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Abstract

This paper reports two sorts of Trusted Platform Mod-

ule (TPM) attacks regarding power management. The at-

tacks allow an adversary to reset and forge platform con-

figuration registers which are designed to securely hold

measurements of software that are used for bootstrapping

a computer. One attack is exploiting a design flaw in the

TPM 2.0 specification for the static root of trust for mea-

surement (SRTM). The other attack is exploiting an im-

plementation flaw in tboot, the most popular measured

launched environment used with Intel’s Trusted Execu-

tion Technology. Considering TPM-based platform in-

tegrity protection is widely used, the attacks may affect

a large number of devices. We demonstrate the attacks

with commodity hardware. The SRTM attack is sig-

nificant because its countermeasure requires hardware-

specific firmware patches that could take a long time to

be applied.

1 Introduction

The Trusted Platform Module (TPM) was designed to

provide hardware-based security functions. A TPM chip

is a tamper-resistant device equipped with a random

number generator, non-volatile storage, encryption func-

tions, and status registers, which can be utilized for appli-

cations such as ensuring platform integrity and securely

storing keys. The Trusted Computing Group (TCG) is an

industry consortium whose goal is to specify and stan-

dardize the TPM technology, which includes security-

related functions, APIs, and protocols. The initial ver-

sion of the TPM main specification (TPM 1.2) [31] was

published in 2003. The revised version, the TPM library

specification 2.0 (TPM 2.0) [37] was initially published

in 2013.

The TPM technology provides a trustworthy founda-

tion for security-relevant applications and services. TPM

is a major component of the integrity measurement chain

that is a collection of system components such as the

bootloader, kernel, and other components. The chain can

either start statically from Basic Input and Output System

(BIOS)/Unified Extensible Firmware Interface (UEFI)

code modules when the system is booted or dynamically

from a specialized instruction set during runtime.

Regardless of how the chain starts, the measure-

ments are “extended” to platform configuration registers

(PCRs) inside the TPM. When a value is extended to a

PCR, the value is hashed together with the previously

stored value in the PCR and then the PCR is updated with

the hashed result. A small bit change to a PCR value will

affect all the following extended values. The extended

values in PCRs can be compared to expected values lo-

cally or submitted to a remote attestor. Namely, the in-

tegrity measurement chain must be started from a trust-

worthy entity, also known as the root of trust for mea-

surement (RTM).

The TPM has been widely deployed in commodity de-

vices to provide a strong foundation for building trusted

platforms, especially in devices used in enterprise and

government systems. The US Department of Defense

also considers the TPM to be a key element for dealing

with security challenges in device identification and au-

thentication, encryption, and similar tasks.

The TPM chip is designed to cooperate with other

parts of the system, e.g., the firmware and the operating

system. Mechanisms for cooperation are often compli-

cated and fail to be clearly specified. This may result in

critical security vulnerability.

Power management is one of the features which in-

creases complexity of the cooperation. The goal of

power management is to save power by putting the sys-

tem into a low-power state or even cutting off the power

when the system is idle. How the power management

works is quite complicated because each peripheral de-

vice can have its own power state independently from the

system-wide power state.

A recent Linux kernel supports the Advanced Config-
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uration and Power Interface (ACPI), which is an open

industry specification that enables operating system-

centric intelligent and dynamic management coordina-

tion with power management-aware devices such as

CPUs, networks, storage, and graphics processing units.

TPM is a peripheral that supports ACPI. The informa-

tion stored in the TPM chip such as keys and state val-

ues are very important for maintaining the security of the

whole system, TPM has to actively and safely save and

restore the state as the power state changes.

Unfortunately, the TPM does not safely maintain the

state when the power state changes. We found vulnera-

bilities in both types of RTM that allow an adversary to

reset and forge PCRs when the system wakes up. There-

fore, the system may look normal even after it has been

modified. Considering that TPM has been widely de-

ployed, the impact of our finding is critical, especially

when it comes to static measurement. The vulnerabil-

ity of a static RTM (SRTM) is due to a flawed specifi-

cation, which means that many products that implement

the specification can be affected and patches would not

be applicable to all of the products immediately. The

vulnerability of the dynamic RTM (DRTM) is due to

a bug in the open source project, tboot, which is the

most popular measured launch environment (MLE) for

Intel’s Trusted eXecution Technology (TXT). Patching

the bug is relatively simple, and our patch1 can be found

on the tboot project [9]. We also have obtained Common

Vulnerabilities and Exposures (CVE) identifiers: CVE-

2018-6622 for the SRTM and CVE-2017-16837 for the

DRTM attack, respectively.

This paper makes the following contributions:

• We present vulnerabilities that allow an adversary

to reset the PCRs of a TPM. The PCRs are reset-

table whether the RTM processes start statically or

dynamically.

• We craft attacks exploiting these vulnerabilities.

The attacks extract normal measurements from the

event logs recorded during the boot process, and

then they use the measurements to perform a replay

attack.

• We also address countermeasures for these vul-

nerabilities. To remedy the SRTM vulnerability

that we found, hardware vendors must patch their

BIOS/UEFI firmware. We have contacted them and

are waiting for releases of the patches. We also pro-

duced a patch by ourselves for the DRTM vulner-

ability that we found. We have obtained the CVE

IDs of both vulnerabilities.

In the following sections, we review TPM and ACPI

technologies. Then, we introduce their vulnerabilities

1The commit hash is 521c58e51eb5be105a29983742850e72c44ed80e
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Figure 1: Examples of static and dynamic RTM (SRTM

and DRTM, respectively) processes

and exploits against them. The exploits are demonstrated

in a variety of commercial off-the-shelf devices. The re-

sults of the attacks are presented in this paper. We also

suggest different ways of mitigating the vulnerabilities

that we found.

2 Background

2.1 TPM Technology

A trusted computing base (TCB) [37] is a collection of

software and hardware on a host platform that enforces a

security policy. The TPM helps to ensure that the TCB is

properly instantiated and trustworthy. A measured boot

is a method of booting in which each component in the

boot sequence measures the next component before pass-

ing control to it. In this way, a trust chain is created. The

TPM provides a means of measurement and a means of

accumulating these measurements. PCRs are the mem-

ory areas where the measurements can be stored. When

a measurement is “extended” to a PCR, the measurement

is hashed together with the current value of the PCR, and

the hashed result replaces the current value. As long as

the values are updated in this way, it is easy to find an

alteration in the middle of the chain. A particular value

of a PCR can be reproduced only when the same val-

ues are extended in the same order. The trustworthiness

of the platform can be determined by investigating the

values stored in PCRs. It is also possible to request the

PCR values remotely. Remote attestation is a challenge-

response protocol that sends PCR values in the form of a

digitally signed quote to a remote attestor.

The TPM also functions as a secure storage by provid-
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PCR

Index
PCR Usage

0
S-CRTM, BIOS, host platform extensions, and

embedded option ROMs

1 Host platform configuration

2
BIOS: Option ROM code

UEFI: UEFI driver and application code

3

BIOS: Option ROM configuration and data

UEFI: UEFI driver, application configuration,

and data

4

BIOS: Initial Program Loader (IPL, e.g.,

bootloader) code and boot attempts

UEFI: UEFI boot manager code (e.g., bootloader)

and boot attempts

5

BIOS: IPL code configuration and data

UEFI: Boot manager code configuration, data,

and GPT partition table

6
BIOS: State transitions and wake events

UEFI: Host platform manufacturer specific

7
BIOS: Host platform manufacturer specific

UEFI: Secure boot policy

8-15 Defined for use by the OS with SRTM

16 Debug

17-22
Defined for use by the DRTM and OS with

DRTM

23 Application support

Table 1: Summary of PCR usage (TPM 1.2 and 2.0)

ing “sealing” and “binding” operations that limit access

to the storage based on a specific platform state. For ex-

ample, a TPM’s “sealed” data can be decrypted by the

TPM only when the PCR values match specified values.

“Unbinding” data is done by a TPM using the private key

part of the public key used to encrypt the data. Binding

can be done by anyone using the public key of a TPM,

but unbinding is done by the TPM only because the pri-

vate key part is securely stored inside TPM and is even

locked to specific PCR values.

A chain of trust is an ordered set of elements in which

one element is trusted by its predecessor. The trustwor-

thiness of the whole chain depends on the first element.

An RTM is the trust anchor of a measurement chain. A

TPM is designed to report the platform state securely, but

it cannot initiate the measurements by itself. Initiating

the measurement is done by another software component

that can be trusted called the core RTM (CRTM). Fig-

ure 1 shows two different types of RTM: SRTM [32, 39]

and DRTM [33]. In addition, Table 1 shows the PCR

usage for SRTM and DRTM.

SRTM is the trust anchor that is initialized by static

CRTM (S-CRTM) when the host platform starts at

power-on or restarts. Often, SRTM is an immutable

software program that is stored in ROM or a protected

hardware component. In contrast, DRTM launches a

OS 
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(2) Request to  
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(4) Wake up 

(1) Request 

      to save state 

(5) Request 

      to restore state 

Sleep 
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(3) Sleep 

(6) Resume OS 

Figure 2: ACPI sleep process with TPM

measured environment at runtime without platform re-

set. When the dynamic chain of trust starts with a dy-

namic launch event (DL Event), the DRTM configura-

tion environment (DCE) preamble performs the initial

configuration and prepares the DRTM process [33, 43].

As the DRTM process starts, the special code module

(the DCE), is executed as a dynamic CRTM (D-CRTM),

validates whether the platform is trustworthy, and trans-

fers the control to the initial part of the operating system,

called the dynamically launched measured environment

(DLME).

A chain of trust can be expanded to user-level appli-

cations beyond the operating system kernel. Integrity

Measurement Architecture (IMA) [26] measures appli-

cations before executing them. IMA is included in the

kernel, and therefore its authenticity can be guaranteed

by the trust chain.

2.2 ACPI Sleeping States

ACPI [42] is an open standard for architecture-

independent power management. It was released in 1996

after being co-developed by Intel, Hewlett-Packard (HP),

and other companies.

The ACPI specification defines power states and the

hardware register sets that represent the power states.

There are four global power states, defined as working

(G0 or S0), sleeping (G1), soft-off (G2), and mechanical-

off (G3). The sleeping state is divided into four sleeping

states:

• S1: Power on Suspend. The CPU stops execut-

ing instructions, but all devices including CPU and

RAM are still powered.

• S2: The same as S1 except the CPU is powered off.
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• S3: Sleep (Suspend to RAM). All devices are

powered-off except for RAM.

• S4: Hibernation (Suspend to Disk). The platform

context in the main memory is saved to disk. All

devices are powered off.

Like other devices, a TPM chip is powered off in states

S3 or S4. The TCG specifications [32, 39] define how

the state is maintained while the power state changes.

They also define the roles of the operating system and

BIOS/UEFI firmware. The steps defined for saving and

restoring the TPM state are summarized in Figure 2. Be-

fore sleep, the operating system requests the TPM chip

to save the state, and then makes a transition to sleeping

states by sending a request to the ACPI in the BIOS/UEFI

firmware. All hardware devices are either powered off

(in S4) or only the main memory remains powered (in

S3). When the platform exits from the sleeping states,

the BIOS/UEFI firmware requests the TPM to restore the

state and then it starts the operating system.

The TCG specification describes the role of power

management over the operating system and the

BIOS/UEFI firmware. Power management will be ef-

ficient and work as long as the operating system and

firmware cooperate well. For the S3 sleep function to

work properly, each part must function perfectly with-

out error; however, this state may collapse when one part

malfunctions, which is hard to correct using the other

parts. Moreover, the power management of a TPM chip

needs to be carefully considered when it is partly han-

dled by an operating system that could be compromised

by rootkits [29]. In Section 4, we demonstrate how in-

complete power management control breaks the chain of

trust.

3 Assumptions and Threat Model

3.1 Assumptions

First, we assume that our system measures the firmware

and bootloader using TCG’s SRTM [32, 39]. Many com-

modity laptops, PCs, and servers come with TPM sup-

port. When their TPM support option is enabled in the

BIOS/UEFI menu, the BIOS/UEFI firmware starts the

“trusted boot” [25] process, which means that it mea-

sures the firmware itself and the bootloader and stores

the measurements in the TPM chip.

Second, we assume that our system employs TCG’s

DRTM architecture [43]. When a DRTM chain starts at

runtime, the DRTM itself, kernel file, and initial RAM

disk (initrd) file are measured, and the measurements are

kept in the TPM. Both Intel and AMD have their ex-

tended instructions for supporting DRTM, called TXT

and Secure Virtual Machine, respectively. For our ex-

periments, we use Trusted Boot (tboot) [11], which is an

open source implementation of the Intel TXT [12].

We also assume that the stored measurements in TPM

are verified by a remote attester. These measurements

should be unforgeable by an attacker; therefore, any

modification in the firmware, bootloader, or kernel will

be sent to and identified by an administrative party.

3.2 Threat Model

We consider an attacker who has already acquired the

Ring-0 privilege with which the attack can have the ad-

ministrative access to the software stack of a machine

including the firmware, bootloader, kernel, and applica-

tions. The attacker might use social engineering to ac-

quire this control or could exploit zero-day vulnerabil-

ities in the kernel or system applications. The attacker

may be able to safely upgrade the UEFI/BIOS firmware

to a new and manufacture-signed one. However, we as-

sume that he or she cannot flash the firmware with arbi-

trary code. We also assume that the attacker cannot roll-

back to an old version of the firmware, where the attacker

can exploit a known vulnerability.

The attacker’s primary interest is to hide the breach

and retain the acquired privileges for further attacks.

TPM and SRTM/DRTM should measure the system and

securely leave proof in the PCRs if the bootstrapping

software or kernel has been modified. This proof also

can be delivered to and verified by a remote administra-

tor.

The attacker may try to compromise the bootloader

and kernel by modifying files in the EFI partition and

under /boot/. This is feasible because we assume the at-

tacker has privileged accesses to every part of the sys-

tem software. Moreover, it is easy to obtain, modify, and

rebuild the bootloader, kernel, and kernel drivers. The

GRand Unified Bootloader (GRUB) and TPM driver that

we used in our experiments are accessible via a GitHub

repository [5, 19]. Namely, the attacker can boot the sys-

tem with a modified bootloader or with another boot op-

tion if the system has multiple boot options. The TPM

and SRTM/DRTM are supposed to securely record and

report the fact that the system has not booted with an

expected bootloader and configuration. However, they

would fail to do that.

We do not consider a denial-of-service attack in this

paper. If the attacker has system privileges, he or she

can easily turn the system off. We also do not consider

hardware attacks that require a physical access to the sys-

tem circuits. Vulnerabilities of the System Management

Mode (SMM) [13] may allow the attacker to remotely

and pragmatically alter firmware binary or change the

BIOS/UEFI options [6], but we do not consider such vul-
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Figure 3: TPM technology entities

nerabilities. Rather, we show that the TPM and SRTM/-

DRTM can fail without the need to exploit them.

4 Vulnerability Analysis

4.1 Finding the Security Vulnerabilities

Bootstrapping a system utilizing TPM and SRTM/-

DRTM technologies involves many entities, and Figure 3

shows their relationships. Security vulnerabilities can be

found when formally analyzing the design and specifica-

tion of a system, however, it is challenging to formally

specify them anyway. Instead, we basically reviewed

the specification documents manually and tested real sys-

tems. The steps we took to find the vulnerabilities are as

follows:

1. While reviewing the TCG specification, we found a

change in the TCG specification from TPM 2.0 to

TPM 1.2 regarding power management. The differ-

ence was regarding restarting TPM when the system

resumes [37].

2. Using a real system with support for TPM and

SRTM, we tested how a TPM state can be saved

and restored as the power state cycles. We found

an abnormal behavior when the TPM state is re-

set. We speculated that the failure was due to the

firmware implementations not meeting the specifi-

cation or ambiguity in the specification [37]. Note

that another flaw caused by not meeting the TCG

specification has been reported already [3].

3. Based on speculation, we tested other implemen-

tation instances of the specification. We could

have investigated the firmware source code, but we

needed to experiment with a number of products be-

cause the firmware of these products is not open.

Eventually, the same vulnerability was confirmed in

several systems.

(1) Review a specification 
  - Unverified changes or 

inconsistency in document 

(2) Do a case study 
  - Test with an implementation 

instance, or investigate the 

code 

(3) Analyze the problem 

Speculations 

Problem 

confirmed 

(b) Possibly exists in  

     other implementations? 

     (proceed with another  

      implementation instance) 

(a) Possibly exists in  

     similar specifications? 

     (proceed with another  

      specification) 

(b) 

(a) 

Figure 4: General process of the vulnerability analysis in

TPM

4. We investigated the DRTM specifications. At this

time, we thought we could apply what we learned

to the DRTM, which is similar to the SRTM. In

the DRTM, the DCE and DLME are verified, ini-

tialized, and launched by hardware support, which

means the process is performed by immutable par-

ties.

5. We investigated the open source implementation of

DRTM, tboot [11], which is based on Intel TXT.

The vulnerability of an authenticated code module

(ACM), which is the DCE of Intel TXT, as reported

by Wojtczuk and Rutkowska [44, 45] demonstrates

that the authenticity and integrity of code are not

guaranteed to be flawless. Unlike previous studies,

we focus on tboot, which is the DLME, and even-

tually found mutable function pointers that we were

able to exploit.

We summarize this process in Figure 4.

4.2 SRTM Vulnerability: CVE-2018-6622

4.2.1 Problem: The Grey Area

SRTM starts up the chain of trust by measuring

each component of the boot sequence including the

BIOS/UEFI firmware, bootloader, and kernel. The mea-

surements are extended to the PCRs, from PCR #0 to

PCR #15. An alteration of a booting component would

leave different values in the PCRs. The alteration can

easily be identified when the values are then compared

to the correct ones.

It is known that it is difficult for malicious software to

become involved in the booting sequence and forge PCR

values to hide its involvement. To forge these values, the
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malicious software needs to reset the TPM and extend

the exact same series of measurements. This is infeasible

because the TPM reset requires a host platform to restart.

However, we recently found that PCRs can be initial-

ized when the host platform sleeps. When the platform

enters into the S3 or S4 sleeping states, the power to the

devices is cut off. TCG specifies how TPM can sup-

port power management [32, 37]: TPM is supposed to

save its state to the non-volatile random access mem-

ory (NVRAM) and restore the state back later. How-

ever, the specification does not specify sufficiently how

it should be handled when there is no saved state to be

restored [39]. As a result, some platforms allow software

to reset the PCRs and extend measurements arbitrarily.

A TPM typically has two power states, the working

state (D0) and the low-power state (D3). The TPM

has a command for saving its state before putting itself

into the D3 state and a command for restoring the saved

state when getting out of the D3 state. According to the

TPM 1.2 specification [32], the operating system may

enter into the S3 sleeping state after notifying the TPM

that the system state is going to change by sending it

the TPM SaveState command. On exiting from the S3

sleeping state, the S-CRTM determines whether the TPM

should restore the saved state or be re-initialized. When

S-CRTM issues TPM Startup(STATE), the TPM restores

the previous state. When TPM Startup(CLEAR) is is-

sued, the TPM restarts from a cleared state.

An unexpected case that could reset the TPM can oc-

cur if there is no saved state to restore. How to tackle

this problem is specified differently in the TPM 1.2 and

2.0 specifications. In version 1.2 [32], TPM enters fail-

ure mode and is not available until the system resets.

In version 2.0, TPM2 Shutdown() and TPM2 Startup()

correspond to TPM SaveState() and TPM Startup(), re-

spectively. Version 2.0 [39] tells TPM to return

TPM RC VALUE when TPM2 Startup(STATE) even if

it does not have a saved state to restore. It also speci-

fies that the SRTM should perform a host platform reset

and send the TPM2 Startup(CLEAR) command before

handing over the control to the operating system.

Restarting the SRTM and clearing the TPM state is

not sufficient to assure the integrity of the platform. It is

simply the same as resetting the TPM. An adversary can

hence still extend an arbitrary value to the PCRs. This

must be forbidden. Otherwise, there should be a way to

warn that the TPM state has been reset abnormally.

Although another specification document [37] states

that the CRTM is expected to take corrective action

to prohibit an adversary from forging the PCR values.

However, the specification does not either mandate it or

explain how to do this in detail. The incompleteness of

this specification may lead to inappropriate implemen-

tations and eventually destroy the chain of trust. How

Compromised 

Software Stack 

Normal State 
(TPM shows normal 

PCRs) 

Leaves normal hashes 

in event logs 

Compromised State 
(TPM shows abnormal 

PCRs) 

BIOS/UEFI 

Sleep 

Sleep without  saving 
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Compromised 

Software Stack 

Wake up 
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PCRs) 

Extract and calculate  

the normal hashes 

Reset the TPM and replay  

the normal hashes 

Store the normal hashes 

in RAM 

Reboot 

Hash 

values 

Figure 5: Exploit scenario for the SRTM vulnerability

an adversary forges the measurements is demonstrated

in Section 4.2.2.

4.2.2 Exploit Scenario

The aim of an exploit is to conceal the fact that the sys-

tem has been compromised. By assumption, our attacker

has already taken control of the system software includ-

ing the bootloader and the kernel. Figure 5 depicts the

main points of the exploit scenario. The attacker ob-

tains good hash values from the BIOS/UEFI event logs,

which are recorded during a normal boot process. As-

sorted hash values are stored in RAM temporarily, and

are finally handed over to the kernel. The attacker can

forge PCR values using the obtained hashes after sleep.

As a result, the TPM shows that the system is booted and

running with genuine software, which is not at all true.

The technical details of the exploit are explained in Sec-

tion 4.2.3.

4.2.3 Implementation in Detail

We explain how to reset the TPM state and counterfeit

the PCR values. Figure 6 shows the detailed process of

exploiting SRTM vulnerability.

First, before resetting and replaying the TPM, we need
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Figure 6: Detailed process of exploiting the SRTM vul-

nerability

the normal digest values. The normal digests can be ex-

tracted from the TCG event logs. When a value is ex-

tended to a PCR, the firmware makes an entry in the

TCG event logs for later verification. According to TCG

ACPI specification [38], the starting address of the pre-

boot event logs is written in the Local Area Start Address

field of the Hardware Interface Description Table in the

ACPI table. This field is located at offset 42 in TPM 1.2,

whereas it is optionally located at offset 68 in TPM 2.0.

Bootloader
BIOS

support

UEFI

support

TPM

1.2

TPM

2.0

GRUB for

CoreOS [5]
X X X X

Trusted-

GRUB1 [40]
X X

Trusted-

GRUB2 [41]
X X

GRUB-

IMA [24]
X X

Table 2: List of bootloaders with BIOS/UEFI support

and TPM version

When the field is not there, there is another option for

obtaining the logs. The BIOS/UEFI firmware saves the

event logs separately as well for its own use. These logs

are accessible until the control is given to the kernel in

UEFI mode because they are removed when ExitBoot-

Service() is called [36].

To obtain and reuse the normal digests in the logs, we

crafted exploits modifying an existing bootloader and the

kernel. The bootloader calls the GetEventLog() UEFI in-

terface and collects all event logs. The logs are passed to

the kernel through a reserved memory region. The logs

are saved in a 64K memory block starting from 0x80000,

which is below the 1MB address space. This area should

be excluded from the kernel range by setting the kernel’s

command line parameter “memmap = 64K $ 0x80000”

so that the data written in that region can be kept after

booting. Our exploit in the kernel resets TPM by making

the system enters the S3 sleeping state, and finally ex-

tends the measurements, one after another, in the normal

order as presented in the logs.

We take the GRUB implementation from the open

source Container Linux [4] to implement our exploit.

To our knowledge, it is the only existing bootloader im-

plementation that supports UEFI and both versions of

the TPM. Table 2 summarizes the bootloaders that have

TPM support. Our customized bootloader functions as

the SRTM and extracts the event logs for both TPM 1.2

and 2.0. Figure 7 shows an example of the event logs

extracted from an Intel mini PC (NUC5i5MYHE).

The normal measurements can be obtained after pars-

ing the event logs. A log entry of the event logs is

composed of a PCR index, an event type, a digest, an

event size, and event data. The PCR index is the PCR

to which a digest is extended. The event type can be

either a CRTM version, UEFI firmware variable, initial

program loader (IPL), or IPL data. Table 3 summarizes

the types needed to parse the event logs. The digest is

the hashed result of binary or text values depending on

the event type, whereas the event data stores raw data.

The event size is the size of the raw data.

The parsed digest values, except for the nor-
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Dump Address 0xFFFFB8FFC1E40000(Physical Address 0x80000)

TCG Event_version = 1

PCR 0, Event Type 0x8 , Size 16, Digest C42FEDAD268200CB1D15F97841C344E79DAE3320

PCR 7, Event Type 0x80000001 , Size 52, Digest 2F20112A3F55398B208E0C42681389B4CB5B1823

PCR 7, Event Type 0x80000001 , Size 36, Digest 9B1387306EBB7FF8E795E7BE77563666BBF4516E

PCR 7, Event Type 0x80000001 , Size 38, Digest 9AFA86C507419B8570C62167CB9486D9FC809758

PCR 7, Event Type 0x80000001 , Size 36, Digest 5BF8FAA078D40FFBD03317C93398B01229A0E1E0

PCR 7, Event Type 0x80000001 , Size 38, Digest 734424 C9FE8FC71716C42096F4B74C88733B175E

PCR 0-7, Event Type 0x4 , Size 4, Digest 9069 CA78E7450A285173431B3E52C5C25299E473

PCR 5, Event Type 0x80000006 , Size 484, Digest 5C64EDAEA674F708F24B152A79AF26D45990BF65

PCR 4, Event Type 0x80000003 , Size 186, Digest 41 C06CD2A38EB0B6208A93D0227E5C49668AA550

PCR 8, Event Type 0xD , Size 75, Digest 3EDC5474CC2D9BDCCAB031E75C6C7C3DF06DF729

... omitted ...

Figure 7: TPM event logs of Intel NUC5i5MYHE extracted by the custom bootloader

/* *************************************** */

/* Skip tpm_savestate and tpm2_shutdown */

/* in drivers/char/tpm/tpm -interface.c */

/* *************************************** */

int tpm_pm_suspend(struct device *dev)

{

... omitted ...

+ printk(KERN_INFO"tpm: tpm_savestate () "

+ "and tpm2_shutdown () are skipped\n");

+ return 0;

+

if (chip ->flags &

TPM_CHIP_FLAG_ALWAYS_POWERED )

return 0;

if (chip ->flags & TPM_CHIP_FLAG_TPM2 ) {

tpm2_shutdown (chip , TPM2_SU_STATE );

return 0;

... omitted ...

Figure 8: Patch code summary of custom kernel for TPM

reset

mal bootloader and kernel (PCR #4 and PCR #9),

are the ones to be replayed. The log entry for

the bootloader hash can be identified by event

type EV EFI BOOT SERVICES APPLICATION

(0x80000003) and the one for the kernel (including

the kernel file and the initial RAM disk file) hash is

identified by event type EV IPL (0x0D). Note that the

digest originates from our customized bootloader and

kernel, not from the original ones. The bootloader and

kernel hash values can be obtained from the original

bootloader and kernel instead. The bootloader hash

value has to follow the Windows Authenticode Portable

Executable Signature Format [23, 35]; however, the

kernel hash value can be calculated using the sha1sum

tool.

To reset the TPM, two tasks must be performed.

One is to modify the kernel so that it skips to sav-

ing the TPM state and calling TPM Startup(CLEAR)

or TPM2 Startup(CLEAR) after waking up. The code

listed in Figure 8 shows how simple this modifica-

tion is. We add return code at the start of function

tpm pm suspend() and call function tpm startup() in the

TPM driver using our test kernel module (see include/lin-

ux/tpm.h [19]). The other task is to wait until the sys-

tem sleeps or make the system sleep by giving a sus-

pend command like the ones that systemd or the pm-

utils package provides. After resetting the TPM, the nor-

mal measurements can be re-extended. We call function

tpm pcr extend() in the TPM driver to replay the hashes.

4.3 DRTM Vulnerability: CVE-2017-

16837

4.3.1 Problem: Lost Pointer

DRTM builds up the dynamic chain of trust at runtime,

and it uses the set of PCRs from PCR #17 to PCR #22.

These dynamic PCRs [32, 39] need to be initialized dur-

ing runtime, but the initialization is restricted to locality

4 [34], which means their access is controlled by trusted

hardware and not accessible to software. However, in

addition to the hardware buttons, there is another chance

to reset the PCRs. The dynamic PCRs are initialized

when the host platform escapes from the S3 and S4 sleep-

ing states. The DRTM specification [33] explains how

DRTM can be reinitialized after the sleeping states.

4.3.2 Exploit Scenario

To undermine a DRTM, some of the extended measure-

ments sent to dynamic PCRs should be forgeable. This

is not easy because the DCE, being executed prior to

the DLME [33], launches the DLME after extending the

measurement of the DLME, as shown in Section 2, how-

ever, after the DLME has started, security is a matter of

the trustworthiness of the DLME. In other words, it is

still possible to break the dynamic trust chain as long as

the DLME implementation has own vulnerability.

As shown in Figure 9, the DRTM exploit is mostly

similar to the SRTM one. The attacker obtains the good
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Event Type Label and Description

0x00000001

EV POST CODE

This event must be extended to PCR #0. It is

used to record power-on self test (POST)

code, embedded SMM code, ACPI flash

data, boot integrity services (BIS) code, or

manufacturer-controlled embedded option

ROMs.

0x00000004

EV SEPARATOR

This event must be extended to PCR #0-PCR

#7. It is used to delimit actions taken during

the pre-OS and OS environments. In case of

TPM 1.2, the digest field must contain a hash

of the hex value 0x00000000 for UEFI

firmware and 0xFFFFFFFF for BIOS. In

case of TPM 2.0, the digest field must

contain a hash of the hex value 0x00000000

or 0xFFFFFFFF for TPM 2.0.

0x00000008

EV S CRTM VERSION

This event must be extended to PCR #0. It is

used to record the version string of the

SRTM.

0x0000000D
EV IPL

This event field contains IPL data.

0x80000001

EV EFI VARIABLE DRIVER CONFIG

This event is used to measure configuration

for EFI variables. The digests field contains

the tagged hash of the variable data, e.g.

variable data, GUID, or unicode string.

0x80000003

EV EFI BOOT SERVICES APPLICATION

This event measures information about the

specific application loaded from the boot

device (e.g., IPL).

0x80000006
EV EFI GPT EVENT

This event measures the UEFI GPT table.

0x80000008

EV EFI PLATFORM FIRMWARE BLOB

This event measures information about

non-PE/COFF images. The digests field

contains the hash of all the code (PE/COFF

.text sections or other sections).

Table 3: Summary of event types that are frequently

used [39]

hash values left in the logs. After sleep, the values are

re-extended to the PCRs by hooking the functions in the

DCE and DLME. The result is the same as that of the

SRTM exploit.

4.3.3 Implementation in Detail

We explain how to reset the TPM state and counterfeit

the PCR values. The tboot [11] is an open source im-

plementation of Intel TXT that employs the notion of

DRTM to support a measured launch of a kernel or a vir-

tual machine monitor (VMM). It consists of the secure

initialization (SINIT) ACM and tboot, which correspond

to the DCE and DLME, respectively. In Intel TXT, the

Compromised 

Software Stack 

Normal State 
(TPM shows normal 

PCRs) 

Leaves normal hashes 

in event logs 

BIOS/UEFI 

Sleep 

Sleep 

Compromised 

Software Stack 

Wake up 

Faked State 
(Still compromised 

but TPM shows the normal 

PCRs) 

Extract and calculate  

the normal hashes 

Hash 

values 

Store the normal hashes 

in RAM 

Reboot 

DCE and DLME 

Reset the TPM and replay  

the normal hashes with  

the hooked functions 

Hook function pointers in 

the DCE and the DLME 

Hooked 

functions 

Compromised State 
(TPM shows abnormal 

PCRs) 

DCE and DLME 

Figure 9: Exploit scenario for the DRTM vulnerability

DLME is called the MLE. The steps of tboot are shown

in Figure 10.

The tboot part is loaded by a bootloader, together

with a kernel or a VMM. When the bootloader transfers

the control to tboot, its pre-launch part starts the SINIT

ACM. It measures the MLE (tboot) and extends the mea-

surements to the dynamic PCRs. SINIT ACM starts the

post-launch part of tboot, it measures the DRTM com-

ponents, and extends the dynamic PCRs according to

either legacy PCR mappings or details/authorities PCR

mappings. Legacy PCR mappings use PCR #17, PCR

#18, and PCR #19 for extending the measurements of the

launch control policy (LCP), kernel file, and initial RAM

disk (initrd) file, respectively. Details/authorities PCR

mappings use PCR #17 for the measurements of the LCP,

kernel file, and initrd file. PCR #18 is reserved for mea-

surements of the verification key for SINIT ACM and

LCP. When exiting the S3 sleeping state, tboot restarts

DRTM using the data loaded in the memory at the boot
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Figure 10: Steps of tboot

time. This means that the process of measuring and ex-

tending the kernel or the VMM can be interfered with by

compromising the data loaded in the memory.

After reviewing the source code of tboot, we found

that some mutable function pointers that are not mea-

sured open up a window of attack. Figure 11 shows the

detailed process of the exploit for the DRTM vulnerabil-

ity using mutable function pointers.

According to Intel’s specification [14], SINIT ACM

obtains a loaded address, a size, and the entry point of

an MLE by reading the MLE header. The header should

be placed inside the loaded MLE and measured by the

SINIT ACM so that unauthorized modification of the

header is not allowed. In the latest version of the tboot

source code (1.9.6, at the time of this writing), the start

and the end of an MLE ( mle start and mle end) are de-

fined in the link script (as shown in Figure 12) includ-

ing from the start of the code section (.text) to the end

of the read-only data section (.rodata). Therefore, any

alteration of those sections will be identified by the mea-

surement extended by SINIT ACM.

In contrast to the code and read-only data, the writable

data section (.data) and the uninitialized data segment

(the .bss section) are not measured. After careful investi-

gations, we found that some variables (g tpm, tpm 12 if,

and tpm 20 if, as shown in Figure 13) exist in the un-

measured sections and could affect the control flow. The

mutable variables are function pointers left behind and

not measured. By hooking those pointers, we can hook

the control flow and eventually forge the dynamic PCRs,

bypassing the protections provided by the SINIT ACM.

Similarly to the attack explained in Section 4.2, the

normal measurements extended by tboot are recorded in

the event logs that reside in the kernel’s memory area.

The txt-stat tool provided by tboot dumps the kernel

memory via /dev/mem and prints out the summary sta-

tus of TXT and event logs, as shown in Figure A.1 in

Appendix.

After obtaining the normal digests, we can forge ex-

tended values after tboot takes control by hooking the ex-
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Figure 11: Detailed process of exploiting the DRTM vul-

nerability

posed function pointers. The hook functions reside in the

data section of tboot in shellcode form, and the hooking

has to be done before the platform enters the S3 sleeping
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SECTIONS

{

. = TBOOT_BASE_ADDR ; /* 0x800000 */

.text : {

*(. tboot_multiboot_header )

. = ALIGN (4096);

*(. mlept)

_mle_start = .; /* Beginning of MLE */

*(. text)

*(. fixup)

*(.gnu.warning)

} :text = 0x9090

.rodata : { *(. rodata) *(. rodata .*) }

. = ALIGN (4096);

_mle_end = .; /* End of MLE */

.data : { /* Data */

*(. data)

*(. tboot_shared)

CONSTRUCTORS

}

... omitted ...

}

Figure 12: Sections in the link script (tboot.lds.x) of

tboot

state. The locations of g tpm, tpm 12 if, and tpm 20 if

are as shown in Figure 13. The offsets might differ ac-

cording to the versions of the implementation, but those

function pointers are exposed in the mutable section.

The last step of the attack, likewise, is to reset the TPM

state and replay the normal digests. The difference is

that, when the platform wakes up, tboot and SINIT ACM

are executed. SINIT ACM resets the dynamic PCRs,

measures tboot, and extends the measurements to PCR

#17. It starts tboot again, and tboot extends the PCRs

with the hook functions. The replay should be done by

extending the measurements in the designated order for

replacing the measurement of the customized kernel with

the normal one.

4.4 Evaluation

We tested our exploits on various Intel-based platforms

to determine how many devices are exposed to these vul-

nerabilities. The tested devices are listed in Table 4.

Ubuntu 16.04.03 was used as the host operating sys-

tem. The genuine kernel 4.13.0-21-generic of the op-

erating system was used for our customization, in which

we removed the TPM SaveState() or TPM2 Shutdown()

calls. For the SRTM attack mentioned in Section 4.2,

we used the source code of CoreOS GRUB 2.0 [5]. For

the DRTM attack, we used source code from the tboot

project [11]. The devices were UEFI booted from the ex-

/* Beginning of text section (ready -only) */

800000 t multiboot_header

800010 t multiboot2_header

800020 t multiboot2_header_end

801000 t g_mle_pt

804000 T _mle_start /* Beginning of MLE */

804000 T _start

804000 T start

804010 T _post_launch_entry

... omitted ...

83b000 D _mle_end /* End of MLE */

/* Beginning of data section (writable) */

83b000 D s3_flag

... omitted ...

83f234 D g_tpm /* Current TPM interface */

... omitted ...

83f2c0 D tpm_12_if /* TPM interfaces in */

83f460 D tpm_20_if /* data section for */

/* TPM 1.2 and 2.0 */

... omitted ...

Figure 13: tboot symbols. The TPM interfaces are in the

data section

ternal hard disk drive, where we installed the customized

system with exploits. To replace the normal bootloader

and kernel with our customized ones, we put the cus-

tomized ones under the /boot directory with the same

name.

TPM 2.0 supports multiple banks of PCRs, with

each bank implementing different hash algorithms. The

BIOS/UEFI firmware and the kernel are likely to be ex-

tended to separate banks. Although the reported vulner-

abilities do not depend on a specific hash algorithm, we

used SHA-1 in all evaluations only because the algorithm

is supported in both versions of the TPM.

The DRTM exploit requires devices to support Intel

TXT and tboot. However, some of them do not support

Intel TXT and some of the TXT-supporting devices do

not work with tboot, as a result, we could exploit only

a few of them. Table A.1 in Appendix shows the tested

devices.

4.4.1 SRTM Attack: Grey Area Vulnerability

Table 5 compares all normal PCR values and exploited

PCR values except for PCR #10, which is extended by

IMA in the kernel. Although the PCR #10 values of all

PCs are different, the value of PCR #10 can be extended

from PCR #0-PCR #7. We hence attach additional tables

in our GitHub repository [10], which lists the PCR values

obtained from the normal SRTM-based booting sequence

on our tested devices.

Because the static PCRs values are measurements of

the SRTM components, most of the values differ ac-

cording to the manufacturers and model, except for PCR

#4 and PCR #9, where the measurements of the boot-
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PC

No.
Vendor

CPU

(Intel)

PC and mainboard

model

BIOS Ver. and

release date

TPM

Ver.

TPM vendor and

firmware Ver.

SRTM

attack

1 Intel
Core

i5-5300U
NUC5i5MYHE

MYBDEWi5v.86A,

2017.11.30
2.0

Infineon,

5.40
Y

2 Intel
Core

m5-6Y57

Compute Stick

STK2mv64CC

CCSKLm5v.86A.0054,

2017.12.26
2.0

NTC,

1.3.0.1
Y

3 Dell
Core

i5-6500T
Optiplex 7040

1.8.1,

2018.01.09
2.0

NTC,

1.3.2.8
Y

4 GIGABYTE
Core

i7-6700
Q170M-MK

F23c 2,

2018.01.11
2.0

Infineon,

5.51
Y

5 GIGABYTE
Core

i7-6700
H170-D3HP

F20e,

2018.01.10
2.0

Infineon,

5.61
Y

6 ASUS
Core

i7-6700
Q170M-C

3601,

2017.12.12
2.0

Infineon,

5.51
Y

7 Lenovo
Core

i7-6600U

X1 Carbon 4th

Generation

N1FET59W (1.33),

2017.12.19
1.2

Infineon,

6.40
N 3

8 Lenovo
Core

i5-4570T
ThinkCentre m93p

FBKTCPA,

2017.12.29
1.2

STMicroelectronics,

13.12
N 3

9 Dell
Core

i5-6500T
Optiplex 7040

1.8.1,

2018.01.09
1.2

NTC,

5.81.2.1
N 4

10 HP
Xeon

E5-2690 v4
z840

M60 v02.38,

2017.11.08
1.2

Infineon,

4.43
N 3

11 GIGABYTE
Core

i7-6700
H170-D3HP

F20e,

2018.01.10
1.2

Infineon,

3.19
N 3

Table 4: List of PC and mainboard models and results of the SRTM attack

PC

No.

TPM

Ver.
PCR

No.

PCR values 5

of the ORIGINAL system
PCR values

of the COMPROMISED system

PCR values

after the SRTM attack

1-7, 1.2, 4 1C2549F2... DF5AD048... 1C2549F2...

9-11 2.0 9 7767E9EB... DA28F689... 7767E9EB...

8 6 1.2 4 849162AD... 9966FE5A... 849162AD...

9 7767E9EB... DA28F689... 7767E9EB...

Table 5: Forged PCR values after the SRTM attack

loader and kernel are extended. Interestingly, the Lenovo

m93p machine (PC #8) has a different value for PCR #4,

even though it uses the same bootloader. After looking

into the event logs, the m93p machine uses a hash of

0xFFFFFFFF as the event separator (EV SEPARATOR)

while all the other devices use a hash of 0x00000000.

It seems 0xFFFFFFFF is used when the firmware is

BIOS [32] and 0x00000000 is used for UEFI [35], as

long as the TPM version is 1.1 or 1.2. In case of TPM

2.0, the specification [39] allows both of the values to be

used. The m93p machine is supposed to use 0x00000000

because it uses TPM 1.2 and a UEFI firmware. This non-

conformity does not immediately wreck the security, but

it may increase the complexity of resource management,

especially in an enterprise where an administrator needs

to attest or track down installed software inside the ad-

ministrative domain.

Table 4 also shows whether the reset and replay attack

are possible when each device is booted with the cus-

tomized bootloader and kernel. All devices with TPM

2.0 are vulnerable to the attack; nevertheless, they are

from different manufacturers such as Intel, Dell, GIGA-

BYTE, and ASUS. It seems that all of the manufacturers

considered in this study failed to deal with the excep-

tion mentioned in Section 4.2 because of the incomplete

specification.

On the contrary, all TPM 1.2 devices, except for the

Dell Optiplex 7040 mini PC (PC #9), appropriately han-

dle the exception by entering failure mode, in which re-

2The EV S CRTM VERSION event is not extended to PCR #0 and

the EV EFI PLATFORM FIRMWARE BLOB event is not extended

to PCR #2, which are wrong probably because the software does not

comply with the TCG Specification
3 Entering failure mode
4The static PCR values are kept
5Only the first eight hexadigits are shown here for the brevity
6PC #8 has a different value in PCR #4, which seems incorrect
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PC

No.

TPM

Ver.
PCR

No.

Before the intrusion After the intrusion After the DRTM attack

1 2.0 17 821701E9... FC8AD796... 821701E9...

3 2.0 17 257B1024... E90F27EC... 257B1024...

8, 9 1.2 18 2E3DC497... 3DC85583... 2E3DC497...

19 F443F487... E4C61D2A... F443F487...

Table 6: Forged PCR values after the DRTM attack

/* EV_SRTM_VERSION event is not extended to

PCR #0 */

[1] PCR 0, Event Type 0x8 , Digest

0000000000000000000000000000000000000000

[2] PCR 0, Event Type 0x1 , Digest

3EBB5D91DA1BC78CB0F206B398AD28520885FEB3

/* EV_EFI_PLATFORM_FIRMWARE_BLOB event is

not extended to PCR #2 */

[3] PCR 2, Event Type 0x80000008 , Digest

0000 FF7FB8B600000000169C09B3000000000070

[4] PCR 0, Event Type 0x4 , Digest

9069 CA78E7450A285173431B3E52C5C25299E473

[5] PCR 2, Event Type 0x4 , Digest

9069 CA78E7450A285173431B3E52C5C25299E473

... omitted ...

Figure 14: Event log summary relate to PCR #0 and PCR

#2 in the GIGABYTE Q170-MK

setting and replaying are not possible. We note that the

machine (PC #9) maintains the static PCRs even after

entering into and exiting from the sleeping states with-

out saving the TPM state. It seems the machine neither

cuts the power to the TPM chip off nor restores the TPM

state.

It is interesting that the Dell Optiplex 7040 machine

with TPM 2.0 (PC #3) is exploitable while the same

machine with TPM 1.2 is not, even when the same

BIOS/UEFI firmware is used throughout the experi-

ments. This implies that different branches of the same

binary are executed depending on the TPM version. The

firmware logic may need to be divided according to the

TPM versions.

In the case of the GIGABYTE Q170-MK desktop PC

(PC #4), the TPM state was successfully reset, but the

exploit ended up failing to replay the measurements.

The event logs show that the replayed values of PCR

#0 and PCR #2 do not match the normal values. Fig-

ure 14 shows the series of events that occurred dur-

ing the boot. Based on the logs, PCR #0 is supposed

to be extended with the digests of the event types of

0x8, 0x1, and 0x4. However, it turned out that the

SRTM of the PC does not extend the digest of type 0x8

(EV S CRTM VERSION), which does not comply with

the TCG standard [39]. Similarly, the SRTM of the

Q170-MK (PC #4) omits the digest of type 0x80000008

(EV EFI PLATFORM FIRMWARE BLOB). This sort

of non-conformity may cause a misinterpretation of the

device status when a remote attestor expects a particular

value according to the standard.

4.4.2 DRTM Attack: Lost Pointer Vulnerability

The normal states of the dynamic PCRs after booting the

devices listed in Table 4 are shown in the fourth column

of Table 6. The values of the dynamic PCRs are from the

measurements of SINIT ACM, tboot, the kernel file, and

initial RAM disk file. The states after the DRTM attack

are listed in the fifth column of Table 6. The changed val-

ues are affected by the customized bootloader and kernel.

As explained at the beginning of Section 4.3.3, PCR #18

and PCR #19 differ when the legacy PCR mappings are

used, while only PCR #17 is different when the detail-

s/authorities PCR mappings are used. The sixth column

of Table 6 lists the states to which measurements could

be re-extended. Because the vulnerability is due to the

software stack, all the devices are exposed to the attack

regardless of the TPM version.

5 Discussion and Solutions

5.1 Discussion

Kauer [17] listed the conditions that are required to make

a chain of measurements trustworthy.

• Condition 1: The CRTM must be trustworthy. In

the case of S-CRTM, the code is stored in ROM.

According to the TCG specification [39], S-CRTM

only starts when the system is reset and initializes

the chain of measurements. For the D-CRTM, the

measurement environment is initialized and started

only by special hardware instructions, for example,

SKINIT of AMD and GETSEC[SENTER] of Intel.

• Condition 2: The PCRs should be resettable only by

trusted code.
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• Condition 3: The chain has to be contiguous.

Initialization for Startup 

Device Reset 

Wait for Command 

TPM2_Startup()? 

Return 

TPM_RC_INITIALIZE 

Was Previous 

Shutdown(STATE)? Restore Saved State 

Is Command 

Startup(STATE)? 

Y 

N 

N 

Y 

Return 

TPM_RC_VALUE 

Y 

Is Command 

Startup(CLEAR)? 

N 

Was Restore 

Successful? 

SET Initialized and 

Return TPM_RC_SUCCESS 

Failure 

Mode 
Operational 

N 

N 

Y 

Y 

(1) (2) 

Figure 15: Part of the TPM startup sequences [37]

Our SRTM attack falsifies Condition 2: we are able to

reset the TPM without rebooting the system. The attack

enabled by the TPM 2.0 specification [37]. Figure 15

shows a part of the “TPM Startup Sequences” diagram

taken from the specification document. The vulnerabil-

ity is due to the absence of a saved state, and it occurs

when TPM2 Startup(STATE) is called with no preced-

ing TPM2 Shutdown(STATE) command. As Figure 15

shows, the sequence of transitions (1) ends up with the

command-waiting state, which means the TPM is ready

to work as usual. As a result, the attacker can reset

the PCRs by sending TPM2 Startup(CLEAR) command.

The specification expects the CRTM to take “corrective

action” in such cases, but does not clearly specify what

to do.

The DRTM attack that we discovered does not tech-

nically falsify Condition 1. Instead, the attack raises

the question whether we can naively assume the cor-

rectness of the software in the trust chain. It is diffi-

cult to make software free of vulnerabilities. Some stud-

ies [17, 20, 21] have proposed designing secure systems

using the DRTM supports in order to decrease the size

of TCB and remove vulnerable BIOS, OptionROMs, and

bootloaders from the trust chain. Unfortunately, even if

this issue is addressed, there still is room to find software

bugs, as we discovered.

After resetting the TPM, we completed our attack by

re-extending the PCRs with good measurements that we

obtained from the event logs. According to the TCG

specifications [35, 36, 33], prior to passing the control

over to the operating system, the BIOS/UEFI firmware

and DCE/DLME leave event logs and record measure-

ments. Considering that the operating system can obtain

the event logs and the extend operation is provided by the

kernel, the specification must address how to protect or

remove good measurements recorded in the event logs,

in order to prevent the replay attack.

5.2 Solutions

For the SRTM vulnerability, a brutal and desperate rem-

edy is to prohibit the platform from entering the S3 sleep-

ing state, since this power state transition is a vital part of

the attacks. Some BIOS/UEFI firmware provides a menu

option to disuse the S3 sleeping state.

A better way to address this vulnerability starts with

revising the specification. The TPM 2.0 specification

should mandate the TPM enter failure mode if there is no

state to restore. This approach makes the TPM 2.0 spec-

ification consistent with the TPM 1.2 specification. Note

that the TPM 1.2 devices in Table 4 were not affected by

the attack because they were not resettable when in fail-

ure mode. A remote attester can also identify devices in

failure mode. The TPM 2.0 devices are already specified

to go to failure mode if they cannot successfully start,

as shown in Figure 15, path (2). Note that updating the

specification has to be followed by updating the TPM

firmware.

We have contacted and reported our findings to In-

tel [16], Dell [7], GIGABYTE [8], and ASUS [1], which

are the vendors of the devices we have tested and con-

firmed to be vulnerable. Intel and Dell are in the process

of patching their firmware to take corrective action. We

requested a CVE ID regarding the grey area vulnerabil-

ity, and this ID has been obtained (CVE-2018-6622).

For the specific DRTM vulnerability, we have already

sent a patch to the tboot project, which also can be found

in the tboot repository [9]. The patch removes the func-

tion pointers exposed in the mutable data memory and
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protects the APIs inside the measured environment from

unauthorized accesses. The CVE ID regarding the lost

pointer vulnerability has also been obtained (CVE-2017-

16837).

The DRTM vulnerability is due to the exposed func-

tion pointers from the virtual function table. To facilitate

runtime polymorphism, virtual function tables are often

used to dispatch a collection of functions that define the

dynamic behavior of an object. These tables need to be

included in a section to be measured (e.g., the .text sec-

tion) or in a read-only data section (.rodata). Otherwise,

these tables could be exploited by an attacker who wants

to corrupt the pointer and manipulate the behavior of the

program. To prevent such attacks, all RTM code must

be developed under secure coding standards and audited

carefully [27]. Potential flaws could be searched for by

source code analysis tools.

6 Related Work

6.1 SRTM Attacks

Kursawe et al. [18] tapped into the Low Pin Count bus

signal, which is used for communication between the

TPM chip and the CPU. Concealed information such as

keys can then be acquired using simple wiretapping at-

tack.

Kauer [17] demonstrated an attack that resets a ver-

sion 1.1 TPM chip by physically connecting a reset pin

to ground. However, this TPM reset attack requires phys-

ical access, whilst our discovered attack can be done

by software remotely. The author also patched a BIOS

TPM driver and flashed the modified BIOS for the pur-

pose of disabling the SRTM. The author implemented a

bootloader that uses AMD’s DRTM supporting instruc-

tion and proposed this bootloader as an alternative to the

existing weak SRTM implementations.

Sparks [30] pointed out several vulnerabilities and

limitations of the TPM. First, a TPM chip cannot pro-

tect programs after it has been loaded because measure-

ments are taken before execution. Second, physical re-

set is possible. Third, stored keys can be guessed by

a side channel attack that measures time differences of

RSA calculation. Sparks also summarized the counter-

measures against those threats: loaded programs can be

protected by hypervisors, the Low Pin Count bus can

be protected from attacks by employing tamper-resistant

circuits, and the timing attack on the RSA calculation

can be prevented by employing the techniques that better

hide the statistics of the calculation.

Butterworth et al. [2] exploited a vulnerable BIOS up-

date process to re-flash a BIOS chip with an arbitrary

firmware that contains rootkits. After the adversary takes

control of the BIOS/UEFI firmware and SMM, IMA [26]

and BitLocker [22] cannot protect the TPM. As a mitiga-

tion of those attacks, the authors proposed a time-based

remote attestation that does not rely on the TPM.

6.2 DRTM Attacks

Wojtczuk and Rutkowska demonstrated an attack against

Intel TXT by compromising SMM code [44]. SMM is

an operating mode in which code is executed in the most

privileged execute mode, which is privileged than a hard-

ware hypervisor. The authors found that SMM code is

not measured and were able to infect the system’s SMM

handler. The authors also found that an arbitrary code

can be executed in the SINIT ACM by exploiting an im-

plementation bug within it [45]. The attack even loads

an arbitrary MLE and forges the PCR values bypassing

protections provided by Intel TXT.

Wojtczuk et al. introduced an attack that exploits a bug

in the SINIT ACM [46]. With this attack, they can com-

promise a hypervisor even when Intel TXT is present.

In the attack, they demonstrated that the SINIT ACM

cannot protect the Direct Memory Access Remapping

ACPI Table, which holds information about the config-

uration for VT-d (Intel’s Virtualization Technology for

Direct I/O). VT-d technology [15] is a hardware support

for isolating device access and is considered to be a coun-

termeasure against direct memory access attacks, which

can bypass the memory protection of a CPU and access

system memory.

Sharkey introduced a hypervisor rootkit that emulates

the SENTER instruction and TPM using a thin hyper-

visor [28]. The rogue hypervisor rootkit runs underneath

the kernel, compromises Intel TXT, traps access to it, and

tricks the system by providing forged PCRs.

7 Conclusion

The TPM is a hardware component found in many mod-

ern computers and is intended to provide the root of trust.

TPM is specified by TCG and implemented as a tamper-

resistant integrated circuit that provides cryptographic

primitives and secure storage to hold secret information

and reports about the platform state.

The TCG specifications specify how to create and re-

tain a chain of trust based on interactions between the

TPM and the RTM. More technologies and manufactur-

ers have become involved as the specification have been

updated, as a result, this increased complexity under-

neath the measurement process. Consequently, logical

conflicts and incompleteness in the specifications are ob-

scured and the specification may provide poor guidance

to vendors as to its implementation.

In this paper, we addressed the vulnerabilities that al-

low an adversary to enable a TPM reset and forge PCRs.
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One vulnerability comes from a flawed specification, and

many commodity devices seem to be affected. The other

vulnerability is from an implementation defect in the

popular open source implementation of the MLE for In-

tel TXT.

We crafted attacks exploiting these vulnerabilities and

demonstrated them with commodity products. We have

informed the hardware manufacturers about our findings,

and the vendors are expected to produce and deploy a

patch. We also created a patch for correcting the error

in the open source project. This patch has already been

merged.
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A Appendix

We attach additional pages to present detailed informa-

tion. This appendix presents results of the DRTM test

with Intel TXT and tboot support (Table A.1) and Intel

TXT logs (Figure A.1).

PC

No.

PC and

mainboard model

TPM

Ver.

Intel TXT

support

tboot

support

DRTM

test
Note

1 NUC5i5MYHE 2.0 Y Y Y

2
Compute Stick

STK2mv64CC
2.0 Y N N

The system does not support tboot.

It is rebooted while executing the SINIT AC module.

3 Optiplex 7040 2.0 Y Y Y

In case of BIOS 1.8.1 version, The system is

rebooted while executing SINIT AC module.

BIOS 1.4.5 version is used for the DRTM test.

4 Q170M-MK 2.0 Y N N
The system does not support tboot.

It is rebooted while executing the SINIT AC module.

5 H170-D3HP 2.0 N N N The system does not support Intel TXT.

6 Q170M-C 2.0 Y N N
The system does not support tboot.

It is rebooted while executing the SINIT AC module.

7
X1 Carbon 4th

Generation
1.2 Y N N

The system does not support tboot.

It is rebooted while executing the SINIT AC module.

8
ThinkCentre

m93p
1.2 Y Y Y

9 Optiplex 7040 1.2 Y Y Y

For BIOS 1.8.1, The system is rebooted while

executing the SINIT AC module.

BIOS 1.4.5 is used for the DRTM test.

10 z840 1.2 Y N N
The system does not support tboot.

It is rebooted while executing the SINIT AC module.

11 H170-D3HP 1.2 N N N The system does not support Intel TXT.

Table A.1: Results of the DRTM test with Intel TXT and tboot support
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Intel(r) TXT Configuration Registers:

STS: 0x00018091

senter_done: TRUE

sexit_done: FALSE

mem_config_lock : FALSE

private_open: TRUE

locality_1_open : TRUE

locality_2_open : TRUE

ESTS: 0x00

txt_reset: FALSE

E2STS: 0x0000000000000006

secrets: TRUE

ERRORCODE: 0x00000000

DIDVID: 0x00000001b0058086

vendor_id: 0x8086

device_id: 0xb005

revision_id: 0x1

FSBIF: 0xffffffffffffffff

QPIIF: 0x000000009d003000

SINIT.BASE: 0xa2ef0000

SINIT.SIZE: 196608B (0 x30000)

HEAP.BASE: 0xa2f20000

HEAP.SIZE: 917504B (0 xe0000)

DPR: 0x00000000a3000041

lock: TRUE

top: 0xa3000000

size: 4MB (4194304B)

PUBLIC.KEY:

2d 67 dd d7 5e f9 33 92 66 a5 6f 27 18 95 55 ae

77 a2 b0 de 77 42 22 e5 de 24 8d be b8 e3 3d d7

***********************************************************

TXT measured launch: TRUE

secrets flag set: TRUE

***********************************************************

... omitted ...

TBOOT: pol_hash: ce 78 8c 7b 47 b2 91 85 b8 8c 3c a0 7d f7 02 e3 a1 e4 60 03

TBOOT: VL measurements:

TBOOT: PCR 17 (alg count 1):

TBOOT: alg 0004: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: PCR 18 (alg count 1):

TBOOT: alg 0004: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: PCR 17 (alg count 1):

TBOOT: alg 0004: 0b 55 c6 7a d3 89 03 8e 2c d3 99 17 c0 06 8f 20 68 d4 b1 50

TBOOT: PCR 17 (alg count 1):

TBOOT: alg 0004: 6b 8d c4 2d 1f 54 aa 6b 60 98 13 b8 f2 0e 89 2a 5d 14 5c e9

TBOOT: Event: /* The hash of a policy control field and policy hash */

TBOOT: PCRIndex: 17

TBOOT: Type: 0x501

TBOOT: Digest: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: Data: 0 bytes

TBOOT: Event:

TBOOT: PCRIndex: 18

TBOOT: Type: 0x501

TBOOT: Digest: fb b1 b9 ea b0 c9 2a c0 9c 28 14 f5 38 b5 ad 02 af e0 ee af

TBOOT: Data: 0 bytes

TBOOT: Event: /* The hash of a kernel file (vmlinuz) and command lines */

TBOOT: PCRIndex: 17

TBOOT: Type: 0x501

TBOOT: Digest: 0b 55 c6 7a d3 89 03 8e 2c d3 99 17 c0 06 8f 20 68 d4 b1 50

TBOOT: Data: 0 bytes

TBOOT: Event: /* The hash of a initial RAM disk file (initrd) */

TBOOT: PCRIndex: 17

TBOOT: Type: 0x501

TBOOT: Digest: 6b 8d c4 2d 1f 54 aa 6b 60 98 13 b8 f2 0e 89 2a 5d 14 5c e9

TBOOT: Data: 0 bytes

... omitted ...

Figure A.1: List of the txt-stat logs and extended hashes in Intel NUC5i5MYHE. Details/authorities PCR mappings

are used.
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