
Rajinder Yadav Copyright © 2007 www.devmentor.org

Client / Server Programming with TCP/IP Sockets

Author: Rajinder Yadav

Date: Sept 9, 2007

Revision: Mar 11, 2008

Web: http://devmentor.org

Email: rajinder@devmentor.org

Table of Content
Networks... 2

Diagram 1 – Communication Link... 2

IPv4 Internet Protocol... 2

IP Address.. 2

IP Classes.. 3

Subnets.. 3

IP and the Hardware ... 4

IP and DNS... 4

loopback... 5

IP from hostname ... 5

hostname from IP ... 5

hostent structure ... 5

TCP Transmission Control Protocol ... 6

Diagram 3 – Network Hop Topology .. 6

TCP Window ... 6

Byte Ordering ... 7

Little-Endian: the LSB (Least Significant Byte) is at the lowest address. ... 7

Big-Endian: The MSB (Most Significant Byte) is at the lowest address. .. 7

Diagram 4 – Address Byte Order... 7

htons() and htonl().. 7

ntohs() and ntohl().. 7

Sockets.. 7

TCP Ports ... 8

Table 1 – Well Known Ports .. 8

Opening and closing a socket... 8

Initializing Winsock... 9

Socket Address Structure .. 9

TCP Server.. 10

Naming the socket .. 11

TCP Client .. 13

TCP State Diagram ... 14

Connection Termination ... 14

Running The Programs ... 16

Network Utilities... 17

ping .. 17

netstat ... 17

Server Socket Code... 18

Client Socket Code ... 22

Rajinder Yadav Copyright © 2007 www.devmentor.org

Introduction

In this article we will look at how to program using sockets by implementing an echo

server along with a client that we will use to send and receive string messages. I will start

off by giving a quick introduction to TCP/IP fundamentals and then explain how sockets

fit into the picture. I am going to assume you already understand basic network concepts.

When you get done reading this article you should be armed with sufficient information

to be able to investigate other concepts in more detail on your own. Sample code can be

downloaded for this article from my website for Windows and Linux. I have also

included all the Winsock source code in print at the end of the article for others.

Networks
Most network applications can be divided into two pieces: a client and a server. A client

is the side that initiates the communication process, whereas the server responds to

incoming client requests.

Diagram 1 – Communication Link

There are numerous network protocols, such as Netbios, RPC (Remote Procedure Call),

DCOM, Pipes, IPC (Inter-process Communication) that can be used for the

Communication Link. We will only look at TCP/IP here. In particular we will look at

sockets IPv4 since this is widely implemented by many socket vendors.

IPv4 Internet Protocol
The current version for IP supported by many modern networks is version 4, the next

generation of IP is version 6 (IPv6) which is not widely supported as of this writting. IP

is both a network addressing protocol and a network transport protocol. IP is a

connection-less protocol that provides unreliable service for data communication. Most

of the properties of data communication such as transmission reliability, flow control and

error checking are provided by TCP which we will look at shortly.

Most people know IP in its basic form as a quad dotted-numerical string, such as

“192.168.1.1”. Each integer value separated by a dot can have a value from 0 to 255 (8

bits). Thus IPv4 is a 32 bit unsigned integer values.

IP Address

Diagram 2a – IP Address

Rajinder Yadav Copyright © 2007 www.devmentor.org

IP Classes

The IP address is made of a network address and a host address. There can be many sub-

networks connect together, so a network address help routers to redirect data packet to

the proper destination network, from there the data packet is sent to the final destination

host PC. The 4 IP classes are:

Class Leftmost bit Start Address End Address
A 0xxx 0.0.0.0 127.255.255.255

B 10xx 128.0.0.0 191.255.255.255

C 110x 192.0.0.0 223.255.255.255

D 1110 224.0.0.0 223.255.255.255

E 1111 240.0.0.0 255.255.255.255

Class A network.local.local.local (small network, large hosts)

Class B network.network.local.local (medium network, medium hosts)

Class C network.network.network.local (large network, small hosts)

Class D network.network.network.network (multicast to many hosts)

Class E reserved

(*) A special type of IP address is the limited broadcast address 255.255.255.255

(*) IP Mapping: Class A, B, C 1-to-1, Class D is 1-to-many

Subnets

An IP address can have the host address subdivided into a subnet part and a host part

using a subnet mask. The subnet mask is also a 32bit value, the bits for the network and

subnet will be set to ‘1’, this way from the mask and IP class we can determine the

network address, the subnet address and the host number.

Diagram 2b – IP Address with Subnet

There IP address can be classified as unicast, broadcast and multicast. A unicast address

has a 1-to-1 relationship. A broadcast can apply to: a) all hosts on a network, b) all hosts

on a subnet, and c) all hosts on all subnets. For multicast, a host needs to belong to the

multicast group in order to receive a packet. The main thing to note is that a broadcast or

multicast packet is never forwarded by a router/gateway outside the network.

Rajinder Yadav Copyright © 2007 www.devmentor.org

IP and the Hardware

IP is used to identify a PC on the network. This is done for us at the hardware level by the

NIC (Network Interface Card) like a PC’s Ethernet card or a Router. A machine NIC or

Ethernet uses ARP (Address Resolution Protocol) to convert an IP address into a network

address that can be understood by routers and gateways. Likewise the hardware layer use

RARP (Reverse Address Resolution Protocol) to convert a hardware network address at

the MAC (Media Access Control) level into an IP address. As data packets move around

the network, the hardware layer (router) is checking if a packet is meant for it to process

by checking the MAC address. If it’s not the data packet is transmitted down the line. If

the data packet is meant for a host in the network, then the IP address is checked using a

lookup table to determine which host PC to send the data packet off to in the network.

We really don’t need to be concerned with underlying details as all this is handled for us.

IP and DNS

Most people don’t use IP directly, it’s not an easy way to remember addresses, so to help

humans the DNS (Domain Name System) maps a hostname strings like

“yadav.shorturl.com” into an IP address. If you’re developing any type of network

application it’s better to use the DSN name format to communicate with another

computer. DSN mapping can be easily changed (in the router table) thus allowing one to

redirect network traffic to another destination.

Host File

On your local PC the DNS mapping entries are found in the host file. On Windows NT,

2K, XP the file “hosts” is located at:

%WINDOWS%\system32\drivers\etc\

The host files (shown in blue) contains a space separated IP address and hostname. All

this info ends up in the router table, where network traffic control occurs.

127.0.0.1 localhost
192.168.1.106 freedom.home.com
192.168.1.105 download.bigdaddy.com
192.168.1.100 sal.home.com

Rajinder Yadav Copyright © 2007 www.devmentor.org

loopback

Note: the loopback address of “127.0.0.1” also known as “localhost” is the IP address

used when communicating with other process running on the same PC. This is how we

will test our client and server application, they will run on the same “local” host PC.

IP from hostname

The gethostbyname function retrieves host information corresponding to a host name

from a host database.

struct hostent* FAR gethostbyname(
 const char* name
);

hostname from IP

The gethostbyaddr function retrieves the host information corresponding to a network

address.

struct HOSTENT* FAR gethostbyaddr(
 const char* addr,
 int len,
 int type
);

hostent structure

[msdn] The hostent structure is used by functions to store information about a given host,

such as host name, IP address. An application should never attempt to modify this

structure or to free any of its components.

 Furthermore, only one copy of the hostent structure is allocated per thread, and an

application should therefore copy any information that it needs before issuing any

other Windows Sockets API calls.

typedef struct hostent {
 char FAR* h_name;
 char FAR FAR** h_aliases;
 short h_addrtype;
 short h_length;
 char FAR FAR** h_addr_list;
} hostent;

Rajinder Yadav Copyright © 2007 www.devmentor.org

TCP Transmission Control Protocol
Although TCP can be implemented to work over any transport protocol, it's usually

synonymous with IP. TCP is a connection-oriented stream protocol (like a telephone

call). TCP communication happens using a handshake process, where each data that is

sent is acknowledge by the recipient within the time of TCP’s timer value. TCP provides

many services such as data reliability, error checking, and flow control. If a data packet is

corrupt or lost (not acknowledged), TCP will retransmitted the data from the client side

automatically. Because the route a packet takes can be many, one packet may arrive

before the one sent earlier. As data packets arrive, it is the job of TCP to assemble the

packets into the proper order. This is shown below with a factious network topology

layout, where the data packet takes (n) number of hops to get from the source to the

destination. On a bigger network like the Internet, there are many routes a data packet

can take to arrive at its final destination.

Diagram 3 – Network Hop Topology

TCP Window

Any duplicate data packet is silently dropped with no acknowledgement. TCP controls

the flow of transmission by using a “window” that can grow or shrink based on how

responsive the (next-hop) node is. If a lot of packets are getting dropped because the

receiver’s buffer is full, TCP will slow down the rate of transmission by decreasing the

size of the “window”. Usually TCP will negotiate with the receiver for such things as the

maximum transmission unit. If the sizes are different, such that the receiver node accepts

a smaller sized packet, the out-bound packet will be fragmented by TCP. Again, the data

packet “segments” can arrive at different times by taking different routes. So it’s the job

of TCP at the destination end to reassemble the original data packet as the segments

arrive. The data is placed into a larger buffer by TCP to be read by the application. Data

is streamed out from the client side and streamed in at the server side. This is why TCP is

called a stream bases protocol, it’s work just like a file I/O read and write operation,

which is what provides synchronous data access.

Rajinder Yadav Copyright © 2007 www.devmentor.org

Byte Ordering
There are two types of memory byte ordering in use today that are very much machine

dependent. They are known as little-endian and big-endian, because of this we have to be

very careful how we interpret numerical data. If we do not take into account the

endiannes, the numerical data we read will be corrupt.

Little-Endian: the LSB (Least Significant Byte) is at the lowest address.

Big-Endian: The MSB (Most Significant Byte) is at the lowest address.

Diagram 4 – Address Byte Order

Generally when working with numeric data, one needs to convert from machine (host)

byte order to network byte order when sending data (write-op), and then from network

byte order to machine byte order when retrieving data (read-op). The APIs to make the

conversion are:

htons() and htonl()
// host to network
uint16_t htons (uint16_t host16bitvalue);
uint32_t htonl (uint32_t host32bitvalue);

ntohs() and ntohl()
// network to host
uint16_t ntohs (uint16_t net16bitvalue);
unit32_t ntohl (unit32_t net32bitvalue);

Note: network byte order is in Big-Endian, CPU based on the x86 architecture use Little-

Endian byte order.

Sockets
We are now ready to talk about what a socket is. A socket is made up of 3 identifying

properties: Protocol Family, IP Address, Port Number

For TCP/IP Sockets:

• The protocol family is AF_INET (Address Family Internet)

• The IP Address identifies a host/service machine on the network

• Port defines the Service on the machine we’re communicating to/from

Rajinder Yadav Copyright © 2007 www.devmentor.org

TCP Ports

The port numbers from 0 to 255 are well-known ports, and the use of these port numbers

in your application is highly discouraged. Many well-known services you use have

assigned port numbers in this range.

Service Name Port Number

ftp 21

telenet 23

www-http 80

irc 194
Table 1 – Well Known Ports

In recent years the range for assigned ports managed by IANA (Internet Assigned

Numbers Authority) has been expanded to the range of 0 – 1023. To get the most recent

listing of assigned port numbers, you can view the latest RFC 1700 at:

http://www.faqs.org/rfcs/rfc1700.html

In order for 2 machines to be able to communicate they need to be using the same type of

sockets, both have to be TCP or UDP. On Windows, the socket definition is defined in

the header file <winsock.h> or <winsock2.h>. Our program will be using Winsock 2.2 so

we will need to include <winsock2.h> and link with WS2_32.lib

Opening and closing a socket

To create a TCP/IP socket, we use the socket() API.

SOCKET hSock = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

If the socket API fails, it will return a value of INVALID_SOCKET, otherwise it will

return a descriptor value that we will need to use when referring to this socket. Once we

are done with the socket we must remember to call the closesocket() API.

closesocket(hSock);

Note: On Unix/Linux the return type for socket() is an int, while the API to close the

socket is close(socket_discriptor);

Before we can begin to use any socket API in Windows we need to initialize the socket

library, this is done by making a call to WSAStartup(). This step is not required on

Unix/Linux.

Rajinder Yadav Copyright © 2007 www.devmentor.org

Initializing Winsock
// Initialize WinSock2.2 DLL
// low-word = major, hi-word = minor
WSADATA wsaData = {0};
WORD wVer = MAKEWORD(2,2);
int nRet = WSAStartup(wVer, &wsaData);

Before we exit our program we need to release the Winsock DLL with the following call.

// Release WinSock DLL
WSACleanup();

With the basics out of the way, the process of preparing the client and server application

is similar, but differ slightly in their steps. We will talk about how to write the server

code first.

Socket Address Structure

For IPv4 the socket structure is defined as:

struct sockaddr
{
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

This is the generic structure that most socket APIs accept, but the structure you will work

with is sockaddr_in (socket address internet).

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

Note: sockaddr_in and the more generic sockaddr struct are the same size. Padding is

used to maintain the size by sin_zero[8]. You will need to typecast between the two in

your program.

Rajinder Yadav Copyright © 2007 www.devmentor.org

struct in_addr found inside sockaddr_in is a union defined as:

struct in_addr
{
 union
 {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;

#define s_addr S_un.S_addr
#define s_host S_un.S_un_b.s_b2
#define s_net S_un.S_un_b.s_b1
#define s_imp S_un.S_un_w.s_w2
#define s_impno S_un.S_un_b.s_b4
#define s_lh S_un.S_un_b.s_b3
};

This structure holds the IP address which can be accessed in many ways. You can use the

inet_addr() API to convert a IP dotted-numerical string into a 32bit IP address and

assign it to the s_addr member. The use of this API is shown when we discuss the client

code. To do an opposite conversion from network to IP string, use the inet_ntoa() API.

TCP Server
The steps to get a server up and running are shown below (read from top to bottom). This

is how our sample code is written, so it's a good idea to get familiar with the process.

 socket()
 bind()
+---->listen()
| accept()
| (block until connection from client)
| read()
| write()
+-----close()
 close()

1. Create a server socket

2. Name the socket

3. Prepare the socket to listen

4. Wait for a request to connect, a new client socket is created here

5. Read data sent from client

6. Send data back to client

7. Close client socket

8. Loop back if not told to exit

9. Close server socket is exit command given by client

Rajinder Yadav Copyright © 2007 www.devmentor.org

Naming the socket
When we prepare the socket for the server, we use INADDR_ANY for the IP address to

tell the TCP stack to assign an IP address to listen on for incoming connection requests.

Do not assign a hard-coded value, otherwise the program will only run on the server

defined by the IP address, and if the server is multi-homed then we are restricting it to

listen on only one IP address rather than allow the administrator to set the default IP

address.

// name socket
sockaddr_in saListen = {0};

saListen.sin_family = PF_INET;
saListen.sin_port = htons(10000);
saListen.sin_addr.s_addr = htonl(INADDR_ANY);

Once we have initialize the sockaddr_in struct, we need to name the socket by calling

the bind() API.

bind(hSock, (sockaddr*)&saListen, sizeof(sockaddr));

Notice how we are required to typecast the socket address to (sockaddr*). Here hSock is

the server socket we created earlier and this binds (names) the socket with the

information provided in the socket structure. After the socket has been named, we then

wait for incoming connection requests by making the next 2 calls.

listen(hSock, 5);

sockaddr_in saClient = {0};
int nSALen = sizeof(sockaddr);
SOCKET hClient = accept(hSock, (sockaddr*)&saClient, &nSALen);

The values of '5' passed to listen() is the backlog of connection request that will get

queued waiting to be processed. Once this limit is exceeded, all new calls will fail. In the

call to accept(), we do not need to initialize saClient, the sockaddr struct because when

this calls returns it will fill saClient with the name of the client’s socket.

The sample echo server provided is a single thread (iterative) application, it can only

handle and process one connection at a time. In a real world application, one would

general use multithreading to handle incoming client requests. The primary thread would

listen to incoming calls and block on the call to accept(). When a connection request

came in, the main thread would be given the client’s socket descriptor. At this point a

new thread should be created and the client socket passed to it for processing the request.

The main thread would then loop back and listen for the next connection.

Rajinder Yadav Copyright © 2007 www.devmentor.org

When a client connection has been established, data is read from the TCP buffer by

making a call to recv(). This function returns the number of bytes read.

nSent = recv(hClient, wzRec, nSize, 0);

The first parameter is the socket to the connected client, the second parameter is a text

buffer, followed by it's size, and finally flags on how recv() behaves. The flags value is

normally zero. Other values for the flag that can be ORed are:

MSG_PEEK : Copy data to buffer, but do not remove from TCP buffer.

MSG_OOB : Process out of bound data

MSG_WAITALL : Wait for the buffer to be completely filled

Note: the call to recv() will only return the data that has arrived, this means the call can

return before the entire data has been received into the TCP buffer. So the best way to

write a data fetch routine is by using a fixed buffer size that is able to hold the largest

transmitted data set. Then to read using a loop that waits till all the data has arrived

before handing off the read buffer.

// process data
char wzRec[512] = {0};
int nLeft = 512;
int iPos = 0;
int nData = 0;
do
{
 nData = recv(hClient, &wzRec[iPos], nLeft, 0);

 nLeft -= nData;
 iPos += nData;

} while(nLeft > 0);

Likewise we do the same when sending data with send(), the parameter values are the

same as they are for recv().

 Just because send() return successfully saying it sent the data, this does not mean the

data was placed on the network. It simply means the TCP buffer had enough room to

copy the data. There is a TCP option TCP_NODELAY that will cause the data to

appear on the network immediately, but its use is only for specialized applications

and should be avoided.

Once we are done, we need to close the client's socket and then close the server socket. In

the sample program of the echo server, the server loops back into listen mode unit a

string containing "!shutdown" is received which tells the server to stop listening and to

shutdown.

Rajinder Yadav Copyright © 2007 www.devmentor.org

TCP Client

Now let's take a look at what steps the client needs to take in order to communicate with

the server.

socket()
connect()
write()
read()
close()

1. Create a socket with the server IP address

2. Connect to the server, this step also names the socket

3. Send data to the server

4. Read data returned (echoed) back from the server

5. Close the socket

The initialization of the sockaddr_in structure is different for the client. With the client

the socket address needs to assign the port number along with the IP address of the

server. Since we're testing on the localhost, we hard-core the IP address of "127.0.0.1"

sockaddr_in saServer = {0};

saServer.sin_family = PF_INET;
saServer.sin_port = htons(10000);
saServer.sin_addr.s_addr = inet_addr("127.0.0.1");

Notice the use of htons() when setting the port number. The call to inet_addr()

converts a dotted-numerical string into a 32bit IP value that gets assigned to the s_addr

member of the sin_addr struct.

We have now covered how both the client and server code is written, lets take a quick

look at how to use the both the programs.

Rajinder Yadav Copyright © 2007 www.devmentor.org

TCP State Diagram

Connection Establishment
TCP uses a 3 way handshake. A Server makes a passive open by call bind(). The Client initiates an active

open by calling connect(). For the connection to be established, the client send a SYN to the server. The

Server replies with SYN/ACK and finally the Client replied with ACK.

Diagram-5 Created using Visual Paradigm

Connection Termination
TCP uses a 4 way handshake to close the connection. When an endpoint wants to close, it send out a FIN,

the other side then replied with an ACK. A connection is “half-open” when one side has close the

connection. The other side is still free to send. A situation can occur where one side closes the connection

and then reopens it immediately, so any lost packets that now arrive will not belong to this “new”

connection and thus TCP we need to insure these packets do not get mixed in with the new packets. So the

“TIME WAIT” state allows a connection to remain open long enough for such packets to be removed from

Rajinder Yadav Copyright © 2007 www.devmentor.org

the network. This state usually lasts for about 2 times the “round-trip”, some implementation hardcode the

default value to be anywhere from 30 to 120 seconds. You can use the netstat utility to see TCP/IP states.

Rajinder Yadav Copyright © 2007 www.devmentor.org

Running The Programs

Bring up two command prompts and go the folder were the client and server executable

are each located. In one of the shell type, "EchoServer.exe" to start the server. You

should see the following output:

In the other shell type: EchoClient.exe "Hello World!!!"

At this point the server should display that a connection has been made follow by the data

sent.

The client shell should state that a connection has been made and what the echo message

string is.

If we type in the client shell: EchoClient.exe !shutdown

The server should now shutdown and exit. Highlighted is the output from the server of

the second client connection.

The source code on the following pages were colorized using Carlos Aguilar Mares

"CodeColorizer" tool, which can be found at http://www.carlosag.net/

Rajinder Yadav Copyright © 2007 www.devmentor.org

Network Utilities
Some of the basic tools you will need to know about when working with networking applications are: ping

and netstat

ping
This tools lets you determine if a destination node is reachable. If you’re application client application in

unable to connect to a server located on another machine over the network You would first try to ping the

node to see if the connection was alright. Below is an example of me pinging my router, it shows that all

pings were acknowledged, along with the time it took.

netstat
This utility allows you to view protocol statistics and current TCP/IP connection states. I like to use it with

the “–na” option to show “all network addresses”. If we were you make a call to netstate right after we

started the server, here is what one might expect to see.

I highlighted the line where the echo server is listening in a passive move on port 10000. Notice how the

outputs are shows as a IP:Port pairs.

If we call EchoClient.exe and then use netstate, we will see a TIME_WAIT state as we discussed earlier.

Also there will be another line showing the echo server in the listening state

(shown by the 2 yellow markers).

Rajinder Yadav Copyright © 2007 www.devmentor.org

Server Socket Code

// Module: EchoServer.cpp
// Author: Rajinder Yadav
// Date: Sept 5, 2007
//
#include <winsock2.h>
#include <iostream>
#include <process.h>
#include <stdio.h>
#include <tchar.h>
#include <windows.h>

using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
 // Initialize WinSock2.2 DLL
 // low word = major, highword = minor
 WSADATA wsaData = {0};
 WORD wVer = MAKEWORD(2,2);

 int nRet = WSAStartup(wVer, &wsaData);

 if(nRet == SOCKET_ERROR) {
 // WSAGetLastError()
 cout << "Failed to init Winsock library" << endl;
 return -1;
 }

 cout << "Starting server" << endl;

 // name a socket
 WORD WSAEvent = 0;
 WORD WSAErr = 0;

 // open a socket
 //
 // for the server we do not want to specify a network address
 // we should always use INADDR_ANY to allow the protocal stack
 // to assign a local IP address
 SOCKET hSock = {0};
 hSock = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 if(hSock == INVALID_SOCKET) {
 cout << "Invalid socket, failed to create socket" << endl;
 return -1;
 }

Rajinder Yadav Copyright © 2007 www.devmentor.org

 // name socket
 sockaddr_in saListen = {0};

 saListen.sin_family = PF_INET;
 saListen.sin_port = htons(10000);
 saListen.sin_addr.s_addr = htonl(INADDR_ANY);

 // bind socket's name
 nRet = bind(hSock, (sockaddr*)&saListen, sizeof(sockaddr));

 if(nRet == SOCKET_ERROR) {
 cout << "Failed to bind socket" << endl;
 //shutdown(hSock);
 closesocket(hSock);
 return -1;
 }

 while(true)
 {
 cout << "Listening for connections" << endl;

 // listen
 nRet = listen(hSock, 5); // connection backlog queue set to 10

 if(nRet == SOCKET_ERROR)
 {
 int nErr = WSAGetLastError();
 if(nErr == WSAECONNREFUSED) {
 cout << "Failed to listen, connection refused" << endl;
 }
 else {
 cout << "Call to listen failed" << endl;
 }
 closesocket(hSock);
 return -1;
 }

 // connect
 sockaddr_in saClient = {0};
 int nSALen = sizeof(sockaddr);
 SOCKET hClient = accept(hSock, (sockaddr*)&saClient, &nSALen);

 if(hClient == INVALID_SOCKET) {
 cout << "Invalid client socket, connection failed" << endl;
 closesocket(hSock);
 return -1;
 }

 cout << "Connection estabilished" << endl;

Rajinder Yadav Copyright © 2007 www.devmentor.org

 // process data
 char wzRec[512] = {0};
 int nLeft = 512;
 int iPos = 0;
 int nData = 0;
 do
 {
 nData = recv(hClient, &wzRec[iPos], nLeft, 0);

 if(nData == SOCKET_ERROR) {
 cout << "Error receiving data" << endl;
 memset(&wzRec, 0, sizeof(wzRec));
 break;
 }
 nLeft -= nData;
 iPos += nData;

 } while(nLeft > 0);

 cout << "Data Recieved: " << wzRec << endl;

 // echo data back to client
 iPos = 0;
 nLeft = 512;
 do
 {
 nData = send(hClient, &wzRec[iPos], nLeft, 0);

 if(nData == SOCKET_ERROR) {
 cout << "Error sending data" << endl;
 break;
 }
 nLeft -= nData;
 iPos += nData;

 } while(nLeft > 0);

 // close client connection
 closesocket(hClient);
 hClient = 0;

 // perform a lowercase comparison
 if(_stricmp(wzRec, "!shutdown") == 0) {
 break;
 }

 // clear data buffer
 memset(&wzRec, 0, sizeof(wzRec));
 } // loop

 cout << "Shutting down the server" << endl;

Rajinder Yadav Copyright © 2007 www.devmentor.org

 // close server socket
 nRet = closesocket(hSock);
 hSock = 0;
 if(nRet == SOCKET_ERROR) {
 cout << "Error failed to close socket" << endl;
 }

 // Release WinSock DLL
 nRet = WSACleanup();
 if(nRet == SOCKET_ERROR) {
 cout << "Error cleaning up Winsock Library" << endl;
 return -1;
 }

 cout << "Server is offline" << endl;
 return 0;
}

Rajinder Yadav Copyright © 2007 www.devmentor.org

Client Socket Code

// Module: EchoClient.cpp
// Author: Rajinder Yadav
// Date: Sept 5, 2007
//
#include <winsock2.h>
#include <iostream>
#include <stdio.h>
#include <tchar.h>
#include <windows.h>

using namespace std;

int main(int argc, char* argv[])
{
 // Initialize WinSock2.2 DLL
 // low word = major, highword = minor
 WSADATA wsaData = {0};
 WORD wVer = MAKEWORD(2,2);

 int nRet = WSAStartup(wVer, &wsaData);

 if(nRet == SOCKET_ERROR) {
 cout << "Failed to init Winsock library" << endl;
 return -1;
 }

 cout << "Opening connection to server" << endl;

 WORD WSAEvent = 0;
 WORD WSAErr = 0;

 SOCKET hServer = {0};

 // open a socket
 //
 // for the server we do not want to specify a network address
 // we should always use INADDR_ANY to allow the protocal stack
 // to assign a local IP address
 hServer = socket(AF_INET, SOCK_STREAM, IPPROTO_IP);

 if(hServer == INVALID_SOCKET) {
 cout << "Invalid socket, failed to create socket" << endl;
 return -1;
 }

 // name a socket
 sockaddr_in saServer = {0};

 saServer.sin_family = PF_INET;
 saServer.sin_port = htons(10000);
 saServer.sin_addr.s_addr = inet_addr("127.0.0.1");

Rajinder Yadav Copyright © 2007 www.devmentor.org

 // connect
 nRet = connect(hServer, (sockaddr*)&saServer, sizeof(sockaddr));

 if(nRet == SOCKET_ERROR) {
 cout << "Connection to server failed" << endl;
 closesocket(hServer);
 return -1;
 }

 cout << "Connected to server" << endl;
 cout << "Sending data to server" << endl;

 // process data
 char wzRec[1024] = "Hello from client!!!";
 int nLeft = 512;
 int iPos = 0;
 int nData = 0;

 if(argc == 2) {
 // copy input string from command argument
 strcpy_s(wzRec, 1024, argv[1]);
 }

 do
 {
 nData = send(hServer, &wzRec[iPos], nLeft, 0);

 if(nData == SOCKET_ERROR) {
 cout << "Error sending data" << endl;
 break;
 }
 nLeft -= nData;
 iPos += nData;

 } while(nLeft > 0);

 // clear data buffer
 memset(&wzRec, 0, sizeof(wzRec));

 nLeft = 512;
 iPos = 0;
 do
 {
 nData = recv(hServer, &wzRec[iPos], nLeft, 0);

 if(nData == SOCKET_ERROR) {
 cout << "Error receiving data" << endl;
 break;
 }
 nLeft -= nData;
 iPos += nData;

 } while(nLeft > 0);

 cout << "Data Echoed: " << wzRec << endl;

 cout << "Closing connection" << endl;

Rajinder Yadav Copyright © 2007 www.devmentor.org

 // shutdown socket
 nRet = shutdown(hServer, SD_BOTH);

 if(nRet == SOCKET_ERROR) {
 // WSAGetLastError()
 cout << "Error trying to perform shutdown on socket" << endl;
 return -1;
 }

 // close server socket
 nRet = closesocket(hServer);
 hServer = 0;

 if(nRet == SOCKET_ERROR) {
 cout << "Error failed to close socket" << endl;
 }

 // Release WinSock DLL
 nRet = WSACleanup();

 if(nRet == SOCKET_ERROR) {
 cout << "Error cleaning up Winsock Library" << endl;
 return -1;
 }

 cout << "Data sent successfully" << endl;
 return 0;
}

