
Tor's Circuit-Layer Cryptography

Attacks, Hacks, and Improvements

Isis Agora Lovecruft

Core Developer, The Tor Project

October 13th, 2016

University of Waterloo



Why should you care about privacy?

�There is an entire genre of YouTube videos devoted to an

experience which I'm certain that everyone in this room has had. It

entails an individual, who, thinking they're alone, engages in some

expressive behaviour � wild singing, girating dancing, some mild

sexual activity � only to discover that, in fact, they are not alone,

that there's a person watching and lurking, the discovery of which

causes them to immediately cease what they're doing in horror. The

sense of shame and humiliation in their face is palpable: it's the sense

of `this is something I'm willing to do only if no one else is watching.'

This is the crux of the work on which I have been singularly focused

for the sixteen months: the question of why privacy matters.�

�Glenn Greenwald, TED Talk, October 2014

1

https://www.youtube.com/watch?v=pcSlowAhvUk


Introduction to Tor



Background: Anonymising proxies

• Typically application-speci�c proxies, e.g. HTTP proxies, or generic

request-based proxies, e.g. SOCKS proxies

• Requests to online services come from the proxy

• Users behind the proxy should be indistinguishable

• Proxies can be chained together

• Various problems:
1. Single point-of-failure

2. Relatively trivial to correlate ingoing/outgoing tra�c

3. (Usually) no crypto protecting the connection between the user and the

proxy

• Can add cryptographic or obfuscational features to the proxy, e.g. The Tor

Project's �Pluggable Transports� . . .

• . . . this (usually) still does not solve problems 1 and 2

Designs like anonymising proxies which place ultimate trust in any single node

in the network cannot provide any strong guarantees to anonymity, because

these single points-of-failure can be exploited�legally or otherwise�to

deanonymise users.

2



Background: Mix Networks

Mix networks are routing protocols that create hard-to-trace communications by

using a chain of nodes, known as mixes, which receive messages from multiple

senders, shu�e them in some manner, and send them to the next destination.

Chaum's Original Mix Networks

• Idea for anonymous electronic mail by David Chaum, in 1981.

• There should exist some well-known public key for each mix.

• Messages are split up into blocks and encrypted to the mix's public key.

• The �rst few blocks conceptually contain some �headers�, which are

stripped at each hop, then some random cruft is added to the end of each

message.

• Each mix only knows the nodes immediately before and after it, making

the network resistant to malicious mix nodes.

• Supposed to achieve bitwise unlinkability between the source of the

message and the destination, making it di�cult for an adversary to trace

end-to-end communications end-to-end.

• Message shu�ing in order to achieve unlinkability.
3



Background: Mix Networks

Problems with Chaum's Original Mix Network Scheme

• P�tzmann and P�tzmann (1990) demonstrated that Chaum's original

work did not acheive the desired unlinkability property.

• Tagging attacks are possible: each encrypted message block, using RSA, is

not dependent on those before or after it, and thus can be substituted or

reused.

• Most of Chaum's work was done in the late 1970s. Unsurprisingly, it used

RSA in ways now known to be unsafe, i.e. without padding and applying

the modular exponations directly to messages.

• Because the RSA operation was applied directly, an adversary could trick a
mix into signing a message by applying the decryption operation.

• This attack could be further hidden from the mix by applying a signature

blinding technique.

• To be fair, Chaum invented RSA blind signing two years later, in 1983.

4



Background: Mix Network Designs � Cascading Mixes

Chaum noted that relying on only one mix is not resilient against malicious

nodes, so the function of mixing should distributed. Mixes can be chained to

ensure that, even if just one of them remains honest, some anonymity is

provided.

First proposed way to chain mixes together is called cascade mixing, and uses

all nodes in the network, in a speci�c order (grey boxes), each of which shu�es

the order of outgoing messages:

5



Mix Network Designs: Mix Networks

The second way is to allow users to arbitrarily select which mixes their message

will pass through, and is what is now generally referred to as a mix network.

This design has some problems:

• Berthold, P�tzmann, and Standtke (2000) argue that mix networks do not

o�er some properties that cascades o�er.

• They illustrate a number of attacks to show that, if only one mix is honest

in the network, the anonymity of the messages going through it can be

compromised.

• These attacks rely on compromised mixes which exploit some knowledge

of their position in the chain . . .

• . . . or multiple messages using the same sequence of mixes through the

network.

6



Background: Mix Networks vs. Anonymous Proxies

Mix Networks

+ No single point-of-failure

(with cascading)

+ Generally strong anonymity guarantees

+ Inbound/outbound tra�c analysis

does not deanonymise

− High latency

− Slow public-key cryptography

Anonymous Proxies

+ Low latency

+ Fast, symmetric cryptography

− Single point-of-failure

− No strong anonymity guarantees

− Inbound/outbound tra�c analysis

may deanonymise

Onion Routing: Combine the advantages of each system

• Use (non-cascading) mix (called a Tor circuit) of proxies, which are called

Tor relays or Tor nodes

• Use asymmetric cryptography for establishing an (one-way) authenticated,

encrypted channel, then use fast symmetric cryptography.

7



What is Tor?

Tor is an anonymity network, which uses onion routing to encapsulate client

tra�c in a manner such that each node in the client's chosen path only knows

the destinations before and after it.

8



How Tor Works: Directory Authorities and Consensus Protocol

Tor uses a semi-centralised design, in which certain speci�c nodes, called

Directory Authorities are trusted ultimately.

• The Directory Authorities participate in a voting protocol to decide upon a

canonical decision regarding the nodes within the network.

• They vote upon their views of the network, and eventually derive a

consensus document which is distributed to clients.

• Despite the misleading name, �consensus� documents are created by

majority vote.

9



How Tor Works: Consensus Retrieval

Initial Setup

• Directory Authority public keys are compiled into the client software.

• Client uses one of these keys to establish an encrypted connection to a

Directory Authority.

• Client downloads the consensus from the Directory Authority and checks

the Directory Authorities signatures on the document.

• Client creates a list of all relays within the consensus, weighted by the

relays' bandwidths.

• Client chooses a relay from the weighted list to act as its Guard relay. This

Guard will be the client's entry into the network for some set amount of

time (currently approximately 2 months).

We currently require that all clients know about all valid nodes in the Tor

network, in order to safeguard against partitioning attacks where an adversary

uses a client's partial knowledge of the network topology in some manner to

gain some advantage (usually to increase feasibility of further attacks, e.g. a

correlation attack).
10



How Tor Works: Path Selection

When a new stream is created (e.g. some data to be transmitted over Tor has

arrived), a circuit is either chosen from a list of pre-constructed circuits, or a

new circuit is created as needed. Using the same bandwidth-weighted list (as

before), the Client selects a Middle relay and an Exit relay for the new circuit.

11



Establishing a Circuit

Request consensus from Directory Authorities (DirAuths) Pick entry, middle,

and exit node; obtain their public keys from directory mirror (DirServ)

Exchange symmetric key with entry node (Di�e-Hellman)

Exchange key with middle node (tunnelled through entry node)

Exchange key with exit node (tunnelled through middle node, tunnelled

through entry node)

Communicate with Bob

12



How Tor Works: Circuit construction

Circuit Extension to the Middle Relay

• A TLS connection to the Guard R1 is established, TLSR1 .

• Through TLSR1 , the Client does a circuit-level handshake to setup shared

keys with the Guard (R1) for the forward and backward paths, KFR1 and

KBR1
respectively.

• The Client next creates a RELAY EXTEND cell to extend the circuit to

the Middle relay (R2) which contains the �rst stage of the circuit-level

handshake with R2. It encrypts this relay cell with KFR1 and sends it

forward to R1, who decrypts with KFR1 and packages the content into a

RELAY CREATE cell, which is sent over a newly established TLS

connection between R1 and R2, TLSR2 who sends its half of the circuit

handshake in response, packaged in a RELAY CREATE cell and reverse

encrypted (with the corresponding KBi keys) down the reverse path.

13



How Tor Works: Circuit construction

Circuit Extension to the Exit Relay

• After the Client's handshake with the Middle relay (R2) completes, the

Client creates another RELAY EXTEND cell to extend the circuit to the

Exit relay, R3. This is then tunneled over TLSR2 (which is tunneled

through TLSR1). The cell itself is super-encrypted with

Enc (KFR2 ,Enc (KFR1 ,CELL)).

• This cell is sent to R1, who decrypts with KFR1 and sends it along to R2.

R2 decrypts with KFR2 , sees that it's a RELAY EXTEND cell to R3,

packages the content into a RELAY CREATE cell (as R1 did before), and

sends it to R3.

• The Exit relay R3 receives this RELAY CREATE cell, does

Dec (KFR3 ,CELL) and receives the tra�c the client had intended to proxy

(which is hopefully further encrypted with some application-layer

encryption, e.g. TLS, SSH, etc).

14



How Tor Works: Relay Cells on the Forward Path

Encrypted with KFR1

Sent to R2

Encrypted with KFR2

Sent to R3

Encrypted with KFR3

to theintercept.com

Request

• Assumption: all relays in the network

have well-known public keys

• Use relay public keys to setup an

authenticated and encrypted channel,

which is used to establish symmetric

keypairs for the forward and reverse

paths:

• Entry relay R1 (keys KBR1 ,

KFR1 )

• Middle relay R2 (keys KBR2 ,

KFR2 )

• Exit relay R3 (keys KBR3 , KFR3 )

• Wants to anonymously send request

to theintercept.com

• Prepares Tor relay cell as follows:

• Create request for

theintercept.com and encrypt

with KFR3

• Set destination as R3 and

encrypt with KFR2

• Set destination R2 and encrypt

with KFR1

• Send this cell to R1

15



How Tor Works: Relay Cells on the Forward Path

Encrypted with KFR1

Encrypted with KFR2

Encrypted with KFR3

Request

to theintercept.com

to R3

to R2

• R1 receives packet, removes

encryption with KFR1

• Sees next destination: R2, forwards

• R2 receives packet, removes

encryption with KFR2

• Sees next destination: R3, forwards

• R3 receives packet, removes

encryption with KFR3

• Sees next destination:

theintercept.com, sends request

15



How Tor Works: Relay Cell on the Reverse Path

Encrypted with KBR3

Encrypted with KBR2

Encrypted with KBR1

Response

• R3 receives response from

theintercept.com.

• R3 encrypts with

Enc(KBR3
,Enc(KBR2

,Enc(KBR1
,CELL))),

and sends to R2.

• R2 decrypts with KBR3
, giving

Enc(KBR2
,Enc(KBR1

,CELL)),

and sends to R1.

• R1 decrypts with KBR2
, giving

Enc(KBR1
,CELL),

and sends to the Tor Client.

• The Tor Client decrypts with KBR1

and thus receives the response.

16



Tor as Censorship Circumvention

Mechanism



Tor as censorship circumvention

• Various countries �lter Internet tra�c by destination address

• Most prominent example: Great Firewall of China

• Firewalls and gateways cannot see the true destination of Tor tra�c

• Tor is a powerful tool to circumvent online censorship (e.g., in China, Iran,

Turkey, Kazakhstan, Ethiopia, others)

• Can also use Tor to circumvent country �lters:

• Need an IP address that isn't in Germany (e.g. because of GEMA

restrictions on YouTube): can use Tor access YouTube from a non-German

IP address.

17



Censorship of Tor

• Easy solution for censors:

• Obtain list of Tor nodes from the Directory Authorities

• Block access to the Tor network (all public relays)

• Even simpler: block access to the Directory Authorities (Iran, Ethopia,

Kazakhstan, and others have done this historically).

• Solution: Tor Bridges

18



Tor Bridges

• Tor Bridges are unpublished entrances to the Tor network used to

circumvent online censorship when the public relays in the consensus are

blocked.

• Bridge IP address and other connection information must be distributed

out-of-band.

• Deep Packet Inspection (DPI) or an active adversary is required to identify

Bridges.

• Distributed via a centralised system called BridgeDB. Clients can currently
obtain bridges by:

• visiting https://bridges.torproject.org/

• writing e-mail to bridges@torproject.org

Since 2010, various nation state adversaries have been conducting active

probing and enumeration attacks to attempt to collect all of Tor's bridges.

Since then, an arms race to distribute the bridge addresses to honest clients

without these adversaries obtaining them has ensued.

19

https://bridges.torproject.org/
mailto:bridges@torproject.org


Bridge Enumeration Attacks, Part I

The �rst stage of the arms race was to simply identify the ways in which a Tor

Client's tra�c could be distinguished from normal tra�c. This is obviously also

e�ective against Tor Bridges.

• Tor tra�c has trivial distiguishers: it's �disguised� as TLS tra�c, but:

• It uses random domain names,

• It has a characteristic packet-size distribution,

• Historically, it presents a unique TLS ciphersuite list

In 2012, Ethiopia began blocking all TLS (and hence blocking all Tor) tra�c by

looking for the client HELLO. Any packet with the string

TLS_DHE_RSA_WITH_AES_256_CBC_SHA in it is dropped. If you pick

TLS_DHE_RSA_WITH_AES_128_CBC_SHA instead, or fragment the

ciphersuite list, it works anyway.

20



Bridge Enumeration Attacks, Part I

Since 2010, China's GFW began active probing Tor Bridges, usually in the

following manner:

• Observe Tor client's TCP connection to the Bridge

• For Tor<0.2.3.17-beta, identi�cation was based upon Tor's unique

ciphersuite list

• A seemingly random machine from somewhere in China (possibly using

IP-spoo�ng) will connect to the Bridge's IP:port and attempt to complete

the �rst couple steps of the handshake

• The Bridge is blocked by IP:port

• The GFW sometimes spoofs a RST from Bridge to the client

Solution: Tor's Pluggable Transports

21



Pluggable Transports

In 2011, fellow Tor developer George Kadianakis came up with an idea for a

simple SOCKS-proxy based API for �plugging� obfuscating proxies together,

called Pluggable Transports (PTs).

PTs are generally not meant to provide security bene�ts, because Tor tra�c is

tunneled through the obfuscating proxy. Instead, they often provide

countermeasures to distinguishers, or packet-distribution or timing analysis.

• Pluggable Transport API allows communication between an obfuscating

SOCKS proxy and Tor client

Currently, the most widely-used and e�ective Pluggable Transport is obfs4proxy:

• Created by Yawning Angel.

• It uses Tor's NTor handshake with public keys obfuscated via the Elligator

2 mapping.

• The link layer uses NaCl secret boxes (Poly1305, Xsalsa20).

Yawning has recently created a newer PT, called �basket2� which uses a hybrid

handshake between Ed448 Goldilocks and NewHope.

22

https://www.torproject.org/docs/pluggable-transports.html.en


Pluggable Transports: Magick Potion Ingredients

Pluggable Transports are generally considered a ��nished� research �eld.

There's an incredibly simple formulae for creating one which works, although

the �hard� problems (i.e. distributing the requisite shared secrets) are shoved

under the rug.

• The handshake should be uniform.

• The PT should use some pre-shared key material for server authentication.

• The PT should encrypt starting with the client's �rst message (i.e.

encrypt the �rst stage of the handshake).

• An anthenticated encryption cipher should be used at the transport layer.

While there's probably not any remaining research problems in Pluggable

Transports for producing academic papers, writing new PTs is an incredibly fun

project (suitable for Master's, or su�ciently-motivated Bachelor's, students)

because you get to be super #yolo and use experimental new crypto.

23



Bridge Enumeration Attacks, Part II

While Pluggable Transports e�ectively obfuscate the link between a Client and

a Bridge�and modern Pluggable Transports make the tra�c data look

uniformly indistinguishable from random�this turns out to be insu�cient to

prevent Bridge enumeration attacks.

Another possibility is to simply automate obtaining Bridges in the same manner

an honest client would.

24



A Social Protocol for Bridge Distribution

The proposed solution uses attribute-based credentials to record honest users'

good behaviour (i.e. the bridges not being censored/blocked), which also serves

to e�ectively lock censoring adversaries out of the distribution system.

Wang, Q., Lin, Z., Borisov, N., & Hopper, N. (2013, February).

rBridge: User Reputation based Tor Bridge Distribution with

Privacy Preservation. In NDSS.

25



A Social Protocol for Bridge Distribution

Original rBridge Design

• Users are given �brownie points� for �good behaviour�.

• Users with enough brownie points might win the chance to invite their

friends.

• Censors lock themselves out of the system via their own bad behaviour.

• Hopefully nobody is friends with the censors enough to give them an invite

ticket.

• Some odd crypto choices, minor mistakes, and e�ciency sacri�ces for very
little added privacy.

• K-TAA signature scheme

• Pedersen commitments on vectors

• Oblivious Transfer

• Ad-hoc anonymous credential construction from k-TAA signatures and a

Camenisch-Stadler NIZK proof-of-discrete-logarithm.

Currently, I'm redesigning the protocol and implementing the scheme using an

anonymous credential based on algebraic MACs.

26



A Social Protocol for Bridge Distribution

The best game a censor can play against the rBridge scheme is to exhibit good

behaviour in order to slowly amass brownie points, trading them in for new

Bridges and invite tickets. Using an Event-Driven Blocking Strategy, that is,

waiting until some important event, e.g. a political protest, and blocking all

known Bridges en masse, is the most e�ective.

Some honest users whose Bridges are blocked, and who do not currently posess

enough brownie points for new, unblocked bridges, will e�ectively be locked out

of the system as collateral damage.

27



Bridge Enumeration Attacks, Part III

Even with these measures being implemented, there are other schemes for

discovering the locations of Tor bridges.

Ling, Z., Fu, X., Yu, W., Luo, J., Yang, M. (2011).

Extensive Analysis and Large-Scale Empirical Evaluation

of Tor Bridge Discovery.

Bridge Enumeration by Running a Middle Relay

• Run a Middle relay. Unlike running a Guard or Exit relay, there is no

waiting period to do this. Even if you were previously an Exit relay running

• Wait until you see something connecting to you which isn't listed in the

consensus.

• Running 20 malicious routers, each with bandwidths of 10MB/s, results in

a 90% probability of discovering any one particular Bridge.

• These researchers claim to have run this attack on the live Tor network in

2011, enumerating 2369 Bridges in just 14 days.

28



Tor proposal #188: Bridge Guards

While we normally tell everyone the a circuit is (normally) three hops, and that

a client chooses these hops, this is not entirely true.

Tor is loose-source routed

• Nothing prevents any relay along the client's chosen path from removing

their layer of encryption, e.g. R1 can do

Dec(KFR1 ,Enc(KFR2 ,Enc(R3,CELL))) to produce

Enc(KFR2 ,Enc(R3,CELL)).

• Then re-encrypting Enc(KFR2 ,Enc(R3,CELL)) to any additional relay(s)

of its choice.

• Forward this re-encrypted cell to the �rst additional hop.

• Each additional hop decrypts the cell as usual.

• Eventually, the cell will be fowarded to the client's chosen R2.

• The client never learns that their tra�c traverse additional hops.

We can exploit this unintended feature to give Bridges their own Guards,

unbeknownst to the client, thus protecting Bridges from malicious Middle

relays. 29



Future Improvements to Tor's

Circuit-Level Cryptography



Current Circuit-Level Cryptography

Tor currently uses AES256-CTR for the symmetric cryptography at the circuit

level.

A Message Authentication Code (MAC) is recomputed after each cell

decryption, that is, cells are not end-to-end authenticated from the client.

Although we've never witnessed an adversary take advantage of any of these,

there are various known potentential issues.

Due to using CTR mode and re-MACing at each hop, a tagging attacks is

possible.

30



A Known Tagging Attack on Tor's Circuit-Level Cryptography

Assumption: the Guard relay is controlled by an adversary, who also controls

(some) Exit relay(s).

• When receiving cells from the target client, the Guard XORs a tag (e.g.

some bits) into the decrypted cell, recalculates the MAC, and forwards to

the Middle relay.

• The Middle relay successfully veri�es the MAC, decrypts the cell,

computes a new MAC, and forwards to the Exit relay.

• The Exit relay successfully veri�es the MAC, and
• If the chosen Exit happens to be adversary-controlled:

• The Exit attempts to XOR the same tag back out, e�ectively removing it,

then decrypts to produce the original cell.

• The adversary has now con�rmed that she is both the Guard and the Exit

for the client's circuit.

• Otherwise, if the Exit is not colluding with the Guard:
• The Exit decrypts the cell to produce garbage.

• The Tor Protocol says that the Exit MUST now send a RELAY END cell

to tear down the circuit, and hence

• The adversary may repeat this attack until a colluding Exit relay is chosen

by the client.

31



(Needed!) Future Improvements to Tor's Circuit-Level Cryptography

We would like to switch to using a chained, authenticated encryption, 509-byte

wide block cipher.

Doing so renders changes to a cell at any hop detectable.

There isn't such a cipher yet.

Other potential (non-cryptographic) improvements to Tor's circuit protocol:

There's not really any reasons we haven't considered disparate forward and

reverse paths. Nothing in the crypto or protocol is technically preventing it. It

would be an interesting area of research to see the changes (and, hopefully,

improvements to anonymity guarantees) which might be derived from disjoint

path selection.

32



Tor Relay Handshake



Tor's Relay Handshake Protocol: NTor

Tor's current handshake, NTor, is a one-way-authenticated, Di�e-Hellman

based handshake which uses X25519.

In the event of a quantum-capable adversary in the future, who is currently

recording Tor handshakes now, we need a post-quantum handshake.

33



Proposed Post-Quantum Hybrid Handshakes for Tor

A Modular Hybrid Handshake

Tor proposal #269: Transitionally secure hybrid handshakes

by John Schanck, William Whyte, Zhenfei Zhang.

• Created by John Schanck, William Whyte, Zhenfei Zhang.

• Allows for composition of a classical handshake, e.g. Tor's current NTor

handshake, with a key encapsulation mechanism (KEM) which is believed

to be post-quantum secure.

• Currently proposed post-quantum KEMs are:

• Tor proposal #263: NTRU

• Tor proposal #270: NewHope

John Schanck currently has a branch which integrates NTRU, and I'm

currently working on an expirmental branch which implements the modular

hybrid handshake (#269) and adds a plugin to implement the NewHope

version (#270).

34



Questions & Contact

Isis Agora Lovecruft

isis@torproject.org

0A6A 58A1 4B59 46AB DE18 E207 A3AD B67A 2CDB 8B35

35


	Introduction to Tor
	Tor as Censorship Circumvention Mechanism
	Future Improvements to Tor's Circuit-Level Cryptography
	Tor Relay Handshake

