
A Revised Report on the Algorithmic Language
ALGOL 68

Edited by:

A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster,
M. Sintzoff, C.H. Lindsey, L.G.T. Meertens and R.G.Fisker.

This Report has been accepted by Working Group 2.1, reviewed by Technical
Committee 2 on Programming and approved for publication by the General
Assembly of The International Federation for Information Processing. Re-
production of the Report, for any purpose, but only of the whole text, is
explicitly permitted without formality.

The translation{1.1.5} of the Report to TEX source language was created by:
W. B. Kloke, mailto:klokew@acm.org

.

Remarks on this edition are collected into a separated document,
http://vestein.arb-phys.uni-dortmund.de/~ wb/RR/vorwort.tex.

Further versions will be found also in http://vestein.arb-phys.uni-
dortmund.de/~ wb/RR/.

The table of contents had to be removed, because page numbers are no
valid concept in TEX source language.

Known errata, as published in Algol Bulletin No. 41 and . . . , are cor-
rected. Syntactic errors in the standard-prelude, as mentioned in Commen-
tary AB 43 p.7f, are corrected also.

Layout of examples has still to be improved.
At this time, 8-6-2002, the printed document is only for proofreading.
The document is best read using a TEX-previewer with hyperref-

support, e.g.xdvi coming with teTeX-1.0 or newer.

1

Section ALGOL 68 Revised Report

Acknowledgements

{ Habent sua fata libelli.
De litteris Terentianus Maurus}

Working Group 2.1 on ALGOL of the International Federation for Infor-
mation Processing has discussed the development of “ALGOL X”, a succes-
sor to ALGOL 60 [3] since 1963. At its meeting in Princeton in May 1965,
WG 2.1 invited written descriptions of the language based on the previous
discussions. At the meeting in St Pierre de Chartreuse near Grenoble in Oc-
tober 1965, three reports describing more or less complete languages were
amongst the contributions, by Niklaus Wirth [8], Gerhard Seegmueller [6],
and Aad van Wijngaarden [9]. In [6] and [8], the descriptional technique
of [3] was used, whereas [9] featured a new technique for language design
and definition. Other significant contributions available were papers by Tony
Hoare [2] and Peter Naur [4, 5].

At subsequent meetings between April 1966 and December 1968, held
in Kootwijk near Amsterdam, Warsaw, Zandvoort near Amsterdam, Tirrenia
near Pisa and North Berwick near Edinburgh, a number of successive ap-
proximations to a final report, commencing with [10] and followed by a series
numbered MR 88, MR 92, MR 93, MR 95, MR 99 and MR 100, were sub-
mitted by a team working in Amsterdam, consisting first of A. van Wijngaar-
den and Barry Mailloux, later reinforced by John Peck, and finally by Kees
Koster. Versions were used during courses on the language held at various
centres, and the experience gained in explaining the language to skilled au-
diences and the reactions of the students influenced the succeeding versions.
The final version, MR 101 [11], was adopted by the Working Group on De-
cember 20th 1968 in Munich, and was subsequently approved for publication
by the General Assembly of I.F.I.P. Since that time, it has been published in
Numerische Mathematik [12], and translations have been made into Russian)
[13], into German [14], into French [15], and into Bulgarian [16]. An “Infor-
mal Introduction”, for the benefit of the uninitiated reader, was also prepared
at the request of the Working Group [18].

The original authors acknowledged with pleasure and thanks the whole-
hearted cooperation, support, interest, criticism and violent objections from
members of WG 2.1 and many other people interested in ALGOL. At the
risk of embarrassing omissions, special mention should be made of Jan Gar-
wick, Jack Merner, Peter Ingerman and Manfred Paul for [1], the Brussels
group consisting of M. Sintzoff, P. Branquart, J. Lewi and P. Wodon for nu-
merous brainstorms, A.J.M. van Gils of Apeldoorn, G. Goos and his group
at Munich, also for [7], G.S. Tseytin of Leningrad, and L.G.L.T. Meertens

2

Section van Wijngaarden, et al.

and J.W. de Bakker of Amsterdam. An occasional choice of a, not inherently
meaningful, identifier in the sequel may compensate for not mentioning more
names in this section.

Since the publication of the Original Report, much discussion has taken
place in the Working Group concerning the further development of the lan-
guage. This has been influenced by the experience of many people who saw
disadvantages in the original proposals and suggested revised or extended fea-
tures. Amongst these must be mentioned especially: I.R. Currie, Susan G.
Bond, J.D. Morison and D. Jenkins of Malvern (see in [17]), in whose di-
alect of ALGOL 68 many features of this Revision may already be found; P.
Branquart, J.P. Cardinael and J. Lewi of Brussels, who exposed many weak-
nesses (see in [17]); Ursula Hill, H. Woessner and H. Scheidig of Munich, who
discovered some unpleasant consequences: the contributors to the Rapport
d’Evaluation [19]: and the many people who served on the Working Group
subcommittees on Maintenance and Improvements (convened by M. Sintzoff)
and on Transput (convened by C.H. Lindsey). During the later stages of
the revision, much helpful advice was given by H. Boom of Edmonton, W.
Freeman of York, W.J. Hansen of Vancouver, Mary Zosel of Livermore, N.
Yoneda of Tokyo, M. Rain of Trondheim, L. Ammeraal, D. Grune, H. van
Vliet and R. van Vliet of Amsterdam, G. van der Mey of Delft, and A.A.
Baehrs and A.F. Rar of Novosibirsk. The editors of this revision also wish to
acknowledge that the wholehearted cooperation, support, interest, criticism
and violent objections on the part of the members of WG 2.1 have continued
unabated during this time.

[1] J.V. Garwick, J.M. Merner, P.Z. Ingerman and M. Paul, Report of
the ALGOL-X - I-O Subcommittee, WG 2.1 Working Paper, July 1966.

[2] C.A.R. Hoare, Record Handling, WG 2.1 Working Paper, October
1965; also AB.21.3.6. November 1965.

[3] P. Naur (Editor), Revised Report on the Algorithmic Language
ALGOL 60, Regnecentralen, Copenhagen, 1962, and elsewhere.

[4] P. Naur, Proposals for a new language, AB.18.3.9, October 1964.
[5] P. Naur, Proposals for introduction on aims, WG 2.1 Working Paper,

October 1965.
[6] G. Seegmueller, A proposal four a basis for a Report on a Successor

to ALGOL 60. Bavarian Acad. Sci., Munich, October 1965.
[7] G. Goos, H. Scheidig, G. Seegmueller and H. Walther, Another

proposal for ALGOL 67. Bavarian Acad. Sci., Munich, May 1967.
[8] N. Wirth, A Proposal for a Report on a Successor of ALGOL 60,

Mathematisch Centrum, Amsterdam, MR 75, October 1965.
[9] A. van Wijngaarden, Orthogonal Design and Description of a Formal

3

Section ALGOL 68 Revised Report 01

Language, Mathematisch Centrum, Amsterdam, MR 76, October 1965.
[10] A. van Wijngaarden and B.J. Mailloux, A Draft Proposal for the

Algorithmic Language ALGOL X, WG 2.1 Working Paper, October 1966.
[11] A. van Wijngaarden (Editor), B.J. Mailloux, J.E.L. Peck and C.H.A.

Koster, Report on the Algorithmic Language ALGOL 68, Mathematisch
Centrum. Amsterdam, MR 101, February 1969.

[12] idem, Numerische Mathematik, Vol. 14, pp. 79-218. 1969.
[13] Soobshchenie ob algoritmicheskom yazyke ALGOL 68, translation

into Russian by A.A. Baehrs, A.P. Ershov, L.L. Zmievskaya and A.F. Rar.
Kybernetica, Kiev, Part 6 of 1969 and Part 1 of 1970.

[14] Bericht ueber die Algorithmische Sprache ALGOL 68, translation
into German by I.O. Kerner, Akademie-Verlag, Berlin, 1972.

[15] Définition du Langage Algorithmique ALGOL 68, translation into
French by J. Buffet, P. Arnal, A. Quéré (Eds.), Hermann, Paris, 1972.

[16] Algoritmichniyat yezik ALGOL 68, translation into Bulgarian by D.
Toshkov and St. Buchvarov, Nauka i Yzkustvo, Sofia, 1971.

[17] J.E.L. Peck (Ed.), ALGOL 68 Implementation (proceedings of the
I.F.I.P. working conference held in Munich in 1970), North Holland Publish-
ing Company, 1971.

[18] C.H. Lindsey and S.G. van der Meulen, Informal introduction to
ALGOL 68, North Holland Publishing Company 1971.

[19] J.C. Boussard and J.J. Duby (Eds.), Rapport d’Evaluation AL-
GOL 68, Revue d’Informatique et de Recherche Opérationelle, B2, Paris,
1970.
{[20] W.J.Hansen and H. Boom, The Report on the Standard Hardware

Representation for ALGOL 68, {further information not yet available}.†}

0. Introduction

0.1. Aims and principles of design
a) In designing the Algorithmic Language ALGOL 68, Working Group

2.1 on ALGOL of the International Federation for Information Processing
expresses its belief in the value of a common programming language serving
many people in many countries.
b) ALGOL 68 is designed to communicate algorithms, to execute them

efficiently on a variety of different computers, and to aid in teaching them
to students.

† This is added by the editor to the list, for reasons explained in footnotes
in 9.3 and 9.4.2.2.

4

Section012 van Wijngaarden, et al.

c) This present Revision of the language is made in response to the di-
rective of the parent committee, I.F.I.P. TC 2, to the Working Group to
“keep continually under review experience obtained as a consequence of this
{original} publication, so that it may institute such corrections and revisions
to the Report as become desirable”. In deciding to bring forward this Re-
vision at the present time, the Working Group has tried to keep in balance
the need to accumulate the maximum amount of experience of the problems
which arose in the language originally defined, as opposed to the needs of the
many teams at present engaged in implementation, for whom an early and
simple resolution of those problems is imperative.

d) Although the language as now revised differs in many ways from that
defined originally, no attempt has been made to introduce extensive new fea-
tures and, it is believed, the revised language is still clearly recognizable as
“ALGOL 68”. The Working Group has decided that this present revision
should be “the final definition of the language ALGOL 68”, and the hope is
expressed that it will be possible for implementations at present in prepara-
tion to be brought into line with this standard.

e) The Working Group may, from time to time, define sublanguages and
extended capabilities, by means of Addenda to this Report, but these will
always be built on the language here defined as a firm foundation. Moreover,
variants more in conformity with natural languages other than English may
be developed. To coordinate these activities, and to maintain contact with
implementers and users, a Subcommittee on ALGOL 68 Support has been
established by the Working Group.

f) The members of the Group, influenced by several years of experience
with ALGOL 60 and other programming languages, have always accepted the
following as their aims:

0.1.1 Completeness and clarity of description

The Group wishes to contribute to the solution of the problems of
describing a language clearly and completely. The method adopted in this
Report is based upon a formalized two-level grammar, with the semantics
expressed in natural language, but making use of some carefully and precisely
defined terms and concepts. It is recognized, however, that this method may
be difficult for the uninitiated reader.

5

Section ALGOL 68 Revised Report 0145

0.1.2 Orthogonal design
The number of independent primitive concepts has been minimized in

order that the language be easy to describe, to learn, and to implement. On
the other hand, these concepts have been applied “orthogonally” in order
to maximize the expressive power of the language while trying to avoid
deleterious superfluities.

0.1.3 Security
ALGOL 68 has been designed in such a way that most syntactical and

many other errors can be detected easily before they lead to calamitous
results. Furthermore, the opportunities for making such errors are greatly
restricted.

0.1.4 Efficiency
ALGOL 68 allows the programmer to specify programs which can be run

efficiently on present-day computers and yet do not require sophisticated and
time-consuming optimization features of a compiler; see, e.g., 11.7.

0.1.4.1 Static mode checking
The syntax of ALGOL 68 is such that no mode checking during run

time is necessary, except when the programmer declares a UNITED-variable
and then, in a conformity-clause, explicitly demands a check on its mode.

0.1.4.2 Mode-independent parsing
The syntax of ALGOL 68 is such that the parsing of a program can

be performed independently of the modes of its constituents. Moreover, it
can be determined in a finite number of steps whether an arbitrary given
sequence of symbols is a program.

0.1.4.3 Independent compilation
The syntax of ALGOL 68 is such that the main-line programs and pro-

cedures can be compiled independently of one another without loss of object-
program efficiency provided that, during each independent compilation, spec-
ification of the mode of all nonlocal quantities is provided: see the remarks
after 2.2.2.c.

0.1.4.4 Loop optimization
Iterative processes are formulated in ALGOL 68 in such a way that

straightforward application of well-known optimization techniques yields
large gains during run time without excessive increase of compilation time.

6

Section021 van Wijngaarden, et al.

0.1.4.5 Representations
Representations of ALGOL 68 symbols have been chosen so that the

language may be implemented on computers with a minimal character set.
At the same time implementers may take advantage of a larger character set,
if it is available.

0.2 Comparison with ALGOL 60
a) ALGOL 68 is a language of wider applicability and power than ALGOL

60. Although influenced by the lessons learned from ALGOL 60, ALGOL 68
has not been designed as an expansion of ALGOL 60 but rather as a com-
pletely new language based on new insight into the essential, fundamental
concepts of computing and a new description technique.
b) The result is that the successful features of ALGOL 60 reappear in AL-

GOL 68 but as special cases of more general constructions, along with com-
pletely new features. It is, therefore, difficult to isolate differences between
the two languages: however, the following sections are intended to give in-
sight into some of the more striking differences.

0.2.1 Values in ALGOL 68
a) Whereas ALGOL 60 has values of the types integer, real and Boolean, AL-

GOL 68 features an infinity of “modes”, i.e., generalizations of the concept
“type”.
b) Each plain value is either arithmetic, i.e., of 'integral' or 'real' mode and

then it is of one of several sizes, or it is of 'boolean' or 'character' or 'void'

mode. Machine words, considered as sequences of bits or of bytes, may also
be handled.
c) In ALGOL 60, values can be composed into arrays, whereas in AL-

GOL 68, in addition to such “multiple” values, also “structured” values, com-
posed of values of possibly different modes, are defined and manipulated. An
example of a multiple value is the character array, which corresponds approx-
imately to the ALGOL 60 string; examples of structured values are complex
numbers and symbolic formulae.
d) In ALGOL 68 the concept of a “name” is introduced, i.e., a value which

is said to “refer to” another value; such a name-value pair corresponds to
the ALGOL 60 variable. However, a name may take the value position in a
name-value pair, and thus chains of indirect addresses can be built up.
e) The ALGOL 60 concept of procedure body is generalized in ALGOL 68

to the concept of “routine”, which includes also the formal parameters, and
which is itself a value and therefore can be manipulated like any other value.

7

Section ALGOL 68 Revised Report 024

f) In contrast with plain values, the significance of a name or routine is,
in general, dependent upon the existence of the storage cells referred to
or accessed. Therefore, the use of names and routines is subject to some
restrictions related to their “scope”. However, the syntax of ALGOL 68 is
such that in many cases the check on scope can be made at compile time,
including all cases where no use is made of features whose expressive power
transcends that of ALGOL 60.

0.2.2 Declarations in ALGOL 68
a) Whereas ALGOL 60 has type declarations, array declarations, switch

declarations and procedure declarations, ALGOL 68 features the identity-
declaration whose expressive power includes all of these, and more. The
identity-declaration, although theoretically sufficient in itself, is augmented by
the variable-declaration for the convenience of the user.
b) Moreover, in ALGOL 68, a mode-declaration permits the construction of

a new mode from already existing ones. In particular, the modes of multiple
values and of structured values may be defined in this way; in addition, a
union of modes may be defined, allowing each value referred to by a given
name to be of any one of the uniting modes.
c) Finally, in ALGOL 68, a priority-declaration and an operation-declaration

permit the introduction of new operators, the definition of their operation and
the extension of the class of operands of, and the revision of the meaning of,
already established operators.

0.2.3 Dynamic storage allocation in ALGOL 68
Whereas ALGOL 60 (apart from “own dynamic arrays”) implies a

“stack”-oriented storage-allocation regime, sufficient to cope with objects
having nested lifetimes (an object created before another object being
guaranteed not to become inaccessible before that second one), ALGOL 68
provides, in addition, the ability to create and manipulate objects whose
lifetimes are not so restricted. This ability implies the use of an additional
area of storage, the “heap”, in which garbage-collection techniques must be
used.

0.2.4 Collateral elaboration in ALGOL 68
Whereas, in ALGOL 60, statements are “executed consecutively”, in AL-

GOL 68, phrases are “elaborated serially” or “collaterally”. This latter facil-
ity is conducive to more efficient object programs under many circumstances,
since it allows discretion to the implementer to choose, in many cases, the or-
der of elaboration of certain constructs or even, in some cases, whether they

8

Section03 van Wijngaarden, et al.

are to be elaborated at all. Thus the user who expects his “side effects” to
take place in any well determined manner will receive no support from this
Report. Facilities for parallel programming, though restricted to the essen-
tials in view of the none-too-advanced state of the art, have been introduced.

0.2.5 Standard declarations in ALGOL 68

The ALGOL 60 standard functions are all included in ALGOL 68 along
with many other standard declarations. Amongst these are “environment
enquiries”, which make it possible to determine certain properties of an
implementation, and “transput” declarations, which make it possible, at run
time, to obtain data from and to deliver results to external media.

0.2.6 Some particular constructions in ALGOL 68

a) The ALGOL 60 concepts of block, compound statement and parenthe-
sized expression are unified in ALGOL 68 into the serial-clause. A serial-clause
may be an expression and yield a value. Similarly, the ALGOL 68 assignation,
which is a generalization of the ALGOL 60 assignment statement, may be an
expression and, as such, also yield a value.

b) The ALGOL 60 concept of subscripting is generalized to the ALGOL 68
concept of “indexing”, which allows the selection not only of a single element
of an array but also of subarrays with the same or any smaller dimensionality
and with possibly altered bounds.

c) ALGOL 68 provides row-displays and structure-displays, which serve to
compose the multiple and structured values mentioned in 0.2.1.c from other,
simpler, values.

d) The ALGOL 60 for statement is modified into a more concise and
efficient loop-clause.

e) The ALGOL 60 conditional expression and conditional statement, uni-
fied into a conditional-clause, are improved by requiring them to end with a
closing symbol whereby the two alternative clauses admit the same syntactic
possibilities. Moreover, the conditional-clause is generalized into a case-clause,
which allows the efficient selection from an arbitrary number of clauses de-
pending on the value of an integral-expression, and a conformity-clause, which
allows a selection depending upon the actual mode of a value.

f) Some less successful ALGOL 60 concepts, such as own quantities and
integer labels, have not been included in ALGOL 68, and some concepts, like
designational expressions and switches, do not appear as such in ALGOL 68
but their expressive power is included in other, more general, constructions.

9

Section ALGOL 68 Revised Report 036

0.3 Comparison with the language defined in 1968
The more significant changes to the language are indicated in the sec-

tions which follow. The revised language will be described in a new edition of
the “Informal Introduction to ALGOL 68” by C.H. Lindsey and S.G. van der
Meulen, which accompanied the original Report.

0.3.1 Casts and routine texts
Routines without parameters used to be constructed out of a cast in

which the cast-of-symbol (:) appeared. This construct is now one of the forms
of the new routine-text, which provides for procedures both with and without
parameters. A new form of the cast has been provided which may be used
in contexts previously not possible. Moreover, both void-casts and procedure-
PARAMETY-yielding-void-routine-texts must now contain an explicit void-symbol.

0.3.2 Extended ranges
The new range which is established by the enquiry-clause of a choice-clause

(which encompasses the old conditional- and case-clauses) or of a while-part now
extends into the controlled serial-clause or do-part.

0.3.3 Conformity clauses
The conformity-relation and the case-conformity which was obtained by

extension from it are now replaced by a new conformity-clause, which is a
further example of the choice-clause mentioned above.

0.3.4 Modes of multiple values
A new class of modes is introduced, for multiple values whose elements

are themselves multiple values. Thus one may now write the declarer []
string.

Moreover, multiple values no longer have “states” to distinguish their
flexibility. Instead, flexibility is now a property of those names which refer to
multiple values whose size may change, such names having distinctive modes
of the form 'reference to flexible ROWS of MODE'.

0.3.5 Identification of operators
Not only may two operators, related to each other by the modes of their

operands, not be declared in the same range, as before, but now, if two such
operators be declared in different reaches, any attempt to identify from the
inner reach the one in the outer reach will fail. This gives some benefit to the
implementer and removes a source of possible confusion to the user.

10

Section04 van Wijngaarden, et al.

0.3.6 Representations

The manner in which symbols for newly defined mode-indications and
operators are to be represented is now more closely defined. Thus it is clear
that the implementer is to provide a special alphabet of bold-faced, or
“stropped”, marks from which symbols such as person may be made, and it
is also clear that operators such as >> are to be allowed.

0.3.7 Standard prelude

In order to ease the problems of implementers who might wish to
provide variants of the language suitable for environments where English is
not spoken, there are no longer any field-selectors known to the user in the
standard-prelude, with the exception of re and im of the mode compl. The
identifiers and other indicators declared in the standard-prelude could, of course,
easily be defined again in some library-prelude, but this would not have been
possible in the case of field-selectors.

0.3.8 Line length in transput

The lines (and the pages also) of the “book” used during transput may
now, at the discretion of the implementer, be of varying lengths. This models
more closely the actual behaviour of most operating systems and of devices
such as teleprinters and paper-tape readers.

0.3.9 Internal transput

The transput routines, in addition to sending data to or from external
media, may now be associated with row-of-character-variables declared by the
user.

0.3.11 Elaboration of formats

The dynamic replicators contained in format-texts are now elaborated as
and when they are encountered during the formatted transput process. This
should give an effect more natural to the user, and is easier to implement.

0.3.12 Features removed

Certain features, such as proceduring, gommas and formal bounds, have
not been included in the revision.

11

Section ALGOL 68 Revised Report 042

0.4 Changes in the method of description

In response to the directive from the Working Group “to make its study
easier for the uninitiated reader”, the Editors of this revision have rewritten
the original Report almost entirely, using the same basic descriptional tech-
nique, but applying it in new ways. It is their hope that less “initiation” will
now be necessary.

The more significant changes in the descriptional technique are indicated
below.

0.4.1 Two-level grammar

a) While the syntax is still described by a two-level grammar of the type
now widely known by the name “Van Wijngaarden”, new techniques for us-
ing such grammars have been applied. In particular, the entire identification
process is now described in the syntax using the metanotion “NEST”, whose
terminal metaproductions are capable of describing, and of passing on to the
descendent constructs, all the declared information which is available at any
particular node of the production tree.

b) In addition, extensive use is made of “predicates”. These are notions
which are deliberately made to yield blind alleys when certain conditions are
not met, and which yield empty terminal productions otherwise. They have
enabled the number of syntax rules to be reduced in many cases, while at the
same time making the grammar easier to follow by reducing the number of
places where a continuation of a given rule might be found.

It has thus been possible to remove all the “context conditions” con-
tained in the original Report.

0.4.2 Modes

a) In the original Report, modes were protonotions of possibly infinite
length. It was assumed that, knowing how an infinite mode had been
obtained, it was decidable whether or not it was the same as some other
infinite mode. However, counterexamples have come to light where this was
not so. Therefore, it has been decided to remove all infinities from the
process of producing a finite program and, indeed, this can now be done in
a finite number of moves.

b) A mode, essentially, has to represent a potentially infinite tree. To
describe it as a protonotion of finite length requires the use of markers {'MU
definition's} and pointers back to those markers {'MU application's} within the
protonotion. However, a given infinite tree can be “spelled” in many ways by
this method, and therefore a mode becomes an equivalence class comprised of

12

Section045 van Wijngaarden, et al.

all those equivalent spellings of that tree. The equivalence is defined in the
syntax using the predicates mentioned earlier.

0.4.3 Extensions
The need for many of the extensions given in the original Report had

been removed by language changes. Some of the remainder had been a
considerable source of confusion and surprises. The opportunity has therefore
been taken to remove the extension as a descriptional mechanism, all the
former extensions now being specified directly in the syntax.

0.4.4 Semantics
a) In order to remove some rather repetitious phrases from the semantics,

certain technical terms have been revised and others introduced. The gram-
mar, instead of producing a terminal production directly, now does so by way
of a production tree. The semantics is explained in terms of production trees.
Paranotions, which designate constructs, may now contain metanotions and
“hypernotions” have been introduced in order to designate protonotions.
b) A model of the hypothetical computer much more closely related to

a real one has been introduced. The elaboration of each construct is now
presumed to take place in an “environ” and, when a new range is entered
(and, in particular, when a routine is called), a new “locale” is added to the
environ. The locale corresponds to the new range and, if recursive procedure
calls arise, then there exist many locales corresponding to one same routine.
This supersedes the method of “textual substitution” used before, and one
consequence of this is that the concept of “protection” is no longer required.
c) The concept of an “instance” of a value is no longer used. This simplifies

certain portions of the semantics where, formerly, a “new instance” had to be
taken, the effects of which were not always clear to see.

0.4.5 Translations
The original Report has been translated into various natural languages.

The translators were not always able to adhere strictly to the descriptional
method, and so the opportunity has been taken to define more clearly and
more liberally certain descriptional features which caused difficulties (see
1.1.5).

{ True wisdom knows it must comprise
some nonsense as a compromise,
lest tools should fail to find it wise.
Grooks, Piet Hein.}

13

Section ALGOL 68 Revised Report 111

PART I: Preliminary definitions

1. Language and metalanguage

1.1. The method of description

1.1.1. Introduction
a) ALGOL 68 is a language in which algorithms may be formulated for

computers, i.e., for automata or for human beings. It is defined by this Re-
port in four stages, the “syntax” {b}, the “semantics” {c}, the “representa-
tions” {d} and the “standard environment” {e}.
b) The syntax is a mechanism whereby all the constructs of the language

may be produced. This mechanism proceeds as follows:
(i) A set of “hyper-rules” and a set of “metaproduction rules” are given
{1.1.3.4, 1.1.3.3}, from which “production rules” may be derived:

(ii) A “construct in the strict language” is a “production tree” {1.1.3.2.f}
which may be produced by the application of a subset of those produc-
tion rules; this production tree contains static information {i.e., informa-
tion known at “compile time”} concerning that construct: it is composed
of a hierarchy of descendent production trees, terminating at the lowest
level in the “symbols”; with each production tree is associated a “nest” of
properties, declared in the levels above, which is passed on to the nests
of its descendents;

(iii) A “program in the strict language” is a production tree for the notion
'program' {2.2.1.a}. It must also satisfy the “environment condition”
{10.1.2}.

c) The semantics ascribes a “meaning” {2.1.4.1.a} to each construct {i.e.,
to each production tree} by defining the effect (which may, however, be
“undefined”) of its “elaboration” {2.1.4.1}. This proceeds as follows:
(i) A dynamic {i.e., run-time} tree of active “actions” is set up {2.1.4};

typically, an action is the elaboration of some production tree T in an
“environ” consistent with the nest of T , and it may bring about the
elaboration of descendents of T in suitable newly created descendent
environs;

(ii) The meaning of a program in the strict language is the effect of its
elaboration in the empty “primal environ”.

d) A program in the strict language must be represented in some “represen-
tation language” {9.3.a} chosen by the implementer. In most cases this will
be the official “reference language”.

14

Section112 van Wijngaarden, et al.

(i) A program in a representation language is obtained by replacing the
symbols of a program in the strict language by certain typographical
marks {9.3}.

(ii) Even the reference language allows considerable discretion to the im-
plementer {9.4.a, b, c}. A restricted form of the reference language in
which such freedom has not been exercised may be termed the “canoni-
cal form” of the language, and it is expected that this form will be used
in algorithms intended for publication.

(iii) The meaning of a program in a representation language is the same as
that of the program {in the strict language} from which it was obtained.

e) An algorithm is expressed by means of a particular-program, which is
considered to be embedded, together with the standard environment, in a
program-text {10.1.1.a}. The meaning of a particular-program {in the strict or
a representation language} is the meaning of the program “akin” to that
program-text {10.1.2.a}.

1.1.2. Pragmatics

{ Merely corroborative detail, intended to give artistic
verisimilitude to an otherwise bald and unconvincing
narrative.
Mikado, W.S. Gilbert.}

Scattered throughout this Report are “pragmatic” remarks included
between the braces “{” and “}”. These are not part of the definition of
the language but serve to help the reader to understand the intentions and
implications of the definitions and to find corresponding sections or rules.
{Some of the pragmatic remarks contain examples written in the refer-

ence language. In these examples, applied-indicators occur out of context from
their defining-indicators. Unless otherwise specified, these occurrences identify
those in the standard- or particular-preludes and the particular-postlude (10.2,
10.3, 10.5) (e.g., see 10.2.3.12.a for pi , 10.5.1.b for random and 10.5.2.a for
stop), or those in:

int i, j, k, m, n; real a, b, x, y; bool p, q, overflow; char c; format f; bytes
r; string s; bits t; compl w, z; ref real xx, yy; union(int, real) uir;
proc void task1, task2;

[1: n] real x1, y1; flex [1:n] real a1; [1: m, 1: n] real x2; [1: n, 1: n] real
y2; [1: n] int i1; [1: m, 1: n] int i2; [1: n] compl z1;

proc x or y = ref real: if random < .5 then x else y fi;
proc ncos = (int i)real: cos(2 × pi × i / n);
proc nsin = (int i)real: sin(2 × pi × i / n);

15

Section ALGOL 68 Revised Report 1131

proc finish = void: go to stop;
mode book = struct(string text, ref book next);
book draft;
princeton: grenoble: st pierre de chartreuse: kootwijk: warsaw:

zandvoort: amsterdam: tirrenia: north berwick: munich:
finish .}

1.1.3. The syntax of the strict language

1.1.3.1. Protonotions

a) In the definition of the syntax of the strict language, a formal grammar
is used in which certain syntactic marks appear. These may be classified as
follows:
(i) “small syntactic marks”, written, in this Report, as

“a”, “b”, “c”, “d”, “e”, “f”, “g”, “h”, “i”, “j”, “k”, “l”, “m”, “n”, “o”,
“p”, “q”, “r”, “s”, “t”, “u”, “v”, “w”, “x”, “y”, “z”, “(”, “)”;

(ii) “large syntactic marks”, written, in this Report, as
“A”, “B”, “C”, “D”, “E”, “F”, “G”, “H”, “I”, “J”, “K”, “L”, “M”, “N”,
“O”, “P”, “Q”, “R”, “S”, “T”, “U”, “V”, “W”, “X”, “Y”, “Z”, “0”, “1”,
“2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”;

(iii) “other syntactic marks”, written, in this Report, as
“.” (“point”), “,” (“comma”), “:” (“colon”), “;” (“semicolon”), “'”
(“apostrophe”), “-” (“hyphen”) and “*” (“asterisk”).

{Note that these marks are in another type font than that of the marks in
this sentence.}
b) A “protonotion” is a possibly empty sequence of small syntactic marks.

c) A “notion” is a {nonempty} protonotion for which a production rule can
be derived {1.1.3.2.a, 1.1.3.4.d}.
d) A “metanotion” is a {nonempty} sequence of large syntactic marks for

which a metaproduction rule is given or created {1.1.3.3.a}.
e) A “hypernotion” is a possibly empty sequence each of whose elements

either is a small syntactic mark or is a metanotion.
{Thus the class of protonotions (b) is a subclass of the class of hyper-

notions. Hypernotions are used in metaproduction rules (1.1.3.3), in hyper-
rules (1.1.3.4), as paranotions (1.1.4.2) and, in their own right, to “designate”
certain classes of protonotions (1.1.4.1).}

{A “paranotion” is a hypernotion to which certain special conventions
and interpretations apply, as detailed in 1.1.4.2.}

16

Section1132 van Wijngaarden, et al.

f) A “symbol” is a protonotion ending with 'symbol'. {Note that the
paranotion symbol (9.1.1.h) designates a particular occurrence of such a
protonotion.}
{Examples:

b) 'variable point'

c) 'variable point numeral' (8.1.2.1.b)
d) “INTREAL” (1.2.1.C)
e) 'reference to INTREAL'

f) 'letter a symbol' .
Note that the protonotion 'twas brillig and the slithy toves' is neither

a symbol nor a notion, in that it does not end with 'symbol' and no
production rule can be derived for it. Likewise, “LEWIS” and “CAROLL” are
not metanotions in that no metaproduction rules are given for them.}

g) In order to distinguish the various usages in the text of this Report of
the terms defined above, the following conventions are adopted:
(i) No distinguishing marks {quotes, apostrophes or hyphens} are used in

production rules, metaproduction rules or hyper-rules;
(ii) Metanotions, and hypernotions which stand for themselves {i.e., which do

not designate protonotions}, are enclosed in quotes;
(iii) Paranotions are not enclosed in anything {but, as an aid to the reader,

are provided with hyphens where, otherwise, they would have been
provided with blanks};

(iv) All other hypernotions {including protonotions} not covered above are
enclosed in apostrophes {in order to indicate that they designate some
protonotion, as defined in 1.1.4.1.a};

(v) Typographical display features, such as blank space, hyphen, and change
to a new line or new page, are of no significance (but see also 9.4.d).
{Examples:

(i) LEAP :: local ; heap ; primal. is a metaproduction rule ;
(ii) “INTREAL” is a metanotion and designates nothing but itself;
(iii) reference-to-INTREAL-identifier, which is not enclosed in apostrophes

but is provided with hyphens, is a paranotion designating a construct
(1.1.4.2.a);

(iv) 'variable point' is both a hypernotion and a protonotion; regarded as a
hypernotion, it designates itself regarded as a protonotion;

(v) 'reference to real' means the same as 'referencetoreal'.
}

17

Section ALGOL 68 Revised Report 1132

1.1.3.2. Production rules and production trees
a) The {derived} “production rules” {b} of the language are those produc-

tion rules which can be derived from the “hyper-rules” {1.1.3.4}, together
with those specified informally in 8.1.4.1.d and 9.2.1.d.
b) A “production rule” consists of the following items, in order:

an optional asterisk ;
a nonempty protonotion N ;
a colon ;
a nonempty sequence of “alternatives” separated by semicolons ;
a point.

It is said to be a production rule “for” {the notion (1.1.3.1.c)} N.
{The optional asterisk, if present, signifies that the notion is not used

in other production rules, but is provided to facilitate discussion in the
semantics. It also signifies that that notion may be used as an “abstraction”
(1.1.4.2.b) of one of its alternatives.}
c) An “alternative” is a nonempty sequence of “members” separated by

commas.
d) A “member” is either

(i) a notion {and may then be said to be productive, or nonterminal},
(ii) a symbol {which is terminal},
(iii) empty, or
(iv) some other protonotion {for which no production rule can be derived},

which is then said to be a “blind alley”.
{For example, the member 'reference to real denotation' (derived from the

hyper-rule 8.0.1.a) is a blind alley.}
{Examples:

b) exponent part : times ten to the power choice, power of ten. (8.1.2.1.g)
• times ten to the power choice : times ten to the power symbol ; letter
e symbol. (8.1.2.1.h)

c) times ten to the power choice, power of ten •
times ten to the power symbol • letter e symbol

d) times ten to the power choice • power of ten •
times ten to the power symbol • letter e symbol }
e) A “construct in the strict language” is any “production tree” {f} that

may be “produced” from a production rule of the language.
f) A “production tree” T for a notion N, which is termed the “original” of
T , is “produced” as follows:
• let P be some {derived} production rule for N;
• a copy is taken of N;

18

Section1132 van Wijngaarden, et al.

• a sequence of production trees, the “direct descendents” of T , one
produced for each nonempty member of some alternative A of P, is
attached to the copy; the order of the sequence is the order of those
members within A;
• the copy of the original, together with the attached direct descen-
dents, comprise the production tree T .
A “production tree” for a symbol consists of a copy of that symbol {i.e.,

it consists of a symbol}.
The “terminal production” of a production tree T is a sequence consist-

ing of the terminal productions of the direct descendents of T , taken in order.
The “terminal production” of a production tree consisting only of a

symbol is that symbol.
{Example:

'exponent part'︷ ︸︸ ︷

'times ten to the
power choice'

'letter e symbol'

'power of ten'︷ ︸︸ ︷

'plusminus option'

'plusminus'

'plus symbol'

'fixed point numeral'

'digit cypher
sequence'︷ ︸︸ ︷

'digit cypher'

'digit zero'

'digit zero symbol'

'digit cypher
sequence'

'digit cypher'

'digit two'

'digit two symbol'}
{The terminal production of this tree is the sequence of symbols at the

bottom of the tree. In the reference language, its representation would be
e+02.}

A “terminal production” of a notion is the terminal production of
some production tree for that notion {thus there are many other terminal
productions of 'exponent part' besides the one shown}.
{The syntax of the strict language has been chosen in such a way that a

given sequence of symbols which is a terminal production of some notion is so
by virtue of a unique production tree, or by a set of production trees which

19

Section ALGOL 68 Revised Report 1133

differ only in such a way that the result of their elaboration is the same (e.g.,
production trees derived from rules 3.2.1.e (balancing), 1.3.1.d,e (predicates)
and 6.7.1.a,b (choice of spelling of the mode of a coercend to be voided); see
also 2.2.2.a).

Therefore, in practice, terminal productions (or representations thereof)
are used, in this Report and elsewhere, in place of production trees. Never-
theless, it is really the production trees in terms of which the elaboration of
programs is defined by the semantics of this Report, which is concerned with
explaining the meaning of those constructs whose originals are the notion
'program'.}
g) A production tree P is a “descendent” of a production tree Q if it is

a direct descendent {f} either of Q or of a descendent of Q. Q is said to
“contain” its descendents and those descendents are said to be “smaller”
than Q. {For example, the production tree

'plusminus option'

'plusminus'

'plus symbol'

occurs as a descendent in (and is contained within and is smaller than)
the production tree for 'exponent part' given above.}
h) A “visible” (“invisible”) production tree is one whose terminal produc-

tion is not (is) empty.

i) A descendent {g} U of a production tree T is “before” (“after”) a
descendent V of T if the terminal production {f} of U is before (after) that of
V in the terminal production of T . The {partial} ordering of the descendents
of T thus defined is termed the “textual order”. {In the example production
tree for 'exponent part' (f), the production tree whose original is 'plusminus' is
before that whose original is 'digit two'.}
j) A descendent A of a production tree “follows” (“precedes”) another

descendent B in some textual order if A is after (before) B in that textual
order, and there exists no visible {h} descendent C which comes between A
and B. {Thus “immediately” following (preceding) is implied.}
k) A production tree A is “akin” to a production tree B if the terminal

production {f} of A is identical to the terminal production of B.

20

Section1133 van Wijngaarden, et al.

1.1.3.3. Metaproduction rules and simple substitution

{The metaproduction rules of the language form a set of context-free
grammars defining a “metalanguage”.}
a) The “metaproduction rules” {b} of the language are those given in the

sections of this Report whose heading begins with “Syntax”, “ Metasyntax”
or “Metaproduction rules”, together with those obtained as follows:
• for each given metaproduction rule, whose metanotion is M say,
additional rules are created each of which consists of a copy of M
followed by one of the large syntactic marks “0”, “1”, “2”, “3”, “4”,
“5”, “6”, “7”, “8” or “9”, followed by two colons, another copy of that M
and a point.
{Thus, the metaproduction rule “MODE1 :: MODE.” is to be added.}

b) A “metaproduction rule” consists of the following items, in order:
an optional asterisk ;
a nonempty sequence M of large syntactic marks ;
two colons ;
a nonempty sequence of hypernotions {1.1.3.1.e} separated by semi-

colons ;
a point.

It is said to be a metaproduction rule “for” {the metanotion (1.1.3.1.d)} M.
{The asterisk, if present, signifies that the metanotion is not used in

other metaproduction rules or in hyper-rules, but is provided to facilitate
discussion in the semantics.}
{Examples:

INTREAL :: SIZETY integral ; SIZETY real. (1.2.1.C) •
SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY. (1.2.1.D)}

c) A “terminal metaproduction” of a metanotion M is any protonotion
which is a “simple substitute” {d} for one of the hypernotions {on the right
hand side} of the metaproduction rule for M.

d) A protonotion P is a “simple substitute” for a hypernotion H if a copy of
H can be transformed into a copy of P by replacing eaclo metanotion M in
the copy by some terminal metaproduction of M.
{Thus two possible terminal metaproductions (c) of “INTREAL” are

'integral' and 'long long real'. This is because the hypernotions 'SIZETY
integral' and 'SIZETY real' (the hypernotions of the metaproduction rule for
“INTREAL”) may, upon simple substitution (d), give rise to 'integral' and 'long
long real', which, in turn, is because ' ' (the empty protonotion) and 'long
long' are terminal metaproductions of “SIZETY”.}

21

Section ALGOL 68 Revised Report 1134

{The metanotions used in this Report have been so chosen that no
concatenation of one or more of them gives the same sequence of large
syntactic marks as any other such concatenation. Thus a source of possible
ambiguity has been avoided.

Although the recursive nature of some of the metaproduction rules
makes it possible to produce terminal metaproductions of arbitrary length,
the length of the terminal metaproductions necessarily involved in the
production of any given program is finite.}

1.1.3.4. Hyper-rules and consistent substitution
a) The hyper-rules {b} of the language are those given in the sections of

this Report whose heading begins with “Syntax”.
b) A “hyper-rule” consists of the following items, in order:

an optional asterisk ;
a nonempty hypernotion H ;
a colon ;
a nonempty sequence of “hyperalternatives” separated by semi-

colons ;
a point.

It is said to be a hyper-rule “for” {the hypernotion (1.1.3.1.e)} H.
c) A “hyperalternative” is a nonempty sequence of hypernotions separated

by commas.
{Examples:

b) NOTION sequence : NOTION ; NOTION, NOTION sequence. (1.3.3.b)
c) NOTION, NOTION sequence }

d) A production rule PR {1.1.3.2.b} is derived from a hyper-rule HR if a
copy of HR can be transformed into a copy of PR by replacing the set of all
the hypernotions in the copy by a “consistent substitute” {e} for that set.
e) A set of {one or more} protonotions PP is a “consistent substitute” for

a corresponding set of hypernotions HH if a copy of HH can be transformed
into a copy of PP by means of the following step:
Step : If the copy contains one or more metanotions then, for some terminal

metaproduction T of one such metanotion M, each occurrence of M in
the copy is replaced by a copy of T and the Step is taken again.

{See 1.1.4.1.a for another application of consistent substitution.}
{Applying this derivation process to the hyper-rule given above (c) may

give rise to
digit cypher sequence : digit cypher ;

digit cypher, digit cypher sequence.

22

Section114 van Wijngaarden, et al.

which is therefore a production rule of the language. Note that
digit cypher sequence : digit cypher ; digit cypher, letter b sequence.

is not a production rule of the language, since the replacement of the
metanotion “NOTION” by one of its terminal metaproductions must be
consistent throughout.}
{Since some metanotions have an infinite number of terminal metapro-

ductions, the number of production rules which may be derived is infinite.
The language is, however, so designed that, for the production of any program
of finite length, only a finite number of those production rules is needed.}

{ f) The rules under Syntax are provided with “cross-references” to be
interpreted as follows.

Each hypernotion H of a hyperalternative of a hyper-rule A is followed
by a reference to those hyper-rules B whose derived production rules are for
notions which could be substituted for that H. Likewise, the hypernotions
of each hyper-rule B are followed by a reference back to A. Alternatively,
if H is to be replaced by a symbol, then it is followed by a reference to its
representation in section 9.4.1. Moreover, in some cases, it is more convenient
to give a cross-reference to one metaproduction rule rather than to many
hyper-rules, and in these cases the missing cross-references will be found in
the metaproduction rule.

Such a reference is, in principle, the section number followed by a
letter indicating the line where the rule or representation appears, with the
following conventions:
(i) the references whose section number is that of the section in which they

appear are given first and their section number is omitted; e.g., “8.2.1.a”
appears as “a” in section “8.2.1”;

(ii) all points and a final 1 are omitted, and 10 appears as A; e.g., “8.2.1.a”
appears as “82a” elsewhere and “10.3.4.1.1.i” appears as “A341i”;

(iii) a section number which is the same as that of the preceding reference is
omitted; e.g., “82a,82b,82c” appears as “82a,b,c”;

(iv) the presence of a blind alley derived from that hypernotion is indicated
by “-”; e.g., in 8.0.1.a after “MOID denotation”, since “MOID” may
be replaced by, for example, 'reference to real', but 'reference to real
denotation' is not a notion.}

23

Section ALGOL 68 Revised Report 1141

1.1.4. The semantics

The “meaning” of programs {2.2.1.a} in the strict language is defined
in the semantics by means of sentences {in somewhat formalized natural
language} which specify the “actions” to be carried out during the “elabo-
ration” {2.1.4.1} of those programs. The “meaning” of a program in a repre-
sentation language is the same as the meaning of the program in the strict
language which it represents {9.3}.
{The semantics makes extensive use of hypernotions and paranotions in

order to “designate”, respectively, protonotions and constructs. The word
“designate” should be understood in the sense that the word “flamingo” may
“designate” any animal of the family Phoenicopteridae.}

1.1.4.1. Hypernotions, designation and envelopment

{Hypernotions, when enclosed between apostrophes, are used to “desig-
nate” protonotions belonging to certain classes; e.g., 'LEAP' designates any of
the protonotions 'local', 'primal' and 'heap'.}
a) Hypernotions standing in the text of this Report, except those in

hyper-rules {1.1.3.4.b} or metaproduction rules {1.1.3.3.b}, “designate” any
protonotions which may be consistently substituted {1.1.3.4.e} for them, the
consistent substitution being applied over all the hypernotions contained in
each complete sub-section of the text (a sub-section being one of the lettered
sub-divisions, if any, or else the whole, of a numbered section).
{Thus 'QUALITY TAX' is a hypernotion designating protonotions such as

'integral letter i', 'real letter x', etc. If, in some particular discussion, it in
fact designates 'integral letter i', then all occurrences of “QUALITY” in that
subsection must, over the span of that discussion, designate 'integral' and
all occurrences of “TAX” must designate 'letter i'. It may then be deduced
from subsection 4.8.2.a that in order, for example, to “ascribe to an integral-
defining-indicator-with-letter-i”, it is 'integral letter i' that must be “made to
access V inside the locale”.}

Occasionally, where the context clearly so demands, consistent substitu-
tion may be applied over less than a section. {For example, in the introduc-
tion to section 2.1.1.2, there are several occurrences of “'MOID'”, of which
two are stated to designate specific (and different) protonotions spelled out
in full, and of which others occur in the plural form “'MOID's”, which is
clearly intended to designate a set of different members of the class of termi-
nal metaproductions of “MOID”.}
b) If a protonotion (a hypernotion) P consists of the concatenation of the

protonotions (hypernotions) A, B and C, where A and C are possibly empty,

24

Section1142 van Wijngaarden, et al.

then P “contains” B at the position {in P} determined by the length of A.
{Thus, 'abcdefcdgh' contains 'cd' at its third and seventh positions.}
c) A protonotion P1 “envelops” a protonotion P2 as specifically designated

by a hypernotion H2 if P2, or some equivalent {2.1.1.2.a} of it, is contained
{b} at some position within P1 but not, at that position, within any different
{intermediate} protonotion P3 also contained in P1 such that H2 could also
designate P3.
{Thus the 'MODE' enveloped by 'reference to real closed clause' is

'reference to real' rather than 'real'; moreover, the mode (2.1.1.2.b) specified
by struct(real a, struct(bool b, char c) d) envelops 'FIELD' just twice.}

1.1.4.2. Paranotions

{In order to facilitate discussion, in this Report, of constructs with
specified originals, the concept of a “paranotion” is introduced. A paranotion
is a noun that designates constructs (1.1.3.2.e); its meaning is not necessarily
that found in a dictionary but can be construed from the rules which follow.}
a) A “paranotion” P is a hypernotion {not between apostrophes} which is

used, in the text of this Report, to “designate” any construct whose original
O satisfies the following:
• P, regarded as a hypernotion {i.e., as if it had been enclosed in
apostrophes}, designates {1.1.4.1.a} an “abstraction” {b} of O.
{For example, the paranotion “fixed-point-numeral” could designate the

construct represented by 02, since, had it been in apostrophes, it would
have designated an abstraction of the notion 'fixed point numeral', which is
the original of that construct. However, that same representation could also
be described as a digit-cypher-sequence, and as such it would be a direct
descendent of that fixed-point-numeral.}
{As an aid to the reader in distinguishing them from other hypernotions,

paranotions are not enclosed between apostrophes and are provided with
hyphens where, otherwise, they would have been provided with blanks.}

The meaning of a paranotion to which the small syntactic mark “s” has
been appended is the same as if the letter “s” {which is in the same type
font as the marks in this sentence} had been appended instead. {Thus the
fixed-point-numeral 02 may be said to contain two digit-cyphers, rather than two
digit-cyphers.} Moreover, the “s” may be inserted elsewhere than at the end
if no ambiguity arises {e.g., “sources-for-MODINE” means the same as “source-
for-MODINEs”}.

An initial small syntactic mark of a paranotion is often replaced by the
corresponding large syntactic mark (in order to improve readability, as at the

25

Section ALGOL 68 Revised Report 1142

start of a sentence) without change of meaning {; e.g., “Identifier” means the
same as “identifier”}.
b) A protonotion P2 is an “abstraction” of a protonotion P1 if

(i) P2 is an abstraction of a notion whose production rule begins with an
asterisk and of which P1 is an alternative
{e.g., 'trimscript' (5.3.2.1.h) is an abstraction of any of the notions
designated by 'NEST trimmer', 'NEST subscript' and 'NEST revised lower
bound option'}, or

(ii) P1 envelops a protonotion P3 which is designated by one of the “elidible
hypernotions” listed in section c below, and P2 is an abstraction of the
protonotion consisting of P1 without that enveloped P3
{e.g., 'choice using boolean start' is an abstraction of the notions 'choice
using boolean brief start' and 'choice using boolean bold start' (by elision
of a 'STYLE' from 9.1.1.a)}, or

(iii) P2 is equivalent to {2.1.1.2.a} P1
{e.g., 'bold begin symbol' is an abstraction of 'bold begin symbol'}.
{For an example invoking all three rules, it may be observed that 'union

of real integral mode defining indicator' is an abstraction of some 'union of
integral real mode NEST defining identifier with letter a' (4.8.1.a). Note, however,
that 'choice using union or integral real mode brief start' is not an abstraction of
the notion 'choice using union of integral real boolean mode brief start', because
the 'boolean' that has apparently been elided is not an enveloped 'MOID' of
that notion.}
c) The “elidible hypernotions” mentioned in section b above are the follow-

ing:
“STYLE” • “TALLY” • “LEAP” • “DEFIED” • “VICTAL” • “SORT” •
“MOID” • “NEST” • “REFETY routine” • “label” • “with TAX” •
“with DECSETY LABSETY” • “of DECSETY LABSETY” •
“defining LAYER”.
{Which one of several possible notions or symbols is the original of a

construct designated by a given paranotion will be apparent from the context
in which that paranotion appears. For example, when speaking of the formal-
declarer of an identity-declaration, if the identity-declaration is one whose terminal
production (1.1.3.2.f) happens to be ref real x = loc real, then the original of
that formal-declarer is some notion designated by 'formal reference to real NEST
declarer'.}
{Since a paranotion designates a construct, all technical terms which are

defined for constructs can be used with paranotions without formality.}
d) If two paranotions P and Q designate, respectively, two constructs S and

26

Section1143 van Wijngaarden, et al.

T , and if S is a descendent of T , then P is termed a “constituent” of Q unless
there exists some {intermediate construct} U such that
(i) S is a descendent of U,
(ii) U is a descendent of T , and
(iii) either P or Q could {equally well} designate U.
{Hence a (S1) is a constituent operand of the formula a × (b + 2 ↑ (i + j))

(T), but b (S2) is not, since it is a descendent of an intermediate formula b + 2
↑ (i + j) (U), which is itself descended from T . Likewise, (b + 2 ↑ (i + j)) is
a constituent closed-clause of the formula T , but the closed-clause (i + j) is not,
because it is descended from an intermediate closed-clause. However, (i + j) is
a constituent integral-closed-clause of T , because the intermediate closed-clause
is, in fact, a real-closed-clause.

formula
a × (b + 2 ↑ (i +j))︷ ︸︸ ︷

operand
a

operand
(b + 2 ↑ (i +j))

(real-) closed-clause
(b + 2 ↑ (i +j))

formula
b + 2 ↑ (i +j)︷ ︸︸ ︷

operand
b

operand
2 ↑ (i + j)

formula︷ ︸︸ ︷
operand

2
operand
(i +j)

(integral-) closed-clause
(i+j) }

1.1.4.3. Undefined

a) If something is left “undefined” or is said to be “undefined”, then this
means that it is not defined by this Report alone and that, for its definition,
information from outside this Report has to be taken into account.
{A distinction must be drawn between the yielding of an undefined

value (whereupon elaboration continues with possibly unpredictable results)
and the complete undefinedness of the further elaboration. The action to be
taken in this latter case is at the discretion of the implementer, and may
be some form of continuation (but not necessarily the same as any other

27

Section ALGOL 68 Revised Report 115

implementer’s continuation), or some form of interruption (2.1.4.3.h) brought
about by some run-time check.}
b) If some condition is “required” to be satisfied during some elaboration

then, if it is not so satisfied, the further elaboration is undefined.
c) A “meaningful” program is a program {2.2.1.a} whose elaboration is

defined by this Report.
{Whether all programs, only particular-programs, only meaningful programs,

or even only meaningful particular-programs are “ALGOL 68” programs is a
matter for individual taste.}

1.1.5. Translations and variants
a) The definitive version D of this Report is written in English. A transla-

tion T of this Report into some other language is an acceptable translation
if:
• T defines the same set of production trees as D, except that
(i) the originals contained in each production tree of T may be different

protonotions obtained by some uniform translation of the corresponding
originals contained in the corresponding production tree of D, and

(ii) descendents of those production trees need not be the same if their
originals are predicates {1.3.2};

• T defines the meaning {2.1.4.1.a} of each of its programs to be the same as
that of the corresponding program defined by D;
• T defines the same reference language {9.4} and the same standard
environment {10} as D;
• T preserves, under another mode of expression, the meaning of each
section of D except that:
(i) different syntactic marks {1.1.3.1.a} may be used {with a correspondingly

different metaproduction rule for “ALPHA” (1.3.1.B)};
(ii) the method of derivation of the production rules {1.1.3.4} and their

interpretation {1.1.3.2} may be changed to suit the peculiarities of the
particular natural language {; e.g., in a highly inflected natural language,
it may be necessary to introduce some inflections into the hypernotions,
for which changes such as the following might be required:
1) additional means for the creation of extra metaproduction rules

(1.1.3.3.a);
2) a more elaborate definition of “consistent substitute” (1.1.3.4.e);
3) a more elaborate definition of “equivalence” between protonotions

(2.1.1.2.a);
4) different inflections for paranotions (1.1.4.2.a)};

(iii) some pragmatic remarks {1.1.2} may be changed.

28

Section121 van Wijngaarden, et al.

b) A version of this Report may, additionally, define a “variant of AL-
GOL 68” by providing:
(i) additional or alternative representations in the reference language {9.4},
(ii) additional or alternative rules for the notion 'character glyph' {8.1.4.1.c}

and for the metanotions “ABC” {9.4.2.1.L} and “STOP” {10.1.1.B},
(iii) additional or alternative declarations in the standard environment which

must, however, have the same meaning as the ones provided in D;
provided always that such additional or alternative items are delineated in
the text in such a way that the original language, as defined in D, is still
defined therein.

1.2. General metaproduction rules
{The reader may find it helpful to note that a metanotion ending in

“ETY” always has “EMPTY” as one of the hypernotions on its right-hand
side.}

1.2.1. Metaproduction rules of modes
A) MODE :: PLAIN ; STOWED ; REF to MODE ;

PROCEDURE ; UNITED ; MU definition of MODE ; MU application.

B) PLAIN :: INTREAL ; boolean ; character.

C) INTREAL :: SIZETY integral ; SIZETY real.

D) SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY.

E) LONGSETY :: long LONGSETY ; EMPTY.

F) SHORTSETY :: short SHORTSETY ; EMPTY.

G) EMPTY :: .

H) STOWED :: structured with FIELDS mode ; FLEXETY ROWS of MODE.

I) FIELDS :: FIELD ; FIELDS FIELD.

J) FIELD :: MODE field TAG{942A}.
K) FLEXETY :: flexible ; EMPTY.

L) ROWS :: row ; ROWS row.

M) REF :: reference ; transient reference.

N) PROCEDURE :: procedure PARAMETY yielding MOID.

O) PARAMETY :: with PARAMETERS ; EMPTY.

P) PARAMETERS :: PARAMETER ; PARAMETERS PARAMETER.

Q) PARAMETER :: MODE parameter.

R) MOID :: MODE ; void.

29

Section ALGOL 68 Revised Report 13

S) UNITED :: union of MOODS mode.

T) MOODS :: MOOD ; MOODS MOOD.

U) MOOD :: PLAIN ; STOWED ; reference to MODE ; PROCEDURE ; void.

V) MU :: muTALLY.

W) TALLY :: i ; TALLY i.

{The metaproduction rule for “TAG” is given in section 9.4.2.1. It suffices
for the present that it produces an arbitrarily large number of terminal
metaproductions.}

1.2.2. Metaproduction rules associated with phrases and coercion
A) ENCLOSED :: closed ; collateral ; parallel ; CHOICE{34A} ; loop.

B) SOME :: SORT MOID NEST.

C) SORT :: strong ; firm ; meek ; weak ; soft.

1.2.3. Metaproduction rules associated with nests
A) NEST :: LAYER ; NEST LAYER.

B) LAYER :: new DECSETY LABSETY.

C) DECSETY :: DECS ; EMPTY.

D) DECS :: DEC ; DECS DEC.

E) DEC :: MODE TAG{942A} ; priority PRIO TAD{942F} ;
MOID TALLY TAB{942A} ; DUO TAD{942F} ; MONO TAM{942K}.

F) PRIO :: i ; ii ; iii ; iii i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii iii iii.

G) MONO :: procedure with PARAMETER yielding MOID.

H) DUO :: procedure with PARAMETER1 PARAMETER2 yielding MOID.

I) LABSETY :: LABS ; EMPTY.

J) LABS :: LAB ; LABS LAB.

K) LAB :: label TAG{942A}.
{The metaproduction rules for “TAB”, “TAD” and “TAM” are given in section
9.4.2.1. It suffices for the present that each of them produces an arbitrarily
large number of terminal metaproductions, none of which is a terminal
metaproduction of of “TAG”.}

{ “Well, ‘slithy’ means ‘lithe and slimy’. . . .
You see it’s like a portmanteau – there are two mean-
ings packed up into one word.”
Through the Looking Glass, Lewis Carroll.}

30

Section131 van Wijngaarden, et al.

1.3. General hyper-rules

{Predicates are used in the syntax to enforce certain restrictions on the
production trees, such as that each applied-indicator should identify a uniquely
determined defining-indicator. A more modest use is to reduce the number of
hyper-rules by grouping several similar cases as alternatives in one rule. In
these cases predicates are used to test which alternative applies.}

1.3.1. Syntax of general predicates

A) NOTION :: ALPHA ; NOTION ALPHA.

B) ALPHA :: a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; l ;
m ; n ; o ; p ; q ; r ; s ; t ; u ; v ; w ; x ; y ; z.

C) NOTETY :: NOTION ; EMPTY.

D) THING :: NOTION ;
(NOTETY1) NOTETY2 ; THING (NOTETY1) NOTETY2.

E) WHETHER :: where ; unless.

a) where true : EMPTY.

b) unless false : EMPTY.

c) where THING1 and THING2 : where THING1, where THING2.

d) where THING1 or THING2 : where THING1 ; where THING2.

e) unless THING1 and THING2 : unless THING1 ; unless THING2.

f) unless THING1 or THING2 : unless THING1, unless THING2.

g) WHETHER (NOTETY1) is (NOTETY2) :
WHETHER (NOTETY1) begins with (NOTETY2){h,i,j}

and (NOTETY2) begins with (NOTETY1){h,i,j}.

h) WHETHER (EMPTY) begins with (NOTION){g,j} : WHETHER false{b,-}.
i) WHETHER (NOTETY) begins with (EMPTY){g,j} : WHETHER true{a,-}.
j) WHETHER (ALPHA1 NOTETY1) begins with (ALPHA2 NOTETY2){g,j,m} :

WHETHER (ALPHA1) coincides with (ALPHA2)
in (abcdefghijklmnopqrstuvwxyz){k,l,-} and
(NOTETY1) begins with (NOTETY2){h,i,j}.

k) where (ALPHA) coincides with (ALPHA) in (NOTION){j} : where true{a}.
l) unless (ALPHA1) coincides with (ALPHA2) in (NOTION){j} :

where (NOTION) contains (ALPHA1 NOTETY ALPHA2){m}
or (NOTION) contains (ALPHA2 NOTETY ALPHA1){m}.

31

Section ALGOL 68 Revised Report 132

m) WHETHER (ALPHA NOTETY) contains (NOTION){l,m} :
WHETHER (ALPHA NOTETY) begins with (NOTION)
{j} or (NOTETY) contains (NOTION){m,n}.

n) WHETHER (EMPTY) contains (NOTION){m} : WHETHER false{b,-}.

{The small syntactic marks “(” and “)” are used to ensure, in a simple way,
the unambiguous application of these predicates.}

1.3.2. The holding of predicates
A “predicate” is a protonotion which begins with 'where' or 'unless'

{unified into 'WHETHER'}. For a predicate P, either one or more production
trees may be produced {1.1.3.2.f} {all of which are then invisible}, in which
case P “holds”, or no production tree may be produced {since each attempt
to produce one runs into blind alleys}, and then P “does not hold”.
{For example, the predicate 'where (ab) is (ab)' holds. Its production tree

may be depicted thus:

'where (ab) is (ab)'

'where (ab) begins with (ab) and (ab) begins with (ab)'

'where (ab) begins with (ab)'

'where (a) coincides with (a) in (abc. . . z) and (b) begins with (b)'

'where (a) coincides with (a) in (abc. . . z)'

'where true'

'where (b) begins with (b)'

'where (b) coincides with (b) in (abc. . . z)'

'where true'

'where () begins with ()'

'where true'

'where (ab) is (ab)'

(same as left branch

If a predicate holds, then its production tree always terminates via
'where true' or 'unless false'. If it does not hold, then, in general, the blind
alleys are 'where false' and 'unless true'. Although almost all the hyper-rules
concerned are for hypernotions beginning with “WHETHER” and so provide,
each time, production rules for pairs of predicates such as 'where THING1'

and 'unless THING1', this does not mean that in each such case one of the

32

Section21 van Wijngaarden, et al.

pair must hold. For example, 'where digit four counts iii' (4.3.1.c) does not
hold, but no care has been taken to make 'unless digit four counts iii' hold
either, since there is no application for it in this Report.

In the semantics, no meaning is ascribed to constructs whose originals
are predicates. They serve purely syntactical purposes.}

1.3.3. Syntax of general constructions

A) STYLE :: brief ; bold ; style TALLY.

a) NOTION option : NOTION ; EMPTY.

b) NOTION sequence{b} : NOTION ; NOTION, NOTION sequence{b}.
c) NOTION list{c} : NOTION ; NOTION, and also{94f} token, NOTION list{c}.
d) NOTETY STYLE pack :

STYLE begin{94f,-} token, NOTETY, STYLE end{94f,-} token.

e) NOTION STYLE bracket :
STYLE sub{94f,-} token, NOTION, STYLE bus{94f,-} token.

f) THING1 or alternatively THING2 : THING1 ; THING2.

{It follows from this syntax that production rules such as
digit cypher sequence : digit cypher ;

digit cypher, digit cypher sequence.

(which was used in the production of the example in 1.1.3.2.f, but for which
no more explicit hyper-rule is given) are immediately available. Thus the
number of hyper-rules actually written in this Report has been reduced and
those that remain have, hopefully, been made more readable, since these
general constructions are so worded as to suggest what their productions
should be.

For this reason, cross-references (1.1.3.4.f) to these rules have been
replaced by more helpful references; e.g., in 8.1.1.1.b, instead of “digit
cypher sequence{133b}”, the more helpful “digit cypher{c} sequence” is given.
Likewise, references within the general constructions themselves have been
restricted to a bare minimum.}

2. The computer and the program

The meaning of a program in the strict language is explained in terms
of a hypothetical computer which performs the set of actions {2.1.4} which
constitute the elaboration {2.1.4.1} of that program. The computer deals with
a set of “objects” {2.1.1}.

33

Section ALGOL 68 Revised Report 2111

2.1. Terminology

{ “When I use a word,” Humpty Dumpty said, in rather
a scornful tone, “it means just what I choose it to
mean – neither more nor less.”
Through the Looking-glass, Lewis Carroll.}

2.1.1. Objects

An “object” is a construct {1.1.3.2.e}, a “value” {2.1.1.1.a}, a “locale”
{2.1.1.1.b}, an “environ” {2.1.1.1.c} or a “scene” {2.1.1.1.d}.
{Constructs may be classified as “external objects”, since they corre-

spond to the text of the program, which, in a more realistic computer, would
be compiled into some internal form in which it could operate upon the “in-
ternal objects”, namely the values, the locales, the environs and the scenes.
However, the hypothetical computer has no need of a compilation phase, it
being presumed able to examine the program and all of its descendent con-
structs at the same time as it is manipulating the internal objects.}

2.1.1.1. Values, locales, environs and scenes

a) A “value” is a “plain value” {2.1.3.1}, a “name” {2.1.3.2}, a “stowed
value” (i.e., a “structured value” {2.1.3.3} or a “multiple value” {2.1.3.4}) or
a “routine” {2.1.3.5}.
{For example, a real number is a plain value. A special font is used for

values appearing in the text of this Report, thus: 3.14, true. This is not
to be confused with the italic and bold fonts used for constructs. This same
special font is also used for letters designating such things as constructs and
protonotions.}
b) A “locale” {is an internal object which} corresponds to some 'DECSETY

LABSETY' {1.2.3.C,I}. A “vacant locale” is one for which that 'DECSETY
LABSETY' is 'EMPTY'.
{Each 'QUALITY TAX' (4.8.1.F, G) enveloped by that 'DECSETY LAB-

SETY' corresponds to a QUALITY-defining-indicator-with-TAX {i.e., to an iden-
tifier, operator or mode-indication} declared in the construct whose elaboration
caused that locale to be created. Such a 'QUALITY TAX' may be made to
“access” a value or a scene “inside” that locale (2.1.2.c)

A locale may be thought of as a number of storage cells, into which such
accessed objects are placed.}
{The terminal metaproductions of the metanotions “DEC”, “LAB” and

“FIELD” (or of the more frequently used “PROP”, which includes them all)

34

Section2112 van Wijngaarden, et al.

are all of the form 'QUALITY TAX'. These “properties” are used in the
syntax and semantics concerned with nests and locales in order to associate,
in a particular situation, some quality with that 'TAX'.}
c) An “environ” is either empty, or is composed of an environ and a locale.
{Hence, each environ is derived from a series of other environs, stemming

ultimately from the empty “primal environ” in which the program is elabo-
rated (2.2.2.a).}
d) A “scene” S is an object which is composed of a construct C {1.1.3.2.e}

and an environ E. C is said to be the construct, and E the environ, “of” S.
{Scenes may be accessed inside locales (2.1.2.c) by 'LAB's or 'DEC's

arising from label-identifiers or from mode-indications, and they may also be
values (2.1.3.5).}

2.1.1.2. Modes

{Each value has an attribute, termed its “mode”, which defines how that
value relates to other values and which actions may be applied to it. This
attribute is described, or “spelled”, by means of some 'MOID' (1.2.1.R) (thus
there is a mode spelled 'real', and there is a mode spelled 'structured with real
field letter r letter e real field letter i letter m mode'). Since it is intended that
the modes specified by the mode-indications a and b in

mode a = struct(ref a b),
mode b = struct(ref struct(ref b b) b)

should in fact be the same mode, it is necessary that both the 'MOID'

'mui definition of structured with reference to mui application field
letter b mode'

and the 'MOID'

'muii definition of structured with reference to structured with
reference to muii application field letter b mode field letter b
mode'

(and indeed many others) should be alternative spellings of that same mode.
Similarly, the mode specified by the declarer union(int, real) may be spelled
as either 'union of integral real mode' or 'union of real integral mode'. All those
'MOID's which are spellings of one same mode are said to be “equivalent to”
one another (a).

Certain 'MOID's, such as 'reference to muiii application', 'reference to muiiii
definition of reference to muiiii application', 'union of real reference to real mode',
and 'structured with integral field letter a real field letter a mode', are ill formed
(7.4, 4.7.1.f, 4.8.1.c) and do not spell any mode.

35

Section ALGOL 68 Revised Report 2113

Although for most practical purposes a “mode” can be regarded as
simply a 'MOID', its rigorous definition therefore involves the whole class of
'MOID's, equivalent to each other, any of which could describe it.}
a) 'MOID1' {1.2.1.R} is “equivalent to” 'MOID2' if the predicate 'where

MOID1 equivalent MOID2' {7.3.1.a} holds {1.3.2}.
{A well formed 'MOID' is always equivalent to itself: 'union of integral real

mode' is equivalent to 'union of real integral mode'.}
A protonotion P is “equivalent to” a protonotion Q if it is possible to

transform a copy Pc of P into at copy Qc of Q in the following step:
Step : If Pc is not identical to Qc, then some 'MOID1' contained in Pc, but

not within any {larger} 'MOID2' contained in Pc, is replaced by some
equivalent 'MOID', and the Step is taken again.

{Thus 'union of integral real mode identifier' is equivalent to 'union of real
integral mode identifier'.}
b) A “mode” is a class C of 'MOID's such that each member of C is

equivalent {a} to each other member of C and also to itself {in order to
ensure well formedness}, but not to any 'MOID1' which is not a member of
C.
{However, it is possible (except when equivalence of modes is specifically

under discussion) to discuss a mode as if it were simply a terminal metapro-
duction of “MOID”, by virtue of the abbreviation to be given in 2.1.5.f.}
c) Each value is of one specific mode.
{For example, the mode of the value 3.14 is 'real'. However, there are

no values whose mode begins with 'union of', 'transient reference to' or 'flexible
ROWS of' (see 2.1.3.6).}

2.1.1.3. Scopes

{A value V may “refer to” (2.1.2.e), or be composed from (2.1.1.1.d)
another internal object O (e.g., a name may refer to a value; a routine, which
is a scene, is composed, in part, from an environ). Now the lifetime of the
storage cells containing (2.1.3.2.a) or implied by (2.1.1.1.b) O may be limited
(in order that they may be recovered after a certain time), and therefore it
must not be possible to preserve V beyond that lifetime, for otherwise an
attempt to reach some no-longer-existent storage cell via V might still be
made. This restriction is expressed by saying that, if V is to be “assigned”
(5.2.1.2.b) to some name W, then the “scope” of W must not be “older” than
the scope of V . Thus, the scope of V is a measure of the age of those storage
cells, and hence of their lifetime.}

36

Section212 van Wijngaarden, et al.

a) Each value has one specific “scope” {which depends upon its mode or
upon the manner of its creation; the scope of a value is defined to be the
same as that of some environ}.
b) Each environ has one specific “scope”. {The scope of each environ

is “newer” (2.1.2.f) than that of the environ from which it is composed
(2.1.1.1.c).}
{The scope of an environ is not to be confused with the scopes of the

values accessed inside its locale. Rather, the scope of an environ is used
when defining the scope of scenes for which it is necessary (7.2.2.c) or of
the yields of generators for which it is “local” (5.2.3.2.b). The scope of an
environ is defined relative (2.1.2.f) to the scope of some other environ, so that
hierarchies of scopes are created depending ultimately upon the scope of the
primal environ (2.2.2.a).}

2.1.2. Relationships
a) Relationships either are “permanent”, i.e., independent of the program

and of its elaboration, or actions may cause them to “hold” or to cease to
hold. Relationships may also be “transitive”; i.e., if “∗” is such a relationship
and A ∗ B and B ∗ C hold, then A ∗ C holds also.
b) “To be the yield of” is a relationship between a value and an action,

viz., the elaboration of a scene. This relationship is made to hold upon the
completion of that elaboration {2.1.4.1.b}.
c) “To access” is a relationship between a 'PROP' {4.8.1.E} and a value or

a scene V which may hold “inside” some specified locale L {whose 'DECSETY
LABSETY' envelops 'PROP'}. This relationship is made to hold when 'PROP'

is “made to access” V inside L {3.5.2.Step 4, 4.8.2.a} and it then holds also
between any 'PROP1' equivalent to {2.1.1.2.a} 'PROP' and V inside L.
d) The permanent relationships between values are: “to be of the same

mode as” {2.1.1.2.c}, “to be smaller than”, “to be widenable to”, “to be
lengthenable to” {2.1.3.1.e} and “to be equivalent to” {2.1.3.1.g}. If one of
these relationships is defined at all for a given pair of values, then it either
holds or does not hold permanently. These relationships are all transitive.
e) “To refer to” is a relationship between a “name” {2.1.3.2.a} N and some

other value. This relationship is made to hold when N is “made to refer to”
that value and ceases to hold when N is made to refer to some other value.
f) There are three transitive relationships between scopes, viz., a scope A
{2.1.1.3} may be either “newer than”, or “the same as” or “older than” a
scope B. If A is newer than B, then B is older than A and vice-versa. If A is
the same as B, then A is neither newer nor older than B {but the converse is

37

Section ALGOL 68 Revised Report 2131

not necessarily true, since the relationship is not defined at all for some pairs
of scopes}.
g) “To be a subname of” is a relationship between a name and a “stowed

name” {2.1.3.2.b}. This relationship is made to hold when that stowed name
is “endowed with subnames” {2.1.3.3.e, 2.1.3.4.g} or when it is “generated”
{2.1.3.4.j, l}, and it continues to hold until that stowed name is endowed with
a different set of subnames.

2.1.3. Values

2.1.3.1. Plain values

a) A plain value is either an “arithmetic value”, i.e., an “integer” or a “real
number”, or is a “truth value” {f}, a “character” {g} or a “void value” {h}.
b) An arithmetic value has a “size”, i.e., an integer characterizing the

degree of discrimination with which it is kept in the computer.

c) The mode of an integer or of a real number of size n is, respectively,
some 'SIZETY integral' or 'SIZETY real' where, if n is positive (zero, negative),
that 'SIZETY' is n times 'long' (is empty, is −n times 'short').

d) The number of integers or of real numbers of a given size that can
be distinguished increases (decreases) with that size until a certain size is
reached, viz., the “number of extra lengths” (minus the “number of extra
shorths”) of integers or of real numbers, respectively, {10.2.1.a, b, d, e} after
which it is constant.

{ Taking Three as the subject to reason about
–A convenient number to state–}

e) For the purpose of explaining the meaning of the widening coercion and
of the operators declared in the standard-prelude, the following properties of
arithmetic values are assumed:
• for each pair of integers or of real numbers of the same size, the
relationship “to be smaller than” is defined with its usual mathematical
meaning {10.2.3.3.a, 10.2.3.4.a};
• for each pair of integers of the same size, a third distinguishable
integer of that size may exist, the first integer “minus” the other
{10.2.3.3.g};

{ We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.}

38

Section2132 van Wijngaarden, et al.

• for each pair of real numbers of the same size, three distinguishable
real numbers of that size may exist, the first real number “minus”
(“times”, “divided by”) the other one {10.2.3.4.g, l, m};
• in the foregoing, the terms “minus”, “times” and “divided by” have
their usual mathematical meaning but, in the case of real numbers,
their results are obtained “in the sense of numerical analysis”, i.e., by
performing those operations on numbers which may deviate slightly from
the given ones {; this deviation is left undefined in this Report};

{ The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two}

• each integer of a given size is “widenable to” a real number close to it
and of that same size {6.5};
• each integer (real number) of a given size can be “lengthened to” an
integer (real number) close to it whose size is greater by one {10.2.3.3.q,
10.2.3.4.n}.

f) A “truth value” is either “true” or “false”. Its mode is 'boolean'.

{ Then subtract Seventeen, and the answer must be
Exactly and perfectly true.
The Hunting of the Snark, Lewis Carroll.}

g) Each “character” is “equivalent” to a nonnegative integer of size zero, its
“integral equivalent” {10.2.1.n}; this relationship is defined only to the extent
that different characters have different integral equivalents, and that there
exists a “largest integral equivalent” {10.2.1.p}. The mode of a character is
'character'.

h) The only “void value” is “empty”. Its mode is 'void'.
{The elaboration of a construct yields a void value when no more useful

result is needed. Since the syntax does not provide for void-variables, void-
identity-declarations or void-parameters, the programmer cannot make use of
void values, except those arising from uniting (6.4).}
i) The scope of a plain value is the scope of the primal environ {2.2.2.a}.

2.1.3.2. Names

{ What’s in a name? that which we call a rose
By any other name would smell as sweet.
Romeo and Juliet, William Shakespeare.}

39

Section ALGOL 68 Revised Report 2133

a) A “name” is a value which can be “made to refer to” {d, 5.2.3.2.a,
5.2.1.2.b} some other value, or which can be “nil” {and then refers to no
value}; moreover, for each mode beginning with 'reference to', there is exactly
one nil name of that mode.

A name may be “newly created” {by the elaboration of a generator
(5.2.3.2) or a rowed-to-FORM (6.6.2), when a stowed name is endowed with
subnames (2.1.3.3.e, 2.1.3.4.g) and, possibly, when a name is “generated”
(2.1.3.4.j, l)}. The name so created is different from all names already in
existence.
{A name may be thought of as the address of the storage cell or cells, in

the computer, used to contain the value referred to. The creation of a name
implies the reservation of storage space to hold that value.}
b) The mode of a name N is some 'reference to MODE' and any value which

is referred to by N must be “acceptable to” {2.1.3.6.d} that 'MODE'. If
'MODE' is some 'STOWED', then N is said to be a “stowed name”.
c) The scope of a name is the scope of some specific environ {usually the

“local environ” (5.2.3.2.b) of some generator}. The scope of a name which is
nil is the scope of the primal environ {2.2.2.a}.
d) If N is a stowed name referring to a structured (multiple) value V

{2.1.3.3, 2.1.3.4}, and if a subname {2.1.2.g} of N selected {2.1.3.3.e,
2.1.3.4.g} by a 'TAG' (an index) I is made to refer to a {new} value X, then
N is made to refer to a structured (multiple) value which is the same as V
except for its field (element) selected by L which is {now made to be} X.
{For the mode of a subname, see 2.1.3.3.d and 2.1.3.4.f.}

2.1.3.3. Structured values
a) A “structured value” is composed of a sequence of other values, its

“fields”, each of which is “selected” {b} by a specific 'TAG' {9.4.2.1.A}. {For
the selection of a field by a field-selector, see 2.1.5.g.}
{The ordering of the fields of a structured value is utilized in the seman-

tics of structure-displays (3.3.2.b) and format-texts (10.3.4), and in straightening
(10.3.2.3.c).}
b) The mode of a structured value V is some 'structured with FIELDS

mode'. If the n-th 'FIELD' enveloped by that 'FIELDS' is some 'MODE field
TAG', then the n-th field of V is “selected” by 'TAG' and is acceptable to
{2.1.3.6.d} 'MODE'.
c) The scope of a structured value is the newest of the scopes of its fields.
d) If the mode of a name N {referring to a structured value} is some
'reference to structured with FIELDS mode', and if the predicate 'where MODE

40

Section2134 van Wijngaarden, et al.

field TAG resides in FIELDS' holds {7.2.1.b, c}, then the mode of the subname
of N selected {e} by 'TAG' is 'reference to MODE'.

e) When a name N which refers to a structured value V is “endowed with
subnames” {e, 2.1.3.4.g, 4.4.2.b, 5.2.3.2.a}, then,
For each 'TAG' selecting a field F in V,
• a new subname M is created of the same scope as N;
• M is made to refer to F;
• M is said to be the name “selected” by 'TAG' in N;
• if M is a stowed name {2.1.3.2.b}, then it is itself endowed with
subnames {e, 2.1.3.4.g}.

2.1.3.4. Multiple values

a) A “multiple value” {of n dimensions} is composed of a “descriptor” and
a sequence of other values, its “elements”, each of which may be “selected”
by a specific n-tuple of integers, its “index”.

b) The “descriptor” is of the form
((l1, u1), (l2, u2), . . . , (ln, un))

where each (li, ui), i = 1, . . . , n, is a “bound pair” of integers in which li is
the i-th “lower bound” and ui is the i-th “upper bound”.

c) If for any i, i = 1, . . . , n, ui < li, then the descriptor is said to be
“flat” and there is one element, termed a “ghost element” {, and not selected
by any index; see also (5.2.1.2.b)}; otherwise, the number of elements is
(u1 − l1 + 1) × (u2 − l2 + 1) × . . . × (un − ln + 1) and each is selected by
a specific index r1, . . . , rn where li ≤ ri ≤ ui, i = 1, . . . , n.

d) The mode of a multiple value V is some 'ROWS of MODE', where that
'ROWS' is composed of as many times 'row' as there are bound pairs in the
descriptor of V and where each element of V is acceptable to {2.1.3.6.d} that
'MODE'.
{For example, given [] union (int, real) ruir = (1, 2.0), the mode of the

yield of ruir is 'row of union of integral real mode', the mode of its first element
is 'integral' and that of its second element is 'real'.}
e) The scope of a multiple value is the newest of the scopes of its elements,

if its descriptor is not flat, and, otherwise, is the scope of the primal environ
{2.2.2.a}.
f) A multiple value, of mode 'ROWS of MODE', may be referred to either

by a “flexible” name of mode 'reference to flexible ROWS of MODE1', or by a
“fixed” name of mode 'reference to ROWS of MODE1' where {in either case}
'MODE1' “deflexes” {2.1.3.6.b} to 'MODE'.

41

Section ALGOL 68 Revised Report 2134

{The difference implies a possible difference in the method whereby the
value is stored in the computer. The flexible case must allow a multiple value
with different bounds to be assigned (5.2.1.2.b) to that name, whereas the
fixed case can rely on the fact that those bounds will remain fixed during the
lifetime of that name. Note that the “flexibility” is a property of the name;
the underlying multiple value is the same value in both cases.}

If the mode of a name N {referring to a multiple value} is some
'reference to FLEXETY ROWS of MODE', then the mode of each subname of
N is 'reference to MODE'.

g) When a name N which refers to a multiple value V is “endowed with
subnames” {g, 2.1.3.3.e, 4.4.2.b, 5.2.1.2.b, 5.2.3.2.a}, then,
For each index selecting an element E of V ,
• a new subname M is created of the same scope as N;
• M is made to refer to E;
• M is said to be the name “selected” by that index in N;
• if M is a stowed name {2.1.3.2.b}, then it is itself endowed with
subnames {g, 2.1.3.3.e}.
{In addition to the selection of an element (a) or a name (g) by means

of an index, it is also possible to select a value, or to generate a new name
referring to such a value, by means of a trim (h, i, j) or a 'TAG' (k, l). Both
indexes and trims are used in the elaboration of slices (5.3.2.2).}
h) A “trim” is an n-tuple, each element of which is either an integer
{corresponding to a subscript} or a triplet (l, u, d) {corresponding to a trimmer
or a revised-lower-bound-option}, such that at least one of those elements is a
triplet {if all the elements are integers, then the n-tuple is an index (a)}.
Each element of such a triplet is either an integer or is “absent”.
{A trim (or an index) is yielded by the elaboration of an indexer

(5.3.2.2.b).}
i) The multiple value W {of m dimensions} “selected” by a trim T in a

multiple value V {of n dimensions, 1 ≤ m ≤ n} is determined as follows:
• Let T be composed of integers and triplets Ti, i = 1, . . . n, of which m
are actually triplets; let the j-th triplet be (lj, uj, dj), j = 1, . . .m;
• W is composed of
(i) a descriptor ((l1−d1, u1−d1), (l2−d2, u2−d2), . . . , (lm−dm, um−

dm);
(ii) elements of V, where the element, if any, selected in W by an index

(w1, . . . , wm) {lj − dj ≤ wj ≤ uj − dj} is that selected in V by the
index (v1, . . . , vn) determined as follows:
For i = 1, . . . , n,

42

Section2136 van Wijngaarden, et al.

Case A: Ti is an integer:
• vi = Ti;

Case B: Ti is the j-th triplet (lj, uj, dj) of T :
• vi = wj + dj.

j) The name M “generated” by a trim T from a name N which refers
to a multiple value V is a {fixed} name, of the same scope as N, {not
necessarily newly created} which refers to the multiple value W selected {i}
by T in V. Each subname of M, as selected by an index IW , is one of the
{already existing} subnames of N, as selected by an index IV , where each IV
is determined from T and the corresponding IW using the method given in
the previous sub-section.

k) The multiple value W “selected” by a 'TAG' in a multiple value V {each
of whose elements is a structured value} is composed of
(i) the descriptor of V , and
(ii) the fields selected by 'TAG' in the elements of V , where the element, if

any, selected in W by an index I is the field selected by 'TAG' in the
element of V selected by I.

l) The name M “generated” by a 'TAG' from a name N which refers to a
multiple value V {each of whose elements is a structured value} is a {fixed}
name, of the same scope as N, {not necessarily newly created} which refers
to the multiple value selected {k} by 'TAG' in V . Each subname of M
selected by an index I is the {already existing} name selected {2.1.3.3.e} by
'TAG' in the subname of N selected {g} by I.

2.1.3.5. Routines

a) A “routine” is a scene {2.1.1.1.d} composed of a routine-text {5.4.1.1.a,b}
together with an environ {2.1.1.1.c}.
{A routine may be “called” (5.4.3.2.b), whereupon the unit of its routine-

text is elaborated.}
b) The mode of a routine composed of a PROCEDURE-routine-text is
'PROCEDURE'.

c) The scope of a routine is the scope of its environ.

2.1.3.6. Acceptability of values

a) {There are no values whose mode begins with 'union of'. There exist
names whose modes begin with 'reference to union of', e.g., u in union(int,
real) u; . Here, however, u, whose mode is 'reference to union of integral real
mode', refers either to a value whose mode is 'integral' or to a value whose

43

Section ALGOL 68 Revised Report 2136

mode is 'real'. It is possible to discover which of these situations obtains, at a
given moment, by means of a conformity-clause (3.4.1.q).}

The mode 'MOID' is “united from” the mode 'MOOD' if 'MOID' is some
'union of MOODSETY1 MOOD MOODSETY2 mode'.

b) {There are no values whose mode begins with 'flexible'. There exist
flexible names whose modes begin with 'reference to flexible', e.g., a1 in flex
[1: n] real a1; . Here a1, whose mode is 'reference to flexible row of real', refers
to a multiple value whose mode is 'row of real' (see also 2.1.3.4.f). In general,
there exist values only for those modes obtainable by “deflexing”.}

The mode 'MOID1' “deflexes” to the mode 'MOID2' if the predicate
'where MOID1 deflexes to MOID2' holds {4.7.1.a, b, c}.
{The deflexing process obtains 'MOID2' by removing all 'flexible's con-

tained at positions in 'MOID1' where they are not also contained in any 'REF
to MOID3'. Thus

'structured with flexible row of character field letter a mode',
which is not the mode of any value, deflexes to

'structured with row of character field letter a mode'

which is therefore the mode of a value referable to by a flexible name of mode
'reference to structured with flexible row of character field letter a

mode'.
This mode is already the mode of a name and therefore it cannot be deflexed
any further.}
c) {There are no names whose mode begins with 'transient reference to'.

The yield of a transient-reference-to-MODE-FORM is a “transient name”
of mode 'reference to MODE', but, there being no transient-reference-to-MODE-
declarators in the language (4.6.1), the syntax ensures that transient names
can never be assigned, ascribed or yielded by the calling of a routine.

E.g., xx := a1 [i] is not an assignation because xx is not a reference-to-
transient-reference-to-real-identifier. Transient names originate from the slicing,
multiple selection or rowing of a flexible name.}
d) A value of mode M1 is “acceptable to” a mode M2 if

(i) M1 is the same as M2, or
(ii) M2 is united {a} from M1 {thus the mode specified by union(real, int)

accepts values whose mode is that specified by either real or int}, or
(iii) M2 deflexes {b} to M1 {thus the mode 'flexible row of real' (a mode of

which there are no values) accepts values such as the yield of the actual-
declarer flex [1 : n] real which is a value of mode 'row of real'}, or

(iv) M1 is some 'reference to MODE' and M2 is 'transient reference to MODE'

{thus the mode 'transient reference to real' accepts values (such as the

44

Section2142 van Wijngaarden, et al.

yield of a1 [i]) whose mode is 'reference to real'}.
{See 2.1.4.1.b for the acceptability of the yield of a scene.}

2.1.4. Actions

{ Suit the action to the word,
the word to the action.
Hamlet, William Shakespeare.}

2.1.4.1. Elaboration

a) The “elaboration” of certain scenes {those whose constructs are des-
ignated by certain paranotions} is specified in the sections of this Report
headed “Semantics”, which describe the sequence of “actions” which are to
be carried out during the elaboration of each such scene.
{Examples of actions which may be specified are:

• the causing to hold of relationships,
• the creation of new names, and
• the elaboration of other scenes.}

The “meaning” of a scene is the effect of the actions carried out during
its elaboration. Any of these actions or any combination thereof may be
replaced by any action or combination which causes the same effect.

b) The elaboration of a scene S may “yield” a value. If the construct of S
is a MOID-NOTION, then that value is, unless otherwise specified, {of such a
mode that it is} acceptable to {2.1.3.6.d} 'MOID'.
{This rule makes it possible, in the semantics, to discuss yields without

explicitly prescribing their modes.}
c) If the elaboration of some construct A in some environ E is not other-

wise specified in the semantics of this Report, and if B is the only direct
descendent of A which needs elaboration {see below}, then the elaboration
of A in E consists of the elaboration of B in E and the yield, if any, of A
is the yield, if any, of B {; this automatic elaboration is termed the “pre-
elaboration” of A in E}.

A construct needs no elaboration if it is invisible {1.1.3.2.h}, if it is
a symbol {9.1.1.h}, or if its elaboration is not otherwise specified in the
semantics of this Report and none of its direct descendents needs elaboration.
{Thus the elaboration of the reference-to-real-closed-chause (3.1.1.a) (x :=

3.14) is (and yields the same value as) the elaboration of its constituent
reference-to-real-serial-clause (3.2.1.a) x := 3.14.}

45

Section ALGOL 68 Revised Report 2143

2.1.4.2. Serial and collateral actions
a) An action may be “inseparable”, “serial” or “collateral”. A serial or

collateral action consists of one or more other actions, termed its “direct
actions”. An inseparable action does not consist of other actions {; what
actions are inseparable is left undefined by this Report}.
b) A “descendent action” of another action B is a direct action either of B,

or of a descendent action of B.
c) An action A is the “direct parent” of an action B if B is a direct action
{a} of A.
d) The direct actions of a serial action S take place one after the other;

i.e., the completion {2.1.4.3.c, d} of a direct action of S is followed by
the initiation {2.1.4.3.b, c} of the next direct action, if any, of S. {The
elaboration of a scene, being in general composed of a sequence of actions,
is a serial action.}
e) The direct actions of a collateral action are merged in time; i.e., one

of its descendent inseparable actions which, at that moment, is “active”
{2.1.4.3.a} is chosen and carried out, upon the completion {2.1.4.3.c} of
which another such action is chosen, and so on {until all are completed}.

If two actions {collateral with each other} have been said to be “incom-
patible with” {10.2.4} each other, then {they shall not be merged; i.e.,} no
descendent inseparable action of the one shall (then the one {if it is already
inseparable} shall not) be chosen if, at that moment, the other is active and
one or more, but not all, of its descendent inseparable actions have already
been completed; otherwise, the method of choice is left undefined in this Re-
port.
f) If one or more scenes are to be “elaborated collaterally”, then this

elaboration is the collateral action consisting of the {merged} elaboration of
those scenes.

2.1.4.3. Initiation, completion and termination
a) An action is either “active” or “inactive”.

An action becomes active when it is “initiated” {b, c} or “resumed” {g}
and it becomes inactive when it is “completed” {c, d}, “terminated” {e},
“halted” {f} or “interrupted” {h}.
b) When a serial action is “initiated”, then the first of its direct actions is

initiated. When a collateral action is “initiated”, then all of its direct actions
are initiated.
c) When an inseparable action is “initiated”, it may then be carried out
{see 2.1.4.2.e}, whereupon it is “completed”.

46

Section2143 van Wijngaarden, et al.

d) A serial action is “completed” when its last direct action has been
completed. A collateral action is “completed” when all of its direct actions
have been completed.

e) When an action A {whether serial or collateral} is “terminated”, then all
of its direct actions {and hence all of its descendent actions} are terminated
{whereupon another action may be initiated in its place}. {Termination of
an action is brought about by the elaboration of a jump (5.4.4.2).}
f) When an action is “halted”, then all of its active direct actions {and

hence all of its active descendent actions} are halted. {An action may
be halted during a “calling” of the routine yielded by the operator down
(10.2.4.d), whereupon it may subsequently be resumed during a calling of
the routine yielded by the operator up (10.2.4.e).}

If, at any time, some action is halted and it is not descended from a
“process” of a “parallel action” {10.2.4} of whose other process(es) there still
exist descendent active inseparable actions, then the further elaboration is
undefined. {Thus it is not defined that the elaboration of the collateral-clause
in

begin sema sergei = level 0;
(par begin (down sergei; print(pokrovsky)), skip end,

(read(pokrovsky); up sergei))
end

will ever be completed.}
g) When an action A is “resumed”, then those of its direct actions which

had been halted consequent upon the halting of A are resumed.

h) An action may be “interrupted” by an event {e.g., “overflow”} not
specified by the semantics of this Report but caused by the computer if
its limitations {2.2.2.b} do not permit satisfactory elaboration. When an
action is interrupted, then all of its direct actions, and possibly its direct
parent also, are interrupted. {Whether, after an interruption, that action
is resumed, some other action is initiated or the elaboration of the program
ends, is left undefined by this Report.}
{The effect of the definitions given above is as follows:
During the elaboration of a program (2.2.2.a) the elaboration of its closed-

clause in the empty primal environ is active. At any given moment, the
elaboration of one scene may have called for the elaboration of some other
scene or of several other scenes collaterally. If and when the elaboration
of that other scene or scenes has been completed, the next step of the
elaboration of the original scene is taken, and so on until it, in turn, is
completed.

47

Section ALGOL 68 Revised Report 215

It will be seen that all this is analogous to the calling of one subroutine
by another; upon the completion of the execution of the called subroutine,
the execution of the calling subroutine is continued; the semantic rules given
in this Report for the elaboration of the various paranotions correspond
to the texts of the subroutines; the semantic rules may even, in suitable
circumstances, invoke themselves recursively (but with a different construct
or in a different environ on each occasion).

Thus there exists, at each moment, a tree of active actions descended
(2.1.4.2.b) from the elaboration of the program.}

2.1.5. Abbreviations

{In order to avoid some long and turgid phrases which would otherwise
have been necessary in the Semantics, certain abbreviations are used freely
throughout the text of this Report.}
a) The phrase “the A of B”, where A and B are paranotions, stands for

“the A which is a direct descendent {1.1.3.2.f} of B”.
{This permits the abbreviation of “direct descendent of” to “of” or

“its”, e.g., in the assignation (5.2.1.1.a) i := 1, i is “its” destination (or i is
the, or a, destination “of” the assignation i := 1), whereas i is not a destination
of the serial-clause i := 1; j := 2 (although it is a constituent destination
(1.1.4.2.d) of it).}
b) The phrase “C in E”, where C is a construct and E is an environ,

stands for “the scene composed {2.1.1.1.d} of C and E”. It is sometimes even
further shortened to just “C” when it is clear which environ is meant.
{Since the process of elaboration (2.1.4.1.a) may be applied only to

scenes, this abbreviation appears most frequently in forms such as “A loop-
clause C, in an environ E1, is elaborated . . . ” (3.5.2) and “An assignation A is
elaborated . . . ” (5.2.1.2.a, where it is the elaboration of A in any appropriate
environ that is being discussed).}
c) The phrase “the yield of S”, where S is a scene whose elaboration is

not explicitly prescribed, stands for “the yield obtained by initiating the
elaboration of S and awaiting its completion”.
{Thus the sentence (3.2.2.c):

“W is the yield of that unit;”
(which also makes use of the abbreviation defined in b above) is to be
interpreted as meaning:

“W is the yield obtained upon the completion of the elaboration,
hereby initiated, of the scene composed of that unit and the environ under
discussion;” .}

48

Section222 van Wijngaarden, et al.

d) The phrase “the yields of S1, . . . , Sn ”, where S1, . . . , Sn are scenes
whose elaboration is not explicitly prescribed, stands for “the yields obtained
by initiating the collateral elaboration {2.1.4.2.f} of S1, . . . , Sn and awaiting
its completion {which implies the completion of the elaboration on them
all}”.

If some or all of S1, . . . , Sn are described as being, in some environ,
certain constituents of some construct, then their yields are to be considered
as being taken in the textual order {1.1.3.2.i} of those constituents within
that construct.
{Thus the sentence (3.3.2.b):

“let V1, . . . , Vm be the {collateral} yields of the constituent units of
C;”

is to be interpreted as meaning:
“let V1, . . . , Vm be the respective yields obtained upon the comple-

tion of the collateral elaboration, hereby initiated, of the scenes composed of
the constituent units of C, considered in their textual order, together with the
environ in which C was being elaborated;” .}
e) The phrase “if A is B”, where A and B are hypernotions, stands for “if
A is equivalent {2.1.1.2.a} to B”.
{Thus, in “Case C: 'CHOICE' is some 'choice using UNITED'” (3.4.2.b), it

matters not whether 'CHOICE' happens to begin with 'choice using union of' or
with some 'choice using MU definition of union of'.}
f) The phrase “the mode is A”, where A is a hypernotion, stands for “the

mode {is a class of 'MOID's which} includes A”.
{This permits such shortened forms as “the mode is some 'structured with

FIELDS mode'”, “the mode begins with 'union of'”, and “the mode envelops
a 'FIELD'”; in general, a mode may be specified by quoting just one of the
'MOID's included in it.}
g) The phrase “the value selected (generated) by the field-selector F” stands

for “if F is a field-selector-with-TAG {4.8.1.f}, then the value selected {2.1.3.3.a,
e, 2.1.3.4.k} (generated {2.1.3.4.l}) by that 'TAG'”.

2.2. The program

2.2.1. Syntax

a) program : strong void new closed clause{31a}.

{See also 10.1.}

49

Section ALGOL 68 Revised Report 222

2.2.2. Semantics

{ “I can explain all the poems that ever were invented —
and a good many that haven’t been invented just yet.”
Through the Looking-glass, Lewis Carroll.}

a) The elaboration of a program is the elaboration of its strong-void-new-
closed-clause in an empty environ {2.1.1.1.c} termed the “primal environ”.
{Although the purpose of this Report is to define the meaning of a

particular-program (10.1.1.g), that meaning is established only by first defin-
ing the meaning of a program in which that particular-program is embedded
(10.1.2).}
{In this Report, the syntax says which sequences of symbols are terminal

productions of 'program', and the semantics which actions are performed by
the computer when elaborating a program. Both syntax and semantics are
recursive. Though certain sequences of symbols may be terminal productions
of 'program' in more than one way (see also 1.1.3.2.f), this syntactic ambigu-
ity does not lead to a semantic ambiguity.}
b) In ALGOL 68, a specific syntax for constructs is provided which,

together with its recursive definition, makes it possible to describe and to
distinguish between arbitrarily large production trees, to distinguish between
arbitrarily many different values of a given mode (except certain modes like
'boolean' and 'void') and to distinguish between arbitrarily many modes,
which allows arbitrarily many objects to exist within the computer and
which allows the elaboration of a program to involve an arbitrarily large, not
necessarily finite, number of actions. This is not meant to imply that the
notation of the objects in the computer is that used in this Report nor that it
has the same possibilities. It is not assumed that these two notations are the
same nor even that a one-to-one correspondence exists between them; in fact,
the set of different notations of objects of a given category may be finite. It
is not assumed that the computer can handle arbitrary amounts of presented
information. It is not assumed that the speed of the computer is sufficient
to elaborate a given program within a prescribed lapse of time, nor that the
number of objects and relationships that can be established is sufficient to
elaborate it at all.

c) A model of the hypothetical computer, using a physical machine, is said
to be an “implementation” of ALGOL 68 if it does not restrict the use of
the language in other respects than those mentioned above. Furthermore, if
a language A is defined whose particular-programs are also particular-programs
of a language B, and if each such particular-program for which a meaning is

50

Section222 van Wijngaarden, et al.

defined in A has the same defined meaning in B, then A is said to be a
“sublanguage” of B, and B a “superlanguage” of A.
{Thus a sublanguage of ALGOL 68 might be defined by omitting some

part of the syntax, by omitting some part of the standard-prelude, and/or
by leaving undefined something which is defined in this Report, so as to
enable more efficient solutions to certain classes of problem or to permit
implementation on smaller machines.

Likewise, a superlanguage of ALGOL 68 might be defined by additions
to the syntax, semantics or standard-prelude, so as to improve efficiency (by
allowing the user to provide additional information) or to permit the solution
of problems not readily amenable to ALGOL 68.}

A model is said to be an implementation of a sublanguage if it does not
restrict the use of the sublanguage in other respects than those mentioned
above.
{See 9.3.c for the term “implementation of the reference language”.}
{A sequence of symbols which is not a particular-program but can be

turned into one by deleting or inserting a certain number of symbols and not
a smaller number could be regarded as a particular-program with that number
of syntactical errors. Any particular-program that can be obtained by deleting
or inserting that number of symbols may be termed a “possibly intended”
particular-program. Whether a particular-program or one of the possibly intended
particular-programs has the effect its author in fact intended it to have is a
matter which falls outside this Report.}
{In an implementation, the particular-program may be “compiled”, i.e.,

translated into an “object program” in the code of the physical machine.
Under certain circumstances, it may be advantageous to compile parts of
the particular-program independently, e.g., parts which are common to several
particular-programs. If such a part contains applied-indicators which identify
defining-indicators not contained in that part, then compilation into an efficient
object program may be assured by preceding the part by a sequence of
declarations containing those defining-indicators.}
{The definition of specific sublanguages and also the specification of

actions not definable by any program (e.g., compilation or initiation of the
elaboration) is not given in this Report. See, however, 9.2 for the suggested
use of pragmats to control such actions.}

51

Section ALGOL 68 Revised Report 302

PART II: Fundamental Constructions

{This part presents the essential structure of programs:
• the general rules for constructing them;
• the ways of defining indicators and their properties, at each new level of
construction;
• the constructs available for programming primitive actions.}

3.0. Clauses

{Clauses provide
• a hierarchical structure for programs,
• the introduction of new ranges of definitions,
• serial or collateral composition, parallelism, choices and loops.}

3.0.1. Syntax

a) *phrase : SOME unit{32d} ; NEST declaration of DECS{41a}.
b) *SORT MODE expression : SORT MODE NEST UNIT{5A}.
c) *statement : strong void NEST UNIT{5A}.
d) *MOID constant : MOID NEST DEFIED identifier with TAG{48a,b} ;

MOID NEST denoter{80a}.
e) *MODE variable :

reference to MODE NEST DEFIED identifier with TAG{43a,b}.
f) *NEST range : SOID NEST serial clause defining LAYER{32a} ;

SOID NEST chooser CHOICE STYLE clause{34b} ;
SOID NEST case part of choice using UNITED{34i} ;
NEST STYLE repeating part with DEC{35e} ;
NEST STYLE while do part{35f} ;
PROCEDURE NEST routine text{541a,b}.

{NEST-ranges arise in the definition of “identification” (7.2.2.b).}

3.0.2. Semantics

A “nest” is a 'NEST'. The nest “of” a construct is the 'NEST' enveloped
by the original of that construct, but not by any 'defining LAYER' contained
in that original.
{The nest of a construct carries a record of all the declarations forming

the environment in which that construct is to be interpreted.
Those constructs which are contained in a range R, but not in any

smaller range contained within R, may be said to comprise a “reach”. All

52

Section32 van Wijngaarden, et al.

constructs in a given reach have the same nest, which is that of the immedi-
ately surrounding reach with the addition of one extra 'LAYER'. The syntax
ensures (3.2.1.b, 3.4.1.i, j, k, 3.5.1.e, 5.4.1.1.b) that each 'PROP' (4.8.1.E) or
“property” in the extra 'LAYER' is matched by a defining-indicator (4.8.1.a)
contained in a definition in that reach.}

3.1. Closed clauses
{Closed-clauses are usually used to construct units from serial-clauses as,

e.g.,
(real x; read(x); x) in
(real x; read(x); x) + 3.14.}

3.1.1. Syntax
A) SOID :: SORT MOID.

B) PACK :: STYLE pack.

a) SOID NEST closed clause{22a,5D,551a,A341h,A349a} :
SOID NEST serial clause defining LAYER{32a} PACK.

{LAYER :: new DECSETY LABSETY.}

{Example
a)

begin x := 1; y := 2 end }

{The yield of a closed-clause is that of its constituent serial-clause, by way
of pre-elaboration (2.1.4.1.c).}

3.2. Serial clauses
{The purposes of serial-clauses are

• the construction of new ranges of definitions, and
• the serial composition of actions.

A serial-clause consists of a possibly empty sequence of unlabelled phrases,
the last of which, if any, is a declaration, followed by a sequence of possibly
labelled units. The phrases and the units are separated by go-on-tokens, viz.,
semicolons. Some of the units may instead be separated by completers, viz.,
exits; after a completer, the next unit must be labelled so that it can be
reached. The value of the final unit, or of a unit preceding an exit, determines
the value of the serial-clause.

For example, the following serial-clause yields true if and only if the
vector a contains the integer 8:

53

Section ALGOL 68 Revised Report 321

int n; read(n);
[1: n] int a; read(a);
for i to n do if a [i] = 8 then goto success fi od;
false exit
success: true .}

3.2.1. Syntax

a) SOID NEST serial clause defining new PROPSETY{31a,34f,l,35h} :
SOID NEST new PROPSETY series with PROPSETY{b}.

{Here PROPSETY :: DECSETY LABSETY.}
b) SOID NEST series with PROPSETY{a,b,34c} :

strong void NEST unit{d}, go on{94f} token,
SOID NEST series with PROPSETY{b} ; where (PROPSETY) is

(DECS DECSETY LABSETY), NEST declaration of DECS{41a},
go on{94f} token, SOID NEST series with DECSETY LABSETY{b} ;

where (PROPSETY) is (LAB LABSETY), NEST label definition of LAB{c},
SOID NEST series with LABSETY{b} ;

where (PROPSETY) is (LAB LABSETY) and SOID balances SOID1
and SOID2{e}, SOID1 NEST unit{d}, completion{94f} token,

NEST label definition of LAB{c}, SOID2 NEST series with LABSETY{b} ;
where (PROPSETY) is (EMPTY), SOID NEST unit{d}.

c) NEST label definition of label TAG{b} :
label NEST defining identifier with TAG{48a}, label{94f} token.

d) SOME unit{b,33b,g,34i,35d,46m,n,521c,532e,541a,b,543c,A34Ab,c,d} :
SOME UNIT{5A,-}.

e) WHETHER SORT MOID balances SORT1 MOID1 and SORT2 MOID2
{b,33b,34d,h} : WHETHER SORT balances SORT1 and
SORT2{f} and MOID balances MOID1 and MOID2{g}.

f) WHETHER SORT balances SORT1 and SORT2{e,522a} :
where (SORT1) is (strong), WHETHER (SORT2) is (SORT) ;
where (SORT2) is (strong), WHETHER (SORT1) is (SORT).

g) WHETHER MOID balances MOID1 and MOID2{e} :
where (MOID1) is (MOID2), WHETHER (MOID) is (MOID1) ;
where (MOID1) is (transient MOID2), WHETHER (MOID) is (MOID1) ;
where (MOID2) is (transient MOID1), WHETHER (MOID) is (MOID2).

h) *SOID unitary clause : SOID NEST unit{d}.
i) *establishing clause : SOID NEST serial clause defining LAYER{32a} ;

MODE NEST enquiry clause defining LAYER{34c}.

54

Section322 van Wijngaarden, et al.

{Examples:
b)

read(x1); real s:=0;
sum: for i to n do (x1[i] > 0 | s +:= x1[i] | nonpos) od exit
nonpos: print(s) •
real s := 0;
sum: for i to n do (x1[i] > 0 | s +:= x1[i] | nonpos) od exit
nonpos: print(s) •
sum: for i to n do (x1[i] > 0 | s +:= x1[i] | nonpos) od exit
nonpos: print(s) •
for i to n do (x1[i] > 0 | s +:= x1[i] | nonpos) od exit
nonpos: print(s) •
print(s)

c)
sum:

d)
print(s) }

{Often, a series must be “balanced” (3.2.1.e). For remarks concerning
balancing, see 3.4.1.}

3.2.2. Semantics

a) The yield of a serial-clause, in an environ E, is the yield of the elaboration
of its series, or of any series elaborated “in its place” {5.4.4.2}, in the environ
“established” {b} around E according to that serial-clause; it is required that
the yield be not newer in scope than E.

b) The environ E “established”
• upon an environ, E1, possibly not specified, {which determines its
scope,}
• around an environ E2 {which determines its composition},
• according to a NOTION-defining-new-PROPSETY C, possibly absent,
{which prescribes its locale,}
• with values V1, . . . , Vn, possibly absent, {which are possibly to be
ascribed,}

is determined as follows:
• if E1 is not specified, then let E1 be E2;
• E is newer in scope than E1 and is composed of E2 and a new locale
corresponding to 'PROPSETY', if C is present, and to 'EMPTY' otherwise;
Case A: C is an establishing-clause:

For each constituent mode-definition M, if any, of C,

55

Section ALGOL 68 Revised Report 33

• the scene composed of
(i) the actual-declarer of M, and
(ii) the environ necessary for {7.2.2.c} that actual-declarer in E,

is ascribed in E to the mode-indication of M;
For each constituent label-definition L, if any, of C,
• the scene composed of

(i) the series of which L is a direct descendent, and
(ii) the environ E,

is ascribed in E to the label-identifier of L:
If each 'PROP' enveloped by 'PROPSETY' is some 'DYADIC TAD' or

'label TAG',
then E is said to be “nonlocal” {see 5.2.3.2.b};

Case B: C is a declarative, a for-part or a specification:
For i = 1 . . . n, where n is the number of 'DEC's enveloped by

'PROPSETY',
• Vi is ascribed {4.8.2.a} in E to the i-th constituent defining-
identifier, if any, of C and, otherwise {in the case of an invisible
for-part}, to an integral-defining-indicator-with-letter-aleph;

If C is a for-part or a specification,
then E is nonlocal.

{Other cases, i.e., when C is absent:
• E is local (see 5.2.3.2.b), but not further defined.}

c) The yield W of a series C is determined as follows:
If C contains a direct descendent unit which is not followed by a go-on-

token,
then
• W is the yield of that unit;

otherwise,
• the declaration or the unit, if any, of C is elaborated;
• W is the yield of the series of C.

{See also 5.4.4.2.Case A.}

3.3. Collateral and parallel clauses

{Collateral-clauses allow an arbitrary merging of streams of actions.
Parallel-clauses provide, moreover, levels of coordination for the synchroniza-
tion (10.2.4) of that merging.

A collateral- or parallel-clause consists of a sequence of units separated by
and-also-symbols (viz., “,”), and is enclosed by parentheses or by a begin-end
pair; a parallel-clause begins moreover with par.

56

Section331 van Wijngaarden, et al.

Collateral-clauses, but not parallel-clauses, may yield stowed values com-
posed from the yields of the constituent units.
Examples of collateral-clauses yielding stowed values:

[] int q = (1, 4, 9, 16, 25);
struct(int price, string category) bike := (150, ˝sport˝) .

Example of a parallel-clause which synchronizes eating and speaking:

proc void eat, speak; sema mouth = level 1;
par begin

do
down mouth;
eat;
up mouth

od,
do

down mouth;
speak;
up mouth

od
end .}

3.3.1. Syntax

a) strong void NEST collateral clause{5D,551a} :
strong void NEST joined portrait{b} PACK.

b) SOID NEST joined portrait{a,b,c,d,34g} :
where SOID balances SOID1 and SOID2{32e},

SOID1 NEST unit{32d}, and also{94f} token,
SOID2 NEST unit{32d} or alternatively SOID2 NEST joined portrait{b}.

c) strong void NEST parallel clause{5D,551a} :
parallel{94f} token, strong void NEST joined portrait{b} PACK.

d) strong ROWS of MODE NEST collateral clause{5D,551a} :
where (ROWS) is (row), strong MODE NEST joined portrait{b} PACK ;
where (ROWS) is (row ROWS1), strong ROWS1 of MODE

NEST joined portrait{b} PACK ; EMPTY PACK.

e) strong structured with FIELDS FIELD mode NEST collateral clause{5D,551a} :
NEST FIELDS FIELD portrait{f} PACK.

f) NEST FIELDS FIELD portrait{e,f} :
NEST FIELDS portrait{f,g}, and also{94f} token, NEST FIELD portrait{g}.

{FIELD :: MODE field TAG.}

57

Section ALGOL 68 Revised Report 332

g) NEST MODE field TAG portrait{f} : strong MODE NEST unit{32d}.
h) *structure display :

strong structured with FIELDS FIELD mode NEST collateral clause{e}.
i) *row display : strong ROWS of MODE NEST collateral clause{d}.
j) *display : strong STOWED NEST collateral clause{d,e}.
k) *vacuum : EMPTY PACK.

{Examples:
a) (x := 1, y := 2)
b) x := 1, y := 2
c) par(task1, task2)
d) (1, 2) (in [] real(1, 2))
e) (1, 2) (in compl(1, 2))
f) 1, 2
g) 1}

{Structure-displays must contain at least two FIELD-portraits, for, other-
wise, in the reach of

mode m = struct(ref m m); m nobuo, yoneda;,
the assignation nobuo := (yoneda) would be syntactically ambiguous and could
produce different effects; however, m of nobuo := yoneda is unambiguous.

Row-displays contain zero, two or more constituent units. It is also possi-
ble to present a single value as a multiple value, e.g., [1: 1] int v := 123, but
this uses a coercion known as rowing (6.6).}

3.3.2. Semantics
a) The elaboration of a void-collateral-clause or void-parallel-clause consists of

the collateral elaboration of its constituent units and yields empty.
b) The yield W of a STOWED-collateral-clause C is determined as follows:

If the direct descendent of C is a vacuum,
then {'STOWED' is some 'ROWS of MODE' and} each bound pair in the

descriptor of W is (1, 0) {and it has one ghost element whose value is
irrelevant};

otherwise,
• let V1, . . . , Vm be the {collateral} yields of the constituent units of C;
Case A: 'STOWED' is some 'structured with FIELDS mode':
• the fields of W, taken in order, are V1, . . . , Vm;

Case B: 'STOWED' is some 'row of MODE1':
• W is composed of
(i) a descriptor ((1,m)),

58

Section34 van Wijngaarden, et al.

(ii) V1, . . . , Vm;
For i = 1 . . .m,
• the element selected by the index (i) in W is Vi;

Case C: 'STOWED' is some 'row ROWS of MODE2':
• it is required that the descriptors of V1, . . . , Vm be identical;
• let the descriptor of {say} V1 be ((l1, u1), . . . , (ln, un));
• W is composed of

(i) a descriptor ((1,m), (l1, u1), . . . , (ln, un));
(ii) the elements of V1, . . . , Vm;

For i = 1 . . .m,
• the element selected by an index (i, i1, . . . , in) in W is that

selected by (i1, . . . , in) in Vi.
{Note that in [,,]char block = (˝abc˝, ˝def˝), the descriptor of the

three-dimensional yield W will be ((1, 2), (1, 1), (1, 3)), since the units ˝abc˝
and ˝def˝ are first rowed (6.6), so that V1 and V2 have descriptors
((1, 1), (1, 3)).}

3.4. Choice clauses

{Choice-clauses enable a dynamic choice to be made among different
paths in a computation. The choice among the alternatives (the in-CHOICE-
and the out-CHOICE-clause) is determined by the success or failure of a test on
a truth value, on an integer or on a mode. The value under test is computed
by an enquiry-clause before the choice is made.

A choice-using-boolean-clause (or conditional-clause) is of the form
(x > 0 | x | 0) in the “brief” style, or
if x > 0 then x else 0 fi in the “bold” style;

x > 0 is the enquiry-clause, then x is the in-CHOICE-clause and else 0 is the
out-CHOICE-clause; all three may have the syntactical structure of a series,
because all choice-clauses are well closed. A choice-using-boolean-clause may
also be reduced to

(x < 0 | x := - x) or
if x < 0 then x := - x fi;

the omitted out-CHOICE-clause is then understood to be an else skip. On the
other hand, the choice can be reiterated by writing

(x > 0 | 1 + x |: x < 0 | 1 - x | 1) or
if x > 0 then 1 + x elif x < 0 then 1 - x else 1 fi,

and so on; this is to be understood as
(x > 0 | 1 + x | (x < 0 | 1 - x | 1)).

59

Section ALGOL 68 Revised Report 34

CASE-clauses, which define choices depending on an integer or on a mode,
are different in that the in-CASE-clause is further decomposed into units. The
general pattern is

(--- | ---,. . . ,--- | ---) or
case ---in---, . . . ,---out--- esac.

The choice may also be reiterated by use of ouse.
In a choice-using-integral-clause (or case-clause), the parts are simply units

and there must be at least two of them; the choice among the units follows
their textual ordering.
Example:

proc void work, relax, enjoy;
case int day; read(day); day
in work, work, work, work, work, relax, enjoy
out print((day, ˝is not in the week˝))
esac .
In a choice-using-UNITED-clause (or conformity-clause), which tests modes,

each case-part-of-CHOICE is of the form (declarer identifier): unit or
(declarer): unit. The mode specified by the declarer is compared with the
mode of the value under test; the identifier, if present, is available inside the
unit to access that value, with the full security of syntactical mode checking.
The 'UNITED' mode provides the required freedom for the mode of the value
under test; moreover, that 'UNITED' mode must contain the mode of each
specification for, otherwise, the corresponding case-part-of-CHOICE could never
be chosen.
Example:

mode boy = struct(int age, real weight),
mode girl = struct(int age, real beauty);
proc union(boy, girl) newborn;
case newborn in

(boy john): print(weight of john),
(girl mary): print(beauty of mary)

esac .}

{ The flowers that bloom in the spring,
Tra la,
Have nothing to do with the case.
Mikado, W.S. Gilbert.}

{The hierarchy of ranges in conditional-clauses is illustrated by

60

Section341 van Wijngaarden, et al.

if

then else

fi

and similarly for the other kinds of choice. Thus the nest and the environ of
the enquiry-clause remain valid over the in-CHOICE-clause and the out-CHOICE-
clause. However, no transfer back from the in- or out-CHOICE-clause into
the enquiry-clause is possible, since the latter can contain no label-definitions
(except within a closed-clause contained within it).}

3.4.1. Syntax
A) CHOICE :: choice using boolean ; CASE.

B) CASE :: choice using integral ; choice using UNITED.

a) SOID NEST1 CHOICE clause{5D,551a,A341h,A349a} :
CHOICE STYLE start{91a,-}, SOID NEST1 chooser CHOICE

STYLE clause{b}, CHOICE STYLE finish{91e,-}.
b) SOID NEST1 chooser choice using MODE STYLE clause{a,l} :

MODE NEST1 enquiry clause defining LAYER2{c,-},
SOID NEST1 LAYER2 alternate choice using MODE STYLE clause{d}.

c) MODE NEST1 enquiry clause defining new DECSETY2{b,35g} :
meek MODE NEST1 new DECSETY2 series with DECSETY2{32b}.

d) SOID NEST2 alternate CHOICE STYLE clause{b} :
SOID NEST2 in CHOICE STYLE clause{e} ;
where SOID balances SOID1 and SOID2{32e}, SOID1 NEST2 in CHOICE

STYLE clause{e}, SOID2 NEST2 out CHOICE STYLE clause{l}.
e) SOID NEST2 in CHOICE STYLE clause{d} :

CHOICE STYLE in{91b,-}, SOID NEST2 in part of CHOICE{f,g,h}.
f) SOID NEST2 in part of choice using boolean{e} :

SOID NEST2 serial clause defining LAYER3{32a}.
g) SOID NEST2 in part of choice using integral{e} :

SOID NEST2 joined portrait{33b}.
h) SOID NEST2 in part of choice using UNITED{e,h} :

SOID NEST2 case part of choice using UNITED{i} ;
where SOID balances SOID1 and SOID2{32e},

SOID1 NEST2 case part of choice using UNITED{i},
and also{94f} token, SOID2 NEST2 in part of choice using UNITED{h}.

61

Section ALGOL 68 Revised Report 341

i) SOID NEST2 case part of choice using UNITED{h} :
MOID NEST2 LAYER3 specification defining LAYER3{j,k,-},

where MOID unites to UNITED{64b}, SOID NEST2 LAYER3 unit{32d}.
{Here LAYER :: new MODE TAG ; new EMPTY.}

j) MODE NEST3 specification defining new MODE TAG3{i} : NEST3 declarative
defining new MODE TAG3{541e} brief pack, colon{94f} token.

k) MOID NEST3 specification defining new EMPTY{i} :
formal MOID NEST3 declarer{46b} brief pack, colon{94f} token.

l) SOID NEST2 out CHOICE STYLE clause{d} :
CHOICE STYLE out{91d,-}, SOID NEST2 serial clause defining LAYER3
{32a} ; CHOICE STYLE again{91c,-}, SOID NEST2 chooser
CHOICE2 STYLE clause{b}, where CHOICE2 may follow CHOICE{m}.

m) WHETHER choice using MODE2 may follow choice using MODE1 {l} :
where (MODE1) is (MOOD), WHETHER (MODE2) is (MODE1) ;
where (MODE1) begins with (union of),

WHETHER (MODE2) begins with (union of).

n) *SOME choice clause : SOME CHOICE clause{a}.
o) *SOME conditional clause : SOME choice using boolean clause{a}.
p) *SOME case clause : SOME choice using integral clause{a}.
q) *SOME conformity clause : SOME choice using UNITED clause{a}.

{Examples:
a) (x > 0 | x | 0) • case i in princeton, grenoble out finish esac •

case uir in (int i): print(i), (real): print(˝no˝) esac

b) x > 0 | x | 0
c) x > 0 • i • uir
d) | x • | x | 0
e) | x • in princeton, grenoble •

in (int i): print(i), (real): print(˝no˝)
f) x
g) princeton, grenoble
h) (int i): print(i), (real); print(˝no˝)
i) (int i): print(i)
j) (int i):
k) (real):
l) out finish • |: x < 0 | - x | 0}

62

Section35 van Wijngaarden, et al.

{ I would to God they would either conform, or be more
wise, and not be catched!
Diary. 7 Aug. 1664, Samuel Pepys.}

{Rule d illustrates why 'SORT MOID's should be “balanced”. If an
alternate-CHOICE-clause is, say, firm, then at least its in-CHOICE-clause or its
out-CHOICE-clause must be firm, while the other may be strong. For example,
in (p | x | skip) + (p | skip | y), the conditional-clause (p | x | skip) is balanced
by making | x firm and | skip strong whereas (p | skip | y) is balanced by
making | skip strong and | y firm. The counterexample (p | skip | skip) + y
illustrates that not both may be strong, for otherwise the operator + could not
be identified.}

3.4.2. Semantics

a) The yield W of a chooser-CHOICE-clause C, in an environ E1, is deter-
mined as follows:
• let E2 be the environ established {3.2.2.b} around E1 according to the
enquiry-clause of C;
• let V be the yield, in E2, of that enquiry-clause;
• W is the yield of the scene “chosen” {b} by V from C in E2; it is required
that W be not newer in scope than E1.

b) The scene S “chosen” by a value V from a MOID-chooser-CHOICE-clause
C, in an environ E2, is determined as follows:
Case A: 'CHOICE' is 'choice using boolean' and V is true:
• S is the constituent in-CHOICE-clause of C, in E2;

Case B: 'CHOICE' is 'choice using integral' and 1 ≤ V ≤ n, where n is the
number of constituent units of the constituent in-part-of-CHOICE of C:
• S is the V-th such unit, in E2;

Case C: 'CHOICE' is some 'choice using UNITED' and V is acceptable to
{2.1.3.6.d} the 'MOID2' of some constituent MOID2-specification D of C {;
if there exists more than one such constituent specification, it is not defined
which one is chosen as D};
• S is the unit following that D, in an environ established {nonlocally
(3.2.2.b)} around E2, according to D, with V ;

Other Cases {when the enquiry-clause has been unsuccessful}:
If C contains a constituent out-CHOICE-clause O,
then S is O in E2;
otherwise, S is a MOID-skip in E2.

63

Section ALGOL 68 Revised Report 351

3.5. Loop clauses
{Loop-clauses are used for repeating dynamically one same sequence of

instructions. The number of repetitions is controlled by a finite sequence of
equidistant integers, by a condition to be tested each time, or by both.
Example 1:

int fac := 1;
for i from n by -1 to 1
do fac ×:= i od .

Example 2:
int a, b; read((a, b)) pr assert a ≥ 0 ∧ b > 0 pr;
int q := 0, r := a;
while r ≥ b pr assert a = b × q + r ∧ 0 ≤ r pr
do (q +:= 1, r -:= b) od

pr assert a = b × q + r ∧ 0 ≤ r ∧ r < b pr
(see 9.2 for an explanation of the pragmats).

The controlled identifier, e.g., i in Example 1, is defined over the
repeating-part. Definitions introduced in the while-part are also valid over the
do-part.

If the controlled identifier is not applied in the repeating-part, then the
for-part may be omitted. A from-part from 1 may be omitted; similarly, by 1
may be omitted. The to-part may be omitted if no test on the final value of
the control-integer is required. A while-part while true may be omitted. For
example,

for i from 1 by 1 to n while true do print(˝a˝) od
may be written

to n do print(˝a˝) od.

The hierarchy of ranges is illustrated by:

1 for from by to

2 while
3 do

od

}

3.5.1. Syntax
A) FROBYT :: from ; by ; to.

64

Section352 van Wijngaarden, et al.

a) strong void NEST1 loop clause{5D,551a} :
NEST1 STYLE for part defining new integral TAG2{b}, NEST1 STYLE

intervals{c}, NEST1 STYLE repeating part with integral TAG2{e}.
b) NEST1 STYLE for part defining new integral TAG2{a} :

STYLE for{94g,-} token, integral NEST1 new integral TAG2 defining
identifier with TAG2{48a} ; where (TAG2) is (letter aleph), EMPTY.

c) NEST1 STYLE intervals{a} : NEST1 STYLE from part{d} option,
NEST1 STYLE by part{d} option, NEST1 STYLE to part{d} option.

d) NEST1 STYLE FROBYT part{c} :
STYLE FROBYT{94g,-} token, meek integral NEST1 unit{32d}.

e) NEST1 STYLE repeating part with DEC2{a} :
NEST1 new DEC2 STYLE while do part{f} ;
NEST1 new DEC2 STYLE do part{h}.

f) NEST2 STYLE while do part{e} : NEST2 STYLE while part
defining LAYER3{g}, NEST2 LAYER3 STYLE do part{h}.

g) NEST2 STYLE while part defining LAYER3{f} : STYLE while{94g,-} token,
boolean NEST2 enquiry clause defining LAYER3{34c,-}.

h) NEST3 STYLE do part{e,f} : STYLE do{94g,-} token, strong void NEST3
serial clause defining LAYER4{32a}, STYLE od{94g,-} token.

{Examples:
a) for i while i < n do task1 od • to n do task1; task2 od
b) for i
c) from -5 to +5
d) from -5
e) while i < n do task1 od • do task1; task2 od
f) while i < n do task 1; task2 od
g) while i < n
h) do task1; task2 od}

3.5.2. Semantics

A loop-clause C, in an environ E1, is elaborated in the following Steps:
Step 1: All the constituent FROBYT-parts, if any, of C are elaborated

collaterally in E1;
• let f be the yield of the constituent from-part, if any, of C, and be 1
otherwise;
• let b be the yield of the constituent by-part, if any, of C, and be 1
otherwise;

65

Section ALGOL 68 Revised Report 352

• let t be the yield of the constituent to-part, if any, of C, and be
absent otherwise;
• let E2 be the environ established {nonlocally (3.2.2.b)} around E1,
according to the for-part-defining-new-integral-TAG2 of C, and with the
integer f;

Step 2: Let i be the integer accessed {2.1.2.c} by 'integral TAG2' inside the
locale of E2;

If t is not absent,
then

If b > 0 and i > t or if b < 0 and i < t,
then C in E1 {is completed and} yields empty;

{otherwise, Step 3 is taken; }
Step 3: Let an environ E3 and a truth value w be determined as follows:

Case A: C does not contain a constituent while-part:
• E3 is E2;
• w is true;

Case B: C contains a constituent while-part P:
• E3 is established {perhaps nonlocally (3.2.2.b)} around E2 accord-
ing to the enquiry-clause of P;
• w is the yield in E3 of that enquiry-clause;

Step 4: If w is true,
then
• the constituent do-part of C is elaborated in E3;
• 'integral TAG2' is made to access i+ b inside the locale of E2;
• Step 2 is taken again;

otherwise,
• C in E1 {is completed and} yields empty.

{The loop-clause

for i from u1 by u2 to u3 while condition do action od
is thus equivalent to the following void-closed-clause:

begin int f:= u1, int b = u2, t = u3;
step2:

if (b > 0 ∧ f ≤ t) ∨ (b < 0 ∧ f ≥ t) ∨ b = 0
then int i = f;

if condition
then action; f +:= b; go to step2
fi

fi
end .

66

Section412 van Wijngaarden, et al.

This equivalence might not hold, of course, if the loop-clause contains local-
generators, or if some of the operators above do not identify those in the
standard environment(10).}

4. Declarations, declarers and indicators
{Declarations serve

• to announce new indicators, e.g., identifiers,
• to define their modes or priorities, and
• to ascribe values to those indicators and to initialize variables.}

4.1. Declarations

4.1.1. Syntax
A) COMMON :: mode ; priority ; MODINE identity ;

reference to MODINE variable ;
MODINE operation ; PARAMETER ; MODE FIELDS.

{MODINE :: MODE ; routine.}

a) NEST declaration of DECS{a,32b} :
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,-} ;
where (DECS) is (DECS1 DECS2),

NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,-},
and also{94f} token, NEST declaration of DECS2{a}.

b) NEST COMMON joined definition of PROPS
PROP {b,42a,43a,44a,e,45a,46e,541e} :

NEST COMMON joined definition of PROPS{b,c},
and also{94f} token, NEST COMMON joined definition of PROP{c}.

c) NEST COMMON joined definition of PROP {b,42a,43a,44a,e,45a,46e,541e} :
NEST COMMON definition of PROP{42b,43b,44c,f,45c,46f,541f,-}.

d) *definition of PROP :
NEST COMMON definition of PROP {42b,43b,44c,f,45c,46f,541f} ;
NEST label definition of PROP{32c}.

{Examples:
a) mode r = ref real, s = char • prio ∨ = 2, ∧ = 3 • int m =4096 •

real x, y • op ∨ = (bool a, b)bool : (a | true | b)
b) r = ref real, s = char • ∨ = 2, ∧ = 3 • m = 4096 • x, y •
∨ = (bool a,b)bool : (a | true | b)

c) r = ref real • ∨ = 2 • m = 4096 • x •
∨ = (bool a, b)bool : (a | true | b) }

67

Section ALGOL 68 Revised Report 43

4.1.2. Semantics
The elaboration of a declaration consists of the collateral elaboration

of its COMMON-declaration and of its declaration, if any. {Thus, all the
COMMON-declarations separated by and-also-tokens are elaborated collaterally.}

4.2. Mode declarations
{Mode-declarations provide the defining-mode-indications, which act as ab-

breviations for declarers constructed from the more primitive ones, or from
other declarers, or even from themselves.

For example,
mode array = [m, n] real , and
mode book = struct(string text, ref book next)

In the latter example, the applied-mode-indication book is not only a
convenient abbreviation, but is essential to the declaration.}

4.2.1. Syntax
a) NEST mode declaration of DECS{41a} :

mode{94d} token, NEST mode joined definition of DECS{41b,c}.
b) NEST mode definition of MOID TALLY TAB{41c} :

where (TAB) is (bold TAG) or (NEST) is (new LAYER),
MOID TALLY NEST defining mode indication with TAB{48a},
is defined as{94d} token, actual MOID TALLY NEST declarer{c}.

c) actual MOID TALLY1 NEST declarer{b} :
where (TALLY1) is (i), actual MOID NEST declarator{46c,d,g,h,o,s,-} ;
where (TALLY1) is (TALLY2 i),

MOID TALLY2 NEST applied mode indication with TAB2 {48b}.

{Examples:
a) mode r = ref real, s = char
b) r = ref real
c) ref real • char}

{The use of 'TALLY' excludes circular chains of mode-definitions such as
mode a = b, b = a.

Defining-mode-indications-with-SIZETY-STANDARD may be declared only in
the standard-prelude, where the nest is of the form “new LAYER” (10.1.1.b).}

4.2.2. Semantics
The elaboration of a mode-declaration {involves no action, yields no value

and} is completed.

68

Section441 van Wijngaarden, et al.

4.3. Priority declarations

{Priority-declarations are used to specify the priority of operators. Priorities
from 1 to 9 are available.

Since monadic-operators have effectively only one priority-level, which
is higher than that of all dyadic-operators, monadic-operators do not require
priority-declarations.}

4.3.1. Syntax

a) NEST priority declaration of DECS{41a} :
priority{94d} token, NEST priority joined definition of DECS{41b,c}.

b) NEST priority definition of priority PRIO TAD{41c} :
priority PRIO NEST defining operator with TAD{48a}, is defined as
{94d} token, DIGIT{94b} token, where DIGIT counts PRIO{c,d}.

c) WHETHER DIGIT1 counts PRIO i{b,c} :
WHETHER DIGIT2 counts PRIO{c,d},

where (digit one digit two digit three digit four digit five digit six
digit seven digit eight digit nine) contains (DIGIT2 DIGIT1).

d) WHETHER digit one counts i{b,c} : WHETHER true.

{Examples:
a) prio ∨ 2, ∧ = 3
b) ∨ = 2}

4.3.2. Semantics

The elaboration of a priority-declaration {involves no action, yields no
value and} is completed.

4.4. Identifier declarations

{Identifier-declarations provide MODE-defining-identifiers, by means of either
identity-definitions or variable-definitions.
Examples:

real pi = 3.1416 • real scan =0.05 .
The latter example, which is a variable-declaration, may be considered as an
equivalent form of the identity-declaration

ref real scan = loc real := 0.05 .
The elaboration of identifier-declarations causes values to be ascribed to their
identifiers; in the examples given above, 3.1416 is ascribed to pi and a new
local name which refers to 0.05 is ascribed to scan.}

69

Section ALGOL 68 Revised Report 442

4.4.1. Syntax

A) MODINE :: MODE ; routine.

B) LEAP :: local ; heap ; primal.

a) NEST MODINE identity declaration of DECS{41a} :
formal MODINE NEST declarer{b,46b},

NEST MODINE identity joined definition of DECS{41b,c}.
b) VICTAL routine NEST declarer{a,523b} : procedure{94d} token.

c) NEST MODINE identity definition of MODE TAG{41c} :
MODE NEST defining identifier with TAG{48a},

is defined as{94d} token, MODE NEST source for MODINE{d}.
d) MODE NEST source for MODINE{c,f,45c} :

where (MODINE) is (MODE), MODE NEST source{521c} ;
where (MODINE) is (routine), MODE NEST routine text{541a,b,-}.

e) NEST reference to MODINE variable declaration of DECS{41a} :
reference to MODINE NEST LEAP sample generator{523b},

NEST reference to MODINE variable joined definition of DECS{41b,c}.
f) NEST reference to MODINE variable definition of reference to MODE TAG

{41c} : reference to MODE NEST defining identifier with TAG{48a},
becomes{94c} token, MODE NEST source for MODINE{d} ;

where (MODINE) is (MODE),
reference to MODE NEST defining identifier with TAG{48a}.

g) *identifier declaration : NEST MODINE identity declaration of DECS{a} ;
NEST reference to MODINE variable declaration of DECS{e}.

{Examples:
a) int m = 4096 • proc r10 = real: random × 10
b) proc

c) m = 4096
d) 4096 • real: random × 10
e) real x, y • proc pp:= real: random × 10
f) pp := real : random × 10 • x }

70

Section45 van Wijngaarden, et al.

4.4.2. Semantics

a) An identity-declaration D is elaborated as follows:
• the constituent sources-for-MODINE of D are elaborated collaterally;
For each constituent identity-definition D1 of D,
• the yield V of the source-for-MODINE of D1 is ascribed {4.8.2.a} to

the defining-identifier of D1.

b) A variable-declaration D is elaborated as follows:
• the sample-generator {5.2.3.1.b} G of D and all the sources-for-MODINE, if
any, of the constituent variable-definitions of D are elaborated collaterally;
For each constituent variable-definition-of-reference-to-MODE-TAG D1 of D,
• let W1 be a “variant” {c}, for 'MODE', of the value referred to by the
yield N of G;
• let N1 be a newly created name equal in scope to N and referring to
W1;
• if N1 is a stowed name {2.1.3.2.b}, then N1 is endowed with sub-
names {2.1.3.3.e, 2.1.3.4.g};
• N1 is ascribed {4.8.2.a} to the defining-identifier of D1;
• the yield of the source-for-MODINE, if any, of D1 is assigned
{5.2.1.2.b} to N1.
{An actual-declarer which is common to a number of variable-definitions is

elaborated only once. For example, the elaboration of
int m := 10; [1 : m +:= 1] int p, q; print(m)

causes 11 to be printed, and not 12; moreover, two new local names referring
to multiple values with descriptor ((1, 11)), and undefined elements, are
ascribed to p and to q.}
c) A “variant” of a value V, for a mode M, is a value W acceptable to
{2.1.3.6.d} M, and determined as follows:
Case A: M is some 'structured with FIELDS mode':

For each 'MODE field TAG' enveloped by 'FIELDS',
• the field selected by 'TAG' in W is a variant, for 'MODE', of the

field selected by 'TAG' in V;
Case B: M is some 'FLEXETY ROWS of MODE1':
• the descriptor of W is that of V ;
• each element of W is a variant, for 'MODE1', of some element of V;

Other Cases:
• W is any value acceptable to M.

d) The yield of an actual-routine-declarer is some routine {whose mode is of
no relevance}.

71

Section ALGOL 68 Revised Report 46

4.5. Operation declarations

{Operation-declarations provide defining-operators.
Example:

op mc = (real a,b)real : (3 × a < b | a | b).
Unlike the case with, e.g., identifier-declarations, more than one operation-

declaration involving the same TAO-token may occur in the same reach; e.g.,
the previous example may very well be in the same reach as

op mc = (compl carthy,john)compl: (random < .5 | carthy |
john);

the operator mc is then said to be “overloaded”.}

4.5.1. Syntax

A) PRAM :: DUO ; MONO.

B) TAO :: TAD ; TAM.

a) NEST MODINE operation declaration of DECS{41a} :
operator{94d} token, formal MODINE NEST plan{b,46p,-},

NEST MODINE operation joined definition of DECS{41b,c}.
b) formal routine NEST plan{a} : EMPTY.

c) NEST MODINE operation definition of PRAM TAO{41c} :
PRAM NEST defining operator with TAO{48a},

is defined as{94d} token, PRAM NEST source for MODINE{44d}.

{Examples:
a) op ∨ = (bool a, b)bool: (a | true | b)
c) ∨ = (bool a, b)bool: (a | true | b)}

4.5.2. Semantics

a) The elaboration of an operation-declaration consists of the collateral elabo-
ration of its constituent operation-definitions.

b) An operation-definition is elaborated by ascribing {4.8.2.a} the routine
yielded by its source-for-MODINE to its defining-operator.

72

Section461 van Wijngaarden, et al.

4.6. Declarers
{Declarers specify modes. A declarer is either a declarator, which explic-

itly constructs a mode, or an applied-mode-indication, which stands for some
declarator by way of a mode-declaration. Declarators are built from void, int,
real, bool and char (10.2.2), with the assistance of other symbols such as ref,
struct, [], proc, and union. For example, proc(real)bool specifies the mode
'procedure with real parameter yielding boolean'.

Actual-declarers, used typically in generators, require the presence of
bounds. Formal-declarers, used typically in formal-parameters and casts, are
without bounds. The declarer following a ref is always 'virtual'; it may then
specify a 'flexible ROWS of MODE', because flexibility is a property of names.
Since actual-declarers follow an implicit 'reference to' in generators, they may
also specify 'flexible ROWS of MODE'.}

4.6.1. Syntax
A) VICTAL :: VIRACT ; formal.

B) VIRACT :: virtual ; actual.

C) MOIDS :: MOID ; MOIDS MOID.

a) VIRACT MOID NEST declarer{c,e,g,h,523a,b} :
VIRACT MOID NEST declarator{c,d,g,h,o,s,-} ;
MOID TALLY NEST applied mode indication with TAB{48b,-}.

b) formal MOID NEST declarer{e,h,p,r,u,34k,44a,541a,b,e,551a} :
where MOID deflexes to MOID{47a,b,c,-},

formal MOID NEST declarator{c,d,h,o,s,-} ;
MOID1 TALLY NEST applied mode indication with TAB{48b,-},

where MOID1 deflexes to MOID{47a,b,c,-}.
c) VICTAL reference to MODE NEST declarator{a,b,42c} :

reference to{94d} token, virtual MODE NEST declarer{a}.
d) VICTAL structured with FIELDS mode NEST declarator{a,b,42c} : structure

{94d} token, VICTAL FIELDS NEST portrayer of FIELDS{e} brief pack.

e) VICTAL FIELDS NEST portrayer of FIELDS1{d,e} :
VICTAL MODE NEST declarer{a,b},

NEST MODE FIELDS joined definition of FIELDS1{41b,c} ;
where (FIELDS1) is (FIELDS2 FIELDS3), VICTAL MODE NEST declarer
{a,b}, NEST MODE FIELDS joined definition of FIELDS2{41b,c},

and also{94f} token, VICTAL FIELDS NEST portrayer of FIELDS3{e}.
f) NEST MODE FIELDS definition of MODE field TAG{41c} :

MODE field FIELDS defining field selector with TAG{48c}.

73

Section ALGOL 68 Revised Report 461

g) VIRACT flexible ROWS of MODE NEST declarator{a,42c} :
flexible{94d} token, VIRACT ROWS of MODE NEST declarer{a}.

h) VICTAL ROWS of MODE NEST declarator{a,b,42c} :
VICTAL ROWS NEST rower{i,j,k,l} STYLE bracket,

VICTAL MODE NEST declarer{a,b}.
i) VICTAL row ROWS NEST rower{h,i} : VICTAL row NEST rower{j,k,l},

and also{94f} token, VICTAL ROWS NEST rower{i,j,k,l}.
j) actual row NEST rower{h,i} :

NEST lower bound{m}, up to{94f} token, NEST upper bound{n} ;
NEST upper bound{n}.

k) virtual row NEST rower{h,i} : up to{94f} token option.

l) formal row NEST rower{h,i} : up to{94f} token option.

m) NEST lower bound{j,532f,g} : meek integral NEST unit{32d}.
n) NEST upper bound{j,532f} : meek integral NEST unit{32d}.
o) VICTAL PROCEDURE NEST declarator{a,b,42c} :

procedure{94d} token, formal PROCEDURE NEST plan{p}.
p) formal procedure PARAMETY yielding MOID NEST plan{o,45a} :

where (PARAMETY) is (EMPTY), formal MOID NEST declarer{b} ;
where (PARAMETY) is (with PARAMETERS), PARAMETERS NEST

joined declarer{q,r} brief pack, formal MOID NEST declarer{b}.
q) PARAMETERS PARAMETER NEST joined declarer{p,q} :

PARAMETERS NEST joined declarer{q,r},
and also{94f} token, PARAMETER NEST joined declarer{r}.

r) MODE parameter NEST joined declarer{p,q} :
formal MODE NEST declarer{b}.

s) VICTAL union of MOODS1 MOOD1 mode NEST declarator{a,b,42c} :
unless EMPTY with MOODS1 MOOD1 incestuous{47f}, union of{94d}

token, MOIDS NEST joined declarer{t,u} brief pack, where MOIDS ravels
to MOODS2{47g} and safe MOODS1 MOOD1 subset of safe MOODS2
{73l} and safe MOODS2 subset of safe MOODS1 MOOD1{73l,m}.

t) MOIDS MOID NEST joined declarer{s,t} : MOIDS NEST joined declarer{t,u},
and also{94f} token, MOID NEST joined declarer{u}.

u) MOID NEST joined declarer{s,t} : formal MOID NEST declarer{b}.

{Examples:
a) [1 : n] real • person
b) [] real • string

74

Section462 van Wijngaarden, et al.

c) ref real
d) struct(int age, ref person father, son)
e) ref person father, son • int age, ref person father, son
f) age
g) flex [1 : n] real
h) [1 : m,1 : n] real
i) 1 : m, 1 : n
j) 1 : n
k) :
l) :

m) 1
n) n
o) proc(bool, bool)bool
p) (bool, bool)bool
q) bool, bool
r) bool
s) union(int, char)
t) int, char
u) int}

{For actual-MOID-TALLY-declarers, see 4.2.1.c; for actual-routine-declarers,
see 4.4.1.b.

There are no declarers specifying modes such as 'union of integral union of
integral real mode mode' or 'union of integral real integral mode'. The declarers
union(int, union(int, real)) and union(int, real, int) may indeed be written,
but in both cases the mode specified is 'union of integral real mode' (which can
as well be spelled 'union of real integral mode').}

4.6.2. Semantics

a) The yield W of an actual-MODE-declarer D, in an environ E, is deter-
mined as follows:
If 'MODE' is some 'STOWED',
then
• let D1 in E1 be “developed” {c} from D in E;
• W is the yield of {the declarator} D1 in an environ established
{locally, see 3.2.2.b} upon E and around E1;

otherwise,
• W is any value {acceptable to 'MODE'}.

b) The yield W of an actual-STOWED-declarator D is determined as follows:
Case A: 'STOWED' is some 'structured with FIELDS mode':

75

Section ALGOL 68 Revised Report 471

• the constituent declarers of D are elaborated collaterally;
• each field of W is a variant {4.4.2.c}
(i) of the yield of the last constituent MODE-declarer of D occurring
before the constituent defining-field-selector of D selecting {2.1.5.g} that
field,
(ii) for that 'MODE';

Case B: 'STOWED' is some 'ROWS of MODE':
• all the constituent lower-bounds and upper-bounds of D and the declarer
D1 of D are elaborated collaterally;

For i = 1 . . . n, where n is the number of 'row's contained in 'ROWS',
• let li be the yield of the lower-bound, if any, of the i-th constituent
row-rower of D, and be 1 otherwise;
• let ui be the yield of the upper-bound of that row-rower;

• W is composed of
(i) a descriptor ((l1, u1), . . . , (ln, un)),
(ii) variants of the yield of D1, for 'MODE';

Case C: 'STOWED' is some 'flexible ROWS of MODE':
• W is the yield of the declarer of D.

c) The scene S “developed from” an actual-STOWED-declarer D in an envi-
ron E is determined as follows:

If the visible direct descendent D1 of D is a mode-indication,
then
• S is the scene developed from that yielded by D1 in E;

otherwise{D1 is a declarator},
• S is composed of D1 and E.

d) A given MOID-declarer “specifies” the mode 'MOID'.

4.7. Relationships between modes
{Some modes must be deflexed because the mode of a value may not

be flexible (2.1.3.6.b). Incestuous unions must be prevented in order to avoid
ambiguities. A set of 'UNITED's and 'MOODS's may be ravelled by replacing
all those 'UNITED's by their component 'MOODS's.}

4.7.1. Syntax
A) NONSTOWED :: PLAIN ;

REF to MODE ; PROCEDURE ; UNITED ; void.

B) MOODSETY :: MOODS ; EMPTY.

C) MOIDSETY :: MOIDS ; EMPTY.

76

Section481 van Wijngaarden, et al.

a) WHETHER NONSTOWED deflexes to NONSTOWED
{b,e,46b,521c,62a,71n} : WHETHER true.

b) WHETHER FLEXETY ROWS of MODE1 deflexes to
ROWS of MODE2{b,e,46b,521c,62a,71n} :

WHETHER MODE1 deflexes to MODE2{a,b,c,-}.
c) WHETHER structured with FIELDS1 mode deflexes to

structured with FIELDS2 mode{b,e,46b,521c,62a,71n} :
WHETHER FIELDS1 deflexes to FIELDS2{d,e,-}.

d) WHETHER FIELDS1 FIELD1 deflexes to FIELDS2 FIELD2{c,d} :
WHETHER FIELDS1 deflexes to FIELDS2
{d,e,-} and FIELD1 deflexes to FIELD2{e,-}.

e) WHETHER MODE1 field TAG deflexes to MODE2 field TAG{c,d} :
WHETHER MODE1 deflexes to MODE2{a,b,c,-}.

f) WHETHER MOODSETY1 with MOODSETY2 incestuous{f,46s} :
where (MOODSETY2) is (MOOD MOODSETY3),

WHETHER MOODSETY1 MOOD with MOODSETY3 incestuous{f}
or MOOD is firm union of MOODSETY1 MOODSETY3 mode {71m} ;

where (MOODSETY2) is (EMPTY), WHETHER false.

g) WHETHER MOIDS ravels to MOODS{g,46s} :
where (MOIDS) is (MOODS), WHETHER true ;
where (MOIDS) is (MOODSETY union of MOODS1 mode MOIDSETY),

WHETHER MOODSETY MOODS1 MOIDSETY ravels to MOODS{g}.

{A component mode of a union may not be firmly coerced to one of
the other component modes or to the union of those others (rule f) for,
otherwise, ambiguities could arise. For example,

union(ref int, int) (loc int)
is ambiguous in that dereferencing may or may not occur before the uniting.
Similarly,

mode szp = union(szeredi, peter);
union(ref szp, szp) (loc szp)

is ambiguous. Note that, because of ravelling (rule g), the mode specified by
the declarer of the cast is more closely suggested by union(ref szp, szeredi,
peter).}

4.8. Indicators and field selectors

77

Section ALGOL 68 Revised Report 482

4.8.1. Syntax

A) INDICATOR :: identifier ; mode indication ; operator.

B) DEFIED :: defining ; applied.

C) PROPSETY :: PROPS ; EMPTY.

D) PROPS :: PROP ; PROPS PROP.

E) PROP :: DEC ; LAB ; FIELD.

F) QUALITY :: MODE ; MOID TALLY ; DYADIC ; label ; MODE field.

G) TAX :: TAG ; TAB ; TAD ; TAM.

a) QUALITY NEST new PROPSETY1 QUALITY TAX PROPSETY2 defining
INDICATOR with TAX {32c,35b,42b,43b,44c,f,45c,541f} :

where QUALITY TAX independent PROPSETY1 PROPSETY2 {71a,b,c},
TAX{942A,D,F,K} token.

b) QUALITY NEST applied INDICATOR with TAX {42c,46a,b,5D,542a,b,544a} :
where QUALITY TAX identified in NEST{72a}, TAX{942A,D,F,K} token.

c) MODE field PROPSETY1 MODE field TAG PROPSETY2 defining field
selector with TAG{46f} : where MODE field TAG independent
PROPSETY1 PROPSETY2{71a,b,c}, TAG {942A} token.

d) MODE field FIELDS applied field selector with TAG{531a} :
where MODE field TAG resides in FIELDS{72b,c,-}, TAG{942A} token.

e) *QUALITY NEST DEFIED indicator with TAX :
QUALITY NEST DEFIED INDICATOR with TAX{a,b}.

f) *MODE DEFIED field selector with TAG :
MODE field FIELDS DEFIED field selector with TAG{c,d}.

{Examples:
a) x (in real x, y)
b) x (in x + y)
c) next (see 1.1.2)
d) next (in next of draft) }

4.8.2. Semantics

a) When a value or a scene V is “ascribed” to a QUALITY-defining-indicator-
with-TAX, in an environ E, then 'QUALITY TAX' is made to access V inside
the locale of E {2.1.2.c}.

78

Section5 van Wijngaarden, et al.

b) The yield W of a QUALITY-applied-indicator-with-TAX I in an environ E

composed of an environ E1 and a locale L is determined as follows:
If L corresponds to a 'DECSETY LABSETY' which envelops {1.1.4.1.c} that

'QUALITY TAX',
then W is the value or scene, if any, accessed inside L by 'QUALITY TAX'

and, otherwise, is undefined;
otherwise, W is the yield of I in E1.
{Consider the following closed-clause, which contains another one:

begin co range 1 co
int i = 421, int a := 5, proc p = void: print(a);
begin co range 2 co

real a; a := t; p
end

end .
By the time a := i is encountered during the elaboration, two new environs
have been created, one for each range. The defining-identifier i is first sought
in the newer one, E2, is not found there, and then is sought and found in
the older one, E1. The locale of E1 corresponds to 'integral letter i reference to
integral letter a procedure yielding void letter p'. The yield of the applied-identifier
i is therefore the value 421 which has been ascribed (a) to 'integral letter i'

inside the locale of E1. The yield of a, in a := i , however, is found from the
locale of E2.

When p is called (5.4.3.2.b), its unit is elaborated in an environ E3

established around E1 but upon E2 (3.2.2.b). This means that, for scope
purposes, E3 is newer than E2, but the component environ of E3 is E1. When
a comes to be printed, it is the yield 5 of the reference-to-integral-identifier a
declared in the outer range that is obtained.

Thus, the meaning of an indicator applied but not defined within a
routine is determined by the context in which the routine was created, rather
than that in which it is called.}

5. Units
{Units are used to program the more primitive actions or to put into one

single piece the larger constructs of Chapter 3.
NOTION-coercees are the results of coercion (Chapter 6), but hips are

not; in the case of ENCLOSED-clauses, any coercions needed are performed
inside them.

The syntax below implies, for example, that text of draft + ˝the end˝
is parsed as (text of draft) + ˝the end˝ since a selection is a 'SECONDARY'

whereas a formula is a 'TERTIARY'.}

79

Section ALGOL 68 Revised Report 5211

5.1. Syntax
A) UNIT{32d} :: assignation{521a} coercee ; identity relation{522a} coercee ;

routine text{541a,b} coercee ;
jump{544a} ; skip{552a} ; TERTIARY{B}.

B) TERTIARY{A,521b,522a} ::
ADIC formula{542a,b} coercee ; nihil{524a} ; SECONDARY{C}.

C) SECONDARY{B,531a,542c} :: LEAP generator{523a} coercee ;
selection{531a} coercee ; PRIMARY{D}.

D) PRIMARY{C,532a,543a} :: slice{532a} coercee ; call{543a} coercee ;
cast{551a} coercee ; denoter{80a} coercee ;
format text{A341a} coercee ; applied identifier with TAG{48b} coercee ;
ENCLOSED clause{31a,33a,c,d,e,34a,35a}.

{The hyper-rules for 'SORT MOID FORM coercee' are given in 6.1.1.a,b,c,d
and e, the entry rules of the coercion syntax. When the coercion syntax is
invoked for some 'SORT MOID FORM coercee', it will eventually return to a
rule in this chapter for some 'MOID1 FORM' (blind alleys apart). It is the
cross-reference to that rule that is given in the metaproduction rules above.
No other visible descendent has been produced in the meantime; the coercion
syntax merely transforms 'MOID' into 'MOID1' for semantical purposes.}
a) *SOME hip : SOME jump{544a} ; SOME skip{552a} ; SOME nihil{524a}.

{The mode of a hip is always that required, a posteriori, by its context,
and its yield is acceptable to that mode. Since any mode is so easily
accommodated, no coercion is permitted.}

5.2. Units associated with names
{Names may be assigned to (5.2.1), compared with other names (5.2.2)

and created (5.2.3).}

5.2.1. Assignations
{In assignations, a value is “assigned”, to a name. E.g., in x := 3.14, the

real number yielded by the source 3.14 is assigned to the name yielded by the
destination x.}

5.2.1.1. Syntax
a) REF to MODE NEST assignation{5A} : REF to MODE NEST destination{b},

becomes{94c} token, MODE NEST source{c}.
b) REF to MODE NEST destination{a} :

soft REF to MODE NEST TERTIARY{5B}.

80

Section5212 van Wijngaarden, et al.

c) MODE1 NEST source{a,44d} : strong MODE2 NEST unit{32d},
where MODE1 deflexes to MODE2{47a,b,c,-}.

{Examples:
a) x := 3.14
b) x
c) 3.14}

5.2.1.2. Semantics

a) An assignation A is elaborated as follows:
• let N and W be the {collateral} yields {a name and another value} of the
destination and source of A;
• W is assigned to {b} N;
• the yield of A is N.

b) A value W is “assigned to” a name N, whose mode is some 'REF to
MODE', as follows:
It is required that
• N be not nil, and that
• W be not newer in scope than N;

Case A: 'MODE' is some 'structured with FIELDS mode':
For each 'TAG' selecting a field in W,
• that field is assigned to the subname selected by 'TAG' in N;

Case B: 'MODE' is some 'ROWS of MODE1':
• let V be the {old} value referred to by N;
• it is required that the descriptors of W and V be identical;

For each index I selecting an element in W,
• that element is assigned to the subname selected by I in N;

Case C: 'MODE' is some 'flexible ROWS of MODE1':
• let V be the {old} value referred to by N;
• N is made to refer to a multiple value composed of
(i) the descriptor of W,
(ii) variants {4.4.2.c} of some element {possibly a ghost element} of V ;
• N is endowed with subnames {2.1.3.4.g};

For each index I selecting an element in W,
• that element is assigned to the subname selected by I in N;

Other Cases {e.g., where 'MODE' is some 'PLAlN' or some 'UNITED'}:
• N is made to refer {2.1.3.2.a} to W.

{Observe how, given
flex [1: 0] [1: 3] int flexfix,

81

Section ALGOL 68 Revised Report 523

the presence of the ghost element (2.1.3.4.c) ensures that the meaning of
flexfix := loc [1: 1] [1: 3] int is well defined, but that of flexfix := loc [1: 1] [1:
4] int is not, since the bound pairs of the second dimension are different.}

5.2.2. Identity relations

{Identity-relations may be used to ask whether two names of the same
mode are the same.

E.g., after the assignation draft := (˝abc˝, nil), the identity-relation next of
draft :=: ref book(nil) yields true. However, next of draft :=: nil yields false
because it is equivalent to next of draft :=: ref ref book(nil); the yield of next
of draft, without any coercion, is the name referring to the second field of the
structured value referred to by the value of draft and, hence, is not nil.}

5.2.2.1. Syntax

a) boolean NEST identity relation{5A} :
where soft balances SORT1 and SORT2{32f},

SORT1 reference to MODE NEST TERTIARY1{5B}, identity relator{b},
SORT2 reference to MODE NEST TERTIARY2{5B}.

b) identity relator{a} : is{94f} token ; is not{94f} token.

{Examples:
a) next of draft:=: ref book(nil)
b) :=: • :=/ : }

{Observe that a1 [i] :=: a1 [j] is not produced by this syntax. The
comparison, by an identity-relation, of transient names (2.1.3.6.c) is thus
prevented.}

5.2.2.2. Semantics

The yield W of an identity-relation I is determined as follows:
• let N1 and N2 be the {collateral} yields of the 'TERTIARY's of I;

Case A: The token of the identity-relator of I is an is-token:
• W is true if {the name} N1 is the same as N2, and is false

otherwise;
Case B: The token of the identity-relator of I is an is-not-token:
• W is true if N1 is not the same as N2, and is false, otherwise.

5.2.3. Generators

82

Section5232 van Wijngaarden, et al.

{ And as imagination bodies forth
The forms of things unknown, the poet’s pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
A Midsummer-night’s Dream, William Shakespeare.}

{The elaboration of a generator, e.g., loc real in xx := loc real := 3.14,
or of a sample-generator, e.g., [1 : n] char in [1: n] char u, v;, involves the
creation of a name, i.e., the reservation of storage.

The use of a local-generator implies (with most implementations) the
reservation of storage on a run-time stack, whereas heap-generators imply
the reservation of storage in another region, termed the “heap”, in which
garbage-collection techniques may be used for storage retrieval. Since this
is less efficient, local-generators are preferable; this is why only loc may be
omitted from sample-generators of variable-declarations.}

5.2.3.1. Syntax
{LEAP :: local ; heap primal.}

a) reference to MODE NEST LEAP generator{5C} :
LEAP{94d,-} token, actual MODE NEST declarer{46a}.

b) reference to MODINE NEST LEAP sample generator{44e} :
LEAP{94d,-} token, actual MODINE NEST declarer{44b,46a} ;
where (LEAP) is (local), actual MODINE NEST declarer{44b,46a}.

{Examples:
a) loc real
b) loc real • real }

{There is no representation for the primal-symbol (see 9.4.a).}

5.2.3.2. Semantics
a) The yield W of a LEAP-generator or LEAP-sample-generator G, in an

environ E, is determined as follows:
• W is a newly created name which is made to refer {2.1.3.2.a} to the yield
in E of the actual-declarer {4.4.2.d, 4.6.2.a} of G;
• W is equal in scope to the environ E1 determined as follows:

Case A: 'LEAP' is 'local':
• E1 is the “local environ” {b} accessible from E;

Case B: 'LEAP' is 'heap':
• E1 is {the first environ created during the elaboration of the
particular-program, which is} such that (i) the primal environ

83

Section ALGOL 68 Revised Report 531

{2.2.2.a} is the environ of the environ of the environ of E1 {sic}, and
(ii) E1 is, or is older than, E;

Case C: 'LEAP' is 'primal':
• E1 is the primal environ;

• if W is a stowed name {2.1.3.2.b}, then W is endowed with subnames
{2.1.3.3.e, 2.1.3.4.g}.
{The only examples of primal-generators occur in the standard- and system-

preludes (10.3.1.1.h, 10.3.1.4.b, n, o, 10.4.1.a).
When G is a reference-to-routine-sample-generator, the mode of W is of no

relevance.}
b) The “local environ” accessible from an environ E is an environ E1

determined as follows:
If E is “nonlocal” {3.2.2.b},
then E1 is the local environ accessible from the environ of E;
otherwise, E1 is E.
{An environ is nonlocal if it has been established according to a

serial-clause or enquiry-clause which contains no constituent mode-, identifier-,
or operation-declaration, or according to a for-part (3.5.1.b) or a specification
(3.4.1.j, k).}

5.2.4. Nihils

5.2.4.1. Syntax
a) strong reference to MODE NEST nihil{5B} : nil{94f} token.

{Example:
a) nil}

5.2.4.2. Semantics
The yield of a nihil is a nil name.

5.3. Units associated with stowed values

{ In Flanders fields the poppies blow
Between the crosses, row on row,
In Flanders Fields, John McCrae.}

{The fields of structured values may be obtained by selections (5.3.1) and
the elements of multiple values by slices (5.3.2); the corresponding effects on
stowed names are defined also.}

84

Section5312 van Wijngaarden, et al.

5.3.1. Selections

{A selection selects a field from a structured value or (if it is a “multiple
selection”) it selects a multiple value from a multiple value whose elements
are structured values. For example, re of z selects the first real field (usually
termed the real part) of the yield of z. If z yields a name, then re of z also
yields a name, but if g yields a complex value, then re of g yields a real value,
not a name referring to one.}

5.3.1.1. Syntax

A) REFETY :: REF to ; EMPTY.

B) REFLEXETY :: REF to ; REF to flexible ; EMPTY.

{REF :: reference ; transient reference.}

a) REFETY MODE1 NEST selection{5C} :
MODE1 field FIELDS applied field selector with TAG{48d}, of {94f} token,

weak REFETY structured with FIELDS mode NEST SECONDARY{5C} ;
where (MODE1) is (ROWS of MODE2), MODE2 field FIELDS applied

field selector with TAG{48d}, of{94f} token, weak REFLEXETY
ROWS of structured with FIELDS mode NEST SECONDARY{5C},

where (REFETY) is derived from (REFLEXETY){b,c,-}.
b) WHETHER (transient reference to) is derived from (REF

to flexible){a,532a,66a} : WHETHER true.

c) WHETHER (REFETY) is derived from (REFETY){a,532a,66a} :
WHETHER true.

{Examples:
a) re of z • re of z1 }

{The mode of re of z begins with 'reference to' because that of z does.
Example:

int age := 7; struct(bool sex, int age) jill;
age of jill := age;

Note that the destination age of jill yields a name because jill yields one.
After the identity-declaration

struct(bool sex, int age) jack = (true, 9),
age of jack cannot be assigned to since jack is not a variable.}

85

Section ALGOL 68 Revised Report 5321

5.3.1.2. Semantics
The yield W of a selection S is determined as follows:

• let V be the yield of the SECONDARY of S;
• it is required that V {if it is a name} be not nil;
• W is the value selected in {2.1.3.3.a, e, 2.1.3.4.k} or the name generated
from {2.1.3.4.l} V by the field-selector of S.
{A selection in a name referring to a structured value yields an exist-

ing subname (2.1.3.3.e) of that name. The name generated from a name
referring to a multiple value, by way of a selection with a ROWS-of-MODE-
SECONDARY (as in re of z1), is a name which may or may not be newly
created for the purpose.}

5.3.2. Slices
{Slices are obtained by subscripting, e.g., x1 [i], by trimming, e.g., x1

[2: n] or by both, e.g., x2 [j : n, j] or x2 [,k]. Subscripting and trimming
may be done only to PRIMARYs, e.g., x1 or (p | x1 | y1) but not re of z1.
The value of a slice may be either one element of the yield of its PRIMARY
or a subset of the elements; e.g., x1 [i] is a real number from the row of real
numbers x1, x2 [i,] is the i-th row of the matrix x2 and x2 [,k] is its k -th
column.}

5.3.2.1. Syntax
A) ROWSETY :: ROWS ; EMPTY.

a) REFETY MODE1 NEST slice{5D} :
weak REFLEXETY ROWS1 of MODE1 NEST PRIMARY{5D},

ROWS1 leaving EMPTY NEST indexer{b,c,-} STYLE bracket,
where (REFETY) is derived from (REFLEXETY){531b,c,-} ;

where (MODE1) is (ROWS2 of MODE2),
weak REFLEXETY ROWS1 of MODE2 NEST PRIMARY{5D},
ROWS1 leaving ROWS2 NEST indexer{b,d,-} STYLE bracket,
where (REFETY) is derived from (REFLEXETY){531b,c,-}.

{ROWS :: row ; ROWS row.}
b) row ROWS leaving ROWSETY1 ROWSETY2 NEST indexer{a,b} :

row leaving ROWSETY1 NEST indexer{c,d,-}, and also{94f} token,
ROWS leaving ROWSETY2 NEST indexer{b,c,d,-}.

c) row leaving EMPTY NEST indexer{a,b} : NEST subscript{e}.
d) row leaving row NEST indexer{a,b} :

NEST trimmer{f} ; NEST revised lower bound{g} option.

86

Section5322 van Wijngaarden, et al.

e) NEST subscript{c} : meek integral NEST unit{32d}.
f) NEST trimmer{d} : NEST lower bound{46m} option, up to{94f} token,

NEST upper bound{46n} option, NEST revised lower bound{g} option.

g) NEST revised lower bound{d,f} : at{94f} token, NEST lower bound{46m}.
h) *trimscript : NEST subscript{e} ;

NEST trimmer{f} ; NEST revised lower bound{g} option.

i) *indexer : ROWS leaving ROWSETY NEST indexer{b,c,d}.
j) *boundscript : NEST subscript{e} ; NEST lower bound{46m} ;

NEST upper bound{46n} ; NEST revised lower bound{g}.

{Examples:
a) x2[i,j] • x2[,j]
b) 1: 2, j (in x2 [1: 2,j]) • i, j (in x2 [i,j])
c) j (in x2 [1: 2,j])
d) 1: 2 • @0 (in x1 [@0])
e) j
f) 1: 2@0
g) @0 }

{A subscript decreases the number of dimensions by one, but a trimmer
leaves it unchanged. In rule a, 'ROWS1' reflects the number of trimscripts in
the slice, and 'ROWS2' the number of these which are trimmers or revised-lower-
bound-options.

If the value to be sliced is a name, then the yield of the slice is also
a name. Moreover, if the mode of the former name is 'reference to flexible
ROWS1 of MODE', then that yield is a transient name (see 2.1.3.6.c).}

5.3.2.2. Semantics
a) The yield W of a slice S is determined as follows:
• let V and (I1, . . . , In) be the {collateral} yields of the PRIMARY of S and
of the indexer {b} of S;
• it is required that V {if it is a name} be not nil;
• let ((r1, s1), . . . , (rn, sn)) be the descriptor of V or of the value referred to
by V;
For i = 1, . . . , n,

Case A: Ii is an integer:
• it is required that ri ≤ Ii ≤ si;

Case B: Ii is some triplet (l, u, l′):
• let L be ri, if l is absent, and be l otherwise;
• let U be si, if u is absent, and be u otherwise;

87

Section ALGOL 68 Revised Report 54

• it is required that ri ≤ L and U ≤ si;
• let D be 0 if l′ is absent, and be L − l′ otherwise; {D is the
amount to be subtracted from L in order to get the revised lower
bound;}
• Ii is replaced by (L,U,D);

• W is the value selected in {2.1.3.4.a, g, i} or the name generated from
{2.1.3.4.j} V by I1, . . . , In.

b) The yield of an indexer I of a slice S is a trim {2.1.3.4.h} or an index
{2.1.3.4.a} I1, . . . , In determined as follows:
• the constituent boundscripts of S are elaborated collaterally;
For i = 1 . . . n, where n is the number of constituent trimscripts of S,

Case A: the i-th trimscript is a subscript:
• Ii is {the integer which is} the yield of that subscript;

Case B: the i-th trimscript is a trimmer T :
• Ii is the triplet (l, u, l′), where
• l is the yield of the constituent lower-bound, if any, of T , and is
absent, otherwise,
• u is the yield of the constituent upper-bound, if any, of T , and
is absent, otherwise,
• l′ is the yield of the constituent revised-lower-bound, if any, of T ,
and is 1, otherwise;

Case C: the i-th trimscript is a revised-lower-bound-option N:
• Ii is the triplet (absent, absent, l′), where
• l′ is the yield of the revised-lower-bound, if any, of N, and is
absent otherwise.

{Observe that, if (I1, . . . , In) contains no triplets, it is an index, and selects
one element; otherwise, it is a trim, and selects a subset of the elements.}
{A slice from a name referring to a multiple value yields an existing

subname (2.1.3.4.j) of that name if all the constituent trimscripts of that slice
are subscripts. Otherwise, it yields a generated name which may or may not
be newly created for the purpose. Hence, the yield of x1 [1 : 2] :=: x1 [1 : 2]
is not defined, although x1 [1] :=: x1 [1] must always yield true.}
{The various possible bounds in the yield of a slice are illustrated by the

following examples, for each of which the descriptor of the value referred to
by the yield is shown:

[0:9,2: 11] int i3; i3 [1,3: 10 @3] /c ((3, 10)) /c ; i3 [1,3: 10] /c ((1, 8)) /c ;
i3 [1,3:] /c ((1,9)) /c ; i3 [1,:] /c ((1, 10)) /c ; i3 [1,] /c ((2, 11)) /c ; i3 [,2] /c
((0,9)) /c}

88

Section5411 van Wijngaarden, et al.

5.4. Units associated with routines

{Routines are created from routine-texts (5.4.1) or from jumps (5.4.4), and
they may be “called” by calls (5.4.3), formulas (5.4.2) or by deproceduring
(6.3).}

5.4.1. Routine texts

{A routine-text always has a formal-declarer, specifying the mode of the
result, and a routine-token, viz., a colon. To the right of this colon stands a
unit, which prescribes the computations to be performed when the routine is
called. If there are parameters, then to the left of the formal-declarer stands a
declarative containing the various formal-parameters required.
Examples:

void: print(x);
(ref real a, real b)bool: (a < b | a := b; true | false) .}

5.4.1.1. Syntax

a) procedure yielding MOID NEST1 routine text{44d,5A} :
formal MOID NEST1 declarer{46b},

routine{94f} token, strong MOID NEST1 unit{32d}.
b) procedure with PARAMETERS yielding MOID NEST1 routine text{44d,5A} :

NEST1 new DECS2 declarative defining new DECS2{e} brief pack, where
DECS2 like PARAMETERS{c,d,-}, formal MOID NEST1 declarer{46b},

routine{94f} token, strong MOID NEST1 new DECS2 unit{32d}.
c) WHETHER DECS DEC like PARAMETERS PARAMETER{b,c} : WHETHER

DECS like PARAMETERS{c,d,-} and DEC like PARAMETER{d,-}.
{PARAMETER :: MODE parameter.}

d) WHETHER MODE TAG like MODE parameter{b,c} : WHETHER true.

e) NEST2 declarative defining new DECS2{b,e,34j} :
formal MODE NEST2 declarer{46b},

NEST2 MODE parameter joined definition of DECS2{41b,c} ;
where (DECS2) is (DECS3 DECS4), formal MODE NEST2 declarer{46b},

NEST2 MODE parameter joined definition of DECS3{41b,c},
and also{94f} token, NEST2 declarative defining new DECS4{e}.

f) NEST2 MODE parameter definition of MODE TAG2{41c} :
MODE NEST2 defining identifier with TAG2{48a}.

g) *formal MODE parameter :
NEST MODE parameter definition of MODE TAG{f}.

89

Section ALGOL 68 Revised Report 5421

{Examples:
a) real: random × 10
b) (bool a, b)bool: (a | b | false)
e) bool a, b • bool a, bool b
f) a }

5.4.1.2. Semantics

The yield of a routine-text T , in an environ E, is the routine composed of
(i) T , and
(ii) the environ necessary for {7.2.2.c} T in E.

5.4.2. Formulas

{Formulas are either dyadic or monadic: e.g., x + i or abs x. The order of
elaboration of a formula is determined by the priority of its operators; monadic
formulas are elaborated first and then the dyadic ones from the highest to the
lowest priority.}

5.4.2.1. Syntax

A) DYADIC :: priority PRIO.

B) MONADIC :: priority iii iii iii i.

C) ADIC :: DYADIC ; MONADIC.

D) TALLETY :: TALLY ; EMPTY.

a) MOID NEST DYADIC formula{c,5B} :
MODE1 NEST DYADIC TALLETY operand{c,-},

procedure with MODE1 parameter MODE2 parameter yielding MOID
NEST applied operator with TAD{48b}, where DYADIC TAD identified
in NEST{72a}, MODE2 NEST DYADIC TALLY operand{c,-}.

b) MOID NEST MONADIC formula{c,5B} :
procedure with MODE parameter yielding MOID NEST applied

operator with TAM {48b}, MODE NEST MONADIC operand{c}.
c) MODE NEST ADIC operand{a,b} :

firm MODE NEST ADIC formula{a,b} coercee{61b} ;
where (ADIC) is (MONADIC), firm MODE NEST SECONDARY{5C}.

d) *MOID formula : MOID NEST ADIC formula{a,b}.
e) *DUO dyadic operator with TAD :

DUO NEST DEFIED operator with TAD{48a,b}.

90

Section5432 van Wijngaarden, et al.

f) *MONO monadic operator with TAM :
MONO NEST DEFIED operator with TAM{48a,b}.

g) *MODE operand : MODE NEST ADIC operand{c}.

{Examples:
a) -x+1
b) -x
c) -x • 1}

5.4.2.2. Semantics
The yield W of a formula F, in an environ E, is determined as follows:

• let R be the routine yielded in E by the operator of F;
• let V1, . . . , Vn {n is 1 or 2} be the {collateral} yields of the operands of F,
in an environ E1 established {locally, see 3.2.2.b} around E;
• W is the yield of the calling {5.4.3.2.b} of R in E1, with V1, . . . , Vn;
• it is required that W be not newer in scope than E.
{Observe that a ↑ b is not precisely the same as ab in the usual

notation; indeed, the value of (- 1 ↑ 2 + 4 = 5) and that of (4 - 1 ↑ 2 =
3) both are true, since the first minus-symbol is a monadic-operator, whereas
the second is a dyadic-operator.}

5.4.3. Calls
{Calls are used to command the elaboration of routines parametrized

with actual-parameters.
Examples:

sin(x) • (p | sin | cos)(x) .}

5.4.3.1. Syntax
a) MOID NEST call{5D} : meek procedure with PARAMETERS yielding MOID

NEST PRIMARY{5D}, actual NEST PARAMETERS{b,c} brief pack.

b) actual NEST PARAMETERS PARAMETER{a,b} :
actual NEST PARAMETERS{b,c}, and also{94f} token,

actual NEST PARAMETER {c}.
c) actual NEST MODE parameter{a,b} : strong MODE NEST unit{32d}.

{Examples:
a) put(stand out, x) (see 10.3.3.1.a)
b) stand out, x
c) x}

91

Section ALGOL 68 Revised Report 544

5.4.3.2. Semantics

a) The yield W of a call C, in an environ E, is determined as follows:
• let R {a routine} and V1, . . . , Vn be the {collateral} yields of the PRI-
MARY of C, in E, and of the constituent actual-parameters of C, in an environ
E1 established {locally, see 3.2.2.b} around E;
• W is the yield of the calling {b} of R in E1 with V1, . . . , Vn;
• it is required that W be not newer in scope than E.

b) The yield W of the “calling”, of a routine R in an environ E1, possibly
with {parameter} values V1, . . . , Vn, is determined as follows:
• let E2 be the environ established {3.2.2.b} upon E1, around the environ of
R, according to the declarative of the declarative-pack, if any, of the routine-text
of R, with the values V1, . . . , Vn, if any;
• W is the yield in E2 of the unit of the routine-text of R.

{Consider the following serial-clause:

proc samelson = (int n, proc(int)real f)real:
begin long real s := long 0;

for i to n do s +:= leng f(i) ↑ 2 od;
shorten long sqrt(s)

end;
samelson(m, (int j)real: x1[j]) .

In that context, the last call has the same effect as the following cast:
real(

int n = m, proc(int)real f = (int j)real: x1[j];
begin long real s := long 0;

for i to n do s +:= leng f(i) ↑ 2 od;
shorten long sqrt(s)

end) .
The transmission of actual-parameters is thus similar to the elaboration

of identity-declarations (4.4.2.a); see also establishment (3.2.2.b) and ascription
(4.8.2.a).}

5.4.4. Jumps

{A jump may terminate the elaboration of a series and cause some other
labelled series to be elaborated in its place.
Examples:

y = if x ≥ 0 then sqrt(x)else goto princeton fi •
goto st pierre de chartreuse .

92

Section5511 van Wijngaarden, et al.

Alternatively, if the context expects the mode 'procedure yielding MOID', then
a routine whose unit is that jump is yielded instead, as in

proc void m := goto north berwick .}

5.4.4.1. Syntax

a) strong MOID NEST jump{5A} :
go to{b} option, label NEST applied identifier with TAG{48b}.

b) go to{a} : STYLE go to{94f,-} token ;
STYLE go{94f,-} token, STYLE to symbol{94g,-}.

{Examples:
a) goto kootwijk • go to warsaw • zandvoort
b) goto • go to}

5.4.4.2. Semantics

A MOID-NEST-jump J, in an environ E, is elaborated as follows:
• let the scene yielded in E by the label-identifier of J be composed of a series
S2 and an environ E1;
Case A: 'MOID' is not any 'procedure yielding MOID1':
• let S1 be the series of the smallest {1.1.3.2.g} serial-clause containing
S2;
• the elaboration of S1 in E1, or of any series in E1 elaborated in its
place, is terminated {2.1.4.3.e};
• S2 in E1 is elaborated “in place of” S1 in E1;

Case B: 'MOID' is some 'procedure yielding MOID1':
• J in E {is completed and} yields the routine composed of
(i) a new MOID-NEST-routine-text whose unit is akin {1.1.3.2.k} to J,
(ii) E1.

5.5. Units associated with values of any mode

5.5.1. Casts

{Casts may be used to provide a strong position. For example, ref
real(xx) in ref real(xx) := 1, ref book(nil) in next of draft :=: ref book(nil)
and string(p | c | r) in s +:= string(p | c | r).}

93

Section ALGOL 68 Revised Report 61

5.5.1.1. Syntax
a) MOID NEST cast{5D} : formal MOID NEST declarer{46b},

strong MOID NEST ENCLOSED clause{31a,33a,c,d,e,34a,35a,-}.
{Example:

a) ref book(nil)}
{The yield of a cast is that of its ENCLOSED-clause, by way of pre-

elaboration (2.1.4.1.c).}

5.5.2. Skips

5.5.2.1. Syntax
a) strong MOID NEST skip{5A} : skip{94f} token.

5.5.2.2. Semantics
The yield of a skip is some {undefined} value equal in scope to the

primal environ.
{The mode of the yield of a MOID-skip is 'MOID'. A void-skip serves as a

dummy statement and may be used, for example, after a label which marks
the end of a serial-clause.}

PART III Context Dependence

{This Part deals with those rules which do not alter the underlying syntacti-
cal structure:
• the transformations of modes implicitly defined by the context, with their
accompanying actions;
• the syntax needed for the equivalence of modes and for the safe applica-
tion of the properties kept in the nests.}

6. Coercion
{The coercions produce a coercend from a coercee according to three cri-

teria: the a priori mode of the coercend before the application of any coer-
cion, the a posteriori mode of the coercee required after those coercions, and
the syntactic position or “sort” of the coercee. Coercions may be cascaded.

There are six possible coercions, termed “deproceduring”, “dereferenc-
ing”, “uniting”, “widening”, “rowing” and “voiding”. Each Coercion, except
“uniting”, prescribes a corresponding dynamic effect on the associated val-
ues. Hence, a number of primitive actions can be programmed implicitly by
coercions.}

94

Section611 van Wijngaarden, et al.

6.1. Coercees
{A coercee is a construct whose production tree may begin a sequence of

coercions ending in a coercend. The order of (completion of) the elaboration
of the coercions is therefore from the coercend to the coercee (hence the choice
of these paranotions). For example, i in real(i) is a coercee whose production
tree involves 'widened to' and 'dereferenced to', in that order, in passing from
the coercee to the coercend. Note that the dereferencing must be completed
before the widening takes place.

The relevant production tree (with elision of 'NEST', 'applied' and 'with
TAG', and with invisible subtrees omitted) is:

'strong real identifier coercee'

6.1.1.a
→ 'widened to real identifier'

widening coercion 6.5.1.a
↑← 'dereferenced to integral identifier'

dereferencing coercion 6.2.1.a
← 'unchanged from reference to integral identifier'

6.1.1.f
'reference to integral identifier' (coercend)

4.8.1.b, 9.1.f
'letter i symbol' .}

6.1.1. Syntax
A) STRONG{a,66a} :: FIRM{B} ;

widened to{65a,b,c,d} ; rowed to{66a} ; voided to{67a,b}.
B) FIRM{A,b} :: MEEK{c} ; united to{64a}.
C) MEEK{B,c,d,62a,63a,64a,65a,b,c,d} ::

unchanged from{f} ; dereferenced to{62a} ; deprocedured to{63a}.
D) SOFT{e,63b} :: unchanged from{f} ; softly deprocedured to{63b}.
E) FORM :: MORF ; COMORF.

F) MORF :: NEST selection ; NEST slice ; NEST routine text ;
NEST ADIC formula ; NEST call ; NEST applied identifier with TAG.

G) COMORF :: NEST assignation ; NEST identity relation ;
NEST LEAP generator ; NEST cast ; NEST denoter ; NEST format text.

95

Section ALGOL 68 Revised Report 611

a) strong MOID FORM coercee{5A,B,C,D,A341i} :
where (FORM) is (MORF), STRONG{A} MOID MORF ;
where (FORM) is (COMORF), STRONG{A} MOID COMORF,

unless (STRONG MOID) is (deprocedured to void).

b) firm MODE FORM coercee{5A,B,C,D,542c} : FIRM{B} MODE FORM.

c) meek MOID FORM coercee{5A,B,C,D} : MEEK{C} MOID FORM.

d) weak REFETY STOWED FORM coercee{5A,B,C,D} :
MEEK{C} REFETY STOWED FORM,

unless (MEEK) is (dereferenced to) and (REFETY) is (EMPTY).

e) soft MODE FORM coercee{5A,B,C,D} : SOFT{D} MODE FORM.

f) unchanged from MOID FORM{C,D,67a,b} : MOID FORM.

g) *SORT MOID coercee : SORT MOID FORM coercee{a,b,c,d,e}.
h) *MOID coercend : MOID FORM.

{Examples:
a) 3.14 (in x := 3.14)
b) 3.14 (in x + 3.14)
c) sin (in sin(x))
d) x1 (in x1 [2] := 3.14)
e) x (in x := 3.14) }

{For 'MOID FORM' (rule f), see the cross-references inserted in sections
5.1.A, B, C, D before “coercee”. Note, however, that a 'MOID FORM' may be
a blind alley. Blind alleys within this chapter are not indicated.}
{There are five sorts of syntactic position. They are:
• “strong” positions, i.e., actual-parameters, e.g., x in sin(x), sources, e.g.,
x in y := x, the ENCLOSED-clause of a cast, e.g., (nil) in ref book(nil), and
statements, e.g., y := x in (y := x; x := 0);
• “firm” positions, i.e., operands, e.g., x in x + y;
• “meek” positions, i.e., enquiry-clauses, e.g., x > 0 in (x > 0 | x | 0),
boundscripts, e.g., i in x1 [i], and the PRIMARY of a call, e.g., sin in sin(x);
• “weak” positions, i.e., the SECONDARY of a selection and the PRIMARY
of a slice, e.g., x1 in x1 [i];
• “soft” positions, i.e., destinations, e.g., x in x := y and one of the
TERTIARYs of an identity-relation, e.g., x in xx :=: x.

Strong positions also arise in balancing (3.2.1.e).
In strong positions, all six coercions may occur; in firm positions,

rowing, widening and voiding are forbidden; in meek and weak positions,
uniting is forbidden also, and in soft positions only deproceduring is allowed.

96

Section631 van Wijngaarden, et al.

However, a dereferenced-to-STOWED-FORM may not be directly descended
from a weak-STOWED-FORM-coercee (rule d) for, otherwise, x := x1 [i] would
be syntactically ambiguous (although, in this case, not semantically). Also,
a deprocedured-to-void-COMORF may not be directly descended from a strong-
void-COMORF-coercee (rule a) for, otherwise,

(proc void engelfriet; proc void rijpens = skip;
engelfriet := rijpens; skip)

would be ambiguous.}

6.2. Dereferencing

{Dereferencing serves to obtain the value referred to by a name, as in
x := y, where y yields a name referring to a real number and it is this
number which is assigned to the name yielded by x. The a priori mode of
y, regarded as a coercend, is 'reference to real' and its a posteriori mode, when
y is regarded as a coercee, is 'real'.}

6.2.1. Syntax

a) dereferenced to{61C} MODE1 FORM : MEEK{61C} REF to MODE2 FORM,
where MODE2 deflexes to MODE1{47a,b,c,-}.

{Example:
a) x (in real(x)) }

6.2.2. Semantics

The yield W of a dereferenced-to-MODE-FORM F is determined as follows:
• let {the name} N be the yield of the MEEK-FORM of F;
• it is required that N be not nil;
• W is the value referred to by N.

6.3. Deproceduring

{Deproceduring is used when a routine without parameters is to be
called. E.g., in x := random, the routine yielded by random is called and
the real number yielded is assigned; the a posteriori mode of random is
'real'. Syntactically, an initial 'procedure yielding' is removed from the a priori
mode.}

97

Section ALGOL 68 Revised Report 641

6.3.1. Syntax

a) deprocedured to{61C,67a} MOID FORM :
MEEK{61C} procedure yielding MOID FORM.

b) softly deprocedured to{61D} MODE FORM :
SOFT{61D} procedure yielding MODE FORM.

{Examples:
a) random (in real(random))
b) x or y (in x or y := 3.14, see 1.1.2) }

6.3.2. Semantics

The yield W of a deprocedured-to-MOID-FORM or softly-deprocedured-to-
MOID-FORM F, in an environ E, is determined as follows:
• let {the routine} R be the yield in E of the direct descendent of F;
• W is the yield of the calling {5.4.3.2.b} of R in E;
• it is required that W be not newer in scope than E.

6.4. Uniting

{Uniting does not change the mode of the run-time value yielded by
a construct, but simply gives more freedom to it. That value must be
acceptable to not just that one mode, but rather to the whole of a given
set of modes. However, after uniting, that value may be subject to a
primitive action only after being dynamically tested in a conformity-clause
(3.4.1.q); indeed, no primitive action can be programmed with a construct
of a 'UNITED' mode (except to assign it to a UNITED-variable, of course).
Example:

union(bool, char) t, v;
t := ˝a˝; t := true; v := t .}

6.4.1. Syntax

a) united to{61B} UNITED FORM :
MEEK{61C} MOID FORM, where MOID unites to UNITED{b}.

b) WHETHER MOID1 unites to MOID2{a,34i,71m} :
where MOID1 equivalent MOID2{73a}, WHETHER false ;
unless MOID1 equivalent MOID2{73a},

WHETHER safe MOODS1 subset of safe MOODS2{73l,m,n},
where (MOODS1) is (MOID1) or (union of MOODS1 mode) is (MOID1),
where (MOODS2) is (MOID2) or (union of MOODS2 mode) is (MOID2).

98

Section652 van Wijngaarden, et al.

{Examples:
a) x (in uir := x) •

u (in union(char, int, void)(u), in a reach containing union(int, void) u :=
empty) }

6.5. Widening
{Widening transforms integers to real numbers, real numbers to complex

numbers (in both cases, with the same size), a value of mode 'BITS' to an
unpacked vector of truth values, or a value of mode 'BYTES' to an unpacked
vector of characters.

For example, in z := 1, the yield of 1 is widened to the real number 1.0
and then to the complex number (1.0, 0.0); syntactically, the a priori mode
specified by int is changed to that specified by real and then to that specified
by compl.}

6.5.1. Syntax
A) BITS :: structured with row of boolean field SITHETY letter aleph mode.

B) BYTES :: structured with row of character field SITHETY letter aleph mode.

C) SITHETY :: LENGTH LENGTHETY ; SHORTH SHORTHETY ; EMPTY.

D) LENGTH :: letter l letter o letter n letter g.

E) SHORTH :: letter s letter h letter o letter r letter t.

F) LENGTHETY :: LENGTH LENGTHETY ; EMPTY.

G) SHORTHETY :: SHORTH SHORTHETY ; EMPTY.

a) widened to{b,61A} SIZETY real FORM :
MEEK{61C} SIZETY integral FORM.

{SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY.}
b) widened to{61A} structured with SIZETY real field letter r letter

e SIZETY real field letter i letter m mode FORM :
MEEK{61C} SIZETY real FORM ; widened to{a} SIZETY real FORM.

c) widened to{61A} row of boolean FORM : MEEK{61C} BITS FORM.

d) widened to{61A} row of character FORM : MEEK{61C} BYTES FORM.

{Examples:
a) 1 (in x := 1)
b) 1.0 (in z := 1.0) • 1 (in z := 1)
c) 2r101 (in [] bool(2r101))
d) r (in [] char(r), see 1.1.2)}

99

Section ALGOL 68 Revised Report 662

6.5.2. Semantics
The yield W of a widened-to-MODE-FORM F is determined as follows:

• let V be the yield of the direct descendent of F;
Case A: 'MODE' is some 'SIZETY real':
• W is the real number widenable from {2.1.3.1.e} V;

Case B: 'MODE' is some 'structured with SIZETY real letter r letter e SIZETY
real letter i letter m mode':
• W is {the complex number which is} a structured value whose fields
are respectively V and the real number 0 of the same size {2.1.3.1.b} as
V ;

Case C: 'MODE' is 'row of boolean' or 'row of character':
• W is the {only} field of V .

6.6. Rowing
{Rowing permits the building of a multiple value from a single element.

If the latter is a name then the result of rowing may also be a name referring
to that multiple value.
Example:

[1: 1] real b1 := 4.13 }

6.6.1. Syntax
a) rowed to{61A} REFETY ROWS1 of MODE FORM :

where (ROWS1) is (row), STRONG{61A} REFLEXETY MODE FORM,
where (REFETY) is derived from (REFLEXETY){531b,c,-} ;

where (ROWS1) is (row ROWS2),
STRONG{61A} REFLEXETY ROWS2 of MODE FORM,
where (REFETY) is derived from (REFLEXETY){531b,c,-}.

{Examples:
a) 4.13 (in [1: 1] real b1 := 4.13) • x1 (in [1:1, 1: n] real b2 := x1) }

6.6.2. Semantics
a) The yield W of a rowed-to-REFETY-ROWS1-of-MODE-FORM F is deter-

mined as follows:
• let V be the yield of the STRONG-FORM of F;
Case A: 'REFETY' is 'EMPTY':
• W is the multiple value “built” {b} from V for 'ROWS1';

Case B: 'REFETY' is 'REF to':
If V is nil,

100

Section671 van Wijngaarden, et al.

then W is a nil name;
otherwise, W is the name “built” {c} from V for 'ROWS1'.

b) The multiple value W “built” from a value V, for some 'ROWS1', is
determined as follows:
Case A: 'ROWS1' is 'row':
• W is composed of
(i) a descriptor ((1, 1)),
(ii) {one element} V ;

Case B: 'ROWS1' is some 'row ROWS2':
• let the descriptor of V be ((l1, u1), . . . , (ln, un));
• W is composed of
(i) a descriptor ((1, 1), (l1, u1), . . . , (ln, un)),
(ii) the elements of V :
• the element selected by an index (i1, . . . , in) in V is that selected by
(1, i1, . . . , in) in W.

c) The name N1 “built” from a name N, for some 'ROWS1', is determined
as follows:
• N1 is a name {not necessarily newly created}, equal in scope to N and
referring to the multiple value built {b}, for 'ROWS1', from the value referred
to by N;
Case A: 'ROWS1' is 'row':
• the {only} subname of N1 is N;

Case B: 'ROWS1' is some 'row ROWS2':
• the subname of N1 selected by (1, i1, . . . , in) is the subname of N
selected by (i1, . . . , in).

6.7. Voiding
{Voiding is used to discard the yield of some unit whose primary purpose

is to cause its side-effects; the a posteriori mode is then simply 'void'.
For example, in x:=1; y:=1;, the assignation y:=1 is voided, and in proc
t = int: entier(random × 100); t;, the applied-identifier t is voided after a
deproceduring, which prescribes the calling of a routine.

Assignations and other COMORFs are voided without any deproceduring
so that, in proc void p: p := finish, the assignation p := finish does not
prescribe an unexpected calling of the routine finish.}

6.7.1. Syntax
A) NONPROC :: PLAIN ; STOWED ; REF to NONPROC ;

procedure with PARAMETERS yielding MOID ; UNITED.

101

Section ALGOL 68 Revised Report 711

a) voided to{61A} void MORF : deprocedured to{63a} NONPROC MORF ;
unchanged from{61f} NONPROC MORF.

b) voided to{61A} void COMORF : unchanged from{61f} MODE COMORF.

{Examples:
a) random (in skip; random;) •

next random(last random) (in skip; next random(last random);)
b) proc void(pp) (in proc proc void pp = proc void: (print(1); void:

print(2)); proc void(pp);) }

6.7.2. Semantics

The elaboration of a voided-to-void-FORM consists of that of its direct
descendent, and yields empty.

7. Modes and nests

{The identification of a property in a nest is the static counterpart of
the dynamic determination (4.8.2.b) of a value in an environ: the search
is conducted from the newest (youngest) level towards the previous (older)
ones.

Modes are composed from the primitive modes, such as 'boolean', with
the aid of 'HEAD's, such as 'structured with', and they may be recursive. Re-
cursive modes spelled in different ways may nevertheless be equivalent. The
syntax tests the equivalence of such modes by proving that it is impossi-
ble to find any discrepancy between their respective structures or component
modes.

A number of unsafe uses of properties are prevented. An identifier or
mode-indication is not declared more than once in each reach. The modes of
the operands of a formula do not determine more than one operation. Recur-
sions in modes do not cause the creation of dynamic objects of unlimited size
and do not allow ambiguous coercions.}

7.1. Independence of properties

{The following syntax determines whether two properties (i.e., two
'PROP's), such as those corresponding to real x and int x, may or may not be
enveloped by the same 'LAYER'.}

102

Section711 van Wijngaarden, et al.

7.1.1. Syntax

A) PREF :: procedure yielding ; REF to.

B) NONPREF :: PLAIN ; STOWED ;
procedure with PARAMETERS yielding MOID ; UNITED ; void.

C) *PREFSETY :: PREF PREFSETY ; EMPTY.

{PROP :: DEC ; LAB ; FIELD.

QUALITY :: MODE ; MOID TALLY ; DYADIC ; label ; MODE field.

TAX :: TAG ; TAB ; TAD ; TAM.

TAO :: TAD ; TAM.}

a) WHETHER PROP1 independent PROPS2 PROP2{a,48a,c,72a} : WHETHER
PROP1 independent PROPS2{a,c} and PROP1 independent PROP2{c}.

b) WHETHER PROP independent EMPTY{48a,c,72a} : WHETHER true.

c) WHETHER QUALITY1 TAX1 independent QUALITY2 TAX2{a,48a,c,72a} :
unless (TAX1) is (TAX2), WHETHER true ; where (TAX1) is (TAX2) and

(TAX1) is (TAO), WHETHER QUALITY1 independent QUALITY2{d}.
d) WHETHER QUALITY1 independent QUALITY2{c} :

where QUALITY1 related QUALITY2{e,f,g,h,i,j,-}, WHETHER false ;
unless QUALITY1 related QUALITY2{e,f,g,h,i,j,-}, WHETHER true.

e) WHETHER MONO related DUO{d} : WHETHER false.

f) WHETHER DUO related MONO{d} : WHETHER false.

g) WHETHER PRAM related DYADIC{d} : WHETHER false.

h) WHETHER DYADIC related PRAM{d} : WHETHER false.

i) WHETHER procedure with MODE1 parameter MODE2 parameter
yielding MOID1 related procedure with MODE3 parameter
MODE4 parameter yielding MOID2{d} : WHETHER MODE1
firmly related MODE3{k} and MODE2 firmly related MODE4{k}.

j) WHETHER procedure with MODE1 parameter yielding MOID1 related
procedure with MODE2 parameter yielding MOID2{d} :

WHETHER MODE1 firmly related MODE2{k}.
k) WHETHER MOID1 firmly related MOID2{i,j} :

WHETHER MOODS1 is firm MOID2{l,m} or MOODS2 is firm MOID1{l,m},
where (MOODS1) is (MOID1) or (union of MOODS1 mode) is (MOID1),
where (MOODS2) is (MOID2) or (union of MOODS2 mode) is (MOID2).

l) WHETHER MOODS MOOD is firm MOID{k,l} :
WHETHER MOODS is firm MOID{l,m} or MOOD is firm MOID{m}.

103

Section ALGOL 68 Revised Report 711

m) WHETHER MOID1 is firm MOID2{k,l,n,47f} :
WHETHER MOID1 equivalent MOID2{73a} or MOID1 unites

to MOID2{64b} or MOID1 deprefs to firm MOID2{n}.
n) WHETHER MOID1 deprefs to firm MOID2{m} :

where (MOID1) is (PREF MOID3), WHETHER MOID5 is firm MOID2{m},
where MOID3 deflexes to MOID5{47a,b,c} ;

where (MOID1) is (NONPREF), WHETHER false.

{To prevent the ambiguous application of indicators, as in real x, int x;
x:=0, certain restrictions are imposed on defining-indicators contained in a
given reach. These are enforced by the syntactic test for “independence”
of properties enveloped by a given 'LAYER' (rules a, b, c). A sufficient
condition, not satisfied in the example above, for the independence of a pair
of properties, each being some 'QUALITY TAX', is that the 'TAX's differ (rule
c). For 'TAX's which are not some 'TAO', this condition is also necessary, so
that even real x, int x; skip is not a serial-clause.

For two properties 'QUALITY1 TAO' and 'QUALITY2 TAO' the test for
independence is more complicated, as is exemplified by the serial-clause

op + = (int i)bool: true, op + = (int i , j)int: 1, op + = (int i,
bool j)int: 2,

prio + = 6;
0 + + 0 /c = 2 /c .

Ambiguities would be present in
prio + = 6, + = 7; 1 + 2 × 3 /c 7 or 9 ? /c ,

in
op z = (int i)int: 1, mode z = int;
z i /c formula or declaration? /c ; skip,

and in
op ? = (union(ref real, char) a)int: 1, op ? = (real a)int: 2;
?loc real /c 1 or 2 ? /c .

In such cases a test is made that the two 'QUALITY's are independent
(rules c, d). A 'MOID TALLY' is never independent of any 'QUALITY' (rule
d). A 'MONO' is always independent of a 'DUO' (rules d, e, f) and both
are independent of a 'DYADIC' (i.e., of a 'priority PRIO') (rules d, g, h). In
the case of two 'PRAM's which are both 'MONO' or both 'DUO', ambiguities
could arise if the corresponding parameter modes were “firmly related”, i.e.,
if some (pair of) operand mode(s) could be firmly coerced to the (pair of)
parameter mode(s) of either 'PRAM' (rules i, j). In the example with the two
definitions of ?, the two 'PRAM's are related since the modes specified by

104

Section721 van Wijngaarden, et al.

union (ref real, char) and by real are firmly related, the mode specified by ref
real being firmly coercible to either one.

It may be shown that two modes are firmly related if one of them,
or some component 'MOOD' of one of them, may be firmly coerced to the
other (rules k, l), which requires a sequence of zero or more meek coercions
followed by at most one uniting (6.4.1.a). The possibility or otherwise of such
a sequence of coercions between two modes is determined by the predicate 'is
firm' (rules m, n).

A 'PROP1' also renders inaccessible a 'PROP2' in an outer 'LAYER' if
that 'PROP2' is not independent of 'PROP1'; e.g.,

begin int x;
begin real x; /c here the 'PROP1' is 'reference to real letter x' /c

skip
end

end
and likewise

begin op ? = (int i)int: l, int k:=2;
begin op ? = (ref int i)int: 3;

? k /c delivers 3, but ? 4 could not occur here because its operator
is inaccessible /c

end .}

7.2. Identification in nests

{This section ensures that for each applied-indicator there is a correspond-
ing property in some suitable 'LAYER' of the nest.}

7.2.1. Syntax

{PROPSETY :: PROPS ; EMPTY.

PROPS :: PROP ; PROPS PROP.

PROP :: DEC ; LAB ; FIELD.

QUALITY :: MODE ; MOID TALLY ; DYADIC ; label ; MODE field.

TAX :: TAG ; TAB ; TAD ; TAM.}
a) WHETHER PROP identified in NEST new PROPSETY{a,48b,542a} :

where PROP resides in PROPSETY{b,c,-}, WHETHER true ;
where PROP independent PROPSETY{71a,b,c},

WHETHER PROP identified in NEST{a,-}.
b) WHETHER PROP1 resides in PROPS2 PROP2{a,b,48d} : WHETHER

PROP1 resides in PROP2{c,-} or PROP1 resides in PROPS2{b,c,-}.

105

Section ALGOL 68 Revised Report 722

c) WHETHER QUALITY1 TAX resides in QUALITY2 TAX{a,b,48d} :
where (QUALITY1) is (label) or (QUALITY1) is (DYADIC) or (QUALITY1)

is (MODE field), WHETHER (QUALITY1) is (QUALITY2) ;
where (QUALITY1) is (MOID1 TALLETY) and (QUALITY2) is (MOID2

TALLETY), WHETHER MOID1 equivalent MOID2{73a}.

{A nest, except the primal one (which is just 'new'), is some 'NEST LAYER'

(i.e., some 'NEST new PROPSETY'). A 'PROP' is identified by first looking
for it in that 'LAYER' (rule a). If the 'PROP' is some 'label TAX' or 'DYADIC
TAX', then a simple match of the 'PROP's is a sufficient test (rule c). If
the 'PROP' is some 'MOID TALLETY TAX', then the mode equivalencing
mechanism must be invoked (rule c). If it is not found in the 'LAYER', then
the search continues with the 'NEST' (without that 'LAYER'), provided that
it is independent of all 'PROP's in that 'LAYER'; otherwise the search is
abandoned (rule a). Note that rules b and c do double duty in that they
are also used to check the validity of applied-field-selectors (4.8.1.d).}

7.2.2. Semantics

a) If some NEST-range R {3.0.1.f} contains an applied-indicator I {4.8.1.b}
of which there is a descendent where-PROP-identified-in-NEST-LAYER, but no
descendent where-PROP-identified-in-NEST, then R is the “defining range” of
that I. {Note that 'NEST' is always the nest in force just outside the range.}
b) A QUALITY-applied-indicator-with-TAX I whose defining NEST-range {a} is
R “identifies” the QUALITY-NEST-LAYER-defining-indicator-with-TAX contained
in R.
{For example, in

(/c 1 /c real i = 2.0; (/c 2 /c int i = 1; (/c 3 /c real x; print(i) /c 3 /c)
/c 2 /c) /c 1 /c)

there are three ranges. The applied-identifier i in print(i) is forced, by the
syntax, to be an integral-NEST-new-real-letter-i-new-integral-letter-i-new-reference-
to-real-letter-x-applied-identifier-with-letter-i (4.8.1.b). Its defining range is the
NEST-new-real-letter-i-serial-clause-defining-new-integral-letter-i (3.2.1.a) num-
bered /c 2 /c, it identifies the defining-identifier i contained in int i (not the one
in real i), and its mode is 'integral'.}
{By a similar mechanism, a DYADIC-formula (5.4.2.1.a) may be said

to “identify” that DYADIC-defining-operator (4.8.1.a) which determines its
priority.}
c) The environ E “necessary for” a construct C in an environ E1 is deter-

mined as follows:
If E1 is the primal environ {2.2.2.a},

106

Section73 van Wijngaarden, et al.

then E is E1;

otherwise, letting E1 be composed of a locale L corresponding to some
'PROPSETY' and another environ E2,

If C contains any QUALITY-applied-indicator-with-TAX

• which does not identify {b} a defining-indicator contained in C,

• which is not a mode-indication directly descended from a formal-
or virtual-declarer, and

• which is such that the predicate 'where QUALITY TAX resides in
PROPSETY' {7.2.1.b} holds,

then E is E1;

otherwise, {L is not necessary for C and} E is the environ necessary for
C in E2.

{The environ necessary for a construct is used in the semantics of
routine-texts (5.4.1.2) and in “establishing” (3.2.2.b). For example, in

/c 2 /c proc void pp; int n; (/c 1 /c proc p = void: print(n); pp := p)
if E1 and E2 are the environs established by the elaboration of the serial-
clauses marked by the comments /c 1 /c and /c 2 /c, then E2 is the environ
necessary in E1 for the routine-text void: print(n), and so the routine yielded
by p in E1 is composed of that routine-text together with E2 (5.4.1.2).
Therefore, the scope of that routine is the scope of E2 (2.1.3.5.c) and hence
the assignment (5.2.1.2.b) invoked by pp := p is well defined.}

107

Section ALGOL 68 Revised Report 731

7.3. Equivalence of modes
{The equivalence or nonequivalence of 'MOID's is determined in this

section. For a discussion of equivalent 'MOID's see 2.1.1.2.}
{One way of viewing recursive modes is to consider them as infinite

trees. Such a “mode tree” is obtained by repeatedly substituting in some
spelling, for each 'MU application', the 'MODE' of the corresponding 'MU
definition of MODE'. Thus, the spelling 'mui definition of structured with integral
field letter i reference to mui application field letter n mode' would give rise to the
following mode tree:

'structured with'

'integral' 'field' 'letter i'

'reference to'

'structured with'

'integral' 'field' 'letter i'

'reference to'

(et cetera).

'field' 'letter n'

'mode'

'field' 'letter n'

'mode'

Two spellings are equivalent if and only if they give rise to identical
mode trees. The equivalence syntax tests the equivalence of two spellings by,
as it were, simultaneously developing the two trees until a difference is found
(resulting in a blind alley) or until it becomes apparent that no difference can
be found. The growing production tree reflects to some extent the structure
of the mode trees.}

7.3.1. Syntax
A) SAFE :: safe ; MU has MODE SAFE ;

yin SAFE ; yang SAFE ; remember MOID1 MOID2 SAFE.

B) HEAD :: PLAIN ; PREF{71A} ; structured with ;
FLEXETY ROWS of ; procedure with ; union of ; void.

C) TAILETY :: MOID ; FIELDS mode ;
PARAMETERS yielding MOID ; MOODS mode ; EMPTY.

108

Section731 van Wijngaarden, et al.

D) PARTS :: PART ; PARTS PART.

E) PART :: FIELD ; PARAMETER.

a) WHETHER MOID1 equivalent MOID2{64b,71m,72c} :
WHETHER safe MOID1 equivalent safe MOID2{b}.

b) WHETHER SAFE1 MOID1 equivalent SAFE2 MOID2{a,b,e,i,j,n} :
where (SAFE1) contains (remember MOID1 MOID2) or (SAFE2) contains

(remember MOID2 MOID1), WHETHER true ;
unless (SAFE1) contains (remember MOID1 MOID2)

or (SAFE2) contains (remember MOID2 MOID1),
WHETHER (HEAD3) is (HEAD4) and remember MOID1 MOID2

SAFE3 TAILETY3 equivalent SAFE4 TAILETY4{b,d,e,k,q,-},
where SAFE3 HEAD3 TAILETY3 develops from SAFE1 MOID1{c}

and SAFE4 HEAD4 TAILETY4 develops from SAFE2 MOID2{c}.
c) WHETHER SAFE2 HEAD TAILETY develops from SAFE1 MOID{b,c} :

where (MOID) is (HEAD TAILETY), WHETHER (HEAD) shields SAFE1 to
SAFE2{74a,b,c,d,-} ; where (MOID) is (MU definition of MODE),

unless (SAFE1) contains (MU has), WHETHER SAFE2 HEAD TAILETY
develops from MU has MODE SAFE1 MODE{c} ;

where (MOID) is (MU application) and (SAFE1) is (NOTION MU has MODE
SAFE3) and (NOTION) contains (yin) and (NOTION) contains (yang),

WHETHER SAFE2 HEAD TAILETY develops from SAFE1 MODE{c}.
d) WHETHER SAFE1 FIELDS1 mode equivalent SAFE2 FIELDS2 mode{b} :

WHETHER SAFE1 FIELDS1 equivalent SAFE2 FIELDS2{f,g,h,i}.
e) WHETHER SAFE1 PARAMETERS1 yielding MOID1 equivalent

SAFE2 PARAMETERS2 yielding MOID2{b} :
WHETHER SAFE1 PARAMETERS1 equivalent SAFE2 PARAMETERS2
{f,g,h,j} and SAFE1 MOID1 equivalent SAFE2 MOID2{b}.

f) WHETHER SAFE1 PARTS1 PART1 equivalent SAFE2 PARTS2 PART2{d,e,f} :
WHETHER SAFE1 PARTS1 equivalent SAFE2 PARTS2{f,g,h,i,j}

and SAFE1 PART1 equivalent SAFE2 PART2{i,j}.
g) WHETHER SAFE1 PARTS1 PART1 equivalent SAFE2 PART2{d,e,f} :

WHETHER false.

h) WHETHER SAFE1 PART1 equivalent SAFE2 PARTS2 PART2{d,e,f} :
WHETHER false.

i) WHETHER SAFE1 MODE1 field TAG1 equivalent SAFE2
MODE2 field TAG2{d,f} : WHETHER (TAG1) is (TAG2)
and SAFE1 MODE1 equivalent SAFE2 MODE2{b}.

109

Section ALGOL 68 Revised Report 731

j) WHETHER SAFE1 MODE1 parameter equivalent SAFE2 MODE2 parameter
{e,f} : WHETHER SAFE1 MODE1 equivalent SAFE2 MODE2{b}.

k) WHETHER SAFE1 MOODS1 mode equivalent SAFE2 MOODS2 mode{b} :
WHETHER SAFE1 MOODS1 suhset of SAFE2 MOODS2
{l,m,n} and SAFE2 MOODS2 subset of SAFE1 MOODS1
{l,m,n} and MOODS1 number equals MOODS2 number{o,p}.

l) WHETHER SAFE1 MOODS1 MOOD1 subset of SAFE2 MOODS2{k,l,46s,64b}
: WHETHER SAFE1 MOODS1 subset of SAFE2 MOODS2
{l,m,n} and SAFE1 MOOD1 subset of SAFE2 MOODS2{m,n}.

m) WHETHER SAFE1 MOOD1 subset of SAFE2 MOODS2 MOOD2
{k,l,m,46s,64b} : WHETHER SAFE1 MOOD1 subset of SAFE2
MOODS2{m,n} or SAFE1 MOOD1 subset of SAFE2 MOOD2{n}.

n) WHETHER SAFE1 MOOD1 subset of SAFE2 MOOD2{k,l,m,64b} :
WHETHER SAFE1 MOOD1 equivalent SAFE2 MOOD2{b}.

o) WHETHER MOODS1 MOOD1 number equals MOODS2 MOOD2 number{k,o} :
WHETHER MOODS1 number equals MOODS2 number{o,p,-}.

p) WHETHER MOOD1 number equals MOOD2 number{k,o} : WHETHER true.

q) WHETHER SAFE1 EMPTY equivalent SAFE2 EMPTY{b} : WHETHER true.

{Rule a introduces the 'SAFE's which are used as associative memories dur-
ing the determination of equivalence. There are two of them, one belonging
to each mode. Rule b draws an immediate conclusion if the 'MOID's under
consideration are already remembered (see below) in an appropriate 'SAFE'

in the form 'remember MOID1 MOID2'. If this is not the case, then the two
'MOID's are first remembered in a 'SAFE' (the one on the left) and then each
'MOID' is developed (rule c) and split into its 'HEAD' and its 'TAILETY', e.g.,
'reference to real' is split into 'reference to' and 'real'.

If the 'HEAD's differ, then the matter is settled (rule b); otherwise the
'TAILETY's are analyzed according to their structure (which must be the
same if the 'HEAD's are identical). In each case, except where the 'HEAD's
were 'union of', the equivalence is determined by examining the corresponding
components, according to the following scheme:

rule 'TAILETY' components
d 'FIELDS mode' 'FIELDS'

e 'PARAMETERS yielding MOID' 'PARAMETERS' and 'MOID'

f 'FIELDS FIELD' 'FIELDS' and 'FIELD'

f 'PARAMETERS PARAMETER' 'PARAMETERS' and 'PARAMETER'

i 'MODE field TAG' 'MODE' and 'TAG'

j 'MODE parameter' 'MODE'

110

Section74 van Wijngaarden, et al.

In the case of unions, the 'TAILETY's are of the form 'MOODS1 mode' and
'MOODS2 mode'. Since 'MOOD's within equivalent unions may commute, as
in the modes specified by union (real, int) and union (int, real), the equiva-
lence is determined by checking that 'MOODS1' is a subset of 'MOODS2' and
that 'MOODS2' is a subset of 'MOODS1', where the subset test, of course,
invokes the equivalence test recursively (rules k, l, m, n, o, p).

A 'MOID' is developed (rule c) into the form 'HEAD TAILETY' by
determining that
(i) it is already of that form: in which case markers ('yin' and 'yang') may be

placed in its 'SAFE' for the later determination of well-formedness (see
7.4);

(ii) it is some 'MU definition of MODE': in which case 'MU has MODE' is
stored in its 'SAFE' (provided that this particular 'MU' is not there
already) and the 'MODE' is developed;

(iii) it is some 'MU application': in which case there must be some 'MU
has MODE' in its 'SAFE' already. That 'MODE' is then developed after
a well-formedness check (see 7.4) consisting of the determination that
there is at least one 'yin' and at least one 'yang' in the 'SAFE' which is
more recent than the 'MU has MODE'.}
{Before a pair of 'TAILETY's is tested for equivalence, it is remembered

in the 'SAFE' that the original pair of 'MOID's is being tested. This is used
to force a shortcut to 'WHETHER true' if these 'MOID's should ever be tested
again for equivalence lower down the production tree. Since the number of
pairs of component 'MOID's that can be derived from any two given 'MOID's
is finite, it follows that the testing process terminates.

It remains to be shown that the process is correct. Consider the unre-
stricted (possibly infinite) production tree that would be obtained if there
were no shortcut in the syntax (by omitting the first alternative together
with the first member of the other alternative of rule b). If two 'MOID's
are not equivalent, then there exists in their mode trees a shortest path from
the top node to some node exhibiting a difference. Obviously, the reflection
of this shortest path in the unrestricted production tree cannot contain a re-
peated test for the equivalence of any pair of 'MOID's, and therefore none
of the shortcuts to 'WHETHER true' in the restricted production tree can oc-
cur on this shortest path. Consequently, the path to the difference must be
present also in the (restricted) production tree produced by the syntax. If
the testing process does not exhibit a difference in the restricted tree, then
no difference can be found in any number of steps: i.e., the 'MOID's are
equivalent.}

111

Section ALGOL 68 Revised Report 80

7.4. Well-formedness
{A mode is well formed if

(i) the elaboration of an actual-declarer specifying that mode is a finite action
(i.e., any value of that mode can be stored in a finite memory) and

(ii) it is not strongly coercible from itself (since this would lead to ambigui-
ties in coercion). }

7.4.1. Syntax
a) WHETHER (NOTION) shields SAFE to SAFE{73c} :

where (NOTION) is (PLAIN) or (NOTION) is (FLEXETY ROWS of) or
(NOTION) is (union of) or (NOTION) is (void), WHETHER true.

b) WHETHER (PREF) shields SAFE to yin SAFE{73c} : WHETHER true.

c) WHETHER (structured with) shields SAFE to yang SAFE{73c} :
WHETHER true.

d) WHETHER (procedure with) shields SAFE to yin yang SAFE{73c} :
WHETHER true.

{As a by-product of mode equivalencing, modes are tested for well-
formedness (7.3.1.c). All nonrecursive modes are well formed. For recursive
modes, it is necessary that each cycle in each spelling of that mode (from
'MU definition of MODE' to 'MU application') passes through at least one
'HEAD' which is yin, ensuring condition (i) and one (possibly the same)
'HEAD' which is yang, ensuring condition (ii). Yin 'HEAD's are 'PREF' and
'procedure with'. Yang 'HEAD's are 'structured with' and 'procedure with'. The
other 'HEAD's, including 'FLEXETY ROWS of' and 'union of', are neither yin
nor yang. This means that the modes specified by a, b and c in

mode a = struct(int n, ref a next), b = struct(proc b next), c = proc(c)c
are all well formed. However, mode d = [1 : 10] d, e = union(int, e) is not a
mode-declaration.}

{ Tao produced the one.
The one produced the two.
The two produced the three.
And the three produced the ten thousand things.
The ten thousand things carry the yin and embrace the
yang, and through the blending of the material force
they achieve harmony.
Tao-te Ching, 42, Lao Tzu.}

112

Section8111 van Wijngaarden, et al.

8 PART IV Elaboration-independent constructions

8.0. Denotations

{Denotations, e.g., 3.14 or ˝abc˝, are constructs whose yields are indepen-
dent of any action. In other languages, they are sometimes termed “literals”
or “constants”.}

8.0.1. Syntax

a) MOID NEST denoter{5D,A341i} : pragment{92a} sequence option,
MOID denotation{810a,811a,812a,813a,814a,815a,82a,b,c,33a,-}.

{The meaning of a denotation is independent of any nest.}

8.1. Plain denotations

{Plain-denotations are those of arithmetic values, truth values, characters
and the void value, e.g., 1, 3.14, true, ”a” and empty.}

8.1.0.1. Syntax

A) SIZE :: long ; short.

B) *NUMERAL :: fixed point numeral ;
variable point numeral ; floating point numeral.

a) SIZE INTREAL denotation{a,80a} :
SIZE symbol {94d}, INTREAL denotation{a,811a,812a}.

b) *plain denotation :
PLAIN denotation{a,811a,812a,813a,814a} ; void denotation{815a}.

{Example:
a) long 0 }

8.1.0.2. Semantics

The yield W of an INTREAL-denotation is the “intrinsic value” {8.1.1.2,
8.1.2.2.a, b} of its constituent NUMERAL;
• it is required that W be not greater than the largest value of mode
'INTREAL' that can be distinguished {2.1.3.1.d}.
{An INTREAL-denotation yields an arithmetic value (2.1.3.1.a), but arith-

metic values yielded by different INTREAL-denotations are not necessarily dif-
ferent (e.g., 123.4 and 1.23410+2). }

113

Section ALGOL 68 Revised Report 8121

8.1.1. Integral denotations

8.1.1.1. Syntax
a) integral denotation{80a,810a} : fixed point numeral{b}.
b) fixed point numeral{a,812c,d,f,i,A341h} : digit cypher{c} sequence.

c) digit cypher{b} : DIGIT symbol{94b}.

{Examples:
a) 4096
b) 4096
c) 4}

8.1.1.2. Semantics
The intrinsic value of a fixed-point-numeral N is the integer of which the

reference-language form of N {9.3.b} is a decimal representation.

8.1.2. Real denotations

8.1.2.1. Syntax
a) real denotation{80a,810a} :

variable point numeral{b} ; floating point numeral{e}.
b) variable point numeral{a,f} : integral part{c} option, fractional part{d}.
c) integral part{b} : fixed point numeral{811b}.
d) fractional part{b} : point symbol{94b}, fixed point numeral{811b}.
e) floating point numeral{a} : stagnant part{f}, exponent part{g}.
f) stagnant part{e} : fixed point numeral{811b} ; variable point numeral{b}.
g) exponent part{e} : times ten to the power choice{h}, power of ten{i}.
h) times ten to the power choice{g} :

times ten to the power symbol{94b} ; letter e symbol{94a}.
i) power of ten{g} : plusminus{j} option, fixed point numeral{811b}.
j) plusminus{i} : plus symbol{94c} ; minus symbol{94c}.

{Examples:
a) 0.00123 • 1.23e-3
b) 0.00123
c) 0
d) .00123

114

Section814 van Wijngaarden, et al.

e) 1.23e-3
f) 123 • 1.23
g) e-3
h) 10 • e
i) -3
j) + • - }

8.1.2.2. Semantics
a) The intrinsic value V of a variable-point-numeral N is determined as

follows:
• let I be the intrinsic value of the fixed-point-numeral of its constituent
integral-part, if any, and be 0 otherwise;
• let F be the intrinsic value of the fixed-point-numeral of its fractional-part P
divided by 10 as many times as there are digit-cyphers contained in P;
• V is the sum in the sense of numerical analysis of I and F.
b) The intrinsic value V of a floating-point-numeral N is determined as

follows:
• let S be the intrinsic value of the NUMERAL of its stagnant-part;
• let E be the intrinsic value of the constituent fixed-point-numeral of its
exponent-part;
Case A: The constituent plusminus-option of N contains a minus-symbol:
• V is the product in the sense of numerical analysis of S and 1/10

raised to the power E;
Case B: The direct descendent of that plusminus-option contains a plus-symbol

or is empty:
• V is the product in the sense of numerical analysis of S and 10 raised
to the power E.

8.1.3. Boolean denotations

8.1.3.1. Syntax
a) boolean denotation{80a} : true{94b} symbol ; false{94b} symbol.

{Examples:
a) true • false}

8.1.3.2. Semantics
The yield of a boolean-denotation is true (false) if its direct descendent is

a true-symbol (false-symbol).

115

Section ALGOL 68 Revised Report 8151

8.1.4. Character denotations
{Character-denotations consist of a string-item between two quote-symbols,

e.g., ˝a˝. To indicate a quote, a quote-image-symbol (represented by ˝˝)
is used, e.g., ˝˝˝˝. Since the syntax nowhere allows character- or string-
denotations to follow one another, this causes no ambiguity.}

8.1.4.1. Syntax
a) character denotation{80a} :

quote{94b} symbol, string item{b}, quote symbol{94b}.
b) string item{a,83b} : character glyph{c} ;

quote image symbol{94b} ; other string item {d}.
c) character glyph{b,92c} :

LETTER symbol{94a} ; DIGIT symbol{94b} ; point symbol{94b} ;
open symbol{94f} ; close symbol{94f} ; comma symbol{94b} ;
space symbol{94b} ; plus symbol{94c} ; minus symbol{94c}.

d) A production rule may be added for the notion 'other string item' {b,
for which no hyper-rule is given in this Report} each of whose alternatives
is a symbol {1.1.3.1.f} which is different from any terminal production of
'character glyph' {c} and which is not the 'quote symbol'.
{Examples:

a) ˝a˝
b) a • ˝˝ • ?
c) a • 1 • . • (•) • , • • + • -}

8.1.4.2. Semantics
a) The yield of a character-denotation is the intrinsic value of the symbol

descended from its string-item.
b) The intrinsic value of each distinct symbol descended from a string-

item is a unique character. {Characters have no inherent meaning, except
insofar as some of them are interpreted in particular ways by the transput
declarations (10.3). The character-glyphs, which include all the characters
needed for transput, form a minimum set which all implementations (2.2.2.c)
are expected to provide.}

8.1.5. Void denotation
{A void-denotation may be used to assign a void value to a UNITED-

variable, e.g., union([]real, void) u := empty.}

116

Section821 van Wijngaarden, et al.

8.1.5.1. Syntax
a) void denotation{80a} : empty{94b} symbol.

{Example:
a) empty}

8.1.5.2. Semantics
The yield of a void-denotation is empty.

8.2. Bits denotations

8.2.1. Syntax
A) RADIX :: radix two ; radix four ; radix eight ; radix sixteen.

a) structured with row of boolean field LENGTH LENGTHETY letter aleph mode
denotation{a,80a} : long{94d} symbol, structured with row of
boolean field LENGTHETY letter aleph mode denotation {a,c}.

b) structured with row of boolean field SHORTH SHORTHETY letter aleph mode
denotation{b,80a} : short{94d} symbol, structured with row of
boolean field SHORTHETY letter aleph mode denotation{b,c}.

c) structured with row of boolean field letter aleph mode denotation{a,b,80a} :
RADIX{d,e,f,g}, letter r symbol{94a}, RADIX digit{h,i,j,k} sequence.

d) radix two{c,A347b} : digit two{94b} symbol.

e) radix four{c,A347b} : digit four{94b} symbol.

f) radix eight{c,A347b} : digit eight{94b} symbol.

g) radix sixteen{c,A347b} : digit one symbol{94b}, digit six symbol{94b}.
h) radix two digit{c,i} : digit zero symbol{94b} ; digit one symbol{94b}.
i) radix four digit{c,j} : radix two digit{h} ;

digit two symbol{94b} ; digit three symbol{94b}.
j) radix eight digit{c,k} : radix four digit{i} ; digit four symbol{94b} ;

digit five symbol{94b} ; digit six symbol{94b} ; digit seven symbol{94b}.
k) radix sixteen digit{c} : radix eight digit{j} ; digit eight symbol{94b} ;

digit nine symbol{94b} ; letter a symbol{94a} ; letter b symbol{94a} ;
letter c symbol{94a} ;
letter d symbol{94a} ; letter e symbol{94a} ; letter f symbol{94a}.

l) *bits denotation : BITS denotation{a,b,c}.
{BITS :: structured with row of boolean field SITHETY letter aleph mode.}

m) *radix digit : RADIX digit{h,i,j,k}.

117

Section ALGOL 68 Revised Report 831

{Examples:
a) long 2r101
b) short 16rffff
c) 8r231}

8.2.2. Semantics
a) The yield V of a bits-denotation D is determined as follows:
• let W be the intrinsic boolean value {b} of its constituent RADIX-digit-
sequence:
• let m be the length of W;
• let n be the value of ` bits width {10.2.1.j}, where ` stands for as many
times long (short) as there are long-symbols (short-symbols) contained in D;
• it is required that m be not greater than n:
• V is a structured value {whose mode is some 'BITS'} whose only field is a
multiple value having
(i) a descriptor ((1, n)) and
(ii) n elements, that selected by (i) being false if 1 ≤ i ≤ n −m, and being

the (i+m− n)-th truth value of {the sequencer} W otherwise.
b) The intrinsic boolean value of a RADIX-digit-sequence S is the shortest

sequence of truth values which, regarded as a binary number (true corre-
sponding to 1 and false to 0), is the same as the intrinsic integral value {c}
of S.
c) The intrinsic integral value of a radix-two- (radix-four-, radix-eight-, radix-

sixteen-) -digit-sequence S is the integer of which the reference-language form
of S {9.3.b} is a binary, (quaternary, octal, hexadecimal) representation,
where the representations a, b, c, d, e and f, considered as digits, have values
10, 11, 12, 13, 14 and 15 respectively.

8.3. String denotations
{String-denotations are a convenient way of specifying “strings”, i.e.,

multiple values of mode 'row of character'.
Example:

string message := ˝all is well˝ }

8.3.1. Syntax
a) row of character denotation{80a} :

quote{94b} symbol, string{b} option, quote symbol{94b}.
b) string{a} : string item{814b}, string item{814b} sequence.

c) *string denotation : row of character denotation{a}.

118

Section911 van Wijngaarden, et al.

{Examples:
a) ˝abc˝
b) abc}

8.3.2. Semantics
The yield of a string-denotation D is a multiple value V determined as

follows:
• let n be the number of string-items contained in D;
• the descriptor of V is ((1, n));
• for i = 1, . . . , n, the element of V with index (i) is the intrinsic value
{8.1.4.2.b} of the i-th constituent symbol of the string of D.

{˝a˝ is a character-denotation, not a string-denotation. However, in all
strong positions, e.g., string s := ˝a˝, it can be rowed to a multiple value
(6.6). Elsewhere, where a multiple value is required, a cast (5.5.1.1.a) may be
used, e.g., union(char, string) cs := string(˝a˝).}

9. Tokens and symbols

9.1. Tokens
{Tokens (9.1.1.f) are symbols (9.1.1.h) possibly preceded by pragments

(9.2.1.a). Therefore, pragments may appear between symbols wherever the
syntax produces a succession of tokens. However, in a few places, the syntax
specifically produces symbols rather than tokens, notably within denotations
(8), format-texts (10.3.4.1.1.a) and, of course, within pragments. Therefore,
pragments may not occur in these places.}

9.1.1. Syntax
a) CHOICE STYLE start{34a} :

where (CHOICE) is (choice using boolean), STYLE if{94f,-} token ;
where (CHOICE) is (CASE), STYLE case{94f,-} token.

b) CHOICE STYLE in{34e} :
where (CHOICE) is (choice using boolean), STYLE then{94f,-} token ;
where (CHOICE) is (CASE), STYLE in{94f,-} token.

c) CHOICE STYLE again{34l} :
where (CHOICE) is (choice using boolean), STYLE else if{94f,-} token ;
where (CHOICE) is (CASE), STYLE ouse{94f,-} token.

d) CHOICE STYLE out{34l} :
where (CHOICE) is (choice using boolean), STYLE else{94f,-} token ;
where (CHOICE) is (CASE), STYLE out{94f,-} token.

119

Section ALGOL 68 Revised Report 92

e) CHOICE STYLE finish{34a} :
where (CHOICE) is (choice using boolean), STYLE fi{94f,-} token ;
where (CHOICE) is (CASE), STYLE esac{94f,-} token.

f) NOTION token :
pragment{92a} sequence option, NOTION symbol{94a,b,c,d,e,f,g,h}.

g) *token : NOTION token{f}.
h) *symbol : NOTION symbol{94a,b,c,d,e,f,g,h}.

9.2. Comments and pragmats

{ A source of innocent merriment.
Mikado, W.S.Gilbert.}

{A pragment is a comment or a pragmat. No semantics of pragments is
given and therefore the meaning (2.1.4.1.a) of any program is quite unaffected
by their presence. It is indeed the intention that comments should be entirely
ignored by the implementation, their sole purpose being the enlightenment of
the human interpreter of the program.

Pragmats may, on the other hand, convey to the implementation some
piece of information affecting some aspect of the meaning of the program
which is not defined by this Report, for example:
• the action to be taken upon overflow (2.1.4.3.h) or if the scope rule is
violated (as in 5.2.1.2.b), e.g., pr overflow check on pr, pr overflow check
off pr, pr scope check on pr or pr scope check off pr;
• the action to be taken upon completion of the compilation process,
e.g., pr compile only pr, pr dump pr or pr run pr;
• that the language to be implemented is some sublanguage or superlan-
guage of ALGOL 68, e.g., pr nonrec pr (for a routine-text which may be
presumed to be non-recursive);
• that the compilation may check for the truth, or attempt to prove the
correctness, of some assertion, e.g.:

int a, b; read((a, b)) pr assert a ≥ 0 ∧ b > 0 pr;
int q := 0, r := a;
while r ≥ b pr assert a = b × q + r ∧ 0 < r pr
do (q +:= 1, r -:= b) od

pr assert a = b × q + r ∧ 0 ≤ r ∧ r < b pr .}
They may also be used to convey to the implementation that the source

text is to be augmented with some other text, or edited in some way, for
example:

120

Section93 van Wijngaarden, et al.

• some previously compiled portion of the particular-program is to be
invoked, e.g., pr with segment from album pr;
• the source text is continued on some other document, e.g., pr read
from another file pr;
• the end of the source text has been reached, e.g., pr finish pr.
The interpretation of pragmats is not defined in this Report, but is left

to the discretion of the implementer, who ought, at least, to provide some
means whereby all further pragmats may be ignored, for example:

pr pragmats off pr /c ./c

{ pr algol 68 pr
begin

proc pr nonrec pr pr = void: pr;
pr

end
pr run pr pr ? pr
Revised Report on the Algorithmic

Language ALGOL 68.}

9.2.1. Syntax
A) PRAGMENT :: pragmat ; comment.

a) pragment{80a,91f,A341b,h,A348a,b,c,A349a,A34Ab} : PRAGMENT{b}.
b) PRAGMENT{a} : STYLE PRAGMENT symbol{94b,-}, STYLE PRAGMENT

item{c} sequence option, STYLE PRAGMENT symbol{94b,-}.
{STYLE :: brief ; bold ; style TALLY.}

c) STYLE PRAGMENT item{b} :
character glyph{814c} ; STYLE other PRAGMENT item{d}.

d) A production rule may be added for each notion designated by 'STYLE
other PRAGMENT item' {c, for which no hyper-rule is given in this
Report} each of whose alternatives is a symbol {1.1.3.1.f}, different
from any terminal production of 'character glyph' {8.1.4.1.c}, and such
that no terminal production of any 'STYLE other PRAGMENT item'

is the corresponding 'STYLE PRAGMENT symbol'. {Thus comment /c
comment might be a comment, but /c /c /c could not.}

{Examples:
a) pr list pr • /c source program to be listed /c
c) l • ? }

121

Section ALGOL 68 Revised Report 94

9.3. Representations

a) A construct in the strict language must be represented in some “repre-
sentation language” such as the “reference language”, which is used in this
Report. Other representation languages specially suited to the supposed pref-
erence of some human or mechanical interpreter of the language may be
termed “publication” or “hardware” languages. {The reference language is
intended to be used for the representation of particular-programs and of their
descendents. It is, however, also used in Chapter 10 for the definition of the
standard environment.}

b) A “construct in a representation language” is obtained from the terminal
production T {1.1.3.2.f} of the corresponding construct in the strict language
{1.1.3.2.e} by replacing the symbols in T by their representations, as specified
in 9.4 below in the case of the reference language.
{Thus, the strict-language particular-program whose terminal production is

'bold begin symbol' 'skip symbol' 'bold end symbol' gives rise to the reference
language particular-program begin skip end.}

c) An implementation {2.2.2.c} of ALGOL 68 which uses representations
which are sufficiently close to those of the reference language to be recognized
without further elucidation, and which does not augment or restrict the
available representations other than as provided for below {9.4.a, b, c}, is
an “implementation of the reference language”. {E.g., begin, begin, BEGIN,
.begin† and ’begin’ could all be representations of the bold-begin-symbol in
an implementation of the reference language; some combination of holes in a
punched card might be a representation of it in some hardware language.}

9.4. The reference language

a) The reference language provides representations for various symbols, in-
cluding an arbitrarily large number of TAX-symbols {where TAX :: TAG ; TAB
; TAD ; TAM.}. The representations of some of them are specified below

† This is an intentional deviation from the text of the original Report,
allowed because it is “pragmatic remark”. All known implementions of
ALGOL 68 use “POINT stropping”, “UPPER stropping” or even “RES
stropping” {, see [20]}, the latter in clear contradiction to the Report. These
stropping regimes should be mentioned, at least. The examples drawn from
real programming are therefore typeset in teletype font. The original proposes
“single apostroph stropping” at this position. “Matched apostroph stropping”,
common in in ALGOL 60, seems not to have been used much.

122

Section94 van Wijngaarden, et al.

{9.4.1}, and to these may be added suitable representations for style-TALLY-
letter-ABC-symbols and style-TALLY-monad-symbols and any terminal produc-
tions of 'STYLE other PRAGMENT item' {9.2.1.d} and of 'other string item'

{8.1.4.1.d}. Representations are not provided for any of these {but they en-
able individual implementations to make available their full character sets
for use as characters, to provide additional or extended alphabets for the
construction of TAG- and TAB-symbols, and to provide additional symbols for
use as operators}. There is not, however, {and there must not be,} except in
representations of the standard-, and other, preludes {10.1.3.Step 6}, any rep-
resentation of the letter-aleph-symbol or the primal-symbol. {For the remaining
TAX-symbols, see 9.4.2. There are, however, some symbols produced by the
syntax, e.g., the brief-pragmat-symbol, for which no representation is provided
at all. This does not preclude the representation of such symbols in other rep-
resentation languages.}
b) Where more than one representation of a symbol is given, any of

them may be chosen. Moreover, it is sufficient for an implementation of the
reference language to provide only one. Also, it is not necessary to provide
a representation of any particular MONAD-symbol or NOMAD-symbol so long
as those that are provided are sufficient to represent at least one version
{10.1.3.Step 3} of each operator declared in the standard-prelude.
{For certain different symbols, one same or nearly the same represen-

tation is given; e.g., the representation “:” is given for the routine-symbol,
the colon-symbol and the up-to-symbol and “:” for the label-symbol. It follows
uniquely from the syntax which of these four symbols is represented by an oc-
currence, outside comments, pragmats and string-denotations, of any mark sim-
ilar to either of those representations. It is also the case that “..” could be
used, without ambiguity, for any of them, and such might indeed be neces-
sary in implementations with limited character sets. It may be noted that,
for such implementations, no ambiguity would be introduced were “(/” and
“/)” to be used as representations of the style-ii-sub-symbol and the style-ii-bus-
symbol, respectively.

Also, some of the given representations appear to be composite; e.g.,
the representation “:=” of the becomes-symbol appears to consist of “:”, the
representation of the routine-symbol, etc., and “=”, the representation of
the equals-symbol and of the is-defined-as-symbol. It follows from the syntax
that “:=” can occur, outside comments, pragmats and string-denotations, as a
representation of the becomes-symbol only (since “=” cannot occur as the
representation of a monadic-operator). Similarly, the other given composite
representations do not cause ambiguity.}
c) The fact that the representations of the letter-ABC-symbols given

123

Section ALGOL 68 Revised Report 941

{9.4.1.a} are usually spoken of as small letters is not meant to imply that
the corresponding capital letters could not serve equally well. {On the other
hand, if both a small letter and the corresponding capital letter occur, then
one of them is presumably the representation of some style-TALLY-letter-ABC-
symbol or of a bold-letter-ABC-symbol. See also 1.1.5.b for the possibility of
additional 'ABC's in a variant of the language.}
d) A “typographical display feature” is a blank, or a change to a new

line or a new page. Such features, when they appear between the symbols
of a construct in the reference language, are of no significance and do not
affect the meaning of that construct. However, a blank contained within
a string- or character-denotation is one of the representations of the space-
symbol {9.4.1.b} rather than a typographical display feature. Where the
representation of a symbol in the reference language is composed of several
marks {e.g., to, :=}, those marks form one {indivisible} symbol and, unless
the contrary is explicitly stated {9.4.2.2.a, c}, typographical display features
may not separate them.

9.4.1. Representations of symbols

a) Letter symbols

symbol representation

letter a symbol{814c, 82k, 942B, A346b} a
letter b symbol{814c, 82k, 942B, A344b} b
letter c symbol{814c, 82k, 942B, A348a} c
letter d symbol{814c, 82k, 942B, A342f} d
letter e symbol{812h, 814c, 82k, 942B, A343e} e
letter f symbol{814c, 82k, 942B, A349a} f
letter g symbol{814c, 942B, A34Aa} g
letter h symbol{814c, 942B} h
letter i symbol{814c, 942B, A345b} i
letter j symbol{814c, 942B} j
letter k symbol{814c, 942B, A341f} k
letter l symbol{814c, 942B, A341f} l
letter m symbol{814c, 942B} m
letter n symbol{814c, 942B, A341h} n
letter o symbol{814c, 942B} o
letter p symbol{814c, 942B, A341f} p
letter q symbol{814c, 942B, A341f} q
letter r symbol{814c, 82c, 942B, A347c} r
letter s symbol{814c, 942B, A341l} s

124

Section941 van Wijngaarden, et al.

letter t symbol{814c, 942B} t
letter u symbol{814c, 942B} u
letter v symbol{814c, 942B} v
letter w symbol{814c, 942B} w
letter x symbol{814c, 942B, A341f} x
letter y symbol{814c, 942B, A341f} y
letter z symbol{814c, 942B, A342d} z

b) Denotation symbols
symbol representation

digit zero symbol{811c, 814c, 82h, 942C} 0
digit one symbol{43b, 811c, 814c, 82g, h, 942C} 1
digit two symbol{43b, 811c, 814c, 82d, i, 942C} 2
digit three symbol{43b, 811c, 814c, 82i, 942C} 3
digit four symbol{43b, 811c, 814c, 82e, j, 942C} 4
digit five symbol{43b, 811c, 814c, 82j, 942C} 5
digit six symbol{43b, 811c, 814c, 82g, j, 942C} 6
digit seven symbol{43b, 811c, 814c, 82j, 942C} 7
digit eight symbol{43b, 811c, 814c, 82f, k, 942C} 8
digit nine symbol{43b, 811c, 814c, 82k, 942C} 9
point symbol{812d, 814c, A343d} .
times ten to the power symbol{812h} 10 \
true symbol{813a} true
false symbol{813a} false
quote symbol{814a, 83a} ˝
quote image symbol{814b} ˝˝
space symbol{814c}
comma symbol{814c} ,
empty symbol{815a} empty

c) Operator symbols
symbol representation

or symbol{942H} ∨
and symbol{942H} ∧
ampersand symbol{942H} &
differs from symbol{942H} 6=
is less than symbol{942I} <

is at most symbol{942H} ≤
is at least symbol{942H} ≥
is greater than symbol{942I} >

divided by symbol{942I} /

125

Section ALGOL 68 Revised Report 941

over symbol{942H} ÷
percent symbol{942H} %
window symbol{942H} []
floor symbol{942H} b
ceiling symbol{942H} d
plus i times symbol{942H} ⊥
not symbol{942H} ¬
tilde symbol{942H} ∼
down symbol{942H} ↓
up symbol{942H} ↑
plus symbol{812j, 814c, 942H, A342e} +
minus symbol{812j, 814c, 942H, A342e} -
equals symbol{942I} =
times symbol{942I} ×
asterisk symbol{942I} *
assigns to symbol{942J} =:
becomes symbol{44f, 521a, 942J} :=

d) Declaration symbols
symbol representation

is defined as symbol{42b, 43b, 44c, 45c} =
long symbol{810a, 82a} long
short symbol{810a, 82b} short
reference to symbol{46c} ref
local symbol{523a, b} loc
heap symbol{523a, b} heap
structure symbol{46d} struct
flexible symbol{46g} flex
procedure symbol{44b, 46o} proc
union of symbol{46s} union
operator symbol{45a} op
priority symbol{43a} prio
mode symbol{42a} mode

e) Mode standards
symbol representation

integral symbol{942E} int
real symbol{942E} real
boolean symbol{942E} bool
character symbol{942E} char
format symbol{942E} format

126

Section941 van Wijngaarden, et al.

void symbol{942E} void
complex symbol{942E} compl
bits symbol{942E} bits
bytes symbol{942E} bytes
string symbol{942E} string
sema symbol{942E} sema
file symbol{942E} file
channel symbol{942E} channel

f) Syntactic symbols
symbol representation

bold begin symbol{133d} begin
bold end symbol{133d} end
brief begin symbol{133d, A348b, A34Ab} (
brief end symbol{133d, A348b, A34Ab})
and also symbol{133c, 33b, f, 34h, 41a, b, 46e, i,

q, t, 532b, 541e, 543b, A348b, A34Ac, d} ,
go on symbol{32b} ;
completion symbol{32b} exit
label symbol{32c} :
parallel symbol{33c} par
open symbol{814c} (
close symbol{814c})
bold if symbol{91a} if
bold then symbol{91b} then
bold else if symbol{91c} elif
bold else symbol{91d} else
bold fi symbol{91e} fi
bold case symbol{91a} case
bold in symbol{91b} in
bold ouse symbol{91c} ouse
bold out symbol{91d} out
bold esac symbol{91e} esac
brief if symbol{91a} (
brief then symbol{91b} |
brief else if symbol{91c} |:
brief else symbol{91d} |
brief fi symbol{91e})
brief case symbol{91a} (
brief in symbol{91b} |
brief ouse symbol{91c} |:

127

Section ALGOL 68 Revised Report 9421

brief out symbol{91d} |
brief esac symbol{91e})
colon symbol{34j, k} :
brief sub symbol{133e} [
brief bus symbol{133e}]
style i sub symbol{133e} (
style i bus symbol{133e})
up to symbol{46j, k, l, 532f} :
at symbol{532g} @ at
is symbol{522b} :=: is
is not symbol{522b} :6=: :/=: isnt
nil symbol{524a} ◦ nil
of symbol{531a} of
routine symbol{541a, b} :
bold go to symbol{544b} goto
bold go symbol{544b} go
skip symbol{552a} ∼ skip
formatter symbol{A341a} $

g) Loop symbols
symbol representation

bold for symbol{35b} for
bold from symbol{35d} from
bold by symbol{35d} by
bold to symbol{35d, 544b} to
bold while symbol{35g} while
bold do symbol{35h} do
bold od symbol{35h} od

h) Pragment symbols
symbol representation

brief comment symbol{92b} /c
bold comment symbol{92b} comment
style i comment symbol{92b} co
style ii comment symbol{92b} #
bold pragmat symbol{92b} pragmat
style i pragmat symbol{92b} pr

9.4.2. Other TAX symbols

128

Section9422 van Wijngaarden, et al.

9.4.2.1. Metasyntax

A) TAG{D,F,K,48a,b,c,d} ::
LETTER{B} ; TAG LETTER{B} ; TAG DIGIT{C}.

B) LETTER{A} :: letter ABC{94a} ; letter aleph{-} ; style TALLY letter ABC{-}.
C) DIGIT{A} :: digit zero{94b} ; digit one{94b} ; digit two{94b} ;

digit three{94b} ; digit four{94b} ; digit five{94b} ;
digit six{94b} ; digit seven{94b} ; digit eight{94b} ; digit nine{94b}.

D) TAB{48a,b} :: bold TAG{A,-} ; SIZETY STANDARD{E}.
E) STANDARD{D} :: integral{94e} ; real{94e} ; boolean{94e} ;

character{94e} ; format{94e} ; void{94e} ; complex{94e} ; bits{94e} ;
bytes{94e} ; string{94e} ; sema{94e} ; file{94e} ; channel{94e}.

F) TAD{48a,b} :: bold TAG{A,-} ; DYAD{G} BECOMESETY{J} ;
DYAD{G} cum NOMAD{I} BECOMESETY{J}.

G) DYAD{F} :: MONAD{H} ; NOMAD{I}.
H) MONAD{G,K} :: or{94c} ; and{94c} ; ampersand{94c} ;

differs from{94c} ; is at most{94c} ; is at least{94c} ; over{94c} ;
percent{94c} ; window{94c} ; floor{94c} ; ceiling{94c} ;
plus i times{94c} ; not{94c} ; tilde{94c} ; down{94c} ;
up{94c} ; plus{94c} ; minus{94c} ; style TALLY monad{-}.

I) NOMAD{F,G,K} :: is less than{94c} ; is greater than{94c} ;
divided by{94c} ; equals{94c} ; times{94c} ; asterisk{94c}.

J) BECOMESETY{F,K} :: cum becomes{94c} ; cum assigns to{94c} ; EMPTY.

K) TAM{48a,b} :: bold TAG{A,-} ; MONAD{H} BECOMESETY{J} ;
MONAD{H} cum NOMAD{I} BECOMESETY{J}.

L) ABC{B} :: a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; l ;
m ; n ; o ; p ; q ; r ; s ; t ; u ; v ; w ; x ; y ; z.

M) *DOP :: DYAD{G} ; DYAD{G}cum NOMAD{I}.

{The metanotion “ABC” is provided, in addition to the metanotion “ALPHA”,
in order to facilitate the definition of variants of ALGOL 68 (1.1.5.b).}

9.4.2.2. Representation

a) The representation of each TAG-symbol not given above {9.4.1} is com-
posed of marks corresponding, in order, to the 'LETTER's or 'DIGIT's con-
tained in that 'TAG'. These marks may be separated by typographical dis-
play features {9.4.d}. The mark corresponding to each 'LETTER' ('DIGIT') is
the representation of that LETTER-symbol (DIGIT-symbol). {For example, the

129

Section ALGOL 68 Revised Report 9422

representation of a letter-x-digit-one-symbol is x1, which may be written x 1.
TAG-symbols are used for identifiers and field-selectors.}
b) The representation, if any, of each bold-TAG-symbol is composed of marks

corresponding, in order, to the 'LETTER's or 'DIGIT's contained in that
'TAG' {but with no typographical display features in between}. The mark
corresponding to each 'LETTER' ('DIGIT') is similar to the mark representing
the corresponding LETTER-symbol (DIGIT-symbol), being, in this Report,
the corresponding bold faced letter (digit). {Other methods of indicating
the similarity which are recognizable without further elucidation are also
acceptable, e.g., person, person, PERSON, .person† and ’person’ could all
be representations of the bold-letter-p-letter-e-letter-r-letter-s-letter-o-letter-n-
symbol.}

However, the representation of a bold-TAG-symbol may not be the same
as any representation of any other symbol {; thus there may be a finite
number of bold-TAG-symbols which have no representation; e.g., there is no
representation for the bold-letter-r-letter-e-letter-a-letter-l-symbol because real is
a representation of the real-symbol; note that the number of bold-TAG-symbols
available is still arbitrarily large}. If, according to the convention used, a
given sequence of marks could be either the representation of one bold-TAG-
symbol or the concatenation of the representations of two or more other
symbols, then it is always to be construed as that one symbol{; the inclusion of
a blank can always force the other interpretation; e.g., refreal is one symbol,
whereas ref real must always be two}. {Bold-TAG-symbols are used for mode-
indications and for operators.}
c) The representation of each SIZE-SIZETY-STANDARD-symbol is composed

of the representation of the corresponding SIZE-symbol, possibly followed by
typographical display features, followed by the represention of the corre-
sponding SIZETY-STANDARD-symbol. {For example, the representation of a
long-real-symbol is long real, or perhaps ’long’’real’ (but not, according to
section b above, longreal or ’longreal’, for those would be representations
of the bold-letter-l-letter-o-letter-n-letter-g-letter-r-letter-e-letter-a-letter-l-symbol).
SIZETY-STANDARD-symbols are used for mode-indications.}
d) The representation of each DOP-cum-becomes-symbol (DOP-cum-assigns-to-

symbol) is composed of the mark or marks representing the corresponding
DOP-symbol followed (without intervening typographical display features) by
the marks representing the becomes-symbol (the assigns-to-symbol). {For exam-
ple, the representation of a plus-cum-becomes-symbol is +:=. DOP-cum-becomes-
symbols are used for operators.}

† The footnote in 9.3 applies here also.

130

SectionA11 van Wijngaarden, et al.

e) The representation of each DYAD-cum-NOMAD-symbol is composed of
the mark representing the corresponding DYAD-symbol followed {without
intervening typographical display features} by the mark representing the
corresponding NOMAD-symbol. {For example, the representation of an over-
cum-times-symbol is ÷×. DYAD-cum-NOMAD-symbols are used for operators,
but note that NOMAD1-cum-NOMAD2-symbols may be only dyadic-operators.}

A PART V Environment and Examples

10. Standard environment
{The “standard environment” encompasses the constituent EXTERNAL-

preludes, system-tasks and particular-postludes of a program-text.}

10.1. Program texts
{The programmer is concerned with particular-programs (10.1.1.g). These

are always included in a program-text (10.1.1.a) which also contains the
standard-prelude, a library-prelude, which depends upon the implementation, a
system-prelude and system-tasks, which correspond to the operating environ-
ment, possibly some other particular-programs, one or more particular-preludes
(one for each particular-program) and one or more particular-postludes.}

10.1.1. Syntax
A) EXTERNAL :: standard ; library ; system ; particular.

B) STOP :: label letter s letter t letter o letter p.

a) program text : STYLE begin{94f} token, new LAYER1 preludes{b},
parallel{94f} token, new LAYER1 tasks{d} PACK, STYLE end{94f} token.

b) NEST1 preludes{a} : NEST1 standard prelude with DECS1{c}, NEST1 library
prelude with DECSETY2{c}, NEST1 system prelude with DECSETY3{c},

where (NEST1) is (new EMPTY new DECS1 DECSETY2 DECSETY3).

c) NEST1 EXTERNAL prelude with DECSETY{b,f} :
strong void NEST1 series with DECSETY1 {32b},

go on{94f} token where (DECSETY1) is (EMPTY), EMPTY.

d) NEST1 tasks{a} : NEST1 system task{e} list,
and also{94f} token, NEST1 user task{f} PACK list.

e) NEST1 system task{d} : strong void NEST1 unit{32d}.
f) NEST1 user task{d} : NEST2 particular prelude with DECS{c},

NEST2 particular program{g} PACK, go on{94f} token, NEST2
particular prelude{i}, where (NEST2) is (NEST1 new DECS STOP).

131

Section ALGOL 68 Revised Report A12

g) NEST2 particular program{f} :
NEST2 new LABSETY3 joined label definition of LABSETY3{h}, strong

void NEST2 new LABSETY3 ENCLOSED clause{31a,33a,c,34a,35a}.
h) NEST joined label definition of LABSETY{g,h} :

where (LABSETY) is (EMPTY), EMPTY where (LABSETY) is
(LAB1 LABSETY1), NEST label definition of LAB1{32c},

NEST joined label definition of LABSETY1{h}.
i) NEST2 particular postlude{f} : strong void NEST2 series with STOP{32b}.

{Examples:
a) (C standard-prelude C; C library-prelude C; C system-prelude C; par

begin C system-task-1 C, C system-task-2 C, (C particular-prelude C;
(start: commence: begin skip end); C particular-postlude C), (C
another user-task C) end

b) C standard-prelude {10.2, 10.3} C; C library-prelude C; C system-
prelude {10.4.1} C;

d) C system-task-1 {10.4.2.a} C, C system-task-2 C, (C particular-
prelude C; (start: commence: begin skip end); C particular-postlude
C), (C another user-task C)

f) C particular-prelude {10.5.1} C ; (start: commence: begin skip end);
C particular-postlude {10.5.2} C

g) start: commence: begin skip end
h) start: commence:
i) stop: lock(stand in); lock(stand out); lock(stand back)}

10.1.2. The environment condition
a) A program in the strict language must be akin {1.1.3.2.k} to some

program-text whose constituent EXTERNAL-preludes and particular-postludes are
as specified in the remainder of this section. {It is convenient to speak
of the standard-prelude, the library-prelude, the particular-programs, etc. of a
program when discussing those parts of that program which correspond to the
constituent standard-prelude, etc. of the corresponding program-text.}
b) The constituent standard-prelude of all program-texts is that standard-prelude

whose representation is obtained {10.1.3} from the forms given in sections
10.2 and 10.3.
c) The constituent library-prelude of a program-text is not specified in this Re-

port {but must be specified for each implementation; the syntax of 'program
text' ensures that a declaration contained in a library-prelude may not contradict
any declaration contained in the standard-prelude}.

132

SectionA13 van Wijngaarden, et al.

d) The constituent system-prelude (system-task-list) of all program-texts is
that system-prelude (system-task-list) whose representation is obtained from
the forms given in section 10.4, with the possible addition of other forms
not specified in this Report {but to be specified to suit the operating
environment of each implementation}.
e) Each constituent particular-prelude (particular-postlude) of all program-

texts is that particular-prelude (particular-postlude) whose representation is
obtained from the forms given in section 10.5, with the possible addition
of other forms not specified in this Report {but to be specified for each
implementation}.

10.1.3. The method of description of the standard environment

A representation of an EXTERNAL-prelude, system-task or particular-
postlude is obtained by altering each form in the relevant sections of this
chapter in the following steps:
Step 1: If a given form F begins with op {the operator-symbol} followed by

one of the marks P, Q, R or E, then F is replaced by a number of new
forms each of which is a copy of F in which that mark {following the
op} is (all other occurrences in F of that mark are) replaced, in each
respective new form, by:

Case A: The mark is P:
• -, +, 〈×, *〉 or /
(-, +, × or /);

Case B: The mark is Q:
• 〈 minusab, -:= 〉 , 〈 plusab, +:= 〉, 〈 timesab, ×:=, ×:= 〉 or 〈
divab, /:= 〉
(-:= , +:= , ×:= or /:=);

Case C: The mark is R:
• 〈 <, lt 〉 , 〈 ≤, le 〉 , 〈 =, eq 〉, 〈 6=, ne 〉 , 〈 ≥, ge 〉 or 〈 >, gt 〉
(<, ≤, =, =/ , ≥ or >);

Case D: The mark is E:
• 〈 =,eq 〉 or 〈 =/ , ne 〉
(= or =/);

Step 2: If, in some form, as possibly made in the step above, ℵ occurs
followed by an INDICATOR (a field-selector) I, then that occurrence of
ℵ is deleted and each INDICATOR (field-selector) akin {1.1.3.2.k} to I

contained in any form is replaced by a copy of one same INDICATOR
(field-selector) which does not occur elsewhere in the program and Step 2
is taken again;

133

Section ALGOL 68 Revised Report A13

Step 3: If a given form F, as possibly modified or made in the steps above,
begins with op {the operator-symbol} followed by a chain of TAO-symbols
separated by and-also-symbols, the chain being enclosed between 〈 and 〉,
then F is replaced by a number of different “versions” of that form each
of which is a copy of F in which that chain, together with its enclosing
〈 and 〉, has been replaced by one of those TAO-symbols {; however, an
implementation is not obliged to provide more than one such version
(9.4.b)};

Step 4: If, in a given form, as possibly modified or made in the steps above,
there occurs a sequence S of symbols enclosed between 〈 and 〉 and if,
in that S, L int, L real, L compl, L bits or L bytes occurs, then S

is replaced by a chain of a sufficient number of sequences separated
by and-also-symbols, the n-th of which is a copy of S in which copy
each occurrence of ` (L, K, S) is replaced by (n − 1) times long (long,
leng, shorten), followed by an and-also-symbol and a further chain of a
sufficient number of sequences separated by and-also-symbols, the m-th
of which is a copy of S in which copy each occurrence of ` (L, K, S)
has been replaced by m times short (short, shorten, leng); the 〈 and 〉
enclosing that S are then deleted;

Step 5: If, in a given form F, as possibly modified or made in the steps
above, L int, (L real, L compl, L bits, L bytes) occurs, then F is
replaced by a sequence of a sufficient number of new forms, the n-th
of which is a copy of F in which copy each occurrence of ` (L, K, S) is
replaced by (n− 1) times long (long, leng, shorten), and each occurrence
of long ` (long L) by n times long (long), followed by a further sequence
of a sufficient number of new forms, the m-th of which is a copy of F in
which copy each occurrence of ` (L, K, S) is replaced by m times short
(short, shorten, leng), and each occurrence of long ` (long L) by (m − 1)
times short (short);

Step 6: Each occurrence of F (prim) in any form, as possibly modified or
made in the steps, above, is replaced by a representation of a letter-aleph-
symbol (primal-symbol) {9.4.a};

Step 7: If a sequence of representations beginning with and ending with C
occurs in any form, as possibly modified or made in the steps above,
then this sequence, which is termed a “pseudo-comment”, is replaced by
a representation of a declarer or closed-clause suggested by the sequence;

Step 8: If, in any form, as possibly modified or made in the steps above,
a routine-text occurs whose calling involves the manipulation of real
numbers, then this routine-text may be replaced by any other routine-
text whose calling has approximately the same effect {; the degree of

134

SectionA21 van Wijngaarden, et al.

approximation is left undefined in this Report (see also 2.1.3.1.e)};
Step 9: In the case of an EXTERNAL-prelude, a form consisting of a skip-

symbol followed by a go-on-symbol (skip;) is added at the end.

{The term “sufficient number”, as used in Steps 4 and 5 above, implies that
no intended particular-program should have a different meaning or fail to be
produced by the syntax solely on account of an insufficiency of that number.}

Wherever {in the transput declarations} the representation 10 (\, ⊥)
occurs within a character-denotation or string-denotation, it is to be interpreted
as the representation of the string-item {8.1.4.1.b} used to indicate “times ten
to the power” (an alternative form {, if any,} of “times ten to the power”,
“plus i times”) on external media. {Clearly, these representations have been
chosen because of their similarity to those of the times-ten-to-the-power-symbol
(9.4.1.b) and the plus-i-times-symbol (9.4.1.c), but, on media on which these
characters are not available, other string-items must be chosen (and the letter-
e-symbol and the letter-i-symbol are obvious candidates).}
{The declarations in this chapter are intended to describe their effect

clearly. The effect may very well be obtained by a more efficient method.}

10.2. The standard prelude

{The declarations of the standard-prelude comprise “environment en-
quiries”, which supply information concerning a specific property of the
implementation (2.2.2.c), “standard modes”, “standard operators and func-
tions”, “synchronization operations” and “transput declarations” (which are
given in section 10.3).}

10.2.1.Environment enquiries

a) int int lengths = C 1 plus the number of extra lengths of integers
{2.1.3.1.d} C;

b) int int shorths = C 1 plus the number of extra shorths of integers
{2.1.3.1.d} C;

c) L int ` max int = C the largest L integral value {2.2.2.b} C;
d) int real lengths = C 1 plus the number of extra lengths of real numbers

{2.1.3.1.d} C;
e) int real shorths = C 1 plus the number of extra shorths of real numbers

{2.1.3.1.d} C;
f) L real ` max real = C the largest L real value {2.2.2.b} C;

135

Section ALGOL 68 Revised Report A22

g) L real ` small real = C the smallest L real value such that both L 1 + `
small real > L 1 and L 1 - ` small real < L 1 {2.2.2.b} C;

h) int bits lengths = C 1 plus the number of extra widths {j} of bits C;
i) int bits shorths = C 1 plus the number of extra shorths {j} of bits C;
j) int ` bits width = C the number of elements in L bits; see L bits

{10.2.2.g}; this number increases (decreases) with the ”size”, i.e.,
the number of ’long’s (minus the number of ’short’s) of which ’L’ is
composed, until a certain size is reached, viz., ”the number of extra
widths” (minus ”the number of extra shorths”) of bits, after which
it is constant C;

k) int bytes lengths = C 1 plus the number of extra widths {m} of bytes C;
l) int bytes shorths = C 1 plus the number of extra shorths {m} of bytes C;
m) int ` bytes width = C the number of elements in ` bytes; see L bytes

{10.2.2.h}; this number increases (decreases) with the ”size”, i.e.,
the number of ’long’s (minus the number of ’short’s) of which ’L’ is
composed, until a certain size is reached, viz., ”the number of extra
widths” (minus ”the number of extra shorths”) of bytes, after which
it is constant C;

n) op abs = (char a) int : C the integral equivalent {2.1.3.1.g} of the charac-
ter ’a’ C;

o) op repr = (int a) char: C that character ’x’, if it exists, for which ABS x
= a C;

p) int max abs char = C the largest integral equivalent {2.1.3.1.g} of a char-
acter C;

q) char null character = C some character C;
r) char flip = C the character used to represent ’true’ during transput

{10.3.3.1.a, 10.3.3.2.a} C;
s) char flop = C the character used to represent ’false’ during transput C;
t) char errorchar = C the character used to represent unconvertible arith-

metic values{10.3.2.1.b, c, d, e, f} during transput C;
u) char blank = ˝ ˝;

10.2.2.Standard modes
a) mode void = C an actual-declarer specifying the mode 'void' C;
b) mode bool = C an actual-declarer specifying the mode 'boolean' C;
c) mode L int = C an actual-declarer specifying the mode 'L integral' C;

136

SectionA231 van Wijngaarden, et al.

d) mode L real = C an actual-declarer specifying the mode 'L real' C;
e) mode char = C an actual-declarer specifying the mode 'character' C;
f) mode L compl = struct (L real re, im);

g) mode L bits struct([1 : ` bits width] bool ` F{See 10.2.1.j}{The field-
selector is hidden from the user in order that he may not break open
the structure; in particular, he may not subscript the field.}

h) mode L bytes = struct([1: ` byteswidth] char ` Fsee 10.2.1.m

i) mode string = flex[1: 0]char;

10.2.3.Standard operators and functions

10.2.3.0.Standard priorities

a) prio minusab = 1, plusab = 1, timesab = 1, divab = 1, overab = 1, modab
= 1, plusto = 1,

-:= = 1, +:= = 1, ×:= = 1, ∗:= = 1, /:= = 1, +:= = 1, %:= = 1, +∗:= = 1,
%×:= = 1, %∗:= = 1, +=: = 1,

∨ = 2, or = 2,
∧ = 3, and = 3,
= = 4, eq = 4, =/ = 4, /= = 4, ne = 4,
< = 5, lt = 5, ≤ = 5, <= = 5, le = 5, ≥ = 5, >= = 5, ge = 5, > = 5, gt =

5,
- = 6, + = 6,
× = 7, ∗ = 7, / = 7, % = 7, over = 7, %× = 7, %∗ = 7, mod = 7, [] = 7,

elem = 7,
↑ = 8, ∗∗ = 8, ↓ = 8, up = 8, down = 8, shl = 8, shr = 8, lwb = 8, upb =

8, b = 8, d = 8,
⊥ = 9, +× = 9, +∗ = 9, i = 9;

10.2.3.1.Rows and associated operations

a) mode ℵ rows = C an actual-declarer specifying a mode united from
{2.1.3.6.a} a sufficient set of modes each of which begins with 'row'

C;
b) op 〈lwb , b〉 = (int n, rows a) int : C the lower bound in the n-th bound

pair of the descriptor of the value of ’a’, if that bound pair exists C;
c) op 〈upb , d〉 = (int n, rows a) int: C the upper bound in the n-th bound

pair of the descriptor of the value of ’a’, if that bound pair exists C;
d) op 〈lwb , b〉 =(rows a) int: 1 lwb a;

137

Section ALGOL 68 Revised Report A233

e) op 〈upb , d〉 =(rows a) int: 1 upb a;
{The term “sufficient set”, as used in a above and also in 10.3.2.2.b

and d, implies that no intended particular-program should fail to be produced
(nor any unintended particular-program be produced) by the syntax solely on
account of an insufficiency of modes in that set.}

10.2.3.2.Operations on boolean operands

a) op 〈∨, or〉 = (bool b) bool: (a | true | b);

b) op 〈∧, and〉 = (bool a, b) bool: (a | b | false);

c) op 〈¬, not〉 = (bool a) bool: (a | false | true);

d) op 〈=, eq〉 = (bool a, b) bool: (a ∧ b) ∨ (¬ a ∧ ¬ b);

e) op 〈=/ , /=, ne〉 = (bool a, b) bool: ¬ (a = b);

f) op abs = (bool a) int: (a | 1 | 0);

10.2.3.3.Operations on integral operands

a) op 〈<, lt〉 = (L int a, b) bool: C true/ if the value of ’a’ is smaller than
{2.1.3.1.e} that of ’b’ and false/ otherwise C;

b) op 〈≤, <=, le〉 = (L int a, b) bool: ¬ (b<a);

c) op 〈=, eq〉 = (L int a, b) bool: a ≤b ∧ b ≤a;

d) op 〈=/ , /=, ne〉 = (L int a, b) bool: ¬ (a = b);

e) op 〈≥, >=, ge〉 = (L int a, b) bool: b≤a;

f) op 〈>, gt〉 = (L int a, b) bool: b< a;

g) op - = (L int a, b) L int: C the value of ’a’ minus {2.1.3.1.e} that of ’b’
C;

h) op - = (L int a) L int :L 0-a;

i) op + = (L int a, b) L int :a - -b;

j) op + = (L int a) L int : a;

k) op abs = (L int a) L int : (a < L 0 | -a | a);

l) op 〈×, ∗〉 = (L int a, b) L int:
begin L int s := L 0, i := abs b;

while i ≥ L 1
do s := s + a, i := i - L 1 od;
(b < L 0 | -s | s)

end;

138

SectionA234 van Wijngaarden, et al.

m) op 〈%, over〉 =(L int a, b) L int:
if b =/ L 0
then L int q := L 0, r := abs a;

while (r := r- abs b) ≥ L 0 do q := q + L 1 od;
(a< L 0 ∧ b>L 0 ∨ a ≥ L 0 ∧ b < L 0 | -q | q)

fi;
n) op 〈%×, %∗, mod〉 =(L int a, i) L int : (L int r = a - a % b × b; r < 0 |

r + abs b | r);
o) op / = (L int a, b) L real : L real (a) /L real (b);
p) op 〈↑, ∗∗, up〉 =(L int a, int b) L int : (b ≥ 0 | L int p := L 1; to b do p

:= p × a od; p);
q) op leng = (L int a) long L int : C the long L integral value lengthened

from {2.1.3.1.e} the value of ’a’ C;
r) op shorten = (long L int a) L int : C the L integral value, if it exists,

which can be lengthened to {2.1.3.1.e} the value of ’a’ C;
s) op odd =(L int a) bool: abs a %× L2 = L1;
t) op sign =(L int a) int: (a>L 0 | 1 |: a < L0 | -1 | 0);
u) op 〈⊥, +×, +∗, i〉 =(L int a, b) L compl :(a, b);

10.2.3.4.Operations on real operands
a) op 〈<, lt〉 =(L real a, b) bool: C true/ if the value of ’a’ is smaller than

{2.1.3.1.e} that of ’b’ and false/ otherwise C;
b) op 〈≤, <=, le〉 =(L real a, b)bool: ¬ (b<a);
c) op 〈=, eq〉 =(L real a, b) bool:a ≤ b ∧ b ≤ a;
d) op 〈=/ , /=, ne〉 =(L real a, b) bool: ¬ (a=b);
e) op 〈≥, >=, ge〉 =(L real a, b) bool:b ≤ a;
f) op 〈>, gt〉 =(L real a, b) bool: b<a;
g) op - = (L real a, b) L real : C the value of ’a’ minus {2.1.3.1.e} that of

’b’ C;
h) op - =(L real a) L real : L 0-a;
i) op + =(L real a, b) L real : a - - b;
j) op + =(L real a) L real : a;
k) op abs =(L real a) L real :(a < L 0 | -a | a);
l) op 〈×, ∗〉 =(L real a, b) L real : C the value of ’a’ times {2.1.3.1.e} that

of ’b’ C;

139

Section ALGOL 68 Revised Report A237

m) op / = (L real a, b) L real : C the value of ’a’ divided by {2.1.3.1.e} that
of ’b’ C;

n) op leng = (L real a) long L real : C the long L real value lengthened
from {2.1.3.1.e} the value of ’a’ C;

o) op shorten = (long L real a) L real : C if abs a ≤ S leng ` max real, then
a L real value ’v’ such that, for any L real value ’w’, abs (leng v -
a) ≤ abs (leng w - a) C;

p) op round = (L real a) L int : C a L integral value, if one exists, which
is widenable to {2.1.3.1.e} a L real value differing by not more than
one-half from the value of ’a’ C;

q) op sign =(L real a) int:(a>L 0 | 1 |: a < L 0 | -1 | 0);

r) op 〈entier, b〉 =(L real a) L int:
begin L int j := L 0;

while j < a do j := j + L1 od;
while j > a do j := j - L1 od;
j

end;

s) op 〈⊥, +×, +∗, i〉 =(L real a, b) L compl :(a, b);

10.2.3.5.Operations on arithmetic operands

a) op P = (L real a, L int b) L real :a P L real (b);

b) op P = (L int a, L real b) L real : L real (a) P b;

c) op R = (L real a, L int b) bool: a R L real (b);

d) op R = (L int a, L real b) bool: L real (a) R b;

e) op 〈⊥, +×, +∗, i〉 = (L real a, L int b) L compl :(a, b);

f) op 〈⊥, +×, +∗, i〉 = (L int a, L real b) L compl : (a, b);

g) op 〈↑, ∗∗, up〉 = (L real a, int b) L real : (L real p := L 1; to abs b do p
:= p × a od; (b ≥ 0 | p | L1 / p));

10.2.3.6.Operations on character operands

a) op R (char a, b) bool: abs a R abs b; {10.2.1.n}
b) op + =(char a, b) string: (a, b);

140

SectionA237 van Wijngaarden, et al.

10.2.3.7.Operations on complex operands
a) op re = (L compl a) L real : re of a;
b) op im = (L compl a) L real : im of a;
c) op abs = (L compl a) L real :` sqrt(re a↑2 + im a↑2);
d) op arg = (L compl a) L real :

if L real re = re a, im = im a;
re =/ L 0 ∨ im =/ L 0

then if abs re > abs im
then ` arctan(im / re) + ` pi/ L 2 ×

(im < L 0 | sign re - 1 | 1 - sign re)
else - L arctan (re / im) + ` pi / L 2 × sign im
fi

fi;
e) op conj = (L compl a) L compl : re a i - im a;
f) op 〈=, eq〉 = (L compl a, b) bool: re a = re b ∧ im a = im b;
g) op 〈=/ , /=, ne〉 = (L compl a, b) bool: ¬ (a = b);
h) op - = (L compl a, b) L compl : (re a - re b) i (im a - im b);
i) op - = (L compl a) L compl : -re a i -im a;
j) op + = (L compl a, b) L compl: (re a + re b) i (im a + im b);
k) op + = (L compl a) L compl: a;
l) op 〈×,∗〉 = (L compl a, b) L compl : (re a × re b - im a × im b) i (re a

× im b + im a × re b);
m) op / = (L compl a, b) L compl:

(L real d = re(b × conj b); L compl n = a × conj b;
(re n/d) i (im n/d));

n) op leng = (L compl a) long L compl : leng re a i leng im a;
o) op shorten = (long L compl a) L compl : shorten re a i shorten im a;
p) op P = (L compl a, L int b) L compl : a P L compl (b);
q) op P = (L compl a, L real b) L compl : a P L compl (b);
r) op P = (L int a, L compl b) L compl : L compl (a) P b;
s) op P = (L real a, L compl b) L compl : L compl (a) P b;
t) op 〈↑, ∗∗, up〉 = (L compl a, int b) L compl : (L compl p := L 1; to abs b

do p := p × a od; (b ≥ 0 | p | L 1/p));
u) op E = (L compl a, L int b) bool: a E L compl (b);
v) op E = (L compl a, L real b) bool: a E L compl (b);

141

Section ALGOL 68 Revised Report A238

w) op E = (L int a, L compl b) bool: b E a;
x) op E = (L real a, L compl b) bool: b E a;

10.2.3.8.Bits and associated operations

a) op 〈=, eq〉 =(L bits a, b) bool:
begin bool c;

for i to ` bits width
while c := (` F) [i]=(` F) [i]
do skip od;
c

end;
b) op 〈=/ , /=, ne〉 =(L bits a, b) bool: (a=b);
c) op 〈∨, or〉 =(L bits a, b) L bits :

begin L bits c;
for i to ` bits width
do (` F) [i] = (` F) [i] or (` F) [i] od;
c

end;
d) op 〈∧, and〉 = (L bits a, b) L bits :

begin L bits c;
for i to ` bits width
do (` F) [i]:= (` F) [i] ∧ (` F)[i] od;
c

end;
e) op 〈≤, <=, le〉 =(L bits a, b)bool:(a or b) = b;
f) op 〈≥, >=, ge〉 =(L bits a, b)bool: b ≤ a;
g) op 〈↑ , up, shl〉=(L bits a, int b)L bits :

if abs b ≤ ` bits width
then L bits c := a;

to abs b
do if b>0 then

for i from 2 to ` bits width
do (` F) [i - 1] := (` F) [i] od;
(` F) [` bits width] := false

else
for i from ` bits width by -1 to 2
do (` F) [i] := (` F) [i - 1] od;
(` F)[1] := false

142

SectionA239 van Wijngaarden, et al.

fi od;
c

fi ;

h) op 〈L down, shr〉 = (L bits x, int n) L bits : x ↑ -n;

i) op abs =(L bits a)L int :
begin L int c := L 0;

for i to ` bits width
do c := L2 × c + K abs (` F)[i] od;
c

end;

j) op bin =(L int a)L bits :
if a ≥ L 0
then L int b := a; L bits c;

for i from ` bits width by - 1 to 1
do (` F)[i] := odd b; b := b % L 2 od;
c

fi;

k) op 〈elem, []〉 =(int a, L bits b)bool: (` F) [a];

l) proc ` bits pack = ([] bool a) L bits :
if int n = upb a[@1];

n ≤ ` bits width
then L bits c;

for i to ` bits width
do (` F) [i] :=

(i ≤ ` bits width -n | false | a[@1][i - ` bits width + n])
od;
c

fi;

m) op 〈¬ , not〉 =(L bits a)L bits :
begin L bits c;

for i to ` bits width do (` F)[i] := ¬(` F)[i] od;
c

end;

n) op leng = (L bits a) long L bits : long ` bits pack (a);

o) op shorten = (long L bits a) L bits : ` bits pack ([] bool (a) [long ` bits
width - ` bits width + 1:]);

143

Section ALGOL 68 Revised Report A23A

10.2.3.9.Bytes and associated operations

a) op R = (L bytes a, b) bool: string (a) R string (b);

b) op 〈elem, []〉 =(int a, L bytes b)char:(` F)[a];

c) proc ` bytes pack = (string a) L bytes:
if int n= upb a [@1];

n ≤ ` bytes width
then L bytes c;

for i to ` bytes width
do (` F)[i]:= (i ≤ n | a[@1] [i] | nullcharacter) od;
c

fi;

d) op leng = (L bytes a) long L bytes: long ` bytes pack (a);

e) op shorten = (long L bytes a) L bytes: ` bytes pack (string (a) [: ` bytes
width]);

10.2.3.10.Strings and associated operations

a) op 〈<, lt〉 =(string a, b)bool:
begin int m = upb a[@1], n = upb b[@1]; int c := 0;

for i to (m < n | m | n)
while (c := abs a [@1] [i] - abs b[@1] [i])=0
do skip od;
(c = 0 | m < n ∧ n > 0 or c < 0)

end;

b) op 〈≤, <=, le〉 =(string a, b)bool: ¬(b < a);

c) op 〈=, eq〉 =(string a, b)bool: a ≤ b ∧ b ≥ a;

d) op 〈=/ , /=, ne〉 =(string a, b)bool: ¬(a = b);

e) op 〈≥, >=, ge〉 =(string a, b)bool: b ≤ a;

f) op 〈>, gt〉 =(string a, b) bool: b<a;

g) op R = (string a, char b) bool: a R string (b);

h) op R = (char a, string b) bool: string (a) R b;

i) op + = (string a, b) string:
(int m=(int la = upb a[@1]; la< 0 | 0 | la),

n=(int lb = upb b[@1]; lb<0 | 0 | lb);
[1: m+n]char c;
c[1 : m] := a[@1]; c[m + 1 : m + n] := b[@1]; c);

j) op + = (string a, char b) string: a + string (b);

144

SectionA23C van Wijngaarden, et al.

k) op + = (char a, string b) string: string (a) + b;

l) op 〈×,∗〉 =(string a, int b) string: (string c; to b do c := c + a od; c);

m) op 〈×,∗〉 =(int a, string b) string: b × a;

n) op 〈×,∗〉 = (char a, int b) string: string (a) × b;

o) op 〈×,∗〉 =(int a, char b) string: b × a;
{the operations defined in a, g and h imply that if abs ˝a˝ < abs ˝b˝,

then ˝˝< ˝a˝; ˝a˝< ˝b˝; ˝aa˝< ˝ab˝; ˝aa˝< ˝ba˝; ˝ab˝< ˝b˝ and
˝ab˝< ˝ba˝.}

10.2.3.11.Operations combined with assignations

a) op 〈minusab, -:=〉 =(ref L int a, L int b)ref L int : a := a-b;

b) op 〈minusab, -:=〉 =(ref L real a, L real b)ref L real : a := a-b;

c) op 〈minusab, -:=〉 = (ref L compl a, L compl b) ref L compl : a := a -b;

d) op 〈plusab, +:=〉 =(ref L int a, L int b)ref L int :a := a + b;

e) op 〈plusab, +:=〉 =(ref L real a, L real b)ref L real : a := a + b;

f) op 〈plusab, +:=〉 =(ref L compl a, L compl b)ref L compl : a := a + b;

g) op 〈timesab, ×:=, ∗:=〉 = (ref L int a, L int b)ref L int :a := a × b;

h) op 〈timesab, ×:=, ∗:=〉 = (ref L real a, L real b) ref L real : a := a × b;

i) op 〈timesab, ×:=, ∗:=〉 = (ref L compl a, L compl b) ref L compl : a := a
× b;

j) op 〈overab, %:= , %:=〉 =(ref L int a, L int b)ref L int :a := a % b;

k) op 〈modab, +×:=, ∗:=, %×:=〉 = (ref L int a, L int b)ref L int : a := a
%× b;

l) op 〈divab, /:=〉 =(ref L real a, L real b)ref L real :a := a/b;

m) op 〈divab, /:=〉 =(ref L compl a, L compl b)ref L compl : a := a /b;

n) op Q = (ref L real a, L int b)ref L real : a Q L real (b);

o) op Q = (ref L compl a, L int b)ref L compl : a Q L compl (b);

p) op Q = (ref L compl a, L real b) ref L compl : a Q L compl (b);

q) op 〈plusab, +:=〉 = (ref string a, string b) ref string: a := a + b;

r) op 〈plusto , +=:〉 = (string a, ref string b) ref string: b := a + b;

s) op 〈plusab, +:=〉 =(ref string a, char b) ref string: a +:= string(b);

t) op 〈plusto , +=:〉 = (char a, ref string b) ref string: string (a) +=: b;

u) op 〈timesab, ×:=〉 =(ref string a, int b)ref string: a := a × b;

145

Section ALGOL 68 Revised Report A24

10.2.3.12.Standard mathematical constants and functions

a) L real ` pi = C a L real value close to π; see Math.of Comp.V. 16, 1962,
pp.80-99 C;

b) proc ` sqrt=(L real x)L real : C if x > L 0 , a L real value close to the
square root of ’x’ C;

c) proc ` exp = (L real x) L real : C a L real value, if one exists, close to
the exponential function of ’x’ C;

d) proc ` ln = (L real x) L real : C a L real value, if one exists, close to the
natural logarithm of x C;

e) proc ` cos = (L real x) L real : C a L real value close to the cosine of ’x’
C;

f) proc ` arccos=(L real x)L real : C if -ABS x ¡= L 1, a L real value close
to the inverse cosine of ’x’, L 0 ≤ ` arccos (x) ≤ ` pi C;

g) proc ` sin = (L real x) L real : C a L real value close to the sine of x C;
h) proc ` arcsin=(L real x)L real : C if abs x ≤ L 1, a L real value close to

the inverse sine of ’x’, abs ` arcsin(x) ≤ ` pi /L 2 C;
i) proc ` tan = (L real x) L real : C a L real value, if one exists, close to

the tangent of ’x’ C;
j) proc ` arctan=(L real x)L real : C a L real value close to the inverse

tangent of ’x’, abs ` arctan(x) ≤ ` pi/L 2 C;
k) proc ` next random = (ref L int a) L real : (a := C the next pseudo-

random L integral value after ’a’ from a uniformly distributed
sequence on the interval [L 0,` maxint] C;

C the real value corresponding to ’a’ according to some mapping of in-
tegral values [L 0, ` max int] into real values [L 0, L 1) {i.e., such
that 0 ≤ x < 1} such that the sequence of real values so produced
preserves the properties of pseudo-randomness and uniform distribu-
tion of the sequence of integral values C);

10.2.4. Synchronization operations

The elaboration of a parallel-clause P {3.3.1.c} in an environ E is termed a
“parallel action”. The elaboration of a constituent unit of P in E is termed a
“process” of that parallel action.

Any elaboration A {in some environ} of either of the ENCLOSED-clauses
delineated by the pragmats {9.2.1.b} pr start of incompatible part pr and pr
finish of incompatible part pr in the forms 10.2.4.d and 10.2.4.e is incompat-
ible with {2.1.4.2.e} any elaboration B of either of those ENCLOSED-clauses

146

SectionA3 van Wijngaarden, et al.

if A and B are descendent actions {2.1.4.2.b} of different processes of some
same parallel action.
a) mode sema = struct(ref int F);
b) op level =(int a)sema: (sema s; F of s := heap int := a; s);
c) op level =(sema a)int: F of a;
d) op down = (sema edsger)void:

begin ref int dijkstra = F of edsger;
while

pr start of incompatible part pr
if dijkstra ≥ 1 then dijkstra -:= 1; false
else
C let P be the process such that the elaboration of this

pseudo-comment {10.1.3.Step 7} is a descendent ac-
tion of P, but not of any other process descended from
P; the process P is halted {2.1.4.3.f} C;

true
fi
pr finish of incompatible part pr

do skip od
end;

e) op up = (sema edsger)void:
pr start of incompatible part pr
if ref int dijkstra = F of edsger; (dijkstra +:= 1) ≥ 1
then
C all processes are resumed {2.1.4.3.g} which are halted because

the integer referred to by the name yielded by ’dijkstra’ was
smaller than one C

fi
pr finish of incompatible part pr;

{For the use of down and up, see E.W. Dijkstra, Cooperating Sequential
Processes, contained in Programming Languages, Genuys, F. (ed.), London
etc., Academic Press, 1968; see also 11.12.}

10.3. Transput declarations

{ “So it does!” said Pooh, “It goes in!”
“So it does!” said Piglet, “And it comes out!”
“Doesn’t it?” said Eeyore, “It goes in and out like
anything,”
Winnie-the-Pooh, A.A. Milne.}

147

Section ALGOL 68 Revised Report A311

{Three ways of “transput” (i.e., input and output) are provided by the
standard-prelude, viz., formatless transput (10.3.3), formatted transput (10.3.5)
and binary transput (10.3.6).}

10.3.1. Books, channels and files
{“Books”, “channels” and “files” model the transput devices of the

physical machine used in the implementation.}

10.3.1.1. Books and backfiles
{ aa) All information within the system is to be found in a number of
“books”. A book (a) is a structured value including a field text of the mode
specified by flextext (b) which refers to information in the form of characters.
The text has a variable number of pages, each of which may have a variable
number of lines, each of which may have a variable number of characters.
Positions within the text are indicated by a page number, a line number
and a character number. The book includes a field lpos which indicates the
“logical end” of the book, i.e., the position up to which it has been filled
with information, a string idf, which identifies the book and which may
possibly include other information, e.g., ownership, and fields putting and
users which permit the book to be opened (10.3.1.4.d) on more than one
file simultaneously only if putting is not possible on any of them.
bb) The books in the system are accessed via a chain of backfiles. The

chain of books available for opening (10.3.1.4.dd) is referenced by chainbfile.
A given book may be referenced by more than one backfile on this chain,
thus allowing simultaneous access to a single book by more than one process
(10.2.4). However such access can only be for reading a book, since only one
process may access a book such that it may be written to {aa}. The chain of
books which have been locked (10.3.1.4.o) is referenced by lockedbfile.
cc) Simultaneous access by more than one process to the chain of backfiles

is prevented by use of the semaphore bfileprotect, which provides mutual
exclusion between such processes.
dd) Books may be created (e.g., by input) or destroyed (e.g., after output)

by tasks (e.g., the operating system) in the system-task-list (10.4.2), such
books being then added to or removed from the chain of backfiles.}
a) mode ℵbook=

struct(flextext text,
pos lpos /c logical end of book /c,
string idf /c identification /c,
bool putting /c true if the book may be written to /c,

148

SectionA312 van Wijngaarden, et al.

int users /c the number of times the book is opened /c);
b) mode ℵtext = ref [] [] [] char,

mode ℵflextext = ref flex [] flex [] flex [] char;
c) mode ℵpos = struct(int p, l, c);
d) prio ℵbeyond=5,

op beyond = (pos a, b)bool:
if p of a < p of b then false
elif p of a > p of b then true
elif l of a < l of b then false
elif l of a > l of b then true
else c of a > c of b
fi;

e) mode ℵbfile = struct(ref book book, ref bfile next);
f) ref bfile ℵchainbfile := nil;
g) ref bfile ℵlockedbfile := nil;
h) sema ℵbfileprotect = (sema s; F of s := CPRIMC int := 1; s);

10.3.1.2. Channnels
{ aa) A “channel” corresponds to one or more physical devices (e.g., a card
reader, a card punch or a line printer, or even to a set up in nuclear
physics the resuls of which are collected by the computer), or to a filestore
maintained by the operating system. A channel is a structured value whose
fields are routines returning truth values which determine the available
methods of access to a book linked via that channel, Since the methods of
access to a book may well depend on the book as well as on the channel
(e.g., a certain book may have been trapped so that it may be read, but not
written to), most of these properties depend on both the channel and the
book. These properties may be examined by use of the environment enquiries
provided for files (10.3.1.3.ff). Two environment enquiries are provided for
channels. These are:

• estab possible, which returns true if another file may be “established”
(10.3.1.4.cc) on the channel;
• standconv, which may be used to obtain the default “conversion key”
(bb) for the channel,

bb) A “conversion key” is a value of the mode specified by conv which
is used to convert characters to and from the values as stored in internal
form and as stored in “external” form in a book. It is a structured value
comprising a row of structures, each of which contains a value in internal

149

Section ALGOL 68 Revised Report A313

form and its corresponding external value. The implementation may provide
additional conversion keys in its library-prelude.

cc) Three standard channels are provided, with properties as defined below
(e,f,g); the implementation may provide additional channels in its library-
prelude. The channel number field is provided in order that different channels
with otherwise identical possibilities may be distinguished.}
a) mode channel =

struct(proc(ref book)bool ℵreset, ℵset, ℵget, ℵput, ℵbin, ℵcompress,
ℵreidf,

proc bool ℵestab, proc pos ℵmax pos,
proc(ref book)conv ℵstandconv, int ℵchannel number);

b) mode ℵconv = struct([1: int(skip)] struct(char internal, external) F);

c) proc estab possible = (channel chan)bool: estab of chan;

d) proc standconv = (channel chan)proc(ref book)conv:
standconv of chan;

e) channel stand in channel = C a channel value whose field selected by
’get’ is a routine which always returns true, and whose other fields
are some suitable values C;

f) channel stand out channel = C a channel value whose field selected by
’put’ is a routine which always returns true, and whose other fields
are some suitable values C;

g) channel stand back channel = C a channel value whose fields selected by
’set’, ’reset’, ’get’, ’put’ and ’bin’ are routines which always return
true, and whose other fields are some suitable values C;

10.3.1.3. Files

{ aa) A “file” is the means of communication between a particular-program
and a book which has been opened on that file via some channel. It is a
structured value which includes a reference to the book to which it has been
linked (10.3.1.4.bb) and a separate reference to the text of the book. The file
also contains information necessary for the transput routines to work with
the book, including its current position cpos in the text, its current “state”
(bb), its current “format” (10.3.4) and the channel on which it has been
opened.

bb) The “state” of a file is determined by five fields:
• read mood, which is true if the file is being used for input:
• write mood, which is true if the file is being used for output:

150

SectionA313 van Wijngaarden, et al.

• char mood, which is true if the file is being used for character
transput;
• bin mood, which is true if the file is being used for binary transput:
• opened, which is true if the file has been linked to a book.

cc) A file includes some “event routines”, which are called when certain con-
ditions arise during transput. After opening a file, the event routines pro-
vided by default return false when called, but the programmer may provide
other event routines. Since the fields of a file are not directly accessible to
the user, the event routines may be changed by use of the “on routines”
(l,m,n,o,p,q,r). The event routines are always given a reference to the file as
a parameter. If the elaboration of an event routine is terminated, then the
transput routine which called it can take no further action: otherwise, if it
returns true, then it is assumed that the condition has been mended in some
way, and, if possible, transput continues, but if it returns false, then the
system continues with its default action. The on routines are:
• on logical file end. The corresponding event routine is called when,
during input from a book or as a result of calling set, the logical end of
the book is reached (see 10.3.1.6.dd).
Example:

The programmer wishes to count the number of integers on his input
tape. The file intape was opened in a surrounding range. If he writes:

begin int n := 0;
on logical file end(intape, (ref file file)bool: goto f);
do get(intape, loc int); n +:= 1 od;
f: print(n)

end ,
then the assignment to the field of intape violates the scope restriction,
since the scope of the routine (ref file file)bool: goto f is smaller than
the scope of intape, so he has to write:

begin int n := 0; file auxin := in tape;
on logical file end(auxin, (ref file file)bool: goto f);
do get(auxin, loc int); n +:= 1 od;
f: print(n)

end .
• on physical file end. The corresponding event routine is called when
the current page number of the file exceeds the number of pages in the
book and further transput is attempted (see 10.3.1.6.dd),
• on page end. The corresponding event routine is called when the
current line number exceeds the number of lines in the current page and
further transput is attempted (see 10.3.1.6.dd).

151

Section ALGOL 68 Revised Report A313

• on line end. The corresponding event routine is called when the
current character number of the file exceeds the number of characters in
the current line and further transput is attempted (see 10.3.1.6.dd),
Example:

The programmer wishes automatically to give a heading at the start of
each page on his file f:

on page end(f, (ref file file)bool:
(put(file, (newpage, ˝page number ˝, whole(i +:= 1.0),

newline)); true)
/c it is assumed that i has been declared elsewhere /c) .

• on char error. The corresponding event routine is called when a
character conversion was unsuccessful or when, during input, a character
is read which was not “expected” (10.3.4.1.ll). The event routine is called
with a reference to a character suggested as a replacement. The event
routine provided by the programmer may assign some character other
than the suggested one. If the event routine returns true, then that
suggested character as possibly modified is used,
Example:

The programmer wishes to read sums of money punched as
˝$ 123.45˝, ˝,$ 23.45˝, ˝,$ 3.45˝, etc.:

on char error(stand in, (ref file f, ref char sugg)bool:
if sugg = ˝0˝
then char c; backspace(f); get(f, c);

(c = ˝$˝ | get(f, sugg); true | false)
else false
fi);

int cents; readf(($ 3z˝.˝dd $, cents)) .
• on value error. The corresponding event routine is called when:

(i) during formatted transput an attempt is made to transput a
value under the control of a “picture” with which it is incompatible,
or when the number of “frames” is insufficient. If the routine returns
true, then the current value and picture are skipped and transput
continues; if the routine returns false, then first, on output, the value
is output by put, and next undefined is called;
(ii) during input it is impossible to convert a string to a value of
some given mode (this would occur if, for example, an attempt were
made to read an integer larger than max int (10.2.1.c)).

• on format end. The corresponding event routine is called when, dur-
ing formatted transput, the format is exhausted while some value still re-
mains to be transput. If the routine returns true, then undefined is called

152

SectionA313 van Wijngaarden, et al.

if a new format has not been provided for the file by the routine; other-
wise, the current format is repeated.

dd) The conv field of a file is its current conversion key (10.3.1.2.bb). After
opening a file, a default conversion key is provided. Some other conversion
key may be provided by the programmer by means of a call of make conv (j).
Note that such a key must have been provided in the library-prelude.
ee) The routine make term is used to associate a string with a file. This

string is used when inputting a variable number of characters, any of its
characters serving as a terminator.
ff) The available methods of access to a book which has been opened on a

file may be discovered by calls of the following routines (note that the yield
of such a call may be a function of both the book and the channel, and of
other environmental factors not defined by this Report):
• get possible, which returns true if the file may be used for input;
• put possible, which returns true if the file may be used for output;
• bin possible, which returns true if the file may be used for binary
transput;
• compressible, which returns true if lines and pages will be com-
pressed (10.3.1.6.aa) during output, in which case the book is said to be
“compressible”;
• reset possible, which returns true if the file may be reset, i.e., its
current position set to (1, 1, 1);
• set possible, which returns true if the file may be set, i.e., the current
position changed to some specified value; the book is then said to be a
“random access” book and, otherwise, a “sequential access” book:
• reidf possible, which returns true if the idf field of the book may be
changed:
• chan, which returns the channel on which the file has been opened
{this may be used, for example, by a routine assigned by on physical file
end, in order to open another file on the same channel}.

gg) On sequential access books, undefined (10.3.1.4.a) is called if binary and
character transput is alternated, i.e., after opening or resetting (10.3.1.6.j),
either is possible but, once one has taken place, the other may not until after
another reset.
hh) On sequential access books, output immediately causes the logical end of

the book to be moved to the current position (unless both are in the same
line); thus input may not follow output without first resetting (10.3.1.6.j),

Example:

153

Section ALGOL 68 Revised Report A313

begin file f1, t2; [1: 10000] int x; int n := 0;
open(f1, ˝˝, channel 2);
f2 := f1;

/c now f1 and f2 can be used interchangeably /c
make conv(f1, flexocode); make conv(f2, telexcode);

/c now f1 and f2 use different codes; flexocode and telexcode are
defined in the library-prelude for this implementation /c

reset(f1);
/c consequently, f2 is reset too /c

on logical file end(f1, (ref file f)bool: goto done);
for i do get(f1, x [i]); n := i od;

/c too bad if there are more than 10000 integers in the input /c
done:

reset(f1); for i to n do put(f2, x [i]) od;
close(f2) /c f1 is now closed too /c

end }
a) mode file =

struct(ref book ℵbook, union(flextext, text) ℵtext, channel ℵchan,
ref format ℵformat, ref int ℵforp,
ref bool ℵread mood, ℵwrite mood, ℵchar mood, ℵbin mood,
ℵopened,

ref pos ℵcpos /c current position /c,
string ℵterm /c string terminator /c,
conv ℵconv /c character conversion key /c,
proc(ref file)bool ℵlogical file mended, ℵphysical file mended,
ℵpage mended, ℵline mended, ℵformat mended,
ℵvalue error mended,
proc(ref file, ref char)bool ℵchar error mended);

b) proc get possible = (ref file f)bool:
(opened of f | (get of chan of f)(book of f) | undefined; skip);

c) proc put possible = (ref file f)bool:
(opened of f | (put of chan of f)(book of f) | undefined; skip);

d) proc bin possible = (ref file f)bool:
(opened of f | (bin of chan of f)(book of f) | undefined; skip);

e) proc compressible = (ref file f)bool:
(opened of f | (compress of chan of f)(book of f) | undefined; skip);

f) proc reset possible = (ref file f)bool:
(opened of f | (reset of chan of f)(book of f) | undefined; skip);

154

SectionA314 van Wijngaarden, et al.

g) proc set possible = (ref file f)bool:
(opened of f | (set of chan of f)(book of f) | undefined; skip);

h) proc reidf possible = (ref file f)bool:
(opened of f | (reidf of chan of f)(book of f) | undefined; skip);

i) proc chan = (ref file f)channel:
(opened of f | chan of f | undefined; skip);

j) proc make conv = (ref file f, proc(ref book)conv c)void:
(opened of f | conv of f := c(book of f) | undefined);

k) proc make term = (ref file f, string t)void: term of f := t;
l) proc on logical file end = (ref file f, proc(ref file)bool p)void:

logical file mended of f := p;
m) proc on physical file end = (ref file f, proc(ref file)bool p)void:

physical file mended of f:= p;
n) proc on page end = (ref file f, proc(ref file)bool p)void:

page mended of f := p;
o) proc on line end = (ref file f, proc(ref file)bool p)void:

line mended of f := p;
p) proc on format end = (ref file f, proc(ref file)bool p)void:

format mended of f := p;
q) proc on value error = (ref file f, proc(ref file)bool p)void:

value error mended of f := p;
r) proc on char error = (ref file f, proc(ref file , ref char)bool p)void:

char error mended of f := p;
s) proc reidf = (ref file f, string idf)void:

if opened of f ∧ reidf possible(f) ∧ idfok(idf)
then idf of book of f := idf
fi;

10.3.1.4. Opening and closing files
{ aa) When, during transput, something happens which is left undefined, for
example by explicitly calling undefined (a), this does not imply that the
elaboration is catastrophically and immediately interrupted (2.1.4.3.h), but
only that some sensible action is taken which is not or cannot be described
by this Report alone and is generally implementation-dependent.
bb) A book is “linked” with a file by means of establish(b), create(c) or

open(d). The linkage may be terminated by means of close (n), lock (o) or
scratch (p).

155

Section ALGOL 68 Revised Report A314

cc) When a file is “established” on a channel, then a book is generated
(5.2.3) with a text of the given size, the given identification string, with
putting set to true, and the logical end of the book at (1, 1, 1). An implemen-
tation may require (g) that the characters forming the identification string
should be taken from a limited set and that the string should be limited in
length, it may also prevent two books from having the same string, if the es-
tablishing is completed successfully, then the value 0 is returned; otherwise,
some nonzero integer is returned (the value of this integer might indicate why
the file was not established successfully). When a file is “created” on a chan-
nel, then a file is established with a book whose text has the default size for
the channel and whose identification string is undefined.
dd) When a file is “opened”, then the chain of backfiles is searched for

the first book which is such that match (h) returns true. (The precise
method of matching is not defined by this Report and will, in general, be
implementation dependent. For example, the string supplied as parameter
to open may include a password of some form.) If the end of the chain of
backfiles is reached or if a book has been selected, but putting of the book
yields true, or if putting to the book via the channel is possible and the
book is already open, then the further elaboration is undefined. If the file
is already open, an up gremlins provides an opportunity for an appropriate
system action on the book previously linked (in case no other copy of the file
remains to preserve that linkage).
ee) The routine associate may be used to associate a file with a value of the

mode specified by either ref [] char, ref [] [] char or ref [] [] [] char, thus
enabling such variables to be used as the book of a file,
ff) When a file is “closed”, its book is attached to the chain of backfiles

referenced by chainbfile. Some system-task is then activated by means of an
up gremlins. (This may reorganize the chain of backfiles, removing this book,
or adding further copies of it. It may also cause the book to be output on
some external device.)
gg) When a file is “locked”, its book is attached to the chain of backfiles

referenced by lockedbfile. Some system-task is then activated by means of an
up gremlins. A book which has been locked cannot be re-opened until some
subsequent system-task has re-attached the book to the chain of backfiles
available for opening.
hh) When a file is “scratched”, some system-task is activated by means of an

up gremlins. (This may cause the book linked to the file to be disposed of in
some manner.)}
a) proc ℵundefined = int: C some sensible system action yielding an inte-

156

SectionA314 van Wijngaarden, et al.

ger to indicate what has been done; it is presumed that the system
action may depend on a knowledge of any values accessible {2.1.2.c}
inside the locale of any environ which is older than that in which
this pseudo-comment is being elaborated {notwithstanding that no
ALGOL 68 construct written here could access those values} C;

b) proc establish =
(ref file file, string idf, channel chan, int p, l, c)int:
begin

down bfileprotect;
CPRIMC book book :=

(CPRIMC flex [1 : p] flex [1 :l] flex [1: c] char, (1, 1, 1), idf,
true, 1);

if file available(chan) ∧ (put of chan)(book)
∧ estab of chan ∧ ¬(pos(p, l, c) beyond max pos of chan)
∧ ¬(pos(1, 1, 1) beyond pos(p, l, c)) ∧ idfok(idf)

then
(opened of file | up gremlins | up bfileprotect);
file :=

(book, text of book, chan, skip, skip,
/c state: /c heap bool := false, heap bool := true, heap bool

:= false, heap bool := false, heap bool := true,
heap pos := (1, 1, 1), ˝˝, (standconv of chan)(book),

/c event routines: /c false, false, false, false, false, false,
(ref file f, ref char a)bool: false);

(¬bin possible(file) i | set char mood(file));
0

else up bfileprotect; undefined
fi

end;

c) proc create = (ref file file, channel chan)int:
begin pos max pos = max pos of chan;

establish(file, skip, chan, p of max pos, l of max pos, c of max pos)
end;

d) proc open = (ref file file, string idf, channel chan)int:
begin

down bfileprotect;
if file available(chan)
then ref ref bfile bf := chainbfile; bool found := false;

while (ref bfile(bf) :=/ : nil) ∧ ¬found

157

Section ALGOL 68 Revised Report A314

do
if match(idf, chan, book of bf)
then found := true
else bf := next of bf
fi

od;
if ¬found
then up bfileprotect; undefined
else ref book book := book of bf;

if putting of book ∨ (put of chan)(book) ∧ users of book >0
then

up bfileprotect; undefined /c in this case opening is
inhibited by other users - the system may either
wait, or yield nonzero (indicating unsuccessful
opening) immediately /c

else
users of book +:= 1;
((put of chan)(book) | putting of book := true);
ref ref bfile(bf) := next of bf; /c remove bfile from chain /c
(opened of file | up gremlins | up bfileprotect);
file :=

(book, text of book, chan, skip, skip,
/c state: /c heap bool := false, heap bool := false,

heap bool := false, heap bool := false,
heap bool := true, heap pos := (1, 1, 1), ˝˝,
(standconv of chan)(book),

/c event routines: /c false, false, false, false, false,
false, (ref file f, ref char a)bool: false);

(¬bin possible(file) | set char mood(file));
(¬get possible(file) | set write mood(file));
(¬put possible(file) | set read mood(file));
0

fi
fi

else up bfileprotect; undefined
fi

end;
e) proc associate =

(ref file file, ref [][][] char sss)void:
if int p = lwb sss; int l = lwb sss [p]; int c = lwb sss[p][l];

158

SectionA314 van Wijngaarden, et al.

p = 1 ∧ l = 1 ∧ c = 1
then

proc t = (ref book a)bool: true;
proc f = (ref book a)bool: false;
channel chan = (t, t, t, t, f, f, f, bool: false,

pos: (max int, max int, max int), skip, skip);
(opened of file | down bfileprotect; up gremlins);
file :=

(heap book := (skip, (upb sss + 1,1,1), skip, true,1), sss, chan,
skip, skip,

/c state: /c heap bool := false, heap bool := false,
heap bool := true, heap bool := false,
heap bool := true,
heap pos := (1, 1, 1), ˝˝, skip,

/c event routines: /c false, false, false, false, false, false,
(ref file f, ref char a)bool: false)

else undefined
fi;

f) proc ℵfile available = (channel chan)bool:
C true if another file, at this instant of time, may be opened on

’chan’ and false otherwise C;
g) proc ℵidf ok = (string idf)bool:

C true if ’idf’ is acceptable to the implementation as the identifica-
tion of a new book and false otherwise C;

h) proc ℵmatch =
(string idf, channel chan, ref book book name)bool:
C true if the book referred to by ’book name’ may be identified

by ’idf’, and if the book may legitimately be accessed through
’chan’, and false otherwise C;

i) proc ℵfalse = (ref file file)bool: false
/c this is included for brevity in ’establish’, ’open’ and ’associate’ /c;

j) proc ℵset write mood = (ref file f)void:
if ¬put possible(f) ∨ ¬set possible(f) ∧ bin mood of f ∧ read mood of f
then undefined
else ref bool(read mood of f) := false; ref bool(write mood of f) :=

true
fi;

k) proc ℵset read mood = (ref file f)void:
if ¬get possible(f) ¬set possible(f) ∧ bin mood of f ∧ write mood of f

159

Section ALGOL 68 Revised Report A314

then undefined
else ref bool(read mood of f) := true; ref bool(write mood of f) :=

false
fi;

l) proc ℵset char mood = (ref file f)void:
if ¬set possible(f) ∧ bin mood of f
then undefined
else ref bool(char mood of f) := true; ref bool(bin mood of f) := false
fi;

m) proc ℵset bin mood = (ref file f)void:
if ¬bin possible(f) ∨ ¬set possible(f) ∧ char mood of f
then undefined
else ref bool(char mood of f):= false; ref bool(bin mood of f):= true
fi;

n) proc close = (ref file file)void:
if opened of file
then

down bfileprotect;
ref bool(opened of file) := false;
ref book book = book of file;
putting of book := false; users of book -:= 1;
(text of file | (flextext): chainbfile :=

CPRIMC bfile := (book, chainbfile));
up gremlins

fi;
o) proc lock (ref file file)void:

if opened of file
then

down bfileprotect;
ref bool(opened of file) := false;
ref book book = book of file;
putting of book := false; users of book -:= 1;
(text of file | (flextext): lockedbfile :=

CPRIMC bfile = (book, lockedbfile));
up gremlins

fi;
p) proc scratch = (ref file file)void:

if opened of file
then

160

SectionA315 van Wijngaarden, et al.

down bfileprotect;
ref bool(opened of file) := false;
putting of book of file := false;
users of book of file -:= 1;
up gremlins

fi;

10.3.1.5. Position enquiries
{ aa) The “current position” of a book opened on a given file is the value
referred to by the cpos field of that file. It is advanced by each transput
operation in accordance with the number of characters written or read.

If c is the current character number and lb is the length of the current
line, then at all times 1 ≤ c ≤ lb + 1. c = 1 implies that the next transput
operation will be to the first character of the line and c = lb + 1 implies
that the line has overflowed and that the next transput operation will call
an event routine. If lb = 0, then the line is empty and is therefore always
in the overflowed state. Corresponding restrictions apply to the current line
and page numbers. Note that, if the page has overflowed, the current line is
empty and, if the book has overflowed, the current page and line are both
empty (e).
bb) The user may determine the current position by means of the routines

char number, line number and page number (a, b, c).
cc) If the current position has overflowed the line, page or book, then it is

said to be outside the “physical file” (f, g, h).
dd) If, on reading, the current position is at the logical end, then it is

said to be outside the “logical file” (i).} {Each routine in this section calls
undefined if the file is not open on entry.}
a) proc char number = (ref file f)int:

(opened of f | c of cpos of f | undefined);
b) proc line number = (ref file f)int:

(opened of f | l of cpos of f | undefined);
c) proc page number = (ref file f)int:

(opened of f | p of cpos of f | undefined);
d) proc ℵcurrent pos = (ref file f)pos:

(opened of f | cpos of f | undefined; skip);
e) proc ℵbook bounds = (ref file f)pos:

begin pos cpos = current pos(f);
int p = p of cpos, l = l of cpos;

161

Section ALGOL 68 Revised Report A316

case text of f in
(text t1):

(int pb = upb t1;
int lb = (p ≤ 0 ∨ p>pb | 0 | upb t1 [p]);
int cb = (l ≤ 0 ∨ l>lb | 0 | upb t1[p][l]);
(pb, lb, cb)),

(flextext t2):
(int pb = upb t2;

int lb = (p ≤ 0 ∨ p>pb | 0 upb t2[p]);
int cb = (l ≤ 0 ∨ l>lb | 0 | upb t2[p] [i]);
(pb, lb, cb))

esac
end;

f) proc ℵline ended = (ref file f)bool:
(int c = c of current pos(f); c > c of book bounds(f));

g) proc ℵpage ended = (ref file f)bool:
(int l = l of current pos(f); l > l of book bounds(f));

h) proc ℵphysical file ended = (ref file f)bool:
(int p = p of current pos(f); p > p of book bounds(f));

i) proc ℵlogical file ended = (ref file f)bool:
(lpos of book of f beyond current pos(f));

10.3.1.6. Layout routines
{ aa) A book input from an external medium by some system-task may
contain lines and pages not all of the same length. Contrariwise, the lines
and pages of a book which has been established (10.3.1.4.cc) are all initially
of the size specified by the user. However if, during output to a compressible
book (10.3.1.3.ff), newline (newpage) is called with the current position in
the same line (page) as the logical end of the book, then that line (the page
containing that line) is shortened to the character number (line number) of
the logical end. Thus print((˝abcde˝, newline)) could cause the current line
to be reduced to 5 characters in length. Note that it is perfectly meaningful
for a line to contain no characters and for a page to contain no lines.

Although the effect of a channel whose books are both compressible and
of random access (10.3.1.3.ff) is well defined, it is not anticipated that such a
combination is likely to occur in actual implementations.
bb) The routines space (a), newline (c) and newpage (d) serve to advance

the current position to the next character, line or page, respectively. They
do not, however, (except as provided in cc below) alter the contents of the

162

SectionA316 van Wijngaarden, et al.

positions skipped over. Thus print((˝a˝, backspace, space)) has a different
effect from print((˝a˝, backspace, blank)).

The current position may be altered also by calls of backspace (b), set
char number (k) and, on appropriate channels, of set (i) and reset (j).

cc) The contents of a newly established book are undefined and both its
current position and its logical end are at (1, 1, 1). As output proceeds, it is
filled with characters and the logical end is moved forward accordingly. If,
during character output with the current position at the logical end of the
book, space is called, then a space character is written (similar action being
taken in the case of newline and newpage if the book is not compressible).

A call of set which attempts to leave the current position heyond the
logical end results in a call of undefined (a sensible system action might then
be to advance the logical end to the current position, or even to the physical
end of the book). There is thus no defined way in which the current position
can be made to be beyond the logical end, nor in which any character within
the logical file can remain in its initial undefined state.

dd) A reading or writing operation, or a call of space, newline, newpage,
set or set char number, may bring the current position outside the physical
or logical file (10.3.1.5.cc, dd), but this does not have any immediate conse-
quence. However, before any further transput is attempted, or a further call
of space, newline or newpage (but not of set or set char number) is made, the
current position must be brought to a “good” position. The file is “good” if,
on writing (reading), the current position is not outside the physical (logical)
file (10.3.1.5.cc, dd). The page (line) is “good” if the line number (character
number) has not overflowed. The event routine (10.3.1.3.cc) corresponding to
on logical file end, on physical file end, on page end or on line end is therefore
called as appropriate. Except in the case of formatted transput (which uses
check pos, 10.3.3.2.c), the default action, if the event routine returns false,
is to call, respectively, undefined, undefined, newpage or newline. After this
(or if true is returned), if the position is still not good, an event routine (not
necessarily the same one) is called again.

ee) The state of the file (10.3.1.3.bb) controls some effects of the layout
routines. If the read/write mood is reading, the effect of space, newline
and newpage, upon attempting to pass the logical end, is to call the event
routine corresponding to on logical file end with default action undefined; if
it is writing, the effect is to output spaces (or, in bin mood, to write some
undefined character) or to compress the current line or page (see cc). If the
read/write mood is not determined on entry to a layout routine, undefined is
called. On exit, the read/write mood present on entry is restored.}

163

Section ALGOL 68 Revised Report A316

a) proc space = (ref file f)void:
if ¬opened of f then undefined
else

bool reading =
(read mood of f | true |: write mood of f | false
| undefined; skip);

(¬get good line(f, reading) | undefined);
ref pos cpos = cpos of f;
if reading then c of cpos +:= 1
else

if logical file ended(f)then
if bin mood of f then

(text of f | (flextext t2):
t2[p of cpos] [l of cpos] [c of cpos] := skip);

c of pos +:= 1; lpos of book of f := cpos
else put char(f, ˝˝)
fi

else c of cpos +:= 1
fi

fi
fi ;

b) proc backspace = (ref file f)void:
if ¬opened of f then undefined
else ref int c = c of cpos of f;

(c>1 | c-:= 1 | undefined)
fi;

c) proc newline = (ref file f)void:
if ¬opened of f then undefined
else

bool reading =
(read mood of f | true |: write mood of f | false
| undefined; skip);

(¬get good page(f, reading) | undefined);
ref pos cpos = cpos of f, lpos = lpos of book of f;
if p of cpos = p of lpos ∧ l of cpos = l of lpos
then c of cpos := c of lpos;

if reading then newline(f)
else

if compressible(f)
then ref int pl = p of lpos, ll = l of lpos;

164

SectionA316 van Wijngaarden, et al.

flextext text = (text of f | (flextext t2): t2);
text [pl] [ll] text [pl] [ll] [: c of lpos - 1]

else while line ended(f) do space(f) od
fi;
cpos := lpos := (p of cpos, l of cpos + 1, 1)

fi
else cpos := (p of cpos, l of cpos + 1, 1)
fi

fi;

d) proc newpage = (ref file f)void:
if ¬opened of f then undefined
else

bool reading =
(read mood of f) | true |: write mood of f | false
| undefined; skip);

(¬get good file(f, reading) | undefined);
ref pos cpos = cpos of f, lpos = lpos of book of f;
if p of cpos = p of lpos
then cpos := lpos;

if reading then newpage(f)
else

if compressible(f) ∧ l of lpos ≤ l of book bounds(f)
then ref int pl = p of lpos, ll = l of lpos;

flextext text = (text of f | (flextext t2): t2);
text[pl] [ll] text [pl] [ll]t: c of lpos - 1];
text [pl] := text [pl] [: (c of lpos> 1 | ll | ll - 1)]

else while page ended(f) do newline(f) od
fi;
cpos := lpos := (p of cpos + 1, 1, 1)

fi
else cpos := (p of cpos + 1, 1, 1)
fi

fi;
{Each of the following 3 routines either returns true, in which case

the line, page or file is good (dd), or it returns false, in which case the
current position may be outside the logical file or the page number may
have overflowed, or it loops until the matter is resolved, or it is terminated
by a jump. On exit, the read/write mood is as determined by its reading
parameter.}

165

Section ALGOL 68 Revised Report A316

e) proc ℵget good line = (ref file f, bool reading)bool:
begin bool not ended;

while not ended := get good page(f, reading);
line ended(f) ∧ not ended

do (¬(line mended of f)(f) | set mood(f, reading); newline(f)) od;
not ended

end;

f) proc ℵget good page = (ref file f, bool reading)bool:
begin bool not ended;

while not ended := get good file(f, reading);
page ended(f) ∧ not ended

do (¬(page mended of f)(f) | set mood(f, reading); newpage(f)) od;
not ended

end;

g) proc ℵget good file = (ref file f, bool reading) bool:
begin bool not ended := true;

while set mood(f, reading);
not ended ∧

(reading | logical file ended | physical file ended)(f)
do not ended := (reading | logical file mended of f
| physical file mended of f)(f)

od;
not ended

end;

h) proc ℵset mood = (ref file f, bool reading)void:
(reading | set read mood(f) | set write mood(f));

i) proc set = (ref file f, int p, l, c)void:
if ¬opened of f ∨ ¬get possible(f) then undefined
else bool reading =

(read mood of f | true |: write mood of f | false undefined; skip);
ref pos cpos = cpos of f, lpos = lpos of book of f;
pos ccpos = cpos;
if (cpos := (p, l, c)) beyond lpos
then cpos := lpos;

(¬(logical file mended of f)(f) | undefined);
set mood(f, reading)

elif pos bounds = book bounds(f);
p < 1 ∨ p > p of bounds + 1
∨ l < 1 ∨ l > l of bounds + 1

166

SectionA321 van Wijngaarden, et al.

∨ c < 1 ∨ c > c of bounds + 1
then cpos := ccpos; undefined
fi

fi;

j) proc reset = (ref file f)void:
if ¬opened of f ∨ ¬reset possible(f) then undefined
else

ref bool (read mood of f):= ¬put possible(f);
ref bool (write mood of f) := ¬get possible(f);
ref bool (char mood of f) := ¬bin possible(f);
ref bool (bin mood of f) := false;
ref pos (cpos of f) := (1, 1, 1)

fi;

k) proc set char number = (ref file f, int c)void:
if ¬opened of f then undefined
else ref ref pos cpos = cpos of f;

while c of cpos =/ c
do

if c < 1 ∨ c > c of book bounds(f) + 1
then undefined
elif c > c of cpos
then space(f)
else backspace(f)
fi
end

fi;

10.3.2. Transput values

10.3.2.1. Conversion routines

{The routines whole, fixed and float are intended to be used with the
formatless output routines put, print and write when it is required to have
a little extra control over the layout produced. Each of these routines has
a width parameter whose absolute value specifies the length of the string to
be produced by conversion of the arithmetic value V provided. Each of fixed
and float has an after parameter to specify the number of digits required
after the decimal point, and an exp parameter in float specifies the width
allowed for the exponent. If V cannot be expressed as a string within the
given width, even when the value of after, if provided, has been reduced, then

167

Section ALGOL 68 Revised Report A321

a string filled with errorchar (10.2.1.t) is returned instead. Leading zeroes are
replaced by spaces and a sign is normally included. The user can, however,
specify that a sign is to be included only for negative values by specifying
a negative width. If the width specified is zero, then the shortest possible
string into which V can be converted, consistently with the other parameters,
is returned. The following examples illustrate some of the possibilities:

print(whole (i, -4))
which might print ˝ 0˝, ˝ 99˝, ˝ -99˝, ˝9999˝ or, if i were
greater than 9999, ˝****˝, where ˝*˝ is the yield of errorchar;

print(whole (i, 4))
which would print ˝ +99˝ rather than ˝ 99˝;

print(whole (i, 0))
which might print ˝0˝, ˝99˝, ˝-99˝, ˝9999˝ or ˝99999˝;

print(fixed (x, -6,3))
which might print ˝ 2.718˝, ˝27.183˝ or ˝271.83˝ (in which one
place after the decimal point has heen sacrificed in order to fit the
number in);

print(fixed (x, 0,3))
which might print ˝2.718˝, ˝27.183˝ or ˝271.823˝;

print(float(x, 9,3,2))
which might print ˝-2.71810+0˝, ˝+2.71810-1˝, or ˝+2.7210+11˝ (in
which one place after the decimal point has been sacrificed in order
to make room for the unexpectedly large exponent).}

a) mode ℵnumber= union (〈 L real 〉, 〈 L int 〉);
b) proc whole = (number v, int width)string:

case v in
〈 (L int x):

(int length := abs width - (x < L 0 ∨ width > 0 | 1 | 0),
L int n := abs x;
if width = 0 then
L int m := n; length := 0;
while m %:= L 10; length +:= 1; m =/ L 0
do skip od

fi;
string s := subwhole (n, length);
if length = 0 | ¬char in string (errorchar, loc int, s)
then abs width × errorchar
else

(x< L 0 | ˝-˝ |: width>0 | ˝+˝ | ˝˝) plusto s;

168

SectionA321 van Wijngaarden, et al.

(width =/ 0 (abs width - upb s) × ˝ ˝ plusto s);
s

fi)〉,
〈 (L real x): fixed (x, width, 0) 〉

esac;

c) proc fixed (number v, int width, after)string:
case v in
〈 (L real x):

if int length := abs width - (x < L 0 ∨ width>0 | 1 | 0);
after ≥0 ∧ (length> after ∨ width = 0)

then L real y = abs x;
if width =0
then length := (after = 0 | 1 | 0);

while y + L.5× L.1 ↑ after≥L10 ↑ length
do length +:= 1 od;
length +:= (after = 0 | 0 | after + 1)

fi;
string s := sub fixed (y, length, after);
if ¬char in string (errorchar, loc int, s)
then(length> upb s∧y< L 10 | ˝0˝ plusto s);

(x< L 0 | ˝-˝ |: width>0 | ˝+˝ |˝˝) plusto s;
(width =/ 0 | (abs width - upb s) × ˝ ˝ plusto s);
s

elif after> 0
then fixed (v, width, after - 1)
else abs width × errorchar
fi

else undefined; abs width × errorchar
fi〉,

〈 (L int x): fixed (L real (x), width, after) 〉
esac;

d) proc float = (number v, int width, after, exp)string:
case v in
〈 (L real x):

if int before = abs width - abs exp - (after =/ 0| after + 1| 0) -2;
sign before + sign after> 0

then string s, L real y := abs x, int p := 0;
` standardize(y, before, after, p);
s :=

169

Section ALGOL 68 Revised Report A321

fixed(K sign x × y, sign width × (abs width - abs exp -
1), after) + ˝10˝ + whole (p, exp);

if exp = 0 ∨ char in string (errorchar, loc int, s)
then

float(x, width, (after =/ 0| after - 1|0),
(exp>0 | exp + 1 | exp-1))

else s
fi

else undefined; abs width × errorchar
fi〉,

〈 (L int x): float(L real (x), width, after, exp) 〉
esac;

e) proc ℵsubwhole = (number v, int width)string:
/c returns a string of maximum length ’width’ containing a decimal

representation of the positive integer ’v’ /c
case v in
〈 (L int x):

begin string s, L int n := x;
while dig char (S (n mod L 10)) plusto s;

n %:= L10; n =/ L 0
do skip od;
(upb s> width | width × errorchar | s)

end 〉
esac;

f) proc ℵsubfixed = (number v, int width, after)string:
/c returns a string of maximum length ’width’ containing a rounded

decimal representation of the positive real number ’v’; if ’after’ is
greater than zero, this string contains a decimal point followed by
’after’ digits s /c

case v in
〈 (L real x):

begin string s, int before := 0;
L real y := x + L.5 x L.1 ↑ after;
proc choosedig = (ref L real y)char:

dig char((int c := S entier(y ×:= L10.0); (c>9 | c := 9);
y -:= Kc; c));

while y > L 10.0 ↑ before do before +:= 1 od;
y /:= L10.0 ↑ before;
to before do s plusab choosedig(y) od;
(after> 0 | s plusab ˝.˝);

170

SectionA321 van Wijngaarden, et al.

to after do s plusab choosedig(y) od;
(upb s> width | width × errorchar | s)

end 〉
esac;

g) proc ℵ` standardize = (ref L real y, int before, after, ref int p)void:
/c adjusts the value of ’y’ so that it may be transput according to the

format $ n(before)d, n(after)d $; ’p’ is set so that y × 10 ↑ p is
equal to the original value of ’y’ /c

begin
L real g = L10.0 ↑ before; L real h = g × L.1;
while y > g do y ×:= L.1; p +:= 1 od;
(y =/ L 0.0| while y<h do y ×:= L10.0; p-:= l od);
(y + L.5 × L.1 ↑after≥g | y:=h; p +:= 1)

end;

h) proc ℵdig char = (int x)char: ˝0123456789abcdef˝[x + 1];

i) proc ℵstring to ` int = (string s, int radix, ref L int i)bool:
/c returns true if the absolute value of the result is < ` max int /c
begin
L int lr = K radix; bool safe := true;
L int n := L 0, L int m = ` max int lr;
L int m1 = ` max int - m × lr;
for i from 2 to upb s
while L int dig = K char dig(s [i]);

safe := n < m ∨ n = m ∧ dig ≤ m1
do n := n × lr + dig od;
if safe then i := (s[l]=˝+˝ | n | -n); true else false fi

end;

j) proc ℵstring to ` real = (string s, ref L real r)bool:
/c returns true if the absolute value of the result is < ` max real /c
begin

int e := upb s + 1;
char in string(˝ ˝, e, s);
int p := e; char in string(˝. ˝, p, s);
int j := 1, length =0, L real x := L 0.0;
/c skip leading zeroes: /c
for i from 2 to e -1
while s[i]=˝0˝ ∨ s[i] =˝.˝ ∨ s[i] =˝˝
do j := i od;
for i from j + 1 to e - 1 while length < ` real width

171

Section ALGOL 68 Revised Report A321

do
if s [i] =/ ˝.˝
then x := x × L10.0 + K char dig(s[j := i]); length +:= i
fi /c all significant digits converted /c

od;
/c set preliminary exponent: /c
int exp := (p>j | p-j-i | p-j), expart := 0;
/c convert exponent part: /c
bool safe :=

if e< upb s
then string to int(s [e + 1:], 10), expart)
else true
fi;

/c prepare a representation of ` max real to compare with the L real
value to be delivered: /c

L real max stag := ` max real, int max exp := t);
` standardize(max stag, length, 0, max exp); exp +:= expart;
if ¬safe ∨ (exp> max exp ∨ exp = max exp ∧ x> max stag)
then false
else r := (s[1]=˝+˝ | x | -x) × L 10.0 ↑ exp; true
fi

end;

k) proc ℵchar dig = (char x)int:
(x = ˝ ˝|0|int i; char in string(x, i, ˝0123456789abcdef˝); i - 1);

l) proc char in string = (char c, ref int i, string s)bool:
(bool found := false;

for k from lwb s to upb s while found
do (c = s[k] | i := k; found := true) od;
found);

m) int ` int width =
/c the smallest integral value such that ’` max int’ may be converted

without error using the pattern n(` int width)d /c
(int c := 1;

while L10 ↑ (c-1)< L .1 × ` maxint do c +:= 1 od;
c);

n) int ` real width =
/c the smallest integral value such that different strings are produced by

conversion of ’L1.0’ and of ’L1.0 + ` small real’ using the pattern
d, n(` real width - i)d /c

172

SectionA323 van Wijngaarden, et al.

1 - S entier(` ln(` small real) / ` ln(L 10));

o) int ` exp width =
/c the smallest integral value such that ’` max real’ may be converted

without error using the pattern d.n(` real width - i)d e n(` exp
width)d /c

1 + S entier(` ln(` ln(` max real)/` ln(L 10))/` ln(L 10));

10.3.2.2. Transput modes

a) mode ℵsimplout = union(〈 L int 〉 , 〈 L real 〉, 〈 L compl 〉 , bool,
〈 L bits 〉 , char, []char);

b) mode ℵouttype = C an actual-declarer specifying a mode united from
{2.1.3.6.a} a sufficient set of modes none of which is 'void' or con-
tains 'flexible', 'reference to', 'procedure' or 'union of' C;

c) mode ℵsimplin = union(〈ref L int 〉, 〈 ref L real 〉, 〈 ref L compl t〉,
ref bool, 〈 ref L bits 〉, ref char, ref [] char, ref string);

d) mode ℵintype = C an actual-declarer specifying a mode united from
{2.1.3.6.a} 'reference to flexible row of character' together with a suffi-
cient set of modes each of which is 'reference to' followed by a mode
which does not contain 'flexible', 'reference to', 'procedure' or 'union
of' C;

{See the remarks after 10.2.3.1 concerning the term “sufficient set”.}

10.3.2.3. Straightening

a) op ℵstraightout = (outtype x) [] simplout:
C the result of “straightening” ’x’ C;

b) op ℵstraightin = (intype x) [] simplin:
C the result of straightening ’x’ C;

c) The result of “straightening” a given value V is a multiple value W {of
one dimension} obtained as follows:
• it is required that V (if it is a name) be not nil;
• a counter i is set to 0:
• V is “traversed” {d} using
• W is composed of, a descriptor ((1, i)) and the elements obtained by
traversing V :
• if V is not (is) a name, then the mode of the result is the mode specified
by [] simplout ([] simplin).

d) A value V is “traversed”, using a counter i, as follows:

173

Section ALGOL 68 Revised Report A331

If V is (refers to) a value from whose mode that specified by simplout is
united,

then
• i is increased by one:
• the element of W selected by (i) is V :

otherwise,
Case A: V is (refers to) a multiple value (of one dimension) having a

descriptor ((l, u)):
• for j = l, . . . , u, the element (the subname) of V selected by (j) is
traversed using i;

Case B: V is (refers to) a multiple value (of n dimensions, n ≥ 2)
whose descriptor is ((l1, u1), . . . , (ln, un)) where n ≥ 2:

• for j = l1, . . . u1, the multiple value selected {2.1.3.4.i} by (the
name generated {2.1.3.4.j} by) the trim (j, (l2, u2, 0), . . . , (ln, un, 0))
is traversed using i;

Case C: V is (refers to) a structured value V1:
• the fields (the subnames of V referring to the fields) of V1, taken
in order, are traversed using i.

10.3.3. Formatless transput

{In formatless transput, the elements of a “data list” are transput, one
after the other, via a specified file. Each element of the data list is either
a layout routine of the mode specified by proc (ref file)void (10.3.1.6) or a
value of the mode specified by outtype (on output) or intype (on input). On
encountering a layout routine in the data list, that routine is called with the
specified file as parameter. Other values in the data list are first straightened
(10.3.2.3) and the resulting values are then transput via the given file one
after the other.

Transput normally takes place at the current position but, if there is no
room on the current line (on output) or if a readable value is not present
there (on input), then first, the event routine corresponding to on line end
(or, where appropriate, to on page end, on physical file end or on logical file
end) is called, and next, if this returns false, the next “good” character
position of the book is found, viz., the first character position of the next
nonempty line.}

10.3.3.1. Formatless output

{For formatless output, put (a) and print (or write) (10.5.1.d) may be
used. Each straightened value V from the data list is output as follows:

174

SectionA331 van Wijngaarden, et al.

aa) If the mode of V is specified by L int , then first, if there is not enough
room for ` int width + 2 characters on the remainder of the current line, a
good position is found on a subsequent line (see 10.3.3): next, when not at
the beginning of a line, a space is given and then V is output as if under the
control of the picture n(` int width - 1)z + d.

bb) If the mode of V is specified by L real , then first, if there is not enough
room for ` real width + ` exp width + 5 characters on the current line, then a
good position is found on a subsequent line: next, when not at the beginning
of a line, a space is given and then V is output as if under control of the
picture

+d . n(` real width - 1)den(` exp width - 1)z +d.

cc) If the mode of V is specified by L compl , then first, if there is not
enough room for 2 × (` real width + ` exp width) + 11 characters on the
current line, then a good position is found on a subsequent line: next, when
not at the beginning of a line, a space is given and then V is output as if
under control of the picture

+d.n(` real width - 1)den(` exp width - 1)z+d˝ ˝i
+d.n(` real width - 1)den(` exp width - 1)z+d .

dd) If the mode of V is specified by bool, then first, if the current line is full,
a good position is found on a subsequent line: next, if V is true (false), the
character yielded by flip (flop) is output (with no intervening space).

ee) If the mode of V is specified by L bits , then the elements of the only
field of V are output (as in dd) one after the other (with no intervening
spaces, and with new lines being taken as required),

ff) If the mode of V is specified by char, then first, if the current line is
full, a good position is found on a subsequent line: next V is output (with no
intervening space).

gg) If the mode of V is specified by [] char, then the elements of Vare
output (as in ff) one after the other (with no intervening spaces, and with
new lines being taken as required).}
a) proc put = (ref file f, [] union(outtype, proc(ref file)void) x)void:

if opened of f then
for i to upb x
do case set write mood(f); set char mood(f); x [i] in

(proc(ref file)void pf): pf(f),
(outtype ot):
begin

[] simplout y = straightout ot;

175

Section ALGOL 68 Revised Report A331

〈 proc ` real conv = (L real r)string:
float(r, ` real width + ` exp width +4,
` real width - 1, ` exp width + 1)〉 ;

for j to upb y
do case y[j] in

(union(number, 〈 L compl 〉) nc):
begin string s :=

case nc in
〈 (L int k): whole(k, ` int width + 1)〉 ,
〈 (L real r): ` real conv(r)〉 ,
〈 (L compl z): ` real conv(re z) + ˝ ⊥˝

+` real conv(im z)〉
esac;

ref ref pos cpos cpos of f, int n = upb s;
while

nextpos(f);
(n > c of book bounds(f) | undefined);
c of cpos + (c of cpos = 1 | n | n+1)>

c of book bounds(f) + 1
do (¬(line mended of f)(f) | put(f, newline));

set write mood(f)
od;
(c of cpos =/ 1 | ˝,˝ plusto s);
for k to upb s do put char(f, s [k]) od

end /c numeric /c ,
(bool b): (next pos(f); put char(f, (b | flip | flop))),
〈 (L bits lb):

for k to ` bits width
do put(f, (` F of lb)[k]) od〉 ,

(char k): (nextpos(f); put char(f, k)),
([] char ss):

for k from lwb ss to upb ss
do next pos(f); put char(f, ss [k]) od

esac od
end

esac od
else undefined
fi;

b) proc ℵput char = (ref file f, char char)void:
if opened of f ∧ ¬line ended(f)

176

SectionA331 van Wijngaarden, et al.

then ref pos cpos = cpos of f, lpos = lpos of book of f;
set char mood(f); set write mood(f);
ref int p = p of cpos, l = l of cpos, c = c of cpos;
char k; bool found := false;
case text of f in

(text): (k := char; found := true),
(flextext):

for i to upb F of conv of f while found
do struct(char internal, external) key = (F of conv of f) [i];

(internal of key = char k := external of key;
found := true)

od
esac;
if found then

case text of f in
(text t1): t1 [p] [l] [c] := k,
(flextext t2): t2[p] [l] [c] := k

esac;
c+:= 1;
if cpos beyond lpos then lpos := cpos
elif ¬set possible(f) ∧ pos(p of lpos, l of lpos, l) beyond cpos
then lpos := cpos;

(compressible(f) |
C the size of the line and page containing the logi-

cal end of the book and of all subsequent lines
and pages may be increased {e.g., to the sizes
with which the book was originally established
(10.3.1.4.cc) or to the sizes implied by maxpos of
chan of f} C)

fi
else k := ˝ ˝;

if ¬(char error mended of f)(f, k)
then undefined; k := ˝ ˝
fi;
check pos(f); put char(f, k)

fi
else undefined
fi /c write mood is still set /c ;

c) proc ℵnext pos = (ref file f)void:
(get good line(f, read mood of f) | undefined)

177

Section ALGOL 68 Revised Report A332

/c the line is now good {10.3.1.6.dd} and the read/write mood is as
on entry /c ;

10.3.3.2. Formatless input

{For formatless input, get (a) and read (10.5.1.e) may be used. Values
from the book are assigned to each straightened name N from the data list as
follows:

aa) If the mode of N is specified by ref L int , then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from the
book that could be “indited” (10.3.4.1.1.kk) under the control of some picture
of the form +n(k1)˝ ˝n(k2)dd or n(k2)dd (where k1 and k2 yield arbitrary
nonnegative integers): this string is converted to an integer and assigned to
N; if the conversion is unsuccessful, the event routine corresponding to on
value error is called.

bb) If the mode of N is specified by ref L real , then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from the
book that could be indited under the control of some picture of the form +
n(k1)˝ ˝ n(k2)d or n(k2)d followed by .n(k3)d d or by ds., possibly followed
again by e n(k4)˝ ˝ + n(k,5)˝ ˝ n(k6)d d or by e n(k5)˝ ˝ n(k6)d d; this
string is converted to a real number and assigned to N; if the conversion is
unsuccessful, the event routine corresponding to on value error is called.

cc) If the mode of N is specified by ref L compl , then first, a real number
is input (as in bb) and assigned to the first subname of N; next, the book is
searched for the first character that is not a space; next, a character is input
and, if it is not ˝⊥˝ or ˝i˝, then the event routine corresponding to on char
error (10.3.1.3.cc) is called, the suggestion being ˝⊥˝; finally, a real number
is input and assigned to the second subname of N.

dd) If the mode of N is specified by ref bool, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, a character is read: if this character
is the same as that yielded by flip (flop), then true (false) is assigned to
N; otherwise, the event routine corresponding to on char error is called, the
suggestion being flop.

ee) If the mode of N is specified by ref L bits , then input takes place (as in
dd) to the subnames of N one after the other (with new lines being taken as
required).

178

SectionA332 van Wijngaarden, et al.

ff) If the mode of N is specified by ref char, then first, if the current line is
exhausted, a good position is found on a subsequent line; next, a character is
read and assigned to N.

gg) If the mode of N is specified by ref [] char, then input takes place (as in
ff) to the subnames of N one after the other (with new lines being taken as
required).

hh) If the mode of N is specified by ref string, then characters are read until
either

(i) a character is encountered which is contained in the string associated
with the file by a call of the routine make term, or

(ii) the current line is exhausted, whereupon the event routine corre-
sponding to on line end (or, where appropriate, to on page end, on
physical file end or on logical file end) is called; if the event routine
moves the current position to a good position (see 10.3.3), then input
of characters is resumed.

The string consisting of the characters read is assigned to N (note that,
if the current line has already been exhausted, or if the current position is at
the start of an empty line or outside the logical file, then an empty string is
assigned to N).}
a) proc get = (ref file f, [] union(intype, proc(ref file)void) x)void:

if opened of f then
for i to upb x
do case set read mood(f); set char mood(f); x [i] in

(proc(ref file)void pf): pf(f),
(intype it):
begin

[] simplin y = straightin it; char k; bool k empty;
op ? = (string s)bool:

/c true if the next character, if any, in the current line is
contained in ’s’ (the character is assigned to ’k’) and
false otherwise /c

if k empty ∧ (line ended(f) ∨ logical file ended(f))
then false
else (k empty ∧get char(f, k));

k empty := char in string(k, loc int, s)
fi;

op ? = (char c)bool: ? string(c);
prio ! = 8;
op ! = (string s, char c)char:

179

Section ALGOL 68 Revised Report A332

/c expects a character contained in ’s’; if the character read
is not in ’s’, the event routine corresponding to ’on
char error’ is called with the suggestion ’c’ /c

if (k empty | check pos(f); get char(f, k));
k empty := true;
char in string(k, loc int, s)

then k
else char sugg := c;

char cc = if (charerror mended of f)(f, sugg) then
(char in string(sugg, loc int, s)
| sugg
| undefined; c)

else undefined; c
fi;

set read mood(f); cc
fi;

op ! = (char s, c)char: string(s)! c;
proc skip initial spaces = void:

while (k empty | next pos(f)); ?˝ ˝ do skip od;
proc skip spaces = void:

while ?˝ ˝ do skip od;
proc read dig = string:

(string t := ˝0123456789˝! ˝0˝;
while ?˝0123456789˝ do t plusab k od; t);

proc read sign = char:
(char t = (skipspaces; ?˝+-˝ | k | ˝+˝);

skip spaces; t);
proc read num = string:

(char t = read sign; t + read dig);
proc read real = string:

(string tread sign;
(¬?˝.˝ | t plusab read dig | k empty := false);
(?˝.˝ | t plusab ˝.˝ + read dig);
(?˝10\e˝ | t plusab ˝10˝ + read num); t);

for j to upb y
do bool incomp := false; k empty := true;

case y [j] in
〈 (ref L int ii):

(skip initial spaces;
incomp := string to ` int(read num, 10, ii))〉,

180

SectionA332 van Wijngaarden, et al.

〈 (ref L real rr):
(skip initial spaces;

incomp := string to ` real(read real, rr)) 〉,
〈 (ref L compl zz):

(skip initial spaces;
incomp := string to ` real(read real, re of zz);
skip spaces; ˝i⊥˝ ! ˝⊥˝;
incomp := incomp ∨
¬string to ` real(read real, im of zz))〉

(ref bool bb):
(skip initial spaces;

bb := (flip + flop) | flop = flip),
〈 (ref L bits lb):

for i to ` bits width
do get(f, (` F of lb)[i]) od〉,

(ref char cc): (nextpos(f); get char(f, cc)).
(ref []char ss):
for i from lwb ss to upb ss
do next pos(f); get char(f, ss [i]) od,

(ref string ss):
begin string t;
while check pos(f);

if line ended(f) ∨ logical file ended(f)
then false
else get char(f, k);

k empty := ¬char in string(k, loc int, term of f)
fi

do t plusab k od;
ss := t
end

esac;
(¬k empty | backspace(f));
if incomp
then (¬(value error mended of f)(f) | undefined);

set read mood(f)
fi

od
end

esac od
else undefined

181

Section ALGOL 68 Revised Report A332

fi;
b) proc ℵget char = (ref file f, ref char char)void:

if opened of f ∧ ¬line ended(f) ∧ ¬logical file ended(f)
then ref pos cpos = cpos of f;

set char mood(f); set read mood(f);
int p = p of cpos, l = l of cpos, c = c of cpos;
c of cpos +:= 1;
char := case text of f in

(text t1): t1 [p][l][c],
(flextext t2):

(char k := t2[p][l][c];
bool found := false;
for i to upb F of conv of f while found
do struct(char internal, external) key = (F of conv of f) [i];

(external of key = k | k := internal of key;
found := true)

od;
if found then k
else k:= ˝.˝;

char cc = if (char error mended of f)(f, k)
then k
else undefined; ˝ ˝
fi;

set read mood(f); cc
fi)

esac
else undefined
fi /c read mood is still set /c ;

c) proc ℵcheck pos = (ref file f)void:
begin bool reading = read mood of f;

bool not ended := true;
while not ended := not ended ∧ get good page(f, reading);

line ended(f) ∧ not ended
do not ended := (line mended of f)(f) od

end;
{The routine check pos is used in formatted transput before each call

of put char or get char. If the position is not good (10.3.1.6.dd), it calls
the appropriate event routine, and may call further event routines if true
is returned. If the event routine corresponding to on page end returns
false, newpage is called but, if any other event routine returns false, no

182

SectionA3411 van Wijngaarden, et al.

default action is taken and no more event routines are called. On exit, the
read/write mood is as on entry, but the current position may not be good,
in which case undefined will be called in the following put char or get char.
However, check pos is also called when getting strings (hh), in which case the
string is then terminated if the current position is not good.}

10.3.4. Format texts
{In formatted transput, each straightened value from a data list (cf.

10.3.3) is matched against a constituent picture of a format-text provided by
the user. A picture specifies how a value is to be converted to or from
a sequence of characters and prescribes the layout of those characters in
the book. Features which may be specified include the number of digits,
the position of the decimal point and of the sign, if any, suppression of
zeroes and the insertion of arbitrary strings. For example, using the picture
-d.3d ˝ ˝ 3d ˝ ˝ e z+d, the value 1234.567 would be transput as the string
˝ 1.234 567io+3˝.

A “format” is a structured value (i.e., an internal object) of mode
'FORMAT', which mirrors the hierarchical structure of a format-text (which
is an external object). In this section are given the syntax of format-texts
and the semantics for obtaining their corresponding formats. The actual
formatted transput is performed by the routines given in section 10.3.5 but,
for convenience, a description of their operation is given here, in association
with the corresponding syntax.}

10.3.4.1. Collections and pictures

10.3.4.1.1. Syntax
{The following mode-declarations (taken from 10.3.5.a) are reflected in the

metaproduction rules A to K below.
A) mode format = struct(flex [1:0] piece F);
B) mode piece = struct(int cp, count, bp, flex [1: 0] collection c);
C) mode collection =union(picture, collitem);
D) mode collitem = struct(insertion i1, proc int rep, int p, insertion i2);
E) mode insertion = flex [1:0] struct(proc int rep, union(string , char) sa);
F) mode picture = struct(union(pattern, cpattern, fpattern, gpattern,

void) p, insertion i);
G) mode pattern = struct(int type, flex [1: 0] frame frames);
H) mode frame = struct(insertion i, proc int rep, bool supp, char marker);

183

Section ALGOL 68 Revised Report A3411

I) mode cpattern = struct(insertion i, int type, flex [1:0] insertion c);
J) mode fpattern = struct(insertion i, proc format pf);
K) mode gpattern = struct(insertion i, flex [1: 0] proc int spec);
}
A) FORMAT :: structured with row of PIECE field letter aleph mode.

B) PIECE :: structured with integral field letter c letter p integral
field letter c letter o letter u letter n letter t integral field
letter b letter p row of COLLECTION field letter c mode.

C) COLLECTION :: union of PICTURE COLLITEM mode.

D) COLLITEM :: structured with INSERTION field letter i digit one
procedure yielding integral field letter r letter e letter p integral
field letter p INSERTION field letter i digit two mode.

E) INSERTION ::
row of structured with procedure yielding integral field letter r letter e letter

p union of row of character character mode field letter s letter a mode.

F) PICTURE :: structured with union of PATTERN CPATTERN FPATTERN
GPATTERN void mode field letter p INSERTION field letter i mode.

G) PATTERN :: structured with integral field letter t letter y letter p letter e row
of FRAME field letter f letter r letter a letter m letter e letter s mode.

H) FRAME :: structured with INSERTION field letter i procedure yielding integral
field letter r letter e letter p boolean field letter s letter u letter p letter
p character field letter m letter a letter r letter k letter e letter r mode.

I) CPATTERN :: structured with INSERTION field letter i integral field letter t
letter y letter p letter e row of INSERTION field letter c mode.

J) FPATTERN :: structured with INSERTION field letter i
procedure yielding FIVMAT field letter p letter f mode.

K) GPATTERN :: structured with INSERTION field letter i row of procedure
yielding integral field letter s letter p letter e letter c mode.

L) FIVMAT :: mui definition of structured with row of structured with integral
field letter c letter p integral field letter c letter o letter u letter n
letter t integral field letter b letter p row of union of structured
with union of PATTERN CPATTERN structured with INSERTION
field letter i procedure yielding mui application field letter p letter f
mode GPATTERN void mode field letter p INSERTION field letter i
mode COLLITEM mode field letter c mode field letter aleph mode.

{'FIVMAT' is equivalent (2.1.1.2.a) to 'FORMAT'.}
M) MARK :: sign ; point ; exponent ; complex ; boolean.

184

SectionA3411 van Wijngaarden, et al.

N) COMARK :: zero ; digit ; character.

O) UNSUPPRESSETY :: unsuppressible ; EMPTY.

P) TYPE :: integral ; real ; boolean ; complex ;
string ; bits ; integral choice ; boolean choice ; format ; general.

a) FORMAT NEST format text{5D} :
formatter{94f} token, NEST collection{b} list, formatter{94f} token.

b) NEST collection{a,b} : pragment{92a} sequence option, NEST picture{c} ;
pragment{92a} sequence option, NEST insertion{d},

NEST replicator{g}, NEST collection{b} list brief pack,
pragment{92a} sequence option, NEST insertion{d}.

c) NEST picture{b} : NEST TYPE pattern
{A342a,A343a,A344a,A345a,A346a,A347a,A348a,b,A349a,A34Aa}
option, NEST insertion{d}.

d) NEST insertion{b,c,j,k,A347b,A343a,b,A349a,A34Aa} :
NEST literal{i} option, NEST alignment{e} sequence option.

e) NEST alignment{d} :
NEST replicator{g}, alignment code{f}, NEST literal{i} option.

f) alignment code{e} : letter k{94a} symbol ; letter x{94a} symbol ;
letter y{94a} symbol ;
letter l{94a} symbol ; letter p{94a} symbol ; letter q{94a} symbol.

g) NEST replicator{b,e,i,k} : NEST unsuppressible replicator{h} option.

h) NEST unsuppressible replicator{g,i} :
fixed point numeral{811b} ; letter n{94a} symbol, meek integral NEST

ENCLOSED clause{31a,34a,-}, pragment{92a} sequence option.

i) NEST UNSUPPRESSETY literal{d,e,i,A348c} :
NEST UNSUPPRESSETY replicator{g,h}, strong row of character NEST

denoter{80a} coercee{61a}, NEST unsuppressible literal{i} option.

j) NEST UNSUPPRESSETY MARK frame{A342c,A343b,c,A344a,A345a} :
NEST insertion{d}, UNSUPPRESSETY suppression{l},

MARK marker{A342e,A343d,e,A344b,A345b}.
k) NEST UNSUPPRESSETY COMARK frame{A342b,c,A346a} :

NEST insertion{d}, NEST replicator{g},
UNSUPPRESSETY suppression{l}, COMARK marker{A342d,f,A346b}.

l) UNSUPPRESSETY suppression{j,k,A347b} :
where (UNSUPPRESSETY) is (unsuppressible), EMPTY ;
where (UNSUPPRESSETY) is (EMPTY), letter s{94a} symbol option.

185

Section ALGOL 68 Revised Report A3411

m) *frame : NEST UNSUPPRESSETY MARK frame{j} ;
NEST UNSUPPRESSETY COMARK frame{k} ;
NEST RADIX frame{A347b}.

n) *marker : MARK marker{A342e,A343d,e,A344b,A345b} ;
COMARK marker{A342d,f,A346b} ; radix marker{A347c}.

o) *pattern : NEST TYPE pattern
{A342a,A343a,A344a,A345a,A346a,A347a,A348a,h,A349a,A34Aa}
.

{Examples:
a) $ p ˝table of˝x 10a,l n (lim-1)(˝x=˝ 12z+d 2x, +.12de+2d

3q˝+j*˝3˝ ˝si+.10de+2d l)p$
b) p˝table of˝x10a •

l n (lim - 1)(˝x=˝ 12z+d 2x, +.12de+2d 3q˝+j*˝3˝ ˝si+.10de+2d l)p
c) 120k c (˝mon˝, ˝tues˝, ˝wednes˝, ˝thurs˝, ˝fri˝, ˝satur˝, ˝sun˝)

˝day˝
d) p˝table of˝x
e) p˝table of˝
h) 10 • n(lim -1)
i) ˝+j*˝3˝ ˝
j) si
k) ˝x=˝12z
l) s }

{The positions where pragments (9.2.1.a) may occur in format-texts are
restricted. In general (as elsewhere in the language), a pragment may not
occur hetween two DIGIT- or LETTER-symbols.}
{ aa) For formatted output, putf (10.3.5.1.a) and printf (or writef) (10.5.1.f)
may be used and, for formatted input, getf (10.3.5.2.a) and readf (10.5.1.g).
Each element in the data list (cf. 10.3.3) is either a format to be associated
with the file or a value to be transput (thus a format may be included in the
data list immediately before the values to be transput using that format).

bb) During a call of putf or getf transput proceeds as follows: For each
element of the data list, considered in turn,

If it is a format,
then it is made to be the current format of the file by associate format

(10.3.5.k):
otherwise, the element is straightened (10.3.2.3.c) and each element of the

resulting multiple value is output (hh) or input (ii) using the next
“picture” (cc, gg) from the current format.

186

SectionA3411 van Wijngaarden, et al.

cc) A “picture” is the yield of a picture. It is composed or a “pattern”of
some specific 'TYPE' (according to the syntax of the TYPE-pattern of that pic-
ture), followed by an “insertion” (ee). Patterns, apart from 'choice', 'format'

and 'general' patterns, are composed of “frames”, possibly “suppressed”, each
of which has an insertion, a “replicator” (dd), and a “marker” to indicate
whether it is a ˝d˝, ˝z˝, ˝i˝ etc. frame. The frames of each pattern may be
grouped into “sign moulds”, “integral moulds”, etc., according to the syntax
of the corresponding pattern.

dd) A “replicator” is a routine, returning an integer, constructed from a
replicator (10.3.4.1.2.c), For example, the replicator 10 gives rise to a routine
composed from int: 10; moreover, n (lim - 1) is a “dynamic” replicator and
gives rise to int: (lim - 1). Note that the scope of a replicator restricts the
scope of any format containing it, and thus it may be necessary to take a
local copy of a file before associating a format with it (see, e.g.. 11.D). A
replicator which returns a negative value is treated as if it had returned zero
(˝k˝ alignments apart).

When a picture is “staticized”, all of its replicators and other routines
(including those contained in its insertions) are called collaterally. A stati-
cized pattern may be said to “control” a string, and there is then a cor-
respondence between the frames of that pattern, taken in order, and the
characters of the string. Each frame controls n consecutive characters of the
string, where n is 0 for an ˝r˝ frame and, otherwise, is the integer returned
by the replicator of the frame (which is always 1 for a ˝+˝, ˝-˝, ˝.˝, ˝e˝,
˝i˝ or ˝b˝ frame). Each controlled character must be one of a limited set
appropriate to that frame.

ee) An “insertion”, which is the yield of an insertion (10.3.4.1.2.d), is a
sequence of replicated “alignments” and strings: an insertion containing no
alignments is termed a “literal”. An insertion is “performed” by performing
its alignments (ff) and on output (input) writing (“expecting” (ll)) each
character of its replicated strings (a string is replicated by repeating it the
number of times returned by its replicator).

ff) An “alignment” is the character yielded by an alignment-code
(10.3.4.1.2.d). An alignment which has been replicated n times is per-
formed as follows:
• ˝k˝ causes set char number to be called, with n as its second
parameter:
• ˝x˝ causes space to be called n times:
• ˝y˝ causes backspace to be called n times:
• ˝l˝ causes newline to be called n times:

187

Section ALGOL 68 Revised Report A3411

• ˝p˝ causes newpage to be called n times;
• ˝q˝ on output (input) causes the character blank to be written
(expected) n times.

gg) A format may consist of a sequence of pictures, each of which is selected
in turn by get next picture (10.3.5.b). In addition, a set of pictures may
be grouped together to form a replicated “collection” (which may contain
further such collections). When the last picture in a collection has been
selected, its first picture is selected again, and so on until the whole collection
has been repeated n times, where n is the integer returned by its replicator.
A collection may be provided with two insertions, the first to be performed
before the collection, the second afterwards.

A format may also invoke other formats by means of 'format' patterns
(10.3.4.9.1).

When a format has been exhausted, the event routine corresponding
to on format end is called; if this returns false, the format is repeated;
otherwise, if the event routine has failed to provide a new format, undefined
is called.
hh) A value V is output, using a picture P, as follows:

If the pattern Q of P is a 'choice' or 'general' pattern,
then V is output using P (See 10.3.4.3.1.aa,dd, 10.3.4.10.1.aa);
otherwise. V is output as follows:
• P is staticized;

If the mode of V is “output compatible” with Q (see the separate
section dealing with each type of pattern),

then
• V is converted into a string controlled (dd) by Q (See the
appropriate section);

If the mode is not output compatible, or if the conversion is unsuc-
cessful,

then
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put and undefined is
called;

otherwise, the string is “edited” (jj) using Q:
• the insertion of P is performed.

ii) A value is input to a name N, using a picture P, as follows:
If the pattern Q of P is a 'choice' or 'general' pattern,
then a value is input to N using P (see 10.3.4.8.1.bb,ee, 10.3.4.10.1.bb);
otherwise,

188

SectionA3411 van Wijngaarden, et al.

• P is staticized;
• a string controlled by Q is “indited” (kk);

If the mode of N is “input compatible” with Q (see the appropriate
section),

then
• the string is converted to an appropriate value suitable for
N using Q (see the appropriate section):
• if the conversion is successful, the value is assigned to N;

If the mode is not input-compatible, or if the conversion is unsuc-
cessful,

then
• the event routine corresponding to on value error is called;
• if this returns false, undefined is called;

• the insertion of P is performed.

jj) A string is “edited”, using a pattern P, as follows:
In each part of the string controlled by a sign mould,
• if the first character of the string (which indicates the sign) is ˝+˝
and the sign mould contains a ˝-˝ frame, then that character is replaced
by ˝ ˝
• the first character (i.e., the sign) is shifted to the right across all
leading zeroes in this part of the string and these zeroes are replaced
by spaces (for example, using the sign mould 4z+, the string ˝+0003˝
becomes ˝+ 3˝

In each part of the string controlled by an integral mould,
• zeroes controlled by ˝z˝ frames are replaced by spaces as follows:
• between the start of the string and the first nonzero digit;
• between each ˝d˝, ˝e˝ or ˝i˝ frame and the next nonzero digit;

(for example, using the pattern zdzd2d the string ˝180168˝ becomes
˝18 168˝;)

For each frame F of P,
• the insertion of F is performed.
• if F is not suppressed, the characters controlled by F are written;

(for example, the string ˝+0003.5˝, when edited using the pattern 4z+ s ˝,˝
d, causes the string ˝ +3,5˝ to be written and the string ˝180186˝, using the
pattern zd˝-˝zd˝-19˝2d, gives rise to ˝18- 1-1968˝).

kk) A string is “indited”, using a pattern P, as follows:
For each frame F of P,
• the insertion of F is performed.

189

Section ALGOL 68 Revised Report A3411

For each element of the string controlled by F, a character is obtained as
follows:

If F is contained in a sign mould,
then
• if a sign has been found, a digit is expected, with ˝0˝ as
suggestion;
• otherwise, either a ˝+˝ or a ˝-˝ is expected, with ˝0˝ as
suggestion; and, in addition, if the sign mould contains a frame,
then a space precding the first digit will be accepted as the sign
(and replaced by ˝+˝);

otherwise, if F is contained in an integral mould,
then

If F is suppressed,
then :”0” is supplied,
otherwise:

Case A: F is a ˝d˝ frame:
• a digit is expected, with ˝0˝ as suggestion;

Case B: if F is ˝z˝ frame:
• a digit or space is expected, with ˝0˝ as suggestion, but
a space is only acceptable as follows:
• between the start of the string and the first nonzero
digit;
• between each ˝d˝, ˝e˝ or ˝i˝ frame and the next
nonzero digit;

• such spaces are replaced by zeroes.
otherwise, if F is an ˝a˝ frame,
then if F not suppressed, a character is read and supplied;

otherwise ˝ ˝ is supplied;
otherwise, if F is not suppressed,
then if F is a ˝.˝ (˝c˝, ˝i˝, ˝b˝) frame, a ˝.˝ (˝10˝ or ˝.˝ or ˝e˝,

˝⊥˝ or ˝i˝, flip or flop) is expected, with ˝.˝ (˝10˝, ˝⊥˝, flop) as
suggestion;

otherwise, if F is a suppressed ˝.˝ frame, the character ˝.˝ (˝10˝,
˝⊥˝) is supplied.

ll) A member of a set of characters S is “expected”, with the character C as
suggestion, as follows:
• a character is read;
If that character is one of the expected characters (i.e., a member of S),
then that character is supplied;

190

SectionA3412 van Wijngaarden, et al.

otherwise, the event routine corresponding to on char error is called, with
C as suggestion; if this returns true and C, as possibly replaced, is one
of the expected characters, then that character is supplied; otherwise,
undefined is called.}

10.3.4.1.2. Semantics

{A format is brought into being by means of a format-text. A format
is best regarded as a tree, with a collection at each node and a picture at
each tip. In order to avoid violation of the scope restrictions, each node of
this tree is, in this Report, packed into a value of mode 'PIECE'. A format
is composed of a row of such pieces and the pieces contain pointers to each
other in the form of indices selecting from that row. An implementer will
doubtless store the tree in a more efficient manner. This is possible because
the field-selector of a format is hidden from the user in order that he may not
break it open.

Although a format-text may contain ENCLOSED-clauses (in replicators and
format-patterns) or units (in general-patterns,) these are not elaborated at this
stage but are, rather, turned into routines for subsequent calling as and when
they are encountered during formatted transput. Indeed, the elaboration of a
format-text does not result in any actions of any significance to the user.}
a) The yield of a format-text F, in an environ E, is a structured value whose

only field is a multiple value W, whose mode is 'row of PIECE', composed of a
descriptor ((1, n)) and n elements determined as follows:
• a counter i is set to 1;
• F is “transformed” {b} in E into W, using i.

b) A format-text or a collection-list-pack C is “transformed” in an environ E
into a multiple value W whose mode is 'row of PIECE', using a counter i, as
follows:
• the element of W selected by (i) is a structured value, whose mode is
'PIECE' and whose fields, taken in order, are
• {cp} undefined;
• {count} undefined;
• {bp} undefined;
• {c} a multiple value V whose mode is “row of COLLECTION”,
having a descriptor ((1,m)), where m is the number of constituent
collections of C, and elements determined as follows:

For j = 1 . . .m, letting Cj be the j-th constituent collection of C,
Case A: The direct descendents of Cj include a picture P.

191

Section ALGOL 68 Revised Report A3412

• the constituent pattern P if any and the insertion I of P are
elaborated collaterally;
• the j-th element of V is a structured value, whose mode is
'PICTURE' and whose fields, taken in order are
• {p}; the yield of T , if any, {e, 10.3.4.8.2, 10.3.4.9.2,
10.3.4.10.2} and, otherwise, empty.
• {i} the yield of I {d};

Case B: The direct descendents of Cj, include a first insertion I1,
a replicator REP, a collection-list-pack P and a second insertion
I2:
• i is increased by 1;
• I1, REP and I2 are elaborated collaterally;
• the j-th element of V is a structured value whose mode is
'COLLITEM' and whose fields, taken in order, are
• {i1} the yield of I1 {d};
• {rep} the yield of REP {c};
• {p} i;
• {i2} the yield of I2;

• P is transformed in E into W, using i.

c) The yield, in an environ E, of a NEST-UNSUPPRESSETY-replicator R
{10.3.4.1.1.g, h} is a routine whose mode is 'procedure yielding integral', com-
posed of a procedure-yielding-integral-NEST-routine-text whose unit is U, together
with the environ necessary {7.2.2.c} for U in E, where U is determined as
follows:
Case A: R contains a meek-integral-ENCLOSED-clause C:
• U is a new unit akin {1.1.3.2.k} to C;

Case B: R contains a fixed-point-numeral D, but no ENCLOSED-clause:
• U is a new unit akin to D;

Case C: R is invisible:
• U is a new unit akin to a fixed-point-numeral which has an intrinsic
value {8.1.1.2} of 1.

d) The yield of an insertion I {10.3.4.1.1.d} is a multiple value W whose
mode is 'INSERTION', determined as follows:
• let U1, . . . , Un be the constituent UNSUPPRESSETY-replicators of I, and
let Ai, i = 1 . . . n, be the denoter-coercee or alignment-code {immediately}
following Ui:
• let R1, . . . , Rn and D1, . . . , Dn the {collateral} yields of U1, . . . , Un and
A1, . . . , An, where the yield of an alignment-code is the {character which is
the} intrinsic value {8.1.4.2.b} of its LETTER-symbol;

192

SectionA342 van Wijngaarden, et al.

• the descriptor of W is ((1, n));
• the element of W selected by (i), i = 1, . . . , n, is a structured value {of the
mode specified by struct(proc int rep, union(string, char) sa)} whose fields,
taken in order, are
• {rep} Ri;
• {sa} Di.

e) The yield of an integral-, real-, boolean-, complex-, string- or bits-pattern P
{10.3.4.2.1.a, 10.3.4.3.1.a, 10.3.4.4.1.a, 10.3.4.5.1.a, 10.3.4.6.1.a, 10.3.4.7.1.a}
is a structured value W whose mode is 'PATTERN', determined as follows:
• let V1, . . . , Vn be the {collateral} yields of the constituent frames of P {f};
• the fields of W, taken in order, are
• {type} 1 (2, 3, 4, 5) if P is an integral- (real-, boolean-, complex-, string-)
-pattern and 6 (8, 12, 20) if P is a bits-pattern whose constituent RADIX is a
radix-two (-four, -eight, -sixteen);
• {frames} a multiple value, whose mode is 'row of FRAME', having a
descriptor ((1, n)) and n elements, that selected by (i) being Vi.

f) The yield of a frame F {10.3.4.1.1.m} is a structured value W whose
mode is 'FRAME', determined as follows:
• the insertion and the replicator, it any, of F are elaborated collaterally:
• the fields of W, taken in order, are
• {i} the yield of its insertion;
• {rep} the yield of its replicator {c}, if any, and, otherwise, the yield of
an invisible replicator:
• {supp} true if its first UNSUPPRESSETY-suppression contains a letter-s-
symbol and, otherwise, false:
• {marker} (the character which is the intrinsic value {8.1.4.2.b} of a
symbol S determined as follows:
Case A: F is a constituent unsuppressible-zero-frame of a sign-mould {such

as 3z+} whose constituent sign-marker contains a plus-symbol:
• S is a letter-u-symbol.

Case B: F is a constituent unsuppressible-zero-frame of a sign-mould {such
as 3z-} whose constituent sign-marker contains a minus-symbol:
• S is a letter-v-symbol.

Other cases:
• S is the constituent symbol of the marker of F.

{Thus the zero-marker z may be passed on as the character ˝u˝, ˝v˝ or ˝z˝
according to whether it forms part of a sign-mould (with descendent plus-
symbol or minus-symbol) or of an integral-mould.}

193

Section ALGOL 68 Revised Report A3421

10.3.4.2. Integral patterns

10.3.4.2.1. Syntax
a) NEST integral pattern{A341c,A343c} :

NEST sign mould{c} option, NEST integral mould{b}.
b) NEST integral mould{a,A343b,c,A347a} :

NEST digit frame{A341k} sequence.

c) NEST sign mould{a,A343a} : NEST unsuppressible zero frame{A341k}
sequence option, NEST unsuppressible sign frame{A341j}.

d) zero marker{f,A341k} : letter z{94a} symbol.

e) sign marker{A341j} : plus{94c} symbol ; minus{94c} symbol.

f) digit marker{A341k} : letter d{94a} symbol ; zero marker{d}.

{Examples:
a) ˝x ˝ 12z+d
b) d
c) ˝x ˝ 12z+}

{For the semantics of integral-patterns see 10.3.4.1.2.e.}
{ aa) The modes which are output (input) compatible with an 'integral'

pattern are those specified by L int (by ref L int).
bb) A value V is converted to a string S using an 'integral' pattern P as

follows:
• if P contains a sign mould, the the first character of S is the sign of V ;
otherwise, if V < 0, the conversion is unsuccessful;
• the remainder of S contains a decimal representation of V determined as
follows:
• the elements of S controlled by ˝d˝ and ˝z˝ frames are the appropri-
ate digits (thus the pattern specifies the number of digits to be used);
• if V cannot be represented by such a string, the conversion is unsuc-
cessful;
(For example, the value 99 could be converted to a string using the

pattern zzd, but 9999 and −99 could not.)
cc) A string S is converted to an integer suitable for a name N, using an
'integral' pattern, as follows:
• the integer I for which S contains a decimal representation (8.1.1.2) is
considered;
• if I is greater than the largest value to which N can refer, the conversion
is unsuccessful; otherwise, I is the required integer (e.g., if the mode of N is

194

SectionA3431 van Wijngaarden, et al.

specified by ref short int, and the value of short max int is 65535, then no
string containing a decimal representation of a value greater than 65535 may
be converted).}

10.3.4.3. Real patterns

10.3.4.3.1. Syntax

a) NEST real pattern{A341c,A345a} : NEST sign mould{A342c} option, NEST
variable point mould{b} or alternatively NEST floating point mould{c}.

b) NEST variable point mould{a,c} : NEST integral mould{A342b} option ;
NEST point frame{A341j}, NEST integral mould{A342b} option.

c) NEST floating point mould{a} :
NEST variable point mould{b} or alternatively NEST integral mould{A342b},

NEST exponent frame{A341j}, NEST integral pattern{A342a}.
d) point marker{A341j} : point{94b} symbol.

e) exponent marker{A341j} : letter e{94a} symbol.

{For the Semantics of real-patterns see 10.3.4.1.2.e.}
{ aa) The modes which are output (input) compatible with a 'real' pattern
are those specified by L real and L int (by ref L real).

bb) A value V is converted to a string S using a 'real' pattern P as follows:
• if P contains a sign mould, the the first character of S is the sign of V ;
otherwise, if V < 0, the conversion is unsuccessful;
• the remainder of S contains a decimal representation of V determined as
follows:
• if necessary, V is widened to a real number;
• the element of S controlled by the ˝.˝ (˝e˝) frame, if any, of P is ˝.˝
(˝10˝);
If P contains an ˝e˝ frame,
then
• let W be the sequence of frames preceding, and IP be the
'integral' pattern following, that ˝e˝ frame;
• an exponent E is calculated by standardizing V to the largest
value convertible using W (see below);
• the part of S controlled by IP is obtained by converting E using
IP (see 10.3.4.2.bb)

otherwise,
• let W be the whole of P;

195

Section ALGOL 68 Revised Report A3451

• the element of S controlled by the ˝d˝ and ˝z˝ frames of W are the
appropriate digits to be used, and the number of digits to be placed after
the decimal point, if any);
• if V cannot be represented by such a string, the conversion is unsuc-
cessful.

cc) A string S is converted to a real number suitable for a name N, using a
'real' pattern P, as follows:
• the real number R for which S contains a decimal representation is
considered;
• if R is greater than the largest value to which N can refer, the conversion
is unsuccessful; otherwise, R is the required real number.}

10.3.4.4. Boolean patterns

10.3.4.4.1. Syntax

a) NEST boolean pattern{A341c} : NEST unsuppressible boolean frame{A341j}.
b) boolean marker{A341j,A348b} : letter b{94a} symbol.

{Example:
a) 14x b }

{For the semantics of boolean-patterns see 10.3.4.1.2.e.}
{ aa) The mode which is output (input) compatible with a 'boolean' pattern
is that specified by bool (ref bool)

bb) A value V is converted to a string using a 'boolean' pattern as follows:
• if V is true (false), then the string is that yielded by flip (flop).

cc) A string S is converted to a boolean value, using a 'boolean' pattern, as
follows:
• if S is the same as the string yielded by flip (flop), then the required value
is true (false).}

10.3.4.5. Complex patterns

10.3.4.5.1. Syntax

a) NEST complex pattern{A341c} : NEST real pattern{A343a},
NEST complex frame{A341j}, NEST real pattern{A343a}.

b) complex marker{A341j} : letter i{94a} symbol.

196

SectionA3461 van Wijngaarden, et al.

{Example:
a) +.12de+2d 3q˝+j*˝3˝ ˝si+.10de+2d }

{For the Semantics of complex-patterns see 10.3.4.1.2.e.}
{ aa) The modes which are output (input) compatible with a 'complex' pat-
tern are those specified by L compl , L real and L int (by ref L compl).

bb) A value V is converted to a string S using a 'complex' pattern P as
follows:
• if necessary, V is widened to a complex number;
• the element of S controlled by the ˝i˝ frame of P is ˝⊥˝;
• the part of S controlled by the first (second) 'real' pattern of P is that
obtained by converting the first (second) field of V to a string using the first
(second) 'real' pattern of P (10.3.4.3.1.bb)
• if either conversion is unsuccessful, the conversion of V is unsuccessful.

cc) A string is converted to a complex value C suitable for a name N, using
a 'complex' pattern P, as follows:
• the part of the string controlled by the first (second) 'real' pattern of P is
converted to a suitable real number (10.3.4.3.1.cc), which then forms the first
(second) field of C.
• if either conversion is unsuccessful, the conversion to C is unsuccessful.}

10.3.4.6. String patterns

10.3.4.6.1. Syntax

a) NEST string pattern{A341c} : NEST character frame{A341k} sequence.

b) character marker{A341k} : letter a{94a} symbol.

{Example:
a) p ˝table of˝x 10a }

{For the semantics of string-patterns see 10.3.4.1.2.e.}
{ aa) The modes which are output (input) compatible with a 'string' pattern
are those specified by char and [] char (by ref char, ref [] char and ref
strinG).

bb) A value V is converted to a string using a 'string' pattern P as follows:
• if necessary, V is rowed to a string:
• if the length of the string V is equal to the length of the string controlled
by P, then V is supplied: otherwise, the conversion is unsuccessful,

197

Section ALGOL 68 Revised Report A3471

cc) A string S is converted to a character or a string suitable for a name N,
using a 'string' pattern, as follows:
Case A: The mode of N is specified by ref char:
• if S does not consist of the character, the conversion is unsuccessful:
otherwise, that character is supplied:

Case B: The mode of N is specified by ref [] char:
• if the length of S is not equal to the number of characters referred

to by N, the conversion is unsuccessful: otherwise, S is supplied,
Case C: The mode of N is specified ref string:
• S is supplied.}

10.3.4.7. Bits patterns

10.3.4.7.1. Syntax

a) NEST bits pattern{A341c} :
NEST RADIX frame{b}, NEST integral mould{A342b}.

b) NEST RADIX frame{a} : NEST insertion{A341d}, RADIX{82d,e,f,g},
unsuppressible suppression{A341l}, radix marker{c}.

c) radix marker {b} : letter r{94a} symbol.

{Examples:
a) 2r6d26sd

• b 2r}

{For the semantics of bits-patterns, see 10.3.4.1.2.e.}
{ aa) The modes which are output (input) compatible with a 'bits'-pattern
are those specified by L bits (ref L bits).

bb) A value V is converted to a string using a 'bits' pattern P as follows:
• the integer I corresponding to V is determined, using the operator abs
(10.2.3.8.i);
If the ˝r˝ frame of P was yielded by a radix-two- (-four-, -eight-, -sixteen-) -

frame,
then I is converted to a string, controlled by the integral mould of P,

containing a binary (quaternary, octal, hexadecimal) representation of
I (cf. 10.3.4.2.1.bb)
• if I cannot be represented by such a string, the conversion is unsuc-
cessful.

198

SectionA3481 van Wijngaarden, et al.

cc) A string S is converted to a bits value suitable for a name N, using a
'bits' pattern P, as follows:
• if the ˝r˝ frame of P was yielded by a radix-two- (-four-, -eight-, -sixteen-)
-frame, then the integer I for which S contains a binary (quaternary, octal,
hexadecimal) representation is determined;
• the bits value B corresponding to I is determined, using the operator bin
(10.2.3.8.j):
• if the width of B is greater than that of the value to which N refers, the
conversion is unsuccessful.}

10.3.4.8. Choice patterns

10.3.4.8.1. Syntax
a) NEST integral choice pattern{A341c} : NEST insertion{A341d},

letter c{94a} symbol, NEST praglit{c} list brief pack.

b) NEST boolean choice pattern{A341c} :
NEST insertion{A341d}, boolean marker{A344b}, brief begin{94f} token,

NEST praglit{c}, and also{94f} token, NEST praglit{c},
brief end{94f} token, pragment{92a} sequence option.

c) NEST praglit{a,b} : pragment{92a} sequence option, NEST literal{A341i}.

{Examples:
a) 120kc(˝mon˝, ˝tues˝, ˝wednes˝, ˝thurs˝, ˝fri˝, ˝satur˝, ˝sun˝)
b) b(˝˝,˝error˝)
c) ˝mon˝}

{ aa) A value V is output using a picture P whose pattern C was yielded by
an integral-choice-pattern Q, as follows:
• the insertion of Q is staticized (10.3.4.1.1.dd) and performed (10.3.4.1.1.ee);
If the mode of V is specified by int, if V > 0 and if the number of constituent

literals in the praglit-list-pack of Q is at least V ,
then
• the literal yielded by the V-th literal is staticized and performed;

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put and undefined is called;

• the insertion of P is staticized and performed.
bb) A value is input to a name N using a picture P whose pattern Q was

yielded by an integral-choice-pattern Q as follows:
• the insertion of Q is staticized and performed,

199

Section ALGOL 68 Revised Report A3482

• each of the literals yielded by the constituent literals of the praglit-list-pack
of C is staticized and “searched for” (cc) in turn:
If the mode of N is specified by ref int and the i-th literal is the first one

present.
then I is assigned to N:
otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, undefined is called;

• the insertion of P is staticized and performed.

cc) A literal is “searched for” by reading characters and matching them
against successive characters of the literal. If the end of the current line or
the logical end of the file is reached, or if a character fails to match, the
search is unsuccessful and the current position is returned to where it started
from.

dd) A value V is output using a picture P whose pattern Q was yielded by a
boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
If the mode of V is specified by bool,
then
• if V is true (false), the literal yielded by the first (second) con-
stituent literal of C is staticized and performed:

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put and undefined is called;

• the insertion of P is staticized and performed.

ee) A value is input to a name N using a picture P whose pattern Q was
yielded by a boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed;
• each of the literals yielded by the constituent literals of C is staticized and
searched for in turn:
If the mode of N is specified by ref bool, and the first second) insertion is

present,
then true (false) is assigned to N:
otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, undefined is called;

• the insertion of P is staticized and performed.}

200

SectionA34A1 van Wijngaarden, et al.

10.3.4.8.2. Semantics
The yield of a choice-pattern P is a structured value W whose mode is

'CPATTERN', determined as follows:
• let n be the number of constituent NEST-literals of the praglit-list-pack of P;
• let Si, i = 1, . . . , n, be a NEST-insertion akin {1.1.3.2.k} to the i-th of
those constituent NEST-literals:
• the insertion I of P and all of S1, . . . , Sn are elaborated collaterally:
• the fields of W, taken in order, are
• {i} the yield of I:
• {type} 1 (2) if P is a boolean- (integral-) -choice-pattern;
• {c} a multiple value whose mode is 'row of INSERTION', having a
descriptor ((1, n)) and n elements, that selected by (i), i = 1, . . . n, being
the yield of Si.

10.3.4.9. Format patterns

10.3.4.9.1. Syntax
a) NEST format pattern{A341c} :

NEST insertion{A341d}, letter f{94a} symbol, meek FORMAT NEST
ENCLOSED clause{31a,34a}, pragment{92a} sequence option.

{Examples:
a)f(uir | (int): $5d$, (real): $d.3d$)

}

{A format-pattern may be used to provide formats dynamically for use in
transput. When a 'format' pattern is encountered during a call of get next
picture, it is staticized and its insertion is performed. The first picture of
the format returned by the routine of the pattern is supplied as the next
picture, and subsequent pictures are taken from that format until it has been
exhausted.}

10.3.4.9.2. Semantics
The yield, in an environ E, of a NEST-format-pattern P is a structured

value whose mode is 'FPATTERN' and whose fields, taken in order, are
• {i} the yield of its insertion;
• {pf} a routine whose mode is 'procedure yielding FORMAT', composed
of a procedure-yielding-FORMAT-NEST-routine-text whose unit U is a new
unit akin {1.1.3.2.k} to the meek-FORMAT-ENCLOSED-clause of P, together
with the environ necessary for U in E.

201

Section ALGOL 68 Revised Report A34A2

10.3.4.10. General patterns

10.3.4.10.1. Syntax

a) NEST general pattern{A341c} : NEST insertion{A341d},
letter g{94a} symbol, NEST width specification{b} option.

b) NEST width specification{a} : brief begin{94f} token ;
meek integral NEST unit{32d}, NEST after specification{c} option,

brief end{94f} token, pragment{92a} sequence option.

c) NEST after specification{b} : and also{94f} token,
meek integral NEST unit{32d}, NEST exponent specification{d} option.

d) NEST exponent specification{c} :
and also{94f} token, meek integral NEST unit{32d}.

{Examples:
a) g • g(-18, 12, -3)
b) -18, 12, -3
c) , 12, -3
d) , -3 }

{ aa) A value V is output using a picture P whose pattern Q was yielded by a
general-pattern G as follows:
• P is staticized;
• the insertion of Q is performed;
If Q is not parametrized (i.e., Q contains no width-specification).
then V is output using put;
otherwise, if the mode of V is specified by L int or L real ,
then
• if Q contains one (two, three) parameter(s), V is converted to a
string using whole (fixed, float);
• the string is written using put;

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put, and undefined is called;

• the insertion of P is performed.

bb) A value is input to a name N using a picture P whose pattern is a
'general' pattern as follows:
• P is staticized;
• (any parameters are ignored and) the value is input to N using get.}

202

SectionA35 van Wijngaarden, et al.

10.3.4.10.2. Semantics

The yield, in an environ E, of a NEST-general-pattern P is a structured
value whose mode is 'GPATTERN' and whose fields, taken in order, are
• {i} the yield of the insertion of P:
• {spec} a multiple value W whose mode is 'row of procedure yielding
integral', having a descriptor ((1, n)), where n is the number of constituent
meek-integral-units of the width-specification-option of P, and n elements
determined as follows:
For i = 1 . . . n,
• the i-th element of W is a routine, whose mode is 'procedure
yielding integral', composed of a procedure-yielding-integral-NEST-routine-
text whose unit U is a new unit akin {1.1.3.2.k} to the i-th of those
meek-integral-units, together with the environ necessary for U in E.

10.3.5. Formatted transput

a) mode format = struct(flex [1: 0] piece F);
mode ℵpiece = struct(int cp /c pointer to current collection /c,

count /c number of times piece is to be repeated/c,
bp /c back pointer/c,
flex [1:0] collection c);

mode ℵcollection = union(picture, collitem);
mode ℵcollitem = struct(insertion i1,

proc int rep; /c replicator /c,
int p /c pointer to another piece /c, insertion i2);

mode ℵinsertion flex [1: 0] = struct(proc int rep /c replicator /c,
union(string, char) sa);

mode ℵpicture =
struct(union(pattern,cpattern,fpattern,gpattern,void)p, insertion i);

mode ℵpattern = struct(int type /c of pattern /c,
flex [1: 0] frame frames),

mode ℵframe = struct(insertion,
proc int rep /c replicator /c,
bool supp /c true if suppressed /c,
char marker);

mode ℵcpattern = struct(insertion i,
int type /c boolean or integral /c,
flex [1:0] insertion c);

mode ℵfpattern = struct(insertion i, proc format pf);
mode ℵgpattern = struct(insertion i, flex [1:0] proc int spec);

203

Section ALGOL 68 Revised Report A35

b) proc ℵget next picture = (ref file , bool read, ref picture picture)void:
begin

bool picture found := false, format ended := false;
while ¬picture found
do if forp of f = 0 then

if format ended
then undefined
elif ¬(format mended of f)(f)
else format ended :=true
fi

else
ref int forp = forp of f;
ref flex [] piece aleph = F of format of f;
case (c of aleph [forp])[cp of aleph [forp]] in

(collitem cl):
([1:upb(i1 of cl)] sinsert si;
bp of aleph[p of cl] := forp; forp := skip;
(staticize insertion(i1 of cl, si),

count of aleph [p of cl] := 0;
(aleph :=/ : F of format of f | undefined);
(read | get insertion(f, si) | put insertion(f, si));
cp of aleph[p of cl] := 0;
forp := p of cl),

(picture pict): (picture found := true; picture := pict)
esac;
while

(forp =/ 0 | cp of aleph[forp] = upb c of aleph[forp]) |
false)

do if (count of aleph[forp] -:= 1) ≤ 0
then

if (forp := bp of aleph [forp]) =/ 0
then

insertion extra =
case (c of aleph [forp])[cp of aleph [forp]] in
(collitem cl):

(bp of aleph [p of cl] := 0; i2 of cl),
(picture pict):

case p of pict in
(fpattern fpatt):

(int k := forp;

204

SectionA35 van Wijngaarden, et al.

while bp of aleph [k] =/ forp do k +:= 1 od;
aleph := aleph [:k-1];
i of pict)

esac
esac;

int m = upb i of picture, n = upb extra;
[1:m+n] struct(proc int rep, union(string,char) sa)c;
c[1:m] := i of picture; c[m+1:m+n] := extra;
i of picture := c

fi
else cp of aleph [forp] := 0
fi od;
(forp =/ 0 | cp of aleph [forp] +:= 1)

fi od
end;

c) mode ℵsinsert = struct(int rep, union(string , char) sa);

d) proc ℵstaticize insertion = (insertion ins, ref [] sinsert sins)void:
/c calls collaterally all the replicators in ’frames’ /c
if upb ins = 1
then

rep of sins[1] := rep of ins[1];
sa of sins[1] := so of ins[1]

elif upb ins > 1
then staticize insertion(ins [1], sins [1]),

staticize insertion(ins [2:], sins [2:])
fi;

e) mode ℵsframe = struct(flex[1:0]sinsert si, int rep, bool supp,
char marker);

f) proc ℵstaticize frames =
([] frame frames, ref [] sframe sframes)void:
/c calls collaterally all the replicators in ’frames’ /c
if upb frames = 1
then

[1: upb(i of frames [1])] sinsert si;
(staticize insertion(i of frames [1], si),

rep of sframes [1] := rep of frames [1]);
si of sframes [1]:= si;
supp of sframes [1] := supp of frames [1];
marker of sframes [1] := marker of frames[1]

205

Section ALGOL 68 Revised Report A35

elif upb frames > 1
then (staticize frames(frames [1], sframes [1]).

staticize frames(frames [2:], sframes [2:]))
fi;

g) proc ℵput insertion = (ref file f, [] sinsert si)void:
begin set write mood(f);

for k to upb si
do

case sa of si[k] in
(char a): alignment(f, rep of si [k], a, false),
(string s):

to rep of si[k]
do

for i to upb s
do checkpos(f); putchar(f, s[i]) od

od
esac

od
end;

h) proc ℵget insertion (ref file f, [] sinsert si)void:
begin set read mood(f);

for k to upb si
do

case sa of si[k] in
(char a): alignment(f, rep of si [k], a, true),
(string s):

(char c;
to rep of si[k]
do

for i to upb s
do checkpos(f); get char(f, c);

(c =/ s[i]
| (¬(char error mended of f)(f, c := s[i])
| undefined);
set read mood(f))

od
od)

esac
od

end;

206

SectionA35 van Wijngaarden, et al.

i) proc ℵalignment(ref file f, int r, char a, bool read)void:
if a = ˝x˝ then to r do space(f) od
elif a = ˝y˝ then to r do backspace(f) od
elif a = ˝I˝ then to r do newline(f) od
elif a = ˝p˝ then to r do newpage(f) od
elif a = ˝k˝ then set char number(f, r)
elif a = ˝q˝
then to r

do
if read
then char c; checkpos(f); get char(f, c);

(c =/ blank
| (¬(char error mended of f)(f, c := blank)
| undefined); set read mood(f))

else checkpos(f); put char(f, blank)
fi

od
fi;

j) proc ℵdo fpattern = (ref file f, fpattern fpattern, bool read)void:
begin format pf;

[1:upb(i of fpattern)] sinsert si;
(staticize insertion(i of fpattern, si),

pf := pf of fpattern),
(read | get insertion(f, si) | put insertion(f, si));
ref int forp := forp of f;
ref flex[]piece aleph =F of format of f;
int m = upb aleph, n = upb(F of pf);
[1:m+n] piece c; c[1:m] := aleph;
c[m+1:m+n] := F of pf;
aleph := c; bp of aleph [m+1] := forp;
forp := m+1; cp of aleph [forp] := 0;
count of aleph [forp] := 1;
for i from m+1 to m+n
do

for j to upb c of aleph [i]
do

case(c of aleph [i])[j] in
(collitem cl):

(c of aleph[i])[j] :=
collitem(il of cl, rep of cl, p of cl + m, i2 of cl)

207

Section ALGOL 68 Revised Report A351

esac
od

od
end;

k) proc ℵassociate format = (ref file f, format format)void:
begin

format of f:=
C a newly created name which is made to refer to the yield of

an actual-format-declarer and whose scope is equal to the
scope of the value yielded by ’format’ C

:= format;
forp of f := heap int := 1;
cp of (F of format of f)[1] := 1;
count of (F of format of f) [1] := 1;
bp of (F of format of f) [1] := 0

end;

10.3.5.1. Formatted output

a) proc putf = (ref file f, [] union(outtype, format) x)void:
if opened of f then
for k to upb x
do case set write mood(f); set char mood(f); x[k] in

(format format): associate format(f, format),
(outtype ot):
begin int j := 0;

picture picture, [] simplout y = straightout ot;
while (j +:= 1) ≤ upb y
do bool incomp := false;

get next picture(f, false, picture);
set write mood(f);
[1:upb(i of picture)] sinsert sinsert;
case p of picture in
(pattern pattern):
begin int rep, sfp := 1;

[1:upb(frames of pattern)]sframe sframes;
staticize frames (frames of pattern, sframes),
staticize insertion (i of picture, sinsert));
string s;
op ? = (string s)bool:

208

SectionA351 van Wijngaarden, et al.

/c true if the next marker is one of the elements of ’s’
and false otherwise /c

if sfp > upb sframes
then false
else sframe sf = sframes [sfp];
rep := rep of sf:

if char in string(marker of sf, loc int, s)
then sfp +:= 1; true
else false
fi

fi;
op ? = (char c)bool: ? string (c);
proc int pattern(ref bool sign mould)int:

(int l := 0;
while ?˝zuv˝ do (rep ≥ 0 | l +:= rep) od;
sign mould of := ?˝+-˝;
while ?˝zd˝ do (rep ≥ 0 | l +:= rep) od; l);

〈proc edit ` int(L int i)void:
(bool sign mould; int l := int pattern(sign mould);
string t = subwhole(abs i, l);
if char in string(errorchar, loc int, t) ∨ l = 0

∨ ¬sign mould ∧ i < L 0
then incomp := true
else t plusto s;

(l upb t) × ˝0˝ plusto s;
(sign mould | (i < L 0 | ˝-˝ | ˝+˝) plusto s)

fi)〉;
〈proc edit ` real(L real r)void:

(int b := 0, a := 0, c := 0, exp := 0, L real y := abs r,
bool sign1, string point := ˝˝;

b := int pattern(sign1);
(?˝.˝ | a := int pattern(loc bool); point := ˝.˝);
if ?˝c˝
then standardize(y, b, a, exp);

edit int(exp);
˝10˝ plusto s

fi;
string t = subfixed(y, b + a + (a =/ 0 | 1 | 0), a);
if char in string(errorchar, loc int, t) ∨ a + b = 0

∨ ¬sign1 ∧ r < L 0

209

Section ALGOL 68 Revised Report A351

then incomp := true
else t[:b] + point + t[b+2:] plusto s;

(b + a + (a =/ 0 | 1 | 0) - upb t) × ˝0˝ plusto s;
(sign1 | (r < L 0 | ˝-˝ | ˝+˝) plusto s)

fi)〉;
〈 proc edit ` compl =(L compl z)void:

(while ¬?˝i˝ do sfp +:= 1 od; edit ` real(im z);
˝I˝ plusto s; sfp := 1; edit ` real(re z))〉;

〈 proc edit ` bits(L bits lb, int radix)void:
(L int n := abs lb; ?˝r˝; int l := intpattern(loc bool);

while dig char(S (n mod K radix)) plusto s;
n %:= K radix; n =/ L 0

do skip od;
if upb s ≤ l
then (l - upb s) × ˝0˝ plusto s
else incomp := true
fi)〉;

proc charcount = int: (int l := 0;
while ?˝a˝ do (rep ≥ 0 | l +:= rep) od; l);

case type of pattern in
/c integral /c

(y[j] |
〈(L int i): edit ` int(i)〉

| incomp := true),
/c real /c

(y[j] |
〈 (L real r): edit ` real(r)〉,
〈(L int i): edit ` real(i)〉

| incomp := true),
/c boolean /c

(y[j] |
(bool b): s := (b | flip | flop)

| incomp := true),
/c complex /c

(y[j] |
〈 (L complex z): edit ` complex(z)〉,
〈 (L real r): edit ` complex(r)〉,
〈 (L int i): edit ` complex(i) 〉

| incomp := true),
/c string /c

210

SectionA351 van Wijngaarden, et al.

(y[j] |
(char c): (charcount = 1 | s := c | incomp :=

true),
([] char t):

(charcount = upb t - lwb t + 1
| s := t[@1]
| incomp := true)

| incomp := true)
out
/c bits /c

(y[j] |
〈 (L bits lb): edit ` bits(lb, type of pattern - 4)〉

| incomp := true)
esac;
if ¬incomp
then edit string(f, s, sframes)
fi

end,
(cpattern choice):

begin
[1: upb (i of choice)j sinsert si;

staticize insertion(i of choice, si);
put insertion(f, ci);
int l =

case type of choice in
/c boolean /c

(y [j] |
(bool b): (b | 1 | 2)

| incomp := true; skip),
/c integral /c

(y [j] |
(int i): i

| incomp := true; skip)
esac;

if ¬incomp
then

if l > upb(c of choice) ∨ l ≤ 0
then incomp := true
else

[1: upb((c of choice) [l])) sinsert ci;

211

Section ALGOL 68 Revised Report A351

staticize insertion((c of choice)[l], ci);
put insertion(f, ci)

fi
fi;
staticize insertion(i of picture, sinsert)

end,
(fpattern fpattern):

begin
do fpattern(f, fpattern, false);
for to upb sinsert do sinsert [i] := (0, ˝˝) od;

end,
(gpattern gpattern):

begin
[1:upb(i of gpattern)] sinsert si;
[] proc int spec = spec of gpattern; int n = upb

spec;
[1: n] int s;
(staticize insertion(i of gpattern, si),

staticize insertion(i of picture, sinsert),
s := (n | spec[1], (spec[1], spec[2]),

(spec [1], spec [2], spec [3]) | ()));
put insertion(f, si);
if n = 0 then put(f, y[j])
else

number yj =
(y[j] | 〈(L int i): i〉, 〈(L real r): r〉
| incomp := true; skip);

if ¬incomp
then case n in

put(f, whole(yj, s[1])),
put(f, fixed(yj, [1], s[2])),
put(f, float(yj, s[1], s[2], s[3]))

esac
fi

end,
(void):

(j -:= 1; staticize insertion(i of picture, sinsert))
esac;
if ¬incomp
then set write mood(f);

212

SectionA351 van Wijngaarden, et al.

(¬(value error mended of f)(f) | put(f, y [j]):
| undefined)

fi;
put insertion(f, sinsert)

od
end

esac od
else undefined
fi;

b) proc ℵedit string(ref file f, string s, [] sframe sf)void:
begin bool supp, zs := true, signput := false, again, int j := 0, sign;

proc copy(char c)void:
(¬supp | check pos(f): put char(f, c));

for k to upb sf
do sframe sfk = sf[k]; supp := supp of sfk:

put insertion(f, si of sfk);
to rep of sfk
do again := true;

while again
do j+:= 1; again := false;

char sj = s[j], marker = marker of sfk;
if marker = ˝d˝
then copy(sj); zs := true
elif marker = ˝z˝ then

(sj = ˝0˝ | copy((zs | ˝ ˝ | sj))
|: sj = ˝+˝ | again := true
| zs := false; copy(sj))

elif marker = ˝u˝ ∨ marker = ˝v˝ then
(sj = ˝+˝ | sign := 1; again := true
|: sj = ˝-˝ | sign := 2; again := true
|: sj = ˝0˝ | copy((zs | ˝ ˝ | sj))
| (¬signput |

copy((sign |(marker=˝u˝|˝+˝| ˝ ˝), ˝-˝));
signput := true);

copy(sj); zs := false)
elif marker = ˝+˝ then

(sj = ˝+˝ ∨ sj = ˝-˝ | copy(sj)
| (¬signput | copy((sign | ˝+˝, ˝-˝)));

j -:= 1)
elif marker = ˝-˝ then

213

Section ALGOL 68 Revised Report A352

(sj = ˝+˝ | copy(˝ ˝)
|: sj = ˝-˝ | copy(sj)
| (¬signput | copy((sign | ˝ ˝, ˝-˝)));

j -:= 1)
elif marker = ˝.˝ then copy(˝.˝)
elif marker = ˝e˝ ∨ marker = ˝i˝

∨ marker = ˝a˝ ∨ marker = ˝b˝
then copy(sj); zs := true; signput := false
elif marker = ˝r˝
then j -:= 1
fi

od
od

od
end;

10.3.5.2. Formatted input
a) proc getf = (ref file f, [] union(intype, format)x)void:

if opened of f then
for k to upb x
do case set read mood(f); set char mood(f); x[k] in

(format format): associate format(f, format),
(intype it):
begin int j := 0;

picture picture, [] simplin y = straightin it;
while(j +:=- 1) ≤ upb y
do bool incomp := false;

get next picture(f, true, picture); set read mood(f);
[1: upb(i of picture)] sinsert sinsert;
case p of pidec in
(pattern pattern):
begin

[1: upb(frames of pattern)] sframe sframes;
(staticize frames(frames of pattern, sframes).

staticize insertion(i of picture, sinsert));
string s;
int radix =

(type of pattern ≥ 6 | type of pattern - 4 | 10);
indit string(f, s, sframes, radix);
case type of pattern in

214

SectionA352 van Wijngaarden, et al.

/c integral /c
(y[j] |
〈 (ref L int ii):

incomp := string to ` int(s, 10, ii) 〉
| incomp := true),

/c real/c
(y[j] |
〈 (ref L real rr):

incomp := string to ` real(s, rr) 〉
| incomp := true),

/c boolean/c
(y[j] |

(ref bool bb): bb := s = flip
| incomp := true),

/c complex /c
(y[j] |
〈 (ref L compl zz):

(int i, bool bi, b2; char in string(˝I˝, i, s);
b1 := string to ` real(s [:i-1], re of zz);
b2 := string to ` real(s [i+1:], im of zz);
incomp := ¬(b1 ∧ b2))〉

| incomp := true),
/c string /c

(y[j] |
(ref char cc):

(upb s = 1 | cc := s [1] | incomp := true),
(ref [] char ss):

(upb ss - lwb ss + 1 = upb s | ss [@1] := s
| incomp := true),

(ref string ss): ss := s
| incomp := true)

out
/c bits /c
(y[j] |
〈 (ref L bits lb):

if L int i; string to ` int(s, radix, i)
then lb := bin i
else incomp := true
fi〉

| incomp := true)

215

Section ALGOL 68 Revised Report A352

esac
end,
(cpattern choice):

begin
[1: upb(i of choice)]sinsert si;
staticize insertion(i of choice, si);
get insertion(f, si);
int c = c of cpos of f, char kk;
int k := 0, bool found := false;
while k < upb(c of choice) ∧ ¬found
do k +:= 1;

[1: upb((c of choice) [k])] sinsert si;
bool bool := true;
staticize insertion((c of choice)[k], si);
string s;
for i to upb s
do s plusab

(sa of si[i] | (string ss): ss) × rep of si[i]
od;
for jj to upb s
while bool := bool ∧ ¬line ended(f)
∧ ¬logical file ended(f)

do get char(f, kk); bool := kk = s[jj] od;
(¬(found = bool) | set char number(f, c))

od;
if ¬found then incomp := true
else

case type of choice in
/c boolean /c

(y [j] |
(ref bool b): b := k = 1

| incomp := true),
/c integral /c

(y [j] |
(ref int i): i := k

| incomp := true)
esac

fi;
staticize insertion(i of picture, sinsert)

end,

216

SectionA352 van Wijngaarden, et al.

(fpattern fpattern):
begin do fpattern(f, fpattern, true);

for i to upb sinsert do sinsert [i] := (0, ˝˝) od;
j -:= 1

end,
(gpattern gpattern):

([1: upb(i of gpattern)] sinsert si;
(staticize insertion(i of gpattern, si),

staticize insertion(i of picture, sinsert));
get insertion(f, si);
get(f, y [j])),

(void):
(j -:= 1; staticize insertion(i of picture, sinsert))

esac;
if incomp
then set read mood(f);

(¬(value error mended of f)(f) | undefined)
fi;
get insertion(f, sinsert)

od
end

esac od
else undefined
fi;

b) proc ℵindit string = (ref file f, ref string s, [] sframe sf, int radix)void:
begin

bool supp, zs := true, sign found := false, space found := false,
nosign := false, int sp:=1, rep;

prio ! = 8;
op ! = (string s, char c)char:

/c expects a character contained in ’s’; if the character read
is not in ’s’, the event routine corresponding to ’on char
error’ is called with the suggestion ’c’ /c

if char k; checkpos(f); get char(f, k);
char in string(k, loc int , s)

then k
else char sugg := c;

char cc = if (char error mended of f)(f, sugg) then
(char in string(sugg, loc int , s) | sugg | undefined; c)
else undefined; c

217

Section ALGOL 68 Revised Report A352

fi;
set read mood(f); cc

fi;
op ! = (char s, c)char: string(s) ! c;
[] char good digits = ˝0123456789abcdef˝ [:radix];
s := ˝+˝;
for k to upb sf
do sframe sfk =sf[k]; supp := supp of fsk;

get insertion(f, si of sfk);
to rep of sfk
do char marker = marker of sfk;

if marker = ˝d˝ then
s plusab(supp | ˝0˝ | good digits! ˝0˝); zs := true

elif marker = ˝a˝ then
s plusab(supp | ˝0˝
| char c = ((zs | ˝ ˝ | ˝˝)+gooddigits)!˝0˝;

(c =/ ˝ ˝ | zs := false); c)
elif marker = ˝u˝ ∨ marker = ˝+˝ then

if sign found
then zs := false; a plusab(˝0123456789˝! ˝0˝)
else char c = (˝+-˝+(marker = ˝u˝ | ˝ ˝ | ˝˝))! ˝+˝;

(c = ˝+˝ ∨ c = ˝-˝ | sign found := true; s[sp] := c)
fi

elif marker = ˝v˝ ∨ marker = ˝-˝ then
if sign found
then zs := false; z plusab(˝0123456789˝! ˝0˝)
elif char c; space found
then c := ˝+- 0123456789˝!˝+˝;

(c = ˝+˝ ∨ c = ˝-˝ | sign found := true; s[sp] := c
|:c =/ ˝ ˝ | zs := false;sign found := true; s plusab c)

else c := ˝+- ˝! ˝+˝;
(c = ˝+˝ ∨ c = ˝-˝ | sign found := true; s[sp] := c
| space found := true)

fi
elif marker =˝.˝ then

s plusab(supp | ˝.˝ | ˝.˝! ˝.˝)
elif marker = ˝e˝ then

s plusab(supp | ˝10˝ | ˝10\e˝ ! ˝10˝ ; ˝10˝);
sign found := false;

zs := true; s plusab ˝+˝; sp := upb s

218

SectionA36 van Wijngaarden, et al.

elif marker = ˝i˝ then
s plusab(supp | ˝I˝ | ˝iI˝ ! ˝I˝; ˝I˝);
sign found := false; zs := true; s plusab ˝+˝; sp := upb s

elif marker = ˝b˝ then
s plusab(flip + flop) ! flop; no sign := true

elif marker = ˝a˝ then
s plusab(supp | ˝ ˝ |

char c; check pos(f); get char(f, c); c);
no sign := true

elif marker = ˝r˝
then skip
fi

od
od;
if no sign then s := s[2:] fi

end;

10.3.6. Binary transput

{In binary transput, the values obtained by straightening the elements of
a data list (cf. 10.3.3) are transput, via the specified file, one after the other.
The manner in which such a value is stored in the book is defined only to the
extent that a value of mode M (being some mode from which that specified
by simplout is united) output at a given position may subsequently be re-
input from that same position to a name of mode 'reference to M'. Note
that, during input to the name referring to a multiple value, the number of
elements read will be the existing number of elements referred to by that
name.

The current position is advanced after each value by a suitable amount
and, at the end of each line or page, the appropriate event routine is called,
and next, if this returns false, the next good character position of the book
is found (cf. 10.3.3).

For binary output, put bin (10.3.6.1.a) and write bin (10.5.1.h) may be
used and, for binary input, get bin (10.3.6.2.a) and read bin (10.5.1.i).}
a) proc ℵto bin = (ref file f, simplout x) [] char:

C a value of mode ’row of character’ whose lower bound is one and
whose upper bound depends on the value of ’book OF f’ and on
the mode and the value of ’x’; furthermore, x = from bin(f, x, to
bin(f, x)) C;

b) proc ℵfrom bin = (ref file f, simplout y. [] char c)simplout:

219

Section ALGOL 68 Revised Report A362

C a value, if one exists, of the mode of the value yielded by ’y’, such
that c = to bin(f, from bin(f, y, c)) C;

10.3.6.1. Binary output

a) proc put bin = (ref file f, [] outtype ot)void:
if opened of f then

set bin mood(f); set write mood(f);
for k to upb ot
do [] simplout y = straightout ot [k];

for j to upb y
do [] char bin = to bin(f, y[j]);

for i to upb bin
do next pos(f);

set bin mood(f);
ref pos cpos = cpos of f, lpos = lpos of book of f;
case text of f in

(flextext t2):
t2 [p of cpos] [l of cpos] [c of cpos] := bin [i]

esac;
c of cpos+:= 1;
if cpos beyond lpos then lpos := cpos
elif ¬set possible(f)

∧ pos(p of lpos, l of lpos, 1) beyond cpos
then lpos := cpos;

(compressible(f) |
C the size of the line and page containing the

logical end of the book and of all subsequent
lines and pages may be increased C)

fi

od

od

od

else undefined
fi;

220

SectionA362 van Wijngaarden, et al.

10.3.6.2. Binary input
a) proc get bin = (ref file f, [] intype it)void:

if opened of f then
set bin mood(f); set read mood(f);
for k to upb it
do [] simplin y = straightin it [k];

for j to upb y
do

simplout yj = case y[j] in
〈(ref L int i): i〉, 〈 (ref L real r): r〉,
〈(ref L compl z): z〉, (ref bool b): b,
〈(ref L bits lb): lb〉, (ref char c): c, (ref[]char s): s,
(ref string ss): ss esac;

[1: upb(to bin(f, yj))] char bin;
for i to upb bin
do next pos(f); set bin mood(f);

ref pos cpos = cpos of f;
bin [i] :=

case text of f in
(flextext t2):

t2[p of cpos] [l of cpos] [c of cpos]
esac;

c of cpos+:= 1
od;
case y [j] in
〈 (ref L int ii): (from bin(f, ii, bin)|(L int i): ii := i) 〉,
〈 (ref L real rr):

(from bin(f, rr, bin) | (L real r): rr := r)〉,
〈 (ref L compl zz):

(from bin(f, zz, bin) | (L compl z): zz := z)〉,
(ref bool bb): (from bin(f, bb, bin) | (bool b): bb := b),
〈 (ref L bits lb):

(from bin(f, lb, bin) | (L bits b): lb := b)〉,
(ref char cc): (from bin(f, cc, bin) | (char c): cc := c),
(ref []char ss):

(from bin(f, ss, bin) | ([] char s): ss := s),
(ref string ssss):

(from bin(f, ssss, bin) | ([] char s): ssss := s)
esac

od

221

Section ALGOL 68 Revised Report A42

od
else undefined
fi;

{ But Eeyore wasn’t listening. He was taking the balloon
out, and putting it back again, as happy as could be.
. . .

Winnie-the-Pooh, A.A.Milne.}

{

������}

10.4. The system prelude and task list

10.4.1. The system prelude
The representation of the system-prelude is obtained from the following

form, to which may be added further forms not defined in this Report. {The
syntax of program-texts ensures that a declaration contained in the system-
prelude may not contradict any declaration contained in the standard-prelude.
It is intended that the further forms should contain declarations that are
needed for the correct operation of any system-tasks that may be added (by
the implementer, as provided in 10.1.2.d).}
a) sema ℵgremlins =(sema s; F of s := prim int := 0; s);

10.4.2. The system task list
The representation of the {first} constituent system-task or the system-

task-list is obtained from the following form. The other system-tasks, if any,
are not defined by this Report {but may be defined by the implementer in
order to account for the particular features of his operating environment,
especially in so far as they interact with the running of particular-programs
(see, e.g., 10.3.1.1.dd)}.
a) do down gremlins; undefined; up bfileprotect od
{The intention is that this call of undefined, which is released by an up

gremlins whenever a book is closed, may reorganize the chain of backfiles and

222

SectionA51 van Wijngaarden, et al.

the chain of locked backfiles, such as by removing the book if it is not to
be available for further opening, or by inserting it into the chain of backfiles
several times over if it is to be permitted for several particular-programs to read
it simultaneously. Note that, when an up gremlins is given, bfileprotect is
always down and remains so until such reorganization has taken place.}

{ From ghoulies and ghosties and long-leggety beasties
and things that go bump in the night.
Good Lord, deliver us!

Ancient Cornish litany}

10.5. The particular preludes and postludes

10.5.1. The particular preludes
The representation of the particular-prelude of each user-task is obtained

from the following forms, to which may be added such other forms as
may be needed for the proper functioning of the facilities defined in the
constituent library-prelude of the program-text {, e.g., declarations and calls of
open for additional standard files}. However, for each QUALITY-new-new-
PROPS1-LAYER2-defining-indicator-with-TAX contained in such an additional
form, the predicate 'where QUALITY TAX independent PROPS1' {7.1.1.a, c}
must hold {i.e., no declaration contained in the standard-prelude may be
contradicted}.
a) L int ` last random := round(` maxint / L 2);
b) proc ` random = L real: ` next random(` last random);
c) file stand in, stand out, stand back;

open(stand in, ˝˝, stand in channel);
open(stand out, ˝˝, stand out channel);
open(stand back, ˝˝, stand back channel);

d) proc print = ([] union(outtype, proc(ref file)void) x)void:
put(stand out, x),

proc write = ([] union(outtype, proc(ref file)void) x)void:
put(stand out, x);

e) proc read = ([] union(intype, proc(ref file)void) x)void:
get(stand in, x);

f) proc printf = ([] union(outtype, format) x)void: putf(stand out, x),
proc writef = ([] union(outtype, format) x)void: putf(stand out, x);

g) proc readf = ([] union(intype, format) x)void: getf(stand in, x);

223

Section ALGOL 68 Revised Report B3

h) proc write bin = ([] outtype x)void: put bin(stand back, x);

i) proc read bin = ([] intype x)void: get bin(stand back, x);

10.5.2. The particular postludes

The representation of the particular-postlude of each user-task is obtained
from the following form, to which may be added such other forms as may be
needed for the proper functioning of the facilities defined in the constituent
library-prelude of the program-text {, e.g., calls of lock for additional standard
files}.
a) stop: lock(stand in); lock(stand out); lock(stand back)

B Examples

11.1. Complex square root

proc compsqrt = (compl z) compl :
/c the square root whose real part is nonnegative of the complex number

’z’ /c
begin real x = re z, y = im z;

real rp = sqrt ((abs x + sqrt (x ↑ 2 + y ↑ 2)) / 2);
real ip = (rp = 0 | 0 | y / (2 × rp));
if x ≥ 0 then rp i ip else abs ip i (y ≥ 0 | rp | -rp) fi

end
Calls {5.4.3} using compsqrt:
compsqrt(w) • compsqrt(-3.14) • compsqrt(-1)

11.2. Innerproduct 1

proc innerproduct 1 = (int n, proc (int) real x, y) real :
/c the innerproduct of two vectors, each with ’n’ components, x(i),

y(i), i = 1, . . . , n, where ’x’ and ’y’ are arbitrary mappings
from integer to real number /c

begin long real s := long 0;
for i to n do s +:= leng x(i) × leng y(i) od;
shorten s

end
Real-calls using innerproduct 1:
innerproduct 1(m, (int j)real: x1 [j],(int j)real: y1 [j])
innerproduct 1(n, nsin, ncos)

224

SectionB5 van Wijngaarden, et al.

11.3. Innerproduct 2

proc innerproduct 2= (ref [] real a, b) real :
if upb a - lwb a= upb b - lwb b
then /c the innerproduct of two vectors ’a’ and ’b’ with equal numbers

of elements /c
long real s := long 0;
ref [] real a1=a[@1], b1=b[@1];
/c note that the bounds of ’a [@1]’ are [1: upb a- lwb a+1]/c
for i to upb a1 do s+:= leng a1 [i] × leng b1 [i] od;
shorten s

fi
Real-calls using innerproduct 2:
innerproduct2(x1, y1)
innerproduct2(y2 [2,], y2 [,3])

11.4. Largest element

proc absmax = (ref [,] real a, /c result /c ref real y,
/c subscripts /c ref int i, k) void:

/c the absolute value of the element of greatest absolute value of
the matrix ’a’ is assigned to ’y’, and the subscripts of this
element to ’i’ and ’k’/c

begin y := -1;
for p from 1 lwb a to 1 upb a
do

for q from 2 lwb a to 2 upb a
do

if abs a[p, q]>y then y := abs a[i := p, k := q] fi
od

od
end

Calls using absmax:
absmax(x2, x, i,j) • absmax(x2, x, loc int, loc int)

11.5. Euler summation

proc euler = (proc (int) real f, real eps, int tim) real :
/c the sum for ’i’ from 1 to infinity of ’f(i)’, computed by means

of a suitably refined euler transformation. the summation
is terminated when the absolute values of the terms of the
transformed series are found to be less than ’eps’ ’tim’ times in

225

Section ALGOL 68 Revised Report B7

succession. this transformation is particularly efficient in the
case of a slowly convergent or divergent alternating series /c

begin int n := 1, t; real mn, ds := eps; [1:16] real m;
real sum := (m [1] := f(1)) / 2;
for i from 2 while (t := (abs ds < eps | t+1 | 1)) ≤ tim
do mn := f(i);

for k to n do mn := ((ds := mn)+m [k]) / 2; m [k] := ds od;
sum +:=(ds :=(abs mn < abs m[n] ∧ n < 16 | n +:= 1; m[n] :=

mn; mn / 2 | mn))
od;
sum

end
A call using euler:
euler((int i)real: (odd i | -1/i | 1/i), 1.e-5, 2)

11.6. The norm of a vector
proc norm = (ref [] real a) real :

/c the euclidean norm of the vector ’a’ /c
(long real s := long 0;

for k from lwb a to upb a do s+:= leng a [k] ↑ 2 od;
shorten long sqrt (s))

For a use of norm in a call, see 11.7.

11.7. Determinant of a matrix
proc det = (ref [,] real x, ref [] int p) real :

if ref [,] real a=x[@1, @1];
1 upb a=2 upb a∧1 upb a= upb p - lwb p+1

then int n=1 upb a;
/c the determinant of the square matrix ’a’ of order ’n’ by the

method of crout with row interchanges: ’a’ is replaced by its
triangular decomposition, l × u, with all u [k, k] = 1.
the vector ’p’ gives as output the pivotal row indices; the k-th
pivot is chosen in the k-th column of t such that abs l [i, k] /

row norm is maximal /c
[1: n] real v; real d := 1, s, pivot;
for i to n do v[i] := norm(a [i,]) od;
for k to n
do int k1=k-1; ref int pk=p[@1] [k]; real r := -1;

ref [,]real al=a[, 1:k1], au=a[1: k1,];
ref []real ak=a[k,], ka=a[, k], alk=al[k,], kau=au[, k];

226

SectionBA van Wijngaarden, et al.

for i from k to n
do ref real aik=ka [i];

if (s := abs (aik -:= innerproduct 2(al [i,], kau)) / v [i])> r
then r := s; pk := i
fi

od;
v[pk]:= v[k]; pivot := ka[pk]; ref []real apk=a[pk,];
for j to n
do ref real akj=ak[j], apkj=apk [j];

r := akj;
akj := if j ≤ k then apkj

else (apkj - innerproduct 2 (alk, au [, j])) / pivot fi;
if pk =/ k then apkj := -r fi

od;
d ×:= pivot

od;
d

fi

A call using det: det(y2,i1)

11.8. Greatest common divisor

proc gcd = (int a, b) int:
/c the greatest common divisor of two integers /c
(b=0 | abs a | gcd(b, a mod b))

A call using gcd: gcd(n, 124)

11.9. Continued fraction

op / = ([]real a, []real b)real:
/c the value of a / b is that of the continued fraction

a1 / (b1 +a2 / (b2+. . . an / bn). . .)/c
if lwb a=1 ∧ lwb b=1 ∧ upb a= upb b
then (upb a=0 | 0 | a[1]/(b[1]+a[2:] / b[2:]))
fi

A formula using /: x1 / y1
{The use of recursion may often be elegant rather than efficient as in

the recursive procedure 11.8 and the recursive operation 11.9. See, however,
11.10 and 11.13 for examples in which recursion is of the essence.}

227

Section ALGOL 68 Revised Report BA

11.10. Formula manipulation
begin

mode form = union(ref const, ref var, ref triple, ref call);
mode const = struct (real value);
mode var = struct (string name, real value);
mode triple = struct (form left operand, int operator,

form right operand);
mode function = struct (ref var bound var, form body);
mode call = struct (ref function function name, form parameter);
int plus=1, minus =2, times =3, by =4, to =5;
heap const zero, one; value of zero := 0; value of one := 1;
op = = (form a, ref const b) bool: (a | (ref const ec): ec :=: b | false);
op + = (form a, b) form:

(a=zero | b |: b=zero | a | heap triple := (a, plus, b));
op - = (form a, b) form: (b=zero | a | heap triple := (a, minus, b));
op × = (form a, b)form: (a=zero or b=zero | zero |: a=one | b |:

b=one | a | heap triple := (a, times, b));
op / = (form a, b)form: (a=zero∧(b=zero) | zero |: b=one | a |

heap triple := (a, by, b));
op ↑ = (form a, ref const b) form:

(a=one or (b:=:zero) | one |: b:=:one | a | heap triple := (a,to,b));
proc derivative of = (form e, /c with respect to /c ref var x) form:

case e in
(ref const): zero,
(ref var ev): (ev :=: x | one | zero),
(ref triple et):

case form u = left operand of et, v = right operand of et;
form udash = derivative of(u, /c with respect to /c x),

vdash = derivative of(v, /c with respect to /c x);
operator of et

in
udash + vdash,
udash - vdash,
u × vdash + udash × v,
(udash - et × vdash) / v,
(v | (ref const ec): v × u ↑ (heap const c;

value of c := value of ec - 1; c) × udash)
esac,

(ref call ef):
begin ref function f= function name of ef;

228

SectionBB van Wijngaarden, et al.

form g = parameter of ef; ref var y = bound var of f;
heap function fdash := (y, derivative of (body of f, y));
(heap call := (fdash, g)) × derivative of(g, x)

end
esac;

proc value of = (form e) real:
case e in

(ref const ec): value of ec,
(ref var ev): value of ev,
(ref triple et):

case real u = value of (left operand of et),
v = value of (right operand of et);
operator of et

in u + v, u - v, u × v, u / v, exp (v × ln (u))
esac,

(ref call ef):
begin ref function f = function name of ef;

value of bound var of f := value of (parameter of ef);
value of (body of f)

end
esac;

heap form f, g;
heap var a := (˝a˝, skip), b := (˝b˝, skip), x := (˝x˝, skip);

/c start here/c
read ((value of a, value of b, value of x));
f := a +x / (b + x);
g := (f+one) / (f-one);
print ((value of a, value of b, value of x,

value of (derivative of(g, /c with respect to /c x))))
end /c example of formula manipulation /c

11.11. Information retrieval
begin

mode ra = ref auth, rb = ref book;
mode auth = struct (string name, ra next, rb book),
book = struct (string title, rb next);
ra auth, first auth := nil, last auth;
rb book; string name, title; int i; file input, output;
open (input, ˝˝, remote in); open (output, ˝˝, remote out);
putf(output, ($ p

229

Section ALGOL 68 Revised Report BB

˝to enter a new author, type ˝˝author˝˝, a space,˝x
˝and his name. ˝l
˝to enter a new book, type ˝˝book˝˝, a space,˝x
˝the name of the author, a new line, and the title. ˝l
˝for a listing of the books by an author, type ˝˝hst˝˝,˝x
˝a space, and his name. ˝l
˝to find the author of a book, type ˝˝find˝˝, a new line,˝x
˝and the title. ˝l
˝to end, type ˝˝end˝˝˝al$, ˝.˝));

proc update = void:
if ra (first auth) :=: nil
then auth := first auth := last auth := heap auth := (name, nil, nil)
else auth := first auth;

while ra (auth) :=/ : nil
do

(name = name of auth | go to known | auth := next of
auth)

od;
lastauth := next of lastauth := auth :=

heap auth := (name, nil, nil);
known: skip

fi;
do
try again:

getf(input, ($c(˝author˝, ˝book˝, ˝list˝, ˝find˝, ˝end˝, ˝˝),
x30al, 80al$, i));

case i in
/c author/c
(getf(input, name); update),
/c book /c
begin getf (input, (name, title)); update;

if rb (book of auth) :=: nil
then book of auth := heap book := (title, nil)
else book := book of auth;

while rb (next of book) :=/ : nil
do

(title = title of book
| go to try again | book := next of book)

od;
(title =/ title of book |

230

SectionBB van Wijngaarden, et al.

next of book := heap book := (title, nil))
fi

end,
/c list /c
begin getf(input, name); update;

putf(output, ($ p˝author: ˝30all$, name));
if rb(book := book of auth) :=: nil
then put (output, (˝no publications˝, newline))
else on page end (output,

(ref file f) bool:
(putf(f, ($ p˝author: ˝30a41k˝continued˝ll$,

name));
true));

while rb (book):=/ : nil
do putf(output, ($l80a$, title of book)); book := next of

book
od;
on page end (output, (ref file f) bool: false)

fi
end,
/c find/c
begin getf(input, (loc string , title)); auth := first auth;

while ra (auth) :=/ : nil
do book := book of auth;

while rb (book):=/ : nil
do

if title = title of book
then putf(output, ($l˝author: ˝30a$, name of

auth));
go to try again

else book := next of book
fi

od;
auth := next of auth

od;
put(output, (newline, ˝unknown˝, newline))

end,
/c end /c
(put(output, (new page, ˝signed off˝, close)); close(input);

goto stop),

231

Section ALGOL 68 Revised Report BC

/c error /c
(put(output, (newline, ˝mistake, try again˝)); newline(input))

esac
od

end

11.12. Cooperating sequential processes
begin int nmb magazine slots, nmb producers, nmb consumers;

read ((nmb magazine slots, nmb producers, nmb consumers));
[1: nmb producers] file in file; [1: nmb consumers] file out file;
for i to nmb producers do open (in file [i], ˝˝, inchannel [i]) od;
/c ’inchannel’ and ’outchannel’ are defined in a surrounding range /c
for i to nmb consumers
do open (out file [i], ˝˝, outchannel [i]) od;
mode page= [1: 60, 1:132] char ;
[1: nmb magazine slots] ref page magazine;
int /c pointers of a cyclic magazine /c index:= 1, exdex := 1;
sema full slots = level 0, free slots = level nmb magazine slots,

in buffer busy = level 1, out buffer busy = level 1;
proc par call = (proc (int) void p, int n) void:

/c call ’n’ incarnations of ’p’ in parallel /c
(n> 0 | par (p (n), par call (p, n - 1)));

proc producer = (int i) void:
do heap page page;

get (in file [i], page);
down free slots; down in buffer busy;

magazine [index] := page;
index modab nmb magazine slots plusab 1;

up full slots; up in buffer busy
od;

proc consumer = (int i) void:
do page page;

down full slots; down out buffer busy;
page := magazine [exdex];
exdex modab nmb magazine slots plusab 1;

up free slots; up out buffer busy;
put (out file [i], page)

od;
par (par call (producer, nmb producers),

par call (consumer, nmb consumers))

232

SectionC1 van Wijngaarden, et al.

end

11.D. Towers of Hanoi
for k to 8
do file f := stand out;

proc p = (int me, de, ma) void:
if ma > 0 then

p (me, 6 - me - de, ma - 1);
putf(f, (me, de, ma));
/c move from peg ’me’ to peg ’de’ piece ’ma’ /c
p(6-me-de, de, ma -1)

fi ;
putf(f, ($l˝k = ˝dl,n((2↑k+15)%16)(2(2(4(3(d)x)x)x)l)$, k));
p(1, 2, k)

od

C Glossaries

12.1. Technical terms
Given below are the locations of the defining occurrences of a number

of words which, in this Report, have a specific technical meaning. A word
appearing in different grammatical forms is given once, usually as the in-
finitive. Terms which are used only within pragmatic remarks are enclosed
within braces.

abstraction (a protonotion of a protonotion) 1.1.4.2.b
acceptable to (a value acceptable to a mode) 2.1.3.6.d
access (inside a locale) 2.1.2.c
action 2.1.4.1.a
active (action) 2.1.4.3.a
after (in the textual order) 1.1.3.2.i
akin (a production tree to a production tree) 1.1.3.2.k
{alignment} 10.3.4.1.1.ff
alternative 1.1.3.2.c
apostrophe 1.1.3.1.a
arithmetic value 2.1.3.1.a
ascribe (a value or scene to an indicator) 4.8.2.a
assign (a value to a name) 5.2.1.2.b
asterisk 1.1.3.1.a
{balancing} 3.4.1
before (in the textual order) 1.1.3.2.i

233

Section ALGOL 68 Revised Report C1

blind alley 1.1.3.2.d
{book} 10.3.1.1
bound 2.1.3.4.b
bound pair 2.1.3.4.b
built (the name built from a name) 6.6.2.c
built (the multiple value built from a value) 6.6.2.b
calling (of a routine) 5.4.3.2.b
{channel} 10.3.1.2
character 2.1.3.1.g
chosen (scene of a chooser-clause) 3.4.2.b
{close (a file)} 10.3.1.4.ff
collateral action 2.1.4.2.a
collateral elaboration 2.1.4.2.f
{collection} 10.3.4.1.1.gg
colon 1.1.3.1.a
comma 1.1.3.1.a
complete (an action) 2.1.4.3.c, d
{compressible} 10.3.1.3.ff
consistent substitute 1.1.3.4.e
constituent 1.1.4.2.d
construct 1.1.3.2.e
construct in a representation language 9.3.b
contain (by a hypernotion) 1.1.4.1.b
contain (by a production tree) 1.1.3.2.g
contain (by a protonotion) 1.1.4.1.b
{control (a string by a pattern)} 10.3.4.1.1.dd
{conversion key} 10.3.1.2
{create (a file on a channel)} 10.3.1.4.cc
{cross-reference (in the syntax)} 1.1.3.4.f
{data list} 10.3.3
defining range (of an indicator) 7.2.2.a
deflex (a mode to a mode) 2.1.3.6.b
{deproceduring} 6
{dereferencing} 6
descendent 1.1.3.2.g
descendent action 2.1.4.2.b
descriptor 2.1.3.4.b
designate (a hypernotion designating a protonotion) 1.1.4.1.a
designate (a paranotion designating a construct) 1.1.4.2.a
develop (a scene from a declarer) 4.6.2.c

234

SectionC1 van Wijngaarden, et al.

direct action 2.1.4.2.a
direct descendent 1.1.3.2.f
direct parent 2.1.4.2.c
divided by (of arithmetic values) 2.1.3.1.e
{dynamic (replicator)} 10.3.4.1.1.dd
{edit (a string)} 10.3.4.1.1.jj
elaborate collaterally 2.1.4.2.f
elaboration 2.1.4.1.a
element (of a multiple value) 2.1.3.4.a
elidible hypernotion 1.1.4.2.c
endow with subnames 2.1.3.3.e, 2.1.3.4.g
envelop (a protonotion enveloping a hypernotion) 1.1.4.1.c
environ 2.1.1.1.c
{environment enquiry} 10.2
equivalence (of a character and an integer) 2.1.2.d, 2.1.3.1.g
equivalence (of modes) 2.1.1.2.a
equivalence (of protonotions) 2.1.1.2.a
establish (an environ around an environ) 3.2.2.b
{establish (a file on a channel)} 10.3.1.4.cc
{event routine} 10.3.1.3
{expect} 10.3.4.1.1.ll
{external object} 2.1.1
field 2.1.3.3.a
{file} 10.3.1.3
{firm (position)} 6.1.1
{firmly related} 7.1.1
fixed name (referring to a multiple value) 2.1.3.4.f
flat descriptor 2.1.3.4.c
flexible name (referring to a multiple value) 2.1.3.4.f
follow (in the textual order) 1.1.3.2.j
{format} 10.3.4
{frame} 10.3.4.1.1.cc
generate (a 'TAG' generating a name) 2.1.3.4.l
generate (a trim generating a name) 2.1.3.4.j
ghost element 2.1.3.4.c
halt (an action) 2.1.4.3.f
hardware language 9.3.a
{heap} 5.2.3
hold (of a predicate) 1.3.2
hold (of a relationship) 2.1.2.a

235

Section ALGOL 68 Revised Report C1

hyper.rule 1.1.3.4.b
hyperalternative 1.1.3.4.c
hypernotion 1.1.3.1.e
hyphen 1.1.3.1.a
identify (an indicator identifying an indicator) 7.2.2.b
implementation (of ALGOL 68) 2.2.2.c
implementation of the reference language 9.3.c
in (a construct in an environ) 2.1.5.b
in place of 3.2.2.a, 5.4.4.2
inactive (action) 2.1.4.3.a
incompatible actions 2.1.4.2.e
{independence (of properties)} 7.1.1
index (to select an element) 2.1.3.4.a
{indit (a string)} 10.3.4.1.1.kk
initiate (an action) 2.1.4.3.b, c
{input compatible} 10.3.4.1.1.ii
inseparable action 2.1.4.2.a
{insertion} 10.3.4.1.1.ee
integer 2.1.3.1.a
integral equivalent (of a character) 2.1.3.1.g
{internal object} 2.1.1
interrupt (an action) 2.1.4.3.h
intrinsic value 8.1.1.2, 8.1.2.2.a, b, 8.1.4.2.b, 8.2.2.b, c
invisible 1.1.3.2.h
is (of hypernotions) 2.1.5.e
large syntactic mark 1.1.3.1.a
largest integral equivalent (of a character) 2.1.3.1.g
lengthening (of arithmetic values) 2.1.2.d, 2.1.3.1.e
{link (a book with a file)} 10.3.1.4.bb
{literal} 10.3.4.1.1.ee
local environ 5.2.3.2.b
locale 2.1.1.1.b
{lock (a file)} 10.3.1.4.gg
{logical end} 10.3.1.1.aa
{logical file} 10.3.1.5.dd
lower bound 2.1.3.4.b
make to access (a value inside a locale) 2.1.2.c
make to refer to (of a name) 2.1.3.2.a
{marker} 10.3.4.1.1.cc
meaning 1.1.4, 2.1.4.1.a

236

SectionC1 van Wijngaarden, et al.

meaningful program 1.1.4.3.c
{meek (position)} 6.1.1
member 1.1.3.2.d
metanotion 1.1.3.1.d
metaproduction rule 1.1.3.3.b
minus (of arithmetic values) 2.1.3.1.e
mode 2.1.1.2.b, 2.1.5.f
{multiple selection} 5.3.1
multiple value 2.1.3.4.a
name 2.1.3.2.a
necessary for (an environ for a scene) 7.2.2.c
nest 3.0.2
newer (of scopes) 2.1.2.f
newly created (name) 2.1.3.2.a
nil 2.1.3.2.a
nonlocal 3.2.2.b
notion 1.1.3.1.c
number of extra lengths 2.1.3.1.d
number of extra shorths 10.2.1.j, l, 2.1.3.1.d
number of extra widths 10.2.1.j, l
numerical analysis, in the sense of 2.1.3.1.e
object 2.1.1
of (construct of a construct) 2.1.5.a
of (construct or a scene) 2.1.1.1.d
of (environ of a scene) 2.1.1.1.d
of (nest of a construct) 3.0.2
older (of scopes) 2.1.2.f
{on routine} 10.3.1.3
{open (a file)} 10.3.1.4.dd
original 1.1.3.2.e
other syntactic mark 1.1.3.1.a
{output compatible} 10.3.4.1.1.hh
{overflow} 2.1.4.3.h
{overload} 4.5
parallel action 10.2.4
paranotion 1.1.4.2.a
{perform (an alignment)} 10.3.4.1.1.ff
{perform (an insertion)} 10.3.4.1.1.ee
{pattern} 10.3.4.1.1.cc
permanent relationship 2.1.2.a

237

Section ALGOL 68 Revised Report C1

{physical file} 10.3.1.5.cc
{picture} 10.3.4.1.1.cc
plain value 2.1.3.1.a
point 1.1.3.1.a
pragmatic remark 1.1.2
{preelaboration} 2.1.4.1.c
precede (in the textual order) 1.1.3.2.j
predicate 1.3.2
primal environ 2.2.2.a
process 10.2.4
produce 1.1.3.2.f
production rule 1.1.3.2.b
production tree 1.1.3.2.f
program in the strict language 1.1.1.b, 10.1.2
{property} 2.1.1.1.b, 3.0.2
protonotion 1.1.3.1.b
pseudocomment 10.1.3.Step 7
publication language 9.3.a
{random access} 10.3.1.3.ff
{reach} 3.0.2
real number 2.1.3.1.a
refer to 2.1.2.e, 2.1.3.2.a
reference language 9.3.a
relationship 2.1.2.a
{replicator} 10.3.4.1.1.dd
representation language 9.3.a
required 1.1.4.3.b
resume (an action) 2.1.4.3.g
routine 2.1.3.5.a
{rowing} 6
same as (of scopes) 2.1.2.f
scene 2.1.1.1.d
scope (of a value) 2.1.1.3.a
scope (of an environ) 2.1.1.3.b
{scratch (a file)} 10.3.1.4.hh
select (a 'TAG' selecting a field) 2.1.3.3.a
select (a 'TAG' selecting a multiple value) 2.1.3.4.k
select (a 'TAG' selecting a subname) 2.1.3.3.e
select (a field-selector selecting a field) 2.1.5.g
select (an index selecting a subname) 2.1.3.4.g

238

SectionC1 van Wijngaarden, et al.

select (an index selecting an element) 2.1.3.4.a
select (a trim selecting a multiple value) 2.1.3.4.i
semantics 1.1.1
semicolon 1.1.3.1.a
sense of numerical analysis 2.1.3.1.e
{sequential access} 10.3.1.3.ff
serial action 2.1.4.2.a
simple substitute 1.1.3.3.d
size (of an arithmetic value) 2.1.3.1.b
small syntactic mark 1.1.3.1.a
smaller (descendent smaller than a production tree) 1.1.3.2.g
smaller than (of arithmetic values) 2.1.2.d, 2.1.3.1.e
{soft (position)} 6.1.1
{sort} 6
specify (a declarer specifying a mode) 4.6.2.d
{spelling (of a mode)} 2.1.1.2
standard environment 1.1.1, 10
{standard function} 10.2
{standard mode} 10.2
{standard operator} 10.2
{state} 10.3.1.3
{staticize (a picture)} 10.3.4.1.1.dd
stowed name 2.1.3.2.b
stowed value 2.1.1.1.a
straightening 10.3.2.3.c
strict language 1.1.1.b, 1.1.3.2.e, 10.1.2
{string} 8.3
{strong (position)} 6.1.1
structured value 2.1.3.3.a
sublanguage 2.2.2.c
subname 2.1.2.g
substitute consistently 1.1.3.4.e
substitute simply 1.1.3.3.d
superlanguage 2.2.2.c
{suppressed frame} 10.3.4.1.1.cc
symbol 1.1.3.1.f
{synchronization operation} 10.2
syntax 1.1.1
terminal metaproduction (of a metanotion) 1.1.3.3.c
terminal production (of a notion) 1.1.3.2.f

239

SectionALGOL 68 Revised ReportC2

terminal production (of a production tree) 1.1.3.2.f
terminate (an action) 2.1.4.3.e
textual order 1.1.3.2.i
times (of arithmetic values) 2.1.3.1.e
transform 10.3.4.1.2.b
{transient name} 2.1.3.6.c
transitive relationship 2.1.2.a
{transput declaration} 10.2
{transput} 10.3
traverse 10.3.2.3.d
trim 2.1.3.4.h
truth value 2.1.3.1.f
typographical display feature 9.4.d
undefined 1.1.4.3.a
united from (of modes) 2.1.3.6.a
{uniting} 6
upper bound 2.1.3.4.b
vacant locale 2.1.1.1.b
value 2.1.1.1.a
variant (of a value) 4.4.2.c
variant of ALGOL 68 1.1.5.b
version (of an operator) 10.1.3.Step 3
visible 1.1.3.2.h
void value 2.1.3.1.h
{voiding} 6
{weak (position)} 6.1.1
{well formed} 7.4
widenable to (an integer to a real number) 2.1.2.d, 2.1.3.1.e
{widening} 6
yield (of a scene) 2.1.2.b, 2.1.4.1.b, 2.1.5.c, d

{ Denn eben, wo Begriffe fehlen,
Da stellt ein Wort zur rechten Zeit sich ein.
Faust, J.W. von Goethe.}

240

SectionC2 van Wijngaarden, et al.

12.2. Paranotions

Given below are short paranotions representing the notions defined in
this Report, with references to their hyper-rules.

after-specification 10.3.4.10.1.c
alignment 10.3.4.1.1.e
alignment-code 10.3.4.1.1.f
alternate-CHOICE-clause 3.4.1.d
assignation 5.2.1.1.a
bits-denotation 8.2.1.l
bits-pattern 10.3.4.7.1.a
boolean-choice-pattern 10.3.4.8.1.b
boolean-marker 10.3.4.4.1.b
boolean-pattern 10.3.4.4.1.a
boundscript 5.3.2.1.j
call 5.4.3.1.a
case-clause 3.4.1.p
case-part-of-CHOICE 3.4.1.i
cast 5.5.1.1.a
character-glyph 8.1.4.1.c
character-marker 10.3.4.6.1.b
choice-clause 3.4.1.n
chooser-CHOICE-clause 3.4.1.b
closed-clause 3.1.1.a
coercee 6.1.1.g
coercend 6.1.1.h
collateral-clause 3.3.1.a, d, e
collection 10.3.4.1.1.b
complex-marker 10.3.4.5.1.b
complex-pattern 10.3.4.5.1.a
conditional-clause 3.4.1.o
conformity-clause 3.4.1.q
constant 3.0.1.d
declaration 4.1.1.a
declarative 5.4.1.1.e
declarator 4.6.1.c, d, g, h, o, s
declarer 4.2.1.c, 4.4.1.b, 4.6.1.a, b
definition 4.1.1.d

241

SectionALGOL 68 Revised ReportC2

denotation 8.1.0.1.a, 8.1.1.1.a,
8.1.2.1.a, 8.1.3.1.a, 8.1.4.1.a,
8.1.5.1.a, 8.2.1.a, b, c, 8.3.1.a

denoter 8.0.1.a
deprocedured-to-FORM 6.3.1.a
dereferenced-to-FORM 6.2.1.a
destination 5.2.1.1.b
digit-cypher 8.1.1.1.c
digit-marker 10.3.4.2.1.f
display 3.3.1.j
do-part 3.5.1.h
dyadic-operator 5.4.2.1.e
enquiry-clause 3.4.1.c
establishing-clause 3.2.1.i
exponent-marker 10.3.4.3.1.e
exponent-part 8.1.2.1.g
exponent-specification 10.3.4.10.1.d
expression 3.0.1.b
field-selector 4.8.1.f
fixed-point-numeral 8.1.1.1.b
floating-point-mould 10.3.4.3.1.c
floating-point-numeral 8.1.2.1.e
for-part 3.5.1.b
format-pattern 10.3.4.9.1.a
format-text 10.3.4.1.1.a
formula 5.4.2.1.d
fractional-part 8.1.2.1.d
frame 10.3.4.1.1.m
general-pattern 10.3.4.10.1.a
generator 5.2.3.1.a
go-to 5.4.4.1.b
hip 5.1.a
identifier-declaration 4.4.1.g
identity-declaration 4.4.1.a
identity-definition 4.4.1.c
identity-relator 5.2.2.1.b
identityjelation 5.2.2.1.a
in-CHOICE-clause 3.4.1.e
in-part-of-CHOICE 3.4.1.f, g, h
indexer 5.3.2.1.i

242

SectionC2 van Wijngaarden, et al.

indicator 4.8.1.e
insertion 10.3.4.1.1.d
integral-choice-pattern 10.3.4.8.1.a
integral-mould 10.3.4.2.1.b
integral-part 8.1.2.1.c
integral-pattern 10.3.4.2.1.a
intervals 3.5.1.c
joined-label-definition 10.1.1.h
joined-portrait 3.3.1.b
jump 5.4.4.1.a
label-definition 3.2.1.c
literal 10.3.4.1.1.i
loop-clause 3.5.1.a
lower-bound 4.6.1.m
marker 10.3.4.1.1.n
mode-declaration 4.2.1.a
mode-definition 4.2.1.b
monadic-operator 5.4.2.1.f
nihil 5.2.4.1.a
operand 5.4.2.1.g
operation-declaration 4.5.1.a
operation-definition 4.5.1.c
other-PRAGMENT-item 9.2.1.d
other-string-item 8.1.4.1.d
parallel-clause 3.3.1.c
parameter 5.4.1.1.g, 5.4.3.1.c
parameter-definition 5.4.1.1.f
particular-postlude 10.1.1.i
particular-program 10.1.1.g
pattern 10.3.4.1.1.o
phrase 3.0.1.a
picture 10.3.4.1.1.c
plain-denotation 8.1.0.1.b
plan 4.5.1.b, 4.6.1.p
plusminus 8.1.2.1.j
point-marker 10.3.4.3.1.d
powerof-ten 8.1.2.1.i
praglit 10.3.4.8.1.c
pragment 9.2.1.a
preludes 10.1.1.b

243

SectionALGOL 68 Revised ReportC2

priority-declaration 4.3.1.a
priority-definition 4.3.1.b
program 2.2.1.a
program-text 10.1.1.a
radix-digit 8.2.1.m
radix-marker 10.3.4.7.1.c
range 3.0.1.f
real-pattern 10.3.4.3.1.a
repeating-part 3.5.1.e
replicator 10.3.4.1.1.g
revised-tower-bound 5.3.2.1.g
routine-declarer 4.4.1.b
routine-plan 4.5.1.b
routine-text 5.4.1.1a, b
row-ROWS-rower 4.6.1.i
row-display 3.3.1.i
row-rower 4.6.1.j, k, l
rowed-toFORM 6.6.1.a
sample-generator 5.2.3.1.b
selection 5.3.1.1.a
serial-clause 3.2.1.a
series 3.2.1.b
sign-marker 10.3.4.2.1.e
sign-mould 10.3.4.2.1.c
skip 5.5.2.1.a
slice 5.3.2.1.a
softly-deprocedured-to-FORM 6.3.1.b
source 5.2.1.1.c
source-for-MODINE 4.4.1.d
specification 3.4.1.j, k
stagnant-part 8.1.2.1.f
statement 3.0.1.c
string 8.3.1.b
string-denotation 8.3.1.c
string-item 8.1.4.1.b
string-pattern 10.3.4.6.1.a
structure-display 3.3.1.h
subscript 5.3.2.1.e
suppression 10.3.4.1.1.l
symbol 9.1.1.h

244

SectionC2 van Wijngaarden, et al.

system-task 10.1.1.e
tasks l0.1.1.d¿
times-ten-to-the-power-choice 8.1.2.1.h
token 9.1.1.g
trimmer 5.3.2.1.f
trimscript 5.3.2.1.h
unchanged-from-FORM 6.1.1.f
unit 3.2.1.d
unitary-clause 3.2.1.h
united-to-FORM 6.4.1.a
unsuppressible-literal 10.3.4.1.1.i
unsuppressible-replicator 10.3.4.1.1.h
unsuppressible-suppression 10.3.4.1.1.l
upper-bound 4.6.1.n
user-task 10.1.1.f
vacuum 3.3.1.k
variable 3.0.1.e
variable-declaration 4.4.1.e
variable-definition 4.4.1.f
variable-point-mould 10.3.4.3.1.b
variable-point-numeral 8.1.2.1.b
voided-to-FORM 6.7.1.a, b
while-do-part 3.5.1.f
while-part 3.5.1.g
widened-to-FORM 6.5.1.a, b, c, d
width-specification 10.3.4.10.1.b
zero-marker 10.3.4.2.1.d
ADIC-operand 5.4.2.1.c
CHOICE-again 9.1.1.c
CHOICE-clause 3.4.1.a
CHOICE-finish 9.1.1.e
CHOICE-in 9.1.1.b
CHOICE-start 9.1.1.a
CHOICE-out 9.1.1.d
COMMON-joined-definition 4.1.1.b, c
DYADIC-formula 5.4.2.1.a
EXTERNAL-prelude 10.1.1.c
FIELDS-definition-of-FIELD 4.6.1.f
FIELDS-portrait 3.3.1.f, g
FIELDS-portrayer-of-FIELDS1 4.6.1.e

245

Section ALGOL 68 Revised Report C3

FORM-coercee 6.1.1.a, b, c, d, e
FROBYT-part 3.5.1.d
INDICATOR 4.8.1.a, b
MOIDS-joined-declarer 4.6.1.t, u
MONADIC-formula 5.4.2.1.b
NOTETY-pack 1.3.3.d
NOTION-bracket 1.3.3.e
NOTION-list 1.3.3.c
NOTION-sequence 1.3.3.b
NOTION-token 9.1.1.f
NOTION-option 1.3.3.a
PARAMETERS 5.4.3.1.b
PARAMETERS-joined-declarer 4.6.1.q, r
PRAGMENT 9.2.1.b
PRAGMENT-item 9.2.1.c
QUALITY-FIELDS-field-selector 4.8.1.c,

d
RADIX 8.2.1.d, e, f, g
RADIX-digit 8.2.1.h, i, j, k
RADIX-frame 10.3.4.7.1.b
ROWS-leaving-ROWSETY-indexer

5.3.2.1.b, c, d
TALLY-declarer 4.2.1.c
THING1-or-alternatively-THING2 1.3.3.f
UNSUPPRESSETY-COMARK-frame

10.3.4.1.1.k
UNSUPPRESSETY-MARK-frame

10.3.4.1.1.j
UNSUPPRESSETY-literal 10.3.4.1.1.i
UNSUPPRESSETY-suppression 10.3.4.1.1.l

12.3. Predicates

Given below are abbreviated forms of the predicates defined in this
Report.

'and' 1.3.1.c, e
'balances' 3.2.1.f, g
'begins with' 1.3.1.h, i, j
'coincides with' 1.3.1.k, l
'contains' 1.3.1.m, n

246

SectionC4 van Wijngaarden, et al.

'counts' 4.3.1.c, d
'deflexes to' 4.7.1.a, b, c, d, e
'deprefs to firm' 7.1.1.n
'develops from' 7.3.1.c
'equivalent' 7.3.1.a, b, d, e, f, g, h, i, j, k, q
'false' 1.3.1.b
'firmly related' 7.1.1.k
'identified in' 7.2.1.a
'incestuous' 4.7.1.f
'independent' 7.1.1.a, b, c, d
'is' 1.3.1.g
'is derived from' 5.3.1.1.b, c
'is firm' 7.1.1.l, m
'like' 5.4.1.1.c, d
'may follow' 3.4.1.m
'number equals' 7.3.1.o, p
'or' 1.3.1.d, f
'ravels to' 4.7.1.g
'related' 7.1.1.e, f, g, h, i, j
'resides in' 7.2.1.b, c
'shields' 7.4.1.a, b, c, d
'subset or' 7.3.1.l, m, n
'true' 1.3.1.a
'unites to' 6.4.1.b

12.4. Index to the standard prelude

< 10.2.3.0.a, 10.2.3.3.a, 10.2.3.5.c, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.i, g, h

≤ 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

+ 10.2.3.0.a, 10.2.3.3.i, j, 10.2.3.4.i, j, 10.2.3.5.a, b, 10.2.3.6.b, 10.2.3.7.j, k, p,
q, r, s, 10.2.3.10.i, j, k

+:= 10.2.3.0.a, 10.2.3.11.d, c, f, o, p, q, s
+=: 10.2.3.0.a, 10.2.3.11.r, t
+× 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 10.2.3.5.e, f
& 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
∧ 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
a 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
u 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.a, 10.2.3.9.b, 10.2.3.0.a, 10.2.3.1.c, e

247

Section ALGOL 68 Revised Report C4

↓ 10.2.3.0.a, 10.2.3.8.h, 10.2.3.1.b, d, 10.2.3.4.r
≥ 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,

10.2.3.9.a, 10.2.3.10.e, g, h
≤ 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,

10.2.3.9.a, 10.2.3.10.b, g, h
=/ 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d, 10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,

10.2.3.7.g, u, v, w, x, 10.2.3.8.b, 10.2.3.9.a, 10.2.3.10.d, g, h
∨ 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c
i 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 10.2.3.5.e, f
% 10.2.3.0.a, 10.2.3.3.m
%× 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 10.2.3.5.e, f
%×:= 10.2.3.0.a, 10.2.3.11.k
%× 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 10.2.3.5.e, f
%×:= 10.2.3.0.a, 10.2.3.11.k
%:= 10.2.3.0.a, 10.2.3.11.j
× 10.2.3.0.a, 10.2.3.3.l, 10.2.3.4.l, 10.2.3.5.a, b, 10.2.3.7.1, p, q, r, s,

10.2.3.10.l, m, n, o
×:= 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u, 10.2.3.2.c, 10.2.3.8.m
↑ 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g, 10.2.3.7.t, 10.2.3.8.g
× 10.2.3.0.a, 10.2.3.3.l, 10.2.3.4.l, 10.2.3.5.a, b, 10.2.3.7.1, p, q, r, s,

10.2.3.10.1, m, n, o
×x 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 10.2.3.5.e, f
×× 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g, 10.2.3.7.t
×:= 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u
¬ 10.2.3.2.c, 10.2.3.8.m
- 10.2.3.0.a, 10.2.3.3.g, h, 10.2.3.4.g, h, 10.2.3.5.a, b, 10.2.3.7.h, i, p, q, r, s
-:= 10.2.3.0.a, 10.2.3.11.a, b, c, n, o, p
/ 10.2.3.0.a, 10.2.3.3.o, 10.2.3.4.m, 10.2.3.5.a, b, 10.2.3.7.m, p, q, r, s
/:= 10.2.3.0.a, 10.2.3.11.1, m, n, o, p
=/ 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d, 10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,

10.2.3.7.g, u, v, w, x, 10.2.3.8.b, 10.2.3.9.a, 10.2.3.10.d, g, h
% 10.2.3.0.a, 10.2.3.3.m
%× 10.2.3.0.a, 10.2.3.3.n
%×:= 10.2.3.0.a, 10.2.3.11.k
%× 10.2.3.0.a, 10.2.3.3.n
%×:= 10.2.3.0.a, 10.2.3.11.k
%:= 10.2.3.0.a, 10.2.3.11.j
> 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,

10.2.3.10.f, g, h

248

SectionC4 van Wijngaarden, et al.

>= 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

= 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c, 10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.f, u, v, w, x, 10.2.3.8.a, 10.2.3.9.a, 10.2.3.10.c, g, h

abs 10.2.1.n, 10.2.3.2.f, 10.2.3.3.k, 10.2.3.4.k, 10.2.3.7.c, 10.2.3.8.i
and 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
arg 10.2.3.7.d
bin 10.2.3.8.j
bits 10.2.2.g
bool 10.2.2.b
bytes 10.2.2.h
channel 10.3.1.2.a
char 10.2.2.e
compl 10.2.2.f
conj 10.2.3.7.e
divab 10.2.3.0.a, 10.2.3.11.1, m, n, o, p
down 10.2.3.0.a, 10.2.3.8.h, 10.2.4.d
elem 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b
entier 10.2.3.4.r
eq 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c, 10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,

10.2.3.7.f, u, v, w, x, 10.2.3.8.a, 10.2.3.9.a, 10.2.3.10.c, g, h
file 10.3.1.3.a
format 10.3.5.a
ge 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,

10.2.3.9.a, 10.2.3.10.e, g, h
gt 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,

10.2.3.10.f, g, h
i 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 10.2.3.5.e, f
im 10.2.3.7.b
int 10.2.2.c
le 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,

10.2.3.9.a, 10.2.3.10.b, g, h
leng 10.2.3.3.q, 10.2.3.4.n, 10.2.3.7.n, 10.2.3.8.n, 10.2.3.9.d
level 10.2.4.b, c
lt 10.2.3.0.a, 10.2.3.3.a, 10.2.3.4.a, 10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,

10.2.3.10.a, g, h
lwb 10.2.3.0.a, 10.2.3.1.b, d
minusab 10.2.3.0.a, 10.2.3.11.a, b, c, n, o, p
mod 10.2.3.0.a, 10.2.3.3.n
modab 10.2.3.0.a, 10.2.3.11.k

249

Section ALGOL 68 Revised Report C4

ne 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d, 10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v, w, x, 10.2.3.8.b, 10.2.3.9.a, 10.2.3.10.d, g, h

not 10.2.3.2.c, 10.2.3.8.m
odd 10.2.3.3.s
or 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c
over 10.2.3.0.a, 10.2.3.3.m
overab 10.2.3.0.a, 10.2.3.11.j
plusab 10.2.3.0.a, 10.2.3.11.d, e, f, n, o, p, q, s
plusto 10.2.3.0.a, 10.2.3.11.r, t
re 10.2.3.7.a
real 10.2.2.d
repr 10.2.1.o
round 10.2.3.4.p
sema 10.2.4.a
shl 10.2.3.0.a, 10.2.3.8.g
shorten 10.2.3.3.r, 10.2.3.4.o, 10.2.3.7.o, 10.2.3.8.o, 10.2.3.9.e
shr 10.2.3.0.a, 10.2.3.8.h
sign 10.2.3.3.t, 10.2.3.4.q
string 10.2.2.i
timesab 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u
up 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g, 10.2.3.7.t, 10.2.3.8.g, 10.2.4.e
upb 10.2.3.0.a, 10.2.3.1.c, e
void 10.2.2.a
arccos 10.2.3.12.f
arcsin 10.2.3.12.h
arctan 10.2.3.12.j
associate 10.3.1.4.e
backspace 10.3.1.6.b
bin possible 10.3.1.3.d
bits lengths 10.2.1.h
bits pack 10.2.3.8.l
bitsshorths 10.2.1.l
bits width 10.2.1.j
blank 10.2.1.u
bytes lengths 10.2.1.k
bytes pack 10.2.3.9.c
bytes shorths 10.2.1.l
bytes width 10.2.1.m
chan 10.3.1.3.i
char in string 10.3.2.1.l

250

SectionC4 van Wijngaarden, et al.

char number 10.3.1.5.a
close 10.3.1.4.n
compressible 10.3.1.3.e
cos 10.2.3.12.e
create 10.3.1.4.c
errorchar 10.2.1.t
estabpossible 10.3.1.2.c
establish 10.3.1.4.b
exp 10.2.3.12.c
exp width 10.3.2.1.o
fixed 10.3.2.1.c
flip 10.2.1.r
float 10.3.2.1.d
flop 10.2.1.s
get 10.3.3.2.a
get bin 10.3.6.2.a
get possible 10.3.1.3.b
getf 10.3.5.2.a
int lengths 10.2.1.a
int shorths 10.2.1.b
int width 10.3.2.1.m
last random 10.5.1.a
line number 10.3.1.5.b
ln 10.2.3.12.d
lock 10.3.1.4.o
make conv 10.3.1.3.j
make term 10.3.1.3k
max abs char 10.2.1.p
maxint 10.2.1.c
max real 10.2.1.f
newline 10.3.1.6.c
newpage 10.3.1.6.d
next random 10.2.3.12.k
null character 10.2.1.q
on char error 10.3.1.3.r
on format end 10.3.1.3.p
on line end 10.3.1.3.o
on logical file end 10.3.1.3.l
on page end 10.3.1.3.n
on physical file end 10.3.1.3.m

251

Section ALGOL 68 Revised Report C4

on value error 10.3.1.3.q
open 10.3.1.4.d
page number 10.3.1.5.c
pi 10.2.3.12.a
print 10.5.1.d
printf 10.5.1.f
put 10.3.3.1.a
put bin 10.3.6.1.a
put possible 10.3.1.3.c
putf 10.3.5.1.a
random 10.5.1.b
read 10.5.1.e
read bin 10.5.1.i
readf 10.5.1.g
real lengths 10.2.1.d
real shorths 10.2.1.e
real width 10.3.2.1.n
reidf 10.3.1.3.s
reidfpossible 10.3.1.3.h
reset 10.3.1.6.j
reset possible 10.3.1.3.f
scratch 10.3.1.4.p
set 10.3.1.6.i
zet char number 10.3.1.6.k
set possible 10.3.1.3.g
sin 10.2.3.12.g
small real 10.2.1.g
space 10.3.1.6.a
sqrt 10.2.3.12.b
stand back 10.5.1.c
stand back channel 10.3.1.2.g
stand in 10.5.1.c
stand in channel 10.3.1.2.e
standout 10.5.1.c
standout channel 10.3.1.2.f
standconv 10.3.1.2.d
stop 10.5.2.a
tan 10.2.3.12.i
whole 10.3.2.1.b
write 10.5.1.d

252

SectionC4 van Wijngaarden, et al.

write bin 10.5.1.h
writef 10.5.1.f
Lbits 10.2.2.g
Lbytes 10.2.2.h
Lcompl 10.2.2.f
Lint 10.2.2.c
Lreal 10.2.2.d
`arccos 10.2.3.12.f
`arcsin 10.2.3.12.h
`arctan 10.2.3.12.j
`bitspack 10.2.3.8.l
`bits width 10.2.1.j
`bytes pack 10.2.3.9.c
`bytes width 10.2.1.m
`cos 10.2.3.12.e
`exp 10.2.3.12.c
`expwidth 10.3.2.1.o
`int width 10.3.2.1.m
`lastrandom 10.5.1.a
`ln 10.2.3.12.d
`max int 10.2.1.c
`max real 10.2.1.f
`next random 10.2.3.12.k
`pi 10.2.3.12.a
`random 10.5.1.b
`realwidth 10.3.2.1.n
`sin 10.2.3.12.g
`smallreal 10.2.1.g
`sqrt 10.2.3.12.b
`tan 10.2.3.12.i
ℵbeyond 10.3.1.1.d
ℵbfile 10.3.1.1.e
ℵbook 10.3.1.1.a
ℵcollection 10.3.5.a
ℵcollitem 10.3.5.a
ℵconv 10.3.1.2.b
ℵcpattern 10.3.5.a
ℵflextext 10.3.1.1.b
ℵfpattern 10.3.5.a
ℵframe 10.3.5.a

253

Section ALGOL 68 Revised Report C4

ℵgpattern 10.3.5.a
ℵinsertion 10.3.5.a
ℵintype 10.3.2.2.d
ℵnumber 10.3.2.1.a
ℵouttype 10.3.2.2.b
ℵpattern 10.3.5.a
ℵpicture 10.3.5.a
ℵpiece 10.3.5.a
ℵpos 10.3.1.1.c
ℵrows 10.2.3.1.a
ℵsframe 10.3.5.e
ℵsimplin 10.3.2.2.c
ℵsimplout 10.3.2.2.a
ℵsinsert 10.3.5.c
ℵstraightin 10.3.2.3.b
ℵstraightout 10.3.2.3.a
ℵtext 10.3.1.1.b
ℵalignment 10.3.5.i
ℵassociate format 10.3.5.k
ℵbfileprotect 10.3.1.1.h
ℵbook bounds 10.3.1.5.e
ℵchainbfile 10.3.1.1.f
ℵchar dig 10.3.2.1k
ℵcheck pos 10.3.3.2.c
ℵcurrent pos 10.3.1.2.d
ℵdig char 10.3.2.1.h
ℵdo fpattern 10.3.5.j
ℵeditstring 10.3.5.1.b
ℵfalse 10.3.1.4.i
ℵfileavailable 10.3.1.4.f
ℵfrombin 10.3.6.b
ℵgetchar 10.3.3.2.b
ℵget good file 10.3.1.6.g
ℵget good line 10.3.1.6.e
ℵget good page 10.3.1.6.f
ℵgetinsertion 10.3.5.h
ℵget next picture 10.3.5.b
ℵgremlins 10.4.1.a
ℵidfok 10.3.1.4.g
ℵinditstring 10.3.5.2.b

254

SectionC5 van Wijngaarden, et al.

ℵline ended 10.3.1.5.f
ℵlockedbfile 10.3.1.1.g
ℵlogical file ended 10.3.1.5.i
ℵmatch 10.3.1.4.h
ℵnext pos 10.3.3.1.c
ℵpage ended 10.3.1.5.g
ℵphysical file ended 10.3.1.5.h
ℵputchar 10.3.3.1.b
ℵput insertion 10.3.5.g
ℵset bin mood 10.3.1.4.m
ℵset char mood 10.3.1.4.l
ℵset mood 10.3.1.6.h
ℵset read mood 10.3.1.4.k
ℵset write mood 10.3.1.4.j
ℵstandardize 10.3.2.1.g
ℵstaticize frames 10.3.5.f
ℵstaticize insertion 10.3.5.d
ℵstring to ` int 10.3.2.1.i
ℵstring to ` real 10.3.2.1.j
ℵsubfixed 10.3.2.1.f
ℵsubwhole 10.3.2.1.e
ℵtobin 10.3.6.a
ℵundefined 10.3.1.4.a
ℵ`standardize 10.3.2.1.g

12.5. Alphabetic listing of metaproduction rules

ABC {942L} :: a ; b ; c ; d ; c ; f ; g ; h ; i ; j ; k ; l ;
m ; n ; o ; p ; q ; r ; s ; t ; u ; v ; w ; x ; y ; z.

ADIC {542C} :: DYADIC ; MONADIC.

ALPHA {13B} :: a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; l ;
m ; n ; o ; p ; q ; r ; s ; t ; u ; v ; w ; x ; y ; z.

BECOMESETY {942J} :: cum becomes ; cum assigns to ; EMPTY.

BITS {65A} :: structured with row of boolean field SITHETY letter aleph mode.

BYTES {65B} ::
structured with row of character field SITHETY letter aleph mode.

CASE {34B} :: choice using integral choice using UNITED.

CHOICE {34A} :: choice using boolean ; CASE.

COLLECTION {A341C} :: union of PICTURE COLLITEM mode.

255

Section ALGOL 68 Revised Report C5

COLLITEM {A341D} :: structured with INSERTION field letter i digit
one procedure yielding integral field letter r letter e letter p
integral field letter p INSERTION field letter i digit two mode.

COMARK {A341N} :: zero ; digit ; character.
COMMON {41A} :: mode ; priority ;

MODINE identity reference to MODINE variable ;
MODINE operation PARAMETER ; MODE FIELDS.

COMORF {61G} :: NEST assignation ; NEST identity relation ;
NEST LEAP generator ; NEST cast ; NEST denoter ; NEST format text.

CPATTERN {A341I} :: structured with INSERTION field letter i integral field
letter t letter y letter p letter e row of INSERTION field letter c mode.

DEC {123E} :: MODE TAG ;
priority PRIO TAD ; MOID TALLY TAB ; DUO TAD ; MONO TAM .

DECS {123D} :: DEC ; DECS DEC.
DECSETY {123C} :: DECS ; EMPTY.
DEFIED {48B} :: defining ; applied.
DIGIT {942C} :: digit zero ; digit one ; digit two ; digit three ;

digit four ; digit five ; digit six ; digit seven ; digit eight ; digit nine .
DOP {942M*} :: DYAD ; DYAD cum NOMAD.
DUO {123H} :: procedure with PARAMETER1 PARAMETER2 yielding MOID.
DYAD {942G} :: MONAD ; NOMAD.
DYADIC {542A} :: priority PRIO.
EMPTY {12G} :: .
ENCLOSED {122A} :: closed ; collateral ; parallel ; CHOICE ; loop.
EXTERNAL {A1A} :: standard ; library ; system ; particular.
FIELD {12J} :: MODE field TAG .
FIELDS {12I} :: FIELD ; FIELDS FIELD.
FIRM {61B} :: MEEK ; united to .
FIVMAT {A341L} :: mui definition of structured with row of structured with

integral field letter c letter p integral field letter c letter o letter u letter
n letter t integral field letter b letter p row of union of structured
with union of PATTERN CPATTERN structured with INSERTION
field letter i procedure yielding mui application field letter p letter f
mode GPATTERN void mode field letter p INSERTION field letter i
mode COLLITEM mode field letter c mode field letter aleph mode.

FLEXETY {12K} :: flexible ; EMPTY.
FORM {61E} :: MORF ; COMORF.
FORMAT {A341A} :: structured with row of PIECE field letter aleph mode.
FPATTERN {A341J} :: structured with INSERTION field letter

i procedure yielding FIVMAT field letter p letter f mode.

256

SectionC5 van Wijngaarden, et al.

FRAME {A341H} ::
structured with INSERTION field letter i procedure yielding integral field

letter r letter e letter p boolean field letter s letter u letter p letter p
character field letter m letter a letter r letter k letter e letter r mode.

FROBYT {35A} :: from ; by ; to.
GPATTERN {A341K} :: structured with INSERTION field letter i row of

procedure yielding integral field letter s letter p letter e letter c mode.
HEAD {73B} :: PLAIN ; PREF ;

structured with ; FLEXETY ROWS of procedure with ; union of ; void.
INDICATOR {48A} :: identifier ; mode indication ; operator.
INSERTION {A341E} ::

row of structured with procedure yielding integral field letter r letter e letter
p union of row of character character mode field letter s letter a mode.

INTREAL {12C} :: SIZETY integral ; SIZETY real.
LAB {123K} :: label TAG .
LABS {123J} :: LAB ; LABS LAB.
LABSETY {123I} :: LABS ; EMPTY.
LAYER {123B} :: new DECSETY LABSETY.
LEAP {44B} :: local ; heap ; primal.
LENGTH {65D} :: letter l letter o letter n letter g.
LENGTHETY {65F} :: LENGTH LENGTHETY ; EMPTY.
LETTER {942B} :: letter ABC ; letter aleph ; style TALLY letter ABC.
LONGSETY {12E} :: long LONGSETY ; EMPTY.
MARK {A341M} :: sign ; point ; exponent ; complex ; boolean.
MEEK {61C} :: unchanged from ; dereferenced to ; deprocedured to .
MODE {12A} :: PLAIN ; STOWED ; REF to MODE ;

PROCEDURE ; UNITED ; MU definition of MODE ; MU application.
MODINE {44A} :: MODE routine.
MOID {12R} :: MODE ; void.
MOIDS {46C} :: MOID ; MOIDS MOID.
MOIDSETY {47C} :: MOIDS ; EMPTY.
MONAD {942H} :: or ; and ; ampersand ; differs from ; is at most ;

is at least ; over ; percent ; window ; floor ; ceiling ; plus i times ;
not ; tilde ; down ; up ; plus ; minus ; style TALLY monad.

MONADIC {542B} :: priority iii iii iii i.
MONO {123G} :: procedure with PARAMETER yielding MOID.
MOOD {12U} :: PLAIN ;

STOWED ; reference to MODE ; PROCEDURE ; void.
MOODS {12T} :: MOOD ; MOODS MOOD.
MOODSETY {47B} :: MOODS ; EMPTY.

257

Section ALGOL 68 Revised Report C5

MORF {61F} :: NEST selection ; NEST slice ; NEST routine text ;
NEST ADIC formula ; NEST call ; NEST applied identifier with TAG.

MU {12V} :: muTALLY.
NEST {123A} :: LAYER ; NEST LAYER.
NOMAD {942I} :: is less than ;

is greater than ; divided by ; equals ; times ; asterisk .
NONPREF {71B} :: PLAIN ; STOWED ;

procedure with PARAMETERS yielding MOID ; UNITED ; void.
NONPROC {67A} :: PLAIN ; STOWED ; REF to NONPROC

procedure with PARAMETERS yielding MOID ; UNITED.
NONSTOWED {47A} ::

PLAIN ; REF to MODE ; PROCEDURE ; UNITED ; void.
NOTETY {13C} :: NOTION ; EMPTY.
NOTION {13A} :: ALPHA ; NOTION ALPHA.
NUMERAL {810B} ::

fixed point numeral ; variable point numeral ; floating point numeral.
PACK {31B} :: STYLE pack.
PARAMETER {12Q} :: MODE parameter.
PARAMETERS {12P} :: PARAMETER ; PARAMETERS PARAMETER.
PARAMETY {12O} :: with PARAMETERS ; EMPTY.
PART {73E} :: FIELD ; PARAMETER.
PARTS {73D} :: PART ; PARTS PART.
PATTERN {A341G} ::

structured with integral field letter t letter y letter p letter e row of
FRAME field letter f letter r letter a letter m letter e letter s mode.

PICTURE {A341F} ::
structured with union of PATTERN CPATTERN FPATTERN GPATTERN

void mode field letter p INSERTION field letter i mode.
PIECE {A341B} :: structured with integral field letter c letter

p integral field letter c letter o letter u letter n letter t integral
field letter b letter p row of COLLECTION field letter c mode.

PLAIN {12B} :: INTREAL ; boolean ; character.
PRAGMENT {92A} :: pragmat ; comment.
PRAM {45A} :: DUO ; MONO.
PREF {71A} :: procedure yielding ; REF to.
PREFSETY {71C*} :: PREF PREFSETY ; EMPTY.
PRIMARY {5D} :: slice coercee ; call coercee ; cast coercee ;

denoter coercee ; format text coercee ;
applied identifier with TAG coercee ; ENCLOSED clause .

PRIO {123F} :: i ; ii ; iii ; iii i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii iii iii.

258

SectionC5 van Wijngaarden, et al.

PROCEDURE {12N} :: procedure PARAMETY yielding MOID.
PROP {48E} :: DEC ; LAB ; FIELD.
PROPS {48D} :: PROP ; PROPS PROP.
PROPSETY {48C} :: PROPS ; EMPTY.
QUALITY {48F} :: MODE ; MOID TALLY ; DYADIC ; label ; MODE field.
RADIX {82A} :: radix two ; radix four ; radix eight ; radix sixteen.
REF {12M} :: reference ; transient reference.
REFETY {531A} :: REF to ; EMPTY.
REFLEXETY {531B} :: REF to ; REF to flexible ; EMPTY.
ROWS {12L} :: row ; ROWS row.
ROWSETY {532A} :: ROWS ; EMPTY.
SAFE {73A} :: safe ; MU has MODE SAFE ;

yin SAFE ; yang SAFE ; remember MOID1 MOID2 SAFE.
SECONDARY {5C} ::

LEAP generator coercee ; selection coercee ; PRIMARY.
SHORTH {65E} :: letter s letter h letter o letter r letter t.
SHORTHETY {65G} :: SHORTH SHORTHETY ; EMPTY.
SHORTSETY {12F} :: short SHORTSETY ; EMPTY.
SITHETY {65C} :: LENGTH LENGTHETY ;

SHORTH SHORTHETY ; EMPTY.
SIZE {810A} :: long ; short.
SIZETY {12D} :: long LONGSETY ; short SHORTSETY ; EMPTY.
SOFT {61D} :: unchanged from ; softly deprocedured to .
SOID {31A} :: SORT MOID.
SOME {122B} :: SORT MOID NEST.
SORT {122C} :: strong ; firm ; meek ; weak ; soft.
STANDARD {942E} :: integral ; real ; boolean ; character ; format ;

void ; complex ; bits ; bytes ; string ; sema ; file ; channel .
STOP {A1B} :: label letter s letter t letter o letter p.
STOWED {12H} ::

structured with FIELDS mode ; FLEXETY ROWS of MODE.
STRONG {61A} :: FIRM ; widened to ; rowed to ; voided to .
STYLE {133A} :: brief ; bold ; style TALLY.
TAB {942D} :: bold TAG ; SIZETY STANDARD.
TAD {942F} :: bold TAG ;

DYAD BECOMESETY ; DYAD cum NOMAD BECOMESETY.
TAG {942A} :: LETTER ; TAG LETTER ; TAG DIGIT.
TAILETY {73C} :: MOID ; FIELDS mode ;

PARAMETERS yielding MOID ; MOODS mode ; EMPTY.
TALLETY {542D} :: TALLY ; EMPTY.

259

Section ALGOL 68 Revised Report C5

TALLY {12W} :: i ; TALLY i.
TAM {942K} :: bold TAG ;

MONAD BECOMESETY ; MONAD cum NOMAD BECOMESETY.
TAO {45B} :: TAD ; TAM.
TAX {48G} :: TAG ; TAB ; TAD ; TAM.
TERTIARY {5B} :: ADIC formula coercee ; nihil ; SECONDARY.
THING {13D} :: NOTION ;

(NOTETY1) NOTETY2 ; THING (NOTETY1) NOTETY2.
TYPE {A341P} :: integral ; real ; boolean ; complex ;

string ; bits ; integral choice ; boolean choice ; format ; general.
UNIT {5A} :: assignation coercee ; identity relation coercee ;

routine text coercee ; jump ; skip ; TERTIARY.
UNITED {12S} :: union of MOODS mode.
UNSUPPRESSETY {A341O} :: unsuppressible ; EMPTY.
VICTAL {46A} :: VIRACT ; formal.
VIRACT {46B} :: virtual ; actual.
WHETHER {13E} :: where ; unless.

260

SectionE van Wijngaarden, et al.

14. AB39.3.1 Specification of partial parametrization proposal.

by C.H.Lindsey (University of Manchester)
The following specification has been released by the IFIP Work-

ing Group 2.1 Standing subcommittee on ALGOL 68 Support, with the
authorization of the Working Group.

This proposal has been scrutinized to ensure that

a) it is strictly upwards-compatible with ALGOL 68,

b) it is consistent with the philosophy and orthogonal framework of that
language, and

c) it fills a clearly discernible gap in the expressive power of that language.
In releasing this extension, the intention is to encourage implementers

experimenting with features similar to those described below to use the
formulation here given, so as to avoid proliferation of dialects.
{{Although routines are values in ALGOL 68, and can therefore be

yielded by other routines, the practical usefulness of this facility is limited
by scope restrictions. Consider:

proc f = (real x) proc (real) real: (real y) real: x + y;
proc (real) real g := f (3);
x := g (4)
This attempts to assign to g the routine ”add 3”. It does not work

because the body of the routine is still fundamentally the routine-text (real
y) real : x + y which expects to find the value x (i.e. 3) on the stack in the
form of an actual-parameter of f, and by this time f is finished with and its
stack level has disappeared. The problem arises whenever a routine-text uses
identifiers declared globally to itself and the limitation is expressed in the
Report by making the scope of a routine dependent on its necessary environ
(7.2.2.c). Here is an attempt at functional composition which fails to work
for the same reason:

proc compose = (proc (real) real f, g) proc (real) real:
(real x) real: f (g (x));

proc (real) real sex = compose (sqrt, exp)
Clearly, if the restriction is to be lifted, a routine value has to have

associated with it copies of these global values. Unfortunately, their number
is in general indeterminable at compile time, and so the implementation of
such values must be similar to that of multiple values referred to by flexible
names (2.1.3.4.f) requiring, in most implementations, the use of the heap.

In this variant, all the intended global values appear to the routine-text
as its own formal-parameters. At each call, some or all of these parameters
are provided with actual values, resulting in a routine with that number of

261

Section ALGOL 68 Revised Report E543

parameters fewer. Ultimately (possibly after several calls) a routine without
parameters is obtained and, if the context so demands, deproceduring can
now take place. Thus, all calls in the original language turn out to be
parametrizations followed by immediate deproceduring, but their effect is the
same. Here are some examples:

1)
proc f = (real x, y) x + y;
proc (real) real g := f (3,);
x := g (4) /c or x := f (3,) (4) /c

2)
proc compose = (proc (real) real f, g, real x) real; f (g (x));
proc (real) real sex = compose (sqrt, exp,)

3)
op ↑ = (proc (real) real a, int b) proc (real) real:

((proc (real) real a, int b, real p) real:
(real x := 1; to b do x ×:= a(p) od; x)) (a, b,);

real theta; print ((cos↑2)(theta) + (sin↑2)(theta))
}}
{{A routine now includes an extra locale.}}

2.1.3.5. Routines

a) A “routine” is a value composed of a routine-text {5.4.1.1.a,b}, an environ
{2.1.1.1.c} and a locale {2.1.1.1.b}. {The locale corresponds to a 'DECSETY'

reflecting the formal-parameters, if any, of the routine-text.}
b) The mode of a routine is some 'PROCEDURE'.

c) The scope of a routine is the newest of the scopes of its environ and of
the values, if any, accessed {2.1.2.c} inside its locale.
{{A routine-text yields the new style of routine.}}

5.4.1.2. Semantics

The yield of a routine-text T , in an environ E, is the routine composed of
(i) T ,
(ii) the environ necessary for {7.2.2.c} T in E, and
(iii) a locale corresponding to 'DECS2' if T has a declarative-defining-new-

DECS2-brief-pack, and to 'EMPTY' otherwise.
{{Most of the remaining changes to the Report needed to incorporate

this facility are in section 5.4.3 (calls).}}

262

SectionE5432 van Wijngaarden, et al.

5.4.3. Calls (with partial parametrization)

{A call is used to provide actual-parameters to match some or all of the
formal-parameters of a routine. It yields a routine with correspondingly fewer
formal-parameters or with none at all, in which case the yield is usually subject
to deproceduring (6.3).
Examples: y := sin (x) •

proc real ncossini = (p | ncos | nsin) (i) •
print ((set char number (, 5), x)) .}

5.4.3.1 Syntax

A) PARAMSETY : : PARAMETERS ; EMPTY.

a) procedure yielding MOID NEST call{5D} :
meek procedure with PARAMETERS1 yielding MOID NEST PRIMARY{5D},

actual NEST PARAMETERS1 leaving EMPTY{c,d,e}brief pack.

b) procedure with PARAMETERS2 yielding MOID NEST call{5D} :
meek procedure with PARAMETERS1 yielding MOID NEST PRIMARY{5D},

actual NEST PARAMETERS1 leaving PARAMETERS2{c,d,e,f}brief pack.

c) actual NEST PARAMETER PARAMETERS leaving
PARAMSETY1 PARAMSETY2{a,b,c} :

actual NEST PARAMETER leaving PARAMSETY1{d,e}, and also{94f}
token, actual NEST PARAMETERS leaving PARAMSETY2{c,d,e}.

d) actual NEST MODE parameter leaving EMPTY{a,b,c} :
strong MODE NEST unit{32d}.

e) actual NEST PARAMETER leaving PARAMETER{a,b,c} : EMPTY.

f) * actual MODE parameter :
actual NEST MODE parameter leaving EMPTY{d}.

g) * dummy parameter : actual NEST PARAMETER leaving PARAMETER{e}.

{Examples:
a) set char number (stand out, 5)
b) set char number (, 5)
c) , 5
d) 5 }

263

Section ALGOL 68 Revised Report E5432

5.4.3.2. Semantics
a1) The yield W of a call C, in an environ E, is determined as follows:
• let R {a routine} and V1, . . . , Vn be the {collateral} yields of the PRI-
MARY of C, in E, and of the constituent actual- and dummy-parameters of C, in
an environ E1 established {locally, see 3.2.2.b} around E, where the yield of a
dummy-parameter is “absent”;
• W is {the routine which is} the yield of the “parametrization” {a2} of R
with V1, . . . , Vn;
• except where C is the constituent call of a deprocedured-to-MOID-call
{6.3.1.a}, it is required that W be not newer in scope than E {; thus, proc
(char, string) bool cs = char in string (, loc int,) is undefined but q := char
in string (˝A˝, loc int, s) is not}.
a2) The yield W of the “parametrization” of a routine R0 with values
V1, . . . , Vn is determined as follows:
• let T0, E0 and L0 be, respectively, the routine-text, the environ and the
locale of R0, and let L0 correspond {2.1.1.1.b} to some 'DECS0';
• let L1 be a new locale corresponding to 'DECS0', and let the value, if any,
accessed by any 'DEC0' inside L0 be accessed also by that 'DEC0' inside L1;
• let 'DECS1' be a sequence composed of all those 'DEC0's enveloped by
'DECS0' which have not {yet} been made to access values inside L1, taken
in their order within 'DECS0'; For i = 1, . . . , n, If Vi is not absent,{see a1},
then the i-th 'DEC1' enveloped by 'DECS1' is made to access Vi inside L1;
otherwise, the i-th 'DEC1' still does not access anything;
• W is the routine composed of T0, E0 and L1.

A routine may be parametrized in several stages. Upon each occasion
the yields of the new actual-parameters are made to be accessed inside its
locale and the scope of the routine becomes the newest of its original scope
and the scopes of those yields.
b) The yield W of the “calling” of a routine R0 in an environ E1 {see

5.4.2.2 and 6.3.2} is determined as follows:
• let T0, E0 and L0 be, respectively, the routine-text, the environ and the
locale of R0;
• let E2 be a {newly established} environ, newer in scope than E1, com-
posed of E0 and L0 {E2 is local};
• W is the yield, in E2, of the unit of T0.

{Consider the following serial-clause:
proc samelson = (int n, proc (int) real f) real:

begin long real s := long 0;
for i to n do s +:= leng f(i) ↑ 2 od;

264

SectionE5432 van Wijngaarden, et al.

shorten long sqrt (s)
end;

samelson (m, (int j) real: x1[j]) .
In that context, the last deprocedured-to-real-call has the same effect as the
deprocedured-to-real-routine-text in:

real(
int n = m, proc (int) real f = (int j) real: x1[j];
begin long real s := long 0;

for i to n do s +:= leng f(i) ↑ 2 od;
shorten long sqrt (s)

end) .

The transmission of the actual-parameters is thus similar to the elabora-
tion of identity-declarations (4.4.2.a); see also establishment (3.2.2.b) and as-
cription (4.8.2.a).}
{{Minor changes are required at other places in the Report.}}
{{The third bullet of 5.4.2.2 (semantics of formulas) is replaced by}}

• let R1 be {the routine which is} the yield of the parametrization
{5.4.3.2.a2} of R with V1, . . . , Vn;
• W is the yield of the calling {5.4.3.2.b} of R1 in E1;
{{5.4.4.2.Case B, 10.3.4.1.2.c and 10.3.4.9.2 must be modified to show

that the routines there created are composed, additionally, from a vacant
locale (2.1.1.1.b).}}

265

