
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Possibilities of Text Input for Handicapped People

Klára Fiedlerová

Supervisor: Ing. Petr Novák, Ph.D.

Study Programme: Electrical Engineering and Informatics

Field of Study: Computer Science — Software Engineering

May 10, 2012

iv

v

Aknowledgements
I would like to thank Petr Novák, the supervisor of my thesis, that he always made time

for me when I needed it. Big thanks also go to the employees and clients of the Jedlička
Institute for young disabled people in Prague, for kindly allowing me to test my application
with them, and for providing useful feedback.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Doksy on May 10, 2012 .

viii

Abstract

This thesis deals with the problem of designing a text entry system for the EasyControl
application, which is being developed by the NIT Group at the Faculty of Electrical Engi-
neering of Czech Technical University in Prague. EasyControl is targeted to disabled people
and consists of a set of applications (such as an e-mail client, a text editor, or simple games)
and special hardware input devices to control these applications. The text entry system
developed in this thesis replaces a very simple software keyboard that has been used in
EasyControl so far and is designed to be used with the special hardware devices.

Five of nine designed “keyboard” types were implemented and are part of the developed
software module for EasyControl. The resulting text entry system is highly configurable.
The layouts of the keyboards (the number of keys, their arrangement, and the content and
output of each individual key) as well as the visual appearance of the application can be
fully customized to the user’s needs. Apart from the description of the designed keyboards,
the developed application, and its testing, this thesis also contains a survey of some existing
text entry systems.

Abstrakt

Tato diplomová práce řeší problém návrhu systému pro vstup textu pro aplikaci jménem
EasyControl, vyvíjenou na Fakultě elektrotechnické Českého vysokého učení technického v
Praze skupinou NIT. Aplikace EasyControl je určena pro hendikepované uživatele a skládá se
ze sady aplikací (jako je e-mailový klient, textový editor, nebo jednoduché hry) a speciálních
hardwarových vstupních zařízení, sloužících k ovládání těchto aplikací. Systém pro vstup
textu vyvinutý v rámci této práce nahrazuje zatím používanou softwarovou klávesnici a je
navržený především pro použití se zmíněnými speciálními hardwarovými zařízeními.

Pět z devíti navržených typů “klávesnic” bylo implementováno a je tedy součástí výsled-
ného softwarového modulu pro EasyControl. Navržená aplikace je vysoce konfigurovatelná.
Jak rozložení klávesnice (počet a rozmístění kláves, obsah a výstup jednotlivých kláves), tak
vzhled aplikace lze plně přizpůsobit uživateli. Tato práce kromě popisu navržených typů
klávesnic, implementované aplikace a jejího testování obsahuje také přehled již existujících
aplikací použitelných pro vstup textu do počítače.

ix

x

Contents

1 Introduction 1
1.1 Organization of This Thesis . 2

2 Background 3
2.1 Target Users . 3
2.2 Using Alternative Input Devices . 4
2.3 EasyControl Application . 6
2.4 Problem Description . 7
2.5 Objectives of This Work . 7
2.6 Related Work . 8

3 Virtual Keyboards 9
3.1 On-Screen Keyboards . 10

3.1.1 KeyStrokes 4 . 10
3.1.2 Grid Keys . 11
3.1.3 OnScreen with WordComplete . 12
3.1.4 WiViK . 13
3.1.5 Click-N-Type . 13
3.1.6 The Fitaly One-Finger Keyboard . 14
3.1.7 SwiftKey X . 15
3.1.8 ThickButtons . 15

3.2 Alternative Typing . 16
3.2.1 DKey . 16
3.2.2 TapTap Keyboard . 17
3.2.3 MessagEase Onscreen Keyboard . 17
3.2.4 Clicker . 18
3.2.5 Quikwriting . 19
3.2.6 8pen . 19
3.2.7 Dasher . 20
3.2.8 EdgeWrite . 21

4 Design 23
4.1 Requirements for the User Interface . 23

4.1.1 Guidelines for Designing User Interface 23
4.1.2 Usability and Disabled Users . 27

xi

xii CONTENTS

4.2 Applying the Requirements . 29
4.3 Designed Keyboard Types . 30

4.3.1 Grid Keyboard . 31
4.3.2 Keyboard with Coordinates . 34
4.3.3 Shifting Keyboard . 36
4.3.4 3x3 Keyboard . 38
4.3.5 Move-Controlled Keyboard . 40
4.3.6 Bisection Keyboard . 42
4.3.7 Multi-Level Keyboard . 45
4.3.8 Phone Keyboard . 46
4.3.9 Draw Keyboard . 48

5 Implementation 51
5.1 Requirements . 51
5.2 Technologies . 52
5.3 Architecture . 53

5.3.1 MVVM Design Pattern . 53
5.3.2 The Application . 53

5.4 Integration in EasyControl . 57
5.5 Implemented Designs . 58

5.5.1 Grid Keyboard . 59
5.5.2 Keyboard with Coordinates . 60
5.5.3 Shifting Keyboard . 61
5.5.4 3x3 Keyboard . 62
5.5.5 Move-Controlled Keyboard . 64

5.6 Common Features . 65
5.6.1 Keyboard Output . 65
5.6.2 Handling Diacritics . 65
5.6.3 Switching Layouts . 66

5.7 Configuration . 66
5.7.1 Layouts . 67
5.7.2 Keyboards . 68
5.7.3 User Profile . 69

5.8 Future Work . 70
5.8.1 Prediction System . 70
5.8.2 Abbreviation Expansion . 70
5.8.3 Keyboard Designer . 71

6 Evaluation and Testing 73
6.1 Comparison of the Developed Keyboard Types 73

6.1.1 Text for Evaluation . 74
6.1.2 Keyboards Controlled By Discrete Input 74
6.1.3 Keyboards Controlled By Continuous Input 76

6.2 Comparison with Existing Text Entry Systems 77
6.3 Usability Testing . 78

6.3.1 Quantitative Results . 80

CONTENTS xiii

6.3.2 Qualitative Results . 85
6.4 Adaptation to the User . 87

7 Conclusion 91

Bibliography 93

A User Manual 97
A.1 Running the Application . 97
A.2 Controlling the Keyboards . 97

A.2.1 Explanation of Input Actions . 97
A.3 Configuration . 98

A.3.1 Selecting Keyboard Type . 98
A.3.2 Changing Visual Appearance . 99
A.3.3 Creating New Layout . 100
A.3.4 Designing Layouts . 100
A.3.5 Available Types of Keys . 103
A.3.6 Adding, Removing, and Renaming Available Keyboards 105

B Content of the Attached CD 107

xiv CONTENTS

List of Figures

2.1 EasyControl: The mail application . 6

3.1 KeyStrokes R© 4 — the application window . 10
3.2 Grid Keys — the application window . 11
3.3 OnScreen with WordComplete — the keyboard window 12
3.4 WiViK R© — the application window . 13
3.5 Click-N-Type — the application window . 13
3.6 Fitaly One-Finger Keyboard . 14
3.7 SwiftKey X application . 15
3.8 ThickButtons application . 16
3.9 Example of two possible states of the TapTap keyboard 17
3.10 MessagEase Onscreen Keyboard . 18
3.11 Writing sentences with Clicker . 18
3.12 Quikwriting — the application window and a detail of the keyboard pattern . 19
3.13 8pen application . 20
3.14 How writing with 8pen works . 20
3.15 Dasher application . 21
3.16 Part of the EdgeWrite alphabet . 22

4.1 Grid keyboard . 32
4.2 Grid keyboard with predicted words as special keys 33
4.3 Grid keyboard with predicted words on keys with letters 33
4.4 Keyboard with coordinates . 34
4.5 Shifting keyboard . 36
4.6 Shifting keyboard with prediction . 38
4.7 3x3 keyboard — first level . 39
4.8 3x3 keyboard — second level . 40
4.9 Move-controlled keyboard . 40
4.10 Move-controlled keyboard — example of writing the word “is” 41
4.11 Move-controlled keyboard — design with keys in the corners 41
4.12 Bisection keyboard . 42
4.13 Bisection keyboard – example of writing the letter “P” 43
4.14 Bisection keyboard with two predicted words 44
4.15 Two-level keyboard with six tiles . 45
4.16 Three-level keyboard with four tiles . 46

xv

xvi LIST OF FIGURES

4.17 Phone keyboard . 47
4.18 EdgeWrite keyboard: the square area and an example of writing the letter “a” 48

5.1 MVVM layers . 53
5.2 UML class diagram of the main parts of the Keyboard application 54
5.3 Connection of the Keyboard and EasyControl 57
5.4 Keyboard Application: Grid keyboard, QWERTY layout 59
5.5 Keyboard Application: Keyboard with coordinates 60
5.6 Keyboard Application: Shifting keyboard . 62
5.7 Keyboard Application: 3x3 keyboard . 63
5.8 Keyboard Application: Move-controlled keyboard 64

6.1 Keyboard Application: Grid keyboard, letters in alphabetical order 74
6.2 Keyboard Application: Shifting keyboard, all keys 75
6.3 Set-up of the PC and switches for the usability testing 79
6.4 Devices used for usability testing . 80
6.5 Graph showing typing errors made by users from testing sessions B and C . . 83
6.6 Graph showing average time and number of actions to select a key for all users 83

A.1 Global configuration dialogue that contains configuration of the keyboard . . 99

List of Tables

6.1 Number of button presses needed to write the test text using a discrete input
device . 75

6.2 Distance the pointer has to travel and number of clicks needed to write the
test text using a continuous input device . 77

6.3 Measured values from the usability testing, session A 81
6.4 Measured values from the usability testing, sessions B and C 82

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Every computer user usually has two or three favorite devices to control his or her computer.
Has it ever happened to you that you for some reason could not use one of these devices?
Perhaps your mouse or touchpad stopped working, or you spilled a coffee on your keyboard.
Everyone who has this experience knows how hard it can be to replace the device we are
used to with an alternative way to control our computer. All of sudden you realize how
dependent you are on that device, and how inconvenient it is to use something else — for
example a software keyboard, about whose existence you had not even known before that
coffee accident. Luckily, for most of us this is just a temporary situation. Once you get your
mouse fixed, or replace the damaged keyboard for a new one, you can get back to your usual
way of controlling the computer.

However, there are people who are permanently (or at least for very long) in such situa-
tion. They have disabilities that prevent them from being able to use “mainstream” computer
peripherals. These disabilities include limited hand movement, fine motor skills disorders,
limited reaction ability etc. The default configuration of a typical computer and its operating
system usually provides insufficient support for such users. If you have ever tried o use a
mouse-controlled software keyboard, designed to look like the standard physical keyboard,
you know that it is not easy to write some text longer than a few words with it. Handicapped
people are faced with such inconveniences every day.

Good news for these people is that nowadays there are quite a lot of applications out
there to help them access the computer. There are alternative hardware devices (such as
switches, joysticks, and head pointers) that provide alternative ways to control a computer,
and software applications that allow the user to input text or control the pointer using these
devices. The application developed in this thesis is one of them.

The goal of this thesis is to design several types of text entry applications, that will be
referred to as “keyboards” for simplicity. Some of them should then be implemented and
tested. The implemented keyboards will be part of a software module that will be used
in an already existing application called EasyControl, developed by NIT (Nature Inspired
Technologies) research group at Czech Technical University in Prague. [11, 18]

EasyControl is a universal control system targeted to users with limited movement and/or
reaction abilities. The system is designed to be able communicate with alternative hardware
devices, and provides a group of applications for the users, from a set of computer games

1

2 CHAPTER 1. INTRODUCTION

to an application that controls a wheelchair. Some of the applications that are part of
EasyControl require a text input from the user (e.g., the Mail application). A very basic
software keyboard is currently used, which is however not adapted to the differences between
the various hardware devices that can be connected to the system. The aim of this thesis is
to replace the existing keyboard with a new application that would better suit the needs of
each individual user and the device he or she prefers to use.

1.1 Organization of This Thesis

In chapter 2, the analysis of the context for the developed application is presented. The
EasyControl system and its special hardware input devices are introduced. The objectives
of this thesis are presented in more detail, and some related work is mentioned.

Chapter 3 contains a survey of already existing text entry systems. Both traditional on-
screen keyboards and applications providing alternative ways of entering text are included.

The designed keyboard types are presented in chapter 4. This chapter also contains
summary of guidelines for designing user interface, created based on published research
articles. Special attention is paid to targeting the design to disabled users.

Implementation of the application is discussed in chapter 5. The application’s architec-
ture and the integration in the existing EasyControl system is described. How the imple-
mented keyboards can be controlled and configured is explained. The chapter also contains
discussion of possible future work. The chapter does not focus on the low-level details of the
implementation, since the full documentation of the source code is available as a standalone
attachment of this thesis.

Chapter 6 contains the evaluation of the implemented application. Advantages and
disadvantages of each keyboard types are discussed in this chapter. Observations from the
usability testing in the Jedlička Institute for physically disabled young people in Prague are
also presented.

Finally, the conclusions of this work are presented in chapter 7.
Appendix A contains the user manual for the application. Content of the CD attached

to this document can be found in appendix B.

Chapter 2

Background

This chapter presents analysis of the background for the text entry system that is developed
in this thesis. The system is intended to be integrated in the EasyControl application.
This chapter provides a brief description of this application, as well as of the input devices
EasyControl works with. It also discusses target users, and summarizes the objectives of
this thesis.

2.1 Target Users

The most important thing when developing a software application, or when doing any work
on Human-Computer Interaction (HCI) field in general, is to know who are the users and
what are their abilities. The application can thus be aware of their needs, and be less
influenced by the developer’s projections. This section contains an overview of the users of
the EasyControl system whose needs will have to be taken into account in the design and
implementation phases of this thesis. The characteristics of the target users comes mainly
from the cooperation of the EasyControl developers (one of whose is the supervisor of this
thesis) with the Jedlička Institute for physically disabled young people in Prague.

EasyControl system [11, 18] was designed for people whose movement and/or reaction
abilities are limited. That means they are not able to achieve the same speed and accuracy
as healthy people. The disabilities include cerebral palsy (a disorder that affects muscle tone,
movement, and motor skills), muscular dystrophy (progressive weakening of muscles), fine
motor skills disorders, poor vision, nervous system disorders, lack of concentration, injuries,
and many others. These users therefore usually cannot use ordinary computer devices such
as keyboard or mouse. However, their abilities can vary widely. For example, some persons
are able to move their hands, but not to type. Other persons cannot move hand at all, but
they are able to press something. Last but not least, there are also persons who are not able
to move anything else than their eyes.

The state of the disabled people is either permanent or temporary. Temporarily disabled
people could be for example those recovering after a backbone surgery. They need to com-
municate quickly (for example, with their doctor); they do not want to learn a lot of features
of the application – the simplicity of the communication takes priority over the adaptation
of the application to the user. Unlike the temporarily disabled people, the people that are

3

4 CHAPTER 2. BACKGROUND

disabled permanently are usually not expected to make any considerable progress in what
they are physically able to do. On the other hand, permanently disabled people are willing to
learn how to work with applications designed to help them. They do not mind if mastering
the application takes some time, because it is worth for them to take the time to learn it.
However, that does not mean it is less important for the application to be adjustable for the
concrete person’s needs.

There are a lot of negative factors that prevent disabled users to access computers in the
way other people access them. One of the biggest problems is using standard input devices.
Persons with cerebral palsy, for example, are in general unable to use their fingers and can
perform only small hand movements. That means they cannot precisely point and click on
a button on a screen. If they are provided with a clicking device, they can perform presses,
but the time between the press and release may become very long, because the action is
complicated for them. [17] Such input may result in a drag-and-drop action (instead of a
simple “click”) in interfaces that are not prepared this. It must be taken into account that
disabled users can make a lot of mistakes, and it may not always be practical to require
correcting all of them.

Most severely handicapped persons have also visual problems [17]. Such impairments are
greatly varied. Some disabled persons may have problems to distinguish foreground from
background due to insufficient colour contrast, while another persons’ eyes may be unable to
simultaneously process areas with large differences in brightness. Things such as the size of
the font, colours, or number of controls (buttons) usually become very important for users
with poor vision.

Speed should play no role in any application disabled people use. There should be no
time constraints, or at least the application should be configurable to allow adjusting all time
limits to the user’s abilities. That is necessary, because each disabled person has different
needs. The time a disabled person needs to perform an action may even vary for him- or
herself, depending for example on his or her current health status, or mood. The application
should therefore try to reduce the number of steps (e.g., number of key presses) and the time
to achieve a goal.

It is important to mention that the target users of the text entry application developed
in this thesis are people with physical disabilities, but not mental disorders. A completely
different approach would probably be required if the application would be targeted to men-
tally handicapped users. The EasyControl application was not designed for such users, and
therefore neither the text entry system will focus on these users.

2.2 Using Alternative Input Devices

Disabled people typically need alternative devices to be able to control their computer.
Special devices are available for these users, designed for the different abilities the users
have. The list of all types of alternative computer peripherals would of course be very
long. The project called AbilityHub [12] provides an interesting overview of such devices.
However, the alternative input devices that can be used with the EasyControl application
will be more important for this thesis, because those will have to be taken into account in
the implementation.

2.2. USING ALTERNATIVE INPUT DEVICES 5

Even a regular PC mouse can serve as an alternative device to a physical keyboard. It
is necessary that the user is able to press the mouse buttons, or is at least able to move
the mouse. That is unfortunately not always possible for the users. A joystick, belonging
to a group of devices detecting a hand or a head movement, can be used instead. It can be
controlled for example with the user’s palm. The joystick still requires a good precision of
the hand movement, because the user must have the ability to select all the directions. The
selected direction can be either a signal for the pointer to move, or it can be mapped to some
other action. If the user cannot move his or her hands, but is able to somehow perform a
press and a release, he or she can use special switches (a set of switches or a single switch).
It is then up to the software application to interpret the switch presses as actions. There
are also devices based on eye-tracking or eye-blinking, that are usually used by the disabled
people who cannot use any other devices.

In general, the input devices that can be used to control a computer can be divided
into two groups. The first group, continuous input devices, are devices that can move a
pointer on the screen continuously. A mouse, a trackball, or gaze-controlled devices belong
to this group. These devices also typically need to be able to perform a “select action”, so
they usually contain a button or two for that. The second group, discrete input devices, are
devices that move the “cursor” using discrete actions, usually presses of buttons or switches,
but actions like changing the deviation of the device from its initial position can also serve
this purpose. Select action is performed similarly, i.e. there is usually a dedicated button or
direction of the deviation for that. Moving the cursor with these devices makes it “jump”
from one item to another, which means that some item is always selected. This is not true
for the continuous input devices, which may be seen as their disadvantage. The continuous
input devices are usually faster, but they require better coordination between the eyes and
the body of the user (e.g., a hand) than the discrete input devices.

The EasyControl system was designed to work especially with the alternative input
devices developed as a part of the research project by the NIT Group [18]. This means
that also the text entry (keyboard) module that will be part of the whole application should
focus on these devices. Currently, there are six devices available:

• Finger Switches, a set of “buttons” that can be controlled by pressing them. How the
switches are pressed does not matter, which means the user can use fingers as well as
toes, palm, head, chin, etc.
• The joystick — a lever-controlled device. It is capable of detecting up to eight directions

of the lever deviation.
• A device detecting a movement/inclination of the part of a body it is attached to.

The behavior is similar to the joystick — the device detects the deviation from the
horizontal position, i.e. the direction of the inclination (up, down, left, right, etc.).
• A device detecting a pressure (applied by a palm, fingers, foot, or toes). The behavior

is similar to the switches.
• The “universal glove” — a glove with an inclination detector and detectors of finger

movements. Changing the inclination can for example be used to control the mouse
pointer, while bending a finger can trigger some specified action.
• IR controller containing various buttons.

The EasyControl system includes hardware interface for connecting these input devices

6 CHAPTER 2. BACKGROUND

to a computer via USB (Universal Serial Bus), and a software tool for communicating with
the hardware and configuring it. Using this tool, it is possible to configure the devices and
their output.

2.3 EasyControl Application

Let us know look at the other part of the EasyControl system, which is a set of applications
intended for the target users. [23] For this thesis, the current implementation of its built-in
software keyboard is especially relevant.

Applications available for the current user are listed in, and can be run from, the “Tool-
Bar”, a software component that serves a starting point for the user (it is similar to “quick
launch” controls known from operating system’s desktops). This component also allows the
user to switch between the keyboard simulation and the mouse.

Currently, the available applications include a text editor, a mail client, “OnLine” chat
(a Jabber client), an application to control a cell phone via BlueTooth interface, and various
logic games (for example Sudoku, Lights Out, Pairs, Sokoban, and others). An application
that controls home environment of the user (opening/closing doors and windows, controlling
the TV and radio, etc.) is another, standalone, part of the EasyControl system, as well as
the application that controls the user’s wheelchair.

Obviously, only some of these applications require a text input. If they do, there is
a simple keyboard available. Figure 2.1 shows how the keyboard looks like in the mail
application.

Figure 2.1: EasyControl: The mail application

Besides the keys that are used to write text, the keyboard also contains keys for special
actions (see figure 2.1, the special keys are placed on the right) that allow the user to control
the user interface of the application. Each application can use a different set of actions. In

2.4. PROBLEM DESCRIPTION 7

the mail application shown in the figure, there are actions to move up and down in the list of
received messages, to move the focus on the next focusable element, and to switch between
the tabs (Inbox, New Mail, Contact List). That means the whole application is controlled
by the software keyboard. The performance of the user (speed, accuracy) therefore depends
on how easy it is for him or her to control the keyboard.

There is currently only one type of keyboard available — a standard keyboard that has
its keys arranged in a rectangular grid, similar to a physical keyboard. The layout of the
keyboard uses alphabetically ordered letters, instead of the traditional QWERTY, as the
authors believed this layout will be more intuitive for novice users who are not used to
writing with a traditional keyboard.

The keyboard has very limited configuration options. Basically, only some colours can be
changed (colour of the font, background colour of the keys, and the background of the whole
keyboard). However, it is good that the keyboard allows changing at least these properties.
The ability to change the colours is important, for example to achieve higher contrast for
users with poor vision. It can also simply be more pleasant for the users to use a keyboard
that has their favourite colours.

2.4 Problem Description

Providing only one keyboard type is very insufficient, considering the number of different
input devices that can be used together with the EasyControl application. If alternative
hardware devices to control the application are offered, it would be appropriate to also offer
alternative types of “software devices”, i.e. a text entry application suitable for each device.
These alternative text entry applications, that we can call “keyboards” for simplicity, could
be then designed to better suit the concrete input device and its interface — i.e., the way
how the device is controlled by the user, what outputs it can generate, the number of buttons
it has, etc.

A good thing for the software keyboard developed in this thesis is that the hardware
devices are supposed to filter most of the input noise. Such noise can be caused for example
by the user accidentally hitting a key multiple times, as a result of his hands shaking. That
means the keyboard application can assume the input events coming from the device are
fine, and does not have to do any filtering by itself.

2.5 Objectives of This Work

As we have seen, the keyboard is a part of a large system that contains various applications
that serve very diverse purposes. The keyboard can, however, be needed by any of them.
That means it has to have an interface that is universal, not dependent on the context in
which the keyboard is used.

The objective of this thesis is to improve the built-in keyboard application for the Easy-
Control system. The new “text entry module” should be as universal as possible, and also
highly configurable. This configuration should not only include settings of the keyboard’s
appearance (colours, size of keys, etc.), but also the layout (arrangement) of the keys. What
keys will be part of the keyboard should be as much as possible left to the user’s preferences.

8 CHAPTER 2. BACKGROUND

Each user should be provided with an option to use the type keyboard that suits him the
best, which means the integration of the keyboard settings with user profiles is crucial.

In the future, word prediction and abbreviation expansion features are planned to be
integrated in the keyboard. The implementation should therefore be prepared for this, and
allow easy addition of these extensions.

Several keyboard types should be designed, so that there is at least one for each of the
alternative hardware input devices that can be currently used together with EasyControl (see
section 2.2). The implementation of the text entry application therefore has to be focused
on these special devices.

2.6 Related Work

Some work has already been done to investigate the word prediction feature that could
be included in the text entry module of the EasyControl application. The investigation,
including an implementation of a prototype system that tests the word prediction system,
was done as a part of Martin Vogal’s Master’s Thesis [32] (in Czech). The prediction system
described in the thesis includes not only word prediction, but also a prediction of whole
sentences. It contains some interesting ideas. However, the developed software system
itself has very limited possibilities of integration, as it does not provide a clean interface to
communicate with. This is the reason why this prediction software, as it is now, cannot be
yet integrated with the keyboard — neither the one already existing, nor the one that is
developed in this thesis.

A lot of standalone software keyboards (or other text entry applications) exist. As the
survey of similar applications is very important for this thesis, an entire chapter was dedicated
to it. General explanation of the principle, as well as some examples of software keyboards,
both commercial and free, is provided in chapter 3.

Chapter 3

Virtual Keyboards

Applications used for text entry can be divided to two groups. The first group includes
applications based on the traditional keyboard, i.e. the keys are arranged in a grid and
typing is done by selecting them individually, one after another. The other group consists
of applications that take advantage of some other ways of typing. The alternative typing
possibilities vary widely, and include for example using keys that contain multiple letters,
typing with gestures, or text entry based solely on word prediction.

With the expansion of “smart” devices with touch screens, software applications for text
entry without the need for a hardware keyboard had to be developed. Variety of alterna-
tives to the traditional keyboard appeared. Every touch-screen device typically needs to
contain some application that allows text entry. The keyboards with traditional grid layout
are usually still the default option, but the user has the possibility to use one of the various
applications allowing to input text differently than by traditional “typing”. A lot of the alter-
native text entry applications are based on gestures, trying to be more closer to handwriting
than to typing on a keyboard.

A disadvantage of most standalone software keyboards is that they run in a “non-
focusable” window, and send the output to the window that currently has the focus. That
allows them to be used with almost any application, but at the same time it causes problems
to some users, especially those that are not able to control the computer freely, or use some
alternative input device that has a limited capabilities in terms of controlling the computer.
For example, it can happen that a pop-up message appears in the desktop tray. As a result,
the window that the user has currently worked with loses the focus, which consequently
means the user cannot any longer send the keyboard output to it. But what if the user is
unable to switch the focus back to the text editor window? In such situation, an assistance
of another person is usually necessary, which is of course a big drawback.

In the next two sections, some representatives of both groups of text entry applications
will be introduced. These sections are of course by no means meant to be comprehensive,
but will rather contain applications that utilize some interesting ideas. All pictures are used
with permission from the authors.

9

10 CHAPTER 3. VIRTUAL KEYBOARDS

3.1 On-Screen Keyboards

As mentioned earlier, this group of applications display what could be called a “traditional
keyboard”, i.e. a software keyboard based on the physical keyboard device that is used to
send a text input to a computer. Because the keyboard is displayed to the user on a computer
screen, the common term “on-screen keyboard” (OSK) is used for such type of application.

Most operating systems contain a simple on-screen keyboard that can be used if the
user for some reason cannot use the hardware keyboard. Typing with such keyboards is
usually very slow, and they provide only basic functionalities. They can serve as a quick
temporary solution when the hardware keyboard is not available. There are of course also
some standalone applications that provide a simple software keyboard. Every touch-screen
device usually contains such keyboard as well.

The next level of applications are commercial, freeware, or open-source applications that
display an on-screen keyboard as well, but contain additional features such as text prediction,
configurable keyboard layouts, possibility to turn on the “dwell clicking” and so on. There
is a better chance the typing will be more convenient and faster with such keyboards.

Eight examples of on-screen keyboard applications follow, with emphasis on those that
contain text prediction or other interesting features.

3.1.1 KeyStrokes 4

KeyStrokes R© 4 is a commercial application developed by Origin Instruments [22], which is
available for MAC OS. The application can be controlled by a mouse, trackball, head pointer,
or other mouse emulators. Figure 3.1 shows the keyboard in action.

Figure 3.1: KeyStrokes R© 4 — the application window (used with permission from
AssistiveWare)

Keystrokes 4 is highly configurable and contains many features that make typing easier.
The application offers multiple keyboard layouts to choose from, and also allows the user to
design his own layouts using a designer called LayoutKitchenTM . A dwell clicking feature

3.1. ON-SCREEN KEYBOARDS 11

is also included. It has a programmable period of time and clear indication of the current
mouse button state. The click action and default click action can be changed (to single click,
double click, right click, drag, etc.) by dwell-clicking on one of the special keyboard controls.
The keyboard has an integrated word completion system. The system includes next word
prediction, multi-word prediction, learning with automatic spell-checking, and a dictionary
editor. The predicted word(s) can be written by clicking on the appropriate button from
row of words that is displayed directly above the keyboard. Another feature to mention is an
audio feedback (including speaking the typed words). The application is localized in several
world languages.

The KeyStrokes 4 keyboard is meant to be used not only for text entry, but to control
the computer in general — it is claimed to work with any standard Macintosh application.

The main advantages of the KeyStrokes 4 are that it contains a lot of features, the
application is highly configurable, and the interface provides a great visual feedback to the
user. However, the amount of features is reflected in the price of the application, which is
$299 for one license. That is a downside of this software, since the cost can be too high for
some users. Another disadvantage is that it is available only for Mac operating systems.

3.1.2 Grid Keys

Grid Keys is a virtual keyboard for Windows OS. It allows the user to use standard Windows
applications without the need to use hardware keyboard or even a mouse. The application
can be controlled by alternative pointing devices (such as a trackball, joystick, head pointer,
and touch screen) or switches. [25]

Figure 3.2: Grid Keys — the application window [25]

The Grid Keys application window is shown in figure 3.2. A word completion is integrated
in the keyboard (by means of special buttons containing the words). The dwell clicking can
be turned on, so the application can be controlled by a user who is unable to perform clicks.
The keyboard screens (called grids) are configurable, meaning not only that the placement
of the keys can be changed, but special keys can be added or removed as necessary to suit
the control device and the current situation in which the keyboard is used (writing, browsing
web, mouse pointer control, etc.). The application also offers a speech output and is available
in several languages, including Czech. It can be purchased for $350.

12 CHAPTER 3. VIRTUAL KEYBOARDS

The price of the Grid Keys application is very high, which makes it unavailable for
some users. Recently, just before this thesis was completed, the Grid Keys software was
discontinued, and it is now only possible to get a complete computer-access software package
from Sensory Software, called The Grid 2 [26], that is similar to the EasyControl application
for which the text entry system implemented in this thesis is developed, and that also contains
a highly configurable keyboard.

3.1.3 OnScreen with WordComplete

OnScreen is a collection of on-screen keyboard utilities for individuals who can use any
pointing device or switch, and need an on-screen keyboard as their primary text input
device. [5]

The keyboard window is shown in figure 3.3. The keys are arranged in a traditional grid,
with the possibility to change the layout to another predefined one. The keys and key func-
tions can be remapped and the application also provides a way to define keystroke macros.
Word completion is included — a special column of buttons with five suggested words can
be found on the left-hand side of the keyboard. The words are not predicted ; the application
builds a dictionary only from words typed by the user. However, the word completion system
contains helpful features such as auto-spacing, auto-capitalization, suffixes, undo option, and
few others.

Figure 3.3: OnScreen with WordComplete — the keyboard window [5]

The application can be controlled by a single switch, which can be of great benefit for
disabled users. The feature supporting a single switch is called CrossScanner. It presents
a vertical scan (scanning down the screen), so the user can select the Y coordinate for the
action (which can be a single click, double click, or drag). The horizontal scan then begins
and continues until the next switch hit, which selects the X coordinate and triggers the
action.

OnScreen with WordComplete works under Windows operating systems and costs $199.
The official web page, cited earlier, claims the application works with any software that runs
under Windows. A disadvantage of the keyboard is that the visual appearance of its user
interface cannot be changed. The default layout looks very old-fashioned, and some users
might have problems with its low contrast (black text on grey background). There is a
possibility to change the appearance of the keyboard’s interface with an additional software
that the user would have to buy, which would increase the cost of the application.

3.1. ON-SCREEN KEYBOARDS 13

3.1.4 WiViK

WiViK R© is a virtual keyboard software developed by Holland Bloorview Kids Rehabilita-
tion Hospital. [14] It provides access to MS Windows applications using any pointing de-
vice (mouse, trackball, touchpad, and others). The application offers a default, traditional-
looking layout (see figure 3.4), which can be customized by the user (the keys can be rear-
ranged, keys with new functionality can be created, colours and sizes of keys can be changed).
However, the layouts are defined in a text file, and there is no graphical interface for editing
them. The user therefore has to be skilled enough to be able to customize the layouts.

Figure 3.4: WiViK R© — the application window [14]

The world completion system consists of many features, including word prediction and
abbreviation expansion (two or three letters followed by the Spacebar or Enter key are
expanded into phrases of full sentences). The word prediction is adaptive based on how the
user combines words, and the application also contains topic-specific vocabularies.

Other features of WiViK R© include dwell clicking (highlight can move or scan across
the keyboard) with customizable scanning strategy, speech output, and localization in four
languages. Single-user license costs $350.

3.1.5 Click-N-Type

Click-N-Type is a free, full-featured on-screen keyboard for MS Windows operating systems.
It was developed directly with emphasis on disabled users and is claimed to work with all
Windows applications that can run in a window. [16]

Figure 3.5: Click-N-Type — the application window [16]

14 CHAPTER 3. VIRTUAL KEYBOARDS

Figure 3.5 shows the keyboard window. The application offers multiple keyboard layouts
to choose from. A keyboard designer is available, allowing the user to create custom layouts.
Support for macros is provided as well.

Optionally, a word prediction window can be opened and attached to the keyboard,
offering list of predicted words. The words can be typed by clicking them.

Auto clicking with adjustable timer is also available. The application contains a scanning
feature, which is three-phase: first, a rectangle moves across the keyboard, allowing user to
select the area containing desired key. In the next two phases, vertical and horizontal lines
move inside the selected area. The three-phase approach is meant to speed up the scanning
process. The application has many other features (for example a speech output), the list of
which can be found on its website [16]. There are about 40 language packs available for the
Click-N-Type keyboard. A big advantage of the Click-N-Type keyboard is that it is free,
and still it contains features of commercial keyboard applications.

3.1.6 The Fitaly One-Finger Keyboard

The Fitaly keyboard application is designed for Pocket PCs and tablet devices to minimize
the pen or finger travel. It supports MS Windows operating systems, both the standard and
mobile flavours. [4] The application website contains the reasoning for the keyboard layout,
which is claimed by the authors to be more ergonomic than standard keyboard layouts such
as QWERTY, because the keys are ordered in a way that the most frequently used letters
(in English language) are placed in the middle of the keyboard (see figure 3.6).

Figure 3.6: Fitaly One-Finger Keyboard [4]

The Fitaly keyboard also supports word completion, abbreviation expansion, and macros.
It has an interesting feature called “sliding”. Sliding happens when the user taps on a key and
moves the pen (or finger) sufficiently far before releasing it – the direction then determines
the available actions (called slides) for the given key. These actions are then displayed in a
list above the keyboard. An action can be anything from writing another letter to launching
an application. If there is only one action available, it is performed immediately – this way
the sliding can be used to write for example capital letters or accents.

The Fitaly keyboard for Pocket PC costs $29, while the version for a Tablet PC costs
$49. The keyboard has a full Unicode support and contains dictionaries for multiple world
languages. A disadvantage, from a disabled user’s point of view, is that the keyboard is not

3.1. ON-SCREEN KEYBOARDS 15

very customizable (e.g. the colours of keys cannot be changed), and that there is no support
for automatic scanning or dwell clicking.

3.1.7 SwiftKey X

SwiftKey X is an application for the Android OS, meaning it is designed to be used on small
devices with touch screens. [7] The keyboard layout therefore has to be minimalistic to fit
the limited available space (see figure 3.7).

Figure 3.7: SwiftKey X application [7]

Word prediction is used to speed up the text entry. The prediction system uses the
context of the sentence to predict three words that could be used next. The most probable
of them is displayed in the middle in the row of predicted words. The user does not even
have to type any letter to get the predicted words.

The user can customize the appearance of the application by using themes for the key-
board.

There is a similar application, SwiftKey Tablet X, intended to be used with tablets. The
SwiftKey X is available in 35 world languages. It is designed for smart phones and tablets,
so it cannot be used on an ordinary PC. It also does not contain any features for disabled
users.

3.1.8 ThickButtons

The last example of an “on-screen” keyboard in this section is an application called Thick-
Buttons, available for devices using Android OS. [1]

The application is targeted to touch screens. Its keyboard is a simple grid, but the size
of its keys changes dynamically based on next-letter prediction. See figure 3.8 that shows
the prediction in action.

While the user is typing, the prediction is used to enlarge and highlight the useful buttons
and shrink the other ones. That means the prediction is an integral part of the keyboard, not

16 CHAPTER 3. VIRTUAL KEYBOARDS

Figure 3.8: ThickButtons application [1]

just “one of the features”. The application also contains a row of predicted words that can
be selected directly. The enlarging and shrinking keys is an interesting feature that could be
utilized by applications for disabled users.

3.2 Alternative Typing

Even though the on-screen keyboard applications differ in the appearance and their fea-
tures, they are based on the same typing principle. Keys are arranged on the screen (usually
in a grid) and each key has to be selected (typed) individually. Optionally, word comple-
tion/prediction can be used to increase the speed of typing. However, there are alternatives
to this traditional approach, some of which will be introduced in this sections. These alterna-
tives reflect the needs of special groups of users (touch-screen users, people with disabilities,
etc.), or were simply developed to offer a different (faster, more convenient) way how to
type without a physical keyboard. One of the disadvantages of many (but not all) of the
alternative keyboards is that the user may have to learn a special “alphabet”, because the
letters are arranged in a different way than on a traditional QWERTY keyboard. Sometimes
even a completely new way of writing has to be learned.

3.2.1 DKey

DKey is a keyboard similar to the one that can be found on mobile phones. The keyboard
consists of a grid of twelve keys, nine of them containing three or four letters. The application
is designed for people with disabilities (it contains fewer keys than traditional keyboard,
allowing the users to use special input devices like number pads and keypads), but can of
course be used by anyone. [21] Besides the devices already mentioned, the keyboard can be
controlled with a mouse, or switch devices via other software.

The writing itself works like the T9 predictive writing, available on most mobile phones:
the user presses keys with the letters he wants to use, the software looks up which words can

3.2. ALTERNATIVE TYPING 17

be constructed from those keys, and displays them in a list. The space key is used to finish
the word.

Dwell clicking (switch scanning) and text-to-speech features are provided. Colours of the
keyboard can also be customized. DKey runs under MS Windows and is a free open source
software.

3.2.2 TapTap Keyboard

TapTap keyboard is in fact very similar to the on-screen keyboards that were presented in
section 3.1. The only difference is that this keyboard tries to minimize the space it takes
by using less keys. Reason for this is that the application is targeted to mobile devices that
have small screens. In order to be able to write all letters, each key has to contain more than
one of them. A letter can be typed with two taps — first tap selects a group of letters, and
the second finally selects the desired letter that is then written. See figure 3.9 that shows an
example of both possible “levels” of the keyboard.

Figure 3.9: Example of two possible states of the TapTap keyboard [31]

The author admits the typing with this application is not very fast, but on the other the
application has the advantage of taking little space. [31] Because there are fewer keys, they
can be bigger than those on traditional software keyboards for mobile devices).

This application unfortunately provides no word prediction or support for disabled users
(such as dwell clicking). However, it is free (licensed under GNU GPL).

3.2.3 MessagEase Onscreen Keyboard

MessagEase Onscreen keyboard was also developed mainly for devices with a touch screen,
but it can run on a PC as well. The keyboard is optimized to reduce the stylus or finger
movement, which eases text entry and increases the speed of writing. [19] It supports MS
Windows OS, and can be used with touch screen or mouse. Figure 3.10 shows the keyboard
layout.

Most frequent letters (those that are yellow) can be typed directly with a single tap. Less
frequent letters (those that are white) are typed by dragging the pointer from the square
which contains the letter to a neighbouring square in an appropriate direction. For example,
letter “B” is written by dragging from “O” to “R”, letter “X” is written by dragging from “I”
to “O”, etc.

The application offers no word completion or customization of the keyboard’s appearance,
except that it is possible to make it transparent. It is localized in multiple languages, and the
keyboard is customizable for basically any alphabet. The price of the application depends
on the target device, but does not exceed $25.

18 CHAPTER 3. VIRTUAL KEYBOARDS

Figure 3.10: MessagEase Onscreen Keyboard [10]

3.2.4 Clicker

Clicker is a commercial application intended for children to help them write without a key-
board. [8] It contains many possibilities of text input, from constructing sentences from
predefined words to writing using pictures. Figure 3.11 shows an example of the application
window.

Figure 3.11: Writing sentences with Clicker (reproduced by kind permission of Crick Software
http://www.cricksoft.com)

The so-called “cells”, that are used to form the keyboard, are customizable, i.e. they can
be set to display any content. For example, the application can be configured to display
words that are most frequently needed by the user. Not only children, but also people with
disabilities could utilize such functionality. A traditional keyboard layout (with each cell

http://www.cricksoft.com

3.2. ALTERNATIVE TYPING 19

containing a letter, digit or symbol) is also available.

Clicker has an integrated support for dwell clicking and can be used with mouse and
other pointing devices, or switches. Single-user license for Clicker 6 costs $150.

3.2.5 Quikwriting

Quikwriting is an innovative writing application designed to be used on pen-based devices,
and is available for free. The writing is performed without a need to tap or even pick the
stylus up off the screen surface, and it is based on gestures.

Figure 3.12: Quikwriting — the application window and a detail of the keyboard pattern [15]

A Technote published at the ACM UIST’98 conference summarizes the way how Quik-
writing works [24]. See figure 3.12: each character is positioned in one of the eight outer
zones (its major zone) and also at some relative position within this zone (its minor zone).
This position corresponds to how that character is drawn. To write a character, the stylus is
moved from resting zone (the centre) to the character’s major zone, then to the character’s
minor zone, and finally back to resting zone. For example, the letter “f” is drawn by moving
from the central zone to the north-west zone, then left to the north zone, and then back to
the centre. Emulators are available on the project’s website [15]. The Quikwriting applica-
tion has been used by MERU (Medical Engineering Resource Unit) in the UK to provide
children with special needs with a way how to easier access their computers. [15]

3.2.6 8pen

8pen, an application for Android OS, provides a way how to write that is similar to hand-
writing. No tapping (clicking) is needed to write a character. A screenshot of the application
is shown in figure 3.13. The writing is done by drawing “loops”, which is a natural way how
people move with a finger or pen, if they are asked to draw a continuous line, according to
the research carried out by the authors [3].

20 CHAPTER 3. VIRTUAL KEYBOARDS

Figure 3.13: 8pen application [3]

See figure 3.14 for an explanation how the writing works. The canvas of the “keyboard”
is divided by four edges into four sectors. The letters lined up along one side of the edge
indicate an assignment of these letters to the loops starting in the sector to that side of the
edge, and leaving the sector on the side of their alignment. Each loop crosses the number of
edges determined by the position of the letter in the row. The loop for the innermost (first)
letter crosses one edge (its own) before returning to the centre, the loop for the outermost
(fourth) letter has to cross all four edge lines. The figure shows examples of three different
loops (for letters “a”, “d”, and “f”). A space is automatically inserted when the user lifts the
finger from the centre region.

The application supports all devices capable of detecting gestures (mobile phones with
touch screens, digital cameras, game controllers, . . .). It also offers features such as word
suggestions and auto-complete. Multiple language layouts are available. The application
can be purchased for $0.99.

Figure 3.14: How writing with 8pen works [3]

3.2.7 Dasher

Dasher is a text entry application based on word prediction. It allows for fast writing just
by moving the pointer, and is therefore ideal to be used for example with head pointers and

3.2. ALTERNATIVE TYPING 21

similar alternative devices. It is free (licensed under GNU GPL), and supports operating
systems including MS Windows, Mac OS X, and Android. Figure 3.15 shows the application
window.

Figure 3.15: Dasher application [9]

The letters are arranged in the alphabetical order from top to bottom in a column on the
right. Any point on the screen corresponds to a letter, the “path” to the point corresponds
to a piece of text. The user points where he wants to go, and the display zooms in there, i.e.
the user chooses what he writes by choosing where to zoom. The more the user zooms in, the
longer piece of text has been written. Probable pieces of text (determined by word prediction)
are given more space. Moreover, colours are used to better distinguish the character areas.
The project’s web page [9] contains a demo application and more detailed explanation of
how to work with the application.

3.2.8 EdgeWrite

EdgeWrite is a stroke-based (gesture-based) text entry system developed by Jacob Wob-
brock [34]. The application has very simple design, which consists of a square input area
with clearly marked corners. The letters are written by “drawing” in this area. The order
in which the four corners of the area are entered during the writing determines the char-
acter being made. There is a special alphabet that defines how each character has to be
written. Even though the strokes look similar to the real letters they correspond to, they
are not exactly the same, and therefore the alphabet needs to be learned by the user (see
figure 3.16).

The EdgeWrite application is designed to be used with a wide range of devices from
joysticks and touchpads, to minimal, four-key devices. EdgeWrite contains an interesting
word-completion system. If the user does a little loop at the end of the stroke, the system
displays four predicted words along the edges of the input area that begin with the letter

22 CHAPTER 3. VIRTUAL KEYBOARDS

Figure 3.16: Part of the EdgeWrite alphabet [2] (the heavy dot marks the beginning of the
stroke)

that is being entered. The user can then draw a line towards the edge on which the desired
word is displayed, which results in the word to be written. The same set of letters is always
displayed for each stroke, which allows the user to memorize the gestures for common words.

The EdgeWrite application can be downloaded for free from the project’s website [2],
and is also available for developers as a DLL (Dynamic-Link Library).

Chapter 4

Design

In this chapter, several keyboard designs will be introduced. The keyboards are different
not only in how they look like, but, more importantly, in the way how they are controlled.
That means each keyboard type will be suitable for a slightly different group of users and
different input devices that EasyControl offers. This was an intention when designing the
keyboards, as the variety of choices makes it easier for the user to find a keyboard he or
she will be best comfortable with. Before introducing each the designed keyboards, some
important consideration and usability rules will be mentioned, because those also influenced
the process of designing the keyboards.

4.1 Requirements for the User Interface

The goal of the design process was to come up with a set of keyboards, among which every
user of the EasyControl application could choose one that is suitable for him or her. When
designing any user interface in general, there are a lot of factors that need to be taken into
account. Considering the that the keyboard being developed in this thesis is targeted to
disable users, it is clear that there will also be some special requirements (for discussion on
the target users, see chapter 2).

4.1.1 Guidelines for Designing User Interface

Jakob Nielsen’s Ten Usability Heuristics [20] is a well-known set of principles that help the
designers and developers make better user interfaces. The list of these heuristics is presented
below, together with examples of how the rules relate to the particular case of a software
keyboard user interface:

1. Visibility of system status. The users should be always informed about what is
going on. For example, if a key has been pressed, some feedback should be given
immediately. In some situations, like when the user is writing a letter, it can be
sufficient that the letter immediately appears in the output window. However, stronger
feedback is often needed. For example, the background of the key could be changed
for a short period time right after the key has been pressed. In case there are keys

23

24 CHAPTER 4. DESIGN

that can change the “mode” of the keyboard, there should be an indication of which
mode is currently active (for example, a CapsLock would activate the mode of writing
capital letters).

2. Match between system and the real world. The keyboard should not use any
terms or symbols that are unknown for the user. Let us give some examples. If the
user is not familiar with common symbols for special keyboard keys (like ←↩ for the
Enter key, ⇑ for the Shift key, etc.), they should not be used and be rather replaced
with something else that will communicate what the key does (e.g. with a symbol
that will be clearer for the user, an icon, a group of letters, or even a whole word, if
necessary). The usage of terms from the computer technology area falls into the same
category. Another example can be users that have never used a physical keyboard.
Such users will be confused with the QWERTY layout, whereas the alphabetical order
of the letters can be more natural for them. On the other hand, if the user is familiar
with physical keyboards, the opposite will be true. Last but not least, the software
should speak the same language as the users. That means not only that all texts should
be localized, but also that the keyboard should provide a way how to write all special
symbols used in the user’s written language.

3. User control and freedom. It should be always clear for the user how to “undo”
an action, or how to return to the application’s default state. For example, if the user
accidentally switches the keyboard mode (e.g., from lower-case to upper-case letters),
there should be a clearly marked key that will allow him to get back to the previous
state without having to write any letter in the current mode.

4. Consistency and standards. The application should be consistent in all respects.
For example, if the keyboard offers more than one layout (e.g., one for letters and one
for symbols), and some of the keys are the same for both layouts (e.g., the “Delete”
key), then the shared keys should be placed on the same position in both layouts. If
the platform standard is to have a button that closes the application in the upper-right
corner, and the keyboard also offers a similar action, the key with this action should
also be in the upper-right corner of the keyboard’s interface. If there are custom actions
on the keyboard (e.g., a “Send” key), their names should be clear and use standard
terms, so that the user does not have to wonder what the action does.

5. Error prevention. The interface should be designed in a way that it is clear to the
user what to do to achieve his or her goal, and that it does not often happen that
the user is confused and makes a mistake. Since the user interface of a keyboard is
not very complex, it is unlikely that there will be a need for displaying error messages
to the user. When it comes to the typing itself, features like spell checking and word
prediction can help to reduce errors (such as typos and misspelled words).

6. Recognition rather than recall. All important actions that are relevant in the
current context should be visible to the user. The application should not require the
user to remember anything, but rather it should contain a mechanism how to present
that information to the user. For example, if the user presses the “CapsLock” key on
the keyboard to write an upper-case letter, an indication that this key has been pressed

4.1. REQUIREMENTS FOR THE USER INTERFACE 25

should appear and be present until the mode is deactivated. If the indication was not
there, the user would have to remember that he has pressed the key.

7. Flexibility and efficiency of use. It should be able to adjust the keyboard applica-
tion for each individual user. It is also seen as a benefit if there are two or more ways
how to do the same thing — some may be more suitable for a novice user, some for an
expert. The user can then choose himself which way of manipulating the application he
prefers. If there are any timeouts used by the keyboard (e.g., automatic confirmation
of a key without the need of clicking it), they have to be adjustable, because every user
has different reaction abilities. In general, the more configurable the interface is, the
better.

8. Aesthetic and minimalist design. The application’s interface should only contain
what is really needed for the user to see. The design of the interface should be simple
rather than cluttered, and there should not be any unnecessary “eye-catching” effects
(for example, if there is something that moves in the interface, it constantly attracts
user’s eyes — such animations should therefore be used only if there is a good reason
for it). Colours used in the application should go well together. A keyboard application
is really a “functional” piece of software, so it is very important that it does not distract
the user from his work. However, at the same time, the interface should be pleasant
to look at.

9. Help users recognize, diagnose, and recover from errors. If there is a need
to display an error message, the description of the error should be clear and should
not use the application’s “internal language”, such as error codes. The user should
be informed about what happened and what the application is going to do now, and
possibly also advised what to do next to recover from the error.

10. Help and documentation. Even though it would be best if the application’s interface
was completely intuitive for the user, sometimes this cannot be achieved (e.g., if the
user has never worked with such type of application, or if the application provides novel
concepts of controlling the interface). In any case, documentation and a user manual
should always be available to the user. The manual should be written in a “how-to”
style, so that the user can easily repeat the described steps. Also, no documentation
should be too large.

Another useful list of principles for interface design, called The First Principles of In-
teraction Design, was published by Bruce Tognazzini [30]. Some interesting pieces of advice
from the list include:

• Just colour is not enough. If a colour is used in the interface to indicate something
important for the user (i.e., it does not just have a decoration function), there should
always be another (secondary) cue that indicates the same thing.

• Avoid uniformity. Make objects that act differently look different. If all
buttons in the application look exactly the same, the user will expect them to have
the same behaviour. For example, if all buttons that form a keyboard in the keyboard
application write a letter, except for one that switches the keyboard layout from letters

26 CHAPTER 4. DESIGN

to symbols, this one button should be clearly distinguishable from the others. At the
same time, the interface must be consistent, i.e., in our example, the user still has to
be able to tell what is and what is not a button.

• Fitts’ Law. The Fitts’ Law states, that the time to acquire a target is a function
of the distance to and size of the target. In case the application is controlled with
a pointing device, it is important that all the controls in the application are easy to
reach. That means the buttons should be big enough, and the most important ones
should be placed on the edges of the interface.

Last set of principles that will be examined in this section are Eight Golden Rules of
Interface Design [28] by another well-known expert on HCI, Ben Shneiderman. These rules
often overlap with Nielsen’s heuristics, proving their importance and universality. Again,
these principles will be applied to the concrete case of designing a keyboard application.

1. Strive for consistency. Actions should have identical names across the whole appli-
cation. For example, if there is an action called “Clear” in the text entry application
that causes all text to be deleted, this action should not be called, say, “Delete All” at
some other place in the application. Similarly, both “Close” and “Exit” names should
not be used, if they actually represent the same action — only one of them has to be
chosen. This also applies to terminology used in user messages, to interface layout,
meaning of colours, or capitalization. This is said to be the most violated principle.

2. Enable frequent users to use shortcuts. It is helpful to provide special commands
for expert users, in order to enable increasing the pace of interaction. These “shortcut”
actions can be assigned to special keys, making them optional to use. In the case of
the software keyboard, for example, we could provide an option for the expert users
to add more keys on the keyboard. If the user needs to write some symbol often, he
could be allowed to add it to the standard layout. The keyboard would then probably
lose its simplicity, needed for novice users, but it would help the experienced user to
speed up the writing.

3. Offer informative feedback. There should be some system feedback for every action.
How substantial the feedback will be should depend on the importance and frequency
of use of the corresponding action. See the first rule of Nielsen’s heuristics presented
earlier in this section for examples.

4. Design dialogue to yield closure. If a sequence of actions is required, they should
be organized in groups, and there should be a clear feedback each time a group is
completed. This feedback is a signal for the user that he does not have to “worry” about
the completed actions any more, and that he can concentrate on the next step. This
would for example apply to all configuration dialogues of the text entry application.

5. Offer simple error handling. The system should be designed so that it was not
possible for the user to make a serious error in the first place. If it happens that an
error is made, the system should be able to detect it, and offer simple mechanisms for
handling the error. For example, if the keyboard application supported user profiles
that are saved in a file, and the system would not be able to load the file, the system

4.1. REQUIREMENTS FOR THE USER INTERFACE 27

should offer the user an option to use a default profile, or to choose from other existing
profiles. Such error could also be handled by the system straight away, without even
asking the user for what to do (this could be a better approach for novice users, or users
who are not aware that such functionality is there, because somebody else configured
the system for them).

6. Permit easy reversal of actions. If the user can rely on the fact that each step
he takes can be undone, it will be much less stressful for him or her to work with the
application. It can also encourage him or her to explore the interface. This principle
is contained in Nielsen’s third rule (see above).

7. Support internal locus of control. The user, and especially an experienced one,
feels more comfortable if he has a sense of having full control over the system, rather
than being just a responder to system’s actions. The interface should therefore give
the user sufficient freedom. However, the designer also has to be aware that too much
freedom can have a negative effect (see the Autonomy principle in Tognazzini’s list [30]).

8. Reduce short-term memory load. It is important that the interface does not
“overload” the user with information or any other signals (e.g., motions) the user has
to process. At same time, however, things that belong together should be displayed in
the same window, so that the user did not have to remember them while he navigates
through the interface. Example of application of this principle in the software keyboard
can be the appearance of its keys. If there are not just keys for writing letters, but
also keys for other actions on the keyboard, those keys should not be overused. Only
a few of these special keys for the most frequent actions should be shown, and the rest
could be somehow hidden, and become visible only upon user’s request.

The user interface design and usability guidelines mentioned in this section contain a lot
of practical advice and apply to any user interface in general. However, if the application
is targeted to users that have some kind of disability, some of the design guidelines may
become even more crucial to implement, and also new issues with the interface design can
arise. The next section summarizes some important findings mentioned in several articles
from authors that conducted research in this area, focusing on those that will be especially
important for designing the keyboard application.

4.1.2 Usability and Disabled Users

There are differences in abilities even among “normal” (not disabled) users. In fact, there is
nothing like a “normal” user, because every person is unique. However, the degree of variabil-
ity in “normal” users’ abilities is still rather small than in case of the disabled users. There
are a lot of kinds of impairments that a user can have (as already discussed in chapter 2),
and it can therefore be very hard to provide “general guidelines” that would apply to all of
these users. That, however, does not mean we should give up on research in this area, it only
means that usual approaches to designing user interface may not be sufficient if the target
users are handicapped.

There are several approaches to providing people with special needs access to computer
technologies. A recent article by Jacob Wobbrock et al. [33] provides a brief summary of

28 CHAPTER 4. DESIGN

these approaches. They range from assistive technologies, that are mainly concerned with
how to “fit” disabled users to standard technologies by means of add-ons inserted between
the user and the system, to universal usability.

Universal usability was described by Ben Shneiderman as the aim for making the in-
formation and communication services available to everyone, regardless of their knowledge,
education, physical or cognitive abilities, experience, and so forth [27]. The three main
challenges, as seen by Shneiderman, are:

• Technology variety. A broad range of hardware, software, and network access needs
to be supported.
• User diversity. The interfaces have to accommodate users with different skills, knowl-

edge, age, gender, disabilities, literacy, culture, etc.
• Gaps in user knowledge. There must be a way to bridge the gap between what

users know and what they need to know.

The universal design approach therefore does not make any special provisions for the
disabled users, it just sees them as one part of the wide group of all users. Shneiderman
believes that such approach can benefit all users — they will get interfaces that are much
more flexible than those designed with traditional approaches. In fact, even a “normal”
user can get into a situation where he will be faced with some disabling conditions (such
conditions include having to type in gloves, working in a sunlight or noisy environment, or
dealing with a broken input device). User interface that is adaptive can then help all users
equally well.

The article by Jacob Wobbrock [33] promotes an approached called ability-based design,
which takes the idea of universal design further. The idea of ability-based design is to orient
to “what a person can do”, rather than to “what a person cannot do” or “what everyone
can do”. The question then is how a system can be made to fit the abilities of the user, no
matter who that user is. In the ideal case, the system should be so flexible that it would
allow people to use it without requiring them to alter their bodies, knowledge, or behaviour.
In reality, it will not probably be possible for the user interface designer to create a system
that would meet 100 percent of this vision. However, it is possible to achieve it at least
to some extent. What is more, designing the system with the focus on abilities in mind
changes the designer’s thinking and helps him create a product that will be more flexible.
The main principle to follow to achieve the goals of ability-based design is to make the
system highly adaptive. The interfaces may be either self-adaptive (often in response to
performance or context) or user-adaptable. The first case involves continuous monitoring,
modelling, and/or predicting the user’s performance, and can therefore lead to quite complex
implementations. It is also important that all these adaptations remain transparent to the
user — the system has to allow him to view, change, or even discard the adaptations. Even
though the ability-based design principles encourage the designers to use standard hardware
components for the system, they do acknowledge that some users, especially those with severe
disabilities, may have to use custom components. The biggest challenge of developing an
ability-based interface is modelling the user’s abilities, because the variability among users
with impairments is very high, and therefore conventional user models do not suffice in this
case.

4.2. APPLYING THE REQUIREMENTS 29

The article called Designing User Interfaces for Severely Handicapped Persons by J. B.
Lopes [17] emphasizes the importance of configurability of the interface as well, and also
mentions the need to include tools to manage user profiles. All the other features of the
interface have to be built on these essential requirements. The areas, to which the designer
should pay special attention, include, but are not limited to:

• size, colour, and number of items shown on the screen
• minimal user interface design (for example, animations are not recommended for most

users)
• different levels of difficulty, and alternative ways to perform user tasks
• support for wide range of input devices
• various output models (graphics, sound, speech)
• strong feedback mechanism

Research results from the area of Human-Computer Interaction from several authors
were presented in this section. They provide a lot of interesting findings that could (and
will) be utilized when designing the text entry application in this thesis. It seems that
the most important principle to follow, promoted by all the HCI experts, is to make the
interface as adaptable to the user’s preferences as possible, especially when it is targeted to
disabled persons. In other words, the interface has to be aware of the wide range of personal
characteristics of its users.

4.2 Applying the Requirements

Let us now look at how all the guidelines presented in the previous section can be utilized in
the design process of the text entry system (called “keyboard” for simplicity) developed in
this thesis. Even though some examples of applying the guidelines to a software keyboard
interface were already given, those examples were rather general ideas not yet applied to a
real interface. This section will explain the decisions and compromises that were made, and
on which the various keyboard designs are built.

It is clear from the guidelines presented in the previous section that the keyboards have
to be highly configurable. What can be configurable and what cannot will of course also
depend on how the keyboard is controlled and how does it look like. The minimum available
options should include:

• Size of the keys. It should be possible to enlarge or shrink the size of keys.
• Colours. All background colours, colour of the font, or any other colours used on

the keyboard should be configurable to allow achieving any level of contrast and/or
brightness.
• Timeouts. If timeouts are used (i.e., some event occurs after a period of time elapses),

they have to be adjustable.
• Number of keys. The keyboard should offer an option to remove or add extra keys,

and thus make either simplified or more complex layouts.
• Order of keys. The keyboard should either offer various layouts (an alphabetical

layout, the QWERTY layout, etc.), or it should be possible to rearrange the keys on
the keyboard to make the keyboard suit the user’s needs.

30 CHAPTER 4. DESIGN

• Support for icons. If a lot of text is used, the interface may become hard to orient
in. The use of icons can help in such cases, as they are also able to communicate the
meaning of actions. The keyboard should therefore support keys with icons.
• User profiles. The keyboard has to be able to manage user profiles, in order to

allow different users share the application on the same computer and not having to
reconfigure it from scratch every time they run it.

As you can see, a great part of the requirements is connected to the layout of the keyboard,
i.e. what keys will be present on the keyboard, and what will be displayed on those keys.
This leads us to the idea of allowing the user to configure the whole layout. This will make
the application extremely flexible. The user will be able to decide exactly which keys he
wants to have on the keyboard, what will be displayed on those keys (a letter, a symbol, a
word, an icon, . . .), and what their output will be. Besides the keys that actually “write”
something, the application should of course also provide special action keys (such as Delete,
Shift, etc.). However, the application should let the user decide if he wants to use these keys,
and where he wants to put them in the keyboard layout. Therefore, it will be completely up
to the user (or, better said, the person who will be creating the keyboard layout) how the
keyboard layout will look like.

An important thing to note here is that the configuration of the EasyControl application,
and thus also of the keyboard, will be typically done by another person, not by the disabled
users themselves. This is necessary, because it would not be wise to require the disabled
users to configure for example the input devices (e.g., mapping the input signals to actions
in the application), as those settings are quite complicated.

The configuration of the keyboard application can be simply added to already existing
configuration mechanism. The application will thus be user-adaptable, not self-adaptive. It
would of course be possible to make the keyboard self-adaptive in some ways, but as an
assistance of another person is needed for the configuration anyway, the “user-adaptable”
solution can be chosen as less demanding on the implementation.

Besides the configurability, the other important requirement is that the keyboard types
have to be designed with respect to the input devices that can be used together with the
EasyControl application (for the list of these devices, see section 2.2). The designed keyboard
types should vary, so that there is at least one keyboard suitable for each input device. The
following characteristics will therefore be important:

• the minimum number of “buttons” (actions) that will be needed to control the keyboard
(for example, navigation to four directions requires four different buttons, confirmation
of a key requires one button, etc.)
• whether or not it will be required that the user moves the pointer
• whether or not it will be required that the users performs clicks/presses

4.3 Designed Keyboard Types

This section contains description of proposed keyboard types. There is an explanation of
how each “keyboard” works, how it is supposed to be controlled, and which devices are

4.3. DESIGNED KEYBOARD TYPES 31

recommended to be used with it (with respect to the alternative input devices for the Easy-
Control application). The terms “continuous” and “discrete” input devices will be used in
the following sections (see section 2.2 for an explanation of the difference). When explaining
what the input device needs to be able to control the keyboard, the term “button” will be
used for simplicity, even though it is not technically correct — a device need not have any
buttons, but still it can generate similar output as devices that have buttons. For example,
moving a joystick to the right can have the same effect as a button press, and the application
can therefore interpret it similarly.

Almost all of the keyboards (except those that can be controlled solely by continuous
movement of the pointer) can be used together with some kind of auto-scan and auto-click
functions. These functions can replace either the need to navigate through the layout or
the need to press something to select a key. One possible implementation of auto-scanning
is automatic jumping (i.e., moving the focus) from one item on the screen to another. If
the user wants to select an item, he has to wait until the cursor gets there and then press a
button. Auto-selection (confirmation) usually means that a key is selected if the user stays
on it (i.e., does not move anywhere) for some specified period of time. A disadvantage of
such functions is that they usually slow down the typing. However, if the user is not able to
use more than one button, or cannot perform presses or clicks, it may be necessary to use
these features.

There is a picture for each keyboard design. Note the pictures have the form of drafts,
in order to illustrate the idea of the design, and not focus on details. They are not meant to
represent a detailed specification for the implementation. That is why they do not provide
any details such as colours, fonts, and shapes. The set of keys is also only illustrative. After
all, these details should be configurable in the actual implementation.

It also should be noted that it is supposed that the keyboards support a “layout switching”
functionality. That means that it is be possible to change the set of buttons on the keyboard,
for example from the default set containing letters and digits, to another set containing
symbols. This functionality allows to include all necessary letters, symbols, and actions
in the keyboard without having to display them at once, and thus making too large and
complex layouts. For some keyboard types, this functionality can even help reducing the
number of buttons that are needed to control the keyboard.

In each of the following sections, there is also a discussion on how to incorporate prediction
in the particular keyboard layout (note that only a next-word prediction will be taken into
account, not for example a prediction of whole sentences). As mentioned earlier in this
thesis, the keyboards must be prepared for the integration of a prediction system, which
will be most likely implemented in the future (a prototype already exists, as mentioned in
section 2.6). Prediction can help the disabled users not only to speed up their typing, but
also prevent typing errors.

4.3.1 Grid Keyboard

Design of the Grid Keyboard is based on the appearance of a traditional keyboard. The
keys are arranged in a grid. Number of columns and rows is supposed to be configurable,
which makes this layout very flexible. For simplicity, all keys have the same size. However,

32 CHAPTER 4. DESIGN

it would also be acceptable to make some keys bigger (i.e. longer and/or wider, so that they
span multiple cells of the grid). Figure 4.1 shows the keyboard layout.

Figure 4.1: Grid keyboard

How It Works

Controlling the Grid Keyboard should be intuitive for everyone who has ever used a physical
or virtual keyboard: a key is highlighted when the user navigates to it, and then confirmation
(e.g., a click or button press) is needed to select the key.

Suitable Devices

This keyboard can be controlled either with a continuous or discrete device. The number of
buttons that are needed to control the keyboard with a discrete input device can vary. One
button is always needed for confirmation (selecting a key), and the rest is used for navigation.
Typically, four buttons will be used to navigate up, down, left, and right. Additionally, more
navigation actions can be used to allow the user to navigate to the diagonal directions.
Another possibility is to use only one (or two) buttons for navigation — in such mode,
pressing a button would cause the cursor to jump to the next (or previous) key. That means
that minimum of two and maximum of nine buttons can be utilized. A joystick could also
be used with this keyboard. If all eight directions were used for navigation, however, the
confirmation would probably have to be done automatically, or the joystick would have to
have an extra button for that.

Pros and Cons

Advantages of the Grid Keyboard are that it has very flexible layout, and it is intuitive to
use (if the user has ever worked with a computer and used a keyboard). It can also be used
with various devices, regardless if they provide continuous or discrete input. A disadvantage
is that the navigation on the keyboard may become quite slow if discrete input device is
used (for example, consider the layout shown in figure 4.1 — it takes ten moves to get from
letter “I” to letter “S”, that means at least twelve button presses are needed just to write the
word “is”).

4.3. DESIGNED KEYBOARD TYPES 33

How To Incorporate Prediction

The Grid Keyboard offers several possibilities of how to incorporate prediction. One option
would be to add special “keys” on the keyboard, each key containing one predicted word.
The user would have the option to write the predicted words by selecting these keys. An
advantage of this solution is that the number of predicted words offered to the user could be
configurable, and the keys could be placed anywhere on the keyboard — either in a separate
row or column, or anywhere else among the other keys. Figure 4.2 shows an example of the
layout including predicted words.

Figure 4.2: Grid keyboard with predicted words as special keys

Figure 4.3: Grid keyboard with predicted words on keys with letters

Another option is to include the predicted words directly in the already existing keys,
more precisely just on those with letters. A word would be placed on a key if the key contains
the letter that would have to be selected next to write the predicted word. For example, if
the user has already typed the letter “H”, word “hello” would appear on key “E”, word “house”
would appear on key with “O”, and so on. If the user then wanted to select the predicted
word, he would have to select the desired key in some special way. For example, he could
activate a special mode on the keyboard (something similar to the CapsLock mode), or he
would have to hold the key for a longer time. Of course, it is possible that nothing can be

34 CHAPTER 4. DESIGN

predicted for some letters. In that case, no word would be displayed on the keys with those
letters. An example of how the keyboard could look like if the user began to type a word
with the letter “O” is shown in figure 4.3. This way of incorporating the prediction has a
disadvantage that it can happen that there will be a lot of predicted words for one letter,
of which only one can be displayed on the corresponding key, but almost no words for the
other letters. Therefore, the number of displayed words can be very limited. This problem
could be solved by allowing to fill the “empty” keys with the rest of the predicted words,
even though their letters do not match. However, the risk of this solution is that the words
will be then too hard to find for the user.

4.3.2 Keyboard with Coordinates

The layout of the Keyboard with Coordinates (see figure 4.4) looks very similar to the Grid
Keyboard described above. However, it significantly differs in the way how the keys are
selected (see description below). The keys are arranged in a grid. Additionally, there is
a number for each row and column. The upper left corner can be used to display status
information.

Figure 4.4: Keyboard with coordinates

How It Works

In a grid, each key is clearly defined by its position, i.e. its row and column number. This
keyboard takes an advantage of this fact. Instead of having to navigate from one key to
another, the user simply selects the coordinates of the key. Therefore, as less as two button
presses are needed to select any key. In the example layout shown in the figure 4.4, the user
has to press 2 (the row number) and then 5 (the column number) to write the letter “K”.
The key is selected automatically after the second coordinate is entered, so there is no need
for any additional confirmation.

There is also another option how to control the keyboard. The rows and columns need not
be selected directly by entering the coordinates, but they can as well be selected using a cursor

4.3. DESIGNED KEYBOARD TYPES 35

jumping from one row (column) to another. First, the keyboard allows navigation in rows
(currently selected row can be for example highlighted with a different colour, or have thicker
border), and the user navigates to the desired row using a Next action. Then he confirms
the row selection, and the keyboard switches to navigation in columns. The user then selects
a column and by confirming the selection, the key that is on the intersection of the selected
row and column is “pressed”. The number of button presses needed to select a key varies —
the minimum is two (if the user wants to select the key on position [1, 1]), the maximum
is (numberOfRows − 1) + 1 + (numberOfColumns − 1) + 1 = numberOfColumns +
numberOfRows.

Suitable Devices

This keyboard was especially designed for the “Finger Switches”, a five-button input device
(see section 2.2 for description). Each switch is assigned a number from 1 to 5. That would,
however, only allow using 5x5 grid. Such grid would not even be able to contain all letters.
Additional numbers are therefore needed. This problem could of course be solved by adding
more switches. Another option is to interpret long press or simultaneous press of two numbers
as another number. In the latter case, number 6 could be achieved for example by pressing
switches number 1 and 2 simultaneously, number 7 by pressing 1 and 3, and number 8 by
pressing 1 and 4. The button number 1 would therefore serve as a special (“Shift”) button,
and would not output any number by itself (numbers 1–4 would be mapped to buttons 2–5).
As a joystick also has eight output actions, it is suitable for this keyboard as well. If we
wanted to control this keyboard with a device that has less buttons, we could simply remove
some columns (or rows) from the layout.

However, some users may not be able to use switches in the described way, because it
would be to difficult for them. Those users can use the other way of controlling the keyboard,
i.e. selecting the row and column successively, utilizing a “confirm” action. This approach
requires only two buttons — one for navigation, the other for confirmation.

If the user is able to control three buttons, we could use a little improvement in the
navigation. The rows and columns could be selected “simultaneously” — one button would
be used for selecting a rows, the second for selecting a column, and the third for confirmation.
It would not matter in what order the row and the column are selected, the user could even
for example navigate to a row (using the first button), then to a column (using the second
button), and then again change the selection of the row (using the first button again), and
only after that confirm the selection. Since it is not necessary to confirm the row selection,
this way of controlling the keyboard would save the user one button press.

The Keyboard with Coordinates cannot be used with continuous input devices. If the
user is able to use such device, a better choice for him or her is to use for example the Grid
Keyboard (or any other keyboard type that can be controlled with continuous input device),
because using this keyboard would not bring any benefit. The user would have to click on
the row and column numbers, which would mean he has to do twice as much clicks as he
would have to do with the Grid Keyboard.

36 CHAPTER 4. DESIGN

Pros and Cons

An advantage of this keyboard is that it can provide a faster way how to type for users with
discrete input devices, in comparison to the Grid Keyboard. With a five-button device, the
user could use the traditional Grid Keyboard, but he would have to perform significantly
more presses. Let us recall the example of writing the word “is”. With the Grid Keyboard
in figure 4.1, fourteen presses are needed to write this word (assuming the cursor had been
placed on the space key before), while with the Keyboard with Coordinates, it takes only four
if the direct selection of coordinates is used (in the situation in figure 4.4, the user would
have to press 2 and 3 for “I”, and 3 and 6 for “S”). If the successive selection of the row
and column is used, the number of presses is higher — for the word “is”, it would be twelve
presses on a three-button device. If this “simple navigation” is used, the most frequently
used keys should be placed near the upper-left corner of the keyboard, where the number of
button presses to select a key is lowest.

One disadvantage of this keyboard is that the input device has to have sufficient number
of keys if the direct selection of coordinates is to be used. Another disadvantage may be that
the user has to memorize which button on the input device corresponds to which number
in the application. This disadvantage could be mitigated by having the numbers written
on the device, even though this may not be possible to do for some devices. The “simple
navigation” has the disadvantage of being slower than the direct selection of coordinates, but
on the other had, it is not that difficult and could cause less cognitive load for some users
(since it provides clear visual feedback).

How To Incorporate Prediction

As the keyboard’s grid of keys looks almost the same as the Grid Keyboard, the prediction
could be incorporated in a very similar way (see section 4.3.1).

4.3.3 Shifting Keyboard

The Shifting Keyboard is very simple keyboard designed for users who may have problems
with complex layouts or who can only use devices with limited number of buttons. The
keyboard consists of a single row of keys, which means that it takes just a little space on the
screen. The keyboard is shown in figure 4.5.

Figure 4.5: Shifting keyboard

4.3. DESIGNED KEYBOARD TYPES 37

How It Works

As its name suggests, the Shifting Keyboard is based on the idea of shifting a row of keys
to find the desired key. A defined number of keys is visible on the screen and the rest is
“hidden” on the left and/or right. The middle key is highlighted — this is the one that is
selected if the user presses a select button on the input device. The user can move (“shift”)
the row of keys using corresponding navigation buttons. The simplest possibility is to shift
the row by one key to the left or right. Optional navigation actions are to shift the row by
the whole window (on the picture 4.5 it would be by nine keys), or move the focus to the
very first or last key.

Suitable Devices

Basically any discrete input device can be used with this keyboard. One button is a minimum
that the device has to provide (this button could be either used to confirm the highlighted
key, while the navigation would be done automatically, or vice versa). At least two buttons
are needed if no automatic scanning or confirmation is used. The keyboard can be controlled
by up to seven buttons (one for confirmation, two for one-key shifting, two for whole window
shifting, and two for jumping to the beginning or end).

Pros and Cons

Advantages of the Shifting Keyboards are that controlling it is very simple, and not many
buttons are needed for it. It also saves a lot of space on the screen, which means the keys
can be bigger than if any other keyboard was used. This can be a benefit for users with
poor vision. The keyboard is also very suitable to be used together with the auto-scanning
feature. If auto-scanning is used, some of the advantages of the various keyboard types are
gone, because the automatic navigation is be done key-by-key, going in one direction. It
therefore becomes unnecessary to have the whole big keyboard on the screen. Using the
Shifting Keyboard, a lot of space can be saved. Also the cursor highlighting the keys does
not “move” anywhere, it always stays in the middle, so the user does not have to follow it.

If the user controls the keyboard himself, the fact that only a part of the keys can be seen
may become a disadvantage. The user has to know what direction to go to get to the desired
key without seeing it well in advance. It is therefore crucial that the keys are ordered in a
logical way for the user. This keyboard shares the disadvantage of “long path” between keys
with the Grid Keyboard — the user typically has to press the navigation button(s) multiple
times before he gets to the key he wants to select.

How To Incorporate Prediction

We could use the same idea as for the previous two keyboards, to include “special keys“ for
predicted words. However, this solution has a great disadvantage with this type of keyboard
— the keys would be placed somewhere where the user could not possibly see them (for
example, if the user types a letter that is in the middle of the keyboard, he typically cannot
see keys that are placed at the beginning or at the end of the keyboard). If the predicted
words could not be seen, the user would have to navigate to them every time, to see if there

38 CHAPTER 4. DESIGN

is something he could use, which would not probably save him any key presses. Such solution
is therefore not suitable for this type of keyboard.

A better option would be to display the predicted words always under the currently
visible set of keys, in an extra row. The predicted word that could be then selected would
be the one in the middle, under the currently highlighted key (see figure 4.6 for illustration).
The question is what the user would need to do to write this word. We could add a special
action for that, which would however require one more button on the input device. As this
layout is meant to require as few buttons as possible, this option may not be acceptable in
most situations. The predicted word could be rather written for example by holding the
select button longer, or pressing it twice in a row during some defined time interval.

Figure 4.6: Shifting keyboard with prediction

4.3.4 3x3 Keyboard

The 3x3 Keyboard has eight big tiles, arranged in a 3x3 grid, with an empty space in the
middle. Each of these big tiles contains eight keys, arranged in a similar way. The keyboard
layout is shown in figure 4.7.

How It Works

The 3x3 Keyboard works on the principle of selecting directions. The position of each tile
corresponds to one cardinal point (the upper-left tile is northwest, the upper tile is north,
etc.). If a direction (cardinal point) is selected, the corresponding tile is “broken down” to
its eight keys. These eight keys (“second level”) replace the view of the whole keyboard.
Figure 4.8 shows the keyboard after the west tile from figure 4.7 has been selected. In the
second level, a concrete key can be selected. The keyboard then returns to the first level.

Note that the tiles/keys are selected by choosing the directions. There is no need to
“navigate” to the desired tile (or key) and then press the select button. Only two direc-
tion selections are needed to select each key, similarly as in the case of the Keyboard with
Coordinates.

Suitable Devices

This keyboard has to be used together with devices that are able to distinguish eight different
directions. The joystick is a straightforward example of such device. However, also other
devices, such as switches, can be used. Buttons just have to mapped to the eight cardinal

4.3. DESIGNED KEYBOARD TYPES 39

Figure 4.7: 3x3 keyboard — first level

points, and the user has to know mapping. It is possible to use continuous input devices
with this keyboard as well. Selecting a direction can be performed by directly “clicking” the
relevant tile or key.

Pros and Cons

The 3x3 Keyboard has the advantage that it allows the user to select a key in just two button
presses. The price for this is that more buttons are needed to control the keyboard. The
keyboard is ideal to be used together with a joystick. An advantage of this keyboard layout
also is that it can fit quite a lot of keys (64). That means that “switching the layout” will
probably hardly be needed. Seeing everything at once eliminates the need to remember what
keys are on the other layouts that can be switched to. On the other hand, the layout may
be “too large” for some users. A disadvantage of this keyboard also is that it takes quite a
lot of space on the screen.

How To Incorporate Prediction

The best way how to incorporate prediction in this keyboard would probably be to assign
one of the tiles to display predicted words, which could be selected in the same way as any
other keys, i.e.by selecting the “direction” where the word is placed.

40 CHAPTER 4. DESIGN

Figure 4.8: 3x3 keyboard — second level

4.3.5 Move-Controlled Keyboard

Fitts’ Law, mentioned in section 4.1.1, teaches us that items that are placed on the edges of
the screen are those that are most easily reachable. The Move-Controlled Keyboard layout
follows this rule precisely by placing the keys only along the edges.

Figure 4.9: Move-controlled keyboard

How It Works

See the figure 4.9 for an illustration of how the Move-Controlled Keyboard looks like. There
are keys arranged along the edges of the interface, and a large “empty” area in the middle.
Actually, this area is not empty — it serves as a “confirmation area” and a resting place for
the pointer. The keyboard is controlled solely by moving the pointer, no clicks or presses
are needed. If the user wants to write a letter (or select any other key), he has to move the
pointer from the middle area to the desired key, and then straight back to middle. The key
that is to be selected has to be the last one the pointer points at before it is moved to the
middle. That means that if the user moves the pointer from one key to another without

4.3. DESIGNED KEYBOARD TYPES 41

Figure 4.10: Move-controlled keyboard — example of writing the word “is”

returning back to the middle confirmation area, no key is selected. The figure 4.10 shows an
example of the pointer’s path that will lead to writing the word “is”.

The keys have some empty space between them in order to provide the user with “escape
points” to return to the middle without selecting any key (the size of these spaces should be
configurable).

There is another option of how the layout could look like. According to the Fitts’ Law,
corners of the interface are the easiest points to reach. In the design proposed above, those
corners are not utilized (except that they serve as “escape points”). The possibility to place
some keys in the corners suggests itself. Those four keys should contain frequently used
actions. For an illustration of this second variant of the Move-Controlled Keyboard design,
see figure 4.11.

Figure 4.11: Move-controlled keyboard — design with keys in the corners

Suitable Devices

The Move-Controlled Keyboard is designed to be used with continuous input devices only.
That means everything that is able to move the pointer on the screen can be used to control

42 CHAPTER 4. DESIGN

this keyboard. No buttons are needed.

Pros and Cons

This keyboard is ideal for users that are unable to perform clicks or presses. With the
keyboard types that require pressing a button to select a key, this disability has to be solved
by using some kind of auto-click (auto-confirm) feature. With this keyboard, nothing like
that is necessary. The user does not have to wait until some timeout expires, and can
therefore type faster. A disadvantage for some users may be that this keyboard requires a
bit higher level of precision of the pointer movement, because it is necessary that the user
moves the pointer from the selected key straight to the confirmation area without touching
any other key. It is therefore important that the size and number of the keys is adjustable,
so that the user can choose parameters that will suit him and prevent accidental selection of
keys. Similarly to the 3x3 Keyboard, theMove-Controlled Keyboard is quite space-consuming.
However, allowing to decrease the number of keys in the keyboard configuration can help to
make the keyboard smaller, if necessary.

How To Incorporate Prediction

Prediction would be quite easy to incorporate in this keyboard, and would not require any
major modification. The predicted words could be displayed as special keys, and could be
written by selecting them in the same way as other keys are selected. If the variant of the
layout with keys in the corners would be used, the predicted words could be displayed on
the bigger keys in the corners, which would make them easy to reach.

4.3.6 Bisection Keyboard

The Bisection Keyboard is a bit similar to the Shifting Keyboard, described in section 4.3.3.
It consists of a single row of keys as well (see figure 4.12). What differs is the way how the
keyboard is controlled.

Figure 4.12: Bisection keyboard

How It Works

Controlling the keyboard is based on the idea of interval bisection, known from mathematics.
Similar principle is used in informatics for binary search in an ordered list. This method finds
a given value by successively halving a discrete interval. Every time the interval is halved,

4.3. DESIGNED KEYBOARD TYPES 43

the half where the key is supposed to lie is chosen and used in the next iteration. The
keyboard works similarly, with the difference that it is the user who chooses the intervals.

The keyboard is split into two halves (two intervals). The keys that are at the beginning
and the end of each interval are visible, the rest is hidden (which is expressed by three dots
— see figure 4.12). Using two navigation buttons (left and right), the user chooses the half
where the key that he wants to reach lies. If the user does that, the interval is expanded
to take up the whole screen, and is halved again. The user then repeats this process until
one (if the number of keys is odd) or each (if the number of keys is even) of the intervals
contains only one key. The last choice of the left or right interval then selects the key. In
the end, the keyboard returns to the initial state.

Note that the number of steps to select a key is always the same for all keys (with the
exception that for some keys it can be one step less if there are odd-sized intervals), and
depends on the total number of keys. Figure 4.13 shows an example of the flow of writing
the letter “P” on a keyboard with 52 keys.

A question arises — how to allow the user to get back in case he selected a wrong
interval? This can either be done automatically (after some defined period of time elapses
and no interval is selected), or there could be a special user action for that, assigned to a
button on the input device.

Figure 4.13: Bisection keyboard – example of writing the letter “P”

Suitable Devices

This keyboard can be used either with continuous or discrete input devices. It is possible to
select an interval in two steps with a continuous input device — by pointing and then clicking
on the desired half of the keyboard. A discrete input device is able to select the interval in

44 CHAPTER 4. DESIGN

one step, if it has at least two buttons (two buttons can select the intervals directly, without
the need to “highlight” them first — one button is assigned to select the left interval, the
other to select the right interval). However, the keyboard can work with only one button
as well. In such case, an auto-navigation feature has to be used, which would alternately
highlight the intervals. The button can then be used to select the currently highlighted
interval. If the device provides three buttons, and the user is able to use them all, the third
button can be mapped to the “return” action. If no such button is available, the returning
must be solved by using a timeout.

Pros and Cons

An advantage of this keyboard is that only one, two, or three buttons are needed to control
it. It is also very simple and does not take much space on the screen. A disadvantage is that
the user has to know the order of the keys to be able to select the “right” interval. Especially
at the beginning of the selection process, it happens that the key the user wants to select is
not visible, so the user has to know, or guess, where the key is. What is more, it may not
always be possible to order the keys in a straightforward way to help the user determine in
which interval the key lies — it is easy to do it for letters or digits, but how to order for
example symbols such as punctuation marks? The user will therefore be forced to remember
the order of such keys. That means that the keyboard will be harder to use for novice users.
This keyboard should not be used with large sets of keys, not only because a large set of
keys is harder to order, but also because the number of interval selections needed to get to
a single key depends on the total number of keys. Using too many keys would therefore not
only increase the number of steps, but also the chance that the user selects wrong interval
on his path to the desired key (because of not guessing the position of the key right).

How To Incorporate Prediction

Figure 4.14: Bisection keyboard with two predicted words

This keyboard is probably the hardest to incorporate the prediction in from all the
keyboards described in this chapter. It is because this keyboard is based on ordering the
keys, and requires that the user knows “where to go” (which interval to select). However,
the prediction system generates the words dynamically, so the user can hardly know what
words will be predicted. The only option therefore is to always place the predicted words
at the beginning and/or end of one of the initial intervals, as those are the positions that
can always be seen from the initial state. That limits the number of the words that can be
displayed (with the keyboard layout shown in figure 4.12, the optimal number of predicted
words would probably be just about two, one at the very beginning and one at the very end

4.3. DESIGNED KEYBOARD TYPES 45

of the keyboard — see figure 4.14). The fewer predicted words can be displayed, the better
prediction system has to be used, because it has to predict the words very precisely.

4.3.7 Multi-Level Keyboard

The Multi-Level Keyboard is based on a similar principle of “keys inside keys” as the 3x3
Keyboard, described in section 4.3.4. This keyboard is more general — it allows any number
of keys and levels. The tiles are arranged in a grid, and the set of keys that can be reached by
selecting a tile is displayed on that tile. Figure 4.15 shows an example of two-level keyboard
with six tiles, figure 4.16 shows three-level keyboard with four tiles.

Figure 4.15: Two-level keyboard with six tiles

How It Works

Each tile contains a part of the whole set of keys. If a tile is selected, the keys that it contains
are displayed in the next level of the keyboard. If the number of keys is higher than the
number of tiles, the keys have to be further split between the tiles, forming another level
of the keyboard. In the lowest level, each tile contains only one key. Figure 4.16 shows an
example of writing the letter “D” with a layout that has four tiles.

The number of levels depends on the total number of keys and the number of tiles. If
there is low number of tiles in the layout, it allows the user to choose between them faster.
On the other hand, low number of tiles in combination with a large set of keys will cause
that the keyboard has multiple levels, and the user will therefore have to do more steps to
reach a key.

Suitable Devices

This keyboard can be used with basically any input device. In case of discrete input devices,
pressing the buttons can either cause the tiles to be selected directly (i.e., each button would
be mapped to one tile), or there can be one “select” button and several “navigation” buttons
that move the cursor from one tile to another.

Pros and Cons

The Multi-Level Keyboard is similar to the Grid Keyboard (see section 4.3.1), it just adds
one more “dimension” to the layout. It shares the advantage of great flexibility with the Grid

46 CHAPTER 4. DESIGN

Figure 4.16: Three-level keyboard with four tiles

Keyboard — the keyboard can be configured to display basically any set of keys distributed
between any number of tiles. That allows to adjust it to the concrete input device and its
user. In case the number of levels is high, a disadvantage is that a lot of button presses are
needed to select a key. The number of tiles therefore should be well-balanced with the total
number of keys.

How To Incorporate Prediction

Prediction could be incorporated in a similar way as for the 3x3 Keyboard, i.e. one tile would
contain the predicted words. The predicted words could also be distributed between the
tiles, such that each tile would contain for example one predicted word. The words could be
assigned to the tiles either at random, or based the letters the tile contains. The latter option
means that if the tile contains the same letter that the user would have to be type next to
write the predicted word, this word would appear on that tile. This principle is similar to
one the proposal of displaying predicted words right on the keys that was described for the
Grid Keyboard in section 4.3.1.

4.3.8 Phone Keyboard

The Phone Keyboard, as its name suggests, is based on the design of keyboards used on cell
phones. A traditional keyboard, as we know it from PC, would not fit in the limited space
cell phones have for it, so it had to be modified to have more than one letter on each key.
The software keyboard of this type, designed in this thesis for the EasyControl application,
looks very similar (see figure 4.17). However, this keyboard would not be of much benefit in
comparison to the Grid Keyboard (section 4.3.1) or the Multi-Level Keyboard (section 4.3.7),
if it just allowed the basic controlling, i.e. that the letters would be written by pressing a
key multiple times, depending on the position of the letter on the key. Implementation of
this keyboard can of course contain this option, but the keyboard’s main usage should be
with the prediction system on.

4.3. DESIGNED KEYBOARD TYPES 47

Figure 4.17: Phone keyboard

How It Works

The prediction system for this keyboard is similar to the T9 system known from most cell
phones. The user presses the keys only once, no matter which letter on the key he wants to
type. The system than looks up a table of words that correspond to the combination of keys
entered by the user, and offers a list of these words, among which the user then chooses the
desired word. The keyboard therefore has to have some additional keys that would allow
the user to “browse” the words and select the right one (see the bottom row of keys in the
figure 4.17). Also, there should be a fallback if the word the user wants to write is not in the
list. In such case, the keyboard should allow switching to a “manual entry” mode, where the
letters can be written individually (key in the bottom-right corner in figure 4.17 illustrates
this).

Suitable Devices

The Phone Keyboard can be controlled similarly as the other keyboards that are based on a
grid of keys. It is possible to use discrete as well as continuous input devices. The number
of buttons needed is the same as for the Grid Keyboard, described in section 4.3.1.

Pros and Cons

This keyboard has the advantage that the design takes the usage of prediction system into
account right from the beginning. Without using it, writing on this keyboard is significantly
slower, because it is typically necessary to press the same key multiple times to write a letter.
However, the usage of the prediction system can become a disadvantage as well, because it
is very important that the prediction system predicts the words sufficiently well. If the word

48 CHAPTER 4. DESIGN

that the user wants to write does not appear among the first two or three predicted words,
the advantage of not having to press the letter keys multiple times will be lost, because the
user will have to browse the list of predicted words, which requires pressing keys as well.
Among the other advantages, we can mention the possibility to use many types of input
devices, and also the small size of the keyboard layout.

How To Incorporate Prediction

Prediction is already an organic part of this keyboard, so there is no need to modify the
keyboard to include prediction. The only work that can therefore be done in this area is to
improve the prediction system and the mechanism of how the words are selected, to achieve
as good match between what the user wanted to write and what was the first predicted word
as possible.

4.3.9 Draw Keyboard

Last design presented in this chapter is a keyboard that allows users to “draw” characters
instead of having to select them. However, it is important to make the keyboard controllable
also with discrete input devices, not just with the continuous input ones (which are usually
used with these types of text entry systems). In chapter 3, application called EdgeWrite was
introduced (see section 3.2.8), which provides very similar functionality. Since the application
is available for developers as a standalone library, it could be utilized for the purposes of this
thesis, as there is no reason to re-invent what is already done.

How It Works

The EdgeWrite application consists of a simple square area, which defines the space in which
all strokes occur. The strokes are made along the edges and into corners (see figure 4.18).
The corners determine the stroke being made — the order in which the corners are entered
is what matters. When a stroke is finished, the user “confirms” the stroke, which causes the
character to be produced. How the confirmation is done depends on the input device. If the
input device is a joystick, confirmation can be done by returning the joystick to the default
position. With some other devices, confirming the stroke can be done after some specified
time during which the device keeps still.

Figure 4.18: EdgeWrite keyboard — the square area (on the left) and an example of writing
the letter “a” (on the right)

4.3. DESIGNED KEYBOARD TYPES 49

There is a special alphabet that the user needs to learn to be able write with EdgeWrite.
However, it was designed by the author in order to be simple and easily learnable [34]. A
part of the alphabet is shown in figure 3.16.

Suitable Devices

This keyboard can be used either with continuous input devices, or with any discrete input
device that has at least four buttons.

Pros and Cons

According to the evaluation done by John Wobbrock, the author of EdgeWrite, for his
paper [34], an advantage of this keyboard is that typing with it is significantly faster than
typing with the selection-based keyboards (a representative of such keyboard is the Grid
Keyboard). A disadvantage for some users can be that there is a special alphabet that needs
to be learned. That also makes the keyboard unsuitable for one-time users.

How To Incorporate Prediction

The EdgeWrite application already contains a word-completion system, as described in sec-
tion 3.2.8.

50 CHAPTER 4. DESIGN

Chapter 5

Implementation

Five of the nine keyboard designs presented in section 4.3 of the previous chapter were cho-
sen to be implemented, and are therefore part of the resulting Keyboard application. This
chapter discusses the actual implementation of the application. Requirements for the Key-
board application are mentioned at the first place. Then both the application’s architecture
and functionality is described. Even though a brief overview of the code is provided, this
chapter is not meant to serve as the project’s documentation. The complete documentation
of source codes is available on the CD attached to this thesis. There is also a user manual
for the application, which can be found in appendix A.

5.1 Requirements

Requirements for the application are based on the usability guidelines presented in chapter 4,
analysis of the target users, and outcomes of discussions with Petr Novák, the author of
EasyControl application. Some ideas were also suggested by the people who work with
handicapped people in the Jedlička Institute in Prague. An overview of the most important
requirements is presented here.

Requirements Related to EasyControl

• The keyboard must be a standalone component (software module), so that it could be
used by various application that EasyControl offers (text editor, online chat, e-mail
client, etc.).

• The code of the application has to be embedded directly in the supplied library, that
will be then used by the EasyControl application.

• The Keyboard application has to offer several types of keyboards, so that there is at
least one for each special input device available for EasyControl. Mouse-controlled
keyboards should also be available.

• The keyboard has to be able to display actions that are needed to control the appli-
cation it is attached to (e.g., it should contain a “Send” key if used together with the

51

52 CHAPTER 5. IMPLEMENTATION

Mail application). These actions will not be known before the keyboard is actually
run, and they can change with the state of the application.

• The keyboard will not receive input from the hardware devices directly. It will rather
receive commands (actions) from the EasyControl application. These commands tell
the keyboard what to do. There is a defined set of these commands (they include for
example navigation commands, such as “Right”, “Down”, or “Next”).

Other Requirements

• The keys, of which the keyboard consists, must be configurable, i.e. it must be possible
to change the arrangement of keys, or even use a different set of keys.

• All colours used in the keyboard should be configurable. This implies it should be
possible to create high or low contrast interfaces.

• The keys have to be resizeable. The text on the keys has to be resizeable as well.

• It has to be possible to change the thickness of the border of a key. Border of a selected
key should be configurable as well.

• If any time intervals are used for actions, these intervals must be configurable.

• It has to be possible to display an icon on a key instead of text.

• It should be possible to play a sound if a key is pressed.

5.2 Technologies

The main choices of technologies for the keyboard application were more or less determined
by the parent application, EasyControl. The EasyControl software is written for the .NET
framework, which implies that it is targeted to Microsoft Windows platform. It is written
in the C# programming language. Even though it is possible to integrate applications
written in different .NET programming languages together, C# was chosen for the keyboard
application as well, as it is a modern object-oriented language, and there is no reason why
any of the other .NET languages should be preferred to it. The Keyboard application is
written for .NET framework version 4.0.

The WPF (Windows Presentation Foundation) technology is used for development of
the graphical user interface of the Keyboard application. The WPF replaces an older tech-
nology, Windows Forms, and contains a long list of features that make programming the
user interface easier and more flexible. User interfaces in WPF are typically declared in a
markup language, XAML (eXtensible Application Markup Language). It is an XML-based
language used for declaring a graph of .NET objects, and configuring those objects with
property values and event handling methods.

5.3. ARCHITECTURE 53

5.3 Architecture

5.3.1 MVVM Design Pattern

Architecture of the keyboard application is based on the Model-View-ViewModel (MVVM)
design pattern. The pattern proposes a way how to separate the user interface (View) from
the data and business logic of the application (Model), and represents a standard architecture
of today’s WPF applications [29].

MVVM architecture consists of three layers — the Model, the View, and the ViewModel.
Figure 5.1 illustrates the direction of the dependencies between these three layers.

VIEW

VIEWMODEL

MODEL

Figure 5.1: MVVM layers

The Model contains the application data and the business logic. The View contains
everything that the user can actually see. It presents the data to the user and allows the
user to modify the state of the application via GUI1 controls.

The ViewModel is the “model of a view” — it represents an abstraction of the user
interface. As figure 5.1 shows, the ViewModel should not have any knowledge about the
View. Since there is no reference from the ViewModel to the View, the View can be easily
replaced with a different one, without a need to modify the rest of the application. The
ViewModel exposes properties to which Views are “bound”. In order to maintain an up-to-
date user interface, the View can get notified about the changes in these properties by means
of events (generated by the ViewModel). The ViewModel acquires everything it needs from
the Model, decorating the data and operations with interfaces that the View can understand
and utilize [13]. The Model does not have to know anything about the ViewModel or the
View, nor does the View need to know about the Model. There is therefore a loose coupling
between the three layers.

5.3.2 The Application

The UML class diagram of the Keyboard application is shown in figure 5.2. The diagram
shows five components of the application — the View, the ViewModel, the Model, the
Utilities, and the Configuration.

1Graphical User Interface

54 CHAPTER 5. IMPLEMENTATION

M
od

el

V
ie

w
V

ie
w

M
od

el
U

ti
lit

ie
s

C
on

fi
gu

ra
ti

on

K
ey

bo
ar

dS
h

if
tL

ay
ou

t
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dC
ir

cu
it

La
yo

u
t

Pu
bl

ic
 C

la
ss

A
bs

tr
ac

tK
ey

bo
ar

dL
ay

ou
t

Pu
bl

ic
 A

bs
tr

ac
t

Cl
as

s

K
ey

bo
ar

dG
ri

dL
ay

ou
tV

M
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dC
ir

cu
it

La
yo

u
tV

M
Pu

bl
ic

 C
la

ss

Sh
if

tL
ay

ou
tD

ef
in

it
io

n
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dM
at

ri
xL

ay
ou

tV
M

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dC
on

tr
ol

V
M

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dC
on

tr
ol

Te
m

pl
at

eS
el

ec
to

r
Pu

bl
ic

 C
la

ss

K
ey

O
u

tp
u

t
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dK
ey

V
M

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dG
ri

dL
ay

ou
t

Pu
bl

ic
 C

la
ss

C
ir

cu
it

La
yo

u
tD

ef
in

it
io

n
Pu

bl
ic

 C
la

ss

G
ri

dL
ay

ou
tD

ef
in

it
io

n
Pu

bl
ic

 C
la

ss

A
xi

sL
ay

ou
tD

ef
in

it
io

n
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dM
at

ri
xL

ay
ou

t
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dA
xi

sL
ay

ou
tV

M
Pu

bl
ic

 C
la

ss

M
at

ri
xL

ay
ou

tD
ef

in
it

io
n

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dS
h

if
tL

ay
ou

tV
M

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dC
on

tr
ol

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dA
xi

sL
ay

ou
t

Pu
bl

ic
 C

la
ss

A
bs

tr
ac

tL
ay

ou
tD

ef
in

it
io

n
Pu

bl
ic

 A
bs

tr
ac

t
Cl

as
s

K
ey

bo
ar

dK
ey

Pu
bl

ic
 C

la
ss

St
or

es
 u

se
r-

de
fin

ed
 p

ro
pe

rt
ie

s
us

ed
 b

y
th

e
Vi

ew
 a

nd
 V

ie
w

M
od

el
cl

as
se

s.

La
yo

u
tM

ap
pi

n
g

Pu
bl

ic
 C

la
ss

X
m

lI
n

pu
tH

an
dl

er
Pu

bl
ic

 C
la

ss

X
m

lO
u

tp
u

tH
an

dl
er

Pu
bl

ic
 C

la
ss

R
el

ay
C

om
m

an
d

Pu
bl

ic
 C

la
ss

K
ey

bo
ar

dU
se

rS
et

ti
n

gs
Pu

bl
ic

 C
la

ss

K
ey

bo
ar

dC
on

fi
gu

ra
ti

on
Pu

bl
ic

 S
ta

tic
 C

la
ss

K
ey

bo
ar

dS
ou

n
dP

la
ye

r
Pu

bl
ic

 C
la

ss

D
ia

ct
ri

ti
cs

H
an

dl
er

Pu
bl

ic
 S

ta
tic

 C
la

ss

_l
ay

ou
tD

ef
in

iti
on

1

_l
ay

ou
tD

ef
in

iti
on

1

_l
ay

ou
tD

ef
in

iti
on

1

_f
ul

lO
ut

pu
t

1

_l
ay

ou
tD

ef
in

iti
on

1

_l
ay

ou
tD

ef
in

iti
on

1

D
at

aC
on

te
xt

1

*

D
at

aC
on

te
xt

1

D
at

aC
on

te
xt

1

D
at

aC
on

te
xt

1

D
at

aC
on

te
xt

1

D
at

aC
on

te
xt

1

1

1

*

_m
yI

ns
ta

nc
e

1

*

_k
ey

bo
ar

dL
ay

ou
tV

M

1

_k
ey

bo
ar

dD
ef

in
iti

on

1

_k
ey

1

F
ig
ur
e
5.
2:

U
M
L
cl
as
s
di
ag

ra
m

of
th
e
m
ai
n
pa

rt
s
of

th
e
K
ey
bo

ar
d
ap

pl
ic
at
io
n

5.3. ARCHITECTURE 55

Members of the classes are not shown in the diagram in order to keep it compact and
easier to read. Some classes and associations were also omitted from the diagram for the
same reason. Those classes include various converters used by the View (for converting
background colours, border styles, etc.), template selectors for keyboard keys, the Logger
class, and classes needed for a configuration dialogue for various settings that can be adjusted
by the user (colors, font, etc.).

The code is organized in namespaces; there is one for each of the five application com-
ponents. In the rest of this section, the most important parts of these five namespaces will
be briefly described. All other details can be found in the project’s documentation that is
attached to this thesis.

Model

The Model component (Keyboard.Model namespace) contains representation of the “data”
— the definitions of the various keyboards, and a key. Since the Keyboard application does
not require a lot of business logic, and is rather focused on the graphical user interface, the
Model component is a relatively small component. A keyboard definition (represented by the
AbstractLayoutDefinition class and its subclasses) consists mainly of a collection of keys
(KeyboardKey objects), and optionally of a definition of the keyboard’s size (for example the
number of rows and columns). Keyboard definitions are stored in XML files, from which
they have to be loaded. This is the job of the XmlInputHandler that is part of the Utilities
component. In the language of the MVVM design pattern, however, it is part of the Model
layer. The XmlInputHandler knows how to parse the XML file and retrieve the necessary
data from it.

ViewModel

The ViewModel component (Keyboard.ViewModel namespace) contains classes that prepare
the data from the Model component for the usage in View. All the commands and methods
for handling “key presses” reside here. An “abstract” keyboard, i.e. a keyboard without
any actual graphical user interface, is represented by the AbstractKeyboardLayout class
and its subclasses. There is one subclass for each of the keyboard designs, and each of
these subclasses refers to the corresponding keyboard definition from the Model. The most
important part of an “abstract” keyboard is a collection of “abstract’ keys, represented by
KeyboardKeyVM object.

Which type of keyboard will be presented to the user is a matter of configuration. A
common component that can be used by client applications to place the keyboard somewhere
in their own View is therefore offered, rather than requiring the clients to pick the control
for a concrete keyboard type. That allows for greater flexibility — if a new keyboard type is
added to the Keyboard application, the client (parent) application does not have to change
anything to use this new keyboard. KeyboardControlVM is an abstraction of this compo-
nent. The diagram in figure 5.2 shows that the KeyboardControlVM holds a reference to the
AbstractKeyboardLayout, it is therefore not dependent on any concrete implementation
(subclass) of this class.

56 CHAPTER 5. IMPLEMENTATION

View

The View (Keyboard.View namespace) contains everything that is needed to actually display
the keyboard to the user.

The code for the View of each keyboard type is written completely in XAML. There
is a resource dictionary for each keyboard, that includes styles and templates for its GUI
components. Templates are heavily used in the Keyboard application, because they allow
to completely redefine the look and feel of any GUI component, and are reusable. More
importantly, templates are utilized by template selectors that can be used to define different
appearance for controls of the same type. This is needed for example to display keys, obtained
via binding to the collection of keys from ViewModel, in different colours, based on the type
of the key (digits can have different colour than letters, etc.).

The Keyboard control that is to be used by the client applications is represented by
the KeyboardControl class. This component receives input from the client application (for
example, actions from the input devices), and sends out output from the keyboard (for exam-
ple, a letter to be typed). The KeyboardControl offers several events the client application
can register handlers to, and can therefore get notified each time the event occurs. These
events are three — OnChars (sending a textual output), OnAction (sending an action, for ex-
ample “Delete”), and OnExtraKey (sending an output from “extra” keys that contain actions
supplied by the client application). Again, using events allows for better flexibility — the
client application can choose not to register a handler for an event, which only results in that
it will not receive any notification about that event. That means that in case the Keyboard
application will be improved in the future by adding more events, the client application can
use the newer version without the need to change its own code. The KeyboardControl com-
ponent uses a template selector (KeyboardControlTemplateSelector) to determine how to
display a concrete keyboard design. The correct View class is chosen based on the configured
type of the keyboard.

Utilities

The Keyboard.Utilities namespace contains classes from the MVVM’s Model layer that
are separated in their own namespace to achieve better organization of the code. There are
two classes for handling the XML input and output, XmlInputHandler and XmlOutputHan-
dler. The first one is used to retrieve data from the XML files with keyboard definitions and
configuration, the other one is used to write back to these files, or create new ones. Then there
is a utility class DiacriticHandler, used to combine diacritical marks and letters into letters
with diacritic. A KeyboardSoundPlayer object can be used to play sounds in the keyboard.
The LayoutMapping class is something like a “converter” that knows how to determine the
keyboard type from the value from configuration (for example, from a name). It contains two
factory methods that are used to obtain instances of AbstractKeyboardDefinition (needed
by XmlInputHandler) and AbstractKeyboardLayout (needed by KeyboardControlVM). The
last class in this namespace is the Logger, used by all classes to log various events and errors
that may occur in runtime.

5.4. INTEGRATION IN EASYCONTROL 57

Configuration

The last component, Configuration (Keyboard.Configuration namespace), takes care about
everything related to the keyboard’s configuration and customization. The KeyboardUser-
Settings class holds various user-defined properties needed by the View and the View-
Model components. These properties can be set by the user using a configuration dialogue.
If the application is closed, the configured properties are not lost; they are stored in the
user’s profile (ProfileKeyboard). The keyboard therefore looks and behaves exactly the
same the next time the user runs it. The other important class in this namespace is the
KeyboardConfiguration class. This class maintains the Keyboard application’s configura-
tion directory. It can be used to retrieve a list of available keyboards (which are defined by
means of XML files). This list appears in the configuration dialogue, where the user can
choose which of the keyboards will be displayed in the View.

5.4 Integration in EasyControl

The Keyboard application was originally developed as a standalone library (DLL) that could
be linked to any client application that wanted to use it. However, the author of the Easy-
Control application, to which the keyboard is mainly targeted, wanted to have the Keyboard
application integrated directly in his own library. The Keyboard’s code therefore had to be
copied to an assembly called InputChannelAppBase that is part of the EasyControl project.
The InputChannelAppBase is the main library used by all applications developed for Easy-
Control, this change will therefore allow the author to use the keyboards directly in any of
these applications. Nothing had been changed otherwise, so there should not be any differ-
ence in using the keyboard directly integrated into InputChannelAppBase library, or as a
standalone, dynamically linked library.

Also, there was a requirement from the author of EasyControl (who is the supervisor of
this thesis), that the keyboard has to accept input actions produced by his application. That
means the Keyboard depends on the EasyControl’s API2 in this particular case (however,
this is the only one).

EasyControl Keyboard

OnChars

OnAction

OnExtraKey

Actions

Configuration

Figure 5.3: Connection of the Keyboard and EasyControl

2Application Programming Interface

58 CHAPTER 5. IMPLEMENTATION

Figure 5.3 shows the important interfaces that the Keyboard component provides and
requires. The input actions, represented by the Actions enumeration, are the only required
interface. As already mentioned earlier, the Keyboard provides three events, representing
the keyboard’s output. The keyboard’s user profile, that is part of the global user profile
of the EasyControl application, and from which various keyboard settings are read (see
section 5.7.3), is mainly used to configure the Keyboard application. However, the keyboard
can also be configured during runtime. The client application can offer special actions that
need to be displayed on the keyboard, but that are not “known” in advance (i.e., when the
keyboard layout is designed), or that change with the state of the client application. These
actions can be passed to the keyboard through the Configuration interface. If there are keys
reserved for these actions on the keyboard, these keys are filled with the received actions.
That means the number of special actions the keyboard displays is limited by the number
of keys that were reserved for them in advance (by the designer of the keyboard layout).

An example of usage of the special actions is an e-mail client application, that consists
of a contact list, a list of recipients, and a window to write the message to. If the cursor is
on the contact list, actions like “Add to recipients”, or “Create new contact” will be probably
needed. However, if the user moves the cursor to the window where the message is written,
such actions do not make sense any more. Different ones are needed instead, such as “Send”,
or “Save to concepts”. That means that each time the user switches “focus” to another
component in the client application, the application should supply the keyboard with a new
set of actions that the user may need in the new context (if necessary).

It was mentioned that the keyboard receives input actions (commands) from the Easy-
Control applications. EasyControl receives signals from the input devices and “converts”
them to actions that are then passed to the Keyboard application. These input actions are
then further processed by the keyboard. The response of the keyboard then depends on
the concrete keyboard type that is used, even though some input actions cause the same
response from all keyboard types. A keyboard type can also choose not to respond to some
input actions, in case they are not relevant to that particular keyboard type.

There are fifteen actions that can be generated by the EasyControl application. Outputs
of the input devices are mapped to these actions. Most of them are navigation actions.
Actions for navigation by directions are Right, Left, Down, Up, RightUp, LeftUp, Right-
Down, and LeftDown. Actions for “simple navigation” are NextItem, BackItem, NextRow,
and NextColumn. Then there is Action, that typically means confirmation, and Escape, which
is an equivalent of cancellation. The last action, called None, is ignored by the keyboard,
since it is not supposed to do anything.

5.5 Implemented Designs

Five types of keyboards were implemented. Each keyboard type is based on one of the
designed keyboards introduced in section 4.3. This section will therefore not describe the
basic principles of each keyboard again; it will rather focus on details of the functionality, in
particular on interpreting the input actions.

5.5. IMPLEMENTED DESIGNS 59

5.5.1 Grid Keyboard

The “Grid Keyboard” is a traditional keyboard, whose design was described in section 4.3.1.
Figure 5.4 shows how the actual implementation of this design in the Keyboard application
looks like. The user can configure the number of rows and columns.

Figure 5.4: Keyboard Application: Grid keyboard, QWERTY layout

There are three possibilities of how to control this keyboard:

• by directional navigation, and confirmation
• by simple navigation, and confirmation
• by moving pointer, and “clicking”

By using navigation actions or moving the pointer, the user selects a key. The keyboard
highlights this key with a thick border (in figure 5.4, “Q” is highlighted). The key can then
be “pressed” by using the confirmation action or by clicking on it. If a key with diacritic, or
the Shift key is pressed, it is highlighted with a different colour and thicker border, so that
the user knew it is active.

The input actions from EasyControl are interpreted as follows:

• Right — move the cursor (the highlight) by one key to the right. If the end of a row
was reached, jump to the first key in that row.
• Left — move the cursor by one key to the left. If the beginning of a row has been

reached, jump to the last key in that row.
• Down — move the cursor by one key down (south). If the end of a column has been

reached, jump to the first key in that column.
• Up — move the cursor by one key up (north). If the beginning of a column has been

reached, jump to the last key in that column.
• RightUp — move the cursor diagonally to the next key in the north-east direction.
• LeftUp — move the cursor diagonally to the next key in the north-west direction.
• RightDown — move the cursor diagonally to the next key in the south-east direction.
• LeftDown — move the cursor diagonally to the next key in the south-west direction.
• NextItem — move cursor to the next key on the right. If the end of a row has been

reached, jump to the first key of the next row. If the end of the last row has been
reached, jump to the first key of the first row.

60 CHAPTER 5. IMPLEMENTATION

• BackItem — move cursor to the next key on the left. If the beginning of a row has
been reached, jump to the last key of the previous row. If the beginning of the first
row has been reached, jump to the last key of the last row.
• NextRow — same as Down.
• NextColumn — same as Right.
• Action — “press” (confirm) currently highlighted key.
• Escape — N/A (there is nothing to cancel).

5.5.2 Keyboard with Coordinates

Design of the “Keyboard with Coordinates” was described in section 4.3.2. The user interface
of this keyboard type in the Keyboard application is shown in figure 5.5. There is also an
option to hide the row and column numbers in the keyboard’s configuration. Showing the
numbers is important if the keyboard is controlled by directly entering the coordinates,
otherwise it is not necessary. The user can configure the size of the keyboard (i.e., the
number of rows and columns).

Figure 5.5: Keyboard Application: Keyboard with coordinates

There are two ways how to control the keyboard:

• by directly entering the coordinates
• by “simple navigation” and confirmation

Since the EasyControl application cannot send the numbers directly, there must be a
mapping between the directional navigation actions and the numbers. This mapping is
needed for the first way of controlling the keyboard. If the user controls the keyboard like
this, no confirmation action is needed — selection of a corresponding row and column is done
immediately when a number is pressed. When first coordinate is entered, the corresponding
row is highlighted in the GUI. When the second coordinate is entered, the key in that
column is pressed. If the user made a mistake and selected a wrong row, he can undo the
selection by using the cancel action. It is also possible to turn on the automatic cancel,
which discards the selection after a specified time interval. Note that if the size of one of the
keyboard’s dimensions is be greater than eight, it will not be possible to directly enter the

5.5. IMPLEMENTED DESIGNS 61

higher coordinate numbers, and therefore it will be more appropriate to control the keyboard
using the simple navigation.

The other option allows the user to move the selection of row and column. Simple
navigation actions are used for this. Using the NextItem and BackItem actions, the user
can first choose a row — the row is highlighted in the GUI, and until the user confirms the
selection using the confirmation action, he can move the selection to another row. When
he confirms the selected row, he can then choose the column similarly. When he confirms
the selection of the column, the key on the intersection of the selected row and column is
pressed. The row selection can be cancelled by using the Escape action, or by turning on
the automatic cancel. It is also possible to move the selection of row and column “at once”
— the NextRow and NextColumn actions are used for that. The NextRow action moves the
row selection, while the NextColumn action moves the column selection. In this case, the
user does not have to confirm the row selection individually (he can even start with selecting
the column first), it is enough to confirm the final selection.

If a key with diacritic or the Shift key is selected, an indication that a special key is
active is displayed in the top-left corner of the keyboard.

Here there is a summary of how the input actions from EasyControl are interpreted by
this keyboard:

• Right — coordinate 5
• Left — coordinate 4
• Down — coordinate 2
• Up — coordinate 7
• RightUp — coordinate 8
• LeftUp — coordinate 6
• RightDown — coordinate 3
• LeftDown — coordinate 1
• NextItem — highlight the next row/column. If the last row/column has been reached,

jump to the first row/column again. Rows are highlighted from left to right, columns
from top to bottom.
• BackItem — highlight the previous row/column. If the first row/column has been

reached, jump to the last row/column.
• NextRow — highlight the next row. If the last row was reached, jump to the first row

again. Rows are highlighted from left to right.
• NextColumn — highlight the next column. If the last column has been reached, jump

to the first column again. Columns are highlighted from top to bottom.
• Action — confirm the selection.
• Escape — cancel the selection.

5.5.3 Shifting Keyboard

The “Shifting Keyboard” is the simplest in both how it looks like and how it is controlled.
Its design was described in section 4.3.3. The actual implemented user interface is shown
in figure 5.6. Only a part of the whole row of keys is shown to the user. It is possible to
configure how many keys will be visible.

62 CHAPTER 5. IMPLEMENTATION

Figure 5.6: Keyboard Application: Shifting keyboard

This keyboard can be controlled either with the directional navigation or the simple
navigation. Confirmation is needed in both cases. The user can move the “window” that
highlights the selected key to the left or right. By using the confirmation action, the key
that is highlighted can be pressed. The window always stays in the middle (unless there is
not enough keys to the right or left), so it looks like it is the row of keys that is shifting (thus
the name of the keyboard).

Even though the keyboard offers advanced navigation options, for example jumping to
the first or last key of the keyboard, these actions do not have to be used by the users. It is
expected that this keyboard will be controlled by users that cannot control more complicated
interfaces of the other keyboard types — such users will probably not be able to handle more
than about three actions anyway.

The input actions are handled by the keyboard as follows:

• Right — move the window by one key to the right. If the last key of the keyboard has
been reached, continue from the beginning again.
• Left — move the window by one key to the left. If the first key of the keyboard has

been reached, jump to the last key.
• Down — move the window to the very beginning of the keyboard.
• Up — move the window to the very end of the keyboard.
• RightUp — move the window by x keys to the right, where x is the number of visible

keys. If the end of the keyboard has been reached, continue from the beginning.
• LeftUp — move the window by x keys to the left, where x is the number of visible

keys. If the beginning of the keyboard has been reached, continue by jumping to the
last key of the keyboard.
• RightDown — N/A
• LeftDown — N/A
• NextItem — same as Right.
• BackItem — same as Left.
• NextRow — N/A
• NextColumn — N/A
• Action — confirm the key that is currently in the window.
• Escape — N/A

5.5.4 3x3 Keyboard

The design of the “3x3 Keyboard” was described in section 4.3.4. The keyboard has two
“levels”. In the first level, the keys are distributed among eight “tiles” that are arranged in a
3x3 grid (see figure 5.7(a)). The middle tile is always empty. By selecting one of the tiles,
the keyboard is switched to the second level (see figure 5.7(b)). This level shows only the

5.5. IMPLEMENTED DESIGNS 63

(a) Level 1 (b) Level 2

Figure 5.7: Keyboard Application: 3x3 keyboard

eight keys from the selected tile. A key can be selected in the same way how a tile is selected.
The keyboard then returns to the first level.

There are three possible ways how to control the keyboard:

• by selecting the cardinal directions directly (no confirmation needed)
• by using simple navigation actions and confirmation
• by moving the pointer and clicking to confirm the selection

The first way is the “recommended” one, since it requires the least steps to select a key.
Each tile (in the first level) or key (in the second level) can be selected directly by using the
action that is mapped to the cardinal direction where the tile/key is placed. For example,
the tile with the keys shown in figure 5.7(b), was selected by using the Up action, as this
action corresponds to the north direction.

The second way how to control the keyboard is by using the simple navigation. It is
possible to navigate through the keyboard by moving the cursor from one tile (or key) to
another. The middle (empty) tile/key is always skipped. The confirmation action is then
needed to select the desired tile (or key).

The keyboard can also be controlled with devices that can move the pointer. A tile or
key is selected by pointing to it and preforming a click.

In case the user accidentally selected a wrong tile, the cancel action can be used to return
to the first level of the keyboard. This cancel action can either be mapped to an output
of the controlling device, or it is possible to turn on the automatic cancel function, which
automatically cancels the tile selection after a specified time.

If a key with diacritic or the Shift key is selected, the middle tile in the first level changes
colour, and displays text indicating which key is active.

64 CHAPTER 5. IMPLEMENTATION

The following actions can be used together with this keyboard:

• Right — select the tile/key in the east direction.
• Left — select the tile/key in the west direction.
• Down — select the tile/key in the south direction.
• Up — select the tile/key in the north direction.
• RightUp — select the tile/key in the north-east direction.
• LeftUp — select the tile/key in the north-west direction.
• RightDown — select the tile/key in the south-east direction.
• LeftDown — select the tile/key in the south-west direction.
• NextItem — highlight the next tile/key. The direction of the navigation is by rows,

from the north-west to the south-east tile/key, and then again from the beginning.
• BackItem — highlight the previous tile/key. The order in which the tiles/keys are

selected is reversed in comparison with the NextItem action.
• NextRow — highlight the next tile/key in the current row. If the last tile/key has been

reached, jump to the first one in the row.
• NextColumn — highlight the next tile/key in the current column. If the last tile/key

has been reached, jump to the first one in the column.
• Action — confirm the currently highlighted tile/key.
• Escape — return to the first level of the keyboard without selecting any key.

5.5.5 Move-Controlled Keyboard

The “Move-Controlled Keyboard” differs from the others in that it is targeted to devices that
can move the pointer on screen. The design was described in section 4.3.5. The Keyboard
application includes implementation of the simpler layout, without keys in the corners (see
figure 5.8).

Figure 5.8: Keyboard Application: Move-controlled keyboard

The principle of how keys are selected was already described in section 4.3.5. Basically, a
key is typed by moving the pointer to it and then back to the middle, where the confirmation
area is situated. It is possible to configure the space between the keys, as well as the space
between the confirmation area and the keys. The user can therefore configure the keyboard

5.6. COMMON FEATURES 65

according to how precisely he or she is able to move the pointer. It is also possible to
configure the number of keys displayed around the confirmation area.

This keyboard is the only one that does not need to receive any input actions from the
EasyControl application.

5.6 Common Features

The previous section described the functionality characteristic to each keyboard type. This
section describes the functionality of the Keyboard application that is independent on the
chosen keyboard type.

5.6.1 Keyboard Output

The Keyboard application provides basically two types of output — characters and actions.
Output from the keyboard is sent to the client application (EasyControl), that can decide
how to process it. The three events that are used to send the output to the client application
were already introduced in section 5.4.

The OnChars event is raised every time the keyboard wants to send a textual string to
the output. The client application then typically appends this text to the text that is being
written, and is displayed somewhere in the GUI.

There are two events for actions. The OnAction event is raised when a predefined action
needs to be sent to the output. These predefined actions are present on the keyboard in a
form of special action keys. The output of those keys are names of the actions (“Delete”,
“Close”, “Clear”, and so on), and any text or icon can be defined to be displayed on the
keys. The client application receives the name of the action, and if it is a known action,
the application processes it (for example, if the “Delete” action is received, deletes the last
character from the text that is being written).

There was a requirement that the Keyboard application also needs to be able to display
actions that come from the attached (client) application during runtime. There are special
keys reserved for these actions. Each keyboard can be configured to have some number of
these keys. The keys are initially empty — the Keyboard application fills them with content
when it receives a set of “external” actions from the client application. The content of these
keys can even change during runtime, depending on the state of the client application. An
example of an external action is a “Send” action, present if the client application is an e-mail
client. If a key with such action is pressed, the OnExtraKey event is raised. The name of the
action serves as an identifier of the action, similarly as in case of the predefined actions.

5.6.2 Handling Diacritics

The Keyboard application is targeted to Czech-speaking users, therefore it has to provide a
way how to write letters with diacritics (“á”, “é”, “ě”, “ů”, “ř”, “š”, “ť”, and others). There are
two possible ways how the keyboard can be used to write these characters.

The first way is to include letters with diacritics in the keyboard layout directly, i.e. that
they are displayed on the keys, and when the key is pressed, they are sent to the output (for

66 CHAPTER 5. IMPLEMENTATION

example, to a text window). This possibility has the advantage that the user sees the letters
directly, so he or she does not have to learn a special way how to type them. A disadvantage
is that since there are quite a lot of these characters (15 in Czech alphabet), they will take
considerable space on the keyboard.

The other way is to have special keys for the diacritical marks. A letter with diacritic (for
example, “č”) is then typed by pressing a key with the diacritical mark first (in our example,
the caron, “ˇ”), and then pressing the key with the letter itself (in our example, “c”). In
case the user enters an invalid combination of a diacritical mark and letter, for example a
caron (“ˇ”) and letter “a”, the characters will not be combined, but they will be sent to the
output exactly as how they were typed (i.e., “ˇa”). The advantage of this method of typing
letters with diacritics is that it saves space on the keyboard (three diacritical marks are used
in Czech alphabet, therefore maximum of three keys are needed). On the other hand, the
users have to press two keys to write one letter, and they have to remember that they have
pressed the special key (the keyboard should offer some indication to eliminate this).

In the Keyboard application, it is possible to use either of these possibilities. It offers
special keys for diacritics, but the usage of these is optional. By using a lookup table, the
application determines how to combine diacritical marks with letters to produce all possible
characters from Czech alphabet. If needed, it would be very easy to extend this table to
support more letters with diacritic, used in other languages.

5.6.3 Switching Layouts

For all keyboards there is a possibility to change their set of keys for another one (and back)
by selecting special key. There can be any number of these keys in the keyboard. Each one
contains a reference to another keyboard layout (see section 5.7.1 for details of how this is
realized). This keyboard layout is displayed instead of the current one if the key is selected.
That means the keyboard type remains the same, only the set of key changes. It is even
possible to change the size of the keyboard (for keyboard types that allow it). However, this
should be used very carefully, since it can be confusing to the user. The new layout should
contain a key that allows the user to get back to the previous layout (possibly via another
layout(s)).

Typical usage of the “layout switching” functionality is when we want to offer more
characters than how many fit on the keyboard (even though most of the keyboard types can
be configured to contain any number of keys, it is not always wise to try to display everything
on one screen). For example, the layout of the “Grid Keyboard” shown in figure 5.4 contains
letters and digits, but characters like colon, dash, star, or parentheses are missing. These
(and other) characters are part of another layout that is displayed when the blue “SYM” key
is pressed.

5.7 Configuration

This section explains how the configurable parts of the Keyboard application are realized3.
To achieve as much flexibility of the keyboard layouts as possible, they can be defined entirely

3More details about how to configure the keyboard, or define a new keyboard layout and add it to the
list of available keyboards, can be found in the user manual (appendix A).

5.7. CONFIGURATION 67

by the user. XML files are used to store this definitions. Configuration of available keyboards
is done similarly. Various user settings, such as colours, font, or time intervals, are stored in
a user profile. This profile is saved in an XML file, which allows to load different profiles for
different users of the keyboard.

5.7.1 Layouts

Keyboard layout is represented by an ordered set of keys that are displayed on the keyboard.
The XML file that defines the keyboard contains a set of tags that define keys, and optionally
(depending on the type of keyboard) also some tags that define parameters of the keyboard
(e.g., number of rows and columns for the “Grid Keyboard”, or number of visible keys for
the “Shifting Keyboard”). In the resources of the Keyboard application, XML schema that
validates the XML files with keyboard layout definitions is available.

Each key (defined by an XML element Key) has nine properties (each represented by a
nested element):

• Text displayed on the key (DisplayString). This is what the user will see on the
key. It can be any textual string — from one character to a whole word, or even several
words.

• Icon for the key (DisplayImage). An icon can be displayed on the key instead of
text. The file with the image can be specified in this optional element. If no icon is
defined, text is displayed on the key.

• Output of the key (Output). This element specifies the “output” of the key. In case
of keys with letters or digits, the output will typically be the same as the displayed
text. However, this is not necessarily true for other keys — the output can also be a
name of an action (e.g., “Delete”), or, in case of keys that can switch layouts, a name
of a file with keyboard definition.

• Output in “Shift” mode (ShiftOutput). This element is similar to the Output
element. The only difference is that this element specifies the output of the key if the
“Shift” mode is turned on. This element is optional. It is not necessary to specify the
ShiftOutput for keys with letters — those are automatically converted to upper case
if the “Shift” mode is on.

• Sound for the key (Sound). This is another optional element. It specifies a file with
the sound that should be played if the key is pressed.

• Colour of the key (BackgroundColor). Specifies background colour of the key. If
background colour is not set, global settings of colours are used to determine the colour
of the key based on its type (see the Type element described below).

• Colour of text (TextColor). Specifies colour of text that is displayed on the key. If
this element is not present, the text colour is determined from the global settings.

• Colour of the output (OutputColor). Defines preferred colour of the key’s output.
This property is not used by the Keyboard application itself, but can be utilized by

68 CHAPTER 5. IMPLEMENTATION

the parent application to display the characters received from the keyboard in different
colours (for example, if a key with letter “a” had this property set to red, the letter
would always be displayed red in a text editor attached to the keyboard, even if the
rest of the text was black). This property is optional.

• Type of the key (Type). This element specifies which group of keys the key belongs
to. There are eleven possible types of keys:

– Letter — letters
– Digit — digits
– Symbol — other characters
– Diacritic — diacritical marks
– Shift — the Shift key
– SwitchLayout — keys that “switch keyboard layouts”, i.e. they cause that the

set of keys displayed on the keyboard is changed
– Delete — a key to delete already typed characters
– Control — keys like Ctrl, Alt, etc.
– Navigation — navigation keys that move the cursor
– Action — keys for any other actions (e.g. Close, Clear)
– Extra — keys for actions supplied by the parent application

A set of keys is the core of a keyboard layout configuration. However, there are a few
more properties that can be configured for some types of keyboards. These properties are
related to size of the keyboard. The element that contains them is called SizeDefinition.
The “3x3 Keyboard” is the only one whose size cannot be configured, and thus its layout
definition contains only definitions of keys. Keyboard parameters (each defined inside an
XML element) that can be configured for the other keyboards are the following:

• Rows — the number of rows the keyboard has. This element can be used when defining
a layout for the “Grid Keyboard” or “Keyboard with Coordinates”.

• Columns — the number of columns the keyboard has. Besides the “Grid Keyboard”
and “Keyboard with Coordinates”, this element can be also used for the “Shifting
Keyboard”, for which the content of the element defines the number of visible keys on
the keyboard.

• Horizontal — this element is used in a definition of the “Move-Controlled Keyboard”.
It says how many keys the keyboard has in the rows above and below the middle
confirmation area.

• Vertical— this element is used together with the Horizontal element. The Vertical
element specifies how many keys are there in the columns to the left and right from
the middle confirmation area.

5.7.2 Keyboards

The Keyboard application needs to know where to find the keyboards it should offer to
the user, so that he or she could choose which one to use. For this purposes, there is a

5.7. CONFIGURATION 69

configuration file, by default called Keyboards.xml, that contains a list of available keyboards.
Each keyboard is defined by its type, its name, and a file that contains its definition. This
file can of course reference other files with layout definitions (in the definitions of keys that
switch layouts), but it is not necessary to specify these referenced files in the configuration
— it is enough to define the “starting” one for each keyboard.

An entry for a keyboard in the list of keyboards is represented by a Keyboard element.
This element contains three child elements:

• Name — name of the keyboard. It can be anything that helps to identify the keyboard
(e.g., “Shifting keyboard with alphabetically ordered keys”, “Black & White Keyboard”,
or “Peter’s keyboard”).

• Type — type of the keyboard. There are five possible values that can be inside this
element: GridKeyboard (for the “Grid Keyboard”), AxisKeyboard (for the “Keyboard
with Coordinates”), ShiftingKeyboard (for the “Shifting Keyboard”), MatrixKeyboard
(for the “3x3 Keyboard”), and CircuitKeyboard (for the “Move-Controlled Keyboard”).

• LayoutFile — name of the file that contains the definition of the keyboard’s layout.
Relative path to the file from the configuration file can be used as well.

5.7.3 User Profile

The EasyControl application supports user profiles, so it was natural to implement them in
the Keyboard application as well. Users of the application can have their own profiles, and
when the application is started, they can simply choose this profile to make the application
look and behave the same as when they run it last time. The application can therefore be
shared by multiple users, and it needs to be configured only once for each of them. Some
users can also share a common profile, or there can be default profiles for specific groups of
users (for example, for beginners, or one-time users).

There are many properties that can be adjusted in the user profile. Everything is con-
figured in the EasyControl application’s configuration dialogue, to which the keyboard con-
figuration was integrated.

Properties that are included in a user profile are the following:

• Colours — basically everything that is displayed in the user interface can be config-
ured to have different colour. The options include background colours of keys, text
colours, colours of keys’ borders, colours of highlighted keys, colour of the confirmation
area in the “Move-Controlled Keyboard”, colour of the empty middle keys in the “3x3
Keyboard”, etc.

• Border thicknesses — it is possible to configure the thickness of keys’ borders, high-
lighted keys’ borders, or thickness of the grid in “Keyboard with Coordinates”.

• Space between keys — the amount of empty space between keys (keys’ margin) can be
adjusted as well.

70 CHAPTER 5. IMPLEMENTATION

• Font — font family of the font that is used for the texts in the keyboard can be changed.
It is not necessary to configure the font size, because the texts are resized automatically
to fit the keys.

• Automatic cancel — in the “Keyboard with Coordinates” and the “3x3 keyboard”,
automatic cancel action is utilized (see sections 5.5.2 and 5.5.4 for explanation). The
length of the time interval can be configured, and it is also possible to entirely disable
the automatic cancel function.

• Displaying images — it is possible to disable displaying icons on keys. If this option is
turned off, no images will be displayed on keys, even if there are images specified for
some keys in the keyboard’s definition.

• Playing sounds — it is possible to disable (mute) all sounds.

5.8 Future Work

This section provides a brief description of three proposed extensions that could be added
to the Keyboard application in the future.

5.8.1 Prediction System

A prototype of a prediction system has already been developed by Martin Vogal [32]. It
was intended to be used together with the EasyControl application. The system is able to
predict words and sentences based on a dictionary that is created from words that the user
has typed in the past. Even though the system implements some interesting features (for
example, predicting based on word classes or emotional tone of the sentence being typed),
it is unfortunately not in a state that it could be used straight away. The reason is that the
prediction system is not prepared to cooperate with another system (for example, it does
not offer any interfaces to connect to). Therefore, refactoring of the project’s source code
would first be needed before the system could be integrated in the Keyboard application.

A disadvantage of Vogal’s prediction system is that it does not contain any predefined
dictionary. Therefore, the user must use the system for some time before the prediction
starts to be useful. Also, the system is not able to eliminate typing errors. Since it does not
check the typed words against any dictionary, nothing will prevent it from learning misspelled
words.

If a prediction system should be integrated in the Keyboard application, it could be
based on Vogal’s implementation, but it would be appropriate to add more improvements
to it, such as the predefined dictionary. How the predicted words could be displayed in the
various keyboard types was already proposed in section 4.3.

5.8.2 Abbreviation Expansion

Another feature that can help the users to speed up their typing is so called abbreviation
expansion. Such feature allows to define abbreviations for often used words, phrases, or
sentences. The user can then type just the abbreviation instead of all the words it stands

5.8. FUTURE WORK 71

for. For example, “hay” could stand for “How are you?”. The abbreviation of course does not
have to consist just of the first letters of the abbreviated words; it can be any other sequence
of characters. For example, “hk” can expand to “Hi, my name is Klára.”.

There are several options of how the abbreviation expansion could work. The user could
for example type the abbreviation, and then press a special key that would expand it and
send the result to the output. The abbreviations could also be expanded automatically.
However, there would then have to be mechanism how to “undo” the expansion in case the
user actually wanted to type the sequence of characters corresponding to the abbreviation,
without expanding it.

An abbreviation expansion system is often included in text entry applications for disabled
people (from the keyboards described in section 3, it is for example WiVik and Fitaly One-
Finger Keyboard). Disabled people are willing to learn the abbreviations, because it helps
them to increase their typing speed significantly. Therefore, it would be appropriate to
include such feature in the Keyboard application as well.

5.8.3 Keyboard Designer

The current implementation of the Keyboard application offers a very flexible way how to
define the keyboard layouts. The user can define the position and content of every single
key. The layout definitions are stored as XML files. However, if the user wants to modify
an existing layout, or add a new one, he or she has to directly modify the content of the
corresponding XML file. There is no graphical user interface for creating and modifying the
keyboard layouts.

A WYSIWYG4 editor for designing keyboards should be created, so that also users who
do not know how to work with XML files could create and customize their own keyboards.
The editor should allow the user to move and arrange the keys on screen to form the keyboard,
and create the XML file for the user.

4WYSIWYG = What You See Is What You Get. This term means that what the user sees in the editor
(shapes, text, colours, etc.) looks the same (or very similar) as what is then displayed in the application.

72 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation and Testing

This chapter evaluates the Keyboard application that was developed in this thesis, and whose
implementation was described in the previous chapter. The five implemented keyboard
types are compared to each other, as well as to the existing text entry systems (which
were introduced in chapter 3). Results from usability testing with disabled people from the
Jedlička Institute in Prague are also presented.

6.1 Comparison of the Developed Keyboard Types

Five keyboard designs were developed and are part of the Keyboard application. The designs
were introduced in chapter 4.3; the realization of them was presented in chapter 5. The five
implemented designs include the “Grid Keyboard”, the “Keyboard with Coordinates”, the
“Shifting Keyboard”, the “3x3 Keyboard”, and the “Move-Controlled Keyboard”.

This sections contains quantitative evaluation of the five keyboards. For the keyboards
that can be controlled with a discrete input device (switches, joystick, etc.), it is possible to
calculate the minimum number of button presses (or joystick moves) that are needed to write
a piece of text. If the text was given to a real user, the number of button presses would most
likely be higher, because the user would typically make (and then correct) typing errors.
The numbers presented in this section therefore represent ideal values.

The number of button presses can also depend on the text itself. Two pieces of text of
the same length, but with different content, can result in different total number of necessary
button presses. For example, when typing with the “Grid Keyboard” (see section 5.5.1),
it is necessary to navigate from one letter to another, and therefore it is the number of
keys between each two subsequent letters what influences the total number of key presses.
However, this is not true for all of the keyboards. In the “3x3 Keyboard”, it is possible to
select each key with exactly two button presses (or joystick moves), thus the order of the
letters will not influence the total number of button presses.

It is also important how many “input actions” are used (available input actions were
listed in section 5.4). For example, the navigation on the “Grid Keyboard” will be faster if
all directions are used (i.e., if it is possible to navigate to any direction from each key), than
if only two actions (typically, Next and Previous) are utilized.

73

74 CHAPTER 6. EVALUATION AND TESTING

The keyboards controlled with a continuous input device (e.g., a mouse) must be evalu-
ated differently. In their case, just the number of “clicks” is not a sufficient measure of how
fast typing with the keyboard will be. The distance the user has to travel with the pointer
is also important. As we know from the Fitts’ Law, the size of the target also matters. Keys
that are farther can be easier (faster) to reach if they are at the edge of the screen, or are
bigger than others. In this section, however, the evaluation will be for simplicity based solely
on the number of clicks and the distance of keys, considering greater distance always as a
negative factor.

6.1.1 Text for Evaluation

Since the Keyboard application is targeted to Czech users, a Czech text will be used for the
evaluation. The text was chosen with respect to frequency of letters and words in (written)
Czech language [6]. The text has 344 characters and was constructed to contain the most
common Czech words. It is worded as follows:

Včera jsem na zastávce potkal svou dobrou kamarádku. Dlouhou dobu jsme se neviděli,
celý poslední rok totiž pracovala v jiné zemi. Teď získala práci u jedné české firmy, která sídlí
na Malé Straně. Říkala, že i když jsou v Praze vysoké ceny, chce se sem už v létě přestěhovat.
Dala mi své nové telefonní číslo a domluvili jsme si další schůzku.1

6.1.2 Keyboards Controlled By Discrete Input

The Keyboard application contains four keyboards that can be controlled with a discrete
input device: the “Grid Keyboard”, the “Keyboard with Coordinates”, the “Shifting Key-
board”, and the “3x3 Keyboard”. The default layouts included in the application will be
used (pictures of them can be found in section 5). Layouts with alphabetical order of keys
will be used in all keyboards.

Figure 6.1: Keyboard Application: Grid keyboard, letters in alphabetical order

1A translation to English is as follows: “I met my good friend at the bus stop yesterday. We have not
seen each other for a long time, as she has worked in another country in the past year. Now she got a job
at a Czech company that is located in Lesser Town. She said that even though the cost of living is high in
Prague, she wants to move in there next summer. She gave me her new phone number, and we have arranged
another meeting.”

6.1. COMPARISON OF THE DEVELOPED KEYBOARD TYPES 75

Figure 6.2: Keyboard Application: All keys from the default layout of the Shifting Keyboard
(each row representing one keyboard “window” that the user can see)

keyboard type layout used actions # of presses
Grid Keyboard 6.1 left, right, up, down + confirm 2336

next row, next column + confirm 3434
next, back + confirm 5880

Keyboard with Coordinates 5.5 next row, next column + confirm 2485
8 directions (numbers) 797

Shifting Keyboard 6.2 next, back + confirm 4687
3x3 Keyboard 5.7 8 directions 780

Table 6.1: Number of button presses needed to write the test text using a discrete input
device

Table 6.1 shows the number of button presses (or other equivalent actions, e.g. joystick
moves) that need to be preformed to write the test text from section 6.1.1. Some keyboards,
for example the “Grid Keyboard”, can be used with different sets of actions. The table
therefore contains multiple entries for these keyboards.

It was already mentioned above that the number of button presses depends also on the
order of the keys (i.e., on the keyboard’s layout). Even though all evaluated layouts had
alphabetical order of keys, some differences between the keyboards could not be eliminated.
For example, if the “Grid Keyboard” is configured to use the Next, Back, and Confirm
actions, it will in fact become very similar to the “Shifting Keyboard”, controlled with the
very same actions. However, the number of button presses in table 6.1 is slightly different.
That is because the layout of the “Shifting Keyboard” does not look the same as if the rows
of the layout from the “Grid Keyboard” were put one after another in one line. Since the
arrangement of the keys in the keyboard layout is important for the resulting number of
button presses, table 6.1 also contains references to figures showing the keyboard layouts
used for evaluation.

The data from table 6.1 show that the more outputs (“buttons”) the device has, the less
actions (“button presses”) the user needs to perform to write the same piece of text. This
is true in an ideal case, assuming the user is always able to choose the “shortest” way how
to write a letter. However, the shortest way is not necessarily the most obvious one, which

76 CHAPTER 6. EVALUATION AND TESTING

means real users will possibly decide for a “longer” way in some situations, and thus the
number of button presses will increase.

Let us give an example of such situation in the “Grid Keyboard” (see figure 6.1), with
a four-directional navigation (i.e., actions left/west, right/east, up/north, and down/south
are available). Since it is possible to “jump” from the last key in a row to the first one, the
shortest way from the space key to the letter “S” is six keys long — “S” can be reached by
pressing the right/east button six times. However, this path requires the user to go “away”
from the target at first. That might not occur to the user, especially if he or she controls
the keyboard for the first time. It can therefore happen that the user rather chooses the
opposite way, i.e. going from the space key to the left. To reach the key with the letter
“S” this way, the user needs seven button presses, which means the path is one key longer.
Similar examples of such situations could be found in the “Shifting Keyboard” as well.

It is important to note that using longer paths does not necessarily mean the typing will
be slower. The user can be faster if he or she does not think about the shortest path for
too long, and rather simply chooses the path that is obvious to him or her at the moment.
The speed will in general be individual for each user and will also depend on the user’s level
of experience with the keyboard. Some measurements of typing speeds of real users can be
found in section 6.3.

Table 6.1 also shows that the number of button presses is approximately the same when
using the same set of actions with different keyboard types. The more important will there-
fore be to choose the right device for each user, since different devices can produce the same
actions (for example, a joystick and an eight-switch device are both able to produce eight
navigation actions). Each user can also have different preferences of how the keyboard should
look like — one can prefer seeing all keys at once, the other can be more comfortable with
always having only one key on the screen.

6.1.3 Keyboards Controlled By Continuous Input

There are three keyboard types in the Keyboard application that can be controlled by a con-
tinuous input device — the “Grid Keyboard”, the “3x3 Keyboard”, and the “Move-Controlled
Keyboard”. Instead of navigating by moving a cursor, the user continuously moves the
pointer on screen, and points to the key he or she wants the select.

Total distance the pointer has to travel can therefore be measured. All the evaluated
keyboards were resized to have the same size on screen, so that the measured values could
be compared the each other. The keyboards had 200 px in height and 800 px in width2. The
number of “clicks” (or equivalent actions on other devices than mouse) can also be determined
for the given piece of text. Table 6.2 shows both the path length and the number of clicks
needed to write the test text on the three keyboard types.

Since the “Move-Controlled Keyboard” requires no clicks, it is the only one that is suitable
for users that have problems performing such action. On the other hand, the path the pointer
has to travel on this keyboard is the longest3. That is because the user always has to move

2Since the “3x3 keyboard” is squared, it was only 200 px wide.
3It would be hard to measure the shortest path the pointer has to travel on this keyboard exactly, because

the user does not have to return the pointer to the middle of the confirmation area; it is enough to “touch”
its edge to confirm the selected key. The path in this keyboard was therefore measured as if the user moved

6.2. COMPARISON WITH EXISTING TEXT ENTRY SYSTEMS 77

keyboard type layout distance travelled [px] # of clicks
Grid Keyboard 6.1 97013 390
3x3 Keyboard 5.7 59907 780
Move-Controlled Keyboard 5.8 136523 0

Table 6.2: Distance the pointer has to travel and number of clicks needed to write the test
text using a continuous input device

the pointer “back” to the middle confirmation area, and also because the keys are placed
only at the edges of the keyboard, so the empty space in the middle is quite large (which
is in contrast with the “Grid Keyboard”, where there is almost no empty space). The “3x3
Keyboard” has the shortest distance (since its layout is compact in comparison to the other
keyboards), but requires the most clicks of all the keyboards (since two clicks are always
needed to “press” a key).

The speed of typing with these three keyboards will depend on how fast the user is able
to move the pointer and how long does it take him to make the pointer still and perform
a “click”. Depending on which of these times is the longest, the user should choose an
appropriate keyboard. For example, the “3x3 Keyboard” will be suitable for users who are
not able to move the pointer to long distances, or have problems with pointing to small
targets, but will not be good for users that have problems performing clicks.

6.2 Comparison with Existing Text Entry Systems

It is not easy to compare the Keyboard application with other existing text entry system,
either commercial or free. The main reason is that the Keyboard application is just a part
of a larger application, EasyControl. That means the other text entry systems could not
be probably easily used with the EasyControl, and the Keyboard application in turn is
not able to communicate with other applications than those from EasyControl. However,
during the development of the Keyboard application, implementation of a new feature for
the EasyControl has started, which allows to send the output from the Keyboard application
to external applications, such as MS Word, or an internet browser.

The main advantages of the Keyboard application is the configurability of the keyboard
layouts. Assistants and teachers of the disabled users can create the layout according to
their client’s needs. It is possible to use pictures and sounds, change the text displayed on
keys, choose different colours for the keys, and so on. Not many of the existing applications
provide such flexibility, even though some of them (such as Click-N-Type or WiViK) offer
layout designers or changing colours of the keyboard by using “skins”. However, only few
offer a way to create user-defined keys that can display any content (the Clicker application
can do this, and it is in general probably the most configurable text entry system from all
applications presented in chapter 3).

the pointer from each key straight back to the confirmation area, but just about 10 px past its border, and
then to the centre of the subsequent key. In the other keyboards, the path was measured as total length of
straight lines connecting the centres of subsequent keys.

78 CHAPTER 6. EVALUATION AND TESTING

Some important features that the existing text entry systems systems offer are also
present in the Keyboard application, for example the automatic scanning and dwell clicking
(both can be achieved by configuring the input from the EasyControl application). The
Keyboard application also provides five different types of keyboards with different behaviour
and way of controlling. None of the applications presented in chapter 3 have such feature.

A disadvantage of the Keyboard application is that there is no graphical interface for
designing the layouts, i.e. they must be created by modifying or creating XML files “by
hand” (in a text/XML editor). That might be a hard task for the people that work with the
disabled users, since it requires a bit higher level of computer skills. However, implementing a
graphical keyboard layout designer for the application is planned for the future, so hopefully
there soon will be a tool that will help the users to create the layouts more easily.

A common disadvantage of the existing text entry systems that have all the necessary
features for the disabled users is their price. The Click-N-Type keyboard is a configurable
software keyboard, suitable for disabled users, that is free, but as the list of applications
from chapter 3 proves, it is rather an exception. The rest of the applications suitable for
disabled users is usually paid. The EasyControl suite, including the Keyboard application,
is offered for free, which is a significant advantage for the users.

It can be seen as a disadvantage that the Keyboard application works mainly with the de-
vices that were developed for the EasyControl application, which means that the support for
an alternative device depends on whether it is supported by EasyControl. It might therefore
happen that the application will not work with alternative input devices that require their
own software to be able to communicate with the computer. An interface (either hardware
or software) would have to be created and added for such devices. Apart from the special
input devices developed by the NIT research group (see section 2.2), standard keyboard and
mouse devices are also supported (including for example touchpads and trackballs).

The Keyboard application was developed for the .NET framework, which means it cur-
rently works only with Windows operating systems. This can be also seen as a disadvantage,
since for example Linux and Mac OS users will not be able to use the application. However,
since the whole EasyControl application was developed for this framework, it was necessary
to choose the same technology for the Keyboard module as well. Providing support for other
platforms than Windows would require big changes in the EasyControl application.

There are of course still many improvements that could be implemented in the Keyboard
application. Because of the limited time for this thesis, it was unfortunately not possible to
implement all of them, especially those that popped up in the later phases of development
and testing. Despite of that, the Keyboard application contains most of the important
features of both the commercial and free text entry systems, and in some ways is even more
flexible than those systems.

6.3 Usability Testing

Since the main focus of this thesis is on the user interface of the developed application, it is
natural that it should be tested with some real users. The usability testing was carried out
in the Jedlička Institute for physically disabled young people in Prague.

6.3. USABILITY TESTING 79

Three sessions were arranged for the testing. An adult user and a child (first grader)
took part in the first session, two third graders took part in the second session, and seven
secondary school students participated in the third session.

All users were somehow able to use a physical keyboard in real life, even though some
had problems with it (e.g. because their hands are shaking, or they are not able to use all
fingers). Unfortunately, no users that are not able to use a physical keyboard were available
for the testing, even though testing the Keyboard application with such users would be very
valuable for the project.

Even though it is irrelevant for testing the Keyboard application whether the users use a
wheelchair or not, it affected the testing at least in the way that it was necessary to adjust the
height of the table with the PC and input devices for such persons. Some of the participants
suffered from some kinds of concentration disorders, so it was rather the inability to complete
the assigned task than the typing with the keyboard itself what was difficult for them.

Figure 6.3: Set-up of the PC and switches for the usability testing

Figure 6.3 shows the setup of a table with a PC running the application and input devices
for the testing. Two kinds of devices were used for the testing — a joystick and switches.
Figure 6.4 shows all of them. There were some technical problems with the joystick shown
in figure 6.4(a), so after one trial it was replaced with another type of joystick, shown in
figure 6.4(b). Both joysticks were configured to produce eight actions (each for one direction).
The other input device consisted of three switches and is shown in figure 6.4(c). The switches
were configured to produce three actions — Next Row (the red switch), Next Column (the
yellow switch), and Action/Confirm (the blue switch).

Since there were only three sessions for the testing (about three and a half hours of
testing time), it was unfortunately not possible to test all five types of keyboards. Therefore
only three were chosen — the “Grid Keyboard”, the “Keyboard with Coordinates”, and the
“3x3 Keyboard”. The “3x3 Keyboard” was controlled with the joystick, the “Grid Keyboard”
and the “Keyboard with Coordinates” were controlled with the switches. The layouts for the
testing were a bit different than the default ones — the most important difference is that
they had no “Shift” key or the keys for diacritics. Capital letters and letters with diacritic

80 CHAPTER 6. EVALUATION AND TESTING

(a) Joystick 1 (b) Joystick 2 (c) Switches

Figure 6.4: Devices used for usability testing

were placed on a standalone layouts to which the user could switch from the default layout
with lower case letters. The letters in the layouts of the “Grid Keyboard” and the “Keyboard
with Coordinates” were arranged in the traditional QWERTZ order4. The test layouts can
be found on the CD attached to this thesis.

For the purposes of the evaluation, each user was given an identifier, consisting of a letter
and a number. The letter indicates the session the user took part in (A is for the first session,
B for the second, and C for the third); the number simply indicates the user’s order.

Before the testing itself, the users were given a short introduction to how the Keyboard
application is controlled. They were also allowed to ask any questions during the testing
(this was necessary, because some users tended to forget how to do things). Common task
for all users was to write a given Czech sentence, “Kočka leze dírou.”5, with at least two
keyboard types. The users were not instructed that they have to correct all typing errors,
so it was up to do user whether he or she will do so. However, not all of the users were
able to complete the task. Some of the users managed to type the sentence with only one
keyboard, and then they were too tired to continue. The youngest user (A2), could not read
and write very well yet, so he was allowed just to type his name. The other user from the
first testing session (A1) was given a different sentence. He managed to type it whole with
the first keyboard type. He typed the first word only with the second keyboard type, and
then he became too tired and did not want to continue, so the testing had to be ended.

Even though longer text would be better for the evaluation, since it would allow to better
observe whether the users are improving in time, the chosen sentence has only three words.
The main reason is that typing longer text would take too much time, which would lead to
exhaustion of the users. The users would therefore probably not be able to test more than
one keyboard type in one testing session, so there would have to be significantly more of
these sessions.

6.3.1 Quantitative Results

During the testing, the Keyboard application was logging the times of all actions performed
with the keyboard. These logs were then used to calculate various quantitative values.
However, it must be noted that the quantitative results are not the most important outcome

4In Czech Republic, it is common to use the QWERTZ layout on both physical and software keyboards,
instead of the original QWERTY layout.

5The sentence originates from a traditional Czech children’s song. It means “a cat crawls through a hole”.

6.3. USABILITY TESTING 81

user keyboard avg. time to avg. # of actions
type select one key to select one key

A1 coordinates 00:21.85 20.00
grid 00:15.52 12.90

A2 coordinates 00:24.97 7.00
grid 00:37.37 15.20

Table 6.3: Measured values from the usability testing, session A

of the testing. The more valuable results are the qualitative ones, obtained by observing
the users, and interviewing them and their assistants (these results are discussed in the
next section). Also, the fact that there were relatively few users that participated in the
testing, and that their abilities varied, means that it is not possible to say, for example,
which keyboard type is “the best”, or to draw any similar conclusions. The needs of the users
will always vary, which means that what is good for one user may be unsuitable for another.
Since not all user have tested all keyboards, it is not possible to compare the keyboards
based on averages calculated from all measured values. It is only possible to compare the
keyboards based on results from the users that have tested the same keyboard types.

Tables 6.3 and 6.4 show measured values from the testing. The first session (A) has
a separate table because in that session, the users were not given the same sentence to
type, unlike the users in sessions B and C. If a row in a table is empty, it means that the
corresponding user has not tested that particular keyboard type.

Both tables contain the average time and the average number of actions (switch presses
or joystick moves) to select one key on the keyboard (i.e., to type a letter or other symbol,
to switch the layout, or to press the Delete key). The “navigation mistakes” are also counted
to the number of actions and the time to select a key (thus, the value of the average number
of actions to select a key in the “3x3 Keyboard” can possibly be higher than two).

Table 6.4 also contains total time to write the sentence for each user and keyboard type6,
as well as an adjusted total time. The adjusted total time is the total time minus the time to
correct typing errors the user has made. The adjusted total time therefore gives a better idea
of how long would the user type the sentence if he had not made these errors. The reason for
calculating this time is that the users who had not been correcting their errors would have
got better (shorter) times, since they had not taken the time to correct their typing errors.
The adjusted time should therefore eliminate the differences between the users caused by
their attitude to correcting errors. Uncorrected typing errors are irrelevant to the adjusted
time.

There are also averages of all the measured values in table 6.4. In sessions B and C, there
were more users, and their abilities were more similar, so the average values are calculated.
In session A, there were only two users, and they were very different, so it makes no sense
to calculate averages for them.

Since the “Keyboard with Coordinates” and the “Grid Keyboard” were controlled by the
same input device, and since layouts of both of the keyboards looked almost the same, the

6To save space in the table, the names of keyboard types are shortened — coordinates stands for the
“Keyboard with Coordinates”, grid stands for the “Grid Keyboard”, and 3x3 stands for the “3x3 Keyboard”.

82 CHAPTER 6. EVALUATION AND TESTING

typing errors adjusted avg. avg. # of
user keyboard total not time to total time actions

type time corrected corrected correct time to select one key
coordinates 05:56.11 0 0 00:00.00 05:56.11 00:15.48 10.96

B1 grid 07:29.01 0 0 00:00.00 07:29.01 00:21.43 9.50
3x3
coordinates 08:51.06 0 3 01:19.14 07:31.92 00:18.97 15.18

B2 grid
3x3 06:51.69 1 1 00:07.67 07:29.01 00:21.67 2.89
coordinates 05:16.36 0 1 00:17.54 04:58.82 00:12.49 11.32

C1 grid
3x3 10:43.94 0 17 03:01.95 07:41.99 00:12.15 2.32
coordinates 15:28.20 1 14 07:42.36 07:45.84 00:17.04 13.43

C2 grid
3x3
coordinates

C3 grid
3x3 07:23.68 1 6 01:42.17 05:41.51 00:13.38 2.34
coordinates

C4 grid 06:16.05 1 0 00:00.00 06:16.05 00:17.09 15.44
3x3 13:22.84 13 8 01:26.88 11:55.96 00:17.84 2.41
coordinates 05:26.32 0 5 00:39.80 04:46.52 00:09.89 10.58

C5 grid 04:29.40 0 4 00:16.47 04:12.93 00:08.34 12.55
3x3 07:45.84 1 5 01:29.23 06:16.61 00:16.48 2.46
coordinates

C6 grid 02:56.22 0 0 00:00.00 02:56.22 00:07.66 9.70
3x3 05:32.01 5 2 00:18.63 05:13.38 00:12.77 2.35
coordinates 03:52.52 2 0 00:00.00 03:52.52 00:09.30 9.08

C7 grid 02:41.12 0 0 00:00.00 02:41.12 00:06.69 9.50
3x3
coordinates 07:28.43 0.5 3.83 01:39.81 05:48.62 00:13.86 11.76

avg. grid 04:46.36 0.2 0.80 00:03.29 04:43.07 00:12.24 11.34
3x3 08:36.67 3.5 6.50 01:21.09 07:23.08 00:15.72 2.46

Table 6.4: Measured values from the usability testing, sessions B and C

6.3. USABILITY TESTING 83

Figure 6.5: Graph showing typing errors made by users from testing sessions B and C

Figure 6.6: Graph showing average time and number of actions to select a key for all users

84 CHAPTER 6. EVALUATION AND TESTING

actions the users had to do to navigate from key to key were almost identical. The difference
between the keyboards was that the whole row and column were highlighted when the user
was navigating in the “Keyboard with Coordinates”, while in the “Grid Keyboard”, only one
key was highlighted. The measured results from the testing show that the average number
of actions to select a key are nearly the same for these two keyboards, which confirms that
the navigation was done similarly.

Two users that have tested both of these keyboards had slightly shorter times with the
“Grid Keyboard”. A possible reason can be the learning curve, because those users that
have tested more than one keyboard were always given the “Grid Keyboard” as the last one,
which means they had been more familiar with the input device and/or the interface of the
application by the time they started to type with the “Grid Keyboard”. The user B1, on the
other hand, had better time with the “Keyboard with Coordinates”. That is because he had
problems completing the task the second time — he got distracted a lot, could not focus on
the task, and seemed tired.

In general, the measured values for the “Grid Keyboard” and the “Keyboard with Co-
ordinates” are very similar. This is caused by the fact that, as mentioned above, the same
input actions were used, and also by the fact that the keyboard layouts looked almost the
same. Therefore, in this case, the user’s preference of one of the keyboards over the other
probably depends only on the way how the keyboard highlights the selected key (the “Grid
Keyboard” was configured to change the colour and thickness of the border of the key; the
“Keyboard with Coordinates” was set to change the colour of all keys in the corresponding
row and column to light red, and change the colour of the key in the intersection to red).
If different input actions had been used for each of the keyboards, there would probably be
more differences in the keyboards. However, the configuration of the keyboards for testing
had to be based on the available input devices.

Table 6.4 and corresponding graph in figure 6.5 show that the users have made more typ-
ing errors with the “3x3 Keyboard” than with the other two keyboards. The “3x3 Keyboard”
was the one that was the least intuitive to control for the users, since it does not look any
similar to a physical keyboard. The users also had to get used to manipulating the joystick,
which took them some time. The results of testing the “3x3 Keyboard” are therefore also
influenced by the input device itself. There were also some hardware-related problems with
the joystick, like for example a slow reaction time. These problems negatively influenced the
results, and will be further discussed in the next section.

Graph in figure 6.6 shows for all users the average time and number of actions they
needed to select a key. Even though the average number of actions to select a key was lowest
for the “3x3 Keyboard”, most of the users had the worst total times, and in most cases
also the average time to select one key, with this keyboard. Besides the possible hardware-
related reasons, there are two other explanations of this. First one is that the layout of
this keyboard displayed more characters than the layouts of the other two keyboards, and
that the keys were not arranged in the traditional QWERTZ order. The “Grid Keyboard”
and the “Keyboard with Coordinates” displayed 56 keys at once, while the “3x3 Keyboard”
displayed 64 keys. Displaying more keys in an uncommon order caused that the users had to
look for the desired key longer, thus increasing the total time. Even more significant delays
were caused by making navigation mistakes. Since there were only eight actions (directions)
the joystick could produce, there was no spare output to which a “cancel” action could be

6.3. USABILITY TESTING 85

assigned. Therefore, the automatic cancel had to be turned on — in case the user had
selected a wrong tile, he or she had to wait for 10 seconds before the selection was cancelled
and the first level of the keyboard appeared again. These 10 seconds of course significantly
increased the total time to select a key. In the “Grid Keyboard” and the “Keyboard with
Coordinates”, no such waiting was necessary.

6.3.2 Qualitative Results

This section summarizes findings from the testing that have qualitative nature. These are
results of a subjective observation of the users during the testing, done by the author of
this thesis. Informal interviews with the users and their assistants or teachers were also a
valuable source of feedback.

It is important to note that the results of the usability testing are applicable to the needs
of the Jedlička Institute in Prague. That is also the perspective from which the employees of
the institute evaluated the Keyboard application when they were asked for an opinion. The
institute focuses on young people and their education, so the Keyboard application could be
used for educational purposes there. In case the Keyboard application is used for teaching
children to read by using sounds in the keyboard, or helping them to recognize different
letters by displaying the keys in different colours, the requirements for the application will
of course differ a lot from the requirements of a user that would like to use the keyboard to
chat with a friend, or to control a game. This has to be kept in mind when evaluating the
users’ (and other person’s) comments that are presented in this section.

Feedback from the Users

The secondary school students that participated in the third session (C) of the testing were
used to use a physical keyboard, so it is understandable that most of them indicated that
typing with the Keyboard application takes too much time. They agreed that they would
not want to use it for an ordinary work, for example to write their homework. However,
some of them thought the keyboard could be useful for children that are not able to use a
physical keyboard. They liked the “Keyboard with Coordinates” the best, and preferred the
switches over the joystick.

The joystick was hard to use for most of the users, especially at the beginning. The
problem was probably in the device itself. Before the joystick registered that the user had
moved the lever, it was necessary to wait for about two seconds in the desired position, and
only after that move the lever back to the default position7. Some users had problems to
control the joystick this way, since the mechanism is not very intuitive. Their usual approach
was to move the lever to the desired direction and then back immediately, which did not
work. What is more, the keyboard software did not provide any visual feedback during the
“waiting time”, so the users did not know whether they actually hold the joystick in the

7The time delay has to be there due to the hardware implementation of the joystick, since it does not have
separate outputs for the diagonal directions. Instead, these directions are defined as a sequence of selecting
the two neighbouring straight directions. Therefore, to be able to distinguish a subsequent selection of two
straight directions and a selection of a diagonal direction, the time delay was introduced. This time delay can
be adjusted in the configuration of the input devices that EasyControl includes, but cannot be eliminated
completely.

86 CHAPTER 6. EVALUATION AND TESTING

right direction. As a result of all this, and despite they have been given instructions before,
some users did not understand how the joystick needs to be controlled. That indicates that
the device was unsuitable for those users, and they would probably need a different kind of
joystick, whose controlling would be easier and more intuitive. It would be also better if the
keyboard could give some feedback to the user right after he moves the joystick (however, this
was not possible to implement with the joystick device used for testing, since the waiting
time was caused by the hardware — the Keyboard application did not receive any input
action until the waiting time period expired).

Also, it was difficult for the users to select the diagonal directions, and it often happened
that a “neighbouring” straight direction was selected instead, which increased the number of
navigation mistakes. On the other hand, most of the users have improved during the testing,
so about after typing the first word they have started to be faster with the joystick and
made less mistakes. One user from the testing session B, a boy from the third grade, said
that controlling the keyboard with the joystick is like a game, and he liked it better than
the switches.

Even though the users eventually managed to work with the given joystick, the impression
remains that a more suitable joystick type should be used together with the “3x3 Keyboard”.
The joystick device used for the testing was quite hard to control, but perhaps this disad-
vantage would be eliminated if the users had used the joystick for a longer time, and were
better used to how it works. Actually, some of the users that participated in the testing were
using a wheelchair controlled by a joystick. It would be good if a similar joystick could be
used to control the keyboard, instead of the one that was used for the testing.

Only one user had problems with the principle of how the “3x3 Keyboard” works, i.e. that
it is always necessary to move the joystick to the direction that corresponds to the position
of a tile or a key in the keyboard. He tended to move the joystick to a wrong direction. For
example, he moved the joystick towards himself (in south direction) even though he knew
that the key he needs to select is in the north tile on the keyboard. He therefore needed
some help with the “typing” — it was necessary to show him the direction where to move the
joystick, and then he was able to repeat the movement with the lever of the joystick. After
some time, he was able to type some keys without any help, but still some directions seemed
to be “problematic” for him. This is an example of a user that would probably need a better
visual indication of the joystick movement directly in the Keyboard application. Perhaps it
would be better for him if the tiles were visually highlighted first, and selected only after
some time (not immediately). The user would thus see whether he has highlighted the tile
he wanted, and it would be possible for him to cancel the selection by moving the joystick
back in case he sees that a wrong tile is highlighted.

The “Grid Keyboard” and the “Keyboard with Coordinates” were controlled by the users
mostly without any problems. These keyboards are more intuitive for the users because they
look more like a physical keyboard. They therefore seem to be especially suitable for one-
time users. There were a few users that had little problems with the principle of highlighting
and confirming a desired key in the “Keyboard with Coordinates”. They selected either
the correct row or column, but not both, and pressed the confirmation switch too early.
Sometimes they also confused the switches and pressed a wrong one. Such problems are
caused by the fact that the users have worked with Keyboard application for the first time,
and would probably disappear if the users used the application more often.

6.4. ADAPTATION TO THE USER 87

When controlling the keyboards with switches, i.e. using the Next Row and Next Column
actions, some of the users asked how they can get “back” in case they have missed the key
they wanted to highlight. They were instructed that it is only possible to navigate “forward”,
i.e. that if they navigate through the entire row or column to its end, the cursor will then
jump to the first key of the row or column again. The users found this annoying, and said
they would prefer to have an option to go back directly. It is possible to configure the
keyboard to do so, at least the “Grid Keyboard” type, but two more switches would be
needed for that. However, only three switches were chosen for the testing. Moreover, not
all users would appreciate having more switches. The adult user that tested the keyboard
during session A had problems remembering which switch is for which action (even though
the arrows on switches illustrated their function) and needed to be told this information over
and over again. That was because he had a short-term memory disorder, so adding more
switches would probably cause even more problems to him. That proves different users can
have opposing needs, and the Keyboard application has to be prepared for adjusting to as
much of them as possible.

Testing with the younger users was done with the sounds turned on (the application
produced a sound for each typed letter or other character). The users reacted positively on
that and liked the sounds. It seemed the sounds increased their interest in typing with the
Keyboard application.

Feedback from the Teachers and Assistants

The teachers and assistants of the disabled users that took part of the testing also gave some
opinions on the tested keyboards. They generally liked the “Keyboard with Coordinates”
the best, since it gave the most noticeable visual feedback to the user. They also liked the
idea of being able to use pictures instead of text on the keys, and the ability of the Keyboard
application to play a sound for each key. They would also appreciate if the application
could read whole words and sentences, which is unfortunately not possible with the current
implementation.

The teacher of the third graders thought that the “3x3 Keyboard” is not very suitable for
them, since it may be confusing that the user has to decide what tile he or she selects first,
and then he actually types the letter. She also did not like that there are a lot of characters
displayed in the layout of this keyboard — she was afraid that the user will have to look
for the letter for too long, and that the layout will be confusing, since it does not look like
a traditional physical keyboard. That is understandable, because she said she is teaching
the children to get used to the layout of physical keyboards. She could therefore better
utilize the “Grid Keyboard” or the “Keyboard with Coordinates” for that. She also noted
that the users affected with spasticity would not be able to control the application with the
joystick, since they could not hold the joystick still in the desired direction. Switches are
more appropriate device for such users.

6.4 Adaptation to the User

Part of the assignment of this thesis also was to evaluate the ease of use of the Keyboard
application for novice and expert users. In general, the traditional-looking “Grid Keyboard”

88 CHAPTER 6. EVALUATION AND TESTING

will be best for novice and one-time users, especially if they are familiar with a physical
keyboard. The “Grid Keyboard” can be configured to have almost the same layout as a
physical keyboard, and also the way of controlling it (by moving the cursor from one key
to another) is quite intuitive, since it is used in other computer applications as well. The
“Shifting Keyboard”, controlled similarly, should also be quite easy to learn, even though the
user will need some time to get familiar with the layout, since not all keys are displayed at
once on the keyboard.

The “Keyboard with Coordinates” may require more time to master, depending on which
way of controlling is used. Selecting the row and column by navigation is more intuitive,
and requires the user to learn only three actions (Next Row, Next Column, and Confirm),
but takes longer time. Entering the coordinates directly by their numbers is much faster,
but requires the user to be able to learn how the eight numbers map to eight inputs of the
hardware device he or she is using, which of course takes more time then learning how to use
only three actions. However, if the user is able to control an input device that provides at
least eight outputs, and takes time to learn how to use it, the way of entering the coordinates
directly will be much faster.

The “3x3 Keyboard” and the “Move-Controlled Keyboard” will probably take the longest
time to master. The principle how they are controlled is not that common, so the user
will have to learn it to be able to use these keyboards efficiently. As the usability testing
proved on the “3x3 Keyboard”, it takes some time before the user fully understands how the
keyboard works. That means that novice users will probably be slower with these keyboard
than they would be for example with the “Grid Keyboard”. However, this should be just a
temporary phase. Once the user masters the controlling of the keyboard, his or her typing
speed should significantly improve (these keyboards are therefore also suitable for users that
need to write longer texts). More (and long-term) testing would of course be needed to prove
this assertion.

To sum it up, it can be stated that the keyboards that are “slower” (e.g., require more
actions to type one letter) are easier to learn than the keyboards with unusual way controlling.
On the other hand, greater typing speed can be achieved with the latter group of keyboards.

The important factor that will influence how easy and fast is to use a particular keyboard
type is also the input device that is used together with the application, which is closely related
to the set of input actions that the keyboard will receive from the device. It is clear that
typing with a keyboard controlled by a three-switch device is (theoretically) slower than if
five-switch device was used. Not all keyboard types that the Keyboard application offers
can be used with all kinds of devices. Some devices are also more suitable for a particular
keyboard type than the others. For example, it will be probably better to use the “3x3
Keyboard” with a joystick than with eight standalone switches.

Last but not least, the configuration of the keyboard’s layout plays very important role.
Using a flexible definition of layouts, the application allows keys with basically any content
to be placed on the keyboard. The person designing the layout can be for example a disabled
user’s assistant, who wants to build the layout to fit her client’s individual needs, or a teacher
that would like to use the keyboard in class for educational purposes. It is possible to create
very small layouts, containing just a few keys, as well as large layouts, similar to those on
physical keyboards. The keys do not even have to display text — pictures or symbols can
be used instead. For example, it is be possible to create a layout containing keys displaying

6.4. ADAPTATION TO THE USER 89

pictures that stand for word categories (like “food”, “school”, “animals”, and so on). If the
user selects one of the keys, a new layout appears where he or she can see the words from
the selected category (either as text or pictures again), and can type them by selecting the
corresponding key.

From what has been said so far, it is obvious that the Keyboard application allows to
create basically any keyboard layout, and by choosing an appropriate keyboard type and
input device, it should be possible to adapt the application to any user.

90 CHAPTER 6. EVALUATION AND TESTING

Chapter 7

Conclusion

A highly configurable text entry application, targeted to disabled users, was developed in
this thesis. The application has a form of a software module that will be a part of the
EasyControl software suite, developed by Nature Inspired Technologies Group at the Faculty
of Electrical Engineering of Czech Technical University in Prague. It provides five different
types of “keyboards”, each with a different graphical user interface and behaviour. The
keyboards were designed so that they suited both the standard and alternative input devices
that the users may use together with the EasyControl application. The application was
designed directly for EasyControl and its hardware devices, it is not meant to serve as a
general-purpose on-screen keyboard.

Before designing these keyboard types, and also the four more that were not implemented,
a survey of existing text systems was done, whose results are also presented in this thesis
— some interesting representatives of both on-screen keyboards and alternative text entry
systems were listed in chapter 3. The design of the keyboards is based on recommendations
and guidelines published in research papers and articles from the domains of usability and
user interface design.

The main advantage of the developed text entry application is the flexible configuration
of layouts. It is possible to create custom layouts for each of the five keyboard types. The
keys in the layouts can be configured to display any content — not only text, but also custom
pictures can be used. The displayed content of a key does not even have to be the same as
the output of that key. The number of keys that will be displayed on the keyboard can also
be configured for four of the five keyboard types.

It is also possible to configure properties such as the background colour and the colour
of text for each individual key. Besides that, there is a global configuration of colours that
can be used to configure colours for specific group of keys (such as letters, digits, navigation
keys, and others). There are other settings in the global configuration as well, including
colours and thicknesses of keys’ borders, the font the keyboard uses to display text, and
others (complete list of settings can be found in section 5.7.3). It is therefore possible to
create high-contrast layouts for users with poor vision as well colourful layouts for children.

It is simply up to the intentions and fantasy of the person creating the layout how the
result will look like. Of course, there are things that cannot be changed (for example the
shape of keys), but the offered amount of configuration options should be sufficient to adapt
the keyboard and its layout to each individual user.

91

92 CHAPTER 7. CONCLUSION

Most of the text entry systems available today, even those targeted to disabled users, only
contain a traditional on-screen keyboard that looks like a physical keyboard (with additional
features like auto scanning or dwell clicking). Typing with such systems is usually very slow.
However, some novelty text entry systems exist, that provide an alternative (and faster) way
of entering text. The application developed in this thesis also provides nontraditional ways
of typing. The users can choose which one of the five available “keyboards” will suit them
and their input devices the best.

Some usability testing was done with the Keyboard application, which took place in the
Jedlička Institute for physically disabled young people in Prague. It was good to have a
chance to try the application in a real environment. However, due to time constraints, only
three of the five implemented keyboard types could be tested. The testing has shown that
the visual feedback from the application is very important, and even though the application
already contains it, it could be improved, especially for the keyboard type called “3x3 Key-
board”. The testing has also proved that the choice of the input device that will be used
for controlling the application is very important, and can significantly influence not only the
user’s typing speed, but also his satisfaction from using the text entry system.

As for the future work, there are three features that could be implemented for the Key-
board application. The first is an editor for the keyboard layouts with a graphical user
interface. Currently, it is necessary to edit the layouts directly in their XML definition files,
which is not ideal, even for people with enough computer skills. It would be better if the
layouts could be designed in a graphical interface, so that the user immediately saw how the
result will look like. The danger of making syntax errors when creating or editing the XML
files would also thus be eliminated. The second feature is a prediction system, since it could
significantly improve the typing speed with any of the keyboards. Suggestions of how the
prediction could be incorporated in the design keyboards were presented in chapter 4, so at
least some work in this area has already been done. The third proposed feature, that could
also help the user to type faster, is an abbreviation expansion. This feature would allow the
user to define abbreviations for frequently used words and phrases. Instead of typing every
single letter of these phrases, the user could just write the corresponding abbreviation, and
the application would “expand” it to the full phrase automatically.

A lot of interesting ideas for improvements and new features were also suggested by
the people from the Jedlička Institute during the usability testing. Especially some kind of
text-to-speech feature seems to be most needed by the disabled people nowadays, especially
by those that have speech disorders, or cannot speak at all. It was also suggested that the
application could be modified to be able to run on smart phones and tablets. The users
could then carry the mobile device running the application with them, and it could help
them to communicate with people around.

The world of disabled users is full of such requests, and all of them represent ideas for
interesting projects. Hopefully more of these projects will be realized and will help the
handicapped users to more easily access the computers and be able to better communicate
with other people around them. This thesis aims to be one of these projects.

Bibliography

[1] ThickButtons website. http://www.thickbuttons.com, 2009.

[2] EdgeWrite project website. http://depts.washington.edu/ewrite/, 2010.

[3] 8pen website. http://www.8pen.com, March 2012.

[4] Fitaly website. http://www.fitaly.com, January 2012.

[5] OnScreen with Word Complete website. http://www.imgpresents.com/onscreen/
onscreen.htm, March 2012.

[6] Statistical characteristics of the czech language. Published online at http://nlp.fi.
muni.cz/cs/stat_cestiny (in Czech), March 2012.

[7] SwiftKey website. http://www.swiftkey.net, March 2012.

[8] Crick Software. Clicker website. http://www.cricksoft.com/uk/products/tools/
clicker/home.aspx, March 2012.

[9] David MacKay. Dasher website. http://www.inference.phy.cam.ac.uk/dasher,
February 2011.

[10] Exideas. MessagEase Onscreen Keyboard website. http://www.exideas.com/ME/
ProductsMEOK.html, 2005.

[11] M. Fejtová, P. Novák, and O. Štěpánková. Easycontrol – universal control system. In
Computers Helping People with Special Needs, volume 5105 of Lecture Notes in Com-
puter Science, pages 1024–1029. Springer Berlin / Heidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-70540-6_153.

[12] D. J. Gilman. AbilityHub: Assistive Technology Solutions. http://www.abilityhub.
com/index.htm, April 2012.

[13] G. M. Hall. Pro WPF and Silverlight MVVM: Effective Application Development with
Model-View-ViewModel. Apress, 1st edition, 2010.

[14] Holland Bloorview Kids Rehabilitation Hospital. WiViK website.
http://www.wivik.com, 2010.

[15] Ken Perlin. Quikwriting website. http://mrl.nyu.edu/projects/quikwriting/,
March 2012.

93

http://www.thickbuttons.com
http://depts.washington.edu/ewrite/
http://www.8pen.com
http://www.fitaly.com
http://www.imgpresents.com/onscreen/onscreen.htm
http://www.imgpresents.com/onscreen/onscreen.htm
http://nlp.fi.muni.cz/cs/stat_cestiny
http://nlp.fi.muni.cz/cs/stat_cestiny
http://www.swiftkey.net
http://www.cricksoft.com/uk/products/tools/clicker/home.aspx
http://www.cricksoft.com/uk/products/tools/clicker/home.aspx
http://www.inference.phy.cam.ac.uk/dasher
http://www.exideas.com/ME/ProductsMEOK.html
http://www.exideas.com/ME/ProductsMEOK.html
http://dx.doi.org/10.1007/978-3-540-70540-6_153
http://www.abilityhub.com/index.htm
http://www.abilityhub.com/index.htm
http://www.wivik.com
http://mrl.nyu.edu/projects/quikwriting/

94 BIBLIOGRAPHY

[16] Lake Software. Click-N-Type website. http://www.lakefolks.org/cnt/, December
2011.

[17] J. B. Lopes. Designing user interfaces for severely handicapped persons. In Proceed-
ings of the 2001 EC/NSF workshop on Universal accessibility of ubiquitous computing:
providing for the elderly, WUAUC’01, pages 100–106, New York, NY, USA, 2001. ACM.

[18] Nature Inspired Technology Group. Tools and applications for users with limited move-
ment and reaction abilities, 2010. http://nit.felk.cvut.cz/projects/pomucky.

[19] S. B. Nesbat. A system for fast, full-text entry for small electronic devices. In Fifth
International Conference on Multimodal Interfaces, Vancouver, November 2003.
http://exideas.com/ME/ICMI2003Paper.pdf.

[20] J. Nielsen. Ten usability heuristics, 2005. Published online at http://www.useit.com/
papers/heuristic/heuristic_list.html.

[21] OATS. DKey website. http://www.oatsoft.org/Software/dkey, March 2012.

[22] Origin Instruments. Keystrokes 4: On-Screen Keyboard for Mac OS X.
http://www.orin.com/access/keystrokes/index.htm, March 2012.

[23] P. Novák et al., Nature Inspired Technology Group. Jak umíme pomoci lidem s
omezenou schopností pohybu a reakce?, November 2010. Not published.

[24] K. Perlin. Quikwriting: Continuous stylus-based text entry. In 11th annual symposium
on User Interface Software and Technology, San Francisco, CA, November 1998.
http://mrl.nyu.edu/perlin/doc/quikwriting/quikwriting.pdf.

[25] Sensory Software. Grid Keys website.
http://www.sensorysoftware.com/gridkeys.html, March 2012.

[26] Sensory Software. The Grid 2.
http://www.sensorysoftware.com/thegrid2.html, March 2012.

[27] B. Shneiderman. Universal usability. Communications of the ACM, 43(5):84–91, 2000.

[28] B. Shneiderman and C. Plaisant. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Pearson Addison Wesley, 4th edition, 2004.

[29] J. Smith. Advanced MVVM. Josh Smith, 2010.

[30] B. Tognazzini. First principles of interaction design. Published online at http://www.
asktog.com/basics/firstPrinciples.html.

[31] O. Vavroušek. TapTap Keyboard website. http://www.taptapkeyb.ic.cz, 2007.

[32] M. Vogal. Možnosti predikce textu při psaní osobou s omezenou pohyblivostí a reakcí.
Master’s thesis, Czech Technical University in Prague, May 2011.

[33] J. O. Wobbrock, S. K. Kane, K. Z. Gajos, S. Harada, and J. Froehlich. Ability-based
design: Concept, principles and examples. ACM Transactions on Accessible Computing,
3(3):9:1–9:27, April 2011.

http://www.lakefolks.org/cnt/
http://nit.felk.cvut.cz/projects/pomucky
http://exideas.com/ME/ICMI2003Paper.pdf
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.oatsoft.org/Software/dkey
http://www.orin.com/access/keystrokes/index.htm
http://mrl.nyu.edu/perlin/doc/quikwriting/quikwriting.pdf
http://www.sensorysoftware.com/gridkeys.html
http://www.sensorysoftware.com/thegrid2.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.asktog.com/basics/firstPrinciples.html
http://www.taptapkeyb.ic.cz

BIBLIOGRAPHY 95

[34] J. O. Wobbrock, B. A. Myers, and J. A. Kembel. Edgewrite: A stylus-based text entry
method designed for high accuracy and stability of motion. In Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST ’03), pages 61–70. ACM
Press, November 2-5 2003.

96 BIBLIOGRAPHY

Appendix A

User Manual

A.1 Running the Application

The keyboard is not a standalone application, it is just a part of the EasyControl program
suite. It is included in some of the applications EasyControl provides. It is therefore always
necessary to run one of the applications from EasyControl first to see the keyboard.

A.2 Controlling the Keyboards

There is a choice of five different keyboard types. Each of them is controlled differently.
These five keyboard types have been described in sections 4.3 and 5.5 of this thesis. Please
refer to these sections for explanation of how each of the five keyboard types works and
what are the possibilities to control them. The description is written in a form that should
be acceptable for everyone, so it would be redundant to include the explanation here again.
However, there is one thing that the user should be aware of before reading that section, and
that is the mapping of outputs from the hardware devices to actions in the keyboard. This
mechanism is explained below, in section A.2.1.

A.2.1 Explanation of Input Actions

To be able to control any of the keyboard types properly, it is necessary to be aware of how
outputs from the hardware devices (such as switches, joystick, and others) are mapped to
actions in the keyboard.

Each device typically provides one or more “outputs”. Let us give some examples. A single
switch provides one output, which is trigged by pressing the switch. A device consisting of
three switches provides three distinct outputs, each from one of the switches. A joystick
provides eight outputs, each corresponding to one direction to which the lever of the joystick
can be deflected. In case the joystick has some additional buttons, the number of its outputs
can of course higher.

But how do EasyControl know how to interpret these outputs? That has to be configured
of course! The EasyControl application has some predefined actions, that are used to tell
the keyboard what to do. These actions can be assigned to the outputs of the connected

97

98 APPENDIX A. USER MANUAL

input device by means of the configuration software. It is therefore possible to define that,
for example, deflecting the lever of the joystick to the right will mean “jump to the next key
in the keyboard”.

Not all actions have to be utilized by the currently used input device. In fact, it is more
usual that only some of them are mapped to the outputs of the device.

There are currently the following fifteen actions provided by EasyControl:

• Right, Left, Down, and Up. These are actions typically used for navigation to the
four basic directions. They can tell the keyboard to move the cursor (= focus) in the
corresponding direction.
• Right-Up, Left-Up, Right-Down, and Left-Down. These are also navigation actions.

They can be used for navigating to the diagonal directions.
• Next Item and Back Item. These are actions for “simple navigation”. They only tell

whether the direction of the navigation should be “forward” (Next Item), or “backward”
(Back Item).
• Next Row and Next Column. These actions can also serve for simple navigation. They

tell the application that the cursor (focus) should be moved to the next row or column,
respectively.
• Action. This action is usually used for confirmation of the currently focused item (e.g.,

a key) in the application (its functionality is similar to the Enter key on a physical
keyboard).
• Escape. This action is typically interpreted as “cancel” or “exit”.
• None. This is an empty action and does nothing. It is ignored by the keyboard.

A.3 Configuration

The Keyboard application can be configured in a global configuration dialogue that can be
opened by pressing the F1 key (on a physical keyboard).1 Figure A.1 shows a screenshot of
the configuration dialogue, with the tab with configuration of the keyboard selected. The
dialogue in the screenshot contains Czech text, since the EasyControl application is currently
not localized in any other language. In this manual, however, English translations of the
texts will be provided when referring to the settings.

Note that different names are used for the keyboard types in the configuration dia-
logue than in the text of this thesis. The “Move-Controlled Keyboard” is referred to as
CircuitKeyboard, the “3x3 Keyboard” as MatrixKeyboard, and the “Keyboard with Coordi-
nates” as AxisKeyboard. The “Shifting Keyboard” and “Grid Keyboard” are the same —
ShiftingKeyboard and GridKeyboard, respectively.

A.3.1 Selecting Keyboard Type

The keyboards can be switched by using the combo box menu at the top of the configuration
dialogue. Simply select the desired keyboard and press the OK button.

1It is possible that this will change in future versions of EasyControl, so please refer to the EasyControl’s
user manual or help for up-to-date information.

A.3. CONFIGURATION 99

Figure A.1: Global configuration dialogue that contains configuration of the keyboard

The items that are be displayed in the list of available keyboards are defined in the
configuration file called Keyboards.xml. How a keyboard can be added to (or removed
from) the list of available keyboards is explained in section A.3.6.

A.3.2 Changing Visual Appearance

The configuration dialogue contains a lot of settings that can be used to adjust the keyboard’s
visual appearance. Any changes will take place when the OK button is pressed, or can be
cancelled by pressing Cancel.

The settings are grouped into four tabs:

• Background colours (“Barvy pozadí kláves”). This tabs contains “global” settings of
background colours of keys. Background colour can be changed for each of the group
of keys (such as letters, digits, navigation keys, special actions, etc.) as well as for
some special controls used in the application (e.g., the middle confirmation area in the
“Move-Controlled Keyboard”).

• Colours of borders (“Barvy ohraničení kláves”). This tab contains settings of border
colours.

• Thickness of borders and margins (“Velikosti ohraničení a okraje”). Thickness of bor-
ders of keys and other controls, as well as the space between keys, can be configured
here.

• Other settings (“Ostatní nastavení”). This tab contains various other settings, like for
example keyboard’s font, automatic cancel timeout, turning sounds on/off, and others.

100 APPENDIX A. USER MANUAL

Some settings are specific just to a particular keyboard type. In that case, the type of
the keyboard is stated in parentheses before the name of the option.

A.3.3 Creating New Layout

Before you can start to design a new layout, a new file with its definition has to be created.
That can be done either manually, by copying and renaming an existing keyboard definition
file, or from the configuration dialogue.

If you want to do it the second way, press the button named “Nová klávesnice” (New
keyboard). A small dialogue will appear that allows you to specify the name of the keyboard
and its type, and also the name of the file with the definition of the keyboard’s layout. After
filling in these three input field, press the OK button. A new file with the specified name
will be created in the configuration directory. The file will contain a template for the selected
keyboard type, with all keys empty. You can then edit the file as you like in your favourite
XML editor (see section A.3.4 for explanation of how to design a layout).

When using the configuration dialogue to create a new keyboard, the keyboard will
be automatically added to the list of available keyboards. If you create a new keyboard
manually, you will have to do this yourself (see section A.3.6 for explanation of how to do
that).

A.3.4 Designing Layouts

The XML file containing the definition of the keyboard (or, better said, its layout), has the
following structure for all five keyboard types:

<?xml version="1.0" encoding="utf-8" ?>
<Layout Name="...">

... here is a place for keyboard type specific definitions ...
<Keys>
... individual keys are defined here ...
</Keys>

</Layouts>

Keyboard Type Specific Definitions

Some keyboard types require that the Layout element in the definition file contains an
element called SizeDefinition. The nested elements in this element define configurable
parameters of the keyboard.

Size definitions for GridKeyboard and AxisKeyboard :

<SizeDefinition>
<Rows>number of rows in the keyboard</Rows>
<Columns>number of columns in the keyboard</Columns>

</SizeDefinition>

A.3. CONFIGURATION 101

Size definitions for ShiftingKeyboard :

<SizeDefinition>
<Columns>number of visible keys</Columns>

</SizeDefinition>

Size definitions for CircuitKeyboard :

<SizeDefinition>
<Vertical>number of keys to the left/right of the confirmation
area</Vertical>
<Horizontal>number of keys above/below the confirmation
area</Horizontal>

</SizeDefinition>

Definition of a Key

The element Key is used to define a key. Any number of these elements can be placed inside
the Keys element. However, if you specify more keys than is the defined size of the layout,
the extra keys will be ignored.

The definition of a key has the following structure:

<Key>
<DisplayString>...</DisplayString>
<DisplayImage>...</DisplayImage>
<Output>...</Output>
<ShiftOutput>...</ShiftOutput>
<Sound>...</Sound>
<BackgroundColor>...</BackgroundColor>
<TextColor>...</TextColor>
<OutputColor>...</OutputColor>
<Type>...</Type>

</Key>

As you can see, there can be nine elements inside a Key element. Some of them are
optional, some are not. Their meaning is as follows:

• DisplayString

– its content defines the text that will be displayed on the key
– the text can be of any length (or empty), and consist of any characters (it is also

possible to use XML entities, like for example “@” for the at sign)
– mandatory element

• DisplayImage

– its content defines the path to an image that should be displayed on the key (use
just the name of the file in case the image is placed in the same directory as the
definition file)

102 APPENDIX A. USER MANUAL

– BMP, GIF, JPEG, PNG, and TIFF formats are supported
– if the image is set, it will always be used instead of the text, unless displaying

images is disabled in the configuration
– it is recommended not to leave the DisplayString element empty even if the

DisplayImage element is used (the reason is that if the file with the image is not
found or cannot be read, the text can be used instead)

– optional element

• Output

– its content defines the “output” of the key (empty content is allowed)
– what the value of the output means depends on the type of the key (see the

description of the Type element below) — for keys like letters and digits, the
output is the text that should be typed if the key is pressed; for “action” keys,
the output is the name of the action; for keys that switch layouts, the output is
the name of the file defining the layout; etc.

– mandatory element

• ShiftOutput

– its content defines the output of the key if the “Shift” mode is on
– optional element, ignored for action keys

• Sound

– its content defines a path to a file with a sound that should be played when the
key is pressed

– only WAV format is supported
– optional element

• BackgroundColor

– its content defines the background colour of the key as a hexadecimal RGB2 value,
for example “FF0000” for red

– optional element (if the colour is not specified, global settings will be used)

• TextColor

– its content (a hexadecimal RGB value) defines the colour of the text that is
displayed on the key

– optional element (if the colour is not specified, global settings will be used)

• OutputColor

– its content (a hexadecimal RGB value) defines the preferred colour of the key’s
output (i.e., of the typed text)

– optional element

• Type

– mandatory element whose content defines the type of the key
– only the following values are allowed (for the explanation of their meaning, see sec-

tion A.3.5): Letter, Digit, Symbol, Diacritic, Shift, SwitchLayout, Delete, Control,
Navigation, Action, and Extra

2RGB stands for “Red, Green, Blue”. It is a commonly used colour model.

A.3. CONFIGURATION 103

A.3.5 Available Types of Keys

There are nine types of keys which can be placed in a keyboard’s layout.

Letter, Digit, Symbol

These three types of keys are used simply for typing text. The value of their Output defines
the character or text that will be typed if they are pressed.

For keys of type Letter, it is not necessary to define the ShiftOutput element. The
output of these keys will be converted to upper case automatically if the “Shift” mode is on.

Shift

If a key of type Shift is pressed, it will turn the “Shift” mode on (or off, if it is pressed again).
The “Shift” mode is typically used to type upper case letters, or whatever the other keys
have in their ShiftOutput elements. The “Shift” mode is automatically turned off after the
next key is pressed.

Diacritic

Keys of type Diacritic can be used in a similar way how the keys with diacritics are used on
a physical keyboard. If such key is pressed, the keyboard “remembers” the diacritical mark,
and then combines it with the output of the key that is pressed next, if that is possible. For
example, if a key with the caron (“ˇ”) is pressed, and then key with letter “r” is pressed, the
result will be the letter “ř”. If combining the diacritical mark with the next key is not possible
(for example, if the next pressed key is “5”), the diacritical mark will simply be printed in
front of the other character (the result of the previous example would therefore be “ˇ5”).

The value of the Output of these keys has to be the diacritical mark. It is also possible to
include two diacritical marks in one key. The way how to do this is to put the other diacritic
to the ShiftOutput element. The other diacritical mark could then be typed in the “Shift”
mode, the first one in the standard mode.

Only diacritics used in Czech alphabet are supported by these keys, which means there
are three possible diacritical marks that can be used — the acute (’), the caron (ˇ), and the
ring (◦).

The other possibility of typing letters with diacritic is to place them in the layout directly,
i.e. by means of the keys of type Letter.

Delete

Keys of type Delete are used to delete the last typed character (in case the Output is set
to “DeleteOne”). It is also possible to define a key that will delete everything that has been
written (the “DeleteAll” action can be used for this).

104 APPENDIX A. USER MANUAL

SwitchLayout

Keys of type SwitchLayout are able to change the current layout of the keyboard. That
means the type of the keyboard remains the same, but its definition (size parameters and
collection of keys) will be loaded from another definition file. The name of this file (or a
relative path to it) has to be specified inside the Output element in the definition of the key.

Navigation

These are keys used for navigation (moving the cursor). Their functionality is similar to
the cursor keys on a physical keyboard. You can use “Left”, “Right”, “Up”, or “Down” as the
value of the Output element in these keys’ definition.

Control

The Control key type can be used to define special keys. Currently, “Ctrl”, “Alt”, and “Tab”
are supported by EasyControl, which means you can specify these values in the Output
element of these keys.

Action

Keys of type Action can be used to place any predefined user action on the keyboard. These
predefined user actions have to be supported by EasyControl, so please refer to its current
user manual or help to get the list of them. In the version in which the Keyboard application
was introduced, “Close”, “Next”, “Prev”, and “Enter” actions were available.

Extra

Keys of type Extra define a placement of actions that are supplied by the application that
uses the keyboard. Such actions can even change with the state of the application. The
content of DisplayString, Output, and ShiftOutput elements is therefore ignored for these
keys, since these values are supplied in runtime.

Let us give an example of these Extra keys in action. Consider an e-mail client application,
that consists of a contact list, a list of recipients, and a window to write the message to. If
the cursor is on the contact list, actions like “Add to recipients”, or “Create new contact” will
be probably needed. However, if the user moves the cursor to the window where the message
is written, such actions do not make sense any more. Different ones are needed instead,
such as “Send”, or “Save to concepts”. This is where the Extra keys come in handy. You can
simply place the keys anywhere on the keyboard, and each time the user switches “focus” to
another component and the application supplies the keyboard with a new set of actions that
the user may need in the new context (if necessary), these actions will be displayed on the
Extra keys.

A.3. CONFIGURATION 105

A.3.6 Adding, Removing, and Renaming Available Keyboards

List of available keyboards (which will be displayed in the configuration dialogue where the
keyboards are selected) is defined in the Keyboards.xml configuration file. This file can be
found in the main configuration directory (which is by default called Keyboards, and is
placed in the same directory as the application’s executable).

If you want to add or remove a keyboard from the list of available keyboards, you can
do so by adding or removing the corresponding entry in this configuration file.

The Keyboards.xml file has the following structure:

<?xml version="1.0" encoding="utf-8" ?>

<Keyboards>

<Keyboard>
<Name>...</Name>
<Type>...</Type>
<LayoutFile>...</LayoutFile>

</Keyboard>

...

</Keyboards>

Each Keyboard element defines one keyboard. A keyboard has three properties, defined
by the nested elements of the Keyboard element:

• Name — its content defines the name of the keyboard, that will be displayed in the
list of keyboards in the configuration dialogue. It is therefore recommended that the
name is unique and identifies the keyboard sufficiently (names like “Shifting keyboard
with alphabetically ordered keys”, “Black & White Keyboard”, or “Peter’s keyboard”
are just some examples). If you just want to rename an existing keyboard, you can
simply edit the content of this element in the corresponding keyboard entry.

• Type — its content defines the type of the keyboard. The value must correspond
to one of the five types the application provides: GridKeyboard, ShiftingKeyboard,
AxisKeyboard (for the “Keyboard with Coordinates”), MatrixKeyboard (for the “3x3
Keyboard”), or CircuitKeyboard (for the “Move-Controlled Keyboard”).

• LayoutFile — its content defines the name of (or a relative path to) the file with the
keyboard’s definition. If keys that can switch layouts are used in the keyboard, there
will be typically multiple files for one keyboard. However, it is enough to specify the
“starting” layout in this element, the rest of the files need not be explicitly specified
here.

106 APPENDIX A. USER MANUAL

Appendix B

Content of the Attached CD

.
bin

TextWriter.zip - archive containing a sample application with the keyboard
howto.txt - information how to run and control the sample application

doc
html - documentation of the source code

index.html - starting point for viewing the documentation
src

Keyboard - source codes of the Keyboard application
readme.txt - important information about the source codes

testing
layouts - keyboard layouts used for usability testing
logs - logs from the usability testing

text
latex - LATEX source files of this text
fiedlkla-dp.pdf - this text

dp-info.txt - short information about this thesis (including the abstract)
index.html - content of the CD with links and other information
thesis-assignment.pdf - scanned version of the official assignment of this thesis

107

	Introduction
	Organization of This Thesis

	Background
	Target Users
	Using Alternative Input Devices
	EasyControl Application
	Problem Description
	Objectives of This Work
	Related Work

	Virtual Keyboards
	On-Screen Keyboards
	KeyStrokes 4
	Grid Keys
	OnScreen with WordComplete
	WiViK
	Click-N-Type
	The Fitaly One-Finger Keyboard
	SwiftKey X
	ThickButtons

	Alternative Typing
	DKey
	TapTap Keyboard
	MessagEase Onscreen Keyboard
	Clicker
	Quikwriting
	8pen
	Dasher
	EdgeWrite

	Design
	Requirements for the User Interface
	Guidelines for Designing User Interface
	Usability and Disabled Users

	Applying the Requirements
	Designed Keyboard Types
	Grid Keyboard
	Keyboard with Coordinates
	Shifting Keyboard
	3x3 Keyboard
	Move-Controlled Keyboard
	Bisection Keyboard
	Multi-Level Keyboard
	Phone Keyboard
	Draw Keyboard

	Implementation
	Requirements
	Technologies
	Architecture
	MVVM Design Pattern
	The Application

	Integration in EasyControl
	Implemented Designs
	Grid Keyboard
	Keyboard with Coordinates
	Shifting Keyboard
	3x3 Keyboard
	Move-Controlled Keyboard

	Common Features
	Keyboard Output
	Handling Diacritics
	Switching Layouts

	Configuration
	Layouts
	Keyboards
	User Profile

	Future Work
	Prediction System
	Abbreviation Expansion
	Keyboard Designer

	Evaluation and Testing
	Comparison of the Developed Keyboard Types
	Text for Evaluation
	Keyboards Controlled By Discrete Input
	Keyboards Controlled By Continuous Input

	Comparison with Existing Text Entry Systems
	Usability Testing
	Quantitative Results
	Qualitative Results

	Adaptation to the User

	Conclusion
	Bibliography
	User Manual
	Running the Application
	Controlling the Keyboards
	Explanation of Input Actions

	Configuration
	Selecting Keyboard Type
	Changing Visual Appearance
	Creating New Layout
	Designing Layouts
	Available Types of Keys
	Adding, Removing, and Renaming Available Keyboards

	Content of the Attached CD

