i Texture Mapping

= A way of adding surface details

= Two ways can achieve the goal:

. Surface detail polygons: create extra polygons to model
object details

» Add scene complexity and thus slow down the graphics
rendering speed

» Some fine features are hard to model!
v Map a texture to the surface (a more popular approach)

Complexity of images does
Not affect the complexity
Of geometry processing
(transformation, clipping...)

i Texture Representation

»

4 Bitmap (pixel map) textures (supported by OpenGL)
= Procedural textures (used in advanced rendering

programs)

1,1
EHEENER.IND .
EIEWE =50 S 5w
PIONSTNNESGENS
Tl 1o Iss 1IN
e L) 11]
Wi SEREEE EEE.
AL T 1 1 TWhel L |
BN TEEEFE o
TERAEETNENEL
‘AEEITWMRA T T
e _dr R

R [0 IS P G

(0,0)

v

Bitmap texture:

. A2Dimage - represented by 2D array
texture[height][width]

1 Each pixel (or called texel) by a unique
pair texture coordinate (s, t)

. The s and t are usually normalized to
a [0,1] range

1 For any given (s,t) in the normalized range,
there is a unigue image value (i.e.,
a unique [red, green, blue] set)

i Map textures to surfaces

= Establish mapping from texture to surfaces
(polygons):
- Application program needs to specify texture
coordinates for each corner of the polygon

(1,0) (1,1)

The polygon can be
in an arbitrary size

‘L Map textures to surfaces

= Texture mapping is performed In
rasterization (backward mapping)

(0,1) (1,1) 1 For each pixel that is to be painted, its
texture coordinates (s, t) are determined
(interpolated) based on the corners’
texture coordinates (why not just
interpolate the color?)

] The interpolated texture coordinates
are then used to perform texture lookup

(0,0) (1,0)

j 1. projection

2. texture lookup

3D geometry
t e xe /

2 /3. paint texel

4’\ f

: - ‘t’;}:-

N LY

Texture 1/2/3 D image)

2D projection
of 3D geometry

i Texture Value Lookup

Texture coordinates, like other vertex attributes, are
Interpolated in screen space

For the given texture coordinates (s,t), we can find a
unique image value from the texture map

|(1,1) Coordinates are typically not

e B exactly at the texel positions

I W ey By P Three common

o ® interpolation methods:

A) Nearest neighbor

B) Linear Interpolation

/

1 . X N C) Other filters

(0,0) (0.25,0) (0.5,0) (0.75,0) (1,0)

OpenGL texture mapping

‘L setup CrentL

= Steps in your program
1) Specify texture
- read or generate images

- generate texture objects (optional)
- Assign images to textures

2) Specify texture mapping parameters
- Wrapping, filtering, etc.

3) Enable GL texture mapping, e.g. GL_ TEXTURE 2D
4) Assign texture coordinates to vertices

5) Draw your objects (with fixed function pipeline or
shaders)

6) Disable GL texture mapping (if you don’t need to
perform texture mapping any more)

i Specify textures CoontL.

= Load the texture map from main memory to
graphics card (texture memory)
o glTexlmage2D(Glenum target, Glint level, Glint
iformat, int width, int height, int border, Glenum format,
Glenum type, Glvoid* img)

= Example:

o glTeximage2D(GL_TEXTURE_ 2D, 0, GL_RGB, 64, 64, 0,
GL_RGB, GL_UNSIGNED BYTE, mylmage);

(mylmage is a 2D array: GLuByte mylmage[64][64][3];)
= The dimensions of texture images usually are

powers of 2; but OpenGL also supports non power
of 2 (GL_TEXTURE_RECTANGLE)

‘L FIX texture size Coootol

= |If the dimensions of the texture map are
not power of 2, you can
1 Pad zeros 2) Scale your image in advance

— 60 ——

Remember to adjust the texture coordinates
for your polygon corners — you don’'t want to
Include black texels in your final picture

i Texture mapping parameters QpenGL.

= What happen if the given texture coordinates (s,t) are outside

[0,1] range?
(1,1) (2,2)

E el

(0,0) (0,0)

texture GL_Repeat

= Example: glTexParameteri(GL _TEXTAURE_ 2D,

GL _TEXTURE WRAP_S, GL_CLAMP)

(2,2)

11
e

(0,0)

GL_Clamp

If(s>1)s=1
Ift=>Dt=1

CrentL.

Texture mapping parameters(2)

= Since a polygon can get transformed to arbitrary screen size,
texels in the texture map can get magnified or minified.

L —

A\ 4
\ 4

S —

\\\\\;
texture
polygon projection texture polygon projection
Magnification Minification

= Filtering: interpolate a texel value from its neighbors or combine
multiple texel values into a single one

CrentL.

Texture mapping parameters(3)

= OpenGL texture filtering:

2) Linear interpolate the neighbors

1) N t Neighbor (I i
) Nearest Neighbor (lower (better quality, slower)

Image quality)

glTexParameteri(GL_TEXTURE_2D, glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST); CL_TEXTURE_MIN_FILTER,

GL_LINEAR)
\ /

Or GL_TEXTURE_MAX_FILTER

Texture color blending penGL.

s Determin how to combine the texel color and

the object color

= GL MODULATE — multiply texture and object color
= GL BLEND - linear combination of texture and object color
= GL REPLACE - use texture color to replace object color

Example: glTexEnvf(GL _TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, GL REPLACE);

i Enable (Disable) Textures &QeenGL.

= Enable texture — glEnable(GL TEXTURE 2D)
= Disable texture — glDisable(GL_TEXTURE_2D)

Remember to disable texture mapping when
you draw non-textured polygons

Fixed Function Pipeline; penGL.

Specify texture coordinates

= Give texture coordinates before defining each
vertex

glBegin(GL_QUADS);
glTexCoord2D(0,0);
glVertex3f(-0.5, 0, 0.5);

GIENd();
= These methods are depreciated

= You should use VBOs to pass the coordinates

penGL.

Fixed Function Pipeline
i Transform texture coordinates

= All the texture coordinates are multiplied by
Gl TEXTURE matrix before in use

= To transform texture coordinates, you do:
= gIMatrixMode(Gl_TEXTURE);
= Apply regular transformation functions
= Then you can draw the textured objects

‘L Put it all together

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT):
glTexParameteri(GL_TEXTURE 2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

glEnable(GL_TEXTURE_2D);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 64, 64, 0, GL_RGB,
GL_UNSIGNED_BYTE, mytexture);

Draw_picturel(); // define texture coordinates and vertices in the function

i Using OpenGL Texture Objects

= Avoid calling giTexlmage2D (or 1D/3D etc) every
time you draw
= Not necessary if your texture is static since it will incur the
actual memory transfer
= Instead, create a texture ID and associate the ID to
the texture

glGenTextures(1, &tid); // generate one texture handle
glBindTexture(GL_TEXTURE_2D, tid); // bind this handle to a 2D texture

glTexImage2D(GL_TEXTUER_2D, 0, GL_RGBA, width, height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, &my_texture); // usage same as described before

glTexParameterf(.....) // set up the texture parameters as before

= At display time, call glBindTexture(GL_TEXTURE_2D, tid) again
to use the texture for drawing

i OpenGL textures In shaders

You need to pass the texture coordinates for each
vertex as attribute to the vertex shader, and then in
turn pass to the fragment shader as varying

= You need to link your texture in OpenGL/C to the
fragment shader as uniform variable

= You will use the GLSL build-in function texture() to
perform texture lookup

= You need to properly blend the texture color with
color from illumination calculation

= You can use multiple textures

i Vertex shader example

= Use a single texture

attribute vec3 VertexPosition;
attribute vec3 VertexNormal;

attribute vec2 VertexTexCoord; TexCoord = VertexTexCoord,
Normal = normalize(NormalMatrix *
_ » VertexNormal);
varying vec3 Position; Position = vec4(ModelViewMatrix *
varying vec3 Normal; vec4(VertexPosition,1.0));
varying vec2 TexCoord; gl_Position = MVP *

vec4(VertexPosition,1.0);

void main() {

uniform mat4 ModelViewMatrix; }
uniform mat4 NormalMatrix;

uniform mat4 ProjectionMatrix;

uniform mat4 MVP;

i Fragment Shader

varying vec3 Position; void main() {

varying vec3 Normal;

varying vec2 TexCoord; vecd texColor = texture(Tex1, TexCoord);
// compute ambient, diffucse, and

Uniform sampler2D Tex1; specular illuminations

/1 parameters for lighting calculation

gl_FragColor = vec4(ambient,1.0) +
vec4(diffuse,1.0) * texColor +
vec4(specular,1.0);

How to pass textures to your
shader?

= First of all, associate your texture(s) to texture unit O,
texture unit 1 (if you have multiple textures), etc.

glGenTexutres(1, &tid); 177

glActiveTexture(GL _TEXTUREO);

glBindTexture(GL_TEXTURE_2D, tid);

glTexturelmage2D(....); // usage as described before
glTexParameterf(...) // usage as described before

int uniloc = glGetUniformLocation(program, “Tex1”);

if (uniloc >=0) glUniformli(uniloc, 0); // associate Tex1 to texture unit O

// you can create and pass multiple textures to your shader if you want

i Projector Functions

How do we map the texture onto a arbitrary (complex) object?

» Construct a mapping between the 3-D point to an intermediate
surface

= ldea: Project each object point to the intermediate surface with a
parallel or perspective projection
» The focal point is usually placed inside the object

Plane
Cylinder
Sphere
Cube

courtesy of R. Wolfe

Planar projector

Planar Pross

Orthographic projection
onto XY plane:
u=X, v=Y

courtesy of
R. Wolfe

...onto YZ plane ...onto XZ plane

i Cylindrical Projector

onvert rectangular coordinates (X, y, z) to
cylindrical (r, 4, h), use only (h, u) to index
texture image

i Spherical Projector

= Convert rectangular coordinates (X, y, z) to
spherical (6, ¢)

Parametric Surfaces

A parameterized surface patch
> Xx=1f(u,v),y=49g(u,v), z="h(u, v)

> You will get to these kinds of surfaces in CSE
784.

courtesy of R. Wolfe

Texture Rasterization

= |exture coordinates are interpolated from
polygon vertices just like ... remember ...
~ Color : Gouraud shading
~ Depth: Z-buffer
= First along polygon edges between vertices
= Then along scanlines between left and right sides

X from Hill

Linear Texture Coordinate Interpolation
This doesn’t work In perspective projection!

= The textures look warped along the diagonal
= Noticeable during an animation

courtesy of H. Pfister

i Why?

= Equal spacing in screen (pixel) space is not the same as In
texture space in perspective projection

= Perspective foreshortening

VoA
a) b)
5 o
farther
trom from Hill
closer to the eye o
the eye i

Center...--
=

of Projection

courtesy of

View plane H. Pfister

Perspective-Correct Texture
Coordinate Interpolation

Interpolate (tex_coord/w) over the polygon, then
do perspective divide after interpolation

Compute at each vertex after perspective
transformation

= “Numerators” S/w, t/w
= “Denominator’ 1/w

Linearly interpolate 1/w, s/w, and t/w across the
polygon

At each pixel

~ Perform perspective division of interpolated texture
coordinates (s/w, t/w) by interpolated 1/w (i.e.,
numerator over denominator) to get (s, t)

i Perspective-Correct Interpolation

s [hat fixed it!

i Perspective Correction Hint

= Texture coordinate and color interpolation:
~ Linearly in screen space (wrong) OR
~ Persective correct interpolation (slower)

= glHint (GL_PERSPECTIVE_CORRECTION_HINT,
hint), where hint is one of:

| NICEST: Perspective
FASTEST: Linear
| DONT_CARE: Linear

O
O O O
|

