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SO(2) INVARIANTS OF A SET OF 2 x 2 MATRICES 

HELMER ASLAKSEN 

Abstract. 

We give an alternative proof of a result due to Sibirskii on the polynomial invariants ofSO(2, C) (or 
SO (2, R)) acting on M(2, C) (or M(2, R)) by conjugation. We show that the invariants are given in 
terms of traces and Pfaffians, and we find a minimal basis which is a minimal complete set of 
invariants in the real case. 

The polynomial invariants of 0(2, C) (or 0(2, R)) acting on M(2, C) (or M(2, R)) 
by conjugation has been studied by Sibirskii [8]. In this paper we study the 
invariants when restricting to SO (2, C) (or SO (2, R)). After submitting a first 
version of this paper, we were informed by Professor Sibirskii that this case had 
already been studied by him. The results in this paper are equivalent to results in 
[10, pp. 126-127], but our approach is different. We essentially follow the 
approach in [8], instead of using the resuls of [9]. 

Let {jj} be a set of invariants. We will call {jj} a basis if any invariant can be 
expressed polynomially in the frs. We will call {jj} a functional basis if any 
invariant can be expressed as a function (not necessarily a plynomial) in the Jj-s. 
We will call {Jj} a complete set of invariants if they separate orbits (i.e., conjugacy 
classes). 

The starting point is the following results from [8], which was later proved 
independently by Procesi [5]. 

THEOREM 1. Let {A;} be a set of complex (or real) n x n matrices. The invariants 
of the form tr (Ai' AD, where P is a monomial in the Ai and Aj, form a basis for the 
O(n, C) (or O(n, R)) invariants of the Ai' In the real case the invariants also form 
a complete set of O(n, R) invariants. 
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The fact that they form a basis was proved for the case of one matrix by 

Gurevich [2], while the fact that they form a complete set of inariants is due to 
Pearcy [4]. The problem is now to reduce these trace expressions and find 
a finite basis. In the 2 x 2 case, Sibirskii proved the following. 

THEOREM 2. Let {Ai} be a set of complex (or real) 2 x 2 matrices. 
1.	 The invariants 

tr Ai' trAiAii ~ j), tr AiAj{i ~ j), tr AiAjAj(i =1= j), 
tr AlAjAk, tr AiAjAk, tr AiAjAW < j < k) 

form a minimal basis for the 0(2, C) (or 0(2, R)) invariants of the Ai' The 
invariants tr AiAjAk{i < j < k) can replace any ofthe last three types of invari
ants. 

2.	 The invariants 

tr Ai' tr AiAii ~ j), tr AiAj(i ~ j), tr AiAjAj(i =1= j), tr AiAjAk(i < j < k) 

form a minimal functional basis of 0(2, C) invariants of the Ai' In the real case 
they also form a minimal complete set of 0(2, R) invariants of the Ai' 

In the complex case the invariants do not separate orbits, as the following 
example from [8] shows. Set 

2 k (k + 1 ki)i)
A = ( i O· Then A = ki 1 - k ' 

so tr Ak = 2. Hence the invariants do not separate A and 12 , The reason for this is 
essentially that 0(2, C) is non-compact. 

It is well known from classical invariant theory that when considering SO (2) 

invariants we must include certain determinants. We will first observe that these 
determinants can be expressed in terms of traces and Pfaffians of the Ai' We 
define the Pfaffian of a (not necessarily skew-symmetric) 2 x 2 matrix by 

pf(a i) = a t2 - a2t · 

It is easy to show that 

pf(lAg) = detgpfA, 

so the Pfaffian is an SO (2) invariant but not an 0(2) invariant. 
We want to show 

THEOREM 3. Let {A;} be a set of complex (or real) 2 x 2 matrices. 
1.	 The invariants of the form tr P(Ai, AD and pfP(Ai, AD where P is a monomial in 

the Ai and Al,form a basisfor the SO (2, C) (or SO(2, R)) invariant of the Ai' In 
the real case they also form a complete set of so (2, R) invariants of the Ai' 

SO (2) INVARIANTS OF A SET OF 2 x 2 MATRICES 

2.	 The invariants 

tr Ai' tr At, tr AiAii <j),pf Ai and pf AiAj(i <j) 

form a minimal basis (and a minimal functional basis) for the SO (2, C) invariants 
of the Ai' In the real case they also form a minimal complete set of so (2, R) 
invariants of the Ai' 

Part 1 will follow from classical invariant theory, using an approach similar to 
Procesis [5]. Let K denote R or C. We can first reduce the problems to finding the 

multihomogeneous invariants of order (dt, ... ,dk ), and then reduce further to 
studying multilinear invariants of (K 2 ® K 2)r&d, d = L~= t di • We will use the 

correspondence 

u ® v --+ ud 

between M(2, K) and K 2 ® K 2 and we can assume that Ai = Ui ® Ui. The invari
ants of (K2 ® ~ 2)r&d are generated by inner products and determinants, i.e., 

invariants of the form 

(1)	 ¢(X t ® ... ® X2d) = 

<Xii' X (2 ) '" (X i21 _ l' X i2Z ) [X i2l + l' Xi21 +2] ... [X i2d _ I' Xi 2d ] 

where <x;,xj) = xlxj 

and [xi,xj] = det(xi,xJ 

Here (Xi' Xj) denotes the matrix with columns Xi and Xj' Now we observe that 

(2)	 <Xi' Xj) = xlXj = tr XiXj = tr Xi ® Xj 

[Xi,Xj] = det (Xi' Xj) = pfXiXj = pfxi®xj, 

and we claim that all invariants of type (1) can be written in terms of traces and 

Pfaffians of the Ai' Consider <Wi> w~) <w2 , w~) ... <WI, W't) where wiis either ujor 
vj and 

U.	 if w· = v· , J 1 ]
W i = .{ vj if Wi = uj • 

Then (w't ® Wt)(w~ ® w2 ) ••• (wi ® wz) = Wit Wit W~ w~ ... wiwj = <Wt, w~) ... 
<w l - t , wi) W't wj. Taking the trace we get 

<Wt, W~) <W2, w~) ... <WI, W~) = tr [(Wit ® Wt)(W~ ® w2) ... (wi ® wz)]. 

If we instead take the Pfaffian and use (2), we get 

<Wt, w~) ... <WI - t , w;) [Wit, wtJ = pf[(W't ® Wt) (W~ ® W2) ... (wi ® wz)]. 
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Since the products involving an even number of determinants are 0(2) invariant, 
and hence expressible in terms of traces, we need only consider invariants of type 
(1) with one determinant factor. Since w; ® Wi = Aj or Aj, we see that the traces 
and Pfaffians of P(A i , AD generate the ring of SO (2) invariants. 

We will now prove that the invariants separate orbits in the real case. Assume 
that the traces and Pfaffians agree on two sets of matrices, Ai and Bi. Since the 
traces separate 0(2) orbits, there must be a 9 in 0(2) with gAig -1 = Bi. We 
want to show that 9 is in SO (2). If at least on of the Ai is non-symmetric, i.e. 
pf Ai +0, it follows from pf Bi = pf(gA;g-l) = det 9 pf Ai = det 9 pf Bi that 
det 9 = 1, so 9 is actually in SO (2). Assume then that the Ai are all symmetric. If 
there is at least one pair, Ai and A j' which do not commute, then A;A j is not 
symmetric, and hence pfB;Bj = pf(gA i A j g- 1

) = detgpfA;A j = detgpfB;Bj , 

which implies that 9 is in SO (2). If they all commute, then they are simultaneous
ly diagonalizable by conjugation with 9 in 0(2), but sine diagonal matrices 
commute, we can assure that 9 is in SO (2) by multiplying 9 with the diagonal 
matrix diag (1, -1). It then follows that the Ai are SO (2) conjugate and hence the 
invariants separate SO(2) orbits. This completes the proof of the first part of the 
Theorem. 

We will say that pf P(A;, AD is reducible if it can be expressed in terms of traces 
and Pfaffians of products of fewer matrices. We will write 

pfF(A i , AD == pf G(Ai , AD 

ifpf(F - G) is reducible. In order to prove the second part of the theorem, we first 
need to reduce expressions of the form pfP(Ai, AD. Let us first state some basic 
properties of the Pfaffian of 2 x 2 matrices which follow from a simple calcula
tion. 

LEMMA 1. 

(3) pfXr = -pfX 

(4) pf YX = pf X tr Y + tr X pf Y  pf X Y 

(5) pfX y t = pf X Y - tr X pf Y. 

Hence 

pfYX == -pfXY 

pf Xy t == pf XY. 

We see that (3) and (4) are more complicated than the corresponding formulas 
for the trace, but (5) is a big simplification which will allow us to carry the 
reduction further than in the case of the trace. 

so (2) INYARIANTS OF ASET OF 2 x 2 MATRICES 

For n = 2 the Cayley-Hamilton Theorem says that 

X 2(6) - X tr X + 1/21 [tr X)2 - tr X 2J = ° 
or in its polarized version 

(7) XY + YX - Xtr Y - Ytr X + l[tr Xtr Y - tr XY] = 0. 

This equation is the fundamental tool for reducing Pfaffian expressions,just as in 
the case of trace expressions. In fact it is even more powerful in the case of the 
Pfaffian, since if we take the trace in (6) or (7) everything cancels. In order 
to get a non-trivial relation, we must first multiply the equations with a matrix 
+1 before taking the trace. This is not necessary if we take the Pfaffian. In 
particular, (4) follows from taking the Pfaffian of(7), and taking the Pfaffian of(6) 
we get that pfX 2 is reducible. By comparison, tr X 2 is not reducible, but ifwe first 
multiply (6) by X and then take the trace, we see that tr X 3 is reducible. 

It is well known (see for example [IJ or [3J) that the polarized Cayley
Hamilton Theorem implies that any product of three 2 x 2 matrices is reducible. 
That is, XYZ can be written as a linear combination of matrix products with 
fewer factors and coefficients expressible in terms of traces. Writing 

tr(X, Y) = tr XY - tr Xtr Y, 

we have 

2XYZ = X(YZ + ZY) + (XY + YX)Z - [Y(XZ) + (XZ)Y] = 

XYtr Z + XZtrY + Xtr(Y,Z) + XZtr Y + YZtr X + Ztr(X, Y) 
(8) 

-XZtr Y - Ytr(XZ) - Itr(XZ, Y) = XYtr Z + XZtr Y 

+ YZtr X + Xtr(Y,Z) - Ytr(XZ) + Ztr(X, Y) - Itr(XZ, Y). 

More generally, it follows from the work of Procesi [5J and Razmyslov [7J that 
the product of n2 

- 1 matrices of order n is reducible. For 3 x 3 matrices the 
product of 6 matrices is reducible [ll 

Consider an irreducible expression of the form pf P(A;, AD where P is a mono
mial. It follows from (8) that P can have at most 2 factors and (6) shows that there 
can be no squares. Using (4) and (5) we can assume that there are no A~-s and that 
the Ai-s are in the order of increasing i-so This leaves us with pf Ai and pf AiAj 

(i < j). 
This implies that the traces listed in part 1 of Theorem 2 together with pf A; and 

pf A;A/i < j) form a basis for the SO (2) invariants. This basis is not minimal, 
however, since by m'ultiplying two Pfaffians we get an 0(2) invariant which is 
expressible in terms of the traces. A simple argument gives the following rela
tions. 
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LEMMA 2. 

(9)	 pfX pf Y = tr X y t - tr X Y 

(10)	 pfXYpfZ = -tr XYZ + tr XYZt 

We will also use the following relation from [8]. 

tr XYZ = tr XYZt + tr XytZ + tr XtyZ
(11) 

- tr X tr Yzt - tr Y tr ZXt - tr Z tr X yt + tr X tr Y tr Z. 

Combining (10) and (11) we get 

2 tr X Y = tr X tr yzt + tr Y tr ZX t + tr Z tr X Yt
(12) 

-pfXpfYZ - pf YpfZX - pfZpfXY - tr Xtr Ytr Z 

Assume now that we know tr Ai' tr A?, tr AiAj(i < j), pf Ai and pf AiAj(i < j). We 
can then determine tr AiAj from (9), tr AiAj Ak(1 <j < k) from (12), tr A:AjAk, 
tr AiAjAk> tr AiAkAW < j < k) from (10), and setting Ak = Aj in (10) we get 
tr AiAjAj(i =!= j). This proves that the above traces and Pfaffians form a basis. 

We will now prove that this basis is minimal. We will do this by giving 

examples of sets of matrices, {A;} and {B;}, for which only one of the types of 
invariants differ. This will imply that this basis is also a minimal funtional basis 
and a minimal complete set of invariants in the real case. The number ofmatrices 
in these examples is not significant. We can always add more matrices by setting 

Ai = B i = 1z or O. 

1. Al = (~ ~). B I = (~ 6).
 
Here tr Al =!= tr B 1 but the other invariants agree.
 

2. Al B I= G~). = G ~). 
Here tr Ai =!= tr Bi but the other invariants agree. 

Bz = Az·3. Al = (~ ~). Az = G~). B I = (_ ~ ~). 
Here tr AIAz =!= tr BIBz but the other invariants agree. 

4.	 Ifwe pick two non-symmetric matrices which are conjugate in 0(2) but not in 

SO(2), we have that pfA I =!= pfBI but the other invariants agree. As an 
example, take 

B IAl = (~ ~) = C~). 

so (2) INVARIANTS OF A SET OF 2 x 2 MATRICES 

5.	 In general pf Al Az =!= pf AzA I, and if Az is invertible, we can set 

BI = AzAIAzI, B z = Az· Then pfBIBz = pf AzAIAzi Az = pf AzA I =!= 

pf AIAz but the other invariants agree. As an example, take 

Al = (~ ~). Az = (~ ~). 
This completes the proof of part 2 of Theorem 3. 

We would like to make some additional comments. Since SO (2) is a smaller 
group we get more invariants, but we can find a basis with a smaller number 
of invariants. The reason for this is simply that the Pfaffians give us more 
invariants of degree one and two, which simplifies the theory considerably. In 
particular, we see that none of the invariants in the basis for the SO (2) 
invariants involves more than 2 matrices, while in the orthogonal case we 
need the invariants tr AiAjAk(i < j < k). Hence the study of C[mM(2, C)]SO(Z,C) 
(or R[mM(2, R)]SO(Z,R)) reduces to the study of C[2M(2, C)]SO(z.C) (or 
R[2M(2, R)]SO(2.R))" 

Let us try to explain the reason for this difference. We were able to delete 
tr A;AjAk because of (12), but there is no similar formula expressing tr XYZ in 
terms of traces of one or two factors, as the following example from [8] shows: 

A 3Al = G~). Az = (_ ~ ~). = (~ ~). 

B I = (~ ~). B z = A z, B 3 = A 3 • 

Here tr Al A zA 3 =!= tr B 1 BzB 3 , but all traces involving one or two factors agree. If 
we take the trace in (8) everything cancels, and we must first multiply by 

U =!= I to see that the trace offour 2 x 2 matrices is expressible in terms oftraces 
of three factors or less. The closest we can come to expressing tr X YZ in terms of 
traces of one or two factors is the following equation from [8], which shows that 

tr XYZ satisfies a quadratic equation with coefficients expressible in terms of 
traces of one or two factors. 

(13)	 4(tr XYZ)Z - 4aI tr XYZ + a z = 0, 

a l = {tr Xtr YZ} - tr Xtr Ytr Z, 

az = 2 {tr XY(tr XY - tr Xtr Y)(trZZ - tr ZZ} + 4tr XYtr YZtr ZX 

+ 2 tr X Ztt y Ztr ZZ + trZX trZY trZZ - {tr X Ztr Yz trZZ}. 

Here { } denotes the sum ofthe terms obtained by cyclic permutation ofX, Yand 
Z. The equation is stated without proof in [8], but it follows from clever 
manipulations of (7). 
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Ifwe specialize to the case ofm = 1, we get the 3 invariants tr A, tr A2
, and pf A. 

Since the orbit space M(2, R)jSO (2) has dimension 3, this is the 'right' number of 
invariants. 

If we consider m = 2, we get the 8 invariants tr A, tr A 2, pf A, tr B, tr B2
, pfB, 

tr AB and pfAB. The dimension of 2M(2, R)jSO (2) is 7, however, so we have too 
many invariants. It is important to bearin mind that when we say that a complete 
set of invariants is minimal, we only mean that by deleting any of the invariants, 
the set will no longer be complete. This does not rule out the possibility that there 
could be a different minimal complete set of invariants with a smaller set of 
invariants. The question as to whether it is possible to find a complete set of 
invariants of 2M(2, R)jSO (2) consisting of 7 invariants in thus open. 

If we add the restriction that 2 tr A2 + pf2 A - tr2A =F 0, we can find such 
a set. We can use tr A, tr A2, and pf A to determine A, and tr B, tr AB, and pf AB 
give a linear system of equations for the entries of B with determinant equal to 
2 tr A 2 + pf2A - tr2A, so we can determine B without using tr B2

• 
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