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roducts from IBM have, for more 
than 20 years, taken the major P share of the general-purpose 

mainframe computer market. This con- 
tinual dominance by one supplier has 
meant that the interfaces between its sys- 
tem components have become de facto 
standards. Any manufacturer wishing to 
supply hardware or software products to 
the major portion of this market must 
recognize these standard interfaces. 

The term “plug compatible” has come 
to apply to products designed in accord- 
ance with such de facto standard inter- 
faces. In this article, 1 use the term 
“standard” to refer to the de facto stan- 
dard interfaces followed by the plug com- 
patibles. (Hellerman discussed the origin 
of these standards.’) 

Amdahl Corporation produces stan- 
dard hardware and software products. 
Since its founding in 1970, Amdahl’s main 
product has been a high-end processor sys- 
tem. Given that this system runs with star.- 
dard software, it follows that it must 
support the current standard architecture. 
Indeed, the first Amdahl computers were 
hard-wired implementations of the IBM 
System/370 architecture. However, in 
later products, the Amdahl architecture 
has included many extensions to the stan- 
dard architecture of the time. Here 1 will 
describe these extensions, why they were 
made, and how they developed. 

Amdahl’s architecture 
for its mainframe 
computers helps 

maintain 
compatibility with 

a changing standard. 
Its multiple-domain 

facility allows 
multiple operating 

systems to share one 
mainframe system. 

Goals of architecture 
extensions 

. . . . . . -. -. - - - - -. - 
and to the PCM’s competitors. ** 

Compatibility. The concept of compati- 
bility might look straightforward, but it 
turns out to be surprisingly complex. The 
architecture with which the PCMs must be 
compatible, although a de facto standard, 
is continually being extended, and the 
PCMs have no prior knowledge of changes 
to come. When a change is made to the 
standard, the PCMs must also implement 
a change. However, any change always 
takes time before it is widely used-the 
delay in acceptance depends on the mag- 
nitude of the change and the extent of the 
difficulties its adoption causes to cus- 
tomers’ operations. This natural delay 
means that the PCMs d o  not have to fol- 
low each change instantly, but can spread 
their response over time. 

Compatibility for a PCM thus means 
not only compatibility with the current 
standard, but also the ability to follow 

A plug compatible manufacturer, or 
PCM, can justify extensions to its archi- 
tecture On two The first’ and 
most important, is to make it easier for the 
PCM’s products to remain compatible 
with the standard despite the continual 
extensions and changes made to it. The 

*Doran prepared this article while on leave, working 
at Amdahl Corp. in Sunnyvale, California. 

*?he standard mainframe business is awash in acro- 
nyms such as PCM; these are too prevalent to avoid, 
bur I define them on first use and  include them in the 
glossary if used frequently. Note that I d o  not use the 
term PCM here to include IBM itself, although it, too, 
is significantly constrained by the standards that it has 
created. 
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changes to the standard in a timely man- 
ner. The latter mainly requires careful 
management of the design and manufac- 
turing processes for fast turnaround of 
changes, and flexibility in the design archi- 
tecture to accommodate extensions. How- 
ever, i t  also has implications for the 
architecture that lead to the surprising con- 
clusion that, to  be compatible in the 
future, the architecture should differ from 
today’s standard. 

One reason for this apparent paradox is 
the desirability of anticipating change. 
Although we cannot know the details of 
future extensions, the really important 
changes will be made by the dominant sup- 
plier to solve problems experienced by its 
“leading edge” customers. We PCMs can 
observe thoseproblems, judge the kinds of 
changes needed, and set up our computers 
to have similar features. 

Such anticipation, although not neces- 
sary to ensure future compatibility, can 
greatly reduce the difficulty and cost of 
later modifications. Our solutions to the 
eventual changes will surely differ from 
these interim measures, but, meanwhile, 
we will have gained experience with the 
design and application problems involved. 
Our product will have appropriate data 
paths and so be easier to  modify. Our 
product might even adequately adhere to  
the new or revised standard without major 
changes to  its hardware. 

Even without anticipation of changes to 
the standard, we would want to have 
extensions.  Compatibil i ty requires 
presenting the same image to software. 
Not having to modify standard software 
to have it run on  your hardware grants a 
highly desirable “seal of compatibility” to 
a PCM’s products. This goal applies to the 
operating systems that control the com- 
puter (system control programs, or SCPs, 
in standard terminology). However, some 
sections of a computer family design are 
model-dependent and so need specialized 
software for control, such as for thedetails 
of machine checks or reconfiguration. I t  
follows that we want to have some way of  
running both standard SCPs and PCM 
model-specific software on the same com- 
puter, with such PCM software being 
invisible to the other software. 

Once we PCMs accept the desirability of 
such software, we can further develop the 
idea. Rather than regarding our software 
as equal to other software, we would nat- 
urally consider i t  the ultimate controller of 
the system because i t  deals directly with 
PCM hardware. 

We must define mechanisms that allow 
the PCM software to  coexist with the stan- 
dard SCP, yet maintain the ability to assert 
control when necessary. The events that 
trigger control by the PCM software, such 
as on  machine checks or when initially 
starting the computer, must be selected 
and the details of control switching spelled 
out. Obviously, we must extend the archi- 
tecture of the PCM computer considera- 
bly to encompass this. 

For the PCM, anything that can aid in 
attaining compatibility quickly is valuable. 
As mentioned above, design flexibility is 
essential; for example, having spare 
microcontrol storage. However, flexibil- 
ity often conflicts with other goals, such as 
high processor speed and low cost. Given 
that we need PCM software anyway, there 
arises the possibility of our  using it in 
attaining compatibility with the unknown 
future. I t  would effectively act as an exten- 
sion to microcontrol store. This requires 
that we give more thought to circum- 
stances in which control has to be trans- 
ferred to  the PCM code, as well as to the 
efficiency of the mechanisms involved. 

These considerations will further increase 
the richness of the PC h.1 architecture 
extensions, which are jtistifiable 011 the 
grounds of compatibilit) alone. 

Added value. A PChl supplier must 
select with care extension: made for added 
value so as to satisfy a number of seem- 
ingly conflicting criteri;:. Because cus- 
tomers live in the standari I world, i t  is best 
if any extensions appear to \upplement or 
exrend what the dominan supplier offers. 
Innovations that obviousiy differ and that 
appear to make clistome’s dependent on 
the alternative supplier, although possible, 
are difficult to introduce because the 
justifiably conservative rnajority of cus- 
tomers will resist them. 

Innovations should alscb be unobtrusive. 
For example, i t  is importa i t  that the PCM- 
specific controlling softbare look built-in 
to the hardware of thc  ma &ne, that it  not 
complicate operation, an( that it  definitely 
not appear to thc custonie - LIS another SCP 
to be mastered. 

I t  is thus advisable that extensions align 
with what the dominan supplier does. 

Glossary 
Note that terms used to describe the 
Amdahl architecture are italicized. 

channel: processor for performing 
1/0 in 370 architecture 

CMS: Conversational Monitor 
System-IBM time-sharing 
system, part of VM 

macrocode 
controlsfare: mode of operation for 

CP: control program-kernel of VM 
CPU: central processing unit- 

CR: control register 
domain: set of resources controlled 

fast assist: mode of operation for 

GPR: general-purpose register 
guest: a virtual computer or a pro- 

gram running under a host 
host: SCP that provides a virtual- 

machine environment 
macrocode: hardware-specific code 

used to implement an architecture 

processor 

by an SCP 

instruction emulation 

MDF: Multiple Domain Facility- 
arc hi tec t ure to support mu1 t i ple 
SCPs in production operation 

MVS: Multiple Virtual Spaces-the 
main IBM SCP 

native: operation of a proqram not as 
a guest 

PCM: plug-compatible 
manuf ac t urer-manu f icturer of 
products to de facto standard 
interfaces 

PSW: program status wor j  
SCP: system control program-an 

SIGP: signal processor-interCPU 

system register: control register for 

System/370: the architecture imple- 

user state: mode of operation for a 

VM: virtual machine-an IBM SCP 
XA: Extended Arc hi tect u .e - 

extension to System/370 

operating system 

signaling instruction 

control state 

mented in IBM mainfr2,me computers 

guest SCP 
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One possibility that looks safe is to  solve 
problems (such as addressing limitations) 
that clearly must be dealt with and to make 
the solutions available to  the PCM cus- 
tomers. Unfortunately, this approach 
encounters a major difficulty: when the 
dominant supplier solves the same prob- 
lems, the PCM extensions will likely 
become redundant because PCM cus- 
tomers will tend to prefer the new standard 
approaches, other considerations being 
equal. 

From the above arguments we can con- 
clude that the PCM must be different yet 
appear to be the same. Although actually 
a reasonable goal for design features (such 
as making the PCM product faster), it is 
indeed quite a restriction for architecture. 
If that were not enough, even more con- 
straints arise just from business consider- 
ations. In particular, the PCM wants to 
obtain extensions-especially those not 
required for compatibility-at low cost. 
Rather than using the hardware involved 
to  provide an  advantage that is merely 
projected, the PCM could use it for more 
obvious benefits, such as making the 
machine faster, or leave it out altogether, 
thus making the machine less costly. 

Given all the restrictions under which 
PCMs operate, we might question whether 
any added-value extensions are reasona- 
ble. However,  consider t he  main  
direction-taken by Amdahl-of allowing 
multiple SCPs to run on a single computer. 
IBM itself supported such a facility, but 
Amdahl could take an improved, fun- 
damentally different approach unlikely to 
be followed by IBM in the short term. Cus- 
tomers could always replace the Amdahl 
feature, albeit at the cost of purchasing 
multiple computers or by reverting to the 
more cumbersome IBM solution, so the 
approach did not commit customers to the 
PCM permanently. It would not require 
changes to SCPs and so had no impact on 
compatibility. Moreover, it would appear 
as a built-in hardware feature, easy to 
operate. It thus neatly satisfied all of our 
external criteria and constraints. 

Because, for compatibility reasons, 
Amdahl needed to  provide support for 
controlling software outside the realm 
of the standard SCP, we could argue that 
the hardware cost to  support multiple 
SCPs added little to  the total cost. So, we 
could convince ourselves that support of 
multiple SCPs also satisfied our internal 
constraints. From this conviction, Amdahl 
developed an  architecture based on the 
concept of simultaneously executing 

Because macrocode 
is under our control, 

the architecture that it 
sees does not have to 
be the same as the 

standard. 

multiple SCPs, with extensive attention 
to  details that assist in maintaining 
compatibility. 

Support of multiple 
operating systems 

Rationale. Given that one SCP involves 
quite enough complexity all by itself, it 
might surprise those unfamiliar with the 
large mainframe world that there is 
interest in running more than one operat- 
ing system on a single computer. In fact, 
a mainframe computer center that sup- 
ports a large number of users gains many 
advantages. Some of the benefits the cus- 
tomer might obtain include: 

Customers can test and install new 
versions of SCPs during normal working 
hours without disrupting production 
operation. 

Customers can run different SCPs, 
specialized for different applications, on 
a single computer. 

Customers can run multiple copies of 
the same SCP, each tuned for a different 
class of application. 

Rather than modifying old programs 
to allow them to  run under new versions of 
SCPs, customers can operate both the old 
and new versions of the SCPs. If neces- 
sa ry ,  they can  m a k e  conversions 
gradually. 

A separate SCP might provide suffi- 
cient security in some applications that the 
customer can avoid purchasing a special 
machine or restricting certain periods of 
operation. 

Given that software failures occur 
more frequently than do  hardware 
failures, a backup SCP can provide 
improved availability. 

Disparate workloads, resulting from 

mergers, acquisitions, or rationalization, 
can be consolidated on the same system. 

Customers can obtain considerable 
savings by only having to license one copy 
of an  SCP and the software that runs 
under it. 

Some benefits from multiple SCP oper- 
ation accrue more directly to the vendor of 
large systems: 

One large system can replace multiple 
small systems, thus creating new sales 
opportunities. 

It is easier to introduce an entirely new 
SCP, because the customer's operation is 
not immediately dependent on the new 
SCP. 

Vendors can use special SCPs for 
diagnosis and measurement, running them 
in parallel to  the Sc'Ps being monitored. 

The VM SCP. Of' all the above advan- 
tages, the most exigent from the cus- 
tomer's point of view would be that of 
testing new releases of SCPs. This need led 
IBM itself to  support multiple SCP oper- 
ation. This interesting story has been 
described at length so 1 will 
only recapitulate the main points here. 

One of the three main SCPs supported 
by IBM for large mainframes is VM/370. 
This was developed, and flourished, 
because it provided the Conversation 
Monitor System, or CMS, time-sharing 
subsystem.* VM itself was designed with 
the idee fixe that time-sharing is best 
implemented by providing each user with 
the illusion of complete control of the 
computer system. Under this approach, 
the user is provided with a virtual machine 
environment indistinguishable from the 
original computer system. 

Naturally, SCPs can run (as guests) in 
a virtual machine under VM (the host), so 
the ability to  run multiple SCPs is immedi- 
ately available. A guest operates using vir- 
tual resources as opposed to the real 
resources controlled by the host-there 
may be many more virtual resources, such 
as processors and main storage, than real 
resources. 

This approach has the disadvantage that 
the performance of an SCP running as a 
guest is severely degraded when compared 
to performance running on the real 
machine (native operation). For VM to 
maintain control of the system, the guest 
SCP has to operate in nonprivileged mode 
with all supervisor-state instructions 
trapped by VM, checked, and simulated. 
Additionally, because the guest SCP 
believes that it controls the whole com- 
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puter, any resource mappings that i t  sets 
up (such as page tables) have to  be inter- 
cepted and modified by VM. (Goldberg 
discussed the general topic of virtualiza- 
tion of resources.5) 

As mentioned above, the ability to  run 
test SCPs was so important to some users 
that they did use V M  to run other SCPs, 
accepting the loss of performance 
involved. IBM noticed this class of trou- 
bled users and responded by enhancing the 
machines running VM to make them per- 
form better, using various architecture 
extensions called assists.’ Eventually, 
with the features called Virtual Machine 
Assist plus Preferred Machine Assist (on 
the System/370) and Interpretive Execu- 
tion Facility plus SIE Assist‘(on the Sys- 
tem/370-XA, the successor architecture to 
the System/370), i t  became possible to run 
one selected SCP (the “preferred” guest) 
under VM with performance very close to 
native operation. This made i t  possible to 
use guest SCPs for production operation. 

These enhancements were most advan- 
tageous to IBM when migrating customers 
from the 24-bit-addressing MVS to the 
31-bi t -addressing MVS/XA.  IBM 
provided customers with the VM/XA 
Migration Aid, which comprised a “cut- 
down” version of VM that could run both 
old and new systems simultaneously 

The multiple domain facility. The 
Amdahl architecture was specified in 1977, 
long before the above events, which took 
place in the early 1980s. We at Amdahl had 
also noticed the customers’ needs, but we 
didn’t find the VM approach attractive 
because it would involve producing a full 
S C P  and certainly would run counter to  
the criterion of being unobtrusive. 
Amdahl software engineers explored a 
different possible approach, which even- 
tually led to a product called VM/PE (for 
Per formance  Enhancement ) .  This  
involced running the MVS operating sys- 
tem as if i t  were in control of the whole 
computer by placing i t  in the low portion 
of the real address space and not telling it 
of the existence of the high address space 
where VM was placed. I t  required the 
addition of software to  MVS so that con- 
trol could be given to  VM on the occur- 
rence of interruptions. 

The security of the approach depended 
on the reliability of MVS code. Although 
this was fine in practice, we did not want 
a situation where each SCP could interfere 
with another, nor one that needed modifi- 
cations to  a standard SCP. Amdahl’s 

.”.---.”---, 

f VM 

i 

Figure 1.  Contrasted models of operation, showing (a) IBM with M a$ preterred 
guest under VM and (b) Amdahl multiple domain operation. Bold oullined 5)\terns 
can be used for production operation. 

VM/PE is acknowledged and described in 
Bean and Gum’s patent‘ for IBM’s Pre- 
ferred Machine Assist, which continued 
the same approach under VM, but fixed 
some of its problems. 

I t  was also natural for Amdahl to extend 
the VM/PE approach but, rather than 
concentrating on improving MVS under 
VM, i t  made more sense for us to  regard 
the two as equals and to put the code that 
controls the allocation of the hardware 
outside of both. This led to  our approach, 
contrasted to the IBM approach in Figure 
1. Our approach added another level of 
control to the system, containing a con- 
troller that came to be termed macrocode 
(Amdahl uses macrocode to refer to  both 
the class of code and the control entity 
itselo. Macrocode, supported by neces- 
sary architecture changes, has the follow- 
ing goals: 

Be ultimately in control of the com- 

Share the hardware among multiple 

Appear to users to be built-in, part of 

Assist with providing a compatible 

Provide secure boundaries between 

Note that, although macrocode has 
some of the functions of an SCP like VM, 
its rationale and goals are quitedifferent. 

puter hardware. 

SCPs with minimal overhead. 

the hardware. 

image to  standard SCPs. 

independent SCPs. 

Consequently, quite dil fci ent architec- 
tural solutions are called f ) r .  Ikcause mac- 
rocode is under  O U I  control ,  the  
architecture that i t  sees dc e5 not have to be 
the same as the standaitl--\vhich is an 
astounding degree of f r  :cdom to give a 
PCM. Customer progra n \  ncver see the 
architecture, so there is I o cxfernal com- 
patibility reason for i t  to l)i‘ the same from 
model to model, or for it I  ot to evolve over 
time. The architecture ca I he very 5pecific 
to the hardware and deflncd at a lebel of 
detail that would be entii-vly inappropriate 
for general programming. T h i (  intermedi- 
ate status accounts for tlre coining of the 
marketing term macrocode to describe 
coding at this level. 

Outline of architecture 
This description applii s generally to the 

architecture developed far the Amdahl580 
and 5890 series compute’s, despite differ- 
ences in the details of clit‘lerent models. 
Initially, only the System /3’0 architecture 
was supported, but la er the Anidahl 
architecture was extended to allow simul- 
taneous execution of c . 1 ’ ~  using Sys- 
tem/370 or System/370- X.4.  Most of the 
Amdahl architectural ex:ensions apply to  
processors, called CPUs [ti fhe mainframe 
world. 

The description below should be under- 
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standable to  the general reader, but com- 
plete apprec ia t ion  requires some 
knowledge of the IBM System/370 archi- 
tecture. 

Amdahl tries to support the model of 
operation displayed in Figure lb ,  where 
there is one controller called macrocode 
and multiple SCPs that operate indepen- 
dently, with the goal of minimal overhead 
so that several of the SCPs can be used for 
production operation. We take this to 
imply that, if there are no more virtual 
CPUs than real CPUs, and macrocode is 
not invoked for compatibility reasons, 
then there should be essentially no diminu- 
tion of performance compared to  native 
operation of the SCP. 

Resource sharing and mapping. The 
total system is shared among the multiple 
SCPs and macrocode. Let's first see how 
the system components operate on behalf 
of macrocode and each SCP, how the 
SCPs are protected from each other, and 
how the SCPs are provided with the illu- 
sion of total control. 

We need to distinguish between the 
operation of the hardware for SCPs and 
for macrocode. We introduce a new state 
o f  operation for CPUs, called control 
state, for macrocode, which we contrast 
with operation for SCPs, called user state. 
In both states, the system operates as a var- 
iant of the general System/370 architec- 
ture. The term domain refers to the set of 
resources used by an SCP in the user state, 
and the term system refers to the entire 
hardware resource as seen by macrocode. 

Each CPU includes a new set of 
registers, used by macrocode to control 
domain operation, called system registers 
(see Table 1). 

Main storage divides into sections allo- 
cated to the control of one domain or to 
macrocode. Macrocode uses the actual 
system main-storage addresses and can 
address any part of main storage. How- 
ever, it normally operates out of low stor- 
age and, for reliability reasons, is restricted 
in its use of system main-storage addresses 
by the system addressing limit. System 
main-storage addresses are always 3 1 bits 
in length. 

For domains, the system supports both 
24-bit and 31-bit addressing. The block of 
main storage currently being used is 
delimited by a base-bound mapping 
defined by the domain main-storage base 
and limit. All domain main-storage refer- 
ences are checked against the limit and 
converted by addition of the base to sys- 

Table 1. Control fields held in system 
registers. 

Control Fields 

System addressing limit 
Domain main-storage base 
Domain main-storage limit 
Domain channel-map pointer 
Domain number 
Domain CPU address 
Domain prefix 
System timer 
TOD clock offset 
State-switching interruption mask 
System interruption mask 
CR load mask 
PSW status-change mask 
Feature control word 
Fast-assist base 
Domain CPU status 
Domain compare address 

tem addresses (see Figure 2). Although 
simple, this method is entirely appropriate 
where memory is shared among SCPs; 
they do not come and go like processes and 
are seldom reconfigured. Note that this 
domain main-storage mapping is in addi- 
tion to,  or on top of ,  the virtual-storage 
mapping of the System/370. 

In the System/370 architecture, special 
processors called channels perform I/O. 
1/0 channels are each dedicated to  a 
domain or to macrocode. A domain chan- 
nel map (see Figure 3) held in main storage, 
pointed to by a system register, maps 
domain channel addresses to system chan- 
nel addresses in a general manner (later 
modified to apply to the subchannel 
addresses of the XA architecture). Domain 
numbers distinguish the domains. When 
an 1/0 operation is initiated, the state of 
the CPU indicates which domain (or mac- 
rocode) is active so that it is possible to 
ensure that only a CPU operating on 
behalf of that domain is interrupted on 
completion of the operation. The channel 
processor, operating independently of the 
CPU, receives details of the memory map- 
ping from system registers when the 1/0 
operation is initiated. Thus, initiation or 
completion of an  1 / 0  operation requires 
no additional software intervention. 

CPUs are not dedicated to  SCPs, but 
can be time-multiplexed between the 

domains and macrocode. The System/370 
architecture specifies a system comprising 
a number of CPUs, each identified by a 
CPU address. A domain CPU address 
held in a system register allows any real 
CPU to act as any domain CPU. The inter- 
processor signalling instruction SIGP (for 
signal processor) uses the domain CPU 
address to locate the correct processor to 
signal. The old System/370 architecture 
also used the domain CPU address in I/O, 
where an 1/0 interruption had to be ser- 
viced by the CPU of origin. 

The mappings defined above allow mul- 
tiple domains to operate with little over- 
head. As described, once SCPs are set up, 
running them under macrocode involves 
no significant overhead. Translation steps 
involved with 1 / 0  and inter-CPU signal- 
ing occur too infrequently to measurably 
affect performance. In modern fast com- 
puter designs, the extra level of main- 
storage mapping is invoked only for the 
few references for which translation is not 
bypassed by a translation lookaside 
buffer. So, the main-storage mapping also 
has no dele'erious effect. 

Multiplexing of CPUs. The situation is 
more complicated than just described. 
Macrocode has to multiplex the real CPUs 
among all the domains when there are not 
enough real CPUs to dedicate one to 
executing each domain CPU. Further- 
more, we use macrocode to aid compati- 
bility and, in fact, to provide part of the 
virtual machine illusion in circumstances 
that occur so infrequently as to not war- 
rant implementation in hardware. 

Consequently, transitions between mac- 
rocode and SCP are much more frequent 
than transitions b e h e e n  SCPs. Above, 1 
gave the impression that CPUs would be 
time-multiplexed between macrocode and 
SCPs. This holds true for resources not 
used by macrocode, such as floating-point 
registers, but other resources needed by 
both macrocode and SCP are replicated. 
There are both system and user general- 
purpose registers, or GPRs, as well as both 
system and user prefix registers. (The 
original System/360 was essentially 
uniprocessing and used the bottom 4 kilo- 
bytes of real storage as an extension of the 
CPU registers. The prefix register was 
introduced to the System/370 to  relocate 
that area to permit more than one CPU.) 
The System/370 control registers (or CRs), 
which contain fields affecting system oper- 
ation, occupy an intermediate status. Most 
are not needed in control state, since mac- 
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rocode does not use virtual addressing and 
thus does not need the associated controls, 
but needed fields are duplicated in system 
registers. 

Now, let’s look at the extensions to 
allow macrocode to multiplex the CPUs 
between SCPs and itself. We expect that 
control does not pass from SCP to SCP, 
but always through macrocode. Let me 
outline the sequence taken when control 
passes from macrocode to SCP and back. 

Macrocode loads the system registers 
that define the domain in which the SCP 
operates. The state of execution of the 
CPU is set properly, meaning that the 
domain GPRs are loaded to reflect the cur- 
rent state of execution of the domain on 
this CPU. Macrocode then executes a spe- 
cial instruction to give control to the SCP. 

For time slicing, macrocode uses a spe- 
cial system timer to regain control. The 
system timer is a direct analog of the Sys- 
tem/370 CPU timer. When it counts down 
to zero, it causes an interruption that gives 
control to macrocode. Control can also be 
returned to macrocode in other circum- 
stances that indicate that the SCP has 
ended its time slice early. 

One detail of interest when discussing 
CPU multiplexing is the System/370 time- 
of-day clock. The TOD clock is a binary 
counter, incremented at least once a 
microsecond, that wraps around in 143 
years. Different SCPs might operate their 
clocks in different epochs, giving different 
meanings to time zero. Macrocode does 
not use the TOD clock to cause interrup- 
tions, so there is no need for two TOD 
clocks in each CPU. However, it is impor- 
tant in a multiprocessor system that TOD 
clocks on separate CPUs not lose synchro- 
nization. So, we would not want the TOD 
clock to change when a domain is dis- 
patched because that might cause errors to 
accumulate in the TOD value. Conse- 
quently, the Amdahl architecture provides 
a TOD offset that is subtracted from the 
system TOD clock to give the TOD for a 
particular domain. 

Interruptions. The above outline 
immediately raises many questions about 
the interruption process. The interruption 
mechanisms needed for multiplexing make 
up a small part of what we need to prepare 
for compatibility. Moreover, they are 
imbedded in the more general architecture, 
which is best considered separately. 
Amdahl includes most of the features 
described immediately below to allow a 
fast response to changes in the standard 
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Figure 2. Main storage organization. 
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architecture; they do not operate under 
normal circumstances. 

In  the System/370, the current instruc- 
tion address is stored with other control 
fields and bits in a special program status 
word, or PSW, register. An interruption 
involves saving the old PSW in main stor- 
age and loading a new one. We are 
interested here in state-switching interrup- 
tions that transfer control from a domain 
SCP to macrocode. We can make an inter- 
ruption state-switching by preceding it 
with a switch from user state to control 
state. That changes operation from 

domain to system addressing, so that the 
PSW swap takes place in system main stor- 
age. When the interrulition entry com- 
pletes, macrocode specific t o  the 
interruption class executes. 

In preparing for corn[ atibility, we must 
ensure that macrocode can gain control 
upon the occurrence of any situation on 
which one could define an architectural 
extension. The System/ 370 interruptions 
fall into this category. 1 hey can be speci- 
fied as state-switching b y  bits in the state- 
switching interruption nask. Some spe- 
cific interruptions, such as restart, always 
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cause a switch in state. The state-switching 
interruption mask also includes bits that 
override or replace System/370 bits used 
to mask interruptions (see Table 2). Some 
interruptions that occur not on behalf of 
the SCP but for macrocode can also cause 
a state switch, such as an 1 / 0  interruption 
for 1/0 initiated by macrocode. 

Other interruptions do not belong nat- 
urally to any of the System/370 classes 
because they are used only to switch state. 
These are assigned to  a new system inter- 
ruption class, controlled by the system 
interruption mask. This includes the sys- 
tem timer interruption mentioned above 
and some monitoring interruptions. 

Some events that occur in the domain 
need to be monitored by macrocode. We 
always face the possibility of extended 
interpretations of the meaning of Sys- 
tem/370 control registers, in which case 
macrocode needs to know when the 
registers are set by an  SCP. By providing 
a CR load mask, we enable the CRs to be 
individually singled out for monitoring. 

Alteration to mask bits in the PSW is an 
important change. The event of an SCP 
entering the wait state corresponds to the 
turning on of the wait bit in the PSW. 
Another potentially interesting event 
occurs when the SCP enables for some 
class of interruptions by changing a PSW 
mask bit; macrocode can only emulate an 
interruption in an SCP’s domain when the 
domain CPU is enabled to accept that 
interruption. These changes of status are 
monitored by bits in the PSW status 
change mask. When the monitored bits 
change as specified by the mask, an 
immediate system interruption results. A 
system interruption code placed in storage 
summarizes the cause of a system interrup- 
tion (see Table 3). 

Fast-assist mode. We can detect the 
most important type of extension, the 
introduction of new instructions, by the 
occurrence of a program interruption for 
an invalid operation code. At one time, we 
thought that we could use state-switching 
interruptions to gain control to emulate 
new instructions. However, the interrup- 
tion process turned out to be difficult to  
implement so that it would be fast enough 
for this purpose. Instead, we decided to 
introduce a substate of control state, 
which became known as the fast-assist 
mode, that had a predetermined, quickly 
invoked state of execution. We designed 
the fast-assist mode to  make it possible to  
invoke emulative code for new instructions 
with minimal overhead. It is closely 

Table 2. Bits of state-switching 
interruption mask. 

Bits 

Machine check mask 
Check stop control 
Recovery report mask 
Degradation report mask 
External damage report mask 
Warning mask 
External interruption switch 
I/O interruption switch 
SVC interruption switch 
Page translation exception switch 
Program interruption switch 
Interval timer mask 
PER override 

Table 3. Bits of system interruption 
code. 

I Bits 
_ _ _ _ _ _ _ _ _ ~  

System timer 
PSW status change 
CR load 
Single-step completion 
CPU address compare 
External address compare 
Interruption from fast-assist mode 

associated with the design architecture of 
the particular CPU. 

Any operation code not defined will, 
when executed, cause an  entry into fast- 
assist mode. Some defined instructions can 
be selected by various control fields, such 
as the feature control word, to also be 
assisted. Other instructions can be 
executed by hardware in frequent cases, 
but infrequent cases cause assist entry. For 
example, with the SIGP instruction, 
orders such as restart are never executed 
directly in user state. 

Fast-assist entry switches to control 
state with a predetermined real-system 
addressing mode. The domain address of 
the instruction immediately following is 
placed in a system GPR, so that macro- 
code knows what to emulate. Addition- 
ally, the effective addresses appropriate to 
the instruction type-already evaluated- 
are placed into the system GPRs. The 

entry resembles a jump more than an inter- 
ruption. The state of execution of the SCP, 
including its PSW, is retained in the CPU 
so that a special jump instruction can 
quickly return control to the SCP. 

For any domain, we can specify the 
instruction operation codes that not only 
will cause entry to fast-assist mode, but 
will do  so through a vectored branch to 
arrive at code specific to each instruction. 
Additionally, for each operation code, we 
can specify the application of certain tests 
to the instruction, such as whether the 
instruction is valid for the SCP’s mode of 
execution and whether the operands are 
appropriately aligned. I f  an instruction 
fails a test, bits placed into a GPR define 
the reason for the failure. Only instruc- 
tions that pass these validity tests have a 
vectored entry. Others share a common 
entry, so that we know vectored instruc- 
tions to  be immediately executable. The 
net effect of all these features is minimized 
overhead of entry to,  and exit from, 
emulative code for the instructions most 
frequently emulated. 

We make the fast-assist entry branches 
relative to the fast-assist base so that we 
can have macrocode specific to each 
domain and thus support, for example, 
both System/370 and System/370-XA. 

Emulation assistance. Whether emula- 
tive code is entered through vectored fast 
assist, normal fast assist, or interruption, 
emulation will require that macrocode be 
able to inspect and alter domain resources. 
Time-multiplexed resources encounter no 
particular problem, but where resources 
are duplicated, or there are mappings, we 
would want fur ther  a rch i tec tura l  
assistance because the addresses used by 
macrocode normally apply to system 
resources. The extensions tnade are differ- 
ent, but appropriate, for each type of 
resource. 

In control state, instructions use the sys- 
tem GPRs. User GPRs can be manipu- 
lated using new instructions to  move 
values between the system and user GPRs 
and also to store and load multiple user 
GPRs to and from system memory. Table 
4 lists these and other new instructions. 

Macrocode programmers would like to 
use many of the instructions to refer to 
domain main storage. Ideally, we would 
like t o  have the ability to specify that any 
main-storage address used in control state 
is either a system or domain address, but 
we know of no easy way to modify the Sys- 
tem/370 instruction format to distinguish 
the address type. The first solution we tried 
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specified a useful subset of instructions 
and provided new variants referring to  
domain main storage from control state. 
We selected these instructions because we 
expected them to be frequently used (such 
as OR-Immediate) or because the effect 
would otherwise be difficult to program 
(such as Purge Translation Lookaside 
Buffer and, for synchronization, Compare 
and Swap). Later, we made a nice exten- 
sion where we selected some of the system 
base registers as always generating domain 
addresses. 

Of course, many modes of addressing 
arc possible when referring to  domain 
main storage. How we specify the address- 
ing mode depends on whether the CPU is 
in control state or fast-assist mode. One 
system register contains a copy of the con- 
trol fields in the user-state PSW, called the 
domain CPU status. The status loads 
automatically when macrocode is entered 
by interruption, but also can be changed 
by macrocode to  alter addressing modes. 
In fast-assist mode, the type of addressing 
used is predetermined for  system 
addresses. For domain addresses, i t  is still 
controlled, in the main, by the retained 
user-state PSW. 

For 1 / 0  operations, the instructions 
executed in control state usually refer 
directly to the system channel or subchan- 
nel. The domain channel map is still avail- 
able, so new instructions are provided to  
allow a channel program in domain stor- 
age to be initiated from control state. Var- 
iants of the Start 1/0 domain instruction 
allow the domain SCP to  receive resulting 
1/0 interruptions, or we can specify that 
all 1/0 interruptions cause a switch of state 
to macrocode control. The domain chan- 
nel map has a bit for each address that will 
allow execution of I/O instructions for 
each individual channel or subchannel to  
be fast assisted. Thus, all levels of involve- 
ment in 1/0 are possible, from none at all 
to having macrocode d o  the whole job. 

The most frequent SIGP instructions 
execute directly in the user state. The infre- 
quent cases cause entry into fast-assist 
mode. Because these are infrequent, the 
SIGP in system state uses only system 
CPU addresses (except for two extended 
orders to sense and reset a domain CPU). 

Measurement and monitoring. We 
included some monitoring features to  
emulate the functions of the console in the 
System/370 architecture. The console can 
single-step the machine and also halt when 
a specific main-storage address is used. We 
provided these features on a domain basis, 

? 

but, rather than stopping, a system inter- 
ruption occurs. We used the domain com- 
pa re  address  here .  Measurement  
instructions are used solely for perfor- 
mance evaluation within Amdahl. 

Development of the 
Amdahl architecture 

The first machine with the multiple 
domain facility built in, the AmdahlS860 

Table 4. Added macrocode instructions. 

was first delivered in mitl-1982. Initially, 
it operated compatibly with the old Sys- 
tem/370 architecture without using any 
extensions. 

After the 5860 shijlmcnt, Amdahl 
received its first major compatibility chal- 
lenge when IBM released details of the Sys- 
tem/370-XA architecture. This had been 
threatened for some time and weexpected 
that we would have to  make hardware 
alterations to data paths o r  implement fre- 
quently executed instructions. 

Domain Main Storage Variants 1 
AND Immediate Domain 
Compare Double and Swap Domain 
Compare and Swap Domain 
Invalidate PTLB Entry Domain 
Load Real Address Domain 
Load System from Domain 
Move Characters System to Domain 
Move Characters Domain to System 
OR Immediate Domain 
Store System to Domain 
Test Under Mask Domain 

Instructions to Implement XA 
Request Subchannel Process 
Request Channel Monitor 
Request Set Address Limit 
Request Interruption Deletion 
Test 1 / 0  Subchannel Status 

Control Instructions 
Enter Fast Assist Mode 
Load PSW and Return 
Load System Registers 
Load and Test Registers System from User 
Load and Test Registers User from System 
Purge Domain Maps 
Purge System Maps 
Resume User State 
Set Domain Controls 
Set Channel 
Set Channel Domain 
Start 1 / 0  Domain Mandatory 
Start 1 / 0  Domain Optional 

i Store Domain Controls 
Store System Registers 

Measurement Instructions 
Test 1 / 0  Channel Status 
Write Hardware Measurement Command 
Write Hardware Measurement Data 
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The XA architecture did force us to 
make some hardware changes and imple- 
ment some instructions (such as the 3 1-bit 
address branch instructions), but we emu- 
lated all of the new XA 1/0 instructions on 
the 580 using macrocode. We encountered 
one unexpected flexibility-we could emu- 
late some new instructions partly in hard- 
ware but mainly in macrocode. Some of 
the Amdahl instructions circa 1984 (see 
Table 4), such as Request Set Address 
Limit, were to allow implementation of the 
extended architecture. We paid a slight 
performance penalty for partial emulation 
o f  XA, but the speed of reintroduction of 
compatibility was as we had hoped. 

Because we used macrocode to  attain 
compatibility, it became a necessity. All 
machines Amdahl has shipped since have 
required macrocode to operate. The next 
computer designed, the 5890, imple- 
mented more XA architecture in hard- 
ware, particularly in the 1 /0  area, 
reducing the performance hit to negligible 
levels. Since all 5890s would run under 
macrocode, it became attractive to use 
macrocode as a permanent method of 
implementing infrequently executed 
instructions. Even with only one SCP 
executing, macrocode is always involved 
in the interpretation of some instructions 
(such as most tracing instructions). 

Further extensions to the IBM architec- 
ture have-to the extent that they are 
important to the customer base-been 
absorbed and emulated. Of particular 
interest was IBM’s introduction of 
expanded storage-a large address space 
separate from main storage and addressed 
as 4K pages only. Given that Amdahl sys- 
tems had a large main storage, we simply 
used a portion of system main storage as 
expanded storage, with macrocode doing 
ordinary memory-to-memory moves to 
emulate paging to and from the expanded 
storage. 

erhaps the most gratifying result 
of the Amdahl architecture has P been the acceptance of multiple- 

domain operation. On the 580 and 5890 
machines, this is offered as the added- 
value Multiple Domain Facility, with 
which users can run up to four domains. 
Although we knew that many customers 
would find MDF useful, we have been sur- 
prised by the extent of its use. As of this 
writing, the MDF feature is used by 50 per- 
cent of Amdahl’s customers and is 
included on  75 percent of all new ship- 
ments. It is perhaps fortunate that Amdahl 

introduced MDF at a time when main- 
frame performance was growing at an 
unprecedented rate (due to multiproces- 
sing “within the cabinet”), thereby ena- 
bling many customers to  consolidate 
operations on the one computer. MDF 
offers a much simpler consolidation than 
requiring systems to be merged under a 
single SCP. 

Another interesting development has 
been the convergence of ideas in this area. 
The major Japanese manufacturers, 
Fujitsu’ and Hitachi,’ have developed 
their own architectures to allow multiple 
production SCPs. IBM has improved its 
VM assists to allow multiple production 
guest SCPs. All these developments 
employ a user-visible, VM-like SCP. How- 
ever, the most recent development, IBM’s 
introduction of the PR/SM (Processor 
Resource/Systems Managerg) feature, 
supports multiple domains using a hidden 
controller (the architecture is based on the 
assists developed for VM/XA). It now 
appears that multiple domain operation 
has become a permanent feature of large 
mainframes. 0 
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