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ABSTRACT

This paper presents algorithms for inserting monitoring

code to profile and trace programs. These algorithms

greatly reduce the cost of measuring programs. Profiling

counts the number of times each basic block in a program

executes and has a variety of applications. Instruction

traces are the basis for trace-driven simulation and analysis,

and are also used in trace-driven debugging.

The profiling algorithm chooses a placement of counters

that is optimized-and frequently optimal—with respect to

the expected or measured execution frequency of each

basic block and branch in the program. The tracing algo-

rithm instruments a program to obtain a subsequence of the

basic block trace-whose length is optimized with respect

to the program’s execution—from which the entire trace

can be efficiently regenerated,

Both algorithms have been implemented and produce a

substantial improvement over previous approaches. The

profiling algorithm reduces the number of counters by a

factor of two and the number of counter increments by up

to a factor of four. The tracing algorithm reduces the file

size and overhead of an already highly optimized tracing

system by 20-4070.
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1. INTRODUCTION

This paper presents two algorithms for inserting monitoring

code to profile and trace programs. These algorithms

greatly reduce the cost of measuring programs. Profiling,

which counts the number of times each basic block in a

program executes, is widely used to measure instruction set

utilization of computers, identify program bottlenecks, and

estimate program execution times for code optimiza-

tion [2, 4,5, 10, 12,13, 113]. Instruction braces are the basis

for trace-driven simulation and analysis and are also used

in trace-driven debugging [8, 11, 19].

Our goal is an exact basic block profile or trace-as

opposed to the Unix p-of command, which samples the

program counter during program execution. This paper

shows how to significantly reduce the cost of exact

profiling and tracing with:

(1) an algorithm to instrument a program for profiling

that chooses a placement of counters that is

optimized—and frequently optimal-with respect to

the expected or measured execution frequency of

each basic block and branch in the program;

(2) an algorithm to instrument a program to obtain a

subsequence of the basic block trace-whose length

is optimized with respect to the program’s

execution-from which an entire trace can be

efficiently regenerated.

Both algorithms have been implemented and substan-

tially improve performance over previous approaches.

Each atgorithm consists of two parts. The first chooses

points in a program at which to insert profiling or tracing

code. The second uses the results from the program’s exe-

cution to derive a complete profile or trace. The algorithms

for profiling and tracin,g programs are based on the well-

known maximum spanning tree algorithm, applied to the

program’s control-flow graph [21].

In the control-flow graph representation of a program,

where a vertex represents a basic block of instructions and

an edge represents passage of contrcd between blocks,
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instrumentation code can be placed on vertices, edges, or

some combination of the two. This work shows that for

both profiling and tracing, it is better to place instrumenta-

tion code solely on edges.

The algorithms optimize placement of profiling and trac-

ing code with respect to a weighing that assigns a nonne-

gative value to each edge in the control-flow graph. The

cost of profiling or tracing a set of edges is proportional to

the sum of the weights of the edges. Weighings can be

obtained either by empirical measurement (i.e., profiling)

or a heuristic estimation. Our results show that a simple

edge frequency heuristic is accurate in predicting areas of

low execution frequency at which to place instrumentation

code.

The algorithms choose edges for instrumentation based

on the control-flow of a program and a weighting. They

are applicable to any control-flow graph—the graphs need

not be reducible. The algorithms do not make use of other

semantic information that could be derived from the pro-

gram text (i.e., via constant propagation). While there exist

unstructured control-flow graphs for which the algorithms

do not find an optimal placement, they optimize placements

for a large class of well-structured control-flow graphs.

This paper has seven sections. The next section provides

background material on control-flow graphs, weighings,

and spanning trees. Section 3 shows how to efficiently

profile programs and Section 4 describes how to efficiently

trace programs. Section 5 presents results on the perfor-

mance of the profiling and tracing algorithms. Section 6

reviews related work and Section 7 summarizes the paper

and describes future work.

2. BACKGROUND

A control-flow graph (CFG) is a rooted directed graph

G = (V, E) with a special vertex EXIT (distinct from the

root vertex) that corresponds to a program in the following

way: each vertex in V represents a basic block of ins@uc-

tions and each edge in E represents the transfer of control

from one basic block to another. The root vertex represents

the first basic block to execute and EXIT the last. There is

a directed path from the root to every vertex and a directed

path from every vertex to EXIT. Finally, for the profiling

algorithm, it is convenient to insert an edge EXIT -+root to

make the CFG strongly connected. This edge does not

correspond to an actual flow of control and is not instru-

mented.

A vertex p is a predicate if there are distinct vertices a

and b such that p~a and p~b.

All weighings W of a CFG G assign a nonnegative value

to every edge subject to Kirchoff’s law of conservation of

flow: for each vertex v, the sum of the weights of edges

with target v (the incoming edges of v) must be equal to the

sum of the weights of edges with source v (the outgoing

edges of v). The weight of a vertex is simply the sum of

the weights of its incoming (or outgoing) edges. If W is a

weighting of CFG G, then for a set of edges and vertices pl

from CFG G, cost(G, pl, W) is the sum of the weights on

the edges and vertices in pl.

An execution EX of a CFG is a directed path that begins

with the root vertex and ends with EXIT in which EXIT

appears exactly once (we also refer to an execution as the

sequence of vertices from such a directed path). The fre-

quency of a vertex v or edge e in an execution EX is the

number of times that v or e appears in EX. If a vertex or

edge does not appear in EX, its frequency is zero. How-

ever, for any execution, the frequency of the edge

EXIT--woot is defined to be 1.

The edge frequencies for any execution (or set of execu-

tions) of a CFG constitute a weighting of the CFG. Con-

versely, a heuristically chosen weighting can summarize

many different executions.

A spanning tree of a directed graph G is a subgraph

G’= (V’, E’), where V’ = V and E’ G E, such that for every

pair of vertices (v,w) in G’ there is a unique path (not

necessarily directed) in G’ that links v to w. A maximum

spanning tree G’ of graph G with weighting W is a span-

ning tree such that cost(G, E’, W) is maximized. Maximum

spanning trees can be computed efficiently by a variety of

algorithms [21].

Figure 1 illustrates these definitions. The first graph is

the CFG of the program shown—this graph has been given

a weighting. The second graph is a maximum spanning

tree of the first graph. Note that any vertex in the spanning

tree can serve as a root and that the direction of the edges

in the tree is unimportant. For example, vertices C and

EXIT are connected by the path C~P~EXIT.

3. PROGRAM PROFILING

In order to determine how many times each basic block in a

program executes, the program can be instrumented with

counting code. The simplest approach places a counter at

every basic block (pixie and other instrumentation tools use

this method [20]). There are two drawbacks to such an

approach: (1) too many counters are used and (2) the total

number of increments during an execution is larger than

necessary.
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while P do
if Q then A else B fi
if I? then break fi
c

od

1

m’)P

105

Q

Figure 1. A program, its CFG with a weighting, and a maximum

sp~w W-The edw Exfl+p is ne~ed so fiat fie f10w e~ua-
tions for the root vertex (P) and EXIT are consistent. Thk edge

does not correspond to an actuai flow of control and is not instru-

mented.

Let pl be a subset of the edges and/or vertices from CFG

G. The set pl solves the vertex frequency problem for CFG

G, denoted VFreq(G,pl), iff the frequency of each vertex

in any execution of G can be deduced solely from the CFG

G and the frequencies of the edges and vertices h pl. The

set pl contains those edges and vertices whose frequencies

are directly measured by counters. To reduce the cost of

profiling (i.e., the number of counter increments), these

counters should be placed in areas of low execution fre-

quency. That is, pl should solve VFreg(G,pl) and mhtimize

cost(G, pl, W) for a weighting W. Such a pl is referred to

as an optimal solution to VFreq (G,p/) (with respect to

weighting W).

Similarly, a set pl solves the edge frequency problem for

CFG G, denoted -EFreq(G,pQ, iff the frequency of each

edge in any execution of G can be deduced solely from the

CFG G and the frequencies of the edges and vertices in pl.

A solution to the edge frequency problem obviously yields

a solution to the vertex frequency problem by simply sum-

ming the frequencies of the incoming or outgoing edges of

each vertex.

To limit the number of permutations of these problems,

pl is restricted to be a set of edges (epl) or a set of vertices

(vpl). Section 3.2 shows that mixed placements (edges and

vertices) are never better than pure edge solutions. We

study the problems of VFreq (G ,epl), VFreq (G, vpl), and

EFreq(G,epl), with the goal of optimally solving

VFreq(G,p/). Since there are CFGS for which there are no

vpl solutions to the edge frequency problem, EFreq(G,vpl)

is not considered [15]. This section presents three results:

(a) EFreq(G,epl) VFr,cq(G,vpl)

A h

V,Freq(G,epl)
(b)

EFreq(G,epl) = VFreq(G,epl) ‘~ VFreq(G,vpl)

Figure 2. Case (a) shows the relationship between the costs of

th~ optimal solutions of the three frequency problems for general

CFGS. Case (b) shows the relationship when G is restricted to
CFGS constructed from whiie loops, if-then-eise conditionals, and
begin-end blocks.

(1) an algorithm to optimally solve EFreq(G,epO

(2) a comparison of the optimal solutions to

VFreq(G,epl), VFreq(G,vpl), and EFreq(G,epl).

Case (a) of Figure 2 summarizes the relationship

between these three problems

(3) a proof that an optimal solution to EFreq(G,epl) is

also au optimal solution to VFreq (G,epl) for a large

class of structured CFGS

3.1. The Edge-Frequency/Edge-Placement Problem

To solve EFreq(G,epl), it is clearly sufficient to place a

counter on the outgoing edges of each predicate vertex.

However, this placement uses too many counters. From a

well-known result in network programming, it follows that

an edge-counter placement epl solves EFreq(G,epl) ifjf

(E-ep/) contains no (Ipossibly undirected) cycle [6]. Since

a spanning tree of a CIFG represents a maximum size subset

of edges without a cycle, it follows that epl is a minimum

size solution to EFreq(G,epl) iff E –epl is a spanning tree

of G. Thus, the minimum number of counters necessary to

solve EFreq(G, ep/) is IEI – (IVI – 1).

To see how such a placement solves the edge frequency

problem, consider a CFG G and a set epl such that E–epl is

a spanning tree of G. Let each edge e in epl have an asso-

ciated counter that is initially set to () and is incremented

once each time e executes. If v is a leaf in the spanning

tree (pick any vertex as the root), then all but one of the

edges incident to v must be in epl. Since the edge frequen-

cies for an execution satisfy Kirchoff’s law, the unmeas-

ured edge’s frequency is uniquely determined by the flow

equation for v and the known frequencies of the other

incoming and outgoing edges of v. The remaining edges

with unknown frequency still form a tree, so this process

can be repeated until the frequencies of all edges in E –epl

are uniquely determined. If E–epl is not a spanning tree of

G (i.e., there is a cycle, possibly undirected, in E–epl), it
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can be shown that whenever the frequencies of edges in epl

are fixed, there is more than one solution to the system of

flow equations<

Any of the well-known maximum spanning tree algo-

rithms described by Tarjan [21] will produce the maximum

spanning tree of G with respect to weighting IV. The edges

that are not in the spanning tree solve EFreq (G,epl) and

minimize cost(G, epl, W).

Case (a) of Figure 3 illustrates this process. The dotted

edges in the CFG are the edges in epl. The other edges are

in E –epi and form a spanning tree of the CFG. The edge

frequencies are those for the execution shown. The meas-

ured frequencies are underlined. Let vertex P be the root

of the spanning tree. Vertex Q is a leaf in the spanning tree

and has flow equation (P ~ Q = Q ~A + Q +B). Since the

frequencies for P -+Q and Q -+A are known, we can sub-

stitute them into this equation and derive the frequency for

Q +B. Once the frequency for Q ~B is known, the fre-

quency for B -+R can be derived from the flow equation for

B, and so on.

Execution: PQARC PQBRC PQBR EXIT

@

P

3

Q Q
~ ~ 1

A B
2

I 2

R
2C

~

EXIT

(a) (b)

Figure 3. Solving EFreq(G,epl) using the spanning tree. The
dotted edges are in epl ~d the remaining edges (E–epl) form a
spanning tree of the CFG. The frequency of each edge in the exe-
cution is shown and the measured frequencies are underlined. For

the weighting given in Figure 1, the epl in case (a) is not optimal

(minimal) but the epl in case (b) is optimal.

For the weighting W given in Figure 1, the epl solution in

case (a) of Figure 3 has cost(G, epl, W) = 16.75 and

cost(G, E –epl, W) = 36.75. However, as case (b) of Fig-

ure 3 shows, there is an epl solution with cost(G, epl, W) =

11.5. This spanning tree has cost(G, E –epl, W) = 42. For

this example, the epl placement of case (a) is suboptimal

for any weighting.

Although profiling has been described in terms of a sin-

gle CFG, the algorithm requires few changes to deal with

multi-procedure programs. The pre-execution spanning

tree algorithm and post-execution propagation of edge

frequencies are simply applied to each procedure

separately. However, two problems can arise:

(1) If there is a CFG G with a directed path from root to

EXIT that contains no edge in epl (which can occur only if

EXIT--w-oot is in epl), then there is a possible execution

that increments no counter (since the edge EXIT -+root is

never traversed). Thus, it will be impossible to determine

the exact count information for edges in G. To ensure that

no such path arises, the maximum spanning tree algorithm

can be seeded with the edge EXIT--woot. In fact, for any

CFG and weighting, there is always a maximum spanning

tree that includes the edge EXIT--w-oot. The derived count

for the edge EXIT-+root represents the number of times the

procedure G executed.

(2) The simple extension for multi-procedure profiling will

determine the correct frequencies only if interprocedural

control-flow occurs via procedure call and return and each

call eventually has a corresponding return, statically-

determinable interprocedural jumps also can be handled in

our framework. However, dynamically-computed interpro-

cedural jumps (e.g., setjmp/longjmp) can cause problems.

The common case of the call to the exit procedure that ter-

minates execution illustrates this problem. In this case, the

information on the activation stack at program termination

is sufficient to correct the count error. Figure 4 describes

this problem and a solution.

Execution: PQBRC PQA(calltoexit)

—

Figure 4. The first CFG executes the path shown and calls the
exit routine at vertex A, which terminates the program. If the
measured counts (underlined) are propagated to the sparming tree
edges, incorrect values are computed. The second graph shows

how this problem is solved. At program termination, the edge

A --XXZT is added and given count 1 to model the early termina-
tion of this procedure. After this edge has been added, the counts
will be computed correctly. One such edge must be added for each

active procedure on the stack at program termination,
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3.2. Comparing the Three Frequency Problems

This section examines the relationships between the

optimal solutions to VFreq (G,epl), VFreq (G,vp/), and

EFreq(G,ep/) for general CFGS, as summarized in case (a)

of Figure 2.

We first consider why VFreq(G,epl), VFreq (G,vpi), and

EFreq(G,epl) are the most interesting problems to study.

Suppose that a set pl contains a mix of vertices and edges

and optimally solves VFreq (G,pl) or EFreq (G,pl) for CFG

G with weighting W. For any vertex v in pl, v’s counter

can be “pushed” off of v onto each outgoing edge of v,

resulting in placement pi’. Since the cost of a vertex is

equal to the sum of the costs of its outgoing edges, and

some of v’s outgoing edges may be in pl, cost(G, pi’, W) <

cost(G, pl, W).l Furthermore, pl’ clearly solves the same

problem as pl since no vertex or edge frequency informa-

tion is lost in going from pl to pi’. Thus, for any CFG G

and weighting W, a “mixed solution to one of the prob-

lems can never be better than an optimal epl solution to the

same problem.

It follows directly from this argument that for any CFG

G and weighting W, an optimal solution to VFreq(G,vpl) is

never better than an optimal solution to VFreq(G,epl). An

example where EFreq(G,epl) (and thus VFreq(G,epO)

betters VFreq (G,vpl) is discussed later.

Since any solution to EFreq (G,epl) must also solve

VFreq(G,epl), it is clear that an optimal solution to

EFreq(G,epl) can never be better than an optimal solution

to VFreq(G,epO for a given CFG and weighting. As Fig-

ure 5 illustrates, there are cases where an optimal solution

to VFreq(G,epl) is better than an optimal solution to

EFreq(G,epl). The only examples that we have encoun-

tered in which VFreq(G,ep/) betters EFreq(G,epl) exhibit

unstructured control-flow such as found in Figure 5. For the

CFG in Figure 1, the optimal solution to EFreq(G,epl) is

also an optimal solution to VFreq(G,epl). Section 3.3

describes a class of graphs for which an optimal solution to

EFreq(G,ep/) is an optimrd solution to VFreq(G,epl).

Finally, in comparing EFreq(G,epl) and VFreq(G,vpl)

(for general CFGS), there are examples in which one is

better than the other and vice versa. Case(b) of Figure 5

can be easily modified to show an example where

VFreq(G,vp/) is better than EFreq(G,ep/): simply consider

‘Placing counters atong edges instead of on vertices may require insertion of jumps

in addition ~Q .o.n!irig code, whi.h is not mfkted in o.. cost metric, Se-= S.+=

for an exceltent discussion of the problem of optimizing jumps in addition to count-

ing cede [17].

Cost = 2*2 + 3*6 =22

3

(a)

11

cost = 44’1 + 2+2+ 3“4 = 20

[~

J4J4
4

22

J> 3311

33 J
3 3

46

(b)

Figure 5. An example of a CFG and a weighting for which an op-
tirnat solution to VFreq (G, epl) is better than an optimal solution

to EFreq(G,epl). The dotted edges are in epl. Case (a) shows an
optimal solution to EFreq (G, epl ). The edges in E –ep/ form a

maximum spanning tree of the graph. The, lower cost epl place-

ment in case (b) does not solve EFreq (G, epl) (as there is a cycle

in E -epl) but does solve VFreq (G, epl ). To see this, note that the

count for each checked edge is uniquely determined by the counts

for the dotted edges md that this yields enough edge counts to
determine the count for every vertex. The counts of the four edges

in the inner cycle are not uniquely determined.

each black dot as a vertex in its own right and split the dot-

ted edge into two edges. The dots constitute the set vpl and

solve VFreq (G,vpl) with cost 20. The optimal solution to

EFreq(G,ep/) for this graph still has cost 22.

There are many examples of structured CFGS where

EFreq(G,epl) is preferable to VFreq (G,vpl). Consider the

CFG in Figure 1 again. The vertex frequencies in this

graph are related by the equations Q = R = A + B and

EXIT = (P +R) – (C +Q ). From these equations and the

weighting in Figure 1, it turns out that the optimal solution

to VFreq(G,vp/) is ( ,4, B, C, EXIT }, with a cost of 21.5.

The optimal solution to EFreq (G,epl) has cost 11.5. By

instrumenting edges instead of vertices, there is greater

freedom to pick and. choose lower cost points (IEI as

opposed to Ill).

3.3. Optimality Revisited

The previous section points out that the optimal way to

solve VFreq(G,pl) is to optimally solve VFreq (G,epl).

Unfortunately, VFreq (G,epl) is a hard problem to solve

optimally ! We have made some progress towards under-

standing this problem but have no efficient algorithm or

proof of intractability for it yet. However, we believe that
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for most CFGS encountered in practice, an optimal solution

to EFreq(G,epl) will provide an optimal (or near-optimal)

solution to VFreq (G, epl). This section describes a class of

CFGS for which an optimal solution to EFreq (G,epl) is

also an optimal solution to VFreq(G,epl). The class of

CFGS generated by while loops, if-then-else conditionals,

and begin-end blocks is properly contained in this class.

Definition. A diamond consists of two simple directed paths

(a path is simple if no vertex appears in it more than once)

PTHa = pjaj . . . +Z and PTHb = pjb-) “ “ “ +-Z such

that p and z are the only vertices common to both PTH. and

PTHb .

THEOREM 3.1, If epl solves VFreq (G,epl), then E –epl

contains no diamond or directed cycle.

PROOF. If E–epl contains a diamond or a directed cycle,

then it is possible to find two executions of G such that the

frequency of each edge in epl is the same in both execu-

tions, and where there is a vertex v with a different fre-

quency in each execution. Since epl does not distinguish

these two different executions, epl cannot solve

VFreq(G,epl). ❑

COROLLARY 3.2. For any CFG G with weighting W, an

optimal epl solution to VFreq (G,epl) can never cost less

than a minimal cost epl such that E –epl contains no

directed cycle or diamond.

Consider the CFG in Figure 1 and any simple cycle (a

cycle with N vertices is simple if N– 1 of the vertices in the

path representing the cycle are unique) in the graph. The

cycle need not be directed. Each such cycle is either a

directed cycle or a diamond. Let G* represent all CFGS in

which the only simple cycles are directed cycles or dia-

monds. For any CFG G in G * with weighting W, the fol-

lowing two statements are equivalent:

(1) epl is a minimal cost set of edges such that E-epl

contains no directed cycles or diamonds.

(2) E-epl is a maximum spanning tree,

Corollary 3.2, together with this result, implies that for any

CFG G in G* with weighting W, an optimal solution to

VFreq(G,epl) can never be better than an optimal solution

to EFreq (G, epl). Therefore, for this class of CFGS, an

optimal solution to EFreq (G, epl) is an optimal solution to

VFreq(G,epl).

The class of graphs G* contains many examples of

CFGS with multiple exit loops (such as in Figure 1), CFGS

that require gotos, and even some irreducible graphs. The

largest subset of structured CFGS contained in G * are those

CFGS generated by while loops, if-then-else conditionals,

and begin-end blocks. However, in general, CFGS gen-

erated by programs with repeat loops or breaks are not

always members of G *.

To date, we have not found any examples of CFGS gen-

erated by structured programs with multi-exit loops for

which VFreq(G, ep/) betters EFreq(G, epl), Further work

is required to find other classes of CFGS for which the

optimal solutions to these problems are the same.

4. PROGRAM TRACING

Just as a program can be instrumented to record basic block

execution frequency, it also can be instrumented to record

the sequence of basic blocks executed. The tracing prob-

lem is to record enough information about a program’s exe-

cution to be able to reproduce the entire execution. A

straightforward way to solve this problem is to instrument

each basic block so that it writes a unique mark (witness) to

a trace file whenever it executes. In this case, the trace file

need only be read to regenerate the execution. A more

efficient method is to write a witness only at basic blocks

that are targets of predicates [8].

Assuming that there is a standard representation for

witnesses (i.e., a byte, half-word, or word per witness), the

tracing problem can be solved with significantly less time

and storage overhead than either solution by writing

witnesses when edges are traversed (not when vertices are

executed) and carefully choosing the edges that write

witnesses. Section 4.1 formalizes the trace problem for

single-procedure progmms. Section 4.2 considers the com-

plications introduced by multi-procedure programs.

4.1, Single-Procedure Tracing

In this section, assume that basic blocks do not contain any

calls and that the extra edge EXIT-+roor is not included in

the CFG. The set of instrumented edges in the CFG is

denoted by epl. In this application, whenever an edge in

epl is traversed, a “witness” to that edge’s execution is

written to a trace file. No two edges in epl generate the

same witness. The statement of the tracing problem relies

on the following definitions:

Definition. A path in CFG G is witness-free with respect to

a set of edges epl iff no edge in the path is in epl.

Definition. Given a CFG G, a set of edges epl, and edge

p~q where p is a predicate, the witness set (to vertex q) for

predicate p is:
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Execution: P A c P B A c P B c EXIT
AA AA

Trace: t U v EOF

@

P

t

A B
u

v

c

hEXIT

witness(p, A) = { t }

witness(p, B) = { u, v ]

witness(B,A) = { u }

witness(B, C)= { v }

witness(C, P) = { t, u, v }

witness(C, EXIT) = { EOF }

Figure 6. Example of a traced function. Vertices P, B, and C are

predicates. The witnesses are shown by dots along edges. For the
execution shown, the traced generated is (t, U, V, EOF). The wit-
ness EOF is always the last witness in a trace. The execution can

be reconstructed from rhe trace using the witness sets to guide

which branches to take.

witness (G, epl, p, q) =

( w I p~q e epl (and writes witness w) }

u ( w I x +y c epl (and writes witness w)

and 3 witness-free path p+q+ oc“ -+x )
u ( EOF I 3 witness-free path p -+q ~ . s . -+EXZT )

Figure 6 illustrates the above definitions.

Let us examine how the execution in Figure 6 can be

regenerated from its trace. Re-execution starts at predicate

P, the root vertex. To determine the successor of P, we

read witness t from the trace, which is a member of

witness (P,A ) but not of witness (P,B). Therefore, A is the

next vertex in the execution. Vertex C follows A in the

execution as it is the sole successor of A. Since the edge

that produced witness t (P-+A) has been traversed already,

we read the next witness from the trace. Witness u is a

member of wifness (C,P ) but not witness (C, EXIT), so ver-

tex P follows C. At vertex P, witness u is still valid (since

the edge B -+A has not been traversed yet) and determines

B as P’s successor. Continuing in this manner, the original

execution can be reconstructed.

If a witness w is a member of both witness (G, epl, p, a)

and witness (G, epl, p, b), where a # b, then two different
executions of G generate the same trace file, which makes

regeneration based solely on the control-flow and trace

information impossible. For example, in Figure 6, if the

edge P ~A does not generate a witness, then witness (P,A)

= { u, v, EOF } and witness (P,B) = { u, v }. The execu-

tions (P, A, C, P, B, C, EX17) and (P, B, C, EXIT) both

generate the trace (v, IEOF). This motivates our definition

of the tracing problem:

Definition. A set of edges, epl, solves the tracing problem

for CFG G, denoted Trace (G,epl), iff for each predicate p

in G with successors q 1, .... q~, for all pairs (qi, qj) such

that i #j,

witness (G, epl, p, qi) n witness (G, epl, p, qj) = 0

A witness placement epl and an execution EX determine

a trace as follows: let trace_record(EX, epl) = (w ~, .... WJ II

EOF, where wi is the witness generated by the i ‘h edge in

EX that is a member of epl. Given the CFG G, a set of

edges epl that solves Trace (G,epl), and trace_record(EX,

epl), the algorithm in Figure 7 regenerates the execution

EX. The following theorem captures the correetrtess of this

algorithm:

THEOREM 4.1. If epl solves Trace (G,epl) then for any exe-

cution EX of G’, the call regenerate(G, epl,

trace_record(EX, epl)) outputs the execution EX.

~OOF. Omitted. See [1] for details. El

procedure regenerate(G: CFG; epl: set of witness edges;

trace: file of witnesses )

declare
pc, newpc: vertices;

wil: wimess;

begin

pc:= root-vertex(G); wi~:= NULL;
Output;

do
if not IsPrwticate(pc) then

newpc := successor(G, pc);
if wit = NULL and pc--mewpc ~ epl then

wit := read(trace)

fi

etse

if wit = NULL then wit:= read(trace) ti
rmvpc := q such that

wit G witness (G, epl, pc, q)

6

i~pc~newpc G epl then wit := NULL ti
pc := newpc;
Output;

until ( pc = EXIT )

end

Figure 7. Algorithm for regenerating an execution from a trace.
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The following theorem shows that epl solves

Trace (G,epl) exactly when the set of edges E–epl contains

no diamond or directed cycle. This result implies that any

epl that solves EFreq(G,epl) also solves Trace(G,ep/).

Therefore, if the set of edges T is a maximum spanning tree

of G, epl = E –T solves Trace (G,epl). Also, Theorem 3.1

implies that any epl that solves VFreq (G,epl) solves

Trace (G,epl).

THEOREM 4.2, The set E–epl, where E represents the

edges of CFG G and epl c E, contains no directed cycles or

diamonds iff epl solves Trace (G,epl).

~OOF. Omitted. See [1] for details. ❑

Solving Trace (G, epl) so that cost(G,ep/, IV) is minim-

ized (where W is a weighting) is an NP-complete prob-

lem [14]. The reduction is similar to that used to show the

Unconnected Subgraph problem is NP-complete [9], but

is complicated by the fact that a weighting satisfies

Kirchoff’s flow law. However, for any CFG G in G*, an

optimal solution to EFreq (G, epl) is an optimal solution to

Trace (G,epl).

4.2. Multi-Procedure Tracing

Unfortunately, tracing does not extend as easily to multiple

procedures as does profiling. There are several complica-

tions that we illustrate with the CFG in Figure 6. Suppose

that basic block B contains a call to procedure X and execu-

tions proceeds from P to B, where procedure X is called.

After procedure X returns, suppose that C executes. This

call creates problems for the regeneration process since the

witnesses generated by procedure X, possibly an enormous

number of them, precede the witness v in the trace file.

In order to determine which branch of predicate P to

take, the witnesses generated by procedure X must be buf-

fered or witness set information must be propagated inter-

procedurally. The first solution is impractical because

there is no bound on the number of witnesses that may have

to be buffered. The second solution eliminates the possibil-

ity of separate instrumentation and is complicated by multi-

ple calls to the same procedure and by calls to unknown

procedures. Furthermore, if witness numbers are reused in

different procedures, which greatly reduces the amount of

storage needed per witness, then the second approach

becomes even more complicated.

The solution presented in this section places “blocking”

witnesses that prevent all predicates in a CFG from “see-

ing” a basic block that contains a call site or from seeing

the EXIT vertex in that CFG. This ensures that whenever

the regenerator is in CFG G and reads a witness to deter-

mine which branch of a predicate to take, the witness is

guaranteed to have been generated by an edge in G.2

Definition, The set epl has the blocking property for CFG

G iff there is no predicate p in G such that there is a

witness-free path from p to the EXIT vertex or a vertex

containing a call.

Definition. The set ( epl ~, ... . epl~ ) solves the tracing

problem for a set of CFGS ( G ~, .... GM ) iff, for all i, epli

solves Trace (Gi, epli) and epli has the blocking property

for Gi.

The regeneration algorithm in Figure 7 need only be

modified to maintain a stack of currently active procedures:

when the algorithm encounters a call vertex, it pushes the

current CFG name and pc value onto the stack and starts

executing the callee; when the algorithm encounters an

EXIT vertex, it pops the stack and continues executing the

caller from the point of the call.

An easy way to ensure that epl has the blocking property

is to include each incoming edge to a call or EXIT vertex in

epl. Figure 8 illustrates the reasons why this approach is

sulmptimal. These problems can be solved by placing

blocking witnesses as far away as possible from the ver-

tices that they are meant to block. Consider a call vertex v

and any directed path from a predicate p to v such that no

vertex between p and v in the path is a predicate. For any

weighting of G, placing a blocking witness on the outgoing

edge of predicate p in each such path has cost equal to

placing a blocking witness on each incoming edge to v

(since no vertex between p and visa predicate). However,

placing blocking witnesses as far away as possible from v

ensures that no blocking witnesses are redundant. Further-

more, placing the blocking witnesses in this fashion

increases the likelihood that they solve Trace (G,ep/),

In general, it is not always the case that a blocking wit-

ness placement will solve Trace (G, ep/). Therefore, com-

puting epl becomes a two step process: (1) place the block-

ing witnesses; (2) ensure that Trace (G,epl) is solved by

adding edges to epl. The details of the algorithm follow:

‘In some tracing applications, data otlter than witnesses (such as addmsscs) are also

written to the trace file, Vertices in tbe CFG that generate addresses can be blocked

with witnesses so that no address is ever mistakenly read as a witness. It would also

be feasible in this situation to break dte trace file into two files, one for the witnesses

and the other for the addresses, m avoid placing more blceking witness=,
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cost = 9 Cost = 6

t4 +4

Figure 8. Two placements of blocking witrtesses. The dashed

vertices (B, I, and H) are call vertices. In the first subgraph, a

blocking witness is placed on each incoming edge to a call vertex

(black dots). This placement is suboptimal because the witness on

edge H +1 is not needed and because a witness must be added to

edge B +D to solve the tracing problem (white dot). In the

second subgraph, blocking witnesses are placed as far away from

catl vertices as possible, resulting in an optimal placement.

Definition. Let v be a vertex in CFG G. The blocking

edges of v are defined as follows:

blockers(G, v) = { P-MO 1there is a path

p+xo+ “ “ “ +x. where p is a predicate,

v = x., and for 0< i < n, xi is not a predicate )

The first step of the algorithm adds an edge e to (initially

empty) epl whenever e is a member of blockers(G, v) and v

is a call or EXIT vertex. To ensure that epl solves

Trace (G,epl), edges are then added to epl so that E–epl

contains no diamonds or directed cycles. The maximum

spanning tree algorithm, modified so that no edge already

in epl is allowed in the spanning tree, is applied to G. The

edges that are not in the spanning tree are added to epl,

which guarantees that epl solves Trace (G,epl).3

5. PERFORMANCE

This section describes several experiments that demonstrate

that the algorithms presented above significantly reduce the

cost of profiling and tracing real programs.

‘The modified spanning tme algorithm may not actually be able to cxeate a spaming

tree of G bause of the edges already in epl. In this case the algoritlnn simply

identifies the maximal cost set of edges in Ii -epl that conmins no (undirected) cycle.

5.1. Profilhg Performance

We implemented the counter placement algorithm for

profiling in QP, which is a basic block profiler similar to

MIPS’s pixie [20]. Q]? can either insert counters in every

basic block in a program (slow mode) cmalong the subset of

edges identified by our algorithm (quick mode). The algo-

rithm uses a heuristic weighting, based on the assumptions

that (1) each loop iterates ten times, (2) if a loop is entered

N times and has E exit edges then each exit edge gets

weight N/E, and (3) predicates are equally likely to take

any of their non-exit branches (see [1] for details).

We used the SPEC benchmark suite to test QP [3]. This

is a collection of 10 moderately large For@an and C pro-

grams that is widely used to evaluate computer system per-

formance. The progmrns were compiled at a high level of

optimization and the timings were run on a DECstation

5000/200 with 96MB of main memory and local disks.

Table 1 shows the cost of running the benchm&s with

profiling, As can be seen from the “SIOW” and “Quick”

columns, the placement algorithm reduces the overhead of

profiling dramatically, from 11-424% to 9-105%. For-

tunately, the greatest improvements occurred in programs

in which the profiling overhead was largest, since these

programs had more conditioned branches and more oppor-

tunities for optimization. The “Feedback” column shows

that the heuristic weighting is good at identifying regions of

low execution frequency. The times for pixie are less than

the times required by slow QP because pixie rewrites the

program to free 3 registers, which enables it to insert a code

sequence that is abotri half the size of the one used by QP

(6 instructions vs. 11 instructions). In fact, the pixie code

sequence can be reduced to 5 instructions. The column

labeled “Quick+” is the projected time for quick QP

profiling using this 5 instruction code sequence.

Table 2 shows the improvement in another way. It

records the number of counter increments for both Slow

and Quick profiling. For the Fortran programs, the

improvements varied. In programs with large basic blocks

that execute few conditional branches (where profiling was

already inexpensive), improved counter placement did not

have much of an effect on the number of increments or the

cost of profiling. The fpppp benchmark produced an

interesting result. While it showed the greatest reduction in

counter increments, the overhead for measuring every basic

block was quite low at 36?Z0 and the average dynamic basic

block size was 101. This implies that large basic blocks

dominated the execution of fpppp. Thus, even though

many basic blocks of smaller size executed (which yielded
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SPEC

Benchmark

gcc (c)

espresso (C)

spice

doduc

nasa7

Ii (C)

eqntott (C)

matrix300

fpppp

tomcatv

slow Quick

(sec.) % (sec.) %

32.2 222.0 19.5 95.0

71.5 177.1 45.6 76.7

379.9 62.7 320.7 37.3

197.5 56.6 142.6 13.1

1,045.9 15.7 1,025.9 13.5

945.9 218.9 553.6 86.6

313.1 423.6 122.5 104.8

311.5 13.6 308.8 12.6

240.2 36.2 199.7 13.2

179.4 10.7 176.6 8.9

Feedback

(sec.) %

16.1 61.0

41.0 58.9

327.3 40.2

136.7 8.4

1023.5 13.2

498.4 68.0

121.6 103.3

311.0 13.4

198.8 12.7

172.9 6.7

Pixie

(sec.) %

24.5 145.0

52.6 103.9

320.8 37.4

180.1 42.8

992.4 9.8

808.2 172.5

178.7 198.8

292.4 6.6

207.2 17.5

176.4 8.8

Quick+

(sec.) %

14.3 43.2

34.8 34.9

273.1 17.0

133.6 5.9

959.3 6.1

413.4 39.4

88.3 47.7

290.0 5.7

187.0 6.0

168.7 4.1

Table 1. Cost of profiling. For Slow profiling, QP inserts a counter in each basic block. For Quick profiling, QP inserts a counter along
selected edges. The column labeled Feedback shows the profiling overhead when the algorithm used an exact weighting from a previous

run with identical input. Pixie is a MIPS utility that inserts a counter in each basic block. Quick+ is the time that Quick profiling would re-

quire if QP used the efficient pixie counter instruction sequence. The columns labeled YO show the additional cost of profiling, with respect

to the unprofiled program’s execution time.

SPEC

Benchmark

gcc (c)

espresso (C)

spice

doduc

nasa7

li (C)

eqntott (C)

matrix300

fpppp

tomcatv

slow

27,149,754

91,259,523

308,194,784

130,897,009

298,530,617

1,208,747,235

465,938,460

60,035,631

25,932,871

35,012,274

Counter Increments

Quick Slowl

Quick

8,458,003 3.2

33,139,589 2.8

180,543,666 1.7

45,651,338 2.9

254,628,038 1.2

413,622,801 2.9

114,410,157 4.1

54,951,383 1.1

6,186>762 4.2

27,762,776 1.3

Feedback Slowi

Feedback

5,324,315 5.1

27,247,737

172,595,830

35,920,460

251,638,412

289,473,770

112,562,938

54,947,186

4,098,093

21,254,823

3.3

1.8

3.6

1.2

4.2

4.1

1.1

6.3

1.6

Dynamic

Block

Size

4.6

5.0

10.6

11.2

30.2

4.1

2.3

46.1

100.8

56.3

Table 2. Reduction in counter increments due to orXimized counter ulacement. The column labeled Slow is the number of increments in

basic blocks. The column labeled Quick is the nu~ber of increments’ along edges chosen by the placement algorithm guided by the heuris-

tic weighting described above. The column labeled Feedback records the number of increments using an exact weighting from a previous

run with identical input. The last column is the average dynamic basic block size.

the reduction in counter increments), they contributed little exact weighings was usually small.

to the running time of the program. The FORTRAN pro- The cost of modifying a program to place counters along
gram doduc, while it has a dynamic block size of 11

edges was a factor of two times higher than placing
instructions, has “an abundance of short branches” [3] that

accounts for its reduction in counter increments. The
counters in each basic block, primarily because of the addi-

decrease in run time overhead for doduc was substantial at
tional work required to compute a program’s control-flow

57%-13~o.
graph and to determine counter placement.

For programs that frequently executed conditional 5.2. Tracing Performance

branches, the improvements were large. For the 4 C pro- The witness placement algorithm was also implemented
grams (gee, espresso, /i, and eqnrort), the placement algo- in the AE program tracing system [8]. AE originally
rithm reduced the number of increments by a factor of 3-4 recorded the outcome of each conditional branch and used
and the overhead by a factor of 2-4. this record to regenerate a full control-flow trace. One

Table 2 also demonstrates that the heuristic weighting complication is that AE traces both the instruction and data

algorithm is good. As can be seen from the “Feedback” references so a trace file contains information to

column, the difference in cost between the heuristic and
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Program Old File New File Old/ Old Trace New Trace Old/ Old Run

5

New Run Old/

(bytes) (bytes) New (bytes) (bytes) New (sec.) (S12C.) New

compress 6,026,198 4,691,816 1.3 2,760,522 926,180 3.0 6.6 :5.4 1.2

sgefa 1,717,923 1,550,131 1.1 1,298,882 1,131,091 1.2 4.1 4.5 0.9

polyd 19,509,062 16,033,055 1.2 5,523,958 2,047,951 2.7 19.0 15.5 1!2

PdP 11,314,225 10,875,475 1.0 1,496,013 1,057,263 1.4 10.4 9.2 1.1

Table 3. Improvement in the AE program tracing system from placing witnesses along edges. Old refers to the originat version of AE,
which recorded the outcome of every conditional branch. New refers to the improved version of AE, which uses witnesses. File refers to

the total size of the recorded information, which includes both witness and data references. Trace refers to the total size of the witness in-

formation.

reconstruct data addresses as well as the witnesses. The

combined file requires the changes to the placement algo-

rithm described in Section 4.2.

Table 3 shows the reduction in total file size (“File”),

witness trace size (“Trace”), and execution time that result

from switching from the original algorithm of recording

each conditional (“Old”) to a witness placement (“New”).

As with the profiling results, the programs with regulm

control-flow, sgefa and pdp, do not gain much from the

new tracing algorithm. For the programs with more com-

plex control-flow, compress and polyd, the new algorithm

reduces the number of witnesses by a factor of 3 and 2.7

times.

6. RELATED WORK

This section describes related work on efficiently profiling

and tracing programs.

Edge-Frequency/Edge-Placement

The solution to EFreq(G,epl) has been around for quite

some time. In the area of network programming, the prob-

lem is known as the specialization of the simplex method to

the network program [6]. The spanning tree solution is also

discussed in [7, 15], among other places.

Samples considers a refinement of EFreq (G,epl) where

the cost function models the fact that a jump may have to

be inserted into the profiled program when placing a

counter on an edge [17].

Sarkar describes how to choose profiling points using

control dependence and has implemented a profiling tool

for the PTRAN system [18]. His algorithm finds a

minimum size epl that solves EFreq (G,ep/) based on a

variety of rules about control dependence, as opposed to

the spanning tree approach. There are several other major

differences between his work and the work reported here:

(1) The algorithm only works for a subclass of reducible

CFGS; (2) The algorithm does not use a weighting to place

counters at points of lower execution frequent y. As a

result, the algorithm may produce a suboptimal solution

such as that in case (a) of Figure 3; (3) When the bounds of

a DO loop are constants, the algorithm will eliminate the

loop iteration counter.

Vertex-Frequency/Vertex-Placement

Knuth and Stevenson exactly characterize when a set of

vertices vpl solves V,Freq (G ,vpl) and. show how to com-

pute a minimum size vpl that solves VFreq(G,vpO [71.

They construct a graph G’ from CFG G such that vpl solves

VFreq(G,vpl) iff epl’ solves EFreq(G’,epl’), where vpl can

be derived easily from epl’. The authors note that their

algorithm can be modified to compute a minimum cost vpl

solution to VFreq (G,vpl) given a set of measured or

guessed vertex frequencies. As this paper shows, if counter

placement is restricted to vertices, a minimum cost solution

to the vertex frequency problem cannot always be found.

Edge-Frequency/Vertex-Placement

Probert discusses the problem of solving EFreq(G,vp/),

which is not always possible in general [15], Using graph

grammars, he characterizes a set of “well-delimited” pro-

grams for which EFreq(G,vpl) can always be solved. This

class of graphs arises by introducing “delimiter” vertices

into well-structured programs. Probert is also concerned

with finding a minimat number of vertex measurement

points as opposed to a minimal cost set of measurement

points.

The Tracing Problem

Ramamoorthy, Kim, and Chen consider how to instrument

a single-procedure program with a minimal number of

monitors so that the maversal of any lpath through the pro-

gram may be ascertained after an execution [16]. This is

equivalent to the tracing problem for single-procedure pro-

grams discussed here. The authors do not give an algo-

rithm for reconstructing an execution from a trace or con-

sider how to trace multi-procedure prclgrams.

The authors are interested in finding a minimal size solu-

tion to Trace (G,epl), an NP-complete problem [91.
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However, a minimum size solution does not necessarily

yield a minimum cost solution, as case (a) of Figure 3 illus-

trates.

7. SUMMARY AND FUTURE WORK

This paper introduced algorithms for efficiently profiling

and tracing programs. These algorithms optimize place-

ment of instrumentation code with respect to a weighting of

the control-flow graph. The placements for a large class of

graphs are optimal, but there exist programs for which the

algorithms produce suboptimal results.

Many interesting questions remain open. First, is there

an efficient algorithm to optimally solve the vertex fre-

quency by instrumenting edges? Second, are there other

classes of graphs for which an optimal solution to the edge

frequency problem also optimaly solves the vertex fre-

quency or tracing problem? Finally, can better weighting

approximation algorithms be found?

The profiling and tracing algorithms have been imple-

mented in a tool called QP and the tracing algorithm is part

of the AE tracing system [8]. Both tools run on several

machines and are available from James Lams.
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