
by J. von Buttlar
H. Böhm
R. Ernst
A. Horsch
A. Kohler
H. Schein
M. Stetter
K. Theurich

z/CECSIM:
An efficient and
comprehensive
microcode
simulator
for the IBM
eServer z900

An IBM eServer zSeriesTM system uses
various types of microcode (firmware) that
implement functions such as the execution
of complex instructions in the CPUs, I/O
operations performed by the system assist
processors (SAPs), the management of logical
partitions (LPARs), and control by the support
element (SE). Each microcode component
must be verified by itself and in conjunction
with the others. Tight development schedules
and a very limited supply of expensive
engineering hardware make it desirable to
perform this verification in a simulation
environment. For the development of the z900,
a new microcode simulator, the z/CECSIM
(Central Electronic Complex Simulator), was
successfully implemented. Several microcode
components are connected in a single
simulation environment, thereby allowing
an unprecedented amount of development,
integration, and testing without the use of

engineering hardware. z/CECSIM creates a
virtual zSeries CEC on VM/ESA® or z/VMTM that
allows the simulation of zSeries microcode. It
executes the instruction stream as completely
as possible on the underlying hardware. Only
instructions that are newly introduced with the
system being developed or that perform a
microcode-internal function are simulated.
Additional software models mimic the behavior
of I/O and coupling channels. An optional SE
connection allows verification of interactions
between the CEC and its support element.

Introduction
In the IBM S/390* and zSeries* CECs there are two levels
of microcode. The lowest level is designated as millicode; it
implements functions that either are performance-critical
or require direct control of the hardware [1, 2]. Among
other tasks, millicode implements complex instructions and
interrupt handling, and participates in system functions

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 J. VON BUTTLAR ET AL.

607

such as reset and recovery. The millicode instruction set
consists of a subset of those z900 instructions that are
implemented directly in hardware, plus some special
instructions that are valid only in millicode mode.
Millicode is written in High-Level Assembler language.

The other level of microcode is designated as i390
(internal 390) [3]. It implements functions such as the
channel subsystem or power-on reset. The i390 instruction
set consists of all instructions implemented in hardware
and by millicode; i390 code is written in PL.8 (a dialect
of PL/I), C, and High-Level Assembler language.

The z900 CEC can run in two modes, basic and LPAR.
In basic mode, z/Architecture* software runs on top of
the microcode layers. In LPAR mode, a hypervisor
program manages logical partitions, each of which runs
z/Architecture software. From the millicode/i390
perspective, the hypervisor looks like a z/Architecture
program. Figure 1 provides an overview of the code layers.

During z900 development, z/CECSIM was used to verify
i390 code and millicode in conjunction with test programs
at the z/Architecture level. The environment can also be
configured to run the LPAR hypervisor program and to
connect to a support element (a regular laptop computer)
via TCP/IP, thereby verifying these code components as
well. Interactive debug and trace facilities allowed very
efficient code development and test. Figure 2 shows the
components of z/CECSIM.

Execution environment
Since i390 architecture consists of zSeries instructions,
VM/ESA* and z/VM* are ideal environments in which
to execute such code. This provides a tremendous
performance advantage over hardware simulation models
that interpret each instruction cycle by cycle [4, 5].
However, running i390 code on plain VM/CP is not
possible, since i390 uses many additional instructions that
are not provided by underlying hardware or VM/CP.
Moreover, some rules for storage access and interrupts
differ from those described in the z/Architecture Principles
of Operation [6]. z/CECSIM creates a virtual zSeries CEC
with all properties visible not only at the software level,
but also at the i390 and millicode levels. It is implemented
as a multitasking CMS application with each simulated
processor running in a separate thread [7]. To execute
the instruction stream at the software and i390 levels,
z/CECSIM uses the start interpretive execution (SIE)
instruction [8]. This instruction is normally used by
VM/CP and LPAR to run a virtual machine and a
logical partition, respectively. It gives z/CECSIM full
control over the simulated code, while, on the other hand,
the simulated code has no access to resources used by the
simulator. During z900 development, z/CECSIM was
installed and executed on 9672 G3–G6 systems.

Instruction execution
The execution of the instruction stream by SIE ends when
an instruction or condition is encountered that requires
intervention by z/CECSIM. This is usually an instruction
unknown to the underlying hardware, or it may be
an instruction that enables a pending interrupt. I/O
instructions always require interpretation with respect to
the simulated I/O configuration. The instruction that is to
be simulated is implemented in either z900 hardware or
millicode. In either case, z/CECSIM invokes a millicode
emulator (MCE) to perform the requested function.

Figure 1Figure 1

Structure of z900 code layers.

zSeries software (ESA/390 or z/Architecture)

LPAR hypervisor (z/Architecture)

i390 code

Millicode

Processor hardware

Figure 2

Memory images

for hardware

emulation

Structure of z/CECSIM.

Test cases

z/CECSIM standalone

z/CECSIM with SE connection

LPAR

hypervisor

TCP/IP

TCP/IP

Simulation

environment

for OSA-

Express

Coupling

link

model

I/O

channel

model

I/O model

Support

element

z/CECSIM

with

millicode

emulator:

virtual

CEC on VM

Memory

bus adapter

Channel

adapter

Internal

bus buffer

STI

multi-

plexor

STI

multi-

plexor

J. VON BUTTLAR ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

608

If the instruction is implemented in z900 hardware, it
is first interpreted by MCE. Then, z/CECSIM resumes
simulation of the processor using SIE right after the
interpreted instruction. An example of this is the LG
instruction (load 64-bit), which is not available on the
9672 on which z/CECSIM was run. However, z/CECSIM
maintains all 16 64-bit general registers such that a
succeeding STG instruction (store 64-bit) would deliver the
value previously loaded by LG. A 32-bit store instruction
(ST) would store the low-order part of the general register
without intervention by the simulator. Once z/CECSIM
itself runs on a z900, LG and STG are executed directly
on the underlying hardware, together with other
instructions that were introduced with the z900.

If the instruction to be simulated is implemented in
z900 millicode (e.g., start subchannel, signal processor),
MCE switches the state of the simulated processor to
millicode mode. It sets up the millicode instruction
address on the basis of the operation code. From then on,
millicode is interpreted until an MCEND (millicode end)
instruction is encountered. The processor state is switched
back to i390 or software mode, and z/CECSIM resumes
execution of the instruction stream using SIE. (See
Table 1.)

The z900 storage model in z/CECSIM
The storage of the z900 CEC is allocated from CMS free
storage. The portion of storage that contains i390 code
and millicode is known as the hardware system area
(HSA); the other portion is available to the z/Architecture
software. While a processor runs in i390 mode, it may not
access software storage directly, but only through special
instructions implemented in millicode. On the other hand,
software must not be able to access the HSA. In the case

of an access violation, an addressing exception is presented
to either the software or the i390 code.

The SIE instruction requires dynamic address
translation (DAT) tables to describe CEC storage. A
segment table is used to implement the access protection
mechanism described above. For each processor thread, a
separate segment table is constructed. The segment tables
of all processor threads point to the same page table. Since
each processor maintains its own mode (software mode,
i390 mode), only the storage segments that are accessible
in the current mode are marked valid. Whenever a
processor changes its mode, the entries in the segment
table are updated to reflect the correct valid/invalid state.

Millicode emulation
In addition to the 16 general registers defined in the
z/Architecture Principles of Operation [6], there is a set of
16 millicode general registers (MGRs). While the processor
runs in millicode mode, instructions operate on the MGRs
instead of the software general registers. There is also
an extra condition code for millicode mode.

The millicode architecture defines special rules for
storage accesses in millicode mode. Depending on the
base register, an address is treated either as a program
logical address or as a hardware system area address.
Other address types such as a program real address and
special access modes such as “test for store exceptions
without actually storing” can be specified using operand
access control registers (OACRs) that are associated
with four of the available base registers.

There are about 70 millicode-only instructions that
facilitate bit string manipulation, access to the software
general registers, access to internal processor registers,
and communication with other components of the system.
These are executed by hardware and are not available to

Table 1 Instruction execution.

z/Architecture program Millicode program Mode of execution

. . .
LG R0, COUNTER Instructions

interpreted
by MCE

AGHI R0, 1
STG R0, COUNTER

LA R2, ORB Executed
LH R1, SCHNUM on underlying
ICM R1, B '1100 ' , � X '0001 ' hardware

SSCH 0(R2) RSR MR12, MWORK@
. . .
MCEND

Millicode of SSCH
interpreted by MCE

BZ IOSTARTED Executed on
BO OFFLINE underlying hardware
. . .

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 J. VON BUTTLAR ET AL.

609

zSeries software. Thirty percent of the instructions in the
current millicode load are such special millicode instructions.

The special handling of storage operands and the high
number of millicode-only instructions make it undesirable
to execute millicode in a virtual machine environment;
therefore, the millicode emulator was developed as an
independent component. It interprets all machine
instructions instead of executing them. This also has the
advantage that MCE can be used as a standalone tool for
verification of millicode. In this mode it is not tied to the
VM environment, but can be used on various kinds of
workstations. MCE was developed with both standalone
and z/CECSIM usage in mind.

MCE emulates the behavior of one or more z900
processors as seen by software, i390 programs, and
millicode. The software and i390 view of the state of a
processor is the set of architected registers as described in
the z/Architecture Principles of Operation [6]. The millicode
view of the processor state is primarily a set of 256 64-bit
registers, designated as the R-unit. The architected z900
registers are a subset of the R-unit. Since MCE is
designed for the verification of microcode, it consists
internally of components such as instruction fetch, decode,
execution, address translation, and storage access. MCE
does not implement a cache and has no translation
lookaside buffer (TLB). For performance reasons,
however, instruction buffers are implemented. The
external interfaces of MCE consist of access to the R-unit
data within MCE, functions for storage access that must
be provided outside MCE, and a function to step a
processor instruction by instruction.

In the z/CECSIM environment, the z/CECSIM kernel
controls MCE. When an instruction or an interrupt is
encountered that is implemented in millicode, the R-unit
is initialized with the current state of the processor,
including the instruction address. Then MCE is called to
execute instruction steps. The first step performs millicode
entry for the instruction or interrupt to be executed.
Stepping the processor ends as soon as it is no longer in
millicode mode. Storage access requests are handled by
z/CECSIM. Since each processor is implemented as a
separate thread, there are also multiple instances of MCE.
Communication between the processors and signaling of
asynchronous events are accomplished by queues that are
similar to POSIX** message queues.

Standalone MCE has a storage model and an attached
monitor for architecture verification programs (AVPs).
AVP is a test-case format that has been used for hardware
verification in simulation and on real hardware [9]. The
AVP specifies the initial state and the expected final state
of processor and storage. By convention, a program status
word (PSW) of all zeros ends an AVP. This is normally
achieved by a supervisor call (SVC) interrupt or a
program interrupt. Starting from the initial state, MCE

executes instructions until the ending condition is met.
Then MCE compares the actual state of processor and
storage with the expected state. There exist libraries of
AVPs that are carried over from previous projects. In
addition, there is an AVPGEN program that generates
AVPs for many architected functions. The syntax for
AVPs was extended for MCE to allow testing of multiple
processors and the initialization of hardware registers
outside the processor, e.g., in the memory bus adapter
(MBA) or clock chip. An error-inject feature was also
added. It allows the alteration of registers or storage when
specified conditions are met during the run of a test case.
Standalone MCE runs as a single thread. The processors
are stepped in a round-robin fashion. After one
instruction is executed on each processor, interprocessor
communication and asynchronous events are handled.

Standalone MCE is used early in the development
phase of a new processor. A significant part of the
millicode is needed for hardware verification in simulation.
Most of this millicode is pre-tested in unit simulation on
the standalone MCE. The performance of MCE is about
10 000 times better than the performance of a hardware
simulator. The result of a typical AVP test case is
available almost instantaneously. Moreover, the traces
generated by MCE are more readable for a code
developer than traces from a hardware simulator.

The focus of the tests for which MCE is used within
z/CECSIM is different. From a millicode point of view,
the interfaces between millicode and other code—i390,
software, and LPAR hypervisor—are the test target. In
this environment, only instructions that can be intercepted
in the VM environment are passed to MCE. These are
primarily the special i390 instructions that serve as an
interface between i390 code and millicode, and complex
z/Architecture instructions such as I/O instructions. All of
the general ESA/390 instructions are directly executed on
the hardware of the VM system, and the millicode for
these instructions is not used (e.g., translate and test,
move long extended).

Connection to the support element (SE)
The support element of the z900 is a laptop computer
running an OS/2* application that controls and monitors
the CEC [10]. Two modes of operation are available with
z/CECSIM.

The standalone mode simulates millicode, i390, and
zSeries programs. SE functions are performed by
z/CECSIM itself. For example, microcode loads that are
normally sent by the SE are read from CMS files. To
simulate a power-on reset, z/CECSIM generates all
required data packets (service words) and passes them
to i390 code.

J. VON BUTTLAR ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

610

In the other mode, z/CECSIM is connected to an SE via
TCP/IP. Instead of simulating and interpreting service
words itself, z/CECSIM acts as a transport layer for
communication between the SE and processors. Microcode
loads are read from the SE hard disk, as on a real system,
and sent to the simulated CEC. Power-on reset simulation
includes loading and initialization of the LPAR hypervisor,
thereby testing all of its interactions with the SE, i390
code, and millicode.

Most SE functions that involve the CEC can be tested;
these include alter-and-display operations, debug functions,
channel service and diagnostic operations, concurrent
application of microcode fixes, and system event traces.

I/O models
To simulate I/O operations, z/CECSIM provides high-level
software models that mimic the operations of memory bus
adapters (MBAs) and coupling links (intersystem channels,
or ISCs). I/O channels such as ESCON* and FICON* are
simulated to the extent that status information defined by
test cases is returned. This approach satisfies the needs of
CEC microcode verification. A model that is based on the
actual hardware description (e.g., VHDL) would execute
the real logic, but it would be far too slow for an efficient
microcode simulation environment. The I/O models
implemented in z/CECSIM allow execution of all affected
code paths in i390 and millicode and verification at the
z/Architecture level. The components of the I/O software
model are described below.

z900 I/O structure
Figure 3 shows a simplified view of the treelike z900 I/O
structure [11]. The root of this tree consists of four MBAs
that perform direct memory access (DMA) operations. At
one end, these chips are connected to the z900 cache
logic and its processors. At the other end, each MBA is
connected via six high-speed self-timed interface links
(STI, 1 GB/s) to multiplexor chips. These, in turn, split
one high-speed STI link into four STI links with lower
speed (500/333 MB/s). The lower-speed links, which are
compatible with the STI links used in 9672 G5 and G6
systems [12], connect to various I/O cards:

● OSA-Express (two high-speed network interfaces,
e.g., Ethernet, ATM).

● FICON (two Fibre Channel interfaces).
● ESCON (16-port legacy fiber optic connections to

external control units).
● ISC-3 (fiber optic coupling connection to other zSeries systems).

On each of these I/O cards, some further multiplexing
(ESCON) or daisy-chaining (OSA-Express, FICON) takes
place. Each of the channels consists of some interface
logic (channel adapter) and a channel engine (a processor

that executes channel microcode). In addition to the
elements shown in Figure 3, STI links themselves can be
used as very fast coupling connections (integrated cluster
bus, or ICB) and connections to a cage containing legacy
I/O (internal-bus-based I/O cards, e.g., parallel channel
adapters).

Models for MBA and multiplexor chips
The I/O model uses a register-based approach; i.e.,
each I/O unit type is described by its register contents.
This approach is sufficient for code verification, since from
a microcode point of view the only means for interaction
with I/O hardware is reading and writing registers. The
characteristics of each type of hardware unit, such as
register layout and register manipulation during command
execution, are described in lookup tables. This concept
offers a convenient way to set up an I/O configuration
and also to implement new I/O unit types. The I/O
configuration used in simulation is set up during
z/CECSIM start by examining the internal configuration
control blocks that are used also with zSeries hardware.

All accesses to I/O components are initiated by
millicode instructions. Therefore, in simulation, the

Figure 3

IBM eServer z900 I/O structure.

PCI

STI-to-

PCI

adapter

PCI

STI-to-

PCI

adapter 333 MB/s

ISC-3 ISC-3

ISC-3

333 MB/s 333 MB/s 500 MB/s

STI links

level 2

Cards

OSA-Express/FICON

0

1
2

3

Self-timed

interface

(STI)

STI links

level 1

ESCON (16 ports)

STI multiplexor STI multiplexor STI multiplexor

STI-to-IB

adapter

In
te

rn
a
l

b
u
sChannel

adapter

Channel

adapter

Channel

adapter

Channel

adapter

STI multiplexor

Memory bus adapter (MBA)

0 1 4 5 62 1 GB/s

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 J. VON BUTTLAR ET AL.

611

millicode emulator invokes the I/O model and passes
the hardware address and command information. The
command is then routed to the specified MBA [i.e., the
ReceiveCommand� method of the addressed MBA object
is called; even though the model is implemented in ANSI C,
the terminology of object-oriented programming is well
suited to describe its structure].

If the command is not addressed to the MBA itself, it is
transferred to the attached STI multiplexor by calling its
receive method. To address STI multiplexor objects, the
MBA contains a list of pointers to all objects attached to
its links. A null pointer here indicates that the addressed
object (i.e., the adapter) does not exist. Before finally
calling the multiplexor receive method, the MBA object
checks the link status (operational vs. not operational)
using the register contents of the simulated MBA
hardware. If the link to the addressed adapter is not
operational or the addressed adapter does not exist at all,
the command is rejected, and an error message is logged.
Assuming that the adapter works without any error, the
same procedure is performed for the next levels until
the control block reaches the correct I/O model
object.

Next the command is executed (i.e., the ExecuteCommand
method of the addressed object is called), and register
data is read or modified. These modifications trigger
further actions in the I/O model. For example, setting a
bit indicating an error results in summary bits being set
in other registers in the simulated hardware. Finally, an
interrupt condition is signaled to a processor thread and
recognized by millicode.

Model for standard I/O channel paths
From the i390 perspective, an I/O channel is triggered by
writing to its channel communication area (CCA), which
is a register located in the channel adapter logic. The
channel reads the incoming command, which is typically a
start function, initiated by a start subchannel instruction.
Processing includes DMA operations to fetch the channel
program and to fetch and/or store data. Also, the channel
updates the control blocks of the channel subsystem to
present status, such as channel end/device end. Finally, the
channel indicates completion of the operation by writing
to the CCA register. This condition is recognized by
millicode.

Within the I/O model, there is a separate component
that takes the role of the channel. It receives control when
a command is written to the CCA register. This channel
model reads the CCA and generates status information by
updating control blocks in CEC storage. It responds to the
CEC by writing to the CCA register. No channel program
is fetched or interpreted, and no data transfer occurs. The
model allows arbitrary responses to be predefined (e.g.,
unit check, channel control check) that cause i390 and/or
millicode to execute any desired code path.

To verify the real channel microcode in cooperation
with i390 code, the I/O model contains a TCP/IP network
interface to attach channel code simulators. The protocol
used on this interface is the message protocol actually
used on the STI links, with an additional wrapper around
the STI information packets. Today, this interface is
exploited by OSASIM, a simulation environment for
OSA-Express microcode.

Models for coupling channels
With the z900, a new type of coupling channel called
ISC-3 was introduced [13]. It did not follow former
designs, in which the channel consisted of an optical
module, a processor, control logic, and memory. With
the new design, logic was moved to i390 code on the
SAP, which eliminated the need for an extra processor.
As a result, the former ISC code had to be completely
redesigned to fit the new ISC-3 environment.

Figure 4 shows the interfaces of an ISC-3. The ISC-3
receives sense/control commands through the CEC
interface. On the inbound optical link, it receives frames
from the ISC-3 on the other end of the link. The ISC-3
sends DMA and internal control requests to the CEC. In
addition, it sends frames on the outbound optical link to
the ISC-3 on the other end of the link.

z/CECSIM implements a software model of the ISC-3
hardware. This model is triggered by z/Architecture
coupling instructions, e.g., send message. It simulates the
entire ISC-3 code, including the transfer of all status
information and data. Moreover, the ISC-3 model not only
mimics the functional behavior of ISC-3 hardware, but it can

Figure 4

Connection between CEC and ISC-3.

ISC-3

ISC-3

CEC interface

Sense/control

Sense/control

ICTRL, DMA, LCW

ICTRL, DMA, LCW

Link interface

Outbound link

Outbound link

Inbound link

Inbound link

J. VON BUTTLAR ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

612

also be set up to inject all kinds of hardware errors that
are reflected to ISC-3 code.

Numerous test cases were written to verify ISC-3
code. For basic verification, the test cases consisted of
z/Architecture programs that issued coupling instructions
and verified the results at the software level. However, a
number of complex scenarios had to be tested as well:

● Valid states that are difficult to generate on the real
hardware, e.g., due to timing behavior.

● Storage errors that occur when ISC-3 access to CEC
storage fails. The ISC-3 code implements complex code
flows to deal with such situations.

● Errors on the optical link that can occur when the ISC-3
receives data.

● Hard-stop errors, where ISC-3 hardware is frozen and
recovery by ISC-3 code is required.

● Bugs in the hardware that are circumvented by
microcode.

All of the above situations have to be covered by ISC-3
code, but occur only under very rare circumstances. For
these cases, the ISC-3 model provides a REXX interface.
A REXX program is associated with a test case. The
ISC-3 model invokes this program at a specified event
(e.g., when an outbound frame is about to be sent, or
when sense/control operation occurs). The REXX
program may then modify incoming or outgoing data. This
unusual behavior must be handled correctly by ISC-3
code. In addition to its use with z/CECSIM, the ISC-3
model can be run on a workstation by itself. This
environment, which provides a source-level debugger,
was used for basic tests of ISC-3 code.

Several test programs have been used with z/CECSIM.
In most cases, an S/390 test program capable of running
on the hardware was used to execute test cases for I/O
and coupling operations at the z/Architecture level. A
variety of standalone assembler programs have been run,
as well as the I/O configuration program (IOCP). To
ensure continuous quality of the delivered code, test-case
packages were run as a regression test.

Concluding remarks
With z/CECSIM, the eServer z900 CEC microcode
community made a major step forward in the area of code
testing, integration, and verification. For the first time it
was possible to run millicode, i390, LPAR hypervisor,
and support-element code in a common environment,
independently of the availability of target hardware. This
environment was available months before the first z900
hardware was installed on the test floor. There is still a
need to verify microcode on engineering hardware,
especially for I/O device operations, performance
measurements, complex multiprocessing, and hardware

error recovery scenarios, but the majority of the code
paths can now be run and debugged in simulation. The
trace facilities allowed a detailed path-length analysis for
performance-critical operations (namely, the execution of
start subchannel). An investigation of the code problems
after completion of the project showed that in those areas
where simulation test-case packages were run regularly,
80% of the problems were detected before the code
reached the test floor. Only 20% of the problems had
to be debugged on the real machine. This result also
supports the need to extend test-case packages to further
increase simulation coverage in the future.

Because z/CECSIM is a VM application, it is available
to all code developers and testers. It was used by all
z900 development locations: Endicott, New York,
Poughkeepsie, New York, Boeblingen, Germany, and Austin,
Texas. Microcode development could deliver code to system
integration at a very high quality level that effectively
reduced the bringup and testing times. It was estimated that
this approach of system-wide microcode simulation gained
about three months in the bringup and integration phase
compared to previous systems.

Since the major part of the i390 instruction stream is
executed within the native performance capabilities of the
underlying VM system and does not require interpretation,
z/CECSIM is a highly efficient debugging environment.
The simulation of a power-on-reset on z/CECSIM with an
SE connection takes less than twice the time needed on
actual hardware. It is even faster if no SE connection is
required. A hardware model would run for many hours,
and thus is not suitable for general-purpose debugging.
For users running small test programs, z/CECSIM appears
to be nearly as fast as the real system. Many code
developers were able to complete their work by using
only the simulation environment, without the need for
expensive and limited engineering hardware. This has
resulted in a reduction in the number of engineering
systems needed for z900 development.

The modular concept allows various user groups to
tailor the environment to their specific needs. While SE
code developers need the SE connection of z/CECSIM all
the time, i390 developers can often use the standalone
setup of z/CECSIM for simplicity. Millicode developers
normally use MCE standalone before testing their code
on z/CECSIM. In addition, z/CECSIM is used to create
memory images after simulating power-on reset. This
machine state is then loaded into hardware simulation
models for further tests. This concept is highly efficient
in early unit test phases as well as during later stages of
system integration. Furthermore, automatic regression
runs allow verification of the latest code levels during
night shifts. Results are available for analysis in
the morning.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 J. VON BUTTLAR ET AL.

613

In summary, z/CECSIM has proven to be an effective,
comprehensive, and powerful simulation environment for
the microcode development of the IBM z900. For the
development of future zSeries systems, z/CECSIM itself
runs on 64-bit z/VM on a z900. It uses an IBM-internal
version of CMS that includes very basic support for
z/Architecture and 64-bit addressing. In this environment,
z/CECSIM uses the z/Architecture version of SIE, and
the 64-bit instructions introduced with the z900 can be
executed directly on the underlying hardware. Instructions
such as LG, AG, and STG no longer have to be simulated,
which is very important once they are heavily exploited by
i390 code. Also, very large CECs can now be simulated
because the 2GB storage limit no longer applies. These
and other enhancements further improve and extend
the simulation capabilities for follow-on systems of
the IBM z900.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Institute of
Electrical and Electronics Engineers, Inc. (IEEE).

References
1. C. F. Webb and J. S. Liptay, “A High-Frequency Custom

CMOS S/390 Microprocessor,” IBM J. Res. & Dev. 41, No.
4/5, 463– 473 (1997).

2. M. A. Check and T. J. Slegel, “Custom S/390 G5 and
G6 Microprocessors,” IBM J. Res. & Dev. 43, No. 5/6,
671– 680 (1999).

3. J. Maergner and H. R. Schwermer, “High Level
Microprogramming in I370,” The Design of a
Microprocessor, W. G. Spruth et al., Eds., Springer, New
York, 1989, pp. 303–316.

4. B. Wile, M. P. Mullen, C. Hanson, D. G. Bair, K. M.
Lasko, P. J. Duffy, E. J. Kaminski, Jr., T. E. Gilbert,
S. M. Licker, R. G. Sheldon, W. D. Wollyung, W. J.
Lewis, and R. J. Adkins, “Functional Verification of the
CMOS S/390 Parallel Enterprise Server G4 System,” IBM
J. Res. & Dev. 41, No. 4/5, 549 –566 (1997).

5. J. Kayser, S. Koerner, and K.-D. Schubert, “Hyper-
Acceleration and HW/SW Co-verification as an Essential
Part of IBM eServer z900 Verification,” IBM J. Res. &
Dev. 46, No. 4/5, 597– 605 (2002, this issue).

6. IBM Corporation, z/Architecture Principles of Operation,
Order No. SA22-7832; available through IBM branch
offices.

7. IBM Corporation, z/VM CMS Application Multitasking,
Order No. SC24-5961; available through IBM branch
offices.

8. IBM Corporation, IBM 370-XA Interpretive Execution,
Order No. SA22-7095; available through IBM branch
offices.

9. A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I.
Nair, B. Rosen, M. Mullen, J. Yoon, R. Armoni, D. Geist,
and Y. Wolfsthal, “AVPGEN—A Test Generator for
Architecture Verification,” IEEE Trans. Very Large Scale
Integration (VLSI) Syst. 3, No. 2, 188 –200 (June 1995).

10. IBM Corporation, 2064 zSeries Support Element Operations
Guide 1.7.1, Order No. SC28-6811, available through IBM
branch offices.

11. D. J. Stigliani, Jr., T. E. Bubb, D. F. Casper, J. H. Chin,
S. G. Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick,
and C. H. Whitehead, “IBM eServer z900 I/O Subsystem,”

IBM J. Res. & Dev. 46, No. 4/5, 421–445 (2002, this issue).
12. J. M. Hoke, P. W. Bond, T. Lo, F. S. Pidala, and G.

Steinbrueck, “Self-Timed Interface for S/390 I/O
Subsystem Interconnection,” IBM J. Res. & Dev. 43,
No. 5/6, 829 – 846 (1999).

13. T. A. Gregg and R. K. Errickson, “Coupling I/O Channels
for the IBM eServer z900: Reengineering Required,” IBM
J. Res. & Dev. 46, No. 4/5, 461– 474 (2002, this issue).

Received September 8, 2001; accepted for publication
February 12, 2002

J. VON BUTTLAR ET AL. IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002

614

Joachim von Buttlar IBM Deutschland Entwicklung
GmbH, Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(joachim_von_buttlar@de.ibm.com). Mr. von Buttlar is an
Advisory Engineer in the zSeries I/O Microcode Development
group. He received an M.S. degree in computer science
(Dipl.-Inform.) from the Technical University of Berlin in
1983. In 1984, he joined the IBM development laboratories in
Boeblingen, Germany, to work on microcode development for
the IBM 3092, 9221, and 9672 systems. During the 9221
project from 1990 to 1991, he worked as Liaison Engineer on
international assignment in Endicott, New York. In 1997 he
initiated the z/CECSIM project, developed its concepts, and
implemented the simulator’s kernel. His current responsibility
is z/CECSIM for the next generation of zSeries systems.

Harald Böhm IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(hboehm@de.ibm.com). Dr. Böhm received a Ph.D. degree in
mathematics from the University of Karlsruhe in 1984, with
research experience in numerical analysis. He subsequently
joined the IBM development laboratories in Boeblingen to
develop software for numerical computations. Since 1987 his
activities have involved the verification of processor hardware
and the development of microcode for S/370, S/390, and
zSeries servers.

Reinhard Ernst IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(rernst@de.ibm.com). Dr. Ernst received M.S. and Ph.D.
degrees in physics from the University of Bonn, Germany,
in 1997 and 2000, respectively. In 2000 he joined the IBM
development laboratories in Boeblingen. His current
responsibilities are i390 code development in the I/O
microcode group and the I/O model for z/CECSIM.

Axel Horsch IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(ahorsch@de.ibm.com). Mr. Horsch received a Dipl.-Ing.
degree in electrical engineering from the Ingenieurschule in
Augsburg, Germany, in 1965. That same year he joined the
IBM development laboratories in Boeblingen as a test
engineer to work on system testing of IBM 370/125, 4331,
4361, and 9370. He was responsible for system I/O attachment
testing, system microcode testing, and system microcode error
projections. In 1989 he joined the S/390 system microcode
development group. He is currently responsible for the design
and development of i390 code for channel service functions
and for the i390 code simulation of all S/390- and
z/Architecture-based systems.

Andreas Kohler IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(akohler@de.ibm.com). Dr. Kohler received M.S. and Ph.D.
degrees in physics from the University of Stuttgart, Germany,
in 1993 and 1999, respectively. In 1999 he joined the IBM
development laboratories in Boeblingen, Germany. His
current responsibilities in zSeries I/O microcode development
include test tools, simulation, and error-recovery code.

Herbert Schein IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(schein@de.ibm.com). Dr. Schein studied at the Technical
University of Vienna, Austria, where he received a Dipl. Ing.
degree in mathematics in 1972 and a Dr. Ing. degree in
computer science in 1973. In 1974 he joined the IBM
development laboratories in Boeblingen, Germany. He
initially developed microcode for S/370 disk attachments, and
subsequently worked in various tool projects. He is currently
involved in the development and continued enhancement of
components for z/CECSIM.

Michael Stetter IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(stetter@de.ibm.com). Mr. Stetter is a Staff Software Engineer
in the zSeries system simulation group. He graduated from
the University of Ulm, Germany, in 1997 with a diploma
degree in mathematics and economics. In January 1998 he
joined the IBM development laboratories in Boeblingen,
Germany. He has worked in a variety of system simulation
assignments, and is currently I/O microcode simulation team
leader and z/CECSIM representative for the next generation
of zSeries systems. Mr. Stetter is a PMI�-certified project
management professional and received the master certificate
in project management from George Washington University,
Washington, D.C.

Klaus Theurich IBM Deutschland Entwicklung GmbH,
Schoenaicherstrasse 220, 71032 Boeblingen, Germany
(theurich@de.ibm.com). Mr. Theurich studied electrical
engineering at the Fachhochschule Esslingen, graduating in
1987. He joined the IBM development laboratories in
Boeblingen that same year to work on S/370 system testing
and development for the Parallel Processing Compute
Server (PPCS), and on hardware development for the first
intersystem channel (ISC). In 1994, he joined the S/390 I/O
microcode development effort. During an international
assignment from 1998 to 2000 in Poughkeepsie, New York,
he worked on a new concept for simulation of coupling
microcode. He is currently responsible for investigating the
Infiniband simulation concept.

IBM J. RES. & DEV. VOL. 46 NO. 4/5 JULY/SEPTEMBER 2002 J. VON BUTTLAR ET AL.

615

