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Abstract.  

The Cell processor is a heterogeneous multi-core processor with one Power 
Processing Engine (PPE) core and eight Synergistic Processing Engine (SPE) 
cores.  Each SPE has a directly accessible small local memory (256K), and it 
can access the system memory through DMA operations.  Cell programming is 
complicated both by the need to explicitly manage DMA data transfers for SPE 
computation, as well as the multiple layers of parallelism provided in the 
architecture, including heterogeneous cores, multiple SPE cores, 
multithreading, SIMD units, and multiple instruction issue. There is a 
significant amount of ongoing research in programming models and tools that 
attempts to make it easy to exploit the computation power of the Cell 
architecture.  In our work, we explore supporting OpenMP on the Cell 
processor.  OpenMP is a widely used API for parallel programming.  It is 
attractive to support OpenMP because programmers can continue using their 
familiar programming model, and existing code can be re-used.  We base our 
work on IBM’s XL compiler, which already has OpenMP support for AIX 
multi-processor systems built with Power processors.  We developed new 
components in the XL compiler and a new runtime library for Cell OpenMP 
that utilizes the Cell SDK libraries to target specific features of the new 
hardware platform. To describe the design of our Cell OpenMP 
implementation, we focus on three major issues in our system: 1) how to use 
the heterogeneous cores and synchronization support in the Cell to optimize 
OpenMP threads; 2) how to generate thread code targeting the different 
instruction sets of the PPE and SPE from within a compiler that takes single-
source input; 3) how to implement the OpenMP memory model on the Cell 
memory system.  We present experimental results for some SPEC OMP 2001 
and NAS benchmarks to demonstrate the effectiveness of this approach.  Also, 
we can observe detailed runtime event sequences using the visualization tool 
Paraver, and we use the insight into actual thread and synchronization behaviors 
to direct further optimizations.  

1 Introduction  

The Cell Broadband Engine TM (Cell BE) processor [1] is now commercially available 
in both the Sony PS3 game console and the IBM Cell Blade which represents the first 
product on the IBM Cell Blade roadmap. The anticipated high volumes for this non-
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traditional “commodity” hardware continue to make it interesting in a variety of 
different application spaces, ranging from the obvious multi-media and gaming 
domain, through the HPC space (both traditional and commercial), and to the 
potential use of Cell as a building block for very high end “supercomputing” systems 
[8].  

This first generation Cell processor provides flexibility and performance through 
the inclusion of a 64-bit multi-threaded Power Processor TM Element (PPE) with two 
levels of globally-coherent cache and support for multiple operating systems 
including Linux.  For additional performance, a Cell processor includes eight 
Synergistic Processor Elements (SPEs), each consisting of a Synergistic Processing 
Unit (SPU), a local memory, and a globally-coherent DMA engine.  Computations are 
performed by 128-bit wide Single Instruction Multiple Data (SIMD) functional units.  
An integrated high bandwidth bus, the Element Interconnect Bus (EIB), glues 
together the nine processors and their ports to external memory and IO, and allows the 
SPUs to be used for streaming applications [2]. 

Data is transferred between the local memory and the DMA engine [3] in chunks 
of 128 bytes. The DMA engine can support up to 16 concurrent requests of up to 16K 
bytes originating either locally or remotely. The DMA engine is part of the globally 
coherent memory address space; addresses of local DMA requests are translated by a 
Memory Management Unit (MMU) before being sent on the bus.  Bandwidth between 
the DMA and the EIB bus is 8 bytes per cycle in each direction.  Programs interface 
with the DMA unit via a channel interface and may initiate blocking as well as non-
blocking requests. 

Programming the SPE processor is significantly enhanced by the availability of an 
optimizing compiler which supports SIMD intrinsic functions and automatic 
simdization [4]. However, programming the Cell processor, the coupled PPE and 8 
SPE processors, is a much more complex task, requiring partitioning of an application 
to accommodate the limited local memory constraints of the SPE, parallelization 
across the multiple SPEs, orchestration of the data transfer through insertion of DMA 
commands, and compiling for two distinct ISAs. Users can directly develop the code 
for PPE and SPE, or introduce new the language extension [5]. 

In this paper we describe how our compiler manages this complexity while still 
enabling the significant performance potential of the machine. Our parallel 
implementation currently uses OpenMP APIs to guide parallelization decisions.  

The remainder of the paper is laid out as follows: section two gives an overview of 
the compiler infrastructure upon which our work is based and presents the particular 
challenges of retargeting this to the novel features of the Cell platform. The next three 
sections of the paper look in more depth at each of these challenges and how we have 
addressed them, and section 6 presents some experimental results to demonstrate the 
benefit of our approach. We draw our conclusions in the last section. 

2 System Overview 

In our system, we use compiler transformations in collaboration with a runtime library 
to support OpenMP.  The compiler translates OpenMP pragmas in the source code to 
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intermediate code that implements the corresponding OpenMP construct.  This 
translated code includes calls to functions in the runtime library. The runtime library 
functions provide basic utilities for OpenMP on the Cell processor, including thread 
management, work distribution, and synchronization.  For each parallel construct, the 
compiler outlines the code segment enclosed in the parallel construct into a separate 
function. The compiler inserts OpenMP runtime library calls into the parent function 
of the outlined function.  These runtime library calls will invoke the outlined 
functions at runtime and manage their execution.  

The compiler is built upon the IBM XL compiler [6][13].  This compiler has front-
ends for C/C++ and Fortran, and shares the same optimization framework across 
multiple source languages. The optimization framework has two components: TPO 
and TOBEY.  Roughly, TPO is responsible for high-level and machine-independent 
optimizations while TOBEY is responsible for low-level and machine-specific 
optimizations. The XL compiler has a pre-existing OpenMP runtime library and 
support for OpenMP 2.0 on AIX multiprocessor systems built with Power processors.  
In our work targeting the Cell platform, we re-use, modify, or re-write existing code 
that supports OpenMP as appropriate.  

We encountered several issues in our OpenMP implementation that are specific to 
features of the Cell processor: 

• Threads and synchronization: Threads running on the PPE differ in 
capability and processing power from threads running on the SPEs.  We 
design our system to use these heterogeneous threads, and to efficiently 
synchronize all threads using specialized hardware support provided in 
the Cell processor. 

• Code generation:  The instruction set of the PPE differs from that of the 
SPE.  Therefore, we perform code generation and optimization for PPE 
code separate from SPE code. Furthermore, due to the limited size of SPE 
local stores, SPE code may need to be partitioned into multiple overlaid 
binary sections instead of generating it as a large monolithic section.  
Also, shared data in SPE code needs to be transferred to and from system 
memory using DMA, and this is done using DMA calls explicitly inserted 
by the compiler, or using a software caching mechanism that is part of the 
SPE runtime library. 

• Memory model: Each SPE has a small directly accessible local store, but 
it needs to use DMA operations to access system memory.  The Cell 
hardware ensures DMA transactions are coherent, but it does not provide 
coherence for data residing in the SPE local stores.  We implement the 
OpenMP memory model on top of the novel Cell memory model, and 
ensure data in system memory is kept coherent as required by the 
OpenMP specification. 

In the following sections, we describe how we solve these issues in our compiler and 
runtime library implementation. 
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3 Threads and Synchronization 

In our system, OpenMP threads execute on both the PPE and the SPEs. The master 
thread is always executed on the PPE. The master thread is responsible for creating 
threads, distributing and scheduling work, and initializing synchronization operations. 
Since there is no operating system support on the SPEs, this thread also handles all 
OS service requests. The functions specific to the master thread align well with the 
Cell design of developing the PPE as a processor used to manage the activities of 
multiple SPE processors. Also, placing the master thread on the PPE allows smaller 
and simpler code for the SPE runtime library, which resides in the space-constrained 
SPE local store. Different from the OpenMP standard, if required by users, the PPE 
thread will not participate in the work for parallel loops. 

Currently, we always assume a single PPE thread and use the 
OMP_NUM_THREADS specification to be the number of SPE threads to use.  
Specifying the number of PPE and SPE threads separately will need an extension of 
the OpenMP standard.  The PPE and SPE cores are heterogeneous, and there may be 
significant performance mismatch between a PPE thread and an SPE thread that 
perform the same work.  Ideally, the system can be built to automatically estimate the 
difference in PPE and SPE performance for a given work item, and then have the 
runtime library appropriately adjust the amount of work assigned to different threads.  
We do not have such a mechanism yet, so we allow users to tune performance by 
specifying whether or not the PPE thread should participate in executing work items 
for OpenMP work-share loops or work-share sections. 

We implement thread creation and synchronization using the Cell Software 
Development Kit (SDK) libraries [7]. The master thread on the PPE creates SPE 
threads only when a parallel structure is first encountered at runtime. For nested levels 
of parallelism, each thread in the outer parallel region sequentially executes the inner 
parallel region. The PPE thread schedules tasks for all threads, using simple block 
scheduling for work-share loops and sections. The work sections or loop iterations are 
divided into as many pieces as the number of available threads, and each thread is 
assigned one piece. More sophisticated scheduling is left for future work. 

When an SPE thread is created, it performs some initialization, and then loops 
waiting for task assignments from the PPE, executing those tasks, and then waiting 
for more tasks, until the task is to terminate. A task can be the execution of an 
outlined parallel region, loop or section, or performing a cache flush, or participating 
in barrier synchronization. There is a task queue in system memory corresponding to 
each thread.  When the master thread assigns a task to a thread, it writes information 
about the task to the corresponding task queue, including details such as the task type, 
the lower bound and upper bound for a parallel loop, and the function pointer for an 
outlined code region that is to be executed. Once an SPE thread has picked up a task 
from the queue, it uses DMA to change the status of the task in the queue, thus 
informing the master thread that the queue space can be re-used.  

The Cell processor provides special hardware mechanisms for efficient 
communication and synchronization between the multiple cores in a Cell system. The 
Memory Flow Controller (MFC) for each SPE has two blocking outbound mailbox 
queues, and one non-blocking inbound mailbox queue.  These mailboxes can be used 
for efficient communication of 32-bit values between cores. When the master thread 



Supporting OpenMP on Cell      5 

assigns tasks to an SPE thread, it uses the mailbox to inform the SPE of the number of 
tasks available for execution. Each SPE MFC also has an atomic unit that implements 
atomic DMA commands and provides four 128-byte cache lines that are maintained 
cache coherent across all processors.  We use atomic DMA commands for efficient 
implementation of OpenMP locks, barriers1, and cache flush operations. 

4 Code Generation 

Figure 1 illustrates the code generation process of the Cell OpenMP compiler. The 
compiler separates out each code region in the source code that corresponds to an 
OpenMP parallel construct (including OpenMP parallel regions, work-share loops or 
work-share sections, and single constructs), and outlines it into a separate function.  
The outlined function may take additional parameters such as the lower and the upper 
bounds of the loop iteration for parallel loops. In the case of parallel loops, the 
compiler further transforms the outlined function so that it only computes from the 
lower bound to the upper bound. The compiler inserts an OpenMP runtime library call 
into the parent function of the outlined function, and passes a pointer to the outlined 
function code into this runtime library function.  During execution, the runtime 
function will indirectly invoke the outlined function. The compiler also inserts 
synchronization operations such as barriers when necessary.  

Due to the heterogeneity of the Cell architecture, the outlined functions containing 
parallel tasks may execute on both the PPE and the SPEs. In our implementation, we 
clone the outlined functions so that there is one copy of the function for the PPE 
architecture, and one for the SPE architecture. We perform cloning during TPO link-
time optimization when the global call graph is available, so we can clone the whole 
sub-graph for a call to an outlined function when necessary. We mark the cloned 
function copies as PPE and SPE procedures, respectively. In later stages of 
compilation, we can apply machine-dependent optimizations to these procedures 
based on their target architecture. Auto-simdization is one example. SPE has SIMD 
units that can execute operation on 128 byte data with one instruction. After cloning, 
the code for SPE will undergo the auto-simdization to transform scalar code into 
SIMD code for SPE, while the PPE has totally different SIMD instructions.   In other 
words, we choose to clone the functions to enable more aggressive optimizations. 

When a PPE runtime function in the master thread distributes parallel work to an 
SPE thread, it needs to tell the SPE thread what outlined function to execute.  The 
PPE runtime function knows the function pointer for the PPE code of the outlined 
function to execute. However, the SPE thread needs to use the function pointer for the 
SPE code of the same outlined function. To enable the SPE runtime library to 
determine correct function pointers, the compiler builds a mapping table between 
corresponding PPE and SPE outlined function pointers, and the runtime looks up this 
table to determine SPE code pointers for parallel tasks assigned by the master thread. 

At the end of TPO, procedures for different architectures are separated into 
different compilation units, and these compilation units are processed one at a time by 
the TOBEY backend. The PPE compilation units are processed as for other 
                                                        
1 We thank Daniel Brokenshire (IBM Austin) for his implementation of barriers on Cell. 
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architectures and need no special consideration. However, if a single large SPE 
compilation unit is generated, it may result in SPE binary code that is too large to fit 
in the small SPE local store all at once.  In fact, we observe this to be the case for 
many benchmark programs. For OpenMP, one way to mitigate this problem is to 
place all the code corresponding to a given parallel region in one SPE compilation 
unit, and generate as many SPE compilation units as there are parallel regions in the 
program.  Using this approach, we can generate multiple SPE binaries, one for each 
SPE compilation unit. We can then modify the runtime library to create SPE threads 
using a different SPE binary on entry to each parallel region.  However, there are two 
drawbacks to using this approach: first, an individual parallel region may still be too 
large to fit in SPE local store, and second, we observe through experiments that the 
overhead for repeatedly creating SPE threads is significantly high.  
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Figure 1 Code generation process 

To solve the SPE code size problem, we rely on the technique of call graph 
partitioning and code overlay. We first partition the sub-graph of the call graph 
corresponding to SPE procedures into several partitions. Then we create a code 
overlay for each of these call graph partitions.  Code overlays share address space and 
do not occupy local storage at the same time. Thus, the pressure on local storage due 
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to SPE code is greatly reduced. To partition the call graph, we weight each call graph 
edge by the frequency of this edge. The frequency can be obtained by either compiler 
static analysis or profiling. Then we apply the maximum spanning tree algorithm to 
the graph. Basically, we process edges in the order of their weight. If merging the two 
nodes of the edge does not exceed a predefined memory limitation, we merge those 
two nodes, update the edge weights, and continue.  When the algorithm stops, each 
merged node represents a call graph partition comprising all the procedures whose 
nodes were merged into that node. Thus, the result is a set of call graph partitions. Our 
algorithm is a simple greedy algorithm that can be further optimized. After call graph 
partitions are identified, we utilize SPU code overlay support introduced in Cell SDK 
2.0 and place the procedures in each call graph partition into a separate code overlay.  

After the TOBEY backend generates an SPE binary (either with or without code 
overlays), we use a special tool called ppu-embedspu to embed the SPE binary into a 
PPE data object. This PPE data object is then linked into the final PPE binary together 
with other PPE objects and libraries. During execution, when code running on the 
PPE creates SPE threads, it can access the SPE binary image embedded into the PPE 
data object, and use this SPE image to initialize the newly created SPE threads.   

5 Memory model 

OpenMP specifies a relaxed-consistency, shared-memory model. This model allows 
each thread to have its own temporary view of memory. A value written to a variable, 
or a value read from a variable, can remain in the thread’s temporary view until it is 
forced to share memory by an OpenMP flush operation. We find that such a memory 
model can be efficiently implemented on the Cell memory structure. 

In the Cell processor, each SPE has just 256K directly accessible local memory for 
code and data. We only allocate private variables accessed in SPE code to reside in 
the SPE local store. Shared variables reside in system memory, and SPE code can 
access them through DMA operations.  We use two mechanisms for DMA transfers: 
static buffering and compiler-controlled software cache. In both mechanisms, the 
global data may have a local copy in the SPE local store. The SPE thread may read 
and write the local copy. This approach conforms to the OpenMP relaxed memory 
model and takes advantage of the flexibility afforded by the model to realize memory 
system performance. 

Some references are regular references from the point-of-view of our compiler 
optimization. These references occur within a loop, the memory addresses that they 
refer to can be expressed using affine expressions of loop induction variables, and the 
loop that contains them has no loop-carried data dependence (true, output or anti) 
involving these references. For such regular reference accesses to shared data, we use 
a temporary buffer in the SPE local store.  For read references, we initialize this 
buffer with a DMA get operation before the loop executes.  For write references, we 
copy the value from this buffer using a DMA put operation after the loop executes. 
The compiler statically generates these DMA get and put operations. The compiler 
also transforms the loop structure in the program to generate optimized DMA 
operations for references that it recognizes to be regular. Furthermore, DMA 
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operations can be overlapped with computations by using multiple buffers. The 
compiler can choose the proper buffering scheme and buffer size to optimize 
execution time and space [9]. 

For irregular references to shared memory, we use a compiler-controlled software 
cache to read/write the data from/to system memory. The compiler replaces loads and 
stores using these references with instructions that explicitly look up the effective 
address in a directory of the software cache. If a cache line for the effective address is 
found in the directory (which means a cache hit), the value in the cache is used. 
Otherwise, it is a cache miss. For a miss, we allocate a line in the cache either by 
using an empty line or by replacing an existing line. Then, for a load, we issue a 
DMA get operation to read the data from system memory.  For stores, we write the 
data to the cache, and maintain dirty bits to record which byte is actually modified. 
Later, we write the data back to system memory using a DMA put operation, either 
when the cache line is evicted to make space for other data, or when a cache flush is 
invoked in the code based on OpenMP semantics. 

We configure the software cache based on the characteristics of the Cell processor.  
Since 4-way SIMD operations on 32-bit values are supported in the SPE and we 
currently use 32-bit memory addresses, we use a 4-way associative cache that 
performs the cache lookup in parallel.  Also, we use 128-byte cache lines since DMA 
transfers are optimal when performed in multiples of 128 bytes and aligned on a 128- 
byte boundary. If only some bytes in a cache line are dirty, when the cache line is 
evicted or flushed, the data contained in it must be merged with system memory such 
that only the dirty bytes overwrite data contained in system memory. One way to 
achieve this is to DMA only the dirty bytes and not the entire cache line. However, 
this may result in small discontinuous DMA transfers, and exacerbated by the 
alignment requirements for DMA transfers, it can result in poor DMA performance. 
Instead, we use the support for atomic updates of 128-byte lines that is provided in the 
SPE hardware to atomically merge data in the cache line with data in the 
corresponding system memory, based on recorded dirty bits. 

When an OpenMP flush is encountered, the compiler guarantees that all data in the 
static buffers in local store has been written back into memory, and that existing data 
in the static buffers is not used any further. The flush will also trigger the software 
cache to write back all data with dirty bits to system memory, and to invalidate all 
lines in the cache.   

When an SPE thread uses DMA to get/put data from/to the system memory, it 
needs to know the address of the data to be transferred. However, global data is linked 
with the PPE binary and is not directly available in SPE code. The Cell SDK provides 
a link-time mechanism called CESOF, which makes available to the SPE binary the 
addresses of all PPE global variables once these addresses have been determined. We 
also use a facility similar to CESOF when generating SPE code. 

 Besides global data, an SPE thread may need to know the address of data on the 
PPE stack when, in source code, the procedure executing in the SPE thread is nested 
within a procedure executing in a PPE thread, and the SPE procedure accesses 
variables declared in its parent PPE procedure. Though C and Fortran do not support 
nested procedures (C++ and Pascal do), this case can occur when the compiler 
performs outlining. For example, in Figure 1, if the variable “x” were declared in the 
procedure that contains the parallel loop, after outlining, the declaration of “x” 
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becomes out of the scope of the outlined function.  To circumvent this problem, the 
compiler considers each outlined function to be nested within its parent function. The 
PPE runtime, assisted by compiler transformations, ensures that SPE tasks that will 
access PPE stack variables are provided with the system memory address of those 
stack variables. 

6 Experimental Results 

We compiled and executed some OpenMP test cases on a Cell blade that has both the 
PPU and the SPUs running at 3.2 GHz, and has a total of 1GB main memory.  All our 
experiments used one Cell chip: one PPE and eight SPEs. The test cases include 
several simple streaming applications, as well as the standard NAS [10] and SPEC 
OMP 2001 [11] benchmarks. To observe detailed runtime behavior of applications, 
we instrumented the OpenMP runtime libraries with Paraver [12], a trace generation 
and visualization tool.  

Figure 2 shows the PPE and SPE thread behavior for a small test case comprising 
of one parallel loop that is repeatedly executed one hundred times. The PPE thread is 
assigned no loop iterations, and is responsible only for scheduling and 
synchronization. The figure shows a high-level view of one complete execution of the 
parallel loop. The first row corresponds to the PPE thread and the remaining rows 
correspond to SPE threads. Blue areas represent time spent doing useful computation, 
yellow areas represent time spent in scheduling and communication of work items, 
and red areas represent time spent in synchronization and waiting for DMA 
operations to complete. We can clearly identify the beginning and end of one instance 
of a parallel loop execution from the neatly lined up set of red synchronization areas 
that indicate the implicit barriers being performed at parallel region boundaries, as 
specified by the OpenMP standard. 

  

 

Figure 2 PPE and SPE thread 

If we zoom into a portion of the SPE useful computation shown in Figure 2, we 
can see in greater detail the time actually spent in computing and the time spent in 
waiting for data transfers.  Figure 3(a) shows this detail for a segment of execution 
when only the software cache is used for automatic DMA transfers.  We see many 
areas in the SPE execution that are dominated by waiting for DMA operations to 
complete (red areas), and the need to optimize this application is evident.  Figure 3(b) 
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shows a similar segment of execution for the same application when it has been 
optimized using static buffering. We observe the improved ratio for time spent doing 
actual computation (blue) versus time spent waiting for DMA operations (red). 

 
(a) software cache only 

 

 
(b) optimized with static buffer 

Figure 3 Data transfer with software cache and static buffer 
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Figure 4 Performance comparison with manually optimized code 

To evaluate our approach, we first tried some simple stream benchmarks, 
comparing the performance of code generated by our compiler with the performance 
of manually written code that was optimized using Cell SDK libraries and SIMD 
instructions. The performance comparison is shown in Figure 4. The speedups shown 
in this figure are the ratios of execution time when using 8 SPUs and execution time 
when only using the PPE. Both SIMD units and multiple cores contribute to the 
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speedups observed. We observe that our OpenMP compiler can achieve as good a 
performance (except for fft) as the highly optimized manual code on these stream 
applications. fft performs poorly in comparison because auto-simdization cannot 
handle different displacements in array subscript expressions for different steps in the 
FFT computation. Manual code performs slightly better on dotproduct and xor 
because the compiler does not unroll the loop an optimal number of times. 

We also experimented with some applications from the NAS and Spec OMP 2001 
benchmark suites. We report speedups of the whole program normalized to one PPU 
and one SPU respectively in Figure 5. 
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Figure 5 Performance of benchmarks 

Compared to the performance of one PPU, many applications show significant 
speedup with our compiler on 8 SPUs. The performance of some others is 
unsatisfactory, or even quite bad (such as equake, CG and FT). We analyzed the 
benchmarks and traced compiler transformations to determine the reasons for the 
performance shortfall. We identified two main reasons for it: 
1. Limitations in our current implementation: A common reason for bad performance 

is the failure of static buffer optimization. Our current implementation cannot 
handle references complicated by loop unrolling, done either by the user or the 
compiler. The absence of precise alias information also prevents static buffering 
from being applied in many test cases. We are working on improving our compiler. 

2. Applications unsuitable for the Cell architecture: FT and CG contain irregular 
discontinuous data references to main memory. DMA data transfers become the 
bottleneck in such cases.  
The performance normalized to one SPU shows the scalability. All of them, except 

IS and equake, show good scalability with speedup more than 6 on 8 SPUs. The 
reason that IS did not scale up well is that IS contains some computations in either 
master pragma or critical pragma. Those computations are done sequentially. For 
equake, some loops are not parallelized due to the current implementation limitation 
of compiler. Therefore, its speedup of 8 SPUs is only above 4. 
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7 Conclusions 

In this paper, we describe how to support OpenMP on the Cell processor. Our 
approach allows users to simply reuse their existing OpenMP applications on the 
powerful Cell Blade, or easily develop new applications with the OpenMP API 
without worrying about the hardware details of the Cell processor. We support 
OpenMP by orchestrating compiler transformations with a runtime library that is 
tailored to the Cell processor. We focus on issues related to three topics: thread and 
synchronization, code generation, and the memory model. Our compiler is novel in 
that it generates a single binary that executes across multiple ISAs and multiple 
memory spaces. 

Experiments with simple test cases demonstrate that our approach can achieve 
performance similar to that of manually written and optimized code. We also 
experimented with some large, complex benchmark codes. Some of these benchmarks 
show significant performance gains. Thus, we demonstrate that it is feasible to extract 
high performance on a Cell processor using the simple and easy-to-use OpenMP 
programming model. However, we need to further improve our compiler 
implementation for improved performance on a wider set of application programs. 
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