
Linguistically Optimized Text Entry on a Mobile Phone
*submitted to CHI 2001

Hedy Kober1, Eugene Skepner1 , Terry Jones1, Howard Gutowitz1,2, and Scott MacKenzie3

1Eatoni Ergonomics, Inc.
 171 Madison Avenue

New York, New York 10016
USA

+1 212 569 0262
{hedy,eu,terry}@eatoni.com

2 Département de Mathématiques

Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
10, rue Vauquelin

Paris V, France 75005
(on leave)

hag@eatoni.com

3Dept. of Mathematics & Statistics
York University

Toronto, Ontario, Canada M3J 1P3
+1 416 736 2100

smackenzie@acm.org

ABSTRACT
We present an analysis of linguistically optimized text
entry on mobile phones. This analysis compares the
behavior of a linguistically optimized system with word-
based dis ambiguation methods. Through theoretical
analysis, it is shown that in real-world situations in which
typing errors are common and dictionaries are incomplete,
the speed of text -entry using a word-guessing method
degrades to the speed of a multi-press method.
Linguistically optimized text entry speed, however, decays
gracefully in the face of significant noise, and remains
close to those of unambiguous text -entry methods.
Keywords
Mobile computing, text entry, linguistic optimization, Fitts’
law, input devices.

INTRODUCTION
A central reason to explore and examine the efficacy of
telephone keypad text entry is the growth of Short Message
Services (SMS) messages on mobile phones, especially in
Europe. According to the GSM association, 3 billion SMS
messages were sent in December 1999, with a prediction of
10 billion messages a month by the end of 2000 [8].
Currently, the majority of SMS users use multi-press as
their method of text entry, although some cellular phones
do feature word-based disambiguation systems, including
T9 Text Input (“T9®”) by Tegic Communications, Inc.,
iTAP Intelligent Keypad Entry System by Motorola, Inc.,
and eZiText  by Zi Corporation.

This growing phenomenon, accompanied by a greater
demand for mobile internet access, calls for efficient means
of text entry to encourage further growth in the mobile
internet by addressing user needs. In this paper, we present
an overview of the development and expected performance
of word-based disambiguation mechanisms and of a
linguistically optimized text entry mechanism. Their
efficacy will be determined as a function of correct word
throughput, as a function of typing speed, and typing error
rates.

The Evolution of Text Entry on Cell Phones
On a typical telephone keypad, groups of letters in
alphabetical order are associated with number keys. For
example, “a,” “b,” and “c,” are typically associated with
number 2. Thus, any single press of a key is ambiguous, as
it may represent any of the associated sets of three or four
letters.
Early text -entry methodology concentrated on explicitly
disambiguated entries: two-key input (chording) and multi-
pressing. Two-key entry methods activate a combination
of keys, simultaneously or in sequence, to encode each
symbol unambiguously. Such systems require the user to
press the key associated with the desired letter, and then
follow with a second key to specify the position of the
letter on the first key. The second key is usually one of the
keys on the top row: for example, to enter “g”, a user would
press 4 followed by 1 [5,10]. Multi-press works
differently. It requires multiple taps on the same key to
disambiguate an entry: the user taps the key the number of
times corresponding to the position of the letter in the
standard ordering. For example on the 2 key, the user taps
once for “a,” twice for “b”, etc. [2,3]. Although these
methods offer perfectly unambiguous entries, they involve
the significant disadvantage of requiring more than one
keystroke per letter, which results in cumbersome and
laborious typing.
In view of this perceived disadvantage, and since ease of
use and typing speed are essential components of effective
text entry, methods enabling one keystroke per letter
emerged as early as the 1970s, using the standard
ambiguous code and a database of stored responses,
represented by their numerical sequences. Early testing and
implementations of such systems established their accuracy
[16], and ease of use [13].In recent years, dictionary-based
disambiguation mechanisms have appeared in various
forms, often aided by N-gram frequencies, syntactical
information, or other statistical information of letter and
word frequencies [1, 9, 11, 14]. When used, such systems
compare the numerical code of an entry, which is treated as
a discrete unit, with those found in a database, and guess
the intended letters or words. However, many dictionary
words share the same numerical code, and in these cases
the system will present alternatives in a list (a query). The
user selects the intended word from the list. This requires
extra taps for the word entry to be correct and complete.

Nevertheless, even if dictionary words are correctly
disambiguated with just a few extra taps, a greater problem
is created in practice because it is necessary to allow entry
of non-dictionary words, which are in everyday use (e.g.,
proper names, slang, abbreviations, technical and
professional terms, etc.). For example:
a collection of text from the 1988 Wall Street Journal
containing 20,691,239 words, was found by James
Raymond Davis [4] to contain not only 8,633,941
ambiguous words, but also 4,007,375 words which were
not in Webster’s seventh dictionary, to which it was
compared.
With a perfect dictionary, multi-press methods and word-
guessing methods are points on a continuum. For both,
extra keystrokes beyond one per intended letter are required
for a word to appear correctly. In the case of multi-press,
the extra keystrokes are entered throughout the word to
select each intended letter, while in a word-guessing
method the extra keystrokes all occur at the end of the
word. Delaying the extra keystrokes until the end of the
word has the advantage of reducing the total number of
keystrokes which mu st be entered. It has the disadvantage
of causing the display to be unstable as algorithms typically
present their current best guess based on partial information
after each keystroke is entered.
With an imperfect dictionary, word-guessing methods fail
catastrophically on many words which are not in the
dictionary. Since a word guessing algorithm cannot match
a word not in its dictionary, it resorts to default rules which
do not involve complete words in order to make a guess.
When the underlying code is the highly ambiguous
standard ambiguous code, these default rules will typically
render letter sequences which have little relationship with
the intended letter sequence.
In some implementations of word-guessing systems, such
as Tegic Communications’ implementation on the Ericsson
model 280, a failure of the word-guessing algorithm places
the phone into multi-press mode so that the word can be re-
entered unambiguously using multi-press. This solution
enables users to enter any letter sequence, but slows typing
speed significantly.
Measuring Ambiguity
A system’s ambiguity, or its efficacy in disambiguating
entries, can be measured in at least two ways: the query rate
and the lookup error rate. Both are easy to measure given a
complete list of words from a language, their numeric
equivalents, and their probabilities.
The query rate measures how often the same keystroke
pattern yields multiple words. It is calculated as the
reciprocal sum of all probabilities of all the words with
identical codes. Using the standard ambiguous code, a
query occurs, on average, every three words, which at an
average typing speed of 20 wpm, means every 9 seconds.
The lookup error rate measures how often the desired word
is not the first in the list of alternatives in a query. It is
calculated as the reciprocal sum of probabilities of words in

queries, except the first. Using the standard ambiguous
code, a lookup error occurs every 28 words.
Clearly, queries slow typing speed by demanding attention
and cognitive processing time from the user. Lookup errors
exact the same demands, in addition to requiring extra taps
to select the right word from the list.
In this paper, we present an optimized system, which
reduces the number of queries and lookup errors
significantly, thus eliminating most of the distractions that
slow typing speed.
Linguistically Optimal Predictive Text Entry
(LOPT)
Optimal coding is in some ways the opposite of
cryptography. While cryptography seeks codes that are as
difficult as possible to decipher, the optimal coding method
seeks codes which are as easy as possible to decipher.
To overcome the main difficulties with the standard
ambiguous code, we have developed an optimal coding
method for text entry on a telephone keypad. The method
substantially improves on all previous text entry methods,
as it was designed to optimize primarily the query rate and
lookup error rate with respect to other ergonomic criteria,
thus creating a touch typable device requiring little
attention from the user and offering fewer distractions.
The idea behind LOPT is that some of the letter entries are
unambiguous. These letters are entered unambiguously
using an auxiliary key, much like a shift key on the
standard Qwerty keyboard. And so, the system is an
evolved hybrid of chording and ambiguous coding.
The essential insight of the chording aspect of this
invention is that substantially simultaneous activation of a
pair of keys is unified into a single gesture. Thus, a pair of
keystrokes is no more, or only a little more difficult to
master than a single keystroke. Yet, a pair of keystrokes
contains substantially more information than a single
keystroke. Thus, chording creates easily operable, low-
ambiguity codes.
Although selection of letter pairs to be entered
unambiguously on some keys was considered, it was
rejected in light of ergonomic criteria such as learnability
and ease of use, because a regular and predictable division
of letters into shift and non-shift sets of letters makes the
keyboard easier to learn. One could consider more
complicated partitions in which each set contains irregular
sized groups of letters, but this would help very little to
reduce ambiguity. Further, only on keys which contain
more than three letters would irregularities be possible.
There are only two such keys on the telephone keypad (the
7 key and the 9 key). Therefore, a single letter from each
key was selected, in the following way: Query rates and
Lookup error rates were calculated for all 11,664 possible
combinations of letters. The “cloud” graph in Figure 1

shows the results:

Figure 1: Query vs. Lookup error rates for English.

Each point on the graph corresponds to the results for a
distinct letter combination. As clearly seen, the letter
combination providing the optimal (lowest) rates of both
queries and lookup errors in English (and many other
languages in fact) is C, E, H, L, N, S, T, and
Y.

Figure 2: A CEHLNSTY labeled mobile keypad.

 Using this selection of letters as a base, we have
constructed a disambiguation system called WordWise i.
Using WordWise , fully 45% of all letters entered are
entirely unambiguous, and so many words such as “yes,”
“style,” “cheese,” “sentence,” and “senselessness” can be
entered completely unambiguously. This effect helps
reduce queries. In WordWise , queries occur only every
45 words, which at an average typing speed of 20 wpm
means only once in two minutes of typing. Lookup errors
occur every 440 words, or once in every two pages of typed
text. These rates are 15 times better than those achieved by
the standard ambiguous code.
ANALYSING TYPING SPEED
Fitts’ law has provided good quantitative estimates of task
execution speeds in a variety of contexts [6,12]. In the
present instance, Fitts’ law relates typing speed to the
distance traveled by the fingers. Silfverberg, MacKenzie,
and Korhonen [15], recently provided estimates of text
entry speed using a standard telephone keypad. They
compared several input techniques, multi-press, two-key
input, and the T9 text input system, for each using one-

hand thumb input and two-handed index finger input. Their
estimates are built upon three assumptions, limiting their
examination to users’ motor performance alone:
1) There were no typing, spelling, or other errors

requiring time and effort to correct.
2) All words entered are unambiguous.
3) All words typed are included in the dictionary.
These three hypotheses will be referred to as the perfect
typist hypothesis, the no ambiguity hypothesis, and the
perfect dictionary hypothesis, respectively. Under these
hypotheses, Fitts’ law, combined with a linguistic
probability model, predicts that word-based disambiguation
will provide expert users with the capability to type at rates
of 41 or 46 wpm, for one-handed thumb input and two-
handed index finger input respectively, while multi-press
will allow text entry only at rates of 25 or 27 wpm, even in
the hands of expert users.
The No Ambiguity Hypothesis
 The validity of the assumption that there is no
ambiguity and thus no queries depends highly on
the code used. The standard ambiguous code
contains significant ambiguity, as will be shown
in this section.
Figure 3 shows the probability of queries with a given
number of words in a query. The graph is based on the 100
million words in the British National Corpus. Results are
shown for the linguistically optimized system WordWise ,
and a system based on the standard ambiguous code, such
as the T9 text input system :

Figure 3: Occurrence probabilities for queries of
differing sizes.

For the word-based disambiguation mechanism, there is
about a 20% chance of having a query with either 2 or 3
words, which might require extra taps. Non-zero
probabilities exist for queries with up to 12 words. With
WordWise , however, the probability for a query of 2
words is close to zero, and there are never queries with
more than 3 alternatives.
The prediction of 41-46 wpm for the word-guessing
method, based on the aforementioned hypotheses, was

calculated for a single keystroke, a single movement, per
letter, disregarding the potential need for additional
keystrokes. However, in light of these data, text entry in
such a system would require, on average, 1.03 keystrokes
per letter.
Silfverberg et al. briefly examined the effects of queries on
typing speed. Their original model ignores factors that
might further decrease text entry speed in empirical tests,
other than ambiguity itself, such as the time (i) to visually
verify input; (ii) to cognitively register that activation of the
disambiguation mechanism is required; and (iii) to visually
scan the list, register its contents, and verify a selection.
Estimating that users visually verify input 50% of the time,
and that each inspection takes 500 ms, they modified their
prediction for the T9 text input system to 35 wpm.
By contrast, we consider the no ambiguity hypothesis
accurate for WordWise . The low probability of queries
enables the linguistically optimized system to require only
1.002 keystrokes per letter, a rate which virtually relieves
the user from the need to visually verify input. In
accordance with Fitts’ law, this leads to a predicted typing
speed similar to that of the word-guessing mechanism,
before the modification of the no ambiguity hypothesis.
Further analysis of the no ambiguity hypothesis, and
analysis of the perfect dictionary hypothesis is reserved for
future discussion, as will empirical studies. In the present
report, we present an expanded theoretical analysis of the
perfect typist hypothesis, and its effects on text entry speed.
The Perfect Typist Hypothesis
Even highly trained professional typists do not type
perfectly. An extensive literature exists on the variety of
typing errors and their rates [7].
Typing errors on mobile phone keypads can be expected to
be more frequent than those on Qwerty keyboards, since
telephone keypads are conducive to typing errors due to
their small and difficult-to-operate keys.

Typing Error Amplification
When typing on an unambiguous keyboard, such as a
Qwerty keyboard, a one-keystroke typing error results in a
one-letter difference in the displayed text. By contrast,
when using an ambiguous keyboard, such as the standard
telephone keypad or the linguistically optimized keypad, a
one-stroke typing error may result in many letters being
different in the typed text. Disambiguation works by using
context to choose the letter to display. If the context is
altered in one place, it can generally affect the letters
displayed in many places. Potentially, a single keystroke
error can affect the entire word. We call this typing error
amplification.

In general, the more ambiguous the code, the more a single
typing error will amplify into multiple errors. The
amplification of typing errors for ambiguous keyboards
implies that the perfect typist hypothesis demands close
examination. To evaluate the importance and suitability of
the perfect typist hypothesis, we must have some way to

measure the effect of imperfections in typing on
disambiguation mechanisms.

Since a disambiguation mechanism correlates letters within
a word, multiple typing errors within a single word may be
correlated in their effects. The correlations make it very
difficult to supply a full analysis, in which typing errors of
any kind, including multiple errors within a single word,
are considered. Some approximations must be made. This
will be undertaken in the next section.

A Mean Field Theory of Typing Errors
In physics, problems involving complicated correlations are
often attacked using mean field theory. In mean field
theory, correlations between sites are decoupled. The result
is a good approximation provided correlations are small. In
the present case, correlations between typing errors are
small if the probability of making a single typing error is
small. If so, then the probability of making more than one
keystroke error within a given word is small and there can
be little correlation. For single keystroke error rates in the
range studied here (0% to 10%), we expect the mean field
approximation to be very good.

The procedure for building a mean field approximation is
as follows:

1) Construct the set of possible 1-keystroke typing errors.

2) Weight all possible 1-keystroke typing errors equally.

3) Determine the average effect of a one-keystroke error.

4) Use this average effect to calculate the expected
amplification of typing errors.

Possible typing errors
To model the way typing errors are made on a telephone
keypad, we assume the following:
1) Typing errors are due to hitting keys adjacent to the

intended key, either horizontally or vertically.
2) All ways of making typing errors occur with equal

probability.
Thus, we will not consider double typing errors (a
keystroke is mistakenly repeated), inversion errors (two
keystrokes are reversed), insertion or deletion errors (a
keystroke is spuriously inserted or omitted), etc. Inclusion
of these types of errors complicates the analysis, but does
not change the conclusions.
Given these assumptions, we can say that for each word w,
there are Mw ways of mistyping the word with a one-
keystroke error.
For instance, the word “so” is typed using the standard
ambiguous code with the key sequence 76. There is one
key vertically adjacent to the 7 key: the 4 key, which
corresponds to the letters g, h, and i. There is one key
horizontally adjacent to the 7 key: the 8 key, corresponding
to the letters t, u, and v. Similarly, there are two keys
vertically adjacent to the 6 key: the 3 key, corresponding to
the letters d, e, and f; and the 9 key, corresponding to the
letters w, x, y, and z. There is one key horizontally
adjacent to the 6 key: the 5 key, corresponding to the letters
j, k, and l. Each adjacent key might be mistakenly hit. The

possible key combinations in a mistyping are: 46 and 86,
where the first keystroke is in error, and, 73, 75, and 79,
where the second keystroke is in error. In the T9 system,
these keystroke combinations give rise to the letter
combinations “in”, “to”,”re”, “pl”, and “ry” respectively.
The difference between the letters intended and the letters
displayed will be referred to as display errors. The number
of display errors for these mistypings is: 2, 1, 2, 2, and 2,
respectively. The average display error over all of these
mistypings is 1.8. We call this average number the
sensitivity of the word “so” under T9.

To discuss the corresponding calculation for WordWise ,
we indicate the unambiguous shifted letters in bold. Thus,
the word “so” is written “so”. The mistypings for “so” are:
“ho”, “to”, “sf”, “sk”, and “sw”. In each case, there is only
one display error. Thus the average is 1, and the sensitivity
of the word “so” under WordWise is 1, Sw=1.

Continuing to compute the sensitivity of all words in the
BNC corpus in the same way, for both T9 and
WordWise , we obtain the distributions shown in Figure 4.

Figure 4: Distribution of word sensitivities for
WordWise and T9 .

We see that word sensitivities for T9 peak around 4,
while most words have a sensitivity at or near 1 for
WordWise . Since the average word length for English is
about 5.5 letters, these data imply that single keystroke
errors often cause display errors throughout the word.

Average Sensitivity
By averaging with respect to the probability of words, we
can compute the sensitivity as a function of the length of
words, and also, the average sensitivity of the language, S.
For WordWise , the average sensitivity is approximately
1.27, meaning that, on average, a single keystroke error
will result in 1.27 letter differences in the displayed text.
For the word-guessing algorithm, the sensitivity, S, is 2.6.
The sensitivity as a function of word length is shown in the
Figure 5, for both disambiguation mechanisms.

Figure 5: A comparison of the relationship between
word length and sensitivity in WordWise and T9 .

This figure shows that for WordWise the sensitivity is
small, and relatively independent of word length. For the
word-guessing algorithm, by contrast, the sensitivity grows
linearly with the length of the word. This means that most
single-keystroke errors are catastrophic: that is, they
propagate through the entire word. This behavior is
expected, since a single keystroke error is sufficient to
ensure that no match is found in the word-guessing
dictionary. Since no appropriate match can be found, the
likelihood that any of the letters displayed correspond to
the intended word is small. With WordWise , however,
errors remain bounded within a word. This is due to the
fact that roughly every other letter, on average, is an
unambiguously entered letter (c, e, h, l, n, s, t, and y). For
these letters, the display does not depend on other
keystrokes. Furthermore, the unambiguous letters provide
a solid framework to contain errors.
We are now in a position to connect the new concept of
sensitivity with the established concept of throughput.
Throughput
Throughput, as defined here, is the rate at which correct
words are produced by a typist. For a perfect typist, the
throughput is the same as the typing speed. For an
imperfect typist, however, throughput is determined not
only by raw typing speed, but also by the rate of production
of errors, and the means for correcting errors.

On a mechanical typewriter, the only way to correct a word
is to backspace over the word and retype it. The extra
keystrokes have a significant effect on throughput. To
improve throughput, computerized word processing
software provides a single-keystroke mechanism to erase
the preceding word.
With the computerized mechanism, correction of a
mistyped word of length N requires (N + 1) keystrokes, 1 to
delete the word, and N to retype the word. An even faster
mechanism would be to skip the erasure step, and simply
retype the word. With this error correction method, the
throughput is simply the typing speed times the probability
that a word contains no errors. We use this idealized

correction method in the following analysis. By doing so,
we unrealistically reduce the effect of typing errors on
throughput. Nonetheless, we will see that these effects are
quite substantial.
Dependence of Throughput on Keystroke Error
Probability
The probability of producing a word needing correction —
that is, the probability of producing a word with at least
one display error — depends on the keystroke error
probability, and the sensitivity of the disambiguation
mechanism.
If the keystroke error probability is p, and an unambiguous
keyboard is used, then the probability that there are no
display errors in a word is given by:

C0 = (1 - p)N
where N is the length of the word. If the text entry method
is ambiguous, then the probability of a display error is p
times S. The probability of typing a word with no display
errors is:

C0= (1 - Sp)N .
In each case, the throughput T is T = (C0 * speed), where
speed is the raw typing speed.
The throughput for Qwerty, Multi-press, the T9 input
system, and WordWise is plotted in Figure 6. In the no
ambiguity case, the raw typing speed is taken as 46 words
per minute for all methods of text entry, except multi-
press., which has a speed of 27 words per minute under the
perfect typist hypothesis. As we have discussed, Qwerty,
WordWise , and Multi-press are not substantially affected
by ambiguity. However, in the case of T9, Silfverberg et
al. argue that ambiguity can drive the effective typing speed
for T9 down from 46 to 35 words per minute. Thus, for
T9 we have plotted two curves, one, labeled “T9 (no
ambiguity)” assumes a raw typing speed of 46 words per
minute, the other, labeled “T9 (with ambiguity)” assumes
a typing speed adjusted for ambiguity of 35 words per
minute.

Figure 6: The degradation of throughput with
increasing per-letter error probability, for a perfect

dictionary and, in the case of T9 , either with no
ambiguity or with ambiguity. Qwerty, WordWise , and
Multi-press are substantially unaffected by ambiguity.

 We see that the larger the keystroke error probability, the
larger the difference between Qwerty and the T9 text
input system, while Qwerty and WordWise remain close
throughout the range of keystroke error probabilities
considered. With no ambiguity, the performance of T9
degrades to that of multi-press at a keystroke error rate of
about 0.08. When both ambiguity and imperfections in
typing are taken into account, the performance of T9
degrades to that of multi-press at a keystroke error rate of
around 0.04. This is a keystroke error rate which is
commonly observed in practice [7].

CONCLUSIONS
Throughput in a disambiguation system is a function of
many factors beyond raw typing speed. We have shown
that due to the typing error amplification property,
throughput in real-world application of a disambiguation
system may be significantly less than the throughput
achieved by a perfect typist.
When the relaxation of the perfect typist hypothesis is
combined with relaxation of the no ambiguity hypothesis,
we can expect that, at any reasonable rate of typing errors,
the throughput of the T9 text input system will degrade
significantly.. When the relaxation of the no ambiguity and
perfect typis t hypotheses is further combined with
relaxation of the perfect dictionary hypothesis, we expect
the gap between Qwerty and WordWise on one hand, and
T9 on the other to widen further. In future reports we
will examine these predictions both theoretically and in
empirical tests.

REFERENCES

[1] Bentley, J. The littlest keyboard. Unix Review,
December, 1994.
[2] Coles, G. A. Telephone-coupled visual
alphanumeric communication device for deaf persons, U.S.
patent 4,191,854, March 10, 1980.

[3] Danish, A., Danish, S., and Kimbrough, K. W.
Entry of alphabetical characters into a telephone system
using a conventional telephone keypad, U.S. patent
5,392,338, February 21, 1995.
 [4] Davis, J.R. Let your fingers do the spelling:
Disambiguating words spelled with the telephone keypad.
Avios Journal, 9: 57-66, March 1991
[5] Detweiler, M. C. Schumacher R. M. Jr., Gattuso, N.
L. Jr. Alphabetic input on a telephone keypad, Proceedings
of the Human Factors Society 34th Annual Meeting, 1990.

[6] Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of movement,
Journal of Experimental Psychology 47 (1954), 381-391.
[7] Gentener, D. R., Grudin, J. T., Larochelle, S., Norman,
D. A., and Rumelhart, D. E. A glossary of terms including
a classification of typing errors, Cognitive aspects of
skilled typing , ed. W. E. Cooper. (New York: Springer-
Verlag, 1983) 39-44.

[8] GSM Association statistics:
http://www.gsmworld.com/membership/mem_stats.html
[9] James, L. E. Processor-assisted communication
system using tone-generating telephones, U.S. Patent
4,650,927, March 17, 1987.
[10] Knowlton, K. C. Method and apparatus for using
pushbutton telephone keys for generation of
alpha-numeric information, U.S. patent 3,967,273, June 29,
1976.
[11] Kondraske, G. V. Character pattern recognition and
communications apparatus, U.S. Patent 4,674,112, June 16,
1987.

[12] MacKenzie, I. S. Fitts' law as a research and design
tool in human-computer interaction, Human-Computer
Interaction 7 (1992), 91-139.
[13] Richie, D. Research has always had to pay its way.
Bell Labs News, September 10, 1984.

[14] Riskin, B. N. Method and apparatus for identify ing
words entered on DTMF pushbuttons, U.S. Patent
5,031,206, July 9, 1991.

[15] Silfverberg, M., MacKenzie, I. S., and Korhonen, P.
Predicting text entry speed on mobile phones, In
Proceedings of the ACM Conference on Human Factors in
Computing Systems - CHI 2000. New York: ACM, 2000,
pp. 9-16.
[16] Smith, S. L., Goodwin, N. C. Alphabetic data entry
via the touch tone pad: A comment. Human Factors, 13(2)
189-190, 1971.

i WordWise™ is a trademark of Eatoni Ergonomics, Inc.
All other trademarks referred to herein are the property of
their owners.

