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Abstract
Although the C-based interpreter of Python is reasonably
fast, implementations on the CLI or the JVM platforms of-
fers some advantages in terms of robustness and interop-
erability. Unfortunately, because the CLI and JVM are pri-
marily designed to execute statically typed, object-oriented
languages, most dynamic language implementations cannot
use the native bytecodes for common operations like method
calls and exception handling; as a result, they are not able
to take full advantage of the power offered by the CLI and
JVM.

We describe a different approach that attempts to pre-
serve the flexibility of Python, while still allowing for ef-
ficient execution. This is achieved by limiting the use of the
more dynamic features of Python to an initial, bootstrapping
phase. This phase is used to construct a final RPython (Re-
stricted Python) program that is actually executed. RPython
is a proper subset of Python, is statically typed, and does not
allow dynamic modification of class or method definitions;
however, it can still take advantage of Python features such
as mixins and first-class methods and classes.

This paper presents an overview of RPython, including
its design and its translation to both CLI and JVM bytecode.
We show how the bootstrapping phase can be used to im-
plement advanced features, like extensible classes and gen-
erative programming. We also discuss what work remains
before RPython is truly ready for general use, and compare
the performance of RPython with that of other approaches.
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1. Introduction
Java and .NET are two widespread and successful platforms:
they are both based on two high performance, very reliable
virtual machines, respectively the JVM and the CLI, which
allow the development of portable and interoperable appli-
cations. Both virtual machines, however, have been designed
with statically typed languages in mind, and their native ob-
ject model force objects to have a fixed set of fields and
methods. While these static guarantees enable earlier error
detection and efficiency, they also come at the cost of a loss
of expressive power.

On the other hand, information technology is quickly
moving to scenarios where computing needs to be ubiqui-
tous, pervasive, and highly dynamic. In order to thrive in
this environment, modern software systems must be dynam-
ically adaptable and updatable. This fact explains the grow-
ing interest in dynamically typed languages, like Python,
JavaScript and Ruby. Both the JVM and the CLI have also
felt the pressure to add dynamic features, such as support for
dynamic typing [28].

There have been several implementations of dynamically
typed languages for both the JVM and the CLI, such as
Jython [15], IronPython [13], JRuby [14], and Rhino [24].
While these implementations are very usable, and generally
feature well-developed integration with their hosting envi-
ronments, they are significantly slower than Java or C# (see
Section 4.4). This is generally because the primitives pro-
vided by the JVM and the CLI are not sufficiently dynamic
to be directly usable, and so the implementors are forced
to emulate the dynamic object model in an interpreter-like
fashion.

Restricted Python (subsequently called RPython) is an
attempt to, in the words of Mejier and Dryton, “seek the



golden middle way between dynamically and statically
typed languages” [22]. It is a proper subset of Python, re-
stricted in a way that enables easy analysis and efficient code
generation, but still maintains many of Python’s hallmark
features. The result is a language that is more expressive
than C# and Java, but which does not compromise runtime
efficiency. RPython was initially designed for the specific
purpose of implementing PyPy [25] (a Python interpreter
written in Python), but it has grown into a full-fledged lan-
guage in its own right.

Currently, RPython can be used in many contexts: to
develop stand-alone programs, such as the Standard Inter-
preter itself; to write highly efficient extension modules for
CPython, which could only be written in C in the past; to
develop dynamic web applications without the need to write
JavaScript code; to produce efficient libraries of classes and
functions to be used by other .NET and Java programs. In
particular, RPython can be the ideal companion for all those
CPython, IronPython and Jython developers that so far have
been forced to write the parts of their programs that need
high performance in C, C# or Java.

The main restrictions that must be obeyed for a Python
program to be considered RPython are:

• Dynamic features like class modification can be used in
full, but only during an initial, bootstrapping phase. This
phase is used to construct the final RPython program that
is actually executed.

• The final RPython program to be executed must be well-
typed, according to the type inference rules of RPython.
Note that every type correct RPython program is also a
valid Python program.

• Only single inheritance is permitted, though there is sup-
port for mixins [10], which offer many of the advantages
of multiple inheritance.

The contributions of this paper are two-fold. First, we
present an overview of RPython and give several examples
which demonstrate the many meta-programming techniques
made possible by its preprocessing step.

Second we describe the design and implementation of the
JVM and CLI back-ends we have developed, and show how
the design of RPython allows a smooth translation of the
language for these platforms.

The paper is structured as follows. Section 2 gives an
overview of RPython where several examples demonstrate
its expressiveness, despite the limitations imposed by its
static type system. The next two sections describe the ar-
chitecture of the RPython compiler; Section 3 outlines the
design of the front-end, whereas Section 4 describes some
of the details of our implementation of the JVM and CLI
back-ends. Section 5 discusses some issues both at the de-
sign and implementation level that should be addressed in
the future in order to make RPython a more usable and use-

ful language. Section 6 gives a brief overview of the related
work. Finally, Section 7 draws some conclusions.

2. An overview of RPython
2.1 The PyPy project
The PyPy project aims to create a platform that makes it easy
to experiment with different virtual machine designs, but
without sacrificing efficiency. This is achieved by separat-
ing the semantics of the language being implemented, such
as Python or JavaScript, from low-level aspects of its im-
plementation, such as memory management or the threading
model. A complete interpreter is constructed at build time
by weaving together the interpreter definition and each low-
level aspect into a complete — and efficient — whole [26].

In order to best separate the low-level aspects of an inter-
preter from the language semantics, the interpreter definition
itself must be written in a high-level language that abstracts
these details away, and, at the same time, can be statically
analyzed and compiled easily. This language is RPython.

Thus, PyPy is composed of two major parts: the Stan-
dard Interpreter and the Translation Toolchain. The Stan-
dard Interpreter is a full-featured Python interpreter written
in RPython. The Translation Toolchain analyzes the inter-
preter, performs type inference, and produces an efficient ex-
ecutable version.

It is important to emphasize that the Translation Tool-
chain is a general compiler that can be used for other projects
beyond the Standard Interpreter, although it has been heavily
optimized to work well with the latter. In fact, interpreters for
such languages as Prolog and JavaScript also exist in various
states of completeness.

2.2 RPython as a language
As explained above, RPython was born as an implemen-
tation detail of PyPy. During the development of PyPy,
RPython proved to be a very convenient language for de-
velopment, and eventually grew into a useful end-product in
its own right.

Because RPython is a subset of Python, every RPython
program can run unmodified on the top of the Python inter-
preter. This allows programmers to take advantage of all the
introspective features of Python during testing and debug-
ging.

Python is a dynamically typed language: type informa-
tion is attached to the objects, rather than to the method pa-
rameters, local variables, or return values. For instance, the
following is a valid Python function which, depending on the
value of its x parameter, returns either an integer or a string:

def foo(x):
if x: return 42
else: return ’bar’

Since this flexibility comes at the cost of a loss of effi-
ciency, the above definition is not correct in RPython; in-
deed, all those dynamic features that cannot be efficiently



implemented have been removed. Therefore, the static type
system of RPython forbids using values of incompatible
types together; however, this is not a serious limitation as
experience has shown that well-written Python programs
can be conformed with the RPython type system with few
changes.

A more significant limitation of RPython is that it is not
possible to dynamically change class definitions, by adding
or removing methods and fields. In RPython, as in Java or
C#, each object belongs to a class and each class has a fixed
set of fields, methods, and superclasses (see Section 2.3).
Although this limitation significantly reduces the expres-
sive power of RPython when compared to full Python, it is
necessary for generating efficient executables; furthermore,
special care has been taken to make RPython “as pythonic
as possible”, meaning that developers can still use most of
the typical patterns and idioms they use when developing in
Python.

Despite the above restrictions, RPython is still much more
dynamic and expressive than most of the static mainstream
languages such as Java and C#. It supports all the features
one could expect to find in any modern object-oriented lan-
guage such as classes, single inheritance and exceptions, and
it is statically typed; furthermore, it also supports a lot of
features that are ordinary for Python programmers but that
are usually not found in those languages: limited support for
mixins, first-order function and class values, limited use of
bound methods, metaclasses.

2.3 Type system and object model
RPython supports the following primitive types, with some
variants: SomeInteger (signed, unsigned, non-negative),
SomeFloat, SomeBool, SomeChar, SomeString1. While in
Python each of these types is an object, in RPython these
types can only be used in restricted ways. This ensures that
it will be possible to represent instances of these types using
their native counterparts during execution. For example, in-
tegers can be stored as a scalar int rather than some kind of
wrapped integer object.

Although Python does not distinguish between strings
and characters, RPython uses different types for them; dur-
ing type inference, strings whose length is exactly one char-
acter are annotated with the type SomeChar. This allows
back-ends to use the native types for chars, when available
(see 3.2.1).

In addition to the primitive types, there are few built-in
container types: SomeTuple, SomeList, and SomeDict. These
types are generic types, that is, they are parameterized by the
types of the items which they store.

SomeTuple represent tuples, which are used in both
Python and RPython to group together small sets of non-
homogeneous objects. Tuples are found in many languages,

1 The prefix Some reflects the naming convention used internally by the
annotator.

and can be thought of as a read-only, anonymous record.
Their items are accessed either by index or by tuple un-
packing. They are commonly used to return multiple values
from a function, as in this example:

def divmod(a, b):
return a/b, a%b

quot, rem = divmod(10, 3) # unpacking

SomeList objects are used to store mutable sequences of
items, all of which must be of the same type. They take the
place of both fixed-size arrays and growable sequences such
as the ArrayList class from Java and .NET. The compiler
determines whether the size of a list is fixed or variable, so
that the back-end can select the most efficient representation.
SomeList objects provides most of the Python methods for
lists, such as sort, reverse, append and pop.

Finally, SomeDict is the RPython equivalent of a Python
dictionary; dictionaries represent a mapping between keys
and values and are usually implemented with a hashtable.
As with lists, RPython dictionaries need to be homogeneous,
i.e. all the keys must belongs to the same type, as well as all
the values (the type of the keys does not necessarily need to
be the same as the type of values).

In addition to basic types, developers can define their own
classes. As happens in Python, the fields of an RPython class
are not declared as they would be in a traditional language.
Instead, the fields (and their types) are inferred automatically
based on the program. For example, consider the following
code:

class MyClass:
def __init__(self, a, b):

self.a = a
self.b = b

def foo(x):
obj = MyClass("Hello world", x)

When analyzing the function foo, the compiler can detect
that instances of MyClass contain a string field named a

and an integer one named b, given that x was previously
annotated as an integer.

RPython only supports single inheritance; however, it
also supports mixin definitions, which allow common meth-
ods to be shared among many classes, without affecting the
inheritance hierarchy. Intuitively, mixins can be seen as a
collection of methods that are cut-and-pasted into the class
definition. The syntax for declaring and using a mixin is
similar to multiple inheritance, except that mixin classes are
marked by a special _mixin_ attribute.

The following example demonstrates the composition of
two mix-ins, Displayable and Addable:

class Displayable:
_mixin_ = True
def display(self):

print ’value = ’,self.value

class Addable:



_mixin_ = True
def add(self, x):

return self.value + x

class Number(Displayable,Addable):
def __init__(self, value):

self.value = value

class String(Displayable,Addable):
def __init__(self, value):

self.value = value

def main():
n = Number(40)
s = String(’Hello ’)
print n.add(2) # 42
print s.add(’world!’) # Hello world
n.display() # value = 40
s.display() # value = Hello

RPython mixins inherit their semantics from their Python
equivalents [10] and implement a mixture of the semantics
of traits [8] and mixins as described by Bracha and Cook
[3]. Like traits, RPython mixins do not affect the inheritance
hierarchy and the methods of the class take the precedence
on the methods of the traits. Like standard mixins, the order
in which RPython mixins are composed is relevant.

Finally, classes and methods are first-order entities, i.e.
they can be stored and passed around to be called/instanti-
ated later, as shown in figure 1.

def add(x, y): return x + y
def sub(x, y): return x - y
def proc(f, x, y): return f(x, y)

Figure 1. A simple RPython program using first-class func-
tions

2.4 Initialization-time, translation-time and run-time
In Python, functions and classes are not defined by declara-
tions, but by executing the def and class statements, which
have the side effect of creating a function or class object, re-
spectively. When a module is imported into the interpreter,
its top-level statements are executed and the resulting objects
are collected into the namespace of the module.

Unlike most compilers, the translation of RPython pro-
grams does not start from the source files, but rather from
live Python objects that have been created and initialized by
the standard Python interpreter. Thus, the life cycle of an
RPython program is divided into three phases, as shown by
Figure 2.

Initialization: the process of constructing and initializing
Python classes, functions and constants to be compiled.

Translation: the process of analyzing the program as a
whole, inferring types and producing an executable.

Run: the execution of the output produced by the transla-
tion step.

Translation time -- RPythonInit time
Full Python

Python
interpreter

Live objects
Translation
toolchain

Executable

*.py

Figure 2. From Python sources to compiled executables.

Because the translation step only examines the objects
once they have been fully created, it is not aware of how
they were generated. This means that at initialization-time
we can exploit the full power of Python, without restrictions,
to dynamically build these live objects; this includes, but it
is not limited to, exec, nested scopes, and metaclasses.

In other words, we could say that RPython programs are
not written in the form of source code, but they are gener-
ated by the Python statements that create those live objects;
thus, we can think of Python as the meta-programming lan-
guage for RPython. This allows for a wide range of language
extensions.

2.5 Useful RPython programming patterns
This section contains an overview of useful techniques that
take advantage of the Python pre-processing step to make
programs simpler and easier to maintain. Some of what we
describe in this section could be implemented in Java or C#
today using reflection: however, this entails a heavy runtime
price, whereas in PyPy these patterns operate purely in a pre-
processing phase, with no time penalty at runtime.

2.5.1 Initialization of complex constants
RPython’s meta-programming capabilities can also be very
helpful for computing complex constants at initialization
time.

For example, suppose that your program needs to fre-
quently use the first N Fibonacci’s numbers; the usual solu-
tion in C# or Java is either to read those numbers from a file
where they were previously stored, or to pre-compute them
as soon as the program starts, usually inside the static con-
structor of some class. This solution might be problematic if
this computation takes a long time, because it would impact
on the start-up time of the program.

With RPython, you can simply do the computation during
the initialization phase, and store the results into a constant:

def fibo(N):
sequence = []
a, b = 1, 1
for i in xrange(N):

sequence.append(a)
a, b = b, a+b

return sequence

# pre-compute the first 100 numbers
fibo_numbers = fibo(100)



Note that, even if we called fibo at init-time, nothing
prevent us from calling it at run-time as well. The same
function serves equally well for both meta-programming and
programming.

2.5.2 Extending the language through metaclasses
Python, like Smalltalk [17], CLOS [16], and Objective-C
[6], includes extensive reflective capabilities. Reflection is
the activity performed by a program when doing computa-
tions about itself [20]. This includes both introspection (state
and structure observation) and intercession (the alteration of
structure and behavior). In a reflective system, objects can
be represented by other objects, usually referred to as meta-
objects (for example the class of a class object is a meta-
class).

In Python, custom metaclasses can be used to change the
meaning of a class declaration, and therefore affect what
happens when new instances are created, and so on. This
customization takes place at class-definition time, i.e. when
the class statement is executed. Because RPython does not
allow classes to be defined after the initialization period,
metaclasses run entirely in the Python interpreter and are
automatically fully supported.

Explaining the details of metaclasses in Python is beyond
the scope of this article; for more information, see [31]. To
showcase the almost infinite possibilities, we present an ex-
ample using the extendabletype metaclass. This metaclass
is widely used in PyPy to allow programmers to extend an
already defined class with new methods.

Suppose that we have a class hierarchy of business ob-
jects. Each object can do two things: save itself into a
database, and present itself in a GUI. The resulting class
structure might look like in the following code fragment:

class Root:
def save(self, db): ... # abstract
def show(self, window): ... # abstract

class MyFirstObject(Root): ...
class MySecondObject(Root): ...

This design is not optimal, because it ties together three
unrelated aspects: the business model, the storage and the
presentation. Several approaches have been proposed to
solve this problem, such as the visitor pattern [11], but most
of them are, in fact, ways to workaround the inability to
define classes incrementally.

The extendabletype metaclass solve this problem by
letting the programmer to split the same class definition
into different files, so that only related aspects are grouped
together:

# file model.py
class Root:

__metaclass__ = extendabletype
...

class MyFirstObject(Root): ...
class MySecondObject(Root): ...

# file db.py
class __extend__(Root):
def save(self, db): ... # abstract

class __extend__(MyFirstObject): ...
class __extend__(MySecondObject): ...

# file gui.py
class __extend__(Root):
def show(self, window): ... # abstract

class __extend__(MyFirstObject): ...
class __extend__(MySecondObject): ...

The extendabletype metaclass allows most class defini-
tions to complete normally, unless the class being defined
has the name __extend__. In that case, instead of creat-
ing a new class object, the metaclass adds the newly de-
clared methods and fields to the already-existing class being
extended (in this example, either Root, MyFirstObject, or
MySecondObject). The code makes heavy use of the intro-
spective and dynamic features of Python, but since it runs
during the initialization phase it is still usable in RPython.

C# 2.0’s partial classes offer the same benefits, as well
as MultiJava [5]; the key point of this example is that in
RPython this behavior is simply metaprogrammable, while
for C# and Java the only way to do it is to extend the
language or to run a preprocessor.

2.6 A complete example
This sections shows how the features of RPython help to
write a real (though small) program: a simple parser and
interpreter for reverse polish notation. The program first
parses the command line arguments to create an expression
tree, and then evaluates the tree into an integer result and
prints it. For sake of simplicity, we deliberately omit the code
handling syntax errors. Although the example only includes
addition and subtraction, it can be trivially extended to deal
with more operators.

The example shown in Figure 3 uses a variety of meta-
programming techniques to generate the code for handling
the various operators. Of course, since the example is so
small, it would be easier just to inline the code that is re-
quired. However, this approach makes it trivial to add new
operators, or to separate the operator definitions from the
parser, and thus is important as the language to be parsed
becomes more complicated.

The core of the program is the parse function. It takes
a list of tokens as input and builds an abstract syntax tree
representing the expression. To locate the appropriate class
it relies on a precomputed dictionary, OPCODES, which maps
each operator token (’+’ or ’-’) to its corresponding class.
This exploits the fact that RPython classes are first-order
values (see Section 2.3).

The program relies on an initialization step performed by
the function build_opcodes. This function does two things:
first, it adds an automatically-generated eval method to each
binary operator class, and then adds the class to the OPCODES

dictionary. Both steps rely on the convention that the doc-



# AST classes
class Expr:

def eval(self):
raise NotImplementedError

class Number(Expr):
def __init__(self,n): self.n = n
def eval(self): return self.n

class BinaryExpr(Expr):
def __init__(self,l,r):
self.l = l
self.r = r

# operators: the docstrings contain the
# symbol associated with each operator
class Op_Add(BinaryExpr):

’+’
class Op_Sub(BinaryExpr):

’-’

def main(argv): # entry-point
e = parse(argv[1:])
print e.eval()
return 0

def parse(lst):
stack = []
for token in lst:
try:

node = Number(int(token))
except ValueError:
op_cls = OPCODES.get(token, None)
y, x = stack.pop(), stack.pop()
node = op_cls(x, y) # instantiation

stack.append(node)
return stack[0]

# INIT-TIME only: build the table of
# opcodes and add the ’eval’ methods
def gen_eval(ch):

code = """
def eval(self):

return self.l.eval() %s self.r.eval()
"""
d = {}
exec code.strip() % (ch) in d
return d[’eval’]

OPCODES = {}
def build_opcodes():

for name, value in globals().items():
if name.startswith(’Op_’):

value.eval = gen_eval(value.__doc__)
OPCODES[value.__doc__] = value

build_opcodes()

Figure 3. A simple RPN calculator

string2 of each operator class contains its corresponding
symbol.

2 docstrings are the Python way to attach the documentation to functions
and classes. Compared to other approaches such as JavaDoc, the main
difference is that they are also available at run-time, and they can be
accessed via the __doc__ attribute.
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Figure 4. The compiler architecture.

The eval method is generated via a call to the helper
routine gen_eval, which creates a string of Python code that
performs the desired computation and uses exec to compile
this string into a Python method.

Adding the class object to the OPCODES dictionary is done
by simple assignment, using the class docstring as the key
and the class object itself as the value.

3. RPython Front-end
The overall architecture of the compiler is summarized in
Figure 4. The RPython source objects are first analyzed by
the Flow Graph Generator, which creates flow graphs rep-
resenting the control flow, but without any type information.
These flow graphs are analyzed by the Annotator, which
adds annotations about the type and other details of the val-
ues in the program. In compiler terminology, these annotated
flow graphs correspond to a High-Level IR (intermediate
representation), as they are defined in terms of the source
language. These annotated flow graphs are then lowered by
the RTyper to lower-level graphs more suitable for code gen-
eration. These lower-level graphs correspond to a mid- or
low-level IR in a typical compiler, as they target a simplified
model of the actual machine for which code is eventually
generated. Finally, the chosen back-end is used to produce
actual executable code based on these lower-level graphs. In
Section 4, we discuss two such back-ends, for the .NET and
JVM platforms, in detail.

The rest of this section provides an overview of the Flow
Graph Generator and Annotator; for full details, however,
the reader is referred to the corresponding publications of
the PyPy project [26, 25].

3.1 Flow Graph Generator and Annotator
The Flow Graph Generator uses abstract interpretation to
transform the live Python objects which form the source
code of an RPython program into a set of control flow
graphs. The resulting flow graphs are in an untyped Static
Single Information (SSI) form, and the operations are at a
very high level, corresponding directly to their RPython ori-
gins. SSI [1] is an intermediate format derived from SSA



which in addition to traditional variable definition points,
provides new names for each variable at each point where
the analysis may obtain information about the value in the
variable; in this way it is possible to propagate information
directly from information definition sites to information use
sites.

The Annotator exploits the SSI format to perform a static
analysis of the flow graphs which assigns each variable a
specific RPython type (see also Section 2.3) which describes
all of the possible values the variable may have at run-time.
If no suitable RPython type can be found for a variable, then
the program is rejected and processing stops.

Note that both the Flow Graph Generator and the Anno-
tator perform a global analysis of a program as a whole. The
user is required to supply a main function that serves as an
entry point, and a corresponding set of type annotations for
their parameters. While this approach works fine for PyPy’s
main purpose of writing interpreters, it has drawbacks when
attempting to use RPython as a more general purpose lan-
guage (see Section 5).

The types inferred by the annotator correspond directly
to the RPython types. For example, a variable may be anno-
tated with the type SomeList(SomeInteger()); such a list
exposes most of the operations of a standard Python list, with
the difference that the types of its elements are known to be
integers, rather than being any object, as in Python.

3.2 RTyper
RTyper is an abbreviation for “RPython low-level typer” and
is the component which bridges between the high-level flow
graphs of the front-end and the low-level details required by
the back-end.

While it should be possible in theory to write a back-
end which operates directly on the high-level flow graphs,
it is generally too complicated to be feasible without an
intermediate processing stage. In addition, the RTyper allows
sharing of a considerable amount of code between back-ends
for similar platforms, as happens for GenCLI and GenJVM.

The RTyper performs two main kinds of transformations
on the typed flow graphs. First, each annotation is trans-
lated from a high-level RPython type into an appropriate
lower-level type. Second, high-level operations contained in
a block are broken down into one or more lower-level oper-
ations.

In fact, the RTyper itself is customized by a specific type
system, which determines the exact lower-level types and
operations to be used. This allows the back-ends for lower-
level targets, such as the C language, to obtain a lower-level
representation than the back-ends for higher-level targets,
such as the JVM or CLI. The next section discussed these
type systems in more detail.

3.2.1 The lltype and ootype type systems
So far, two type systems have been developed for use with
the RTyper: lltype, which is intended for lower-level targets

and built around struct, array, and pointer types, and ootype,
which is intended for high-lever, virtual-machine targets,
and which uses class and object types.

To clarify the difference between the two type systems,
consider again the annotation SomeList(SomeInteger()).
In lltype this RPython type would be mapped into the fol-
lowing struct type:

struct list {
int length;
int* items;

};

By contrast, the ootype will translate that annotation
into List(Signed), where Signed is the low-level type for
SomeInteger(). The high-level type SomeList differs from
the low-level type List because the former supports oper-
ations typical of RPython,3 while the latter is designed to
have only operations that are presumed to be directly avail-
able in the target platform. Typically, instances of type List

would be mapped to a built-in library class for representing
lists, such as the ArrayList class offered by Java and C#.

The full description of the ootype type system is available
in [7]; it supports a set of primitive types for numbers and
strings (e.g., Signed, Unsigned, String), some collection
types (List, Dict), first-order functions and classes (Class,
StaticMethod) and of course user-defined classes.

The object model of ootype is Java-like, meaning that
classes have a static set of typed methods and fields, only sin-
gle inheritance is supported and the class hierarchy is rooted
by the predefined class ROOT; moreover, every method is im-
plicitly virtual, that is, can be overridden in some subclasses;
furthermore, methods can be abstract.

Classes, attributes and methods do not have access re-
strictions: ootype is only used internally by the translator,
so there is no need to enforce accessibility rules.

Moreover, as for their RPython counterparts, collection
types such as List and Dict are generic in order to al-
low back-ends such as GenCLI to exploit native support
for generic programming; back-ends for platforms like Java
need to implement a type erasure technique similar to that
performed by the Java compiler.

4. Back-end Implementations
4.1 Low-level and object-oriented back-ends
As mentioned in Section 3.2.1, the RTyper can specialize
the high-level graphs using either the lltype or ootype type
system. Like the RTyper type systems, the back-ends are also
divided into two categories, low-level and object-oriented.

Currently, there are two low-level back-ends: GenC,
which produces C source code for the gcc compiler, and
GenLLVM, which generates LLVM bytecode [18]; and three

3 As an example of RPython-specific semantics, consider the extended
index notation for accessing list elements: e.g. mylist[-1] refers to the
last element of the list, and mylist[2:5] extracts a sublist containing
the second, third and fourth element.



object-oriented back-ends: GenCLI, which targets the CLI
virtual machine, GenJVM, for the Java virtual machine, and
GenJS, which produces JavaScript code to be run into a web
browser.

In the following sections we will discuss only GenCLI
(Section 4.2) and GenJVM (Section 4.3). The details of the
other back-ends have been already described in a previous
paper [26] and in the PyPy technical reports [25, 7].

The Java Virtual Machine (JVM) [19] and the CLI [9]
share many similarities, which enables GenCLI and Gen-
JVM to share a substantial amount of code.

4.1.1 JVM and CLI in a nutshell
The Java and CLI virtual machines look very similar for the
purpose of writing a back-end for RPython. They are stack-
based machines, both providing a rich, statically typed, ob-
ject oriented type system.

Both machines require that all code be encapsulated
within a class.4 Both support single inheritance between
classes, but allow multiple inheritance in the form of inter-
faces, which are similar to an abstract base class in C++ (i.e.,
a class where all methods are abstract, and which contains
no fields).

Typically, code loaded into the JVM and CLI must first
undergo a verification step before it can be executed. This
step assigns a static type to each value in the program.
Method calls must be annotated with the type of the receiver,
of each argument and of the returned value to perform type-
checking at runtime. This static typing requirement is pre-
cisely what makes it difficult to port a dynamically-typed
language like Python to these machines.

Of course, there are some differences between the JVM
and the CLI as well. Two important differences that affect
RPython’s code generation are:

• In order to be thrown as an exception, the JVM re-
quires that an object have a type which descends from
java.lang.Throwable, while CLI allows any object to
be thrown as an exception.

• The CLI supports generic types, meaning that a single
class definition can be parameterized by another types.
For example, an object of type List might be parameter-
ized by the type of the objects which it contains. When
a List object is created, the type of the objects which
will be stored in it is also specified; the CLI then clones
the generic type definition as needed to match these type
parameters. While the JVM does not support generics di-
rectly, they can be emulated using the technique of era-
sure[4] (just as the Java language itself does).

For further details about the specifications of the two
virtual machines, the reader is referred to [19] and [9].

4 This is not strictly true for CLI, since it allows global static methods, not
enclosed by a class; this feature is not portable across different languages,
though.

4.1.2 Translation from RPython to CLI and JVM
Unlike full Python, most constructs in RPython have a di-
rect correspondence with a similar construct in the CLI and
JVM. For example, RPython classes are always mapped
to a single CLI/JVM class,5 and RPython function calls
are implemented with the native CLI or JVM instructions,
call instance and invokevirtual, respectively.

RPython containers such as SomeList and SomeDict are
mapped directly to their equivalent classes from the plat-
forms standard library (List<T> and Dict<K,V> for the CLI
and Vector and HashTable for the JVM). In the case of
the CLI, we take advantage of the CLI support for generic
classes; for the JVM, we must use casts and boxing when
adding and removing items from containers.

However, there are other characteristics of RPython that
are not mapped so directly into the CLI or the JVM and
require more careful treatment, as explained in sections 4.2
and 4.3.

4.1.3 Register- to stack-machine translation
As shown in Section 3.1, RPython programs are represented
as flow graphs expressed in SSI form, a register-based inter-
mediate representation.

Since both the CLI and the JVM are stack-based virtual
machines, we are forced to convert between the two. Thus,
we developed a common piece of code that can group the
register-based instructions into trees to allow for reasonably
efficient stack-based code; the details of these techniques are
not the topic of this paper.

Currently, this algorithm is fully integrated into GenCLI
but not yet into GenJVM; efforts are underway to let Gen-
JVM to exploit the transformation form SSI to tree-based
form.

4.2 GenCLI: The .NET back-end
GenCLI is the back-end that targets the .NET virtual ma-
chine. It tries to be fully compatible with the two most
widespread implementations, i.e. the Microsoft Common
Language Runtime (CLR) [23] and Mono [29].6

4.2.1 First-order functions and classes
A significant difference between ootype and CLI is that the
latter does not support first-order functions. .NET delegates7

are exploited to encode them: a new delegate type is created
for each different signature of the functions used in the
program, then such functions are wrapped inside delegate
objects and passed around: finally, to call such a wrapped
function we simply call the Invoke method of the delegate.

5 With one exception: see Section 4.3.2.
6 Mono is an open source .NET implementation for Windows and Linux
7 Delegates are the safe .NET equivalent to function pointers; they wrap a
static or instance method call inside an object that can be passed around and
invoked later (for example, callback functions).



Finally, ootype also supports classes as first-order objects,
while CLI does not: to solve the problem we can pass around
the instance of System.Type which corresponds to the class
itself. Then we can dynamically create an instance of that
class by calling the helper method shown below, which is
written in C# and uses reflection to get the default construc-
tor and call it,

public static object RuntimeNew(Type t) {
return t.GetConstructor(new Type[0])\

.Invoke(new object[0]); }

4.2.2 Accessing the .NET libraries
One of the major advantages of using a .NET compiler is the
access to a vast library of existing classes.

GenCLI allow the programmer to access the external
.NET libraries, although the interaction between the two
worlds is still not perfect.

In particular, the current syntax is less than ideal, since
GenCLI does not yet support indexers or properties8, and
the only way to call them is to directly call the underlying
methods; for example, to access the elements of instances
of ArrayList, you must explicitly call the get_Item and
set_Item methods, instead of using the square bracket syn-
tax.

Although in Python and RPython methods can not be
overloaded,9 GenCLI allows the programmer to call over-
loaded methods defined in external libraries, using the types
of the arguments at the call-point to determine the best
match, as for instance C# does.

4.3 GenJVM: The JVM back-end
Currently the JVM back-end has not been completed yet,
and cannot translate all valid RPython programs; however,
most conceptual hurdles have been overcome, and what re-
mains is the implementation of all corner cases. After that,
another important piece of remaining work will be to gener-
ate more optimized bytecode for better performance.

4.3.1 First-order functions and classes
Like the CLI, the JVM does not directly support the kind of
first-class functions and classes which RPython offers. The
JVM back-end emulates these features by creating objects
encapsulating each stand-alone function, and using reflec-
tion to emulate first-class classes. The JVM solution is very
similar to the CLI solution, except that it replaces the use
of delegates with an abstract base class, as delegates are not
available on the JVM.

Figure 1 depicts an RPython program which uses first-
class functions to choose between the functions add and

8 Properties and indexers are a form of syntactic sugar supported by C#, that
allow methods to be invoked to simulate field access and array dereferenc-
ing.
9 Method overloading allows the programmer to use the same name for
different methods, as long as their signature are different.

sub. Figure 5 contains Java code similar to that which our
backend would generate.

As can be seen from the classes AddFunc and SubFunc in
Figure 5, the back-end wraps each function that is stored in a
variable in a class which can be instantiated. In addition, one
abstract base class is created for each unique set of argument
and return types; in this example, that is the class IntInt,
and, as shown in the class ProcFunc, it is used as the static
type for pointers to functions that take two arguments. The
choice between an abstract base class and an interface is
arbitrary; we chose abstract base classes for performance
reasons.

abstract class IntInt {
abstract int invoke(int x, int y);

}
class AddFunc extends IntInt {

int invoke(int x, int y)
{ return x+y; }

}
class SubFunc extends IntInt {

int invoke(int x, int y)
{ return x-y; }

}
class ProcFunc {

int invoke(IntInt f, int x, int y)
{ return f.invoke(x, y); }

}

Figure 5. Java code demonstrating how first-class functions
are translated

First-order classes are much easier to implement than
functions. This is because the only operation which RPython
permits on a class object is to instantiate it. In the JVM, as
in the CLI, this can be easily implemented using reflection.
Pointers to RPython classes are therefore translated into
instances of java.lang.Class, which can be used to create
new instances of a class without specifying the class name
statically.

4.3.2 Exceptions
In Java, all classes are subclasses of java.lang.Object;10

one particular subclass, java.lang.Throwable, is special,
because it is the ancestor of all exception types. Attempts
to throw any object as an exception whose class does not de-
scend from java.lang.Throwable are rejected by the veri-
fier. RPython has a similar class structure. Like Java, it has a
class, Object, at the root of the type hierarchy, and a dis-
tringuished subclass, exceptions.Exception, from which
all exceptions are derived. While this parallel structure is
necessary to allow RPython exceptions to be thrown by the
JVM, it is not sufficient by itself.

The problem arises because each RPython class, includ-
ing Object, is translated into a new Java class. The translated

10 To distinguish between Java’s java.lang.Object and RPython’s
Object class, we always use the fully-qualified java.lang.Object
to refer to the Java class



versions of each RPython class, therefore, form a sub-tree
within the Java class hierarchy. If this translation were not
carefully handled, the result would be that RPython excep-
tions could not be thrown using the JVM exception handling
mechanisms, because all RPython classes, including excep-
tions, would be a sibling of the java.lang.Throwable sub-
tree.

To avoid this problem, the JVM back-end treats the
RPython class Object specially. Unlike other RPython
classes, Object is actually translated into a Java inter-
face, which has two implementations. The first implemen-
tation descends from java.lang.Object, and is used as
the superclass for all RPython classes except for excep-
tions.Exception. The second implementation descends from
java.lang.Throwable, and is used as the superclass for
exceptions.Exception. This effectively splits the RPython
hierarchy into two sub-trees. The fact that both implemen-
tations of Object implement the same interface means that
pointers which may point to any RPython object can use this
interface as their static type and retain type safety.

4.4 Benchmarks and Comparisons with Other
Compilers

Comparing the performances of a new language against oth-
ers is always a difficult task. First, it is difficult to choose the
right competitors to compare against, especially when the
new language does not fit neatly into any existing category;
moreover, the choice of the benchmarks can dramatically af-
fect the results.

We think that RPython lies in a middle region between
completely static languages, like C# and Java, and com-
pletely dynamic languages such as IronPython and Jython.
Thus, in this section we will show how RPython compares to
those languages. It is important to emphasize that the num-
bers serve only to validate that the restrictions placed upon
RPython enable us to generate efficient code, not as a general
measure of the performance of each language. In particular,
the concrete implementation of the virtual machine can dra-
matically affect the overall performance of the language.

As a benchmark, we used the classical Martin Richards’s
benchmark [21], which was originally written for BCPL and
then ported to a number of languages, including RPython,
Java and C#. In particular, the RPython version can either
be translated to CLI and JVM or run directly on top on
IronPython and Jython. The benchmark exercises particu-
larly object oriented features such as object instantiation and
method calls; since we used only one benchmark the results
are only indicative, but we think they give a good representa-
tion of overall RPython performances. In the future, we will
add some micro-benchmarks to spot eventual bottlenecks.

The following table summarizes the results; the values
are expressed in milliseconds and represent the “average
time per iteration” (the smaller the better). For CLI, we ran
the benchmarks both against Mono on Linux and Microsoft
CLR on Windows XP. Linux tests have been run on a ma-

chine with a Intel Core Duo 2.5 GHz CPU and 2 GB of
RAM; Windows tests have been run on the same machine
under VMWare. For JVM, we ran the tests only under Linux,
on the same machine.

Language Result Factor
Results on Microsoft CLR

C# 6.94 ms 1.00x
RPython 7.25 ms 1.04x
IronPython 1675.00 ms 241.35x

Results on Mono
C# 4.19 ms 1.00x
RPython 9.63 ms 2.30x
IronPython 1509.41 ms 360.24x

Results on JVM
Java 1.77 ms 1.00x
RPython 2.10 ms 1.18x
Jython 2918.90 ms 1641.80x

Table 1. Results on Microsoft CLR, Mono, and JVM

It is interesting to compare the results on Microsoft CLR
and on Mono in Table 1: although the Microsoft CLR ex-
ecutes both the C# and RPython version of the benchmark
at almost the same speed, on Mono the RPython version is
more than 2 times slower. We think this is because Mono JIT
is not able to effectively optimize the bytecode produced by
GenCLI, which differs quite a bit from what the C# compiler
generates.

Regardless the CLR implementation, RPython is much
faster than IronPython, proving that RPython restrictions
really lead to a big improvement in performance.

The performance difference between the various lan-
guages on the JVM is more dramatic than on the CLI.
RPython for JVM is slightly slower, relative to Java, than
its CLI counterpart is, relative to C#. We believe this is be-
cause the JVM back-end is newer, and does not exploit all
possible optimizations (see for example Section 4.1.3), and
we are confident that we can improve it until we get the same
results as RPython for CLI.

5. Towards a Usable Language
As mentioned earlier, RPython was initially designed for the
specific purpose of implementing PyPy, a Python interpreter
written in Python. Although it has grown into a more general
purpose language, the implementation of RPython still needs
a number of improvements. This section discusses the design
and implementation issues that must be addressed to make
RPython usable in a wider variety of contexts.

In the short term, improvements are needed to make the
front-end more user-friendly, complete the JVM back-end,
and further optimize the generated code.

In the longer term, there are more challenging issues to
be addressed. Perhaps the most important are implementing
separate compilation, improving RPython interoperability



with other languages, and improving the type system to
increase RPython expressiveness without compromising its
efficiency.

5.1 Separate compilation
Currently, the RPython toolchain relies on a full-program
analysis, starting from a known entry point, to create the an-
notated flow graphs that represent the program. As a result,
type-checking is not compositional. A function or class dec-
laration which is accepted in one context may be invalid in
another, depending on how it is used. This makes separate
compilation rather difficult.

There are at least two approaches to solve this problem.
The first is to require the programmer to annotate the types
on all “public API” functions. This is relatively simple, but is
contrary to the “Python philosophy”. Another more difficult
solution would be to implement a compositional type infer-
ence algorithm, such as the one used for JavaScript [2]. Of
course, this would require a major revision to the Annotator.

5.2 Interoperability
The fact that RPython can be compiled for use on the CLI
or JVM naturally invites the question of how interoperable it
is with programs written in other languages running on the
same virtual machine.

It is relatively easy to allow RPython code to access
classes written in C#/Java. The CLI back-end already sup-
ports this, and support for the JVM back-end is planned for
the near future.

On the other hand, allowing C#/Java code to access
RPython classes presents a larger challenge and bears more
investigation. We do not currently know how best to ap-
proach this problem; however, it is similar to the problems
faced by any attempt to allow statically-typed languages to
interface with their dynamic or type-inferred counterparts.

5.3 Increasing the expressive power
The current RPython type system is fairly standard and sim-
ple. One interesting area for future improvement would be
to enhance the type system to increase the flexibility of the
language, and allow it to typecheck a wider subset of Python
programs than it does currently.

One of the main limitations of the current type system of
RPython is that it does not directly support generic methods
or functions. Let us consider, for instance, the following
code:

def id(x): return x
print id("one"),id(1)

Clearly, the argument to id() cannot be assigned a single
type, therefore type inference succeeds only if the user ex-
plicitly annotates the function as polymorphic. This causes
the function to be cloned for every incompatible argument
type. In the example above, a separate copy of id would
be made to handle integers and strings. If the type system

were extended to support generic functions, however, a sin-
gle copy of the function would often suffice. Even better,
such an extension to the type system would not compromise
the efficiency of other programs that do not require it.

On the other hand, other kinds of type system exten-
sions could imply a negative impact on the performance of
RPython programs. For instance, it would be possible to de-
fine a more sophisticated type inference algorithm that al-
lows the dynamic addition of methods to RPython classes, as
done, for instance, for JavaScript [2]. However, invocation of
dynamically added methods would incur a significant time
penalty, though this might be mitigated by changes to the
JVM or CLI, such as the recently proposed invokedynamic

[28] instruction.

6. Related work
Jython [15] and IronPython [13] are two popular implemen-
tations of Python which target, respectively, the JVM and the
CLI. Unlike our work, these projects aim to support the full
dynamic semantics of Python. This results in a mismatch
between the static object model offered by the virtual ma-
chine, and its dynamic Python counterpart. As an example,
consider method calls: full Python allows programs may add
and remove methods from classes during execution, forcing
Jython and IronPython to perform the entire method look-up
at runtime. In contrast, thanks to RPython’s more limited se-
mantics, we are able able to use the native instruction set of
the virtual machine to perform method calls, which yields a
large performance improvement.

RPython is not the first attempt to restrict a dynamic
language to make it more efficient: Slang [12] is a restricted
version of Smalltalk used to implement the Squeak virtual
machine, but it is much more restricted than RPython: citing
the Squeak web site [27], “Slang is essentially C with a
Smalltalk syntax”, while RPython is a full object oriented
language.

7. Conclusion
We have presented RPython, a restricted subset of Python
which is statically typed and can be compiled for the CLI
and JVM platforms. The level of presentation is deliberately
rather informal, since one of the main aim of this paper is
showing how a statically typed object-oriented language like
RPython can be quite expressive without serious runtime
penalties in comparison with Java and C#.

The second main contribution of this paper concerns the
development of the two back-ends for the CLI and JVM
platforms. Thanks to the higher modular structure of the
compiler, the two back-ends share a considerable amount of
code. The benchmark results show that the RPython back-
ends for the CLI and the JVM produce code which is almost
as fast as that generated by the C# and Java compilers.

We have also discussed some issues both at the design
and implementation level that should be addressed in the



future in order to make RPython a more usable and useful
language. Moreover, since RPython was initially designed
just for a specific and internal use in the context of the PyPy
project, its documentation is still not adequate, especially
concerning its type system, which surely deserves further
insight.

Acknowledgments
The work presented in this paper fits into the PyPy project;
the authors mainly worked on ootype and on the back-ends
for CLI and JVM, and all the rest belongs to the PyPy team
[30], whose help has been invaluable for getting the job
done. We would also like to thank all of the anonymous
reviewers for their helpful comments.

References
[1] C. S. Ananian. The static single information form. Technical

Report MIT-LCS-TR-801, MIT Laboratory for Computer
Science Technical Report, September 1999. Master’s thesis.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
type inference for javascript. In 19th European Conference
on Object-Oriented Programming (ECOOP 2005), LNCS
3586, pages 428–453. Springer, 2005.

[3] G. Bracha and W. Cook. Mixin-based inheritance. In ACM
Symp. on Object-Oriented Programming: Systems, Lan-
guages and Applications 1990, volume 25(10) of SIGPLAN
Notices, pages 303–311. ACM Press, October 1990.

[4] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making
the future safe for the past: adding genericity to the Java
programming language. In OOPSLA ’98: Proceedings of
the 13th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
183–200, New York, NY, USA, 1998. ACM Press.

[5] C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers.
MultiJava: Design rationale, compiler implementation, and
applications. ACM Trans. Prog. Lang. Syst., 28(3), May 2006.

[6] B. J. Cox. Object oriented programming: an evolutionary
approach. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[7] A. Cuni, S. Pedroni, A. Chrigström, H. Krekel, G. Wesdorp,
and C. F. Bolz. High-level backends and interpreter feature
prototypes. Technical Report D12.1, PyPy Consortium,
2007. http://codespeak.net/pypy/dist/pypy/doc/

index-report.html.

[8] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P.
Black. Traits: A mechanism for fine-grained reuse. ACM
Trans. Program. Lang. Syst., 28(2):331–388, 2006.

[9] ECMA. ECMA-335: Common Language Infrastructure
(CLI). ECMA, Geneva (CH), third edition, June 2005.

[10] C. Esterbrook. Using Mix-ins with Python. http:

//www.linuxjournal.com/article/4540.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns. Elements of reusable object-oriented software.
Addison-Wesley Professional, —c1995, 1995.

[12] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: the story of squeak, a practical smalltalk
written in itself. In OOPSLA ’97: Proceedings of the 12th
ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 318–326, New
York, NY, USA, 1997. ACM Press.

[13] IronPython. http://www.codeplex.com/IronPython.

[14] JRuby. http://jruby.codehaus.org/.

[15] Jython. http://www.jython.org/.

[16] S. Keene. CLOS and the Meta Object Protocol. Addison
Wesley Publishing Company, 1989.

[17] W. R. LaLonde and J. R. Pugh. Inside Smalltalk: vol. 1 and
2. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[18] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In
Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo Alto,
California, Mar 2004.

[19] T. Lindholm and F. Yellin. The JavaTM Virtual Machine
Specification (2nd Edition). Prentice Hall PTR, April 1999.

[20] P. Maes. Concepts and experiments in computational
reflection. In OOPSLA ’87: Conference proceedings
on Object-oriented programming systems, languages and
applications, pages 147–155, New York, NY, USA, 1987.
ACM Press.

[21] Martin Richards. Bcpl benchmark. http://www.cl.cam.
ac.uk/˜mr10/Bench.html.

[22] E. Meijer and P. Drayton. Static typing where possible,
dynamic typing when needed: The end of the cold war
between programming languages. In OOPSLA’04 Workshop
on Revival of Dynamic Languages, 2004.

[23] Microsoft .NET. http://www.microsoft.com/net/.

[24] Rhino. http://www.mozilla.org/rhino/.

[25] A. Rigo, M. Hudson, and S. Pedroni. Compiling dynamic
language implementations. Technical Report D05.1, PyPy
Consortium, 2005. http://codespeak.net/pypy/dist/
pypy/doc/index-report.html.

[26] A. Rigo and S. Pedroni. PyPy’s approach to virtual machine
construction. In OOPSLA Companion, pages 944–953, 2006.

[27] Slang. http://wiki.squeak.org/squeak/2267.

[28] Sun Microsystems. JSR 292: Supporting dynamically typed
languages on the Java platform. http://jcp.org/en/

jsr/detail?id=292.

[29] The Mono Project. http://www.mono-project.com.

[30] C. to PyPy. http://codespeak.net/pypy/dist/pypy/
doc/contributor.html.

[31] G. Van Rossum. Unifying types and classes in Python 2.2.
http://www.python.org/download/releases/2.2.

3/descrintro/.


