
SCIENTIFIC AND BUSINESS
APPLICATIONS

A High-Speed Sorting Procedure
D. L. SHELL, General Electric Company, Cincinnati, Ohio

There are a number of methods that have been used for
sorting purposes in various machine programs from time
to time. Most of these methods are reviewed by Harold
Seward [1] in his thesis. One tacit assumption runs through
his entire discussion of internal sorting procedures, namely,
that the in te rna l memory is relatively small. In other
words, the n u m b e r of items to be sorted is so large that
they cannot possibly all fit into the memory at one time.

The methods of internal sorting which he discusses are
sorting by:

1) Finding t h e smallest.
2) In te rchanging pairs.
3) Sifting.
4) Partial sor t .
5) Merging pairs.
6) Floating decimal sort.
The first four methods all require a time proportional

to n ~, where n is the number of items being sorted. The
time for the f i f th method is proportional to n(ln n). The
time for the s ix th method is proportional to n(ln r), where
r is the largest number to be used in a key.

As pointed o u t in Seward's paper, one would normally
choose either me t hod five or six for a rapid internal sort,
especially if n is to be very large. The chief drawback of
these two me thods , however, is the fact that they require
twice as much storage as the other four methods.

The advent of very large high-speed random access
memories changes the picture relative to sorting some-
what. I t is 1now possible to have a very large number of
items to be so r ted in memory all at one time. I t is highly
desirable, therefore , to have a method with the speed
characteristics of the merging by pairs and the space
characteristics of sifting. If such a method were available
it would be possible to sort twice as many items at one
time in the mach ine and still do it at a reasonably high
speed.

Such a m e t h o d is outlined in this paper. The idea is, in
fact, to combine some of the properties of merging with
some of the properties of sifting. The method is most
easily described by reference to the block diagram, figure
1. Suppose we a re given a sequence of elements f~ to be

Start

- . .

m - O?

No

J n ~ ~ ~ k

j > k t

j ~ ~ F J,/ + 1 "-, j

Yes

?

[Y~ I

FIG. 1. Block diagram to sort a set of elements f~ with keys rl,
i = 1,2,. . . ,n.

sorted with keys ri , i = 1, 2, • •. , n. One begins by di-
viding the set of elements into n/2 subsets. As can be seen,
there will be two elements in each subset, with the pos-
sible exception of one which may have three. Each of
these subsets is then sorted. I t should be noted that each
subset of two elements is so placed in the total list that
they are separated by approximately n/2 places. Thus,

30 C o m m u n i c a t i o n s o f t h e ACM

TABLE 1

1 2 3 4 5 6 7 8

- - - - [[............. I I I i ' I

3 1 1 l

/ ,
11 i 7/ 7 / i / / : 3 / 2

6 / ~ 2 2 3

3 4 4

5 ~ 1 3 7 6

1 10 1 10 9

9 9 9 10

5 5 1 11 11

TABLE 2
Summary of running times

Number of Items Number of Runs Average Time (Seconds)

500
1000
2500
5000

10000
20000

100
50
12
12
13
6

1.03
2.36
7.85

18.2
42.2
96.8

if the two elements are out of sort and must be inter-
changed they will move a distance of n/2 places in the to-
tal list. Once this pass is completed the total set is now
divided into approximately n/4 subsets of elements. This,
in effect, merges two of the original subsets into one of the
new subsets. The merging is not done according to the
key, but rather is done by first taking one element from
the first subset and one from the second, then another
from the first and another from the second, etc. Each
of these subsets is then sorted by sifting.

The logic of this whole procedure is outlined in the block
diagram, figure 1. The notation of the block diagram is as
follows:

--~ means "replaces".
Ira/2] means the largest integer less than or equal to
Table 1 illustrates an example sorted by this method.

Column 1 is the original arrangement of 11 items. Column
3 is the arrangement after the first complete pass, i.e.,
with m = 5. On the next pass m = 2, and column 7 is the
result. On the final pass m = 1, and the elements are in
complete sort.

This particular method requires a negligible amount of
storage space in aditition to that occupied by the list of
items. In addition, it operates at fairly high speed. Thus

i ~ , i i I J I i
.3 . ~ .~ .,~ / 2, 3 4 &

Thousands of E l e m e n t s

/

! .=

I I I
8 lo 2 0 d O

FIG. 2. Sort times for sequences of one-word elements. (Each
element is its own key.)

far, an analytical determination of the expected speed
has eluded the writer. However, experimental use has
established its speed characteristics. I t appears that the
time required to sort n elements is proportional to n 1"226
At least this is true for one-word items which are their
own key.

Table 2 shows a summary of average times for sorting
numbers of one-word elements which were originally in
random order. In this case, ri = fi • The listing in appendix
I is a 704 program for this particular case. The graph in
figure 2 is a plot of the time required to sort a random
sequence of n elements with the above program.

Thi s sorting method is useful in machines with a large
high-speed random access memory. The time requirement
is only slightly longer than that for merging pairs--
but this method can be used to sort twice as many ele-
ments in the same memory space. In many cases, the little
extra time for internal sorting will be more than com-
pensated by the diminished use of slow memory, such as
tapes.

REFERENCES

1. SEWARD, HAROLD H., Information sorting in the application of
electronic digital computers to business application (ASTIA
35462).

2. FRIEND, E. H. Sorting on electronic computer systems, J.
Assoc. Comp. Mach. 3 (1956), 134.

APPENDIX I. SAMPLE PROGRAM

This is a program for sorting n one-word elements using the
block diagram on page 30. Each one-word element is its own key.
• DL SHELL
• SORT PROGRAM, ALGEBRAIC

Communicat ions o f the ACM 3]

• C A L L I N G S E Q U E N C E
• SXJ SOWF,4
• ZER I A , 0 , N "
• R E T U R N

S O R T CAL 1,4
SXI) IA,4
S X D Bl ,1
STA S
STA A
STA Y - 1
STA IA
STI) M
CPL b

ADI) I)EC1
STI) B

C CLA M
ARS 1
STI) M
CLA ~ M
ZEJ E
STD W
STI) X
ADI) B
STD K
CI,A M
ARS 18
AI)D IA
STA U
STA Y

I ,XA M,5
U CI,A - - , ~

S SGA --- , t
UNJ V

UNJ V

L[)Q - - -,4
Y STQ ,4

A ST() ,4

W R X J , ÷ t , 4 , - -

X H X J S,4,-- -

L X J S ,4 ,0

V LXA M,4

R X J * + 1 ,5 , - 1

K H X J U , 4 , - -

UNJ C
E LXI) [A,4

I ,XD BI , 1

U N J 2,4

DEC1 ZER 0,0,1

IA Z E R - - ' , 0 , - -

M Z E R 0 , 0 , - -

B Z E R - - , 0 , - -

B1 Z E R 0 , 0 , - -

• LAST CARD OF SORT P R O G R A M

" IA is address of first element; N is the number of elements
to sort.

b Twns complement of N + 1.

32 C o m m u n i c a t i o n s o f t h e ACM

