
Supporting OpenMP on Cell

Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

IBM T. J Watson Research

Abstract.

The Cell processor is a heterogeneous multi-core processor with one Power
Processing Engine (PPE) core and eight Synergistic Processing Engine (SPE)
cores. Each SPE has a directly accessible small local memory (256K), and it
can access the system memory through DMA operations. Cell programming is
complicated both by the need to explicitly manage DMA data transfers for SPE
computation, as well as the multiple layers of parallelism provided in the
architecture, including heterogeneous cores, multiple SPE cores,
multithreading, SIMD units, and multiple instruction issue. There is a
significant amount of ongoing research in programming models and tools that
attempts to make it easy to exploit the computation power of the Cell
architecture. In our work, we explore supporting OpenMP on the Cell
processor. OpenMP is a widely used API for parallel programming. It is
attractive to support OpenMP because programmers can continue using their
familiar programming model, and existing code can be re-used. We base our
work on IBM’s XL compiler, which already has OpenMP support for AIX
multi-processor systems built with Power processors. We developed new
components in the XL compiler and a new runtime library for Cell OpenMP
that utilizes the Cell SDK libraries to target specific features of the new
hardware platform. To describe the design of our Cell OpenMP
implementation, we focus on three major issues in our system: 1) how to use
the heterogeneous cores and synchronization support in the Cell to optimize
OpenMP threads; 2) how to generate thread code targeting the different
instruction sets of the PPE and SPE from within a compiler that takes single-
source input; 3) how to implement the OpenMP memory model on the Cell
memory system. We present experimental results for some SPEC OMP 2001
and NAS benchmarks to demonstrate the effectiveness of this approach. Also,
we can observe detailed runtime event sequences using the visualization tool
Paraver, and we use the insight into actual thread and synchronization behaviors
to direct further optimizations.

1 Introduction

The Cell Broadband Engine TM (Cell BE) processor [1] is now commercially available
in both the Sony PS3 game console and the IBM Cell Blade which represents the first
product on the IBM Cell Blade roadmap. The anticipated high volumes for this non-

2 Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

traditional “commodity” hardware continue to make it interesting in a variety of
different application spaces, ranging from the obvious multi-media and gaming
domain, through the HPC space (both traditional and commercial), and to the
potential use of Cell as a building block for very high end “supercomputing” systems
[8].

This first generation Cell processor provides flexibility and performance through
the inclusion of a 64-bit multi-threaded Power Processor TM Element (PPE) with two
levels of globally-coherent cache and support for multiple operating systems
including Linux. For additional performance, a Cell processor includes eight
Synergistic Processor Elements (SPEs), each consisting of a Synergistic Processing
Unit (SPU), a local memory, and a globally-coherent DMA engine. Computations are
performed by 128-bit wide Single Instruction Multiple Data (SIMD) functional units.
An integrated high bandwidth bus, the Element Interconnect Bus (EIB), glues
together the nine processors and their ports to external memory and IO, and allows the
SPUs to be used for streaming applications [2].

Data is transferred between the local memory and the DMA engine [3] in chunks
of 128 bytes. The DMA engine can support up to 16 concurrent requests of up to 16K
bytes originating either locally or remotely. The DMA engine is part of the globally
coherent memory address space; addresses of local DMA requests are translated by a
Memory Management Unit (MMU) before being sent on the bus. Bandwidth between
the DMA and the EIB bus is 8 bytes per cycle in each direction. Programs interface
with the DMA unit via a channel interface and may initiate blocking as well as non-
blocking requests.

Programming the SPE processor is significantly enhanced by the availability of an
optimizing compiler which supports SIMD intrinsic functions and automatic
simdization [4]. However, programming the Cell processor, the coupled PPE and 8
SPE processors, is a much more complex task, requiring partitioning of an application
to accommodate the limited local memory constraints of the SPE, parallelization
across the multiple SPEs, orchestration of the data transfer through insertion of DMA
commands, and compiling for two distinct ISAs. Users can directly develop the code
for PPE and SPE, or introduce new the language extension [5].

In this paper we describe how our compiler manages this complexity while still
enabling the significant performance potential of the machine. Our parallel
implementation currently uses OpenMP APIs to guide parallelization decisions.

The remainder of the paper is laid out as follows: section two gives an overview of
the compiler infrastructure upon which our work is based and presents the particular
challenges of retargeting this to the novel features of the Cell platform. The next three
sections of the paper look in more depth at each of these challenges and how we have
addressed them, and section 6 presents some experimental results to demonstrate the
benefit of our approach. We draw our conclusions in the last section.

2 System Overview

In our system, we use compiler transformations in collaboration with a runtime library
to support OpenMP. The compiler translates OpenMP pragmas in the source code to

Supporting OpenMP on Cell 3

intermediate code that implements the corresponding OpenMP construct. This
translated code includes calls to functions in the runtime library. The runtime library
functions provide basic utilities for OpenMP on the Cell processor, including thread
management, work distribution, and synchronization. For each parallel construct, the
compiler outlines the code segment enclosed in the parallel construct into a separate
function. The compiler inserts OpenMP runtime library calls into the parent function
of the outlined function. These runtime library calls will invoke the outlined
functions at runtime and manage their execution.

The compiler is built upon the IBM XL compiler [6][13]. This compiler has front-
ends for C/C++ and Fortran, and shares the same optimization framework across
multiple source languages. The optimization framework has two components: TPO
and TOBEY. Roughly, TPO is responsible for high-level and machine-independent
optimizations while TOBEY is responsible for low-level and machine-specific
optimizations. The XL compiler has a pre-existing OpenMP runtime library and
support for OpenMP 2.0 on AIX multiprocessor systems built with Power processors.
In our work targeting the Cell platform, we re-use, modify, or re-write existing code
that supports OpenMP as appropriate.

We encountered several issues in our OpenMP implementation that are specific to
features of the Cell processor:

• Threads and synchronization: Threads running on the PPE differ in
capability and processing power from threads running on the SPEs. We
design our system to use these heterogeneous threads, and to efficiently
synchronize all threads using specialized hardware support provided in
the Cell processor.

• Code generation: The instruction set of the PPE differs from that of the
SPE. Therefore, we perform code generation and optimization for PPE
code separate from SPE code. Furthermore, due to the limited size of SPE
local stores, SPE code may need to be partitioned into multiple overlaid
binary sections instead of generating it as a large monolithic section.
Also, shared data in SPE code needs to be transferred to and from system
memory using DMA, and this is done using DMA calls explicitly inserted
by the compiler, or using a software caching mechanism that is part of the
SPE runtime library.

• Memory model: Each SPE has a small directly accessible local store, but
it needs to use DMA operations to access system memory. The Cell
hardware ensures DMA transactions are coherent, but it does not provide
coherence for data residing in the SPE local stores. We implement the
OpenMP memory model on top of the novel Cell memory model, and
ensure data in system memory is kept coherent as required by the
OpenMP specification.

In the following sections, we describe how we solve these issues in our compiler and
runtime library implementation.

4 Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

3 Threads and Synchronization

In our system, OpenMP threads execute on both the PPE and the SPEs. The master
thread is always executed on the PPE. The master thread is responsible for creating
threads, distributing and scheduling work, and initializing synchronization operations.
Since there is no operating system support on the SPEs, this thread also handles all
OS service requests. The functions specific to the master thread align well with the
Cell design of developing the PPE as a processor used to manage the activities of
multiple SPE processors. Also, placing the master thread on the PPE allows smaller
and simpler code for the SPE runtime library, which resides in the space-constrained
SPE local store. Different from the OpenMP standard, if required by users, the PPE
thread will not participate in the work for parallel loops.

Currently, we always assume a single PPE thread and use the
OMP_NUM_THREADS specification to be the number of SPE threads to use.
Specifying the number of PPE and SPE threads separately will need an extension of
the OpenMP standard. The PPE and SPE cores are heterogeneous, and there may be
significant performance mismatch between a PPE thread and an SPE thread that
perform the same work. Ideally, the system can be built to automatically estimate the
difference in PPE and SPE performance for a given work item, and then have the
runtime library appropriately adjust the amount of work assigned to different threads.
We do not have such a mechanism yet, so we allow users to tune performance by
specifying whether or not the PPE thread should participate in executing work items
for OpenMP work-share loops or work-share sections.

We implement thread creation and synchronization using the Cell Software
Development Kit (SDK) libraries [7]. The master thread on the PPE creates SPE
threads only when a parallel structure is first encountered at runtime. For nested levels
of parallelism, each thread in the outer parallel region sequentially executes the inner
parallel region. The PPE thread schedules tasks for all threads, using simple block
scheduling for work-share loops and sections. The work sections or loop iterations are
divided into as many pieces as the number of available threads, and each thread is
assigned one piece. More sophisticated scheduling is left for future work.

When an SPE thread is created, it performs some initialization, and then loops
waiting for task assignments from the PPE, executing those tasks, and then waiting
for more tasks, until the task is to terminate. A task can be the execution of an
outlined parallel region, loop or section, or performing a cache flush, or participating
in barrier synchronization. There is a task queue in system memory corresponding to
each thread. When the master thread assigns a task to a thread, it writes information
about the task to the corresponding task queue, including details such as the task type,
the lower bound and upper bound for a parallel loop, and the function pointer for an
outlined code region that is to be executed. Once an SPE thread has picked up a task
from the queue, it uses DMA to change the status of the task in the queue, thus
informing the master thread that the queue space can be re-used.

The Cell processor provides special hardware mechanisms for efficient
communication and synchronization between the multiple cores in a Cell system. The
Memory Flow Controller (MFC) for each SPE has two blocking outbound mailbox
queues, and one non-blocking inbound mailbox queue. These mailboxes can be used
for efficient communication of 32-bit values between cores. When the master thread

Supporting OpenMP on Cell 5

assigns tasks to an SPE thread, it uses the mailbox to inform the SPE of the number of
tasks available for execution. Each SPE MFC also has an atomic unit that implements
atomic DMA commands and provides four 128-byte cache lines that are maintained
cache coherent across all processors. We use atomic DMA commands for efficient
implementation of OpenMP locks, barriers1, and cache flush operations.

4 Code Generation

Figure 1 illustrates the code generation process of the Cell OpenMP compiler. The
compiler separates out each code region in the source code that corresponds to an
OpenMP parallel construct (including OpenMP parallel regions, work-share loops or
work-share sections, and single constructs), and outlines it into a separate function.
The outlined function may take additional parameters such as the lower and the upper
bounds of the loop iteration for parallel loops. In the case of parallel loops, the
compiler further transforms the outlined function so that it only computes from the
lower bound to the upper bound. The compiler inserts an OpenMP runtime library call
into the parent function of the outlined function, and passes a pointer to the outlined
function code into this runtime library function. During execution, the runtime
function will indirectly invoke the outlined function. The compiler also inserts
synchronization operations such as barriers when necessary.

Due to the heterogeneity of the Cell architecture, the outlined functions containing
parallel tasks may execute on both the PPE and the SPEs. In our implementation, we
clone the outlined functions so that there is one copy of the function for the PPE
architecture, and one for the SPE architecture. We perform cloning during TPO link-
time optimization when the global call graph is available, so we can clone the whole
sub-graph for a call to an outlined function when necessary. We mark the cloned
function copies as PPE and SPE procedures, respectively. In later stages of
compilation, we can apply machine-dependent optimizations to these procedures
based on their target architecture. Auto-simdization is one example. SPE has SIMD
units that can execute operation on 128 byte data with one instruction. After cloning,
the code for SPE will undergo the auto-simdization to transform scalar code into
SIMD code for SPE, while the PPE has totally different SIMD instructions. In other
words, we choose to clone the functions to enable more aggressive optimizations.

When a PPE runtime function in the master thread distributes parallel work to an
SPE thread, it needs to tell the SPE thread what outlined function to execute. The
PPE runtime function knows the function pointer for the PPE code of the outlined
function to execute. However, the SPE thread needs to use the function pointer for the
SPE code of the same outlined function. To enable the SPE runtime library to
determine correct function pointers, the compiler builds a mapping table between
corresponding PPE and SPE outlined function pointers, and the runtime looks up this
table to determine SPE code pointers for parallel tasks assigned by the master thread.

At the end of TPO, procedures for different architectures are separated into
different compilation units, and these compilation units are processed one at a time by
the TOBEY backend. The PPE compilation units are processed as for other

1 We thank Daniel Brokenshire (IBM Austin) for his implementation of barriers on Cell.

6 Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

architectures and need no special consideration. However, if a single large SPE
compilation unit is generated, it may result in SPE binary code that is too large to fit
in the small SPE local store all at once. In fact, we observe this to be the case for
many benchmark programs. For OpenMP, one way to mitigate this problem is to
place all the code corresponding to a given parallel region in one SPE compilation
unit, and generate as many SPE compilation units as there are parallel regions in the
program. Using this approach, we can generate multiple SPE binaries, one for each
SPE compilation unit. We can then modify the runtime library to create SPE threads
using a different SPE binary on entry to each parallel region. However, there are two
drawbacks to using this approach: first, an individual parallel region may still be too
large to fit in SPE local store, and second, we observe through experiments that the
overhead for repeatedly creating SPE threads is significantly high.

c lo n e

fo o 1 () ;

p r a g m a o m p p a r a l l e l fo r
fo r (i= 0 ; i < N ; i+ +)
 A [i] = x * B [i] ;

fo o 2 () ;

f o o 1 () ;
R u n t im e d is t r i b u t io n o f w o rk :
 in v o k e f o o 3 , f o r i= [0 ,N)
R u n t im e b a r r ie r
f o o 2 () ;

fo r (i= L B ; i < U B ;
i+ +)
 A [i] = x * B [i] ;
R u n t im e b a r r ie r

f o o 3 (L B ,U B)
f o o 3 _ S P U (L B ,U B)

R u n t im e b a r r ie r
R u n t im e b a r r ie r

fo r (i= L B ; i < U B ;
i+ +)
 A [i] = x * B [i] ;
R u n t im e b a r r ie r

o u t l in e

P U B a c k e n d

S P U B a c k e n d

O v e r la y E n a b le d

C a l l G r a p h
P a r t i t io n in g

S P U O b j e c ts

N o t e n a b le d

S P U O b j e c t s

S P U L in k e r

S P U O M P
R u n t im e L ib S P U B in a r y

P P U -
em b e d s p u

P U O b j e c ts

P U L in k e r
P U O M P

R u n t im e L ib

O M P S P U B i n a r y
E m b e d d e d a s

P U O b je c t

F in a l P U B in a r y

Figure 1 Code generation process

To solve the SPE code size problem, we rely on the technique of call graph
partitioning and code overlay. We first partition the sub-graph of the call graph
corresponding to SPE procedures into several partitions. Then we create a code
overlay for each of these call graph partitions. Code overlays share address space and
do not occupy local storage at the same time. Thus, the pressure on local storage due

Supporting OpenMP on Cell 7

to SPE code is greatly reduced. To partition the call graph, we weight each call graph
edge by the frequency of this edge. The frequency can be obtained by either compiler
static analysis or profiling. Then we apply the maximum spanning tree algorithm to
the graph. Basically, we process edges in the order of their weight. If merging the two
nodes of the edge does not exceed a predefined memory limitation, we merge those
two nodes, update the edge weights, and continue. When the algorithm stops, each
merged node represents a call graph partition comprising all the procedures whose
nodes were merged into that node. Thus, the result is a set of call graph partitions. Our
algorithm is a simple greedy algorithm that can be further optimized. After call graph
partitions are identified, we utilize SPU code overlay support introduced in Cell SDK
2.0 and place the procedures in each call graph partition into a separate code overlay.

After the TOBEY backend generates an SPE binary (either with or without code
overlays), we use a special tool called ppu-embedspu to embed the SPE binary into a
PPE data object. This PPE data object is then linked into the final PPE binary together
with other PPE objects and libraries. During execution, when code running on the
PPE creates SPE threads, it can access the SPE binary image embedded into the PPE
data object, and use this SPE image to initialize the newly created SPE threads.

5 Memory model

OpenMP specifies a relaxed-consistency, shared-memory model. This model allows
each thread to have its own temporary view of memory. A value written to a variable,
or a value read from a variable, can remain in the thread’s temporary view until it is
forced to share memory by an OpenMP flush operation. We find that such a memory
model can be efficiently implemented on the Cell memory structure.

In the Cell processor, each SPE has just 256K directly accessible local memory for
code and data. We only allocate private variables accessed in SPE code to reside in
the SPE local store. Shared variables reside in system memory, and SPE code can
access them through DMA operations. We use two mechanisms for DMA transfers:
static buffering and compiler-controlled software cache. In both mechanisms, the
global data may have a local copy in the SPE local store. The SPE thread may read
and write the local copy. This approach conforms to the OpenMP relaxed memory
model and takes advantage of the flexibility afforded by the model to realize memory
system performance.

Some references are regular references from the point-of-view of our compiler
optimization. These references occur within a loop, the memory addresses that they
refer to can be expressed using affine expressions of loop induction variables, and the
loop that contains them has no loop-carried data dependence (true, output or anti)
involving these references. For such regular reference accesses to shared data, we use
a temporary buffer in the SPE local store. For read references, we initialize this
buffer with a DMA get operation before the loop executes. For write references, we
copy the value from this buffer using a DMA put operation after the loop executes.
The compiler statically generates these DMA get and put operations. The compiler
also transforms the loop structure in the program to generate optimized DMA
operations for references that it recognizes to be regular. Furthermore, DMA

8 Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

operations can be overlapped with computations by using multiple buffers. The
compiler can choose the proper buffering scheme and buffer size to optimize
execution time and space [9].

For irregular references to shared memory, we use a compiler-controlled software
cache to read/write the data from/to system memory. The compiler replaces loads and
stores using these references with instructions that explicitly look up the effective
address in a directory of the software cache. If a cache line for the effective address is
found in the directory (which means a cache hit), the value in the cache is used.
Otherwise, it is a cache miss. For a miss, we allocate a line in the cache either by
using an empty line or by replacing an existing line. Then, for a load, we issue a
DMA get operation to read the data from system memory. For stores, we write the
data to the cache, and maintain dirty bits to record which byte is actually modified.
Later, we write the data back to system memory using a DMA put operation, either
when the cache line is evicted to make space for other data, or when a cache flush is
invoked in the code based on OpenMP semantics.

We configure the software cache based on the characteristics of the Cell processor.
Since 4-way SIMD operations on 32-bit values are supported in the SPE and we
currently use 32-bit memory addresses, we use a 4-way associative cache that
performs the cache lookup in parallel. Also, we use 128-byte cache lines since DMA
transfers are optimal when performed in multiples of 128 bytes and aligned on a 128-
byte boundary. If only some bytes in a cache line are dirty, when the cache line is
evicted or flushed, the data contained in it must be merged with system memory such
that only the dirty bytes overwrite data contained in system memory. One way to
achieve this is to DMA only the dirty bytes and not the entire cache line. However,
this may result in small discontinuous DMA transfers, and exacerbated by the
alignment requirements for DMA transfers, it can result in poor DMA performance.
Instead, we use the support for atomic updates of 128-byte lines that is provided in the
SPE hardware to atomically merge data in the cache line with data in the
corresponding system memory, based on recorded dirty bits.

When an OpenMP flush is encountered, the compiler guarantees that all data in the
static buffers in local store has been written back into memory, and that existing data
in the static buffers is not used any further. The flush will also trigger the software
cache to write back all data with dirty bits to system memory, and to invalidate all
lines in the cache.

When an SPE thread uses DMA to get/put data from/to the system memory, it
needs to know the address of the data to be transferred. However, global data is linked
with the PPE binary and is not directly available in SPE code. The Cell SDK provides
a link-time mechanism called CESOF, which makes available to the SPE binary the
addresses of all PPE global variables once these addresses have been determined. We
also use a facility similar to CESOF when generating SPE code.

 Besides global data, an SPE thread may need to know the address of data on the
PPE stack when, in source code, the procedure executing in the SPE thread is nested
within a procedure executing in a PPE thread, and the SPE procedure accesses
variables declared in its parent PPE procedure. Though C and Fortran do not support
nested procedures (C++ and Pascal do), this case can occur when the compiler
performs outlining. For example, in Figure 1, if the variable “x” were declared in the
procedure that contains the parallel loop, after outlining, the declaration of “x”

Supporting OpenMP on Cell 9

becomes out of the scope of the outlined function. To circumvent this problem, the
compiler considers each outlined function to be nested within its parent function. The
PPE runtime, assisted by compiler transformations, ensures that SPE tasks that will
access PPE stack variables are provided with the system memory address of those
stack variables.

6 Experimental Results

We compiled and executed some OpenMP test cases on a Cell blade that has both the
PPU and the SPUs running at 3.2 GHz, and has a total of 1GB main memory. All our
experiments used one Cell chip: one PPE and eight SPEs. The test cases include
several simple streaming applications, as well as the standard NAS [10] and SPEC
OMP 2001 [11] benchmarks. To observe detailed runtime behavior of applications,
we instrumented the OpenMP runtime libraries with Paraver [12], a trace generation
and visualization tool.

Figure 2 shows the PPE and SPE thread behavior for a small test case comprising
of one parallel loop that is repeatedly executed one hundred times. The PPE thread is
assigned no loop iterations, and is responsible only for scheduling and
synchronization. The figure shows a high-level view of one complete execution of the
parallel loop. The first row corresponds to the PPE thread and the remaining rows
correspond to SPE threads. Blue areas represent time spent doing useful computation,
yellow areas represent time spent in scheduling and communication of work items,
and red areas represent time spent in synchronization and waiting for DMA
operations to complete. We can clearly identify the beginning and end of one instance
of a parallel loop execution from the neatly lined up set of red synchronization areas
that indicate the implicit barriers being performed at parallel region boundaries, as
specified by the OpenMP standard.

Figure 2 PPE and SPE thread

If we zoom into a portion of the SPE useful computation shown in Figure 2, we
can see in greater detail the time actually spent in computing and the time spent in
waiting for data transfers. Figure 3(a) shows this detail for a segment of execution
when only the software cache is used for automatic DMA transfers. We see many
areas in the SPE execution that are dominated by waiting for DMA operations to
complete (red areas), and the need to optimize this application is evident. Figure 3(b)

10 Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

shows a similar segment of execution for the same application when it has been
optimized using static buffering. We observe the improved ratio for time spent doing
actual computation (blue) versus time spent waiting for DMA operations (red).

(a) software cache only

(b) optimized with static buffer

Figure 3 Data transfer with software cache and static buffer

Performance of OpenMP vs. hand-optimization

0

5

10

15

20

25

30

35

40

dotproduct fft stream-add stream-copy stream-scale stream-triad xor

S
p
ee

d
u
p
 w

it
h
 8
 S
P
E
s
o
ve

r
 o
ne

 P
P
E

OpenMP+simd Hand-opt

Figure 4 Performance comparison with manually optimized code

To evaluate our approach, we first tried some simple stream benchmarks,
comparing the performance of code generated by our compiler with the performance
of manually written code that was optimized using Cell SDK libraries and SIMD
instructions. The performance comparison is shown in Figure 4. The speedups shown
in this figure are the ratios of execution time when using 8 SPUs and execution time
when only using the PPE. Both SIMD units and multiple cores contribute to the

Supporting OpenMP on Cell 11

speedups observed. We observe that our OpenMP compiler can achieve as good a
performance (except for fft) as the highly optimized manual code on these stream
applications. fft performs poorly in comparison because auto-simdization cannot
handle different displacements in array subscript expressions for different steps in the
FFT computation. Manual code performs slightly better on dotproduct and xor
because the compiler does not unroll the loop an optimal number of times.

We also experimented with some applications from the NAS and Spec OMP 2001
benchmark suites. We report speedups of the whole program normalized to one PPU
and one SPU respectively in Figure 5.

Performance Normalized to PU O5

0

1

2

3

4

5

6

7

8

CG EP FT IS MG equake swim

S
p

ee
d

u
p

1SPU

2SPU

4SPU

8SPU

Performance Normalized to one SPU

1

2

3

4

5

6

7

8

1SPU 2SPU 4SPU 8SPU

S
pe

ed
u

p

CG

EP

FT

IS

MG

equake

swim

Figure 5 Performance of benchmarks

Compared to the performance of one PPU, many applications show significant
speedup with our compiler on 8 SPUs. The performance of some others is
unsatisfactory, or even quite bad (such as equake, CG and FT). We analyzed the
benchmarks and traced compiler transformations to determine the reasons for the
performance shortfall. We identified two main reasons for it:
1. Limitations in our current implementation: A common reason for bad performance

is the failure of static buffer optimization. Our current implementation cannot
handle references complicated by loop unrolling, done either by the user or the
compiler. The absence of precise alias information also prevents static buffering
from being applied in many test cases. We are working on improving our compiler.

2. Applications unsuitable for the Cell architecture: FT and CG contain irregular
discontinuous data references to main memory. DMA data transfers become the
bottleneck in such cases.
The performance normalized to one SPU shows the scalability. All of them, except

IS and equake, show good scalability with speedup more than 6 on 8 SPUs. The
reason that IS did not scale up well is that IS contains some computations in either
master pragma or critical pragma. Those computations are done sequentially. For
equake, some loops are not parallelized due to the current implementation limitation
of compiler. Therefore, its speedup of 8 SPUs is only above 4.

12 Kevin O’Brien, Kathryn O’Brien, Zehra Sura, Tong Chen and Tao Zhang

7 Conclusions

In this paper, we describe how to support OpenMP on the Cell processor. Our
approach allows users to simply reuse their existing OpenMP applications on the
powerful Cell Blade, or easily develop new applications with the OpenMP API
without worrying about the hardware details of the Cell processor. We support
OpenMP by orchestrating compiler transformations with a runtime library that is
tailored to the Cell processor. We focus on issues related to three topics: thread and
synchronization, code generation, and the memory model. Our compiler is novel in
that it generates a single binary that executes across multiple ISAs and multiple
memory spaces.

Experiments with simple test cases demonstrate that our approach can achieve
performance similar to that of manually written and optimized code. We also
experimented with some large, complex benchmark codes. Some of these benchmarks
show significant performance gains. Thus, we demonstrate that it is feasible to extract
high performance on a Cell processor using the simple and easy-to-use OpenMP
programming model. However, we need to further improve our compiler
implementation for improved performance on a wider set of application programs.

References

1. D. P. et al. The design and implementation of a first-generation CELL processor.
IEEE International Solid-State Circuits Conference (ISSCC), February 2005

2. M. Gordon et. al. Exploiting Coarse-Grained Task, Data, and Pipeline Parallelism in
Stream Programs, International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October, 2006

3. M. Kistler, M. Perrone, and F. Petrini. CELL multiprocessor communication net-
work: Built for Speed. IEEE Micro, 26(3), May/June 2006

4. A. E. et al. Vectorization for SIMD architecture with Alignment Constraints,
Conference on Programming Language Design and Implementation (PLDI) 2003.

5. P. Bellens et. al. CellSc: a Programming Model for the Cell BE Architecture, SC,
2006

6. IBM xl compiler for Cell: http://www.alphaworks.ibm.com/tech/cellcompiler
7. SDK for Cell: http://www-128.ibm.com/developerworks/power/cell/
8. Samuel Williams, et al. The Potential of the Cell Processor for Scientific Computing.

Conference on Computing Frontiers, 2006
9. T. Chen. et al. Optimizing the use of static buffers for DMA on a CELL chip.

Workshop on Language and Compiler for Parallel Computing (LCPC), 2006
10. NAS parallel benchmarks: http://www.nas.nasa.gov/Resources/Software/npb.html
11. Spec OMP benchmarks: http://www.spec.org/
12. Paraver: http://www.cepba.upc.es/paraver/
13. A. E. et al. Optimizing Compiler for the Cell Processor. Conference on Parallel

Architecture and Compiler Techniques (PACT), 2005

