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Parallel@Illinois: Pioneering and Promoting Parallel Computing
Illinois history in parallel computing stretches more than 40 years. From the first academic parallel super-
computer, the ILLIAC IV started in 1964, to today’s work to install the first petascale computer, Blue Waters, 
Illinois has defined the landscape of parallel computing. Contributions from past and current Illinois faculty 
include:

•	 ILLIAC
•	 CEDAR	
•	 Illinois	Cache	Coherence	(MESI)	Protocol
•	 OpenMP
•	 MPI
•	 Path	Pascal
•	 Actors
•	 Java	and	C++	memory	models
•	 Compilers	and	auto-parallelization	techniques—Analyzer,	Polaris,	Parafrase,	IMPACT,	LLVM
•	 Race	detection	techniques
•	 Parallel	runtime	systems—Chare	Kernel,	Charm++
•	 IBM/DARPA	PERCS—a	precursor	to	IBM’s	Power	7
•	 AVIO	to	detect	atomicity	violations	
•	 Parallel	programming	patterns

Today,	parallel	computing	at	Illinois	spans	mobile	and	desktop	client	computing	at	the	Universal	Paral-
lel	Computing	Research	Center	(UPCRC—www.upcrc.illinois.edu),	cloud	computing,	and	petascale	
supercomputing. The work includes long-term research, education, and one-of-a-kind testbed installation, 
including the world’s largest academic supercomputer. 

Excellence in parallel computing at Illinois is a collaborative effort that transcends disciplinary boundaries. 
The Coordinated Science Laboratory, Department of Computer Science, Department of Electrical and Com-
puter	Engineering,	and	the	National	Center	for	Supercomputing	Applications	(NCSA)	work	together	and	
in conjunction with faculty and researchers across the entire campus, including chemists, biologists, artists, 
structural engineers, humanities experts, economists, and more.

Parallel@Illinois	(www.parallel.illinois.edu)	is	the	collective	representation	of	Illinois’	current	efforts	in	
parallel computing research and education. These include:

•	 Universal	Parallel	Computing	Research	Center
•	 Blue	Waters
•	 Gigascale	Systems	Research	Center
•	 Cloud	Computing	Testbed
•	 CUDA	Center	of	Excellence
•	 Institute	for	Advanced	Computing	Applications	and	Technologies	
•	 OpenSPARC	Center	of	Excellence

http://www.upcrc.illinois.edu
http://www.parallel.illinois.edu


4 PARALLEL@ILLInoIS–UPCRC AgEnDA

This paper represents the vision and research agenda of the Universal Parallel Computing 
Research Center at the University of Illinois at Urbana-Champaign. The UPCRC gratefully 
acknowledges	 the	sponsorship	of	 Intel	and	Microsoft	Corporations	 for	much	of	 this	
research.

We	would	like	to	thank	Bill	Gropp,	Mike	Heath,	and	Jim	Larus	for	their	comments	on	this	
paper.

We welcome your feedback on this paper. Comments and suggestions can be sent to 
community@upcrc.illinois.edu or posted at www.upcrc.illinios.edu/whitepaper.html. An 
electronic version of this paper is also available at this URL.
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1 Introduction
For	many	decades,	Moore’s	law	has	bestowed	a	wealth	of	transistors	that	hardware	designers	and	compiler	
writers	have	converted	to	usable	performance,	without	changing	the	sequential	programming	interface.	The	
main	techniques	for	these	performance	benefits—increased	clock	frequency	and	smarter	but	increasingly	
complex	architectures—are	now	hitting	the	so-called	power	wall.	The	computer	industry	has	accepted	that	
future	performance	increases	must	largely	come	from	increasing	the	number	of	processors	(or	cores)	on	a	die,	
rather than making a single core go faster. This historic shift to multicore processors changes the programming 
interface	by	exposing	parallelism	to	the	programmer,	after	decades	of	sequential	computing.

Parallelism	has	been	successfully	used	in	many	domains	such	as	high	performance	computing	(HPC),	servers,	
graphics accelerators, and many embedded systems. The multicore inflection point, however, affects the entire 
market, particularly the client space, where parallelism has not been previously widespread. Programs with 
millions	of	lines	of	code	must	be	converted	or	rewritten	to	take	advantage	of	parallelism;	yet,	as	practiced	
today, parallel programming for the client is a difficult task performed by few programmers. Commonly used 
programming models are prone to subtle, hard to reproduce bugs, and parallel programs are notoriously hard 
to	test	due	to	data	races,	non-deterministic	interleavings,	and	complex	memory	models.	Mapping	a	parallel	
application	to	parallel	hardware	is	also	difficult	given	the	large	number	of	degrees	of	freedom	(how	many	
cores	to	use,	whether	to	use	special	instructions	or	accelerators,	etc.),	and	traditional	parallel	environments	
have	done	a	poor	job	virtualizing	the	hardware	for	the	programmer.	As	a	result,	only	the	highest	performance	
seeking	and	skilled	programmers	have	been	exposed	to	parallel	computing,	resulting	in	little	investment	in	
development environments and a lack of trained manpower. There is a risk that while hardware races ahead 
to ever-larger numbers of cores, software will lag behind and few applications will leverage the potential 
hardware performance. 

Moving	forward,	if	every	computer	will	be	a	parallel	computer,	most	programs	must	execute	in	parallel	and	
most programming teams must be able to develop parallel programs, a daunting goal given the above problems. 
Illinois has a rich history in parallel computing starting from the genesis of the field and continues a broad 
research program in parallel computing today [1]. This program includes the Universal Parallel Computing 
Research	Center	(UPCRC),	established	at	Illinois	by	Intel	and	Microsoft,	together	with	a	sibling	center	
established at Berkeley. These two centers are focused on the problems of multicore computing, especially 
in the client and mobile domains. 

This paper describes the research vision and agenda for client and mobile computing research at Illinois, 
focusing	on	the	activities	at	UPCRC	(some	of	which	preceded	UPCRC).

Given	the	long	history	of	parallel	computing,	it	is	natural	to	ask	whether	the	challenges	we	face	today	differ	
from	those	of	the	past.	Compared	to	the	HPC	and	server	markets,	the	traditional	focus	of	parallel	comput-
ing	research,	the	client	market	brings	new	difficulties,	but	it	also	brings	opportunities.	Table	1	summarizes	
some of the key differences.
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HPC Server Client

Few applications Few subsystems All applications

Very skilled programmers Skilled programmers All programmers

Latency Throughput Quality of experience

Deadline always missed Time	to	market	important Time	to	market	critical

Small volume Medium	volume Large volume

TAbLE 1 •	Client	parallel	computing	versus	high	performance	and	server	computing.

The parallel client system must enable most programming teams to write “good” parallel code. In contrast to 
the	HPC	and	server	markets,	the	metrics	for	“goodness”	are	more	diverse.	Client	programmers	care	about	
many performance	metrics,	including	execution	time,	power	consumption,	audio	and	video	quality,	output	
accuracy,	and	availability,	all	which	contribute	to	the	ultimate	metric—the	quality	of	user	experience.	The	
programmers and system vendors also care about scalability—using	more	cores	should	improve	quality	of	
experience,	with	no	software	rewrite.	Time	to	market,	and	hence	software	development	productivity, is para-
mount.	Fortunately,	the	volume	is	much	larger	than	the	HPC	and	server	markets,	affording	investments	on	
a scale not previously possible.

A key impediment to all three goals of performance, scalability, and productivity is the lack of high-level 
parallel	programming	models.	To	make	parallelism	truly	universal,	we	must	move	beyond	current	bug-prone	
parallel programming models to an ecosystem that reduces opportunities for errors, while exploiting the full 
performance potential of parallelism. We are optimistic that this is possible for two reasons. First, although 
current practices make parallel programming hard, our view is that this is not a fundamental property of 
all parallelism. For example, at Illinois, middle school students routinely write parallel programs using the 
Smalltalk-based	graphic	language,	Squeak,	without	being	aware	that	parallelism	is	supposed	to	be	hard	[2]. 
The lesson here is that we need to provide the right form of parallelism for the right problem and the right 
set	of	tools	to	support	it.	While	some	parallel	codes	may	inherently	require	complex,	bug-prone	interactions	
among threads, many parallel programs will have interactions with a simple logic and should be provided a 
programming	notation	that	expresses	this	logic	in	a	clear	way.	Our	second	reason	for	optimism	arises	from	
the observation that the high market volumes on the client side can support multiple programming solu-
tions	that	can	shed	the	burdens	of	a	one-size-fits-all	solution;	further,	these	markets	can	afford	investments	
in sophisticated development tools and execution environments that can be translated to simpler program-
ming models for the programmer. 

Our	research	agenda	therefore	centers	on	the	following	three	themes.

•	 Focus	on	Disciplined	Parallel	Programming.

	 Modern	sequential	programming	languages	have	evolved	from	unstructured	programs	with	goto	state-
ments to structured procedural languages to object-oriented languages. Notions of encapsulation and 

InTRoDUCTIon 7
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modularity	make	sequential	programming	easier	by	promoting	a	separation	of	concerns,	both	in	terms	
of correctness and performance. Further, modern notions of safety simplify programming by restricting 
the	set	of	possible	dynamic	interactions.	In	comparison	to	these	advances	in	sequential	languages,	threads	
programming is still in the “go-to” age [3]. We therefore aim to develop disciplined parallel programming 
models and languages, supported by sophisticated development and execution environments, that will offer the 
analog	of	modern	sequential	programming	principles	of	safety,	structure,	and	separation	of	concerns.

•	 Multi-Front	Attack	on	Multicore	Programming.

 Illinois has a long history of work on parallelism at all levels from applications and programming abstractions 
down to hardware architecture, and across a broad spectrum of approaches from explicit high-performance 
programming	to	automatic	tools	that	hide	the	details	of	parallelism.	Our	focus	on	disciplined	parallelism	
is	backed	up	by	a	broad-based	attack	that	uses	every	weapon	in	our	arsenal	to	address	this	problem.	We	
investigate disciplined explicitly parallel languages, metaprogramming and autotuners, and domain-specific 
environments. Leveraging our strength in compilers, we aim for a powerful translation environment to 
exploit	information	from	multiple	sources	(language	level	annotations,	compiler	analyses,	runtime,	and	
hardware)	at	different	times	in	the	life	of	a	program.	Following	decades	of	parallel	architecture	research,	
we propose novel multicore hardware substrates that not only enable performance scalability but also 
support programmability. Finally, our work with refactoring tools will help move existing code to our 
new	environments,	and	formal	methods	based	techniques	and	tools	will	help	ensure	correctness.	

•	 Human-Centric	Vision	of	Future	Consumer	Applications.

	 Our	work	is	driven	by	a	foreseeable	future	where	all	client	applications	will	be	parallel,	and	the	primary	
consumer	feature	that	will	drive	the	economics	of	future	client	software	development	will	be	the	quality	
of the human interaction. We are targeting applications that rely on enabling technologies for computer 
support	of	social	interaction	through	quantum-leaps	in	immersive	visual	realism,	reliable	natural-language	
processing, and robust teleprescence. Investigating these applications reveals new approaches to parallel 
pattern	analysis,	inspires	new	multicore	versions	of	domain-specific	environments,	and	serves	as	a	testbed	
for evaluating, refining and ultimately proving our ideas on multicore programming.
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2	 Overview
This	section	gives	an	overview	of	our	agenda	for	parallel	applications	and	patterns,	disciplined	parallel	pro-
gramming	models,	and	development	and	execution	environments,	summarized	in	Figure	1.	Subsequent	
sections describe our projects in more detail. 

oVERVIEW

FIgURE 1	•	Overview	of	the	UPCRC/Illinois	research	agenda.	

2.1 Applications and Patterns
The long history of parallel computing at Illinois is as much a history of parallel applications as of parallel 
systems. As we move to parallelism in the client, we continue our previously successful research model of 
integrated teams of applications and systems researchers. Specifically, the following experiences and observa-
tions drive our work on future client applications.

•	 Integrating	applications	and	systems	research: Systems with new capabilities drive new applications and 
new applications drive new systems. Parallel computing research at Illinois has repeatedly bootstrapped 
this cycle with integrated applications and systems research, in areas ranging from conventional high 
performance	computing	to	more	recent	efforts	in	the	general	purpose	GPU	(GPGPU)	domain.	For	
example,	15%	and	20%	of	the	cycles	in	one	year	at	NCSA	and	the	Pittsburgh	Supercomputing	Center	
respectively	ran	applications	(including	NAMD	[4,	5])	using	Charm++	[6],	co-developed	by	one	of	us.	
The	evolution	of	Charm++	is	a	clear	demonstration	of	how	application	research	can	drive	the	language/
runtime	research	agenda,	leading	to	techniques	that	in	turn	are	useful	for	a	broader	set	of	applications.	
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Illinois	is	also	recognized	as	an	early	innovator	and	leading	center	in	exploiting	the	100+	cores	on	a	GPU	
for	diverse	applications	ranging	from	graphics	to	simulation	to	more	general-purpose	domains	[7,	8,	9,	
10].	Our	client	computing	research	agenda	continues	this	tradition.	A	group	of	applications	researchers	
from	representative	client	domains	are	working	closely	with	systems	researchers	to	produce	parallelized	
frameworks that represent key computations in these domains. This process will provide a testbed for 
and influence our systems research ideas. As the systems ideas mature, the application frameworks will 
evolve to use them to add new value for the applications and will be disseminated for a wider community 
of application developers.

•	 Human-centric	computing	will	drive	multicore	client	applications:	For our research to be relevant, it 
is imperative that it be driven by the client computing workloads of the future. These workloads will be 
CPU	intensive	and	will	require	computing	at	a	fast	client	rather	than	in	the	“cloud.”	We	believe	that	such	
workloads	abound—many	of	them	will	have	a	central	theme	of	understanding	humans	and	facilitating	
their interactions with other humans and with large amounts of information. Understanding and reacting 
to	the	(human)	client’s	needs	in	real-time,	with	enough	realism,	within	the	current	context,	and	without	
sacrificing privacy has the potential to absorb foreseeable client-side performance increases. Society will 
determine the next generation of killer applications. We aim to accelerate their development by focusing 
on a few broad domains that we believe encompass the “killer technologies” for them, and for which we 
have leading in-house expertise. 

•	 Parallel	patterns	as	a	vocabulary	for	developers:	Before programmers start using our programming models 
and tools, they must think about the parallel algorithms, data structures, and more specifically, parallel 
patterns	to	use	for	their	applications.	We	believe	a	vocabulary	of	such	patterns	is	essential	to	educate	parallel	
programmers,	both	directly	and	by	enabling	sharing	of	experiences.	One	of	us	previously	co-authored	a	book	
on	design	patterns	for	object-oriented	programming	that	many	believe	to	be	the	engine	that	popularized	
sequential	object-oriented	programming	[11].	That	effort	focused	on	very	specific	patterns	that	program-
mers could directly use to translate to code. We aim to duplicate that success for parallel programming. For 
a	few	years,	we	have	been	working	to	catalog	parallel	patterns	through	a	community	effort,	previously	in	
the context of high performance computing [12] and now broadened to include client computing. Like 
the	sequential	patterns	book,	we	believe	that	the	most	value	in	a	parallel	patterns	catalog	will	come	from	
cataloging	the	rich	diversity	of	specific	patterns	that	programmers	can	directly	use	in	their	code.	This	is	in	
contrast	to	identifying	a	few	motifs,	which	is	useful	as	a	characterization	of	important	computations	but	
has unclear value in guiding code development.

Motivated	by	the	above	observations	and	experiences,	we	are	engaged	in	two	types	of	activities:

1)	Domain-specific	frameworks	and	APIs:	We have identified three important domains for future killer 
client applications:

a. Dynamic virtual environments 

b. Natural language processing

c.	 Tele-immersive	environments

 These domains cover technologies in graphics, computer vision, and image, video, text, and speech pro-
cessing. Leading researchers from these areas are collaborating with systems researchers to define and 
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implement	parallelized,	high-performance	domain-specific	frameworks	and	APIs	for	key	computations	
in the above domains, using the technologies developed by our systems researchers.

2)	Parallel	Patterns:	We	are	engaged	in	an	effort	to	create	an	encyclopedia	of	parallel	patterns	that	encom-
passes a broad set of programmer experiences. This is necessarily a community effort. It involves collabora-
tion with programmers inside and outside our university and other researchers also working on parallel 
patterns.	To	facilitate	this	collaboration,	we	plan	a	workshop	series	on	parallel	patterns,	based	on	similar	
workshops	we	have	organized	in	the	past	[12].

2.2 Disciplined Programming Models
Three observations drive our work on disciplined parallel programming models:

•	 Disciplined	coordination: In a seminal paper [3], Dijkstra argued that goto’s make programs hard to 
comprehend and debug since, when they are used, there is no easy way to describe the mapping from 
the static structure of the code to the dynamic evolution of the execution. Arbitrarily placed task spawns, 
unsynchronized	conflicting	memory	accesses	or	data	races,	and	low-level	synchronization	operations	
such	as	locks,	are	the	equivalent	of	goto’s	in	the	parallel	world:	it	is	hard	to	describe	the	mapping	from	the	
individual executions of threads to the global execution. We seek models that impose structure on parallel 
control	flow	and	on	synchronization.	Current	language	specifications	already	discourage	the	use	of	data	
races [13, 14], but do not aid the programmer in achieving this goal. A stronger guarantee is determinism, 
which guarantees that for a given input, the program will always produce the same output. This output is 
the	result	of	an	equivalent	sequential	execution,	providing	a	simple	semantic	model.	This	model	facilitates	
code development and debugging, while still exposing to the programmer a parallel performance model. 
Effectively,	deterministic	languages	can	ride	on	the	advances	in	sequential	programming,	including	safety,	
modularity,	and	composability.	Many	programs,	especially	a	large	class	of	transformative	programs,	are	
deterministic;	however,	current	languages	do	not	aid	in	expressing	them	in	provably	deterministic	terms.	
We wish to explore the extent to which language support can be used to guarantee data-race-freedom, 
determinism,	and	other	higher	level	coordination	structures,	in	the	context	of	modern	sequential	program-
ming practices and client applications. 

•	 Encapsulation:	Not	all	code	will	be	deterministic—reactive	programs	and	some	classes	of	transformative	
programs	require	various	forms	of	non-determinism	for	efficiency.	For	a	disciplined	environment,	we	
propose that when non-deterministic behavior is unavoidable, it be made explicit and encapsulated in a way 
that	limits	its	impact	on	the	rest	of	the	program.	Actor	models,	where	the	interaction	between	sequential	
threads	is	always	explicit,	are	an	example	of	such	an	approach	that	works	well	for	reactive	programs.	How	
to best encapsulate non-determinism for transformative programs and how to specify alternate disciplines 
for	non-determinism	(other	than	data-race-free)	are	research	questions	we	are	currently	exploring.

•	 Enabling	performance	through	a	separation	of	concerns: As mentioned previously, discipline is not an end 
in itself, but a means to exploiting the potential of parallelism. In another influential paper [15], Dijkstra 
articulated the notion of separation of concerns that allows reasoning about one property of a program 
(e.g.,	correctness)	without	having	to	simultaneously	reason	about	another	property	(e.g.,	performance).	
In today’s multicore environments, however, reasoning about correctness is intricately tied to reasoning 
about performance. The complexity of modern hardware means that much of this performance tuning 

oVERVIEW 11
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requires	reasoning	about	complex	(and	often	machine-specific)	effects	and	subtle	interactions.	A	key	aspect	
of our work on disciplined models is to enable programmers to use higher levels of abstraction to specify 
functionality, while the system exploits this information to use its full flexibility to provide performance. 
Ideally, we would like to reduce the burden on programmers so they worry only about correctness while 
the system automatically tunes for performance. 

The above observations motivate the following five specific research directions we are currently exploring. 

1)	Languages	for	disciplined	shared	memory: We are working on a general-purpose disciplined shared-
memory language that builds upon modern object-oriented languages with strong safety properties, 
providing	the	programmer	with	all	the	familiar	ease-of-use	facilities	of	modern	sequential	languages	in	
conjunction with disciplined parallelism. The general philosophy is to use language constructs, potentially 
backed	up	by	the	compiler,	formal	correctness	checking	tools,	and	hardware,	to	(i)	guarantee no data 
races,	(ii)	guarantee	determinism	where	possible,	and	(iii)	where	non-determinism	is	unavoidable,	make	
it	explicit	and	encapsulated	with	limited	impact	on	the	rest	of	the	program	[16,	17,	18].	This	language	
would support both task-parallel and flexible data-parallel programming idioms, within a familiar object-
oriented language. We aim to separate, to the extent possible, concerns about the semantics of programs 
from	concerns	about	performance	such	as	optimizations	for	locality.	Such	a	language	would	support	a	
progressive refinement of codes for performance tuning that does not affect the program semantics.

2)	Parallel	operators: Parallelism is most easily managed when it is encapsulated in operators defined on data 
aggregates	(data	parallelism)	or	simple	iteration	domains.	Parallelism	is	hidden,	thus	facilitating	program	
development and mapping to the target machine. Such operators also help raise the level of abstraction 
and	thus	have	the	potential	of	improving	the	quality	of	automatic	optimization.	Array	operations	have	
been used to represent parallel computations practically from the beginning of parallel computing, but 
modern client applications demand a richer set of array operations and extensions to irregular data struc-
tures	such	as	sets	and	graphs;	e.g.,	[19,	20,	21].	We	are	working	to	identify	operators	that	would	best	serve	
our application domains. These operators can be added to existing programming languages or to newly 
developed disciplined shared memory languages. This work bridges the gap between general-purpose 
programming languages and domain-specific languages.

3)	Metaprogramming	and	autotuning: The idea with metaprogramming and autotuning is for the pro-
grammer	to	provide	options	for	achieving	the	required	functionality	(e.g.,	different	sorting	algorithms).	
The	system	then	automatically	finds	the	best	option	for	the	current	platform	and	(possibly)	the	current	
input,	and	generates	this	(close	to)	optimal	program	[22,	23,	24].	This	line	of	work	is	further	facilitated	
by	identifying	commonly	used	high-level	data	parallel	primitive	operations	(e.g.,	[19,	20],)	and	codelets 
that can then be easily autotuned.

4)	Domain-specific	environments	(DSEs):	Domain-specific	environments	(including	languages,	libraries,	
and	frameworks)	can	hide	or	significantly	simplify	the	use	of	parallelism	through	the	knowledge	of	domain	
information,	and	offer	a	high	level	of	abstraction	for	the	domain	expert.	Our	research	goal	is	not	to create 
specific	DSEs	for	each	domain	per	se,	but	to	provide	the	techniques	and	tools that domain experts for 
a	wide	range	of	domains	can	use	to	build	effective	parallel	DSEs.	Two	examples	we	are	working	on	are	
techniques	to	translate	performance	information	into	domain-specific	terms	and	techniques	to	simplify	
the porting and evolution of applications to parallel domain-specific libraries and frameworks.
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5)	Actors:	In	many	cases,	shared	memory	and	deterministic	sequential	reasoning	are	unnatural.	Such	cases	
include programming in the large such as cloud computing and sensor networks, and reactive programs, 
where concurrency is part of the problem specification. For such programs, we are exploring the actor 
model of computation [25]. Fine-grained actor languages have previously been shown to be efficiently 
implementable	on	distributed	memory	architectures	[26].	Our	focus	here	will	be	again	driven	by	the	
separation	of	concerns	philosophy—how	to	separate	the	specification	of	functional	behavior	of	individual	
actors	and	the	specification	of	aggregate	multi-actor	constraints	such	as	scheduling,	synchronization,	
quality	of	service,	reliability,	etc.	[27,	28].

In summary,	we	hypothesize	that	to	achieve	the	benefits	of	parallel	computing,	we	will	need	disciplined	pro-
gramming	models.	Our	research	agenda	involves	an	exploration	of	the	appropriate	disciplines	such	as	data	
race freedom, determinism, controlled non-determinism, high-level operators, domain-specific encapsulation, 
metaprogramming, and actors. Although our eventual goal is for low-level programming to be needed only as 
a	matter	of	last	resort	for	the	most	performance-critical	operations,	realistically,	we	expect	that	software	using	
current	models	and	low-level	programming	will	continue	to	exist	for	a	number	of	years—our	research	agenda	
includes how to support such software with the best performance and with limited impact on correctness of 
the	rest	of	the	code.	The	fact	that	our	agenda	includes	multiple	approaches	should	not	be	surprising—it	is	
analogous	to	the	sequential	world	where	programmers	program	at	different	levels	of	abstraction,	including	
high-level	domain-specific	languages	such	as	Mathematica,	scripting	languages	such	as	Python,	Java,	C#,	
C++,	C,	and	assembly.

2.3 Development and Execution Environments 
The following observations drive our research in development and execution environments.

•	 Supporting	discipline:	New	programming	models	require	support	from	the	system.	For	example,	dis-
ciplined use of shared memory could benefit from hardware support for race detection [29] and for 
speculation	[30,	31].	To	truly	separate	performance	concerns	from	correctness,	and	to	support	portability	
and scalability, it is likely that the runtime will need to expose a common virtual parallel interface as a 
target for the compiler and then map that interface to the current hardware at execution time. Autotuning 
and	efficient	run-time	resource	management	require	better	performance	sensors	and	actuators;	e.g.,	for	
memory subsystem behavior.

•	 Rewarding	discipline: Our	research	goes	further	than	providing	only	the	support	required	to	enable	our	
disciplined	models.	Too	often,	information	available	at	higher	levels	of	the	system	stack	is	lost	at	the	lower	
levels, forgoing significant opportunities. All of our disciplined programming models naturally capture 
a	rich	amount	of	information	about	the	program.	Our	research	seeks	to	exploit	this	information	to	the	
fullest so we can reward discipline with robust performance, and foster the adoption of such models. 
For example, how can compilers use domain information from domain-specific frameworks and library 
components	of	a	larger	full	application?	How	can	high-level	QoS	specifications	be	used	to	drive	runtime	
resource management? How	can	hardware	exploit	the	fact	that	a	program	is	written	in	a	deterministic	
language to eliminate unnecessary traffic and complexity implied by current cache coherence protocols? 
More	generally,	 if	most	code	follows	disciplined	models,	what	concurrency	model	should	hardware	
support?

oVERVIEW 13
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•	 Facilitating	transition	to	disciplined	programs: Change	is	always	disruptive,	even	change	for	the	better.	
We	can	accelerate	change	by	lowering	its	cost.	Tools	such	as	refactoring	tools	and	correctness	checking	
tools	can	make	it	easier	to	adopt	our	techniques;	e.g.,	by	enabling	interactive	(semi-automated)	conversion	
of	old	code	into	the	new	models	and	by	making	it	possible	to	use	the	new	models	with	the	old.	Moreover,	
architectural support for deterministic replay of parallel programs [32, 33], data-race detection [29] and 
pervasive program monitoring [34, 35] will facilitate the transition of users to the new environments.

•	 Supporting	co-existence: New programming models and new runtime environments will need to co-exist 
with currently available software for many years. Although we want to reward discipline, we cannot punish 
current software stacks. We therefore need to continue to provide performance and aid programmability 
with current programming models. 

Driven by the above, we are engaged in the following research.

1)	Translation	environment: We are working on an ambitious compiler infrastructure to enable our vision of 
disciplined	parallel	programming.	Our	compiler	aims	to	bring	together	a	number	of	transformations	and	
analyses that exploit novel sources of information at various times in the life of an application, with the 
following	goals:	(i)	to	support	explicitly	parallel	deterministic	languages,	high-level	parallel	operators,	and	
domain-specific languages, exploiting the rich information provided by the programmer in these environ-
ments;	(ii)	to	support	parallelism	discovery	and	speculation	when	the	above	information	is	insufficient	
or	requires	runtime	speculation	for	validation;	(iii)	to	appropriately	interface	with	autotuners;	and	(iv)	
to	support	user-driven	refactoring	tools	to	enable	porting	existing	sequential	and	parallel	code	to	the	new	
models.

2)	Runtime	system: The	runtime	system	is	responsible	for	virtualizing	the	(potentially	heterogeneous)	hard-
ware	for	the	rest	of	the	software	stack.	Consequently,	it	is	responsible	for	providing	transparent	resource	
management	for	potentially	heterogeneous	platforms,	achieving	required	QoS	within	given	physical	
constraints. Although we present the runtime and hardware as separate entities here, our research views 
the	boundary	between	these	two	layers	as	fuzzy—techniques	such	as	virtual	instruction	set	computing	
[36,	37]	and	binary	translation	can	replace	a	hardware	interface	with	a	software	interface.	We	expect	that	
virtualization,	portability,	and	efficient	handling	of	heterogeneity	will	increasingly	require	the	kind	of	
hardware-software co-design represented by such methods.

3)	Hardware	architecture:	Our	research	in	hardware	architecture	focuses	not	just	on	performance	but	on	
programmability as a first order design objective. We are working on two broad projects. The first project 
focuses	on	supporting	a	flexible	substrate	with	scalable	cache	coherence,	high-performance	sequential	
memory consistency, and an easy-to-use development and debugging environment. The second project 
rethinks concurrent hardware as a co-designed component of our disciplined programming strategy, both 
for enforcing the discipline and for exploiting it for simpler and more efficient hardware.

4)	Formal	methods	and	tools	to	check	correctness: We are working on formal methods and tools for assur-
ing	correctness	in	concurrent	programs.	Our	work	encompasses	the	following	research	directions:	(i)	
to	understand	high-level	synchronization	intentions	that	programmers	use	to	manage	concurrency,	
through	the	study	of	concurrency	bug	databases	and	user	studies,	(ii)	utilizing	the	high-level	intentions	
as specifications for testing concurrent programs, in particular to build effective algorithms that avoid 
enumerating and testing all interleavings, but find errors by testing only those interleavings that violate 
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these	intentions,	and	(iii)	to	build	mechanisms	to	sandbox	the	parts	of	a	program	that	use	undisciplined	
concurrency mechanisms and interface it with other portions that adhere to disciplined principles, and 
realize	ways	to	summarize	effects	of	these	portions	to	infer	correctness	properties	of	the	entire	program.

oVERVIEW 15
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3	 Applications	and	Patterns	

3.1 Applications
Our	applications	thrust	has	two	objectives:	(1)	to	serve	as	a	driver	for	our	work	in	parallel	programming	models	
and	environments,	and	(2)	to	apply	state-of-the-art	parallelization	techniques	to	key	application	domains	to	
accelerate	the	development	of	killer	applications	for	multicore	client	systems.	Our	focus	is	on	applications	
that	enhance	human/human	and	human/computer	interactions,	and	particularly	on	the	underlying	compute	
intensive	algorithms	that	improve	interface	intelligence	and	interactivity.	Our	current	focus	is	in	three	broad	
domains: dynamic virtual environments, natural language processing, and tele-immersive environments.

Broadly,	our	approach	within	each	domain	is	to	develop	a	set	of	key	parallelized	frameworks	that	can	be	used	
by application developers to develop applications on a larger scale. Such frameworks will include APIs for 
frequently-used,	compute-intensive	functionality	with	extensibility	for	user-supplied	kernels	and	data	struc-
tures.	The	frameworks	themselves	will	utilize	technology	developed	in	our	other	thrusts,	such	as	autotuning	
and metaprogramming, and benefit from the parallel models and environments we are investigating. The 
subsequent	subsections	describe	the	individual	application	domains.

3.1.1 Dynamic Virtual Environments

Real-time	online	virtual	worlds	(e.g.	World	of	Warcraft	and	Second	Life)	have	transformed	the	internet	
into an immersive space for social interaction, but the visuals and simulations of these online collaborative 
environments	lag	well	behind	those	of	stand-alone	video	games.	Modern	video	games	(like	Halo	3)	achieve	
cinematic photorealism and fluid motion by limiting the set of viewpoints and configurations of the game 
environment,	and	precomputing	its	lighting	and	animation	over	this	limited	set	(via,	e.g.,	the	GPU-assisted	
precomputed	radiance	transfer	used	in	the	Xbox	360	[38]),	essentially	encoding	the	visuals	into	a	massive	
high-dimensional	multiple-viewpoint	movie.	This	precomputation	requires	careful	gameplay	coordination	
(which	makes	game	development	expensive	and	time	consuming),	and	does	not	support	user	interaction	
(e.g.,	building	in	an	online	virtual	environment).	The	increased	computational	power	of	future	multicore	
processors can overcome the need for precomputation, making videogames cheaper and faster to produce 
and online virtual environments more realistic.

The performance of the rendering and simulation of online virtual worlds and video game environments 
relies	on	spatial	data	structures	(SDS)	to	efficiently	manage	interactions	between	objects	and	neighborhood	
queries	(as	demonstrated	in	Figure	2a),	and	the	fundamental	challenge	for	multicore	processing	of	these	
visual applications will be the development of efficient parallel algorithms for processing a shared spatial 
data structure. We and others have developed hierarchical SDS traversal algorithms that avoid conditional 
program	flow	for	efficient	streaming	SIMD	execution,	as	demonstrated	in	Figure	2b	[39,	40].	We	and	others	
have	also	utilized	parallel	“scan”	primitives	to	construct	a	balanced	hierarchical	SDS	[41,	42].	But	to	achieve	
a goal of realistic rendering and animation of fully dynamic user-reconfigurable virtual worlds, we will need 
new multicore algorithms to efficiently maintain a kinetic SDS with efficient insertion, deletion, motion, 
and rebalancing.
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A natural application driver for client multicores therefore is a parallel framework for such spatial data struc-
tures that provides the applications developer with highly scalable SDS functionality for their applications. 
The interactivity demands of visual applications have resulted in a wide variety of detailed algorithms and 
data	structures	for	managing	spatial	queries.	Depending	on	the	spatial	data	distribution,	application,	query	
type and processing architecture, the spatial data structure can be a 3-D grid, either simple or hashed, or a 
hierarchy,	organized	as	an	oct-	tree,	k-d	tree,	or	BSP	tree,	and	their	processing	can	be	organized	iteratively	or	
recursively,	using	SIMD	operators,	short stacks, or tree threading. As such, these domain-dependent applica-
tion	demands	will	be	used	to	close-the-loop	between	our	work	on	higher-level	parallel	pattern	analysis	and	
lower-level multicore implementation details.

3.1.2 natural Language Processing

Recent studies have shown that over 85% of the information that corporations handle is unstructured, the vast 
majority	of	which	is	textual.	A	multitude	of	techniques	has	to	be	used	in	order	to	enable	intelligent	access	
to this information and to support transforming it to forms that allow sensible use of the information. The 
fundamental	issues	that	all	these	techniques	have	to	address	is	that	of	semantics—if	one	wants	to	access	text	
based	on	its	content	(rather	than	just	words	mentioned	in	it),	there	is	a	need	to	move	toward	understanding 
the text at an appropriate level. This may include understanding the topic of the text, the events described in 
it, the sentiments expressed in it, understanding “who is doing what to whom?”, etc. 

While there has been huge progress in research in these directions over the last few years, all commercial 
applications	(e.g.,	Google,	Yahoo,	Microsoft,	and	others)	make	use	of	very	shallow	techniques—key	words	
that	are	present	in	the	text.	One	of	the	key	reasons	for	that	is	computational—supporting	semantic	analysis	
of text, even at the level of a single sentence or a single paragraph, may take seconds on a single core machine. 
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FIgURE 2	•	(a)	The	performance	of	many	visual	applications	relies	on	efficient	nearest-neighbor	
queries,	e.g.	the	photon-mapping	rendering	method	determines	the	light	reflected	by	a	surface	
point	by	finding	the	k	nearest	photons.	(b)	A	binary	tree	where	each	node	contains	two	pointers:	
a	“pass”	pointer	to	the	first	child	and	a	“fail”	pointer	to	the	next	sibling	(or	uncle).	This	binary	
tree avoids conditional program flow since a node’s traversal always follows one of its two nodes, 
supporting	efficient	SIMD	parallel	queries.
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Analyzing	huge	amounts	of	data,	as	is	required	to	support	better	search,	information	extraction,	and	other	
deeper	analyses	of	text,	is	therefore	infeasible.	Over	the	last	few	years,	we	have	developed	several	algorithms	
and	systems	that	support	deeper	analysis	of	natural	language	[43,	44,	45,	46,	47,	48,	49]	that	can	serve	as	a	
basis for the current research.

Our	work	focuses	on	techniques	for	parallelizing	natural	language	processing,	and	constructing	a	parallelized	
Natural	Language	Processing	(NLP)	framework	for	developers	to	create	large-scale	NLP-based	applications.	
This	involves	creating	parallelized	functionality	for	optimization	based	machine	learning	(very	high	dimensional	
vector	operations),	constrained	optimization	based	inference	(including	integer	linear	programming),	and	
a	large	number	of	sub-graph	isomorphism-like	computations.	Parallelizing	can	be	done	at	multiple	levels—
from data parallel, to decomposing processes to independent threads to algorithmic innovations that would 
facilitate	more	efficient	learning	and	constrained	optimization	algorithms	in	very	high	dimensions.	

We foresee NLP-based applications that are server-based and those that are client-centric. Client-side 
applications include smart language translation in mobile devices, intelligent application user interfaces, 
and human-like interfaces to virtual characters. Client-side applications demand real-time and interactive 
performance, thus placing stringent performance demands on the underlying implementations, creating an 
excellent	driver	application	for	our	parallelization	technologies.

3.1.3 Tele-immersive Environments

Future human-human communications can be dramatically enhanced with video environments that enable 
people	to	virtually	interact	together	[50,	51,	52].	Our	efforts	in	tele-immersive	environments	tap	into	long-
standing world-class expertise at Illinois in video and image processing, computer vision, and multimedia 
systems. We are applying our parallelism technologies to state-of-the-art algorithms for 3D reconstruction, 
view synthesis, depth calculation, and super-resolution, all of which are computationally intensive and need 
to hit real-time performance thresholds.

One	such	example	involves	parallelization	of	3D	reconstruction	algorithms,	which	are	well	known	in	the	
computer	vision	domain.	Most	3D	algorithms	were	designed	for	correctness	to	derive	one	3D	image	from	
multiple 2D images and less importance was given to the real-time execution of the 3D algorithms. With the 
advent	of	3D	displays	and	3D	video	cameras,	3D	reconstruction	algorithms	must	work	in	real-time;	if	one	
wants	to	achieve	high-definition	quality	of	video	in	spatial	(HDTV	quality)	and	temporal	dimensions	(30-60	
frames	per	second),	the	3D	video	algorithms	must	employ	parallelism.	Currently,	most	of	the	3D	cameras	
yield	unsatisfactory	results.	They	provide	either	15-20	frames	per	second	with	very	small	frames	(320-240)	
pixels	or	8-10	frames	per	second	with	larger	frames	(640x480)	and	are	not	even	close	to	the	performance	
of	HDTV	video	streaming	with	frame	size	of	(1920x1080)	pixels	and	60	frames	per	second	currently	avail-
able	in	the	2D	video	world.	Hence,	our	efforts	are	focused	on	parallel	algorithms	for	the	3D	reconstruction	
processes to achieve 2D performance limits but with 3D content.

3.2 Patterns
To	make	parallel	programming	easier,	we	must	improve	the	way	we	think	about	parallel	programming.	Since	
“clear	language	breeds	clear	thinking,”	we	need	better	ways	of	describing	and	teaching	parallel	programming	
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activities.	Thus,	in	addition	to	teaching	language	features	and	algorithms,	we	should	also	teach	patterns	used	
in parallel programming. Expert programmers think about programs at a higher level than beginners. They 
see relationships between different parts of a program and understand the problems that these relationships 
solve. Courses and books on parallel programming have tended to focus either on parallel algorithms or on 
programming languages or lower-level programming models that are used to write parallel programs, but 
do	not	teach	about	software	structure	and	higher-level	patterns.	Documenting	and	teaching	these	patterns	
should	enable	more	programmers	to	become	experts	faster.	The	patterns	can	also	become	a	vocabulary	for	
documenting	programs	and	for	letting	programmers	talk	about	the	programs	they	are	designing.	Program-
ming	languages	evolve	to	better	support	the	most	common	patterns,	and	sometimes	libraries	are	designed	
to	automate	some	patterns.	So	better	understanding	the	patterns	of	parallel	programming	can	make	parallel	
programming easier.

The	most	widely	used	book	on	(sequential)	software	patterns	is	Design Patterns [11], co-authored by one 
of	us,	which	focuses	on	object-oriented	design.	These	are	relatively	low-level	patterns	that	are	easy	to	map	
down	to	code.	There	are	a	lot	of	higher-level	patterns	common	to	object-oriented	programming	that	are	not	
described	in	the	book,	but	the	patterns	in	the	book	have	been	useful	on	their	own	and	have	been	good	enough	
to teach people the style of object-oriented programming.

Work	on	parallel	programming	patterns	has	been	going	on	for	some	years	(papers	on	parallel	patterns	are	
regularly	presented	at	Pattern	Language	of	Programs	(PLoP)	conferences).	Unfortunately,	the	work	has	not	
been	as	successful	as	the	work	of	patterns	for	sequential	programming.	Some	noteworthy	efforts	are	the	
book	by	Doug	Lea	[53]	covering	low-level	parallel	programming	patterns	in	the	context	of	the	Java	threading	
model,	the	book	by	Mattson	et.	al	[54]	focusing	on	high-level	patterns	that	are	technology-independent,	and	
Phil Colella’s original identification of seven dwarfs or categories of applications that cover much of scientific 
computing	[55]	(these	were	later	extended	to	thirteen	motifs	by	the	UPCRC—Berkeley	team	[55]).	However,	
much	work	still	needs	to	be	done.	In	general,	the	conversion	of	sequential	code	to	a	parallel	one	may	require	
the	development	of	new	parallel	algorithms—the	programmer	may	need	to	discover	opportunities	for	paral-
lelism, make high-level decisions on strategies for the distribution of computation and data, and then decide 
how	to	implement	the	parallelism	and	synchronization.	To	be	effective,	the	patterns	effort	must	aid	in	the	
navigation	of	both	the	high-	and	low-level	patterns	that	this	process	encompasses.	

As a concrete example, consider one of the high-level seven dwarfs, namely particle codes. All solutions to this 
problem share the fact that there is a set of particles in a current state, and the next state is determined by 
computing and integrating the force on each particle. The solutions differ in how to compute the interaction 
forces between pairs of particles. The naïve approach is all-pairs but is often the best choice when the number 
of particles is small. In case of a uniform distribution of particles, one can use a grid to store the nearest 
neighboring	particles	for	each	region	of	space.	If	collision	is	not	important,	the	Particle-Mesh	method	uses	an	
FFT	to	solve	the	problem.	For	systems	with	a	more	clustered	distribution	of	particles,	such	as	astronomical	
systems, it is faster to group particles and to compute the force produced by a group. Particles can be orga-
nized	into	a	hierarchy	so	that	the	particles	affecting	a	given	particle	can	be	found	in	logarithmic	time,	and	the	
Fast	Multipole	Method	can	compute	an	approximated	force	on	a	given	particle	in	constant	time	if	the	right	
hierarchy is used. Depending on the particle distribution and application, this hierarchy can be a position tree, 
a	region	tree,	a	kD-tree,	or	a	binary-space-partition	tree.	These	are	not	only	different	algorithms;	they	have	
completely	different	patterns	of	parallelism.	The	naïve	approach	uses	task parallelism, while the others use 
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divide and conquer, and there are other algorithms that use geometric decomposition. Finally, the implementation 
of these algorithms will differ, according to the target architecture and the selected programming language 
and	run-time	(different	shared	memory	models	vs.	distributed	memory	vs.	SIMD,	fixed	number	of	processes	
vs.	run-time	load	balancing,	etc.).	Analogous	choices	arise	in	the	spatial	data	structures	functionality	for	our	
dynamic	virtual	environments	applications,	as	described	in	Section	3.1.1).	A	good	pattern	language	must	
guide a programmer through all these choices. 

Although	there	will	be	a	lot	of	patterns	for	parallel	programming,	most	projects	will	use	only	a	small	subset	
since	they	will	use	a	particular	programming	model	and	require	only	a	few	categories	of	algorithms.	A	key	
research	challenge	is	determining	how	to	organize	the	pattern	catalog	in	a	way	that	is	meaningful	to	program-
mers	and	that	naturally	leads	them	to	the	patterns	they	need.	

We	believe	that	the	work	of	documenting	patterns	is	too	big	for	any	small	group	to	finish.	Success	requires	
a community effort that involves not only academia but also practitioners in industry and national labs and 
students:	pattern	languages	evolve	through	a	continued	interaction	between	writers	documenting	patterns,	
experts	reviewing	their	documentation,	programmers	using	the	patterns	and	students	learning	patterns.	Writers	
must	learn	how	readers	misinterpret	and	misuse	the	patterns,	and	rewrite	them	to	prevent	these	problems.	It	
is our goal to foster such interaction and create a broad community involved in the development of parallel 
pattern	languages	through	workshops,	courses,	and	online	fora.	

We	are	working	to	create	a	body	of	parallel	programming	patterns	in	several	ways.	First,	we	are	documenting	
patterns.	We	are	focusing	on	patterns	that	are	important	to	us	and	that	are	not	well	documented	already.	This	
will	include	low-level	patterns	of	the	technologies	we	use	(e.g.	deterministic	shared	memory	and	actors)	and	
high-level motifs used by our applications. Second, we are working with other authors to help improve their 
patterns.	Third,	we	plan	to	use	patterns	to	teach	parallel	programming.	Experience	using	our	patterns	and	
the	patterns	of	other	people	will	help	us	to	improve	the	patterns.	Fourth,	we	plan	to	organize	workshops	for	
authors	of	parallel	programming	patterns,	similar	in	style	to	the	Pattern	Languages	of	Programming	confer-
ences held for years at Illinois. This will bring authors together, reduce duplicated effort, and help concentrate 
work	on	the	most	needed	patterns.	Fifth,	we	will	organize	events	for	practitioners	to	both	teach	them	patterns	
and	to	get	feedback	on	how	they	use	the	patterns.	It	is	easier	to	try	this	out	on	students,	but	the	reaction	from	
practitioners	will	not	be	the	same,	so	it	is	important	for	pattern	authors	to	hear	directly	from	practitioners.

Documenting	parallel	programming	patterns	can	have	a	big	impact	on	parallel	programming.	Language	design-
ers	will	use	them	to	test	the	expressiveness	of	their	language.	Tool	developers	will	try	to	automate	particular	
patterns.	However,	our	main	interest	is	in	using	them	to	teach	the	next	generation	of	parallel	programmers,	
whether they are in school or are already professional programmers. Thus, our main goal for the next few 
years	is	on	discovering	the	patterns	that	are	most	important	in	parallel	programming	and	in	ensuring	that	
they are documented in a way that is easy to understand and to use correctly.
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4	 Disciplined	Programming	Models

4.1 Disciplined Shared Memory
Shared memory parallel programming languages have been around for decades. Recent examples include 
C++	with	threads	or	with	the	OpenMP	parallel	constructs	[56],	Java	[57]	and	C#	[58]–	these	languages	
support object oriented programming, which is essential for their broad use. The use of a shared memory 
programming model facilitates the expression of many algorithms, but in its current incarnations, it does not 
offer	adequate	protection	from	program	defects.	Our	goal	is	to	develop	disciplined	shared	memory	models	
and	languages	that,	to	the	extent	possible,	minimize	concurrency	related	defects	by	design,	without	giving	
up the conveniences of modern object-oriented languages and the expressivity and performance of low-level 
programming.

Data-race-free—a fundamental discipline: There is broad consensus that data races are a fundamental 
source	of	concurrency	related	bugs	in	shared	memory	programs.	Data	races	involve	unsynchronized,	conflict-
ing accesses to memory, which result in unpredictable, schedule-dependent, and platform-dependent results. 
There	is	extensive	literature	on	the	difficulties	introduced	by	data	races,	their	classification	and	formalization,	
static and dynamic strategies for their detection, and their relation to memory models, including much of 
our	own	early	work	[59,	60,	61,	62,	63,	64,	65,	66].	Many	have	argued	that	programs	should	avoid	data	races	
so	that	the	outcome	is	determined	by	the	order	in	which	synchronization	operations	execute.	In	fact,	recent	
efforts on memory models for shared-memory languages have shown that it is extraordinarily difficult even 
to	formalize	acceptable	semantics	for	programs	with	data	races.	Thus,	Java	[13]	and	the	upcoming	C++	
memory model [14] both discourage the use of data races. Unfortunately, neither language prevents the 
programmer	from	introducing	a	data	race.	C++	leaves	the	semantics	of	a	program	with	a	data	race	undefined,	
an	unacceptable	strategy	for	safe	languages	such	as	Java.	Java	provides	semantics	with	data	races,	but	they	are	
too complex for most programmers or system designers.

We	believe	that	a	fundamental	requirement	for	safe	shared	memory	programming	is	that	races	be	avoided	
or detected [29], resulting in well-defined exceptions. Race avoidance or detection are the only practical 
ways of enforcing the safety of shared memory parallel code and of providing a feasible shared memory 
model.	Debugging	and	testing	of	race-free	programs	is	simpler	since	there	are	fewer	interleaving	sequences	
to	consider—only	the	(possibly	non-deterministic)	interleaving	of	synchronization	operations.	

Determinism—a stronger discipline:	A	stronger	requirement	is	that	programs	be	deterministic so that, for 
each	input,	there	is	a	unique	output.	While	such	a	program	may	execute	in	parallel,	the	outcome	is	equivalent	
to	that	obtained	in	a	sequential	execution,	and	the	relative	timing	of	the	executing	threads	cannot	possibly	
affect	the	outcome.	Programs	satisfying	this	requirement	have	sequential semantics, which yields several 
major benefits. Such a program can be understood without concern for execution interleavings, data races, 
or complex memory models. Programmers can reason about programs, debug them during development, and 
diagnose	error	reports	after	deployment	using	familiar	development	patterns	and	tools	used	for	sequential	
programs. ISVs can test codes more easily, without being concerned about the need to cover multiple possible 
executions	for	each	input.	Programmers	can	use	an	incremental	parallelization	and	tuning	strategy,	progres-
sively	replacing	sequential	constructs	with	parallel	constructs,	while	preserving	program	behavior.	Finally,	
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two separately developed but deterministic parallel components should be far easier to compose than more 
general parallel code because, with a deterministic language, a deterministic component should have the 
same	behavior	regardless	of	the	external	context	within	which	it	is	executed	(with	some	constraints	on	the	
behavior	of	that	external	context	[18]).

We	believe	that	many	transformative	programs	(where	parallelism	is	used	only	for	performance	and	is	not	
part	of	the	problem	specification)	can	be	expressed	in	deterministic	terms.	Nevertheless,	non-deterministic	
behavior may be needed for the efficient implementation of some parallel algorithms. For example, parallel 
associative reductions are often scheduled in an order that depends on the number of executing threads, 
resulting in schedule-dependent rounding differences that users may be willing to tolerate. A parallel con-
nected components algorithm will always return the same connected components, but may return different 
spanning trees for each component. Branch-and-bound search and clustering algorithms are other relevant 
examples.

Our	fundamental	thesis	is	that	client-side parallel programming must be deterministic by default. Non-deterministic 
behavior should occur only when explicitly non-deterministic constructs are used. All shared memory parallel 
code, whether deterministic or non-deterministic, must be data-race-free:	unsynchronized	conflicting	accesses	
to shared memory must result in compile-time errors or run-time exceptions.

Where possible, non-deterministic behavior should be encapsulated behind interfaces with well-defined 
contracts such that the rest of the program can be guaranteed deterministic as long as those contracts are 
satisfied.	Such	operations	are	often	written	by	expert	programmers	as	libraries	or	frameworks,	and	widely	
reused.	Such	code	may	be	written	to the meta to achieve the highest performance and can be difficult to 
guarantee deterministic, but is generally well designed and thoroughly tested. Encapsulating such code helps 
to	localize	the	places	where	debugging	and	testing	has	to	cope	with	non-deterministic	behavior.	Thereafter,	
trusting such code is a practical compromise so that application programmers can obtain most of the benefits 
of determinism as well as the performance of highly tuned library code. Alternately, where possible, we can 
also use static analyses and formal methods to verify such contracts, as described in Section 5.4.

Providing a parallel performance model:	While	we	have	argued	for	a	sequential	semantic	model	(by	
default)	for	easier	reasoning,	we	believe	that	for	robust	performance,	it	is	important	for	programmers	to	be	
exposed to a parallel performance model. For example, consider a language where the only explicitly parallel 
construct	is	a	parallel	loop,	and	where	loop	iterates	are	required	to	be	independent.	Although	the	loop	has	
serial	semantics,	the	user	can	analyze	performance	assuming	that	such	a	loop	does	execute	in	parallel.	If	the	
iterates are not independent, then an error will occur at compile time or an exception or warning will be 
raised	at	run-time	(perhaps	reverting	to	a	sequential	execution).	In	any	case,	the	programmer	is	warned	if	the	
parallelism is not achieved. We can think of the explicitly parallel loop construct as an annotated loop where, 
in addition to specifying loop semantics, the programmer provides an indication of the expected execution 
model	and	the	language	implementation	tries	to	deliver	that	model.	Languages	such	as	OpenMP	already	
provide	such	annotations,	as	pragmas	or	directives.	However,	incorrect	directives	in	OpenMP	may	cause	
data	races;	furthermore,	the	expressiveness	of	annotations	that	are,	syntactically,	comments,	is	limited.	We	
believe that we need new programming constructs in the form of executable annotations.

Research questions and our approach:	To	achieve	the	goals	described	in	this	section,	we	propose	to	add	
new	programming	constructs	to	existing	popular	object-oriented	languages,	such	as	Java,	C#	and,	possibly,	
C++.	We	believe	that	using	such	extended	languages	will	provide	an	easier	path	to	parallelism	than	using	
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current languages or totally new languages. If parallelism is pursued using current languages, then it is achieved 
either	by	using	explicit	threading,	or	by	adding	directives	and	writing	code	in	idioms	that	can	be	parallelized	
by	the	compiler.	The	former	approach	is	bug-prone;	the	latter	is	platform-dependent.	A	totally	new	language	
presents	an	obvious	porting	barrier.	Our	preferred	alternative	is	to	add	to	a	popular	language	performance 
annotations—i.e.	syntax	extensions	that	affect	the	performance	model	but	not	the	program	semantics.	With	
this approach, refactoring tools can support the porting of existing codes as a progressive annotation process 
and	development	tools	can	display	a	semantically	equivalent	program	in	the	original	language	( Java,	C#	or	
C++),	for	debugging.	The	annotations	are	not	specific	to	a	platform;	further,	the	investment	in	using	them	
has a long-term payoff because they improve programmability, clarify design decisions, and reduce mainte-
nance costs. 

Designing such an extended language that meets the diverse goals described in this section raises many 
important	research	questions:

•	 Disciplined	Control	and	Synchronization: An important means to achieve the discipline we recommend 
is	the	use	of	well-structured	parallel	control	flow—the	equivalent	of	“goto-less”	programming	for	the	par-
allel world. As Dijkstra argued [3], structured programming results in a simple mapping from the static 
program	to	the	dynamic	execution	state	so	that	a	program	execution	is	easier	to	comprehend	and	debug;	
at	the	same	time,	the	banning	of	goto’s	causes	little	loss	of	performance.	Well-behaved	parallel	constructs	
such	as	nested	parallel	loops	or	static	dataflow	programs	[67,	68])	(vs.	arbitrary	fork-join	constructs)	
lead to a simple view of execution state, simplifying reasoning for programmers and compilers. For non-
deterministic programs, high level constructs, such as atomic sections, will be preferable to explicit locks. 
It	will	be	important	to	provide	high-level	parallel	constructs	(such	as	deterministic	and	non-deterministic	
parallel	iterators)	in	order	to	express	prevalent	parallel	tasking	patterns	in	a	structured	way.	Research	is	
needed to evaluate the expressiveness of such constructs and ensure that no significant performance is 
lost by imposing such a programming discipline.

•	 Race	detection	and	prevention	mechanism: We expect that race avoidance or detection can be imple-
mented	efficiently	through	a	judicious	combination	of	language	features,	as	described	below;	of	compiler	
techniques,	as	described	in	Section	5.1;	and	of	hardware	support	for	race	detection,	as	described	in	Section	
5.3.1 Whenever possible, it is preferable to avoid data races by design, i.e., having them detected at compile 
time. Data races can be avoided by providing in the source code sufficient information about memory 
access	patterns	so	that	the	compiler	can	analyze	memory	accesses	and	determine	that	no	conflicting memory 
accesses	may	occur.	Our	Deterministic	Parallel	Java	(DPJ)	language	[17]	achieves	this	goal	by	adding	
region	types	and	effect	annotations	to	Java.	The	region	types	partition	the	shared	variables	into	disjoint	
sets,	according	to	their	type;	the	effect	annotations	specify	which	sets	can	be	accessed	or	updated	by	a	
particular statement. The program is legal only if two concurrent threads never have conflicting effects on 
the	same	set.	The	annotations	enable	the	programmer	to	express	the	memory	sharing	patterns	in	the	code,	
and	the	reasons	why	the	code	is	believed	to	be	data-race-free.	The	compiler	verifies	the	annotations	(no	
conflicting	concurrent	accesses).	Flaws	in	the	programmer	reasoning	are	exposed	as	compile-time	errors,	
thus	facilitating	debugging;	and	the	compiler	and	run-time	can	optimize	the	code	using	the	information	
on data sharing. 

 Research is needed to determine how expressive such a type and effect system can be, and how it is best 
supported.	At	a	minimum,	we	expect	that	some	applications	will	require	dynamic	(executable)	annotation	
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mechanisms, relegating some checks to run-time, but still allowing for more efficient checks and more 
informative run-time exceptions. We would like a language design that encourages and supports early 
binding of type and effect information, but does not prevent late binding;	and	that	infers	as	much	as	pos-
sible	information	on	access	patterns,	thus	reducing	the	need	for	explicit	annotations.

•	 Definition	of	conflicting	effects: The	DPJ	effect	system	currently	supports	two	effects:	read and write, 
with writes conflicting with any other effect. This effect system can be extended to support more types of 
operations on shared variables, with a suitable table of conflict rules. For example, associative reductions 
or commutative operations on concurrent data structures can be expressed via a commutative effect on a 
method;	this	would	conflict	with	any	other	effect	and	would	indicate	that	the	method	can	be	invoked	in	
any	order	within	a	parallel	phase	and	the	final	result	will	be	unique	(up	to	rounding	errors,	for	floating-
point	reductions).	As	another	example,	the	Multi-phased	Shared	Arrays	(MSA)	language	[69,	70]	supports	
three mutually exclusive effects of read, write and accumulate, and allows the access mode of an array to 
be changed during execution.

•	 Encapsulation: Encapsulation of non-deterministic code, as described above, could be handled using 
suitably defined and validated interface contracts. For example, users of a generic reduction or parallel 
prefix library operation should be able to define pure, associative operators, as in languages like Fortress 
[71]:	the	pure and associative	requirement	is	a	contract	that	can	often	be	checked	by	the	compiler,	pos-
sibly relying on effect annotations. A more complex case occurs when the result is deterministic in some 
essential sense, but may vary in representation or other characteristics. For example, a parallel connected 
components algorithm will always return the same connected components, but may be non-deterministic 
in terms of the representations of these components. A floating point parallel prefix computation may suffer 
from different rounding errors, according to the order operations are applied. A final example is the mesh 
refinement	discussed	in	[72]	where	the	outcome	is	guaranteed	to	satisfy	the	Delaunay	property	although	
its exact form may differ across executions. Proper interfaces to such libraries raise non-trivial theoretical 
and pragmatic problems.

•	 Virtualization	and	Locality:	Traditional	thread-based	shared	memory	programming	models	such	as	
pthreads	or	Java	threads	use	relatively	heavy-weight	threads	and	therefore	generally	work	efficiently	when	
the number of threads match the number of physical cores. This results in programs that are either unable 
to	adapt	to	changes	in	the	underlying	processor	resources	or	requires	complex	code	to	perform	non-trivial	
load	balancing	techniques.	Higher-level	programming	models,	such	as	OpenMP	[56],	TBB	[73],	and	
Charm++	[6]	virtualize	CPU	resources:	the	degree	of	program	parallelism	(concurrent	tasks)	need	not	
match	the	number	of	physical	cores.	Such	virtualization	greatly	improves	load-balancing	but	may	also	
hurt locality, and therefore performance, if the underlying run-time system, which schedules program 
tasks	onto	the	physical	cores,	does	not	have	the	knowledge	of	communication	patterns.	The	Partitioned	
Global	Address	Space	(PGAS)	languages	such	as	Titanium	[74],	UPC	[75]	or	CAF	[76],	provide	some	
mechanisms for handling locality, but match a model of a distributed memory system with a fixed number 
of	nodes.	Neither	approach	is	satisfactory.	We	plan	to	explore	mechanisms	to	provide	better	control	of	
locality	while	virtualizing	physical	resources,	building	on	our	experience	with	object-based	decomposition	
in	Charm++	[77].
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4.2 Parallel operators
A particularly useful form of disciplined control is provided by data parallel operators: in data-based parallel-
ism, tasks perform the same operation on different components of a pre-existing data ensemble or a simple 
iteration domain. In the simple case, such as a vector sum, the operations on distinct elements are independent 
and perform the same amount of work. In more complex cases, the operations may take different amounts 
of time and may not be all independent: one needs to find and repeatedly schedule an independent subset 
of operations [59, 64, 69].

Data parallelism can be encapsulated inside operands defined on aggregates, such as arrays or sets and, 
hence, can be incorporated into traditional languages in a transparent manner. Second, because parallelism 
is encapsulated in the data parallel operators, it is possible to modify the implementation of these operators. 
Portability	is	achieved	by	providing	optimized	versions	of	the	data	parallel	operators	for	different	platforms	
including	shared	and	distributed	memory	multiprocessors,	SIMD	processors,	and	combinations	of	these.	The	
result is that the same code can be executed on different platforms with minimal loss of performance. Finally, 
data parallel operators are an effective mechanism to encapsulate non-determinism. The possible results of 
these non-deterministic operations could be identical or just be guaranteed to satisfy some property while 
differing in significant ways as discussed above.

We	have	extended	the	traditional	array	operators	of	array	languages	such	as	APL,	Fortran	90,	or	Matlab	by	
adding tile abstraction and well-defined parallel semantics. We thus obtained a new data type that we call 
Hierarchically	Tiled	Arrays	(HTAs)	which	enables	the	direct	manipulation	of	tiles	sequentially	or	in	parallel	
[19, 20]. This extension facilitates the development of array-based parallel codes that have a high degree of 
locality and gives programmers the ability to directly control data layout, scheduling strategy, affinity, data 
distribution, and communication. We are currently developing abstractions that extend data parallel opera-
tions to other classes of aggregates such as sets, graphs, or trees to enable the development of highly readable 
parallel non-numeric programs.

4.3 Metaprogramming and Autotuning
When the target machine is a multicore, productivity suffers not only due to the increased likelihood of defects, 
but	also	because	of	the	need	to	make	these	programs	efficient	and	scalable.	Targeting	multicores	complicates	
optimization	since	programmers	must	deal	with	issues	that	do	not	arise	in	the	sequential	world	such	as	load	
balancing	and	communication	[78].	The	natural	way	to	address	this	problem	is	automation.	Optimization	
tools have always been important, but their importance is now even greater since they are our only hope to 
compensate for the increased difficulty brought on by parallelism. In the spirit of separation of concerns and 
following	tradition,	we	are	developing	tools	whose	only	objective	is	performance	optimization.	The	most	
important such tool is of course the program optimization passes of the compiler, but our experience indicates 
that compilers at least with today’s technology are not sufficient to address the productivity problem and 
even with the support of the best compilers the development of efficient and scalable programs remains 
laborious. The library generators implemented	using	autotuning	techniques	constitute	a	promising	new	class	
of tools. These produce codes that achieve impressive efficiency across a wide range of machines. Some of 
these	generators,	including	ATLAS,	FFTW,	and	SPIRAL	[79,	80,	22];	have	gone	beyond	the	experimental	
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stage	and	are	now	routinely	used	by	library	developers	or	as	a	component	of	commercial	systems	[81].	Most	
library generators use empirical search to find a near-optimal version. The main idea is to generate several 
versions of the routine being automatically implemented by replacing algorithms and changing the way they 
are	implemented.	Variations	in	the	implementation	of	an	algorithm	include	loop	unrolling,	vectorization,	
reordering statements to improve scheduling, and tiling the computation to enhance locality. The genera-
tor executes these versions on the target machine in order to evaluate them and select the one with the best 
performance. Although in some cases it is feasible to conduct an exhaustive search, often the space of pos-
sibilities	is	too	large	and	a	subset	must	be	selected	for	generation	and	evaluation.	Typically,	performance	is	
execution time, but power consumption could also be taken into account. Library generators can be conceived 
as metaprograms which embody in a single code all the versions that are to be empirically evaluated. Although 
the vast majority of widely known autotuning metaprograms are library routine generators, metaprograms 
implementing complete applications are also of great importance when the bulk of the computation cannot 
be implemented in terms of existing libraries.

The autotuning approach has the advantage over compilers that it can make use of semantic information that 
typically would not be available to compilers, but this information must in some cases be provided by the 
programmer	and	this	means	extra	work.	However,	the	effectiveness	with	which	these	autotuning	systems	
enable portability across machines and machine generations has made the extra effort worthwhile in the 
past	because	although	the	initial	effort	is	higher	than	that	required	to	develop	a	highly	tuned	version	for	a	
single machine, porting to new machines becomes much simpler. We expect the impact of these systems on 
productivity to be even greater when dealing with parallelism. Furthermore, we believe that many applica-
tions	can	benefit	from	autotuning	without	the	intervention	of	programmers	if	the	application	is	written	in	
terms of routines for which there exist a generator or in terms of other primitives such as codelets or data 
parallel	operations	(see	below).

There are several important issues that must be addressed. In fact, today’s developers of autotuning software 
must do all the work from scratch with practically no software support and therefore we must study tech-
niques	to	increase	the	applicability	of	autotuning.	Therefore,	building	on	our	earlier	work	on	library	genera-
tors, we are working to make metaprogramming for autotuning a more useful and effective methodology so 
that it can become one of the foundations of productivity for multicores. In particular, we are studying and 
developing abstractions and tools to facilitate the implementation of parallel self-tuning codes, such as the 
ones outlined next:

•	 Continue	advancing	our	understanding	of	data-dependent	autotuning.	In	many	cases,	the	best	version	
of a computation depends on the input data. For example, many sorting algorithms perform differently 
for different input data sets and the choice of the best algorithm is therefore data dependent. We need 
runtime	selection	to	enable	data-dependent	optimization.	One	possibility	is	to	generate	code	that	contains	
multiple	semantically	equivalent	versions	of	the	computation,	one	of	which	is	selected	at	execution	time.	
Alternatively, autotuning could be done at execution time. The impact of runtime selection on performance 
is demonstrated by our studies on the autotuning of sorting [23, 24]. 

•	 Develop	languages	for	metaprogramming	and	autotuning.	This	metalanguage	should	describe	collections	
of valid implementations, ways to combine code components, and possible values of implementation 
parameters. This metalanguage should also make it possible to specify strategies for the identification of 
optimal points in the space of implementations for each target machine. The metaprograms could implement 



 27

libraries	or	complete	applications.	One	of	our	goals	is	to	study	the	complexity	of	these	metaprograms.	We	
believe that, with the appropriate design, metaprogramming will dramatically facilitate the initial tuning 
and	subsequent	porting	to	new	generations	of	machines.	This	work	will	build	on	our	experience	with	a	
prototype metalanguage called X-language [82].

•	 Implement	autotuning	versions	of	the	parallel	operators	discussed	in	the	previous	section.	Autotuning	
versions of these operators will facilitate portability across classes of parallel machines, including muticores, 
multicomputers,	and	SIMD	processors,	and	will	enable	powerful	optimizations.

•	 Design	and	development	of	a	codelet-based	optimization	strategy.	Codelets	are	computational	blocks	that	
occur	sufficiently	often	in	programs	that	it	is	worth	developing	manual	and/or	automatic	techniques	to	
(i)	isolate	them	within	the	context	of	large	programs,	and	(ii)	optimize	their	performance,	possibly	using	
customized	approaches.	We	plan	to	search	for	codelets	by	analyzing	source	programs	statically	and	binaries	
dynamically.	Our	strategy	is	to	optimize	programs	by	recognizing	and	replacing	codelets	with	improved	
versions. As mentioned above, with autotuning versions of codelets and data parallel operators, it will 
be possible to bring the benefit of autotuning to numerous programs without the need for programmer 
intervention.

•	 Develop	search	strategies	and	implement	them	to	support	autotuning.	Given	the	astronomical	number	
of versions that are typically possible, effective search strategies that are generally applicable are of great 
importance. We have recently investigated effective strategies for pruning the search space for massively 
parallel	GPUs	[83].	Analytical	models	to	prune	the	search	or	avoid	it	altogether,	statistical	techniques,	
empirical	models,	as	well	as	advanced	search	techniques	must	be	studied.	

4.4 Domain-Specific Environments
One	way	to	make	parallel	programming	be	“just	programming”	is	to	hide	the	parallelism	inside	domain-specific	
languages or libraries. We call a collection of domain-specific tools domain-specific environments	(DSEs).	Many	
existing	DSEs	are	being	ported	to	take	advantage	of	multicores,	including	languages	like	Matlab	[84]	or	Labview,	
libraries	like	Apple’s	Core	Audio	[85],	and	frameworks	like	PureMVC	[86],	a	user	interface	framework	for	
ActionScript.	There	are	also	DSEs	designed	from	the	start	to	hide	parallelism,	such	as	Google’s	MapReduce	
and	the	parallelized	application	frameworks	we	are	developing,	mentioned	in	Section	3.1.

Ideally,	the	goal	of	many	such	DSEs	is	for	application	programmers	(especially	those	who	are	already	using	
these	environments)	to	not	have	to	learn	parallel	programming—using	these	environments	should	allow	
their programs to automatically take advantage of more cores. In practice, however, much can go wrong, and 
application programmers are often disappointed by the performance of their programs using a DSE that hides 
parallelism. Unfortunately, the development tools they can use to diagnose and fix these problems usually do 
not have any knowledge of their domain, which means that the benefit of domain-specific programming is 
lost;	worse	still,	it	can	actually	be	harder	to	tune	a	program	if	performance	behavior	can	be	understood	only	
at the level of a base language and low-level run-time instead of the programmer’s source code.

There	are	too	many	possible	domains	for	us	to	develop	new	tools	or	specialize	existing	tools	for	each	domain.	
Instead, we must develop generic techniques	and	tools	that	enable	domain	experts	to	build	effective,	rich	parallel	
DSEs.	We	plan	to	implement	these	for	the	parallelized	frameworks	being	implemented	for	our	applications,	
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as well as help design these frameworks. We expect to discover common themes and recurring problems that 
will	form	the	basis	for	such	generic	techniques	as	described	next.

A true “programming environment” for a domain should include domain-specific development tools such 
as	tools	for	code	optimization	(i.e.,	domain-aware	compilers),	performance	analysis,	debugging,	refactoring,	
and interactive development. All of these tools would present information to the programmer in the concepts 
and terminology of the domain, rather than simply in those of a base language or run-time system. 

One	of	the	tools	that	often	needs	more	information	about	a	DSE	is	the	compiler.	Compilers	miss	opportunities	
to	optimize	applications	that	use	domain-specific	libraries	and	frameworks	(and	often	even	domain-specific	
languages)	because	they	do	not	understand	the	domain.	A	compiler	can	sometimes	produce	a	more	efficient	
program if it knows that two vectors drawn from the same matrix do not overlap, or that two operations on 
a stream commute. There need to be ways that library designers can describe properties of their library to 
compilers	so	that	the	compilers	can	better	compile	applications	that	use	the	library.	The	challenge,	of	course,	
is to make the underlying compiler domain-independent, including the description language used for specify-
ing such properties. We believe this is feasible because the properties useful for performance optimization are 
often domain-independent,	e.g.,	properties	like	data	reuse,	algebraic	equivalence	of	operations,	commutativity,	
variable	privatization,	etc.,	even	though	the	semantics	that	lead	to	those	properties	are	not.

Ideally,	the	interface	of	a	DSE	should	not	change	when	it	starts	to	support	parallelism.	However,	there	are	
limits to the performance gains that can be achieved with complete backward compatibility, so often the DSE 
will	introduce	new	features.	For	example,	the	first	version	of	Matlab	that	supported	multiprocessors	had	the	
same	interface	as	the	previous	version,	but	recently	Matlab	has	introduced	constructs	for	explicitly	introduc-
ing	parallelism	into	a	program.	The	Java	FJTask	library	has	added	multiple	mechanisms	to	perform	the	same	
operation;	programmers	porting	their	code	to	use	FJTask	often	miss	opportunities	to	use	the	most	efficient	
mechanism	[87].	Sometimes	libraries	add	non-blocking	operations	to	help	speedup	applications.	We	shall	
study tools and methodologies to help application programmers cope with such interface changes.

4.5 Actors
So	far,	we	have	largely	focused	on	shared	memory	programming.	For	many	reactive	programs	(where	concur-
rency	is	part	of	the	problem	specification),	non-determinism	is	inherent	to	the	problem	and	alternatives	to	
pure	shared	memory	are	attractive.	In	this	context,	we	explore	actor	based	models.

We draw again on object-oriented programming concepts, where objects encapsulate data and behavior, 
and	separate	interface	(what)	from	the	representation	(how),	enabling	modular	reasoning	and	evolution.	
In contrast to introducing concurrency through threads where control remains external to the objects, it is 
natural to extend the concept of objects by modeling each object as an autonomous agent or actor, operating 
potentially in parallel with others. 

The Actor model of programming [25] enables programs to be decomposed as self-contained, autonomous, 
interactive, asynchronously operating components that, by default, communicate using asynchronous 
message-passing. The asynchrony in the model allows us to model non-determinism inherent in reactive 
systems,	cloud	computing,	sensor	networks	and	modules	requiring	history-sensitive	behavior.	Asynchro-
nous operation allows flexibility in placement and scheduling actors on different cores, as well as facilitating 
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mobility [26]. This allows the runtime to preserve locality, balance loads, and manipulate schedules in order 
to	enforce	synchronization	constraints	[27],	meet	deadlines,	minimize	energy	consumption,	and	preserve	
quality	of	service	[28].	Not	surprisingly,	because	of	the	need	to	program	peer-to-peer	systems,	web	services	
and applications [88], and now multi-core processor architectures, there has been a growth of interest in 
languages	based	on	the	actor	model	(e.g.,	E,	Erlang,	Salsa,	Scala	[89,	90,	91,	92])	as	well	as	actor	libraries	and	
frameworks. Figure 3 illustrates the components of an acor:
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FIgURE 3	•	An	Actor	represents	a	concurrent	object:	like	objects,	it	encapsulates	state	and	methods,	
but it also has its own thread of control. Each actor’s thread steps through the actor’s behavior, and 
when	the	actor	is	idle,	picks	a	new	message	from	its	pending	queue	of	messages	for	processing.	
Note that this figure represents a semantics view of an actor. In implementations, actors may share 
a	mail	queue,	or	message	sending	may	be	transformed	into	method	calls.	Actors	may	send	messages	
(asynchronously	invoke	methods)	to	other	actors,	or	create	new	actors.

Formally, actors can be defined as objects augmented with a thread of control and a mailbox. The lifecycle of 
an actor involves creation, processing messages one after the other and destruction. During the processing of a 
message,	an	actor	may	create	other	actors,	send	messages	and	change	its	internal	state.	However,	there	are	some	
notable	research	challenges.	An	important	aspect	of	actor	programs	is	the	specification	of	synchronization	
constraints	(when)	among	the	concurrently	executing	actors.	Modular	specification	and	efficient	enforcement	
of	constraints	is	an	interesting	direction.	Hardware	variability	(due	to	power	management	and	production	
defects)	makes	the	difficult	problem	of	concurrent	programming	even	harder.	Run-time	architecture	that	
supports efficient migration of actors can enable dynamic load-balancing algorithms.

Low-level	concurrency	models	require	the	programmers	to	specify	resource	allocation	at	task	level.	But	
since	actor	programs	may	comprise	of	a	very	large	number	of	light-weight	tasks	(actors),	such	allocations	
need	to	be	specified	at	a	higher	level	of	abstraction.	However,	the	heterogeneity	of	resources	and	possibility	
of task-specific accelerators may encourage programmers to specify nature of resource suited to a particular 
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task.	Moreover,	programmers	can	specify	application-specific	QoS	requirements	at	a	high-level	e.g.	a	video	
application can set bounds on the delay between its audio and video feed. Satisfying such QoS constraints 
in	addition	to	the	above-mentioned	constraints	at	run-time	requires	introspection	capabilities	to	query	the	
resources as well as clever scheduling algorithms.

Our	focus	here	will	be	again	driven	by	the	separation	of	concerns	philosophy—how	to	separate	the	specifica-
tion	of	individual	actors	and	the	specification	of	aggregate	multi-actor	constraints	such	as	synchronization,	
resource	allocation,	quality	of	service,	reliability,	energy	consumption,	etc.,	and	how	to	efficiently	implement	
these constraints in the context of an actor-oriented run-time. 
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5 Development and Execution Environments

5.1 Translation Environment
The Illinois UPCRC compiler infrastructure sits between the disciplined parallel programming languages 
and frameworks described in Section 4 and the runtime and hardware described in Sections 5.2 and 5.3. The 
requirements	and	systems	views	presented	by	these	two	interfaces	differ,	and	it	is	the	responsibility	of	the	
compiler to translate between the two interfaces. The challenge, and opportunity, is to make use of the new 
information available from these two interfaces to find more parallelism, improve cache locality, reduce runtime 
overheads,	and	assist	programmers	in	porting	existing	sequential	or	parallel	codes	to	the	new	programming	
models. The runtime system and front-end type system can provide information about code reachability and 
aliasing relationships that static compiler analyses cannot otherwise derive.

We	are	basing	the	new	dynamic	compilation	infrastructure	on	the	existing	open-source	LLVM	compiler	
infrastructure	[93].	We	are	designing	a	new	program	dependence	graph	(PDG)	based	internal	representation	
to	support	static	and	dynamic	analysis	and	transformations.	On	this	internal	representation,	we	are	implement-
ing	a	variety	of	traditional	PDG-based	loop	transformations	(strip-mining,	interchange,	unswitching,	scalar	
expansion,	distribution,	reassociation,	fusion),	together	with	a	range	of	interprocedural	program	analyses	
(pointer	analysis,	escape	analysis,	dependence	analysis).	These	techniques	are	useful	for	a	variety	of	purposes:	
extracting parallelism from loops that are not already fully parallel, extracting sharing information between 
tasks	to	optimize	parallel	performance,	and	restructuring	loops	for	better	memory	locality.

New sources of information

We believe that it will be necessary for the transformation engine to leverage information from a wider set of 
sources than traditional pointer and array alias analyses.

•	 The	disciplined	shared-memory	languages	described	in	Section	4.1	include	annotations	that	programmers	
use to indicate which loops and procedures they want run in parallel. This allows the compiler to focus 
its	efforts	only	on	sections	of	code	that	really	matter	to	the	programmer,	while	avoiding	added	overheads	
on	code	that	the	programmer	knows	not	to	be	(efficiently)	parallelizable.

•	 Safe	deterministic	parallel	languages	may	include	type	systems	that	allow	the	programmer	to	create	code	
with provably unaliased pointers. The additional aliasing information allows the type system to guarantee 
race-freedom.	A	key	research	question	is	how	to	transmit	the	information	from	the	type	system	to	the	
transformation	engine.	Our	first	prototype	will	do	this	by	having	the	front-end	system	generate	assert	
calls that the transformation engine can then use to generate a sparser program dependence graph.

•	 Data-types	and	frameworks	often	have	invariants	that	a	compiler	can	leverage.	For	example,	the	DPJ	
language	mentioned	in	Section	4.1	and	the	Hierarchically	Tiled	Arrays	described	in	Section	4.2	have	
mechanisms to create sub-arrays that are guaranteed to be disjoint. The compiler can use this property to 
prove that work on different sub-arrays is independent.

•	 A	conservative	static	compiler	analysis	must	assume	that	all	paths	through	the	program	can	be	taken.	At	
runtime,	however,	we	have	specific	information	about	the	values	of	variables	that	are	invariant	(in,	for	
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example,	a	loop	that	we	would	like	to	parallelize).	At	runtime	we	can	use	these	values	to	prove	that	some	
paths through the program cannot possibly be exercised in the currently running instance. Those paths can 
be eliminated, potentially reducing inter-iteration dependences, and thus providing more opportunities 
for	optimization.

Runtime Efficiency

In addition to transforming programs to expose more parallelism and to improve locality, the compiler will 
be	responsible	for	passing	information	to	the	runtime	software	(Section	5.2)	and	hardware	(Section	5.3)	
that can be used for more efficient decisions. For example, the compiler can pass information about variable 
liveness	to	the	Bulk	Multicore	architecture	(Section	5.3.1)	so	that	it	can	eliminate	checkpointing	overheads	
on data structures that are not live. Similarly, the compiler can transmit information on disciplined sharing 
characteristics	(for	example	through	the	use	of	DPJ’s	type	system	or	through	traditional	dependence	analysis)	
to	the	runtime	and	the	hardware	for	various	purposes—information	on	code	regions	that	are	already	proved	
data-race-free	will	allow	the	Bulk	Multicore	architecture	to	focus	on	other	regions	for	its	runtime	data	race	
detection;	the	DeNovo	architecture	(Section	5.3.2)	will	use	such	information	to	provide	a	more	efficient	
software-driven	coherence	fabric;	and	the	runtime	will	use	the	information	to	improve	scheduling	decisions	
based on locality.

5.2 Runtime System
A major challenge in developing software for client platforms is hardware diversity. It is untenable to ask 
software	vendors	to	adapt	or	optimize	their	programs	for	each	of	these	platforms.	Instead,	we	believe	it	is	
important	to	provide	an	execution	environment	that	attempts	to	meet	the	applications	goals	the	best	it	can	
given	the	available	resources	on	the	platform.	Two	key	concepts	in	this	statement	are	worth	emphasizing:

1)	Application	goals:	We	believe	that	quality	of	service	(QoS)	will	be	increasingly	important	on	client	systems	
to	provide	a	good	user	experience.	Many	performance-hungry	applications	can	be	written	so	as	to	provide	
the	best	answer	that	can	be	computed	by	a	given	deadline,	and	will	be	written	this	way	to	be	responsive	
without	jitter	and	long	pauses.	We	expect	applications	to	be	annotated	and	organized	such	that	a	level	of	
output	quality	can	be	selected	based	on	the	available	resources.

2)	Available	resources: We expect heterogeneity in client platforms. Not only will there be heterogeneity 
between	platforms	(different	design/price	points	within	a	process	generation	and	across	process	genera-
tions),	but	also	within	a	platform.	We	expect	future	platforms	to	include	a	variety	of	cores	(a	few	large	
cores,	optimized	for	latency,	for	sequential	performance	and	many	small	cores,	optimized	for	throughput,	
for	parallel	workloads);	even	when	designed	to	be	similar,	process	variation	will	endow	them	with	different	
performance characteristics. Furthermore, the resources that can be applied to each program’s execution 
may vary over time as applications are launched or complete and due to adaptation of the hardware to 
physical	constraints	(e.g.,	power,	temperature,	battery	life,	and	aging).

The	process	of	trying	to	maximize	utility	(the	sum	of	the	user	benefits	of	all	running	programs)	given	the	
available	resources	is	an	optimization	problem.	Drawing	on	our	previous	work	[77,	94,	95],	we	use	a	com-
bination of task over-decomposition and a hierarchical adaptive resource allocation strategy for an efficient 
solution to this problem. Figure 4 illustrates our approach.
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Each	application	runs	inside	a	run-time	system.	The	run-time	system	has	three	key	goals.	First,	it	virtualizes	the	
hardware platform for the application. That is, application writers are charged with exposing the concurrency 
(in	the	form	of	work	units),	but	the	binding	of	work	units	to	cores	is	handled	transparently	by	the	run-time	
system.	Second,	the	run-time	system	communicates	to	the	operating	system	a	set	of	utility/resource-requirement	
tuples	for	different	possible	configurations	of	the	application.	Third,	once	the	OS	makes	a	resource	allocation	
(as	described	below),	the	runtime	ensures	that	the	application	uses	these	resources	in	the	most	efficient	way,	
appropriately reacting to any local changes in the application behavior and system environment.

The job of the operating system is to make global resource allocation decisions, arbitrating between all of 
the	applications.	These	decisions	attempt	to	allocate	resources	so	as	to	optimize	the	global	utility.	Resource	
allocations are performed as block grants	of	resources	to	applications;	as	much	as	possible,	the	operating	system	
attempts	to	space	multiplex	parallel	applications	by	assigning	uninterrupted	use	of	a	subset	of	the	processors.	
Such block grants only need to be recalculated when the set of active applications changes or an application 
substantial	changes	its	utility/resource	tuples.	When	the	operating	system	changes	an	application’s	allocation,	
it notifies the application’s run-time.

Our	proposed	run-time	system	derives	a	number	of	important	ideas	from	our	previous	work	on	the	Charm++	
run-time	[77].	By	having	the	programmer	over-decompose	into	significantly	more	work	units	than	the	expected	
number	of	hardware	threads,	the	Charm++	run-time	can	both	achieve	good	performance	across	a	large	range	
of	core	counts	and	tolerate	heterogeneity	in	the	core	capabilities.	Key	to	achieving	these	are	its	adaptive	load	
balancing	which	optimizes	communication	by	co-locating	communicating	work	units.

The	hierarchical	structure	of	this	system	(global	optimization	by	the	O/S,	optimization	within	an	alloca-
tion	by	the	run-time)	and	optimization	at	multiple	time	scales	was	motivated	by	our	previous	work	in	the	
GRACE	project	[94,	95].	That	work	demonstrated	these	techniques	to	build	a	cross-layer	adaptive	system	
which	could	adapt	hardware,	network,	O/S,	and	application	algorithms	to	minimize	power	consumption	
while	still	meeting	QoS	requirements.

DEVELoPMEnT AnD ExECUTIon EnVIRonMEnTS

FIgURE 4	•	The	anatomy	of	a	managed	execution	of	a	heterogeneous	multi-core	machine	running	
three parallel applications.
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5.3 Hardware Architecture
The arrival of multiprocessors on a chip fundamentally changes many of the parameters for hardware archi-
tecture research. We make the following key observations that impact our work:

•	 Hardware	must	be	used	for	programmability.	Until a few years ago, the only goal of much research in 
hardware	architecture	was	to	provide	the	best	possible	cost/performance	ratio.	Most	recently,	power-
efficient	(or	energy-efficient)	performance	has	been	the	dominant	goal.	The	advent	of	multicore	systems	
forces us to fundamentally rethink our priorities. Since performance is now achieved by parallel software, 
it becomes important for the hardware to facilitate the development of such software. As we argue in 
Section 5.3.1, silicon can be increasingly leveraged to support ease of programming. 

•	 Hardware	must	scale	in	performance,	not	complexity.	As the primary means for performance will be 
from	an	increased	number	of	cores	(doubling	every	18	months),	hardware	must	be	designed	to	scale	in	
performance but not in complexity. The memory wall will be a major impediment to performance scal-
ability [96]	and	we	must	focus	attention	to	memory	hierarchy	design,	communication	protocols,	and	
synchronization	protocols.	Complexity	must	be	reigned	in—this	is	easiest	to	achieve	with	simple	and	
modular designs. This includes design for the cores, cache hierarchy, coherence protocols, and network 
fabric, and provision of standard interfaces to manage core-to-memory and core-to-core communication 
that can accommodate heterogeneous cores.

•	 Multicore	requires	new	cache	protocols. Coherent shared-memory systems either use snooping protocols 
that scale to a few tens of cores, or use directory protocols that significantly increase memory latency. In 
addition,	directory	protocols	have	been	designed	for	NUMA	machines,	where	a	node	integrates	processor	
and	memory,	and	access	to	a	remote	cache	requires	multiple	chip	crossings;	multicore	chips	will	have	hun-
dreds	of	cores,	all	accessible	with	no	chip	crossings,	and	all	nearly	equally	afar	from	the	memory	DIMMs.	
This	requires	new	designs,	such	as	embedded-ring	protocols	[97].	Furthermore,	the	synchronization	
mechanisms	and	the	data	sharing	patterns	exhibited	by	high-level	languages	and	parallel	algorithms	may	
benefit from novel protocol designs.

•	 An	opportunity	for	hardware-software	co-design. We argue in Section 5.3.2 that a large part of the complex-
ity of current hardware concurrency mechanisms arises from a software-oblivious approach to hardware 
design.	We	now	have	a	unique	opportunity	to	rethink	the	entire	system	stack	and	develop	hardware	that	is	
better	aligned	with	the	needs	of	modern	software.	For	example,	coherence	protocols	can	be	greatly	simpli-
fied	by	focusing	on	the	support	for	disciplined	programs.	Over	time,	we	need	a	fundamental	rethinking	
of concurrent hardware, including how to express and manage concurrent work units, communication, 
synchronization,	and	the	memory	consistency	model,	in	tandem	with	our	rethinking	of	the	best	practices	
for concurrent software.

We describe below two architecture projects we are pursuing in UPCRC. The Bulk Multicore project focuses 
on	supporting	a	flexible	substrate	with	scalable	cache	coherence,	high-performance	sequential	memory	
consistency, and an easy-to-use development and debugging environment. The DeNovo project rethinks 
concurrent hardware as a co-designed component of our disciplined programming strategy, both for enforc-
ing the discipline and for exploiting it for simpler and more efficient hardware.
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5.3.1 The bulk Multicore: High-Performance, Programmable Shared Memory

The	goal	of	the	Bulk	Multicore	architecture	is	to	enable	a	scalable	shared-memory	substrate	that	provides	a	
highly programmable environment, while delivering high performance and keeping the hardware simple. The 
Bulk	Multicore	advances	usability	and	programmability	by	efficiently	supporting	both	the	disciplined	software	
described	earlier	in	this	document	as	well	as	currently-existing	software	stacks—including	those	for	which	
performance is paramount. It provides novel hooks and support for a sophisticated development and debug-
ging environment. Such environment will have an overhead low enough to be on all	the	time—including	
when the user runs production codes. In addition, by providing hardware cache coherence, it removes the 
burden of managing data sharing from the programmer or run-time system software. Finally, by supporting 
high-performance	sequential	consistency,	it	provides	a	more	usable	platform	for	the	software.

The	Bulk	Multicore	builds	on	the	recently-proposed	BulkSC	architecture	fabric	[98].	It	is	also	inspired	on	
work on shared-memory multiprocessor architectures at the University of Illinois. In particular, it builds on 
mechanisms for state buffering and undo, as in thread-level speculation designs [30, 31, 99, 100], and on 
scalable	coherence	protocol	designs	[101,	97].

Providing	Scalable	Shared	Memory	for	General-Purpose	Computing:	The	idea	behind	the	Bulk	Multicore	is	
to eliminate the need to commit one instruction at a time, which is an important source of design complex-
ity	in	a	multiprocessor	environment.	In	the	Bulk	Multicore,	the	default	execution	mode	of	a	processor	is	to	
commit only chunks of instructions at a time. A chunk is a dynamically defined group of consecutively-executing 
instructions, for example 2,000 consecutive instructions. Such chunked mode of execution and commit is 
invisible to the software running on the processor.

Each chunk executes on a processor atomically and in isolation. Atomic execution means that none of the 
actions of the chunk are made visible to the rest of the processors until when the chunk completes and 
commits. Execution in isolation means that if the chunk reads a location and, before it commits, a second 
chunk	in	another	processor	modifies	the	location	and	then	commits,	then	the	local	chunk	gets	squashed	and	
has	to	restart.	Finally,	the	commit	of	chunks	is	globally	serialized	in	hardware.

To	execute	chunks	atomically	and	in	isolation	inexpensively,	the	architecture	relies	on	hardware address signa-
tures	[102].	A	signature	register	is	approximately	1-Kbit	long	and	contains	an	accumulation	of	hash-encoded	
addresses	through	a	Bloom	filter.	The	hardware	automatically	accumulates	the	addresses	read	and	written	by	
a	chunk	into	a	Read	(R)	and	Write	(W)	signature,	respectively.

Since chunks execute atomically and in isolation, commit in program order in each processor, and there 
is	a	global	commit	order,	the	architecture	supports	Sequential	Consistency	(SC)	at	the	chunk	level.	As	a	
consequence,	it	also	supports	it	at	the	instruction	level.	Importantly,	it	supports	SC	with	a	low	hardware	
implementation complexity while delivering high performance. The hardware implementation complexity 
is low because memory consistency enforcement is largely decoupled from processor structures. There is no 
need	to	support	global	snoops	on	critical	processor	structures	like	the	load	queue;	detection	of	consistency	
violations is performed with simple signature operations outside the processor core. At the same time, per-
formance is high because the processor is allowed any reordering and overlapping of memory accesses within 
a	chunk—even	across	synchronization	operations.

DEVELoPMEnT AnD ExECUTIon EnVIRonMEnTS



36 PARALLEL@ILLInoIS–UPCRC AgEnDA

The proposed architecture supports cache-coherent shared memory in a scalable way. Cache coherence is 
maintained with signatures, without the need to send individual cache-line invalidation messages. Cache 
coherence combines high performance with ease-of-programming.

Providing	a	Highly	Programmable	Environment: A key goal of the project is to develop novel architectural 
designs to provide a highly programmable environment for general-purpose shared memory. We are building 
on	work	at	the	University	of	Illinois	on	such	issues	[34,	35,	103,	104].	The	Bulk	Multicore	provides	a	highly	
programmable environment in two main ways.

The first one stems from its support for SC, even for programs with data races. Providing SC is beneficial for a 
variety of reasons. Chief among them is the fact that existing software correctness tools almost always assume 
SC. Using them in combination with hardware that provides SC will make them most effective. In addition, 
debugging concurrent programs is easier in a machine that provides SC, since the possible outcomes of memory 
accesses are more intuitive. Indeed, subtle data races can be very hard to debug under relaxed memory models. 
Finally,	supporting	SC	also	simplifies	support	for	safe	parallel	programming	languages,	such	as	Java.

The second way in which chunked execution provides a more programmable environment is by enabling very 
low-overhead	debugging	techniques—opening	the	door	to	a	sophisticated,	always-on	debugging	framework	
for production runs. The key insight is that development and debugging tools do not need to record or be 
concerned	with	individual	loads	and	stores—only	with	chunks.	This	can	reduce	the	amount	of	bookkeeping	
or	state	required	substantially,	for	example,	for	deterministic	replay	of	parallel	programs	[32,	33]	and	for	data	
race detection [29].

Leveraging	the	Bulk	Multicore:	Our	goal	is	to	integrate	this	flexible	architectural	fabric	with	the	other	layers	
in UPCRC, and develop fundamentally new capabilities to support such layers. In particular, to support the 
disciplined shared-memory models described in Section 4.1, we will develop low-overhead hardware primitives 
for data-race detection. Such primitives will also be usable by the compiler described in Section 5.1, to detect 
data	races	in	code	regions	that	the	compiler	has	not	proved	data-race	free.	Moreover,	the	compiler	will	also	be	
able to drive low-overhead hardware check-pointing and undo primitives to generate higher-performing code. 
Finally,	we	will	develop	better	hardware	primitives	for	deterministic	replay,	software	testing,	and	generation	
of alternate interleavings to complement and to interface to the software correctness tools of Section 5.4.

5.3.2 Denovo: Rethinking Hardware for Disciplined Parallelism

A large part of the complexity and inefficiency in current hardware concurrency mechanisms arguably arises 
from a software-oblivious approach to hardware design. This paper has argued that software dependability is 
paramount,	and	drives	the	use	of	disciplined	models.	The	DeNovo	project	asks	the	question	that	if	depend-
ability drives disciplined software, then how can we design hardware from the ground up to exploit this discipline 
(e.g., for higher performance) and how can hardware best support and foster this discipline ( for higher dependability). 
We are particularly inspired by two previous lines of work.

First, the history of the work on memory consistency models exemplifies well the pitfalls of software-oblivious 
hardware	design.	Many	hardware	models	were	proposed	that	gave	better	performance	than	sequential	con-
sistency,	but	were	complex	to	program,	difficult	to	understand,	and	promoted	questionable	programming	
practices. The software-centric data-race-free model observed that for programs that do not contain data 
races,	the	hardware	and	compiler	can	easily	provide	sequential	consistency	with	high	performance	[65,	66].	
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The	model	therefore	guarantees	sequential	consistency	only	to	data-race-free	programs	and	is	the	basis	for	
most commercial consistency models today [13, 14]. The focus on a discipline (data-race-free) both simplified 
system specification and design and allowed higher performance. 

Second, we are also inspired by recent projects seeking safe operating systems. The Singularity project [105] 
rethinks the operating system from the ground up with dependability as the primary criterion. It took into 
account the large advances in languages, static analysis, and verification tools. It showed that rethinking 
requirements	can	lead	to	solutions	that	are	much	better	than	current	designs,	and	it	is	indeed	possible	to	
design	in	safety	even	for	software	as	complex	as	an	OS.	Another	approach	for	OS	safety	is	typified	by	the	
Secure	Virtual	Architecture	(SVA)	project	which	uses	a	typed	virtual	instruction	set	to	provide	safety	for	
commodity	OS	code	[106].

DeNovo seeks a fundamental rethinking of concurrent hardware, given the assumption that most future 
software	will	be	disciplined	for	better	dependability.	The	following	discusses	directions	we	are	pursuing,	
including	a	disciplined	hardware	concurrency	(or	consistency)	model,	techniques	to	exploit	the	discipline	
for	better	simplicity	and	efficiency,	techniques	to	enforce	discipline	for	better	system	dependability,	and	
mechanisms	for	implementing	such	a	hardware/software	interface.

Disciplined	hardware	concurrency	model: Like the data-race-free model, we take the approach that hardware 
should	provide	easy	to	reason	semantics	(sequential	consistency	or	stronger)	only	for	disciplined	programs.	
For	arguments	made	in	Section	4.1,	we	go	a	step	further—programs	that	violate	the	discipline	should	either	
not	be	compiled	or	should	raise	runtime	exceptions.	This	approach	clearly	requires	a	careful	definition	of	
“discipline”	at	the	hardware	level,	and	lies	at	the	heart	of	our	hardware/software	co-design	approach.	Based	
on	Section	4.1,	we	expect	to	optimize	for	software	that	is	deterministic	by	default,	with	non-determinism	
that	is	requested	explicitly	and	well-encapsulated.	Unlike	a	language-level	model,	however,	hardware	must	
balance	the	requirements	of	all	expected	applications,	the	operating	system,	and	legacy	code.	To	what	extent	
the semantics we develop for our disciplined shared-memory language can be translated into a hardware 
concurrency	model	is	a	research	question	we	are	exploring.	We	are	also	exploring	how	hardware	should	
support messaging, as motivated in Section 4.5 as a language-level mechanism, and how to integrate it with 
shared-memory.

Rewarding	discipline:	We	believe	that	a	disciplined	model	can	be	exploited	to	simplify	and	optimize	many	
aspects of the system. For example, current systems communicate implicitly through a hardware cache coher-
ence protocol. While hardware coherence makes communication transparent to software, it is also one of the 
most complex and difficult to scale aspects of concurrent hardware design. We ask if the complexity of hardware 
coherence	is	warranted	for	disciplined	models.	Or	is	it	possible	to	exploit	data	sharing	and	synchronization	
information often available naturally with disciplined models to drive software-controlled communication? 
Shared-memory	programs	may	provide	this	information	through	type	(region)	and	effect	annotations;	actor	
programs provide this information explicitly. We are investigating how far we can exploit such information 
to	both	simplify	and	optimize	the	hardware	communication	fabric.

Disciplined models also impact task management and scheduling. A key feature of disciplined models is 
task	over-decomposition	(to	virtualize	the	number	of	cores),	with	scheduling	mediated	through	a	runtime	
system.	Current	runtime	systems	are	mostly	hardware	oblivious	(e.g.,	Cilk,	[107]	TBB	[108]),	missing	
significant	opportunities.	Many	open	questions	need	to	be	investigated;	e.g.,	how	best	to	represent	a	task	
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and	a	continuation	at	the	hardware	level,	how	to	virtualize	heterogeneous	hardware	for	the	runtime,	how	to	
perform	locality-	and	synchronization-aware	scheduling	in	the	context	of	the	hierarchical	scheduling	algorithm	
described	in	Section	5.2,	and	hardware	support	for	common	scheduling	tasks	(e.g.,	[109]	proposes	hardware	
queues).	Again,	information	on	data	sharing	and	synchronization	available	from	disciplined	software	can	
drive more optimal design choices. 

Enforcing	discipline: There will invariably be untrusted and unverified code that potentially does not obey 
the	required	discipline.	Hardware	can	provide	support	for	sandboxing	such	code	and	not	letting	it	affect	
other portions of the application by allocating an explicit protection domain with a disjoint shared memory 
partition.	An	observed	violation	of	default	contracts	(e.g.,	data-race-free)	would	flag	an	illegal	application	
and result in an exception. An analogous situation arises for trusted but unverified code. Such code will 
come with a contract or expectation, and hardware can use additional runtime information to verify that the 
contract is not violated. An example contract is to ensure there are no conflicting accesses between such code 
and	the	disciplined	sections.	This	can	be	done	using	variants	of	data	race	detection	techniques	in	hardware;	
however,	we	are	considering	rather	stylized	situations	which	can	potentially	be	handled	more	effectively	
than the general case.

Interface	mechanism—a	typed	virtual	instruction	set:	Virtualization	is	perhaps	the	only	viable	means	for	
supporting the expected variety of heterogeneous architectures as well as implementation-specific mecha-
nisms	(e.g.,	communication	management	instructions)	that	vendors	may	be	reluctant	to	make	part	of	their	
software	exposed	ISA.	A	virtual	instruction	set	computer	(VISC)	[36]	provides	a	separate	low-level	but	
rich	and	machine	independent	ISA	for	software,	which	is	then	translated	to	a	hardware	ISA.	The	latter	is	
implementation-specific	and	never	exposed	to	the	software	(other	than	the	dynamic	translator).	There	are	
several	advantages	to	such	an	approach	as	described	in	[36,	37].

DeNovo will use a virtual ISA. The design of such an ISA and the integrated runtime is part of our research. 
Given	our	emphasis	on	safety	and	dependability,	it	is	natural	to	consider	a	typed instruction set as in [36]. 
Having	a	typed	virtual	ISA	allows	expressing	rich	high	level	information	in	a	structured	way	to	the	hardware	
and also makes it easier to check safety properties at install or runtime. For example, type information can 
indicate which method calls are tasks, or even more sophisticated structures like a parallel array of tasks, for 
better	coordination	of	scheduling.	The	type	information	about	tasks	can	also	be	used	to	prove	at	runtime	that	
the	code	(including	any	dynamically	loaded	components)	obeys	the	disciplined	paradigm	which	can	then	be	
exploited	in	many	ways.	Types	also	provide	a	natural	mechanism	to	provide	information	on	the	regions	and	
effects discussed in Section 4.1 to the hardware, which can be exploited as described above. 

5.4 Formal Methods and Tools to Check Correctness
The disciplined programming methodologies we propose will go a long way in managing the complexity of 
writing	a	concurrent	program	and	arguing	its	correctness.	However,	multicore	programs	will	still	be	prone	to	
errors	due	to	concurrency,	both	in	the	new	components	written	for	our	disciplined	models	and	in	components	
that continue to use current models.

There are two serious problems related to correctness that we wish to address through a combination of 
formal methods and correctness checking tools. First, there is a pressing problem in the engineering of 
tools	that	assure	correctness	of	concurrent	code.	Testing,	which	is	the	most	useful	mechanism	employed	in	



 39

the industry to assure some degree of correctness, is fundamentally challenged in the multicore domain. A 
test	for	a	sequential	program	generally	consists	of	a	test	harness	that	interacts	with	the	program	under	test,	
feeds	it	a	series	of	inputs,	and	checks	whether	the	output	is	the	expected	outcome.	Tests	can	be	easily	run	
on	sequential	programs,	and	are	routinely	used	to	check	correctness,	usually	every	time	the	code	is	changed.	
However,	in	the	multicore	domain,	testing	is	a	challenging	task.	Given	a	program	and	a	test	harness,	there	are	
numerous interleavings of the program, often exponentially increasing with the length of the runs, making 
even testing the program for a single input an extremely intractable problem. While deterministic languages 
alleviate	this	problem,	as	mentioned	earlier,	there	will	continue	to	be	codes	that	require	non-determinism	or	
are	written	in	non-deterministic	languages	for	various	reasons.	For	such	codes,	an	important	problem	will	
be to effectively search the space of interleavings, testing perhaps only a fraction of them, but yet assuring 
high	likelihood	of	finding	errors.	For	instance,	the	Chess	tool	from	Microsoft	Research	searches	only	those	
interleavings obtained using k context switches, for a small value of k [110].

Second, as previously described, even as we transition to disciplined languages, programs will likely have 
components	that	adhere	to	different	levels	of	this	discipline;	e.g.,	deterministic	components,	non-deterministic	
but data-race-free components with locks, and even low-level shared memory legacy components. A rational 
composition	of	such	modules	into	a	single	program	that	can	be	analyzed	for	correctness	will	be	crucial	in	
furthering the applicability and adoption of the disciplined programming languages we propose.

We advocate addressing the above programs by first building an understanding of the high-level synchronization 
intentions that help programmers co-ordinate the parallelism and simplify reasoning about the correctness of 
their code. We believe that this understanding, inferred by detailed bug and code analysis, will prove useful in 
addressing both the testing and the composition problems described above. In testing a concurrent program, 
we	plan	to	use	the	high-level	synchronization	intentions	to	effectively	prune	the	space	of	interleavings,	con-
centrating only on those that violate these intentions as they are more likely to have errors. The high-level 
synchronization	intentions	will	also	help	build	a	language	to	summarize	the	high-level	synchronizations	for	
the	less	disciplined	code	so	that	we	can	encapsulate	them,	verify	them,	and	compose	them	with	newly	written	
disciplined code, while assuring correctness of the entire program. 

Understanding	High-level	Synchronization	Intentions:

Data-race	freedom	is,	of	course,	one	of	the	primary	aspects	for	a	correct	concurrent	program.	However,	
data-races are not the only problems for correctness of concurrent interaction. There are several higher-level 
synchronization	mechanisms	that	programmers	intend	to	enforce,	the	failure	of	which	lead	to	serious	and	
hard-to-detect concurrency errors.

Consider	the	snippet	of	a	concurrent	(shared-memory)	program	given	in	Figure	5.	First,	notice	that	if	the	lock	
acquisitions	and	releases	are	not	present,	there	would	be	data-races	in	the	program.	In	fact,	we	have	found	
that programmers often protect accesses to every shared variable using a lock for that variable, making sure 
they possess the lock before they access the variable. While this does remove data-races, it does not remove 
the high-level errors that may exist in the code. For instance, for the program in Figure 5, there is a high-level 
atomicity violation, where the procedure executed by Thread 1 is being non-trivially interrupted by Thread 2, 
causing a common error. In fact, a recent survey on concurrency errors [111] shows that a majority of errors 
in	concurrent	programs	(~65%	of	them)	are	caused	by	such	high-level	atomicity	violations.
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The error in Figure 5 occurs because the programmer 
intended to have the procedure in each thread work 
atomically (at	least	semantically)	from	other	threads.	
However,	due	to	the	lack	of	high-level	synchronization	
constructs to state such a mechanism, the programmer 
implements this mechanism using low-level locking 
routines and makes an error doing so. 

There	are	several	such	high-level	synchronization	inten-
tions. This paper has discussed determinism, the inten-
tion to write code that is parallel but produces the same 
effect	no	matter	how	the	scheduling	happens.	Causality	
constraints	are	another—for	instance,	a	piece	of	code	in	
a thread may get scheduled only when another method 
in another thread finishes its execution. Programmers 
model this using wait-loops that wait on a variable to 
turn true signaling that the other method has finished, 
and	often	make	mistakes	(in	fact,	this	contributes	about	
30%	of	the	concurrency	errors	in	the	study	in	[111]).

We	are	studying	such	high-level	synchronization	intentions.	We	propose	to	find	these	intentions	in	two	ways.	
First, we are studying bug databases for concurrency errors and tracking their root cause to find the intentions 
that failed. Secondly, we think there is a need to conduct user-studies where programmers are given tasks to 
implement in parallel, and study and classify the high-level mechanisms they use to manage concurrency. 
We suggest that an understanding of these high-level mechanisms will be crucial in understanding the way 
programmers manage concurrency, will enable documentation, and will enable effective testing mechanisms 
and	encapsulation	techniques.

Effective	Testing	of	Concurrent	Programs:

Building effective testing for concurrent programs against test inputs is crucial to ensure reliable software. 
We	propose	the	following	two	approaches	to	build	effective	testing	techniques	that	avoid	enumeration	of	all	
interleavings in order to get full coverage on a particular test input.

a)	 First,	we	advocate	using	the	high-level	synchronization	intentions	as	a	generic specification for	testing.	Given	
a	test	input,	monitoring	a	run	and	checking	whether	it	meets	the	high-level	synchronization	intentions	of	
the programmer yields an effective way of finding concurrency errors. For example, by marking boundar-
ies of methods and procedures, we can check for atomicity violations, and report them to the user [112, 
113, 114]. In fact, we think that we can considerably reduce the number of interleavings that are checked. 
We	suggest	that	effectively	finding	interleavings	that	violate	synchronization	intentions	can	be	a	powerful	
and scalable approach to testing concurrent programs. For instance, given a particular run on a test, we 
advocate	predicting	alternate	executions	from	this	run	that	will	violate	synchronization	intentions	(like	
atomicity)	and	execute	these	tests	to	force	errors.

b)	 Disciplined	programming	models	that	we	have	proposed	also	require	effective	testing	technology.	We	
propose	to	utilize	the	discipline	enforced	in	our	models	to	reduce	the	cost	of	testing.	For	example,	programs	

FIgURE 5	•	A	typical	atomicity	violation.
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where portions of the code are statically assured to be deterministic need to be run only once, as other 
interleavings will yield the same test results. Data-race freedom can also be used to reduce interleavings 
(for	instance,	interleavings	for	race-free	programs	need	to	switch	context	only	at	synchronization	points	
to	achieve	full	interleaving	coverage).	We	believe	that	other	forms	of	disciplined	interaction	of	concurrent	
threads can be fruitfully exploited to build testing tools that scale to large programs.

Insulating	and	Composing	Programs:

An important aspect of transitioning to disciplined concurrent code is that there will be parts of legacy code 
that we may want to reuse, rewriting only certain parts of the program using disciplined programming. Also, 
even when programming afresh with disciplined concurrency, we may want to allow certain libraries and code 
written	by	experts,	which	may	use	low-level	and	complex	synchronization	mechanisms	(such	as	wait-free	
algorithms)	that	do	not	strictly	adhere	to	the	application-code	level	discipline.	We	believe	that	it	will	be	very	
important to compose code	written	at	different	disciplinary	levels,	but	at	the	same	time	be	able	to	encapsulate	
their effects and reason about the correctness of the whole program.

A usable scheme for implementing such a compositional mechanism will need a framework with several 
components:	(a)	a	mechanism,	both	at	the	programming	language	level	and	at	the	runtime	level,	to	effectively	
sandbox	and	encapsulate	modules	and	libraries,	(b)	a	language	for	expressing	contracts	that	capture	the	effect	
of these modules and libraries, in particular the way they access global data and the assurance they give on 
their	consistency,	atomicity	guarantees	of	their	methods,	etc.,	and	(c)	ways	to	formally	reason	about	these	
contracts to show that the entire code, some portions consisting of disciplined code and some consisting of 
encapsulated libraries with undisciplined programming, is correct. For example, defining such a framework 
for deterministic programs will expand the deterministic programming paradigm to include modules and 
libraries	that	have	encapsulated	non-determinism	within	them.	In	general,	such	techniques	for	annotating	
and composing modules will greatly enhance the appeal of the programming paradigms that we propose in 
this paper.
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6 Conclusions
We have described an ambitious research agenda that aims to make client parallel programming synonymous 
with	programming.	Our	key	themes	are	a	transformative	change	from	current	low-level	bug-prone	program-
ming models to a disciplined parallel programming	ecosystem,	and	a	broad-based	attack	on	parallelism	at	all 
levels of the stack that focuses on enabling performance, scalability, and support for programmability. We 
believe	that	the	breadth	and	depth	of	research	expertise	at	Illinois	is	ideally	suited	for	such	an	agenda—we	
bring together research in programming languages, compilers, autotuners, runtime systems, hardware archi-
tecture,	refactoring	tools,	and	formal	methods,	along	with	research	in	programming	patterns	and	application	
domains that are expected to trigger the killer applications of the future. 

Our	deterministic-by-default	object-oriented	shared	memory	languages,	parallel	operators,	metaprogram-
ming and autotuning systems, domain-specific environments, actor based languages, and correctness check-
ing tools aim to establish a disciplined parallel programming paradigm that will make it easy to program a 
variety	of	future	client	applications.	Our	work	in	compilers,	autotuners,	runtime	systems,	and	hardware	will	
support and reward this discipline, while ensuring that we continue to support performance, scalability, and 
productivity with current software systems. 

Driving the above agenda is a human-centric vision of future consumer applications, backed up by research 
on	application	technologies	to	enable	quantum-leaps	in	immersive	visual	realism,	reliable	natural-language	
processing,	and	robust	teleprescence.	Our	strategy	of	integrated	applications	and	systems	research	will	
ensure we have the right testbed for evaluating, refining and ultimately proving our ideas on client parallel 
programming.
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