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There are a number  of methods that  have been used for 
sorting purposes in various machine programs from time 
to time. Most  of these methods are reviewed by Harold 
Seward [1] in his  thesis. One tacit assumption runs through 
his entire discussion of internal sorting procedures, namely, 
that  the in te rna l  memory is relatively small. In other 
words, the n u m b e r  of items to be sorted is so large that  
they cannot possibly all fit into the memory at one time. 

The methods  of internal sorting which he discusses are 
sorting by: 

1) Finding t h e  smallest. 
2) In te rchanging  pairs. 
3) Sifting. 
4) Partial sor t .  
5) Merging pairs. 
6) Floating decimal sort. 
The first four  methods all require a time proportional 

to n ~, where n is the number of items being sorted. The 
time for the f i f th  method is proportional to n(ln n). The 
time for the s ix th  method is proportional to n(ln r), where 
r is the largest number  to be used in a key. 

As pointed o u t  in Seward's paper, one would normally 
choose either me t hod  five or six for a rapid internal sort, 
especially if n is to be very large. The chief drawback of 
these two me thods ,  however, is the fact that  they require 
twice as much  storage as the other four methods. 

The advent  of very large high-speed random access 
memories changes  the picture relative to sorting some- 
what. I t  is 1now possible to have a very large number of 
items to be so r ted  in memory all at  one time. I t  is highly 
desirable, therefore ,  to have a method with the speed 
characteristics of  the merging by pairs and the space 
characteristics of sifting. If such a method were available 
it would be possible to sort twice as many items at  one 
time in the mach ine  and still do it at  a reasonably high 
speed. 

Such a m e t h o d  is outlined in this paper. The idea is, in 
fact, to combine some of the properties of merging with 
some of the properties of sifting. The method is most 
easily described by  reference to the block diagram, figure 
1. Suppose we a re  given a sequence of elements f~ to be 
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FIG. 1. Block diagram to sort a set of elements f~ with keys rl, 
i = 1,2,. . . ,n. 

sorted with keys ri ,  i = 1, 2, • •. , n. One begins by di- 
viding the set of elements into n/2 subsets. As can be seen, 
there will be two elements in each subset, with the pos- 
sible exception of one which may have three. Each of 
these subsets is then sorted. I t  should be noted that  each 
subset of two elements is so placed in the total list that 
they are separated by approximately n/2 places. Thus, 
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TABLE 1 

1 2 3 4 5 6 7 8 
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6 / ~  2 2 3 

3 4 4 

5 ~ 1  3 7 6 

1 10 1 10 9 

9 9 9 10 

5 5 1 11 11 

TABLE 2 
Summary of running times 

Number of Items Number of Runs Average Time (Seconds) 

500 
1000 
2500 
5000 

10000 
20000 

100 
50 
12 
12 
13 
6 

1.03 
2.36 
7.85 

18.2 
42.2 
96.8 

if the two elements are out of sort and must be inter- 
changed they will move a distance of n/2 places in the to- 
tal list. Once this pass is completed the total set is now 
divided into approximately n/4 subsets of elements. This, 
in effect, merges two of the original subsets into one of the 
new subsets. The merging is not done according to the 
key, but rather is done by first taking one element from 
the first subset and one from the second, then another 
from the first and another  from the second, etc. Each 
of these subsets is then sorted by sifting. 

The logic of this whole procedure is outlined in the block 
diagram, figure 1. The notation of the block diagram is as 
follows: 

--~ means "replaces". 
Ira/2] means the largest integer less than or equal to 
Table 1 illustrates an example sorted by this method. 

Column 1 is the original arrangement of 11 items. Column 
3 is the arrangement after the  first complete pass, i.e., 
with m = 5. On the next pass m = 2, and column 7 is the 
result. On the final pass m = 1, and the elements are in 
complete sort. 

This particular method requires a negligible amount of 
storage space in aditition to that  occupied by the list of 
items. In addition, it operates at fairly high speed. Thus 
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FIG. 2. Sort times for sequences of one-word elements. (Each 
element is its own key.) 

far, an analytical determination of the expected speed 
has eluded the writer. However, experimental use has  
established its speed characteristics. I t  appears that the 
time required to sort n elements is proportional to n 1"226 
At least this is true for one-word items which are their 
own key. 

Table 2 shows a summary of average times for sorting 
numbers of one-word elements which were originally in 
random order. In this case, ri = fi • The listing in appendix 
I is a 704 program for this particular case. The graph in 
figure 2 is a plot of the time required to sort a random 
sequence of n elements with the above program. 

Thi s sorting method is useful in machines with a large 
high-speed random access memory. The time requirement 
is only slightly longer than that  for merging pairs-- 
but  this method can be used to sort twice as many ele- 
ments in the same memory space. In many cases, the little 
extra time for internal sorting will be more than com- 
pensated by the diminished use of slow memory, such as 
tapes. 
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APPENDIX I. SAMPLE PROGRAM 

This is a program for sorting n one-word elements using the 
block diagram on page 30. Each one-word element is its own key. 
• DL SHELL 
• SORT PROGRAM, ALGEBRAIC 
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• C A L L I N G  S E Q U E N C E  
• SXJ  SOWF,4 
• ZER I A , 0 , N  " 
• R E T U R N  

S O R T  CAL 1,4 
SXI)  IA,4 
S X D  Bl ,1  
STA S 
STA A 
STA Y -  1 
STA IA 
STI)  M 
CPL b 

ADI)  I)EC1 
STI) B 

C CLA M 
ARS 1 
STI )  M 
CLA ~ M 
ZEJ E 
STD W 
STI) X 
ADI)  B 
STD K 
CI,A M 
ARS 18 
AI)D IA 
STA U 
STA Y 

I ,XA M,5 
U CI,A - - , ~  

S SGA --- ,  t 
UNJ  V 

UNJ  V 

L[)Q - -  -,4 
Y STQ ..... ,4 

A ST() . . . .  ,4 

W R X J  , ÷ t , 4 , - -  

X H X J  S,4,-- - 

L X J  S ,4 ,0  

V LXA M,4 

R X J  * + 1 ,5 , -  1 

K H X J  U , 4 , -  - 

UNJ  C 
E LXI) [A,4  

I ,XD BI ,  1 

U N J  2,4 

DEC1 ZER 0,0,1 

IA Z E R  - - ' , 0 , - -  

M Z E R  0 , 0 , -  - 

B Z E R  - - , 0 , -  - 

B1 Z E R  0 , 0 , -  - 

• LAST CARD OF SORT P R O G R A M  

" IA is address of first element; N is the number of elements 
to sort. 

b Twns complement of N + 1. 
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