
0
90 91 92 93 94 95 96 97 98 99 00 01

20000 

40000 

60000 

Data Mining for Network Intrusion Detection 
 
 

Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava, Pang-Nig Tan 
Computer Science Department, 200 Union Street SE, 4-192, EE/CSC Building 

University of Minnesota, Minneapolis, MN 55455, USA 
aleks@cs.umn.edu srivasta@cs.umn.edu kumar@cs.umn.edu 

 
 

Abstract 
 

This paper gives an overview of our research in build-
ing rare class prediction models for identifying known 
intrusions and their variations and anomaly/outlier detec-
tion schemes for detecting novel attacks whose nature is 
unknown. Experimental results on the KDDCup’99 data 
set have demonstrated that our rare class predictive mod-
els are much more efficient in the detection of intrusive 
behavior than standard classification techniques. Experi-
mental results on the DARPA 1998 data set, as well as on 
live network traffic at the University of Minnesota, show 
that the new techniques show great promise in detecting 
novel intrusions. In particular, during the past few months 
our techniques have been successful in automatically 
identifying several novel intrusions that could not be de-
tected using state-of-the-art tools such as SNORT. In fact, 
many of these have been on the CERT/CC list of recent 
advisories and incident notes. 
 
 
1. Introduction 
 

As the cost of the information processing and Internet 
accessibility falls, more and more organizations are be-
coming vulnerable to a wide variety of cyber threats. Ac-
cording to a recent survey [1] by CERT/CC (Computer 
Emergency Response Team/Coordination Center), the 
rate of cyber attacks has been more than doubling every 
year in recent times (Figure 1). It has become increasingly 
important to make our information systems, especially 
those used for critical functions in the military and com-
mercial sectors, resistant to and tolerant of such attacks. 

Intrusion detection includes identifying a set of mali-
cious actions that compromise the integrity, confidential-
ity, and availability of information resources. Traditional 
methods for intrusion detection are based on extensive 
knowledge of signatures of known attacks. Monitored 
events are matched against the signatures to detect intru-
sions. These methods extract features from various audit 
streams, and detect intrusions by comparing the feature 
values to a set of attack signatures provided by human 
experts. The signature database has to be manually re-

vised for each new type of intrusion that is discovered. A 
significant limitation of signature-based methods is that 
they cannot detect emerging cyber threats, since by their 
very nature these threats are launched using previously 
unknown attacks. In addition, even if a new attack is dis-
covered and its signature developed, often there is a sub-
stantial latency in its deployment across networks. These 
limitations have led to an increasing interest in intrusion 
detection techniques based upon data mining [2, 3, 4, 5, 6]. 

 

 

 
 
Figure 1. Cyber Incidents Reported to 
CERT/CC 
 
Data mining based intrusion detection techniques gen-

erally fall into one of two categories; misuse detection 
and anomaly detection. In misuse detection, each instance 
in a data set is labeled as ‘normal’ or ‘intrusion’ and a 
learning algorithm is trained over the labeled data. These 
techniques are able to automatically retrain intrusion de-
tection models on different input data that include new 
types of attacks, as long as they have been labeled appro-
priately. Unlike signature-based intrusion detection sys-
tems, models of misuse are created automatically, and can 
be more sophisticated and precise than manually created 
signatures. A key advantage of misuse detection tech-
niques is their high degree of accuracy in detecting known 
attacks and their variations. Their obvious drawback is the 
inability to detect attacks whose instances have not yet 
been observed. Anomaly detection, on the other hand, 
builds models of normal behavior, and automatically de-
tects any deviation from it, flagging the latter as suspect. 
Anomaly detection techniques thus identify new types of 
intrusions as deviations from normal usage [7, 8]. While 
an extremely powerful and novel tool, a potential draw-
back of these techniques is the rate of false alarms. This 
can happen primarily because previously unseen (yet le-
gitimate) system behaviors may also be recognized as 
anomalies, and hence flagged as potential intrusions. 
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This paper presents the scope and status of our re-
search work both in misuse detection and anomaly detec-
tion. After the brief overview of our research in building 
predictive models for learning from rare classes, the paper 
gives a comparative study of several anomaly detection 
schemes for identifying novel network intrusions. We 
present experimental results on DARPA 1998 Intrusion 
Detection Evaluation Data, the KDDCup’99 data set, as 
well as on real network data from the University of Min-
nesota. Experimental results on the KDDCup’99 data set 
have demonstrated that our rare class predictive models 
are much more efficient in the detection of intrusive be-
havior than standard classification techniques. Experi-
mental results on the DARPA 1998 data set [9], as well as 
on live network traffic at the University of Minnesota, 
show that the new techniques show great promise in de-
tecting novel intrusions. In particular, during the past few 
months our techniques have been successful in automati-
cally identifying several novel intrusions that could not be 
detected using state-of-the-art tools such as SNORT. In 
fact, many of these have been on the CERT/CC list of 
recent advisories and incident notes. 

 
2. Learning from Rare Classes 

 
In misuse detection related problems, standard data 

mining techniques are not applicable due to several spe-
cific details that include dealing with skewed class distri-
bution, learning from data streams and labeling network 
connections. The problem of skewed class distribution in 
the network intrusion detection is very apparent since 
intrusion as a class of interest is much smaller i.e. rarer 
than the class representing normal network behavior. In 
such scenarios when the normal behavior may typically 
represent 98-99% of the entire population a trivial classi-
fier that labels everything with the majority class can 
achieve 98-99% accuracy. It is apparent that in this case 
classification accuracy is not sufficient as a standard per-
formance measure. ROC analysis [10] and metrics such as 
precision, recall and F-value [11, 12] have been used to 
understand the performance of the learning algorithm on 
the minority class. A confusion matrix as shown in Table 
1 is typically used to evaluate performance of a machine 
learning algorithm. 

 
Table 1. Standard metrics for evaluations of 
intrusions (attacks) 

Predicted connection label Confusion matrix 
(Standard metrics) Normal Intrusions(Attacks)

Normal True Negative 
(TN) False Alarm (FP)Actual 

connection 
label Intrusions 

(Attacks) 
False Negative 

(FN) 
Correctly detected 

attacks (TP) 

From Table 1, recall, precision and F-value may be 
defined as follows: 
  Precision =  TP / (TP + FP) 

Recall    =  TP / (TP + FN) 

F-value  =  
ecisionPrcallRe

ecisionPrcallRe)
+⋅

⋅⋅+
2
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where β corresponds to relative importance of precision 
vs. recall and it is usually set to 1. 

In addition, intrusions very often represent sequence of 
events and therefore are more suitable to be addressed by 
some temporal data mining algorithms. Finally, misuse 
detection algorithms require all data to be labeled, but 
labeling network connections as normal or intrusive re-
quires enormous amount of time for many human experts. 
All these issues cause building misuse detection models 
very complex. 

We have developed several novel classification algo-
rithms designed especially for learning from the rare 
classes. For example, PN rule [13] is a two-stage learning 
algorithm based on computing the rules. The first stage is 
aimed at discovering P-rules that cover most of the intru-
sive examples, while the second stage discovers N-rules 
and eliminates false alarms generated in the first phase. 
CREDOS [14] is a novel algorithm that first uses the rip-
ple down rules to overfit the training data and then to 
prune them to improve generalization capability.  

In data mining community it is well known that a 
combination of classifiers can be an effective technique 
for improving prediction accuracy. Rare-Boost [11, 12] 
attempts to incorporate rare class learning algorithms into 
the boosting technique. Unlike standard boosting tech-
nique where the weights of the examples are updated uni-
formly, in Rare-Boost the weights are updated differently 
for all four entries shown in Table 1. This paper shows 
that our algorithms for learning from rare class when in-
tegrated within the boosting algorithm produce signifi-
cantly better performance regarding better recall/precision 
balance than the boosting technique applied on standard 
data mining algorithms. SMOTEBoost [15] further inves-
tigates this idea by embedding the procedure for generat-
ing artificial examples from the minority (intrusion) class 
within the boosting procedure. Artificial examples are 
created after each boosting round, classifiers are then built 
on such newly generated data and finally they are com-
bined using the boosting technique.  

We have also investigated a standard association-based 
classification algorithm in order to focus on a rare class 
problem. First, a frequent itemset generation algorithm is 
applied to each class and then the best itemsets are se-
lected as “meta-features”. These constructed features are 
added to the original data set and a standard classification 
algorithm is applied to such obtained data set. Current 
classification algorithms based on associations use confi-
dence-like measures to select the best rules to be added as 
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bursty attack 

Time → 

t 

features into the classifiers. However, these techniques 
may work well only if each class is well-represented in 
the data set. For the rare class problems, some of the high 
recall itemsets could be also beneficial as long as their 
precision is not too low. Therefore, the best itemsets that 
will be added to the original data set are selected not only 
according to the precision but also according to high re-
call and F-value. 

hreshold 

False 
alarmsreal attack 

curve 

score value 

surface 
area  

3. Anomaly Detection Algorithms 
 False alarm 

Most supervised anomaly detection approaches attempt 
to build some kind of a model over the normal data and 
then check to see how well new data fits into that model. 
In this section our focus is on several outlier detection 
algorithms as well as on unsupervised support vector ma-
chine algorithms for detecting network intrusions. 

ndi 

 tresponse 
3.1. Evaluation of Anomaly Detection Systems 

 
There are generally two types of attacks in network in-

trusion detection: the attacks that involve single connec-
tions and the attacks that involve multiple connections 
(bursts of connections). The standard metrics (Table 1) 
treat all types of attacks similarly thus failing to provide 
sufficiently generic and systematic evaluation for the at-
tacks that involve many network connections (bursty at-
tacks). Therefore, two types of analysis may be applied; 
multi-connection attack analysis for bursty attacks and the 
single-connection attack analysis for single connection 
attacks. Assume that for a given network traffic in some 
time interval, each connection is assigned a score value, 
represented as a vertical line (Figure 2) The score value 
corresponds to the likelihood that the network connection 
is associated with an intrusion 

The first derived metric corresponds to the surface ar-
eas between the real attack curve and the predicted attack 
curve (surfaces denoted as \\\ in Figure 2). The smaller the 
surface under the real attack curve, the better the intrusion 
detection algorithm. However, the surface area itself is 
not sufficient to capture many relevant aspects of intru-
sion detection algorithms (e.g. how many connections are 
associated with the attack, how fast the intrusion detection 
algorithm is, etc.). Therefore, additional metrics may be 
used to address these issues. They are defined as follows: 

1. Burst detection rate (bdr) is defined for each burst 
and it represents the ratio between the total number of 
intrusive network connections ndi that have the score 
higher than prespecified threshold within the bursty 
attack and the total number of intrusive network con-
nections within attack intervals (Figure 2). Similar 
metric was used in DARPA 1998 evaluation [9]. 

2. Response time represents the time elapsed from the 
beginning of the attack till the moment when the first 
network connection has the score value higher than 
prespecified threshold (tresponse in Figure 2). Similar 
metric was used in DARPA 1999 evaluation [16] 
where 60s time interval was allowed to detect the 
bursty attack. 

 
 
 
 
 
 

 
 
 
 
 
Figure 2. Assigning scores in network 
intrusion detection scheme 
 

3.2. Outlier Detection Schemes 
 
Most anomaly detection algorithms require a set of 

purely normal data to train the model, and they implicitly 
assume that anomalies can be treated as patterns not ob-
served before. Since an outlier may be defined as a data 
point which is very different from the rest of the data, 
based on some measure, we employ several outlier detec-
tion schemes in order to see how efficiently these 
schemes may deal with the problem of anomaly detection. 

In statistics-based outlier detection techniques [17] the 
data points are modeled using a stochastic distribution and 
points are determined to be outliers depending upon their 
relationship with this model. However, with increasing 
dimensionality, it becomes increasingly difficult and in-
accurate to estimate the multidimensional distributions of 
the data points [18]. However, recent outlier detection 
algorithms that we utilize in this study are based on com-
puting the full dimensional distances of the points from 
one another [19, 20] as well as on computing the densities 
of local neighborhoods [21].  

 
3.2.1. Nearest Neighbor (NN) Approach. This approach 
is based on the distance Dk(O) of the k-th nearest neighbor 
from the point O. For instance, points with larger values 
Dk(O) have more sparse neighborhoods and they typically 
represent stronger outliers than points belonging to dense 
clusters. In our NN approach we chose k = 1 and specify 
an “outlier threshold” that will serve to determine whether 
the point is an outlier or not. The threshold is based only 
on the training data and it is set to 2%. In order to com-
pute the threshold, for all data points from training data 
(e.g. “normal behavior”) distances to their nearest 
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neighbors are computed and then sorted. All test data 
points that have distances to their nearest neighbors 
greater than the threshold are detected as outliers. 
 
3.2.2. Mahalanobis-distance Based Outlier Detection. 
Since the training data corresponds to “normal behavior”, 
the Mahalanobis distance [22] between the particular 
point p and the mean µ of the normal data is computed as: 

dM = )p()p( T µµ −⋅Σ⋅− −1 , 

where the Σ is the covariance matrix of the “normal” data. 
Similarly to the previous approach, the threshold is com-
puted according to the most distant points from the mean 
of the “normal” data and it is set to be 2% of total number 
of points. All test data points that have distances to the 
mean of the training “normal” data greater than the 
threshold are detected as outliers. 
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Computing distances using standard Euclidean dis-
tance metric is not always beneficial, especially when the 
data has a distribution similar to that presented in Figure 
3. When using standard Euclidean metric, the distance 
between p2 and its nearest neighbor is greater than the 
distance from p1 to its nearest neighbor. However, when 
using the Mahalanobis distance metric, these two dis-
tances are the same. It is apparent that in these scenarios, 
Mahalanobis based approach is beneficial compared to 
the Euclidean metric. 

  p2
×   p1 

× 

 
 
 
 
 
 
 
 
 

 
 
Figure 3. Advantage of Mahalanobis-distance 
based approach when computing distances 
 

3.2.3. Density Based Local Outliers (LOF approach). 
The main idea of this method [21] is to assign to each data 
example a degree of being outlier, which is called the 
local outlier factor (LOF). The outlier factor is local in 
the sense that only a restricted neighborhood of each ob-
ject is considered. For each data example, the density of 
the neighborhood is first computed. The LOF of specific 
data example p represents the average of the ratios of the 
density of the example p and the density of its nearest 
neighbors. To illustrate advantages of the LOF approach, 
consider a simple two-dimensional data set given in Fig-
ure 4. It is apparent that there is much larger number of 
examples in the cluster C1 than in the cluster C2, and that 

the density of the cluster C2 is significantly higher that the 
density of the cluster C1. Due to the low density of the 
cluster C1 it is apparent that for every example q inside 
the cluster C1, the distance between the example q and its 
nearest neighbor is greater than the distance between the 
example p2 and its nearest neighbor which is from the 
cluster C2, and therefore example p2 will not be consid-
ered as outlier. Therefore, the simple NN approach based 
on computing the distances fail in these scenarios. How-
ever, the example p1 may be detected as outlier using the 
distances to the nearest neighbor. On the other side, LOF 
is able to capture both outliers (p1 and p2) due to the fact 
that it considers the density around the points. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Advantages of the LOF approach 
 

3.3. Unsupervised Support Vector Machines 
 

Unlike standard supervised support vector machines 
(SVMs) that require labeled training data to create their 
classification rule, in [23] the SVM algorithm was 
adapted into unsupervised learning algorithm. This modi-
fication does not require training data to be labeled to 
determine a decision surface. Whereas the supervised 
SVM algorithm tries to maximally separate two classes of 
data in feature space by a hyperplane, the unsupervised 
algorithm attempts to separate the entire set of training 
data from the origin, i.e. to find a small region where most 
of the data lies and label data points in this region as one 
class. Points in other regions are labeled as another class. 
By using different values for SVM parameters (variance 
parameter of radial basis functions (RBFs), expected out-
lier rate), the models with different complexity may be 
built. For RBF kernels with smaller variance, the number 
of support vectors is larger and the decision boundaries 
are more complex, thus resulting in very high detection 
rate but very high false alarm rate too. On the other hand, 
by considering RBF kernels with larger variance, the 
number of support vectors decreases while the boundary 
regions become more general, which results in lower de-
tection rate but lower false alarm rate too. 
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4. Experiments 
 
We first applied the proposed intrusion detection 

schemes to 1998 DARPA Intrusion Detection Evaluation 
Data [9] and to its modification, KDDCup’99 data set [2]. 
The DARPA’98 data contains both training data and test 
data. The training data consists of 7 weeks of labeled 
network-based attacks inserted in the normal background 
data. The test data contained 2 weeks of network-based 
attacks and normal background data. The data contains 
four main categories of attacks:  

• DoS (Denial of Service), for example, ping-of-death, 
teardrop, smurf, SYN flood, etc., 

• R2L, unauthorized access from a remote machine, for 
example, guessing password, 

• U2R, unauthorized access to local superuser privi-
leges by a local unprivileged user, for example, vari-
ous buffer overflow attacks, 

• PROBING, surveillance and probing, for example, 
port-scan, ping-sweep, etc. 

Although DARPA’98 evaluation represents a signifi-
cant contribution to the field of intrusion detection, there 
are many unresolved issues associated with its design and 
execution. In his critique, McHugh [24] questioned a 
number of results of DARPA evaluation, starting from 
usage of synthetic simulated data for the background 
(normal data) and using attacks implemented via scripts 
and programs collected from a variety of sources. In addi-
tion, it is known that the background data contains none 
of the background noise (packet storms, strange frag-
ments, etc.) that characterizes real data. However, in the 
lack of better benchmarks, vast amount of the research is 
based on the experiments performed on this data set and 
its modification, KDDCup’99 data. However, in order to 
assess the performance of our anomaly detection algo-
rithms in a real setting, we also applied our techniques to 
real network data from the University of Minnesota. 

  
4.1. Feature construction 

 
We used tcptrace utility software [25] as the packet fil-

tering tool in order to extract information about packets 
from TCP connections and to construct new features. The 
DARPA98 training data includes “list files” that identify 
the time stamps (start time and duration), service type, 
source IP address, source port, destination IP address, 
destination port and the type of each attack. We used this 
information to map the connection records from “list 
files” to the connections obtained using tcptrace utility 
software and to correctly label each connection record 
with “normal” or an attack type. The akin technique was 
used to construct KDDCup’99 data set [2], but this data 
set did not keep the time information about the attacks. 
Therefore, we constructed our own features that were 
very similar in nature. These features include the number 

of packets, data bytes, acknowledgment packets, retrans-
mitted packets, pushed packets, SYN and FIN packets 
flowing from source to destination as well as from desti-
nation to source. We have also added connection status as 
the content-based feature. 

The main reason for this procedure is to associate new 
constructed features with the connection records from 
“list files” and to create more informative data set for 
learning. However, this procedure was applied only to 
TCP connection records, since tcptrace software utility 
was not able to handle ICMP and UDP packets. For these 
connection records, in addition to the features provided by 
DARPA, we used the features that represented the num-
ber of packets that flowed from source to destination. 

Since majority of the DoS and probing attacks may use 
hundreds of packets or connections, we have constructed 
time-based features that attempt to capture previous re-
cent connections with similar characteristics. The same 
approach was used for constructing features in 
KDDCup’99 data [2], but our own features examine only 
the connection records in the past 5 seconds. Table 2 
summarizes these derived time-windows features. 

“Slow” probing attacks that scan the hosts (or ports) 
and use a much larger interval than 5 seconds (e.g. one 
scan per minute or even one scan per hour) cannot be de-
tected using derived “time based” features. To capture 
these types of the attacks, we also derived “connection 
based” features that capture the same characteristics of the 
connection records as time based features but they are 
computed in the last 100 connections.  

 
Table 2. The extracted “time-based” features 

Feature Name Feature description 
count_src Number of connections made by the 

same source as the current record in the 
last 5 seconds  

count_dest Number of connections made to the 
same destination as the current record in 
the last 5 seconds  

count_serv_src Number of different services from the 
same source as the current record in the 
last 5 seconds 

count_serv_dest Number of different services to the same 
destination as the current record in the 
last 5 seconds 

 
It is well known that constructed features from the data 

content of the connections are more important when de-
tecting R2L and U2R attack types, while “time-based’ 
and “connection-based” features were more important for 
detection DoS and probing attack types [2]. 
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4.2. Results for Learning from Rare Class 
 
KddCup’99 data set is an extension of DARPA’98 data 

set with a set of additionally constructed features. It is 
very similar to the data set that we have developed, but it 
does not contain some basic information about the net-
work connections (e.g. start time, IP addresses, ports, etc.) 
that we needed for our analysis of multi-connection at-
tacks. The data set was mainly constructed for the purpose 
of applying data mining algorithms. Therefore, we have 
also used this data set as a testbed for our algorithms for 
learning from rare class. In addition to 4 main attack 
classes (categories), KDDCup’99 data set has also the 
class of normal network connections. Two of five classes 
are considered rare, U2R and R2L classes respectively 
with 0.4% and 5.7% of the entire population. 
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Figure 5. Precision, Recall, and F-values for the 
minority U2R class 

 
When experimenting with the SMOTEBoost algo-

rithm, different values for the SMOTE parameter that 
controls the amount of generated examples, ranging be-
tween 100 and 500, were used for the minority classes. 
The values of SMOTE parameters for U2R class were 

higher than the SMOTE parameter values for R2L class, 
since R2L class is better represented in KDD-Cup 1999 
data set than the U2R class (R2L has larger number of 
examples). Our experimental results also showed that the 
higher values of SMOTE parameters for R2L class could 
lead to overfitting and decreasing the prediction perform-
ance on that class. Figure 5 shows the precision, recall 
and the F-value for the combination of SMOTE parame-
ters that give the best classification performance of the 
SMOTEBoost algorithm. 

When our proposed association based classification al-
gorithm is applied on KDDCup data set, experimental 
results indicate that the significant increase in prediction 
performance may be achieved by considering not only the 
itemsets with high precision but also the itemsets with 
high recall and F-value. Table 3 shows the precision, re-
call and the F-value when no itemsets were added to the 
original data set as well as when the itemsets with high 
precision, recall and F-value were added as “meta-
features” to the original data set. 

 
Table 3. Results of association-based 
classification algorithm on KDDCUP’99 data 
Added 

features Class Precision Recall F-value 

U2R 84.8% 57.4% 68.4% No added 
features R2L 96.7% 75.9% 85.1% 

U2R 88.6% 68.4% 77.2% High 
Precision R2L 96.5% 78.9% 86.8% 

U2R 90.1% 73.5% 81.0% High 
Recall R2L 92.9% 75.9% 83.5% 

U2R 94.2% 83.1% 88.3% High  
F-value R2L 96.2% 84.3% 89.8% 
 

4.3. Anomaly Detection Results on DARPA’98 Data 
 
In order to perform our evaluation of both single-

connection and multi-connection attacks, we applied pre-
sented anomaly detection algorithms to our data set con-
structed from DARPA’98 data. Since the amount of 
available DARPA’98 data is huge (e.g. some days have 
several millions of connection records), we sampled se-
quences of normal connection records in order to create 
the normal data set that had the same distribution as the 
original data set of normal connections. We used this 
normal data set for training our outlier detection schemes, 
and then examined how well the attacks may be detected 
using the proposed schemes. 

We used only the TCP connections from 5 weeks of 
training data (499,467 connection records), where we 
sampled 5,000 data records that correspond to the normal 
connections, and used them for the training phase. For 
testing purposes, we used the connections associated with 
all the attacks from the first 5 weeks of data in order to 
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determine detection rate. Also we considered a random 
sample of 1,000 connection records that correspond to 
normal data in order to determine the false alarm rate. It is 
important to note that the sample used for testing pur-
poses had the same distribution as the original set of nor-
mal connections. After the features are constructed and 
normalized, anomaly detection schemes were tested sepa-
rately for the attack bursts, mixed bursty attacks and non-
bursty attacks. In all the experiments, the percentage of 
the outliers in the training data (allowed false alarm rate) 
is set to be approximately 2%. 

 
4.3.1. Evaluation of Bursty Attacks. Our experiments 
were first performed on the attack bursts, and the obtained 
detection rates for all anomaly detection schemes are re-
ported in Table 4. Using the standard metrics, we consider 
a burst to be detected if the corresponding burst detection 
rate is greater than 50%. Since we have a total of 19 
bursty attacks, overall detection rate in Table 4 was com-
puted using this rule. Experimental results from Table 4 
show that the two most successful outlier detection 
schemes were nearest neighbor (NN) and LOF, where the 
NN approach was able to detect 14 attack bursts and the 
LOF approach was able to detect 13 attack bursts. Al-
though the detection rate when using unsupervised SVMs 
looks very good, the comparison is not fair, since the false 
alarm rate in this case is 4%. While the false alarm rate 
for training data was fixed to 2%, the false alarm for test 
data could not be maintained at that rate, and it increased 
to 4%. Figure 6 illustrates the ROC curves of all proposed 
algorithms and show how the detection rate and false 
alarm rate vary when different thresholds are used. Since 
the unsupervised SVM approach was not able to achieve a 
false alarm rate of 1% and 2%, these results were omitted 
from the figure. It is apparent form Figure 6 that the most 

consistent anomaly detection scheme is the LOF ap-
proach, since it is only slightly worse than the NN ap-
proach for low false alarm rates (1% and 2%), but signifi-
cantly better than all other techniques for higher false 
alarm rates (greater than 2%). The Mahalanobis-based 
approach was consistently inferior to the NN approach 
and was able to detect only 11 multiple-connection at-
tacks. This poor performance of Mahalanobis-based 
scheme was probably due to the fact that the normal be-
havior may have several types and cannot be character-
ized with a single distribution. In order to alleviate this 
problem, there is a need to partition the normal behavior 
into several more similar distributions and identify the 
anomalies according to the Mahalanobis distances to each 
of the distributions. 

Table 4 also shows detection rate when evaluation is 
performed using surface area and response time. When 
considering these additional evaluation metrics, we con-
sider an attack burst detected if the normalized surface 
area is less than 0.5. It is apparent that this method gives 
only slightly different results than the method with stan-
dard metrics. Again, the two most successful intrusion 
detection algorithms were NN and LOF, with 15 detected 
bursts and 14 detected bursts respectively which was 
slightly better than using standard metrics. Since both 
schemes are based on computing the distances, they have 
similar performance on the bursty attacks because the 
major contribution in distance computation comes from 
the time-based and connection-based features.  Namely, 
due to the nature of bursty attacks there is very large 
number of connections in a short amount of time and/or 
that are coming from the same source, and therefore the 
time-based and connection-based features end up with 
very high values that significantly influence the distance 
computation. 

 
Table 4. Detection rate for detecting bursty attacks using standard and additional metrics (*- higher FA) 

Evaluation using standard metrics Evaluation using additional metrics DetectionApproach DOS (3) Probe (11) U2R (3) R2L (2) 
Detection 

rate DOS probe U2R R2L rate 

LOF 3 / 3 
(100%) 

7 / 11 
(63.6%) 

2 / 3 
(66.7%) 

1 / 2 
(50%) 

13 / 19 
(68.4%) 

3 / 3  
(100%) 

8 / 11 
(72.7%)

2 / 3 
(66.7%) 

1 / 2 
(50%) 

14/19 
(73.7%) 

NN 2 / 3 
(66.7%) 

9 / 11 
(81.8) 

2 / 3 
(66.7%) 

1 / 2 
(50%) 

14 / 19 
(73.7%) 

2 / 3 
(66.7%)

10 / 11 
(90.9%)

2 / 3 
(66.7%) 

1 / 2 
(50%) 

15/19 
(78.9%) 

Mahalanobis 
based 

1 / 3 
(33.3%) 

7 / 11 
(63.6%) 

2 / 3 
(66.7%) 

1 / 2 
(50%) 

11 / 19 
(57 9%) 

1 / 3 
(33.3%)

6 / 11 
(54.5%)

2 / 3 
(66.7%) 

1 / 2 
(50%) 

10/19 
(52.6%) 

Unsupevised 
SVM * 

3 / 3 
(100%) 

10 / 11 
(90.9%) 

2 / 3 
(66.7%) 

1 / 2 
(50%) 

16/19  
(84.2 %) *

3 / 3  
(100%) 

10 / 11 
(90.9%)

2 / 3  
(66.7%) 

1 / 2 
(50%) 

16/19 
(84.2%) *

 
However, there are also scenarios when these two 

schemes have different detecting behavior. Figure 7 illus-
trates the detection of burst 2 from week 2 using NN and 
LOF. It is apparent that the LOF approach has a smaller 
number of connections that are above the threshold than 
the NN approach (smaller burst detection rate), but it also 

has a slightly better response performance than the NN 
approach for specified threshold. In addition, both 
schemes demonstrate some instability (low peaks) in the 
same regions of the attack bursts that are probably due to 
occasional “reset” value for the feature called “connection 
status”. However, when detecting this bursty attack, the 
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NN approach was superior to other two approaches. The 
dominance of the NN approach over the LOF approach 
probably lies in the fact that the connections of this type 
of attack (portsweep attack, probe category) are located in 
the sparse regions of the normal data, and the LOF ap-
proach is not able to detect them due to low density, 
while distances to their nearest neighbors are still rather 
high and thus the NN approach was able to identify them 
as outliers. Finally, Figure 7 evidently shows that in spite 
of the limitations of the LOF approach mentioned above, 
it was still able to detect the attack burst, but with higher 
instability which is penalized by larger surface area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. ROC curves showing the 
performance of anomaly detection algorithms 
on bursty attacks. 

 

 

 
Figure 7. The score values assigned to 
connections from burst 2, week 2 
 
When detecting the bursty attacks, very often the nor-

mal connections are mixed with the connections from the 
attack bursts, which makes the task of detecting the at-
tacks more complex. It turns out that in these situations, 
the LOF approach is more suitable for detecting these 
attacks than the NN approach simply due to the fact that 
the connections associated with the attack are very close 
to dense regions of the normal behavior and therefore the 

NN approach is not able to detect them only according to 
the distance. For example, the burst 4 from week 2 in-
volves 1000 connections, but within the attack time inter-
val there are also 171 normal connections. For this attack 
the LOF approach was able to detect 752 connections 
associated with the attack, while the NN approach de-
tected only 62 of them. In such situations the presence of 
normal connections usually causes the low peaks in score 
values for connections from attack bursts, thus reducing 
the burst detection rate and increasing the surface area. In 
addition, a large number of normal connections are mis-
classified as connections associated with attacks, thus 
increasing the false alarm rate. 

When predicting the attack bursts, it is also possible 
that two or more bursty attacks are overlapping. For ex-
ample, in the training data that we used for our experi-
ments there was a scenario when the DoS attack contain-
ing 999 connections was mixed with the slow probing 
attack that contained 866 connections and with the U2R 
attack that contained 5 connections. In this scenario, the 
U2R attack was undetected by any of the techniques since 
it was hidden within two bursty attacks. 

 
4.3.2. Evaluation of Single Connection Attacks. 
Figure 8 shows the ROC curves of all the proposed anom-
aly detection schemes. The LOF approach was again su-
perior to all other techniques and for all values of false 
alarm rate. All these results indicate that the LOF scheme 
may be more suitable than other schemes for detecting 
single connection attacks especially R2L intrusions, since 
for the fixed false alarm rate of 2%, the LOF approach 
was able to detect 7 out of 11 attacks, while the NN ap-
proach was able to pickup only one. Such superior per-
formance of the LOF approach may be explained by the 
fact that majority of single connection attacks are located 
close to the dense regions of the normal data and thus not 
visible as outliers by the NN approach. 

 
 
 

 

 
 
Figure 8. ROC curves showing the 
performance of anomaly detection algorithms 
on single-connection attacks. 



4.4. Results from Real Network Data 
 

Due to various limitations of DARPA’98 intrusion 
detection evaluation data discussed above [24], we have 
repeated our experiments   on live network traffic at the 
University of Minnesota. When reporting results on real 
network data, we were not able to report the detection 
rate, false alarm rate and other evaluation metrics reported 
for DARPA’98 intrusion data, mainly due to difficulty to 
obtain the proper labeling of network connections. 

Since we were working on intrusion detection issues 
together with system administrators at the University of 
Minnesota, we could not apply all developed algorithms, 
but only the most prominent one.  For this purpose we 
have selected the LOF approach, since it achieved the 
most successful results on publicly available DARPA’98 
data set, especially in detecting single-connection attacks. 
The LOF technique showed also great promise in detect-
ing novel intrusions in real network data and during the 
past few months it has been very successful in automati-
cally identifying several novel intrusions at the University 
of Minnesota that could not be detected using state-of-the-
art intrusion detection systems such as SNORT [26]. 
Many of these attacks have been on the high-priority list 
of CERT/CC recently. Examples include: 

• On August 9th, 2002, CERT/CC issued an alert 
“widespread scanning and possible denial of service 
activity targeted at the Microsoft-DS service on port 
445/TCP” as a novel Denial of Service (DoS) attack 
that had not been observed before. In addition 
CERT/CC expressed “interest in receiving reports of 
this activity from sites with detailed logs and evi-
dence of an attack.” This type of attack was the top 
ranked outlier on August 13th, 2002, by our anomaly 
detection tool in its regular analysis of University of 
Minnesota traffic. The port scan module of SNORT 
could not detect this attack without requiring very 
large memory, since the port scanning was a low rate 
non-sequential one. 

• On June 13th, 2002, CERT/CC sent an alert for an at-
tack that was “scanning for an Oracle server”. This 
can be a potentially insidious type of database attack. 
Our tool identified an instance of this attack on Au-
gust 13th from the UM network flow data by listing it 
is as the second highest ranked outlier. This type of 
attack is difficult to detect using other techniques, 
since the Oracle scan was embedded within much 
larger Web scan, and the alerts generated by Web 
scan could potentially overwhelm the human analysts. 

• On August 8th and 10th, 2002, our techniques identi-
fied machines running a Microsoft PPTP VPN server, 
and a FTP server on non-standard ports, which are 
policy violations. Both attacks were the top ranked 
outliers. Since FTP attack did not have a known sig-
nature SNORT did not detect it. For the VPN attack, 

the collected GRE traffic is part of the normal traffic, 
and not analyzed by tools such as SNORT. 

• On October 10th, our anomaly detection tool detected 
two activities of slapper worm that were not identi-
fied by SNORT since they were variations of existing 
warm code. These worms could be potentially identi-
fied by SNORT using possible rules, but the false 
alarm rate will be too high. 

• On October 10th, distributed windows networking 
scan from two different source locations was identi-
fied by our technique. It is interesting to note that all 
the network connections associated with this attack 
were assigned the same anomaly score, which indi-
cated that the connections belong to the same attack. 
Since this was also slow scanning activity, SNORT 
was not able to detect it. Using appropriate rules 
SNORT would be able to see two or three independ-
ent scanning attacks in the best case, but powerless to 
see a distributed attack. 

 
5. Conclusions and Future Work 

 
Several intrusion detection schemes for detecting net-

work intrusions are proposed in this paper. When applied 
to KDDCup’99 data set, developed algorithms for learn-
ing from rare class were more successful in detecting 
network attacks than standard data mining techniques. 
Experimental results performed on DARPA 98 and real 
network data indicate that the LOF approach was the 
most promising technique for detecting novel intrusions. 
When performing experiments on DARPA’98 data, the 
unsupervised SVMs were very promising in detecting 
new intrusions but they had very high false alarm rate. 
Therefore, future work is needed in order to keep high 
detection rate while lowering the false alarm rate. In addi-
tion, for the Mahalanobis based approach, we are cur-
rently investigating the idea of defining several types of 
“normal” behavior and measuring the distance to each of 
them in order to identify the anomalies. 

Our continuing objective is to develop an overall 
framework for defending against attacks and threats to 
computer systems. Data generated from network traffic 
monitoring tends to have very high volume, dimensional-
ity and heterogeneity, making the performance of serial 
data mining algorithms unacceptable for on-line analysis. 
In addition, cyber attacks may be launched from several 
different locations and targeted to many different sources, 
thus creating a need to analyze network data from several 
networks in order to detect these distributed attacks. 
Therefore, development of new classification and anom-
aly detection algorithms that can take advantage of high 
performance computers and be computationally tractable 
for on-line and distributed intrusion detection is a key 
component of this project. To detect known attacks, our 
approach will use the public-domain signature-based 
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techniques, while unknown and novel attacks will be de-
tected using our anomaly detection schemes. According to 
our preliminary results on real network data, there is a 
significant non-overlap of our anomaly detection algo-
rithms with the SNORT intrusion detection system, which 
implies that they could be combined in order to increase 
coverage. In addition, the system will have a visualization 
tool to aid the analyst in better understanding anoma-
lous/suspicious behavior detected using our techniques. 

In addition, we plan to extend our research in applying 
data mining for other security aspects including preven-
tion from cyber attacks, recovery from them, identifying 
new system vulnerabilities and setting new policy mecha-
nisms. Finally, we also intend to apply our rare class pre-
dicti0on models as well as anomaly/outlier detection algo-
rithms to various applications such as credit card fraud 
detection, insurance fraud detection and detecting indi-
viduals with rare medical syndromes.  
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