Linguistically Optimized Text Entry on a Mobile Phone
*submitted to CHI 2001

Hedy K ober!, Eugene Skepner!, Terry Jones', Howard Gutowitz2, and Scott MacK enzie®

L Eatoni Ergonomics, Inc.
171 Madison Avenue
New York, New York 10016

+1 212 569 0262
{hedy,eu,terry} @eatoni.com

2 Département de Mathématiques
Ecole Supérieure de Physique et de Chimie Industrielles de laVille de Paris
10, rue Vauquelin
ParisV, France 75005
(on leave)
hag@eatoni.com

3Dept. of Mathematics & Statistics
York University
Toronto, Ontario, Canada M3J 1P3
+1 416 736 2100
smackenzie@acm.org

ABSTRACT

We present an analysis of linguistically optimized text
entry on mobile phones. Thisanalysis comparesthe
behavior of alinguistically optimized system with word-
based disambiguation methods. Through theoretical
analysis, it is shown that in real-world situations in which
typing errors are common and dictionaries are incomplete,
the speed of text -entry using aword-guessing method
degrades to the speed of a multi-press method.
Linguistically optimized text entry speed, however, decays
gracefully in the face of significant noise, and remains
close to those of unambiguous text -entry methods.
Keywords

Mobile computing, text entry, linguistic optimization, Fitts
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INTRODUCTION

A central reason to explore and examine the efficacy of
telephone keypad text entry isthe growth of Short Message
Services (SMS) messages on mobile phones, especially in
Europe. According to the GSM association, 3 billion SMS
messages were sent in December 1999, with a prediction of
10 billion messages a month by the end of 2000 [8].
Currently, the majority of SMS users use multi-press as
their method of text entry, although some cellular phones
do feature word-based disambiguation systems, including
T9O Text Input (“T9®") by Tegic Communications, Inc.,
iTAPa Intelligent Keypad Entry System by Motorola, Inc.,
and eZiTexta by Zi Corporation.



This growing phenomenon, accompanied by a greater
demand for mobile internet access, calls for efficient means
of text entry to encourage further growth in the mobile
internet by addressing user needs. In this paper, we present
an overview of the development and expected performance
of word-based di sambiguation mechanisms and of a
linguistically optimi zed text entry mechanism. Their

efficacy will be determined as a function of correct word
throughput, as a function of typing speed, and typing error
rates.

The Evolution of Text Entry on Cell Phones

On atypical telephone keypad, groups of lettersin
aphabetical order are associated with number keys. For
example, “a,” “b,” and “c,” are typically associated with
number 2. Thus, any single press of akey is ambiguous, as
it may represent any of the associated sets of three or four
letters.

Early text-entry methodology concentrated on explicitly
disambiguated entries: two-key input (chording) and multi-
pressing. Two-key entry methods activate a combination
of keys, simultaneously or in sequence, to encode each
symbol unambiguously. Such systems require the user to
press the key associated with the desired letter, and then
follow with a second key to specify the position of the
letter on thefirst key. The second key is usually one of the
keys on the top row: for example, to enter “g”, auser would
press4 followed by 1[5,10]. Multi-press works
differently. It requires multiple taps on the same key to
disambiguate an entry: the user taps the key the number of
times corresponding to the position of the letter in the
standard ordering. For example on the 2 key, the user taps
oncefor “a” twicefor “b”, etc. [2,3]. Although these
methods offer perfectly unambiguous entries, they involve
the significant disadvantage of requiring more than one
keystroke per letter, which results in cumbersome and
laborious typing.

In view of this perceived disadvantage, and since ease of
use and typing speed are essential components of effective
text entry, methods enabling one keystroke per letter
emerged as early as the 1970s, using the standard
ambiguous code and a database of stored responses,
represented by their numerical sequences. Early testing and
implementations of such systems established their accuracy
[16], and ease of use[13].In recent years, dictionary-based
disambiguation mechanisms have appeared in various
forms, often aided by N-gram frequencies, syntactical
information, or other statistical information of letter and
word frequencies[1, 9, 11, 14]. When used, such systems
compare the numerical code of an entry, which istreated as
adiscrete unit, with those found in a database, and guess
the intended letters or words. However, many dictionary
words share the same numerical code, and in these cases
the system will present alternativesin alist (aquery). The
user selects the intended word from the list. Thisrequires
extrataps for the word entry to be correct and complete.

Nevertheless, even if dictionary words are correctly
disambiguated with just afew extrataps, a greater problem
iscreated in practice because it is necessary to allow entry
of non-dictionary words, which arein everyday use(e.g.,
proper names, slang, abbreviations, technical and
professional terms, etc.). For example:

acollection of text from the 1988 Wall Street Journal
containing 20,691,239 words, was found by James

Raymond Davis[4] to contain not only 8,633,941
ambiguous words, but also 4,007,375 words which were

not in Webster’ s seventh dictionary, to which it was
compared.

With a perfect dictionary, multi-press methods and word-
guessing methods are points on a continuum. For both,
extra keystrokes beyond one per intended letter are required
for aword to appear correctly. Inthe case of multi-press,
the extra keystrokes are entered throughout the word to
select each intended letter, whilein aword-guessing

method the extra keystrokes all occur at the end of the
word. Delaying the extra keystrokes until the end of the
word has the advantage of reducing the total number of
keystrokes which must be entered. It has the disadvantage
of causing the display to be unstable as algorithms typically
present their current best guess based on partial information
after each keystroke is entered.

With an imperfect dictionary, word-guessing methods fail
catastrophically on many wordswhich are not in the
dictionary. Since aword guessing algorithm cannot match
aword not initsdictionary, it resorts to default rules which
do not involve complete words in order to make a guess.
When the underlying code is the highly ambiguous
standard ambiguous code, these default rules will typically
render letter sequences which have little relationship with
theintended | etter sequence.

In some implementations of word-guessing systems, such
as Tegic Communications’ implementation on the Ericsson
model 280, afailure of the word-guessing algorithm places
the phone into multi-press mode so that the word can be re-
entered unambiguously using multi-press. This solution
enables usersto enter any letter sequence, but slows typing
speed significantly.

Measuring Ambiguity

A system’s ambiguity, or its efficacy in disambiguating
entries, can be measured in at least two ways:. the query rate
and the lookup error rate. Both are easy to measure given a
complete list of words from alanguage, their numeric
eguivalents, and their probabilities.

The query rate measures how often the same keystroke
pattern yields multiple words. It iscalculated asthe
reciprocal sum of all probabilities of al the words with
identical codes. Using the standard ambiguous code, a
guery occurs, on average, every three words, which at an
average typing speed of 20 wpm, means every 9 seconds.
Thelookup error rate measures how often the desired word
isnot thefirstinthelist of aternativesinaquery. Itis
calculated as the reciprocal sum of probabilities of wordsin



queries, except the first. Using the standard ambiguous
code, alookup error occurs every 28 words.

Clearly, queries slow typing speed by demanding attention
and cognitive processing time from the user. Lookup errors
exact the same demands, in addition to requiring extrataps
to select the right word fromthelist.

In this paper, we present an optimized system, which
reduces the number of queries and lookup errors
significantly, thus eliminating most of the distractions that
slow typing speed.
Linguistically Optimal
(LOPT)

Optimal coding isin some ways the opposite of
cryptography. While cryptography seeks codes that are as
difficult as possible to decipher, the optimal coding method
seeks codes which are as easy as possible to decipher.

To overcome the main difficulties with the standard
ambiguous code, we have devel oped an optimal coding
method for text entry on atelephone keypad. The method
substantially improves on all previous text entry methods,
asit was designed to optimize primarily the query rate and
lookup error rate with respect to other ergonomic criteria,
thus creating a touch typable device requiring little
attention from the user and offering fewer distractions.
Theideabehind LOPT isthat some of the letter entries are
unambiguous. These letters are entered unambiguously
using an auxiliary key, much like a shift key on the
standard Qwerty keyboard. And so, the systemisan
evolved hybrid of chording and ambiguous coding.

The essential insight of the chording aspect of this
invention isthat substantially simultaneous activation of a
pair of keysisunified into asingle gesture. Thus, apair of
keystrokes is no more, or only alittle more difficult to
master than asingle keystroke. Yet, apair of keystrokes
contains substantially more information than asingle
keystroke. Thus, chording creates easily operable, low-
ambiguity codes.

Although selection of letter pairs to be entered
unambiguously on some keys was considered, it was
rejected in light of ergonomic criteria such as learnability
and ease of use, because aregular and predictable division
of lettersinto shift and non-shift setsof letters makesthe
keyboard easier to learn. One could consider more
complicated partitions in which each set containsirregular
sized groups of letters, but thiswould help very little to
reduce ambiguity. Further, only on keys which contain
more than three letterswould irregularities be possible.
There are only two such keys on the telephone keypad (the
7 key and the 9 key). Therefore, asingle letter from each
key was selected, in the following way: Query rates and
Lookup error rates were calculated for all 11,664 possible
combinations of letters. The “cloud” graph inFigure 1
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Figurel: Query vs. Lookup error ratesfor English.

Each point on the graph correspondsto the results for a
distinct letter combination. Asclearly seen, the letter
combination providing the optimal (lowest) rates of both
queries and lookup errorsin English (and many other
languagesinfact) isC,E,H,L,N, S, T, and

Y.
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Figure2: A CEHLNSTY labded mobile keypad.

Using this selection of letters as a base, we have
constructed a disambiguation system called WordWisea
Using WordWisea , fully 45% of all |etters entered are
entirely unambiguous, and so many words such as “yes,”
“style,” “cheese,” “sentence,” and “ sensdessness” can be
entered completely unambiguously. This effect helps
reduce queries. In WordWisei , queries occur only every
45 words, which at an average typing speed of 20 wpm
means only once in two minutes of typing. Lookup errors
occur every 440 words, or once in every two pages of typed
text. These rates are 15 times better than those achieved by
the standard ambiguous code.

ANALYSING TYPING SPEED

Fitts' law has provided good quantitative estimates of task
execution speedsin avariety of contexts[6,12]. In the
present instance, Fitts' law relates typing speed to the
distance traveled by the fingers. Silfverberg, MacKenzie,
and Korhonen[15], recently provided estimates of text
entry speed using a standard telephone keypad. They
compared several input techniques, multi-press, two-key
input, andthe T94 text input system, for each using one-



hand thumb input and two-handed index finger input. Their

estimates are built upon three assumptions, limiting their

examination to users' motor performance alone:

1) Therewere no typing, spelling, or other errors
requiring time and effort to correct.

2)  All words entered are unambiguous.

3) All wordstyped are included in the dictionary.

These three hypotheses will be referred to as the perfect

typist hypothesis, the no ambiguity hypothesis, and the

perfect dictionary hypothesis, respectively. Under these

hypotheses, Fitts' law, combined with alinguistic

probability model, predicts that word-based disambiguation

will provide expert users with the capability to type at rates

of 41 or 46 wpm, for one-handed thumb input and two-

handed index finger input respectively, while multi-press

will allow text entry only at rates of 25 or 27 wpm, evenin

the hands of expert users.

The No Ambiguity Hypothesis

The validity of the assumption that there is no
ambiguity and thus no queries depends highly on
the code used. The standard ambiguous code
contains significant ambiguity, as will be shown
in this section.

Figure 3 showsthe probability of queries with agiven
number of wordsin aquery. The graph is based on the 100
million words in the British National Corpus. Resultsare
shown for the linguistically optimized system WordWise ,
and a system based on the standard ambiguous code, such
as the T94a text input system :
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Figure 3: Occurrence probabilities for queries of
differing sizes.

For the word-based disambiguation mechanism, thereis
about a 20% chance of having a query with either 2 or 3
words, which might require extrataps. Non-zero
probabilities exist for queries with up to 12 words. With
WordWised , however, the probability for aquery of 2
wordsis close to zero, and there are never queries with
more than 3 alternatives.

The prediction of 41-46 wpm for the word-guessing
method, based on the af orementioned hypotheses, was

calculated for asingle keystroke, a single movement, per
letter, disregarding the potential need for additional
keystrokes. However, in light of these data, text entry in
such a system would reguire, on average, 1.03 keystrokes
per letter.

Silfverberg et al. briefly examined the effects of queries on
typing speed. Their original model ignores factors that
might further decrease text entry speed in empirical tests,
other than ambiguity itself, such asthetime (i) to visually
verify input; (ii) to cognitively register that activation of the
disambiguation mechanism is required; and (iii) to visually
scan the list, register its contents, and verify a selection.
Estimating that usersvisually verify input 50% of the time,
and that each inspection takes 500 ms, they modified their
prediction for the T9 text input system to 35 wpm.

By contrast, we consider the no ambiguity hypothesis
accurate for WordWisea . The low probability of queries
enables the linguistically optimized system to require only
1.002 keystrokes per letter, arate which virtually relieves
the user from the need to visually verify input. In
accordance with Fitts' law, thisleads to a predicted typing
speed similar to that of the word-guessing mechanism,
before the modification of the no ambiguity hypothesis.

Further analysis of the no ambiguity hypothesis, and
analysis of the perfect dictionary hypothesisis reserved for
future discussion, as will empirical studies. In the present
report, we present an expanded theoretical analysis of the
perfect typist hypothesis, and its effects on text entry speed.
The Perfect Typist Hypothesis

Even highly trained professional typists do not type
perfectly. Anextensive literature exists on the variety of
typing errors and their rates[7].

Typing errors on mobile phone keypads can be expected to
be more frequent than those on Qwerty keyboards, since
telephone keypads are conducive to typing errors due to
their small and difficult-to-operate keys.

Typing Error Amplification

When typing on an unambiguous keyboard, such as a
Qwerty keyboard, a one-keystroke typing error resultsin a
one-letter difference in the displayed text. By contrast,
when using an ambiguous keyboard, such as the standard
telephone keypad or the linguistically optimized keypad, a
one-stroke typing error may result in many letters being
different in the typed text. Disambiguation works by using
context to choose the letter to display. If the context is
atered in one place, it can generaly affect the letters
displayed in many places. Potentialy, a single keystroke
error can affect the entire word. We call this typing error
amplification.

In general, the more ambiguous the code, the more a single
typing error will amplify into multiple errors. The
amplification of typing errors for ambiguous keyboards
implies that the perfect typist hypothesis demands close
examination. To evaluate the importance and suitability of
the perfect typist hypothesis, we must have some way to



measure the effect of imperfections in typing on
disambiguation mechanisms.

Since a disambiguation mechanism correlates letters within
aword, multiple typing errors within a single word may be
correlated in their effects. The correlations make it very
difficult to supply afull analysis, in which typing errors of
any kind, including multiple errors within a single word,
are considered. Some approximations must be made. This
will be undertaken in the next section.

A Mean Field Theory of Typing Errors

In physics, problems involving complicated correlations are
often attacked using mean field theory. In mean field
theory, correlations between sites are decoupled. Theresult
is a good approximation provided correlations are small. In
the present case, correlations between typing errors are
small if the probability of making a single typing error is
small. If so, then the probability of making more than one
keystroke error within a given word is small and there can
be little correlation. For single keystroke error rates in the
range studied here (0% to 10%), we expect the mean field
approximation to be very good.

The procedure for building a mean field approximation is
asfollows:

1) Construct the set of possible 1-keystroke typing errors.
2) Weight all possible 1-keystroke typing errors equally.
3) Determinethe average effect of a one-keystroke error.

4) Use this average effect to calculate the expected
amplification of typing errors.

Possible typing errors
To model the way typing errors are made on atelephone
keypad, we assume the following:
1) Typing errors are dueto hitting keys adjacent to the
intended key, either horizontally or vertically.
2) All ways of making typing errors occur with equal
probability.
Thus, we will not consider double typing errors (a
keystroke is mistakenly repeated), inversion errors (two
keystrokes are reversed), insertion or deletion errors (a
keystroke is spuriously inserted or omitted), etc. Inclusion
of these types of errors complicates the analysis, but does
not change the conclusions.
Given these assumptions, we can say that for each wordw,
there are M, ways of mistyping the word with a one-
keystroke error.
For instance, the word “so” is typed using the standard
ambiguous code with the key sequence 76. There is one
key vertically adjacent to the 7 key: the 4 key, which
corresponds to the letters g, h, and i. There is one key
horizontally adjacent to the 7 key: the 8 key, corresponding
to the letters t, u, and v. Similarly, there are two keys
vertically adjacent to the 6 key: the 3 key, corresponding to
the letters d, e, and f; and the 9 key, corresponding to the
letters w, X, y, and z. There is one key horizontaly
adjacent to the 6 key: the 5 key, corresponding to the letters
i, k, and I. Each adjacent key might be mistakenly hit. The

possible key combinations in a mistyping are: 46 and &,
where the first keystroke is in error, and, B, 7, and P,
where the second keystroke isin error. Inthe T9a system,
these keystroke combinations give rise to the letter
combinations “in”, “to”,"re", “pl”, and “ry” respectively.
The difference between the letters intended and the letters
displayed will be referred to as display errors. The number
of display errors for these mistypings is: 2, 1, 2, 2, and 2,
respectively. The average display error over al of these
mistypings is 1.8. We call this average number the

sensitivity of theword “so” under T9a .

To discuss the corresponding calculation for WordWisea ,
we indicate the unambiguous shifted lettersin bold. Thus,
the word “so” is written “so”. The mistypings for “so” are:
“ho”, “to”, “sf”, “sk”, and “sw”. In each case, thereisonly
onedisplay error. Thusthe averageis 1, and the sensitivity
of theword “so” under WordWised is1, S,=1.

Continuing to compute the sensitivity of all words in the

BNC corpus in the same way, for both T94 and
WordWisei , we obtain the distributions shown in Figure 4.
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WordWised and T9a.

We see that word sensitivities for T9a peak around 4,
while most words have a sensitivity at or near 1 for
WordWised . Since the average word length for English is
about 5.5 letters, these data imply that single keystroke
errors often cause display errors throughout the word.

Average Sensitivity

By averaging with respect to the probability of words, we
can compute the sensitivity as afunction of the length of
words, and also, the average sensitivity of the language, S.
For WordWised , the average sensitivity is approximately
1.27, meaning that, on average, a single keystroke error

will result in 1.27 letter differencesin the displayed text.

For the word-guessing algorithm, the sensitivity, S, is 2.6.
The sensitivity as afunction of word length is shownin the
Figure 5, for both disambiguation mechanisms.
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Figure 5: A comparison of the relationship between
word length and sensitivity in WordWisea and T9a .

Thisfigure showsthat for WordWises the sensitivity is
small, and relatively independent of word length. For the
word-guessing algorithm, by contrast, the sensitivity grows
linearly with the length of the word. This means that most
single-keystroke errors are catastrophic: that is, they
propagate through the entire word. This behavior is
expected, since asingle keystroke error is sufficient to
ensure that no match isfound in the word-guessing
dictionary. Since no appropriate match can be found, the
likelihood that any of the |etters displayed correspond to
the intended word is small. With WordWisei , however,
errors remain bounded within aword. Thisisdueto the
fact that roughly every other letter, on average, isan
unambiguously entered letter (c, e, h, I, n, s, t, and y). For
these | etters, the display does not depend on other
keystrokes. Furthermore, the unambiguous letters provide
asolid framework to contain errors.

We are now in a position to connect the new concept of
sensitivity with the established concept of throughput.
Throughput

Throughput, as defined here, is the rate at which correct
words are produced by a typist. For a perfect typist, the
throughput is the same as the typing speed. For an
imperfect typist, however, throughput is determined not
only by raw typing speed, but also by the rate of production
of errors, and the means for correcting errors.

On amechanical typewriter, the only way to correct aword
isto backspace over the word and retypeit. The extra
keystrokes have a significant effect on throughput. To
improve throughput, computerized word processing
software provides a single-keystroke mechanism to erase
the preceding word.

With the computerized mechanism, correction of a
mistyped word of length N requires (N + 1) keystrokes, 1 to
delete the word, and N to retype the word. An even faster
mechanism would be to skip the erasure step, and simply
retype the word. With thiserror correction method, the
throughput is simply the typing speed times the probability
that aword contains no errors. We use thisidealized

correction method in the following analysis. By doing so,
we unrealistically reduce the effect of typing errorson
throughput. Nonetheless, we will see that these effects are
quite substantial.
Dependence of Throughput on Keystroke Error
Probability
The probability of producing aword needing correction —
that is, the probability of producing aword with at least
one display error — depends on the keystroke error
probability, and the sensitivity of the disambiguation
mechanism.
If the keystroke error probability isp, and an unambiguous
keyboard is used, then the probability that there are no
display errorsinaword isgiven by:

Co= (1-p)"
where N isthe length of the word. If the text entry method
is ambiguous, then the probability of adisplay error isp
timesS. The probability of typing aword with no display
errorsis:

Co=(L-Sp)".
In each case, the throughput TisT = (Cy* speed), where
speed is the raw typing speed.
The throughput for Qwerty, Multi-press, the T9 input
system, and WordWisea isplottedin Figure 6. Intheno
ambiguity case, the raw typing speed istaken as 46 words
per minute for all methods of text entry, except multi-
press., which has a speed of 27 words per minute under the
perfect typist hypothesis. As we have discussed, Qwerty,
WordWised , and Multi-press are not substantially affected
by ambiguity. However, in the case of T9 , Silfverberg et
al. argue that ambiguity can drive the effective typing speed
for T9 down from 46 to 35 words per minute. Thus, for
T94 we have plotted two curves, one, labeled “T94 (no
ambiguity)” assumes araw typing speed of 46 words per
minute, the other, labeled “T9 (with ambiguity)” assumes
atyping speed adjusted for ambiguity of 35 words per
minute.
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Figure 6: The degradation of throughput with
increasing per-letter error probability, for a perfect



dictionary and, in the case of T9a, ether with no
ambiguity or with ambiguity. Qwerty, WordWisaa , and
Multi-pressare substantially unaffected by ambiguity.

We see that the larger the keystroke error probability, the
larger the difference between Qwerty andthe T9a text
input system, while Qwerty and WordWised remain close
throughout the range of keystroke error probabilities
considered. With no ambiguity, the performance of T9
degradesto that of multi-press at akeystroke error rate of
about 0.08. When both ambiguity and imperfectionsin
typing are taken into account, the performance of T9
degradesto that of multi-press at a keystroke error rate of
around 0.04. Thisis akeystroke error rate whichis
commonly observed in practice[7].

CONCLUSIONS

Throughput in a disambiguation system is a function of
many factors beyond raw typing speed. We have shown
that due to the typing error amplification property,
throughput in real-world application of adisambiguation
system may be significantly less than the throughput
achieved by aperfect typist.

When the relaxation of the perfect typist hypothesisis
combined with relaxation of the no ambiguity hypothesis,
we can expect that, at any reasonabl e rate of typing errors,
the throughput of the T9a text input system will degrade
significantly.. When the relaxation of the no ambiguity and
perfect typist hypotheses isfurther combined with
relaxation of the perfect dictionary hypothesis, we expect
the gap between Qwerty and WordWised on one hand, and
T94 on the other towiden further. In future reportswe
will examine these predictions both theoretically and in
empirical tests.
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