
The Mysteries of Open Source Software: Black and White and Red All Over
*
?

Brian Fitzgerald Pär J. Ågerfalk

University of Limerick, Ireland University of Limerick, Ireland
{bf@ul.ie par.agerfalk@ul.ie

Abstract

Open Source Software (OSS) has attracted enormous
media and research attention since the term was coined in
February 1998. The concept itself is founded on the
paradoxical premise that software source code—the
‘crown jewels’ for many proprietary software
companies—should be provided freely to anyone who
wishes to see it. Given this fundamental initial paradox, it
is perhaps hardly surprising that the OSS concept is
characterised by contradictions, paradoxes and tensions
throughout. In this paper we focus specifically on the
following issues in relation to OSS: the cathedral v.
bazaar development approach; collectivism v.
individualism, the bitter strife within the OSS community
itself (OSS v. OSS), and between OSS and the Free
Software Foundation (OSS v. FSF); whether OSS
represents a paradigm shift in the software industry;
whether the software is truly open—the Berkeley
Conundrum, as we have termed it here; whether OSS
truly is high quality software; and whether OSS is a ‘one
size fits all,’ representing the future model for all software
development.

1. Introduction

While the concept of free software is as old as software
itself (Campbell-Kelly, 2003), there has been an
explosion of academic and commercial interest in the
topic since the coining of the term "Open Source
Software" (OSS) in 1998. The observation that the
average Navajo Indian family in 1950s America consisted
of a father, mother, two children and three anthropologists
certainly has resonance for OSS in so far as it would have
seemed extremely unlikely just a few years ago that what
would appear to be primarily a nerdy software topic could
elicit so much interest from such a diverse range of
research disciplines. Researchers from sociology,
economics, management, psychology, public policy and
law, and many others, have focused on the open source
topic with great gusto.

The OSS concept abounds with contradictions,
paradoxes and tensions. On the one hand, there are
advocates who suggest that OSS represents a paradigm
shift which can solve the ‘software crisis’ (i.e. systems
taking too long to develop, costing too much, and not
working very well when eventually delivered). These

advocates point to the astonishing quality and reliability
of OSS software, its rapid release schedule, and the fact
that it is available without charge. At the extreme, the
proponents of OSS identify it as the language of the
networked community, suggesting that it will be the
dominant mode of work for knowledge-workers in the
information society (O’Reilly, 2000). However,
countering this positive view, there are those who suggest
that OSS is just the latest ‘silver bullet’ in the software
industry, that it is over-hyped, a strategy employed by the
weak with marginal products to compete with the strong.
At the extreme, some influential commentators, such as
Bob Metcalfe, founder of 3Com, have described OSS as
“utopian balderdash” (Metcalfe, 1999), and it has even
been suggested that OSS is “a disaster waiting to happen”
(Sessions, 1999). Taking the specific case of the Linux
operating system, without doubt the most high-profile
OSS example, the original creators of the Unix operating
system differ in their opinions, with Dennis Ritchie
describing Linux as “commendable”, while Ken
Thompson has declared that Linux “is quite unreliable”
and “will not be very successful in the long run.”
(Thompson, 1999).
Against this background of extreme positions, it is hardly
surprising that OSS abounds with tensions and paradoxes.
In this paper, we focus on the following:

• The cathedral v. bazaar issue: using Raymond’s
(19991) original characterisation we consider the

* The title of the paper is drawn from a popular children’s
riddle (in English-speaking regions obviously), which
uses the pun on the similar pronunciation of the words
‘red’ and ‘read’ (past tense) in English, i.e., Q: what is
black and white and red (read) all over? A: a newspaper.
It was chosen as a title for this paper as ‘black and white’
represents the contradictions, paradoxes and tensions that
exist in OSS, and the ‘red’ is a reference to its apparent
communistic nature.

1 Raymond’s work represents a seminal contribution in
OSS. While the reference cited is dated 1999, the
publications represents an amalgam of Raymond’s
landmark essays which appeared a number of years
earlier, and which evolved in true OSS style over time as
feedback was provided. Indeed, the early versions of The
Cathedral and the Bazaar paper used the term ‘free

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

extent to which OSS development is
characterised by a cathedral or a bazaar
development approach.

• The collectivist v. individualist issue: is OSS a
collectivist phenomenon—an “impossible public
good,” as Smith & Kollock (1999) have
characterised it, or is it a individualistic
phenomenon fuelled primarily by reputation-
seeking egotists?

• OSS v. OSS v. FSF: the considerable tension and
in-fighting in the OSS community, with the
resignation of key figures and the criticism of
those seen to have usurped the spokesperson
role, and also the acrimonious disputes between
the OSS and FSF communities, who might also
be expected to be on the same side.

• The extent to which OSS actually represents a
paradigm shift in the software industry,
specifically in terms of whether it subverts
software engineering principles, or the general
nature and perception of software distribution. In
relation to the latter, we consider the extent to
which open source software is truly open—the
Berkeley Conundrum being the term we have
coined for this. The issue at stake is whether
software can be truly said to be open if no one
actually downloads the source code.

• Whether OSS software is truly high quality
software?

• Whether OSS is a ‘one size fits all’ approach,
that is, the extent to which it may be the future
model for all software development.

A dialectical approach is adopted in analysing and
discussing these issues. The features that would appear to
characterise OSS as collectivist, or as a paradigm shift in
software engineering, for example, are presented, and
these are paired with a discussion of the features that
would tend to characterise OSS as the opposite.

2. Tensions and Paradoxes within OSS

2.1. Cathedral v. Bazaar

The conventional wisdom of software engineering
suggests that given the inherent complexity of software
(Brooks, 1987), it should be developed using tightly co-
ordinated, centralised teams, following a rigorous
development process (Paulk et al, 1993). Within the
software family, the most complex product is probably
that of an operating system – IBM’s OS360, the subject of

software’. Raymond changed the term to ‘open source’ on
February 9, 1998

Brooks’ Mythical man Month book was reckoned to be
the most complex thing mankind had ever created at the
time. Given this complexity, it is reasonable to assume
that such a product would require a development process
congruent with the fundamental software engineering
principles. Raymond (1999) initially categorised this
mode of development as a cathedral-style of highly
formalized, well-defined and rigorously followed
development processes. He contrasted this with a bazaar
style of development, which better characterised the open
source development approach. The bazaar metaphor was
chosen to reflect the babbling, apparent confusion of a
middle-Eastern marketplace2. In terms of software
development, this style does not mandate any particular
development approach—all are free to develop in their
own way and to follow their own agenda. There is no
formal procedure to ensure that developers are not
duplicating effort by working on the same problem. In
conventional software development, such duplication of
effort would be seen as wasteful, but in the open source
bazaar model, it leads to a greater exploration of the
problem space, and is consistent with an evolutionary
principle of mutation and survival of the fittest, in so far
as the best solution is likely to be incorporated into the
evolving software product (Kuwabara, 2000). Certainly,
the bazaar model would appear to be capable of
astonishing results. For example, Linux was begun five
years after MS Windows NT, with no budget and relying
on voluntary contributions; yet, new releases of the Linux
kernel were being released more than once per day at one
stage.

A cursory inspection might suggest that OSS is
characterised by a bazaar development approach.
However, it is certainly the case that OSS development is
not completely homogeneous. There are significant inter-
project differences in the way development is organised in
Linux, Apache, and the various BSD open source projects
(see Nakakoji & Yakamoto, 2001). Raymond (1999)
identifies the significant bureaucratic overhead associated
with the BSD projects, for example, where after the patch
has been ‘cleaned up,’ a Change Log entry must be
written and the assignment to the Free Software
Foundation completed.

Also, there are significant intra-project differences. For
example, development of the Linux kernel is organised
very differently, and exhibits many characteristics of the
cathedral approach, with modifications being co-ordinated
through Torvalds himself. On the other hand, the Linux
periphery, where applications and utilities are being
developed (Dempsey et al., 1999), is actually
characterised more by a bazaar development model.

2 Ironically, leading software commentator, Bob Glass
confessed that he was initially confused by Raymond’s
metaphors believing that ‘bazaar’ connoted
commercialism while ‘cathedral’ sounded more like an
ideologically (religiously) underpinned approach such as
OSS.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

Also given the threat of litigation, a real threat
obviously given the SCO group’s legal challenge to IBM
and others, many open source projects, especially the
more successful ones, are choosing to follow a process of
legal incorporation for protection. O’Mahony’s (2004)
study of the GNOME project supports the view that extra
constraints are not welcome to the OSS community, as
they go against the overall hacker ethos. She reports a
tension within the GNOME development community over
the fact that the GNOME Foundation control the release
coordination.

2.2 Collectivist v. Individualist

The OSS movement is often portrayed as a
communistic collectivist approach; Bob Young, the
founder of Red Hat adapted the communist manifesto to
characterise it as “from the programmers according to
their skills, to the users according to their needs” (Young,
1999). Also, Linux has been is described as an
“impossible public good” (Smith & Kollock, 1999).
Certainly, the massive parallel development—the Linux
development community is estimated variously to exceed
40,000 or 750,000 contributors, while another OSS
product, the Fetchmail utility, has had more than 600
contributors (Raymond, 1999)—and the devotion of time
by skilled programmers without a direct monetary
incentive seems to support such a collectivist view. Also,
when Linux won an award as product of the year from
InfoWorld, the editors at InfoWorld complained that they
were unsure as to whom the award should be presented as
there was no legal owner for Linux (Leibovitch, 1999).

Another factor in keeping with the collectivist notion is
that there seems to be a requirement for modesty and self
deprecation from the originators of open source projects
as they have to convince others to volunteer their efforts
in the belief that their input is required. That is, if a
developer initiating an OSS project conveys the
impression that the originators are on top of things and no
help is needed, then the project will not get off the ground
as an OSS project. In this vein, Torvalds openly sought
help with Linux from the outset. Also, the suggestion that
all contributions are valued reinforces the appearance of
collectivism. Rather than just accepting strong technical
coding contributions, the argument is that those who
cannot write code can write documentation, fulfil the role
of testers, or elaborate requirements. Thus, the traditional
hierarchy in IS departments whereby the program coding
activity is perceived as ‘superior’ to the testing and
documentation activities is countered in the OSS
approach, thus ensuring that these vitally important
activities are not undervalued. Also contributing to the
collectivist, public good perception of open source
software is the fact that it is of huge importance in the so-
called developing countries who cannot afford to pay the
high prices demanded by the vendors of proprietary
software. After all if the average annual salary is $100,
then $150 for MS Windows is a significant outlay. Again,

this ties in with the media portrayal, referred to earlier, of
OSS as a David v. Goliath phenomenon, where the poor
struggle with the fabulously rich .

However, there is also very strong evidence to support
the view that OSS is fundamentally an individualist
phenomenon. The closeness between the name Linux and
Linus, for example, betrays an individualistic orientation .
It is certainly unlikely that Microsoft would choose to
market the much trumpeted Windows Longhorn as Billux
for example.

Further evidence of individualist orientation is the
undeniable fact that the OSS culture is fundamentally a
reputation-based one, and is persuasively underpinned by
the economics of signalling incentives on the part of
individual developers (Lerner & Tirole, 2000). The
signalling incentive term is an umbrella one capturing
both ego gratification and career concern incentives, both
of which are explained next.

The ego gratification incentive operates on the basis of
peer recognition. Developers working on traditional
development projects may face long delays in getting
feedback on their work. After all, the average project
development lifecycle has been estimated to be 18 months
(Flaatten et al., 1989), and durations of up to five years
are not unknown (Taylor & Standish, 1982). Thus,
developers experience a significant ‘rush’ from seeing
their code in use more quickly in OSS projects. Also, the
recognition they do receive is from peers they truly
respect often, rather than from managers and users within
their own organisation. Bergquist and Ljungberg (2001)
discuss the OSS developer motivational issue also in
some detail and they refer to the phenomenon as obeying
an attention economy, in that the more attention an OSS
developer can attract the greater the enhancement of
status that is achieved. Thus, in this context, OSS
development may be more akin to Egoist Programming as
opposed to Egoless Programming, the term coined by
Weinberg (1971).

The career concern incentive relates to the fact that
working on an OSS project may enhance future job
prospects—after all, Linus Torvalds states that his reward
for working on Linux has been that he will never have
any difficulty in getting a job—his CV, as he puts it,
contains just one word: Linux. Another facet of the career
concern incentive might be that those participating in OSS
projects may get offered shares in commercial companies.

Also, the collectivist notion that all OSS contributions
are valued, and that literally thousands of globally-located
developers and users contribute unproblematically to open
source products does not bear up to examination. In the
case of BSD, McKusick (1999) admits rather colourfully
that 90 percent of contributions were thrown away, while
“the rest were peed upon to make them smell like
Berkeley”. In a recent study of the Apache project,
Mockus et al. (2000) found that almost 85 percent of
modification request by users were totally ignored. The
same scenario is also borne out in the Orbiten Free
Software Survey where it transpires that the top 10

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

developers (fewer than 0.1 percent of the total number of
developers) contribute almost 20 percent of the code base
(Ghosh & Prakash, 2000). Alan Cox, a main figure in
Linux development, admits that most contributions are
worthless, suggesting that they actually support the
argument that one should need a license to get on the
internet, and that there are a lot of “dangerously half-
clued people milling around”, and that those of proven
ability are well known within each product development
community (Cox, 1998). Such evidence is not indicative
of a collectivist atmosphere.

Likewise, the typical OSS developer is not an idealistic
hacker working for free. Jorgensen’s (2001) survey of the
FreeBSD project developers found that 41 percent of
developers were being paid for their OSS work by the
companies in which they were employed.

The seemingly obvious attraction of OSS to poorer
institutions in the developing countries is especially
interesting as the issue is actually not as simple as it is
often portrayed. An excellent description of failed
attempts to initiate OSS projects in Ghana by Gregg
Zachary (2003) identifies fundamental problems in the
widespread belief among Ghanaian programmers and
users that nothing of value could be done for free, and he
concludes that OSS concepts would need to be
considerably ‘Africanized’ in order to have a chance of
success

The positioning of OSS, even if simplistic, as an
opportunity for developing countries is however
paralleled by the extreme interest of fabulously wealthy
institutions in the technologically-advanced countries
also. For example, OSS is of enormous interest to an
organisation like NASA, the US space agency, who desire
complete transparency in the software they use, and
believe that by having complete access to the source code,
they can test it exhaustively themselves. Likewise the
National Security Agency (NSA) have developed their
own version of the Linux kernel. These are both examples
of organisations who have sufficient resources to
purchase any software they wish, and are quite far
removed from any ideology of collectivism.

Again, one might expect that a collectivist movement
would exhibit liberal values in other aspects. However,
the statement from Eric Raymond (2000) that “Linux is
about getting freedom, personal firearms are about
keeping it” doesn’t sit all that comfortably within what
one would normally expect of a liberal orientation.

The vast sums of money apparently being made by
some OSS players is also not at all compatible with a
collectivist, public good orientation. It is inevitable that
those developers who have been contributing to OSS and
who have not been able to benefit from this financial
bonanza will become disillusioned. This is likely to lead
to resentment and jealousy, and these issues are at the
heart of the OSS v. OSS v. FSF tensions, discussed next.

2.3. OSS v. OSS v. FSF

Also, the delicate equilibrium of the pioneers of the
OSS movement being able to co-operate and provide a
unified front appears to have faltered. Bruce Perens, one
of the originators of the open source term and a
significant contributor to establishing the movement
through integrating it with the already viable Debian
Social Contract (Perens, 1999), quickly resigned from the
Open Source Foundations, amidst rumours of negative
opinions about other OSS pioneers. Also, Raymond has
responded to criticisms that he has usurped too much of
the OSS mantle. Thus, it appears that individual egos
cannot be as easily set aside in the interest of the
movement as a whole as originally expected.

While the debate within the OSS community itself has
been somewhat acrimonious at times, so also has there
been considerable tension between the OSS and FSF
communities. Richard Stallman’s status has been eroded
due to the highly publicised success of Linux and
Torvalds. However, it should be noted that much of what
comprises the Linux distribution involves several GNU
utilities produced by the FSF, to the extent that Stallman
(quite justifiably) insists on terming the overall
distribution as GNU/Linux reserving the term Linux for
the actual kernel. However, much energy is expended on
the nuances of differentiation between two communities
who should co-operate to greater effect.

2.4. Is OSS a Paradigm Shift in Software
Industry?

2.4.1. A Paradigm Shift in Software Engineering? The
proponents of OSS point to the fact that very high quality
software is being produced in a rapid time-scale and for
free. These three aspects directly address the three main
components of the so-called software crisis mentioned
earlier. Thus, it would appear that OSS is the ‘silver
bullet’ that can solve these problems. Further icing on the
cake comes from the arguments also put forward by the
extreme proponents of OSS—that feedback is very
prompt, the testing pool is global, peer review is truly
independent, the contributors are in the top 5 percent of
developers worldwide in terms of ability, and they are
self-selected and highly motivated. Given these factors,
the argument that OSS truly is the ‘silver bullet’ becomes
even more cogent. However, the truly amazing aspect of
OSS is that this ‘silver bullet’ arises from a process which
at first glance appears to be completely alien to the
fundamental tenets and conventional wisdom of software
engineering. For example, in the bazaar development
style, there is no real formal design process, there is no
risk assessment nor measurable goals, no direct monetary
incentives for developers or organisations, informal co-
ordination and control, much duplication in parallel effort.
All of these are anathema to conventional software
engineering.

Also, OSS appears to reverse Brooks’ Law: in a classic
treatise on the software development process, Brooks
(1975) coined the widely-accepted law that “adding

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

manpower to a late software product makes it later”.
Brooks’ cited empirical evidence to support this from the
development of the IBM 360 operating system. Thus,
merely increasing the number of developers should not be
a benefit in software development. However, the OSS
community have proposed their own law, which appears
to be at odds with Brooks, namely that “given enough
eyeballs, every bug is shallow” (Raymond, 1999). Given
these apparently contradictory axioms, one is reminded on
Niels Bohr’s contention that the opposite of a great truth
is also true.

At any rate, the expected problems do not seem to
manifest themselves in open source software. OSS
products in general, and the Linux operating system in
particular, do seem to turn the software crisis on its head
in that exceptionally high quality and reliable software is
produced in a very rapid timescale and for free. Some
evidence to support this claim comes from the fact that
Linux development began five years after Windows NT
with no budget and relying on voluntary contributions.
Yet, new releases of the kernel were being produced at
the rate of more than one per day at one time.

However, 30 years of software engineering research
cannot be easily discounted. Thus, an examination of the
details of the OSS development process serves to question
the extent to which software engineering principles are
actually being fundamentally overturned. Firstly, the main
contributors of the OSS community are acknowledged to
be superb coders, suggested by some to be among the top
5 percent of programmers in terms of their skills. Also, as
they are self-selected, they are highly motivated to
contribute. The remarkable potential of gifted individuals
have long been recognised in the software engineering
tradition. Brooks (1987) suggests that good programmers
may be a hundred times more productive than mediocre
ones. The Chief Programmer Team more than twenty
years ago also bore witness to the potential of great
programmers. Also, in more recent times, the capability
maturity model (CMM) recognises that fabulous success
in software development has often been achieved due to
the “heroics of talented individuals (Paulk et al., 1993).
Thus, given the widely recognised talent of the OSS
leaders, the success of OSS products may not be such a
complete surprise.

The advancement of knowledge in software
engineering has certainly been incorporated into OSS
software. Linux, for example, benefited a great deal from
the evolution of Unix in that defects were eliminated and
requirements fleshed out a great deal (McConnell, 1999).
Furthermore, some of the fundamental concepts of
software engineering in relation to cohesion and coupling
and modularity of code are very much a feature of OSS.
Linux, by being based on Unix, is very modular in its
architecture. Indeed, the manner in which different
individuals can take responsibility for different self-
contained modules within Linux, is acknowledged as
being a major factor in its successful evolution. Further
evidence of the importance of modularity arises from the

Sendmail utility. This was first developed by Eric Allmen
at Berkeley in the late 70s, and the source made available
to interested parties. However, as it began to evolve
through the contributions of others, problems in
integrating contributions began to arise. Allmen resigned
from his position and rewrote Sendmail completely to
follow a more modular structure. This ensured that it
could be a suitable candidate for the massive parallel
development, characteristic of OSS, as developers could
work largely independently on different aspects. Sendmail
has evolved to its current position of dominance—
estimated to route 80 percent of all Internet mail. These
examples provide much evidence that open source
software does obey the fundamental tenets of software
engineering in relation to modularity.

Configuration management, another important
research area within software engineering, is a vitally
important factor within OSS, and is typically catered for
by the Concurrent Versioning System (CVS), itself an
open source product (Fogel, 1999). Also, the software
engineering principles of independent peer review and
testing are very highly evolved to an extremely advanced
level within OSS.

In summary, then, the code in OSS products is often
very structured and modular in the first place,
contributions are carefully vetted and incorporated in a
very disciplined fashion in accordance with good
configuration management, independent peer review and
testing. Thus, on closer inspection, the bazaar model of
OSS does not depart wildly from many of the sensible and
proven fundamental software engineering principles. The
argument then that OSS begins as a bazaar with a chaotic
development process chaos and evolves mysteriously into
a co-ordinated process with an exceptionally high quality
end-product is too simplistic a characterisation of what
actually is taking place in practice.

2.4.2. Is the Software Truly Open – The Berkeley
Conundrum? The inherent invisibility of software
(Brooks, 1987) is exacerbated by its distribution in binary
form (1s and 0s), which is the necessary format for
efficient computer operation. The availability of the
actual source code may appear to redress this invisibility.
However, one could question the extent to which a large
software package—the Linux distribution, for example,
contains more than 10 million lines of code—is actually
all that different from a binary executable despite its
being available in source form. It certainly appears to be
the case that the majority of users (perhaps not always
given the choice) merely use OSS products in their binary
executable form and ignore the source code. Also, the
source code of much software sold in binary form has
traditionally been made available to the purchasing
organisation through an escrow agreement which protects
the purchaser in the event of the software vendor not
surviving. Thus, the concept of actual availability of
source code is not revolutionary. Nor indeed does it
appear to be the case that the vast majority of end-users

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

are in a position to take advantage of source code
availability, even if they wanted to. We have coined the
term, The Berkeley Conundrum , to represent this
scenario whereby if users do not actually download the
software source code, is it really open?. This would
suggest that the contention that OSS represents a
paradigm shift in the nature, whatever about the
perception, of software distribution is not really
sustainable.

2.5. Is OSS High Quality Software?

Proponents of OSS often point to its high quality.
Certainly, OSS products are been chosen by the
technologically aware who are not susceptible to a
sophisticated marketing strategy. Thus, the $100m. which
Microsoft are reported to have paid the Rolling Stones for
the rights to use their ‘Start Me Up’ song for the launch of
MS Windows 95 would not be a worthwhile strategy in
the OSS world. Furthermore, the Microsoft Hallowe’en
Documents (1998) make it clear that the normal strategy
of FUD will not work in relation to OSS, as those
selecting the OSS software have such a high degree of
technological literacy. Thus, it might be concluded that all
OSS products are of very high quality.

However, the situation is not so straightforward.
Firstly, Jorgensen’s (2001) study of OSS development
revealed that simpler code gets more feedback—generally
not all that useful presumably. Also, the same study
showed that there was very little feedback on design
issues, a very significant deficiency.

Also, the fact that OSS is the choice of the
technologically literate, is the source of another problem.
Nadeau (1999) gets to the heart of the problem in arguing
that proprietary software vendors like Microsoft always
have to gear their software to “the most ignorant
customers” while OSS developers cater for the “smartest
customers”, and can thus cut back on niceties such as a
user-friendly interface. This phenomenon would appear to
be borne out in the comments of a user who installed
Linux and then posted a message on the newsgroup
referring to the “thrilling adventure” of that installation.

Another factor relevant to the quality argument is that
bug detection may be a chimera in OSS. It is likely to be
the case that a sort of inverse Pareto principle is at work
in that 80 percent of the bugs may be spotted by 99
percent of the OSS developers, whereas the more difficult
20 percent of the bugs are probably only capable of being
identified by about 1 percent of the developers.

Hard evidence in relation to software quality in
general, and OSS in particular, is difficult to unearth.
However, a study by Stamelos et al. (2001) addressed this
specific issue in relation to the SuSE Linux 6.0 release.
Using the Logiscope code analysis tool, they examined
over 600KLOC across 100 modules in the SuSE release.
The results were as follows:

· 50 percent of components acceptable as is
· 31 percent required comments

· 9 percent required further inspection
· 4 percent required further testing
· 6 percent would have to be completely rewritten
These results are really quite average. Only half the

modules actually meet the standard generally expected in
the software industry!

Similarly, a study by Rusovan, Lawford and Parnas
(2004) of the implementation of the Address resolution
Protocol (ARP) in the Linux TCP/IP implementation
identifies a number of software quality problems.

2.6. Is OSS the Future of Software –One Size
Fits All?

Some have suggested that the incremental evolution
that characterises the development of OSS is actually
quite similar to the development model of a proprietary
software company such as Microsoft, in that both follow a
model of releasing beta versions and then getting
feedback from a large number of customers. Also, the
compelling evidence of successful examples of OSS
could be used to argue that the approach needs to be more
widely used. The argument often advanced is that
software has zero reproduction costs but high service and
maintenance costs, and the traditional model which is
based on a high purchase fee and low maintenance fee is
unsuited to the realities of the software business.

However, it is unrealistic to expect all software
vendors to surrender the ‘crown jewels’ in the intellectual
property that resides in the software source code. Even
Raymond’s (1999) classic essays accept that, and such a
strategy is evident in the moves by some players in OSS
to create a variation on the standard license to achieve
this—the Sun Community alliance, for example. Also, it
appears that companies such as Apple with their Darwin
MacOSX server, Netscape Mozilla, and even Sendmail
Pro, the commercial equivalent of Sendmail, are using
OSS as a means of achieving some R&D, and then taking
any useful updates provided by the OSS community back
into their proprietary offerings.

If we consider the provenance of most OSS products, it
boils down to Raymond’s (1999) memorable phrase
“developers with a personal scratch to itch.” Thus, almost
always, OSS projects begin in this way. An examination
of the products that have emerged reveals that the
successful examples are typically general-purpose,
horizontal infrastructure software. This is no accident.
Given the finding by Jorgensen (2001), namely, that it is
very rare to receive any feedback on design issues in OSS
development, it would appear that OSS software is best
suited to horizontal domains where design is almost a
given, in that there is widespread agreement on design
architecture, and the general shape of the software
requirements is fairly well known and not problematic.
This is probably essential if a large contributor base from
a wide variety of industry backgrounds and students in
academe are to contribute. On the other hand, in vertical
domains where requirements and design issues are a

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

function of specific domain knowledge that can only
really be acquired over time—the case in many business
environments, in fact—then there are not likely to be any
OSS offerings.

3. Conclusion

OSS certainly seems to be capable of generating
enormous revenues and profits for some software
organisations. However, the question remains as to
whether it is truly sustainable from an economic point of
view in the long-term, particularly if it is expected to
scale up to encompass the overall software industry. The
discussion above would suggest that OSS is actually quite
closely aligned to fundamental software engineering
principles; thus, from that perspective, perhaps, there is
less concern. However, a very serious question mark
remains in relation to social/human issues. For example, it
may not be possible to maintain the delicate balance
between the self-deprecation and modesty required to
elicit co-operation in an OSS project, and the egoistic
motivations that inevitably arise in a reputation-based
culture. Add in the prospect of some ‘volunteers’ making
vast sums of money, and the balance becomes even more
unstable. Also, even if OSS developers mange to remain
largely aloof from all this, the possibility of actual burn-
out also is a factor. All of these issues appear to have
happened or are imminent within OSS.

However, an even bigger question is whether OSS is
merely a transitory software phenomenon (the choice of a
GNU generation), or whether it represents the new mode
of work for knowledge workers in the electronic age.

4. References

1. Bergquist, M. and Ljungberg, J. (2001) The Power of
Gifts: Organising Social Relationships in Open Source
Communities, Gothenberg University, Sweden.

2. Brooks, F. (1975) The Mythical Man-Month, Addison-
Wesley, USA.

3. Brooks, F. (1987) "No silver bullet: essence and
accidents of software engineering." IEEE Computer
Magazine, April, 10-19.

4. Campbell-Kelly, M. (2003) A History of the Software
Industry, MIT Press, Cambridge, MA.

5. Cox, A. (1998) Cathedrals, bazaars and the town
council,
http://slashdot.org/features/98/10/13/1423253.shtml
(Oct 1, 2000)

6. Dempsey, B.J., Weiss, D., Jones, P. and Greenberg, J.
(1999) A quantitative profile of a community of open
source Linux developers. Technical Report TR-1999-
05, School of Information and Library Science,
University of North Carolina at Chapel Hill.

7. DiBona, C., Ockman, S. and Stone, M. (1999)

Introduction to Open Sources: Voices from the Open
Source Revolution, O’Reilly & Associates, USA.

8. Feller, J. and Fitzgerald, B. (2000) A Framework
Analysis of the Open Source Development Paradigm,
Proceedings of the 21st International Conference in
Information Systems, Brisbane, Australia, December
2000.

9. Flaatten, P., McCubbrey, D., O'Riordan, P. and
Burgess, K. (1989) Foundations of Business Systems,
Dryden Press, Chicago.

10. Fogel, K. (1999) Open Source Development with CVS,
Coriolis Open Press, USA.

11. Ghosh, R. and Prakash, V.V. 2000. The Orbiten Free
Software Survey. First Monday, 5:7.

12. Halloween Documents, 1998, "The Halloween
Documents," http://www.opensource.org/halloween/
(May 1, 2000).

13. Irwin, R. (1998) "What is FUD?,"
http://www.geocities.com/SiliconValley/Hills/9267/fu
ddef.html (May 1, 2000).

14. Jorgensen, N. (2001) Putting It All in the Trunk:
Incremental Software Development in the FreeBSD
Open Source Project, Roskilde University, Denmark.

15. Kuwabara, K. (2000) Linux: A Bazaar at the Edge of
Chaos. First Monday, 5:3.

16. Leibovitch, E. (1999) The Business Case for Linux.
IEEE Software, Jan/Feb 1999.

17. Lewis, T. (1999) The Open Source Acid Test. IEEE
Computer, Feb 1999.

18. Lerner, J. and Tirole, J. (2000) The simple economics
of open source, Harvard Business School Working
Paper #00-059.

19. Leonard, A (2000), Salon Free Software Project:
Chapter 1 Boot Time,
http://www.salon.com/tech/fsp/2000/03/06/chapter_on
e_part_1.html.

20. Ljungberg, J. (2000) Open source movements as a
model of organising, Proceedings of 8th European
Conference on Information Systems, Vienna.

21. McConnell, S. 1999. Open Source Methodology:
Ready for Prime Time? IEEE Software, Jul/Aug 1999.

22. McKusick, M. (1999) "Twenty Years of Berkeley
UNIX: From AT&T-Owned to Freely
Redistributable," in Open Sources: Voices from the
Open Source Revolution, O’Reilly & Associates,
USA.

23. Metcalfe, B. (1999) From the ether, 21 June 1999,
http://www.infoworld.com/cgi-
bin/displayNew.pl?/metcalfe/990621bm.htm.

24. Mitchell, R. (2000a) "New Numbers, Historic
Ramifications," Wide Open News, February 10, 2000,
http://wideopen.com/story/499.html (May 1, 2000).

25. Mitchell, R. (2000b) "Linux Widens Lead in Web
Market Share," Wide Open News, April 17, 2000,

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

http://wideopen.com/story/739.html (May 1, 2000).

26. Mockus, A., Fielding, R. and Herbsleb, J. (2000) A
case study of open source software development: the
Apache server, in Proceedings of 22nd International
Conference on Software Engineering, pp. 263-272.

27. Nadeau, T. (1999) Learning from Linux,
http://www.os2hq.com/archives/linmemo1.htm (May
1, 2001)

28. Nakakoji, L. and Yakamoto, K. (2001) A taxonomy of
open source software development, in Feller, J.,
Fitzgerald, B. and van der Hoek, A. (eds) Proceedings
of First Workshop on Open Source Software, ICSE
Toronto, 2001.

29. Netcraft survey (2001) The Netcraft Web Server
Survey, http://www.netcraft.com/survey/, last
accessed May 1, 2001.

30. O’Mahony, S (2004) Non-Profit Foundations and their
Role in Community-Firm Software Collaboration, in
Feller, J, Fitzgerald, B, Hissam, S, and Lakhani, K.
(2004) (Eds) Perspectives on Free and Open Source
Software, MIT Press, Cambridge.

31. O’Reilly, T. (2000) "Open Source: The Model for
Collaboration in the Age of the Internet," Wide Open
News, http://www.wideopen.com/reprint/740.html
(May 1, 2000).

32. Paulk, M., Curtis, B., Chrissis, M. and Weber C.
(1993) Capability Maturity Model for Software,
version 1.1, IEEE Software, Vol. 10, No. 4, pp.18-27.

33. Perens, B. (1999) "The Open Source Definition," in
Open Sources: Voices from the Open Source
Revolution, O’Reilly & Associates, USA.

34. Raymond, E. (1999) The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary, US, O’Reilly.

35. Raymond, E. (1999b) "Shut Up And Show Them The
Code," Linux Today, June 28, 1999,
http://linuxtoday.com/stories/7196.html..

36. Raymond, E. (2000) Article in Atlanta Journal-
Constitution, 21 August 2000.

37. Rusovan, S, Lawford, M and Parnas, D. (2004) Open
Source Software Development: Future or Fad? in
Feller, J, Fitzgerald, B, Hissam, S, and Lakhani, K.
(2004) (Eds) Perspectives on Free and Open Source
Software, MIT Press, Cambridge.

38. Sessions, R. (1999) A lesson from Palm Pilot, IEEE
Software, Vol. 16, No. 1, 36-38.

39. Smith, M. and Kollock, P. (Eds) (1999) Communities
in Cyberspace, Routledge, London.

40. Stallman, R. (1999) "The GNU Operating Systems
and the Free Software Movement," in Open Sources:
Voices from the Open Source Revolution, O’Reilly &
Associates, USA.

41. Stamelos, I., Angelis, L. & Oykonomou, A. (2001)
Code Quality Analysis in Open-Source Software
Development, Aristotle University, Greece.

42. Taylor, T, and Standish, T. (1982) Initial thoughts on
rapid prototyping techniques, ACM SIGSOFT
Software Engineering Notes, 7, 5, 160-166.

43. Thompson, K. (1999) Unix and beyond: an interview
with Ken Thompson, IEEE Computer, May 1999,
http://computer.org/computer/thompson.htm.

44. Truex, D., Baskerville, R. and Klein, H. (1999)
"Growing systems in an emergent organisation,"
Communications of the ACM, Vol. 42, No. 8, pp. 117-
123.

45. Weinberg, G. (1971) The Psychology of Computer
Programming, Rheinhold, New York.

46. Young, R. (1999) "Giving it Away: How Red Hat
Stumbled Across a New Economic Model and Helped
Improve an Industry," in Open Sources: Voices from
the Open Source Revolution, O’Reilly & Associates,
USA.

47. Zachary, G (2003) Barriers to the formation of open-
source software communities in an African city: the
case of Accra, Ghana, (personal communication).

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

