
Fractal Image CompressionSIGGRAPH `92 Course NotesYuval FisherVisiting the Department of MathematicsTechnion Israel Institute of TechnologyfromThe San Diego Super Computer CenterUniversity of California, San DiegoWith the advance of the information age the need for mass information storage andretrieval grows. The capacity of commercial storage devices, however, has not kept pacewith the proliferation of image data. Images are stored on computers as collections ofbits (a bit is a binary unit of information which can answer one \yes" or \no" question)representing pixels, or points forming the picture elements. Since the human eye canprocess large amounts of information, many pixels - some 8 million bits' worth - arerequired to store even moderate quality images. These bits provide the \yes" or \no"answers to 8 million questions that determine the image, though the questions are not the\is it bigger than a bread-box" variety, but a more mundane \What color is this pixel."Although the storage cost per bit is currently about half a millionth of a dollar, a familyalbum with several hundred photos can cost over a thousand dollars to store! This is onearea in which image compression can play an important role. Storing the images in lessmemory leads to a direct reduction in cost. Another useful feature of image compressionis the rapid transmission of data; less data requires less time to send.So how can image data be compressed? Most data contains some amount of redun-dancy, which can sometimes be removed for storage and replaced for recovery, but thisredundancy does not lead to high compression. Fortunately, the human eye is not sensi-tive a wide variety of information loss. That is, the image can be changed in many waysthat are either not detectable by the human eye or do not contribute to \degradation" ofthe image. If these changes are made so that the data becomes highly redundant, then thedata can be compressed when the redundancy can be detected. For example, the sequence2; 0; 0; 2; 0; 2; 2; 0; 0; 2; 0; 2; : : : is similar to 1; 1; 1; 1; 1 : : :, but contains random uctuationsof �1. If the latter sequence can serve our purpose as well as the �rst, we are better o�storing it, since it can be speci�ed very compactly.The standard methods of image compression come in several varieties. The currentmost popular method relies on eliminating high frequency components of the signal bystoring only the low frequency Fourier coe�cients. Other methods use a \building block"approach, breaking up images into a small number of canonical pieces and storing only areference to which piece goes where. In this article, we will explore a new scheme based onfractals. Such a scheme has been promoted by M. Barnsley, who founded a company basedon fractal image compression technology but who has not released details of his scheme.The �rst publically available such scheme was due to E. Jacobs and R. Boss of the NavalOcean Systems Center in San Diego who used regular partitioning and classi�cation ofcurve segments in order to compress random fractal curves (such as political boundaries)1

in two dimensions [BJ], [JBF]. A doctoral student of Barnsley's, A. Jacquin, was the �rst topublish a similar fractal image compression scheme [J]. An improved version of this schemealong with other schemes can be found in work done by the author in [FJB], [JFB], and[FJB1].We will begin by describing a simple scheme that can generate complex looking fractalsfrom a small amount of information. Then we will generalize this scheme to allow theencoding of an images as \fractals", and �nally we will discuss some of the ways thisscheme can be implemented.x1 What is Fractal Image Compression?Imagine a special type of photocopying machine that reduces the image to be copiedby a half and reproduces it three times on the copy. Figure 1 shows this. What happenswhen we feed the output of this machine back as input? Figure 2 shows several iterationsof this process on several input images. What we observe, and what is in fact true, is thatall the copies seem to be converging to the same �nal image, the one in 2(c). We call thisimage the attractor for this copying machine. Because the copying machine reduces theinput image, any initial image will be reduced to a point as we repeatedly run the machine.Thus, the initial image placed on the copying machine doesn't e�ect the �nal attractor;in fact, it is only the position and the orientation of the copies that determines what the�nal image will look like.
Input Image Output Image

Copy machineFigure 1. A copy machine that makes three re-duced copies of the input image.Since it is the way the input image is transformed that determines the �nal resultof running the copy machine in a feedback loop, we only describe these transformations.Di�erent transformations lead to di�erent attractors, with the technical limitation that thetransformations must be contractive - that is, a given transformation applied to any twopoints in the input image must bring them closer together in the copy. (See the ContractiveTransformations Box). This technical condition is very natural, since if points in the copywere spread out the attractor would have to be of in�nite size. Except for this condition,the transformations can have any form. In practice, choosing transformations of the formwi �xy � = � ai bici di � � xy �+ � eifi �2

is su�cient to yield a rich and interesting set of attractors. Such transformations are calleda�ne transformations of the plane, and each can skew, stretch, rotate, scale and translatean input image; in particular, a�ne transformations always map squares to parallelograms.Figure 3 shows some a�ne transformations, the resulting attractors, and a zoom ona region of the attractor. The transformations are displayed by showing an initial squaremarked with an \ " and its image by the transformations. The \ " helps show when atransformation ips or rotates a square. The �rst example shows the transformations usedin the copy machine of �gure 1. These transformations reduce the square to half its sizeand copy it at three di�erent locations in the same orientation. The second example is verysimilar to the �rst, but in it, one transformation ips the square resulting in a di�erentattractor. The last example is the Barnsley fern. It consists of four transformations, oneof which is squished at to yield the stem of the fern.A common feature of these and all attractors formed this way is that in the positionof each of the images of the original square on the left there is a transformed copy of thewhole image. Thus, each image is formed from transformed (and reduced) copies of iteslf,and hence it must have detail at every scale. That is, the images are fractals. This methodof generating fractals is due to John Hutchinson [H], and more information about manyways to generate such fractals can be found in books by Barnsley [B] and Peitgen, Saupe,and Jurgens [P1,P2].
Initial Image First Copy Second Copy Third Copy

(a)

(b)

(c) Figure 2. The �rst three copies generated on thecopying machine of �gure 1.Barnsley suggested that perhaps storing images as collections of transformations couldlead to image compression. His argument went as follows: the fern in �gure 3 looks com-plicated and intricate, yet it is generated from only 4 a�ne transforation. Each a�netransformation wi is de�ned by 6 numbers, ai; bi; ci; di; ei and fi which do not require3

much memory to store on a computer (they can be stored in 4 transformations � 6 num-bers/transformation � 32 bits/number = 768 bits). Storing the image of the fern as acollection of pixels, however, requires much more memory (at least 65,536 bits for theresolution shown in �gure 3). So if we wish to store a picture of a fern, then we can do itby storing the numbers that de�ne the a�ne transformations and simply generate the fernwhen ever we want to see it. Now suppose that we were given any arbitrary image, say aface. If a small number of a�ne transformations could generate that face, then it too couldbe stored compactly. The trick is �nding those numbers. The fractal image compressionscheme described later is one such trick.

Figure 3. Transformations, their attractor, and azoom on the attractor.Why is it \Fractal" Image Compression?The image compression scheme described later can be said to be fractal in severalsenses. The scheme will encode an image as a collection of transforms that are very similarto the copy machine metaphor. This has several implications. For example, just as the fernis a set which has detail at every scale, so does the image reconstructed from the transformshave detail created at every scale. Also, if one scales the transformations de�ning the fern(say by multiplying everything by 2), the resulting attractor will be scaled (also by a factorof 2). In the same way, the decoded image has no natural size, it can be decoded at anysize. The extra detail needed for decoding at larger sizes is generated automatically by theencoding transforms. One may wonder (but hopefully not for long) if this detail is \real";that is, if we decode an image of a person at larger and larger size, will we eventually see4

skin cells or perhaps atoms? The answer is, of course, no. The detail is not at all relatedto the actual detail present when the image was digitized; it is just the product of theencoding transforms which only encode the large scale features well. However, in somecases the detail is realistic at low magni�cations, and this can be a useful feature of themethod. For example, �gure 4 shows a detail from a fractal encoding of Lena along witha magni�cation of the original. The whole original image can be seen in �gure 6, the nowfamous image of Lena which is commonly used in the image compression literature.
Figure 4. A portion of Lena's hat decoded at 4times its encoding size (left), and the original im-age enlarged to 4 times the size (right), showingpixelization.The magni�cation of the original shows pixelization, the dots that make up the imageare clearly discernible. This is because it is magni�ed by a factor of 4. The decoded imagedoes not show pixelization since detail is created at all scales.Why is it Fractal Image \Compression"?Standard image compression methods can be evaluated using their compression ratio;the ratio of the memory required to store an image as a collection of pixels and the memoryrequired to store a representation of the image in compressed form. As we saw before, thefern could be generated from 768 bits of data but required 65,536 bits to store as a collectionof pixels, giving a compression ratio of 65; 536=768 = 85:3 to 1.The compression ratio for the fractal scheme is hard to measure, since the image canbe decoded at any scale. For example, the decoded image in �gure 4 is a portion of a 5.7to 1 compression of the whole Lena image. It is decoded at 4 times it's original size, sothe full decoded image contains 16 times as many pixels and hence its compression ratiois 91.2 to 1. This may seem like cheating, but since the 4-times-larger image has detail atevery scale, it really isn't. 5

Contractive TransformationsA transformation w is said to be contractive if for any two points P1; P2, the distanced(w(P1); w(P2)) < sd(P1; P2)for some s < 1. This formula says the application of a contractive map always bringspoints closer together (by some factor less than 1). This de�nition is completely general,applying to any space on which we can de�ne a distance function d(P1; P2). In our case, wework in the plane, so that if the points have coordinates P1 = (x1; y1) and P2 = (x2; y2),then d(P1; P1) =p(x2 � x1)2 + (y2 � y1)2:An example of a contractive transformation of the plane isw � xy � = � 12 00 12 � � xy � :which halves the distance between any two points.Contractive transformations have the nice property that when they are repeatedlyapplied, they converge to a point which remains �xed upon further iteration (See theContractive Mapping Fixed Point Theorem box). For example, the map w above appliedto any initial point (x; y) will yield the sequence of points (12x12y); (14x; 14y); : : : which canbe seen to converge to the point (0; 0) which remains �xed.Iterated Function Systems.Before we proceed with the image compression scheme, we will discuss the copy ma-chine example with some notation. Later we will use the same notation for the imagecompression scheme, but for now it is easier to understand in the context of the copymachine example.Running the special copy machine in a feedback loop is a metaphor for a mathematicalmodel called an iterated function system (IFS). An iterated function system consists ofa collection of contractive transformations fwi : R2 ! R2 j i = 1; : : : ; ng which map theplane R2 to itself. This collection of transformations de�nes a mapW (�) = n[i=1wi(�):The map W is not applied to the plane, it is applied to sets - that is, collections of pointsin the plane. Given an input set S, we can compute wi(S) for each i, take the unionof these sets, and get a new set W (S). So W is a map on the space of subsets of theplane. We will call a subset of the plane an image, because the set de�nes an imagewhen the points in the set are drawn in black, and because later we will want to use thesame notation on graphs of functions which will represent actual images. An importantfact proved by Hutchinson is that when the wi are contractive in the plane, then W iscontractive in a space of (closed and bounded) subsets of the plane. (The \closed and6

The Contractive Mapping Fixed Point TheoremThe contractive mapping �xed point theorem says that something that is intuitivelyobvious: if a map is contractive then when we apply it repeatedly starting with any initialpoint we converge to a unique �xed point. For example, the map !(x) = 12x on the realline is contractive for the normal metric d(x; y) = jx � yj, because the distance between!(x) and !(y) is half the distance between x and y. Furthermore, if we iterate ! fromany initial point x, we get a sequence of points 12x; 14x; frac18x; : : : that converges to the�xed point 0.This simple sounding theorem tells us when we can expect a collection of transfor-mations to de�ne image. Let's write it precisely and examine it carefully.The Contractive Mapping Fixed Point Theorem. If X is a complete metricspace and W : X ! X is contractive, then W has a unique �xed point jW j.What do these terms mean ? A complete metric space is a \gap-less" space onwhich we can measure the distance between any two points. For example, the real line isa complete metric space with distance between any two points x and y given by jx � yj.The set of all fractions of integers, however, is not complete. We can measure the distancebetween two fractions in the same way, but between any two elements of the space we�nd a real number (that is, a \gap") which is not a fraction and hence is not in the space.Returning to our example, the map ! can operate on the space of fractions, however themap x 7! 1�x cannot. This map is contractive, but after one application of the map weare no longer in the same space we began in. This is one problem that can occur when wedon't work in a complete metric space. Another problem is that we can �nd a sequenceof points that do not converge to a point in the space; for example, there are sequencesof fractions that get closer and closer (in fact, arbitrarily close) to p(2) which is not afraction.A �xed point jW j 2 X of W is a point that satis�es W (jW j) = jW j. Our mapping!(x) = 12x on the real line has a unique �xed point 0 because !(0) = 0.Proving the theorem is as easy as �nding the �xed point: Start with an arbitrary pointx 2 X. Now iterate W to get a sequence of points x;W (x);W (W (x); : : : How far canwe get at each step ? Well, the distance between W (x) and W (W (x)) is less by somefactor s < 1 than the distance between x and W (x). So at each step the distance to thenext point is less by some factor than the distance to the previous point. Since we aretaking geometrically smaller steps, and since our space has no gaps, we must eventuallyconverge to a point in the space which we denote jW j = limn!1W �n(x). This point is�xed, because applying W one more time is the same as starting at W (x) instead of x,and either way we get to the same point.The �xed point is unique because if we assume that there are two, then we will geta contradiction: Suppose there are two �xed points x1 and x2; then the distance betweenW (x1) and W (x2), which is the distance between x1 and x2 since they are �xed points,would have to be smaller than the distance between x1 and x2; this is a contradiction.Thus, the main result we have demonstrated is that when W is contractive, we geta �xed point jW j = limn!1W �n(x)for any initial x. 7

bounded" part is one of several technicalities that arise at this point. What are theseterms and what are they doing there? The terms make the statement precise and theirfunction is to reduce complaint-mail writen by mathematicians. Having W contractive ismeaningless unless we give a way of determining distance between two sets. There is sucha metric, called the Haussdor� metric, which measures the di�erence between two closedand bounded subsets of the plane, and in this metric W is contractive on the space ofclosed and bounded subsets of the plane. This is as much as we will say about these thesedetails.) Hutchinson's theorem allows us to to use the contractive mapping �xed pointtheorem (see box), which tells us that the map W will have a unique �xed point in thespace of all images. That is, whatever image (or set) we start with, we can repeatedlyapply W to it and we will converge to a �xed image. Thus W (or the wi) completelydetermine a unique image.In other words, given an input image f0, we can run the copying machine once to getf1 = W (f0), twice to get f2 = W (f1) = W (W (f0)) �W �2(f0), and so on. The attractor,which is the result of running the copying machine in a feedback loop, is the limit setjW j � f1 = limn!1W �n(f0)which is not dependent on the choice of f0. Iterated function systems are interesting intheir own right, but we are not concerned with them speci�cally. We will generalize theidea of the copy machine and use it to encode grey-scale images; that is, images that arenot just black and white but which contain shades of grey as well.x2 Self-Similarity in Images.In the remainder of this article, we will use the term image to mean a grey-scale image.
Figure 5. A graph generated from the Lena image.8

Images as Graphs of Functions.In order to discuss the compression of images, we need a mathematical model of animage. Figure 5 shows the graph of a special function z = f(x; y). This graph is generatedby using the image of Lena (see �gure 6) and plotting the grey level of the pixel at position(x; y) as a height, with white being high and black being low. This is our model for animage, except that while the graph in �gure 5 is generated by connecting the heightson a 64 � 64 grid, we generalize this and assume that every position (x; y) can have anindependent height. That is, our model of an image has in�nite resolution.Thus when we wish to refer to an image, we refer to the function f(x; y) which gives thegrey level at each point (x; y). In practice, we will not distinguish between the function f(which gives us a z value for each x; y coordinate) and the graph of the function (which is aset in 3 space consisting of the points in the surface de�ned by f). For simplicity, we assumewe are dealing with square images of size 1; that is, (x; y) 2 f(u; v) : 0 � u; v � 1g � I2,and f(x; y) 2 I � [0; 1]. We have introduced some convenient notation here: I means theinterval [0; 1] and I2 is the unit square.
Figure 6. The original 256�256 pixel Lena image.A Metric� on Images.Now imagine the collection of all possible images: clouds, trees, dogs, random junk,the surface of Jupiter, etc. We want to �nd a map W which takes an input image andyields an output image, just as we did before with subsets of the plane. If we want to knowwhen W is contractive, we will have to de�ne a distance between two images. There aremany metrics to choose from, but the simplest to use is the sup metric�(f; g) = sup(x;y)2I2 jf(x; y) � g(x; y)j: (1)� Recall that a metric is a function that measures distance.9

This�� metric �nds the position (x; y) where two images f and g di�er the most and setsthis value as the distance between f and g.Natural Images are not Exactly Self Similar.A typical image of a face, for example �gure 6 does not contain the type of self-similarity that can be found in the fractals of �gure 3. The image does not appear tocontain a�ne transformations of itself. But, in fact, this image does contain a di�erentsort of self-similarity. Figure 7 shows sample regions of Lena which are similar at di�erentscales: a portion of her sholder overlaps a region that is almost identical, and a portion ofthe reection of the hat in the mirror is similar (after transformation) to a part of her hat.The distinction from the kind of self-similarity we saw in �gure 3 is that rather than havingthe image be formed of copies of its whole self (under appropriate a�ne transformation),here the image will be formed of copies of properly transformed parts of itself. Thesetransformed parts do not �t together, in general, to form an exact copy of the originalimage, and so we must allow some error in our representation of an image as a set oftransformations. This means that the image we encode as a set of transformations will notbe an identical copy of the original image but rather an approximation of it.
Figure 7. Self similar portions of the Lena image.In what kind of images can we expect to �nd this type of self-similarity? Experimentalresults suggest that most images that one would expect to \see" can be compressed bytaking advantage of this type of self-similarity; for example, images of trees, faces, houses,mountains, clouds, etc. However, the existence of this restricted self-similarity and theability of an algorithm to detect it are distinct issues, and it is the latter which concernsus here.�� There are other possible choices for image models and other possible metrics to use. In fact, thechoice of metric determines whether the transformations we use are contractive or not. These details areimportant, but are beyond the scope of this article.10

x3 A Special Copying Machine.Partitioned Copying Machines.In this section we describe an extension of the copying machine metaphor that can beused to encode and decode grey-scale images. The partitioned copy machine we will usehas four variable components:� the number copies of the original pasted together to form the output,� a setting of position and scaling, stretching, skewing and rotation factors for eachcopy.These features are a part of the copying machine de�nition that can be used to generatethe images in �gure 3. We add to the the following two capabilities:� a contrast and brightness adjustment for each copy,� a mask which selects, for each copy, a part of the original to be copied.These extra features are su�cient to allow the encoding of grey-scale images. Thelast dial is the new important feature. It partitions an image into pieces which are eachtransformed separately. By partitioning the image into pieces, we allow the encoding ofmany shapes that are di�cult to encode using an IFS.Let us review what happens when we copy an original image using this machine. Eachlens selects a portion of the original, which we denote by Di and copies that part (with abrightness and contrast transformation) to a part of the produced copy which is denotedRi. We call the Di domains and the Ri ranges. We denote this transformation by wi.The partitioning is implicit in the notation, so that we can use almost the same notationas with an IFS. Given an image f , one copying step in a machine with N lenses can bewritten as W (f) = w1(f)[w2(f)[� � � [wN (f). As before the machine runs in a feedbackloop; its own output is fed back as its new input again and again.Partitioned Copying Machines are PIFS.We call the mathematical analogue of a partitioned copying machine, a partitionediterated function system (PIFS). As before, the de�nition of a PIFS is not dependenton the type of transformations that are used, but in this discussion we will use a�netransformations. The grey level adds another dimension, so the transformations wi are ofthe form, wi 24xyz 35 = 24 ai bi 0ci di 00 0 si 3524 xyz 35 + 24 eifioi 35 (2)where si controls the contrast and oi the brightness of the transformation.It is convenient to writevi(x; y) = � ai bici di � � xy �+ � eifi � :Since an image is modeled as a function f(x; y), we can apply wi to an image f bywi(f) � wi(x; y; f(x; y)). Then vi determines how the partitioned domains of an originalare mapped to the copy, while si and oi determine the contrast and brightness of thetransformation. It is always implicit, and important to remember, that each wi is restricted11

to Di � I, the vertical space above Di. That is, wi applies only to the part of the imagethat is above the domain Di. This means that vi(Di) = Ri.Since we wantW (f) to be an image, we must insist that [Ri = I2 and that Ri\Rj = ;when i 6= j. That is, when we apply W to an image, we get some single valued functionabove each point of the square I2. Running the copying machine in a loop means iteratingthe mapW . We begin with an initial image f0 and then iterate f1 =W (f0); f2 = W (f1) =W (W (f0)), and so on. We denote the n-th iterate by fn =W �n(f0).Fixed points for PIFS.In our case, a �xed point is an image f that satis�es W (f) = f ; that is, when weapply the transformations to the image, we get back the original image. The contractivemapping theorem says that the �xed point ofW will be the image we get when we computethe sequence W (f0);W (W (f0));W (W (W (f0))); : : :, where f0 is any image. So if we canbe assured that W is contractive in the space of all images, then it will have a unique �xedpoint which will then be some image.Since the metric we chose in equation 1 is only sensitive to what happens in the zdirection, it is not necessary to impose contractivity conditions in the x or y directions.The transformation W will be contractive when each si < 1; that is, when z distances areshrunk by a factor less than 1. In fact, the contractive mapping principle can be appliedto W �m (for some m), so it is su�cient for W �m to be contractive. This leads to thesomewhat surprising result that there is no speci�c condition on any speci�c si either. Inpractice, it is safest to take si < 1 to ensure contractivity. But we know from experimentsthat taking si < 1:2 is safe, and that this results in slightly better encodings.Eventually Contractive Maps.WhenW is not contractive andW �m is contractive, we call W eventually contractive.A brief explanation of how a transformation W can be eventually contractive but notcontractive is in order. The mapW is composed of a union of mapswi operating on disjointparts of an image. The iterated transformW �m is composed of a union of compositions ofthe form wi1 � wi2 � � � �wim :It is a fact that the product of the contractivities bounds the contractivity of the composi-tions, so the compositions will be contractive if each contains su�ciently contractive wij .ThusW will be eventually contractive (in the sup metric) if it contains su�cient \mixing"so that the contractive wi eventually dominate the expansive ones. In practice, given aPIFS this condition is simple to check in the sup metric.Suppose that we take all the si < 1. This means that when the copying machine isrun, the contrast is always reduced. This seems to suggest that when the machine is runin a feedback loop, the resulting attractor will be an insipid, contrast-less grey. But thisis wrong, since contrast is created between ranges which have di�erent brightness levelsoi. So is the only contrast in the attractor between the Ri? No, if we take the vi tobe contractive, then the places where there is contrast between the Ri in the image willpropagate to smaller and smaller scale, and this is how detail is created in the attractor.This is one reason to require that the vi be contractive.12

We now know how to decode an image that is encoded as a PIFS. Start with anyinitial image and repeatedly run the copy machine, or repeatedly apply W until we getclose to the �xed point f1. We will use Hutchinson's notation and denote this �xed pointby f1 = jW j. The decoding is easy, but it is the encoding which is interesting. To encodean image we need to �gure out Ri;Di and wi, as well as N , the number of maps wi wewish to use.x4 Encoding Images.Suppose we are given an image f that we wish to encode. This means we want to �nda collection of maps w1; w2 : : : ; wN with W = [Ni=1wi and f = jW j. That is, we want f tobe the �xed point of the map W . The �xed point equationf = W (f) = w1(f) [w2(f) [� � �wN(f)suggests how this may be achieved. We seek a partition of f into pieces to which we applythe transforms wi and get back f . This is too much to hope for in general, since imagesare not composed of pieces that can be transformed non-trivially to �t exactly somewhereelse in the image. What we can hope to �nd is another image f 0 = jW j with �(f 0; f) small.That is, we seek a transformation W whose �xed point f 0 = jW j is close to, or looks like,f . In that case, f � f 0 =W (f 0) �W (f) = w1(f) [w2(f) [� � �wN (f):Thus it is su�cient to approximate the parts of the image with transformed pieces. Wedo this by minimizing the following quantities�(f \ (Ri � I); wi(f)) i = 1; : : : ;N (4)That is, we �nd pieces Di and mapswi, so that when we apply a wi to the part of the imageover Di, we get something that is very close to the part of the image over Ri. Finding thepieces Ri (and corresponding Di) is the heart of the problem.A Simple Illustrative Example.The following example suggest how this can be done. Suppose we are dealing witha 256 � 256 pixel image in which each pixel can be one of 256 levels from grey (rangingfrom black to white). Let R1; R2; : : : ; R1024 be the 8�8 pixel non-overlapping sub-squaresof the image, and let D be the collection of all 16 � 16 pixel (overlapping) sub-squaresof the image. The collection D contains 241 � 241 = 58; 081 squares. For each Ri searchthrough all of D to �nd a Di 2 D which minimizes equation 4; that is, �nd the partof the image that most looks like the image above Ri. This domain is said to cover therange. There are 8� ways to map one square onto another, so that this means comparing8 � 58; 081 = 464; 648 squares with each of the 1024 range squares. Also, a square in D has4 times as many pixels as an Ri, so we must either subsample (choose 1 from each 2� 2� The square can be rotated to 4 orientations or iped and rotated into 4 other orientations, but thatis all. 13

Least SquaresGiven two squares containing n pixel intensities, a1; : : : ; an (from Di) and b1; : : : ; bn(from Ri). We can seek s and o to minimize the quantityR = nXi=1(s � ai + o� bi)2:This will give us a contrast and brightness setting that makes the a�nely transformedai values have the least squared distance from the bi values. The minimum of R occurswhen the partial derivatives with respect to s and o are zero, which occurs whens = "n2(nXi=1 aibi) � (nXi=1 ai)(nXi=1 bi)# ="n2 nXi=1 a2i � (nXi=1 ai)2#and o = " nXi=1 bi � s nXi=1 ai# =n2In that case,R = " nXi=1 b2i + s(s nXi=1 a2i � 2(nXi=1 aibi) + 2o nXi=1 ai) + o(on2 � 2 nXi=1 bi)# =n2 (5)If n2Pni=1 a2i � (Pni=1 ai)2 = 0, then s = 0 and o =Pni=1 bi=n2.sub-square of Di) or average the 2� 2 sub-squares corresponding to each pixel of Ri whenwe minimize equation 4.Minimizing equation 4 means two things. First it means �nding a good choice for Di(that is the part of the image that most looks like the image above Ri). Second, it means�nding a good contrast and brightness setting si and oi for wi. For each D 2 D we cancompute si and oi using least squares regression (see box), which also gives a resultingroot mean square (rms) di�erence. We then pick as Di the D 2 D which has the least rmsdi�erence.A choice of Di, along with a corresponding si and oi, determines a map wi of theform of equation 2. Once we have the collection w1; : : : ; w1024 we can decode the image byestimating jW j. Figure 8 shows four images: an arbitrary initial image f0 chosen to showtexture, the �rst iteration W (f0), which shows some of the texture from f0, W �2(f0), andW �10(f0).The result is surprisingly good, given the naive nature of the encoding algorithm. Theoriginal image required 65536 bytes of storage, where as the transformations required only3968 bytes�, giving a compression ratio of 16.5:1. With this encoding R = 10:4 and each� Each transformation required 8 bits in the x and y direction to determine the position of Di, 7 bits14

pixel is on average only 6.2 grey levels away from the correct value. Figure 8 shows howdetail is added at each iteration. The �rst iteration contains detail at size 8� 8, the nextat size 4� 4, and so on.Jacquin [J] encoded images with less grey levels using a method similar to this examplebut with two sizes of ranges. In order to reduce the number of domains searched, he alsoclassi�ed the ranges and domains by their edge (or lack of edge) properties. This is verysimilar, coincidentally, to the scheme used by Boss and Jacobs [BJF] to encode contours.

Figure 8. An original image, the �rst, second, andtenth iterates of the encoding transformations.for oi, 5 bits for si and 3 bits to determine a rotation and ip operation for mapping Di to Ri.15

A Note About Metrics.Two men ying in a balloon are sent o� track by a strong gust of wind. Not knowingwhere they are, they approach a solitary �gure perched on a hill. They lower the balloonand shout the the man on the hill, \Where are we?". There is a very long pause, andthen the man shouts back, \You are in a balloon." The �rst man in the balloon turns tothe second and says, \That man was a mathematician." Completely amazed, the secondman asks, \How can you tell that?". Replies the �rst man, \We asked him a question, hethought about it for a long time, his answer was correct, and it was totally useless." Thisis what we have done with the metrics. When it came to a simple theoretical motivation,we use the sup metric which is very convenient for this. But in practice, we are happierusing the rms metric which allows us to make least square computations. (We could haveworked with the rms metric, of course, but checking contractivity in this metric is muchharder).x5 Ways to Partition Images.The example of the last section is naive and simple, but it contains most of the ideasof a fractal image encoding scheme. First partition the image by some collection of rangesRi. Then for each Ri seek from some collection of image pieces a Di which has a low rmserror. The sets Ri and Di, determine si and oi as well as ai; bi; ci; di; ei and fi in equation2. We then get a transformationW = [wi which encodes an approximation of the originalimage.Quadtree Partitioning.A weakness of the example is the use of �xed size Ri, since there are regions of theimage that are di�cult to cover well this way (for example, Lena's eyes). Similarly, thereare regions that could be covered well with larger Ri, thus reducing the total number ofwi maps needed (and increasing the compression of the image). A generalization of the�xed size Ri is the use of a quadtree partition of the image. In a quadtree partition, asquare in the image is broken up into 4 equally sized sub-squares, when it is not coveredwell enough by a domain. This process repeats recursively starting from the whole imageand continuing until the squares are small enough to be covered within some speci�ed rmstolerance. Small squares can be covered better than large ones because contiguous pixelsin an image tend to be highly correlated.An algorithm that works well for encoding 256� 256 pixel images based on this ideacan proceed as follows (see [FJB1]). Choose for the collection D of permissible domainsall the sub-squares in the image of size 8; 12; 16; 24; 32; 48 and 64. Partition the imagerecursively by a quadtree method until the squares are of size 32. For each square inthe quadtree partition, attempt to cover it by a domain that is larger; this makes the vicontractive. If a predetermined tolerance rms value ec is met, then call the square Ri andthe covering domain Di. If not, then subdivide the square and repeat. This algorithmworks well. It works even better if diagonally oriented squares are used in the domain poolD also. Figure 9 shows an image of a collie compressed using this scheme. In section 6we discuss some of the details of this scheme as well as the other two schemes discussedbelow. 16

Figure 9. A collie (256�256) compressed with thequadtree scheme at 28.95:1 with an rms error of8.5.HV-Partitioning.A weakness of the quadtree based partitioning is that it makes no attempt to select thedomain pool D in a content dependent way. The collection must be chosen to be very largeso that a good �t to a given range can be found. A way to remedy this, while increasingthe exibility of the range partition, is to use an HV-partition. In an HV-partition, arectangular image is recursively partitioned either horizontally or vertically to form twonew rectangles. The partitioning repeats recursively until a covering tolerance is satis�ed,as in the quadtree scheme.
R21R

1st Partition 2nd 3rd and 4th Partitions

(a) (b) (c)Figure 11. The HV scheme attempts to create selfsimilar rectangles at di�erent scales.This scheme is more exible, since the position of the partition is variable. We canthen try to make the partitions in such a way that they share some self similar structure.For example, we can try to arrange the partitions so that edges in the image will tend torun diagonally through them. Then, it is possible to use the larger partitions to cover thesmaller partitions with a reasonable expectation of a good cover. Figure 11 demonstratesthis idea. The �gure shows a part of an image (a); in (b) the �rst partition generates tworectangles, R1 with the edge running diagonally through it, and R2 with no edge; and in(c) the next three partitions of R1 partition it into 4 rectangles, two rectangles which can17

be well covered by R1 (since they have an edge running diagonally) and two which can becovered by R2 (since they contain no edge). Figure 10 shows an image of San Franciscoencoded using this scheme.
Figure 10. San Francisco (256 � 256) compressedwith the HV scheme at 7.6:1 with an rms error of7.1.
Figure 12. A quadtree partition (5008 squares), anHV partition (2910 rectangles), and a triangularpartition (2954 triangles).Triangular Partitioning.Yet another way to partition an image is based on triangles. In the triangular parti-tioning scheme, a rectangular image is divided diagonally into two triangles. Each of theseis recursively subdivided into 4 triangles by segmenting the triangle along lines that jointhree partitioning points along the three sides of the triangle. This scheme has severalpotential advantages over the HV-partitioning scheme. It is exible, so that triangles in18

the scheme can be chosen to share self-similar properties, as before. The artifacts arisingfrom the covering do not run horizontally and vertically, and this is less distracting. Also,the triangles can have any orientation, so we break away from the rigid 90 degree rota-tions of the quadtree and HV partitioning schemes. This scheme, however, remains to befully developed and explored. Figure 12 shows sample partitions arising from the threepartitioning schemes applied to the Lena image.x6 Implementation Notes.The pseudo-code in Table 1 shows two ways of encoding images using the idea pre-sented. One method attempts to target a �delity by �nding a covering such that equation4 is below some criterion ec. The other method attempts to target a compression ratio bylimiting the number of transforms used in the encoding.Storing the Encoding Compactly.To store the encoding compactly, we do not store all the coe�cients in equation 2.The contrast and brightness settings are stored using a �xed number of bits. One couldcompute the optimal si and oi and then discretize them for storage. However, a signi�cantimprovement in �delity can be obtained if only discretized si and oi values are used whencomputing the error during encoding (and equation 5 facilitates this). Using 5 bits to storesi and 7 bits to store oi has been found empirically optimal in general. The distribution ofsi and oi shows some structure, so further compression can be attained by using entropyencoding.The remaining coe�cients are computed when the image is decoded. In their placewe store Ri and Di. In the case of a quadtree partition, Ri can be encoded by the storageorder of the transformations if we know the size of Ri. The domains Di must be storedas a position and size (and orientation if diagonal domain are used). This is not su�cient,though, since there are 8 ways to map the four corners of Di to the corners of Ri. So wealso must use 3 bits to determine this rotation and ip information.In the case of the HV-partitioning and triangular partitioning, the partition is storedas a collection of o�set values. As the rectangles (or triangles) become smaller in thepartition, fewer bits are required to store the o�set value. The partition can be completelyreconstructed by the decoding routine. One bit must be used to determine if a partitionis further subdivided or will be used as an Ri and a variable number of bits must be usedto specify the index of each Di in a list of all the partition. For all three methods, andwithout too much e�ort, it is possible to achieve a compression of roughly 31 bits per wion average.In the example of section 4, the number of transformations is �xed. In contrast, thepartitioning algorithms described are adaptive in the sense that they utilize a range sizewhich varies depending on the local image complexity. For a �xed image, more transfor-mations lead to better �delity but worse compression. This trade-o� between compressionand �delity leads to two di�erent approaches to encoding an image f - one targeting �-delity and one targeting compression. These approaches are outlined in the pseudo-codein table 1. In the table, size(Ri) refers to the size of the range; in the case of rectangles,size(Ri) is the length of the longest side. 19

Table 1. Two pseudo-codes for an adaptive encoding algorithm� Choose a tolerance level ec.� Set R1 = I2 and mark it uncovered.� While there are uncovered ranges Ri do f� Out of the possible domains D, find the domain Diand the corresponding wi which best covers Ri (i.e.which minimizes expression (4)).� If �(f \ (Ri � I); wi(f)) < ec or size(Ri) � rmin then� Mark Ri as covered, and write out the transfor-mation wi;� else� Partition Ri into smaller ranges which aremarked as uncovered, and remove Ri from the listof uncovered ranges.g a. Pseudo-code targeting a �delity ec.� Choose a target number of ranges Nr.� Set a list to contain R1 = I2, and mark it as uncovered.� While there are uncovered ranges in the list do f� For each uncovered range in the list, find and storethe domain Di 2 D and map wi which covers it best,and mark the range as covered.� Out of the list of ranges, find the range Rj withsize(Rj) > rmin which has the largest�(f \ (Rj � I); wj(f))(i.e. which is covered worst).� If the number of ranges in the list is less than Nrthen f� Partition Rj into smaller ranges which are addedto the list and marked as uncovered.� Remove Rj ; wj and Dj from the list.gg� Write out all the wi in the list.b. Pseudo-code targeting a compression having N transformations.AcknowledgementsThis work was partially supported by ONR contract N00014-91-C-0177. Other sup-port was provided by the San Diego Super Computer Center; the Institute for Non-LinearScience at the University of California, San Diego; and the Technion Israel Institute ofTechnology. 20

References[B] Barnsley, M. Fractals Everywhere. Academic Press. San Diego, 1989.[BJ] R.D. Boss, E.W. Jacobs, \Fractal-Based Image Compression," NOSC Technical Re-port 1315, September 1989. Naval Ocean Systems Center, San Diego CA 92152-5000.[FJB] Y. Fisher, E.W. Jacobs, and R.D. Boss, \Fractal Image Compression Using IteratedTransforms," to appear in Data Compression, J. Storer, Editor, Kluwer AcademicPublishers, Norwall, MA.[FJB1] Y. Fisher, E.W. Jacobs, and R.D. Boss, \Fractal Image Compression Using IteratedTransforms," NOSC Technical Report ???, Naval Ocean Systems Center, San DiegoCA 92152-5000.[H] John E. Hutchinson, Fractals and Self Similarity. Indiana University MathamaticsJournal, Vol. 35, No. 5. 1981.[J] Jacquin, A., A Fractal Theory of Iterated Markov Operators with Applications toDigital Image Coding, Doctoral Thesis, Georgia Institute of Technology, 1989.[JBF] R.D. Boss, E.W. Jacobs, \Fractal-Based Image Compression II," NOSC TechnicalReport 1362, June 1990. Naval Ocean Systems Center, San Diego CA 92152-5000.[JFB] E.W. Jacobs, Y. Fisher, and R.D. Boss, \Image Compression: A Study of the IteratedTransform Method," to appear in Signal Processing.[P1] \The Science of Fractals", H.-O. Peitgen, D. Saupe, Editors, Springer Verlag, NewYork, 1989.[P2] \Fractals For Class Room", H.-O. Peitgen, D. Saupe, H. Jurgens, Springer Verlag,New York, 1991.[WK] E. Walach, E. Karnin, \A Fractal Based Approach to Image Compression", Proceed-ings of ICASSP Tokyo, 1986.

21

