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ABSTRACT 
We present an analysis of linguistically optimized text 
entry on  mobile phones.  This analysis compares the 
behavior of a linguistically optimized system with word-
based dis ambiguation methods. Through theoretical 
analysis, it is shown that in real-world situations in which 
typing errors are common and dictionaries are incomplete, 
the speed of text -entry using a word-guessing method 
degrades to the speed of a multi-press method. 
Linguistically optimized text entry speed, however, decays 
gracefully in the face of significant noise, and remains 
close to those of unambiguous text -entry methods. 
Keywords 
Mobile computing, text entry, linguistic optimization, Fitts’ 
law, input devices. 

INTRODUCTION 
A central reason to explore and examine the efficacy of 
telephone keypad text entry is the growth of Short Message 
Services (SMS) messages on mobile phones, especially in 
Europe. According to the GSM association, 3 billion SMS 
messages were sent in December 1999, with a prediction of 
10 billion messages a month by the end of 2000 [8]. 
Currently, the majority of SMS users use multi-press as 
their method of text entry, although some cellular phones 
do feature word-based disambiguation systems, including 
T9 Text Input (“T9®”) by Tegic Communications, Inc., 
iTAP  Intelligent Keypad Entry System by Motorola, Inc., 
and eZiText   by Zi Corporation. 
 



This growing phenomenon, accompanied by a greater 
demand for mobile internet access, calls for efficient means 
of text entry to encourage further growth in the mobile 
internet by addressing user needs. In this paper, we present 
an overview of the development and expected performance 
of word-based disambiguation mechanisms and of a 
linguistically optimized text entry mechanism. Their 
efficacy will be determined as a function of correct word 
throughput, as a function of typing speed, and typing error 
rates. 
 
The Evolution of Text Entry on Cell Phones 
On a typical telephone keypad, groups of letters in 
alphabetical order are associated with number keys. For 
example, “a,” “b,” and “c,” are typically associated with 
number 2. Thus, any single press of a key is ambiguous, as 
it may represent any of the associated sets of three or four 
letters. 
Early text -entry methodology concentrated on explicitly 
disambiguated entries: two-key input (chording) and multi-
pressing.  Two-key entry methods activate a combination 
of keys, simultaneously or in sequence, to encode each 
symbol unambiguously.  Such systems require the user to 
press the key associated with the desired letter, and then 
follow with a second key to specify the position of the 
letter on the first key.  The second key is usually one of the 
keys on the top row: for example, to enter “g”, a user would 
press 4 followed by 1 [5,10].   Multi-press works 
differently.  It requires multiple taps on the same key to 
disambiguate an entry:  the user taps the key the number of 
times corresponding to the position of the letter in the 
standard ordering.  For example on the 2 key, the user taps 
once for “a,” twice for “b”, etc. [2,3]. Although these 
methods offer perfectly unambiguous entries, they involve 
the significant disadvantage of requiring more than one 
keystroke per letter, which results in cumbersome and  
laborious typing.   
In view of this perceived disadvantage, and since ease of 
use and typing speed are essential components of effective 
text entry, methods enabling one keystroke per letter 
emerged as early as the 1970s, using the standard 
ambiguous code and a database of stored responses, 
represented by their numerical sequences. Early testing and 
implementations of such systems established their accuracy 
[16], and ease of use [13].In recent years, dictionary-based 
disambiguation mechanisms have appeared in various 
forms, often aided by N-gram frequencies, syntactical  
information, or other statistical information of letter and 
word frequencies [1, 9, 11, 14]. When used, such systems 
compare the numerical code of an entry, which is treated as 
a discrete unit, with those found in a database, and guess 
the intended letters or words.  However, many dictionary 
words share the same numerical code, and in these cases 
the system will present alternatives in a list (a query).  The 
user selects the intended word from the list.  This requires 
extra taps for the word entry to be correct and complete. 

Nevertheless, even if dictionary words are correctly 
disambiguated with just a few extra taps, a greater problem 
is created in practice because it is necessary to allow entry 
of non-dictionary words, which are in everyday use (e.g., 
proper names, slang, abbreviations, technical and 
professional terms, etc.).  For example:  
a collection of text from the 1988 Wall Street Journal 
containing 20,691,239 words, was found by James 
Raymond Davis [4] to contain not only 8,633,941 
ambiguous words, but also 4,007,375 words which were 
not in Webster’s seventh dictionary, to which it was 
compared.  
With a perfect dictionary, multi-press methods and word-
guessing methods are points on a continuum.  For both, 
extra keystrokes beyond one per intended letter are required 
for a word to appear correctly.  In the case of multi-press, 
the extra keystrokes are entered throughout the word to 
select each intended letter, while in a word-guessing 
method the extra keystrokes all occur at the end of the 
word.  Delaying the extra keystrokes until the end of the 
word has the advantage of reducing the total number of 
keystrokes which mu st be entered.  It has the disadvantage 
of causing the display to be unstable as algorithms typically 
present their current best guess based on partial information 
after each keystroke is entered.  
With an imperfect dictionary, word-guessing methods fail 
catastrophically on many words which are not in the 
dictionary.  Since a word guessing algorithm cannot match 
a word not in its dictionary, it resorts to default rules which 
do not involve complete words in order to make a guess.  
When the underlying code is the highly ambiguous 
standard ambiguous code, these default rules will typically 
render letter sequences which have little relationship with 
the intended letter sequence.  
In some implementations of word-guessing systems, such 
as Tegic Communications’ implementation on the Ericsson 
model 280, a failure of the word-guessing algorithm places 
the phone into multi-press mode so that the word can be re-
entered unambiguously  using multi-press. This solution 
enables users to enter any letter sequence, but slows typing 
speed significantly.  
Measuring Ambiguity 
A system’s ambiguity, or its efficacy in disambiguating 
entries, can be measured in at least two ways: the query rate 
and the lookup error rate.  Both are easy to measure given a 
complete list of words from a language, their numeric 
equivalents, and their probabilities.  
The query rate measures how often the same keystroke 
pattern yields multiple words.  It is calculated as the 
reciprocal sum of all probabilities of all the words with 
identical codes. Using the standard ambiguous code, a 
query occurs, on average, every three words, which at an 
average typing speed of 20 wpm, means every 9 seconds.  
The lookup error rate measures how often the desired word 
is not the first in the list of alternatives in a query.  It is 
calculated as the reciprocal sum of probabilities of words in 



queries, except the first. Using the standard ambiguous 
code, a lookup error occurs every 28 words.  
Clearly, queries slow typing speed by demanding attention 
and cognitive processing time from the user.  Lookup errors 
exact the same demands, in addition to requiring extra taps 
to select the right word  from the list.   
In this paper, we present an optimized system, which 
reduces the number of queries and lookup errors 
significantly, thus eliminating most of the distractions that 
slow typing speed. 
Linguistically Optimal Predictive Text Entry 
(LOPT) 
Optimal coding is in some ways the opposite of 
cryptography.  While cryptography seeks codes that are as 
difficult as possible to decipher, the optimal coding method 
seeks codes which are as easy as possible to decipher. 
To overcome the main difficulties with the standard 
ambiguous code, we have developed an optimal coding 
method for text entry on a telephone keypad.  The method 
substantially improves on all previous text entry methods, 
as it was designed to optimize primarily the query rate and 
lookup error rate with respect to other ergonomic criteria, 
thus creating a touch typable device requiring little 
attention from the user and offering fewer distractions. 
The idea behind LOPT is that some of the letter entries are 
unambiguous.  These letters are entered unambiguously  
using an auxiliary key, much like a shift key on the 
standard Qwerty keyboard.  And so, the system is an 
evolved hybrid of chording and ambiguous coding.  
The essential insight of the chording aspect of this 
invention is that substantially simultaneous activation of a 
pair of keys is unified into a single gesture. Thus, a pair of 
keystrokes is no more, or only a little more difficult to 
master than a single keystroke.  Yet, a pair of keystrokes 
contains substantially more information than a single 
keystroke. Thus, chording creates easily operable, low-
ambiguity codes.  
Although selection of letter pairs to be entered 
unambiguously on some keys was considered, it was 
rejected in light of ergonomic criteria such as learnability 
and ease of use, because a regular and predictable division 
of letters into shift and non-shift sets of letters makes the 
keyboard easier to learn. One could consider more 
complicated partitions in which each set contains irregular 
sized groups of letters, but this would help very little to 
reduce ambiguity. Further, only on keys which contain 
more than three  letters would irregularities be possible. 
There are only two such keys on the telephone keypad (the 
7 key  and the 9 key). Therefore, a single letter from each 
key was selected, in the following way: Query rates and 
Lookup error rates were calculated for all 11,664 possible 
combinations of letters. The “cloud” graph in Figure 1 

shows the results: 

 

Figure 1: Query vs. Lookup error rates for English. 

Each point on the graph corresponds to the results for a 
distinct letter combination. As clearly seen, the letter 
combination providing the optimal (lowest) rates of both 
queries and lookup errors in English (and many other 
languages in fact) is C, E, H, L, N, S, T, and 
Y.

 

Figure 2: A CEHLNSTY labeled mobile keypad. 

 Using this selection of letters as a base, we have 
constructed a disambiguation system  called WordWise  i. 
Using WordWise , fully 45% of all letters entered are 
entirely unambiguous, and so many words such as “yes,” 
“style,” “cheese,” “sentence,” and “senselessness” can be 
entered completely unambiguously. This effect helps 
reduce queries. In WordWise , queries occur only every 
45 words, which at an average typing speed of 20 wpm 
means only once in two minutes of typing.  Lookup errors 
occur every 440 words, or once in every two pages of typed 
text. These rates are 15 times better than those achieved by 
the standard ambiguous code.  
ANALYSING TYPING SPEED 
Fitts’ law has provided good quantitative estimates of task 
execution speeds in a variety of contexts [6,12]. In the 
present instance, Fitts’ law relates typing speed to the 
distance traveled by the fingers.  Silfverberg, MacKenzie, 
and Korhonen [15], recently provided estimates of text 
entry speed using a standard telephone keypad.  They 
compared several input techniques, multi-press, two-key 
input, and the T9 text input system, for each using one-



hand thumb input and two-handed index finger input. Their 
estimates are built upon three assumptions, limiting their 
examination to users’ motor performance alone: 
1) There were no typing, spelling, or other errors 

requiring time and effort to correct.  
2) All words entered are unambiguous. 
3) All words typed are included in the dictionary. 
These three hypotheses will be referred to as the perfect 
typist hypothesis, the no ambiguity  hypothesis, and the 
perfect dictionary hypothesis, respectively.  Under these 
hypotheses, Fitts’ law, combined with a linguistic 
probability model, predicts that word-based disambiguation 
will provide expert users with the capability to type at rates 
of 41 or 46 wpm, for one-handed thumb input and two-
handed index finger input respectively, while multi-press 
will allow text entry only at rates of 25 or 27 wpm, even in 
the hands of expert users.  
The No Ambiguity Hypothesis 
 The validity of the assumption that there is no 
ambiguity and thus no queries depends highly on 
the code used. The standard ambiguous code 
contains significant  ambiguity, as will be shown 
in this section. 
Figure 3 shows the probability of queries with a given 
number of words in a query. The graph is based on the 100 
million words in the British National Corpus.  Results are 
shown for the linguistically optimized system WordWise , 
and a system based on the standard ambiguous code, such 
as the T9 text input system :  

 

Figure 3: Occurrence probabilities for queries of 
differing sizes. 

 
For the word-based disambiguation mechanism, there is 
about a 20% chance of having a query with either 2 or 3 
words, which might require extra taps.  Non-zero 
probabilities exist for queries with up to 12 words. With 
WordWise , however, the probability for a query of 2 
words is close to zero, and there are never queries with 
more than 3 alternatives.   
The prediction of 41-46 wpm for the word-guessing 
method, based on the aforementioned hypotheses, was 

calculated for a single keystroke, a single movement, per 
letter, disregarding the potential need for additional 
keystrokes. However, in light of these data, text entry in 
such a system would require, on average, 1.03 keystrokes 
per letter.  
Silfverberg et al. briefly examined the effects of queries on 
typing speed. Their original model ignores factors that 
might further decrease text entry speed in empirical tests, 
other than ambiguity itself, such as the time (i) to visually 
verify input; (ii) to cognitively register that activation of the 
disambiguation mechanism is required; and (iii) to visually 
scan the list, register its contents, and verify a selection. 
Estimating that users visually verify input 50% of the time, 
and that each inspection takes 500 ms, they modified their 
prediction for the T9 text input system to 35 wpm.   
By contrast, we consider the no ambiguity hypothesis 
accurate for WordWise . The low probability of queries 
enables the linguistically optimized system to require only 
1.002 keystrokes per letter, a rate which virtually relieves 
the user from the need to visually verify input. In 
accordance with Fitts’ law, this leads to a predicted typing 
speed similar to that of the word-guessing mechanism, 
before the modification of the no ambiguity hypothesis. 
Further analysis of the no ambiguity hypothesis, and 
analysis of the perfect dictionary hypothesis is reserved for 
future discussion, as will empirical studies. In the present 
report, we present an expanded theoretical analysis of the 
perfect typist hypothesis, and its effects on text entry speed.  
The Perfect Typist Hypothesis 
Even highly trained professional typists do not type 
perfectly.  An extensive literature exists on the variety of 
typing errors and their rates [7]. 
Typing errors on mobile phone keypads can be expected to 
be more frequent than those on Qwerty keyboards, since 
telephone keypads are conducive to typing errors due to 
their small and difficult-to-operate keys.  

Typing Error Amplification 
When typing on an unambiguous keyboard, such as a 
Qwerty keyboard, a one-keystroke typing error results in a 
one-letter difference in the displayed text. By contrast, 
when using an ambiguous keyboard, such as the standard 
telephone keypad or the linguistically optimized keypad, a 
one-stroke typing error may result in many letters being 
different in the typed text. Disambiguation works by using 
context to choose the letter to display.  If the context is 
altered in one place, it can generally affect the letters 
displayed in many places.  Potentially, a single keystroke 
error can affect the entire word.  We call this typing error 
amplification.   

In general, the more ambiguous the code, the more a single 
typing error will amplify into multiple errors. The 
amplification of typing errors for ambiguous keyboards 
implies that the perfect typist hypothesis demands close 
examination.  To evaluate the importance and suitability of 
the perfect typist hypothesis, we must have some way to 



measure the effect of imperfections in typing on 
disambiguation mechanisms.  

Since a disambiguation mechanism correlates letters within 
a word, multiple typing errors within a single word may be 
correlated in their effects.  The correlations make it very 
difficult to supply a full analysis, in which typing errors of 
any kind, including multiple errors within a single word, 
are considered. Some approximations must be made. This 
will be undertaken in the next section. 

A Mean Field Theory of Typing Errors 
In physics, problems involving complicated correlations are 
often attacked using mean field theory.  In mean field 
theory, correlations between sites are decoupled.  The result 
is a good approximation provided correlations are small.  In 
the present case, correlations between typing errors are 
small if the probability of making a single typing error is 
small.  If so, then the probability of making more than one 
keystroke error within a given word is small and there can 
be little correlation.  For single keystroke error rates in the 
range studied here (0% to 10%), we expect the mean field 
approximation to be very good. 

The procedure for building a mean field approximation is 
as follows: 

1) Construct the set of possible 1-keystroke typing errors. 

2) Weight  all possible 1-keystroke typing errors equally. 

3) Determine the average effect of a one-keystroke error. 

4) Use this average effect to calculate the expected 
amplification of typing errors. 

Possible typing errors 
To model the way typing errors are made on a telephone 
keypad, we assume the following: 
1) Typing errors are due to hitting keys adjacent to the 

intended key, either horizontally or vertically. 
2) All ways of making typing errors occur with equal 

probability. 
Thus, we will not consider double typing errors (a 
keystroke is mistakenly repeated), inversion errors (two 
keystrokes are reversed), insertion or deletion errors (a 
keystroke is spuriously inserted or omitted), etc. Inclusion 
of these types of errors complicates the analysis, but does 
not change the conclusions. 
Given these assumptions, we can say that for each word w, 
there are Mw ways of mistyping the word with a one-
keystroke error. 
For instance, the  word “so” is typed using the standard 
ambiguous code with the key sequence 76.  There is one 
key vertically  adjacent to the 7 key: the 4 key, which 
corresponds to the letters g, h, and i. There is one key 
horizontally adjacent to the 7 key: the 8 key, corresponding 
to the letters t, u, and v.  Similarly, there are two  keys 
vertically adjacent to the 6 key: the 3 key, corresponding to 
the letters d, e, and f; and the 9 key, corresponding to the 
letters w, x, y, and z.  There is one key horizontally 
adjacent to the 6 key: the 5 key, corresponding to the letters 
j, k, and l.  Each adjacent key might be mistakenly hit.  The 

possible key combinations in a mistyping are: 46 and 86, 
where the first keystroke is in error, and, 73, 75, and 79, 
where the second keystroke is in error.  In the  T9 system, 
these keystroke combinations give rise to the letter 
combinations “in”, “to”,”re”, “pl”, and “ry” respectively.  
The difference between the letters intended and the letters 
displayed will be referred to as display errors. The number 
of display errors for these mistypings is: 2, 1, 2, 2, and 2, 
respectively.  The average display error over all of these 
mistypings is 1.8.  We call this average number the 
sensitivity of the word “so” under T9. 

To discuss the corresponding calculation for WordWise , 
we indicate the unambiguous shifted letters in bold.  Thus, 
the word “so” is written “so”. The mistypings for “so” are: 
“ho”, “to”, “sf”, “sk”, and “sw”.  In each case, there is only 
one display error.  Thus the average is 1, and the sensitivity 
of the word “so” under WordWise  is 1, Sw=1.  

Continuing to compute the sensitivity of all words in the 
BNC corpus in the same way, for both T9 and 
WordWise , we obtain the distributions shown in Figure 4. 

 
Figure 4: Distribution of word sensitivities for 
WordWise  and T9 . 

We see that word sensitivities for T9 peak around 4, 
while most words have a sensitivity at or near 1 for 
WordWise . Since the average word length for English is 
about 5.5 letters, these data imply that single keystroke 
errors often cause display errors throughout the word. 

Average Sensitivity 
By averaging with respect to the probability of words, we 
can compute the sensitivity as a function of the length of 
words, and also, the average sensitivity of the language, S. 
For WordWise , the average sensitivity is approximately 
1.27, meaning that, on average, a single keystroke error 
will result in 1.27 letter differences in the displayed text. 
For the word-guessing algorithm, the sensitivity, S, is 2.6. 
The sensitivity as a function of word length is shown in the 
Figure 5, for both disambiguation mechanisms. 



 

Figure 5: A comparison of the relationship between 
word length and sensitivity in WordWise  and T9 . 

This figure shows that for WordWise  the sensitivity is 
small, and relatively independent of word length.  For the 
word-guessing algorithm, by contrast, the sensitivity grows 
linearly with the length of the word.  This means that most 
single-keystroke errors are catastrophic: that is, they 
propagate through the entire word.  This  behavior is 
expected, since a single keystroke error is sufficient to 
ensure that no match is found in the word-guessing 
dictionary.  Since no appropriate match can be found, the 
likelihood that any of the letters displayed correspond to 
the intended word is small.  With WordWise , however, 
errors remain bounded within a word.  This is due to the 
fact that roughly every other letter, on average, is an 
unambiguously entered letter (c, e, h, l, n, s, t, and y).  For 
these letters, the display does not depend on other 
keystrokes.  Furthermore, the unambiguous letters provide 
a solid framework to contain errors. 
We are now in a position to connect the new concept of 
sensitivity with the established concept of throughput. 
Throughput 
Throughput, as defined here, is the rate at which correct 
words are produced by a typist.  For a perfect typist, the 
throughput is the same as the typing speed. For an 
imperfect typist, however, throughput is determined not 
only by raw typing speed, but also by the rate of production 
of errors, and the means for correcting errors. 

On a mechanical typewriter, the only way to correct a word 
is to backspace over the word and retype it.  The extra 
keystrokes have a  significant effect on throughput.  To 
improve throughput, computerized word processing 
software provides a single-keystroke mechanism to erase 
the preceding word.  
With the computerized mechanism, correction of a 
mistyped word of length N requires (N + 1) keystrokes, 1 to 
delete the word, and N to retype the word. An even faster 
mechanism would be to skip the erasure step, and simply 
retype the word.  With this error correction method, the 
throughput is simply the typing speed times the probability 
that a word contains no errors.  We use this idealized 

correction method in the following analysis.  By doing so, 
we unrealistically reduce the effect of typing errors on 
throughput.  Nonetheless, we will see that these effects are 
quite substantial. 
Dependence of Throughput on Keystroke Error  
Probability 
The probability of  producing a word needing correction — 
that is, the probability  of producing a word with at least 
one display error — depends on the keystroke error 
probability, and the sensitivity of the disambiguation 
mechanism. 
If the keystroke error probability is p, and an unambiguous 
keyboard is used, then the probability that there are no 
display errors in a word is given by: 

C0 =  (1 - p)N 
where N is the length of the word.  If the text entry method 
is  ambiguous, then the probability of a display error is p 
times S.  The probability of typing a word with no display 
errors is: 

C0= (1 - Sp)N . 
In each case, the throughput T is T = (C0 * speed), where 
speed is the raw typing speed.  
The throughput  for Qwerty, Multi-press, the  T9 input 
system, and WordWise  is plotted in Figure 6.  In the no 
ambiguity case, the raw typing speed is taken as 46 words 
per minute for all methods of text entry, except multi-
press., which has a speed of 27 words per minute under the 
perfect typist hypothesis. As we have discussed, Qwerty, 
WordWise , and Multi-press are not substantially affected 
by ambiguity. However, in the case of T9, Silfverberg et 
al. argue that ambiguity can drive the effective typing speed 
for T9 down from 46 to 35 words per minute. Thus, for 
T9 we have plotted two curves, one, labeled “T9 (no 
ambiguity)” assumes a raw typing speed of 46 words per 
minute, the other, labeled “T9 (with ambiguity)” assumes 
a typing speed adjusted for ambiguity of 35 words per 
minute. 
 

 

Figure 6: The degradation of throughput with 
increasing per-letter error probability,  for a perfect 



dictionary and, in the case of T9 , either with no 
ambiguity or with ambiguity. Qwerty, WordWise , and 
Multi-press are  substantially unaffected by ambiguity. 

 We see that the larger the keystroke error probability, the 
larger the difference between Qwerty and the T9 text 
input system, while Qwerty and WordWise  remain close 
throughout the range of keystroke error probabilities 
considered.  With no ambiguity, the performance of T9 
degrades to that of multi-press at a keystroke error rate of 
about 0.08. When both ambiguity and imperfections in 
typing are taken into account, the performance of T9 
degrades to that of multi-press at a keystroke error rate of 
around 0.04. This is a keystroke error rate which is 
commonly observed in practice [7]. 
  
CONCLUSIONS 
Throughput in a disambiguation system is a function of 
many factors beyond raw typing speed.  We have shown 
that due to the typing error amplification property, 
throughput in real-world application of a disambiguation 
system may be significantly less than the throughput 
achieved by a perfect typist. 
When the relaxation of the perfect typist hypothesis is 
combined with relaxation of the no ambiguity hypothesis, 
we can expect that, at any reasonable rate of typing errors, 
the throughput of the T9 text input system will degrade 
significantly.. When the relaxation of the no ambiguity and 
perfect typis t hypotheses is further combined with 
relaxation of the perfect dictionary hypothesis, we expect 
the gap between Qwerty and WordWise  on one hand, and 
T9 on the other to widen further.  In future reports we 
will examine  these predictions both theoretically and in 
empirical tests. 
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