spent i§ charged to the virtual interval timer.

The virtual interval timer assist feature is the updating of the virtual
interval timer and presentation of timer interrupts to the virtual
machine by the hardware. When the software simulates the interval
timer, updating occurs only when CP takes over control~ This usually
results in an update frequency of once per time slice and repeatability
of timed intervals suffers greatly under these conditions. When the
virtual interval timer assist feature is active, the update frequency is
the same for both virtual and real interval timers, 300 times a second.

In order for the virtual interval timer assist feature to be active,
the following conditions must be met:

• VM/370 must be running on a Model 135-3, 138, 145-3, or 148.

• The virtual machine must have enabled the virtual machine assist and
the virtual interval timer (SET TI~ER-{ONIREAL}).

• The virtual machine must have enabled both the virtual machine assist
and the virtual interval timer assist (SET ASSIST ON TMR).

Part 2. Control Program (CP) 175

VM/370 provides an option, called the REALTIMER option, which causes
the virtual interval timer to be updated during virtual wait state as
well. With the REALTIMER option in effect, a virtual interval ti.er
reflects virtual processor time and virtual wait time, but not cp time
used for services for that virtual machine, such as privileged
instruction execution. The more services a virtual machine requires
from CP, the greater the difference between the time represented by the
interval timer and the actual time used by and for the virtual machine.
The larger the number of active virtual machines contending for syste.
resources, the greater the difference between virtual machine time and
actual elapsed (wall clock) time.

Processor Timer

A virtual machine must have the ECMODE directory option to use the
System/370 processor timer.

The processor timer is supported in a virtual machine in much the
same way as is the interval timer. That is, the processor timer in a
virtual machine records only virtual processor time, and it is updated
when the virtual machine passes control back to CP.

If the real timer option is specified, the processor timer reflects
all actual elapsed time except CP time used for services, such as
privileged instruction execution, for that virtual machine.

The method of sampling the value in the processor timer causes it to
appear to a virtual machine to be updated more often than an interval
timer. The privileged instructions Set processor Timer (SPT) and Store
processor Timer (STPT) are used to set a doubleword value in the
processor timer and to store it in a doubleword location of virtual
storage. When a virtual machine samples the value in the processor
timer by issuing a STPT instruction, CP regains control to execute the
rrivileged instruction, and updates the time. The act of sampling the
processor timer from a virtual machine causes it to be brought up to
date.

TOO Clock

The System/370 time-of-day (TaD) clock does not require simulation in a
virtual machine. The System/370 in which CP is operating may have one
real TaD clock for each processor, and all virtual machines can
interrogate the real TaD clock. The Store Clock (STCK) instruction is
nonprivileged; any virtual machine can execute it to store the current
value of the TOD clock in its virtual storage. The Set Clock (SCK)
instruction, which is used to set the TOD Clock value, can be issued
from a virtual machine, but CP always returns a condition code of zero
and does not actually set the clock. Note that the TaD clock is the
only true source of actual elapsed time information for a virtual
machine. The base value for the TaD clock in VM/370 is 00:00:00 GMT,
January 1,1900.

In an attached processor environment, the TOO clocks are synchronized
using the procedure described in the I~~ 21§!~!Lll]: R£in£iEl~2 ~!
QE~£gli2n, GA22-7000.

176 IB~ System Froglamme~ls G~ide

Clock Comparator

The clock comparator associated with the TOD clock is used in virtual
machines for generating interrupts based on actual elapsed time. The
ECMODE option must be specified for a virtual machine to use the clock
comparator feature. The Set Clock Comparator (SCKC) instruction
specifies a doubleword value that is placed in the clock comparator.
When the TOD clock passes that value, an interrupt is generated.

Pseudo Timer

The pseudo timer is a special VM/370 timing facility. It provides 24 or
32 bytes of time and date information in the format shown in Figure 22.

Figure 22. Formats of Pseudo Timer Information

The first eight-byte field is the date, in EBCDIC, in the form
Month/Day-of-Month/Year. The next eight-byte field is the Time of Day
in Hours:Minutes:Seconds. The VIRTCPU and TOTCPU fields contain virtual
processor and total processor time used. The units in which the
processor times are expressed and the length of the fields depend upon
which of two methods is used for interrogating the pseudo timer.

PSEUDO TIMER START I/O

The pseudo timer can be interrogated by issuing a START I/O to the
pseudo timer device, which is device type TIMER, and is usually at
device address OFF. No I/O interrupt is returned from the SIO. The
address in virtual storage where the timer information is to be placed
is specified in the data address portion of the CCi associated with the
SID. This address must not cross a page boundary in the user's address
space. If this method is used 6 the virtual Frocessor and the total
processor times are expressed as fullwords in high resolution interval
timer units. One unit is 13 microseconds.

Part 2. Control program (CP) 177

PSEUDO TIMER DIAGNOSE

The pseudo timer can also be interrogated by issuing DIAGNOSE with an
operation code of C, as described under "DIAGNOSE Instruction in a
Virtual Machine." If this method is used, the virtual and total
processor times are expressed as double words in microseconds.

CP In Attached Processor Mode

In an attached processor environment, two processors share main storage.
There is special code in CP to ensure that the two processors do not
interfere in each other's operation. Most of this special code is
executed only in an attached processor environment. For information
about system generation of the special code, see the !~LllQ glann ing ~ng
~~st~~ Gen~!g!!Bn ~y!g~.

PSA

Each processor needs its own area for processor-related information.
During CP initialization, CP obtains an area from the high-end of real
storage for prefix storage areas (PSA) for each processor. Each
processor accesses its own PSA by a process called prefixing. Prefixing
is described in detail in the ~~st~!L37Q: g!1n£iEl~2 B! QE~ti~n
(GA22-7000) •

When code executing on either processor references an address from 0
to 4096, the referenced address is added to the contents of the prefix
register for that processor to produce the "absolute" address that will
be accessed. A reference to the first 4K of storage, therefore, results
in the PSA residing in high core being accessed. In this way, each
processor is given its own work area and save areas. Figure 23, a
storage map of the V=R machine, shows where PSAs are located in real
storage after CP initialization completes. However, if a processor is
varied offline and then online after CP initialization completes, the
processor's PSA may be located in any contigeous 4K byte area of free
storage.

11~ IBM VM/370 System Programmer's Guide

virtual Storage
... ;:1..:1 _____ _

auuJ.'C;::';::''C,;:)

ABSOLUTE PAGE 0
4K

Virtual Page 1

128K-l
OK

4K-1

VIRTUAL=REAL AREA

SIZE = 128K BYTES

(Minimum size is 32K bytes.)

Virtual page 0

REMAINDER OF CP NUCLEUS

DYNAMIC PAGING AREA

and

FREE STORAGE

PSA FOR THE ATTACHED PROCESSOR

PSA FOR THE MAIN PROCESSOR

Figure 23. Storage in a Virtual=Real Machine

I/O HANDLING

Real Storage
Addresses

OK

4K

128K

132K (DMKSLC)

{ End of CP Nucleus

(Dl!KCPE)

< • 1- Dl!KPSl
<

512K End of
real storage

In an attached processor environment, only the main processor is capable
of handling I/O. If a command being executed on the attached processor
requires I/O processing, it is dispatched to the main processor via the
SWITCH macro. This is not apparent to the user as it is handled
internally by CP.

When the control program is executing, the I/O configuration tables
are protected only by the global system lock. Because the first-level
interrupt handler (FLIH) executes without the lock in some cases, there
is the possibility of both processors modifying an I/O table. To
eliminate this situation, critical references to the I/O table are
preceded by forcing the system onto the main processor via a SWITCH
macro. Since the unlocked I/O FLIH never executes on the attached
processor, the critical I/O code is serialized on the main processor.

Part 2. Control Prograa (CP) 179

SIGNALING

During certain critical periods, the locking mechanism alone is not
enough. In these situations one processor must signal the other to
request a specific action. As part of initialization, the main
processor issues a SIGP to activate the attached processor. Some
critical functions, such as machine check handling or extending free
storage, require that one processor be quiesced for a time and then
reactivated. This is done with the SIGNAL macro.

LOCKING

To provide system integrity, VM/370 attached processor support is
designed around one global system lock, a VMBLOK local lock, and several
system local locks for specifically identified queues or modules.

All of CP runs under the global system lock except for specifically
identified paths. If the lock cannot be obtained, the function will be
deferred by storing the necessary information in the VMBLOK appendage
and stacking that VMBLOK for later processing. ihat processor will then
take a special unlocked path through the dispatcher to dispatch a new
virtual machine.

In some situations, the processor cannot defer the requested function
and will spin on the lock until it becomes available.

To ensure system integrity along the special unlocked paths, various
local locks have been defined. These locks are tasically spin locks and
are held for short periods of time.

The VMBLOK lock is obtained by the dispatcher before dispatching a
virtual machine in problem program state or before performing any system
service for that virtual machine. This lock will prevent a virtual
aachine from being serviced by CP while it is running in problem program
state.

!gte: This lock is not a spin lock.

The free storage lock is a spin lock obtained by D~KFRE for all FREE and
FRET requests for free storage.

There are several other locks used by CP in situations where the
global system lock is not held. All of the locks used by CP are
described in detail in Y~L]lQ §l§!~m 1Qgl£ ~~~ gfg~l~! ~~!~!!1~g!1£~
Qy!Q~.

180 IBM VM/310 System Programmer's Guide

April 1, 1981

If you have user-defined areas that ar~ used by more than one virtual
machine, you will need to define your own locking conventions. You can
use the LOCK macro to obtain and release a PRIVATE lock. The format of
the LOCK macro is:

r-
I
I (label]
I
I
i

label

OBTAIN
RELEASE

LOCK
{

OBTAIN },TYPE=PRIVATE,[SPIN={YES}][,SAVE]
RELEASE NO

is any desired use label.

is a required positional operand indicating whether the lock
is to be obtained or released.

TY PE=PRI VATE
is a required operand that indicates that the lock is a user
lock.

SPIN=YESINO

SAVE

specifies whether control is to be retu~ned without the lock
being held. The default is SPIN=YES.

is an optional keyword that indicates registers~, 1, 14 and
15 are to be saved before the rest of the macro expansion.
These are saved in the PSA of the processor that is executinq
this macro. The registers are restored before exit from the
macro expansion.

The condition code (cc) is set as a result of the invocation of the LOCK
macro.

cc=O OBTAIN - lock obtained
RELEASE - lock released

cc=l OBTAIN,SPIN=NO - lock owned by another processor.

A failure to release a lock results in a LOK003 abend.

The address of the lockword must be specified in register 1 and the
lockword must be a fullword aligned on a fullword boundary. Spin time
for private locks is kept in the DMKLOKSI timer value for all non-DMKLOK
locks.

AFFINITY

If one processor has a specia~ feature that the other processor does not
have, you can tell the system that you always want to execute on that
processor. This is done by requesting affi-ni-t-y ,-ei-ther in the d-ireGtory
or with a SET AFFINITY command. See the Y~l170 £~ Com~~ngR~!~ren~~ !2£
Gene~gl Q§g[§ for details on the SET AFFINITY command.

Part 2. Control Program (CP) 181

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

DIAGNOSE Instruction In a Virtual Machine

The DIAGNOSE instruction cannot be used in a virtual machine for its
normal function. If a virtual machine attempts to execute a DIAGNOSE
instruction, a program interrupt returns control to CP. Since a
DIAGNOSE instruction issued 1n a virtual machine results only in
returning control to CP and not in performing normal DIAGNOSE functions,
the instruction is used for communication between a virtual machine and
CP. The machine language format of DIAGNOSE is:

83

Rx, Ry

CODE

<------- 4 bytes ------->

83 I Rx I Ry I CODE

is X'83' and interpreted by the assembler as the DIAGNOSE
instruction.

MQ!~: There is no mnemonic for DIAGNOSE.

are general purpose registers that contain operand storage
addresses or return codes passed to the DIAGNOSE interface.
If the registers contain addresses, those addresses must be
real to the virtual machine issuing the DIAGNOSE.

is a two-byte hexadecimal value that CP uses to determine what
DIAGNOSE function to perform. The codes defined for the
general VM/SP user are described in this section. The code
must be multiple of four. Codes X'OO' through X'FC' are
reserved for IBM use, and X'100' through X'1FC' are reserved
for users.

Because DIAGNOSE operates differently in a virtual machine than it
does in a real machine, a program should determine that it is operating
in a virtual machine before issuing a diagnose instruction, and prevent
execution of a DIAGNOSE when in a real machine. The Store Processor 10
(STIDP) instruction provides a program with information about the
processor in which it is executing, including the processor version
number. If STIDP is issued from a virtual machine, the version number
will be X'FF' in the first byte of the CPUID field.

A virtual machine issuing a diagnose instruction should run with
interrupts disabled. This prevents loss of status information
pertaining to the diagnose operation such as condition codes and sense
data.

182 IBM VM/370 System programmer's Guide

April 1, 1981

DIAGNOSE Code X'OO' -- Store
Extended-Identification Code

Execution of DIAGNOSE code X'OO' allows a virtual machine to examine the
VM/370 extended-identification code. For example, an as/VS1 virtual
machine issues a DIAGNOSE code X'OO' instruction to determine if the
version of VM/370 under which it is executing supports the VM/VS
Handshakinq feature. If the extended-identification code is returned to
VS1, VM/370 supports handshaking; otherwise, it does not.

The register specified as Rx contains the doubleword aligned virtual
storaqe address where the VM/370 extended-identification code is to be
stored. The Ry register contains the number of bytes to be stored
entered as an unsiqned binary number.

If the VM/370 system currently executing does not suooort the
DIAGNOSE code - x'OO' instruction, no data is returned to the virtual
machine. If it does support the DIAGNOSE code X'OO' instruction, the
following data is returned to the virtual machine (at the location
specified by RX):

fi~!g·
System

Name

version
Number

Version
Code

MCEL

Processor
Address

User id

Program
Product
Bit Map

The first byte is the
version number, the second
byte is the level, and the third
byte is the PLC (Proqram Level
Chanqe) number.

VM/370 executes the STIDP
(Store Processor ID) instruction
to determine the version
code.

VM/370 executes the STIDP
instruction to determine
the maximum length of the
MCEL (Machine Check Extended
Logout) area.

VM/370 executes the STAP
(Store Processor Address)
instruction to determine the
processor address.

The userid of the virtual
machine issuing the DIAGNOSE.

Bits that indicate the
Proqram Products that
are installed.

Characteristics
8 bytes;-EBCDIC

3 bytes, hexadecimal

1 byte, hexadecimal

2 bytes, hexadecimal

2 bytes, hexadecimal

8 bytes, EBCDIC

8 bytes, hexadecimal
(Reserved for IBM use)

If VM/370 is executinq in a virtual machine, another 24 bytes, or
less, of extended identification data is appended to the first 24 bytes
described above. Up to five nested levels of VM/370 virtual machines
are sup-ported b-y·--th-is diaqno-se- inst-ru€tion result in-g in a max-i-m--u-m- of -1-6-0-
bytes of data that can be returned to the virtual machine that initially
issued the DIAGNOSE instruction.

Upon return, Ry contains its original value less the number of bytes
that were stored.

Part 2. Control Proqram (CP) 183

paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

No completion code is returned, and the condition code remains
unchanged.

DIAGNOSE Code X'04' -- Examine Real Storage

Execution of a DIAGNOSE Code X'04' allows a user with command pri~ilege
class C or E to examine real storage. The register specified as Rx
contains the virtual address of a list of CP (real) addresses to be
examined. The Ry register contains the count of entries in the list.
Ry+1 contains the virtual address of the result field. The result field
contains the values retrieved from the specified real locations.

For each address in the list of CP addresses, VM/370 provides a
fullword of data obtained from the specified address in real storage.
VK/370 stores this data into the result field identified by the Ry+1
register.

There is a one-to-one correspondence between entries in the list of
addresses and entries in the result field. For example, data obtained
from the address in the first entry of the address list is stored in the
first entry of the result field, data obtained from the second entry of
the address list is stored in the second entry of the result field, and
so forth.

Note: The request and result tables must be in the same page of virtual
storage, and that page must be resident in real storage, at the time the
DIAGNOSE is executed. This is guaranteed if the instruction itself is
also in the same paqe.

In the attached processor environment, each processor has a prefix
register to relocate addresses between 0 and 4095 to another page frame
in main storaqe. The prefix register enables each processor to use a
different paqe frame in order to avoid conflict with the other processor
for such activity as interrupt code recording. Thus, the range 0
through 4095 refers to different areas of storage, depending upon which
processor generates the address.

All references to main storage from either processor are handled as
if they were made on the main processor. Existing user programs remain
valid for performance data; in the attached processor environment, they
receive the statistics for the main processor.

References to the PSA of the attached processor may be made as
follows: first, retrieve the value of PREFIXB, the value of the prefix
register for the other processor (the attached processor in this case).
Next, specify addresses that are the sum of the value of PREFIXB and the
PSA displacement. References to 0 through 4095 are made by summing the
value of PREFIXA and the PSA displacement to form the request address.
Several system values that are processor independent are maintained in 0
through 4095, such as the restart PSW and the trace table vectors.

DIAGNOSE Code X'08' -- Virtual Console Function

DIAGNOSE Code X'08' enables a virtual machine running in supervisor
state to issue CP commands. The virtual machine must specify the
command, the command parameters, and whether CP is to return the command
response to the user's terminal or to a buffer. In addition to
returning the command response, CP sets a completion code in the Ry
register and may set a condition code.

18U IBM VM/370 Syste~ Programmer's Gui1e

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

When DIAGNOSE Code X'08' is issued, the Rx and Ry registers must be
set up as follows:

Rx -- Rx must point to the character string in virtual storage that
contains the CP commands and parameters. If the character
string contains mUltiple commands, each command and its
associated parameters must be separated from adjacent commands
by the value X'15'.

Ry -- The high-order byte contains flag bits; the other three bytes
specify, in bytes, the length of the CP commands and
parameters. The maximum allowable length is 132 characters.

Set the flag bits as follows. If CP is to reject a password entered
on the same line as a LINK command, set the high-order bit to a value of
one (X'80'). CP rejects passwords only if the installation specified
password suppression during system generation. If CP 1S to return the
command response in a buffer, set the second flag bit to a value of one
(X'40').

If the Ry reqister contains the value X'OOOOOOOO', the DIAGNOSE Code
acts as a no-operation (NaP) instruction.

If the command response is to be returned in a buffer, Rx and Ry
cannot be consecutive registers nor can either be register 15. In
addition, the Rx+1 and Ry+1 registers must be setup as follows:

Rx+1 -- Rx+1 must point to the buffer in virtual storage where CP is
to return the command response.

Ry+1 -- Fy+1 must specify, in bytes, the length of the buffer. This
value must not exceed 8192.

If the command response is to be returned in a buffer, CP sets a
condition code and returns information as follows:

condition code 0 -- The request was successful. The Rx+1 register
points to the buffer that contains the command
response. The Ry+1 register specifies the length
of the response.

condition code 1 -- The request was unsuccessful. The response does
not fit into the buffer. The Ry+1 register
contains a value that specifies how many bytes of
the response would not fit into the buffer.

If an error is encountered while processing DIAGNOSE Code X'08', CP
prints an error message and sets a completion code in the Ry register.
The completion code is the hexadecimal representation of the numeric
portion of the error message. For example, if error message DMKCFM045E
is issued, CP sets a completion code of X'002D' which is the hexadecimal
representation of 045.

If CP is executing multiple commands and encounters an invalid
command, processinq stops and CP ignores the remaining commands.

Following are two examples
X'08'. The first example shows
command. In this example the
t~t~ihal. Note thatih a virtual
address (LRA) instruction must be

$howing how to specify DIAGNOSE Code
how a program- issues the QUERY FILES
response is returned to the user's
storaq~ (VSl envitonment, a load real

used to load the Rx register.

Part 2. Control Program (CP) 185

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

CMMD
CMMDL

LA* 6,CMMD
LA 10,CMMDL
DC X'83',X'6A',XL2'0008'

DC
EQU

C'QUERY FILES'
*-CMMD

The second example shows how to specify a string of commands when
multiple commands are to be issued.

CMMD

CMMDL

LA* 6,CMMD
LA 10,CMMDL
DC X'83',X'6A',XL2'0008'

DC
DC
DC
EQU

C' QUERY FILES'
X' 15'
C'PURGE PRINTER'
*-CMMD

*Note that if you are in CMS mode you must code a LRA instruction
instead of a LA instruction if you are running a virtual storage system
(for example, MVS) in a virtual machine and want to specify the address
of the CMMD parameter.

DIAGNOSE Code X'OC' -- Pseudo Timer

Execution of DIAGNOSE Code X'OC' causes CP to store four doublewords of
time information in the user's virtual storage. The register specified
as Rx contains the address of the 32 byte area where the time
information is to be stored. The address must be on a doubleword
boundary. The information returned is in the format shown in Figure 22.

The first eight bytes contain the Month/Day-of-Month/Year. The next
eight bytes contain the time of day in Hours:Minutes:Seconds. The last
16 bytes contain the virtual and total processor time used by the
virtual machine that issued the DIAGNOSE. The last 16 bytes are
expressed as a doubleword, unsigned integer. The time is expressed in
microseconds. No completion code is returned, and the condition code
remains unchanged.

DIAGNOSE Code X'1 0' -- Release Pages

Pages of virtual storage can be released by issuing a DIAGNOSE Code
X'10'. When a page is released, it is considered all zero. The
register specified by Rx contains the address of the first page to be
released, and the Ry register contains the address of the last page to
be released. Both addresses must be on page boundaries. A page
boundary is a storage address whose low order three digits, expressed in
hexadecimal, are zero. No completion code is returned, and the
condition code remains unchanged.

Do not use DIAGNOSE Code X'10' to release noncontiguous storage: use
DIAGNOSE Code X'64' for this purpose.

186 IBM VM/370 System programmer's Guide

Apr il 1, 198 1

DIAGNOSE Code X'14'
Manipulation

Input Spool File

Execution of DIAGNOSE Code X'14' causes DftKDRDER to perform input spool
file manipulation. Depending upon the value of the function subcode,
the register specified as Rx contains a buffer address, a copy count, or
a spool file identifier. The Ry register, which must pe an even
register, contains either the virtual address of a spool input card
reader or, if Ry+1 contains X'OFFF', a spool file ID number .• Ry+1
contains a hexadecimal code indicating the file manipulation to be
performed. The codes are:

~Qgg
0000
0004
0008
OOOC
0010
0014
0018
001C
0020
OFFF

ly.!!£tion
Read next spool buffer (data record)
Read next print spool file block (SFBLOK)
Read next punch spool file block (SFBLOK)
Select a file for processing
Repeat active file nn times
Restart active file at beginning
Backspace one record '
Read next monitor spool file block
Read next monitor spool record
Retrieve subsequent file descriptor

On return Ry+1 may contain error codes that further define a returned
condition code of 3.

Condition

--~Q~~
o
1
2
3
3
3

3
3

SUBCODE X'OOOO'

4
8

12

16
20

Error
Data transfer successful
End of file
File not found
Device address invalid
Device type invalid
Device busy, reader not ready,
or device is a real device
Fatal paging I/O error
Page already locked for I/O

Rx start address of fullpage virtual buffer
Ry virtual spool reader address

The specified device is checked for a file activated via DIAGNOSE.
If one is found, the next fullpage buffer is made available to the
virtual machine via a call to DMKRPAGT. If a file is not found, the
chain of reader files is searched for a file for the calling user and
connected to the virtual device for further reading. If no file is
found, virtual condition code 2 is set. When the end of an active file
is reached, the device status settinqs are tested for "spool
cont inuous.'" If not set, v irtual condition code 1 is set, indicating
end of file. If the device is set for continuous input, the active file
is examined to determine whether or not it is a multiple-copy file. If
it is, reading is restarted at the beginning of the file. If it is not,
the file is closed via DMKVSPCR and the reader chain is searched for
another input file. If no other file is found, virtual condition code 1
is set. A specific DIAGNOSE X'14' Subcode X'OOOO' must be issued to get
the first spooled page again.

Part 2. Control Program (CP) 187

Page of GC20-1S07-7 As Updated April 1, 19S1 by TNL GN25-0829

SUBCODE X'0004'

Rx virtual address of a 13-doubleword buffer
Ry virtual spool reader address

If the specified device is in use via diagnose; the VSPLCTL block is
checked to see whether or not this is a repeated call for printer
SFBLOKs. If it is, then the chain search continues from the point where
the last SFBLOK was given to the virtual machine. In this case, cc = 1
is set when there are no more print files. If this is the first call for
an SFBLOK, or if there have been intervening calls for file reading, the
spool input chain is searched from the beginning, and cc=2 is set if no
files are found.

!Qte: The virtual buffer specified via Rx must not cross a page boundary
or a specification exception will result.

SUBCODE X'OOOS'

Rx virtual address of a 13-doubleword buffer
Ry virtual spool reader address

Processing for subcode X'OOOS' is the same as for subcode X'0004',
except that only card-image input files are processed.

MQte: For both subcode X'0004' and subcode X'0008', the format
definition for a V~/370 SFBLOK can be found in the system macro library.

SUBCODE X'OOOC'

Fx file identifier of requested file
Ry virtual spool reader address

The spool input chain is searched for the file specified. If it is
not found, cc=2 is set. If it is found, the file is moved to the head
of the chain so that it will be the next file processed by any of the
other fanctions.

SUBCODE X'0010'

Rx new copy count for the active file
Ry virtual spool reader address

The specified device is checked for an active file. If no file is
active, cc=2 is set. Otherwise, the copy COUNT for the file is set to
the specified value, with a maximum of 255. If the specified count is
not positive, a specification exception is generated. If the count is
greater than 255, it is adjusted to module 256.

188 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

SUBCODE X'0014'

Rx start address of virtual fullpage buffer
Ry = virtual spool reader address

The specified device is checked for an active file. If no active file
is found, cc=2 is set. otherwise, the VSPLCTL pointers are reset to the
beqinning of the file.

SUBCODE X'0018'

Rx start address of virtual fullpage buffer
Ry virtual spool reader address

The specified device is checked for an active file. If no active file
is found, cc=2 is set. Otherwise, the file is backspaced one record and
the. record is given to the user as in subcode X'OOOO'. If the file is
already positioned at the first record, the first record is given to the
user.

SUBCODE x'001C'

Rx = virtual address of a 13-doubleword buffer
Ry = virtual spool reader address

Processing is the same as Subcode X'0008', except
spool files, as identified by the SFB~ON flag is
handled.

SUBCODE x'0020'

Rx = start address of fullpage virtual buffer
Ry virtual spool reader address

Processing is the same as Subcode X'OOOO', except
spool files, as identified by the SFBMON flag in
handled.

that only monitor
SFBFLAG2, can be

that only monitor
SFBFLAG2, can be

Part 2. Control Program (CP) 189

Page of GC20-1S07-7 As Updated April 1, 19S1 by TNL GN25-0S29

SU BCODE X' OFFF'

Rx virtual address of a 252-byte buffer
Ry spool file ID number

If Ry is nonzero, the spool input chain is searched for a file with a
matchinq ID number: ~L nOne is found or if one is found that is owned
by a different virtual machine, cc=2 is set. The chain search is
continued from the file that was found, or from the anchor if Ry is
zero, for the next file owned by the caller, independent of file type,
class, INUSE flag, etc. If none is found, cc=1 is set. Otherwise, the
SFBLOK and the first record of the file (generally, the TAG) are copied
to the caller's virtual storage buffer.

DIAGNOSE Code X'18' --Standard DASD I/O

Input/output operations to a direct access device, of the type used by
CMS, can be performed from a virtual machine using DIAGNOSE Code X'lS'.
No I/O interrupts are returned by CP to the virtual machine; the
DIAGNOSE instruction is completed only when the READ or WRITE commands
associated with the DIAGNOSE are completed. The Rx register contains
the virtual device address of the direct access device. The Ry register
contains the address of a chain of CCWs. The CCW chain must be in a
standard format that CP expects when DIAGNOSE Code X'1S' is used, as
shown below. DIAGNOSE must not be used to read or write
record-overflow-formatted data. Register 15 must be loaded by the user
with the number of READS or WRITEs in the CCW chain.

A typical CCW string to read or write two SOO-byte records is as
follows:

SEEK,A,CC,6
SET SECTOR (not used for 2314/2319)
SRCH,A+2,CC,5
TIC,*-S,O,O
RD or WRT,DATA,CC+SILI,SOO
SEEK HEAD,B,CC,6 (omitted if HEAD number unchanged)
SET SECTOR
SRCH,B+2,CC,5
TIC,*-S,O,O
RD or WRT,DATA+SOO,SILI,SOO

A SEEK and SRCH arguments for first RD/WRT
B SEEK and SRCH arguments for second RD/WRT

The condition codes and completion codes returned are as follows:

cc=O I/O complete with no errors

cc=1 Error condition. Register 15 contains one of the following:

R15=1
R1S=2
R15=3
R15=4
R15=5

Device not attached
Device not 2319, 2314, 3330, 3340, or 3350
Attempt to write on a read-only disk
Cylinder number not in range of user's disk
virtual device is busy or has an interrupt pending

190 IBM VM/370 System programmer's Guide

cc=2 Error condition. Register 15 contains one of the following:

..... r_r

.t\IJ-J

R15=6

R15=7
R15=8
R15=9
R15=10
R15=11

R15=12

"'_~_L __ L_ ~~o _L_~ __ __ ~ ~_~~'_~ __ ~ __ '~_ ... n~
rV~U~CL ~v ~~ft ~~L~U~ UV~ ~VU~~C.V~~ u~~~u~~.

SEEK/SEARCH arguments not within range of user's
storage
READ/WRITE CCW is neither Read (06) nor Write (05)
READ/WRITE byte count=O
READ/WRITE byte count greater than 2048
READ/WRITE buffer not within user's storage
The value in R15, at entry, was not a positive number
from 1 through 15, or was not large enough for the
given CCW string.
Cylinder number on seek head was not the same number as
on the first seek.

cc=3 Uncorrectable I/O error:

R15=13
CSW (8 bytes) returned to user
Sense bytes are available if user issues a SENSE command

DIAGNOSE Code X'1 C' -- Clear Error Recording
Cylinders
Execution of DIAGNOSE Code X'1C' allows a user with privilege class F to
clear the error recording data on disk. The DMKIOEFM routine performs
the clear operation. The register specified as Rx contains a one-byte
code value in the low-order byte as follows:

~2de Function
X'01' Clear-and reformat all error recording, leaving any

frame records intact
X'02' Clear and reformat all error recording cylinders. erasing

both frame records and error records

DIAGNOSE Code X'20' -- General I/O

With DIAGNOSE
ccw chain to
DIAGNOSE must
data on DISD
.achine; the
commands in
specified as
contains the

Code X'20', a virtual machine user can specify any valid
be performed on a tape or disk device. (An exception:

not be used to read or write record-overflow-formatted
devices.) No I/O interrupts are reflected to the virtual

DIAGNOSE instruction is completed only when all I/O
the specified CCW chain are finished. The register
Rx contains the virtual device address. The Ry register

address of the CCW chain.

The celis are processed via DMKCCWTR through DMKGIOEX. providing full
virtual I/O in a synchronous fashion (self-modifying CClis are not
permitted, however) to any virtual machine specified. Control returns
to the virtual machine only after completion of the operation or
detection of a fatal error condition. EREP support is provided for tape
and DASD devices only; all other devices will present an error conditien
in the PSi to the virtual user. Condition codes and error codes are
returned to the virtual system.

The condition codes and error codes returned are as follows:

cc=O I/O completed with no errors

Part 2. Centrol Prograa (CP) 191

cc=l Error condition. Register 15 contains the following:

R15=1 Device is either not attached or the virtual channel is
dedicated.

R15=5 Virtual device is busy or has an interrupt pending.

cc=2 Exception conditions.
following:

Register 15 contains one of the

R15=2
R15=3

Unit exception bit in device status byte=l
Wrong length record detected.

cc=3 Error Condition:

R15=13 A permanent I/O error occurred or an unsupported device
was specified. The two rightmost positions of the
user's Ry register contain the first two sense bytes

DIAGNOSE Code X'24' -- Device Type and Features

DIAGNOSE Code X'24' requests CP to provide a virtual machine with
identifying information and status information atout a specified virtual
device. The virtual machine must specify the virtual device for which
information is requested. CP returns information atout the virtual
device and associated real device in the Rx. Ry, and Ry+l registers. CP
also provides a condition code identifying the specific device
information returned to the virtual machine.

When a virtual machine issues DIAGNOSE Code X'24', the Rx register
must contain the virtual device address for which information is
requested or the value negative 1 (-1). Specify -1 when the device is a
virtual console whose address is unknown to the virtual machine.

When CP returns control to the virtual machine,
registers contain device information. The Ry
information about the virtual device and the Ry+l
about the real device. If -1 was specified and CP
console, the Rx register contains information about

the Ry, Ry+l, and Bx
register contains

register informaticn
located the virtual

the virtual console.

CP obtains device information from three control blocks: virtual
device information from the virtual device block (VDEVBLOK), and real
device information from the real device block (RDEVBLOK) and from
NICBLOK. The following diagrams identify specific information returned
by CP and show how to locate this information in the Rx, Ry, and Ry+1
registers. The symbolic names used in these diagrams are the symbolic
names used with VDEVBLOK, RDEVBLOK, and NICBLOK in !~Ll1Q ~~i~ Af~g2 ~~g
~gDif21 B12f~ 12gic •

Byte 0

RDEVTMCD
- or -

NICTMCD

Byte 1 Byte 2 Byte 3

virtual
device
address

I

192 IBM VMj370 System Programmer's Guide

.J

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

BDEVTMCD Terminal code bits defining the type of console and
- or - the translate table the console is using. BDEVTMCD is

NICTMCD for a local virtual console;
NICTMCD for a remote 3270 virtual console

r-- ---,
I Byte 0 Byte 1 Byte 2 Byte 3 I
I I
I VDEVTYPC VDEVTYPE VDEVSTAT VDEVFLAG 1
L---

VDEVTYPC virtual device type class

VDEVTYPE virtual device type

VDEVSTAT virtual device status

VDEVFLAG Virtual device flags

Byte 0 Byte 1 Byte 2
,

Byte 3 I
--------------------------------------1

BDEVTYPC BDEVTYPE
- or -

NICDTYPE

BDEVMDL
- or -
NICHDL

BDEVFTB I
- or - 1
BDEVLLEN I
- or - 1
NICLLEN I ___J

RDEVTYPC Real device type class

RDEVTYPE Real device type

RDEVMDL Real device model number

RD EVFTR Real device feature code for a device other than a virtual
console

RDEVLLEN Current device line length for a local virtual console

NICDTYPE Real device type for a remote 3270 virtual console

NICMDL Real device model number for a remote 3270 virtual console

NICLLEN Current device line length for a remote virtual console

Part 2. Control Program (CP) 193

April 1,1981

The following chart lists the
DIAGNOSE Code X'24', the meaning
registers where data is returned •

cond ition
of each

codes CP can return
condition code, and

.--
I , This register

contains information
, If the condition

code equals Ry Ry+i2 Comments

o x x

2 x x

3

X INormal completion

I Undefined

IThe virtual device
lexists but is not
lassociated with a
Ireal device

I Invalid device
laddress or the
Ivirtual device
Idoes not exist

lThe Ex register contains information only when DIAGNOSE Code
X'24' specifies a virtual console whose address in unknown.

2If Ry is register 15, CP returns only virtual device infor
mation: no information is returned in register Ry+1.

DIAGNOSE Code X'28' -- Channel Program
Modification

,

for
the

DIAGNOSE Code X'28' allows a virtual machine to correctly execute some
channel proqrams modified after the Start I/O (SIO) instruction is
issued and before the input/output operation is completed. The channel
command word (CCW) modifications allowed are:

• A Transfer in Channel (TIC) CCW modified to a No Operation (NOP) CCW

• A TIC CCW modified to point to a new list of CCis

• A NOP modified to a TIC CCW

When a virtual machine modifies a TIC CCW, it is modifying a virtual
channel proqram. CP has already translated that channel program and is
waiting to execute the real CCws. The DIAGNOSE instruction, with Code
X'28', must be issued to inform CP of the change in the virtual channel
program, so that CP can make the corresponding change to the real CCW
before it is executed. In addition, when a NOP CCW is modified to point
to a new list of CCWs, CP translates the new CCWs.

To be sure that the DIAGNOSE instruction is recognized in time to
update the real CCW chain, the virtual machine issuing the DIAGNOSE
instruction should have a high favored execution value and a low
dispatching priority value. The CP SET command should be issued:

SET FAVORED xx

SET PRIORITY nn

194 IBM VM/370 SYstem Programmer's Guide

Aug 1, 1979

where xx has a high numeric value and nn has a low numeric value. The
~irtual machine ~ssu~ng the DIAGNOSE Loue X;28; must be in the
supervisor mode at the time it issues the DIAGNOSE instruction.

When DIAGNOSE Code X'28' is issued, the Rx register contains the
address of the TIC or NOP CCW that was modified by the virtual machine.
The Ry register contains the device address in bits 16 through 31. Rx
and Ry cannot be the same register. The addresses specified in the Rx
register, the new address in the modified TIC CCW, and the new CCW list
to which the modified TIC CCW points must all be addresses that appear
real to the virtual machine: CP knows these addresses are virtual, but
the virtual machine thinks they are real.

The condition codes (cc) and completion codes are as follows:

cc=O The real channel program was successfully modified; register
15 contains a zero.

cc=1 There was probably an error in issuing the DIAGNOSE
instruction. Register 15 (R15) contains one of the following
completion codes:

R15=1 The same register was specified for Rx and Ry.
R15=2 The device specified by the Ry register was not found.
R15=3 The address specified by the Rx register was not within

the user's storage space.
R15=4 The address specified by the Rx register was not

doubleword aligned.
R15=5 A CCW string corresponding to the device (Ry) and

address (Rx) specified was not found.
R15=6 The CCW at the address specified by the Rx register is

not a TIC nor a NOP, or the CCW in the channel program
is not a TIC nor a NOP.

R15=7 The new address in the modified TIC CCW is not within
the user's storage space.

R15=8 The new address in the modified TIC CCW is not
doubleword aligned.

cc=2 The real channel program cannot be modified because a channel
end or device end already occurred. Register 15 contains a 9~
The virtual machine should restart the modified channel
program.

DIAGNOSE Code X'2C' -- Return DASD Start of
LOGREC

Execution of DIAGNOSE Code X'2C' allows a user with privilege class C,
E, or F to find the location on the disk of the error recording area,
the number of error recording cylinders, and the location of the first
error record.

The register specified as Rx contains a one-byte code in the
low-order byte, indicating the function to be performed:

X'01' - Return the DASD location of the start of the error recording
area, and the number of error recording cylinders.

X'02' - Return the HDRSTART value (DASD location of first error
record) •

X'04' - Return indication of whether there are frame records on the
error recording cylinders.

Part 2. Control Program (CP) 195

Page of GC20-1807-7 As Updated Aug 1, 1979 by TNL GN25-0492

On return to the issuer of DIAGNOSE '2C':

If code '01' is specified: Register Rx will contain the DASD
location (in VM/370 control program internal format) of the start of
the error recording area. Ry contains, in the low-order halfword,
the number of error recording cylinders.

ir code 'VL' L~ specified; Register Rx will contain the DASD
location of the first error record (in CCPD format). The value
actually points to the last frame record written, or record 2 if no
frame records present.

If code '04' is specified: Register Ry will contain a X'02' in the
low-order byte if frame records are present on the error recording
cylinders; X'OO' if no frame records present.

No1~: Codes '02' and '04' may both be specified (code '06') on invoking
DIAGNOSE. Eoth an Rx and Ry value must be specified.

DIAGNOSE Code X'30' -- Read One Page of lOGREC
Data

Execution of DIAGNOSE Code X'30' allows a user with privilege class C,
E, or F to read one page of the system error recording area. The
register specified as Rx contains the DASD location (in VM/370 control
program internal format) of the desired record. The Ry register
contains the virtual address of a page-size buffer to receive the data.
The DMKRPAGT routine supplies the page of data. The condition codes
returned are:

Condition
_£Q~

o
1
2
3

Me.@il!.9
Successful read, data available
End of cylinder, no data
1/0 error
Invalid cylinder, outside recording area

DIAGNOSE Code X'34' -- Read System Dump Spool
F i I e

A user with privilege class C or E can read the system spool file by
issuing a DIAGNOSE Code X'34' instruction. However, this Diagnose Code
cannot read spool files that contain VMDUMP records -- use DIAGNOSE Code
X'14' for this purpose. If a program attempts to use DIAGNOSE Code
X'34' to read VMDUMP records, CP returns a condition code of 2. The
register specified as Rx contains the virtual address of a page-size
buffer to receive the data. The Ry register, which must not be register
15, contains the virtual address of the spool input card reader. Ry+1,
on return, may contain error codes as follows:

Condition
__ £od~ __

o
1
2
3
3
3
3

Ry+1
~~~.2~~ode 

4 
8 

12 
16 

l1~ing 
Data transfer successful 
End of file 
File not found 
Device address invalid 
Device type invalid 
Device busy 
Fatal paging 1/0 error 

196 IBM VM/370 System ?Logrammer's Guide 



Page of GC20-1807-7 As Updated April 1, 19S1 by TNL GN25-0S29 

The DMKDRDMP routine searches the system chain of spool input files 
for the dump file belonging to th€ user issuing the DIAGNOSE 
instruction. The first (or next) record from the dump file is provided 
to the virtual machine via D!~RPAGT and the condition code is set to 
zero. The dump file is closed via VM/370 console function CLOSE. 

DIAGNOSE Code X'38' -- Read System Symbol Table 

Execution of DIAGNOSE Code X'3S' causes the routine DMKDRDSY to read the 
system table into storage. The register specified as Rx contains the 
address of the page buffer to contain the symbol table. 

DIAGNOSE Code X'3C' -- VM/370 Directory 

Execution of DIAGNOSE Code X'3C' allows a user to dynamically update the 
V8/370 directory. The register specified as Rx contains the first 4 
bytes of the volume identification. The first two bytes of Ry contain 
the last 2 bytes of the volume identification. The routine DKKUDRDS 
dynamically updates the directory. 

I DIAGNOSE Code X'48' -- Issue SVC 76 From a Second 
, Level VM/370 Virtual Machine 

A second level VM/370 operating system issues SVC 76 using this 
DIAGNOSE. SVC 76 handles IIC error recording for virtual operating 
systems. For instance, a virtual machine issues SVC 76 to record data 
about hardware errors that occur on devices dedicated to it. 

Rl is the Rx register. The By register is not used in this DIAGNOSE. 
R1 must contain either of two values: 

X'04' ind1cates an SVC 76 request from a VM/370 virtual machine 

X' OS' indicates that a V~/370 virtual machine issued DIAGNOSE 
X' 48' 

CP checks first for the X'04' value. If it is present, CP sets 
VMSPMFLG in the virtual machine's VMBLOK to X'04' and processes the SVC 
76 request on behalf of the virtual machine. 

If R1 contains a X'08' value, CP sets 
machine's VMBLOK to X'OS'. It then reflects 
virtual machine. The virtual machine then 
recording. 

VMSPMFLG 
the SVC 
handles 

in the virtual 
76 back to the 
its own error 

For more information on SVC 76 and I/O error recording procedures, 
refer to .!M/370 OLTSEP End Erro~ Be£2!:.sing Guide, GC2Q-1S09. 

DIAGNOSE Code X'4C' -- Generate Accounting 
Records for the Virtual User 

This code can be issued only ty a user with the account option (ACCT) in 
his directory. 

Rx contains the virtual address of either a 24-byte parameter list 
identifying the "charge to" user, or a variable length data area that is 
to be punched into the accounting card. The interpretation of the 

Part 2. Control Program (CP) 197 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

ad dress is based on a hex adecimal code su pplied in R y. If th e virt ua I 
address represents a parameter list, it must be doubleword aligned; if 
it represents a data area, the area must not cross a page boundary. If 
Rx is interpreted as pointing to a parameter list and the value in Rx is 
zeros, the accounting card is punched with the identification of the 
user issuing the DIAGNOSE instruction. 

Ry contains a hexadecimal code interpreted by DMKHVC as 

Cod,g 
0000 
0004 
0008 

OOOC 

0010 

Rx .12.Qints 12: 
a parameter list containing only a userid. 
a parameter list containing a use rid and account number~ 
a parameter list containing a userid and distribution 

number. 
a parameter list containing a userid, account number, and 

distribution numter. 
a data area containing up to 70 bytes of user information to 

be transferred to the accounting card starting in column 
9. 

Note: If Ry contains X'0010', By cannot be register 15. 

Ry+1 contains the length of the data area pointed to by Rx. If Rx 
points to a parameter list (By not equal to X'0010'), Ry+l is ignored. 

DMKHVC checks the VMACCOUN flag in VMPSTAT to verify that the user 
has the account option and if not, returns control to the user with a 
condition code of one. 

If By contains a code of X'0010', DMKHVC performs the following 
checks: 

• If the address specified in Bx is negative or greater than the size 
of the user's virtual storage, an addressing exception is generated. 

• If the combination of the address in Rx and the length in Ry+1 
indicates that the data area crosses a page boundary, a specification 
exception is generated. 

• If the value in Ry+l is zero, negative, or greater than 70, a 
specification exception is generated. 

If both the virtual aodress and the length are valid, DMFREE is 
called to obtain storage for an account buffer (ACNTBLOK) which is then 
initialized to blanks. The userid of the user issuing the DIAGNOSE 
instruction is placed in columns 1 through 8 and an accounting card 
identification code of "CO" is placed in columns 79 and 80. The user 
data pointed to by the address in Rx is moved to the accounting card 
starting at column 9 for a length equal to the value in Ry+1. A call to 
DMKACOQU queues the ACNTBIOR for real output. If a real punch is 
available, DMKACOPU is called to punch the card; otherwise, the buffer 
is stored in main storage until a punch is free. DMKHVC then returns 
control to the user with a condition code of zero. 

If By contains other than a X'0010' code, control is passed to DMKCPV 
to generate the card. D~RCPV passes control to DMKACO to complete the 
"charge to" information; either from the User Accounting Block 
(ACCTBLOK), if a pointer to it exists, or from the user's VKBLOK. 

DMKCPV then punches the card and passes control back to DMKHVC to 
release the storage for the ACCTBIOK, if one exists. DMKHVC then checks 
the parameter list address for the following conditions: 

• If zero, control is returned to the user with a condition code of 
zero. 

198 IBM VM/370 System programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

• If invalid, an addressing exception is generated. 

• If not aligned on a doubleword boundary, a specification exception is 
generated. 

For a parameter list address that is nonzero and valid, the userid in 
the parameter list is checked against the directory list and if not 
found, control is returned to the user with a condition code of two. If 
the function hexadecimal code is invalid, control is returned to the 
user with a condition code of three. If both userid and function 
hexadecimal code are valid, the User Accounting Block (ACCTBLOK) is 
built and the userid, account number, and distribution number are moved 
to the block from the parameter list or the User ftachine Block belonging 
to the userid in the parameter list. Control is then passed to the user 
with a condition code of zero. 

Part 2. Control Program (CP) 198.1 



Page of GC20-1807-7 As Updated April 1, 1981 by TNt GN25-0829 

This page left blank 

198.2 IBM VM/370 System Programmer's Guide 



DIAGNOSE Code X'50' -- Save the 370X Control 
Program Image 
DIAGNOSE Code X'SO' (Privilege class A, B, or C only) invokes the CP 
module D8KSNC to (1) validate the parameter list and (2) write the 
page-format image of the 370X control program to the appropriate system 
voiume. 

When a 370X control program load module is created, the CMS service 
program SAVENCP builds a communications controller list (CCPARM) of 
control information. It passes this information to CP via a DIAGNOSE 
Code X'SO'. 

The register specified as Rx contains the virtual address of the 
Farameter list (CCPARK) e The Ry register is ignored on entry. 

Upon return, the Ry register contains the following error codes: 

~Qg~ 
044 
171 
178 

179 
435 

l1~~!t!1l9: 
'ncpname' was not found in system name table. 
System volume specified not currently available. 
Insufficient space reserved for program and system control 

information. 
System volume specified is not a CP-owned volume. 
Paging error while writing saved system. 

DiAGNOSE Code X'54' -- Control the Function of the 
PA2 Function Key 
DIAGNOSE Code X'S4' controls the function of the PA2 function key~ The 
PA2 function key can be used either to simulate an external interrupt to 
a virtual machine or to clear the output area of a display screen. 

The function performed depends upon how Rx is specified when DIAGNOSE 
Code X'S4' is issued. If Rx contains a nonzero value, the PA2 key 
simulates an external interrupt to the virtual machine. If Rx contains 
a value of zero, the PA2 key clears the output area of the display 
screen. 

The external interrupt is simulated only when the display screen is 
in the VK READ* HOLD, or KORE status and the TERMINAL APL ON command has 
heen issued. 

DIAGNOSE Code X'58' -- 3270 Virtual Console 
Interface 
Execution of DIAGNOSE Code X'S8' allows a virtual machine to display 
large amounts of data on a 3270 in a very rapid fashion. It is possible 
to display the entire 3270 screen with one write operation instead of 22 
writes (one for each line in the output area of a 3270 screen). 

The register specified as Rx contains the address of the console CCW 
string. The Ry register contains (in bits 16 throllgh 31) the device 
address of the virtual console. 

To specify the display CCi, use the following assembler language 
instructions: 

DS OD 
DC X'19', AL3 (dataddr), AL1(flags), AL1(ctl), AL2(count) 

Part 2. Control Program (CP) 199 



dataddr 

flags 

ctl 

count 

is the beginning address of the data to be displayed. 

is the standard CCW flag field with the suppress incorrect 
length indication (5LI) bit on. 

is a control byte that indicates the starting output displaY' 
line= If the high order bit is on, the entire 3270 output 
display area is erased before the new data is displayed. A 
value of X'FF' clears the screen, but writes nothing. 

is a two byte field indicating the number of bytes to be 
displayed. The 3278-2A display console can display a maximum 
of 1440 bytes; all other display consoles can display a 
maximum of 1760 bytes. 

When the DIAGNOSE is executed with a valid CCW string, a buffer 
(whose length is the number of bytes specified by £2Y~1) is built in 
free storage. The data pointed to by ~g1gdd~ is loaded into the buffer. 
Data chaining may be specified in the CCW to link noncontiguous data 
areas; however, command chaining is an end of data indication for the 
current buffer. 

Using the starting output line (ctl) and the number of bytes of 
output (count), CP checks that the data will fit on the screen. CP then 
does the display. A zero condition code indicates the I/O operation 
completed successfully; a nonzero condition code indicates an I/O error 
occurred. 

!Qte: An I/O error occurs when the display screen is placed in MORE 
status and the PA2 key is pressed to allow screen display. 

DIAGNOSE Code X'5C' -- Error Message Editing 
Execution of DIAGNOSE Code X'SC' causes the editing of an error message 
according to the user's setting of the EM5G function: 

Rx contains the address of the message to be edited. 

Ry contains the length of the message to be edited. 

DMKHVC tests the VMMLEVEL field of the VMBLOK and returns to the caller 
with Rx and Ry modified as follows: 

, 
VMMLEVEL 1 Registers on Return 

I 
VMMCODE I VMMTEXT 1 Rx Ry 

1----1 
ON 1 ON 1 no change no change 

1----1 
ON I OFF 1 no change 10 (length of , , code) 

I I 
OFF I ON 1 pointer to text length of text 

I I part of message alone 
1---1 

OFF I OFF I N/A 0 

200 IBM VM/370 System Programmer's Guide 



page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

~Q1g~ DIAGNOSE Code X'SC' does not write the message; it merely 
rearranges the startinq pointer and length. For eMS error messages, a 
console write is performed following the DIAGNOSE unless Ry is returned 
with a value of O. 

DIAGNOSE Code X'60' -- Determining the Virtual 
Machine Storage Size 

Execution of DIAGNOSE Code X'60' allows a virtual machine to determine 
its size. On return, the register specified as Rx contains the virtual 
machine storage size. 

DIAGI\JOSE Code X'64' -- Finding; Loading!' and 
Purging a Named Segment 

Executi~n of DIAGNOSE Code X'64' controls the linkage of discontiguous 
saved segments. The type of linkage that is performed depends upon the 
function subcode in the register specified as Ry. 

Su bCQg! 
X'OO' 
X' 04' 
X' 08' 
X'OC' 

L01DSYS 
LOADSYS 
PURGESYS 
FINDSYS 

Function 
Loads a named segment in shared mode 
Loads a named segment in nonshared mode 
Releases the named segment from virtual storage 
Finds the starting address of the named segment 

The register specified as Rx must contain the address of the name of 
the segment. The segment name must be 8 bytes long, on a doublevord 
boundary, left justified, and padded with blanks. 

When the LOADSYS diagnose function is executed, CP finds the system name 
table entry for the segment and builds the necessary page and swap 
tables (two sets one for each processor, when running in attached 
processor mode). CP releases all the virtual pages of storage that are 
to contain the named segment and then loads the segment in those virtual 
pages. When the LOADSYS function is executed, CP expands the virtual 
machine size dynamically, if necessary. CP also expands the segment 
tables to match any expansion of virtual storage. 

When LOAD5YS executes successfully, the address of where 
segment was loaded is returned in the register specified as 
the LOA05Y5 function loads a segment in shared mode, 
instruction and branch tracing if either was active. 

the named 
Rx. When 

it resets 

After a LOA05Y5 function executes, the storage occupied by the named 
segment is addressable by the virtual machine, even if that storage is 
beyond the storage defined for the virtual machine. However, any 
storaqe beyond that defined for the virtual machine and below that 
defined for the named segment is not addressable. Figure 24 shows the 
virtual storage that is addressable before and after the LOAOSY5 
function executes. 

Part 2. Control Program (CP) 201 



April 1, 1981 

Before the LOADSYS 
f~ll£i!Qll ~~~1~§_ 

320K r 
I l 
I I 
I All storage 
I Addressable by 
I virtual Machine 
I I 
I V 

OKL -J 

CMS Virtual Machine 
without a Named Segment 
Attached 

After LOADSYS Function 
__ ____ ~xecu~2_ _____ _ 

448Kr--------------------------~ 
I 
I 
I 

Discontiguous Storage 
Addressable by Virtual 

Machine 
384K~'--------------------------~ 

./1111//1/////11111/1/11// • 
• /Storage Not Addressable/ • 
• lllby Virtual Machinel///. 
111111111//1/1//11/1/11//. 

320K~--------·--------------__ 
l 
I 

Storage Still 
Addressable by 
Virtual Machine 

I , 
OK~------------------------~ 

eMS virtual Machine with 
a Named Segment Attached 

Figure 24. Addressable Storage Before and After a LOADSYS Function 

When you save a named segment that is later loaded by the LOADSYS 
function, you must be sure that the addresses at which segments are 
saved are correct and that they do not overlay required areas of storage 
in the virtual machine. This is crucial because the LOADSYS function 
invokes the ~URGESYS function before it builds the new page and swap 
tables. CP purges all saved systems that are overlayed in any way by 
the saved system it is loadinq. 

A condition code of 0 in the PSi indicates that the named segment was 
loaded successfully; the Rx register contains the load address. 

A condition code of 1 in the PSi indicates the named segment was 
loaded successfully within the defined storage of the virtual machine. 
The Rx reqister contains the address at which the named segment was 
loaded. The Ry register contains the ending address of the storage 
released before the named segment was loaded. 

MQte: CMS only allows named segments to be attached beyond the defined 
size of the virtual machine. 

A condition code of 2 in the PSi indicates the LOADSYS function did 
not execute successfully. Examine the return code in the RV register to 
determine the cause of the error. 

ReiY.t!l ~Qg,g 
44 

177 

,t!ganing 
Named segment does not exist 
Paginq IIO errors 

202 IBM VM/370 System Programmer's Guide 



April 1, 1981 

When the PURGESYS function is executed; CP releases the storage, and 
associated page and swap tables, that were acguired when the 
corresp~nding LOADSYS function was executed. If the storage occupied by 
the named segment was beyond the defined virtual machine storage size, 
that storage is no longer addressable by the virtual machine. 

When a PURGESYS function is executed for a segment that was loaded in 
nonshared mode, the storage area is cleared to binary zeros. If 
PURGESYS is invoked for a named segment that was not previously loaded 
via LOADSYS, the request is ignored. 

A condition code of 0 in the PSi indicates successful completion~ 

A condition code of 1 in the PSi indicates that the named segment was 
not found in the virtual machine. 

A condition code of 2 in the PSW an'd a return code of 44 in the Ry 
register indicate that the named segment either does not exist or was 
not previously loaded via the LOADSYS function. 

When the FINDSYS function is executed, CP checks that the named segment 
exists and that it has not been loaded previously. 

A condition code of 0 in the PSi indicates that the named segment is 
already loaded. The address at which it was loaded is returned in the 
register specified as Rx and its highest address is returned in the Ry 
reqister. 

A condition code of 1 in the PSW indicates that the named segment 
exists but has not been loaded. In this case, the address at which the 
named segment is to be loaded is returned in the register specified as 
Rx and the hiqhest address of the named segment is returned in the Ry 
register. 

A condition code of 2 in the PSW indicates the FINDSYS function did 
not execute successfully. Examine the return code in the Ry register to 
determine the error that occurred. 

Retu£!l ~Qg~ 
44 

177 

t!eaning 
Named segment does not exist 
paging I/O errors 

DIAGNOSE Code X'68' -- Virtual Machine 
Communication Facility (VMCF) 

The DIAGNOSE Code X'68' is used by a virtual machine to initiate a 
subfunction of the virtual Machine Communication Facility (VMCF). The 
qeneral register specified as Rx contains the virtual address, 
doubleword aligned, of a parameter list (VMCPARM). One of the entries 
in this para-m-eter li-s-t -is a- - subfunctioIl-code, specifying the particular 
request being initiated. The subfunctions and their codes are: 

Part 2. Control Program (CP) 203 



Page of GC20-1807-7 As Updated April 1, 19S1 by TNL GN25-0S29 

~!!bf!!!!£~iQ!1' 
AUTHORIZ E 
UN AUTHORIZE 
SEND 
SEND/RECV 
SENDX 
RECEIVE 
CA NCEL 
REPLY 
QUIESCE 
RESUME 
IDENTIFY 
REJECT 

~Qg~ 
X'OOOO' 
X'OOOl' 
X'0002' 
X'0003' 
X'0004' 
X'OOOS' 
v,nnnci 
..n. vvvu-

X'0007' 
X'OOOS' 
X'0009' 
X'OOOA' 
X'OOOB' 

A description of all the fields of the VMCPARM is contained in the 
section "Virtual Machine Communication Facility." 

The general register specified as Ry will 
upon completion of DIAGNOSE X'6S' or the 
condition. The return codes are contained 
Machine Communication Facility. II 

contain the return code 
detection of an error 

in the section IIVirtual 

Rx and RV can be any general register, RO through R1S. They may also. 
be the same register. 

DIAGNOSE Code X'74' -- Saving or Loading a 3800 
Named System 

DIAGNOSE Code X'74' is invoked to save an image library as a 3S00 named 
system or to load a named system into virtual storage when that named 
system is required by the 3S00 printer. 

When the DIAGNOSE Code X'74' is invoked, the Rx, Rx+1, Ry, and Ry+1 
registers must contain the following: 

• Registers Rx and Rx+l - must contain the eight-character name of the 
system to be saved or loaded, left-justified and padded with blanks. 

• Register Ry - must contain the virtual address at which to start 
savinq or loading the named system. 

• Register Ry+1 - must contain a X'OO' in the high order byte if a LOAD 
operation is required, and a X'04' for a SAVE operation. The 
remainder of the register must contain the number of bytes to be 
saved or loaded into virtual storage. 

A specification exception occurs if Register 1S is specified in 
either Rx or RV, or if the virtual address specified in Ry is not on a 
page boundary. If the area to be saved or loaded extends beyond the 
user's virtual storage, an addressing exception occurs. Finally, a 
privileged operation exception results if the user does not have 
privileged class A, B, or C. These exceptions cause abnormal 
termination (abend) and the user is notified. 

When DIAGNOSE Code X'74' processinq completes, one of the following 
condition codes is placed into register Ry and returned to CP: 

Re!.!!£.!!. ~Qgg 
X' 00' 
X' 04' 
X' OS' 

t!~i!!g 
load/save successfully performed 
named system not found 
named system currently active 

204 IBM VM/3 7 0 System Programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

X'OC' 
Xi -iOi 
X, 14' 

X' 18' 

volid for system not CP owned 
volid for system not mounted 
too many bytes to load/save; 
residual byte count is in Ry+1 
paginq error during load/save 

DIAGNOSE Code X'78' -- MSS Communication 

DIAGNOSE Code X'18' is used to communicate with the VK/370 control 
program about MSS volume mounts and demounts. The Ry register contains 
a subfunction code. The valid subfunction codes and their meanings are: 

• X'OO' - The virtual machine issuing the DIAGNOSE instruction 1S 
running OS/VS with MSS support and the DMKMSS program for KSS 
communication. The Rx register contains the device address of the 
virtual machine's MSS communicator virtual device. 

• X'04' - The virtual machine is ready to process an KSS request. The 
MSSCOM block representing the request should be placed at the virtual 
machine address indicated by the Rx register. 

• X'08' - An MSS request represented by the MSSCOM block located at the 
virtual machine address indicated by the Rx register has been 
accepted by the MSC. 

• X'OC' - An MSS request represented by the MSSCOM block located at the 
virtual machine address indicated by the Rx register has been 
rejected by the MSC. 

• X'10' - The DMKMSS program will no longer be available to process MSS 
requests. 

I • X'14' - The DMKMSS program has created a list of all VUAs associated 
I with this processor (cpuid) and requests CP to build its shared and 
, non-shared SDG tables from that list. 

If the DIAGNOSE Code X'78' is specified incorrectly, CP terminates the 
user program with one of the following exceptions: 

Protection Exception - No DMKSSS module exists 

Specification Exception - MSSCOM crosses a page 

DIAGNOSE Code X'18' condition codes and return codes are: 

Condition code 0 Successful complet ion. 

Condition code 1 Error condition .. Reo ister 15 contains 
one of the following: 

RC 4 Subfunction code was either less than 
zero or greater than 16. 

RC 8 Subfunction code was within the valid 
range but not a multiple of 4. 

Part 2. Control Program (CP) 205 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

BC 12 Addressing Exception trying to bring in 
the buffer page 

RC 16 Issuer is not the issuer of subfunction 
zero 

n I A ~ 1\1 n ~ I: ,..._ .... - V,OJl, F'\: .. ~ .................... II_ .... ~ ........ 1- DI_ .......... 
UI,""UI'\lV~~ ,",VUC ~ u .... UIIC'-'LVIY U.,UClLC 1 .. -rICl\,C 

DIAGNOSE Code X'84' enables a class B user to replace certain data in 
any entry of the V~/370 directory. The user 
entry and may replace the following data: 

• logon password 
• virtual machine storage size 
• maximum virtual machine storage size 
• privilege classes 
• dispatching priority 
• logical editing symbols 
• initial program load (IPL) system 
• account number 
• distribution word 
• user options 
• minidisk access mode 
• minidisk read, write, or multiple password 

with the exception of the account number, all changes to the entry 
take effect the next time the USEBID associated with the entry logs onto 
VK/370. The account number may be updated such that the change (1) 
takes effect immediately, (2) takes effect immediately but is temporary 
lasting only until the USERID is logged off, or (3) takes effect the 
next time the USEBID associated with the entry is logged on. 

DIAGNOSE Code X'84' cannot add new entries to the directory, cannot 
delete existing entries, nor can it alter directory user-description 
statements. It can only replace existing directory data. Data is 
replaced in the form of the directory created by the directory service 
program, that is, in VM/370 control blocks. 

For a detailed description of the directory data, see the !!L~lQ 
Rlanging gn~ ~y§tem Generation guide. 

When DIAGNOSE Code X'84' is issued, the Rx register must point to a 
variable length parameter list and the Ry register must specify, in 
bytes, the length of the list. The parameter list contains an area of 
fixed length followed by an area of variable length. Data in the 
fixed-length area identifies the directory entry to be updated, the 
password of the USERID associated with the entry, and the data field to 
be replaced in the directory entry. The variable-length area contains 
replacement data for the directory entry. All entries in the parameter 
list must contain unpacked, EBCDIC data. 

206 IBM VM/370 System programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

The parameter list is organized as follows: 

r-'-----. 
I USERID 
I 1 
, password I fixed-length area 
1 ----I 
I operation , , 
/ 

/ 
I 

----I 
/ 

/ 
I L--_____ ~ 

USERI D 

variable-length area 

The USERID of the user whose directory entry will be updated. This 
is an eight-character, left-justified value and must be padded with 
blanks. 

password 
The current password of the USERID whose directory entry will be 
updated. This is an eight-character, left-justified value and must 
be padded with blanks. 

operation 
An eiqht-byte, left-justified character string that identifies the 
data that is to be replaced in the directory entry. Valid values 
and the data that each identifies for replacement are defined in 
the description of the variable-length area which follows. 

The following diagram shows for each value of the operation field, 
(1) the data that must be in the variable-length area of the 
parameter list, and (2) the format and characteristics of the data. 

Part 2. Control Program (CP) 206.1 



April 1, 1981 

206.2 IBM VM/370 System Programmer's Guide 



operation 
field 
valug ggig 

LOGPASS loqon password 

STORAGE virtual machine 
storage size 

MAXSTOR maximum virtual 
machine storage 
size 

PRIVLEGE privilege classes 

PRIORITY dispatching 
priority 

EDITCHAR logical editing 
symbols 

IPL -s-Jste..m ----RalIl.e-_---DI -

virtual device 
address 

April 1, 1981 

An eight-byte, left-justified value 
padded with blanks. 

An eight-byte, left-justified decimal 
value followed by the letter K. 
Pad with blanks following the 
letter K. 

An eight-byte, left-justified decimal 
value followed by the letter K. 
pad with blanks following the 
letter K. 

An eight-byte value where each byte 
represents a privilege class. 
Valid values for each byte are 
A through H. All existing classes 
in the directory entry are 
replacedo Therefore, specify 
existing classes that are to be 
retained as well as classes that 
are to be changed. The data 
must be left-justified and 
padded with blanks. 

An eight-byte, left-justified 
value where the first two bytes, 
counting from the left, specify 
the dispatching priority. Valid 
values for these bytes are 1 - 99. 
Values 1 through 9 must be 
padded with a blank. The other 
six bytes are reserved for IBM 
use. 

An eight-byte value where the first 
four bytes, counting from the left, 
are line edit symbols. The first 
or high-order byte is the "line
end" symbo 1, the se cond byte is the 
"line-delete" symbol, the third 
byte is the "character-delete" 
symbol, and the fourth byte is 
the "escape-character" symbol. 
All existing symbols in the 
directory are replaced. 
Therefore, specify existinq symbols 
that are to be retained as well 
as symbols that are to be 
changed. Unspecified symbols 
must contain blanks. The last 
four bytes of the e igh t- byte 
value are reserved for IBM use. 

_ A- _Olie:'::_to~g..ht character value, 
left-justified and padded with 
blanks. 

Part 2. Control Program (CP) 207 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

operation 
field 
va!.!:!g 

ACCOUNT account number 

IACCOUNT account number 

TACCOUNT account number 

DISTRIB distribution 
identification 
word 

OPTIONS user options 

MDISK minidisk address, 
access mode, read 
password, write 
password, and 
multiple password 

A one-to-eight character value, 
left justified and padded with 
blanks. (This change takes effect 
the next time the USERID is 
logged on.) 

A one-to-eight character value 
left-justified and padded with 
blanks. (This change takes effect 
immediately. ) 

A one-to-eight character value, 
left-justified and padded with 
blanks. (This change takes effect 
immediately but is temporary, 
lasting only until the USERID 
is logged of f.) 

A one-to-eight character value, 
left-justified and padded 
with blanks. 

An eighty-byte, left-justi~ied 
value. padded with blanks. Specify 
each option as a character string 
with a blank character between 
options. For a description of 
each option and a list of valid 
values, see !~370 Planning_gn! 
Sys1~!!! Q!ill~ra:t.ion Guide. 
All existing options are 
replaced in the directory entry. 
Therefore, specify existing 
options that are to be retained 
as well as options that are to 
be changed. The options field 
must be followed by the value 
X'FFFFFFFF'. 

A thirty-byte field defined as 
follows. All values must be left 
justified and padded with blanks. 
Valid values for the access mode 
and for passwords are defined in 
the !~aI~_R!~nnilliI~J!~ 
Syste!!! Qeneratism Guigg .. 

Bytes 1-3, counting from the left, 
specify a minidisk address. This 
is the minidisk whose mode and 
passwords will be changed. The 
address must already exist in 
the directory entry. 

Bytes 4-6 specify the access mode. 

Bytes 7-14 specify the read 
password. 

208 IBM VM/370 System Progra~mer's Guide 



Operation 
field 
yalug 

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

characteristic2LfQImat 

Bytes 15-22 specify the write 
password. 

Bytes 23-30 specify the multiple 
password. 

The access mode, the read password, 
the write password, and the 
multiple password are replaced in 
the directory entry. Therefore, 
specify existing values that are 
to be retained as well as values 
that are to be changed. 

Before control is returned to the virtual machine, DIAGNOSE Code 
X'84' sets a condition code and, if errors were detected, a return code 
in the Ry reqister. The condition codes and return codes are defined ~s 
follows: 

o 

1 

The directory was successfully updated. 

DIAGNOSE Code X'84' 
directory is unchanged. 
error. 

detected an error. The 
The return code defines the 

10,11 An error occurred writing the directory to a direct 
access device. To update the directory, use the 
directory service program described in the !~LJ1~· 
PI~nI!iyg and Syst~!! ~~£atiQ'!! Guide. 

20 thru 25, 27, 90 DIAGNOSE Code X'84' encountered a processing error. 

26 

28 

30 

31 

40,41 

42, 43 

To update the directorY6 use the directory service 
program described in the !~L170 ~!~nnigg ang JS~§!~!! 
Generation Guide. 

Specified minidisk 
directory entry. 

address does not exist in 

The value in the OPERATION field of the parameter 
list is invalid. 

The specified USERID could not be found. 

The password specified in the fixed-length 
the parameter list does not match the 
password of the USERID being updated. 

area of 
current 

The value specified for the virtual machine storage 
size or for the maximum virtual machine storaqe si~e 
is too large. The maximum allowable size is 16 
meqabytes. 

The value specified for the virtual machine storage 
size or for the maximum virtual machine storage size 
contains a syntax error or an invalid character. 

Part 2. Control Program (CP) 209 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

retu~n 

~, 51 

52, 53 

60~ 61~ 

63 

65,66 

70 

71 

72 

80 

81 

82, 83 

gQg~ 

62 

The specified privilege classes are invalid. 

The specified privilege classes contain a syntax 
error or an invalid character. 

The specified priority contains a syntax error or an 
invalid character. 

The priority value is too large. 
allowable value is 99. 

The maximum 

Parameter list size error; if return code=65, the 
list exceeds 112 bytes; if return code=66, the list 
size is less than zero bytes long. 

A specified option is invalid. 

The value X'PPPPFFPP' was not coded after the list 
of options. 

The option value contains a syntax error or an 
invalid character. 

The parameter list contains an invalid minidisk 
address. 

The parameter list specifies an invalid access mode 
for a minidisk. 

The mini disk read, write, or multiple password 
specified in the parameter list requires a change in 
the size of the directory entry. 

210 IBM VM/370 System Programmer's Guide 



April 1, 1981 

CP Conventions 

CP Coding Conventions 

The following are coding conventions used by CP modules. This 
information should prove helpful if you debug, modify, or update CP. 

1. FORMAT: 

~Ql!!!!!! 
1 

10 
16 

contents 
Labels 
Op Code 
Operands 

31, 36, 41, etc. Comments (see Item 2) 

2. COMMENT: 

Approximately 75 percent of the source code contains comments. 
sections of code performing distinct functions are separated from 
each other by a comment section. 

3.. CONSTANTS: 

Constants follow the executable code and precede the copy files 
and/or macros that contain DSECTs or system equates. Constants are 
defined in a section followed by a section containing initialized 
working storage, followed by working storage. Each of these 
sections is identified by a comment. Wherever possible for a 
module that is greater than a page, constants and working storage 
are within the same page in Which they are referenced. 

4. No proqram modifies its own instructions during execution. 

5. No program uses its own unlabeled instructions as data. 

6. REGISTER USAGE: 

For CP, in general 

]ggi§ier 
6 
7 
8 

10 
11 
12 

13 

14 

15 

.!!~ 
RCHBLOK, VCHBLOK 
RCUBLOK, VCUBLOK 
RDEVBLOK, VDEVBLOK 
IOBLOK 
VMBLOK 
Base register for modules 

called via SVC 
SAVEAREA for modules 

called via SVC 
Peturn linkage for modules 

called via BALR 
Base address for modules 

called via BALR 

For Virtual-to-Real address translation 

]ggj&ig!: 
1 
2 

!!§~ 
Virtual address 
Feal address . 

Part 2. Control Program (CP) 211 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

7. When describing an area of storage in mainline code, a copy file, 
or a macro, DSECT is issued containing DS instructions. 

8. Meaningful names are used instead of self-defining terms: for 
example, 5,X'02',C'I' to represent a quantity (absolute address, 
displacement, length, register, etc.). All labels, displacements, 
and values are symbolic. All bits should be symbolic and defined 
by an equate (EOU) listing. For example: 

VMSTATUS EOU X'02' 

To set a bit, use: 

01 BYTE, BIT 

where BYTE = name of field, BIT is an EOU symbol. 

To reset a bit, use: 

NI BYTE,255-BIT 

To set multiple bits, use: 

01 BYTE,BIT1+BIT2 

etc. 

All registers are referred to as: 

RO, R1, ••• , R15. 

All lengths of fields or control blocks are symbolic, that is, 
length of VMBLOK is: 

VMBLOKSZ EQU *-VMBLOK 

9. Avoid absolute relative addressing in branches and data references, 
(that is, location counter value (*) or symbolic label plus or 
minus a self-defining term used to form a displacement). 

10. When usinq a sinqle operation to reference multiple values, specify 
each value referenced, for example: 

LM R2,R4,CONT SET R2=CON1 
SET R3=CON2 
SET R4=CON3 

CON1 
CON2 
CON3 

DC F'1' 
DC F'2' 
DC F I 3 1 

11. Do not use PRINT NOGEN or PRINT OFF in source code. 

212 IBM VM/370 System programmer's Guide 



12. MODULE NAMES: 

Control Section Names and External References are as follows: 

Control Section or Module Name 

The first three letters of the module name are the 
component code. 

Example: DMK 

The next three letters of the module name identify the module and 
must be unique. 

Example: DSP 

This three-letter, unique module identifier is the label of the 
TITLE card. 

Each entry point or external reference must be prefixed by the six 
letter unique identifier of the module. 

Example: DMKDSPCH 

13. TITLE CARD: 

DSP TITLE 'DMKDSP VM/370 DISPATCHER VERSION v LEVEL l' 

14. PTF Card 

Example: 

CP/CMS: PUNCH 'xxxxxxxx APPLIED' 

xxxxxxxx is the APAR number response 

15. ERROR MESSAGES: 

There should be no insertions 
and the length of the message 
If insertions must be made, 
several DC statements, and 
individually labeled. 

into the message at execution time 
should be resolved by the assembler. 
the message must be assembled as 

the insert positions must be 

16. For all RX instructions use a comma (,) to specify the base 
register when indexing is not being used, that is: 

L R2,AB(,R4) 

17. To determine whether you are executing in a virtual machine or in a 
real machine, issue the Store Processor ID (STIDP) instruction. If 
STIDP is issued from a virtual machine, the version number (the 
first byte of the CPUID field) returned will be X'FF'. 

Part 2. Control Program (CP) 213 



CP Loadlist Requirements 

The CP loadlist EXEC contains a list of CP modules used by the VMFLOAD 
procedures when punching the text decks that will make up the CP system. 
All modules following DMKCPE in the list are pageable CP modules. Each 
4K page in this area may contain one or more modules. The module 
grouping is governed by the order in which they appear in the loadlist. 
An SPBt (Set Page Boundary) card, a loader control card placed in the 
text file, forces the loader to start this module at the next higher 4K 
boundary. The loader automatically moves a module to the next higher 4K 
boundary if it cannot fit in with its predecessors on the load list. In 
this case a message is placed on the load map: 

"SPB INSERTED" 

as part of the line 

"**EXTERNAL SYMBOL DICTIONARY FOR DMKXXX" 

An SPB card is required only for the first module following DftKCPE. If 
more than one module is to be contained in a 4K page, only the first can 
be assembled with an SPB card. The second and subsequent modules for a 
multiple module 4K page must not contain SPB cards. 

The position of two modules in the loadlist is critical. All modules 
following DMKCPE must be reenterable and must not contain any address 
constants referring to anything in the pageable CP area. DftKCKP must be 
the last module in the loadlist. 

The following modules are distributed with SPE cards: 

DMKCDB 
DMKCKP 
DMKCPI 
DMKCPS 
DMKCPV 
DMKPGS 

DMKSAV 
DMKSEV 
DMKSYM 
DMKTAP 
DMKVSI 

lA 12-2-9 multipunch must be in column 1 of an SPB card and the 
characters SPB in columns 2, 3, and 4 respectively. 

214 IBM VM/370 System programmer's Guide 



How to Add a Console Function to CP 

Installations may aaa the1r own commands to their Va/370 system. First, 
code the module to handle the command processing. Follow the CP coding 
conventions outlined in an earlier section of this book. 

Second, add an entry for the command in the CP DKKCFC module. DKKCFC 
has two entry points: one for logged-on users and another for 
nonlogged-on users. If the command is for logged-on users, be sure its 
entry is beyond the label COKNBEG1. 

TO place an entry for the command in the DKKCFC module, insert a line 
with the following format: 

[label] I COKND I commandname,class,min,entrypt(,NCL=1] 

co •• andname is a 1- to 8-character name. 

class 

min 

entrypt 

NCL=1 

is the cOllmand privilege class (up to four classes are 
allowed). 0 is coded for nonlogged=on user commands or when 
NCL=1. 

is the nUllber 
truncation. 

of characters allowed as the minimum 

is the entry point of the module you write to process the 
new command. 

is specified if the command is to be allowed before the user 
logs on. When NCL=1, the class is not checked. 

After the above entry has been inserted in the DKKCFC module, reload 
DKKCFC as a pageable module ensuring that it does not cross a page 
boundary. You must also load your own module which mayor may not be a 
resident module. 

Part 2. Control Program (CP) 215 



Print Buffers and Forms Control 

Buffer images are supplied for the UCS (Universal Character Set) buffer, 
the UCSB (Universal Character Set Buffer). and the FCB (Forms Control 
Buffer). The VM/370-supplied buffer images are: 

• UCS - for the 1403 and 3203 Printers 

!igJ!~ 
AN 
HN 
PCAN 
PCHN 
QN 
QNC 
RN 
YN 
TN 
PN 
SN 

~ggning 
Normal AN arrangement 
Normal HN arrangement 
Preferred character set, AN 
Preferred character set, HN 
PL/I - 60 graphics 
PL/I - 60 graphics 
FORTRAN, COBOL co.mercial 
High speed alphanumeric 
Text printing 120 graphics 
PL/I - 60 graphics 
Text printing 84 graphics 

• UCSB - for the 3203 and 3211 Printers 

!igJ!~ 
Al1 
H11 
G 11 
P11 
T11 

tlgg.!l.!ng 
Standard Commercial 
Standard Scientific 
ASCII 
PLI 
Text printing 

• FCB - for the 3203 and 3211 Printers 

There is only one name provided for an FCB image. 

Name 
FCB1 

l1~aning 
Space 6 lines/inch 
Length of page 66 lines 

Line 
Rggg§~lgg 

1 
3 
5 
7 
9 

11 
13 
15 
19 
21 
23 
64 

Channel 
Skip 

~.E~£!!!£at!~!1 
1 
2 
3 
4 
5 
6 
7 
8 

10 
11 
12 

9 

For the exact contents of the buffer images, see IBM 2821 Control 
Y.!l~l ~~J!.E~.!l~.!l! ~~§£~!.E!ion, and I~~ 1~11 f~!1!!~E, 1~1§-lnl~IChgDg~i~I~ 
!~ai.!l ~g~l~!£g~, g,!lg 1~11 f~.!nl~E ~QQ1~Ql Yn.!l ~2!EQ1!~.!l! ]~§£~!E!!~!1 g]g 
Q.E~~g!~~~§ Qy~g~. 

216 IBM VM/370 System Programmer's Guide 



If you find that the supplied buffer images do not meet your needs, 
you can alter a buffer image or create a new buffer image. Be careful 
not to violate the VM/370 coding ccnvGnticns if you add a ne~ buff€r 
image; buffer images must not cross page boundaries. 

Adding New Print Buffer Images 

In order to add a new print buffer image to VM/370, you must: 

1. Provide a buffer image name and 12 byte header for the buffer load. 

2. Provide the exact image of the print chain. 

3. Provide a means to print the buffer image if VER is specified on 
the LOADBUF command. 

4. Reload the changed CP modules. 

Macros are available that make the process of adding buffer images 
relatively easy. 

UCS BUFFER IMAGES 

The UCS buffer contains up to 240 characters and supports the 1403 
printer. To add a new UCS buffer image, first code the UCS macro. This 
creates a 12-byte header for the buffer load that is used by the CP 
module DMKCSO. The format of the UCS macro is: 

, 
I ucs I ucsname I L-___________________________________________________________________________ ~ 

ucsname is a 1- to 4-character name that is assigned to the buffer 
load. 

Next, supply the exact print image. The print image is supplied by 
coding DCs in hexadecimal or character format. The print image may 
consist of several DCs, the total length of the print image cannot 
exceed 240 characters. 

Part 2. Control Program (CP) 217 



The ucsccw .acro must immediately follow the print image. This macro 
creates a CCW string to print the buffer lead image when VER is 
specified by the operator on the LOADBUF command. The format of the 
UCSCCW macro is: 

r 
I I ucsccw I ucsname[, (print 1, print2, ••• , print 12) ] 
L 

ucsname is a 1- to 4-character name that is assigned to the buffer 
load by the UCS macro. 

( (print1, ••• ,print12) ] 
is the line length (or number of characters to be printed by 
the corresponding CCW) for the verify operation. Each count 
specified must be between 1 and 132 (the length of the print 
line on a 1403 printer) and the default line length is 48 
characters. Up to 12 print fields may be specified. However, 
the total number of characters to be printed may not exceed 
240. 

Finally, insert the macros just coded, UCS and UCSCCW, into the 
DMKUCS module. This module must be reloaded. DMKUCS is a pageable 
module (with no executable code) that is called by DMKCSO. D8KUCS must 
be on a page boundary and cannot exceed a full page in size. 

~~~]!~ 1: You do not have to specify the line length for verification 
of the buffer load. Insert the following code in DMKUCS:

UCS EX01
DC 5CL'1234567890A ••• Z1234567890*/'
UCSCCW EX01

The buffer image is 5 representations of a 48-character string
containing:

• The alphabetic characters
• The numeric digits, twice
• The special characters: * and /

Since the line length for the print verification is not specified on the
UCSCCW macro, it defaults to 48 characters per line for 5 lines.

~!g~E!~ l: Insert the following code in DMKUCS:

UCS NUMl
DC 24CL'1234567890'
UCSCCW NUM1, (60,60,60,60)

The NUM1 print buffer consists of twenty-four la-character entries.
If, after DMKUCS is reloaded, the command

LOADBUF OOE UCS NUMl VER

is specified, 4 lines of 60 characters (the 10-character string repeated
6 times) are printed to verify the buffer load).

218 IBM V8/370 System Programmer's Guide

Apr il 1, 1981

Ex~~lg J: The print image can be specified in character or hexadecimal
The code in DMKUCS to support

the preferred character set, AN, is as follows:

UCS
DC
DC
DC
DC
DC
DC
DC
DC
UCSCCW

PCAN
C i 1234567890,-PQR#$m/STUVWIYZ' ,X'9C'
C'.*1234567890,-JKLMNOABCDEFGHI+.*'
C'1234567890,-PQRS&$%/STUVWXYZ',X'9C'
C'.*1234567890,-JKLMNOABCDEFGHI+.*'
C'1234567890,-PQR#$m/STUVWIYZ' ,X'9C'
C· .*1234567890,-JKLMNOABCDEFGHI+.*'
C'1234567890,-PQR&&$%/STUVWIYZ',X'9C'
C' .*1234567890,-JKLMNOABCDEFGHI+.*'
PCAN, (60,60,60,60)

The DCs are coded in both character and hexadecimal notation. The
hexadecimal code for the lozenge (X'9C') follows the character notation
on 4 of the DCs. The DCs, when taken in pairs, represent 60 characters.
When print verification of a buffer load is requested, 4 lines of 60
characters are printed.

UCSB IMAGES

The Universal Character Set Buffer (UCSB) contains up to 512 characters
and supports the 3211 printer. To add a new UCSB image, first code the
UCB mac~o. This macro creates a 12-byte header record for the buffer
load that is used by the CP module, DMKCSO. The format of the UCB macro
is:

r
I I UCB I ucbname
L--

ucbname is a 1- to 4-character name that is assigned to the buffer
load.

Next, supply the exact print image. The print image is supplied by
coding DCs in hexadecimal or character notation. The total length of
the p~int image cannot exceed 512 characters.

The format of the UCSB is:

£Q§!i.!QI!
1-432

433-447

448-511

512

~ontents
Print train image.

Reserved for IBM use. Must be all zeros.

Associative field. See Figure 25 for an explanation
of the contents of this field. The associative
field is used to check (during print line buffer
(PLB) loading) that each character loaded into the
PLB for printing also appears in the train image
field of the UCSB and, therefore, is on the print
train. Any character loaded into the PLB without
its associated code in the train image field of the
UCSB is nonprintable, and causes a "print data
check" to be set immediately. The associative field
also contains dualing control bits.

Reserved for IBM use. Must be zero.

Part 2. Control Program (CP) 219

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Bit 0 Bit 1 Bit2 Bit 3

UCSB Hexa- Graphic & Control Hexa- I Graphic & Control ! Hexa- Graphic & Control . Hexa- Graphic & Control I
Address decimal Symbols EBCDIC decimal ! Symbols EBCDIC i decimal Symbols EBCDIC decimal Symbols EBCDIC I

448 00 NUL 40 SP

I
80 CO i 1 I 449 01 41 81 a C1 I 450 02 42 82 b C2 B

1
451 03 43 83 c C3 C
452 04 PF 44 84 d C4 D
453 05 ! HT 45 85 e C5 E I
'+0'+ 06 ! LC I 46

I
86 f C6 I F

455 07 I DEL

I
47 87 9 C7 G

456 08 i 48 88 h C8 H
457 09 I 49 i 89 i C9 I

458 I OA I I 4A I ¢ ! 8A { CA
459 OB I 4B I 8B CB

11'1 460 OC 4C
I

<
I

8C ~ CC
I 461 00 40 (80 (CD y 462 OE 4E + 8E + CE

463 OF CU1 4F I 8F CF
} 464 10 50 & 90 DO

465 11 51 91 j 01 J
466 12 52 92 k 02 K
467 13 53 93 I D3 L
468 14 RES 54 94 m 04 M
469 15 NL 55 95 n 05 N
470 16 BS 56 96 0 D6 0
471 17 IL 57 97 p D7 P
472 18 58 98 q D8 Q

473 19 59 99 r D9 R
474 lA CC 5A ! 9A } DA
475 lB 5B $ 9B DB
476 lC 5C * 9C !l DC
477 10 50) 90) OD
478 1E 5E ; 9E ± DE
479 IF CU2 5F -, 9F • OF
480 20 60 - AO 0- EO \
481 21 61 I Al El
482 22 62 A2 s E2 S
483 23 63 A3 t E3 T
484 24 BYP 64 A4 u E4 U
485 25 LF 65 A5 v E5 V
486 26 EOB 66 A6 w E6 W
487 27 PRE 67 A7 x E7 X

488 28 68 A8 y E8 Y
489 29 69 I A9 z E9 Z
490 2A SM 6A I AA EA
491 2B 6B AB ! L EB
492 2C 6C % AC r- EC rl

493 2D 6D AD [ED
494 2E 6E > AE ~ EE
495 2F CU3 SF ? AF • EF
496 30 70 BO 0 FO 0
497 31 71 B1 1 Fl 1
498 32 72 B2 2 F2 2
499 33 73 B3 3 F3 3
500 34 PN 74 B4 4 F4 4
501 35 RS 75 B5 5 F5 5
502 36 UC 76 B6 6 F6 6
503 37 EOT 77 B7 7 F7 7
504 38 78 B8 8 F8 8
505 39 79 B9 9 F9 9
506 3A 7A

#:
BA FA

507 3B 7B BB .J FB
508 3C 7C @ BC I Fe
509 3D 7D BD l FD
510 3E 7E = BE

'"
FE

511 3F 7F .. BF - FF

'Figure 25. UCSB Associative Field Chart

220 IBM VM/370 System Programmer's Guide

April 1, 1981

The UCBCCW macro must immediately follow the print imaqe.
creates a CCW string to print the buffer load imaqe when
specifies VER on the LOADBUF command. The format of the
is:

This macro

UCBCCW macro

, UCBCCW I ucbname[, (print 1 ,print2, ••• print 12)]

ucbname is 1- to 4-character name that is assigned to the buffer load
by the UCE macro.

r (print1, ••. ,print12) 1
specifies the line· length of each line (up to 12) printed to
verify the buffer load. The line length must be between 1 and
150 (the length of a print line on a 3211 printer). The
default specification for verification is 48 characters per
line for nine lines. The total number of characters to be
printed must not exceed the size of the print train image, 432
characters.

Finally, insert the two macros just coded, UCB and UCBCCW, into the
DMKUCB module. This module must be reloaded before the new buffer image
can be used. DMKUCB is a pageable module (with no executable code) that
is called by DMKCSO. DMKUCB must be on a page boundary and cannot
exceed a full page in size.

The code for the All UCSB is as follows:

UCB
DC
DC
DC
DC
DC
DC
DC
DC
UCBCCW
EJECT

All STANDARD COMMERCIAL 48 GRAPHICS 3211
A11
9C'1<.+IHGFEDCBA*$-RPQONMLKJ%~&&ZYXWVUTS/m#098765432'
X' 000000' 433-435
X' 000000000000000000000000101010 t 436- 450
X' 10 1 01 0 1 0 101 0 100 0 40 4042 400 040 10 ' 451- 465
X'101010101010101000404041000040' 466-480
X'401010101010101010004040000000' 481-495
X1 101010101010101010100040404448' 496-510
x'OOOO' 511-512
A11,(48,48,48,48,48,48,48,48,48)

Note that the DC specification contains 49 characters and the UCBCCW
macro specifies 48 characters. The ampersand (&) must be coded twice in
order to be accepted by the assembler. The single quote (') must also
be specified twice in order to be accepted.

Part 2. Control Program (CP) 221

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

It would have been acceptable to code the UCBCCW as:

UCBCCW All

since the default is what was coded.

Forms Control Buffer

It is possible to have a forms control buffer with both a virtual and
real 3203 or 3211 printer. A virtual 3203 or 3211 file can be printed
on a real 1403; in fact, one way to provide forms control for a 1403 is
to define it as a virtual 3211~

There is an FCB macro to support forms control. The format of the
FCB macro is:

r-
I I FCB I fcbname,space,length,(line,channel •••),index L----___ ~

fcbname is the name of the forms control buffer. "fcbname" can be one
to four alphameric characters.

space is the number of lines/inch. Valid specifications are 6 or 8.
This operand may be omitted: the default is 6 lines/inch. When
the space operand is omitted, a comma (,) must be coded.
Spacing has no meaning for a virtual printer.

length is the number of print lines per page or carriage tape (1 to
180) •

(line,channel •••)

index

shows which print line (line) prints in each channel (1 to 12).
The entries can be specified in any order.

is an index value (from 1 to 31). "index" specifies the print
position that is to be the first printed posi tion. (The "index"
specification can be overridden with the LOADBUF command).

VM/370 provides one real FCB image, FCB1. This FCB is in pageable
module DMKFCB. Installations may add additional FCB images to DMKFCB as
long as the size of DMKFCB does not exceed the size of a page.

There is a default virtual FCB image located in resident storage (module
DMKVSP). This FCF image is used by CP for a spooled virtual 3203 or
3211 printer if the user has not previously loaded an FCB for that
virtual device.

Note: The GENERATE EXEC procedure has a facility to reassemble only the
DMKFCB module. See the description of the GENERATE EXEC procedure in
the VMLJIQ Rls~~ing agg ~y~tem Gene~giiQ~ GuiQ~·

If you wanted your printer to print:

• 8 lines/inch
• 60 lines/page
• print line 3 in channel 1
• print line 60 in channel 9
• print line 40 in channel 12
• print position 10 the first print position

222 IBM VM/370 System programmer's Guide

you would code the FCB macro (with a name, SPEC) as:

'I:I"'n r-n'l'!l..... a L n. I ~ 4. .. n .4 ""'" L n. n" .. n.
J:\..O OJrJ:l\..,o,ov, \J, .,"tv, .~,OV,:1J, IV

If you want another forms control buffer l called LONG, to be exactly
the same as SPEC (except that only 6 lines print per inch] you could
code either of the following:

FCB LONG,6,60,(3,1,40,12,60,9),10

FCB LONG,,60,(3,1,40,12,60,9),10

~!~121~ l:

You could have your special forms control buffer (SPEC) loaded for
either a virtual or real 3203 or 3211 printer. The LOADVFCB command is
for the virtual printer and the LOADBUF command is for the real printer.
If INDEX is not specified on these commands, no indexing is done. If
INDEX is specified without a value, the value coded in the FCB macro is
used and if INDEX is specified with a value, the specified value
overrides the value coded in the FCB macro.

If you specify INDEX for the virtual 3211 printer and again for the
real 3211 printer, the output is indexed using the sum of the two
specifications minus 1. For example, the command

LOADVFCB OOF FCB SPEC INDEX

indexes the virtual print file 10 positions because 10 was specified in
the FCB macro for the SPEC forms control buffer. When this file is sent
to the real printer, the command

LOADBUF OOE FCB SPEC INDEX 20

indexes the file an additional 20 positions. The value specified on the
command line (20) overrides the value ~n the FCB macro (10). The output
will start printing in print position 29 (10.20-1=29).

Because the 3203 Model 4 and printers do not have indexing
capabilities, the LOADVFCB and LOADBUF commands with the INDEX option
causes a command reject error for the 3203 printer.

3203 Model 4 and 5 Printer Forms Control and Print
Buffer
The Form Control Buffer for the 3203 is exactly like the 3211 Form
Control Buffer. The 3203 uses the Universal Character Set (UCS) used by
the 1403 Printer. The 3203 attaches a 64-byte associative field to the
end of the UCS to check, during print line buffer (PLB) loading, that
each character loaded into the PLB for printing also is on the print
train. The 3203 associative field is exactly like the 3211 associative
field described in Figure 25.

Part 2. Contro~ Program (CP) 223

uee BUFFER IMAGES

The uee buffer contains up to 240 characters and supports the 1403
printer. To add a new uee buffer image, first code the uee macro. This
creates a 12-byte header for the buffer load that is used by the ep
module DMKeSO. The format of the uee macro is:

uccname

uee uccname

is a 1- to 4-character name that is assigned to the buffer
load.

Next, supply the exact print image. The print image is supplied by
coding Des in hexadecimal or character format. The print image may
consist of several Des, the total length of the print image cannot
exceed 240 characters.

The ueeeew macro must immediately follow the print image. This macro
creates a eew string to print the buffer lead image when VER is
specified by the operator on the LOADBUF command. The format of the
ueeeew macro is:

uccname

ueeeew uccname[,(print1,print2, ••• ,print12)]

is a 1- to 4-character name that is assigned to the buffer
load by the uee macro.

[(printl, ••• ,print12)]
is the line length (or number of characters to be printed by
the corresponding eei) for the verify operation. Each count
specified must be between 1 and 132 (the length of the print
line on a 3203 printer) and the default line length is 48
characters. Up to 12 print fields may be specified. However,
the total number of characters to be printed may not exceed
240.

Finally, insert the macros just coded, uec and Ueeeei. into the
DMKuec module. This module must be reloaded. DMKuee is a pageable
module (with no executable code) that is called by DMKCSO. DMKuec must
be on a page boundary and cannot exceed a full page in size.

~!~El~ 1: You do not have to specify the line length for verification
of the buffer load. Insert the following code in DMKUCC:

UCC
DC
UCCCCW

EX01
5CL'1234567890A ••• Z1234567890*/'
EX01

224 IBM VM/370 System Programmer's Guide

Page of GC20-i807-7 As Updated April 1, 1981 by TNL GN25-0829

The buffer imaqe is 5 representations of a 48-character string
containing:

• The alphabetic characters
• The numeric diqits, twice
• The special characters: * and /

since the line length for the print verification is not specified on the
uccccw macro, it defaults to 48 characters per line for 5 lines.

]~~~~1g ~: Insert the following code in DMKUCC:

UCC NUM1
DC 24CL'1234567890'
UCCCCW NUM1,(60,60,60,60)

The NUM1 print buffer consists of twenty-four 10-character entries.
If, after DMKUCC is reloaded, the command

LOADBUF OOE UCS NUM1 VER

is specified, 4 lines of 60 characters (the la-character string repeated
6 times) are printed to verify the buffer load).

Part 2. Control Program (CP) 225

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

IBM 3800 Pri nting Subsystem

The IBM 3800 printinq Subsystem is a high-speed, nonimpact printer that
combines electrophotographic and laser technology. The 3800 printer can
achieve speeds of up to 20,040 lines/minute, while several unique
features give the user the ability to control the characteristics of
printed output.

The features of the 3800 printer include:

• Forms control buffer - controls the amount of vertical space between
printed lines. The user can specify vertical spacing of 6, 8, or 12
lines/inch.

• Multiple copy printing - allows the user to request multiple copies
without the use of carbon paper. The 3800 uses its hiqh speed to
repeat-print the specified number of oriqinals.

• Copy modification - allows the user to print or suppress predefined
information on specified copies of a page. For example, a different
name and address can be printed on each copy of a page.

• Forms overlay - allows
printed (flashed) from
inside the form.

the user to specify a forA or grid to be
a negative while output is being printed

• Character arranqement tables - allow the user to specify
predefined character set will be used to print a data set.
character set contains up to 64 printable characters.

which
Each

• Character modification - allows character sets to be modified or
extended to meet the user's needs.

For detailed information on the 3800 printinq Subsystem see:

!nt£Qg~£ling lng 1~~ l~OO printing SUQ~y§tg~ ~nd !!§ ~IQgra!Nins-
• ~Qn£ggl§ Qi lh§ !~~ 180Q printing ~ub§Y§tgm
• !~~ J~QQ ££inling ~~bsystem ~£ogr~~me~§ 2~igg, Q~L!~li Q~!§l-
• Rgig~gn£g ~~n~al fQ£ the 1~~ 180Q R£inting Suh§Y§tg~

VM/370 supports the 3800 printer both as a dedicated device and as a
real spoolinq device.

Using the 3800 Printer as a Dedicated Device

VM/370 allows a virtual machine that is configured to support a real
3800 to attach the 3800 for that machine's exclusive use. When used as
a dedicated device, VM/370 supports all of the facilities of the 3800.

226 IE~ V~/370 System Proarammer~s Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Using the 3800 Printer as a Real Spooling Device

VM/370 allows users of spool files to print their files on an IBM 3800
printing Subsystem. The copy modification, forms overlay, character
modification, and multiple copy features are fully supported. However,
when the 3800 is used as a real spooling device, only one character
arrangement table may be specified for each spool file. In addition,
the entire spool file must be printed with the same line spacing on each
page.

Parameters on five commands enable the user to take advantage of the
3800 printer's capabilities. The CHANGE, SPOOL, and START commands
allow the user to specify the character arrangement table, copy
modifications, forms overlay, and FCB to be used for printing. The
BACKSPAC and QUERY commands also support the 3800 printer~

Two utilities, GENIMAGE and IMAGELIB, construct and modify the
character arrangement tables, graphic modifications, copy modifications,
and FCBs used by the 3800. DIAGNOSE Code X'74' is invoked by IMAGELIB
to load and save this control information as a named system.

Finally, the NAME3800 macro instruction allows the user to create the
named system that contains the control information needed to print a
spool file.

SPECIFYING PRINTER OPTIONS

Five parameters on the SPOOL and CHANGE commands support the 3800
printer as a real spooling device. (See CP Com~ang ggfgr§Q£g fQ~
General Q~gr§ for detailed coding information.)

• FLASH - identifies the form overlay, if any, to be used when printing
the file

• CHARS - names the character arrangement table to be used to print the
file

• MODIFY - indicates the copy modification module, if any, to be used
when printing the file

• FCB - specifies the name of the forms control buffer to be used for
the file

• COpy - indicates the number of copies to be printed

The START command includes parameters that enable the VM/370 operator
to name the character arrangement table and FCB to be used for the
separator page. The operator can also identify the forms overlay
currently loaded in the 3800 via the FLASH operand of the START command.
In addition, the operator uses the IMAGE parameter to specify the named
system to be used to print the spool file. Finally, by specifying the
PURGE parameter, the operator can purge all spool files that cause
errors when loaded into the 3800. See V~/370 Operator's Guide- for
further information on the START command. ------ ---------- -----

CR EATl tr.; CONTROL TABL ES

VM/370 ~ses the as/vs utility IEBIMAGE to create and dynamically modify
character arrangement tables, copy modifications, graphic modifications,
and FCBs. Two service programs, GENIMAGE and IMAGELIB, interface with
IEBIMAGE.

Part 2. Control Program (CP) 227

April 1, 1981

GENIMAGE creates or modifies text files on a CKS disk. These text
files contain the images to be used by the 3800 Printing Subsystem.

IKAGELIB loads the new or changed text files created by GENIKAGE into
virtual storage. When all the files are loaded, DIAGNOSE Code X'74' is
invoked to save these files as a named system.

See Y]iL170 Pl§..illli!!g ~~ System Ge!!~£atio!! Guide or more information
on IMAGELIB and GENIMAGE.

STORING AND LOADING CONTROL TABLES

As part of VM/370 support of the 3800 printer, character arrangement
tables, copy modifications, graphic modifications, and FCBs are stored
in a named system.

PrioI:' to printing a spool file, the VK/370 operator specifies a named
system on the IMAGE parameter of the START command. The control tables
specified for the file (via the SPOOL and CHANGE commands) are loaded
into the 3800 from that named system and the file is printed.

The NAME3800 macro instruction establishes the named system at system
generation. See the !~70 ~lanning ~!!~ ~Y§1~~ ~en~ra!iQ!! Guig~·for
further information.

RECOVERING FROM I/O ERRORS

Because the actual printing of lines on the page is slower than the
output of lines from the processor, spool files are placed into a
delayed purge queue to await printing by the 3800. Only when the
maximum number of files are in the queue will the first one actually be
purged. The size of the queue can be specified at sysgen via the
DPMSIZE parameter on the RDEVICE macro instruction. DPMSIZE can have a
maximum value of nine.

Because spool files are queued, the BACKSPAC command may be used for
the 3800 printer to restore pages that are lost when an I/O error
occurs. In addition, the operator may specify the EOF parameter, which
indicates that backspacing should begin at the end of the file and
continue for the number of pages specified. See the !~l~IQ Q~erata~!§·
~~id~ for more information on the BACKSPAC command.

DISPLAYING PRINTER CONTROL INFORMATION

The QUERY command enables G-, B-, and D-privilege users to display the
names of the character arrangement table, copy modification, and FeB
currently in effect for a spool file or a virtual printer. In addition,
the VM/370 operator can use the QUERY command to determine the image
library used and the forms loaded on a real 3800.

See the !~L1IQ QE§I~ior's Guide for details on the QUERY command.

228 IBM VM/370 System programmer's Guide

J ou·rna ling LOGO N, AUTO LOG, and LI N K
Commands

LOGON, AUTOLOG, and LINK Journaling attempts to detect and record
certain occurrences of the LOGON, AUTOLOG, or LINK commands. using the
recorded information, an installation may be able to identify attempts
to logon to VM/370 by users that issue invalid passwords. Also, the
installation may be able to identify users that successfully issue the
LINK command to protected minidisks not owned by that user.

Briefly, LOGON, AUTOLOG, and LINK journaling works like this. While
journaling is turned on, CP monitors all occurrences of the LOGON,
AUTOLOG, and LINK commands. CP keeps count of the number of times a
user issues one of these commands with an invalid password. When this
count exceeds an installation defined threshold value, CP optionally:

I • Writes a record to the accounting data set to record the incident

I • Rejects subsequent LOGON, AUTOLOG, or LINK commands issued by the
I user

I • Sends a message to an installation-defined user identification to
I alert the installation to the incident

Also, each time CP detects,that a user has successfully issued a LINK
command to a protected minidisk not owned by that user, CP optionally
records the incident by writing a record to the accounting data set. A
protected minidisk is a minidisk whose password is anything but ALL for
the type of LINK attempted.

For a description of the accounting records that CP writes for LOGON,
AUTOLOG, and LINK journaling, see the section "Accounting Records."

The SYSJRL macro instruction, the SET co~mand, and the QUERY command
enable an installation to control LOGON, AUTOLOG, and LINK journaling.
To make journaling available and to specify options, code the SYSJRL
macro instruction in module DMKSYS. Instructions for coding this macro
instruction are in the Y~LllQ ~lgnning gng ~1§!~! Q~n~Eg!12n gYiQ~. To
turn journaling on or off, lise the class A SET command. To determine
whether journaling is on or off, use the class A QUERY command.

Part 2. Control Program (CP) 229

Suppressing Passwords Entered on the
Command-Line

CP optionally rejects LOGON or LINK commands that have the password
entered on the same line as the command. R~jecting these commands
prp.vents passwords from being displayed or from being printed without
masking -- masA~ng a password means overprinting the password so it
cannot be read.

This capability is also available to virtual machines that issue LINK
commands via DIAGNOSE Code X'08'. For a description of DIAGNOSE Code
X'08', see the section "DIAGNOSE Instruction in a virtual ~achine."

To request password suppression, specify it as an option on the
SYSJRL macro instruction in module D~KSYS during system generation of
VM/370. Once requested, password suppression is always on: an operator
cannot turn it off.

230 IBM VM/370 System Programmer's Guide

Part 3. Conversational Monitor System (CMS)

Part 3 contains the following information:

• Introduction to CMS

• Interrupt Handling

• Functional Information (How CMS Works)

Register usage
DMSNUC structure
Storage structure
Free storage management
SVC handling

• How To Add a Command or EXEC Procedure to CMS

• as Macro Simulation

• DOS/VS Support Under CMS

• CMS Support for as and DOS VSAM Functions

• Saving the CMS system

• Batch Monitor

• Auxiliary Directories

• Assembler. Virtual Storage Requirements

Part 3. Conversational Monitor System (CftS) 231

232 IBM VM/370 System Programmer's Guide

Introduction to eMS

The Conversational Monitor System (CMS), the major subsystem of VM/370,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus Froviding several users
with their own time sharing system. CMS is designed specifically for
the VM/370 virtual machine environment.

Each copy of CMS supports a single user. This means that the storage
area contains only the data pertaining to that user. Likewise, each CMS
user has his own machine configuration and his own files. Debugging is
simpler because the files and storage area are protected from other
users.

Programs can be debugged from the terminal. The terminal is used as
a printer to examine limited amounts of data. After examining program
data, the terminal user can enter commands on the terminal that will
alter the program. This is the most common method used to debug
programs that run in CMS.

eMS, operating with the VM/370 Control Program, is a time sharing
system suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Additionally, ces
provides facilities to simplify the operation of other operating systems
in a virtual machine environment when controlled from a remote terminal.
For example, CMS capabilities are used to create and modify job streams,
and to analyze virtual printer output.

Part of the CMS environment is related to the virtual machine
environment created by CP. Each user is completely isolated from the
activities of all other users, and each machine in which CMS executes
has virtual storage available to it and managed for it. The CP commands
are recognized by CMS. For example, the commands allow messages to be
sent to the operator or to other users, and virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command language

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general
system control. The CMS commands that are useful in debugging are
discussed in the "Debugging with CMS" section of "Part 1. Debugging with
YM/370." For detailed information on all other CMS commands, refer to
the !~L1IQ ~~~ ~2~~g~g gDg ~g£~2 R~f~~~n£~4

Figure 28 describes CMS command processing.

Part 3. Conversational Monitor System (Ces) 233

TheFile System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is kept as a
read-only, shared, system disk. Permanent user files may be accessed
from up to nine active disks. Logical access to those virtual disks is
controlled by CMS, while CP facilities manage the device sharing and
virtual-to-real mapping.

User files in CMS are identified with three designators. The first
is filename. The second is a filetype designator that may imply
specific file characteristics to the CMS file management routines. The
third is a filemode designator that describes the location and access
mode of the file.

User files can be created directly from the terminal with the CMS
EDIT facility. EDIT provides extensive context editing services. File
chdracteristics such as record length and format, tab locations, and
serialization options can be specified. The system includes standard
definitions for certain filetypes.

A single user file is limited to a maximum of 65533 records and must
reside on one virtual disk. The file management system limits the
number of files on anyone virtual disk to 3400. All CMS disk files are
written as 800-byte records, chained together by a specific file entry
that is stored in a table called the Master File Directory; a separate
Master File Directory is kept for, and on, each virtual disk. The data
records may be discontiguous, and are allocated and deallocated
automatically. A subset of the Master File Directory (called the User
File Directory) is made resident in virtual storage when, the disk
directory is made available to CMS; it is updated on the virtual disk at
least once per command if the status of any file on that disk has been
changed.

The compilers available under CMS default to particular input
filetypes, such as ASSEMBLE, but the file manipulation and listing
commands do not. Files of a particular filetype form a logical data
library for a user; for example, the collection of all COBOL source
files, or of all object (TEXT) decks, or of all EXEC procedures. This
allows selective handling of specific groups of files with minimum input
by the user ..

CMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the
input source file or on the primary read/write disk, and are identified
by combining the input filename with the filetypes TEXT and LISTING.
These disk locations may be overridden by the user.

Virtual disks may be shared by CMS users; the facility is provided by
VM/370 to all virtual machines, although a user interface is directly
available in CMS commands. Specific files may be spooled between
virtual machines to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files. Special macro libraries and text or
program libraries are provided by CMS, and special commands are provided
to update and use them. CMS files can be written onto and restored frem
unlabeled tapes via CMS commands.

234 IBM VM/370 System Programmer's Guide

Caution: Multiple write access under eMS can produce unpredictable results.
Problem programs that execute in CMS

tape in any record and block size; the
variable, or undefined.

Program Development

can create files on unlabeled
record format can be fixed,

Th~ Conversational Monitor System includes commands to create and
compile source programs, to modify and correct source programs, to build
test files, to execute test programs and to debug from the terminal.
The commands of CMS are especially useful for as and DOS/VS program
development, but also may be used in combination with other operating
systems to provide a virtual machine program development tool.

CMS utilizes the as and DOS/VS compilers via interface modules; the
compilers themselves normally are not changed. In order to provide
suitable interfaces, CMS includes a certain degree of as and DOS/iS
simulation. The sequential, direct, and partitioned access methods are
logically simulated; the data records are physically kept in the chained
800-byte blocks that are standard to CMS, and are processed internally
to simulate as data set characteristics. CMS supports VSAM catalogs,
data spaces, and files on as and DOS disks using the DOS/VS Access
Method Services. as Supervisor Call functions such as GETMAIN/FREEMAIN
and TIME are simulated. The simulation restrictions concerning what
types of as object programs can be executed under CMS are primarily
related to the as/pcP, MFT, and MiT Indexed Sequential Access Method
(ISAM) and the telecommunications access methods, while functions
related to multitasking in as and DOS/VS are ignored by CMS. For more
information, see "aS Macro Simulation under CMS" and "DOS/VS Support
under CMS."

Part 3. Conversational Monitor System (CMS) 235

Interrupt Handling In eMS

CMS receives virtual SVC, input/output, program, machine, and external
interruptions and passes control to the appropriate handling program.

SVC Interruptions

The Conversational Monitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DMSITS resident routines. Two types of
SVCs are processed by DMSITS: internal linkage SVC 202 and 203, and any
other SVCs. The internal linkage SVC is issued by the command and
function programs of the system when they require the services of other
CMS programs. (Commands ~ntered by the user from the terminal are
converted to the internal linkage SVC by DMSINT). The OS SVCs are
issued by the processing programs (for example, the Assembler).

INTERNAL LINKAGE SVCS

ihen DMSITS receives control as a result of an internal linkage SVC (202
or 203), it saves the contents of the general registers, floating-paint
registers, and the SVC old PSi, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is
passed in register 1 for SiC 202, or by a halfword code following SVC
203.)

For SVC 202, if the called program is not found in the internal
function table of nucleus (resident) routines, then DMSITS attempts to
call in a module (a CMS file with filetype MODULE) of this name via the
LOADMOD command.

If the program was not found in the function table, nor was a module
successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling
program's registers, and makes the appropriate normal or error return as
defined by the calling program.

OTHER SVCs

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or functicn
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SVC calls, DMSITS refers first to a user-defined
SVC table (if one has been set up by the DMSHDS program). If the
user-defined SVC table is present, any SVC number (other than 202 or
203) is looked for in that table. If it is found, control is
transferred to the routine at the specified address.

236 IBM VM/370 System Programmer's Guide

If the SVC number is not found in the user-defined SVC table (or if
the table is nonexistent), DMSITS either transfers control to the CMSDCS
shared segment (if SETDOS ON has U~~ll issuedj, UL the standard system
table (contained in DMSSVT) of as calls is searched for that SVC number.
If-~he SVC number is found, control is transferred to the corresponding
address in the usual manner. If the SVC is not in either table, then
the supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table.
It is possible for a user to provide his own SVC routines.

Input/Output Interruptions

All input/output interruptions are received by the I/O interrupt
handler, DMSITI. DMSITI saves the I/O old PSi and the CSW (channel
status word). It then determines the status and requirements of the
device causing the interruption and passes control to the routine that
processes interruptions from that device. DMSI!I scans the entries in
the device table until it finds the one containing the device address
that is the same as that of the interrupting device. The device table
(DEVTAB) contains an entry for each device in the system. Each entry
for a particular device contains, among other things, the address of the
program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its
processing, it returns control to DMSITI. At this point, D~SITI tests
the wait bit in the saved I/O old PSi. If this bit is off, the
interruption was probably caused by a terminal (asynchronous) I/O
operation. DMSITI then returns control to the interrupted program by
loading the I/O old PSi.

If the wait bit is on, the interruption was probably caused by a
nonterminal (synchronous) I/O operation. The program that initiated the
operation most likely called the DMSIOi function routine to wait for a
particular type of interruption (l1sually a device end) • In this case,
DMSITI checks the pseudo-wait bit in the device table entry for the
interrupting device. If this bit is off, the system is waiting for some
event other than the interruption from the interrupting device; D~SITI
returns to the wait state by loading the saved I/O old PSi. (This PSi
has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an
interruption from that particular device. If this interruption is not
the one being waited for, DMSITI loads the saved I/O old PSi. This will
again place the machine in the wait state. Thus, the program that is
waiting for a particular interruption will be kept waiting until that
interruption occurs.

If the interruption is the one being waited for, DMSITI resets both
the pseudo-wait bit in the device table entry and the wait bit in the
I/O old PSi. It then loads that PSi. This causes control to be
returned to the DMSIOW function routine, Which, in turn, returns control
to the program that called it to wait for the interruption.

Part 3. Conversational Monitor System (CMS) 237

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT module.
All interruptions other than those containing device -end, channel end,
attention, or unit exception status are ignored. If device end status
is present with attention and a write ccw was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via tne STAX macrc.
The attention exit with the highest priority is given control at each
attention until the queue is exhausted, then a read is issued. Device
end status indicates that the last I/O operation has been completed. If
the last I/O operation -was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last I/O
operation was a normal read, the buffer is put on the finished read list
and the next operation is started. If the read vas caused by an
attention interrupt, the line is first checked for the commands RT, He,
HT, or HX, and the appropriate flags are set if one is found. Unit
exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST=NO, in which case unit exception is treated
as device end.

Reader I Pu nchl Printer Interruptions

Interruptions from these devices are handled by the routines that
actually issue the corresponding I/O operations. When an interruption
froa any of these devices occurs, control passes to DMSITI. Then DMSITI
passes control to DMSIOW, which returns control to the routine that
issued the I/O operation. This routine can then analyze the cause of
the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt
processing routine that is specified in the user device table.
Otherwise, the processing program regains control directly.

Program Interruptions

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
Frogram old PSi and the contents of the registers 14, 15, 0, 1, and 2
into the program interruption element (PIE). (the routine that handles
the SPIE macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) DMSITP then determines
wb9ther or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITF passes
control to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE
macro instruction, DMSITP picks up the exit routine address from the
PICA and passes control to the exit routine. Upon return from the exit
routine, DMSITP returns to the interrupted program by loading the
original program check old PSW. The address field of the PSi vas
modified by a SPIE exit routine in the PIE.

238 IBM VM/370 System programmer's Guide

External Interruptions

An external interruption causes control to be passed to the external
interrupt handler D~SITE. If the user has issued the HNDEXT macro to
trap external interrupts, DMSITE passes contrel to the user's exit
routine. If the interrupt was caused by the timer, DMSITE resets the
timer and types the BLIP character at the terminal. the standard BLIP
timer setting is two seconds, and the standard BLIP character is
uppercase, followed by the lowercase (it moves the typeball without
printing). Otherwise, control is passed to the tEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected
to a C~S virtual user by CPa A message prints on the console indicating
the failure. The user is then disabled and must IPL CMS again in order
to continue.

Part 3. Conversational Monitor System (C~S) 239

Functional Information

The most important thing to remember about C"S, from a debugging
standpoint, is that it is a one-user system. The supervisor manages
on~y one user and keeps track of only one user 1 s file and storage
chains. Thus, everything in a dump of a particular machine relates only
to that virtual machine's activity.

You should be familiar with register usage, save area structuring,
and control block relationships before attempting to debug or alter CMS.

Register Usage

When a C"S routine is called, R1 must point to a valid parameter list
(PLIST) for that program. On return. RO mayor may not contain
meaningful information (for eXample, on return from a call to FILEDEF
with no change, RO will contain a negative address if a new FCB has been
set up; otherwise, a positive address of the already existing FCE). R15
will contain the return code. if any. The use of Registers 0 and 2
through 11 varies.

On entry to a command or routine called by SVC 202 the following are
in effect:

!~g.!§1~f
1

12
13

14
15

Contents
The-address of the PLIST supplied by the caller.
The address entry point of the called routine.
The address of a work area (12 doublewords) supplied by

SVCINT.
The return address to the SVCINT routine.
The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return
-~~g~

o
<0
)0

~~~1!.!mI 
No error occurred 
Called routine not found 
Error occurred 

If a C"S routine is called by an SVC 202, registers 0 through 14 are 
saved and restored by C"S. 

Most CMS routines use register 12 as a base register. 

Structure of DMSN UC 

D"SNUC is the portion of storage in a CMS virtual machine that contains 
system control blocks, flags, constants, and pointers. 

The CSECTs in DMSNUC contain only symbolic references. This means 
that an update or modification to C"S, which changes a CSECT in DMSNUC. 
does not automatically force all eMS modules to be recompiled. Only 
those modules that refer to the area that was redefined must be 
recompiled. 

240 IBM VM/370 System Programmer's Guide 



USERSECT (USER AREA) 

The USERSECT CSECT defines space that is not used by CMS. A 
modification or update to C~S can use the 18 fullwords defined for 
USERSECT. There is a pointer (AUSER) in the NUCON area to the user 
space. 

DEVTAB (DEVICE TABLE) 

The DEVTAB CSECT is a table describing the devices available for the C~S 
system. The table contains the following entries: 

• 1 console 
• 10 disks 
• 1 reader 
• 1 punch 
• 1 printer 
• 4 tapes 

You can change some existing entries in DEV1AB. Each device table 
entry contains the following information: 

• Virtual device address 
• Device flags 
• Device types 
• Sy.bol devic~ name 
• Address of the interrupt processing routine (for the console) 

The virtual address of the console is defined at IPL time. The 
virtual address of the user disks can be altered dynamically with the 
ACCESS command. The virtual address of the tapes can te altered in the 
device table. Changing the virtual address of the reader, printer, or 
punch will have no effect. Figure 26 describes the devices supported by 
C~s. 

Structure of eMS Storage 

Figure 27 describes how CMS uses its virtual storage. The pointers 
indicated (MAINSTRT, MAINHIGH, FREELOWE, and FREEUPPR) are all found in 
NUCON (the nucleus constant area). 

• 

The sections of CMS storage have the following uses: 

Q~~~Q~ (!~QQQOO~ 12 ~EEf2!i~~1~lY X'03000'). 
pointers, flags, and other data updated--by 
routines. 

This area 
the various 

contains 
systell 

• 1Q~=~12fgg~ DMSFREE Free ~12Igg~ !I~~ (!EEfQ!i~~1~lY !~Q1QQQ~ 12 
!~Q~QQQ~). ThIs--area-rs a free storage area, from which requests 
from DMSFREE are allocated. The top part of this area contains the 
file directory for the system Disk (SSTAT). If there is enough room 
(as there will be in most cases), the FREE tAB table also occupies 
this area, just below the SSTAT. 

Part 3. Conversational Monitor system (CMS) 241 



Virtual Virtual , Symbolic 
IBM Device Address 1 , Name Device Type 

3210, 3215, 1052, ccu CON1 System console 
3066, 3270 

2314, 3330, 3340 190 DSKO System disk (read-only) 
3350 

"...,.4 .. 3330, 3340 191 2 DSK1 Primary disk (user files) ~.:JI'+, 

3350 
2314, 2319, 3330, ccu DSK2 Disk (user files) 

3340, 3350 
') ~ 1/1 ').,10 .,.,.,n ccU DSK3 Disk (user files) £..J 1 ." "JI~, JJJV, 

3340, 3350 
2314, 2319, 3330, 192 DSK4 Disk (user files) 

3340, 3350 
2314, 2319, 3330, ccu DSK5 Disk (user files) 

3340, 3350 
2314, 2319, 3330, ccu DSK6 Disk (user files) 

3340, 3350 
2314, 2319, 3330, ccu DSK7 Disk (user files) 

3340, 3350 
2314, 2319, 3330, 19E DSK8 Disk (user files) 
3340, 3350 

2314, 2319, 3330, ccu DSK9 Disk (user files) 
3340, 3350 

1403, 3203, 3211 OOE PRN1 Line printer 
1443 

2540, 2501, 3505 OOC RDR1 Card reader 
2540, 3525 OOD PCH1 Card punch 
2415, 2420, 3410, 181-4 TAP1-TAP4 Tape drives 

3420 

lThe device addresses shown are those that are preassembled into the 
CMS resident device table. These need only be modified and a new 
device table made resident to change the addresses. 

2The virtual device address (ccu) of a disk for user files can be 
any valid System/370 device address, and can be specified by the 
CMS user when he activates a disk. If the user does not activate 
a disk immediately after loading eMS, eMS automatically activates 
the primary disk at virtual address 191. 

Figure 26. Devices Supported by a CMS Virtual Machine 

, , 
I 
I 
I , , 
I , 
I 

• Transient R!£g!g~ !!~g (!~Q~QQQ~ 12 !~1QQQQ~) • Since it is not essentIal to keep all nucleus functions resident in storage all the 
time, some of them are made "transient." This means that when they 
are needed, they are loaded from the disk into the transient program 
area. Such programs may not be longer than two pages~ because that 
is the size of the transient area. (A page is 4096 bytes of virtual 
storage.) All transient routines must be serially reusable since 
they are not read in each time they are needed. 

242 IBM VM/370 System programmer's Guide 



• ~~~ !Y£l~Y~ (~1QQQQ~!Q !~1QQQQ~) . Segment 1 of storage contains 
the reentrant code for the CMS Nucleus routines. In shared CMS 
systems, this is the ~protectea segment,~ which =ust consist only of 
reentrant code, and may not be modified under any circumstances. 
Thus, such functions as DEBUG breakpoints or CP address stops cannot 
be placed in Segment 1 when it is a protected segment in a saved 
system. 

• Q§~! R!QgE~~ Area (X'20000' !Q 1Q~Q~! 1abl~§). User programs are 
loaded into this-area--by the LOAD command. Storage allocated by 
means of the GETMAIN macro instruction is taken from this area, 
starting from the high address of the user program. In addition, 
this storage area can be allocated from the top down by DMSFREE, if 
there is not enough storage available in the low DMSFREE storage 
area. Thus, the usable size of the user program area is reduced by 
th9 amount of free storage that has been allocated from it by 
DMSFREE. 

• 1Q~g~£ !g~lg§ (!Q£ Egg~§ 21 §!Q£~g~) ~ The top of storage is occupied 
by the loader tables, which are required by the CMS loader. These 
tables indicate which modules are currently loaded in the user 
program area (and the transient program area after a LOAD command). 
The size of the loader tables can be varied by the SET LDRTBLS 
command. However, to successfully change the size of the loader 
tables, the SET LDRTBLS command must be issued immediately after IPL. 

Free Storage Management 

Free storage can be allocated by issuing the GE!MAIN or DMSFREE macros. 
Storage allocated by the GETMAIN macro is taken from the user program 
area, beginning after the high address of the user program. 

Storage allocated by the DMSFREE macro can be taken from several 
areas. 

If possible, DMSFREE requests are allocated from the low address free 
storage area. Otherwise, DMSFREE requests are satisfied from the 
storage above the user program area. 

There are two types of DMSFREE requests for free storage: requests 
for USER storage and NUCLEUS storage. Because these two types of 
storage are kept in separate 4K pages, it is possible for storage of one 
type to be available in low storage, while no storage of the other type 
is available. 

Part 3. Conversational Monitor System (CMS) 243 



GETMAIN FREE STORAGE MANAGEMENT 

All GETMAIN storage is allocated in the user program area, starting 
after the end of the user's actual program. Allocation begins at the 
location pointed to by the NUCON pointer 8AINSTRT. The location 
MAINHIGH in NUCON is the "high extend" pointer for GETMAIN storage. 

Before issuing any GETM!IN macros, user programs must use the STRINI! 
macro to set up user free storage pointers. The STRINIT macro is issued 
only once, preceding the initial GETMAIN request. The format of the 
STRINIT macro is: 

[label] 
I r r "1' 

STRINIT I ITYPCALL=I~!f II 
I I IBALRII 
ILL JJ ~___________________________________________________________________________J 

r "1 

TYPCALL=I~VC I 
IBALRI 
L ..J 

indicates how control is passed to DMSSTG, the routine that 
processes the STRINIT macro. Since DMSSTG is a 
nucleus-resident routine, other nucleus-resident routines can 
branch directly to it ( TYPCALL=BALR) while routines that are 
not nucleus~resident must use linkage SVC (TYPCALL=SVC). If no 
operands are specified, the default is TYPCALL=SVC. 

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are 
initialized to the end of the user's program, in the user program area. 
As storage is allocated from the user program area to satisfy GETMAIN 
requests, the MAINHIGH pointer is adjusted upward. Such adjustments 
are always in multiples of doublewords, so that this pointer is always 
on a doubleword boundary. As the allocated storage is released, the 
MAINHIGH pointer is adjusted downward. 

The pointer MAINHIGH can never be higher than FREELOWE, the "low 
extend" pointer for DMSFREE storage allocated in the user program area. 
If a GETMAIN request cannot be satisfied without extending MAINHIGH 
above FREELOWE, then GETMAIN will take an error exit, indicating that 
insufficient storage is available to satisfy the request. 

The area between MAINSTRT and MAINHIGH may contain tlocks of storage 
that are not allocated and that are, therefore, available for allocation 
by a GETMAIN instruction. These blocks are chained together, with the 
first one pointed to by the NUCON location MAINS!RT. Refer to Figure 21 
for a description of CMS virtual storage usage. 

244 IBM VM/370 System Programmer's Guide 



VIRTUAL 
STORAGE 

ENDOFSTORAGE~----------------------------~ 

FREEUPPR----~----------------------~--~ 

DMSFREE requests when 
no more low stora~ available 

FREELOWE 

Unused portion of User T Program Area T 
MAINHIGH --t --------~~e 7v.:.. ~1 
MAINSTRT GE:~N ~:: ____ [ ~~r.E' 

The User's Program 
(program is loaded via the 

LOAD commandl 

X~~,-+ __________________ S_t_or_a~~K_e~y_=_X_'_E'; 

CMS Nucleus 
In "saved systems" this area 
is a protected segment 
(that is, all code must be 
reentrant and cannot be 
modified) 

X'1~-I-------------------=----:'--~ 

Transient Program Area 

X'EOOO' -I--------------------=--~-~ 
Low Stor* DMSFREE Free Stora~ Area 

DMSFREE requests are filled from 
this area. The upper part of this 
area contains the System Disk MFD 
followed by the FREETAB, if there is 
enough room. 

X'~'-r_----------------~--~------~ 
DMSNUC 

and pointers. 

has a storage key = X'E' 

fiqure 27. CM S Storaqe Map 

April 1, 1981 

CONTROL BLOCKS 

! LORST I 
I I 

R 
I I 

BEJG 

X'2A40' 

X'29SO' 

X~800' 

X'235O' 

X'23OO' 

X'219O' 

X'1DDO' 

X'1CCS' 

FVS 
X'1ADS' 

DIOSECT 
X'19ES' 

SVCSECT 

X'1748' 

X'16BO' 

X'1620' 

X'1550' 

X'1200' 

X'DFO' 

------------i X'2EO' 

Part 3. Conversational Monitor System (CMS) 245 



Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

The format of an element on the GETMAIN free element chain is as 
follows: 

r 
I 

o (0) I 
1 

4 (4) 

, i i 

FREPTR -- pointer to next free 
element in the chain, or 0 
if there is no next element 

---i I 1----
FRELEN -- length, in bytes, of 

this element 

-----i i 1-------
Remainder of this free element 

The amount of storage reserved for eMS use is determined at eMS IPL 
time based on the size of the virtual machine. The formula for 
calculating this reserved storage is: 

Less than 512K 

512K 

Greater than 512K 

10 pages 

12 pages + 2 pages for each 
256K in excess of 512K 

12 pages + 2 pages for each 
256K in excess of 512K 

246 IBM VM/370 System Programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

DMSFREE FREE STORAGE MANAGEMENT 

The DMSFREE macro allocates CMS free storage. The format of the DMSFREE 
macro is: 

r 

r label] DMSFREE 
r , 

DWORDS= { n } I, MIN= { n } I 
(0) I (1) I 

L .J 

r r "r .. " 
t,TYPE=IUSE~ II I,ERR=lladdrl I 

I NUCLEUS I I I I * I I 
L L .J.J L L J.J 

r r" 
I ,AREA= ILOW II 
I IHIGHII 
L L.J.J 

r .." 
I ,TYPCALL=I~!~·II 
I I BALRII 
L L.J.J 

L-__ _ 

label 
is any valid assembler language label. 

DW ORDS={ n } 
(0) 

MIN= { n } 
(1) 

is the number of doublewords of free storage requested. 
DWORDS=n specifies the number of doublewords directly and 
DWORDS=(O) indicates that register 0 contains the number of 
doublewords requested. Do not specify any register other than 
register o. 

CMS returns, in register 0, the number of doublewords 
allocated and~ in register 1, the address of the first byte of 
allocated storage. 

indicates a variable request for free storage. If the exact 
number of doublewords indicated by the DWORDS operand is not 
available, then the largest block of storage that is greater 
than or equal to the minimum is returned. KIN=n specifies the 
minimum number of doublewords of free storage directly while 
MIN=(1) indicates that the minimum is in register 1. tio not 
specify any register other than register 1. 

r , 
TY PE= I !!~~~ I 

INUCLEUSI 
L J 

indicates the type of CMS storage with which this request for 
free storage is filled: USER or NUCLEUS. 

r , 

ER R= Iladdr I 
I * I 
L J 

is--·t--h--e ---r.e-turnad-d·r-ess- i·f a-uJ- ~error- occUrs. "l-addr-'-' is an~ 
address that can be referred to in an LA (load address) 
instruction. The error return is taken if there is a macro 
coding error or if there is not enough free storage available 
to fill the request. If the asterisk (*) is specified for the 
return address, the error return is the same as a normal 

Part 3. Conversational Konitor System (CMS) 247 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN2S-0829 

return. There is no default for this operand. If it is 
omitted and an error occurs, the system will abend. 

r , 
AREA=ILOW I 

tHIGHI 
L J 

indicates the area of CMS free storage from which this request 
for free storage is filled. LOW indicates the low storage 
area between DMSNUC and the transient program area. HIGH 
indicates the area of storage between the uset program area 
and the CMS loader tables. If AREA is not specified, storage 
is allocated wherever it is available. 

r , 
TY PCALL= I ~!~ I 

I BALRI 
L J 

indicates how control is passed to DMSFREE. Because DMSFREE 
is a nucleus-resident routine, other nucleus-resident routines 
can branch directly to it (TYPCALL=BAL~ while routines that 
are not nucleus-resident must use linkage SVC (TYPCALL=SVC). 

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount of 
storage that DMSFREE has allocated from the high portion of the user 
program area. These pointers are initialized to the beginning of the 
loader tables. 

The pointer FREELOWE is the "low extend" pointer of DMSFREE storage 
in the crser program area. As storage is allocated from the user program 
area to satisfy DMSFREE requests, this pointer will be adjusted 
downward. Such adjustments are always in multiples of 4K bytes, so that 
this pointer is always on a 4K boundary. As the allocated storage is 
released, this pointer is adjusted upward. 

The pointer FREELOWE can never be lower than MAINHIGH, the "high 
extend" pointer for GETMAIN storage. If a DMSFREE request cannot be 
satisfied without extending FREELOWE below MAINHIGH, then DMSFREE will 
take an error exit, indicating that storage is insufficient to satisfy 
the req~est. Figure 27 shows the relationship of these storage areas. 

The FREETAB free storage table is kept in free storage, usually in 
low storage, just below the Master File Directory for the System Disk 
(S-disk). However, the FREETAB may be located at the top of the user 
program area. This table contains one byte for each page of virtual 
storage. Each such byte contains a code indicating the use of that page 
of virtcral storage. The codes in this table are as follows: 

~Qg~ H~§!ling 
USER COD E ( X ' 0 1 ' ) The page is assigned to user storage. 

NUCCODE (X'02') The page is assigned to nucleus storage. 

TRNCODE (X'03') The page is part of the transient program area. 

US ARCODE (X'04') The page is part of the user prog ram area. 

SYSCODE (X'OS') The page is none of the above. The page is assigned 
to system storage, system code, or the loader 
tables. 

248 IBM VM/370 System Programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

OtheL DMSFREE storage pointers are maintained in the DMSFRT CSECT, in 
NUCON; The four chain header blocks are the most important fields in 
DMSFRT. The four chains of unallocated elements are: 

• The low storage nucleus chain 
• The low storage user chain 
• The high storage nucleus chain 
• The high storage user chain 

For each of these chains of unallocated elements, there is a control 
block consisting of four words, with the following format: 

POINTER 

NUM 

MAX 

FLAGS 

r 
1 

0(0) I 
I 

4 (4) 

8 (8) 

12 (C) 

i 

POINTER -- pointer to the first 
free element on the chain 6 or 
zero, if the chain is empty. 

----I 1 1----
NUM -- the number of elements on 

the chain. 

MAX -- a value equal to or grea ter 
than the size of the largest 
element. 

I I 
FLAGS- I SKEY I TCODE -I Unused 

Flag IStorage IFREETAB 
byte 1 key I code 

1 

points to the first element on this chain of free elements. 
If there are no elements on this free chain, then the POINTER 
field contains all zeros. 

contains the number of elements on this 
elements. If there are no elements on this 
this field contains all zeros. 

chain of free 
free chain, then 

is used to avoid searches that will fail. It contains a 
number equal to or greater than the size, in bytes, of the 
largest element on the free chain. Thus, a search for an 
element of a given size will not be made if that size exceeds 
the MAX field. However, this number may actually be larger 
than the size of the largest free element on the chain. 

The following flags are used: 

FLCLN (X'80') -- Clean-up flag. This flag is set if the chain 
must be updated. This will be necessary in the following 
circumstances: 

• If one of the two high storage chains contains a 4K page to 
which FREELOWE points, then that page can be removed from 
the chain, and FREELOWE can be increased. 

• All completely unallocated 4K -pa-g-€-s are kep-t on th-e user 
chain, by convention. Thus, if one of the nucleus chains 
(low storage or high storage) contains a full page, then 
this page must be transferred to the corresponding user 
chain. 

Part 3. Conversational Monitor System (CMS) 249 



SKEY 

TCODE 

April 1, 1981 

FLCLB (X'40') -- Destroyed flag. Set if the chain has been 
destroyed. 

FLHC (X'20') -- High storage chain. 
and user high-storage chains. 

Set for both the nucleus 

FLNU (X'10') -- Nucleus chain. Set for both the low storage 
and high storage nucleus chains. 

FLPA (X'08') -- Page available. This flag is set if there is 
a full 4K page available on the chain. This flag may be set 
even if there is no such page available. 

contains the one-byte storage key assigned to storage on this 
chain. 

contains the one-byte FREETAB table code for storage on this 
chain. 

When DMSFREE with TYPE=USER (the default) is called, one or more of the 
following steps are taken in an attempt to satisfy the request. As soon 
as one of the following steps succeeds, then user free storage 
allocation processing terminates. 

1. search the low storage user chain for a block of the required size. 

2. Search the high storage user chain for a block of the required 
size. 

3. Extend high storage user storage downward into the user program 
area, modifying FREELOWE in the process. 

4. For a variable request, put all available storage in the user 
program area onto the high storage user chain, and then allocate 
the largest block available on either the high storage user chain 
or the low storage user chain. The allocated block will not be 
satisfactory unless it is larger than the minimum requested size. 

When DMSFREE with TYPE=NUCLEUS is called, the following steps are taken 
in an attempt to satisfy the request, until one succeeds: 

1. Search the low storage nucleus chain for a block of the required 
size. 

2. Get free pages from the low storage user chain, if any are 
available, and put them on the low storage nucleus chain. 

3. Search the high storage nucleus chain for a block of the required 
size. 

4. Get free pages from the high storage user chain, if they are 
available, and put them on the high storage nucleus chain. 

250 IBM VM/370 System Programmer's Guide 



page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

5. Extend high storage nucleus storage downward into the User Program 
Area, modifying FREELOWE in the process~ 

6. For variable requests, put all available pages from the user chains 
and the user program area onto the nucleus chains, and allocate the 
largest block available on either the low storage nucleus chains, 
or the high storage nucleus chains. 

The DMSFRET macro releases free storage previously allocated with the 
DMSFREE macro. The format of the DMSFRET macro is: 

r--
I [label] DMSFRET I DWORDS=j .~. \,LOC=!I~~~r\ 
I 
I 
I 
I 
I 
'--

label 

DW ORDS= {' n } 
(a) 

LOC={laddr} 
(1 ) 

r , 
ERR=lladdrl 

I * 
L J 

r , 

I l(U)J t III J 
I r r " r r " I I,ERR=lladdrll I,TYPCALL=I~VC I I 
I I I * II I IBALRII 
I L L .J.J L L ~.J 

is any valid Assembler language label. 

is ~ne number of doublewords of storage to be released. 
DWORDS=n specifies the number of doublewords directly and 
DWORDS=(O} indicates that register 0 contains the number 
of doublewords being released. Do not specify any 
register other than register o. 

is the address 
"laddr" is any 
(load address) 
address directly 
in register 1. 
register 1. 

of the block of storage being released. 
address that can be referred to in an LA 
instruction. LOC=laddr specifies the 

while LOC=(1) indicates the address is 
Do not specify any register other than 

is the return address if an error occurs. "laddr" is any 
address that can be referred to by an LA (load address) 
instruction. The error return is taken if there is a 
macro coding error or if there is a problem returning the 
storage. If an asterisk (*) is specified, the error 
return address is the same as the normal return address. 
There is no default for this operand. If it is omitted 
and an error occurs, the system will abend. 

TYPCALL=I~Y~ I indicates how control is passed to DMSFRET. Since DMSFRET 
IBALRI is a nucleus-resident routine, other nucleus-resident 
L J routines can branch directly to it (TYPCALL=BALR) while 

routines that are not nucleus-resident must use SVC 
linkage (TYPCALL=SVC). 

When DMSFRET is called, the block beinq released is placed on the 
appropriate chain. At that point, the final update operation is 
performed, if necessary, to advan~e FREELOWE, or to move pages from the 
nucleus chain to the corresponding user chain. 

Similar update operations will be performed, when necessary, after 
calls to DMSFREE, as well. 

Part 3. Conversational Monitor System (CMS) 251 



April 1, 1981 

RELEASING ALLOCATED STORAGE 

Storage allocated by the GETMAIN macro instruction may be released in 
any of the following ways: 

1. A specific block of such storage may be released by means of the 
FREEMAIN macro instruction. 

2. The STRINIT macro instruction releases 
any previous GETMAIN requests. 

all storage allocated by 

3. Almost all CMS commands issue a STRINIT macro instruction. Thus, 
executing almost any CMS command will cause all GETMAIN storage to 
be released. 

storage allocated by the DMSFREE macro instruction may be released in 
any of the followinq ways: 

1. A specific block of such storage may be released by means of the 
DMSFRET macro instruction. 

2. Whenever any user routine or CMS command abnormally terminates (so 
that the routine DMSABN is entered), and the abend recovery 
facility of the system is invoked, all DMSFREE storage with 
TIPE=USER is released automatically. 

Except in the case of abend recovery, storage allocated by the 
DMSFREE macro is never released automatically by the system. Thus, 
storage allocated by means of this macro instruction should always be 
released explicitly by means of the DMSFRET macro instruction. 

DMSFREE SERVICE ROUTINES 

The DMSFRES macro instruction is used by the system to request certain 
free storage management services. 

The format of the DMSFRES macro is: 

,..----
I [label] 
I 
I 
I 
I 
I 
I 
I 

DMSFRES INIT1 
INIT2 
CHECK 
CKON 
CKOFF 
UREC 
CALOC 

r r" 
I,TYPCALL=I~Y~ II 

I BALR II 
L L J.J 

252 IBM VM/370 system Programmer's Guide 



label 

INIT1 

IBIT2 

CHECK 

is any valid Assembler language label. 

invokes the first free storage initialization routine, so 
that free storage requests can be made to access ~he 
system disk. Before INIT1 is invoked, no free storage 
requests may be made. After INIT1 has been invoked, free 
storage requests may be made, but these are subject to 
the following restraints until the second free storage 
management initialization routine has been invoked: 

• All requests for USER type storage are changed to 
requests for NUCLEUS type storage. 

• Error checking is limited before initialization is 
complete~ In particular, it is sometimes possible to 
release a block that was never allocated. 

• All requests that are satisfied in high storage must 
be of a temporary nature, since all storage allocated 
1n high storage is released when the second free 
storage initialization routine is invoked. 

When CP's saved system facility is used, the CMS system 
is saved at the point just after the A-Disk has been made 
accessible. It is necessary for DMSFRE to be used before 
the size of virtual storage is known, since the saved 
system can be used on any size virtual machine. Thus, 
the first initialization routine initializes DMSFRE so 
that limited functions can be requested, while the second 
initialization routine performs the initialization 
necessary to allow the full functions of DMSFRE to be 
exercised. 

invokes the second initialization routine. This routine 
is invoked after the size of virtual storage is known, 
and it performs initialization necessary to allow all the 
functions of DMSFRE to be used. The second 
initialization routine performs the following steps: 

• Releases all storage that has been allocated in the 
high storage area. 

• Allocates the FREETAB free storage table. This table 
contains one byte for each 4K page of virtual storage, 
and so cannot be allocated until the size of virtual 
storage is known. 

• The FREETAB table is initialized, and all storage 
protection keys are initialized. 

• All completely unallocated 4K pages on the low storage 
nucleus free storage chain are removed to the user 
chain. Any other necessary operations are performed. 

invokes a routine that checks all free storage chains for 
consistency and correctness. Thus, it checks to see 
whether or not any free storage pointers have been 
destroyed. This option can be used at any time for 
system debugging. 

Part 3. Conversational Monitor System (CMS) 253 



CKON 

CKOPP 

UREC 

CALOC 

r , 

turns on a flag that causes the CHECK routine to be 
invoked each time a call is made to DMSFREE or DMSFRET. 
This can be useful for debugging purposes (for example, 
when you wish to identify the routine that destroyed free 
storage management pointers). Care should be taken when 
using this option, since the CHECK routine is coded to be 
thorough rather than efficient. Thus, after the CKeN 
option has been invoked, each call to DMSFREE or DMSFRET 
will take much longer to be completed than before. 

turns off the flag that was turned on by the CKOB option. 

is used by DMSABN during the abend recovery process to 
release all user storage. 

is used by DMSABN after the abend recovery process has 
been completed~ It invokes a routine which returns, in 
register 0, the number of doublewords of free storage 
that have been allocated. This number is used by DMSAEN 
to determine whether or not the abend recovery has been 
successful. 

TYPCALL=I~VC I indicates how control is passed to DMSFES. Since DMSFRES 
IBALRI is a nucleus-resident routine, other nucleus-resident 
L J routines can branch directly to it, (TYPCALL=BALR) while 

routines that are not nucleus-resident must use SVC 
linkage (TYPCALL=SVC). 

ERROR CODES FROM DMSFRES, DMSFREE, AND DMSFRET 

A nonzero return code upon return from DMSPRES, DMSFREE, or DMSFRET 
indicates that the request could not be satisfied. Register 15 contains 
this return code, indicating which error has occurred. The following 
codes apply to the DMSFRES, DMSFREE, and DMSFRET macros. 

Code -,-
2 

3 

Error 
(DftSFREE) Insufficient storage space is available to satisfy 
the request for free storage. In the case of a variable 
request, even the minimum request could not be satisfied. 

(DMSFREE or DMSFRET) User storage pointers destroyed. 

(DMSFREE, DMSFRET, or DMSFRES) 
destroyed. 

Nucleus storage pointers 

4 (DMSFREE) An invalid size was requested. This error exit is 

5 

taken if the requested size is not greater than zero. In the 
case of variable requests, this error exit is taken if the 
m1n1mum request is greater than the maximum request. 
(However, the latter error is not detected if DMSFREE is able 
to satisfy the maximum request.) 

(DMSFRET) An invalid size was passed to the 
This error exit is taken if the specified 
positive. 

DMSFRET macro. 
length is not 

254 IBM VM/370 System Programmer's Guide 



April 1, 1981 

~£:£Q£ 
(DMSFRET) The block of storage that is being released was 
never allocated by DMSFREE. such an error is detected if one 
of the following errors is found: 

• The block does not lie entirely inside either the low 
storage free storage area or the user proqram area between 
FREELOWE and FREEUPPR. 

• The block crosses a 
allocated for USER 
NUCLEUS type storage. 

page boundary 
storaqe from 

that separates a page 
a page allocated for 

• The block overlaps another block already on the free 
storaqe chain. 

7 (DMSFRET) The address given for the block being released is 
not doubleword aligned. 

8 (DMSFRES) An invalid request code vas passed to the DKSFRES 
routine. Since all request codes are generated by the DKSFRES 
macro, this error code should never appear. 

9 (DMSFREE, DMSFRET, or DMSFRES) Unexpected and unexplained 
error in the free storage management routine. 

eMS Handling of PSW Keys 

The purpose of the CMS Nucleus protection scheme is to protect the CMS 
nucleus from inadvertent destruction by a user program. Without it, it 
would be possible, for example, for a FORTRAN user who accidentally 
assigns an incorrectly subscripted array element to destroy nucleus 
code, wipe out a crucial table or constant area, or even destroy an 
entire disk by destroying the contents of the master file directory. 

In general, user programs and disk-resident CMS commands are executed 
with a PSW key of X'E', while nucleus code is executed with a PSi key of 
X' 0'. 

There are, however, some exceptions to this rule. Certain 
disk-resident CMS commands run with a PSW key of X'O', since they have a 
constant need to modify nucleus pointers and storage. The nucleus 
routines called by the GET, PUT, READ, and WRITE macros run with a user 
PSW key of X'E', to increase efficiency. 

Two macros are available to any routine that wishes to change its PSi 
key for some special purpose. These are the DMSKEY macro and the DMSEXS 
macro. 

The DMSKEY macro may be used to change the PSW key to the user value 
or the nucleus value. The DMSKEY NUCLEUS option causes the current PSW 
key to be placed in a stack, and a value of 0 to be placed in the PSi 
key. The DMSKEY USER option causes the current PSi key to be placed in 
a stack; and a value of X'E' to be placed in the PSW key. The DMSKEY 
RESET option causes the top value in the DMSKEY stack to be removed and 
re-inserted into the PSW. 

It is a requirement of the CMS system that when a routine terminates, 
the DMSKEY stack must be empty. This means that a routine should 
execute a DMSKEY RESET option for each DMSKEY NUCLEUS option and each 
DMSKEY USER option executed by the routine. 

Part 3. Conversational Monitor System (CMS) 255 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

The DMSKEY key stack has a current maximum depth of seven for each 
routine. In this context, a "routine" is anything invoked by an SVC 
call. 

The DMSKEY LASTUSER option causes the current PSi key to be placed in 
the stack, and a new key inserted into the PSW, determined as follows: 
the SVC system save area stack is searched in reverse order (top to 
bottom) for the first save area corresponding to a user routine. The 
PSW key that was in effect in that routine is then taken for the new PSW 
key. (If no user routine is found in the search, then LASTUSER has the 
same effect as USER.) This option is used by as macro simulation 
routines when they wish to enter a ~ser-supplied exit routine; the exit 
routine is entered with the PSi key of the last user routine on the SVC 
system save area stack. 

The NOSTACK option of DMSKEY may be used with NUCLEUS, USER, or 
LASTUSER (as in, for example, DMSKEY NUCLEUS, NOSTACK) if the current key 
is not to be placed on the DMSKEY stack. If this option is used, then 
no corresponding DMSKEY RESET should be issued. 

The DMSEXS ("execute in system mode") macro instruction is useful in 
situations where a routinp. is being executed with a user protect key, 
but wishes to execute a single instruction that, for example, sets a bit 
in the NUCON area. The single instruction may be specified as the 
argument to the DMSEXS macro, and that instruction will be executed with 
a system PSW key. Programs that modify or manipulate bits in DftSNUC or 
other CMS control blocks may, however, hinder the operation of CMS 
causing it to function ineffectively. 

Whenever possible, CMS commands are executed with a user protect key. 
This protects the CMS Nucleus in cases where there is an error in the 
system ~ommand that would otherwise destroy the nucleus. If the command 
must execute a single instruction or small group of instructions that 
modify nucleus storage, then the DMSKEY or DMSEXS macros are used, so 
that the system PSi key will be used for as short a period of time as is 
possible. 

CMS SVC Handling 

DMSITS (INTSVC) is the CMS system SVC handling routine. 
operation of DMSITS is as follows: 

The general 

1 • The S VC new PS W (low storage loca tion X' 60') contains, in the 
address field, the address of DMSITS1. The DMSITS module will be 
entered whenever a supervisor call is executed. 

2. DMSITS allocates a system and user save area. The 
is used as a register save area (or work area) 
routine. 

3. The called routine is called (via a LPSW or BALR). 

user save a.rea 
by the called 

4. Upon return from the called routine, the save areas are released. 

5. Control is returned to the caller (the routine that originally made 
the SVC call). 

256 IB~ V~/370 System programmer's Guide 



SVC TYPES AND LINKAGE CONVENTIONS 

~vc conventions are important to dU! discussion of eMS because the 
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the 
most common CMS SVCs. 

SVC 202 is used 
calling routines 
modules). 

both for 
written 

calling nucleus-resident routines, and for 
as commands (for example, disk resident 

A typical coding sequence for an SVC 202 call is the following: 

LA R1,PLIST 
SVC 202 
DC AL4(ERRADD) 

Whenever SVC 202 is called, register 1 must point to a parameter list 
(PLIST). The format of this parameter list depends upon the actual 
routine or command being called, but the SVC handler will examine the 
first eight bytes of this parameter list to find the name of the routine 
or command being called. 

The "DC AL4(address) " instruction following the SVC 202 is optional, 
and may be omitted if the programmer does not expect any errors to occur 
in the routine or command being called. If included, ~n error return is 
made to the address specified in the DC. DMSITS determines whether this 
DC was inserted by examining the byte following the SVC call inline. A 
nonzero byte indicates an instruction, a zero value indicates that "DC 
AL4(address)" follows. 

SVC 203 is called by CKS macros to perform various internal system 
functions. It is used to define SVC calls for which no parameter list 
is provided. For example, DKSFREE parameters are passed in registers 0 
and 1. 

A typical calling sequence for an SVC 203 call is as follows: 

SVC 203 
DC H'code' 

The halfword decimal code following the SVC 203 indicates the 
specific routine being called. DKSITS examines this halfword code, 
taking the absolute value of the code by an LPR instruction. The first 
byte of the result is ignored, and the second byte of the resulting 
halfword is used as an index to a branch table. The address of the 
correct routine is loaded, and control is transferred to it. 

It is possible for the address in the SVC 203 index table to be zero. 
In this case, the index entry will contain an 8-byte routine or command 
name, which will be handled in the same way as the 8-byte name passed in 
the paraaeter list to an SVC 202. 

Part 3. Conversational Monitor System (CMS) 257 



The programmer indicates an error return by the sign of the halfword 
code. If an error return is desired, then the code is negative. If the 
code is positive, then no error return is made. The sign of the 
halfword code has no effect on determining the routine that is to be 
called, since DftSITS takes the absolute value of the code to determine 
the routine called. 

Since only the second byte of the absolute value of the code is 
examined by DftSITS, seven bits (bits 1-7) are available as flags or for 
other uses~ Thus. for example i DMSFREE uses these seven bits to 
indicate such things as conditional requests and variable requests. 

When an SVC 203 is invoked, DMSITS stores the halfword code into the 
KUCOK location CODE203, so that the called routine can examine the seven 
bits made available to it. 

All calls made by means of SVC 203 should be made by macros, with the 
macro expansion computing and specifying the correct halfword code. 

The programmer may use the HNDSVC macro to specify the address of a 
routine that will handle any SVC call other than for SVC 202 and SVC 
203. 

In this case, the linkage conventions are as required by the 
user-specified SVC-handling routine. 

CMS supports selected SVC calls generated by as and DOS/VS macros, by 
simulating the effect of these macro calls. DftSITS is the initial SVC 
interrupt handler. If the SET DOS command has been issued, a flag in 
NUCON will indicate that DOS/VS macro simulation is to be used. Control 
is then passed to DftSDOS. Otherwise, as macro simulation is assumed and 
DftSITS passes control to the appropriate OS simulation routine. 

There are several types of invalid SVC calls recognized by DftSITS. 

1. Invalid SVC number. If the SVC number does not fit into any of the 
four classes described above, then it is not handled by DftSITS~ In 
appropriate error message is displayed at the terminal, and control 
is returned directly to the caller. 

258 IBM VM/370 System programmer's Guide 



2. Invalid routine name in SVC 202 parameter list. If the routine 
named in the SVC 202 parameter list is invalid or cannot be fOURd, 
DMSITS handles the situation in the same way as it handles an error 
return from a legitimate SVC routine. The error code is -3. 

3. Invalid SVC 203 code. If an invalid code follows SVC 203 inline, 
then an error message is displayed, and the abend routine is called 
to terminate execution. 

SEARCH HIERARCHY FOR SVC 202 

When a program issues SVC 202, passing a routine or command name in the 
parameter list, then DMSITS must be searched for the specified routine 
or command. (In the case of SVC 203 with a zero in the table entry for 
the specified index, the same logic must be applied.) 

1. 

The search algorithm is as follows: 

A check is made to see if there is a routine with 
name currently occupying the system transient area. 
case, then control is transferred there. 

the specified 
If this is the 

2. The system function name table is searched, to see if a command by 
this name is a nucleus-resident command. If the search is 
successful, control goes to the specified nucleus routine. 

3. A search is then made for a disk file with the specified name as 
the filename, and MODULE as the filetype. The search is made in 
the standard disk search order. If this search is successful, then 
the specified module is loaded (via the LOADeOD command), and 
control passes to the storage location now occupied by the command. 

4. If all searches so far have failed, then DMSINA (ABBREV) is called, 
to see if the specified routine name is a valid system abbreviation 
for a system command or function. User-defined abbreviations and 
synonyms are also checked. If this search is successful. then 
steps 2 through 4 are repeated with the full function name. 

5. If all searches fail, then an error code of -3 is issued. 

When a command is entered from the terminal, DeSINT processes the 
command line, and calls the scan routine to convert it into a parameter 
list consisting of eight-byte entries. The following search is 
performed: 

1. DMSINT searches for a disk file whose filename is the command name, 
and whose filetype is EXEC. If this search is successful, EXEC is 
invoked to process the EXEC file. 

If not found, the command name is considered to be an abbreviation 
and the appropriate tables are examined. If found, the abbreviation 
is replaced by its full equivalent and the search for an EXEC file 
is repeated. 

Part 3. Conversational Monitor System (CMS) 259 



2. If there is no EXEC file, DMSINT executes SVC 202, passing the 
scanned parameter list, with the command name in the first eight 
bytes. DMSITS will perfor. the search described for SVC 202 in an 
effort to execute the command. 

3~ If DMSITS returns to DMSINT with a return code of -3, indicating 
that the search was unsuccessful, then DMSINT uses the CP DIAGNOSE 
facility to attempt to execute the command as a CP command. 

4. If all of these searches fail, then DMSINT displays the error 
message UNKNOWN CP/CMS COMMAND. 

See Figure 28 for a description of this search for a command name. 

260 IBM VM/370 System programmer's Guide 



Page of GC20-1B07-7 As Updated April 1, 19B1 by TNL GN25-0B29 

Name is now the 
real name from a 
Synonym Table 

Notes: 

Yes 

Read line from 
terminal 
("name ... ") 

No 

Issue SVC 202 
(See the SVC 202 
Subroutine) 

No 

1. If the terminal line was actually from an EXEC file, or if the 
command SET IMPEX OFF has been executed, implied 
EXEC is not in effect. 

2. A -3 return code indicates SVC 202 processing did not find 
the command. 

3. If the terminal line was actually from an EXEC file, or 
if the command SET IMPEX OFF has been executed, 
implied CP is not in effect, 

Expand Line by 
inserting the com· 
mand name EXEC 
to: EXEC name 

No 

Display 
UNKNOWN 
CP/CMS 
COMMAND 

Display Ready 
message, with error 
code if RC ---, ~ 0 

No 

Pass line to CP 
for processing 

Yes 

I Figure 2 B. CMS Command (and Bequest) processing (Part 1 of 2) 

Part 3. Conversational Monitor System (eMS) 261 



Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

Name is now the 
real name from the 
Synonym Table 

Yes 

SVC 202 name 

Attempt to execute 
LOADMOD name 
MODULE from disk 

Set RC =-3 

Yes 

Yes 

Pass control to the 
routine (in the 
nucleus, transient 
area, or user area) to 
execute the 
command 

Upon completion, 
return to SVC 
routine 

I Figure 28. CMS Command (and Request) Processinq (Part 2 of 2) 

262 IBM VM/370 System Programmer's Guide 



USER AND TRANSIENT PROGRAM AREAS 

Two areas bold programs that are loaded from disk. These areas are 
called the user program area and the transient program area. (See 
Pigure 27 for a description of CMS storage usage.) 

The user program area starts at location X'20000' and extends upward 
to the loader tables. Generally, all user programs and certain syste. 
commands (sucb as EDIT, and COPYFILE) are executed in the user program 
area. Since only one program can be executing in the user program area 
at anyone time, it is impossible (without unpredictable results) for 
one program being executed in the user program area to invoke, by means 
of SVC 202, a module tbat is also intended to be executed in the user 
program area. 

The transient program area is two pages long, extending from locaticn 
X'EOOO' to location X'FFFF'. It provides an area for system commands 
tbat may also be invoked from the user program area by means of an SVC 
202 call. When a transient module is called by an SVC, it is normally 
executed with the PSW system mask disabled for IIO and external 
interrupts. 

The transient program area is also used to handle certain OS macro 
simulation SVC calls. OS SVC calls are handled by the as simulation 
routines located either in the CMSSEG discontiguous shared segment or in 
the user program area, as close to the loader tables as possible. If 
DMSITS cannot find the address of a supported as SVC handling routine. 
then it loads the file DMSSVT MODULE into the transient area, and lets 
that routine handle the SVC. 

A program being executed in the transient program area may not invoke 
another program intended for execution in the transient program area. 
including OS macro simulation SVC calls that are handled by DMSSVT~ For 
example, a program being executed in the transient program area may not 
invoke the RENAME command. In addition~ it may not invoke the as macro 
iTO, which generates an SVC 35, which is handled by DMSSVT. 

DMSITS starts the programs to be executed in the user program area 
enabled for all interrupts but starts the programs to be executed in the 
transient program area disabled for all interrupts. The individual 
program may have to use the SSM (Set System Mask) instruction to change 
the current status of its system mask. 

Part 3. Conversational Monitor System (CMS) 263 



CALLED ROUTINE START-UP TABLE 

Figures 29 and 30 show how the PSW and registers are set up when the 
called routine is entered. 

I ------------------------------------------------------------, 
I "Called" Type System Mask Storage Key Problem Bit 
1--------
ISVC 202 or 203 
I - Nucleus 
I resident , 
ISVC 202 or 203 
I - Transient 
I area MODULE 

SVC 202 or 203 
User area 

User-handled 

as - DOS/VS 
Nucleus 
resident 

as - DOS/VS 
Transient 
area module 

Disabled System Off 

Disabled User Off 

Enabled User Off 

Enabled User Off 

Disabled system Off 

Disabled system Off 

Figure 29. PSi Fields When Called Routine Starts 

Registers Registers Register RegisterlRegister 
Type o - 1 2 - 11 12 13 I 14 

----- I 
SVC 202 Same as Unpre- Address User IReturn 
or 203 caller dictable of save I address 

called area I to 
routine I DftSITS 

I 
Other Same as Same as Address User IReturn 

caller caller of save I address 
caller area I to 

I tftSITS 

Figure 30. Register Contents When Called Routine Starts 

RETURNING TO THE CALLING ROUTINE 

, 
Register I 

15 I 
I 

Address I 
of I 
called I 
routinel 

I 
Same as I 
caller , 

I 
I 

.J 

When the called routine finishes processing, control is returned to 
DMSITS, which in turn returns control to the calling routine. 

The return 
was saved 

is accomplished by loading 
at the time DMSITS was 

the original SVC old PSW (which 
first entered), after possibly 

264 IBM VM/370 System programmer's Guide 



modifying the address field. 
upon the type of SiC call, and 
~-~~--~-~ -- ----- --~--~uu~~a~cu all c~~v~ ~C~U~ll. 

The address field modification depends 
upon whether or not the called routine 

For SiC 202 and 203, the called routine indicates a normal return by 
placing a zero in register 15 and an error return by placing a nonzero 
code in register 15. If the called routine indicates a normal return, 
then DMSITS makes a normal return to the calling routine. If the called 
routine indicates an error return, DMSITS passes the error return to the 
calling routine, if one was specified, and abnormally terminates if none 
was specified. 

For an SVC 202 not followed by "DC AL4(address)", a normal return is 
.ade to the instruction following the SVC instruction, and an error 
return causes an abend. For an SVC 202 followed by "DC AL4(address)", a 
normal return is made to the instruction following the DC, and an error 
return is made to the address specified in the DC. In either case, 
register 15 contains the return code passed back by the called routine. 

For an SVC 203 with a positive halfword code, a normal return is made 
to the instruction following the halfword code, and an error return 
causes an abend. For an SVC 203 with a negative halfword code, both 
normal and error returns are made to the instruction following the 
halfword code~ In any case, register 15 contains the return code passed 
tack by the called routine. 

For macro simulation SVC, calls, and for user-handled SVC calls, no 
error return is recognized by DMSITS. As a result, DMSITS always 
returns to the calling routine by loading the svc old PSi, which was 
saved when DMSITS was first entered. 

Upon entry to DMSITS, all registers are saved as they were when the SVC 
instruction was first executed. Upon exiting from DMSITS, all registers 
are restored from the area in which they were saved at entry. 

The exception to this is register 15 in the case of SVC 202 and 203. 
Upon return to the calling routine, register 15 always contains the 
value that was in register 15 when the called routine returned to DMSITS 
after it had completed processing. 

If the called routine 
storage protect key of 
Save Area. 

has system status, so that it runs with a PSi 
0, then it may store new values into the System 

If the called routine wishes to modify the location to which control 
is to be returned, it must modify the following fields: 

• For SVC 202 and 203, it must modify the NUMRET and ERRET (normal and 
error return address) fields. 

• Fer ether SiCs, it must modify the address field of OLDPSW. 

To modify the registers that are to be returned to the calling routine, 
the fields EGPR1, EGPR2, ••• , EGPR15 must be modified. 

Part 3. Conversational Monitor System (CMS) 265 



If this action is taken by the called routine, then the SVCTR1CE 
facility may print misleading information, since SVCTRACE assumes that 
these fields are exactly as they were when DKSITS was first entered. 
Whenever an SVC call is made, DKSITS allocates two save areas for that 
particular SVC call. Save areas are allocated as needed. For each SVC 
call, a system and user save area are needed. 

When the SVC-called routine returns, the save areas are not released, 
but are kept for the next SVC~ At the completion Qf each command. all 
SYC save areas allocated by that command are released. 

The System Save Area is used by DMSITS to save the value of the SVC 
old PSi at the time of the SVC call, the calling routine's registers at 
the time of the call, and any other necessary control information. 
Since SVC calls can be nested, there can be several of these save areas 
at one time. The system save area is allocated in protected free 
storage. 

The user save area contains 12 doublewords (24 words), allocated in 
unprotected free storage. DMSITS does not use this area at all. but 
simply passes a pointer to this area (via register 13.) The called 
routine can use this area as a temporary work area, or as a register 
save area. There is one user save area for each system save area. The 
USAYEPTR field in the system save area points to the user save area. 

The exact format of the system save area can be found in the !!Lll~ 
Data Areas and Control Block Log!£. The most important fields, and 
their-uses, are as-follows:---

Field 
CiLLER 

CALLEE 

CODE 

OLDPSW 

NRKRET 

ERRET 

EGPRS 

EFPRS 

y§gg~ 
(Fullword) The address of the SVC instruction that resulted in 
this call. 

(Doubleword) Eight-byte symbolic name of the called routine. 
For OS and user-handled SVC calls, this field contains a 
character string of the form SVC nnn, where nnn is the SYC 
number in decimal. 

(Halfword) For SVC 203, this field contains the halfword code 
following the SVC instruction line. 

(Doubleword) The SVC old PSi at the time that DKSITS vas 
entered. 

(Fullword) The address of the calling routine to which control 
is to be passed in the case of a normal return fro. the called 
routine. 

(Fullword) The address of the calling routine to which control 
is to he passed in the case of an error return from the called 
routine. 

(16 Fullwords, separately labeled EGPRO, EGPR1, EGPR2, EGPR3, 
••• , EGPR15) The entry registers. The contents of the 
general registers at entry to DKSITS are stored in these 
fields. 

(4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4, EFPR6) 
The entry floating-point registers. The contents of the 
floating-point registers at entry to DKSITS are stored in 
these fields. 

266 IBK VM/370 System Programmer's Guide 



SSAVENXT (Fullword) The address of the next system save area in the 
chain. This points to the system save area that is being 
used, or will be used, fer any SVC call nested in relation to 
the current one. 

SSAVEPRV (Fullword) The address of the previous system save area in 
the chain. This points to the system save area for the SVC 
call in relation to which the current call is nested. 

OS~VEPTR (Fullword) Pointer to the user save area for this SVC call~ 

eMS Interface for Display Terminals 

CMS has an interface that allows it to display large amounts of data in 
a very rapid fashion. This interface for 3270 display terminals (also 
3138, 3148, and 3158) is much faster and has less overhead than the 
normal write because it displays up to 1760 characters in one operation. 
instead of issuing 22 individual writes of 80 characters each (that is 
one write per line on a display terminal). Data that is displayed in 
the screen output area with this interface is not placed in the console 
spool file. 

The DISPW macro allows you to use this display terminal interface. 
It generates a calling sequence for the CMS display terminal interface 
.odule, DMSGIO. DMSGIO creates a channel program and issues a DIAGNOSE 
instruction (Code X'S8 i ) to display the data. DMSGIO is a TEXT file 
which must be loaded in order to use DISPW. The format of the CMS DISPW 
Ilacro is: 

[label] 

where: 
label 

bufad 

r , 
I LINE=n I 
I LINE=O I 
L .I 

r , 
I BYTES=bbbb I 
I~YT~~=176QI 
L .I 

[ ERASE=YES] 

r , 
DISPW bufad I,LINE=nl 

I L111Ul::.Q I 
L .J 

r , 
I.BYTES=bbbbl 
I,L BY1].§=176..Q1 
L .J 

[ ERASE=YES] [ CANCEL=YES] 

is an optional macro statement label. 

is the address of a buffer containing the data to be 
written to the display terminal. 

is the number of the 
display terminal that 
number 0 is the default. 

is the 
on the 

number of bytes 
display terminal. 

line, 
is to 

o to 23. on 
be written. 

the 
Line 

(0 to 1760) to be written 
1760 bytes is the default. 

specifies that the display screen is to be erased before 
the current data is written. The screen is erased 
regardless of the line or number of bytes to be 
displayed. Specifying ERASE=YES causes the screen to go 
into "MORE" status. 

Part 3. Conversational Monitor System (CMS) 267 



[CINCEL=YES] causes the CANCEL operation to be performed: the output 
area is erased. 

lote: It is advisable for the user to save registers before issuing the 
DISPW macro and to restore them after the macro. because neither the 
macro nor its called modules save the user's registers. 

268 IBK VK/370 System Program.er's Guide 



How to Add a Command or EXEC Procedure to 
eMS 

You can create a module or EXEC procedure that executes in the user area 
and resides on disk. In order to execute such a co •• and or EXEC 
procedure, you only have to enter the filename from the terminal. 
However, be aWare of the CKS search order for terminal input. Once a 
match is found, the search stops. The search order is: 

1. EXEC file on any currently accessed disk. 

2. Valid abbreviation for an EXEC file on any currently accessed disk. 

3. Nucleus-resident or transient area coamand. 

4. Command on any currently accessed disk. 

5. Valid abbreviation or synonym for nucleus resident or transient 
area command. 

6. Valid abbreviation for disk-resident co •• and. 

For example, if you create an EXEC file with the same name as a disk 
resident command, the CKS search will always find the EXEC file first. 
Thus, the disk resident command will never get executed. 

CKS has a function table containing the names of CftS functions. CftS 
reserves the following na.es, all entries in the CftS FUNCTAB (found in 
DKSFNC), for its own use: 

ATTN 
CARDPH 
CARDRD 
CKSTIKE 
CONREAD 
CONiAIT 
CP 
DEBUG 
DESBUF 
DKSCIOSI 
DKSERR 
DKSLADAD 
DKSPIOCC 
DKSPIOSI 

DftSSKNAT 
DKSVSR 
ERASE 
EXEC 
FETCH 
FINIS 
GENKOD 
INCLUDE 
LOAD 
LOADKOD 
POINT 
PRINTIO 
PRINTR 
RDBUF 

RETURN 
START 
STATE 
STATEW 
SUBSET 
SVCFREE 
SVCFRET 
TIPEIO 
TRAP 
TYPLIN 
WAIT 
WIITRD 
iRBUF 

Part 3. Conversational Konitor syste. (CftS) 269 



OS Macro Simulation under eMS 

When a language processor or a user-written program is executing in the 
CMS environment and using OS-type functions, it is not executing os 
code. Instead, CMS provides routines that simulate the as functions 
required to support as language processors and their generated object 
code. 

CMS functionally simulates the as macros in a way that presents 
equivalent results to programs executing under eMS. The as macros are 
supported only to the extent stated in the publications for the 
sUFPorted language processors, and then only to the extent necessary to 
successfully satisfy the specific requirement of the supervisory 
function. 

The restrictions for COBOL and PL/I program execution listed in 
"Executing a Program that Uses as Macros" in the !~Ll1Q glanning ~ng 
~Istem Qene!g!i2n ~Yig~ exist because of the limited CMS simulation of 
the as macros. 

Figure 31 shows the as macro functions that are partially or 
completely simulated, as defined by SVC number. 

OS Data Management Simulation 

The disk format and data base organization of CMS are different fre. 
those of as. A CMS file produced by an as program running under CMS and 
written on a CMS disk, has a different format from that of an as data 
set produced by the same as program running under as and written on an 
OS disk. The data is exactly the same, but its format is different. (An 
as disk is one that has been formatted by an as program, such as 
IBCDASDI. ) 

HANDLING FILES THAT RESIDE ON CMS DISKS 

CMS can read, write, or update any as data that resides on a CMS disk. 
By simulating as macros, CMS si.ulates the following access methods so 
that as data organized by these access methods can reside on CMS disks: 

direct 

partitioned 

sequential 

identifying a record by a key or by its relative 
position within the data set. 

seeking a named member within the data set. 

accessing a record in a sequence in relation to 
preceding or following items in the data set. 

Refer to Figure 31 and the "Simulation Notes," then read "Access 
Method Support" to see how CMS handles these access methods. 

Since CMS does not simulate the indexed sequential access method 
(ISAM), no as program that uses ISAM can execute under eMS. Therefore, 
no program can write an indexed sequential data set on a CMS disk. 

270 IBM VM/370 System Programmer's Guide 



HAIDLING FILES THAT RESIDE ON 05 OR DOS DISKS 

By simulating 
sequential and 
saae simulated 
on DOS disks. 
Thus, a DOS 
running under 

05 macros, CMS can read, but not write or update, 05 
partitioned data sets that reside on OS disks. Using the 
os macros, CMS can read DOS sequential files that reside 
The OS macros handle the DOS data as if it were OS data. 

sequential file can be used as input to an 05 progra. 
CMS. 

However, an 05 sequential or partitioned 
05 disk can be written or updated only by 
real 05 machine. 

data set that resides on an 
an OS program running in a 

CMS can execute programs that read and write VSAe files fro. CS 
programs written in the vs BASIC, COBOL, or PL/I programming languages. 
This CMS support is based on the DOS/iS Access ~ethod Services and 
Virtual Storage Access Method (VSAM) and, therefore, the 05 user is 
li.ited to those VSAM functions that are available under DOS/VS. 

Part 3. Conversational Monitor System (CMS) 211 



-------------------------------------------------------------------------, 

I 

Macro 
!!~.!!!~ 

XDApl 
WAIT 
POST 
EXIT/RETURN 
GETMAIN 
FREEMAIN 
GET POoL 
FREEPOOL 
LINK 
XCTL 

LOAD 
DELETE 
GETMAIN/ 

FREEMAIN 
TIMEI 
ABEND 
SPIEl 

RESTORE1 
BLDL/FINDI 

OPEN 
CLOSE 
STOWI 
OPENJ 
TCLOSE 
DEVTYPE1 

TRKBAL 
FEOV 
WTO/WTOR1 
EXTRACT1 
IDENTIFY I 
ATTACH1 
CHAp1 
TTIMERI 
STIMERI 
DEQ1 
SNAp1 
ENQ1 
FREEDBUF 
STAE 

DETACHI 
CHKPTI 
RDJFCB1 
SYNADI 
BSPI 
GET/PUT 
READ/WRITE 
NOTE/POINT 
CHECK 
TGET/TPUT 
TCLEARQ 
STAX 

SVC 
Number ---00-

01 
02 
03 
04 
05 

06 
07 

08 
09 
10 

11 
13 
14 

17 
18 

19 
20 
21 
22 
23 
24 

25 
31 
35 
40 
41 
42 
44 
46 
47 
48 
51 
56 
57 
60 

62 
63 
64 
68 
69 

93 
94 
96 

Function 
Read-or-write direct access volumes 
Wait for an I/O completion 
Post the I/O completion 
Return from a called phase 
Conditionally acquire user storage 
Release user-acquired storage 
Simulate as SVC 10 
Simulate as SVC 10 
Link control to another phase 
Delete, then link control to another 

load phase 
Read a phase into storage 
Delete a loaded phase 
Manipulate user free storage 

Get the time of day 
Terminate processing 
Allow processing program to 

handle program interrupts 
Effective NOP 
Manipulate simulated partitioned 

data files 
Activate a data file 
Deactivate a data file 
Manipulate partitioned directories 
Activate a data file 
Temporarily deactivate a data file 
Obtain device-type physical 

characteristics 
NOP 
Set forced EOV error code 
Communicate with the terminal 
Effective NOP 
Add entry to loader table 
Effective LINK 
Effective NOP 
Access or cancel timer 
Set timer 
Effective NOP 
Dump specified areas of storage 
Effective NOP 
Release a free storage buffer 
Allow processing program to 

decipher abend conditions 
Effective NOP 
Effective NOP 
Obtain information from FILEDEF command 
Handle data set error conditions 
Back up a record on a tape or disk 
Access system-blocked data 
Access system-record data 
Manage data set positioning 
Verify READ/WRITE completion 
Read or write a terminal line 
Clear terminal input queue 
Create an attention exit block 

f1Simulated in the transient routine DMSSVT. Other simulation 
f routines reside in the nucleus. 

Figure 31. Simulated OS Supervisor Calls 

272 IBM V~/370 System programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN2S-0829 

SI MULATION NOTES 

Because CMS has its own file system and is a single-user system 
operating in a __ Y.irtual maGhin.e_Yit_h_JrirtJl.al_stQ_rage, _ th_e_re are certain 
restrictions for the simulated OS function in CMS. For example, HIARCHY 
options and options that are used only by as multitasking systems are 
ignored by CMS. 

Due to the design of the CMS loader, an XCTL from the explicitly 
loaded phase, followed by a LINK by succeeding phases, may cause 
unpredictable results. 

Listed below are descriptions of all the OS macro functions that are 
simulated by CMS as seen by the programmer. Implementation and program 
results that differ from those given in Q~ Da1~ ~~n~g~~n! aa~!Q 
Inst£yctiQn§ and Q~ ~ypervi§Q£ Services and Macro Instructions are 
stated. HIARCHY options and those used--;nly by OS multitasking systems 
are ignored by CMS. Validity checking is not performed within the 
simulation routines. The entry point name in LINK, XCTL, and LOAD (SVC 
6, 7, 8) must be a member name or alias in a TXTLIB directory unless the 
COMPSWT is set to on. If the COMPSWT is on, SVC 6, 7, and 8 must 
specify a module name. This switch is turned on and off by using the 
COMPS~T macro. See the VM/37Q £MS Co~~ng gng ~g£~Q Ref~~~~£~ for 
descriptions of all CMS user macros. 

Ma£~Q=~Y~_NQ..!. 
XDAP-SVCO 

WAIT-SVC1 

POST-SVC2 

EXIT/RETURN 
=SVC3 

GETMAIN-SVC4 

FREEMAIN-SVCS 

LI liK-SVC6 

Differences in Implementation 
The TYPE option must be R or W; the V, I, and K 
options are not supported~ The BLKREF-ADDR must point 
to an item number acquired by a NOTE macro. Other 
options associated with V, I, or K are not supported. 

All options of 
waits for the 
specified ECBs. 

WAIT are supported. 
completion bit to 

The 
be 

WAIT routine 
set in the 

All options of POST are supported. POST sets a 
completion code and a completion bit in the specified 
ECB. 

Post ECB, execute end of task routines, release 
phase storage, unchain and free latest request block, 
and restore registers depending upon whether this is 
an exit or return from a linked or an attached 
routine. Do not use EXIT/RETURN to exit from an 
explicitly loaded phase. If EXIT/RETURN is used for 
this purpose, CMS issues abend code AOA. 

All options of GETMAIN are supported except SP and 
HIARCHY, which are ignored by CMS, and LC and LU, 
which will result in abnormal termination if used. 
GETMAIN gets blocks of free storage. 

All options of FREEMAIN are supported except SP, which 
is ignored by CMS, and L, which will result in 
abnormal termination if used. FREEMAIN frees blocks 
of storage acquired by GET~AIN .. 

The DCB and HIARCHY options are ignored by CMS. All 
other options of LINK are supported. LINK loads the 
specified -program in-to storage- (if necessa-ry) a-nd 
passes control to the specified entry point. 

Part 3. Conversational Monitor System (CMS) 273 



XCTL-SVC7 

LOAD-SVC 8 

GETPOOL/ 
FREEPOOL 

DELETE-SVC9 

GETMAIN/ 
PREEMAIN
SVC10 

TIME-SVC11 

ABEND-SVC13 

SPIE-SVC14 

RESTORE-SVC17 

BLDL-SVC 18 

FI ND-SVC 18 

April 1, 1981 

The DCB and HIARCHY options are ignored by CKS.. All 
other options of XCTL are supported. XCTL loads the 
specified program into storage (if necessary) and 
passes control to the specified entry point. 

The DCB and HIARCHY options are ignored by CMS. All 
other options of LOAD are supported. LOAD loads the 
specified program into storage (if necessary) and 
returns the address of the specified entry point in 
register zero. However, if the specified entry point 
is not in core when SVC 8 is issued, and the 
subroutine contains VCONs that cannot be resolved 
within that TXTLIB member, CMS will attempt to resolve 
these references, and may return another entry point 
address. To insure a correct address in register zero, 
the user should bring such subroutines into core 
either by the CMS LOAD/INCLUDE commands or by a VCON 
in the user program. 

All the options of GETPOOL and FREEPOOL are supported. 
GETPOOL constructs a buffer pool and stores the 
address of a buffer pool control block in the DCB. 
FREE POOL frees a buffer pool constructed by GETPOOL. 

All the options of DELETE are supported. DELETE 
decreases the use count by one and, if the result is 
zero, frees the corresponding virtual storage. Code 4 
is returned in register 15 if the phase is not found. 

All the options of GETftAIN and FREEMAIN are supported 
except SP and HIARCHY, which are ignored by CMS. 

CMS supports only the DEC parameter of the TIME macro 
instruction. However, the time value that CMS returns 
does not contain tenths of seconds or hundredths of 
seconds: the time is expressed as HHMMSS. 

The completion code parameter is supported. The DUMP 
parameter is not. If a STAE request is outstanding, 
control is given to the proper STAE routine. If a 
STAE routine is not outstanding, a message indicating 
that an abend has occurred is printed on the terminal 
along with the completion code. 

All the options of SPIE are supported. The SPIE 
routine specifies interruption exit routines and 
program interruption types that will cause the exit 
routine to receive control. 

The RESTORE routine in CMS is a NOP. It returns 
control to the user. 

BLDL is an effective NOP for LINKLIBs and JOBLIBs. 
For TXTLIBs and MACLIBs, item numbers are filled in 
the TTR field of the BLDL list; the K, Z, and user 
data fields, as described in OSLi~ ~g1~- ~anag~!~~!· 
~~£!Q Instructions, are set to zeros. The "alias" bit 
of the C field is supported, and the remaining bits in 
the C field are set to zero. 

All the options of FIND are supported. FIND sets the 
read/write pointer to the item number of the specified 
member. 

274 IBM VM/370 System Programmer's Guide 



STOW-SVC21 

OPEN/OPENJ
SYCi9/22 

CLOSE/TCLOSE
SVC20/23 

DEVTYPE-SVC24 

FEOY-SVC31 

WTO/WTOR-SVC35 

EXTRACT-SVC40 

All the options of STOW are supported. The "alias· 
bit is supported, but the user data field is not 
stored in the MACLIB directory since eMS MACLIBs do 
not contain user data fields. 

All the options of OPEN and OPENJ are supported except 
for the DISP and RDBACK options, which are ignored. 
OPEN creates a CMSCB (if necessary), completes the 
DCB, and merges necessary fields of the DCB and CMSCE. 

All the options of CLOSE and TCLOSE are supported 
except for the DISP option, which is ignored. The DCB 
is restored to its condition before OPEN. If the 
device type is disk, the file is closed. If the 
device type is tape, the REREAD option is treated as a 
REWIND. 

w~~n ~ne exception of the BPS option, which C~S 
ignores, CMS accepts all options of the DEVTYPE macro 
instruction. In supporting this macro instruction. 
CMS groups all devices of a particular type into the 
same class. For example, all printers are grouped 
into the printer class, all tape drives into the tape 
drive class, and so forth. In response to the DEVTYFE 
macro instruction, CMS provides the same device 
characteristics for all devices in a particular class. 
Thus, all devices in a particular class appear to be 
the same device type. 

The device type characteristics CMS returns for each 
class are: 

Printer 
Card reader 
Console 
Tape drive 
DASD 
Card punch 
DUMMY 
unassigned 

1403 
2540 
1052 
2QOO (9 track) 
2314 
2540 
2314 
2314 

Control is returned to CMS with an error code of 4 in 
register 15. 

All options of iTO and iTOR are supported except those 
options concerned with multiple console support. iTO 
displays a message at the operator's console. WTOR 
displays a message at the operator's console, waits 
for a reply, moves the reply to the specified area. 
sets a completion bit in the specified ECB, and 
returns. There is no check made to determine if the 
operator provides a reply that is too long. The reply 
length parameter of the iTOR macro instruction 
specifies the maximum length of the reply. The ITeR 
macro instruction reads only this amount of data@ 

The EXTRACT routine in CMS is essentially a NOP. The 
user-provided answer area is set to zeros and control 
is returned to the user with a return code of 4 in 
register 15. 

Part 3. Conversational Monitor System (CMS) 275 



IDBNTIFY-SVC41 

lTT1CH-SVC42 

CH1P-SVC44 

TTIMER-SVC46 

STIMER-SVC47 

DEQ-SVC48 

SNAP-SVC51 

ENQ-SVC56 

FREEDBUF-SVC57 

STAE-SYC60 

DETACH-SYC62 

CHKPT-SVC63 

RDJFCB-SVC64 

The IDENTIFY routine in CMS 
the load request chain for 
address. 

adds a RPQUEST block to 
the requested name and 

All the options of ATTACH are supported in CMS as in 
as PCP. The following options are ignored by CMS: 
DCB, LPMOD, DPMOD, HIARCHY, GSPV, GSPL, SHSPV, SHSPL, 
SZERO, PURGE, ASYNCH, and TASKLIB. ATTACH passes 
control to the routine specified, fills in an ECE 
completion bit if an ECB is specified, passes control 
to an exit routine if one is specified, and returns 
control to the instruction following the ATTACH. 

Since CMS is not a multitasking system, a phase 
requested by the ATTACH macro must return to eMS. 

The CHAP routine in CMS is a Nap. It returns control 
to the user. 

All the options of TTIMER are supported. 

All options of STIMER are supported except for TASK 
and WAIT. The TASK option is treated as if the REAL 
option had been specified, and the WAIT option is 
treated as a Nap; it returns control to the user. 

The DEQ rotttine in CMS is a NOP. 
to the user. 

It returns control 

Except for SDATA, PDATA, and tCB, all options of the 
SNAP macro are processed normally. SDATA and PDATA 
are ignored. processing for the DCB option is as 
follows. The DBC address specified with SNAP is used 
to verify that the file associated with the DCB is 
open. If it is not open, control is returned to the 
caller with a return code of 4. If the file is open, 
then storage is dumped (unless the FCB indicates a 
DUMMY device type) • SNAP always dumps output to the 
printer. The dump contains the PSW, the registers, 
and the storage specified. 

The ENQ routine in CMS is a NOP. 
to the user. 

It returns control 

All the options of FREBDBUF are supported. FREBDBUF 
returns a buffer to the buffer pool assigned to the 
specified DCB. 

are supported except for the 
set to XCTL=YBS; the PURGE 
HALT; and the ASYNCH option, 
STAE creates, overlays, or 

All the options of STAB 
XCTL option, which is 
option, which is set to 
which is set to NO. 
cancels a STAE control 
is not supported. 

block as requested. STAE retry 

The DETACH routine in CMS is a NOP. 
control to the user. 

It returns 

The CHKPT routine is a Nap. It returns control to the 
user. 

All the options of RDJFCB are supported. RDJFCE 
causes a Job File Control Elock (JFCB) to be read from 
a CMS Control Block (CMSCB) into real storage for each 

276 IBM VM/370 System Programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

SYNADAF-SVC68 

SYNADRLS-SVC68 

BSP-S VC6 9 

TGET/TPrJT
SVC93 

TCLEARQ-SVC94 

STAX-SVC96 

NOTE 

POINT 

CHECK 

DCB 

Q~!:s!!g 
BFALN 
BLKSIZE 
BUFCB 
BUFL 
BUFNO 
DDNAME 
DSORG 
EODAD 
EXLST 
KEYLENl 
LIMCT 
LRECL 
MACRF 
OPTCD 
RECFM 
SYNAD 
NCP 

--------------

data control block specified. CMSCBs are created by 
FILEDEF commands. 

All the options of SYNADAF are supported. SYNADAF 
analyzes an I/O error and creates an error message in 
a work buffer. 

All the options of SYNADRLS are supported. SYNADRLS 
frees the work area acquired by SYNAD and deletes the 
work area from the save area chain. 

All the options of BSP are supported. BSP decrements 
the item pointer by one block. 

TGET and TPUT operate as if EDIT and WAIT were coded. 
TGET reads a terminal line. TPUT writes a terminal 
line. 

TCLEARQ in CMS clears the input terminal queue and 
returns control to the user. 

Updates a queue of CMTAXEs each of which defines an 
attention exit level. 

All the options of NOTE 
the relative position 
written .. 

are supported. NOTE returns 
of the last block read or 

All the options of POINT are supported. POINT causes 
the control program to start processing the next read 
or write operation at the specified item number. The 
TTR field in the block address is used as an item 
number. 

All the options of CHECK are supported. 
the I/O operation for errors and 
condi t ions. 

The following fields of a DCB may 
relative to .... ,... particular access method '-'l.le 

be 

CHECK tests 
exceptional 

specified, 
indicated: 

lm!!1 BPAM .!!~!~ Q.~!A-
F,D F,D F,D F,D 
n(number) n n n 
a (address) a a a 
n n n n 
n n n n 
s (symbol) s s s 
DA PO PS PS 

a a a 
a a a a 
n n 
n 

n n n 
R,W R,W R, W, P G,P,L,M 
A£' E, F, R 
F,V,a F,V,U F,V,B,S,A,M,U F,V,B,U,A,M,S 
a a a a 

n n 

lIf an input data set is not a EDAM data set, zero is the only value that 
should be specified for KEYLEN. This applies to the user exit lists as 
well as to the DCB macro instruction. 

Part 3. Conversational Monitor System (CMS) 277 



April 1, 1981 

ACCESS METHOD SUPPORT 

The manipulation of data is governed by an access method. To facilitate 
the execution of OS Code under eMS, the processing program must see data 
as OS would present it. For instance, when the processors expect an 
access method to acquire input source cards sequentially, CMS invokes 
specially written routines that simulate the OS sequential access method 
and pass data to the processors in the format that the OS access methods 
would have produced. Therefore, data appears in storage as if it had 
been manipulated using an OS access method. For example, block 
descriptor words (BOW), buffer pool management, and variable records are 
updated in storage as if an OS access method had processed the data. 
The actual writinq to and reading from the I/O device is handled by CMS 
file manaqement. Note that the character string X'61FFFF61' is 
interpret~d by eMS as an end of file indicator. 

The essential work of the volume table of contents (VTOe) and the 
data set control block (OSCB) is done in eMS by a master file directory 
(MFO) which updates the disk contents, and a file status table (FST) 
(one for each data file). All disks are formatted in physical blocks of 
800 bytes. 

eMS continues to update the OS format, within its own format, on the 
auxilia~y device, for files whose fi~emode number is 4. That is, the 
block and record descriptor words (BOW and ROW) are written along with 
the data. If a data set consists of blocked records, the data is 
written to, and read from, the I/O device in physical blocks, rather 
than loqical records. eMS also simulates the specific methods of 
manipulating data sets. 

To accomplish this simulation, CMS supports certain essential macros 
for the following access methods: 

• BDAM 

• BPAM 

• BSAM/QSAM 

• VSAM 

(direct) -- identifying a record by a key or by its 
relative position within the data set. 

(partitioned) -- seeking a named member within data set. 

(sequential) -- accessing a record in a sequence in 
relation to preceding or following records. 

(direct or sequential) -- accessing a record sequentially 
or directly by key or address. 

!ot~: CMS support of OS VSAM files is based on DOS/VS 
Access Method Services and Virtual Storage Access Method 
(VSAM). Therefore, the OS user is restricted to those 
functions available under "DOS/VS Access Method 
Services." See the section "eMS Support for as and DOS 
VSAM Functions" for details. 

CMS also updates those portions of the OS control blocks that are 
needed by the as simulation routines to support a program durinq 
execution. Most of the simulated supervisory OS control blocks are 
contained in the following two eMS control blocks: 

CMSCVT 
simulates the communication vector table. Location 16 contains 
the address of the CVT control section. 

278 IBM VM/370 System Programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

CMSCB 
.~ B" __ B6_~ # ______ 6 __ ~ ____ 6 _____ ~L _______ nTT~n~n ______ ~ 

~~ ~~~v~~~~~ ~~vw ~J~~~w ~~~~ ~~V~Q~~ Rll~U~Y~~ a r~~~v~r ~vwwauu 

or an OPEN (SVC 19) is issued for a data set. The CMS Control 
Block consists of a file control block (FCB) for the data file, 
and partial simulation of the job file control block (JFCB), 
input/output block (lOB), and data extent block (DEB). 

The data control block (DCB) and the data event control block (DECB) 
are used by the access method simUlation routines of CMS. 

MQte: The results may be unpredictable if two DCBs access the same data 
set at the same time. 

The GET and PUT macros are not supported for use with spanned records 
except in GET locate mode. READ, WRITE, and GET (in locate mode) are 
supported for spanned records, provided the filemode number is 4, and 
the data set is physical sequential format. 

GET (QSAM) 
All the QSAM options of GET 
handled the same as move mode. 
number is 4, and the last block 
(X' 61 FFFF61 • ) must be pr esent 
record. 

GET (QISAM) 
QISAM is not supported in CMS. 

PUT (QSAM) 

are supported. Substitute mode is 
If the DCBRECFM is FB, the filemode 
is a short block, an EOF indicator 

in the last block after the last 

All the QSAM options of PUT are supported. Substitute mode is 
handled the same as move mode. If the DCBRECFM is FB,. the filemode 
number is 4, and the last block is a short block, an EOF indicator is 
written in the last block after the last record. 

When LOCATE mode is used with PUT, issue an explicit CLOSE prior to 
returning to CMS to obtain the last record. 

PUT (QISAM) 
QISAM is not supported in CMS. 

PUTX 
PUTX support is provided only for data sets opened for QSAM-UPDATE 
with simple buffering. 

READ/WRITE (BISAM) 
BISAM is not supported in CMS. 

READ/WRITE (BSAM and BPAM) 
All the BSAM and BPAM options of READ and WRITE are supported except 
for the SE option (read backwards). 

READ (Offset Read of Keyed BDAM dataset) 
This type of READ is not supported because it is used only for 
spanned records. 

READ/WRITE (BDAM) 
All the BDAM and BSAM (create) options of READ and WRITE are 
supported except for the Rand RU options. 

When an input or output error occurs, do not depend on as sense 
bytes. An error code is supplied by CMS in the ECB in place of the 
sense bytes. These error codes differ for various types of devices and 
their meaning can be found in !~Ll1Q ~Y§i~m ~gssaqe§, under DMS message 
120S. 

Part 3. Conversational Monitor System (CMS) 279 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

The four methods of accessing BDAM records are: 

1 • 
2. 
3 .. 

Relative Block R~~ 
Relative Track TTR 
Relative Track and J{~v rr"T'J{~v .'-J. -=-J. 

4. Actual Address MBBCCHHR 

The restrictions on these access methods are as follows: 

• Only the BDAM identifiers unde~lined above can be used to refer to 
records, since eMS files have a two-byte record identifier. 

• CMS BDAM files are always created with 255 records on the first 
logical track, and 256 records on all other logical tracks, 
regardless of the block size. If BDAM methods 2, 3, or 4 are used 
and the RECFM is U or V, the BDAM user must either write 255 records 
on the first track and 256 records on every track thereafter, or he 
must not update the track indicator until a NO SPACE FOUND message is 
returned on a write. For method 3 (WRITE ADD), this message occurs 
when no more dummy records can be found on a WRITE request. For 
methods 2 and 4, this will not occur, and the track indicator will be 
updated only when the record indicator reaches 256 and overflows into 
the track indicator. 

I • The ~ser must create variable length BDAM files (in PL/1, they are 
I Regional 3 files) entirely under CMS. He must also specify, on the 
, XTENT option of the FILEDEF command, the exact number of records to 
I be written. When reading variable length BDAM files, the XTENT and 
I KEYLEN information specified for the file must duplicate the 
I information specified when the file was created. eMS does not 
I support WRITE ADD of variable length BDAM files; that is, the user 
, cannot add additional records to the end of an already existing 
I variable length BDAM file. 

• Two files of the same filetype, both of which use keys, cannot be 
open at the same time. If a program that is updating keys does not 
close the file it is updating for some reason, such as a system 
failure or another IPL operation, the original keys for files that 
are not fixed format are saved in a temporary file with the same 
filetype and a filename of $KEYSAVE. To finish the update, run the 
program again. 

• Once a file is created using keys, additions to the file must not be 
made without using keys and specifying the original length. 

, • Note that there is limited support from the CMS file system for 
, BDAM-created files (sparse). Sparsed files will be manipulated with 
, CMS commands but will not be treated as sparsed files by most eMS 
I commands. The number of records in the FST will be treated as a 
I valid record number. 

• The number of records in the data set extent must be specified using 
the FILEDEF command. The default size is 50 records. 

• The minimum LRECL for a CMS BDAM file with keys is eight bytes. 

280 IBM VM/370 System Programmer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNt GN25-0829 

READING OS DATA SETS AND DOS FILES USING as MACROS 

CMS useLS can read OS sequential and partitioned data sets that reside 
on OS disks. The C~S MOVEFILE command can be used to manipulate those 
data sets, and the OS QSAM, BPAM, and BSAM macros can be executed under 
CMS to read them. 

The CMS MOVEFILE command and the same OS macros can also be used to 
manipulate and read DOS sequential files that reside on DOS disks~ The 
OS macros handle the DOS data as if it were OS data. 

The followinq OS Release 20.0 BSAM, BPAM, and QSAM macros can be used 
with CMS to read as data sets and DOS files: 

BLOL 
BSP 
CHECK 
CLOSE 

ENQ 
FIND 
GET 
NOTE 

RDJFCB 
READ 
SYNADAF 
SYNADRLS 

Part 3. Conversational Monitor System (eMS) 280.1 



April 1, 1981 

280.2 IBM VM/370 System programmer's Guide 



DEQ 
DEVTYPE 

POINT 
POST 

WAIT 

CMS supports the following disk formats for the os and OS/VS 
sequential and partitioned access methods: 

• Split cylinders 
• User labels 
• Track overflow 
• Alternate tracks 

As in OS, the CMS support of the BSP macro produces a return code of 
4 when attempting to backspace over a tape mark or when a beginning of 
an extent is found on an as data set or a DOS file. If the data set or 
file contains split cylinders, an attempt to backspace within an extent, 
resulting in a cylinder switch, also produces a return code of 4. 

Before CMS can read an as data set or DOS file that resides on a non-C~S 
disk, you must issue the CMS ACCESS command to make the disk on which it 
resides available to CMS. 

The format of the ACCESS command .L;::). 

ACCESS cuu moder/ext] 

You must not specify options or file identification when accessing an OS 
or DOS disk,. 

You then issue the FILEDEF command to assign a CMS file identification 
to the OS data set or DOS file so that CMS can read it. The format of 
the FILEDEF command used for this purpose is: 

r r " r , 
Flledef rd;:me} IDISK fn ft Ifmll IDSN ? I 

I IA111 IDSN q1 [q2 ••• ]1 
L L .J.J L .J 

r r " DISK Ifn ft Ifmll 
I!I1~ ~~!!~~ IAll1 
L L .J.J 

DUMMY 
r , 

R~1~!ed QE!!2ll: iMEMBER membernamel 
ICONCAT I 
L .J 

Part 3. Conversational Monitor System (eMS) 281 



If you are issuing a FILEDEF for a DOS file, note that the OS prograa 
that will use the DOS file must have a DCB for it. For "ddna.e" in the 
FILEDEF command line, use the ddname in that DCB. With the DSJ operand, 
enter the file-id of the DOS file. 

Sometimes, CMS issues the FILEDEF command for you. Although the ces 
MOVEFILE command, the supported CMS program product interfaces, and the 
CMS OPEN routine each ~ssue a default FILEDEF, you should issue the 
FILEDEF command yourself to ensure the appropriate file is defined. 

After you have issued the ACCESS and FILEDEF commands for an CS 
sequential or partitioned data set or DOS sequential file, CBS coa.ands 
(such as ASSEMBLE and STATE) can refer to the OS data set or DOS file 
just as if it were a CMS file. 

Several other CMS commands can be used with OS data sets and Des 
files that do not reside on CMS disks. See the !~Ll1~ ~~ ~~!~!~ !~2 
~~££Q Rgfgrgngg for a complete description of the CMS ACCESS, FILEDE', 
LISTDS, MOVEFILE, QUERY, RELEASE, and STATE commands. 

For restrictions on reading OS data sets and tos files under CBS. see 
the !~L170 Ela1!ni1!g ang 2:ystg! ~g1!gfaliQn Gu.!Qg. 

The CMS FILEDEF command allows you to specify the I/O device and the 
file characteristics to be used by a prograa at execution ti.e. In 
conjunction with the OS simulation scheme, FILEDEF siaulates the 
functions of the data definition JCL statement. 

FILEDEF may be used only with programs using OS macros and functions. 
For example: 

filedef file1 disk proga data a1 

After issuing this command, your program referring to FILE1 would access 
PROGA DATA on your A-disk. 

If you wished to supply data from your terminal for FILE1, you could 
issue the command: 

filedef file1 terminal 

and enter the data for your program without recoapiling. 

fi tapein tap2 (recfm fb lrecl 50 block 100 9track den 800) 

After issuing this command, programs referring to TAPEIN will access a 
tape at virtual address 182. (Each tape unit in the eMS environaent bas 
a symbolic name associated with it.) The tape must have been previously 
attached to the virtual machine by the VM/370 operator. 

The AUXPROC option can only be used by a program call to FILEDEF and not 
from the terminal. The CMS language interface prograas use this feature 
for special I/O handling of certain (utility) data sets. 

282 IBM VM/370 System Programmer's Guide 



The AUXPROC option, followed by a fullword address of an auxiliary 
processing routine, allows that routine to receive control from DMSSEE 
before any device I/O is performed. At the co~pletion of its processing. 
the auxiliary routine returns control to DMSSEB signaling whether or not 
I/O bas been performed. If it has not been done, DMSSEB performs the 
appropriate device I/O. 

When control is received from DMSSEB, the general-purpose registers 
contain the following information: 

GPR2 Data Control Block (DCB) address 
GPR3 = Base register for DMSSEB 
GPR8 = CMS OPSECT address 
GPR11 File Control Block (FCB) address 
GPR14 Return address in DMSSEB 
GPR15 Auxiliary processing routine address 

all other registers = Work registers 

The auxiliary processing routine must provide a save area in which to 
save the general registers; this routine must also perform the save 
operation. DMSSEB does not provide the address of a save area in 
general register 13, as is usually the case. When control returns to 
DMSSEB, the general registers must be restored to their original values. 
Control is returned to DMSSEB by branching to the address contained in 
general register 14. 

GPR15 is used by the auxiliary processing routine to inform to DMSSEE 
of the action that has been or should be taken with the data block as 
follows: 

~~g!§!~E ~~~!~g1 Action 
GPR15=O No I/O performed by AUXPROC routine; DMSSEB will perform I/O. 

GPR1S(O 

GPR15>O 

I/O performed by AUXPROC routine and error was encountered. 
DMSSEB will take error action. 

I/O performed by AUXPROC routine with residual count in GPR15; 
DMSSEB returns normally. 

GPR15=64K I/O performed by AUXPROC routine with zero residual count. 

Part 3. Conversational Monitor system (CMS) 283 



DOS /VS Support under eMS 

eMS supports interactive program development for DOS/VS Release 31, 32. 
33 and 34. Tbis includes creating, compiling, testing. debugging. and 
executing commercial application programs. The DOS/VS programs can be 
executed in a eMS virtual machine or in a CMS Batch Facility virtual 
machine. 

DOS/VS files and libraries can be read under eMS. VSAM data sets can 
be read and written under CMS. 

The eMS DOS environment (called CMS/DOS) provides many of the same 
facilities that are available in DOS/VS. However, CMS/DOS supports only 
those facilities that are supported by a single (background) partition. 
The DOS/VS facilities supported by CMS/DOS are: 

• DOS/VS linkage editor 
• Fetch support 
• DOS/VS Supervisor and I/O macros 
• DOS/VS Supervisor control block support 
• Transient area support 
• DOS/VS VSAM macros 

This environ.ent is entered each time the eMS SET Des ON command is 
issued; VSAM functions are available in CMS/DOS only if the SET DOS ON 
(VSAM) command is issued. In the CMS/DOS environment, CMS supports many 

DOS/VS facilities, but does not support OS simulation. When you nO 
longer need DOS/VS support under CMS, you issue the SET DOS OFF co •• and 
and DOS/VS facilities are no longer available. 

CMS/DOS can execute programs that use the sequential 
(SAM) and virtual storage access method (V SAM) , and can 
libraries. 

access lIethod 
access DOS/VS 

CMS/DOS cannot execute programs that have execution-time 
restrictions, such as programs that use sort exits, teleprocessing 
access methods, or multitasking. DOS/VS COBOL, DOS PL/I, and Asse.bler 
language programs are executable under CMS/DOS. 

All of the CP and CMS online debugging and testing facilities (such 
as the CP ADSTOP and STORE commands and the CMS DEBUG environment) are 
supported in the CMS/DOS environment. Also, CP disk error recording and 
recovery is supported in eMS/DOS. 

With its support of a CMS/DOS environment, ces becomes an important 
tool for DOS/VS application program development. Because CeS/DOS was 
designed as a DOS/VS program development tool, it assumes that a DOS/VS 
system exists, and uses it. The following sections describe what is 
supported, and what is not. 

284 IBM VM/370 System Pr~grammer's Guide 



Hardware Devices Supported 

CMS/DOS routines can read real DOS disks containing DOS data files and 
DOS private and system libraries. This read support is limited to the 
following disks supported by DOS/VS: 

• IBft 2314 Direct Access Storage Facility 

• IBM 2319 Disk Storage 

• IBM 3330 Disk Storage, Models 1 and 2 

• IBM 3330 Disk Storage, Model 11 

• IBM 3340 Direct Access storage Facility 

• IBft 3344 Direct Access storage 

• IBM 3350 Direct Access storage 

Also, under CMS/DOS you can write VSAM data sets. VSAM data sets can 
only be written to disks that are supported by DOS/VS. 

The following devices, which are supported by BOS/VS, are not 
supported by CMS/DOS: 

• Card Readers: 1442, 2560P, 2560S# 2596, 3504, 5425P, and 5425S 

• Printers: 2560P, 2560S, 3203 Models 1 and 2, 3525, 5203, 5425P, and 
5425S 

• Disks: 2311 

Also, CMS uses the CP spooling facilities and does not support 
dedicated unit record devices. Each CMS virtual machine supports only 
one virtual console, one reader, one punch, one printer, four tapes, and 
ten disks. Programs that are executed in eMS/DOS are limited to the 
number of devices supported by CMS. 

eMS Support of DOS/VS Functions 

In addition to the CMS SET command used to invoke the CMS/DeS 
environment, there are a number of CMS/DOS commands and CMS commands 
with special CMS/DOS operands that provide CMS support of the following 
DOS/VS functions: 

• Assignment of logical units to particular physical devices. 
• Associating DOS files with particular logical units. 
• DOS/VS Librarian Services. 
• Compilation and testing of DOS/VS COBOL and Des PL/I programs. 
• Execution of DOS/VS COBOL and DOS PL/I programs. 

Figure 32 summarizes these new commands and the new operands fer 
existing commands. A detailed description and command format can be 
found in the !ttLl1Q ~~~ ~Q~!~nQ ~n~ ~~£E2 ~g!~E~n£~· 

Part 3. Conversational Monitor System (CMS) 285 



r---------------------------------------------------------------------------, 
Command Operand 

ASSGN 

DLBL 

DOSLIB 

DOSLKED 

DOSPLI 

DSERV 

ESERV 

FCOBOL 

FETCH 

GENMOD 

{ ~~S } ALL 

GLOBAL DOSLIB 

LISTIO 

LOAD MOD 

Comments 

Executable only in the CMS/DOS environment. 
Assigns CMS/DOS system or programmer logi
cal units to a virtual device. 

Defines a DOS or VSAM ddname and relates 
the ddname to a disk file. 

Deletes, compacts, or lists information 
about the phases in a CMS/DOS phase 
library. 

Executable only in the CMS/DOS environment. 
Link-edits CMS text file, or object modules 
from a DOS/VS relocatable library, and 
places them in executable forms in a 
CMS/DOS phase library. 

Executable only in the CMS/DOS environment. 
Compiles DOS PL/I source programs. 

Executable only in the CMS/DOS environment. 
Displays information about DOS/VS core 
image, relocatable, source statement, and 
procedure and/or transient directories. 

Executable only in the CMS/DOS environment. 
Displays, updates, punches, or prints 
edited (E sublibrary) DOS/VS source 
statement books. 

Executable only in the CMS/DeS environment. 
Compiles DOS/VS COBOL source programs. 

Executable only in the CMS/DOS environment. 
Fetches a CMS/DOS executable phase. 

Specifies the type of macro support needed 
to execute a module. The ALL operand is 
intended for CMS internal use. 

The GLOBAL command can now specify CMS/DOS 
phase libraries, as well as text and macro 
libraries. 

Executable only in the CMS/DOS environment. 
Display information about CMS/DOS system 
and programmer logical units. 

Checks that a module generated to 
execute in a specific macro simulation 
environment (CMS/DOS or CMS) is in the 
correct environment. 

Figure 32. Summary of Changes to CMS Commands to Support CMS/DOS 
(Part 1 of 2) 

286 IBM VM/370 System Programmer's Guide 



Command 

OPTION 

1-----1 
I PSERV 1 
1 I 
I 1 
1 1 
I I 
-----1 

Operand 

QUERY I UPSI 
i 
1 

OPTION 

DOSLNCNT 

i DOS 

1 
I 
I DOSLIB 
I 
I 
1 
I LIBRARY 
I 
1 

------1 

L-

RSERV I 
I 
I 
I 

SET 

SSERV 

DOS~ONrfm] } 
t[ (VSAM]} 
{OFF } 

DOSLNCNT nn 

UPSI 

April 1, 1981 

Comments 

Executable only in the CMS/DOS environment. 
sets compiler options for DOS/VS COBOL~ 

Executable only in the CMS/DOS environment. 
Copies and displays procedures in the 
DOS/VS procedure libraries and/or spools 
the procedures to the CMS virtual printer 
and/or punch. 

Executable only in the eMS/DOS environment. 
Displays current setting of CMS/DOS UPSI 
byte. 

Executable only in the CMS/DOS environment. 
Displays CMS/DOS compiler options. 

Displays the current number of 
SYSLST lines per page. 

Displays the current status (active or not 
active) of CMS/DOS. 

Displays the names of all CMS/DOS phase 
libraries currently being searched for 
executable phases. 

Displays the names of all CMS/DOS phase 
libraries to be searched, in addition to 
the text and macro libraries. 

Executable only in the CMS/DOS environment. 
Copies and/or displays modules in a DOS/VS 
relocatable library. Output can also be 
directed to the virtual printer or punch~ 

Makes the CMS/DOS environment active or not 
active. 

Specifies the number of SYSLST lines 
per page. 

Executable only in the CMS/DOS environment. 
Sets the CMS/DOS UPSI byte. 

Executable only in the CMS/DOS environment. 
Copies or displays books from the DOS/VS 
source statement library. Output can also 
be directed to the virtual printer or 
punch. 

Figure 32. summary of Changes to eMS Commands to Support eMS/DOS 
(Part 2 of 2) 

Part 3. Conversational Monitor System (CMS) 287 



Page of GC20-'807-7 As Updated April 1, 198' by TNL GN25-0829 

LOGICAL UNIT ASSIGNMENT 

A logical unit is a symbolic name by which a program may refer to a real 
I/O device without knowing the device address. Two examples of logical 
units are SYSRDR and SYSPCH. 

The DOS/VS supervisor uses two control blocks, the logical unit block 
(LUB) and the physical unit block (PUB), to map the symbolic name to the 
real device address. An entry in the LUB for a particular logical unit, 
such as SYSRDR, contains a pointer to a PUB entry. The PUB entry 
contains the address of the reader, X'OOC'. Thus, all programs that 
read from the logical unit SYSRDR actuallY read from the device at 
address X'OOC'. 

On a real DOS/VS machine, logical unit assignments are made 
dynamically via the ASSGN job statement or the ASSGN operator command. 

When usinq CMS/DOS, the CMS ASSGN command performs a similar 
function. The ASSGN command in CMS/DOS assigns (or unassigns) a system 
or programmer logical unit to (or from) a virtual I/O device. If a disk 
is being assigned to a logical unit, the disk must have been previously 
accessed via the ACCESS command. As in DOS/VS, you are not allowed to 
assign the system residence volume via the ASSGN command. 

SYSLOG is the default value assigned to the terminal when SET DOS ON 
is issued. 

The valid system logical units that can be assigned are: 

SYSRDR 
SYSIPT 
SYSPCH 
SYSLST 

SYSLOG 
SYSIN 
SYSOUT 
SYSSLB 

SYSRLB 
SYSCAT 
SYSCLB 

The following DOS/VS system logical units cannot be assigned: 

SYSRES 
SYSUSE 

SYSLNK 
SYSREC 

SYSVIS 

An error message is issued and the command terminated if any of these 
last five system logical units are specified in the ASSGN command. If 
SYSIN is specified, both the SYSIPT and SYSRDR LUB and PUB entries are 
filled in. If SYSOUT is specified, both the SYSLST and SYSPCH LUB and 
PUB entries are filled in. 

If you wish to use DOS/VS private relocatable, core image or source 
statement libraries, you must assign SYSRLB, SYSCLB or SYSSLB, 
respectively. 

You can assign programmer units SYSOOO through SYS241 with the ASSGN 
command. This deviates from DOS/VS, where the number of programmer 
logical units varies according to the number of partitions. 

ASSGN creates a DOS Logical Unit Block (LUB) and Physical Unit Block 
(PUB) entry if the device is unassigned or alters the existing LUB/PUB 
relationship if the device is already assigned. ASSGN fills in a 
one-byte index in the LUB, which points to the proper PUB entry. This 
PUB entey contains the channel, unit, and device type information. 

When a system or programmer logical unit is assigned to READER, 
PUNCH, oe PRINTER, the reference is to a spooled unit record device. 
Card reader and terminal I/O data must not be blocked. 

288 IBM VM/370 System Proqrammer's Guide 



Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829 

The ASSGN command is also used to ignore (IGN) or unassign (UA) a 
logical unit. An I/O operation for a logical unit that ~s ~n IGN status 
is effectively a NOP. When a logical unit is unassigned, its pointer to 
the PUB table is removed. 

Part 3. Conversational Monitor System (eMS) 288.1 



April 1, 1981 

288.2 IBM VM/370 sv~tem Programmer's Guide 



April 1, 

The compilers supported by CMS/DOS expect input/output to be assigned to 
the following devices: 

• SYSIN/SYSIPT must be assigned to the device where the input source 
file resides. Valid device types are reader, tape, or disk. 

• The user should assign the following logical units to any of the 
indicated device types: 

SYSPCH to tape, punch, disk, or IGN 
SYSLST to tape, printer, disk, or IGN 
SYSLOG to terminal 
~v~nn1 ~v~nn~ 2"~ ~v~nn~ +~ ~1~~ 
~~~vv., ~~~vv~, W"~ ~~~vvv ~v ~~~~. 

SYS003-SYSOOS to tape or disk.

The maximum number of work files is six for DOS/VS COBOL Compiler
(FeOBOL) and two for DOS PL/I Optimizing Compiler (DOSPLI).

You must assign SYSIN/SYSIPT. If it
time, an error message is issued and the
terminated.

is unassigned at compilation
FeaBOL or DOSPLI command is

If SYSPCH or SYSLST are unassigned at compilation time, the FCOBOL or
DOSPL! EXEC file directs output to the disk where SYSIN resides if SYSIN
is assigned to a read/write CMS disk. Otherwise, output is directed to
the CMS read/write disk with the most read/yrite space. If SYSLOG is
unassigned, it is assigned to the terminal. If SYS001 through SYSnnn
are unassigned, output is directed to the CMS disk with the most
read/write space.

The current I/O assignments may be displayed on the
the CMS/DOS LISTIO command. You can selectively
and/or programmer logical units as a group or as a
the EXEC option of the LISTIO command you can
containing the list of assignments.

terminal by entering
display the system

specific unit. with
create a disk file

DOS/VS Supervisor and I/O Macros Supported by eMS/DOS

CMS/DOS supports the DOS/VS Supervisor macros and the SAM and VSAM 1/0
macros to the extent necessary to execute the DOS/VS COBOL Compiler and
the DOS PL/I optimizing Compiler under CMS/DOS. CMS/DOS supports
Releases 31, 32, 33, and 34 of the DOS/VS Supervisor macros described in
the publication DOSL!~ Supervisor ~g ILQ Ma£~2§, Order No. GC33-S373.

Since CMS is a single-user system executing in a virtual machine with
virtual storage, DOS/VS operations, such as multitasking, that cannot be
simulated in CMS are ignored.

The fo11owinq information deals with the type of support that CMS/DOS
provides in the simulation of DOS Supervisor and Sequential Access
Method 1/0 macros. For a discussion of VSAM macros, see the section
"CMS support for os and DOS VSAM Functions."

Part 3. Conversational Monitor System (eMS) 289

page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

SUPERVISOR ftACROS

CMS/DOS supports physical IOCS macros and control program function
macros for DOS/VS. Figure 33 lists the physical IOCS macros and
describes their support. Figure 34 lists the control program function
macros and their support. Refer to VMlJIQ ~I~tem 1Qg!£·g~§ Prob!~!
Dete~in~ii2g Guid~, Volume 1 (~~~) for details of the macros'
operation.

r
I Macro
I
I CCB (command
I control block)
I
I EXCB (execute
I channel program)

WAIT

SECT VAL (sector
value)

DTFPH

IThe CCB is generated.
I

Support

IThe REAL operand is not supported; all other
I operands are supported.

ISupported. Issued whenever your program requires
I an I/O operation (started by an EXCP macro) to
I be completed before execution of program
I continues.

ISupported for VSAft. See "CftS Support for OS
I and DOS VSAM Functions."

ILBRET3 is not supported, labels cannot be
I rewritten in CMS/DOS.

OPEN/OPENR I Supported. Activates a data file.
I
ILBRET (label I Not supported.
I processing return) I
I
1 FEOV (forced INot supported.
1 end of volume) I
I
I SEOV (system INot supported.
1 end of volume) I
1----
ICLOSE/CLOSER I Supported. Deactivates a data file.
I

Figure 33. Physical IOCS Macros Supported by CMS/DOS

290 IBM VM/370 System programmer's Guide

April 1, 1981

Macro No. I Support

02

SYS=YES or NO operand is ignored. i
I

Reads a logical transient into storage andl
passes control to an entry point. I

01 Reads any phase into storage and passes
control to an entry point.

I
I
I
I

GENL Generates a directory list with a 34-byte I
entry for each of the specified phases. I

LOAD

I
Iyirtggl ~iQ£aqe MacrQ§1

SYS=YES or NO operand is ignored.

04 Reads any phase into storage and returns
control to the calling phase.

! PFIX 67 No operation performed.
No operation performed.
No operation performed.
No operation performed.
No operation performed.

I PFREE 68
, RELPAG 85

FCEPGOUT 86
PAGEIN 87

RUNM~DE

SETPFA

VIRTAD

REALAD

GE'IVIS

FREEVIS
t
IRrogrgm £Qm~unication
I l1~~£Q~
I COM RG
I
I
I MVCOM
I
I
I
IRel~asinq l1g~£Q§
I RELEASE
I
iIim~-Qf-Q~Y ~g££Q
I GETIME
I
1---

66 Returns code indicating program is running
in virtual mode.

71 No operation performed.

70 Not supported. Execution terminates with
an error message.

69 Not supported. Execution terminates with
an error message.

61 Supported for VSAM. (See Note.)

62 Supported for VSAM. (See Note.)

I
I

33 IReturns address of background partition's
I communication region.
I

05 I Modifies specified bytes within bytes
I 12-23 of the partition communication
, region.

I
64 ISupported for VSAM. (See Note.)

i
34 IGets time of day. The GMT operand is not

I supported.

I]ot§: VSAM macros are discussed
land DOS VSAM Functions."

in the section "CKS Support of OS

Figure 34. DOS/VS Macros Supported under CMS (Part 1 of 3)

I

Part 3. Conversational Monitor System (CMS) 291

.--
I
I Macro
1----·

I SVC I
I No.1

Apr il 1, 1981

support

11nt~!g,! Ii.mer ang
~~ii l1g£;:Q§
SETlME

I
I
INo operation performed.

STXlT

EXIT

TECB

TTIMER

WAIT

WAITM

(PC)

10
24
16 Provides/terminates supervisor linkage to

user's PC routines. Under CMS/DOS, if a
program check occurs in a simulated
transient routine, a check is made to
determine if linkage to an AB routine
has been established. If it has, control
is passed to the AB routine. If not, the
program is canceled. If a program check
occurs in a program other than a
simulated transient, and if linkage has
been established to a PC routine, control
is passed there. If no PC routine is
available, a check is made to see if
linkage to an AB routine has been
established. If so, control is passed to
the AB routine. If no PC or AB routine
is available, the program is canceled.

(IT) 18 No operation performed.

(oe) 20 No operation performed.

(AB) 37 Provides/terminates supervisor linkage to

(PC)

user's AB routine for abnormal
termination of the routine. Manv of the
DOS/VS abnormal termination codes are not
meaningful under CMS/DOS. Control is
given to an abnormal termination routine
on the following selected hexadecimal
co des: 1 A , 20 , 2 1, 22, 2 5, 2 6 , 27, 2B.

17 Return from user's PC routine.

(IT) 19 Not supported. Execution terminates with
an error message.

(OC) 21 Not supported. Execution terminates with
an error message.

(AB) 95 Return from user's abnormal task
termination routine.

TEeB control block generated. However,
CMS/DOS does not support the use of the
Timer Event Control Block.

52 Zero seconds are returned in register 0 as
the time remaining in the interval.

07 wait for I/O completion.

29 Not supported. Execution terminates with
an error message.

Figure 34. DOS/VS Macros Supported under CMS (Part 2 of 3)

292 IBM VM/370 System programmer's Guide

April 1, 1981

r-
I
1
1

Macro
ISVC I
I No. I

I
Support I

---,-----------1
PDUMP

DUMP

I
I JDUMP
I'
I CANCEL
I
I EOJ
I
I CHKPT
I ,
I~ultit~~!ing Macros

ATTACH

DETACH

RCB

DEQ

EliQ

WAITM

POST

FREE

~rog£gm 1i!l~~~
CALL

SAVE

RETURN

MacrQ§1
I
I
I
!
I
I
I
t
I
I

Provides hexadecimal dump of general I
registers and the virtual storage area I
contained between two addresses. I
processing continues with the next I
instruction. CMS/DOS uses CP DUMP command
to direct the dump to the printer.

Provides hexadecimal dump of the partition
and general registers. CMS/DOS uses CP
DUMP command to direct the dump to the
printer. The routine then terminates the
invoking program;

Same as for DUMP.

06 Terminates processing.

14 processing terminates normally.

Not supported. Execution terminates with
an error message.

38 Not supported. Execution terminates with
an error message.

39 Not supported. Execution terminates with
an error message.

RCB control block generated. However,
CMS/DOS does rrot support the use of
Request Control Block.

41 No operation performed.

42 No operation performed.

29

40

36

Not supported. Execution terminates with
an error message.

Posts ECB (byte 2 bit 0 on). The
SAVE=savearea operand is ignored by
CMS/DOS.

No operation performed.

IPasses control from a program to a
I specified entry point in another program.
I
IStores the contents of specified reqisters
I in the save area provided by the calling
I program.
I
tRestores registers whose contents were
I saved and returns control to the calling
I program.

L- -.J

Figure 34. DOS/VS Macros Supported under eMS (Part 3 of 3)

Part 3. Conversational Monitor System (CMS) 293

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0S29

SEQUENTIAL ACCESS METHOD -- DECLARATIVE MACROS

CMS/DOS supports the following declarative macros:

I • DTFCD - Types X'02' and X'04'
I • DTFCN - Type X'03'
i ~ DTFDI - Type X!33!
I • DTFMT - Types X'10', X'11', X'12', and X'14'
I • DTFPR - Type X'OS'
I. DTFSD - Type X'20'

The CDMOD, DIMOD, MTMOD, PRMOD, and SDMOD macros generate the logical
laCS routines that correspond with the declarative macros. The operands
that CMS/DOS supports for the DTF are also supported for the xxMOD
macro. In addition, CMS/DOS supports three internal macros (DTFCP,
CPMOD, and DTFSL) that are required by the. COBOL and PL/I compilers.

CMS/DOS does not support the ASOCFLE, FUNC, TYPEFILE=CMBND, and OUBLKSZ
operands of the DTFCD macro. CMS/DOS ignores the SSELECT operand and any
mode other than MODE=E. Figure 35 describes the DTFCD macro operands and
their support under CMS/DOS. An asterisk (*) in the status column
indicates that eMS/DOS support differs from DOS/VS support.

294 IB~ VM/370 System Programmer's Guide

r---,
Operand IStatusl Description 1

--;
IDEVADDR=SYSxxx ISymbolic unit for reader-punch used for thisl
t f file.. I
1---1
I IOAREA1=xxxxxxxx * jName of the first
1--
I ASOCFLE=xxxxxxxx * INot supported.
1--
IBLKSIZE=nnn *
1
I

CONTROL=YES

CRDERR=RETRY *

CTLCHR=xxx

DEVICE=nnnn *

EOFADDR=xxxxxxxx

ERROPT=xxxxxx *

FUNC=xxx *

IOAREA2=xxxxxxxx *

IOREG= (nn)

MODE=xx *
MODNAME=xxxxxxxx

OUBLKSZ=nn *

RDONLY=YES *
RECFORM=xxxxxx

RECSIZE= (nn) *

ILength of one I/O area, in bytes. If
1 omitted, 80 is assumed. If CTLCHR=YES is
I specified, BLKSIZE defaults to 81.

ICNTRL macro used for this file. Omit CTLCHR
1 for this file. Does not apply to 2501.

jRetry if punching error is detected. Applies
1 to 2520 and 2540 only. However, this
I situation is never encountered under
1 CMS/DOS because hardware errors are not
1 passed to the LIOCS module.

1 (YES or ASA). Data records have control
I character. YES for S/370 character set; ASA
I for American National Standards Institute
1 character set. Omit CONTROL for this file.

1(2501, 2520, 2540, 3505, or 3525). If
I omitted, 2540 is default.

IName of your end-of-file routine.

IIGNORE, SKIP, or name. Applies to 3505 and
I 3525 only.

INot supported.

IIf two output areas are used, name of
I second area.

IRegister number if two I/O areas were used
I and GET or PUT does not specify a work
I area. Omit WORKA.

10nly MODE=E is supported.

IName of the logic module that is used with
1 the DTF table to process the file.

INot supported.

ICauses a read-only module to be generated.

1 (FIXUNB, VARUNB, UNDEF). If omitted, FIXUNB
I is default.

IRegister number if RECFORM=UNDEF.

Figure 35. CMS/DOS Support of DTFCD Macro (Part 1 of 2)

Part 3. Conversational Monitor System (CMS) 295

r---
I Operand
1
ISEPASMB=YES
1
ISSELECT=n
1
ITYPE=xxxxxx

I Sta tus I Description

IDTFCD is to be assembled separately.

* IIgnored.

* IInput or output.
1---
IWORKA=YES
I

11/0 records are processed in work areas
I instead of the 110 areas.

Figure 35. CMS/DOS support of DTFCD Macro (Part 2 of 2)

CMS/DOS supports all of the operands of the tTFCN macro. Figure 36
describes the operands of the DTFCN macro and their support under
CMS/DOS. The status column is blank because the CMS/DOS and DOS/VS
support of DTFCN are the same.

I Operand
I
IDEVADDR=SYSxxx
I
I
I IOAREA1=xxxxxxxx
I
IBLKSIZE=nnn
I ,
I
I
IINPSIZE=nnn
I
I
I MODNAME=xxxxxxxx

RECFORM=xxxxxx

RECSIZE= (nn)

TYPEFLE=xxxxxx

IWORKA=YES
L

!Statusl Description

ISymbolic unit for the console used for this
I file.

IName of I/O area.

ILength in bytes of I/O area (for PUTR macro
usage, length of output part of I/O area).

I If RECFORM=UNDEF, maximum is 256. If
I omitted, 80 is default.

ILength in bytes for input part of I/O area
I for PUTR macro usage.

ILogic module name for this DTF. If omitted,
I IOCS generates a standard name.
I
IThe logic module is generated as part of
I the DTF.

I (FIXUNB or UNDEF). If omitted, FIXUNB is
I default.

IRegister number if RECFORM=UNDEF. General
I registers 2 through 12, enclosed in
I parentheses.

I (I NPUT, OUTPUT, or CMBND). Input processes
I both input dnd output. CMBND must be
I specified for PUTR macro usage. If omitted,
I :NPUT is default.

IGET or PUT specifies work area.

Figure 36. eMS/DOS support of DTFCN macro.

296 IBM V~/370 System programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

DTFD! ~~~gQ - Q~1ine the lile fo!: Devi£g !nd~£.§!den£g 12.£ ~~te!! Logi£~.1-
Qn.it§

CMS/DOS supports most operands of the DTFDI macro. Figure 37 describes
the operands of the DTFDI macro and their support under eMS/DOS. An
asterisk in the status column indicates that CMS/DOS support differs
from DOS/VS support.

r----
I Operand

DEVADDR=SYSxxx

IOAREA1=xxxxxxxx

EOFADDR=xxxxxxxx

ERROPT=xxxxxxxx

IOAREA2=xxxxxxxx

I OREG2= (nn)

MODNAME=xxxxxxxx

RDONLY=YES

RECSIZE=nnn

SEPASMB=YES

WLRERR=xxxxxxxx

IStatusl Descri ption

I (SYSIPT, SYSLST, SYSPCH, or SYSRDR). System
I logical unit. CMS/DOS issues an error
I message if the logical unit specified on
I the DTF does not match the logical unit
I specified on the corresponding DLBL
I command.

I Name of the first I/O area.

I Name of your end-of-fi Ie routine.

I (IGNORE, SKIP, or name of your error
I routine) v Prevents termination on errors.

IIf two I/O areas are used, name of second
I area.

IRegister number. If omitted and two I/O
I areas are used, register 2 is default~
I General registers 2 through 12, enclosed
I in parentheses.

IDIMOD name for this DTF. If omitted, laCS
I generates a standard name.

IGenerates a read-only module. Requires a
I module save area for each routine using
I t he module.

INumber of characters in record. Default
I values: 121 (SYSLST), 81 (SYSPCH),
180 (other).

IDTFDI to be assembled separately.

IName of your wrong-length record routine.
1..-__ _

----------.---------------------------------------,---------~
Fiqure 37. CMS/DOS Support of DTFDI Macro

Part 3. Conversational Monitor System (CMS) 297

Apr ill, 1981

CKS/DOS does not support the ASCII, BUFOFF,
READ=BACK operands of the DTFKT macro. Tape I/O
to reading in the forward direction.

HDRINFO, LENCHK, and
operations are limited

eMS/DOS creates unlabeled taoes and
User-written label processing routines are
handles tape labels as follows:

bypasses standard labels.
used, when supplied. CMS/DOS

If
Input tape has
label

Input tape has a
stan dar d label

Input tape has
nonstandard
label

Tape opened for
output

~hg!!
The CMS/DOS open routine positions the tape at the
first data record.

The CMS/DOS open routine positions the tape at the
first data record (that is, standard labels are
bypassed). If user labels are detected and if a
user label routine is specified (LABADDR=xxxxxxxx)
in the DTF table for the file, CMS/DOS exits to the
user's routines to read and process the user labels.

The eMS/DOS open routine exits to the user's routine
specified by the LABADDR=xxxxxxxx operand of the
DTFKT macro. If no user routine is specified, the
tape is positioned at the first data record.

CMS/DOS treats all tapes (standard labeled tapes,
nonstandard labeled tapes, and unlabeled tapes) as
if they were unlabeled. If a tape with a standard
or nonstandard label is opened for output, CKS/DOS
writes over the label. This is also true for tape
workfiles because they are opened for output first.

The CKS/DOS close routine does not perform trailer label checking on
input files. No trailer label processing is provided for input or
output tape files.

Figure 38 describes the DTFMT macro operands and their support under
CMS/DOS. An asterisk (*) in the status column indicates that CMS/DOS
support differs from DOS/VS support.

298 IBM VM/370 System Programmer's Guide

Operand
!
IBLKSIZE=nnnnn
1

IStatusl

ILength of , 3-2,767) ..

Description

one I/O area in bytes (maximum =

1---
iDEVADDR=SYSxxx
I
I
I EOFADDR=XXXXXXxx

I~ ... _'L._'':_ unit ~ ~ _"'- drive '1~""'~ I.:JI IU J.JV.1..1.\.., .L VJ.. l..Qt'--= I.l;:>cu

I file ..

IName of your end-of-file routine ..

~"' ".;,..
J..VJ.. l..u:l

1---
IFILABL=XXXX
1
I
1

* I (NO, STD, or NSTD).. If NSTD specified,
I include LABADDR. User label routines are
I supported only for header labels on input
I tapes.

1---
I IOAREA1=xxxxxxxx !Name of first I/O area ..
i
I ASCII=YES * INot supported.
1---
IBUFOFF=nn
I
ICKPTREC=YES
1
I

ERREXT=YES

ERROPT=xxxxxxxx

HDRINFO=YES

IOAREA2=xxxxxXXX

IOREG= (nn)

1
ILABADDR=xxxxxxxx
I
I
1
I

*

*

*

INot supported.

ICheckpoint records are interspersed with
I input data records. IOCS bypasses
I checkpoint records.

IAdditional errors and ERET are desired.

; (IGNORE, SKIP, or name of error routine).
I Prevents job termination on error records.

INot supported.

IIf two I/O areas are used, the name of the
I second area.

IRegister number. Use only if GET or PUT
I does not specify a work area or if two I/O
I areas are used. Omit WORK!.. General
I registers 2 through 12, enclosed in
I parentheses.

IName of your label routine if FIL!BL=NSTD,
! or if FILABL=STD and user-standard labels
I are processed. User label routines
I are supported only for header labels on
I input tapes.

1---
ILENCHK=YES * INot supported.
1--,---------------------
I MODNAME=xxxxxxxx
I

NOTEPNT=xxxxxx

RDONLY=YES

READ=xxxxxxx *

IName of MTMOD logic module for this DTF .. If
J omitted, IOCS generates standard name.

I (YES or POINTS). YES if NOTE, POINTW,
I POINTR, or POINTS macro used.. POINTS if
I only POINTS macro used ..

IGenerate read-only module. Requires a
J module save area for each routine using
1 the mod ule ..

ICMS/DOS only supports READ=FCRWARD ..

Figure 38. CMS/DOS Support of DTFMT Macro (Part 1 of 2)

Part 3. Conversational Monitor System (CMS) 299

r
1 Operand IStatusl Description

1--
RECFORM=xxxxxx

RECSIZE=nnnn

REWIND=xxxxxx

SEPASMB=YES

TPMARK=NO

TYPEFLE=xxxxxx

VARBLD=(nn)

WLRERR=xxxxxxxx

WORKA=YES

1 (FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB,
1 SPNBLK, or UNDEF). For work files use
, FIXUNB or UNDEF. If omitted, FIXUNB is
I assumed.

IIf RECFORM=FIXBLK, number of characters in
the record. If RECFORM=UNDEF, register
number. Not required for other records.
General registers 2 through 12, enclosed
in parentheses.

I (UNLOAD or NORWD). Unload on CLOSE or
I end-of-volume, or prevent rewinding. If
I omitted, rewind only.

IDTFMT is to be assembled separately.

IPrevent writing a tapemark ahead of data
I records if FILABL=NSiD or Ne.

I (INPUT, OUTPUT, or WORK). If omitted,
I INPUT is default.

IRegister number, if RECFORH=VARBLK and
1 records are built in the output area.
I General registers 2 through 12 are enclosed
I in parentheses.

IName of wrong-length record routine.

IGET or PUT specifies a work area. Omit
I IOREG.

Figure 38. CMS/DOS Support of DTFMT Macro (Part 2 of 2)

CMS/DOS does not support the ASOCFLE, ERROPT=IGNORE, and FUNC operands
of the DTFPR macro. Figure 39 describes the operands of the DTFPR macro
and their support under CMS/DOS. An asterisk (*) 1n the status column
indicates that CMS/DOS support differs from DOS/VS support.

300 IBM VM/370 System Programmer's Guide

Operand
i
IDEVADDR=SYSxxx
I

IOAREA1=xxxxxxxx

ASOCFLE=xxxxxxxx

BLKSIZE=nnn

CONTROL=YES

CTLCHR=xxx

DEVICE=nnnn

ERROPT=xxxxxxxx

FUNC=xxxx

IOAREA2=xxxxxxxx

IOREG= (nn)

MODNAME=xxxxxxxx

!
IPRINTOV=YES

IStatusl Description

*
*

*

*

*

ISymbolic unit for the printer used for this
I file.

IName for the first output area.

INot supported.

ILength of one output area, in bytes. If
I omitted, 121 is default.

ICNTRL macro used for this file. Omit CTLCHR
I for this file.

I (YES or ASA). Data records have control
I character. YES for S/370 character set;
I AS! for American National Standards
I Institute character set. Omit CONTROL for
I this file.

1(1403, 1443, 3203, or 3211). If omitted,
! 1403 is default.

IRETRY or the name of your error routine for
I 3211. Not allowed for other devices.
I IGNORE is not supported.

INot supported.

IIf two output areas are used, name of second
I area.

IRegister number; if two output areas used
I and GET or PUT does not specify a work
I area. Omit WORK!.

IName of PRMOD logic module for this DTF.
I If omitted, IOCS generates standard name.

IPRTOV macro used for this file.
I----------------------·--------------------~-------------------------
IRDONLY=YES
I
I
I

I

RECFORM=xxxxxx

RECSIZE= (nn)

SEPASMB=YES

STLIST=YES

UCS=xxx

IGenerate a read-only module. Requires a
I module save area for each routine using
I the module.

I (FIXUNB, VARUNE, or UNDEF). If omitted,
I FIXUNB is default.

IRegister number if RECFORM=UNDEF.

IDTFPR is to be assembled separately.

IUse 1403 selective tape listing feature.

I (ON) process data checks. (OFF) ignores data I
,checks. Only for printers with the UCS I
I feature or 3203 or 3211. If omitted, OFF I
I is default. ,

--1 I
IWORKA=YES IPUT specifies work area. Omit IOREG. I L-____ . __________________ . __ ~.~

Figure 39. CMS/DOS Support of DTFPR Macro

Part 3. Conversational Monitor system (CMS) 301

CMS/DOS does not support the FEOVD, HOLD, and LABADDR operands of the
DTFSD macro. Figure 40 describes the operands of the DTFSD macro and
their support under CMS/DOS. An asterisk (*) in the status column
indicates that CMS/DOS support differs from DOS/VS support.

rj---,
I Operand IStatus!
1--
IBLKSIZE=nnnn ILength of one I/O area, in bytes.
1---
I EOFADDR=xxxxxxxx

IOAREA1=xxxxxxxx

CONTROL=YES

DELETFL=NO *

DEVADDR=SYSnnn *

DEVICE=nnnn *

ERREXT=YES

ERROPT=xxxxxxxx

IName of your end-of-file routine.

IName of first I/O area.

ICNTRL macro used for this file.

IIf DELETFL=NO is specified, the work file
I is not erased. Otherwise, when the work
1 file is closed, CMS/EOS erases it.

ISymbolic unit. This operand is optional. If
1 DEVADDR is not specified, all I/O requests
1 are directed to the logical unit identified
I on the corresponding CMS/DOS DLBL command.
1
IIf a valid logical unit is specified with
t the DEVADDR operand of the DTF and a
1 different, but also valid, logical unit is
I specified on the DLBL command, the unit
I spectfied on the DLBL command overrides the
I unit specified in the DTF. However, CMS/DOS
1 issues an error message if a valid logical
I unit is specified in the DTF and no logical
1 unit is specified on the corresponding DLBL
I command.

(2314, 3330, 3330-11, 3340, 3350). If
omitted, 2311 is the default used at
compilation time. At execution time, when
when the CMS/DOS $$BOPEN routine is
opening a DTFSD work file, the device code
in the DTF corresponds to the device code
of the device to which the logical unit is
assigned.

All DTFSD output files and DTFSD input
files that reside on CMS disks are handled
in the same manner. This device code cannot
be overridden by the compilers.

You must specify the EEVICE=nnnn operand
correctly for input files residing on DOS
disks; otherwise, CMS/DOS issues an error.

IAdditional error facilities and ERET are
I desired. Specify ERROPT.

I (IGNORE, SKIP, or name of error routine).
Prevents job termination on error records.
Do not use SKIP for output files.

Figure 40. CMS/DOS Support of DTFSD Macro (Part 1 of 3)

302 IBM VM/370 System Programmer's Guide

r-----.--,
Operand

I
IFEOVD=YES

HOLD=YES

IOAREA2=xxxxxxxx

IOREG= (nn)

LABADDR=xxxxxXXX

MODNAME=xxxxxxxx

NOTEPNT=xxxxxxxx

RDONLY==YES

RECFORM=xxxxxx

RECSIZE=nnnnn

SEPASMB=YES

TRUNCS=YES

TYPEFLE=xxxxxX

IUPDATE=YES

IStatusl Description

*
*

*

t Not -supported.

jNot supported. HOLD=YES is specified for
DTFSD update or work files to provide a
track hold capability. However, the CMS/DOS
open routine sets the track hold bit off
and bypasses track hold processing.

IIf two I/O areas are used, name of second
I area.

IRegister number. Use only if GET or PUT
I does not specify work area or if two I/O
I areas are used. Omit wORKA.

INot supported.

IName of SDMODxx logic module for this DTF.
I If omitted, IOCS generates standard name.

I (YES or POINTRW). YES if NOTE,POINTR,POINTW,
I POINTS used. POINTRW if only NOTE,POINTR,
I POINTW used.

jGenerates a read-only module. Requires a
I module save area for each routine using
I the module.

(FIXUNB, FIXBLK, VARUNE, SPNUNB, SPNBLK,
VARBLK, or UNDEF). If omitted, FIXUNB is
assumed.

For work files use FIXUNB or UNDEF. Although
work files contain fixed-length unblocked
records, the CMS file system handles work
files as variable-length record files. If
you specify FIXBLK or FIXUNE when creating
a eMS file on a CMS disk, CMS writes the
file in variable-length format. The
LISTFILE command would show the file as V
format.

IIf RECFORM=FIXBLK, number of characters in
I record. If RECFORM=SPNUNB. SPNBLK. or
I UNDEF, register number. Not required for
lather records.

IDTFSD is to be assembled separately.

IRECFORM=FIXBLK or TRUNC macro used for this
I file.

i (INPUI, OUTPUT, or WORK).
I is assumed.

If omitted, Tl.TnTTT
~U~V·I

IInput file or work file is to be updated.
----~---~

Figure 40. CMS/DOS Support of DTFSD Macro (Part 2 of 3)

Part 3. Conversational Monitor System (CMS) 303

r I

I Operand I Sta tus I Description I
I ---1
IVARBLD=(nn) IRegister number if RECFORM=VARBLK and I
I I records are built in the output area. ,
I I Omi t if WORKA=YES. I

I --------------------------------~-----------------------------I
IVERIFY=YES ICheck disk records after they are written. I
I ,
IwLRERR=xxxxxxxx !Name of your wrong-length record routine. I
1 ,
IWORKA=YES IGET or PUT specifies work area. Omit IOREG.I
I I Required for RECFORM=SPNUNB or SPNBLK. I

Figure 40. CMS/DOS support of DTFSD Macro (Part 3 of 3)

SEQUENTIAL ACCESS METHOD -- IMPERATIVE MACROS

CMS/DOS supports the following imperative macros:

• ffQf~§§i~g ~~ffQ§: GET, PUT, PUTR, RELSE, lRUNC, CNTRL, ERET, and
PRTOV.

!Q!~: No code is generated for the CHNG macro.

• !2f~ fil~ ~~f!2§ fQ! i£E~ ~~g gi§f: READ, WRIlE, CHECK, NOTE, POINTE,
POINTW, and POINTS.

• £Q~El~!i9B ~~f!~§: CLOSE and CLOSER

CMS/DOS supports workfiles containing fixed-length unblocked records
and undefined records. Disk work files are supported as single volume,
single pack files. Normal extents and split extents are both supported.

DOS/VS Transient Routines

CMS/DOS uses the DOS/VS
CMS/DOS accesses the LIOCS
private library. For this
before you can use CMS/DOS.

LIOCS transient routines without change.
routines directly from a DOS/VS system cr

reason, you must order and install DOS/VS

However, CMS/DOS simulates the DOS/VS transients that are fetched by
macro expansion or by the LIOCS modules. These simulation routines
contain enough of the transient's function to support the DOS/VS COBeL
compiler and DOS PL/I optimizing compiler. These routines that simulate
the DOS/VS transients execute in the CMS/DOS discontiguous shared
segment.

The following DOS/VS transients are simulated by CMS/DOS.

Transient
$$BOPEN-- K~~f!12~ Yng~f ~~~LQQ~

Fetched by the DOS/VS OPEN
LIoes modules. $$BOPEN
dependent upon the device
operations. At entry to
list of fullword addresses

macro expansion or by the DOS/VS
performs DTF initialization,

type, to ready the file for I/O
$$BOPEN, register 0 points to a
containing a pointer to the DTFs.

30U 19~ VM/370 System Prograwmer's Suide

$$BOPNLB

$$BCLOSE

$$BDUMP

$$BOPENR

$$BOPNR3

$$BOPNR2

Function under £~~L~Q~
$$BOPEN-checks for supported DTF types, and initializes DTFs
in accordance with the device type. In the case of disk
files and tape data files, default tLBLs with the NOCHANGE
option are issued. (The CMS STATE command is issued to
verify the existence of the input files.)

$$BOPEN is invoked to supply additional extent information
for multi-extent real DOS data sets. $$BOPEN is also called
to initialize DTFs with EXTENT information for private and
system DOS libraries. The OPEN transient is responsible for
providing the proper extent information as a result of
POINTR/POINTS requests. If a VSIM file is being opened (Byte
20 = X'28 1 in the ACB), control is passed to the VSAM OPEN
routine. When opening DTFSD files for output or DTFCP/DTFDI
disk files for output, if a file exists on a CMS disk with
the same filename, filetype, and filemode, the file is
erased.

Fetched by COBOL Compiler Phase 00 to read the appropriate
system or private source statement library directory record
and to determine whether or not active members are present
for the library.

Fetched by DOS/VS CLOSE macro expansion to deactivate a
file.

Fetched when an abnormal termination condition is
encountered. Control is not passed to a STXlT routine=
CMS/DOS performs a CP dump to a virtual printer. The routine
is canceled.

Fetched by a DOS/VS OPENR macro expansion. The function cf
$$BOPENR is to relocate all DTF table address constants frcm
the assembled addresses to executable storage addresses. At
entry to $$BOPENR, register 0 points to an assembled address
constant followed by a list of DTF addresses tables that
require address modification.

Fetched by $$BOPENR to relocate all DTF table address
constants for unit record DTFs.

Fetched by $$BOPNR3 to relocate all DTF table address
constants for DTFDI or DTFCP.

EXCP Support in CMS/DOS

CMS/DOS simulates
extent necessary
preceding section
CMS/DOS."

the EXCP (execute channel program) routines to the
to support the LIOCS routines described in the

"DOS/VS Supervisor and I/C Macros Supported by

Because CMS/DOS uses the DOS/VS LIOCS routines unchanged, it must
simulate all I/O at the EXCP level. The EXCP simulation routines convert
all the I/O that is in the CCi format to eMS physical 1/0 requests.
That is, CMS macros (such as RDBUF/WRBUF. CARDRD/CARDFH, PRINTIO, and
WAITRD/TYPLIN) replace the CCW strings. If CMS/DOS is reading from Des
ctisks, _I/O requests are handled via the DIAGNOSE interface.

Part 3. Conversational Monitor System (eMS) 305

When an I/O operation completes, CMS/DOS posts the CCB with the C~S
return code. Partial RPS (rotational position sensing) support is
available for I/O operations to CMS disks because CMS uses RPS in its
channel programs. However, RPS is not supported when real DOS disks are
read.

DOS/VS Supervisor Control Blocks Simulated by
CMS/DOS

CMS/DOS supports DOS/VS program development and execution for a single
partition: the background partition. Because eMS/DOS does not support
the four foreground partitions, it also does not simulate the associated
control blocks and fields for foreground partitions. CMS/DOS does
simulate the following DOS/VS supervisor control blocks:

• ABTAB--Abnormal Termination Option Table
• BBOX--Boundary Box
• BGCOM--Background Partition Communication Region
• EXCPW--Work area for module DMSXCP
• FICL--First in Class
• LUB--Logical Unit Block
• NICL--Next in Class
• PCTAB--program Check Option Table
• PIBTAB--Program Information Table
• PIB2TAB--Program Information Block Table Extension
• PUB--Physical Unit Block
• PUBOWNER--Physical Unit Block Ownership Table
• SYSCOM--System Communication Region

For detailed descriptions of CMS/DOS control blocks, refer to the
!~L11Q Q~~ !~~~§ ~nQ £2n!E21 §lg£! #QS!£.

User Considerations and Responsibilities

A critical design assumption of CMS/DOS is that installations that use
CMS/DOS will also use and have available a DOS/VS system. Therefore, if
you want to use CMS/DOS you must first order and install a DOS/'S
system, Release 31, 32, or 33. Also, if you want to use the DOS/iS
COBOL and DOS PL/I Optimizing compilers under CMS/DOS, you must order
them and install them on your DOS/iS system.

There are several other facts you should consider if you plan
CMS/DOS. The following sections describe some of the
considerations and responsibilities.

DOS/VS System Generation and Updating
Considerations

to use
user

The CMS/DOS support in
provides the necessary
and system routines
Optimizing compilers
image libraries.

CMS may use a real DOS/VS system pack. CMS/DCS
path and then fetches DOS/VS logical transients

directly from the DOS/VS COBOL and DOS PL/I
directly from the DOS/VS system or private core

It is your responsibility to order a Release 31, 32, or 33 DOS/VS
system and then generate it. Also, if you plan to use DOS compilers,
you must order the current level of the DOS/VS COBOL compiler and DCS
PL/I Optimizing compiler and install them on the same DOS/VS system.

306 IBM VM/370 System Programmer's Guide

When you install the compilers on the DOS/VS system, you must
link-edit all the compiler modules as relocatable phases using the
following linkage editor control statement~

ACTION REL

You can place the link-edited phases in
core image library.

either the system or the

When you later invoke the compilers from CMS/DOS, the library (system
or private) containing the compiler phases must be identified to C~s.
You identify all the system libraries to CMS by coding the filemode
letter that corresponds to that DOS/VS system disk on the SET DOS eN
command when you invoke the CMS/DOS environment. You identify a private
library by coding ASSGN and DLBL commands that describe it. The DOS/VS
system and private disks must be linked to your virtual machine and
accessed before you issue the commands to identify them for CMS.

CMS/DOS has no effect on the update procedures for
COBOL, or DOS PL/I. Normal update procedures
IBM-distributed coding changes apply.

DOS/VS, DOS/VS
for applying

For detailed information on how to generate VM/370 with CMS/DOS,
refer to the publication !~11Q ~!gnning gng ~1§!~m Q~~~£~1!2n §yide.

VM/370 Directory Entries

The DOS/VS system and private libraries are accessed in read-only .ode
under CMS/DOS. If more than one CMS virtual machine is using the
eMS/DOS environments you should update the VM/370 directory entries so
that the DOS/VS system residence volume and the ros/vs private libraries
are shared by all the eMS/DOS users.

The VM/370 directory entry for one of the CMS virtual machines should
contain the MDISK statements defining the DOS/VS volumes. The VM/370
directory entries for the other CMS/DOS users should contain LINK
statements ..

For example, assume the DOS/VS system libraries are on cylinders 0
through 149 of a 3330 volume labeled DOSRES. And, assume the DOS/VS
private libraries are on cylinders 0 through 99 of a 2314 volume labeled
DOSPRI. Then, one eMS machine (for example, DOSUSER1) would have the
MDISK statements in its directory entry.

USER DOSUSER1 password 320K 2M G

MDISK 331 3330 0 150 DOSRES R rpass
MDISK 231 2314 0 100 DOSPRI R rpass

All the other CMS/DOS users would have links to these disks. For
example

LINK DOSUSER1 331 331 R rpass
LINK DOSUSER1 231 231 R rpass

Part 3. Conversational Monitor System (CMS) 307

eMS/DOS Storage Requirements

CMS/DOS requires
EXEC files. This
required for CMS
is:

DASD space to contain its source, text, module, and
DASD requirement is in addition to the space already

system residence. The DASD space required by CMS/DOS

• 21 cylinders on a 2314/2319
• 12 cylinders on a 3330
• 33 cylinders on a 3340/3344
• 6 cylinders on a 3350

A simulated DOS/VS nucleus, eight DOSLIB directories, and
simulated DOS/VS control blocks (approximately 1300 decimal bytes)
located in the CMS nucleus.

the
are

CMS/DOS also uses the CMS user area. CMS/DOS executes the Des
compilers, linkage editor, and librarian programs in the CMS user area.
The virtual storage requirements are:

• 60K plus buffers for the DOS/VS COBOL compiler
• 44K plus buffers for the DOS PL/I optimizing compiler
• 20K for the CMS/DOS linkage editor
• 3K for the RSERV library program
• 2K for the PSERV library program
• 2K for the SSERV library program

CMS also uses the user area for its own purposes when processing
CMS/DOS programs. For specific information on CMS use of free storage,
refer to the section "Free storage Management."

When the DOS/VS System must be Online

Most of what you do in the CMS/DOS environment requires that the DOS/VS
system pack and/or the DOS/VS private libraries te available to CMS/DOS.
In general, you need these DOS/VS volumes whenever:

• You use the DOS/VS COBOL compiler or DOS PL/I
The compilers are executed from the system or
libraries.

Optimizing compiler.
private core image

• Your source programs contain COPY, LIBRARY, ~IHCLUDE, or CEL
statements. These statements copy books from your system or the
private source statement library.

• You invoke one of the library programs: DSERV, RSERV, SSERV, PSERV,
or ESERV.

• You execute DOS programs that use LIOCS modules. eMS/DOS fetches most
of the LIOCS routines directly from DOS/VS system or private
libraries.

A DOS/VS system pack is usable when it is:

• Defined for your virtual machine
• Accessed
• Specified, by mode letter, on the SET DOS ON command

308 IBM 1M/370 System Programmer's Guide

A DOS/VS private library is usable when it is:

• Defined for your virtual illachine
• Accessed
• Identified via ASSGN and DLBL commands

Performance

Although you can use the CMS/DOS library services to place the DOS/VS
COBOL compiler, DOS PL/I compiler, and ESERV program in a CMS DOSLIB, it
is recommended that you do not use this method with VM/370. CMS/DOS can
fetch these directly from the DOS/VS system or private libraries faster
than from a DOSLIB.

Execution Considerations and Restrictions

The eMS/DOS environment does not support the execution of DOS programs
that use:

• Sort exits. The DOS/VS COBOL and DOS PL/I SORT verbs are net
supported in CMS/DOS.

• Teleprocessing or indexed sequential (ISAH) access methods. eMS/DOS
supports only the sequential (SAM) and virtual storage (VSAM) access
methods.

• Multitasking. CMS/DOS
background partition.

supports only a single partition, the

CMS/DOS can be executed in a CMS Batch Facility virtual machine. If
any of the DOS programs that are executed in the batch machine read data
from the card reader, you must ensure that the end-of-data indication is
recognized. Be sure that (1) the program checks for end of data and (2)
a /* record follows the last data record.

If there is an error in the way you handle end of data, the Des
program could read the entire batch input stream as its own data. The
result is that jobs sent to the batch machine are never executed and the
DOS program reads records that are not part of its input file.

Part 3. Conversational Monitor System (CMS) 309

eMS Support for OS and DOS VSAM
Functions

CMS supports interactive program development for
using VSAM. CMS supports VSAM for as proqrams
OS/VS COBOL, or as PL/I programming languages; or
in DOS/VS COBOL or DOS PL/I programming languages.
VSAM for as or DOS Assembler language programs.

as and DOS programs
written in VS BASIC,

DOS programs ~ritten
CMS does not support

CMS also supports Access Method Services to manipulate as and Des
VSAM and SAM data sets.

Under CMS, VSAM data sets can span up to nine DASD volumes. CMS does
not support VSAM data set sharing; however, CMS already supports the
sharing of minidisks or full pack minidisks.

VSAM data sets created in CMS are not in the CMS file format.
Therefore, CMS commands currently used to manipulate CMS files cannot be
used for VSAM data sets that are read or written in CMS. A VSAM data
set created in CMS has a file format that is compatible with as and Des
VSAM data sets. Thus, a VSAM data set created in CMS can later be read
or updated by as or DOS.

Because VSAM data sets in eMS are not a part of the CMS file system,
CMS file size, record length, and minidisk size restrictions do not
apply~ The VSAM data sets are manipulated with Access Method Services
programs executed under CMS, instead of with the CMS file system
commands. Also, all VSAM minidisks and full packs used in CMS must be
initialized with the IBCDASDI program; the CMS FORMAT command must not
be used.

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, and
SHOWCB macros.

In its support of VSAM data sets, CMS uses BPS (rotational position
sensing) wherever possible. CMS does not use RPS for 2314/2319 devices,
or for 3340 devices that do not have the feature.

Hardware Devices Supported

Because CMS support of VSAM data sets is based on DOS/VS VSAM and DOS/VS
Access Method Services, only disks supported by DOS/VS can be used fer
VSAM data sets in CMS or for CMS disk files used as input for Access
Method Services. These disks are:

• IBM 2314 Direct Access Storage Facility

• IBM 2319 Disk Storage

• IBM 3330 Disk Storage, Models 1 and 2

• IBM 3330 Disk Storage, Model 11

• IBM 3340 Direct Access storage Facility

• IBM 3344 Direct Access Storage

• IBM 3350 Direct Access storage

310 IBM VM/370 System Programmer's Guide

April 1, 1981

DOS/VS Supervisor Macros and Logical Transients Support for VSAM

CMS supports
VSAM is based

VSAM for OS
on DOS/VS.

and DOS users. However, the eMS support of
The DOS/VS supervisor macros shown in Figure

DOS/VS VSAM routines, are supported by eMS. 41, which are used by the

r-
I
1 Macro
1
ICDLOAD
I
1
1
I
I
1
IFREE
I
1 FREEVIS
1
I

GETVIS

HOLD

POST

RELEASE

SECTVAL

USE

L-

ISVC I
INumberl Extent of eMS Support

65 DOS/VS macro for internal use only. Loads a VSA!
core image phase. CMS searches the VSAM saved
segment for the phase instead of the DOS/VS SVA
area. If an anchor table entry does not exist, CMS
fetches the phase, creates an anchor table entry,
and sets register values as DOS/VS would set them.

36 No operation is performed by CMS.

62 CMS invokes its free storage handler to return

61

35

40

64

75

63

the storage that is no longer needed. CMS follows
the DOS/VS register and return code conventions.

CMS invokes its free storage handling routines
to obtain free storage; it follows the DOS/VS
register and return code conventions. The SVA
operand does not apply to CMS and is not supported.
The PAGE and POOL operands are ignored by CMS.

No operation is performed by CMS.

When a POST macro is issued for an ECB, Byte 2 Bit 0
is set on. The SAVE=savarea operand is ignored by
CMS.

CMS reduces the RURTBL counter for the resource
by one.

CMS uses the data in registers 0 and 1 to calculate
the sector number and returns the sector number in
register O. If any errors occur6 CMS returns I'FF'
in reqister o.

DOS/VS macro for internal use only. CMS supports
this macro only to the extent necessary to support
VSAM. If a counter for a particular resource is
zero, CMS increments the counter by one and returns
a zero in register o. If a counter is greater than
zero, CMS increments the counter by one and returns
an eight in register o.

Fiqure 41. DOS/VS VSAM Macros Supported by CMS

CMS distributes the DOS/VS transients that are needed in the VSAM
support. Thus, OS users do not need to have the DOS/VS system pack
online when they are compili~g and executing VSAM programs.

CMS uses all of the DOS/VS VSAM B-tr~nsients except those that build
and release JIBs (job information blocks). The JIB is not supported in
CMS and, thus, neither are the B-transients ($$BJIBOO, $$BJIBFF, and
$$BOVS03) that control the JIB.

Part 3. Conversational Monitor System (eMS) 311

April 1, 1981

The CMS/DOS shared segment contains the B-transients that are
simulated for DOS support in CMS. Three B-transients that pertain only
to VSAM are included in the VSAM saved segment: $$BOMSG1, $$BOKSG2, and
$$BENDQB. The $$BENDQB transient is called by the ENQB macro and
released by the DEQB macro.

Storage Requirements

The VSAM and Access Method Services support in CMS requires both DASD
space and virtual storage.

The VSAM and Access Method Services support adds approximately 2K to
the size of the CMS nucleus. In addition, this support uses free
storaqe to execute the DOS/VS logical transients and for buffers and
work areas. VSAM issues a GETVIS macro to request free storag~.

If the CMS/DOS environment is invoked with the VSAM option

SET DOS ON (VSAM

part of the CMS/DOS virtual storage is set aside for VSAM use.

Disk storage requirements vary depending upon device type:

Number of cylinders Required
Device ~YQg ~Q~ Usg OS User
2314- 10 --20-

2319 10 20
3330 Model 1 6 12
3330 Model 11 6 12
3340 15 30
3344 15 30
3350 3 6

Data Set Compatibility Considerations

CMS can read and update VSAM data sets that were created under DOS/VS or
OS/VS. In addition, VSAM data sets created under CMS can be read and
updated by DOS/VS or OS/VS.

However, if you perform allocation on a minidisk in ~MS, you cannot
use that minidisk in an OS virtual machine in any manner that causes
further allocation. DOS/VS VSAM (and, thus, CMS) ignores the format-5,
free space, DSCB, on VSAM disks when it allocates extents. If
allocation later occurs in an OS machine, OS attempts to create a
format-5 DSCB. However, the format-5 DSCB created by OS does not
correctly reflect the free space on the minidisk. In eMS, allocation
occurs whenever data spaces or unique data sets are defined. Space is
released whenever data spaces, catalogs, and unique data spaces are
deleted.

ISAM Interface Program (liP)

CMS does not support the VSAM ISAM Interface Proqram (lIP). Thus, any
program that creates and accesses ISAM (indexed sequential access
method) data sets cannot be used to access VSAM key sequential data
sets. There is one exception to this restriction. If you have (1) OS
PL/I programs that have files declared as ENV(INDEXED) and (2) if the
library routines detect that the data set being accessed is a VSAM data
set, your programs will execute VSAM I/O requests.

312 IBM VM/370 System Proqrammer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Saving the eMS System

Only named systems can be saved. The NAMESYS macro must be used to name
a system. A discussion on creating a named system is found under
"Generatinq Named System" in "Part 2: Control Program (CP)".

The DMKSNT module must have been configured (by coding the NAMESYS
macro) when CP was qenerated. The DMKSNT module contains the system
name, size of the system, and its real disk location. The CMS system
may be saved by entering the command "SAVESYS name" as the first command
after the IPL command (that is, after the CMS version identification is
displayed), where "name" is the name to be assigned to the saved system.

The CMS S- , D- , and Y disks (and, optionally, the A-disk) should be
mounted and attached to the virtual machine, creating the saved system
before the SAVESYS command is issued. This ensures that the CMS file
directory is saved correctly.

The status of this saved system, when activated by a subsequent IPL,
is changed as though an IPL of a specific device had occurred. The one
exception to this procedure is the file directory for the system disk,
which is part of the nucleus. When a user IPLs CMS, CP loads the
directory for the CMS residence device from disk into virtual storage.
Subsequent crpdates to this directory modify the copy that is in virtual
storage but not the copy that is on disk. To modify the copy that is on
disk, save the CMS system after updating the directory.

The CMSSEG Discontiguous Saved Segment

The CMSSEG discontiguous saved segment contains the CMS modules that
perform the CMS Editor, EXEC, or as simulation functions. These same
modules are also loaded on the S-disk of a CMS virtual machine.

When CMSSEG has been generated and is in use during execution of the
CMS virtual machine, CMS handles a call to the Editor or EXEC processors
by first searching for the requested Editor or EXEC load modules on all
accessed CMS disks, except the S-disk. CMS next attempts to attach the
CMSSEG segment; CMSSEG may not be available, depending upon how the CMS
virtual machine was generated. If this is the case, CMS attempts to
load the appropriate modules from the CMS S-disk.

To handle as simulation routines, CMS first attempts to attach the
CMSSEG segment. If the segment is not available, CMS searches all
accessed disks for the as simulation load modules and loads them into
hiqh user storage if they are found. The as simulation modules are then
kept in storage until CMS is reloaded or until a SET SYSNAMES command is
issued for a valid CMSSEG saved segment.

There is overhead associated with controlling discontiguolls saved
segments and with ensuring their integrity. In small systems, the
overhead associated with the use of the CMSSEG saved segment may not be
offset by the benefits of sharing storage among users. Therefore, the
us-e of CMSS-EGmust be deteI"mined-by the user for- his own- ell1l-LrOnlll-ent.

Part 3. Conversational Monitor System (CMS) 313

April 1, 1981

CMSSEG USAGE OPTIONS

At system
segment.
contained
Gu id~.

generation time, you may choose not to generate the CMSSEG
If you choose to use it, information on how to generate it is
in the publication VM/370 Plan!!!M: gnd ~.Y§~~!. ~~~!:atiQ!!-

Once generated, users also have the option of choosing whether or not
to use CMSSEG. The IPL command provides the facility to either use or
not use CMSSEG. When you IPL your CMS virtual machine, you can request
that CMSSEG be used by specifying

IPL CMS PARM SEG=CMSSEG

SEG=CMMSEG is the default option.

To request that CMSSEG not be used for your virtual machine, specify
an invalid segment name in the 1PL command, for example,

IPL CMS PARM SEG=DUMMY

When the CMSSEG segment is not loaded, the routines that perform the
Editor, EXEC, and OS simulation functions execute in the CMS user area.

The SET command also can be used to control the use of the CMSSEG
segment. If the CMS system is loaded (via IPL) with an invalid CMSSEG
segment name specified, DMSSVT is loaded in the CMS user area to provide
support for OS simulation routines. In this case, the Editor and EXEC
modules must be available on the S-disk or another accessed disk, in
this case.

In addition, for the CMSSEG segment only, you can indicate an
alternate segment to be loaded on the IPL command. The format of the
IPL command to support this is:

1PL cuu PARM SEG=segmentname
systemname

SEG=seqmentname indicates the name of the saved segment to be loaded
whenever the CMS Editor, EXEC processor, or OS simulation routines
are needed. Eight characters must be entered for segmentname;
either assign an 8-character segment name when you code the NAMESYS
macro for your installation, or be sure that the operator enters
trailing blanks if segmentname is less than 8 characters long.

The CMS Batch Facility loads whatever segment is specified
first 1PL command issued for the batch virtual machine. Thus,
first IPL command for a CMS Batch Facility machine is:

IPL CMS PARM SEG=CMSSEG02

the same segment name (CMSSEG02) is loaded.

on the
if the

When the command "SET SYSNAME CKSSEG segmentname" is specified (where
seqmentname is the name of a defined CMS discontiguous saved segment) ,
free storage containing OS simulation routines is released and OS
simula~ion routines contained in the CKSSEG segment are used by the
virtual machine to provide OS simUlation fUnctions.

314 IBM VM/3 7 0 System Programmer's Guide

Saved System Restrictions for eMS

There are several coding restrictions that must be imposed on CMS if it
is to run as a saved system.

CMS may never modify, with a single machine instruction (except
MYCL), a section of storage that crosses the boundary between two pages
with different storage keys. This restriction applies not only to SS
instructions, such as MVC and ZAP, but also to as instructions, such as
STM, and to RX instructions, such as ST and STD, which may have
nonaligned addresses on the System/370.

It also applies to I/O instructions. If the key specified in the CCW
is zero, then the data area for input may not cross the boundary between
two pages with different storage keys.

If you intend to modify a shared CMS system, be sure that all code
that 1S to be shared r~sides in the shared segment, CMS Nucleus
(X'10000'-X'20000'). To make room for additional code in the eMS
Nucleus, you may have to move some of the existing code. You can use
the USERSECT area of DMSNUC to contain nonshared instructions.

CP does not permit a user of a shared system to set storage keys via
the Set Storage Key (SSK) instruction. Thus, one user cannot prevent
other users from accessing shared storage.

Part 3. Conversational Monitor System (eMS) 315

eMS Batch Facility

The CMS Batch Facility is a VM/370 programming facility that runs under
the CMS subsystem. It allows VM/370 users to run their jobs in batch
mode by sending jobs either from their virtual machines or through the
real (system) card reader to a virtual machine dedicated to running
batch jobs. The CMS Batch Facility then executes these jobs, freeing
user machines for other uses.

If both CMS Batch Facility and the Remote spooling Communications
Subsystem (RSCS) are being executed under the same VM/370 system, job
input streams can be transmitted to the batch facility from remote
stations via communication lines. Also, the output of the batch
processing can be transmitted back to the remote station. For additional
information, see "Remote Job Entry to CMS Batch" in the !~Ll1.Q],gmo!~

~Eooli~g £~!~Ynifat!2n2 ~YQ212!g~ (E~£~) Q2gI~ QY!£~·

The CMS Batch Facility virtual machine is generated and controlled on
a userid dedicated to execution of jobs in batch mode. The system
operator generates the "batch machine" by loading (via IPL) the C"S
subsystem, and then issuing the CMSBATCH command. The CMSBATCH module
loads the DMSBTP TEXT S2 file, which is the actual batch processor.
After each job is executed, the batch facility will IPL itself, thereby
providing a ccntinuously processing batch machine. The batch processor
will IPL itself by using the PARM option of the CP 1PL command, followed
by a character string that CMS recognizes as peculiar to a batch virtual
machine performing its IPL. Jobs are sent to the batch machine's
virtual card reader from users' terminals and executed sequentially.
When there are no jobs waiting for execution, the CMS Batch Facility
remains in a wait state ready to execute a user job. See the !~Ll1.Q
QEer£!2I~2 QYi£~ for more information about controlling the batch
machine.

The eMS Batch Facility is particularly useful for compute-bound jobs
such as assemblies and compilations and for execution of large user
programs, since interactive users can continue working at their
terminals while their time--consulling jobs are run in another virtual
machine.

The system programmer controls the batch facility virtual machine
environment by resetting the CMS Batch Facility machine's system limits,
by writing routines that handle special installation input to the batch
facility, and by writing EXEC procedures that make the CMS Batch
Facility facility easier to use.

Resetting the eMS Batch Facility System Limits

Each job running under the CMS Batch Facility is limited by default to
the maximum value of 32,767 seconds of virtual processor time, 32,767
punched cards output, and 32,767 printed lines of output. You can reset
these limits by modifying the BATLIMIT MACRO file, which is found in the
CMSLIB macro library, and by reassembling DMSBTP.

316 IBM VM/370 System programmer's Guide

Writing Routines to Handle Special Installation
Input

The CMS Batch Facility can handle user-specified control language and
special installation batch facility /JOB control cards. These handling
mechanisms are built into the system in the form of user exits from
batch; you are responsible for generating two routines to make use of
them. These routines must be named BATEXITl and BATEXIT2, respectively,
and must have a filetype of TEXT and a filemode number of 2 if placed on
the system disk or an extension of the system disk. (See the !~Ll1Q ~]~
Q§~~§ ~uig~ for information on how to write and use CMS Batch Facility
control cards~) The routines you write are responsible for saving
registers, including general register 12, which saves addressability for
the batch facility. These routines (if made available on the system
disk) are included with the eMS Batch Facility each time it is loaded.

BATEXIT1: PROCESSING USER-SPECIFIED CONTROL LANGDAGE

BATEXIT1 is an entry point provided so that users may write their own
routine to check non-CMS control statements. For example, a routine
could be written to scan for the OS job control language needed to
compile, link edit, and execute a FORTRAN job. BATEXITl receives
control after each read from the CMS Batch Facility virtual card reader
is issued. General register 1 contains the address of the batch
facility read buffer, which contains the card image to be executed by
the batch' facility. This enables BATEXITl to scan each card it receives
as input for the type of control information you specify.

If, after the card is processed by BATEXIT1, general register 15
contains a nonzero return code, the eMS Batch Facility flushes the card
and reads the next card. If a zero is returned in general register 15,
the batch facility continues processing by passing the card to CMS for
execution.

BATEXIT2: PROCESSING THE BATCH FACILITY /JOB CONtROL CARD

BATEXIT2 is an entry point provided so that users can code their own
routine to use the /JOB card for additional information. EATEXIT2
receives control before the VM/370 routine used to process the batch
facility /JOB card begins its processing, but after CMS has scanned the
/JOB card and built the parameter list. When EATEXIT2 is processing,
general register 1 points to the CMS parameter list buffer. This buffer
is a series of 8-byte entries, one for each item on the /JOB card. If
the return code found in general register 15 resulting from EATEXIT2
processing of this card is nonzero, an error message is generated and
the job is flushed. If general register 15 contains a zero, normal
checking i~ done for a valid userid and the existence of an account
number~ Finally, execution of this job begins.

Part 3. Conversational Monitor System (CMS) 317

EXEC Procedures for the Batch Facility Virtual
Machine

You can control the CMS Batch Facility virtual machine using EXEC
procedures. For example, you can use an EXEC:

• To produce the proper sequence of CP/CMS commands for users who do
not know CMS commands and controls.

• To provide the sequence of commands needed to execute the most co.mon
jobs (assemblies and compilations) in a particular installation.

For information on how to use the EXEC facility to control the batch
facility virtual machine, see the !~Ll1~ ~~~ ~~!~2 §y!g~.

Data Security under the Batch Facility

After each job, the CMS Batch Facility will load (via IPt) itself.
destroying all nucleus data and work areas. All disks to which links
were established during the previous job are detached.

At the beginning of each job, the batch facility work disk is
accessed and then immediately erased, preventing the current user job
from accessing files that might remain from the previous job. Because
of this, execution of the PROFILE EXEC is disabled for the CMS Batch
Facility machine. You may, however, create an EXEC procedure called
BATPROF EXEC and store it on any system disk to be used instead of the
ordinary PROFILE EXEC. The batch facility will then execute this EXEC
at each job initialization time~

Improved IPL Performance Using a Saved System

Since the CMS Batch processor goes through an IFL procedure after each
user j-ob, an installati-on may experience a -more efficient IPL procedure
by using a saved CMS system when processing batch jobs.

This can be accomplished by passing the name of the saved system to
the CMS Batch Facility via the optional "sysname" operand in the
CMSBATCH command line.

The batch facility saves the name of the saved system until the end
of the first job, at which time it stores the name in the IPL command
line both as the "device address" and as the PARM character string. The
latter entry informs the CMS initialization routine (DMSINS) that a
saved system has been loaded and that the name is to be saved fer
subsequent 1PL procedures.

!Q1~: When using the CMS SET command, the BLIP operand is ignored when
issued from the CMS batch machine.

318 IBM VM/370 System Programmer's Guide

Auxiliary Directories

When a disk is accessed, each module that fits the description specified
on the ACCESS command is included in the resident directory. An
auxiliary directory is an extension of the resident directory and
contains the name and location of certain CMS modules that are not
included in the resident directory. These modules, if added to the
resident directory, would significantly increase its size, thus
increasing the search time and storage requirements. An auxiliary
directory can reference modules that reside on the system (S) disk; or,
if the proper linkage is provided, reference modules that reside on any
other read-only CMS disk. To take advantage of the saving in search
time and storage, modules that are referenced via an auxiliary directory
should never be in the resident directory. The disk on which these
modules reside should be accessed in a way that excludes these mOdules.

How to Add an Auxiliary Directory

To add an auxiliary directory to eMS, the system programmer must
generate the directory, initialize it, and establish the proper linkage.
Only when all three tasks are completed, can a module described in an
auxiliary directory be properly located.

GENERATION OF THE AUXILIARY DIRECTORY

An auxiliary directory TEXT deck is generated by assembling a set cf
DMSFST macros, one for each module name. The format of the DMSFST macro
is:

DMSFST

L

~ filename

((filename
r ,
; , filetype I)
1.L~QJ2Q1~ I
L .J

![,aliaSnalle 1

filename,filetype is the name of the module whose File Status Table
(FST) information is to be copied.

aliasnalle is another name by which the module is to be known.

INITIALIZING THE AUXILIARY DIRECTORY

After the auxiliary directory is generated via the DMSFST macro, it must
be initialized. The CMS GENDIRT command initializes the auxiliary
directory with the name and location of the modules to reside in an

Part 3. Conversational Monitor System (CMS) 319

auxiliary directory. By using the GENDIRT command, the file entries for
a given module are loaded only when the module is invoked. The format
of the GENDIRT command is:

GENDIRT directoryname [targetmode]

directoryname is the entry point of the auxiliary directory.

target mode is the mode letter of the disk containing the modules
referenced in the auxiliary directory. The letter is the
mode of the disk containing the modules at execution
time, not the mode of the disk at the initialization of
the directory_ At directory creation, all modules named
in the directory being generated must be on either the
A-disk or a read-only extension (that is, not all disks
are searched) • The default value for targetmode is S,
the system disk. It is your responsibility to determine
the usefulness of this operand at your installation and
to inform users of programs utilizing auxiliary
directories of the proper methodes) of access.

ESTABLISHING THE PROPER LINKAGE

The CMS module, DMSLAD, entry point DMSLADAD, must be called by a user
program or interface to initialize the directory search order. The
subroutine, DMSLADAD, must be called via an SVC 202 with register 1
pointing to the appropriate PLIST. The disk containing the modules
listed in the auxiliary directory must be accessed as the mode
specified, or implied, by the GENDIRT command before the call is issued.
If the GENDIRT command has not been used, the user will receive the
messages: "File not found" or "Error reading file."

Th-e coding necessary for the call is:

LA R1,PLIST
SVC 202
DC AL4(error return)

This call must be executed before the call to any module that is to
be located via an auxiliary directory.

The PLIST should be:

PLIST DS
DC
DC
DC

OF
CL8'DMSLADAD'
V (d irectoryname)
F'O'

The auxiliary directory is copied into nucleus free storage. The
Active Disk Table (ADT) for the targetmode expressed or implied by the
GENDIRT command is found and its file directory address chain (ADTFDA)
is modified to include the nucleus copy of the auxiliary directory. A
flag, ADTPSTM, in ADTFLG2 is set to indicate that the directory chain
has been modified.

320 IBM VM/370 System Programmer's Guide

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

The address of the nucleus copy of the auxiliary directory is saved
in the third word of the input parameter list and the high order byte of
the third word is set to X'80' to indicate that the directory search
chain ~as modified and that the next call to DMSLADAD is a clear
request.

To reset the directory search chain, a second call is made to
DMSLADAD using the modified PLIST. DMSLADAD removes the nucleus copy of
the auxiliary directory from the chain and frees it. DMSLADAD does not,
however, restore the caller's PLIST to its initial state.

An error handling routine should be ceded to handle nonzero return codes
in register 15. When register 15 contains 1 and the condition code is
set to 2, the disk specified by the targetmode operand of the GENDIRT
command was not accessed as that mode.

When register 15 contains 2 and the condition code is set to 2, the
disk specified by the targetmode operand of the GENDIRT command has not
previously had its file directory chains modified; therefore, a call to
DMSLADAD to restore the chain is invalid.

An Example of Creating an Auxiliary Directory

consider an application called PAYROLL consisting of several modules.
It is possible to put these modules in an auxiliary directory rather
than in the resident directory. It is further possible to put the
auxiliary directory on a disk other than the system disk. In this
example, the auxiliary directory will be placed on the Y disk.

First, generate the auxiliary directory TEXT deck for the payroll
application using the DMSFST macro:

PAYDIRT

DIRTBEG

DIRTEND

START
DC
DC
RQU
DMSFST
DMSFS'I'
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DMSFST
DM SF'ST
DMSFST
DC
EQU
END

o
F'40' LENGTH OF FST ENTRY
A (DIRTEND-DIRTBEG) SIZE OF DIRECTORY

* PAYROLL1
PAYROLL2
PAYROLL3
PAYFICA
PAYFEDTX
PA YSTATE
PAYCITY
PAYCREDU
PAYOVERT
PAYSICK
PAYSHIFT
2A(0) POINTER TO NEXT FST BLOCK

*

In this example, the payroll control program (PAYROLL), the payroll
auxiliary directory (PAYDIRT), and all the payroll modules reside on the
194 disk.

Part 3. Conversational Monitor System (eMS) 321

April 1, 1981

In the payroll control module (PAYROLL), the subroutine DMSLADAD must
be called to establish the linkage to th~ auxiliary directory. This
call must be executed before any call is made to a payroll module that
is in the PAYDIRT auxiliary directory.

LA R1, PLIST
SVC 202
DC AL4 (ERRTN)

PLIST DS OF
DC CL8' DMSLADAD'
DC V(PAYDIRT)
DC F'O'

Next, all payroll modules must have their absolute core-image files
generated and the payroll auxiliary directory must be initialized. In
the example, the payroll control module (PAYROLL) is given a mode number
of 2 while the other payroll modules are given a mode number of 1. When
the PAYROLL program is finally executed, only the files on the 194 disk
with a mode number of 2 will be accessed. This means only the PAYROLL
control program (which includes the payroll auxiliary directory) will be
referenced from the resident directory. All the other payroll modules,
because they have mode numbers of 1, will be referenced via the payroll
auxiliary directory.

The following sequence of commands will
core-image files for the payroll modules and
auxiliary directory.

ACCESS 194 A

create the absolute
initialize the payroll

LOAD PAYROLL PAYDIRT
GENKOD PAYROLL (now the auxiliary directory is included in the

payroll control module, but it is not yet
ini tialized.)

LOADMOD PAYROLL
INCLUDE PAYROLL1
GEN MOD PA YROLL 1 (this sequence of three commands is repeated fo

eacb payroll module called by PAYROLL.)

LOADMOD PAYROLL
INCLUDE PAYSHIFT
GENMOD PAYSHIFT

LOADMOD PAYROLL
GENDIRT PAYDIRT Y
GENMOD PAYROLL MODULE A2

When it is time to execute the PAYROLL program, the 194 disk must be
accessed as the Y disk (the same mode letter as specified on the GENDIRT
command). Also, the 194 disk is accessed in a way that includes the
PAYROLL control program in the resident directory but not the other
payroll modules. This is done by specifying a mode number of 2 on the
ACCESS command.

ACCESS 194 Y/S * * Y2

NOW, a request for a payroll module, such
successfully fulfilled. The auxiliary directory
PAYOVERT will be found on the Y disk.

as PAYOVERT, can be
will be searched and

Ngte: A disk referred to by an auxiliary directory must be accessed as a
read-only disk.

322 IBM VM/370 System Programmer's Guide

Assembler Virtual Storage Requirements

The m1nlIDum 51ze virtual machine required by the assembler is
bytes. However, better performance is generally achieved if
assembler is run in 320K bytes of virtual storage. This size
recommended for medium and large assemblies.

256K
the
is

If more virtual storage is allocated to the assembler, the size of
buffers and work space can be increased. The amount of storage
allocated to buffers and work space determines assembler speed and
capacity. Generally, as more storage is allocated to work space, larger
and more complex macro definitions can be handled.

You can control the buffer sizes for the assembler utility data sets
(SYSUT1, SYSUT2, and SYSUT3), and the size of the work space used during
macro processing, by specifying the BUFSIZE assembler option. Of the
storage given, the assembler first allocates storage for the ASSE8BLE
and CMSLIB buffers according to the specifications in the DD statements
supplied by the FILEDEF for the data sets. It then allocates storage
for the modules of the assembler. The remainder of the virtual machine
is allocated to utility data set buffers and macro generation
dictionaries according to the BUFSIZE option specified:

BUFSIZE(STD): 37 percent is allocated to buffers, and 63
work space. This is the default if you do
any BUFSIZE option.

percent to
not specify

BUFSIZE(MIN): Each utility data set is allocated a single 790-byte
buffer. The remaining storage is allocated to work
space. This allows relatively complex macro definitions
to be processed in a given virtual machine size, but the
speed of the assembly is substantially reduced.

Overlay Structures

An overlay structure can be created in CMS in two different ways,
although CMS has no overlay supervision. For descriptions of all the
CMS commands mentioned, see the !~Ll1Q ~~~ ~2!~~ng ~Bg ~acr£ B~!~~n£~.

PRESTRUCTURED OVERLAY

A prestructured overlay program is created using the LOAD, INCLUDE, and
GENMOD commands. Each overlay phase or segment is a nonrelocatable
core-image module created by GENMOD. The phases may be brought into
storage with the LOADMOD command.

Part 3. Conversational Monitor System (CMS) 323

r---,

A (Root Phase)

I
I
I
I
I

rl--------------------,<-------------Location xxxxxxi
I I I
I I I
I IC I
IB I I
I rl------------~,<-------Location yyyyyyl
I ID I I
I I IE I

I ~__J

Figure 2. An Overlay Structure

The overlay structure shown in Figure 42 could be prestructured using
the following sequence of commands (programs A, E, C, D, and E are the
names of TEXT files; the overlay phases will be named Root, Second,
Third, etc ..):

LOAD A B
GENMOD ROOT (FROM A TO B STR)
GENMOD SECOND (FROM B)
LOAD MOD ROOT
INCLUDE C D
GENMOD THIRD (FROM C TO D)
GENMOD FOURTH (FROM D)
LOADMOD THIRD
INCLUDE E
GENMOD FIFTH (FROM E)

The programmer need not know the storage address where each phase
begins.. A TEXT file can be made to load at the proper address by
reloading earlier phases. In the foregoing example, the command
sequences, "LOADMOD ROOT/INCLUDE C D" and "LOADMOD THIRD/INCLUDE E,"
cause TEXT files C, D, and E to load at the proper addresses.

If the root phase contains address constants to the other phases, one
copy of the root must be kept in storage while each of the other phases
is brought in by the LOAD or INCLUDE commands without an intervening
GENMOD. The root phase is then processed by GENMOD after all address
constants have been satisfied. In this case, the programmer must know
the address where nonroot phases begin (in Figure 41, locations xxxxxx
and yyyyyy). The following sequence of commands could be used:

LOAD A B
GENMOD SECOND (FROM B)
INCLUDE C D (ORIGIN xxxxxx)
GENMOD THIRD (FROM C TO D)
GENMOD FOURTH (FROM D)
INCLUDE E (ORIGIN yyyyyy)
GENMOD FIFTH (FROM E)
LOAD A B
INCLUDE C D (ORIGIN xxxxxx)
INCLUDE E (ORIGIN yyyyyy)
GENMOD ROOT (FROM A TO C STR)

324 IBM VM/370 System Programmer's Guide

The ORIGIN option of the INCLUDE command is used to cause the
included file to overlay a previously loaded file. The address at which
a phase begins must be a double.ord boundary. For example, if the rcct
phase were X'2BD' bytes long, starting at virtual storage location
X'20000', then location xxxxxx would be the next doubleword boundary, or
X'202CO'.

The STR option, which is specified in the GENMOD of the root phase,
specifies that whenever that module is brought into storage with the
LOADMOD command, the Storage Initialization routine should be invoked.
This routine initializes user free storage pointers.

At execution time of the prestructured overlay program, each phase is
brought into storage with the LOADMOD command. The phases can call
LOADMOD. The OS macros LINK, LOAD, and ICTL normally invoke the INCLUDE
command, which loads TEXT files. These macros will invoke LOADMOD if a
switch, called COMPSWT, in the CMS Nucleus Constant area, NUCON, is
turned on.

With COMPSWT set, overlay phases that use LINK, LOAD, and XCTL must
be pre structured MODULE files.

DYNAMIC LOAD OVERLAY

The dynamic load method of using an overlay structure is to have all the
phases in the form of relocatable object code in TEXT files or m~mbers
of a TEXT library, filetype TXTLIB. The OS macros, LINK, LeAD, and XCTL
may then be used to pass control from one phase to another. The XCTL
macro causes the calling program to be overlayed by the called program
except when it is issued from the root phase. When issued from the root
phase, CMS treats XCTL as it would a LINK macro, adding the new code at
the end of the root phase.

The COMPSWT flag in OSSFLAGS must be off when the dynamic load method
is used.

Part 3. Conversational Monitor System (CMS) 325

326 IBM VM/370 System programmer's Guide

Part 4

•
•
•

•

Part 4. Remote Spooling Communications
Subsystem (RSCS)

contains the following information:

Introduction to RSCS

Structure of RSCS virtual storage

Functional information

Logging I/O activity

Part 4. Reaote Spooling Communications Subsystem (RSCS) 327

328 IBM V~/37C System ?rogrammer's Guide

Introduction to RSCS

The Remote Spooling Communications Subsystem (RSCSj, a component of
VM/370, provides telecommunication facilities for the transmission of
bulk files between VM/370 users and remote stations. RSCS is a single
purpose operating system for a virtual machine, dedicated to the
management of files spooled to it by VM/370 users or transmitted to it
by remote stations via communication lines. Remote stations can submit
files to a VM/370 user or CMS Batch Facility for processing and receive
printer and punch output in return,. VM/370 users can submit job streams
to a remote HASP- or ASP-type batch processor. Remote stations can send
printer and punch files to other remote stations.

Locations and Links

Under RSCS, all remote locations as well as the local RSCS virtual
machine are assigned a one- to eight-character alphameric location
identification. The transmission path between the RSCS virtual machine
and any single remote station is defined as a link. A link has certain
attributes that make up a link definition and these attributes are
assigned at system generation time or dynamically via the RSCS DEFINE
command. A link definition consists of a linkid (the location
identifier of the remote station), the type of remote station, the line
address to be used for transmission, the class of files to be processed,
and other information unique to the link. RSCS maintains a table of link
definitions (link table) in the module DMTSYS. A maximum of 64 links may
be defined of which any 16 may be active at anyone time.

Remote Stations

A remote station, in the context of RSCS, is any terminal or system on
the other end of the link from the RSCS virtual machine. The RSCS
virtual machine is also referred to as the local RSCS station. RSCS
supports two general types of I/O configurations used as remote
stations.

Nonprogrammable remote terminals, such as the IBM 2780, are I/O
configurations where the line protocol necessary for them to function as
remote stations is provided by the hardware. These devices are managed
by the Nonprogrammable Terminal (NPT) line driver of RSCS.

Programmable remote stations, such as the IBM System/3 and
System/360, are IBM processing systems with attached binary synchronous
communications adapters. These systems must be programmed to provide a
MULTI-LEAVING line protocol necessary for their devices to function as
remote stations. For a detailed description of MULTI-LEAVING~ see
"Appendix B: MULTI-LEAVING." This programming support is provided by a
Remote Terminal Processor (RTP) program generated according to HASP
workstation protocol and tailored to the system's hardware
configuration. Certain programmable remote stations like the System/3
can only be programmed to function as remote terminals. Others, like the
System/360 and System/370, can function either as remote terminals or as
host batch systems using RSCS as a remote job entry workstation. Both
of these types of remote stations are managed by the Spool MULTI-LEAVING
(SML) line driver of RSCS.

Part 4. Remote Spooling Communications Subsystem (RSCS) 329

VM/370 Spool System Interface

RSCS uses the V8/370 spool system to interface with VM/370 users.

When a user generates a file to be transmitted to a remote location
by RSCS, he must comply with two requirements. The file must be spooled
to the RSCS virtual machine and the spool file tag associated with the
file must contain, as the first entry, the linkid (location identifier)
of the remote station to which the file is being transmitted.

When a remote station transmits a card file to RSCS, the file must be
preceded by an ID card containing the userid of the virtual machine that
is to receive the file. RSCS punches the file on a virtual punch and
spools it to the appropriate virtual machine. If the userid is that of
the RSCS virtual machine and the ID card also contained valid tag data,
RSCS will retrieve the file from the 18/370 spool system and forward it
to the remote station designated by the linkid in the tag data.

RSCS Command Language

The RSCS command language provides the RSCS virtual machine operator
with the following capabilities:

• Manipulate the status, transmission priority, class, and order of
files owned by the RSCS virtual machine.

• Initialize, suspend, or terminate transmission of files to remote
terminals or stations.

• Reposition or restart files currently being transmitted.

• Send or forward messages and commands to remote terminals and
staticns.

• Query file, link, or system information.

• Monitor link activity for any remote location.

A summary of the RSCS commands is shown in Figure 43; for a full
description and the format of each, refer to "Appendix A: Remote
Spooling" Communications Subsystem Commands" in the 1]L170]~'!.Q!~

~~oo11~g fg.!.!y~i£g!1gn~ ~YQ~Ist~! (~~f~) Y~f~~ ~Yig~·

330 IBM VM/370 System Programmer's Guide

r-----
I Command

Name

BACKSPAC

CHANGE

CMD

DEFINE

DELETE

DIS CONN

DRAIN

FLUSH

FREE

FWDSPACE

HOLD

MSG

ORDER

PURGE

QUERY

START

TRACE

Function

Restart or reposition, in a backward direction, the file
currently being transmitted.

Alter one or more attributes of a file owned by RSCS~

Control certain functions performed by a remote system,
or control the logging of I/O activity on a specified
link.

Temporarily add a new link definition to the RSCS link
table or temporarily redefine an eXisting link.

Temporarily delete a link definition from the RSCS link
table.

Place RSCS in disconnect mode and, optionally, direct
output to another virtual machine.

Deactivate an active communication link.

Discontinue processing the current file on the specified
link.

Resume transmission on a communication link previously
in HOLD status.

Reposition, in a forward direction, the file currently
being transmitted.

Suspend file transmission on an active link without
deactivating the line.

Send a message to a local or remote station.

Reorder files enqueued on a specific link.

Remove all or specified files from a link.

Request system information for a link, a file, or the
system in general.

Activate a specified communication link.

Monitor line activity on a specified link.

Figure 43. RSCS Command Summary

A subset of the RSCS commands is available to the remote station
operators. In general, the remote operator can issue only those commands
that affect file processing at his specific link. The commands are
punched, one per card, and entered at the remote card reader. Commands
from remote stations are only accepted before the ID card of an input
card file or after the file has been completely processed (end of file
generated).

Part 4. Remote Spooling communications Subsystem (RSCS) 331

Structure of RSCS Virtual Storage

RSCS virtual storage is made up of
supervisor service routines r system
modules r and available free storage for
how RSCS storage is allocated.

fixed address storage
service modules# line

areas r

driver
__ "'-: _ _ L _ _ ,-

C1\.,.L..1.V\:: 1.C1::::>l\.::::>. Figure 44 shows

Or -, 10000 r,----------------
DMTVEC I / DMTR~X

270 1 I
DMTKAP I I DMTCMX

I 1----------------------\
DMTEXT I I DMTliGX I

1 I I
DI1TSVC I I DMTCRE ,

I 1----------- I
DMTIDK I , DMTCOM ,

I I 1
DMTQRQ I I DMTMSG I

1 I I
DMTDSP I I DMTSYSI ,

1 1---------- I
DMTWAT I I DHTIHI2 ,

1 ,
DMTPST I Free St::>rage I

I I
DMTASK / I

/ I
DMTSTJ / I

/ I
DMTASY / I

I I
DMTSIG I I

I I
DItTGIV I I

I / I
, DMTAKE 700001---------------- ,
1---------------------1 , Third Line Driver I

10001 1 740001 ,
I Supervisor Queue Extension I , Second Lin' Driver I

20001 I 780001--- ,
I I 1 First Lin-' Dri.ver I
I I 7~0001 ------1
I I I DMTL\x I
I I 7DOOOI -------1
I Free storage I 1 DMTAXS 1
I (allocatable) I 80000 L- _____ J

I I
L --------------~

lThe DKrSYS .odule can vary in size depending on the number of macros specified when the
RSCS systea was generated. Free storage starts on the first page boun~ary following the
end of DMTSYS.

2The DMTINI module is loaded at the beginning of the free storage area. After
initialization, the storage it occupied is freed and beco.es part of free storage.

Figure 44. RSCS Storage Allocation

332 IBM VM/370 System Programmer's Guide

RSCS Supervisor

The first 4K bytes of stora~e contain hardware and supervisor-defined
constants, control areas, and supervisor service routines.

Q~!!]f: The first ~I~ bytes of D~TVEC are defined by System/370
architecture and contain hardware-defined constants. This area is
initialized by the DMTINI routine at initial program load time.

The rest of DMTVEC, 112 bytes, contains supervisor-defined addresses
and constants used for dispatching, storage maPfin9, queue management,
and task management.

DMTMAP: The supervisor storage area contains the main storage map and
the-fIrst extent of the supervisor queue.

The main storage map is a table comprising one byte for each page in
accessible ma~n storage. Each byte displacement in the table implies an
associated main storage number.

The supervisor queue is a chain of 16-byte elements, formatted during
initialization, maintained by the DMTQRQ routine, and containing the
status information for all system tasks running or waiting to be
dispatched. The length of this chain is such that the service routines
that follow are located at the end of the page of storage.

~Y~E!!§gE ~gE!!£g ftgy!!ng§: The rest of the supervisor contains service
routines that provide services to other system tasks, as follows:

RgJ!i!n~
DMTEXT
DMTSVC
DMTIOM
DMTQRQ
DMTDSP
DMTWAT
DMTPST
DMTASK
DMTSTO
DMTASY
DMTSIG
DMTGIV
DMTAKE

Function
Handle-external interruptions
Handle SVC interruptions
Handle I/O interrupts and requests
Manage the supervisor status queue
Dispatch eligible tasks
Suspend task execution
Signal completion of an event
Create and delete system service tasks
Reserve and release main storage pages
Provide asynchronous task to task exits
Interrupt a task, immediately, for an ALERT request
Enqueue a GIVE request element for another task
Process a GIVE request element

Supervisor Queue Extension

The supervisor queue extension is a chain of 16-byte elements that
provide an extension to the supervisor queue located in DMTMAP.

Free Storage

This area of free storage is managed by the DM~STO module. Syste. tasks
reserve and release virtual storage in full page increments as required.

Part 4. Remote Spooling Communications Subsystem (RSCS) 333

System Control Task

The system control task consists of
nonexecutable modules, as follows:

five executable and two

DMTREX Handle console I/O; process request elements for service
routines; terminate system service and line driver tasks.

DMTCRE

DMTCMX

DMTMGX

DMTCOM

DMTMSG

DMTSYS

Start a line driver task and create the rMTAXS and DMTLAX
tasks during initialization.

Handle all console functions.

Build and forward message request elements.

Perform miscellaneous system service functions.

Table of message texts and codes.

Link table, file tag storage area, tag queue pointers,
and switched line port table.

Free Storage and Line Drivers

This area of free storage is also managed by DMTSTO. In addition to
providing storage for system tasks, it is used for line driver storage.
For each active link that is initialized by DMTCRE, a copy of a DMTSML
or DMTNPT line driver is brought into virtual storage. Line driver
storage is assigned downward from X'7COOO', in four-page increments.
Free storage for system tasks is assigned upwards from the page boundary
following DMTSYS, in one-page increments.

Line Allocation Task

The DMTLAX module allocates a line port to a link when its line driver
task is started. If a line address has been previously assigned in the
link definition or is specified in the START command, DMTLAX verifies
that the line is for a valid device type and is not already in use. If
a line address has not been previously assigned and is not specified in
the START command, DMTLAX scans the table of switchable line ports fer
an available line and assigns it to the link's line driver task. If a
line is not available or is incorrectly specified, an error message is
issued to the RSCS operator.

Spool File Access Task

The DMTAXS module accepts files from the VM/370 spool system and
maintains the queues of main storage file tag slots; executes the ORDER,
CHANGE, and PURGE commands; and opens and closes input and output VM/370
spool files.

334 IBM VM/370 System programmer's Guide

Functional Information

The RSCS virtual machine performs certain basic functions as it manages
the transmission of files between the host VM/370 and remote locations.
These functions include:

• Virtual storage management
• File management
• Task-to-task communication
• RSCS command processing
• RSCS message handling
• Interrupticn handling

Virtual Storage Management

The RSCS supervisor controls virtual storage in blocks of either 4096
bytes (page size) or in 16-byte queue elements. Tasks running under the
supervisor obtain their working storage area in page size blocks and
then allocate variable size blocks as their functions require.

PAGE ALLOCATION

Page allocation is performed by the supervisor service routine, DMTSTC.
A storage allocation map, 256 bytes in length, is located in the
supervisor area and is pointed to by MAINMAP in the DMTVEC data area.
Each byte represents a page of virtual storage and contains X'OO' if the
page is free. MAINSIZE, also in DMTVEC, contains the total number of
pages defined for the particular RSCS virtual machine.

When a task requires a page of storage, it first searches the storage
allocation maF for a free page (X' 00') • The page number is plac,ed in
register 1 and a call to DMTSTO reserves the page. DM~STO replaces the
storage map byte with the one-byte TASKID assigned to the calling task
by the supervisor. To release storage, a task has only to clear the
appropriate bytes in the storage map.

QUEUE ELEMENT MANAGEMENT

with the exception of a few words of low address storage u~ed by the
dispatcher, the rest of the supervisor status information is stored in
chains of 16-byte queue elements managed by DMTQRQ. The first extent of
these queues is in the supervisor and occupies the area between the main
storage allocation map and DMTEXT. A supervisor queue extension area,
one page in length, lS located de X!1COO!. Queue elements are dequeued
from the free element queue pointed to by FREEQ in DMTVEC and enqueued
on one of the active queues (TASKQ, MPXIOQ, SELIOQ, IOEXTQ, EXTe,
ALERTQ, or GIVEQ). When the queue element is released, it is returned
to the free element queue.

Part 4. Remote Spooling Communications Subsystem (RSCS) 335

File Management

RSCS uses the VM/370 spool file system to interface with VM/370 users.
A user who generates a file intended for transmission to a remote
location must spool the file to the RSCS virtual machine via the CP
SPOOL command. In addition r he must also enter the identification cf
the remote location into the spool file tag area via the CP TAG command.

A remote station submitting a file to RSCS for transmission to
another remote location must meet the same requirements as a VM/370
user. The ID card that precedes the input card file being transmitted
to RSCS must include the userid of the RSCS virtual machine and a tag
field containing the location identifier of the remote station that is
to receive the file.

A remote station submitting a file destined for a VM/370 user need
only specify that user's use rid on the ID card.

When the RSCS virtual machine is initially logged on, one of the
first tasks that is started is the Spool File Access task, DMTAXS. Two
main functions of DMTAXS are: to provide access to the VM/370 spool file
system, and to manage the queues of tag slots used by RSCS to control
the status and flow of files throughout the system.

TAG SLOT QUEUES

The DMTAXS task in RSCS manages a file tag storage area pointed to by
TTAGQ in DMTVEC. This area is made up of a fixed numter of tag slots,
each containing 108 bytes. The total number of slots is determined, at
the time RSCS is generated r by the value specified in the GENTAGQ macrc.
The number of slots reserved for each link is part of the link
definition stored in the RSCS link table. The contents of each file tag
include file attributes from the file's SFELOK and transmissicn
destination and priority from the associated spool file tag.

File tags are chained on one of four types of queues:

• The active input queue r pointed to by TAGACIN in ~AGAREA, contains
the tags for those files that are currently being processed for
transmissicn to remote locations.

• The active outfut queue, pointed to by TAGACCUT in ~AGAREA, contains
the tags for those files that are currently being received from
remote locations.

• An inactive file queue exists for each
files waiting to be transmitted. Each
pointed to by the LPOINTER field in th~
entry.

link that has one or more
link's file tag queue is

corresponding link table

• The free slot queue, pointed to by TAGAFREE in TAGAPEA, is made up af
all the slots not currently cn any of the other taJ slot queues.

336 IBM V~/370 System Programmer's Guide

SPOOL FILE ACCESS

The Spool File Access task, DMTAXS, uses the "retrieve subsequent file
descriptor" option of the CPDIAGNOSE X'n14'command to access the spocl
file block (SFBLOK) and spool file tag for each of the files enqueued cn
the RSCS virtual reader.

Using the location identifier in the spool file tag. DMTAXS
interrogates the link table entry for the specified link to determine if
a tag slot is available. If it is, a tag is built, using information in
the SFBLOK and spool file tag, and then enqueued on the link's chain cf
inactive files pOinted to by LPOINTER in the link table entry_ If a tag
slot is not available, the file is placed in a pending status and the
link table entry count of pending files (LPENDING) is incremented by
one. Pending files are added to the inactive file queues as slots
become available.

When a line driver task is started for a link via the RSCS START
command, the highest priority file on that link's inactive queue
(LPOINTER) is degueued and placed in the system's active input queue
(TAGACIN). The file's tag and first spool buffer are then passed to the
line driver task for transmission. Any additional spool buffers for
that file are directly obtained by the line driver task.

Task-to-Task Communication

RSCS provides two methods of task-to-task communications: GIVE/TAKE
requests, and ALERT requests.

GIVE/TAKE requests are issued by lower-priority tasks, such as line
drivers, to request a service from a higher-priority task, such as a
supervisor service routine. The requesting task builds a request table
containing the name of the task that is to perform the service, along
with pointers to a request buffer containing the data required for the
service. If appropriate, a pointer to a response buffer is also
supplied. This information is passed to the DMTGIV module. DMTGIV
builds a GIVE element that points to the requestor's request table and
chains it on the GIVE element queue for execution.

Service tasks pass control to DMTAKE whenever they complete the
execution of a particular service a DMTAKE locates the GIVE element for
the service that was just completed, passes any response data back to
the requestor via the response buffer, locates the next GIVE element for
that service task, and passes the corresponding request table data to
the service task for execution.

ALERT requests are issued by high-priority tasks for services to be
performed by a lower-priority task. These requests are not queued; the
lower-priority task is executed as soon as it is received. ALERT
requests are handled by the DMTSIG module.

RSCS Command Processing

The primary command processor in RSCS is the DMTCMX module of the system
centrol task. DMTCMX receives commands either as a result of a console
read started by the DMTREX module in response to attention interruption
from the RSCS operator console, or through a GIVE request pointer to a
command element, provided by an active line driver task.

Part 4. Remote Spooling Communications Subsystem (RSCS) 337

The DEFINE, DELETE, DISCONN, QUERY, and STARl commands are processed
entirely by the system control task, as they may involve the referencing
and updating of the system status tables (DMTSYS).

For the CHANGE, PURGE, and ORDER commands, £MTCMX builds a formatted
table called a command element and passes it, via an ALERT request, to
the DMTAXS task for execution.

The BACKSPAC, CMD, DRAIN, FLUSH~ FREE~ FWDSPACE~ HOLD, MSG, and TRACE
commands are passed to the line driver task for the associated active
link via a command element and ALERT request.

Rses Message Handling

Messages can occur in response to a command or sFontaneously as a result
of a system malfunction.

The task that originates the message
the variable portion of the message text
DMTMGX obtains the fixed portion of
information from the DMTMSG module, and
appropriate operator.

passes the message number and
to the message handler, DMTMGX.
the message text and routing
then issues the message to the

Messages can be addressed to the local RSCS operator, remote station
operator, local VM/370 virtual machine, VM/370 system operator, or
combinations of these.

Messages directed to the VM/370 system operator or VM/370 user are
issued via the CP MSG command using the virtual console function of the
DIAGNOSE interface. Messages for the local RSCS operator are enqueued
for output by DMTREX. Messages for the remote station operator are
presented to the line drivers for the associated links via an RSCS MSG
command element and ALERT request.

Interruption Handling

Three types of interruptions are handled
routines: external interruptions, SVC
interruptions.

EXTERNAL INTERRUPTIONS

by the supervisor service
interruptions, and I/O

External interruptions are handled by the DMTEXT module. Each bit cf
the external interruption code (bytes 16-31 of the external old PSW in
low storage) is inspected. When a bit is set to one, a scan of the
external exit request queue is made to locate the first requested exit
for the bit that was set. If one is found, the exit is taken;
otherwise, processing continues until the entire interruption code has
been inspected.

338 IBM VM/370 System programmer's Guide

SVC INTERRUPTIONS

The DMTSVC module receives control directly on an SVC interruption.
RSCS uses the SVC interruption to "freeze" the execution of a task while
it is waiting for the results of some service that it has requested of
another task. The left half of the SiC old PSi is moved to the left
half of the resume PSi in the task's save area; the right half is loaded
with the contents of register 14 (resume PSi address). The register
contents at interruption time are also stored in the task's save area.

DMTSVC returns control to the caller by setting register 14 to the
address of the task element of the "frozen" task and loading a PSi with
all mask bits set off (except machine check) and execution address as
stored in the SVC old PSi.

I/O INTERRUPTIONS

I/O interruptions are handled by the DMTIOM module at entry point
DMTIOMIN. DMTIOM first searches for an active I/O request element cn
the appropriate queue (MPXIOQ or SELIOQ). If one is found, the I/O
request table is updated to reflect the new status. If this is not the
final interruption, control is immediately returned to the dispatcher.
If the I/O has completed without unit check, the synchronous lock in the
I/O table is posted; and, if there is no further I/O enqueued for that
subchannel, control is passed to the dispatcher. If I/C is enqueued for
that subchannel, it is started.

If the I/O has completed, but there was a unit check and automatic
sense was requested, the sense channel program is built in a new element
and the new element is chained to the request element. The sense
operation is started and, if not completed immediately, control is
passed to the dispatcher.

If an active I/O request element was not found, the asynchronous I/O
exit queue (IOEXITQ) is scanned for a matching device address. If it is
found, the asynchronous exit is taken.

If neither an active I/O request element nor an asynchronous exit
request element is found, the interrupt is iqnored and control is passed
to the dispatcher.

Part 4. Remote Spooling Communications Subsystem (RSCS) 339

Logging I/O Activity

The RSCS component of VM/370 contains a facility for logging all I/O
act1v1ty on a particular teleprocessing link. this logging feature can
be utilized if a problem arises where tracing I/O activity on a line
becomes a necessity.

The RSCS operator can turn the feature on and off by issuing the RSCS
CMD command with the LOG or NOLOG operand. The format of the CMD
command, when used to control logging, is as follows:

CMD

L

linkid

LOG

NOLOG

linkid {LOG }
NOLOG

,
I
I

--------------------~

is the location identifier for the link on which logging is to
be performed.

is the keyword that starts the logging of I/C activity.

is the keyword that stops the logging of I/O activity.

The loggIng output Is a printer spool file containing a one-line
record for each I/O transaction on the teleprocessing line. A
transaction is defined as any read or write of a teleprocessing buffer.
When logging is turned off, the output is ~utcmatically spooled to a
printer. The distribution code on the printer output is the linkid that
was specified in the CMD command.

The output log record is printed in hexadecimal notation unless
otherwise noted.

340 IBM VMj370 System Programmer's Guide

The SML Log Record

The contents of the S~L log record are as follows:

;-42

44-57

59-64

67-68

71-86

The r1rst 21 bytes of the teleprocessing buffer, including BSC
bytes, KULTI-LEAVING bytes, and enough initial bytes of data
to fill the field.

For read I/O: the last seven bytes of the CSW. For write I/C:
The first seven bytes of the SML buffer header that is used
internally by SML but not transmitted.

The first three bytes of the RSCS I/O synchronous lock fer
this transaction.

The sense byte.

The ccw associated with the I/O operation.

SAMPLES OF READ AND WRITE RECORDS FOR SML

1070
1070
1002808FCF9094000026
1002818FCFA0940000
1002818FCF9491C140009483C140009483:1400094
1070

10028 28FCF9 483C8C6C9D3: 57A 40:4E7 87C 4C 5E 7C 5
323D
100 2828FCF9 483E4C4C5E2E37A40C806E 2E 30 3::: 90 5
1070
10028 38FCF9 481CC50D5E40 4C2C 50 9407E 4050F 100
1070
10028 48FCF9 481FF5C5C5C40C3C lE 4E 2C 5E240E 3C 8
1070
1002858FCF9481C7C3D740D84007C6009481E350E3
1070

21 BSC, KULTILEAVING AND DATA BYTES

TP BUFFER

0779C80COO018E 800000 00 0207100720000190
0779C 80C 00018E 000000 00 0107100760000002
0779C80COO0186 80.0000 00 0207100720000190
0779C 80C 000 186 800000 00 0107100760000009
0779C 80c 00003C 800000 00 0207100720000190
0779C 80: 00003C 800000 00 0107119F60000002
0779C 80E 000 190 800000 01 0207119F20000190
0779C80EOOO05C 800000 02 0207119F20000190
0779C80EOOO05C 000000 00 0107119F60000002
0779C 80C OOOOOC 800000 00 0207119F20000190
0779C 80:00000C 000000 00 0107100760000002
0779C 80c 000008 800000 00 0207100720000190
0779C 80: 000008 000000 00 0107119F60000002
0779C 80:::: 000003 800000 00 0207119F20000190
0779C 80::; 000003 000000 00 0107100760000002
0779C80COOOOE7 800000 00 0207100720000190
0779C 80COOOOE7 000000 00 0107119F60000002

SML INTERNAL SYNCH SENSE CCW
BUFFER LOCK ~YTE

- OR -

ADDR STATUS COUNT
BYTES

CSW

Part 4. Remote Spooling Communications Subsystem (RSeS) 341

The NPT Log Record

The contents of the NPT log record are as follows:

1-42 the first 14 bytes of
bytes, 2 alphabetic
teleprocessing buffer.

the teleprocessing buffer
dashes, and the last 6

including BSC
bytes of the

44-57

59-60

63-78

For read I/O: the last seven bytes of the CSW.
For write I/O: blank, not applicable

The sense byte, if any.

The ccw associated with the I/O operation.

The fields of the record are separated by blanks. The following are
sa.ples of read and write log records for NPT:

2D 0797EOOC000003
1070 0798280C0001AC
1002E2C9C7D5D6D5404040E3C5E2--404040404003
1061 0798280D0001FF
37

----------V---------------
First 14 bytes

0797EOOE000004 01
0797EOOE000004 01

I I I A
L V-----J V ,
Last 6 bytes CSW I

I
~----------------V--------------------~I SENSE

TP Buffer BYTE

02079BF820000004
0207987160000002
02079BF820000200
0107987160000002
02079BF820000200
02079BF820000004
02079BP820000004
I I
--------v----..II

CCW

!E~: The dashes in record positions 1 and 2 indicate that there was no
data transfer for that I/O transaction.

342 IBM VM/370 System Programmer's Guide

Appendixes

• Appendix A: system/370 Information

• Appendix B: MULTI-LEAVING

• Appendix c: VM Monitor Tape For.at and Content

Appendix A: Systea/310 Information 343

344 IBft VM/370 System Programmer's Guide

Appendix A: System/370 Information

Control Registers

The control registers are used to maintain and manipulate
information that resides outside the PSi. There are sixteen
registers for control purposes. The control registers are not
addressable storage.

control
32-bit

part of

At the time the registers are ~oaQeQ, ~ne information is not checked
for exceptions, such as invalid segment-size or page-size code or an
address designating an unavailable or a protected location. The
validity of the information is checked and the errors, if any, indicated
at the time the information is used.

Figure 45 is a summary of the control register allocation and Figure
46 lists the facility associated with each control register.

Figure 47 is a description of the EC (Extended Control) PSi.

<------~------------------- 32 bits -----------------------------)
I

OISYSTEM CONTROL ITRANSL. CONTROLI EXTERNAL-INTERRUPTION MASKS
1---

1ISEGM-TBL LENGTHI SEGMENT-TABLE-ORIGIN-ADDRESSI
I

21 CHANNEL MASKS

3

4

5

6

7

8

9 PER EVENT MASKSI
I

101
I

111

HARDWARE ASSIST CONTROLS

MONITOR MASKS

PER GR ALTERATION MASKS

PER STARTING ADDRESS

PER ENDING ADtRESS
1--

121
I

~i '"'l '-
1..)1

I
141 ERROR-RECOVERY CONTROL & MASKSI

I
151 MCEL ADDRESS

Figure 45. Control Register Allocation

Appendix A: System/370 Information 345

I
IWordlBits Name of Field

I

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

I 1
I 1
I
I
I 2
I
I
I
I

o
1
2

8-9
10

i1-12
16
17
18
19
20
21
24
25
26

Block-Multiplex Mode
SSM Suppression
TOD Clock Synchronous Ctrl.
Page Size 1

Reserved
Segment size i

Malfunction Alter Mask
Emergency Signal Mask
External Call Mask
TOD Synchronous Check Mask
Clock Comparator Mask
Processor Timer Mask
Interval Timer Mask
Interrupt Key Mask
External Signal Mask

0-7 ISegment Table Length
8-25lSegment Table Address

I

0-31lChannel Masks
I
I
I
I

Associated with

Block-Multiplex Control
Extended Control
Attached Processing
Dynamic Addr. Translation
Dynamic Addr. Translation
Dynamic Addr. Translation
Attached processing
Attached processing
Attached processing
Attached Processing
Clock Comparator
Processor Timer
External Interruption
External Interruption
External Interruption

IDynamic Addr. Translation
IDynamic Addr. Translation
I

11/0 Interruptions
I
I
I
I

6 0 VM Assist IHardward Assist
I

I

6 VM Problem State IHardware Assist
I

6 2 ISK & SSK IHardware Assist
I

6 3 5/360 or 5/370 instructions IHardware Assist
I

6 4 Virtual SVC Interrupts IHardware Assist
I

6 5 Shadow Table Fixup IHardware Assist
I

6 6 CP Assist IHardware Assist
I

6 7 Virtual Interval Timer IHardware Assist
I

6 8-28 Real address of VM pOinter IHardware Assist
list I

8 I 16-31lMonitor Masks
I I

I Monitoring
I

I 9 I 0-3 IPER2 Event Masks IProgram-Event Rpcording
IProgram-Event Recording I 9 116-311PER GR Alteration Masks

I
I 10 I 8-311PER Starting Address
I I I ,
1£;!El~!!g!.!.Q'!!:

IProgra.-Event Recording
I

Initial Value

1
o
o

10
o

00
1
1
1
1
1
o
1
1
o

ISet by CPa Value
varies with the tYFe
of virtual machine.

FFFFFFFF. Set to
zero on the attached
processor in
attached processor
systems

Value depends
upon virtual machine

Value depends
upon virtual machine

Value depends
upon virtual machine

Value depends
upon virtual machine

Value depends
uFon virtual machine

Value depends
upon virtual machine

Value depends
upon virtual machine

Value depends
upon virtual machine

Value depends
upon virtual machine

IValue depends on
I upon virtual machine

IValue depends upon
I virtual machine.

IValue depends upon
I virtual machine.

IThe fields not listed are unassigned.
IThe initial value of unassigned register positions is unpredictable.
I
11
I ,2

The initial value varies depending upon whether virtual storage is supported in the
virtual machine.
PER means program-event recording.

,
I

.J

Figure 46. Centrol Register Assignments (Part 1 of 2)

346 IBM VM/310 System programmer's Guide

!'
"'1"1'.-.-..-.:11"'':'.1-_
I"UL.UID..L.l.O::> Associated ~ith Initial Value

.... T ____ + "D';_'~

l1Q.tHC V.L ..L ...L."c;..A-U

I---·-----~------------------------------
t 11

14
14
14
14
14
14
14
14

8-311PER Ending Address
I

0 ICheck-Stop Control
1 I Synchronous MCEL3 Control
2 11/0 Extended Logout Control
4 IRecovery Report Mask
5 IDegradation Report Mask
6 IExternal Damage Report Mask
7 IWarning Mask
8 IAsynchronous MCEL Control

iProgram-Event Recording
I

I Machine-Check
I Machine-Check
I Channel-Check
I Machine-Check
I Machine-Check
I Machine-Check
I Machine-Check
,Machine-Check

14 9 IAsynchronous Fixed log Ctrl.IMachine-Check

Handling
Handling
Handling
Handling
Handling
Handling
Handling
Handling
Handling

I 15
I
I

8-281MCEl Address
I

I]!.E.l~l!~1!.2~ :

'Machine-Check Handling ,

,Value depends upon
I virtual machine.

,Value depends upon
I machine check
I handler for the
I virtual machine.
I , ,
I ,
,Peints to extend I/O
Ilogout area

IThe fields not listed are unassiqned.
,The initial value of unassigned register positions is unpredictable. ,
13 MCEl means machine-check extended logout. ,
Figure 46. Control Register Assignments (Part 2 of 2)

Appendix A: system/370 Information 347

,
!

I

r--.�
ISystem Mask I Key I EMiP I 0 cc I Program I 0 II
I I I I I Mask , II L----__ ~II

o 7 8 11 12 15 16 17 18 19 20 23 24 311
I

r---~,I o Instruction Address II L-__ ~'I

32 33 63

The fields of the PSi are:

o
1
2-4
5
6
7
8-11

12
13

14

15

16-17
18-19

2~23

24-32
33-63

Figure 47.

Must be zero.
PER (Program Event Recording) enabled.
Must be zero.
Address translation.
Summary I/O mask~
Summary extension.
The protection key determines if information can be stored

or fetched from a particular location.
Extended control mode.
The machine check flag is set to 1 if machine check

interruptions are enabled.
The wait state flag is set to 1 when the CPU is in the wait

state.
The problem state flag is set to 1 when the CPU is

operating in the proble. rather than the supervisor
state.

Must be zero.
The condition code reflects the result of a previous

arithmetic, logical, or I/O operation.
The program .ask indicates whether or not various program

exceptions are allowed to cause program interrupts.
Must be zero.
The instruction address gives the location of the next

instruction to be executed for program interrupts or of
the instruction last executed for external interrupts.

The Extended Control PSi (Program Status Word)

348 IBM VM/370 System Programmer's Guide

Appendix B: M U L TI-LEAVI N G

MULTI-LEAVING is a term that describes a computer-to-computer
communication technique developed for use by the HASP system and used by
the RSCS component of VM/310. MULTI-LEAVING can be defined as the fully
synchronized, pseudo-simultaneous, bidirectional transmission of a
variable number of data streams between two or more computers using
binary synchronous communications (BSC) facilities.

MULTI-LEAVING in VM/370

The following sections outline the ~n~cifications of a comnrehensive.
MULTI-LEAVING comllunica tions system (;; -i~-~~ed i~ -HASP/ASP) :-. While th~
VM/310 support for programmable BSC remote stations is completely
consistent with the MULTI-LEAVING design, it does not use certain of the
features provided in MULTI-LEAVING:

• The transmission of record types other than print, punch, input,
console, and control is not supported.

• The only general control record type used is the terminal sign-cn
control.

• Multiple data streams are not supported.

• Only SCB count units of 1 are used.

• No support is included for column binary cards.

MULTI-LEAVING Philosophy

The basic element for multileaved transmission is the character string.
One or more character strings are formed from the smallest external
element of transmission, the physical record~ These physical records
are input to MULTI-LEAVING and may be any of the classic record types
(card images, printed lines, tape records, etc.]. For efficiency in
transmission, each of these data records is reduced to a series of
character strings of two basic types:

1. A variable-length nonidentical series of characters (for example,
SYZ123&1!) •

---and---

2. A variable number of identical characters (for example,
ssssssssss).

An eight-bit control field# termed a String Control Byte (SCB),
precedes each character string to identify the type and length of the
string. Thus, a string of nonidentical characters (as in 1 above) i~
represented by an SCB followed by the nonduplicate characters. A strins
of conse-cUtlve, -du-plica te, nonblank chara-cters(as in 1 -above) -can-- -be
represented by an SCB and a single character (the seB indicates the
duplication count, and the character following indicates the character
to be duplicated). In the case of an all-blank character string, only an
SCB is required to indicate both the type and the number of blank

Appendix B: MULTI-LEAVING 349

characters. A data record to be transmitted is segmented into the
optimum number of character strings (to take full advantage of the
identical character compression) by the transmitting program. A special
SCB is used to indicate the grouping of character strings that compose
the original physical record. The receiving program can then
reconstruct the original record for processing.

Control
I Characters I Usage I
----------------~---1

DLE
STX
BCB
FCS
FCS
RCB
SRCB
SCB
DATA
SCB
DATA
SCB
RCB
SRCB
SCB
DATA
SCB
RCB
DLE
ETB

Figure 48 .•

BSC Leader (SOH if no transparency feature)
BSC Start-of-Text
Block Control Byte
Function Control Sequence
Function Control Sequence
Record Control Byte for record 1
Sub-Record Control Byte for record 1
String Control Byte for record 1
Character String
String Control Byte for record 1
Character String
Terminating SCB for record 1
RCB for record 2
SRCB for record 2
SCB for record 2
Character String
Terminating SCB for record 2
Transmission Block terminator
BSC Leader (SIN if no transparency feature)
BSC Ending Sequence

A Typical MULTI-LEAVING Transmission Block

In order to allow multiple physical records of various types to be
grouped together in a single transmission block (see Figure 48), an
additional eight-bit control field precedes the group of character
strings representing the original physical record. This field~ the
Record Control Byte (RCB)~ identifies the general type and function of
the physical record (input stream, print stream, data set, etc.). A
particular RCB type has been designated to allow the passage of control
information betwe.en the various systems. Also, to provide for
simultaneous transmission of similar functions (that is, multiple input
streams, etc.), a stream identification code is included in the RCB. A
second eight-bit control field, the Sub-Record Control Byte (SRCB), is
also included immediately following the RCB. This field is used to
supply additional information concerning the record to the rece~v~ng
program. For example, in the transmission of data to be printed, the
SRCB can be used for carriage control information.

For actual MULTI-LEAVING transmission, a variable number of records
may be combined into a variable block size, as indicated previously
(that is, RCB,SRCB,SCB1,SCB2, ••• ,SCBn, RCB,SRCB,SCB1, ••• ,etc.)~ The
MULTI-LEAVING design provides for two (or more) computers to exchange
transmission blocks, containing multiple data streams as described
above, in an interleaved fashion. To allow optimum use of this
capability, however, a system must have the capability to control the
flow of a particular data stream while continuing normal transmission cf
all others. This requirement becomes obvious if one considers the case
of the simultaneous transmission of two data streams to a system for
immediate transcription to physical I/O devices of different speeds
(such as two print streams).

350 IBM'VM/370 System Programmer's Guide

To provide for the metering of the flow of individual data streams, a
Function Control Sequence (FCS) is added to each transmission block.
The pes is a sequence of bits, some of which represent a particular
transmission stream. The receiver of several data streams can
temporarily stop the transmission of a particular stream by setting the
corresponding FCS bit off in the next transmission to the sender of that
stream. The stream can subsequently be resumed by setting the bit on.

However, since only single data streams are supported, RSCS does not
support this metering capability. If bit one of the FCS (wait-a-bit) is
on, or if bits 4, 9, or 15 (print, console, punch stream identifiers)
are off, transmission will be suspended. Thus, the bit pattern of
X'SSC1' represents the m1n1mum acceptable FCS configuration for
transmission to be continued.

Finally, for error detection and correction purposes, a Block Control
Byte (BCB) is added as the first character of each block transmitted.
The BCB, in addition to control inforaation, contains a hexadecimal
block sequence count. This count is maintained and verified by both the
sending and receiving systems to exercise a positive control over lost
or duplicated transmission blocks.

In addition to the normal binary synchronous text control characters
(STX, ETB, etc.), MULTI-LEAVING uses two of the ESC control characters,

ACKO and NAK. ACKO is used as a "filler" by all systems to maintain
coamunications when data is not available for transmission. NAK is used
as the only negative response and indicates that the previous
transmission was not successfully received.

MULTI-LEAVING Control Specification

This section describes the bit-by-bit definitions of the various
MULTI-LEAVING control fields and includes notes concerning their use~

Appendix B: MULTI-LEAVING 351

RECORD CONTROL BYTE (RCB;

OIIITTTT
a 7

Q§~g~: To identify each record type within a transmission block

OIIITTTT

--or--

o
1110000

III

--or--

o
IIITTTT

TTTT

00000000

1

000
001

010

011
100
101
111

1

0001
0010
0011
0100
0101
0110
0111
1000-1100
1101-1111

End of transmission block

Non-EaT RCB
III is control information:
Reserved
Request to initiate a function

transmission (prototype RCB for
function in SRCE)

Permission to initiate a function
Transmission (RCB for function
contained in SRCB)

Reserved
Reserved
Available for location modification
General control record (Type

indicated in SRCB)

Non-EaT RCB
III is used to identify streams

of multiple identical functions
(such as multiple print streams
to a multiple printer terminal).

TTTT is the record type identifier.
Operator message display request
Operator command
Normal input record
Print record
Punch record
Data set record
Terminal message routing request
Reserved
Available to user

352 IBM VM/310 System Programmer's Guide

SUB-RECORD CONTROL BYTE (SRCB)

Q§~g~~ To provide snpplemental information about a record

~!1§: The contents of this control block depend upon the
record type. Several types are shown below •

• ,.CHAR ••
o 1

Q§~g~: To identify the type of generalized control record

!!i1§:
CHARACTER

OMCCCCCC
o 1

A
B
C
D
E
F

G
H
I-R
s-z

Initial terminal sign-on
Final terminal sign-off
Print initialization record
Punch initialization record
Input initialization record
Data set transmission

initialization
System configuration status
Diagnostic control record
Reserved
Available to user

Q§~g~: To provide carriage control information for print records

CCCCCC

1
o
1
000000
OOOONN
01NNNN
1000NN
11NNNN

Normal carriage control
Reserved
Suppress space
Space nn lines after print
Skip to channel nnnn after print
Space immediate nn spaces
Skip immediate to channel nnnn

Appendix B: MULTI-LEAVING 353

-----~--OMMBRRSS
o 7-

Q§gg~: To provide additional information for punch records

~i1§:
o
MM

B

RR
SS

-------OMMBRRRR
o 7

1
00
01
10
11
o
1
00
NN

SCB count units = 1
SCB count units = 2
SCB count units = 4
Reserved
EBCDIC card i.age
Column binary card image
Reserved
Stacker select information

Q§gg§: To provide additional information for input records

~i1§:
o
MM

B

RRRR

-------OTTTTTTT
o 7

1
00
01
10
11
0
1
0000

SCB count units = 1
SCB count units = 2
SCB count units = 4
Reserved
EBCDIC card image
Column binary image
Reserved

Q§gg~: To indicate the destination of a terminal message

!!i1§:
o
TTTTTTT

1
0000000
NNNBNNN

Broadcase to all remote systems
Remote system number (1-99) or

remote system group (100-127)

354 IBM VM/370 System programmer's Guide

STRING CONTROL BYTE (SCB)

OKLJJJJJ
o 1

Us~g~: Control field for data character strings

Bi1§:
OKLJJJJJ
--or-

OKLJJJJJ

--or-
o
K
L

JJJJJ
--or-

o
K
LJJJJJ

00000000

10000000

1
o
o
1

NNNNN

1
1
NNNNN

End of record

Record is continued in next
transmission block

Non-EOR SCB
Duplicate character string
Duplicate character is blank
Duplicate character is nonblank

and follows SCB
Duplicate count

Non-EOR SCB
Nonduplicate character string
Character string length

Note: Count units are normally 1 but may be in any other units. the
units used may be indicated at function control sign-on or dynamically
in the SRCB.

BLOCK CONTROL BYTE (BCB)

OXXXCCCC
o 1

Q2~g~: transmission block status and sequence count

~i12:
o
xxx

CCCC

1
000
001
010

011
100
101
110
111
NNNN

Reserved
Bypass sequence count validation
Reset expected block sequence count

to CCCC
Reserved
Reserved
Available to user
Available to user
Reserved
Module 16 block sequence count

Appendix B: MULTI-LEAVING 355

FUNCTION CONTROL SEQUENCE (PCS)

----------------OSRRAXXXOTRRXXXB
o 78 15

Q§gg~: To control the flow of function streams

0 ••• 0
S

RR ••• RR
A
XXX ••• XXX
T
B

1 ••• 1
o
1

00 ••• 00
1
X
1
1

Reserved (must be 1s)
Normal processing
Suspend all stream transmission

(wait-a-bit)
Reserved
Print stream identifier
Reserved stream identifiers
Console stream identifiers
Punch stream identifiers

!Qte: Function stream identifiers are meaningful only to the receiver of
the sequence. If bit Ar T, or B is off, transmission is suspended;
transmission continues when all three bits are on.

356 IBM VM/370 System programmer's Guide

Appendix C: VM Monitor Tape Format and
Content

~acn time a monitor call interrupt occurs, V~/370 Monitor receives
control and collects data appropriate for the particular class and code
of MONITOR CALL. (Or, for USER, PERFORM, or DASTAP classes, VM/310
Monitor gets control at periodic intervals to collect data.) The data
is formatted into records that are collected sequentially in the order
that each interrupt occurred. The tape data format is standard Variable
Blocked (VB) format. Data is written at the default tape drive density.
Maximum block and record lengths are 4096 bytes. The formats and
contents of all the kinds of data records for the currently implemented
classes and codes of MONITOR CALL are listed below.

A~~ values described in the following records are binary unless
otherwise noted.

'Indicates that the field is EBCDIC.

2Indicates that the field is in special timer format described below.

3See !~L11Q ~atg !£~g§ ~~g ~gnt£g! n!2£! 199ic for field format
definition ..

Header Record

Every data record is preceded by the following 12-byte header:

Total bytes in record
Zeros (standard V format record)
MONITOR CALL class number
MONITOR CALL code number
Tiae of Day

Number DSECT
of Variable
~te§ Na.~

2 MNHRECSZ
2
1 MNHCLASS
2 MNHCODE
5 MNH'IOD

Bote: Time of day occupies 2 fullwords in storage, with the rightmost 12
bIts zeros. The rightmost 2 bytes and the left.ost byte are ignored,
giving 16-aicrosecond accuracy instead of 1-microsecond.

The first 4 bytes of this header are the standard variable-format
record field.

Appendix C: VM Monitor Tape Format and Content 351

Data Records

"onitor
Code

97

98

99

Data
Item

Tape header record
CPU serial/model number
Software version number!
Date of data collection session'
Time of data collection session'
Userid of aonitor controller'
CR8 mask of enabled classes
Size of CP nucleus
Size of Free/Fret pools
Size of dynamic paging

area
Size of trace table
Size of V=R area (if any)
CPU logical address
APU logical address

Tape trailer record
Userid of user shutting down monitor'

Tape write suspension record
TOD at suspension2

Count of write suspensions

Class Zero - PERFORM

Monitor
Code

00

Data
Item

Interval statistics
Total main processor idle time 3

Total main processor page wait 3

Total main processor time I/O wait 3

Total main processor problem tiae 3

Total paging start I/Os
Total page I/O requests
Current page frames on free list
Pages being written, due for free list
Total pages flushed, but reclaimed
Number of reserved pages
Number of shared system pages
Total number of times free list empty
Total number of calls to DMKPTRFR
Total pages stolen from in-queue users

Number
of
Bytes

CP
Variable
Name

DSECT
Variable
Name

8N097CPU
8N097LEV
8N097DAT
8N097TI8
8N097UID
8N097CR8

8
8
8
8
8
4
4
4

CPUID
Dl!KCPEID
TOD clock
TOD clock
V8USER
D8KPRGC8
Derived by
Derived by

CP 8N097NUC
CP 8N097FSS

4
4
4
2
2

8

5
4

Derived by CP
Derived by CP
Derived by CP
LPUADDR
LPAUDDRX

V8USER

Number CP
of Variable
Bytes Naae

8 IDLEWAIT
8 PAGEWAIT
8 IONTWAIT
8 PROBTI8E
4 D8KPAGPS
4 D8KPAGCC
4 D8KPTRFN
4 D8KPTRSW
4 D8KPTRPR
4 D8KPTRRC
4 D8KPTRSC
4 D8KPTRFO
4 DftKPTRFC
4 DftKPTRSS

8N097DPA
8N097TTS
8N097VR
8N097CPL
ftN097APL

8N098UID

8N099TOD
8N099CIT

DSECT
Variable
Naae

8NOOOWID
8ROOOWPG
81000WIO
8NOOOPRB
8NOOOPSI
ftNOOOCPA
8NOOONFL
8NOOOPSN
8NOOOPRC
8NOOORPC
8NOOOSPC
8NOOOFLF
8NOOOCPT
8NOOOSS

Number of pages examined in stealing pages 4 D8KPTRRF 8NOOOPRF
Number of pages swapped from the flush
list 4 DftKPTRFF 8NOOOPFF

Number of full scans done in stealing
pages 4 D8KPTRCS 8ROOOPCS

358 IBM Vft/370 System programmer's Guide

Monitor
Code

00

Data
Item

Total r-eal external interrupts to main

Number
of
Bytes

processor 4
Total calls to DMKPRVLG 4
Total calls to DMKVIOEX 4
Total calls to CCWTRINS froll DMKVIO 4
Total virtual interval timer interrupts
reflected 4

Total virtual CPU timer interrupts
reflected 4

Total virtual clock comparator interrupts
reflected 4

Total virtual SVC interrupts simulated
by main processor 4

Total virtual program interrupts handled 4
Total I/O interrupts handled 4
Total calls to dispatch (main) 4
Total fast reflects in dispatch 4
Total dispatches for new PSW 4
Total calls to schedule 4
Count of virtual machine SSK simulated 4
Count of virtual machine ISK simulated 4
Count of virtual machine SSM simulated 4
Count of virtual machine LPSW simulated 4
Count of virtual machine diagnose
instructions 4

Count of virtual machine SIO simulated 4
Count of virtual machine SIOF simulated 4
Count of virtual machine TIO simulated 4
Count of virtual machine CLRIO simulated 4
Count of virtual machine HIO simulated 4
Count of virtual machine HDV simulated 4
Count of virtual machine TCH simulated 4
Count of virtual machine STNSM simulated 4
Count of virtual machine STOSM simulated 4
Count of virtual machine LRA simulated 4
Count of virtual machine STIDP simulated 4
Count of virtual machine STIDC simulated 4
Count of virtual machine SCK simulated 4
Count of virtual machine SCKC simulated 4
Count of virtual machine STCKC simulated 4
Count of virtual machine SPT simulated 4
Count of virtual machine STPT simulated 4
Count of virtual machine SPKA simulated 4
Count of virtual machine IPK simulated 4
Count of virtual machine PTLB simulate,d 4
Count of virtual machine RRB simulated 4
Count of virtual machine STCTL simulated 4
Count of virtual machine LCTL simulated 4
Count of virtual machine CS simulated 4
Count of virtual machine CDS simulated 4
Count of virtual machine diagnose disk I/O 4
Number of users dialed to virtual machines 4
Number of users 10gge5 on q
Number of page reads by main processor 4
Number of page writes by main processor 4
Number of system pageable pages 4
Sum of working sets- of in-queue users 4
Number of users in interactive queue (Q1) 4
No. of users in compute-bound queue (Q2) 4

CP
Variable
Nalle

DftKPSANX
DftKPRVNC
DftKVSICT
D8KVSICW

D8KDSPIT

D8KDSPPT

DftKDSPCK

PSASVCCT
D!!KPRGCT
DftKIOSCT
DftKDSPCC
D8KDSPAC
D8KDSPBC
DftKSCHCT
D8KPRVEK
DftKPRVIK
D8KPRV8S
DftKPRVLP

DftKPRVDI
DMKVSIS1
D8KVSISF
D8KVSIT1
D8KVSIC1
DftKVSIHI
D8KVSIHD
DMKVSITC
DftKPRVMN
DMKPRV80
DftKPRVLR
D8KPRVCP
DMKPRVCH
D~KPRVTE
DMKPRVCE
D8KPRVCT
D8KPRVPE
DMKPRVPT
DftKPRVEP
DMKPRVIP
DMKPRVPB
DMKPRVRR
D8KPRVTC
D8KPRVLC
DMKPRVCS
D8KPRVCD
DMKHVCDI
DMKSYSND
D~KSYSN~
PGREAD
PGWRITE
DMKDSPNP
DMKSCNPU
DMKSCHN1
DMKSCHN2

DSECT
variable
Name

MNOOONXR
!!NOOOCPR
MNOOOCVI
MNOOOCCW

8N0001TI

8NOOOPT1

MNOOOCKI

MNOOOCSV
!!NOOOCPG
MNOOOC10
ftNOOOCDS
MNO-oOCDA
MNOOOCDB
MNOOOCSC
MNOOOEK
8N0001K
MNOOOftS
MNOOOLP

MNOOOD1
MNOOOS1
MNOOOSF
MNOOOT1
MNOOOC1
MNOOOH1
8NOOOHD
MNOOOTC
MN0008N
8NOOOMO
8NOOOLR
8NOOOCP
MNOOOCH
lINOOOTE
8NOOOCE
ftNOOOCT
MNOOOPE
MNOOOPT
MNOOOEP
MN0001P
MNOOOPB
MNOOORR
MNOOOTCL
MNOOOLCL
MNOOOCS
8NOOOCD
MNOOOBD1
MNOOONDU
rnfOOON!U
MNOOOPRD
MNOOOPWR
8NOOONPP
MNOO&S-W-S-
MNOOOQ1N
8NOOOQ2N

Appendix C: V8 Monitor Tape Format and Content 359

Monitor
Code

01

Number CP
Data
Item

of Variable
Bytes Name

Number of users eligible to enter 01 2
Number of users eligible to enter 02 2
Monitor sampling interval (seconds) 2
Count of cylinders allocated on primary

paging device 2
Cylinder capacity of primary paging device 2
count of mini lOB stack depletes 4
count of mini lOB enqueues 4
Count of mini lOB dequeues 4
Count of SIOs on alternate paths 4
Count of FREE/FRET extends 4
Count of FREE/FRET unextends 4
Count of attempts to split subpool 4
Count of SUBPOOL SPLITS 4
Internal statistics for attached processor
Total attached processor idle wait time 8
Total attached processor page wait time 8
Total attached processor I/O wait time 8
Total attached processor problem time 8
Total real external interrupts for

attached processor 4
Total SVCs reflected by attached

processor 4
Page reads by attached processor 4
Page writes by attached processor 4
Total time spin on system lock 4
Number of spins on system lock 4
Total time spin on DMKFRE lock 4
Number of spins on DMKFRE lock 4
Total time spin on RUNLIST lock 4
Number of spins on RUNLIST lock 4
Total time spin on timer request lock 4
Number of spins on timer request lock 4
Total time spin on dispatcher queue lock 4
Number of spins on dispatcher queue lock 4
Number of times CPFRELK set 4
Number of times CPFRESi set 4
Number of times system lock deferred 4
Number of times VMBLOK lock deferred 4
Number of DMKDSPRU entries 4

DMKSCHil
DMKSCHi2
DMKPRGTI

ALOCUSED
ALOCMAX
DMKIOSNM

DMKFRENP

IDLEiAIT
PAGEiAIT
IONTWAIT
PROBTIME

DMKPSANX

PSASVCCT
PGREAD
PGWRITE
DMKLOKSY+8
DMKLOKSY+12
DMKLOKFR+8
DMKLOKFR+12
DMKLOKRL+8
DMKLOKRL+12
DMKLOKTR+8
DMKLOKTR+12
DMKLOKDS+8
DMKLOKDS+12

LOKSYSCT
LOKVMCT

360 IBM VM/370 System Programmer's Guide

DSECT
Variable
Name

MNOOOQ1E
MNOOOQ2E
MNOOOlNT

MNOOOPPA
MNOOOPPC
MNOOOlSD
MNOOOGTM
MNOOODQM
MNOOOSiP
MNOOOEXT
MNOOONXT
MNOOOATT
MNOOOCNT

MNOOlilD
MNOOliPG
MNOOlilO
MN001PRB

MN001NXR

MN001CSV
MN001PRD
MN001PiR
MN001SSY
MN001NSY
MN001SFR
MN001NFR
MN001SRN
MN001NFR
MN001STM
MN001NTM
MN001SDP
MN001NDP
MN001NFL
MN001NFS
MN001NSD
MN001NVD
MN001NRU

Class One - RESPONSE

Monitor
Code

Data
Item

00 Read command sent to terminal
Userid
Line address

01 Terminal output line
userid
Line address
Byte count
Line of data

02 Edited terminal input line
userid

03

04

05

Line address
Byte count
Line of datal

Sleep issued with
time out
Userid
Line address

Terminal logged on
Userid
Line address

Terminal logqed off
Userid
Line address

Apr i 1 1, 1981

Number CP DSECT
,..~
v.&..

Bytes

8
2

8
2
1
~,. __ ':_h'_
VQ.L.L.QU.L.C

8
2
1
Variable

8
2

8
2

8
2

Name

VKUSER

VMUSER

VMUSER

VMUSER

VKUSER

VKUSER

Variable
Name

l!N10XUID
l1N10XADD

l1N10XUID
KN10YADD
l1N10YCNT
MU1nVTn
.. -.I IV.I. .. "'"

MN10XUID
MN10XADD
MN10YCNT
MN10YIO

MN10XUID
MN10XADD

MN10XUID
KN10XADD

l1N10XUrD
KN10XADD

Note that the line addresses for the 370X in NCP mode appear as the base
address.

These records are created at the time that DMKQCN handies the console
I/O req~est. This may reflect a slightly different time than that of the
SIO or the I/O interrupt. If DMKQCN is called to write a line that is
lonqer than Terminal line size, more than one MC is issued, resulting in
more than one record. Input and output terminal data collected is
limited to 128 bytes. Longer lines are truncated.

Appendix C: VM Monitor Tape Format and Content 361

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Class Two - SCHEDULE

Monitor
Code

02

03

04

Number CP
Data
Item

of Variable
Bytes Name

User dropped from dispatch queue
Userid 1 8
Number of system pageable pages 4
Sum of workinq sets of in-queue users 4
Number of users in interactive queue (Q 1) 4
No. of users in compute-bound queue (Q2) 4
Number of users eligible for Q1 2
Number of users eligible for Q2 2
User new projected working set size 2
Queue being dropped from (1 or 2) 1
Processor address 1

Accumulated user CP simulation time 3

Accumulated user virtual time3

Externally assigned dispatch priority
Pages read while in queue.
Sum of pages resident at all reads

8
8
2
2
2

Current number of pages resident 2
Number of pages stolen while in queue 2
User total virt non-spool device SIO count 4
User total virtual cards punched 4
User total virtual lines printed 4
User total virtual cards read 4
User last executed on this processor 1

User added to dispatch queue
Userid 8
Number of system pageable pages 4
Sum of working sets of in-queue users 4
Number of users in interactive gueue (Q 1) 4
No. of users in compute-bound queue (Q2) 4
Number of users eligible for Q1 2
Number of users eligible for Q2 2
User's projected working set size 2
Queue being added to 1
Processor address (main or attached) 1

User added to eligible list
Userid 8
Number of system pageable pages 4
Sum of working sets of in-queue users 4
Number of users in interactive queue (Q 1) 4
No. of users in compute-bound queue (Q2) 4
Number of users eligible for Q1 2
Number of users eligible for Q2 2
User's projected working set size 2
Queue being added to 1
Processor address (main or attached) 1
Accumulated user CP simulation time 8
Accumulated user virtual time 8
Eliqible list priority 2

VMUSER
DMKDSPNP
DMKSCHPU
DMKSCHN1
DMKSCHN2
DMKSCHW1
DMKSCHW2
VMWSPROJ
Q1DROP

VMTTIME
VMVTIME
VMQPRIOR
VMPGREAD
VMPGRINQ

VMPAGES
VMSTEALS
VMIOCNT
VMPNCH
VMLIN S
VMCRDS
VMLSTPRC

VMUSER
DMKDSPNP
DMKSCHPU
DMKSCHNl
DMKSCHN2
DMKSCHW1
DMKSCHW2
VMWSPROJ
gen reg 15

VM USER
DMKDSPNP
DMKSCHPU
DMKSCHNl
DMKSCHN2
DMKSCHW1
DMKSCHW2
VMWSPROJ
VMQl

VMTTIME
VMVTIME
VMEPR lOR

362 IBM VM/370 System Programmer's Guide

DSECT
Variable
Name

MN20XUlD
MN20XNPP
MN20XSWS
MN20XQ1N
MN20 XQ2N
MN20XQ1E
MN20XQ2E
MN20XWSS
MN20XQNM
MN20XPRC

MN20YTTI
MN20YVTI
MN20YPRl
MN202PGR
MN202APR

MN202RES
MN202PST
MN202lOC
MN202PNC
MN202LIN
MN202CRD
MN202LPR

MN20XUID
MN20XNPP
MN20xSWS
MN20XQ1N
KN20XQ2N
KN20XQ1E
MN20XQ2E
KN20XWSS
MN20 XQNM
MN20XPRC

MN20XUID
MN20XNPP
MN20XSWS
MN20XQ1N
MN20XQ2N
KN20XQ1E
MN20XQ3E
MN20XWSS
MN20XQNM
MN20 XPRC
MN20YTTl
MN20YVTI
MN20YPRI

Class Four - USER

Monitor
Code

00

00

Data
Item

Interval user resource utilization
statistics

Userid 1

Accumulated user CP simulation time
Accumulated user virtual tiae
Total page reads
Total page writes
Total non-spooled I/O requests
Total cards punched
Total lines printed
Total cards read
User running status
User dispatch status
User operating status
User queuing status
User processing status
User control status
User tracing control
User message level
User queue level
User command level
User timer level
Interrupt pending summary
User's externally assigned priority
Reserved

Current number of pages resident
Current working set size estiaate
Page frames allocated on dru.
Page frames allocated on disk
Monitor sampling interval (seconds)

lu.ber CP
of Variable
Bytes Ba.e

8
8
8
4

" " " " " 1
1
1
1
1
1
1
1
1
1
1
1 , ,
2
2
2
2
2

VMUSER
VeTTlflE
V!VTlflE
V"PGRE1D
V"PGWRIT
V!IOCBT
V!PICH
V!LIIS
VflCRDS
V!RSTAT
V!lDST1T
YBOSTAT
V!QSTAT
VflPSTAT
VflESTIT
V!TRCTL
V!!LEVEL
VBQLEVEL
V!CLEVEL
V8TLEVEL
V!PEID
V!UPRIOR

V!PAGES
Y"WSPROJ
V"PDRU!
VftPDISK
D!KPRGTI

DSECT
Variable
Name

ftN400UID
!1400TTI
!1400VTI
!N400PGR
!N400PGW
I!B400IOC
!R400PBC
!!1400LII
eN400CRD
eN400RST
!1400DST
!14000ST
ftl400QST
!!R400PST
ftR400EST
ftN400TST
ftN400MLY
f!R400QLV
!!N400CLV
"N400'lLV
f!1400PID
f!1I400UPR
MB4RSV1

ftB400RES
ftB400WSS
ftl400PDR
ftl400PDK
!B400IIT

Appendix C: VI! Monitor Tape Por.at and Content 363

Class Five - INSTSIM

Monitor
Code

00

Data
Item

Start of PRIVOP simulation
Userid 1

The privileged instruction
Virtual storage address of PRIVOP
Total user CP simulation time at start

of simulation

Class Six - DASTAP

Monitor
Code

Data
Item

00,01 Device activity data for all Tape and DASI
devices

Number CP
of Variable
Bytes Name

8
4
4

8

VfHJSER
VMINST
VMPSW

CPU timer

Number CP
of Variable
Bytes Name

Number of device blocks recorded 2

For each device -
Device address

V~/370 type codes
Volume serial number t

Device accumulated I/O count

2
2
6
4

RDEVADDR+
RCUADDR+
RCHADDR
RDEVTYPC
RDEVSER
RDEVIOCT

DSECT
Variable
Name

MN500UID
t.1N500INS
t.1N500VAD

MN5000VH

DSECT
Variable
Name

MN600NUM

MN600ADD
MN600TY
MN600SER
MN600CNT

Note: The monitor code 0 record is collected when the MCNITOR START TAFE
coiiand is entered. Thereafter, all DASTAP records are collected with a
.onitor code of 1.

02 number of high frequency samples
in interval 2 MONCHPTR MN602SAM

Device Address 2 Derived by CP MN602CHB
Times channel busy during
interval 2 ~CNCHPTR+2 MN602CHB

Times control unit busy
dur ing interval 2 MNCUBSY MN602CUB

Times device busy during
interval 2 MNCUBST+2 MN602DVB

Number of I/O tasks queued
on channel 2 RCHQCNT MN602CHQ

Number of I/O tasks queued
on control unit 2 RCUQCNT MN602CUQ

Number of I/O tasks queued
on device 1 RDEVQCNT MN602DVQ

364 IBM VM/370 System programmer's Guide

Class Seven - SEEKS

Monitor
Code

00

Data
Item

DASD IIO request record
Userid 1

Device address

Seek cylinder address
Current arm position
Number of queued I/O tasks on device
Number of queued I/O tasks on control
Number of queued I/O tasks on channel
Current seek direction

unit

!gte: Current seek direction value is

X'OO' seeking to lover cylinder address
X'01' seeking to higher cylinder address

Number
of
Bytes

8

2
2
2
1
1
1
1

CP
Variable
tlame

VMUSER
RDEVADDR+
RCUADDR+
RCHADDR
IOBCYL
RDEVCYL
RDEVQCNT
RCUQCNT
RCHQCNT
RDEVFLAG

Class Eight - SYSPROF additional data for system profile class

Monitor
Code

02

Data
Item

Additional data
times

Number of 4-byte

at add

device
which follow

queue, drop queue

block counts

For each device ••• count of I/O's

After device counts ...
Current numLer of users logged on
Total system page reads
Total system page writes
Current number of pageable pages
Total system idle time
Total system page wait time
Total system I/O wait time
Total system froblem time

Number CP
of Variable
Bytes Name

2

4 RDEVIOCT

4 DMKSYSNM
4 PGREAD
4 PGWRITE
4 DMKDSPNP
8 IDLEWAIT
8 PAGEWAIT
8 IONTWAIT
8 PROBTIME

DSECT
Variable

MN700UID

MN7001DD
~N700CYL
MN700CCY
MN700QDV
MN700QCU
u~'''7nn~l"'tJ
Oil I vv~""u

MN700DIR

DSECT
Variable
Name

MN802NUft

MN802N1U
MN802PGR
MN802PGW
MN802NPP
MN802WID
MN802WPG
MN802WIO
MN802PRB

Appendix C: VM Monitor Tape Format and Content 365

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

Index

The entries in this Index are accumulative. They list additions to this publication by
the following VM/370 System Control Program Products:

• VM/370 Basic System Extensions, Pro gram Number 5748- XX8
• VM/370 system Extensions, Program Number 5748-XE1

However, the text within the publication is not accumulative; it only relates to the one
SCP program product that is installed on your system. Therefore, there may be topics and
references listed in this Index that are not in the body of this publica tion.

$$BCLOSE transient
$$BDUMP transient
$$BOPEN transient
$$BOPENR transient
$$BOPNLB transient
$$BOPNR2 transient
$$BOPNR3 transient

304-305
304-305
304-305
304-305
304-305
304-305
304-305

A
abend (se~ abnormal termination (abend)
ABEND macro 275
abnormal termination (abend) 4

(see also problem types)
CMS abend

debugging 20
reason for 69
reasons for 20
recovery 21-22

collect information 47-48,70-72
CP abend

debugging 18-19
reason for 18-19,46-47
recovery 46- 47

CP dump 44-45
dump (~ee g,lso CMS (Conversational

Monitor system), dump)
dump (see also CP (Control program),

dump)
dump 44- 45,45- 46,66- 68

attached processor 45-46
in CMS 4-6
in CP 4
in DOS 4-6
in OS 4-6
internal trace table 47-48
messages 4-6
of system routine 20
OS (operating system), debugging 23
program check in CP 18
program interrupt 86
program interrupt (2148-!!~) 86.1
program interrupt (5748-!~1) 86.1
reason for 18,20,69
register usage 48
save area conventions 48-49
SVC 0 18,45-46
system 20

SYSTEM RESTART button 19
virtual machine abend, debugging 23

ACCESS command, accessing os data sets 281
access method, OS, support of 278-279
account number, replacing directory entry

206-210
accounting

ACCTOFF routine 130-131
ACCTON routine 130-131
cards, generating 197-198.2
records

created by user 130-130
for AUTOLOG, LOGON, and LINK

journaling 128-129
format for dedicated devices 127-131
format for dedicated devices

(5 74 8-XX8) 126
format for dedicated devices

(5748-XE1. 127-131
format for virtual machines 127-131
when to punch 130-130

user options 130-131
activating the TOD-clock accounting
interface (2748-XEj) 204-204.1

Active Disk Table (ADT) 72,320-321
Active File Table (AFT) 72
address, stop 40
ADSTOP command 40

summary 32
ADT (~-Active Disk Table (ADT»
affinity, in attached processor mode

97-98,181
AFT (see Active File Table (AFT))
allocating, storage 250
altering storage 41
alternate path support 102-102.1
ASSGN command 288-288.1
assigning, dedicated channels to virtual

machine 79-80
ATTACH macro 276
attached processor

abnormal termination,
examine real storage
improving performance

1 0 2. 2- 102 • 3

dump 45-46
184
of (5748=1];1)

special code in CP 178
TOD clock 176
virtual machine I/O management 79-80

attaching, virtual devices 79-80
AUTHORIZE, VMCF subfunction 153

Index 367

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

AUTOLOG command, journaling 229
auxiliary directories

B

creating 319
example 321- 322

error handling 321
establishing linkage 320-321
generat i ng 319
init ializing 319-320
initializing (5748-118) 320
initializing <.2J48-XE1) 320
saving resources 319

BACK SPAC command, 3800 printer 228
BALRSAVE (BAL register save area) 19,49
batch, facility (2~ CftS Batch Facility)
BATE lIT 1 317
BATEXIT2 317
BATLIKIT 317
BDAM

restrictions on 280
support of 278- 279

BEGIN command, summary 32
BLD·L macro 274
blocks

control
CMS 70
CP 51

B PAM, support of 278-279
BSAM/QSAK, support of 278-279
B SP macro 277
buffers

C

forms control 216-217
p r in t 21 6- 2 1 7

calculating, dispatching priority 84-85
CANCEL, VMCF sub function 154
CAW

operand, of DISPLAY com.and 34
subcommand, of DEBUG comlland 34

CAW (Channel Address Word) .. displaying 34
CHANGE command, 3800 printer support 227
Channel Address Word (~CAW (Channel

Address Word»
channel check 23
channel program, modification 194-195
Channel st atus Word {§~ CSi (Channel

Status Word»
CHAP macro 276
character arrangement tables, 3800 printer

226-228
character modification, 3800 printer

226-228
CHECK macr 0 277
CHKPT macro 276
class

device 60-62
privilege 82

clock, comparator 177
CLOSE

command
usage 23,44-45

368 IBM VM/370 System Programmer's Guide

CLOSEjTCLOSE macros 275
CMNDLINE (command line) 71
CMS (Conversational Monitor System)

(~ also-virtual machines)
ABEND macro 20
abnormal termination 8-13,15-17

collect information 70-72
messages 4-6
procedure 19-23,21-22,69
reason for 69
recovery 21-22

auxiliary directories 319
Batch Facility (~-CMS Batch Facility)
called routine table 264
command language 233
command processing 261-262
com.ands (~- C MS commands)
control blocks, relationships 10
development facilities 235
devices supported 242
DEVTAB (Device Table) 241
di splay P SW 22
DMSABN macro description 20-21
DMSFREE 241-243

free storage management 247-250
macro description 247-250
service routines 252-255

DMSFRES macro description 252-255
DfI SFRET macro description 250-251
DMSFST macro description 319
DMSITS 256,264-267
DftSNUC 241-243
dump

at abnormal termina. tion 66-68
examine low storage 69
format 66-68
message 69
register usage 72

examine low storage 22
file system 234-235
free storage management 244-246

DMSFREE 247-250
GETMAIN 244-246

function table 269
reserved names 269

functional information 240
Halt Execution (HX) 20-21
how to approach problem 3
how to save it 313
interface with display terminals

267-268
interrupt handling 236-239
introduction 231-233
load map 22,66-68
loader tables 243
low storage 22
nucleus 243
nucleus load map 66-68
program, exception 20
register usage 72,240
returning to calling routine 264-267
sample load map 66-68
saved system restrictions 315
simulation of DOS/VS functions 285
storage

dump 22,69
map 245
structure 241-243

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

structure of DMSNUC 240
SVC handling 256,264-267
symbol references 240
system, abend 20-21
system save area modification 264-267
transient area 242,263
transient area (5748-XX8) 242.1
transient area (5748-XE1) 242.1
user

area 263
program area 243

USER SECT (User Area) 241
CMS Batch Facility

BATEXIT 1 317
BATE XI T 2 3 17
BATLIMIT MACRO file 316
data security 318
EXEC procedures 318
insta llat ion input 317
/JOB control card 317
remote input 316
system limits 316

resetting 316
user control cards 317

CMS blip facility (5748-XX8) 85-86
CMS blip facility (5748-XE1) 86
CMS commands 64.2- 66 '

ACCESS 281
AS SG Ii 2 8 8~ 28 8 • 1
DDR 24-25
DEBUG 20-21,64.2-66
FILEDEF 45-46,281-282
GENDIRT 319-320
how to add one 269
LISTFILE 66-68
MODM AP 66-68
MOVEFILE 45-46
PRINT 66-68
SVCTRACE 29-30,35-36,64.2-66
VMFDUMP 45-46
ZAP 41

CMSCB (OS control blocks) 71
CMS/DOS

command summary 286-287
considerations for execution 309
control blocks used by 305-306
DOS/VS volumes needed 308-309
environment, defined 285
generating 306- 307
library volume directory entr ies 307
performance 309
restrictions 309
storage requirements 308
support

DOS/VS macros under CMS 291-293
for declarative macros 294
for DTFCD macro 294-296
for DTFCN mac ro 296
for DTFDI macro 297
for DTFMT macro 298-300
for DTFPR macro 300-301
for DTFSD macro 302-304
for EXCP 3(j5~306
for imperative macros 304
for transient routines 304-305
hardware devices 285
of DOS/VS functions 285

of DOS/VS supervisor and I/O macros

of physical IOCS macros 284
tape label processing (5748-XX~) 309
tape label processing (5748-XE!) 309
user responsibilities 305-306

CMSDOS discontiguous saved segment 135-136
CMSSEG

discontiguous saved segment 313
usage options 314

coding conventions
addressing 211-213
constants 211-213
CP 211-213
error messages 211-213
loadlist requirements 214
module names 211-213
register usage 211-213

command
language

CMS 233
RSCS 330

processing, RSCS 337-338
summary, RSCS 331

commands (~-C MS commands, CP commands
and RSCS command~

common segment facility (5748-XE1)
10 2. 1- 10 2. 2

communication, between virtual machines
143

COMND macro 215
compiler input/output assignments 289
completion code X'OOB' 86
completion code X 'OOB' ~48-XX8) 86.1
completion code X 'OOB' t.21~E1) 86.1
console, function (~-CP (Control

Program))
control

blocks
locating 40
used by CMS/DOS routines 305-306

registers, displayed by DISPLAY command
33

Control P rogram (§~ CP)
control tables

3800 printer
creating and modifying 227-228
displaying current values 228

Conversational Monitor System (se~ CMS)
copy modification, 3800 printer 226-228
COPYV command, for MSS volumes 174
CP (Centrol Program)

abnormal termination 15-17
messages 4-6
procedure 18-19,19,45-46
with automatic restart 8-13
without automatic restart 8-13

attached processor mode 178
coding conventions 211-213
commands (see CP commands)
concurrent execution of virtual machines

76
console functions, hOlf to add-one 215
control block relationships 51
debugging CP on virtual machine 42-43
disabled loop 8-13

procedure 25-26

Index 369

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

disabled wait 8-13
procedure 15-17,27-29

dump
at abnormal termination 45-46
attached processor 45-46
examine abend code 45-46
examine low storage 45-46
format 45-46
on disk 45-46
on printer 45-46
on tape 45-:46
printing disk dump 45-46
printing tape dump 45-46
VMFDUMP command usage 45-46

enabled wait 8-13
procedure 15-17,29

errors encountered by warmstart program
4-6

examine low storage 19
how to approach problem 3
identifying' and locating pageable module

63-64.1
internal trace table 19,44,47-48

(~ alsQ CP trace table)
I/O management on virtual machine 79-80
load map 19
looping condition 15-17
low storage 19
machine check 19
page zero handling 77-78
privileged instruction simulation 76
problem state execution 76
program check 18

in checkpoint program 4-6
in dump program 4-6

PSA, Prefix storage Area 19
real control blocks 19
register usage 48
restrictions 24-25
RMS (Recovery Management Support) 86
RMS (Recovery Management Support)

(5748- XX8) 86. 1
RMS (Recovery Management Support)

(5748- XE1) 86.1
save areas 48-49
small CP option (5748-XX8) 78.1
spooling 80- 82
storage dump 18,45-46
S VC 0 18
SYSTEM RESTART button 19,29
trace table entries 44

(~~ al.2Q CP trace table)
unexpected results 8-13,15-17

procedure 24-25
virtual control blocks 19
virtual machine interrupt handling 76
wait state status messages 4-6

CP assist 99-100.1
CP commands 82

ADSTOP 32,40
C LOS E 23, 44- 45
DCP 38- 42
DISPLAY 22,26-27,33,38-42
DMCP 38-42
DUMP 26-27,29- 3 0 ,32 ,38-42
how to add command 215

370 IBM VM/370 System Programmer's Guide

IN£ICATE 103-109
E privilege class 103-109
G privilege class 103-109

INtICATE FAVORED
E privilege class (~~XX~) 109
E privilege class (5748-XE1) 109

IPL 314
LOCATE 40
MIGRATE command (S748-XE1) 109
MONITOR 110-125
MONITOR (574 8- XX~) 110.1
MONITOR (..2148-XE1) 110.1
QUERY 39
SET 39,44-45
STCP 41
STORE 34-35,41
SYSTEM 39
TR ACE 23,24- 25,26-27,29-30,35-36,40- 41

CP trace table 19
allocation 44
clear channel instruction 44
entries 44
restarting tracing 44
size 44
terminating tracing 44
usage 44,47- 48

CPABEND (abend code) 45-46
CPEREP program 19
CPSTAT (CP running status) 47-48
CSW

operand, of D ISP LA Y comma nd 34
subcommand, of DEBUG command 34

CSW (Channel Status Word), displaying 34
CVTSECT (CMS Communications Vector Table)

72
cylinder faults, MSS, VM/370 processing

173

D
DASD Dump Restore (DDR) program 24-25
DASD I/O function 190-191
data

records, VM Monitor 357-365
security, batch 318

data set control block (DSCB) 278-279
data sets

OS
accessing 281
defining 281-282
reading 280.1-281

VSAM
compatibility considerations 312-313
compatibility considerations

(5748-XX8) 310-312.1
compatibility considerations

(5748- X E 1) 3 1 0- 31 2 • 1
DCB macro 277
DCP, command 38-42
DDR command, usage 24-25
deadline priority

definition (5748-XX8) 85-86
definition (~XE1) 85-86
dispatch list (5748-XX8) 85-86
dispatch list (5748-XE1) 85-86
eligible list (5748-IX8) 85-86
eligible list (~1~l!1) 85-86

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

deadline priority (~748-XX8) 85-86
DEBUG command

BREAK subcommand, summary 32
CAW subcommand, summary 34
CSW subcommand, summary 34
DUMP subcommand

summary 32
usage 26-27

GO subcommand, summary 32
GPR subcommand, summary 33
messages 64.2-66
PSW subcommand

summary 33
usage 22

rules for using 64.2-66
SET CAW subcommand, summary 35
SET csw subcommand, summary 35
SET GPR subcommand, summary 34-35
SET PSW subcommand, summary 35
STORE subcommand, summary 34-35
usage 20-21
X ~xamine) subcommand, summary 33

debugging
analyzing problem 13
applying PTF 14
comparison of CP and CMS facilities 37
how to start 3,15-17
iden t ify i ng

abnormal termination 15~17
looping condition 15-17
looping condition in virtual machine

7
problem 7
unexpected results 15-17
wait 15-17
wait state in virtual machine 7

introduct ion 1- 2
on virtual machine 23
procedure

for abnormal termination 15-17
for CMS abnormal termination 19-23
for CP abend without dump 19
for CP abnormal termination 18-19
for CP disabled loop 25-26
for CP disabled wait 27-29
for CP enabled wait 29
for CP unexpected results 24-25
for looping condition 15-17
for RSCS disabled wait 30-31
for unexpected results 15-17
for virtual machine abnormal
ter mination 22

for virtual machine disabled loop
26-27

for virtual machine disabled wa it
29-30

for virtual machine enabled loop
26-27

for virtual machine enabled wait 30
for virtual machine unexpected
results 24- 25

for wait 15-17
recognizing problem 4
summary of VM/370 debugging tools 32-36
unproduct ive processing time 7
VM/370 commands 38-42

ADSTOP 40
DCP 38-42

DISPLAY 38-42
Dl'lCP 38-42
DUMP 38-42
LOCATE 40
MONITOR 40
QUERY 39
SET 39
STCP 41
STORE 41
SYSTEM 39
TRACE 40-41
ZAP 41

with VM/370 facilities 8-31
declarative macros 294
dedicated, channel, assigning to virtual

machine 79- 80
DELETE macro 274
demand paging 76-77
DEQ macro 276
DETAC H, macro 276
detaching, virtual devices 79-80
determining, virtual machine storage size

201
DEVICE (last I/O interrupt) 22
devices

class codes 60-62
CMS-supported 242
feature codes 60-62
model codes 60-62
sense informat~on 86
sense information (5748-XX8) 86.1
sense information <.2748-lli) 86.1
su~ported, for VSAM under CMS 310
type codes 60-62

DEVTAB (Device Table) 241
DEVTYPE m aero 275
DIAGNOSE instruction 182

activating the TaD-clock accounting
interface (5748-XE1) 204-204.1

channel program modification 194-195
clean- up after virtual IPL by device

(5748- XX8) 197
clean- up after virtual IPL by device

(5748-XE1) 197
clear I/O recording 191
DASD I/O function 190-191
define function of PA2 fUnction key 199
determine virtual machine storage size

138-139,201
device type and features 192-194
directory update in-place 206-210
display data on 3270 console screen

199-200
error message editing 200-201
error message editing (~1!~)

200.4
error message editing (5748-1~1) 200.4
examine real storage 184
find address of discontiguous sa ved

segment 138-139
FINDSYS function 138-~39,202
general I/O function 191-192
generate account-ing- cards 197~198.2

generate accounting records for the
virtual user (5748-XX8) 198

generate accounting records for the
virtual user (5748-XE1) 198

input spool file manipulation 187-190

Index 371

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

issue SVC 76 from a second level virtual
machine 197

load discontiguous sa ved segment
138-139

LOADSYS fu nction 138-139,201-202
MSS communication 205-206
MSS mount and demount processing 173
page release function 186
pseudo timer 186
purge discontiguous saved segment

138-139
PURGESYS function 138-139,202
read LOGREC data 196
read system dump spool file 196-197
read system symbol table 197
save 3704/3705 control program 199
saving or loading a 3800 named system

204-205
saving or loading a 3800 named system

(.2748- XE1) 204.1-205
special diagnose for shadow table

maintenance (5748-XE1) 204
start of LOGREC area 195-196
store extended-identification code 183
update user directory 197
virtual console function 184-186
VHCF function 143,159,203-204

data transfer error codes 167-169
return codes 167-169
VMCPARM parameter list 159-162

3270 virtual console interface 199-200
full screen interactions (5748-XX8)

199- 200.4
full screen interactions (5748-X]1)

199- 200.4
full screen mode (57~~-XX§)

199- 200.4
full screen mode (5748-XEj)

199- 200.4
directory

entries for CMS/DOS library volumes 307
hooks 206-210
replacing entries 206-210
update in-place 206-210

discontiguous saved segments 135-136
loading 201- 202
purging 202

discontiguous shared segments
defined via NAMESYS macro 137-138
user requirements 136

dispatch list
use in deadline priority (~748-XX§)

85- 86
use in deadline priority (5748-XEj)

85-86
dispatching

interactive users 84-85
noninteractive users 84-85
priority, calculating 84-85
scheme, for virtual machines 84-85
v irtual machines

from queue 1 84-85
from queue 2 84- 85

dispatching priority, replacing directory
entry 206-210

372 IBM VM/370 system Proqrammer's Guide

DISPLAY
command 38- 42

summary 33
usage 22,26- 27

display terminals, CMS interface 267-268
displaying

data on 3270 console screen 199-200
floating-point registers~ DISPLAY

command 33
general registers

DISPLAY command 33
GPR subcommand of DEBUG command 33

PSW
DISPLAY command 33
PSW subcommand of DEBUG command 33

storage
DISPLAY command 33
X subcommand of DEBUG command 33

DISPSW macro display terminals, DISPSW
macro 267-268

distribution word, replacing directory
entry 206-210

DMCP, command 38-42
DMKCFC (console function) support 215
DMKDDR (~-DASD Dump Restore (DDR)
program)

DKKSNT (s ystem name table) 132-142
DMSABN (abend routine) 71
DKSABN macro 20-21

operands 20- 21
DMSEXS 255- 256
DMSFREE 241-243

allocating nucleus free storage 250-251
allocating user free stora ge 250
error codes 254-255
operands 247-250
service routines 252-255
storage management 247-250

DMSFR ES 252- 255
error codes 254-255
operands 252-255

DMSFRET 252
error codes 254-255
operands 252
releasing storage 252

DKSINA 259
DMSINT 259
DMSIOW 238
DMSITE 239
DMSITI 236-237
DHSITP 238
DMSITS 236-237,256,264-267
DKSKEY 255-256
DMSLADAD, entry for auxiliary directory

320-321
DMSNUC 240,241-243
DOS (Disk Operating System)

abnormal termination
messages 4-6
procedure 23

DO S/VS
functions simulated by CMS 285
macros

supervisor 289-290
supported under CMS 291-293

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

DOS/VSE
c~s support

control blocks simulated (5748-XX8)
305-306

functions supported (~148-XX8) 285
hardware supported (S74S-XXS) 285
supervisor and I/O macros supported

(5748-XX8) 289-290
VSAM macros supported (5748-XX8) 310

DOS/VSE CMS support
control blocks simulated (5748-XE1)

305-306
functions supported (5748-XEj) 285
hardware supported (5748-!11) 285
supervisor and I/O macros supported

(5748-XE1) 289-290
VSAM macros supported (5748-XE1)

310-312.1
DOS/VSE transient routines (5748-XE1) 304
DSCB 278- 279
DTFCD macro 294-296
DTFCN macro 296
DTFDI macro 297
DTFM T macro 298-300
DTFPR macro 300-301
DTFSD macro 302-304
dump (see al§.Q CP (Control Pro gram), du mp

and CMS (Conversational Monitor System) ,
dump)

DUMP
command 38-42

summary 32
usage 26-27,29-30

dump, used in problem determination 18
dump ing

storage
at printer 37
at terminal 37

to real printer 45-46
DUMPSAVE (DMKDMP save area) 49
dynamic load overlay 325
dynamic SCP transition to or from nat ive

E

mode
advantages of (5748-XE1) 102.3-102.4
command used for (5748-XE1) 102.3-102.4
overview of how to use (~I48-XE1)

102.3-102.4
performance impact of (5748-XE1)

1 02 • 3- 1 02 • 4
precaut ions when using (5748-XE1)

1 02. 3- 1 02 • 4
purpose of (~748-XE1) 102.3-102.4
systems supported (5748-X~1)

102.3-102.4

EC (Extended control) mode 26-27
EC (Extended Control) PSi 348
ECMODE option 176
ECPS (Extended Control-program Support)

99- 1-00.1
CP assist 99-100.1
expanded virtual machine assist

99-100.1

restricted use 101-102
virtual interval timer assist

101,175-176
ECRLOG (control registers) 71
editing

error messages 20o-20i
error messages (5748-XX8) 200.4
error messages (5748-XE1) 200.4

efficiency, of VM/370 performance options
88

eligible list
use in deadline priority (5748-XX~)

85- 86
use in deadline priority (5748-XE1)

85-86
ENQ macro 276
environment, of VM/370, system load

124-125
error codes

DMSF'REE
DMSFRES
DMSFRET

254- 255
254-255
254-255
254- 255

error messages
editing 200- 201
editing (5748-XX8) 200.4
editing (5748-XE1) 200.4

error recording cylinders, clear 191
EXCP, CMS/DOS support for 305-306
ex panded virtual machine assist 99-100 .. 1
Extended Control mode {§~ EC (Extended
Control) mode)

Extended Control-Program Support (ECPS)
(see ECP S)

exten ded- ident if ica tion code 183
external inte~rupt

BLIP character 239
external console interrupt 87
HNDEXT macro 239
in CMS 239
in RSCS 338
in VMCF 143,164-167

message header 164-167
interval timer 87
timer 239

EXTOP SW (external old PSi) 69
EXTRACT macro 275
EXTSECT (external interrupt work area) 71

F
faults, MSS cylinder, VK/370 processing

173
favored execution option 93-94
FCB (~forms control buffer)
FCB (File Control Block) 240
FCBTAB (file control block tab Ie) 71
features, device 60-62
FEOi macro 275
fetch storage protection 77-78
file

management
eMS 234-235
RSCS 336

Index 373

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

File Status Table 319
FILEDEF command 282-283

AUXPROC option 282-283
defining OS data sets 281-282
usage 45-46

files, OS format, support of 278-279
FIND, macro 274
findinq

address of discontiguous saved segment
138-139

saved systems 202
flashing (forms overlay), 3800 printer

226-228
FOB (f ont offset buffer)

for 3289 Model 4 printer
adding FOBs (5748-XX8) 222
adding FOBs (5748-XE1) 222-225
macro instruction (5748-XX8) 222
macro instruction (5748-XE1) 222-225
names of supplied FOBs (~148-X!~)

222
names of supplied FOBs (~748-X~1)

222
purpose of FOB (5748-XX8) 222
purpose of FOB (~748-X~) 222-225

for 3289 Model 4 printer (5748-XX~) 222
for 3289 Model 4 printer (5748-XE1)

222-225
font offset buffer (see FOB)
forms control buffer

FCB 216-211
examples 222-223
examples (5748-XX8) 222.1
examples (5748-XE1) 222-225
macro 222-223
macr 0 (514 8-XX8) 222. 1
macro (5148-XE1) 222-225

index feature 222-223
example 222- 223

index feature (5748-XX8) 222.1
index featUre (5148-XE1) 222-225
3800 printer 226-228

forms overlay (flashing), 3800 printer
226-228

FPRLOG (floating-point registers) 11
free storage

manaqement
CMS 244-246
RSCS 333

FREEDBUF macro 276
FREEMAIN macro 213
FREEPOOL macro 274
FREESAVE (DMKFRE register save area) 19,49

G
GENDIRT command

creating auxiliary directory 319-320
format 320-321

qenerating, CMS/DOS 306-307
GENIM AG E u ti1ity program 227 -228
GET macro 218-279
GETMAIN

free element chain 245
GETMAIN/FREEMAIN macros 274
macro 273
simulation 245

374 IBM VM/370 System Programmer's Guide

GETPOOL macro 274
GPRLOG (general registers) 11

H
handling

OS files
on eMS disks 270
on OS or DOS disks 211

hardware assist 99-100.1
header. record, VM Monitor 351-365

I
IBM 3800 printing Subsystem (§~~ 3800
printer)

identification bits for program products
(5748-XE1) 183

IDENTIFY
VMCF protocol 152
VMCF subfunction 155

IDENTIFY macro 276
lIP (ISAM Interface Program) 312-313
lIP (ISAM Interface Program) (2748-XX8)

312. 1
lIP (ISAM Interface Program) (5148-XE1)

312,. 1
IMAGELIB utility program 221-228
imperative macros 304
INDICATE command 103-109

described 103-109
format

E privilege class 103-109
G privilege class 103-109

INDICATE FAVORED command
format

E privilege class (5748-XX8) 109
E privilege class (5748-XE1) 109

indicators, of system latd 103-109
input/output (~I/O)
interrogating input/output assignments 289
interrupt handling 85-86

attached processor
real I/O interrupts 87
synchronous interrupts 87

CMS 236-239
input/output interrupts 237
SVC interrupts 236
terminal interrupts 238

DM SITS 236- 239
external interrupts 81,239
I/O interrupts 19-80
machine check interrupts 86,239
machine check interrupts (5748-XX~)

86.1
machine check interrupts (4148-1E1)

86/.1
program interrupts 86,238
program interrupts (5148-XX8) 86.1
program interrupts (5748-XE1) 86.1
reader/punch/printer interrupts 238
RSCS 338
SVC interrupts 81
user-controlled device interrupts 238

interrupt handling (5748-1X8) 86.1
interrupt handling (5748-XE1) 86.1

Page of GC20-1807-7 As Updated April 1, 1981 by TNt GN25-0829

interval timer 1Q 1 i 175-176
INTSVC 256
I/O

assignments
_"''I'I'1II'1''''1.'';' _...... ")00
vVWp.l..l.C'" .l:.V-'

interrogating 289
function

D A S D 1 90- 1 91
general 191-192

in attached processor mode 179
interrupt

in CMS 237
in RSCS 339

logging, RSCS 340
management 79-80
overhead in CP, reducing 89-90
virtual machines 89-90

I/O errors, recovery from 228
ICBLOK 19
IOSECT (I/O interrupt work area) 72
IPL, of a VMSAVE system (5748-XE1) 78.2
IPL command, loading alternate saved
segment 314

IPL device, replacing directory entry
206-210

issuing, SVC 76, from a second level
virtual machine 197

J
journaling

accounting records 128-129
LOGON, AUTOLO G, LINK comm an ds 229

L
LASTCMND (last command) 22,71
LASTEXEC, last EXEC procedure 71
LASTEXEC (last EXEC procedure) 22
LASTLMOD (last module loaded) 22,71
LASTTMOD (last module in transient area)

71
LASTTMOD (last transient loaded) 22
library volumes, CMS/DOS, directory entries

for 307
LINK, macro 273
LINK command

jour naling 229
password suppression

LIOCS routines supported
304- 305

LISTFILE command 66-68
load

230
by C MS/DOS

environments of VM/370 124-125
indicators 103-109

LeAD, macr 0 27q
load map

CMS 66-68
how to print CMS load map 66-68

loader tables, (CMS) 243
loading

and savinq discontiguous saved segments
138-139

discontiguous saved segments
138-139,201-202

loadlist
requirements

CP 214
SPB card 214

LOCATE, command 40
locked pages option 91-92
locking, in attached processor mode

180-181
LOCKSAVE (LOCK macro save area) 50
LOG record

NPT 342
SML 341

logical editing symbols, replacing
directory entry 206-210

logical units
assignment of 288-288.1
defined 288- 2 88.1
programmer assigned 288-288.1
sy stem assigned 288-288.1

LOGON command
journaling 229
password suppression 230

LOGREe area
getting starting address 195-196
reading 196

LOKSAVE (DMKLOK save area) 50
loop 25-26

(~ also· probl em type s)
disabled

CP 25-26
virtual machine 26-27

enabled, virtual machine 26-27
low address protection <.2148-XE1)

102. 1- 102.2
LOWSAVE (debug save area) 71
LUB (Logical Unit Block) table 288-288.1

M
machine check

CP 19
during start-up 86
during start-up (5748-XX8) 86.1
during start-up (5748-XE1) 86.1
interrupt 86

in CMS 239
interrupt (57~XX8) 86.1
interrupt (~748-XE1) 357-365
not diagnosed 19
on attached processor 23
unrecoverable 19

macros
declarative 294
DOS/VSE macros supported by CMS/DOS

(5748-XX8) 289- 290
DOS/VSE macros supported by CKS/DOS

(5748-X"R1) 289-290
imperative 304
OS (~OS (Operating System), macros)
VSAM, supported under CMS 311-312

Mass St~ra~ System (see MSSl
MCKOPSW (CMS machine check old PSW) 69
messages, controlling 40
MFASAVE (DMKMCT save area) 50
MIGRA'IE command (5748-XE1) 109
minidisk link mode, replacing directory
en try 206- 21 0

Index 375

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

minidisk multiple password, replacing
directory entry 206-210

minidisk read password, replacing directory
entry 206- 21 0

minidisk write password, replacing
directory entry 206-210

minidisks 79-80
__ ~_, ~ __ ~__ rn r~
wuu~~, U~y~~~ ov-o~

modifying modules 41-42
MODM AP command 66- 68
MONITOR command 110-125

described 110-125
described (5748- XX8) 110.1
described (5748-XE1) 110.1
format 110-125
implemented classes 119-121

monitoring, recommendations 124
MOVEFILE command, usage 45-46
MSS (Mass St orage System)

communication 205-206
cy linder faul ts, VM/370 process ing 173
mount and demount processing

173,205-206
mount processing, asynchronous 173
VM/370 access 173
volumes

backup copies 174
I/O management 79-80,89-90

MULTI -LE AVI NG
block control byte (BCB) 351-356
character string 349
control field s

record control byte (RCB) 351-356
string control byte (SCB) 351-356
sub-record control byte (SRCB)

351-356
description of 349
function control sequence (FCS) 351-356
in VM/370 < 349
transmission block 350-351

multiple channel errors 6
multiple copy printing, 3800 printer

226-228
multiple shadow table support (~748=X]J)

98-98.1
multiprocessing systems, improving

performance of (2148-XE1) 102.2-102.3
MVS/system extensions support

N

common segment facility (~l~~-X]J)
102.1-102.2

enabling (~l~8-X]1) 102.1-102.2
low address protection (~148-XE1)

102.1-102.2
special operations and instructions

(.2748-.1]1) 102.1-102.2

named systems
allocating DASD space 132-142
generating 132-142

SPB card 132-142
using NAMESYS macro 132-142

saved system 132-142
SAVESYS command 134
saving or loading a 3800 204-205

376 IBM VM/370 System Proqrammer's Guide

sa ving or loading a 3800 (5748=XE1)
204.1-205

shared segments 135
system name table (DMKSNT) 132-142

NAMESYS macro
discontiguous saved segments 137-138
for saved systems 132-142

native mode, switching to or from
(~748-XE1) 102.3-102.4

NOTE macro 277
NPT LOG record 342
nucleus (CMS) 243
NUCON (nucleus constant area) 70-72

o
OPEN/OPENJ macros 275
options

performance
affinity 97-98
favored execution 93-94
locked pages 91-92
priority 95
reserved page frames 92,95
sma 11 C P (57! 8- X X 8) 78. 1
virtual=real 77-78,92-93,95-97
virtual machine 93

OS (Operating System)
abnormal termination

messages 4-6
procedure 23

data management simulation 270
data sets, reading 280.1-281
formatted files 278-279
handling

files on CMS disks 270
files on OS or DOS disks 271

macros
ABEND 275
ATTACH 276
BLDL 274
BSP 277
CHAP 276
CHECK 277
CHKPT 276
CLOSE/TCLOSE 275
DCB 277
DELETE 274
DEQ 276
descriptions of 272-277
DETACH 276
DEVTIPE 275
ENQ 276
EXTRACT 275
FEOV 275
FIND 274
fR EEDBUF 276
FREEMAIN 273
fREEPOOL 274
GET 278-279
GET MAIN 273
GETMAIN/FREEMAIN 274
GETPOOL 274
IDENTIFY 276
LINK 273
LOAD 274

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

NOTE 277
OPEN/OPENJ 275
POINT 277
POST 273
PUT 278-279
P UTX 278- 279
RDJFCB 276-277
READ 278-279
SNAP 276
SPIE 274
STAE 276
STAX 277
STIM ER 276
STOW 275
SYNADAF 277
SYNADRLS 277
TCLEARQ 277
TGET/TP UT 277
TIME 275
TTIMER 276
under CMS 270
WAIT 273
WRIT E 278-279
iTO/WTOR 275
XCTL 274
XDAP 273

overhead, CP, reducing for I/O 89-90
overlay structures under CMS 323
over laying

dynamic load 325
example 324
prestructured 323-325

P
page

allocation, RSCS 335
exceptions, effects of 90-91
frames 76-77

reserved 77-78,92
locking 91-92
releasinq

cont iguous storage 186
discontiguous storage 202

SPB (Set Page Boundary) card 214
table 76-77
zero, restrictions 77-78

pageable module
identifying 63- 64.1
locating 63-64.1

paging 76-77
by demand 76-77
considerations 90-91

password
replacing directory entry 206-210
suppression on command line 230

PA2 program function key, defining fnnction
of i99

performance 88
avoiding IPL 132-142
CM S/DOS 309
for mixed mode foreground/background
systems 126

for time-shared multi-batch virtual
machines 126

measurement 103

options
affini ty 97- 98
dynamic scp transition to or from
native mode (5748-XE1) 102.3-102.4

favored execution 93-94
locked pages 91-92
priority 95
reserved page frames 92,95
single processor mode (5748-XE1)

102.2-102.3
small CP (5748-XX8) 78.1
virtual=real 77-78,92-93,95-97
virtual machine 93

PGMOPSi (program old PSi) 69
PGMSECT (program check interrupt work area)

72
PLIST (parameter list) 240
POINT macro 277
POST macro 273
Prefix Storage Area ,(see PSA (Pref ix
storage Area»

prestructured overlays 323-325
PREVCMND (previous command) 22,71
PREVEXEC (pre'vious EXEC procedure) 22,71
print buffers

adding new images 217-218
LOADBUF command 217-218
print chain image 217-218
ueB macro 218-219
UCBCCi macro 220
UCC, examples 224-225
UCC macro 224
UCCCCi macro 224
UCS

examples 218-219
macro 217- 218
1403 216-217

UCSB
associative fields 220
examples 221-222
3211 216-217

UCSCCW macro 218
PRINT command 66-68
printer

IBM 3800 (~-3800 printer)
interruptions 238

priority
messages 153,156-157,157
of execution 76-77
performance option 95

privilege classes 82
replacing directory entry 206-210

privileged instructions 88
problem

programs, unexpected results 15-17
types

abnormal termination 8-13
loop 8-13
unexpected results 8-13
wait 8-13

processor
attached

affinity 97-98,181
I/O handling 179
locking 180-181
machine check 23
PSA 178
real I/O interrupts 87

Index 377

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

signaling 180
synchronous interrupts 87

resources 84-85
timer 176
utilization 84-85

program
check

in checkpoint program 4=6
in dump program 4-6

interruption
in CMS 238
problem state 86
problem state (5748-!!§) 86.1
problem state (5148-XE1) 86.1
supervisor state 86
supervisor state (~748-X!~) 86.1
supervisor state (5748-X!J) 86. 1

states 83
program product identification bits

(5148-XE1) 183
Program status Word (see PSi (Program

Status Word»
programmer logical units 288-288.1
PROPSW (program old PSW) 45-46
protection keys 77-78
protection of shared segments 140-142
PSA (Prefix Storage Area) 19

ARIOCH (address of first RCHBLOK) 56
ARIOCU (address of first RCUBLOK) 57
ARIODV (address of first RDEVBLOK)

57-59
in attached processor mode 178-

pseudo timer 178,186
PSW (Program status Word) 41-48

interruption code 22
keys, CMS 255-256

PTFs (program temporary fixes), applying
3, 14

PUB (Physical Unit Block) table 288-288.1
punch, interruptions 238
purging, discontiguous saved segment

138-139,202
PUT macro 278-279
PUTX macros 218-219

Q

QUERY, command 39,286-281
QUERY command, 3800 printer 228
QUERY SRM command (5748-XX8) 109
QUERY SRM command (5148-XE1) 110
querying and setting paging variables

(5748-XX8) 110
querying and setting paging variables

(5748-XE1) 110
guerying and setting SRM variables

(5148-XX8) 110
querying and setting SRM variables

(5748-XE1) 110
queue 1, dispatching virtual machines from

84-85
queue 2, dispatching virtual machines from

84- 85
queue 3 (~748-11§) 85-86
queue 3 (~14§-X]1) 86
QUIESCE, VMCF subfunction 154
Q 1 (se.§ queue 1)

378 IBM VM/370 System Programmer's Guide

Q2 (~ queue 2)
Q3 (~ queue 3) (5748- X~1)
Q3 (~ queue 3) (57 4 8-.!.!~)

R
n TTnT ,....u r::£
I\~I1O.l.ovn :..JU

RCHADD (address) 56
RCHFIOB (first IOBLOK pointer) 56
RCHSTAT (status) 56
RCHTYPE (type) 56

RCUBLOK 51
R CUADD (address) 57
RCUCHA (primary RCHBLOK) 57
R CUCHB (first al ternate RCHBLOK) 57
R CUCHe (second al terna te RCHBLOK) 57
RCUCHD (third alternate RCHBLOK) 57
RCUFIOB (first IOBLOK pointer) 57
RCULIOB (last IOBLOK pointer) 57
RCUSTAT (statu~ 57
RCUTIPE (type) 57

RDEVBLOK 57-59
R DEVADD (address) 57-59
RDEVAIOB (IOBLOK pointer) 57-59
R DEVATT (att ached virtua 1 add re ss)

57-59
R DEVCKPT (address of enable CKPBLOK)

51-59
R DEVE? DV (address of EP free list)

57-59
RDEVFLAG (device dependent flags) 57-59
RDEVIOER (address of IOERBLOK) 51-59
R DEVMAX (highest valid NCP name) 57-59
RDEVNCP (reference name of active 3705

NCP) 57-59
R DEVN ICL (address of net work control
list) 57-59

RDEVSPL (RSPLCTL pointer) 51-59
RDEVSTAT (status) 57-59
RDEVTFLG (flags) 57-59
RDEVTMCD (terminal flags) 57-59
RDEVTYPC (clas~ 57-59
RDEVUSER (dedicated user) 57-59

RDJFCB macro 216-277
READ macro 218-279
reader, interruptions 238
reading, OS data sets 280.1-281
real, printer dumping to 45-46
real storage

examine 184
in attached processor environment

184
optimizing use of 76-71

REALTIMER option 175-176
RECEIVE, VMCF subfunction 158
recording, real machine system eve nts 40
records

accounting
created by user 130-130
for AUTOLOG, LOGON, and LINK

journaling 128-129
format for dedicated devices 121-131
format for dedicated devices

(5748- X X 8) 1 26
format for dedicated devices

(5748- X E 1) 1 27- 13 1
format for virtual machines 127-131

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

RECOVERV command: for MSS volumes 174
reduction

of CP overhead, for virtual machine I/O
89-90

of paging activity 90-91
of SIO operation 89-90

reenterable code, usage. 90-91
registers, usage, CMS 240
REJECT, VMCF subfunction 155
releasing

allocated storage 252
storage 252

Remote Spooling Communications Subsystem
~.§ RSCS (Remote Spooling Communications
Subsystem))

REPLY, VMCF subfunction 158
RESERVE; operand 77-78
reserved page frame s 77-78

performance option 92,95
resources, processor 84-85
responses, VlI Monitor, to unusual tape

con ditions 121-122
responsibilities, user, for eMS/DOS

305-306
restr ict ions

BDAM 280
CMS, saved system 315
CMS/DOS 309
multiple path support 44

resume
execution

BEGIN command 32
GO subcommand of DEBUG comman d 32

RESUME, VMCF subfunction 155
RSCS (Remote Spooling Communications

subsystem)
command language 330
command processing 337-338
command summary 331
disabled wait 8-13

procedure 30-31
X'OOl' 30-31
X' 007' 30-31
X'011' 30-31

DMTMAP 333
DMTVEC 333
enabled wait 8-13,31
external interrupts 338
file management 336
free storage 333
functional information 335
interrupt handling 338
I/O

interrupts 339
logging activity 340
logging output 340
logging record 340

line allocation task 334
line driver storage 334
links 329

definition 329
table 329

locations 329
message handling 338
nonprogrammable remote terminals 329
page allocation 335
programmable remote stations 329
queue element management 335

remote stations 329
spool file

access 337
access task 334

storage
allocation 331
structure 331

supervisor 333
service routines 333

supervisor queue 333
extension 333

SVC interrupts 339
system control task 334
tag slot queues 336
task-to-task communica tions 337
virtual storage management 335
V~/370 spool system interface 330

RUNUSER (current user) 47-48

S
save area

BALRSAVE 19,49
CMS system 264- 267
CMS system save area format 264-267
DMKLOK 50
DUMPSAVE 49
FR EESAiE
LOCKSAVE
MFASAVE
SAVEAR EA
SIGSAVE
SVCREGS
SWTHSAVE

19,49
50

50
19,49

49
50

50
user save area format 264-267

SAVEAREA (active save area) 19,49
saved systems

CMS 312-313
described 132-142
SAVESYS command 134
when to save system 134
when to save systems (5748-XI8)
when to save systems (~748-l]1)

SA YES EQ priority value c.a14§- XX.§)
SAVESEQ priority value (2148-XE1)
SAVESYS command 134
saving, storage information 41
segment

132
131

78.2
78.2

alternate, lo~ding on IPL command
shared (~-shared segments)

segment table 76-77

314

SEND
iMCF protocol 148-149
VMCF subfunction 156-157

SEND/RECV
VMCF protocol 150
VMCF subfunction 156-157

SENDX
VMCF protocol 151
VMCF subfunction 157

SET
command 39,286-287

usage 44-45
SET SRM command (5748- XX8)
SET SRM command (5748-XE1)
SETKEY command, described
setting, address stops 37

110
110

138-139

Index 379

Page of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

shadow table bypass (5748-XE1) 98-98.1
shared segments 135

descr ibed 135
discont iguous 135-136
protected 140-142
special considerations 135
unprotected 140-142
virtual machine operation I~~

signaling, in attached processor mode 180
SIGSAVE (DMKEXT save area) 49
simulat ion 88

of DOS/VS functions by CMS 285
single processor mode

advantages of (5748-XE1) 102.2-102.3
commands used with (5748-X!1)

102.2-102.3
performance impact of (5748-XE1)

102.2-102.3
purpose of (5748-XE1) 102.2-102.3
systems supported (5748-XE1)

102.2- 102. 3
use of the V=R machine (~148-XE1)

102.2-102.3
single- instruction mode 82
SIO (§,ee start I/O (SIO) instruct ion)
small CP option

effect on performance (~148-XX8) 78.1
purpose of (~748-XX8) 78.1

SML LOG record 341
SMSG command, overview of 171-172
SNAP macro 276
spanned records, usage 278-279
S PB (Set Page Bound ary) car d 214
special diagnose for shadow table

maintenance (5748-XE1) 204
special message facility 171-172

authorization 171-172
buffer length 171-~72
description 171-172
introduction to 171-172
sending or receiving messages 171-172
SMSG command 171-172
using 171-172

special message flag
purpose of 171-172
turning on or off 171-172

SPIE macro 274
SPOOL command, 3800 printer support 227
spool file

access, RSCS 337
manipulation 187-190
recovery

after checkpoint start 81
after force start 82
after warm start 81

spooling
described 80-82
terminal input 82
terminal output 82
via RSCS 80-82

STAE macro 276
START command, 3800 printer 227
start I/O (SIO) instruction

handling 89-90
reducing 89- 90·

STAX macro 277
STCP, command 41

380 IBM VM/370 System Programmer's Guide

STIMER macro 276
stop execution 40

ADSTOP comman d 32
BR EAK subcommand of DEBUG command 32

stop tracing
SVCTRACE comm and 35-36
TRACE command 35-36

storage
allocation 250

RSCS 331
CMS 245
dump

CMS 22
CP 18

dynamic paging 90-91
protection

fetch 77~ 78
storing 77-78

releasing 252
requirements

assembler 323
for CMS support of VSAM 312-313
for CMS/DOS 308

storage size
maximum, replacing directory entry

206-210
virtual machine, repla cing directory

entry 206-210
STORE command 41

summary 34- 35
storing

data
into CA W, SE T CA W subcomma nd of DEBUG

command 35
into control registers, STORE command

34-35
into CSW, SET CSW subcommand of DEBUG

command 35
into floating-point registers, STORE

command 34-35
into general registers, SET GPR

subcommand of DEBUG command 34-35
into general registers, STORE command

34-35
into PSW, SET PSW subcommand of DEBUG

command 35
into PSW, STORE command 35
S10RE command 34-35
S10RE subcommand of DEBUG command

34-35
information 37
storage protection 77-78

STOW macro 275
STRINIT macro 244-246
structure, of RSCS storage 331
SVC

handling
by user 258
commands entered from terminal

259-260
invalid SVC s 258- 259
linkage 257- 2 58
OS and DOS/VS SVC simulation 258
type of SVC 257- 258

in terrupt
CMS internal linkage SVCs 236
other CM S SVC S 236- 237

Page of GC20-1807-7 As Up~ated April 1, 1981 by TNL GN25-0829

problem state 87
supecvisoc state ~I

interrupts, RSCS 339
SVC 202· 257-258

search hierarchy 259
SVC 203 257-258
SVC 76, issuing from a second level virtual

machine 197
SVCOPSW (SVC old PSi) 69
SVCREGS (SVC interrupt save area) 50
SVCSECT (SVC interrupt work area) 72
SVCTRACE command 64.2-66

summary 35-36
usage 29-30

SWTHSA VE (DHKSTK save area) 50
SYNADAF macro 277
SYNADRLS macro 277
SYSJRL macro instruction 229
system

abend 20
dump spool file, reading 196-197
logical units 288-288.1
performance

for mixed mode foreground/back grou nd
systems 126 .

measurement 103
routine, abnormal termination of 20
symbol table, reading 197

SYSTEM command 39
system name table (DMKSNT) 132-142
System/370

T

control registers
allocation 345
assignments 346-347

extended control (EC) PSi 348
informa tion 345

tape label processing in CMS/DOS (574~-XX8)
309

tape label processing in CKS/DOS (5748-XE1)
309

TCLEARQ macro 277
terminal interruptions, in eKS 238
~GET/TPUT macros 277
TIME, macro 275
time manaqeme nt 76
time slice 84-85
t ime-of-day (TOD) clock 176

in attached processor environment 176
timers

clock comparator 177
interval timer 101,175-176
processor ti.er 176
pseudo timer 177
Time of Day (TOD) clock 176

TOO-clock accou nting inter face (5748- X EI)
204-204.1

TRACCURR (current trace table entry) 47-48
TRACE

command 40-41
summary 35-36
usage 23,24-25,26-27,29-30

TRACEND (end of trace table) 47-48
tracing qU- q 1

all user I/O operations, TRACE command
35-36

branches
TRACE command 35-36

CCis, TRACE command 35-36
clear channel instruction 44
CP trace table 44
external interrupts, TRACE command

35-36
information 37
instructions

TRACE comm an d 35-36
interrupts 44

TRACE command 35-36
I/O 44

interrupts, TRACE command 35-36
NCP BTU 44
privileged instructions, TRACE command

35-36
program interrupts, TRACE command 35-36
queue drop 44
real machine events, MONITOR comma nd

35-36
run user requests 44
scheduling 44
storage management 44
SVC interrupts

SVCTRAC E command 35-36
TRACE command 35-36

user operations, TRACE command 35-36
TRACSTRT (start of trace table) 47-48
transient area 263
transient area (CMS) 242
transient routines supported by CMS/DOS

304- 305
TTIMER macro
type (device)

U

276
60-62

UCS (Universal Character Set)
adding buffer images 217-218
supplied images 216-217

UNAUTHORIZE, VKCF subfunction 154
unexpected results 6

(~ also problem types)
reason for 24-25

unit record, devices, sharing
Universal Character Set (see
Universal Character Set (~
unproductive processing time
user directory

reading 197
updating 197

80-82
UCS)
UCS)
6

user doubleword, VMCF function 164-167
user options, replacing directory entry

206-210
user-controlled device interrupts 238
USER SECT (User A rea) 241

Index 381

Page of GC20-1807-7 As Updated Apr ill, 1981 by TNL GN25-0829

V
V=R machine, used with single processor

mode (5748-XEj) 102.2-102.3
VCHBLOK 53-54

VCHADD (virtual channel address) 53-54
VCHSTAT ~tatus) 53-54
VCHTYPE (type) 53-54

VCUBLOK 53-54
VCUADD (virtual control unit address)

53-54
VCOSTAT (status) 53-54
VCUTYPE (type) 53-54

VDEVBLOK 54-56
VDEVADD (virtual device address) 54-56
VDEVCFLG (virtual console flags) 54-56
VDEVCSW (virtual CSW) 54-56
VDEVEXTN (virtual spool extension)

54-56
VDEVFLAG (device dependent informatio~

54- 56
VDEVFLG2 (Reserve/Release fl ags) 54-56
VDEVIOB (active IOBLOK pointer) 54-56
VDEVREAL (real device block address)

54-56
VDEVRRB (address of VRRBLOK) 54-56
VDEVSFLG (virtual spooling flags) 54-56
VDEVSTA T (sta tus) 54-56

verifying existence of saved systems 202
virtual

block multiplexer channel option 102
console functions, DIAGNOSE instruction

184.1
operator's console 76
processor 76

virtual=real option 77-78,92-93,95-97
virtual console, operator 76
virtual devices, I/O 76
virtual interval timer assist 101,175-176
virtual machine assist feature

described 98-99
described (5748-XE1) 98.2
restrictions for use of 98-99
usage 98-99
used to reduce real supervisor state
time 98-99

used to reduce real supervisor~state
time (~748-1]1) 98.2

Virtual Machine Communication Facility
(VMCF) (~~~ VMCF)

introduction to 143
Virtual Machine Facility/370 (VM/370)

CMS 231-233
control program 73-230
device types in 192-194
DIAGNOSE instruction in 182
directory 76
load environment 124-125
program states 83
R SCS 327- 342

virtual machine storage size
maximum, replacing directory entry

206- 210
replacing directory entry 206-210

v irt ual machines
abend du mp 23
abnormal termination 8-13,15-17,23
creation 76

382 IBM VM/370 System Programmer's Guide

described 76
DIAGNO SE instruction usage 182
directory 76
disabled loop 8-13,15-17

procedure 26-27
disabled wait 8-13

procedure 15-17,29-30
dispatching scheme 84-85
en abled loop 8- 13,15-17

procedure 26-27
enabled wait 8-13

procedure 15-17,30
with real timer option 30
without real timer option 30

in terrupt, handled by C P 76
I/O management

dedicated devices 79-80
directory 79-80
mass storage volumes 79-80
shared devices 79-80
spooled devices 79-80

I/O operation 89-90
operating system 76
pe rformance

for time-shared multi-batch machines
126

options 93
PSW 83
shared segment operation 142
storage management

directory 76-77
virtual storage 76-77

time management
conversational user 76
nonconversational user 76
priority of execution 76

timers 175-176
unexpected results 8-13,15-17

procedure 24-25
Virtual Reserve/Release support, virtual

machine I/O management 79-80
virtual storage 76

management
CP 76-77
RSCS 335

virtual storage preservation
purpose of (5748-XE1) 78..1
SAVESEQ priority value (~748-IX~) 78.2
SAVESEQ priority value (5748-XE1) 78.2
V"SAVE option (5748-IX8) 7B.1
VMSAVE option (574B-XE1) 78.1

virtual storage preservation (~74B-!!~)
78.1

VM "onitor 110-125
collection mechanism 110-125
collection mechanism (5748-XX~) 110.1
collection mechanism (574B-XE1) 110.1
considerations 122-123
data records 357-365
data volume and overhead 123
header record 357-365
monitor classes 110-125
monitor classes (5748- XXB) 110.1
monitor classes (574B-XE1) 110.1
responses to unusual tape conditions

121-122
tape format and content 357-365

Page of GC20-1807-7 As Updated April 1, 1981 by TNl GN25-0829

V MBlOK 19,29,50-53
VCUSTRT (address of VCUBlOK table)

53-54
VMCHSTRT (address of VCHBlOK table)

53-54
VMCOMND (last command) 50-53
VMDSTAT (dispatching status) 50-53
VMDVSTRT (address of VDEVBlOK table)

54-56
VMEXTINT (external interrupts) 50-53
VMIOACTV (active channel mask) 50-53
VMIOINT (I/O interrupts) 50-53
VMPEND (interrupts pending) 50-53
VMPSW (virtual PSi) 50-53
VMRSTAT (running status) 50-53

VMCF (Virtual Machine Communication
Facility) 143

DIAGNOSE instruction 143,159,203-204
data transfer error codes 161-169
return codes 161-169

external interrupt 164-161
invoking subfunctions 159
protocol 148-149

I DEN TI PY 152
S EN D 1 4 8- 149
SEND/RECV 150
SENDX 151

VMCF (virtual machine communication
facility), special message facility 143

VMCF (Virtual Machine Communication
Facility)

subfunctions 153-169
AU TH 0 RI Z E 153
CANCEL 154
I DENTI FY 155
PRIORITY option 153,156-157,157
Q UIESCE 154
RECEIVE 158
REJECT 155
REPLY 158
RESUME 155
SEND 156-157
SEND/RECV 156-157
SENDX 157

VMCF (virt ual machine communicat ion
facility) , subfunctions, special message
facility 153

VMCF (Virtual Machine Communication
Facility)

subfunctions
SPECIFIC option 153
UNAUTHORIZE 154

table of subfunctions 144
user doubleword 164-161
using 145

applications 145
qeneral considerations 148
performance considerations 147
security 1q6-147

VMCPARM parameter list 159-162
VMFDUMP, command, usage 45-46
VMSAVE areas (5748-XX8) 78.2
VMSAVE areas (5748-XE1) 78.2
VMSAVE option (5748-XX8) 78.1
VMSAVE option (2748-XE1) 78.1
VM/370 (§~~ Virtual Machine Facility/370

(VM/370))

Volume Table of Contents (VTOC), support of
278- 279

VSAM

W

CMS support for 310
data sets

compatibility considerations 312-313
compatibility considerations

(5748-XX8) 310-312.1
compatibility considerations

(5748-XE1) 310-312.1
device support under eMS 310
macros supported under CMS 311-312
storage requirements for use under CMS

312-313
surport of 278-279

WAIT macro 273
wait state 27-29

CP
disabled wait 27-29
enabled wait 29

RSCS
virtual machine disabled wait 30-31
virtual machine enabled wait 31

virtual machine
disabled wait messages 29-30
enabled wait procedure 30

WRITE macro 278-279
iTO/WTOR macros 275

X
XCTl macro- 274
XDAP macro 273

Z
ZAP, comm and 41

3
3203 Model 4 and 5 Printer, forms control
and print buffer 223

3262
FCB (5748-XX8) 222.1
FCB (5748-XE1) 216.1,222-225
UCSB buffer images (5748-XX8) 216,221
UCSB buffer images (5148-XE1)

211- 213,216. 1
3270

virtual console interface 199-200
attribute bytes, how to supply

(5 7 4 8- X X 8) 1 91
attribute bytes, how to supply

(5 748- X E 1) 1 99- 200 • 4
full screen interactions (2148-XZ~)

199-200.4
full screen interactions (~148-!~1)

199-200.4
full screen mode (5748-!!~)

199-200.4

Index 383

Paqe of GC20-1807-7 As Updated April 1, 1981 by TNL GN25-0829

3289

full screen mode (5748-XEj)
199-200.4

selector pen limitations (5748-XX8)
199

selector pen limitations (5748-XE1)
199-200.4

adding FO Es (5748- XX8) 222
adding FOEs (~748-XE1) 222-225
names of supplied FOBs (5748-XX8)

222
names of supplied FOBs (5748-X~)

222-225
purpose of (5748-IX8) 222
purpose of (5748-IE1) 222-225

font offset buffer (5748-!X8)

384 IEM VM/370 System Programm er' s Gu ide

3704/3705 control program, saving 199
3800 printer 226- 228

as a dedicated device 226
as a real spooling device 227

CHANGE comman d 227
creating and modifying control tables

227-228
leading centrel tables 228
SPOOL command 227
START command 227
storing control tables 228

features
character arrangement tables 226-228
character modification 226-228
copy modification 226-228
FCB 226-228
forms overlay (flashing) 226-228
multiple copy printing 226-228

-- ------------ ---- - --------_.- Technical Newsletter This Newsletter No. GN25-0829

Date April 1, 1981

Base Publication No. GC20-1807-7

File No. 8370-36 (VM/370
Release 6_PLC 17)

Prerequisite Newsletters/ GN25-0492
Supplements

I BM Virtual Machine Facility /370:
System Programmer's Guide

© Copyright IBM CO!p. 1~72L1_9}3!_!97~1975, 1976, 1977, 1979, 1981.

This Technical Newsletter contains replacement pages for VM/370 Syste~
Programmer's Guide to support Release 6 PLC 17 of IBM virtual Machine
Facilit y/370.

Before inserting any of the attached pages into the !~L170 Syste~
f£~~amme£~2 Guide, read ~~~lYl!~ the instructions on this cover. They
indicate when and how you should insert pages.

Pages to
be Removed
Tltr~Edition Notice
Preface iii-vi
contents vii-xii
Summary of Amendments xiii-xvi
5-6
15-16
19-20
41-42
45-46
59:-64
71-72
79-80
91-92
99-102
107-108
111-112
115-116
127-128
133-136
139-148
153-154
157-166
171-172
181-190
193-1 94
197-198
201-212
219-222
225-228
245-252
255-256
261-262
273-274
277-280
287-294
297-298
311-314
321-~22
361-362
In d ex 3 67- 3 84

Attached Pages
to be Inserted*
Title, Edition Notice
Preface iii-vi
Contents vii-xiv
Summary of Amendments xv-xviii
5-6
15-16
19-20
41-42
45-46
59-64.2
71-72
79-80
91'-92
99-102.2
107-108
111-112
115-116
127-128
133-136
139-148
153-154
157-166.2
171-172.2,
181-190
193-194
197-198.2
201-212
219-222
225-228
245-252
255-256
261- 262
273- 274
277-280.2
287-294
297-298
311-314
321-322
361-362
Index 367- 384

IBM Corporation, Programming Publications, Department G60,
PO Box 6, Endicott, New York 13760

© Copyright IBM Corp. 1981 Printed in U.S.A.

Format of Trace Tab(e Entry

I ,
EX!":!_':l_~1 ~nt~rupt _)_DI\lK.PM j

01 -j k-'OJ' h X'OOOOOOOOOO'

i I I SVC interrupt I DMKSVr. I 02
I -- I I

I ~"" I
I

Program interrupt 03

I LOlerrupt
6 Code

ExternaTTIidPsW

SVC Old PSW

Program Old PSW

Machine Check DMKMCH 04 Machine Check Old PSW
Interrupt

I/O interrupt DMKIOS 05 I/O Old PSW + 4 CSW

Free Storage (FREE) DMKFRE 06 GR Oat entry

I ,~,.-.. """ I ~"" 07 GR Oat entry

Enter Scheduler

Queue drop

Run user

I 513rt1/0

DMKSCH

DMKSCH

DMKDSP

DMKCNS
DMKIOS
DMKCPI

Unstack 1/0 interrupt DMKDSP

i
Virtual CSW store i DMKVSI

I Testi/O

I Halt Devioe

Unstack

IOBLOK or
TROBLOK

NCP BTU

(See Note3l

Spinning on lock

SiG?
issued

Clear Channel
issued

DMKCPI
DMKIOS

DMKCNS
DMKIOS
DMKVSI
DMKCPI

DMKDS?

DMKRNH

DMKEXT

DMKVSI

08

09

OA

OB

DC

00

OE

OF

10

12

13

14

Value of VMRSTAT,
VMDSTAT, VMOSTAT,

RUNUSER value

from PSA

Address of 10BLOK

Address of VMBLOK

Address of VMBLOK

Address of IOBLOK

Address of IOBLOK

Address of VMBLOK

CAW

VirtualCSW

VirtualCSW

CAW

CAW

Address of
10BLOK or TROBLOK

Virtual CSW

ForCC = 1, CSW+4
otherwise tnis field is

12 not used

For CC = 1, CSW + 4
otherwise this field IS

For CC = 1, CSW + 4
otherwise this field is

not used

Interrupt Return
Address

lock word Contents

Status of
Condition Code = 1

Notes: 1. If the installation is running in attached processor mode, the identification code will be OR'd with an X'40' if the activity occurred on the attached processor.

Figure

If the installation is running ECPS, the identification code is OR'ed with an X'SO' if the activity occurred in microcode.

2. If the interrupt code (bytes 6 and 7) is OC, the contents of GRT4 are displayed. For all other interrupt codes, the contents of GRT5 are displayed.

3. Bytes 2 through 15 of a code 11 trace record represent a Basic Transmission Unit, sent or received by a 370413705. If CONSYSR/CONEXTR are zero, the
BTU was transmitted to the 3704mOS. If they are non-zero, the BTU was received. If CONTCMO equals X7700', this is an unsolicited BTU response.

CP Trace Table Entries

Abend Dumps

There are three, kinds of abnormal termination dumps possible when using
CP. If the problem program cannot continue, it terminates and in some
cases attempts to issue a dump. Likewise, if the operating system for

44 IBM VM/370 System Programmer's Guide

*If you are inserting pages from different Newsletters/Supplements and
jg~tical page numbers are involved, always use.,the pages with the
latest date (shown in the slug at the top of the page). -rhe pag~ with
the latest date contains the most complete information.

Changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

Summary of Amendments

This Technical Newsletter incorporates
technical and editorial changes.

changes reflecting minor

]ote: Please file this cover letter at the back of the publication to
provide a record of changes.

E : :::E"E: j,.eChnical Newsletter
This Newsletter r,lo. GN25-0492

August 1, 1979 / Date
Supplement No.

Base Publication No.

File No.
GC20-1807 -7

S370-36 (VM!370
Release 6 PtC 4)

Prerequisite Newsletters! None
Supplements

IBM Virtual Machine Facility/370:
System Programmer's Guide

© Copyright IBM Corp. 1972, 1973, 1974, 1975, 1976, 1977, 1979

This Technical Newsletter contains replacement pages for !~37Q Syst~~
££QgI~~I~ Gui£~ to support Release 6 PLC 4 of IBM virtual Machine
Facility/370.

Before inserting any of the attached pages into the VML170 Syst~~
££~g£~I~§ Guid~, read £S£efully the instructions on this cover. They
indicate when and how you should insert pages.

Pages to
be Removed
TItle;-Edition Notice
contents vii-xii
Summary of Amendments xiii-xvi
23-24
31-32
37-40
63-64
99-102
195-196
Index 367-384

Attached Pages
to be Inserted*
Title, Edition Notice
Contents vii-xii
Summary of Amendments xiii-xvi
23-24
31-32.2
37-40.2
63-64.2
99-102
195-196
Index 367-384

*If you are inserting pages from different Newsletters/Supplements and
identical page numbers are involved, always use the pages with the
latest date (shown in the slug at the top of the page). The page with
the latest date contains the most complete information.

Changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

Summary of Amendments

This Technical Newsletter incorporates the following changes reflecting:

• CP dump services for virtual machines
• 3031AP Extended Control-program Support

Note: Please file this cover letter at the back of the base publication
to-provide a record of changes.

IBM Corporation, Publications Development, Department D58, Building 706-2,
PO Box 390, Poughkeepsie, New York 12602

Printed in U.S.A.

Title: IBM Virtual Machine
Facility/370:
System Programmer's Guide

Order No. GC20-1807-7

Please check or fill in the items; adding explanations/comments in the space provided.

Which of the following terms best describes your job?

o Customer Engineer o Manager o Programmer
o Engineer o Mathematician o Sales Representative
o Instructor o Operator o Student/Trainee

How did you use this publication?

READER'S
COMMENT
FORM

o Systems Analyst
o Systems Engineer
o Other (explain below)

o Introductory text o Reference manual o Studen tf 0 Instructor text
o Other (explain) ___________________________ _

Did you find the material easy to read and understand? 0 Yes

Did you find the material organized for convenient use? 0 Yes

Specific criticisms (explain below)
Clarifications on pages
Additions on pages

Deletions on pages
Errors on pages

Explanations and other comments:

o No (explain below)

o No (explain below)

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC20-1807-7

Reader's Comment Form

Fold and tape Please Do Not Staple

I II II I

BUSINESS REPLY MAIL

FI RST CLASS PERMIT 40 ARMONK, NEW YORK

Attn: VM/370 Publications

Fold and tape

-------- ----- ---- - ---- - - _ ---------.-
International Business Machines Corporation
Data Processing Division

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department 058, Building 106-2
PO Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.s.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOld and tape

0
s.
~

" 0
a:
»
5'
::l
GIl ,..
5'
It

I
I
I
I -
I
I
I

CD s:
<

I s: -w ...,
I c

en
<

I CIt ...
CD

3

I ." ..
0 = ..
I»

3
3
CD ..
CIt~

G)
C s.:
CD

."
:::!.
::::s ...
CD
Q.

:;'
c
en
~

G)
(")
N
c;:>
-'
00
c
':'-' ...,

---- ----- -- ----- ---- ------ --- -----------_.-
International Business M __ cl:liri~ Corporation
Data Processing Division

tBM World Trade Amencas/Far East Corporation

350 Hamilton Avenue. White Piain", N.Y., U.S.A. 10601

to
S
< s: -eN
-...J
o

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032.0
	032.1
	032.2
	033
	034
	035
	036
	037
	038
	039
	040.0
	040.1
	040.2
	041
	042
	043
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064.0
	064.1
	064.2
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100.0
	100.1
	100.2
	101
	102.0
	102.1
	102.2
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166.0
	166.1
	166.2
	167
	168
	169
	170
	171
	172.0
	172.1
	172.2
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198.0
	198.1
	198.2
	199
	200
	201
	202
	203
	204
	205
	206.0
	206.1
	206.2
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280.0
	280.1
	280.2
	281
	282
	283
	284
	285
	286
	287
	288.0
	288.1
	288.2
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	_1
	_2
	_3
	_4
	replyA
	replyB
	xBack

