
Teaching case

Re-engineering at LeCroy Corporation:

the move to component-based systems

Julia Kotlarsky

Warwick Business School, Warwick University, Coventry, UK

Correspondence:
Julia Kotlarsky, Warwick Business School, Warwick University, CV4 7AL Coventry, UK.
Tel: þ 44-2476-524692;
E-mail: Julia.Kotlarsky@wbs.ac.uk

Abstract
This case study discusses two related aspects that are becoming increasingly important in
today’s software development practice: re-engineering of a monolithic system into a
component-based system (the focus of this case) and globally distributed work.
Component-based (software) development (CBD) involves (i) the development of software
components and (ii) the building of software systems through the integration of pre-
existing software components (developed in-house or procured from the component
market). For companies involved in software development, CBD offers agility in design by
basing software development on methodologies that support the recombination of
reusable components, being an approach that rapidly expands product variation and
sustains the build-up of product families. It also promises significant improvements in
software development through shorter time-to-market and reduced development costs.
However, being an innovative approach to software development that emerged in the mid-
1990s, the adoption of CBD requires companies to re-engineer existing software systems
(products) or to develop new systems from scratch using component technologies and to
deal with additional challenges associated with the management of CBD. LeCroy
Corporation was one of the early adopters of CBD that decided to adopt CBD to gain
competitive advantage in its markets. The case describes an actual situation at LeCroy
Corporation, involving several decisions, challenges and opportunities faced by the
managers of a globally distributed software development team over a period of time when
they re-engineered a monolithic system into a component-based system.
Journal of Information Technology (2007) 22, 465–478. doi:10.1057/palgrave.jit.2000099
Published online 15 May 2007
Keywords: component-based architecture; system re-engineering; globally distributed team

Introduction

I
n the software industry, component-based (software)
development (CBD) is a relatively new trend. It emerged
in the mid-1990s with the introduction of software

component technologies such as Enterprise JavaBeans,
Microsoft COM and CORBA (Peters and Pedrycz, 2000).
CBD involves (i) the development of software components
and (ii) the building of software systems through the
integration of pre-existing software components (developed
in-house or procured from the component market)
(Kotlarsky et al., 2007). CBD was presented as a revolu-
tionary approach to software development, promising
dramatic improvements in software development, such as

the endless possibilities to reuse and recombine software
components, shorter time-to-market, better quality and
reduced development costs (Crnkovic and Larsson, 2002;
Huang et al., 2003; Vitharana, 2003). In this regard, CBD
offers agility in design by basing software development on
methodologies that support the recombination of reusable
components, being an approach that rapidly expands
product variation and sustains the build-up of product
families (Kotlarsky et al., 2007). In the light of these
potential benefits, many companies involved in software
development considered the adoption of CBD. However,
being an innovative approach to software development, the

Journal of Information Technology (2007) 22, 465–478
& 2007 JIT Palgrave Macmillan Ltd. All rights reserved 0268-3962/07 $30.00

palgrave-journals.com/jit

adoption of CBD requires companies to re-engineer
existing software systems (products) or to develop new
systems from scratch using component technologies that
required significant investment (budget and time-wise) and
presented additional difficulties associated with the man-
agement of CBD, such as a lack of stable standards, lack of
reusable components and problems related to the granu-
larity and generality of components (Crnkovic and Larsson,
2002; Vitharana, 2003). Furthermore, empirical research on
CBD has shown that ‘it often took longer to develop a
reusable component than to develop a system for a one-off
purpose’ (Huang et al., 2003). It is argued that the benefits
are difficult to achieve in the first place, and that they
cannot be achieved immediately, but only in the long run
(Crnkovic and Larsson, 2002). Therefore, companies
considering the adoption of CBD have to carefully assess
any challenges lying ahead and find ways to deal with them
to achieve the potential benefits of CBD.

LeCroy Corporation was one of the early adopters of CBD.
The company decided to adopt CBD to gain competitive
advantage in its markets. System re-engineering at LeCroy
took place in a globally distributed environment. Therefore,
in addition to the challenges related to the adoption of CBD,
the global software development team of LeCroy had to
address several constraints associated with globally dis-
tributed work, such as distance, time-zone and cultural
differences (Carmel, 1999).

This case study describes an actual situation at LeCroy
Corporation, involving several decisions, challenges and
opportunities faced by the managers of a globally
distributed software development team over a period of
time when they re-engineered a monolithic system into a
component-based system. The case takes a historical
perspective, describing the transitions in a software
architecture from the mid-1980s until early 2002:

� Period 1: a monolithic system
� Period 2: a modular system (the monolithic system is

broken into three modules)
� Period 3: a component-based system (components are

reused across a number of products)

For each period, this case study covers three themes:

� Product architecture – advantages and disadvantages of
the architecture at that specific time period. Opportu-
nities, long- and short-term goals, and strategic decisions
made by managers.

� System re-engineering – human and technological aspects
related to system re-engineering and adoption of new
technologies at LeCroy.

� Global distribution – human and technological aspects
related to managing globally distributed teams.

The company
The LeCroy company was created in 1964 by Walter
LeCroy, a physicist. He launched a small business in an old
laundromat in Irvington, New York (NY), USA. The new
business, LeCroy Research Systems, was quickly recognized
as an innovator in instrumentation. In 1972, the company
established an instrument design and production facility in
Geneva, Switzerland. In 1976 (after changing locations
twice in 1965 and 1967), the corporate headquarters moved
to its present location in Chestnut Ridge, NY.

Initially, LeCroy developed technology to capture, measure
and analyze sophisticated electronic signals in a stringent
scientific environment. In 1985, the company began transfer-
ring this technology to a popular line of general-purpose
instruments. Growth in the commercial test and measurement
market really took off when the company introduced its first
digital storage oscilloscope (DSO) products. Since that time,
the core business of LeCroy has been the design and
production of oscilloscopes and oscilloscope-like instruments:
signal analyzers, signal generators and others.

An oscilloscope (Figure 1) is a laboratory instrument
commonly used to display and analyze the waveform of
electronic signals. In effect, the device draws a graph of the
instantaneous signal voltage as a function of time.
Oscilloscopes are used extensively for industrial, scientific
and medical purposes (e.g. for design and testing in the
high-tech industry, in research labs and universities).

By the early 1990s, LeCroy had become one of the world’s
largest designers, manufacturers and distributors of elec-
tronic measuring instruments for both scientific and
industrial (commercial) applications. Other companies
developing test and measurement equipment, and the main
competitors of LeCroy, are Textronix and Agilent.

During the last 20 years, LeCroy has opened a number of
sales offices in Europe (in France, Italy, Germany, Switzer-
land and the UK): these offices are responsible for sales in
all European countries. There are also several offices in
Japan, South Korea, China and Singapore (see LeCroy
organizational structure in Appendix A). LeCroy now
employs more than 400 people worldwide. In 2006, the
company reported annual revenues of more than $160
million.

Figure 1 Digital oscilloscopes of LeCroy: WaveMaster (left) and Serial Data Analizer (right).

Re-engineering at Lecroy Corporation Julia Kotlarsky

466

At present, oscilloscopes are designed by teams located
in Geneva and NY: the hardware is designed in NY, and the
software is designed by a team distributed between NY,
Geneva and Maine (USA). In Geneva there are 14 software
developers, 13 in NY and one (the main software architect)
is telecommuting from Maine. The manufacture of all
oscilloscopes is done in NY.

This case study focuses on the software development team,
which is globally distributed between NY, Geneva and Maine.1

17–19 December 2001; Lecroy Office, Chestnut Ridge, NY:
Snapshot
Monday 17 December 2001, 1 week before Christmas, five
working days before the Christmas vacation. Downtown
Manhattan is crowded: it seems everybody in NY is busy
buying presents for Christmas, for family, friends and
colleagues. At LeCroy office in Chestnut Ridge, NY, the
atmosphere is very similar to what is happening in the city:
last-minute preparations. Everybody is busy. But this is not
only because of the approaching Christmas, or maybe not
because of Christmas at all. LeCroy is preparing the launch
of a new product. Developers are mostly busy with bug
fixes, and managers are busy with the last preparations
before the release of the new product: Aladdin, a Windows-
based digital oscilloscope, the first of the new generation of
oscilloscopes based on Windows. The launch of Aladdin
(officially WaveMaster) is scheduled for 10 January 2002,
right after the Christmas–New Year vacation.

There is still some work to be done before the product
can be released. This causes tension among the software
team. However, the overall atmosphere in the software
team, and also among all the LeCroy employees in the NY
office, is very cheerful. And there is something to be proud
of. During the last couple of years, companies producing
test and measurement equipment have been competing in
creating a Windows-based oscilloscope. By the end of 2001
it had become clear that LeCroy was the first to offer the
market the new product based on Microsoft COM
technology that enables data transfer, processing and
integration of external algorithms up to 100 times faster
than other scopes.

Back to this, Monday, 17 December 2001: Larry (Director
of Software Engineering who is responsible for all the
software at LeCroy) and Anthony (Chief Software Architect
of the company and head of the Geneva software team) who
was visiting the NY office during this period, both seem to
like the idea of telling the story of how they proceeded from
the old oscilloscopes LeCroy produced in the mid-1980s to
Aladdin – the first oscilloscope based on the component-
based architecture. This is the story of complete system re-
engineering: from a monolithic to a component-based
system. As Anthony commented on their decision to fully
re-engineer the monolithic system: ‘we did something
which very few software companies have a chance to do.’

Period 1 – history: mid-1980s to mid-1990s

How development was organized: organizational perspective
From the organizational perspective, historically the devel-
opment of oscilloscopes was distributed between Geneva

and NY. Three teams – software, hardware and manufac-
turing – were involved in the production of oscilloscopes.
Initially, all three teams were located in NY and Geneva and
worked together from these two locations.

Since the mid-1980s, the software for the oscilloscopes
has partly been developed in Geneva, and partly in NY.
Initially there were about five–six people in Geneva and
five–six people in NY, and these two teams interacted
frequently. Originally, interactions involved shipping tapes
and floppy disks between the two sites. Later, the software
team used a 2400 baud modem to interchange files. The
interactions progressed as the teams acquired e-mail. Later
on, they replaced modems with a wide area network (WAN)
connection between the two sites.

Until 1999, LeCroy had manufacturing and hardware
development teams in both Geneva and NY. However, some
key hardware engineers in Geneva had left LeCroy in 1998.
At that point, LeCroy would have needed to replace the
engineers and re-establish the hardware team in Geneva. At
the same time, LeCroy was reexamining why they were
manufacturing in two locations – especially in two very
expensive locations. The decision was made to stop
manufacturing in Geneva and consolidate all manufactur-
ing in NY. Since hardware design is closely related to
manufacturing, a decision was made not to rebuild the
hardware team in Geneva but instead to close down
hardware engineering in Geneva and bring as many of the
engineers as they could to NY. Some key manufacturing
personnel moved to NY to run manufacturing, and seven
people (about half of the group) from the hardware group
moved to NY. Four of those people have remained and now
permanently live in NY.

It was not as important to have the software team
physically located close to manufacturing. Also, since the
software team had developed very good ways of working
together over distance, it was decided to leave the software
team in Geneva. At that time there were about 10–15 people
in the Geneva software team and the same number in NY.

In the software team, one of the advantages was that a
couple of members of the Geneva software group had
originally worked in NY. Anthony was there: he had started
in NY in 1986. Another senior person, Martin, the chief
scientist currently based in Geneva, had worked in NY for
many years (since the mid-1970s). Anthony is talking from
his experience:

To take people with experience, I think, working in the
group, and then move them into another group, is a good
way to seed the other group, to make sure that everything
works together.

In the late 1998, Jon, the main software architect, who
had worked in NY since 1990 and had spent a year (1998) in
Geneva, moved to Maine (USA) from where he continued to
work for LeCroy by telecommuting. Since then, LeCroy
software team has worked from three geographical loca-
tions: Geneva, NY and Maine.

Looking from the perspective of cultural differences, the
software team is multinational:

There are many different nationalities in the team. If I put
everyone together from Geneva, NY and the Maine – we

Re-engineering at Lecroy Corporation Julia Kotlarsky

467

have Swiss guys, American guys, British guys, German
guys, French guys, Spanish guys, Polish guys, Indian
guys, Chinese guys, Israeli guys, Russian guys (Gilles).

Previous products
From the mid-1980s, starting with the first scopes of the
company, and for about 10 years, the software for
oscilloscopes was written in the C-programing language,
using structured design techniques. The system was a
typical embedded system. Larry explained: ‘it was a simple
‘‘loop’’ operating system, which controlled the flow of the
waveform data from the acquisition system to the display.’
Initially it was based on a home-grown operating system
(not an off-the-shelf real-time operating system).

In the mid-1990s LeCroy started using Cþþ programing
language, but every time LeCroy came out with a new
model with a new feature it was built on top of the software
that was initially developed in the mid-1980s for the first
scopes (internally referred to as ‘Core’ software). This Core
of software grew and became a platform for all scopes
that LeCroy shipped up until the end of 2001. As a result,
the software for scopes turned into a huge monolithic
program. With every new version of the scope, the system
became more complex and every time it proved more
difficult to add new features to it because it was becoming
more difficult to identify all the areas (files definitions and
source code in the monolithic program) that would be
affected by the new feature. And when identified, additional
work was required to ‘plug’ the new features into the
existing program. Moreover, LeCroy had multiple teams
working on the acquisition systems of different scopes at
the same time.2 In addition, there was some source code
from the Core software that every team used and sometimes
changes were required in this common chunk of code. As a
result, it was becoming more difficult to deal with
dependencies between the teams. Furthermore, LeCroy also
wanted another company in Japan, in partnership with
LeCroy, to write their own acquisition system. However,
LeCroy did not want the Japanese company to have access
to the key intellectual property of LeCroy – the Core
software.

Larry commented on the situation LeCroy managers
faced at that time: ‘We needed to split the existing platform
up into at least three different sections that could be linked
together in the end.’ So, LeCroy started a project called
ORACLE:3 they took the monolithic program and broke it
up into three components.

Period 2 – ORACLE project: January–June 1997
The main objective of the ORACLE project was to divide the
original scope software into three modules (see Figure 2).
One of the modules was the operating system. For the
original scopes LeCroy actually wrote the operating system.
As part of the ORACLE project, LeCroy switched to
VxWorks as the operating system. VxWorks is a commer-
cial real-time operating system. It replaced the home-grown
operation system LeCroy used to have for previous scopes.
Another module was what they called Core. Core contained
the functionality common to all oscilloscopes (analysis and

display capabilities), regardless of the operating systems.
The third piece was the acquisition system. Each scope has a
different acquisition system (the acquisition system is the
part that changes every time a new scope is produced).

Four people worked full time on the ORACLE project –
three software engineers and Anthony (he was the project
manager). According to Anthony, ORACLE ‘was basically
the splitting of this 15 years old mass, this big ball of
strength, into 3 major components [modules].’

As the ORACLE project plan states: ‘the idea is not to
start from scratch and re-write our Digital Storage
Oscilloscope (DSO) software, it is instead a plan to
reconstruct and reengineer our existing DSO software so
that it is more modular, extensible, and maintainable.’

For LeCroy ORACLE was an interim solution, before they
could come up with an oscilloscope of the next generation.
The ORACLE project ‘was a kind of a stop-gap or solution
that would buy us a few more years anyway – about 5 more
years’ life of this platform’ (Larry). And during these 5 years
they need to come up with a new platform, new product.

The ORACLE project made it possible for LeCroy
software engineers in NY and in Geneva and their
development partner in Japan to work on sets of acquisi-
tions in parallel, without encroaching on each other’s
developments. Sometimes, though, this was difficult. In
some cases, where there was a common code, the teams had
to manage the check-in and check-out manually:

If the guys working in NY made changes in the
acquisition or core files that were being modified in
Geneva, at the same time, they would manually have to
merge the changes (Larry).

As a result of various changes and new versions of scopes,
there were multiple versions of software that needed to be
identified, kept track of and managed (e.g. for fixing bugs
reported by customers and the maintenance of the product,
it is necessary to know which version of software was
installed in which model of oscilloscope). Moreover, at any
time, both test and development versions and working
versions of the software could exist.

These multiple versions were managed using a Version
Control System (VCS). The VCS uses version trees to keep
track of all new and past versions of the software. LeCroy

LSA-1000

LeCroy “Loader” (Custom OS)

VxWorks OS

Acquisition
Driver

CORE

Wave Runner

-Parameters
-Maths
-Display
-Mass storage
-Hardcopy
etc.

LSA-1000

LeCroy “Loader” (Custom OS)

VxWorks OS

Acquisition
Driver

Wave Runner

-
-
-
-
-

Operating System (OS)

Figure 2 DSO architecture after the ORACLE project (schematic).

Re-engineering at Lecroy Corporation Julia Kotlarsky

468

had different trees of their VCS. Each acquisition system
could either be a separate tree or a branch of the tree.
And the Japanese development partner had their own
separate VCS where LeCroy would put the object files
for Core, so that in Japan they would just work on the
acquisition files.

To limit access to the source code (Core files), LeCroy
gave the Japanese partner object files for Core and the
source code to one of the acquisition systems as an example
on which to base their acquisition system. In this way, they
did not reveal any internal Core code. The Japanese partner
developed a scope simply by replacing the acquisition
system software. Based on the modular architecture created
during the ORACLE project LeCroy, with the Japanese
partner, developed and shipped several products. At the
same time, other teams (sub-teams of NY and Geneva
teams) worked on acquisition systems for other oscillo-
scopes which were shipped by LeCroy.

Summer 1997

The lessons learned and the development of a long-term vision for
the product and the development approach
LeCroy managers realized that ORACLE was just a
beginning in the re-engineering of the monolithic archi-
tecture of the previous scope into several pieces (modules)
that could be linked together. As Anthony summarized it, it
was: ‘a start on this road towards a system that really was
Object-Oriented and reusable and modular and all these
good words. That is what ORACLE was.’ As the ORACLE
project approached completion, Larry, together with the
group of people who had worked on the ORACLE project
(Anthony was one of them) decided that ‘now we need to sit
down and figure out a longer term vision – what we are
going to do down the road.’ There were several decisions to
be made at this point.

The product development team was to conceptualize the
next generation of scopes. On which technologies should it
be based? How should it operate? The market for testing
and measurement equipment is highly competitive, so to be
better than a competitor ‘we have to stay at the top edge of
the technology.’ There were many advantages in moving
towards a scope that ran Windows as its operating system.
Larry explained:

There was a desire to be Windows-based because we
knew that our competitors were going towards Windows:
we knew it provided a lot of advantages in terms of user
interface and all the I/O (i.e graphics, network, etc). We
would be able to develop on PCs and won’t need a cross
compiler if we develop using standard Windows tools
such as Microsoft Developer’s studio which has a native
compiler and debugger.

Furthermore, using Windows-operating system for oscil-
loscopes and oscilloscope-like instruments would enable
LeCroy software team to purchase commercial (software)
libraries and objects instead of writing their own software,
and would allow users (LeCroy’s customers) to add and run
third party applications, such as Matlab, Mathcad and Excel.

Therefore the question was ‘How do we create a
Windows-based scope?’ One of the options that LeCroy
had was to take their existing scope, keep its source code
and on the top of this to write a simple program to provide
the user interface. It actually turned out that this was
exactly what their leading competitor (Tektronix) had done.
The LeCroy managers said: ‘we realized that in order to
grow further, we need to continue the division process, we
needed to split it into much finer kind of components.’ But
there were aspects of the original design, the original
architecture, that were very difficult to remove:

In the 15 years working with this architecture we knew
that in order to really move forward, there were so many
constraints in there, we just wanted to throw them all
away, we wanted to start with a clean page. [y] And we
got to a fork in the road where we had to say, ‘ok, do we
want to do all that with Oracle, which was evolutionary
(we took what we had and carefully pieced it up into 3
modules). Or do we cleanly start from scratch?’ And
that’s what we did. [y] So we threw out all the old stuff
and we started afresh (Anthony).

Period 3 – Towards a component-based architecture

Studying product requirements and available technologies:
Summer 1997
In the summer of 1997, when ORACLE was completed,
LeCroy started the Maui project. ‘Maui’ stands for
Massively Advanced User Interface. The goal of the Maui
project was to develop and implement a platform for the
next generation of Windows-based software for digital
scopes that would be component-based, and thus would
enable reuse of components in a number of products:

The whole idea is that we can take the bunch of different
components and create a different instrument, within
weeks is kind of optimistic but, within a few months
rather than in a few years (Larry).

Schematically, the major phases of the Maui project are
presented in Figure 3.

The first step was to work with marketing and other
people in the company to determine the requirements for
the new system. In parallel, Anthony, Jon4 and Joe5

investigated what component technologies were available
for LeCroy to work with:

We needed to be on Windows, so that limited our
options. We did have several discussions on the possible
choices. In particular, we knew of Microsoft COM, and
had an idea about what it could do for us. But we were
not convinced that it could be used to accomplish our
goals. We were worried about JAVA because it does
things in the background (e.g. garbage collection, which
is the process of freeing dynamically allocated memory
that is no longer used. Since it happens in the back-
ground, it can cause unpredictable time delays). After
looking at the choices, we decided to do the feasibility

Re-engineering at Lecroy Corporation Julia Kotlarsky

469

study with Microsoft COM and only pursue other choices
if Microsoft COM didn’t meet our goals y It did)
(Larry).

One of the major issues they were concerned in relation to
Microsoft COM was that having separate objects could add
considerable processing overheads to the system, and
therefore might not give the performance they needed.

Another concern was the granularity issue: ‘If you use
this technology, where would you draw the line? How many
objects are reasonable – do you take everything about the
display and put it in one object or you break it up into
many smaller objects?’ (Larry).

What components should be built so that they could be
used in most of the scopes?

Furthermore, Larry and Anthony had to deal with
people-related issues: ‘How do you take all the guys that
we had – pure embedded programers – and teach them all
about Windows at the same time?’ (Larry). The LeCroy
managers had to address all these issues.

Team-building exercise and learning new technology: August 1997
Larry and Anthony organized a conference in the Alps
where they took all the software developers from NY and
Geneva. Learning Tree, a company that offers training
courses, was contracted to give the course: a customized
concentrated course that was given in 1 week in August
1997. The course provided training in Windows and COM
programing. At that time ‘everyone was still working on
other projects but it was sort of an introduction to them for
this stuff.’ Larry, reflecting on the goals of the course, said:

We all got together in the mountains of France and it was
a real fun week, and it had two purposes: one was to teach
us all this new technology. The other, which was equally
important if not more important in some ways, was to
really try to build relationships between people. Because
what we found over the years is, whenever people had
worked face-to-face, even if it was only for a few days, the
fact that you could put someone’s face to the caller, made
it much easier for someone to pick up the phone and ask
the question than if it was just a name that you heard.
And so, it was sort of a team-building experience as well,
and that was the real fun aspect to it.

Most of the software engineers in NY and Geneva did not
know each other. Larry and Anthony tried to make sure
that the members of both teams interact: ‘we increase the

possibility that they are really getting to know each other’
(Anthony). The course in the Alps was an occasion to get all
of the software team together. Anthony said, about the
importance of such interactions:

It makes a big difference, when the guys know each other.
And more importantly, when the guys trust each other
and know what their capabilities are. I think that makes a
huge difference. It is because there are very clever guys in
the group. And when you get fairly clever guys talking to
each other, there needs to be certain degree of trust, I
guess respect is maybe a better word, for each other. And
where that is lacking, there is really a communication
problem. And when there is a lot of trust and respect,
people get on very well, they are very productive.

Anthony observed:

Meeting has got a lot to do with it. In fact, I would say
that some of our most valuable time spent meeting is
probably in the local bar rather than in the meeting room.
Because most of getting to know each other, getting
respect, happens over a few beers. And that develops into
professional aspects. I think that is a sort of an important
thing, very important thing. And that was the idea, one of
the ideas, behind the conference in the Alps, was to get
people in an environment where there was plenty of time
for that.

Meeting and working side by side even for a very short
time ensures significant progress in building relationships
between remote counterparts: ‘We understand each other
better now. And it is a learning experience: learning about
how we work. About how we work and about how we
communicate,’ Adrian, Web master of LeCroy, said. Adrian
works a lot with all LeCroy locations in Europe and with the
office in Japan.

Further study of new technology – learning strategy:
Autumn–Winter 1997
After the software conference in the Alps, where all the
developers had an introduction to internal Windows and
Microsoft COM programing, the software managers as-
signed a small team to work closely with a consultant in
COM to study the COM technology in depth. Their goal was
to learn all about COM while applying COM to oscillo-
scopes (trying to create an oscilloscope prototype using
COM). The small team worked with the consultant over

Determining
product

requirements

1997

Studying
new

technology

rrying out
feasibility study

Developing components

Creating Aladdin –
first product based on

CB Maui platform

Developing
CB Maui platform

1998 200 0 2001

Determining
product

requirements

Studying
new

technology
Developing components

Creating Aladdin –
first product based on

CB Maui platform

Developing
CB Maui platform

1998 1999 2001

Launch ofLaunch of
Aladdin Aladdin
(Jan. 10,(Jan. 10,

2002)2002)

time1997 2000

Carrying out

feasibility study

Figure 3 Major chronological phases of the Maui project.

Re-engineering at Lecroy Corporation Julia Kotlarsky

470

several rounds of meetings (question and answer sessions).
First, the small team worked on different areas of COM and
then they had the consultant come in for a couple of days.
As Larry explained: ‘And they [the small team], having got
their hands dirty in it, had a whole list of questions that
they needed to sit down and get answered.’ The small team
worked with the consultant for several days to answer all
those questions and then they developed a list of things that
they wanted to accomplish for his next visit a month or two
later. They did this three times: ‘The third time he came, we
started asking him questions that he couldn’t answer. And
that’s when we knew what we were talking about’ (Larry).

Soon a key weakness of Microsoft COM became
apparent. There was no proper way to manage components
and their dependencies. With COM they could create
components, but there was no facility to manage inter-
dependencies between components and related files. This
was not a problem as long as the number of components
was small: in this case, the dependencies could be modeled
and understood visually. However, when the number of
components became hundreds, visual understanding was
no longer an option. Components created in COM are
connected into ‘projects’ under Visual Studio. As Anthony
explained:

Imagine building one DLL in one project under Visual
Studio. It is very easy to do. Building two or three project
DLLs that depend on each other is fairly easy to do.
Building 300 or 500 of these things is impossible.

Therefore, during one of the meetings with the COM
consultant, he was asked about development environments:
‘How do people develop projects with a lot of COM
components?’ (Larry). There was no good answer to this, at
least not at that time. What the consultant said was: ‘While
you build your components, you register them, and then
you debug themy .’ ‘We knew that, we had a lot of people
working on it, we needed a better answer than that,’ said
Larry. LeCroy software managers also went to a Microsoft
conference and asked one of the Microsoft developers how
they (in Microsoft) managed the components dependency
problem. ‘He told us they already had a solution, an
internal tool but they never shipped it,’ Anthony explained.

Feasibility study for a Windows-based scope – proof of concept:
January 1998–February 1999
In January 1998, four people were assigned to carry out a
feasibility study, which took about 1 year. They created
experimental prototypes and then performed experiments
to try various things and test out various concepts related
to the scope’s functionality. It was understood that these
prototypes would only be for experimental purposes and
would not become a production code: ‘At the end of the
year we took everything they did, basically, and threw it
out. And we started again knowing what we wanted to do,’
Larry explained.

The year of the feasibility study brought Larry and
Anthony to the point where they said: ‘we believe we proved
that we can do what we need to do’ (Larry). They were
comfortable with the major review at that point.

The next step in the feasibility study was to check if they
could get the performance (i.e. fast enough processing of
data and display) they needed using Windows and the COM
architecture. Larry explained how the performance of the
COM-based solution was verified:

COM has different threading models, so we looked at the
inter-process communications times between compo-
nents for each of the models and components of different
models. We also looked at the time required for the
different types of marshalling across the component
interfaces. These were key in determining how to pass
‘chunks’ of data from one processor to another very
efficiently.

Additionally, we tested the different methods that
Windows provides to display things on the display.
We tested ‘interrupt latency’ – time from a hardware
interrupt till the software can respond. For example, if a
user pressed a button on the front panel, how long did it
take to notify the code which needs to respond.

We also investigated how to make ‘lightweight’ widgets
which could be embedded in our dialogs for the user
controls and corresponding ‘Cvars’ (control variables) to
keep that state of each control.

Another area we looked at was could we use VBScript
to save/recall the state of the instrument, from how we
could actually extract the state of the control variables to
how long it took to save and recall.

There were many other experiments run to understand
the time required to do things on Windows as well as the
variations in time (since each process only gets a slice of
the processor’s time). We also looked at the effect of
changing the priority of processes.

A lot of the concepts developed in this study are
now patented by LeCroy (e.g. CVars, streaming
processors, etc).

Once LeCroy managers were sure that the concept would
work, they started working on the high-level architecture
using what they had learned during the feasibility studies.

However, the feasibility study could not be completed
without a solution for managing Microsoft COM components:

Other things we looked for were tools and things to help to
deal with a large component system. We didn’t have any and
we couldn’t find any at that time – to manage the building
and the inter-relationships of the components (Larry).

Early in 1999, Larry and Anthony assigned one or two
software developers who spent a few months working on a
tool for LeCroy to manage the COM objects and their
dependencies: they called it COM Project Manager (COM-
ProjMgr). This tool is described in greater detail further in
the case study.

Development of a component-based Maui platform:
February 1999–December 2001
By February 1999, the feasible concept had been found
and the first version of the COMProjMgr for managing
dependencies between software components was in place.

Re-engineering at Lecroy Corporation Julia Kotlarsky

471

The attention now shifted to the development of the
component-based Maui platform.

Division of work
Development of the Maui platform started in early 1999
(see Figure 3). There were only a few people who developed
the basics of the new platform: Anthony and two
more developers in Geneva and Jon from Maine (at
that period he spent 1 year in Geneva). Anthony describes
the assignment in the following way: ‘What happened
was, part of it was based on who was free at that time,
and part of it was where the expertise was.’ Anthony
was managing the ORACLE project, and the logical step for
him was to move onto Maui. He happened to be based in
Geneva at that time. The software team in Geneva was
responsible for most of the core code in the oscilloscope:
these were the developers who wrote the original code 15
years ago: ‘So they were also the natural guys to work on the
defining the next generation’ (Anthony).

As additional people started work on the new platform,
each worked on different parts of the system. Gilles
explained: ‘So we have kind of specificities, we know better
one domain then another one.’

Planning of the Maui project
Typically for any project carried out at LeCroy – whether it
is adding a new feature, development of a new product or of
an internal tool – the project phases that are defined and
followed are a Proposal phase, a Planning phase, an
Implementation phase and a Deployment phase. There are
work flowcharts defined for each of these phases, describing
the steps to be taken, responsible roles, and key milestones
and deliverables associated with each milestone (e.g.
documents such as proposal template and preliminary
design review guidelines). At the same time, these flowcharts
are generic and flexible enough to accommodate everyday
dynamics. These flowcharts were designed some years ago
by Larry, Anthony and some other senior managers. Within
LeCroy, they are used as guidelines for project planning.
However, ‘especially with a project this size [Maui project],
we are not very good in sticking through this all the way
through the project,’ Anthony said. Larry explained:

The problem we find in huge projects in particular –
there are so many dynamics – things dynamically
changing on any given day. If you try to fully maintain
the project at micro level, it would be a full-time job for
someone. Typically what we used to do, and what we still
do for some projects, is to break it down into three-week
tasks.

Going back to the time when the Maui project started:

It was more of a research project. When the Maui project
started, we didn’t really have a product in mind, not in the
sense of the product that you can ship. But we knew that we
wanted to use this [Maui architecture] on several products
which would be defined in the future (Anthony).

It should be recognized that the Maui project represented a
family of products. However, the same steps – proposal

phase, planning and implementation – were used at a high
level for this project, but they ‘were not really due to any
particular product’ (Anthony).

What is Maui? How to create a scope in Maui?
Maui is a platform, consisting of a collection of hundreds of
Maui components6 that can be used to create different
instruments (applications). However, these components are
not enough to create an oscilloscope, or oscilloscope-like
instrument: a Maui-based oscilloscope consists of large
numbers of Maui components (most of them common to all
scopes) that are integrated through standard Maui inter-
faces7 with Acquisition and Application systems. Figure 4
illustrates schematically the Maui product architecture. A
specific oscilloscope product such as Aladdin (officially
called WaveMaster) or X15 can be constructed by integrat-
ing the components from Maui with an Acquisition system
and designing the user interface for a specific application
(Application system). For example, an Aladdin scope would
be built by combining the Aladdin Acquisition system and
Aladdin Application with the components selected from the
Maui components. The same would apply for another
product called X15: it requires X15 Acquisition and X15
Application and components from Maui (see Figure 4).

There are four types of components in products based on
the Maui architecture. One category is called processors:
mathematics functions, there are hundreds of them, one
component per functionality. The second category is the
core components that serve as an operating system for a
scope. The third category of components is Graphical User
Interface (GUI) components, which are combined to
provide the user interface (connect to and control an
Application system shown on Figure 4). They allow the
systems to work together, and provide the basic instrument
capabilities. And finally there are the components that
comprise the acquisition board driver. These are respon-
sible for controlling the acquisition hardware (part of an
Acquisition system shown on Figure 4).

The components are written in Cþþ and the interfaces
between them are in COM. Maui describes these interfaces,
they are also part of the Maui architecture. Anthony explained:

I guess, really the root of Maui, are these standard Maui
interfaces which describe how these components talk to
each other. That is really the heart of Maui. If you want to
make a component for Maui, whether it will be something
to display waveforms, to control the front panel, an

Aladdin oscilloscope

Aladdin
Acquisition

Aladdin
Application

X15 oscilloscope

X15
Acquisition

X15
Application

Components common
for Aladdin and X15

Maui components
COM interfaces

Figure 4 Maui product architecture (schematic).

Re-engineering at Lecroy Corporation Julia Kotlarsky

472

acquisition system, any of these things, in order to
integrate them into the system and to attach them to the
rest of the system, they have to implement or use one of
the Maui interfaces. It is a bunch of standards, and it is a
tool kit.

Switching to a new platform – bringing people ‘on board
Maui’: Spring 2000–November 2001
When the Maui platform was developed, LeCroy still had to
produce oscilloscopes based on the old system (including
new versions of those oscilloscopes). When the develop-
ment of the new platform started, everybody was still
working with the old system. Gilles explained: ‘When we
started to do the transition from the old scope to the new
scope, we didn’t move every worker at once into the new
platform, because we still had to develop for the old
system.’ And at the same time they had to teach all software
developers how to work with the new platform.

Basically, there were two major dilemmas related to how
to make a smooth transition from old product architecture
to a new Windows-based scope. One was: in the transition
phase, how to develop and produce oscilloscopes based
both on the old system and the new (Windows based)
scopes in parallel. The other dilemma LeCroy faced was
how to move people on to the Maui project so that they
could develop in Maui and (hopefully) be as productive as
they were with the old system.

After the basics of the Maui were developed, Anthony
explained:

We started taking away people from existing products
and moving them onto the Maui team. This happened
first in Geneva until everyone in Geneva was involved,
and then in the last year or two years [2000-2001] – we
started bringing people on board Maui in NY.

To make the transition easier, Anthony, together with
others who initially developed the Maui platform, created a
document ‘Maui Software Developer’s Guide,’ a Bible for
developers coming on board Maui. This document
explained the Maui Software Development Philosophy and
‘describes the complete software-development process for
the Maui Software Platform. It is intended that a developer
new to Maui development can follow the directions in this
guide to configure a ‘‘virgin’’ workstation for Maui
development, create Maui Components, debug them, and
evaluate their performance’ (quote from the ‘overview’
section of the Maui Software Developer’s Guide).

One of the problems we had is: that our old system was a
heavily embedded system based on embedded operating
systems and embedded compilers. And moving those
developers into Maui – using tools like Visual C, things
like Rational Rose for the UML diagrams, just when
everything changed, everything that we were used to and
lived in for years – changed. So this Guide is explaining
how to move into this new world (Anthony).

How did people perceive the new platform and that they
now needed to work with it? ‘Some loved it, some hated it,’

Anthony said, ‘but now, they all I think love it.’ He
continued:

The last software guy in this building came on board
Maui a couple of weeks ago [in November 2001]. It’s an
interesting or it’s a difficult step for a developer to make
when you were the master of your environment for such a
long time, and you understood the entire system (and it is
– we are talking about half a million lines of code8). These
guys knew this stuff [the old system], this was their world
for 10–15 years, and all of a sudden someone says ‘forget
all that, we are going to go to this new place which is
completely different.’ And it is using some standards by
Microsoft, that we didn’t create and that’s not perfect but
we have to live with them. And, everything that they were
used to day-to-day – changed. Some guys accepted that
very, very quickly. Some guys were ‘up-and-running’,
maybe ‘climbing’ the learning curve within a few weeks.
Other guys, they took longer. Somebody from the original
senior guys are still not really up to speed in this new
environment – they never will be as productive as they
were on the old stuff. So the younger guys find it a little
easier, they came up to speed literally in weeks
(Anthony).

How team environment is maintained
In Geneva, in the summer of 2000, when the majority of the
people started coming on board Maui, Anthony started
‘around the table’ meetings, typically once a week, with all
the developers in Geneva. Anthony described this:

We go to a meeting room and do an ‘around the table’
where I start with generally what is going on in the
company and the project. And then we go around the
table and everybody describes what they did the week
before, what is holding them up, what they are planning
to do the next week. It is to make sure that they all are
plugged into the project.

The philosophy that Anthony follows is:

We generally want that everyone knows what everyone
else is working on. And if someone is held up because of
a particular problem, somebody else may have a solution.
So it is just a way for our guys to coming to structure.

Anthony visits NY about four or five times each year.
When he is in NY, he still holds his ‘around the table’
meetings with his team in Geneva, except that he conducts
the meetings via videoconferencing.

In NY, team meetings for the NY team happen less
often, partly because the engineers are working on
very different projects. They are not as regular and not of
the same structure as meetings in Geneva. Anthony
commented:

What happened in Geneva is that among the guys there is
a natural feeling that they are kind of unplugged from the
rest of the company. Because it is an outpost! In order to
handle that we organise regular meetings to let people know

Re-engineering at Lecroy Corporation Julia Kotlarsky

473

what is going on in the company, what everyone else is
working on. It is a big help. Every several months we have a
transatlantic videoconference with the software guys in NY
and Geneva. It helps everyone, I think, to feel that we are
working as a team and that they are part of the LeCroy team.

Frequent visits by Larry to Geneva (about four or five
times a year) also help to maintain the team environment
between the NY and the Geneva group.

More recently, as the team in NY started working with
Maui, every once in a while, usually once every few months,
Anthony and Larry have organized trans-Atlantic video-
conferences, through which all software developers in NY
and in Geneva get together to discuss progress.

How knowledge exchange and coordination between sites
are organized
Larry and Anthony travel back and forth between NY and
Geneva regularly, for short periods, and usually twice a year
for a month or more. Occasionally, they have developers
from Geneva coming to NY or from NY going to Geneva for
a week or two:

And we even have a few cases where we put someone
over, we have one guy [Gilles] right now who is spending
a year here from Geneva. And that is real useful sharing
experiences and stuff (Larry).

Gilles has been working for LeCroy since the early stages
of the Maui project. He is one of the five people who
developed the basis of the Maui platform. He knows all the
basics and the background of the platform. Therefore, in
the summer of 2001, when the last group of people in NY
were supposed to start working with Maui, Gilles joined the
NY team for 1 year. He mainly provided individual help for
software developers. However, in the beginning, when
Gilles came to NY, he gave a few hours of classes ‘for
general purposes,’ as he said, about the Maui platform.
Afterwards, when everyone got assigned to different areas,
Gilles helped individuals ‘on demand.’ He explained:

To do their task they come to me to ask some questions –
first how to work with the Maui platform, how to use the
platform and then how to develop in it a new component.

When the NY team started to develop software using the
new platform, Gilles was still in Geneva. At that time, only a
few people in NY were working with Maui and they always
had a number of questions about the new platform. So they
were always in contact with Gilles in Geneva (or Anthony,
or Jon in Maine, or the other two people who developed the
basics of Maui). When more and more people in NY started
working with the new platform, Larry and Anthony decided
that Gilles should come over to NY for 1 year to facilitate
the contact for everyone. Gilles explained:

I asked to come to NY because I wanted to learn English
and to discover a way of working here [in NY], the
company here [in NY]. Because it was in the right time
for them to start working on the new platform and I have

the knowledge that they needed here to start to work on
the new platform. Both together, it was accepted.

During the time Gilles spent in NY, he was often
contacted by developers from the Geneva team when they
have questions or need his help. The team in Geneva had
been working in Maui for some time and it was not difficult
to help them from NY. On the other hand, for the team in
NY, the local presence of the expert was important during
the transition period.

The first component-based products based on the Maui
architecture: December 2001
With progress in development of the Maui platform, a
picture of a new product – a Windows-based scope – was
emerging and becoming clearer.

It is only now [end of December 2001], with Aladdin, that
the hardware development and the software development
are coming together and we actually say – now we have a
product (Anthony).

Aladdin9 (officially called WaveMaster) is the first
oscilloscope in the new generation of Windows-based
scopes based on the Maui architecture. It was launched in
early January 2002. At that time there were more products
on the way, for example the X15, the PXI digitizer; and
basically everything LeCroy is developing now is based on
the new technology implemented in Maui.

Talking about products based on the Maui architecture,
Larry says:

What is the product? That, I guess, is really the key. So
the products are: we have X15 as a product, WaveMaster
or Aladdin is a product. But most of the components are
the same in both. There are literally hundreds of these
components.

Because Maui the architecture has been designed to be a
basis for all scopes, initially core components and functions
that could be used in several products were built. When
LeCroy started working on specific products, Aladdin and
other Windows-based products (X15 and PXI): ‘Most of the
people were focused on getting the first couple of scopes
out and what we needed for those. This is how we
determine what components to build,’ Larry explained.

Software development tools for CBD at Lecroy
The four basic tools the software team uses are COM-
ProjMgr, Perforce, BugBase and SoftwareTestHarness for
testing components.

Anthony and Larry are both of the same opinion:
whenever possible they would prefer to buy a tool if
they can:

Whenever we need a tool, we do try to buy it, but most of
the time we don’t find a proper solution. Then we make
our own, and this goes for most of the tools that we have
(Anthony).

Re-engineering at Lecroy Corporation Julia Kotlarsky

474

Of the main four tools, Perforce is a commercial tool, and
COMProjMgr, SoftwareTestHarness and BugBase are all
tools created by the LeCroy software team.

To support working in a globally distributed environ-
ment, everyone working with Maui uses the same methods
and procedures, protocols and tools: ‘all are identical,
absolutely identical’ (Anthony) in NY and Geneva. The
tools and methods used (Maui standards) are described in
the Maui Software Developer’s Guide: it lists the tools used
(Lotus Notes, Visual Studio, Perforce, ComProjMgr and
Rational Rose), and explains how to create and debug
components in Maui using these tools.

COMProjMgr is a tool used for managing interdepen-
dencies between components. As one interviewee commen-
ted, ‘COMProjMgr manages the entire project’: it knows the
dependencies between all of the files in Maui, of which there
were 5000–6000 files (for the end of December 2001), and the
various projects,10 the various components and related files.
This is a kind of tree, a hierarchy of components, with each
component normally creating the DLL in a dynamic library.
The DLL files are grouped into categories such as Utilities,
Display and Acquisition. Within each of these categories is a
complete list of source files and header files (all of the files
that are needed to build this DLL). Anthony explained:

What COMProjMgr will do is, if one of these files
changes, it knows the dependencies about everything
from everything else. And it will go through the old build
just for things that it needs to be built. Because building
everything takes about six hours [as at end of December
2001], even on a high-powered machine.

Therefore, COMProjMgr builds only those files that have
been modified or added, and those that depend on them.

So COMProjMgr basically is a dependency scanner, it will
scan through all source and header files looking for
dependencies from other files. And it will tell us about
these dependencies (Anthony).

Perforce is a VCS and configuration management system
used by the LeCroy software team. On older scopes they
had used SourceSafe. One of the shortcomings of Source-
Safe was dealing with multiple sites. Working with
SourceSafe on a WAN was very slow and ‘it was very
inefficient’ (Larry). So LeCroy investigated some other
tools: they looked at Perforce and ClearCase. But with
ClearCase ‘we had some problems with that when we were
testing it – it did not meet the requirements for working in
a distributed environment’ said Larry. The advantage of
Perforce is that it is a client–server based system. ‘Because,
Perforce knows what you have on your local machine and
what it has. We found it has been terrific, very reasonable
speed for both, people here in NY and people in Geneva,’
(Larry) and for Jon who works from Maine. Therefore, LeCroy
decided to switch from SourceSafe to Perforce. Physically,
Perforce resides on a server at the Geneva office, and the team
in NY accesses it over the WAN, so the only difference there is
that from NY it takes a little longer to access.

For testing the components an in-house developed tool
called SoftwareTestHarness is used. ‘What it does, it shows

you all the LeCroy developed components in your system
and you could say ‘‘run a test for all of them’’ or ‘‘run the
test for any one of them,’’ Larry explained.

Each component LeCroy develops has interfaces that are
standard for the component: one basic self-test and one for
an advanced self-test. There are special test components
(used for testing of other, functional, components). They
typically contain ‘a whole bunch of test cases’ needed to
make sure that the functionality of the tested component is
correct. ‘So we can test each component by itself in this
SoftwareTestHarness, and that runs every single day
automatically,’ Larry explained.

BugBase is a tool used for tracking bugs. This tool is
created in-house, and is based on Lotus Notes database that
is accessible and constantly replicated over the Web. In this
way, every LeCroy office has access to the BugBase: ‘Also all
our sales offices, in Japan for instance, they have a copy of
it’ (Larry). In sales offices employees can enter the bugs,
look at their status, but they cannot change anything. And
as a bug gets fixed, the one who entered the bug gets
notified that it has been fixed.

‘So for managing bugs, BugBase is invaluable,’ Larry
says. It is very convenient for tracking. Therefore, some-
times, the managers use the tool in a manner for which it
was not intended, for tracking development tasks: ‘Some-
times we put in tasks for people just because it is a
convenient way to track things’ (Larry).

Besides BugBase, LeCroy engineers have project data-
bases in Lotus Notes. Larry explained:

Because we are working at separate locations and Lotus
Notes replicates databases, it is very good for us. And so
the big data bases are local to Geneva and here [in NY],
and they get replicated constantly over the Web.

Epilogue: evaluating the success of the component-based
Maui architecture
The main goal and the main advantage anticipated from the
component-based Maui architecture was to ‘take the bunch
of different components and create a different instrument –
within weeks is kind of optimistic – but within a few
months rather than in a few years’ (Larry). It was a long-
term planning that aimed at reducing time-to-market and
lowering costs while delivering state-of-the-art products.
Therefore, the story would not be complete without
reflecting on what has actually happened since the launch
of Aladdin (the first WaveMaster) in January 2002, and
reflecting on the progress of Maui and the technical,
marketing and financial evaluation of products based on
the Maui architecture since 2002 and until 2006.

From a technical perspective, comparing expectations
and actual achievements several years later (until 2006), it is
safe to say that the Maui architecture has been a great
success. So far, the expectations of the LeCroy software
team have come true. Larry reflected on the products
released in 2002:

We began shipping both the WaveMaster 8300 and 8500
to customers in March, 2002. At the same time we also
began shipping a Disk Drive Analyzer (DDA), which is
based on the WaveMaster 8500. The DDA has a

Re-engineering at Lecroy Corporation Julia Kotlarsky

475

customized front panel and analysis software that is
targeted to the engineers who design hard disk drives.

During 2002, LeCroy have introduced a wide range of
software options for the WaveMaster series. In January
2003, LeCroy launched the WavePro 7000 series of scopes
(7000, 7100 and 7300), which replace their ‘mid performance’
scope line. These are also based on Maui. Since 2002, LeCroy
had been able to reduce significantly time-to-market in
introducing new products and features (product options).
One of the best examples of Maui’s power and flexibility was
the development of the Serial Data Analyzer (SDA). Like the
DDA, the SDA is a customized version of the WaveMaster for
analyzing serial data streams. Larry explained:

The concept for this instrument was developed in June
[2002]. In mid July, we completed the product plan and
began the implementation. We were able to staff the
project with 5 engineers to develop the many processors
needed for this instrument and one engineer who was
responsible to implement the user interface and connect
all the components together. This instrument was
introduced on October 1st [2002].

LeCroy’s WaveMaster 8600 was announced as one of the
top products of the year 2002 by END magazine.

On 1 May 2006, LeCroy announced industry’s fastest
real-time oscilloscope.

Due to the Maui architecture, LeCroy have successfully
partnered several commercial software companies (e.g.
Mathsoft Engineering & Education, Amherst Systems
Associates and MathWorks) to further extend the analytical
capabilities of LeCroy products.

From the marketing perspective, with WaveMaster
LeCroy entered a new segment of the oscilloscopes market:

Prior to the launch of the new WaveMaster family of
oscilloscopes, LeCroy product portfolio centered on mid-
to-high-performance oscilloscopes operating at speeds of
500 MHz to 2GHz. LeCroy’s share of this segment of the
oscilloscope market (approximately half of the overall
market) has grown to about 25%. With the introduction
of the WaveMaster, LeCroy entered the 3GHz-6GHz high
bandwidth segment of the oscilloscope market with a new
line of oscilloscopes operating at these high speeds. This
market segment is the highest performance segment of
the real-time oscilloscope market and is likely to be the
fastest growing segment of the oscilloscope market
during the next several years’ (Annual Report 2002).

On the financial side, the contribution from products
based on Maui is reflected in the financial reports of LeCroy
from 2003 until 2005. The revenue of LeCroy has grown
from $107.8 million in 2003 to $120 million in 2004 and to
$160 million in 2005 and 2006.

Notes

1 This case study is based on the data collected from interviews,
internal and external documents, reports and press releases,
direct observations in NY and Geneva offices, and follow-up

communications for clarifications and feedback during a
period from November 2001 until January 2003. Individuals
interviewed include Larry (Director of Software Engineering,
responsible for the NY team), Anthony (Chief Software
Architect, responsible for the Geneva team), Gilles (software
engineer from Geneva who came to NY for 1 year in August
2001), Adrian (Web master), Dave (VP, Chief Technology
Officer) and Corey (VP of Information Systems, Facilities and
Security). Based on the comments of anonymous reviewers,
Larry was contacted for additional information and clarifica-
tions in October 2006.

2 The acquisition system captures signals: it is the heart of an
oscilloscope. To read these signals, analyze and display them,
additional combinations of software and hardware compo-
nents are required (software to read the data, analyzing system,
display and the front panel).

3 The name of the project ORACLE comes from Greek
mythology, meaning ‘foresee a future.’ (The ORACLE project
has nothing to do with ORACLE databases and the ORACLE
company.)

4 Jon was the main architect for Maui.
5 Joe was Project Leader for the Virtical Market software

(analysis packages).
6 There were 508 components at the end of December 2001; this

number had grown to 1119 by October 2006.
7 There were 219 standard Maui interfaces by October 2006.
8 The previous system was half–a-million lines of code. And

Maui is an environment completely different from the earlier
system.

9 The name Aladdin comes from the famous story about a boy,
Aladdin, who finds a bottle that contains a Genie and lets the
Genie out of the bottle. As Dave explained: ‘We code-name all
of our development projects. The acquisition channel Inte-
grated Circuits (ICs) are: a very fast (10 Gigasample per second)
analog-to-digital converter (ADC), a very fast (7 Gigahertz
bandwidth) amplifier and a custom memory that accepts the
data from the ADC at a 3.3 Gigabyte per second rate. We refer
to these chips as a ‘‘chip set.’’ The technology development that
made the acquisition channel ICs was called ‘‘Genie.’’ As you
may recall, a Genie is a mythical being who has magical powers,
lives in a bottle and grants wishes to someone who releases
them from the bottle. We believed these ICs would give us the
power to grant our wish of getting into the very high
performance part of the oscilloscope market. So, the Aladdin
project that was the first use of the ‘‘Genie’’. ICs was code-
named Aladdin because it let the Genie out of the bottle.’

10 Each project is associated with a different product.

References

Carmel, E. (1999). Global Software Teams: Collaborating Across Borders and

Time Zones, Upper Saddle River, NJ: Prentice-Hall PTR.

Crnkovic, I. and Larsson, M. (2002). Challenges of Component-Based

Development, The Journal of Systems and Software 61: 201–212.

Huang, J.C., Newell, S., Galliers, R.D. and Pan, S.-L. (2003). Dangerous

Liaisonsc? Component-Based Development and Organizational Subcultures,

IEEE Transactions on Engineering Management 50(1): 89–99.

Kotlarsky, J., Oshri, I., van Hillegersberg, J. and Kumar, K. (2007). Globally

Distributed Component-Based Software Development: An exploratory study

of knowledge management and work division, Journal of Information

Technology 22(2): 161–173.

Peters, J.F. and Pedrycz, W. (2000). Software Engineering: An engineering

approach, New York: John Wiley & Sons, Inc.

Re-engineering at Lecroy Corporation Julia Kotlarsky

476

Vitharana, P. (2003). Risks and Challenges of Component-Based Software

Development, Communications of the ACM 46(8): 67–72.

About the author
Dr. Julia Kotlarsky is Assistant Professor of Information
Systems, Warwick Business School, UK. She holds a Ph.D.
degree in Management and IS from Rotterdam School of
Management Erasmus (The Netherlands). Her main re-
search interests revolve around social and technical aspects
involved in the management of globally distributed IS
teams and IT outsourcing. Julia published her work in
journals such as Communications of the ACM, European
Journal of Information Systems, Information Systems
Journal, IEEE Security & Privacy and others.

Appendix A

Lecroy Corporation organizational structure

Teaching notes
This case study describes an actual situation at LeCroy
Corporation, involving several decisions, challenges and
opportunities faced by the managers of a globally
distributed software development team over a period of
time when they re-engineered a monolithic system into a
component-based system.

The case takes a historical perspective, describing the
transitions in a software architecture from the mid-1980s
until early 2002:

K Period 1: a monolithic system
K Period 2: a modular system (the monolithic system is

broken into three modules)
K Period 3: a component-based system (components are

reused across a number of products)

For each period, this case study covers three themes:

(1) Product architecture – advantages and disadvantages
of the architecture at that specific time period.

Opportunities, long- and short-term goals and
strategic decisions made by managers.

(2) System re-engineering – human and technological
aspects related to system re-engineering and adop-
tion of new technologies at LeCroy.

(3) Global distribution – human and technological
aspects related to managing globally distributed teams.

Teaching goals
The major teaching goals of this case could be summarized as:

System re-engineering: to discuss the main challenges
involved in system re-engineering in a highly competitive
environment (from technological and human perspectives).

Long-term strategic planning: to discuss issues and
challenges in long-term strategic planning in system
development and (architectural and product) innovation.

Component-based architecture: to understand the main
principles of a component-based system and how it differs
from traditional (monolithic) architectures. The case allows

students to develop a feel for the technology ‘behind the
screen.’ Furthermore, students can analyze what is a ‘good’
system architecture and study the advantages of compo-
nent-based architectures. To understand a lifecycle of the
architecture of a software product (a longitudinal perspec-
tive) and how a product architecture may change over time.

Global distribution: To analyze the influence of a globally
distributed setting on the system development approach
from human and technological perspectives.

Learning and knowledge management strategies: To
analyze and discuss knowledge management and learning
strategies in a globally distributed environment.

Tools and technologies: To analyze what are the major
requirements for tools to support CBD, in particular in a
distributed environment.

Target audience
Target groups for this Case could be MBA, M.Sc. students of
IS, project management or general business. It is likely that
these students will be involved in decisions on architectural
innovation, system re-engineering and will be involved in

LeCroy Corporation*

Delaware, USA

Name of Subsidiary

Jurisdiction Organized

LeCroy Lightspeed
Corporation

Delaware, USA

Computer Access
Technology Corporation

Delaware, USA

* Parent

LeCroy, S.A.R.L.

France

LeCroy, GmbH

Germany

Hong Kong

LeCroy, S.R.L.

Italy

LeCroy, Hong Kong
Ltd.

LeCroy Japan
Corporation

Japan

LeCroy, Pte. Ltd.

Singapore

LeCroy Korea, Ltd.

South Korea

LeCroy AB

Sweden

Switzerland

LeCroy, Ltd.

United Kingdom

LeCroy, S.A.

Re-engineering at Lecroy Corporation Julia Kotlarsky

477

globally distributed projects. The case might be suitable for
undergraduate electives (e.g. IT Architecture).

Suggested questions for discussion and assignment
Analyze and discuss LeCroy Case from the following
perspectives:

The system re-engineering perspective
The objective is to understand the main challenges involved
in system re-engineering in a highly competitive environ-
ment.

Questions:

1. What are the major challenges LeCroy software man-
agers faced during the different stages of system re-
engineering? (Discuss technical and organizational
challenges in each of the 3 periods – initial, ORACLE
and Maui)

2. What strategies did LeCroy implement to deal success-
fully with these challenges? Are there any alternative
strategies you could recommend?

Component-based architecture
The objective is to understand the major principles of a
component-based architecture, how it differs from tradi-
tional (monolithic) and modular architectures and what are
the advantages of a component-based architecture.

Questions:

3. What is a ‘good’ software system architecture? (Support
your argument showing why it is good). Does the Maui
CBD architecture LeCroy developed have the character-
istics of good system architecture?

4. What competitive advantages did LeCroy gain from
having a component-based product architecture?

5. What are the requirements for tools to support (globally)
distributed CBD?

Additional questions may include questions about:

Working in a globally distributed environment

The objective is to analyze the influence of a globally distributed
environment on the system development approach.
Questions:

6. What challenges did LeCroy software managers face in
managing a globally distributed team? In your opinion,
what are the critical issues that need special attention in
a globally distributed environment?

7. What strategies did LeCroy implement to deal success-
fully with these challenges? Are there any alternative
strategies you could recommend?

We would recommend distributing the Epilogue section to
students only after the case has been discussed.

Suggested teaching framework and sketch answers are
available to teaching faculty directly from the author.

Re-engineering at Lecroy Corporation Julia Kotlarsky

478

