
Predicate Logic

Example:

All men are mortal.

Socrates is a man.

··· Socrates is mortal.

Note: We need logic laws that work for statements involving quan-

tities like “some” and “all”.

In English, the predicate is the part of the sentence that tells you

something about the subject.
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More on predicates

Example: Nate is a student at UT.

What is the subject? What is the predicate?

Example: We can form two different predicates.

Let P(x) be “x is a student at UT”.

Let Q(x, y) be “x is a student at y”.

Definition: A predicate is a property that a variable or a finite

collection of variables can have. A predicate becomes a proposition

when specific values are assigned to the variables. P(x1, x2, ..., xn) is

called a predicate of n variables or n arguments.

Example: She lives in the city.

P(x,y): x lives in y.

P(Mary, Austin) is a proposition: Mary lives in Austin.

Example: Predicates are often used in if statements and loop con-

ditions.

if(x > 100)

then y:= x ∗ x

predicate T(x): x > 100
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Domains and Truth Sets

Definition: The domain or universe or universe of dis-

course for a predicate variable is the set of values that may be

assigned to the variable.

Definition: If P(x) is a predicate and x has domain U, the truth

set of P(x) is the set of all elements t of U such that P(t) is true, ie

{t ∈ U |P (t) is true}

Example: U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

P(x): “x is even”.

The truth set is: {2, 4, 6, 8, 10}
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The Universal Quantifier: ∀

Turn predicates into propositions by assigning values to all variables:

Predicate P(x): “x is even”

Proposition P(6): “6 is even”

The other way to turn a predicate into a proposition: add a quan-

tifier like “all” or “some” that indicates the number of values for

which the predicate is true.

Definition: The symbol ∀ is called the universal quantifier.

The universal quantification of P(x) is the statement “P(x) for

all values x in the universe”, which is written in logical notation as:

∀xP (x) or sometimes ∀x ∈ D, P (x).

Ways to read ∀xP (x):

For every x, P(x)

For every x, P(x) is true

For all x, P(x)
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More on the universal quantifier

Definition: A counterexample for ∀xP (x) is any t ∈ U , where

U is the universe, such that P(t) is false.

Some Examples

Example: P(x, y): x + y = 8

Assign x to be 1, and y to be 7. We get proposition P(1, 7) which is

true.

Proposition P(2, 5) is false since 2 + 5 6= 8.

Example: ∀x[x ≥ 0]

U = N (non-negative integers)

We could re-write this proposition as: ∀x ∈ N, x ≥ 0

Is the proposition true?

What if the universe is R?

Example: ∀x∀y[x + y > x]

Is this proposition true if:

1. If U = N?

2. If U = R?

Example: ∀x∀y[x > y]

True if:

universe for x = the non-negative integers

universe for y = the non-positive integers
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The Existential Quantifier: ∃

Definition: The symbol ∃ is call the existential quantifier and

represents the phrase “there exists” or “for some”. The existential

quantification of P(x) is the statement “P(x) for some values x in

the universe”, or equivalently, “There exists a value for x such that

P(x) is true”, which is written ∃xP (x).

Note: If P(x) is true for at least one element in the domain, then

∃xP (x) is true. Otherwise it is false.

Note: Let P(x) be a predicate and c ∈ U (U = domain).

The following implications are true:

∀xP (x)→ P (c)

P (c)→ ∃xP (x)

Example: ∃x [x is prime] where U = Z

Is this proposition true or false?

Example: ∃x[x2 < 0] where U = R

True or false?

Exercises: True or false? Prove your answer.

1. ∃n[n2 = n] where U = Z.

2. ∃n[n2 = n] where U = {4, 5, 6, 7}.
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Translating Quantified Statements

Translate the following into English.

1. ∀x[x2 ≥ 0] where U = R.

2. ∃t[(t > 3) ∧ (t3 > 27)] where U = R.

3. ∀x[(2|x) ∨ (2 6 |x)] where U = N

Translate the following into logic statements.

1. There is an integer whose square is twice itself.

2. No school buses are purple.

3. If a real number is even, then its square is even.

Note: Let U = {1, 2, 3}.

Proposition ∀xP (x) is equivalent to P (1) ∧ P (2) ∧ P (3).

Proposition ∃xP (x) is equivalent to P (1) ∨ P (2) ∨ P (3).
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Bound and Free Variables

Definition: All variables in a predicate must be bound to turn a

predicate into a proposition. We bind a variable by assigning it a

value or quantifying it. Variables which are not bound are free.

Note: If we bind one variable in a predicate P (x, y, z) with 3

variables, say by setting z = 4, we get a predicate with 2 variables:

P (x, y, 4).

Example: Let U = N.

P (x, y, z) : x + y = z ← 3 free variables

Let Q(y, z) = P (2, y, z) : 2 + y = z ← 2 free variables
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Examples with Quantifiers

Example: U = Z

N(x): x is a non-negative integer

E(x): x is even

O(x): x is odd

P(x): x is prime

Translate into logical notation.

1. There exists an even integer.

2. Every integer is even or odd.

3. All prime integers are non-negative.

4. The only even prime is 2.

5. Not all integers are odd.

6. Not all primes are odd.

7. If an integer is not odd, then it is even.
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Examples with Nested Quantifiers

Note about nested quantifiers: For predicate P (x, y):

∀x∀yP (x, y) has the same meaning as ∀y∀xP (x, y).

∃x∃yP (x, y) has the same meaning as ∃y∃xP (x, y).

We can not interchange the position of ∀ and ∃ like this!

Example: U = set of married people. True or false?

1. ∀x∃y[x is married to y]

2. ∃y∀x[x is married to y]

Example: U = Z. True or false?

1. ∀x∃y[x + y = 0]

2. ∃y∀x[x + y = 0]

Exercise: U = N.

L(x, y) : x < y

S(x, y, z): x + y = z

P (x, y, z) : xy = z

Rewrite the following in logic notation.

1. For every x and y, there is a z such that x + y = z.

2. No x is less than 0.

3. For all x, x + 0 = x.

4. There is some x such that xy = y for all y.
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Negating Quantified Statements

Precedence of logical operators

1. ∀, ∃

2. ¬

3. ∧,∨

4. →,↔

Example: Statement: “All dogs bark.”

Negation: “One or more dogs do not bark” or “some dogs do not

bark”.

NOT “No dogs bark”.

If at least one dog does not bark, then the original statement is false.

One example of DeMorgan’s laws for quantifiers:

¬∀xP (x) ≡ ∃x¬P (x)

Example: Some cats purr.

Negation: No cats purr.

I.e., if it is false that some cats purr, then no cat purrs.

DeMorgan’s laws for quantifiers:

¬∀xP (x) ≡ ∃x¬P (x)

¬∃xP (x) ≡ ∀x¬P (x)
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More Examples - Negating Statements with

Quantifiers

Example: Write the statements in logical notation.Then negate the

statements.

1. Some drivers do not obey the speed limit.

2. All dogs have fleas.

Example: Using DeMorgan’s laws to push negation through mul-

tiple quantifiers:

¬∃x∀y∀zP (x, y, z) ≡ ∀x¬∀y∀zP (x, y, z)

≡ ∀x∃y¬∀zP (x, y, z)

≡ ∀x∃y∃z¬P (x, y, z).

Example: Write the following statement in logical notation and

then negate it.

For every integer x and every integer y, there exists an integer z such

that y − z = x.

Logical notation:

Negation (apply DeMorgan’s laws):

Let U = N. Show the original statement is false by showing the

negation is true.
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Some Definitions

Definition: Let U be the universe of discourse and P (x1, ..., xn) be

a predicate. If P (x1, ..., xn) is true for every choice of x1, ..., xn ∈ U ,

then we say P is valid in universe U . If P (x1, ..., xn) is true for

some (not necessarily all) choices of arguments from U , then we say

that P is satisfiable in U . If P is not satisfiable in U , we say P is

unsatisfiable in U .

Definition: The scope if a quantifier is the part of a statement in

which variables are bound by the quantifier.

Example: R ∨ ∃(P (x) ∨Q(x))

Scope of ∃: P (x) ∨Q(x).

Note: We can use parentheses to change the scope, but otherwise

the scope is the smallest expression possible.

Example: ∀xP (x) ∧Q(x)

Scope of ∀: P (x).

Note that this is a predicate, not a proposition, since the variable in

Q(x) is not bound. It is confusing to have 2 variables which are both

denoted x. Rewrite as: ∀xP (x) ∧Q(z).
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Quantifiers plus ∧ and ∨

Example: ∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x) (That is, no matter what
the domain is, these two propositions always have the same truth value)

Proof: at end of notes, after some required techniques are discussed.

Terminology: We say that ∀ distributes over ∧

This shouldn’t be surprising, since we know that for a finite domain, say
{1,2,3}, ∀xP (x) ≡ P (1)∧P (2)∧P (3). We also know that ∧ is commutative
and associative, so:

∀x ∈ {1, 2, 3}(P (x) ∧ Q(x))
≡ (P (1) ∧ Q(1)) ∧ (P (2) ∧ Q(2)) ∧ (P (3) ∧ Q(3)) {for this example domain}
≡ (P (1)∧P (2)∧P (3))∧(Q(1)∧Q(2)∧Q(3)) {∧ commutativity/associativity}
≡ ∀x ∈ {1, 2, 3}P (x) ∧ ∀x ∈ {1, 2, 3}Q(x) {for this specific example}

Though this is only an example domain, the intuition extends to other
domains as well, including infinite domains.
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Distributing ∃ over ∧

Note: The existential quantifier ∃ does not distribute over ∧. That

is, ∃x(P (x) ∧ Q(x)) 6≡ ∃xP (x) ∧ ∃xQ(x).

Proof: We must find a counterexample - a universe and predicates

P and Q such that one of the propositions is true and the other is

false.

Let U = N. Set P(x): “x is prime” and Q(x): “x is composite” (ie

not prime). Then ∃x(P (x) ∧ Q(x)) is false, but ∃xP (x) ∧ ∃xQ(x)

is true. �

Note: The following is true though:

∃x(P (x) ∧ Q(x)) → ∃xP (x) ∧ ∃xQ(x).

Proof: exercise

Note: With ∨, the situation is reversed. ∃ distributes over ∨, but

∀ does not.
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Distributing the Existential Quantifier

Recall: ∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x)

This rule holds for arbitrary P and Q. Replace P by ¬S and Q by

¬R and negate both sides to see that:

∃x(S(x) ∨ R(x)) ≡ ∃xS(x) ∨ ∃xR(x).

Exercise: Show that

1. (∀xP (x) ∨ ∀xQ(x)) → ∀x(P (x) ∨ Q(x)) is true.

2. ∀xP (x) ∨ ∀xQ(x) 6≡ ∀x(P (x) ∨ Q(x))
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∃ does not distribute over →

Note: ∃ does not distribute over →. I.e.,

∃x(P (x) → Q(x)) 6≡ ∃xP (x) → ∃xQ(x).

Proof:

∃x(P (x) → Q(x)) ≡ ∃x(Q(x) ∨ ¬P (x)) by implication

≡ ∃xQ(x) ∨ ∃x¬P (x) by distributivity of ∃ over ∨

≡ ∃xQ(x) ∨ ¬∀xP (x) by DeMorgan’s law

≡ ∀xP (x) → ∃xQ(x) by implication law

So we need to show that ∀xP (x) → ∃xQ(x) is not logically equiv-

alent to ∃xP (x) → ∃xQ(x). Note that if ∃xQ(x) is false, ∀xP (x)

is false, and ∃xP (x) is true, then we would have a counterexample,

since one of the implications is true and the other is false. So let

U = N, and set P(x) to be “x is even” and Q(x) to be “x is nega-

tive”. In this case ∀xP (x) → ∃xQ(x) and ∃xP (x) → ∃xQ(x) have

different truth values.
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Logical Relationships with Quantifiers

Law Name

¬∀xP (x) ≡ ∃x¬P (x) DeMorgan’s laws for quantifiers

¬∃xP (x) ≡ ∀x¬P (x)

∀xP (x) ∧ ∀xQ(x) ≡ ∀x(P (x) ∧ Q(x)) distributivity of ∀ over ∧

∃x(P (x) ∨ Q(x)) ≡ ∃xP (x) ∨ ∃xQ(x) distributivity of ∃ over ∨
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Compact Notation

Example: For every x > 0, P(x) is true.

Current notation: ∀x[(x > 0) → P (x)].

More compact notation: ∀xx>0P (x) (or ∀x > 0, P (x)).

Example: There exists an x such that x 6= 0 and P(x) is true.

Compact notation: ∃xx6=0P (x), instead of ∃x[(x 6= 0) ∧ P (x)]. The

compact notation is more readable.

Example:

Definition: The limit of f(x) as x approaches c is k (denoted

limx→cf(x) = k) if for every ε > 0, there exists δ > 0 such that for

all x, if |x − c| < δ, then |f(x) − k| < ε.

Notation: limx→cf(x) = k if ∀εε>0∃δδ>0∀x[|x − c| < δ →

|f(x) − k| < ε].
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Arguments with Quantified Statements

Rules of Inference with Quantifiers

Rule of Universal Instantiation

∀xP (x)

···P (c) (where c is some element of P’s domain)

Example: U = all men

All men are mortal.

Dijkstra is a man.

···Dijkstra is mortal.

P(x): x is mortal.

Argument:

∀xP (x)

···P(Dijkstra)
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Universal Modus Ponens

∀x(P (x) → Q(x))

P (c)

···Q(c)

Example:

All politicians are crooks.

Joe Lieberman is a politician.

··· Joe Lieberman is a crook.

P(x): x is a politician, Q(x): x is a crook, U =all people.

Example: If x is an even number, then x2 is an even number.

206 is an even number.

··· 2062 is an even number.
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Universal Modus Tollens

∀x(P (x) → Q(x))

¬Q(c)

··· ¬P (c)

Example:

All dogs bark.

Otis does not bark.

···Otis is not a dog.

U = all living creatures, P(x): x is a dog, Q(x): x barks.
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Universal Hypothetical Syllogism

∀x(P (x) → Q(x))

∀x(Q(x) → R(x))

··· ∀x(P (x) → R(x))

Example:

If integer x is even, then 2x is even.

If 2x is even, then 4x2 is even.

··· If x is even, then 4x2 is even.
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Universal Generalization

Universal Generalization:

P (c) for arbitrary c ∈ U

———————————
∴ ∀xP (x)

Example: For an arbitrary real number x, x2 is non-negative. Therefore,
the square of any real number is non-negative.

Note: We will be using this rule a lot. We use it to prove statements of the
form ∀xP (x). We assume that some c is an arbitrary element of the domain,
and prove that P (c) is true. Then we use the rule of Universal Generalization
to conclude that ∀xP (x).

Prove: The square of every even integer n is even.
Formally: ∀n ∈ Z[(n is even) → (n2 is even)]
Proof:

1. Let n ∈ Z {n is an arbitrary integer}
2. Assume n is even {Premise}
3. ∃k ∈ Z(n = 2k) {Definition of even}
4. ∃k ∈ Z(n2 = (2k)2) {Square both sides of equation}
5. ∃k ∈ Z(n2 = 2(2k2)) {Simplify, Factor out 2}
6. ∃q ∈ Z(n2 = 2q) {q = 2k2, q ∈ Z because Z is closed under multiplication}
7. n2 is even {Definition of even}
8. We have proven (n is even) → (n2 is even)
9. ∴ ∀n ∈ Z[(n is even) → (n2 is even)] {Universal Generalization: 1,8}
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Existential Instantiation and Existential Generalization

Existential Instantiation

∃xP (x)

·
·
·P(c) for some c

Existential Generalization

P(c) for some element c

·
·
· ∃xP (x)
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Arguments with Quantifiers

Def: An argument with quantifiers is valid if the conclusion is true

whenever the premises are all true.

Example: A horse that is registered for today’s race is not a

throughbred. Every horse registered for today’s race has won a race

this year. Therefore a horse that has won a race this year is not a

thoroughbred.

P(x): x is registered for today’s race.

Q(x): x is a thoroughbred.

R(x): x has won a race this year.

U = all horses

∃x(P (x) ∧ ¬Q(x))

∀x(P (x) → R(x))

·
·
· ∃x(R(x) ∧ ¬Q(x))

Proof:
Step Reason

1. ∃x(P (x) ∧ ¬Q(x)) premise

2. P (a) ∧ ¬Q(a) for some a step 1, existential instantiation

3. P (a) simplification, step 2

4. ∀x(P (x) → R(x)) premise

5. P (a) → R(a) universal instantiation, step 4

6. R(a) modus ponens, steps 3 and 5

7. ¬Q(a) step 2, simplification

8. R(a) ∧ ¬Q(a) conjunction, steps 6 and 7

9. ∃x(R(x) ∧ ¬Q(x)) existential generalization, step 8
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More Proofs

Prove: ∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x) (from earlier in notes)
Recall: Two formulas are “equivalent” if replacing the ≡ symbol with a ↔
(bi-conditional) results in a tautology, i.e. a formula that is always true. So,
we want to show that ∀x(P (x)∧Q(x))↔ ∀xP (x)∧∀xQ(x) is true. This can
be accomplished with two inference proofs.

(→) Prove ∀x(P (x) ∧Q(x))→ ∀xP (x) ∧ ∀xQ(x)
1. ∀x(P (x) ∧Q(x)) {Premise}
2. Let c ∈ U {c is an arbitrary member of the universe}
3. P (c) ∧Q(c) {Universal instantiation: 1,2}
4. P (c) {Simplification: 3}
5. ∀xP (x) {Universal Generalization: 2,4 (because c was arbitrary)}
6. Q(c) {Simplification: 3}
7. ∀xQ(x) {Universal Generalization: 2,6 (because c was arbitrary)}
8. ∀xP (x) ∧ ∀xQ(x) {Conjunction: 5,7}
Therefore ∀x(P (x) ∧Q(x))→ ∀xP (x) ∧ ∀xQ(x) �

(←) Prove ∀xP (x) ∧ ∀xQ(x)→ ∀x(P (x) ∧Q(x))
1. ∀xP (x) ∧ ∀xQ(x) {Premise}
2. Let c ∈ U {c is an arbitrary member of the universe}
3. ∀xP (x) {Simplification: 1}
4. P (c) {Universal instantiation: 2,3}
5. ∀xQ(x) {Simplification: 1}
6. Q(c) {Universal instantiation: 2,5}
7. P (c) ∧Q(c) {Conjunction: 4,6}
8. ∀x(P (x)∧Q(x)) {Universal Generalization: 2,7 (because c was arbitrary)}
Therefore ∀xP (x) ∧ ∀xQ(x)→ ∀x(P (x) ∧Q(x)) �
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Proving ∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x), continued

Now we have two separate proofs, which can be used to prove the original
equivalence:
1. ∀x(P (x) ∧Q(x))→ ∀xP (x) ∧ ∀xQ(x) {Proven}
2. ∀xP (x) ∧ ∀xQ(x)→ ∀x(P (x) ∧Q(x)) {Proven}
3. (∀x(P (x) ∧Q(x))→ ∀xP (x) ∧ ∀xQ(x))∧

(∀xP (x) ∧ ∀xQ(x)→ ∀x(P (x) ∧Q(x))) {Conjunction: 1,2}
4. ∀x(P (x) ∧Q(x))↔ ∀xP (x) ∧ ∀xQ(x) {Equivalence/Biconditional: 3}

Since we have proven that ∀x(P (x) ∧ Q(x)) ↔ ∀xP (x) ∧ ∀xQ(x) is true,
can also say that ∀x(P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x), thus completing our
proof.

In fact, these last few steps are so common that they are generally left out
of any proof of the form A↔ B (more on this later).
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P ≡ P ∧ P Idempotence of ∧
P ≡ P ∨ P Idempotence of ∨
P ∧ Q ≡ Q ∧ P Commutativity of ∧
P ∨ Q ≡ Q ∨ P Commutativity of ∨
(P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R) Associativity of ∧
(P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R) Associativity of ∨
¬(P ∧ Q) ≡ ¬P ∨ ¬Q De Morgan’s Laws
¬(P ∨ Q) ≡ ¬P ∧ ¬Q

P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R) Distributivity of ∧ over ∨

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) Distributivity of ∨ over ∧

P ∧ F ≡ F ∧ Domination
P ∨ T ≡ T ∨ Domination
P ∧ T ≡ P ∧ Identity
P ∨ F ≡ P ∨ Identity
P ∧ ¬P ≡ F ∧ Negation
P ∨ ¬P ≡ T ∨ Negation
¬¬P ≡ P Double Negation
P ∧ (P ∨ Q) ≡ P Absorbtion Laws
P ∨ (P ∧ Q) ≡ P

P → Q ≡ ¬P ∨ Q Implication
P → Q ≡ ¬Q → ¬P Contrapositive
P ↔ Q ≡ (P → Q) ∧ (Q → P ) Equivalence/Biconditional
(P ∧ Q) → R ≡ P → (Q → R) Exportation
¬∀xP (x) ≡ ∃x¬P (x) De Morgan’s Laws for Quantifiers
¬∃xP (x) ≡ ∀x¬P (x)
∀xP (x) ∧ ∀xQ(x) ≡ ∀x(P (x) ∧ Q(x)) Distributivity of ∀ over ∧

∃xP (x) ∨ ∃xQ(x) ≡ ∃x(P (x) ∨ Q(x)) Distributivity of ∃ over ∨

[P → Q] ∧ [P ] ⇒ Q Modus ponens
[P → Q] ∧ [¬Q] ⇒ ¬P Modus tollens
[P → Q] ∧ [Q → R] ⇒ (P → R) Hypothetical syllogism
[P ∨ Q] ∧ [¬P ] ⇒ Q Disjunctive syllogism
[P ] ⇒ P ∨ Q Addition
[P ∧ Q] ⇒ P Simplification
[P ] ∧ [Q] ⇒ P ∧ Q Conjunction (Adding a premise)
[P ∨ Q] ∧ [¬P ∨ R] ⇒ Q ∨ R Resolution
[P → Q] ∧ [R → S] ∧ [P ∨ R] ⇒ Q ∨ S Constructive dilemma
[P → Q] ∧ [R → S] ∧ [¬Q ∨ ¬S] ⇒ ¬P ∨ ¬R Destructive dilemma
[∀x ∈ UP (x)] ∧ [c ∈ U ] ⇒ P (c) Universal instantiation
[∀x(P (x) → Q(x))] ∧ [P (c)] ⇒ Q(c) Universal modus ponens
[∀x(P (x) → Q(x))] ∧ [¬Q(c)] ⇒ ¬P (c) Universal modus tollens
[∀x(P (x) → Q(x))] ∧ [∀x(Q(x) → R(x))] ⇒ ∀x(P (x) → R(x)) Universal hypothetical syllogism
[P (c) for arbitrary c ∈ U ] ⇒ [∀x ∈ UP (x)] Universal generalization
[∃x ∈ UP (x)] ⇒ P (c) for some c ∈ U Existential instantiation
[P (c)] ∧ [c ∈ U ] ⇒ ∃x ∈ UP (x) Existential generalization


