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ABSTRACT
One of the promises of Web Science is to leverage the wis-
dom of the crowds to give rise to emergent, bottom-up se-
mantics, by making it easy for users to express relationships
between arbitrary kinds of objects. Rather than starting
with an ontology that determines the kinds of objects and
relationships to be described and reasoned about, the idea is
to give users the freedom to annotate arbitrary objects with
arbitrary predicates, along with incentives for such annota-
tions. Social tagging systems for images are one example,
where the motivation can stem from the wish to organize
and share one’s photos or from entertaining games to guess
one another’s tags. Here we explore a similar approach in
the domain of scholarly publications. We describe a system
called Scholarometer, which provides a service to scholars
by computing citation-based impact measures. This moti-
vates users to provide disciplinary annotations for authors,
which in turn can be used to compute for the first time
measures that allow to compare authors’ impact across dis-
ciplinary boundaries. We show how this crowdsourcing ap-
proach can lead to emergent semantic networks to study
interdisciplinary annotations and trends.
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1. INTRODUCTION
The rapid growth of online scholarly repositories and dig-

ital libraries brings the challenge of how to organize, cate-
gorize, and retrieve the vast collections of articles contained
in these repositories. Many disciplinary communities have
over time developed their own classification systems to help
address these issues. Examples include the ACM Comput-
ing Classification System for computer science, the Medical
Subject Headings (MeSH) for the life sciences, the Physics
and Astronomy Classification Scheme (PACS) for physics,
and so on. Unfortunately these disciplinary categorizations
make it difficult for the different communities to understand
each other’s literature, creating obstacles toward interdisci-
plinary collaboration, and leading to a more fractured sci-
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entific landscape. As a result, we see efforts to develop mul-
tidisciplinary classification schemes, the primary example
being the citation indices maintained by Thomson-Reuters
as part of their Journal Citation Reports (JCR) and Web
of Science (WoS) commercial products. Since these indices
are classifications of journals rather than articles, and they
are maintained by a central authority in a top-down fashion,
such approaches have serious drawbacks. One is their gran-
ularity: not all articles in a particular journal are equally
well described by the categories assigned to the journal, and
conversely, it is hard to identify individual articles that have
a truly interdisciplinary nature. Additionally, it is very dif-
ficult for such general classification schemes to keep track
of rapidly changing scientific fields: the important trends
leading to emergent and dying disciplines often occur at the
boundaries between established areas. Therefore a univer-
sally agreed shared vocabulary for the classification of schol-
arly output is unlikely achievable with such top-down efforts.

Web Science suggests ways to address the above problem.
One of the promises of Web Science is to leverage the wis-
dom of the crowds to give rise to emergent, bottom-up se-
mantics, by making it easy for users to express relationships
between arbitrary kinds of objects. Rather than starting
with an ontology that determines the kinds of objects and
relationships to be described and reasoned about, the idea is
to give users the freedom to annotate arbitrary objects with
arbitrary predicates, along with incentives for such annota-
tions. Here we explore such an approach in the domain of
scholarly publications. If we can create appropriate incen-
tives for scholars to annotate authors and/or articles with
disciplinary labels, we can achieve several goals simultane-
ously. First, we get a dynamic classification that can evolve
in a scalable way with the growing number of authors, arti-
cles, and specializations. Second, scholars who collaborate
across disciplinary boundaries will naturally tend to use a
shared vocabulary to facilitate such collaborations. Third, a
flat tagging approach is more flexible and fluid compared to
hierarchical classifications, making it easier to annotate con-
tributions that do not belong to a single disciplinary branch.
Fourth, while shared hierarchies or vocabularies cannot be
forced, the bottom-up approach allows to track emergence
of structure and consensus.

A related challenge is the evaluation of an author’s schol-
arly output. In a quest for quantitative impact analysis, a
wealth of measures based on citation data have been pro-
posed and new ones are being formulated almost on a daily
basis. Of course each measure has its strengths and weak-
nesses, proponents and detractors. Among the limitations of
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most citation based impact measures proposed thus far, we
focus here on the challenges posed by disciplinary bound-
aries. Different disciplines have widely heterogenous com-
munities with different numbers of authors, productivity,
citation patterns, and cultural traditions. How do we com-
pare a historian who writes a book after years of research,
with a mathematician who publishes a long article proving a
theorem, with a medical scientist who works in a large team,
with an experimental physicists whose journal articles have
50 authors, or with a computer scientists who publishes al-
most exclusively in yearly conference proceedings?

One way to account for the diverse citation patterns in dif-
ferent areas is by looking for universal regularities. Radicchi
et al. [18] have discovered that citations follow a universal
distribution across disciplines when rescaled by appropri-
ate discipline-specific statistical quantities. Based on this,
they have proposed a universal impact measure that would
enable to compare authors in different disciplines in spite
of different citation patterns. However, implementing such
an approach requires the availability of a citation database
equipped with a universal classification system. The Web
Science approach described above for addressing the prob-
lem of a scholarly classification system can be leveraged to
achieve this goal as well in combination with citation data.
If we can create appropriate incentives for users to share ci-
tation data about the authors they annotate, the two goals
— a citation database and a universal classification system
— are met simultaneously. This can give us access to cita-
tion and publication data for individual disciplines, making
it possible to compute the universal impact measure pro-
posed by Radicchi et al.

What we have described is an instance of crowdsourc-
ing, i.e., harnessing knowledge from a community via Web
platforms in order to solve practical problems. As incen-
tives for the knowledge provided, users may receive cash or
some other reward. For instance, in a game setting, users
may perform work in exchange for a chance to be enter-
tained [21]. In our application of crowdsourcing to scholarly
annotations, users have access to citation data, which they
can obtain by querying services (such as Google Scholar,
CiteSeer, Scopus, and Web of Science), and which they may
freely share with the public. Furthermore, users who query
about a particular author are in a position to annotate the
author in question with appropriate disciplinary tags. We
want scholars to share these two pieces of information. We
propose a framework for collecting such information from
users in exchange for a citation analysis service. The idea is
to provide a social client interface to an existing Web source
of scholarly data, allowing users to perform academic impact
analysis based on author queries.

In our social approach to scholarly citation analysis, the
crowdsourced information forms the very basis for the ser-
vice provided. Note that some of this information comes
directly from the users (the discipline tags), while other
information is obtained indirectly as a side effect of user
queries (the citation data). Citation data may be public or
proprietary, based on how it is collected. For example, if
it is obtained by crawling and parsing publications that are
openly available on authors’ homepages, it is clearly public.
On the other hand, if its source is a commercial publisher,
such as a subscription-based digital library, then citation
data may be proprietary. Here we assume that the citation
data is from a public source and that once users have ob-

tained citation data from some service, they are free to share
this information publicly. By using a social client interface,
users can obtain citation data from a public source and then
share it with other users.

Outline and Contributions
In this paper we introduce Scholarometer, a crowdsourcing
tool we developed for scholarly services. After some back-
ground on related research, in the remainder of the paper
we make the following contributions:

• We describe the architecture, user interface, data model,
and heuristics used in the design of the Scholarometer
system. (§ 3)

• To date, since the first release of Scholarometer, we
have collected reliable information about 4,211 authors
in 428 disciplines. Based on this data, we can create
universal or disciplinary rankings of authors, according
to various citation analyses. We discuss the differences
in the ranked lists of top authors obtained by various
impact measures. We also report on some statistics
about citation patterns across disciplines. (§ 4.1)

• By leveraging the socially collected discipline statis-
tics, we implement for the first time the universal h
index [18]. We also study the convergence of relative
bibliometric indicators used in the computation of the
universal h index. We show that these statistics are
pretty stable, suggesting that the universal h index
can be a reliable indicator for comparing the scholarly
impact of individual authors in different disciplines.
(§ 4.2)

• As an illustration of other potential applications of
crowdsourced scholarly data, we report on our first
attempt to map interdisciplinary collaborations. The
resulting network, in turn, suggests that the crowd-
sourcing framework yields a meaningful classification
scheme for authors and their disciplinary interactions.
(§ 4.3)

2. BACKGROUND
Many popular reference management tools can extract

bibliographic information from online repositories and digi-
tal libraries. BibDesk has advanced features to search online
resources and access digital libraries, such as PubMed [2].
Connotea allows users to import articles using Digital Ob-
ject Identifiers (DOI) [6]. Zotero can capture bibliographic
information from Web pages and import items by identifiers
such as ISBN, DOI, or PubMed ID [8]. These and many
other bibliographic management tools are compared in the
Wikipedia [5].

The idea of tagging scholarly work is also not new. Tools
like BibSonomy [3], Connotea [6], and CiteULike [4] allow
users to freely tag articles that are shared online. Our sys-
tem is slightly different in that we ask users to tag authors
rather than articles. Furthermore, a tag in Scholarometer is
supposed to be a scientific discipline.

As pointed out by Alonso et al. [10], there are three mul-
tidisciplinary citation databases that are increasingly being
used for scientific evaluation purposes: Web of Science, Sco-
pus, and Google Scholar. Among them, only Google Scholar
is freely available online. Additionally Google Scholar claims

2



to cover articles, theses, books, abstracts, court opinions
and other scholarly literature from all areas of research [7].
Therefore we choose Google Scholar as a source for biblio-
graphic and citation data.

Google does not provide an API for Google Scholar, sup-
posedly because of agreements with publishers. A Web ser-
vice that crawls and parses Google Scholar results to extract
and/or store information on a server would be in violation
of Google’s directives, expressed via the Robots Exclusion
Protocol. There have been several attempts to get around
this limitation. ScHolar index [19] uses configurable prox-
ies to get its server-side scripts to pass Google’s IP address
checks. Citations-gadget [12] is a Google Gadget, so its Ajax
requests originate from Google and comply with the same-
origin policy. Publish or Perish [14] is a desktop applica-
tion, therefore it acts as a client rather than a server, so
that requests do not come from a single server IP address
and cannot be blocked.

Bibliometrics is the use of statistical methods in the anal-
ysis of scholarly data to reveal patterns of authorship, pub-
lication, and use. It includes citation analysis, which is used
to explore and measure the impact of a research field, of
one or more researchers, or of a particular paper. There are
many measures to calculate the impact of authors. Hirsch’s
original h index [15] is defined as the maximum number of
articles h such that each has received at least h citations.
Egghe’s g index [11] gives more weight to publications with
many citations; it is the highest number g of papers that
together receive g2 or more citations. Schreiber’s hm in-
dex [20] and Hirsch’s ~ [16] are attempts to apportion cita-
tions fairly for papers with multiple authors. Finally, Radic-
chi et al.’s universal h-index hf [18] allows to quantitatively
compare the impact of authors in different disciplines, with
different citation patterns. Pudokvin and Garfield [17] have
proposed universal impact measures based on percentiles.
New citation-based impact measures are being introduced
all the time. Each has its own advantages and disadvantages
(see, e.g., Adler et al. [9] for a critique). Furthermore, their
values depend on the citation database used as a source.
Scholarometer incorporates several of the above measures,
discussed in § 4.2.

We propose to collect scholarly data by crowdsourcing.
The most popular example of crowdsourcing is Amazon’s
Mechanical Turk [1], a Web marketplace to coordinate the
use of human intelligence for tasks that computers are un-
able to perform. Solutions for tasks such as choosing the
best among several photographs of a store-front, writing
product descriptions, or identifying performers on music CDs
are distributed to a team of workers, who are then paid by
the requester. Games with a purpose [21] are another class of
crowdsourcing applications, based on entertainment rather
than monetary payments. The best-known example is the
ESP game, used to tag images. Here we describe a variation
of these ideas, where annotation data is generated by users
in exchange for a service, which itself is based on the data
provided by the users.

3. SYSTEM IMPLEMENTATION
In this section we outline the main features of the Schol-

arometer system, which is under development and is avail-
able online.1

1scholarometer.indiana.edu

Figure 1: The Scholarometer workflow.

3.1 Architecture
The Scholarometer tool uses Google Scholar as a data

source. As discussed above, Google Scholar provides freely
accessible publication and citation data to users, without
requiring a subscription. This leads to a caveat in the use
of Scholarometer: the analysis can only be as good as the
data source. Google Scholar provides excellent coverage, in
many cases better than Web of Science, for example in dis-
ciplines such as computer science, which are dominated by
conference proceedings; or some social sciences, which are
dominated by books. Nevertheless, Google Scholar is based
on automatic crawling, parsing, and indexing algorithms,
and therefore its data is subject to noise, errors, and incom-
plete or outdated citation information. This limitation of
course applies to any tool that uses the same source. The
system architecture and design that we describe below are
independent of the data source; they would apply equally
if we were to use an alternative source, such as CiteSeer
(citeseerx.ist.psu.edu).

As discussed above, the lack of an API to access Google
Scholar makes a server-based implementation infeasible, as
it would violate Google Scholar’s policy about crawling re-
sult pages, extracting data (by parsing/scraping) and mak-
ing such data available outside of the Google Scholar service.
Indeed, server-based applications that sit between the user
and Google Scholar are often disabled, as Google Scholar
can detect a large number of requests coming from a par-
ticular server and block its IP address. Palliative measures
such as configurable proxies do not always work, and in any
case are not a desirable solution as they appear to violate
policy. Due to the same origin policy, one cannot leverage
Ajax technology to build such a Web service either. We ex-
cluded the gadget approach because it would render the tool
completely dependent on a particular data source (Google
Scholar in our case), precluding the possibility of drawing
scholarly data from any other sources. We therefore turned
to a client-based approach. However, we ruled out a stand-
alone application (such as Publish or Perish) for portability
reasons. A browser-based implementation is platform and
system independent. These design considerations led us to a
browser extension approach. The idea is that Scholarometer
is just a smart extension of the browser, through which the
user queries the source, annotates the results, and shares
with the Scholarometer server only open citation and anno-
tation metadata.

The architecture and workflow of Scholarometer is illus-
trated in Figure 1. There are six steps: (1) First, the
user enters a query and discipline tags for an author into
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a search form provided by the browser extension. (2) The
browser extension forwards the query to Google Scholar. (3)
Google Scholar returns the query results to the browser ex-
tension. (4) The browser extension then forwards the re-
sults to the Scholarometer server. This parses the results
to extract citation and other metadata, which is then in-
serted into the database, along with annotation metadata.
(5) The Scholarometer server sends to the client browser the
bibliographic records and impact measures for the queried
author(s). (6) Finally, the client browser renders the data in
an interactive way. The user views results in a new browser
tab and can perform advanced actions such as sorting, fil-
tering, deleting, and merging records.

3.2 User Interface
The Scholarometer tool has two interfaces for communi-

cating with users: one in the browser extension for entering
queries and tags, the other in the main browser window for
presenting and manipulating bibliographic data and citation
analysis results. The browser extension is available in two
versions2: one for the Firefox browser hosted at the Mozilla
Firefox Add-ons site, and one for Chrome browser hosted at
the Google Chrome Extensions site. The Firefox interface is
illustrated in Figure 2. The query interface in the browser
extension is designed to identify one or more authors and
retrieve their articles. The default interface hides many ad-
vanced features and simplifies the common case of a single
author uniquely identified by name. Advanced interfaces are
available for multiple authors with explicit Boolean opera-
tors, for ambiguous names with controls for filtering subject
areas and languages, and with additional keyword fields. We
provide an autocomplete feature to make it easy for users to
enter discipline tags and reuse tags from other users.

The interface in the main browser window is designed to
facilitate the manipulation and cleaning of the results, to
visualize how the impact measures are calculated, and to
expose annotations from other users for the same author(s).
The output screen is divided into three panels:

1. A filter panel with two modules. One module is for
pruning the set of articles based on the publication
year or the number of citations. The second module is
for limiting the set of articles to selected name varia-
tions or co-authors.

2. The list of articles, with utilities for live searching and
for alternating between a simplified and an extended
view, as well as links to external resources. This panel
also has remove and merge utilities to correct two com-
mon sources of noise in Google Scholar results: articles
written by homonymous authors and different versions
of the same paper.

3. A citation analysis panel reporting impact measures.
As discussed in § 2, many impact measures have been
proposed, and it is impossible to implement them all.
Since a single measure can only capture some aspect
of scientific evaluation, a good citation analysis tool
should incorporate a set of measures that capture dif-
ferent features, such as highly cited publications, co-
authorship, and different citation practices. To this
end we have implemented h, g, hm, and hf . Note

2scholarometer.indiana.edu/download.html

that this is the first implementation of the universal
hf index, which is enabled by the joint availability of
annotation and citation data, as explained in detail in
§ 4.2. The citation analysis panel displays hf values for
each discipline tag of an author, along with percentiles.
Finally, the panel shows two plots illustrating the ci-
tation distribution and publications per year. All the
data in the citation analysis panel is dynamically gen-
erated and updated in response to any filter, merge or
delete actions performed in the other panels.

3.3 Database and Heuristics
Figure 3 illustrates the main structure of the Scholarom-

eter database. The data we collect consists of annotation
metadata along with citation data necessary to compute im-
pact measures. Note that we do not store information about
articles that the source intends to be only accessible to end
users, such as titles, journals, publishers, links to source doc-
uments, or any other bibliographic information. Instead we
only store user-generated metadata, such as author names,
discipline tags, author-discipline annotations, and hash sig-
natures that uniquely identify articles so that they can be
associated with citation information.

The data that we collect comes from users, so it is natu-
rally noisy and subject to various issues that make it nec-
essary to perform some preventive data cleaning. The first
challenge is that author names are often ambiguous. When
the user queries for an author from the browser extension,
our system first uses a heuristic to check for ambiguity in the
name. We extract the name variations from Google Scholar,
and sort them by number of citations. Typical author names
have two or three variations (e.g., with and without a mid-
dle initial). Therefore we look at the percentage of the total
citations that are accounted for by the top three name vari-
ations. If this is high (say above 90%) then we assume the
name is not ambiguous, as any further variations only ac-
count for a small fraction of the citations and therefore do
not have a large effect on impact measures. On the other
hand, if the top three name variations account for a low frac-
tion of the citations, we assume that the name is ambiguous
and do not enter any data into our database.

A second issue is the arbitrary nature of discipline anno-
tations. On one hand, free tags can be noisy, ambiguous,
or duplicated (e.g., “human-computer interaction,” “human
computer interaction,” and “hci”). On the other hand, using
a controlled vocabulary, such as the JCR categories, does not
allow for new/emerging disciplines to be easily captured and
tracked. Therefore we attempt to strike a balance between
the two extremes of completely uncontrolled and completely
controlled tag vocabularies. We pre-populated the database
with JCR categories — composed of Science Citation In-
dex Expanded, Social Sciences Citation Index, and Arts &
Humanities Citation Index. The user is required to select
at least one of these predefined disciplines along with any

Figure 3: Simplified sketch of the Scholarometer
data model.
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Figure 2: Illustration of the Scholarometer interfaces.

other free annotations, either tags from previous users or
completely new tags.

Finally, users may be more or less precise (narrow) in
their annotations, and as a result an author may be associ-
ated with noisy tags. Our crowdsourcing approach provides
us with a natural solution to this problem. We view each
query as a vote for the tag annotations of the queried author.
For example, a query that tags Einstein with “physics” and
“philosophy” generates a vote for (Einstein, “physics”) and
a vote for (Einstein, “philosophy”). We then use the num-
ber of votes together with the number of tags to determine
heuristically which tags are reliable for each author. A tag is
deemed reliable for an author with n tags if it has more than
Smax = − log(1/n) votes. The intuition for this heuristic is
that the more tags an author has, the greater the possi-
ble confusion (maximum entropy Smax), and therefore the
greater the number of votes necessary for a tag to decrease
the noise.

4. ANALYSIS OF DATA

4.1 General Statistics
The Scholarometer system was first released in Novem-

ber 2009. At the time of this writing, the Scholarometer
database has collected information about 318,134 articles
by 4,418 authors in 506 disciplines. There are 9,467 anno-
tations, or tag-author pairs. Once we apply the heuristics
described in § 3.3, we reduce these numbers to 4,211 reliable
authors with 7,123 reliable annotations into 428 reliable dis-
ciplines. Naturally this folksonomy grows and evolves daily
as the Scholarometer handles new queries.

Various statistics for authors and disciplines are available

Table 1: Top authors according to various impact
measures (based on values as of March 25, 2010).

h g hm hf

1 Freud Freud Freud Bourdieu
2 Bourdieu Giddens Bourdieu Chomsky
3 Witten Chomsky Witten May
4 Kandel Bourdieu Chomsky Freud
5 Piaget Piaget Giddens Caspi
6 Robbins Shleifer Marx Kandel
7 Snyder Williamson Piaget Pauling
8 May Marx May Towsley
9 Lefkowitz Kuhn Gould Lefkowitz

10 Chomsky Barro Einstein Finkelstein

on the Scholarometer Web site.3 The annotation data en-
ables us to derive rankings for authors — both universal and
disciplinary — based on impact measures. Table 1 shows the
universal rankings of top authors by h, g, hm, and hf re-
spectively. We can see that compared to the h index, the
g index favors authors such as Giddens and Chomsky, with
books that have received very high numbers (thousands) of
citations. The hm index favors authors with many top pub-
lications that are single-authored; Giddens and Chomsky
are again good examples, as well as Marx, Gould, and Ein-
stein. The universal hf index brings to the top some authors
whose citations are not as numerous in absolute terms, but
who are leaders in their respective fields — chemistry No-
bel prize winner Pauling and computer scientist Towsley are
good examples.

3scholarometer.indiana.edu/statistics.html
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Table 2: Top authors tagged with “computer sci-
ence, information systems” according to various im-
pact measures (based on values as of March 25,
2010).

h g hm hf

1 G-Molina G-Molina G-Molina Towsley
2 Towsley Davenport Towsley G-Molina
3 Chakrabarti Towsley V.D. Aalst Smith
4 Dey Berners-Lee Garfield Dey
5 Jha Jha Chakrabarti Fagin
6 Watson Chakrabarti Davenport V.D. Aalst
7 V.D. Aalst Dey Watson Jha
8 Liu Bellare Liu Davis
9 Smith Perrig Davis Staab

10 Fagin Watson Harrison Brusilovsky

Table 2 shows an example ranking of top authors in a par-
ticular discipline (“computer science, information systems”)
by the same impact measures. Once again we observe that
the g index ranks higher authors of books and other very
highly cited publications, such as Davenport and Berners-
Lee. Garfield has many top cited single-authored articles
and as a result is highly ranked by hm. Finally, in the
ranking by hf we see that some authors with high h are
replaced by other well-known information scientists (Staab
and Brusilovsky). Upon closer inspection we note that two
of the replaced names, Watson and Liu, are actually am-
biguous, referring to information scientists as well as other
authors. Thus the universal hf index has helped remove
some noise from the rankings.

4.2 Universal H Index
The universal h index, which we refer to as hf , was pro-

posed by Radicchi et al. [18]. For each discipline tag and
year, we maintain statistics about the average number n0

of papers written by authors in that discipline and in that
year, and about the average number c0 of citations to papers
written in that discipline and in that year. When we receive
a query about an author in a certain discipline, we update
these statistics. Additionally, following Radicchi et al., we
rescale the citations of each paper by c0 (for the discipline
of the author and the year of the paper) and we rescale the
rank of each paper by n0 (again for the given discipline and
year). The universal hf value for the author is the maximum
rescaled rank hf such that each of the top hf articles have
at least hf rescaled citations each. Since the discipline/year
statistics depend on the annotations we collect from queries,
they are subject to noise and may take a while to converge.
Once the statistics are reliable, one will be able to compare
the impact of authors in different disciplines. Note that an
author tagged with several disciplines will have multiple hf

values, one per discipline. Since different disciplines have
different citation patterns, an author should only pay at-
tention to hf values in disciplines that s/he knows to be
appropriate.

We have already shown in Tables 1 and 2 how hf identifies
top authors in their respective fields. To show how hf also
allows to compare the impact of authors across disciplines,
let us consider an example. The two authors G.A. Parker
and R. Weibel are both are highly successful in their own
disciplines — biology and geography, respectively. Their
impact cannot be compared based on the h index as the two
disciplines have different numbers of authors, publications,

Figure 4: Distributions of the relative changes in c0

and n0 for all tags based on 2005 papers. Every time
that c0 is updated to a new value c′

0 we can compute
∆c0/c0 = (c′

0−c0)/c0 and analogously for ∆n0/n0. The
histograms refer to the latest updates for each tag.

and citation patterns. Indeed, Parker has h = 73 while
Weibel has h = 30, suggesting that the former has a much
greater impact than the latter in absolute terms. However,
when we compare the two based on the universal hf index,
we find that both authors are equally successful in their
respective fields, having the same hf = 3.6.

Given the dependence of hf on c0 and n0, we wish to see
whether these rescaling factors are stable for all disciplines
and years. As an example, we track their convergence for a
particular year by plotting in Figure 4 the relative change
in the values of c0 and n0 for all tags in 2005. We analyzed
various other years finding similar results. We observe from
the histograms that most of the tags have small relative
changes, close to zero. This suggests that the values of c0

and n0 are quite stable for most of the tags. There are few
outliers, labeled in Figure 4, for which the values are still
noisy as we do not have sufficient data for them to converge.
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4.3 Visualizing the Collaboration Network
One way to explore the quality of the annotations ob-

tained through the crowdsourcing approach employed by the
Scholarometer system is to map the interdisciplinary collab-
orations implicit in the tags. Since an author can be tagged
with multiple disciplines, we can interpret such an annota-
tion as an indicator of a link between these disciplines. For
example, if many users tag many authors with both “math-
ematics” and “economics” tags, we can infer that these dis-
ciplines are strongly related, even though they belong to
different branches of the JCR — science and social sciences,
respectively. Figure 5 presents a network that visualizes
the relationships between the top 100 tags in Scholarome-
ter, based on the number of articles annotated with each
tag. The nodes in the network represent disciplines. Each
node’s area is proportional to the number of articles in the
corresponding discipline, i.e., the total number of articles by
authors tagged with that discipline. It is evident from the
node sizes that the majority of early Scholarometer adopters
come from computing and information science disciplines.
Nodes corresponding to JCR categories are colored based
on the ISI citation indices: blue for science, red for social
sciences, and orange for arts and humanities. User-defined
disciplines are represented by gray nodes. We see a predom-
inance of scholarly data in the sciences based on current
Scholarometer usage. The presence of large gray nodes sug-
gests a need for disciplinary labels that are not represented
in the JCR classification. Edges represent interdisciplinary
collaborations, as induced by author annotations. An edge
connecting two disciplines has a weight proportional to the
total number of articles by authors who are tagged with both
disciplines. For each node we selected the 10 incident edges
with the largest weights to represent the strongest collabora-
tions. The layout of the network is obtained by Fruchterman
and Reingold’s force-directed algorithm [13], so that related
disciplines are more likely to be near each other.

The network in Figure 5 displays several features of bottom-
up semantics emergent from the crowdsourced annotations.
For example, the user-defined tag “computer science” is con-
nected with the various computing disciplines from JCR.
Indeed there is a clear computing and information science
cluster, as well as psychological sciences, social sciences, and
engineering clusters. The plausible map of science that re-
sults from our relatively small number of annotations and
our simple, automatic visualization algorithm suggests that
the crowdsourcing framework yields a meaningful classifica-
tion scheme for authors and their disciplinary interactions.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a Web Science approach to

gather scholarly metadata. We presented Scholarometer, a
social Web tool that leverages crowdsourced scholarly meta-
data with many potential applications, such as bibliographic
data management, citation analysis, science mapping, and
scientific trend tracking. We discussed a browser-based ar-
chitecture and implementation for the Scholarometer tool,
affording platform and source independence while comply-
ing with the usage policy of Google Scholar and coping with
the noisy nature of the crowdsourced data. The scholarly
metadata that we collect will be shared with the research
community.

We outlined several citation-based impact measures that

are computed by the Scholarometer tool, including the first
implementation of the universal hf index. We showed how
these different measures capture various dimensions of sci-
entific output evaluation. We also found that the statistics
collected by our social tool make the novel hf measure reli-
able, and capable of comparing the impact of authors across
disciplinary boundaries. Finally, we found evidence that the
crowdsourcing approach can yield a coherent emergent clas-
sification of scholarly output. Of course as the crowdsourced
database grows, our data for each discipline will become
more representative and our measures more reliable. Ad-
ditional measures can be implemented as well, for instance
universal ones based on percentiles [17].

We are currently working on several enhancements of the
Scholarometer tool. One important functionality is to en-
able users to export individual or bulk bibliographic data
into formats appropriate for local reference management
software (e.g., BIB, RIS, etc.), or for social publication shar-
ing systems (e.g., BibSonomy). Such a service can become
an additional incentive for people to use the tool and thus
provide annotation and citation data. Another functional-
ity we are considering is to enable cross-checking of biblio-
graphic records against local or external curated reference
collections. Finally, we are working on disambiguation algo-
rithms to better deal with the challenges of common author
names.

An interactive application combining a visualization of
disciplinary networks with lists of high-impact authors would
be an extremely useful resource for learners as they begin
to explore the scientific world. Collaboration networks could
also be exploited and analyzed on the basis of co-authorship.
Studies of co-authorship patterns in conjunction with cita-
tion patterns might help characterize the structure of disci-
plines. Moreover, we can look at trends in scientific fields
and track the spikes in the popularity of certain disciplines.
This will make it possible to see how new disciplines emerge
and evolve over time.
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Figure 5: Collaboration network of top 100 disciplines.
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