Fractal Image Compression
SIGGRAPH ‘92 COURSE NOTES

Yuval Fisher
Visiting the Department of Mathematics
Technion Israel Institute of Technology
from
The San Diego Super Computer Center
University of California, San Diego

With the advance of the information age the need for mass information storage and
retrieval grows. The capacity of commercial storage devices, however, has not kept pace
with the proliferation of image data. Images are stored on computers as collections of
bits (a bit is a binary unit of information which can answer one “yes” or “no” question)
representing pixels, or points forming the picture elements. Since the human eye can
process large amounts of information, many pixels - some 8 million bits’ worth - are
required to store even moderate quality images. These bits provide the “yes” or “no”
answers to 8 million questions that determine the image, though the questions are not the
“is it bigger than a bread-box” variety, but a more mundane “What color is this pixel.”

Although the storage cost per bit is currently about half a millionth of a dollar, a family
album with several hundred photos can cost over a thousand dollars to store! This is one
area in which image compression can play an important role. Storing the images in less
memory leads to a direct reduction in cost. Another useful feature of image compression
is the rapid transmission of data; less data requires less time to send.

So how can image data be compressed? Most data contains some amount of redun-
dancy, which can sometimes be removed for storage and replaced for recovery, but this
redundancy does not lead to high compression. Fortunately, the human eye is not sensi-
tive a wide variety of information loss. That is, the image can be changed in many ways
that are either not detectable by the human eye or do not contribute to “degradation” of
the image. If these changes are made so that the data becomes highly redundant, then the
data can be compressed when the redundancy can be detected. For example, the sequence
2,0,0,2,0,2,2,0,0,2,0,2,... is similar to 1,1,1,1,1..., but contains random fluctuations
of +1. If the latter sequence can serve our purpose as well as the first, we are better off
storing it, since it can be specified very compactly.

The standard methods of image compression come in several varieties. The current
most popular method relies on eliminating high frequency components of the signal by
storing only the low frequency Fourier coefficients. Other methods use a “building block”
approach, breaking up images into a small number of canonical pieces and storing only a
reference to which piece goes where. In this article, we will explore a new scheme based on
fractals. Such a scheme has been promoted by M. Barnsley, who founded a company based
on fractal image compression technology but who has not released details of his scheme.
The first publically available such scheme was due to E. Jacobs and R. Boss of the Naval
Ocean Systems Center in San Diego who used regular partitioning and classification of
curve segments in order to compress random fractal curves (such as political boundaries)

1

in two dimensions [BJ], [JBF]. A doctoral student of Barnsley’s, A. Jacquin, was the first to
publish a similar fractal image compression scheme [J]. An improved version of this scheme
along with other schemes can be found in work done by the author in [FIB], [JFB], and
[FJB1].

We will begin by describing a simple scheme that can generate complex looking fractals
from a small amount of information. Then we will generalize this scheme to allow the
encoding of an images as “fractals”, and finally we will discuss some of the ways this
scheme can be implemented.

§1 What is Fractal Image Compression?

Imagine a special type of photocopying machine that reduces the image to be copied
by a half and reproduces it three times on the copy. Figure 1 shows this. What happens
when we feed the output of this machine back as input? Figure 2 shows several iterations
of this process on several input images. What we observe, and what is in fact true, is that
all the copies seem to be converging to the same final image, the one in 2(c). We call this
image the attractor for this copying machine. Because the copying machine reduces the
input image, any initial image will be reduced to a point as we repeatedly run the machine.
Thus, the initial image placed on the copying machine doesn’t effect the final attractor;
in fact, it is only the position and the orientation of the copies that determines what the
final image will look like.

Input Image (LTI D Output Image

Copy machine

Figure 1. A copy machine that makes three re-
duced copies of the input image.

Since it is the way the input image is transformed that determines the final result
of running the copy machine in a feedback loop, we only describe these transformations.
Different transformations lead to different attractors, with the technical limitation that the
transformations must be contractive - that is, a given transformation applied to any two
points in the input image must bring them closer together in the copy. (See the Contractive
Transformations Box). This technical condition is very natural, since if points in the copy
were spread out the attractor would have to be of infinite size. Except for this condition,
the transformations can have any form. In practice, choosing transformations of the form

SHEFIHER

2

is sufficient to yield a rich and interesting set of attractors. Such transformations are called
affine transformations of the plane, and each can skew, stretch, rotate, scale and translate
an input image; in particular, affine transformations always map squares to parallelograms.

Figure 3 shows some affine transformations, the resulting attractors, and a zoom on
a region of the attractor. The transformations are displayed by showing an initial square
marked with an “” and its image by the transformations. The “Y” helps show when a
transformation flips or rotates a square. The first example shows the transformations used
in the copy machine of figure 1. These transformations reduce the square to half its size
and copy it at three different locations in the same orientation. The second example is very
similar to the first, but in it, one transformation flips the square resulting in a different
attractor. The last example is the Barnsley fern. It consists of four transformations, one
of which is squished flat to yield the stem of the fern.

A common feature of these and all attractors formed this way is that in the position
of each of the images of the original square on the left there is a transformed copy of the
whole image. Thus, each image is formed from transformed (and reduced) copies of iteslf,
and hence it must have detail at every scale. That is, the images are fractals. This method
of generating fractals is due to John Hutchinson [H], and more information about many
ways to generate such fractals can be found in books by Barnsley [B] and Peitgen, Saupe,
and Jurgens [P1,P2].

a
Oy !
| @A
§ A/AA% Ani A%%

Initial Image First Copy Second Copy Third Copy

Figure 2. The first three copies generated on the
copying machine of figure 1.

Barnsley suggested that perhaps storing images as collections of transformations could
lead to image compression. His argument went as follows: the fern in figure 3 looks com-
plicated and intricate, yet it is generated from only 4 affine transforation. Each affine
transformation w; is defined by 6 numbers, a;,b;,¢;,d;,e; and f; which do not require

3

much memory to store on a computer (they can be stored in 4 transformations x 6 num-
bers/transformation x 32 bits/number = 768 bits). Storing the image of the fern as a
collection of pixels, however, requires much more memory (at least 65,536 bits for the
resolution shown in figure 3). So if we wish to store a picture of a fern, then we can do it
by storing the numbers that define the affine transformations and simply generate the fern
when ever we want to see it. Now suppose that we were given any arbitrary image, say a
face. If a small number of affine transformations could generate that face, then it too could
be stored compactly. The trick is finding those numbers. The fractal image compression
scheme described later is one such trick.

Figure 3. Transformations, their attractor, and a
zoom on the attractor.

Why is it “Fractal” Image Compression?

The image compression scheme described later can be said to be fractal in several
senses. The scheme will encode an image as a collection of transforms that are very similar
to the copy machine metaphor. This has several implications. For example, just as the fern
is a set which has detail at every scale, so does the image reconstructed from the transforms
have detail created at every scale. Also, if one scales the transformations defining the fern
(say by multiplying everything by 2), the resulting attractor will be scaled (also by a factor
of 2). In the same way, the decoded image has no natural size, it can be decoded at any
size. The extra detail needed for decoding at larger sizes is generated automatically by the
encoding transforms. One may wonder (but hopefully not for long) if this detail is “real”;
that is, if we decode an image of a person at larger and larger size, will we eventually see

4

skin cells or perhaps atoms? The answer is, of course, no. The detail is not at all related
to the actual detail present when the image was digitized; it is just the product of the
encoding transforms which only encode the large scale features well. However, in some
cases the detail is realistic at low magnifications, and this can be a useful feature of the
method. For example, figure 4 shows a detail from a fractal encoding of Lena along with
a magnification of the original. The whole original image can be seen in figure 6, the now
famous image of Lena which is commonly used in the image compression literature.

Figure 4. A portion of Lena’s hat decoded at 4
times its encoding size (left), and the original im-
age enlarged to 4 times the size (right), showing
pixelization.

The magnification of the original shows pixelization, the dots that make up the image
are clearly discernible. This is because it is magnified by a factor of 4. The decoded image
does not show pixelization since detail is created at all scales.

Why is it Fractal Image “Compression”?

Standard image compression methods can be evaluated using their compression ratio;
the ratio of the memory required to store an image as a collection of pixels and the memory
required to store a representation of the image in compressed form. As we saw before, the
fern could be generated from 768 bits of data but required 65,536 bits to store as a collection
of pixels, giving a compression ratio of 65,536/768 = 85.3 to 1.

The compression ratio for the fractal scheme is hard to measure, since the image can
be decoded at any scale. For example, the decoded image in figure 4 is a portion of a 5.7
to 1 compression of the whole Lena image. It is decoded at 4 times it’s original size, so
the full decoded image contains 16 times as many pixels and hence its compression ratio
is 91.2 to 1. This may seem like cheating, but since the 4-times-larger image has detail at
every scale, it really isn’t.

CONTRACTIVE TRANSFORMATIONS
A transformation w is said to be contractive if for any two points P;, P>, the distance

d(w(P1)7w(P2)) < Sd(PhPZ)

for some s < 1. This formula says the application of a contractive map always brings
points closer together (by some factor less than 1). This definition is completely general,
applying to any space on which we can define a distance function d(Py, P;). In our case, we
work in the plane, so that if the points have coordinates P, = (z1,y1) and Py = (z2,92),
then

d(P1,Py) = /(x5 — 1) + (y2 — v1)2.

An example of a contractive transformation of the plane is

o[o=1s 2]

which halves the distance between any two points.

Contractive transformations have the nice property that when they are repeatedly
applied, they converge to a point which remains fixed upon further iteration (See the
Contractive Mapping Fixed Point Theorem box). For example, the map w above applied
to any initial point (z,y) will yield the sequence of points (%w%y), (iw, %y), ... which can
be seen to converge to the point (0,0) which remains fixed.

Iterated Function Systems.

Before we proceed with the image compression scheme, we will discuss the copy ma-
chine example with some notation. Later we will use the same notation for the image
compression scheme, but for now it is easier to understand in the context of the copy
machine example.

Running the special copy machine in a feedback loop is a metaphor for a mathematical
model called an iterated function system (IFS). An iterated function system consists of

a collection of contractive transformations {w; : 52 — R? | ¢ =1,...,n} which map the
plane R? to itself. This collection of transformations defines a map

W) = i)

The map W is not applied to the plane, it is applied to sets - that is, collections of points
in the plane. Given an input set S, we can compute w;(5) for each 7, take the union
of these sets, and get a new set W(S). So W is a map on the space of subsets of the
plane. We will call a subset of the plane an image, because the set defines an image
when the points in the set are drawn in black, and because later we will want to use the
same notation on graphs of functions which will represent actual images. An important
fact proved by Hutchinson is that when the w; are contractive in the plane, then W is
contractive in a space of (closed and bounded) subsets of the plane. (The “closed and

6

THE CONTRACTIVE MAPPING FIXED POINT THEOREM

The contractive mapping fixed point theorem says that something that is intuitively
obvious: if a map is contractive then when we apply it repeatedly starting with any initial
point we converge to a unique fixed point. For example, the map w(z) = %w on the real
line is contractive for the normal metric d(z,y) = |z — y|, because the distance between
w(z) and w(y) is half the distance between z and y. Furthermore, if we iterate w from
any initial point z, we get a sequence of points %w, %w, fracl8z,... that converges to the
fixed point 0.

This simple sounding theorem tells us when we can expect a collection of transfor-
mations to define image. Let’s write it precisely and examine it carefully.

THE CONTRACTIVE MAPPING FIXED POINT THEOREM. If X is a complete metric
space and W : X — X is contractive, then W has a unique fixed point |W|.

What do these terms mean ? A complete metric space is a “gap-less” space on
which we can measure the distance between any two points. For example, the real line is
a complete metric space with distance between any two points z and y given by |z — y|.
The set of all fractions of integers, however, is not complete. We can measure the distance
between two fractions in the same way, but between any two elements of the space we
find a real number (that is, a “gap”) which is not a fraction and hence is not in the space.
Returning to our example, the map w can operate on the space of fractions, however the
map z — %w cannot. This map is contractive, but after one application of the map we
are no longer in the same space we began in. This is one problem that can occur when we
don’t work in a complete metric space. Another problem is that we can find a sequence
of points that do not converge to a point in the space; for example, there are sequences
of fractions that get closer and closer (in fact, arbitrarily close) to +/(2) which is not a
fraction.

A fixed point |W| € X of W is a point that satisfies W(|W|) = |[W|. Our mapping
w(z) = 1z on the real line has a unique fixed point 0 because w(0) = 0.

Proving the theorem is as easy as finding the fixed point: Start with an arbitrary point
z € X. Now iterate W to get a sequence of points z, W(z), W (W(z),... How far can
we get at each step ? Well, the distance between W(z) and W(W (z)) is less by some
factor s < 1 than the distance between z and W (z). So at each step the distance to the
next point is less by some factor than the distance to the previous point. Since we are
taking geometrically smaller steps, and since our space has no gaps, we must eventually
converge to a point in the space which we denote |W| = lim,,_,.c W°"*(z). This point is
fixed, because applying W one more time is the same as starting at W(z) instead of z,
and either way we get to the same point.

The fixed point is unique because if we assume that there are two, then we will get
a contradiction: Suppose there are two fixed points z; and z5; then the distance between
W (1) and W(z2), which is the distance between z; and z since they are fixed points,
would have to be smaller than the distance between z; and z,; this is a contradiction.

Thus, the main result we have demonstrated is that when W is contractive, we get

a fixed point

[W| = lim W°"(z)

for any initial x.

bounded” part is one of several technicalities that arise at this point. What are these
terms and what are they doing there? The terms make the statement precise and their
function is to reduce complaint-mail writen by mathematicians. Having W contractive is
meaningless unless we give a way of determining distance between two sets. There is such
a metric, called the Haussdorff metric, which measures the difference between two closed
and bounded subsets of the plane, and in this metric W is contractive on the space of

closed and bounded subsets of the plane. This is as much as we will say about these these
details.) Hutchinson’s theorem allows us to to use the contractive mapping fixed point

theorem (see box), which tells us that the map W will have a unique fixed point in the

space of all images. That is, whatever image (or set) we start with, we can repeatedly
apply W to it and we will converge to a fixed image. Thus W (or the w;) completely

determine a unique image.
In other words, given an input image fo, we can run the copying machine once to get

f1 = W(fo), twice to get fo = W(f1) = W(W(fo)) = W°%(fp), and so on. The attractor,

which is the result of running the copying machine in a feedback loop, is the limit set

|W| = foo = nlgnoo Won(fo)

which is not dependent on the choice of fy. Iterated function systems are interesting in
their own right, but we are not concerned with them specifically. We will generalize the

idea of the copy machine and use it to encode grey-scale images; that is, images that are

not just black and white but which contain shades of grey as well.

§2 Self-Similarity in Images.
article, we will use the term image to mean a grey-scale image

In the remainder of this

N
N
N\
75 "\\\%: A y\;a,'s;‘;aii!gfﬁij
i S\
AN v‘ﬁi& NP
S E e e
55#}2’5%&{{‘,‘» NV LA NN
/;'\\\q'{//f-‘,{é\{‘i}s I SN
7/’\\\\/"-’\\“ A N ﬁ;’@“ﬂ
iy
O

&

Figure 5. A graph generated from the Lena image

Images as Graphs of Functions.

In order to discuss the compression of images, we need a mathematical model of an
image. Figure 5 shows the graph of a special function z = f(,y). This graph is generated
by using the image of Lena (see figure 6) and plotting the grey level of the pixel at position
(z,y) as a height, with white being high and black being low. This is our model for an
image, except that while the graph in figure 5 is generated by connecting the heights
on a 64 x 64 grid, we generalize this and assume that every position (z,y) can have an
independent height. That is, our model of an image has infinite resolution.

Thus when we wish to refer to an image, we refer to the function f(z,y) which gives the
grey level at each point (z,y). In practice, we will not distinguish between the function f
(which gives us a z value for each z,y coordinate) and the graph of the function (which is a
set in 3 space consisting of the points in the surface defined by f). For simplicity, we assume
we are dealing with square images of size 1; that is, (z,y) € {(v,v) : 0 < u,v < 1} = I?,
and f(z,y) € I =[0,1]. We have introduced some convenient notation here: I means the
interval [0,1] and I? is the unit square.

Figure 6. The original 256 x 256 pixel Lena image.

A Metric* on Images.

Now imagine the collection of all possible images: clouds, trees, dogs, random junk,
the surface of Jupiter, etc. We want to find a map W which takes an input image and
yields an output image, just as we did before with subsets of the plane. If we want to know
when W is contractive, we will have to define a distance between two images. There are
many metrics to choose from, but the simplest to use is the sup metric

6(f,9) = 51;1212 |f(z,y) — g(z,y)l- (1)

* Recall that a metric is a function that measures distance.

This** metric finds the position (z,y) where two images f and g differ the most and sets
this value as the distance between f and g.

Natural Images are not Exactly Self Similar.

A typical image of a face, for example figure 6 does not contain the type of self-
similarity that can be found in the fractals of figure 3. The image does not appear to
contain affine transformations of itself. But, in fact, this image does contain a different
sort of self-similarity. Figure 7 shows sample regions of Lena which are similar at different
scales: a portion of her sholder overlaps a region that is almost identical, and a portion of
the reflection of the hat in the mirror is similar (after transformation) to a part of her hat.
The distinction from the kind of self-similarity we saw in figure 3 is that rather than having
the image be formed of copies of its whole self (under appropriate affine transformation),
here the image will be formed of copies of properly transformed parts of itself. These
transformed parts do not fit together, in general, to form an exact copy of the original
image, and so we must allow some error in our representation of an image as a set of
transformations. This means that the image we encode as a set of transformations will not
be an identical copy of the original image but rather an approximation of it.

Figure 7. Self similar portions of the Lena image.

In what kind of images can we expect to find this type of self-similarity? Experimental
results suggest that most images that one would expect to “see” can be compressed by
taking advantage of this type of self-similarity; for example, images of trees, faces, houses,
mountains, clouds, etc. However, the existence of this restricted self-similarity and the
ability of an algorithm to detect it are distinct issues, and it is the latter which concerns
us here.

** There are other possible choices for image models and other possible metrics to use. In fact, the

choice of metric determines whether the transformations we use are contractive or not. These details are

important, but are beyond the scope of this article.

10

§3 A Special Copying Machine.

Partitioned Copying Machines.

In this section we describe an extension of the copying machine metaphor that can be
used to encode and decode grey-scale images. The partitioned copy machine we will use
has four variable components:

e the number copies of the original pasted together to form the output,
e a setting of position and scaling, stretching, skewing and rotation factors for each
copy.

These features are a part of the copying machine definition that can be used to generate
the images in figure 3. We add to the the following two capabilities:

e a contrast and brightness adjustment for each copy,
e a mask which selects, for each copy, a part of the original to be copied.

These extra features are sufficient to allow the encoding of grey-scale images. The
last dial is the new important feature. It partitions an image into pieces which are each
transformed separately. By partitioning the image into pieces, we allow the encoding of
many shapes that are difficult to encode using an IFS.

Let us review what happens when we copy an original image using this machine. Each
lens selects a portion of the original, which we denote by D; and copies that part (with a
brightness and contrast transformation) to a part of the produced copy which is denoted
R;. We call the D; domains and the R; ranges. We denote this transformation by w;.
The partitioning is implicit in the notation, so that we can use almost the same notation
as with an IFS. Given an image f, one copying step in a machine with N lenses can be
written as W(f) = wi(f)Uwa(f)U---Uwn(f). As before the machine runs in a feedback
loop; its own output is fed back as its new input again and again.

Partitioned Copying Machines are PIFS.

We call the mathematical analogue of a partitioned copying machine, a partitioned
iterated function system (PIFS). As before, the definition of a PIFS is not dependent
on the type of transformations that are used, but in this discussion we will use affine
transformations. The grey level adds another dimension, so the transformations w; are of

the form,
T a; b; O T e;
wi |y| =|¢c d; 0 y| + | fi (2)
z 0 0 s z 0;

where s; controls the contrast and o; the brightness of the transformation.
It is convenient to write

vi(e,y) = [Ccl fz] m i [;]

Since an image is modeled as a function f(z,y), we can apply w; to an image f by
wi(f) = wi(z,y, f(z,y)). Then v; determines how the partitioned domains of an original
are mapped to the copy, while s; and o; determine the contrast and brightness of the
transformation. It is always implicit, and important to remember, that each w; is restricted

11

to D; x I, the vertical space above D;. That is, w; applies only to the part of the image
that is above the domain D;. This means that v;(D;) = R;.

Since we want W (f) to be an image, we must insist that UR; = I? and that R;,NR; =0
when ¢ # j. That is, when we apply W to an image, we get some single valued function
above each point of the square I?. Running the copying machine in a loop means iterating
the map W. We begin with an initial image fy and then iterate fi = W(fy), fo = W(f1) =
W(W(fs)), and so on. We denote the n-th iterate by f, = W°™(fy).

Fixed points for PIFS.

In our case, a fixed point is an image f that satisfies W(f) = f; that is, when we
apply the transformations to the image, we get back the original image. The contractive
mapping theorem says that the fixed point of W will be the image we get when we compute
the sequence W (fo), W(W(fo)), W(W(W(fo))),..., where fy is any image. So if we can
be assured that W is contractive in the space of all images, then it will have a unique fixed
point which will then be some image.

Since the metric we chose in equation 1 is only sensitive to what happens in the z
direction, it is not necessary to impose contractivity conditions in the z or y directions.
The transformation W will be contractive when each s; < 1; that is, when z distances are
shrunk by a factor less than 1. In fact, the contractive mapping principle can be applied
to W°™ (for some m), so it is sufficient for W°™ to be contractive. This leads to the
somewhat surprising result that there is no specific condition on any specific s; either. In
practice, it is safest to take s; < 1 to ensure contractivity. But we know from experiments
that taking s; < 1.2 is safe, and that this results in slightly better encodings.

Eventually Contractive Maps.

When W is not contractive and W°™ is contractive, we call W eventually contractive.

A brief explanation of how a transformation W can be eventually contractive but not

contractive is in order. The map W is composed of a union of maps w; operating on disjoint

parts of an image. The iterated transform W°™ is composed of a union of compositions of
the form

w; O’wi2 O+--W;

1 m*

It is a fact that the product of the contractivities bounds the contractivity of the composi-
tions, so the compositions will be contractive if each contains sufficiently contractive w;;.
Thus W will be eventually contractive (in the sup metric) if it contains sufficient “mixing”
so that the contractive w; eventually dominate the expansive ones. In practice, given a
PIF'S this condition is simple to check in the sup metric.

Suppose that we take all the s; < 1. This means that when the copying machine is
run, the contrast is always reduced. This seems to suggest that when the machine is run
in a feedback loop, the resulting attractor will be an insipid, contrast-less grey. But this
is wrong, since contrast is created between ranges which have different brightness levels
0;. So is the only contrast in the attractor between the R;? No, if we take the v; to
be contractive, then the places where there is contrast between the R; in the image will
propagate to smaller and smaller scale, and this is how detail is created in the attractor.
This is one reason to require that the v; be contractive.

12

We now know how to decode an image that is encoded as a PIFS. Start with any
initial image and repeatedly run the copy machine, or repeatedly apply W until we get
close to the fixed point fo,. We will use Hutchinson’s notation and denote this fixed point
by foo = |W/|. The decoding is easy, but it is the encoding which is interesting. To encode
an image we need to figure out R;,D; and w;, as well as N, the number of maps w; we
wish to use.

§4 Encoding Images.

Suppose we are given an image f that we wish to encode. This means we want to find
a collection of maps wy,ws ..., wn with W = UY jw; and f = |W/|. That is, we want f to
be the fixed point of the map W. The fixed point equation

F=W(f) =wi(f) Vw(f)U---wn(f)

suggests how this may be achieved. We seek a partition of f into pieces to which we apply
the transforms w; and get back f. This is too much to hope for in general, since images
are not composed of pieces that can be transformed non-trivially to fit exactly somewhere
else in the image. What we can hope to find is another image f' = |W| with é6(f', f) small.
That is, we seek a transformation W whose fixed point f' = |W| is close to, or looks like,
f. In that case,

%

frf =W({f) = W(f) =wi(f) Vwa(f) U wn(f).
Thus it is sufficient to approximate the parts of the image with transformed pieces. We
do this by minimizing the following quantities

6(f N (R x I),wi(f)) i1=1,...,N (4)

That is, we find pieces D; and maps w;, so that when we apply a w; to the part of the image
over D;, we get something that is very close to the part of the image over R;. Finding the
pieces R; (and corresponding D;) is the heart of the problem.

A Simple Illustrative Example.

The following example suggest how this can be done. Suppose we are dealing with
a 256 x 256 pixel image in which each pixel can be one of 256 levels from grey (ranging
from black to white). Let Ry, Ra,..., Rig24 be the 8 x 8 pixel non-overlapping sub-squares
of the image, and let D be the collection of all 16 x 16 pixel (overlapping) sub-squares
of the image. The collection D contains 241 - 241 = 58,081 squares. For each R; search
through all of D to find a D; € D which minimizes equation 4; that is, find the part
of the image that most looks like the image above R;. This domain is said to cover the
range. There are 8" ways to map one square onto another, so that this means comparing
8-58,081 = 464,648 squares with each of the 1024 range squares. Also, a square in D has
4 times as many pixels as an R;, so we must either subsample (choose 1 from each 2 x 2

* The square can be rotated to 4 orientations or fliped and rotated into 4 other orientations, but that

is all.

13

LEAST SQUARES
Given two squares containing n pixel intensities, a1,...,a, (from D;) and by,...,b,
(from R;). We can seek s and o to minimize the quantity

n

R:Z(s-ai—l—o—bi)Z.

i=1

This will give us a contrast and brightness setting that makes the affinely transformed
a; values have the least squared distance from the b; values. The minimum of R occurs
when the partial derivatives with respect to s and o are zero, which occurs when

s = [nz(z a;b;) — (Z ai)(z bz)] / |n® Za? - (Z “i)2]

i=1 i=1 i=1 | i=1 i=1
and)
o:!Zbi—sZai /n?
i=1 i=1
In that case,
R = Z b2 + s(s Z a? — 2(2 a;b;) + 202 a;) + o(on2 -2 Z bz)] /n? (5)
i=1 i=1 i=1 i=1 i=1

If n2 Z?:l a? — (Z?:l ai)2 =0, then s =0 and o = Zn b;/n?.

i=1

sub-square of D;) or average the 2 x 2 sub-squares corresponding to each pixel of R; when
we minimize equation 4.

Minimizing equation 4 means two things. First it means finding a good choice for D;
(that is the part of the image that most looks like the image above R;). Second, it means
finding a good contrast and brightness setting s; and o; for w;. For each D € D we can
compute s; and o; using least squares regression (see box), which also gives a resulting
root mean square (rms) difference. We then pick as D; the D € D which has the least rms
difference.

A choice of D;, along with a corresponding s; and o;, determines a map w; of the
form of equation 2. Once we have the collection wy,...,w1924 we can decode the image by
estimating |W|. Figure 8 shows four images: an arbitrary initial image fy chosen to show
texture, the first iteration W(fy), which shows some of the texture from f,, W°2(f,), and
Welo (fO)

The result is surprisingly good, given the naive nature of the encoding algorithm. The
original image required 65536 bytes of storage, where as the transformations required only
3968 bytes™, giving a compression ratio of 16.5:1. With this encoding R = 10.4 and each

* Each transformation required 8 bits in the & and y direction to determine the position of IJ;, 7 bits

14

pixel is on average only 6.2 grey levels away from the correct value. Figure 8 shows how
detail is added at each iteration. The first iteration contains detail at size 8 x 8, the next
at size 4 x 4, and so on.

Jacquin [J] encoded images with less grey levels using a method similar to this example
but with two sizes of ranges. In order to reduce the number of domains searched, he also
classified the ranges and domains by their edge (or lack of edge) properties. This is very
similar, coincidentally, to the scheme used by Boss and Jacobs [BJF] to encod

Figure 8. An origil image, the first, second, and
tenth iterates of the encoding transformations.

for 0;, 5 bits for $; and 3 bits to determine a rotation and flip operation for mapping I); to R;.

15

A Note About Metrics.

Two men flying in a balloon are sent off track by a strong gust of wind. Not knowing
where they are, they approach a solitary figure perched on a hill. They lower the balloon
and shout the the man on the hill, “Where are we?”. There is a very long pause, and
then the man shouts back, “You are in a balloon.” The first man in the balloon turns to
the second and says, “That man was a mathematician.” Completely amazed, the second
man asks, “How can you tell that?”. Replies the first man, “We asked him a question, he
thought about it for a long time, his answer was correct, and it was totally useless.” This
is what we have done with the metrics. When it came to a simple theoretical motivation,
we use the sup metric which is very convenient for this. But in practice, we are happier
using the rms metric which allows us to make least square computations. (We could have
worked with the rms metric, of course, but checking contractivity in this metric is much

harder).

§5 Ways to Partition Images.

The example of the last section is naive and simple, but it contains most of the ideas
of a fractal image encoding scheme. First partition the image by some collection of ranges
R;. Then for each R; seek from some collection of image pieces a D; which has a low rms
error. The sets R; and D;, determine s; and o; as well as a;, b;, ¢;,d;, e; and f; in equation
2. We then get a transformation W = Uw,; which encodes an approximation of the original
image.

Quadtree Partitioning.

A weakness of the example is the use of fixed size R;, since there are regions of the
image that are difficult to cover well this way (for example, Lena’s eyes). Similarly, there
are regions that could be covered well with larger R;, thus reducing the total number of
w; maps needed (and increasing the compression of the image). A generalization of the
fixed size R; is the use of a quadtree partition of the image. In a quadtree partition, a
square in the image is broken up into 4 equally sized sub-squares, when it is not covered
well enough by a domain. This process repeats recursively starting from the whole image
and continuing until the squares are small enough to be covered within some specified rms
tolerance. Small squares can be covered better than large ones because contiguous pixels
in an image tend to be highly correlated.

An algorithm that works well for encoding 256 x 256 pixel images based on this idea
can proceed as follows (see [FJB1]). Choose for the collection D of permissible domains
all the sub-squares in the image of size 8,12,16,24,32,48 and 64. Partition the image
recursively by a quadtree method until the squares are of size 32. For each square in
the quadtree partition, attempt to cover it by a domain that is larger; this makes the v,
contractive. If a predetermined tolerance rms value e, is met, then call the square R; and
the covering domain D;. If not, then subdivide the square and repeat. This algorithm
works well. It works even better if diagonally oriented squares are used in the domain pool
D also. Figure 9 shows an image of a collie compressed using this scheme. In section 6
we discuss some of the details of this scheme as well as the other two schemes discussed
below.

16

Figure 9. A collie (256 x 256) compressed with the
quadtree scheme at 28.95:1 with an rms error of
8.5.

HV-Partitioning.

A weakness of the quadtree based partitioning is that it makes no attempt to select the
domain pool D in a content dependent way. The collection must be chosen to be very large
so that a good fit to a given range can be found. A way to remedy this, while increasing
the flexibility of the range partition, is to use an HV-partition. In an HV-partition, a
rectangular image is recursively partitioned either horizontally or vertically to form two
new rectangles. The partitioning repeats recursively until a covering tolerance is satisfied,
as in the quadtree scheme.

1st Partition an 3rd and 4th Partitions
R, [R, |/

@) (b) (©)
Figure 11. The HV scheme attempts to create self
similar rectangles at different scales.

This scheme is more flexible, since the position of the partition is variable. We can
then try to make the partitions in such a way that they share some self similar structure.
For example, we can try to arrange the partitions so that edges in the image will tend to
run diagonally through them. Then, it is possible to use the larger partitions to cover the
smaller partitions with a reasonable expectation of a good cover. Figure 11 demonstrates
this idea. The figure shows a part of an image (a); in (b) the first partition generates two
rectangles, R; with the edge running diagonally through it, and R, with no edge; and in
(c) the next three partitions of Ry partition it into 4 rectangles, two rectangles which can

17

be well covered by R; (since they have an edge running diagonally) and two which can be
covered by R, (since they contain no edge). Figure 10 shows an image of San Francisco
encoded using this scheme.

(11
Figure 10. San Francisco (256 x 256) compressed
with the HV scheme at 7.6:1 with an rms error of

7.1.
i # L

ok

e
[B
e]
=

éfa:# -
. =il %
3 é ﬁf %%
o s, 2 7

Figure 12. A quadtree partition (5008 squares), an
HV partition (2910 rectangles), and a triangular
partition (2954 triangles).

Triangular Partitioning.

Yet another way to partition an image is based on triangles. In the triangular parti-
tioning scheme, a rectangular image is divided diagonally into two triangles. Each of these
is recursively subdivided into 4 triangles by segmenting the triangle along lines that join
three partitioning points along the three sides of the triangle. This scheme has several
potential advantages over the HV-partitioning scheme. It is flexible, so that triangles in

18

the scheme can be chosen to share self-similar properties, as before. The artifacts arising
from the covering do not run horizontally and vertically, and this is less distracting. Also,
the triangles can have any orientation, so we break away from the rigid 90 degree rota-
tions of the quadtree and HV partitioning schemes. This scheme, however, remains to be
fully developed and explored. Figure 12 shows sample partitions arising from the three
partitioning schemes applied to the Lena image.

§6 Implementation Notes.

The pseudo-code in Table 1 shows two ways of encoding images using the idea pre-
sented. One method attempts to target a fidelity by finding a covering such that equation
4 is below some criterion e.. The other method attempts to target a compression ratio by
limiting the number of transforms used in the encoding.

Storing the Encoding Compactly.

To store the encoding compactly, we do not store all the coeflicients in equation 2.
The contrast and brightness settings are stored using a fixed number of bits. One could
compute the optimal s; and o; and then discretize them for storage. However, a significant
improvement in fidelity can be obtained if only discretized s; and o; values are used when
computing the error during encoding (and equation 5 facilitates this). Using 5 bits to store
s; and 7 bits to store o; has been found empirically optimal in general. The distribution of
s; and o; shows some structure, so further compression can be attained by using entropy
encoding.

The remaining coefficients are computed when the image is decoded. In their place
we store R; and D;. In the case of a quadtree partition, R; can be encoded by the storage
order of the transformations if we know the size of R;. The domains D; must be stored
as a position and size (and orientation if diagonal domain are used). This is not sufficient,
though, since there are 8 ways to map the four corners of D; to the corners of R;. So we
also must use 3 bits to determine this rotation and flip information.

In the case of the HV-partitioning and triangular partitioning, the partition is stored
as a collection of offset values. As the rectangles (or triangles) become smaller in the
partition, fewer bits are required to store the offset value. The partition can be completely
reconstructed by the decoding routine. One bit must be used to determine if a partition
is further subdivided or will be used as an R; and a variable number of bits must be used
to specify the index of each D; in a list of all the partition. For all three methods, and
without too much effort, it is possible to achieve a compression of roughly 31 bits per w;
on average.

In the example of section 4, the number of transformations is fixed. In contrast, the
partitioning algorithms described are adaptive in the sense that they utilize a range size
which varies depending on the local image complexity. For a fixed image, more transfor-
mations lead to better fidelity but worse compression. This trade-off between compression
and fidelity leads to two different approaches to encoding an image f - one targeting fi-
delity and one targeting compression. These approaches are outlined in the pseudo-code
in table 1. In the table, size(R;) refers to the size of the range; in the case of rectangles,
size(R;) is the length of the longest side.

19

Table 1. Two pseudo-codes for an adaptive encoding algorithm

e Choose a tolerance level e..
o Set Ry = I? and mark it uncovered.
e While there are uncovered ranges R; do {
e Out of the possible domains D, find the domain D;
and the corresponding w; which best covers R; (i.e.
which minimizes expression (4)).
o If 6(f N(R; x I),w;(f)) < ec or size(R;) < rpmin then
e Mark F; as covered, and write out the transfor-
mation w;;
e else
e Partition R; into smaller ranges which are

marked as uncovered, and remove F; from the list
of uncovered ranges.

a. Pseudo-code targeting a fidelity e..

e Choose a target number of ranges N,.
e Set a list to contain R; = I?, and mark it as uncovered.
e While there are uncovered ranges in the list do {

e For each uncovered range in the list, find and store
the domain D; € D and map w; which covers it best,
and mark the range as covered.

e Out of the list of ranges, find the range I; with

size(Rj) > Tmin Which has the largest

6(f N (R; x I),w;(f))

(i.e. which is covered worst).
e If the number of ranges in the list is less than N,

then {
e Partition F; into smaller ranges which are added

to the list and marked as uncovered.
e Remove F;,w; and D; from the list.

}
}

e Write out all the w; in the list.

b. Pseudo-code targeting a compression having N transformations.

Acknowledgements

This work was partially supported by ONR contract N00014-91-C-0177. Other sup-
port was provided by the San Diego Super Computer Center; the Institute for Non-Linear
Science at the University of California, San Diego; and the Technion Israel Institute of
Technology.

20

[B]
[BJ]

[FIB]

[FIB1]

REFERENCES
Barnsley, M. Fractals Everywhere. Academic Press. San Diego, 1989.
R.D. Boss, E.W. Jacobs, “Fractal-Based Image Compression,” NOSC Technical Re-
port 1315, September 1989. Naval Ocean Systems Center, San Diego CA 92152-5000.
Y. Fisher, E.-W. Jacobs, and R.D. Boss, “Fractal Image Compression Using Iterated
Transforms,” to appear in Data Compression, J. Storer, Editor, Kluwer Academic
Publishers, Norwall, MA.
Y. Fisher, E.-W. Jacobs, and R.D. Boss, “Fractal Image Compression Using Iterated
Transforms,” NOSC Technical Report 7??, Naval Ocean Systems Center, San Diego
CA 92152-5000.
John E. Hutchinson, Fractals and Self Similarity. Indiana University Mathamatics
Journal, Vol. 35, No. 5. 1981.
Jacquin, A., A Fractal Theory of Iterated Markov Operators with Applications to
Digital Image Coding, Doctoral Thesis, Georgia Institute of Technology, 1989.
R.D. Boss, E.W. Jacobs, “Fractal-Based Image Compression II,” NOSC Technical
Report 1362, June 1990. Naval Ocean Systems Center, San Diego CA 92152-5000.
E.W. Jacobs, Y. Fisher, and R.D. Boss, “Image Compression: A Study of the Iterated
Transform Method,” to appear in Signal Processing.
“The Science of Fractals”, H.-O. Peitgen, D. Saupe, Editors, Springer Verlag, New
York, 1989.
“Fractals For Class Room”, H.-O. Peitgen, D. Saupe, H. Jurgens, Springer Verlag,
New York, 1991.
E. Walach, E. Karnin, “A Fractal Based Approach to Image Compression”, Proceed-
ings of ICASSP Tokyo, 1986.

21

