
Design of Microcontrollers for Safety
Critical Operation
Karl Greb and Anthony Seely
Microcontroller
Texas Instruments

Agenda

� Introduction to functional safety

� IEC 61508 standard

� Preview of ISO 26262 standard

� Functional safety lessons learned

� Summary and closing thoughts

Introduction to Functional Safety

What is Functional Safety?

� IEC 61508 Definition:
� Safety is the freedom from unacceptable risk of physical

injury or of damage to the health of people, either directly, or
indirectly as a result of damage to property or to the
environment.

� Functional Safety is part of the overall safety that depends
on a system or equipment operating correctly in response to
its inputs.

� ISO 26262 Definition:
� Absence of unacceptable risk due to hazards caused by

mal-functional behavior of electrical and/or electronic
systems

State of the Industry

� TI has been shipping microcontrollers into automotive safety
critical products for over 20 years.

� Starting in 2006, major shift in customer requirements in
automotive safety applications
� Increased awareness of functional safety standards
� Requirements to support customer assessment of systems

incorporating TI product
� Requirements for development of new products in flows compliant

to IEC 61508 and later ISO 26262.

� This trend continues today in automotive
� Application of functional safety techniques moving from system

level� component level � IP component level
� System level safety measures are being implemented on-chip as

we move to more complex system on chip devices.

Functional Safety Basic Concepts

� All systems will have some inherent, quantifiable failure rate. It
is not possible to develop a system with zero failure rate.

� For each application, there is some tolerable failure rate which
does not lead to unacceptable risk.

� Acceptable failure rates vary per application, based on the
potential for direct or indirect physical injury in the event of
system malfunction.

� Categories can be developed to quantify similar levels of risk.
These are known as Safety Integrity Levels, or SILs.

Safety Failures and their Causes

� Failures in a functional safety system can be broadly classified
into two categories: systematic and random failures

� Systematic Failures
� Result from a failure in design or manufacturing

� Often a result of failure to follow best practices
� Rate of systematic failures can be reduced through continual and

rigorous process improvement

� Random Failures
� Result from random defects inherent to process or usage condition

� Rate of random failures cannot generally be reduced; focus must
be on the detection and handling of random failures in the
application.

Lifecycle and Requirements

� To provide adequate levels of functional safety, the entire lifecycle of a
product must be addressed.
� Concept

� Design

� Prototyping
� Release to manufacturing

� Field implementation

� Removal from field usage at end of life

� For many markets the safety lifecycle can be more than 20 years.

Microcontroller in Safety Operation

Subsystem

Subsystem

E/E/PE Subsystem

MCU HW

� System components are generally classed Electrical, Electronic, or Programmable
Electronic (E/E/PE). A microcontroller is a complex PE component.

� MCU HW and SW functions may be safety critical. Safety of MCU subsystem
cannot be realized without respecting both HW and SW requirements.

� System integrator has final responsibility for overall MCU system safety

SW

Safety Requirements Derivation

Overall Safety
Concept (System)

E/E/PE Subsystem
Requirements

HW SW

� Safety concept starts at system level
� Definition of tolerable risk/safety integrity levels

� Definition of safety function
� Allocation of safety goals per function

� System level requirements flow down to functional
subsystems

� Final components, such as an MCU, have HW and
SW requirements for safety

� SW requirements may originate

� As allocate system safety functions
� Integrity checks on HW

� Integrity checks on SW

requirements

requirements

requirementsMCU

Standards for Functional Safety

� Many standards exist for application of functional safety
principles to general or specific markets.
� IEC 61508 – general market
� IEC 60730 – white goods
� ISO 26262 – automotive

� These standards provide:
� Processes to assess risk for safety critical systems and assign

safety goals
� Best practice development process requirements in order to reduce

systematic failures
� Frameworks for quantitative analysis of random failure rates and

effectiveness of diagnostic measures to detect random failure
� Ongoing procedures to ensure functional safety after product

deployment.

IEC 61508 Overview

What is IEC 61508?

� Consensus standard developed by International Electrotechnical
Commission (IEC) for general market functional safety
applications.

� Primarily designed for application at system level, but has been
applied to product level and component level

� Provides measures for management and reduction of both
systematic and random failures

� Addresses E/E/PE elements including hardware and software

� Many points are variable/open to different interpretation by
different readers. Care is needed to align interpretations of all
concerned parties.

IEC 61508 Augmentation

� A general market standard cannot reflect the “state of the
industry” in terms of accepted usage cases, risk, etc.

� Many industries have developed industry specific standards to
augment or replace IEC 61508
� IEC 61511: Industrial Process Control

� IEC 61513/62138: Nuclear
� EN 50128: Railway

� IEC 62061: Machine Tooling/Industrial

IEC 61508 Safety Life Cycle

� Structured flow used to
prevent systematic failures.

� Safety activities do not end
after product design, but
continue throughout product
lifetime.

� Adaptation of the IEC 61508
life cycle to existing product
development flows can be
challenging.

IEC 61508 -1 Figure 2

IEC 61508 Development Flow

� Safety designs require
additional work during the
pre-design, design, and
validation phases.

� Standard has requirements
and recommendations to be
completed during each
phase.

� It is generally not possible to
retrofit these stages to a
product which is already
developed.

IEC 61508 -1 Figure 3

IEC 61508 Failure Rate Definitions

� Failure rate is represented with the Greek character lambda, λ, and
can be broken into many categories.
� λS: rate of “safe” failures which do not affect safety function

� λSD : safe, detected failure rate
� λSU : safe, undetected failure rate

� λD: rate of “dangerous” failures which compromise the safety function
� λDD : dangerous, detected failure rate
� λDU : dangerous, undetected failure rate

� Failure rate is often expressed in “FITs”. One FIT (Failure In Time) = 1
failure per billion hours of operation (1x 10-9 failures/hour)

Metrics for Probability of Failure

� Probability of Failure on Demand (PFD)
� PFD = λDD * (RT) + λDU * (TI)

� RT = repair time, TI = test interval

� Average Probability of Failure on Demand (PFDAVG)
� Assumes low demand for safety function

� Probability of Failure per Hour (PFH)
� PFH = λDU

� Assumes high demand or continuous demand for safety function

� Note: Values based on 1oo1 architecture; algorithms differ
slightly for other architectures (see -6)

dtPFD
TI

TIPFD
TI

o

AVG ∫=)(
1

)(

SIL Requirements

� Failure rates required to
achieve a particular SIL are
dependent on the probability
that the safety function will
be used.

� A function which is more
frequently required has a
stronger demand on
achieved failure rate.

� Most automotive applications
are considered high or
continuous demand.

IEC 61508 -1 Table 2

IEC 61508 -1 Table 3

Safe Failure Fraction

� Safe Failure Fraction (SFF) is defined as the ratio of safe and
dangerous (but detected) failures in a system as compared to
the total failure rate.

� SFF is a metric best applied at the system level per safety
function. SFF is generally not applied at the component level.








 ++=








+++
++=

λ
λλλ

λλλλ
λλλ SUSDDD

SUSDDDDD

SUSDDD
SFF

SFF Requirements Per SIL

� SFF requirements per SIL target are
dependent on hardware fault tolerance
type.
� Type “A” – all failure mechanisms are

known
� Type “B” – all failure mechanisms are

not known

� State of industry is that any IC built in
smaller than 1 micron process
geometry is type “B”

� Hardware Fault Tolerance (HFT) is the
ability of a system to continue safe
operation after a dangerous failure.
� HFT = 0 is a single channel system
� HFT = 1 is at least a dual channel

system

� The higher the fault tolerance, the
lower the SFF required to meet the
target SIL.

IEC 61508 -2 Table 3

ISO 26262 Preview

ISO 26262

� ISO 26262 (Road Vehicles) is
under development to meet
automotive industry specific
needs as an IEC 61508
replacement.

� Standard is in definition (ISO-
TC22-SC3-WG16).
� Draft available June 2009
� Expected release in 2010

� TI is participating in the US
working group.

IEC61508
SIL Levels

1

2

3

4

ISO26262
ASIL Levels

A

B

C

D

� ISO26262 defines 4 safety
integrity levels (ASIL-A,B,C,D)

� There is no direct correlation
between IEC61508 SIL and ISO
26262 ASIL levels

ISO 26262 Key Differences from IEC 61508

� Standard is aligned to automotive industry use cases and
definitions of acceptable risks.

� Development deliverables are clearly defined in ISO 26262 as
“work products”. This greatly simplifies definition of compliant
development flows and narrows possible interpretations.

� Narrowed and tightened definition of safety metrics
� No Low Demand of Operation – all systems are effectively high or

continuous demand

� No Hardware Fault Tolerance Type – it is assumed impossible to
comprehend all possible faults in system (Type B)

� No reduction in safety metric requirements for hardware fault
tolerance (HFT).

Safety Failure Targets Compared

� ASIL-A has 1000 FIT system budget – equivalent to SIL 2
� ASIL-B has 100 FIT system budget – equivalent to SIL 3
� ASIL-C has 100 FIT system budget – equivalent to SIL 3
� ASIL-D has 10 FIT system budget – equivalent to SIL 4

ISO 26262 -5 (Draft) IEC 61508 -1

Single Point and Latent Faults

� ISO 26262 removes the concept of safe failure fraction and replaces
with the single point faults metric and latent faults metric.

� A single point fault is any non-detected fault which leads directly to
violation of a safety goal.

� A latent fault is a undetected, dangerous failure caused by the
presence of multiple faults which independently may not cause
dangerous failures.

ISO 26262 -5 (Draft)

Functional Safety Lessons Learned

A Journey to IEC 61508 Compliance

� TI has been shipping microcontrollers into automotive
safety critical products for over 20 years.

� In 2007 TI started development of the first TMS570
Cortex R4F based device with explicit compliance to
the IEC 61508 standard.

� This section describes some of our key lessons
learned in the process.

When in Doubt, Consult Experts

� Application of functional
safety at MCU level is a
complex topic.

� Without expert advice and
training, it can be difficult to
start new safety critical
development.

� TI engaged with two third
parties to jump start IEC
61508 standard compliant
development.

exida is a unique organization rich with Functional Safety support,
products, services, experience, expertise, and an unending quest
to exceed customer expectations. Fully integrated with global
Functional Safety requirements and standards, exida delivers
best-in-class global Functional Safety products, services, and
solutions to both automation hardware manufacturers and process
market end users

Prof. Dr. Jürgen Mottok
University of Applied Sciences
Head of the Laboratory for Safe and Secure Systems (LaS3)
Member of the advisory board of the Bavarian IT-Security and
Safety Cluster

Prof. Georg Scharfenberg
University of Applied Sciences
Dean of Faculty Electronics and Information Engineering
Head of the laboratory for microcomputers
Member of the Bavarian IT-Security and Safety Cluster

Gap Analysis of Development Process

� The first step in developing for functional safety is an honest gap
analysis of your existing development process to the safety
standard in question.

� Frequently seen development gaps include:
� Lack of Functional Safety Management (FSM) plan

� Lack of Safety Requirements Specification (SRS)
� Safety architecture not clearly defined

� No quantitative analysis of safety architecture effectiveness

� Lack of safety validation plan
� Consideration of impact to safety in change management flow

How Good is my Current Architecture?

� Most hardware safety designs are based on a qualitative analysis
techniques such as FMEA – Failure Mode and Effect Analysis.

� A qualitative analysis alone is not sufficient to determine compliance to
either IEC 61508 or ISO 26262 safety standards.

� Quantitative analysis techniques, such as FMEDA – Failure Modes
Effects and Diagnostic Analysis – are needed to determine
effectiveness of the safety architecture.

� These methods should be used as an iterative tool to evaluate and
improve the product safety architecture until safety goals are met.

� Availability of component level failure rate data greatly simplifies the job
of the system integrator.

Determination of Failure Rate

� Determination of failure rates is challenging. Safety failure rates
differ from those reported in most semiconductor quality metrics.

� There is no single accepted set of faults or fault models
which is accepted industry wide. You must be flexible and
align with the faults recognized by your end customer!

� Hard fault rates were derived from models using the IEC 62380
standard for semiconductor fault modeling and application of an
automotive engine bay environmental profile.

� Soft fault rates were derived from experimental particle
bombardment tests on silicon in conjunction with Los Alamos
National Labs.

What Functions are Safety Critical?

Theoretical Steering System Potential Realizations of Steering System

Variability in sensors, actuators, and overall customer system concept mean that no
peripherals can be ruled non safety critical by semiconductor vendor providing catalog
products. Customers must be presented enough detailed information to determine
expected safety metrics for their particular configuration.

How Should I Protect Processing Functions?

Method Diagram Advantages Disadvantages

Single 32b device with 8/16b
checker device

� Relatively low cost
� Safety through diverse hardware

� SIL may be limited by
processing capacity of simple
checker micro

� Processing power limited by
frequent on-line diagnostics

Dual devices with external
compare of safety outputs and
optional SW message passing

� SIL3 generally possible
� Can double performance for non-

safety critical tasks
� Simplicity of sourcing
� Potential for redundancy

� Increased complexity for safety
SW synchronization

� Additional cost, board space

Device with internal safety
logic (CPU) in lock-step

� SIL3 generally possible
� Reduction in board space
� Reduced S/W complexity

� Customized implementation
� Same performance as single

CPU

Single device dual CPU (not in
lockstep) with internal self test.

� SIL3 generally possible
� Multi-core performance for non-

safety critical tasks

� Customized implementation
� Increased complexity for safety

SW synchronization

CHK
CPU

CompareCPU

CPUCHK

Compare

CPUCPU

CPU 2CPU 1

M

Simplified TMS570 Lockstep System

Bridge

eSRAM
w/ ECC

CRC

P1P2P3

Prog
Mem w/

ECC

Switched Central Resource

DMA

Cortex-R4F

SYSRTIP0 VIM

Peripheral Central Resource

ESM

Cortex-R4F eSRAM
w/ ECC

Simplified TMS570 Dual Core AMP System

Arbiter

P1P2P3

SYSRTIP0 VIM

Peripheral Central Resource Cortex-M3
Subsystem

Host Port

ESM

Bridge

eSRAM
w/ ECC

CRC

Prog
Mem w/

ECC

Switched Central Resource

DMA Cortex-R4
eSRAM
w/ ECC

What HW Documentation is Needed?

� Safety Manual
� A TRM or user guide for the HW safety architecture
� Guides on suitability for usage to achieve safety goals
� Requirements and recommendations for use of HW/SW diagnostics

to achieve safety goals.
� Guidelines for usage, repair, training of operator, and proper

disposal

� FMEDA Report
� Quantitative assessment of failure rates per module
� Often used for definition of system safety architecture
� Failure rates assume system complies to all requirements found in

the safety manual

� Independent Assessment Report (Optional)
� 3rd party audit of compliance to functional safety standard
� Not required by all customers but useful in evaluating suppliers.

Safety Challenges for MCU Software

� Software has no random failure modes or wear-out mechanisms.
All defects are introduced by mistakes in requirements capture,
or development.

� Probability of failure does not increase with time, instead it is
related to probability that the inputs / set of conditions necessary
to trigger the failure occurs.

� Methods to control software safety integrity are similar to
methods used to control systematic hardware failure rates.
These focus on design, construction, and validation of the
product.

Programming Language Selection

� How to select a language or compiler?
� Conformance to national or international standard
� Unambiguous definition
� Strongly typed
� Supports detection of programming errors
� Supports limited language subsets

� C is explicitly not recommended by IEC 61508-7 for SIL3,SIL4
� Not strongly typed
� Compiler specific and implementation specific behavior
� Easy to introduce programming errors

� A C language subset is highly recommended for all SIL

� Other recommended languages include Modula 2, Pascal,
Fortran, ADA

MISRA-C C Language Subset

� Guidelines released in 1998, updated in 2004

� Widely adopted by automotive, aerospace, medical, industrial markets

� Rules (required) & advisories covering 21 areas:
� Areas addressed include: language extensions, pointer type conversions, control flow,

and standard libraries
� Total of 122 rules + 20 advisories
� Example rule: (6.2) “Signed and unsigned char shall only be used for the storage and

use of numeric values.”

� Some compliance checks can be automated
� TI’s TMS470/TMS570 C/C++ compiler will check 70% of the rules
� Remaining rules require manual checks

Object Oriented Languages

� Economic pressure to design increasingly complex systems
more quickly motivates the use of OOT in the embedded market

� Use of OOT in safety systems raises special concerns.

� Issues raised by CAST (aviation) regarding C++ include:
� Indeterminate execution time caused by dynamic memory

management related to object instantiation / removal

� Difficulty meeting traceability requirements (test cases/results) and
collecting structural code coverage metrics introduced by object
inheritance.

� Dead/deactivated code – overridden methods

� Reuse of class libraries not originally developed for safety
applications

Object Oriented Languages for Safety

� MISRA published a set of guidelines for the use of C++ in safe
critical systems in 2008. Similar to MISRA-C these guidelines
outline a safe subset of the C++ language.

� Java Community has developed “The Real-Time Specification
for Java” JSR-1, and a working group exists with the aim of
creating a subset appropriate for safety critical systems (JSR-
302 under development).

Can an MCU Simplify System SW Safety?

� MINIMIZE the number of additional requirements
for software system design that originate as
tests/diagnostics required for the MCU to achieve
a specific HW SIL level

� PROVIDE tools appropriate to the safety
applications – compilers, trace/debug tools,
simulation models, and safety libraries

� PARTNER with OS/Middleware vendors that
specialize in delivering COTS components
designed for safety critical systems.

Software Requirements to Achieve HW SIL

Software safety
requirements
specification

Software
Architecture

Software
system
design

Module
design

CODING

Module
testing

Integration
Testing

(Module)

Integration Testing
(components, subsystems,
programmable electronics

Validation
testing

E/E/PES
architecture

E/E/PES
Requirements
specification

Figure 5, IEC61508-3

MCU
FMEDA

MCU
FMEDA

� MCU Safety Manual / FMEDA require software to
initiate / perform specific diagnostics for HW SIL

MCU
SAFETY
MANUAL

MCU
SAFETY
MANUAL

Minimizing SW Requirements to Achieve
Desired SIL on HW

� Diagnostics in hardware reduce fault detection time and
reduce software development, simplifying system integration.

TMS570 Safety MCU Non-Safety General Market MCU

CPU

Continuous checking by HW
compare (lockstep CPU) or

traditional SW methods

Redundant comparison with single CPU or
Diverse/reciprocal comparisons between

multiple CPUs

CPU Logic BIST (self-test by HW) CPU Self Test by software

CPU <> Interconnect
Continuous checking and multi-bit

HW redundancy Inspection with test patterns

FLASH / ROM

Background CRC automated by HW

CRC computation by CPU
Continuous checking and multi-bit

HW redundancy

RAM

Continuous checking and multi-bit
HW redundancy

RAM tests by SW – generally not
production quality algorithmsRAM Production Tests (BIST)

Summary and Closing Thoughts

Summary

� Functional Safety must start at system level and incorporate all system
components.

� Development of complex system on chip devices for safety application
requires component vendors to take an active design role to ensure
system safety.

� Continuously tightening requirements mean that system
implementation general purpose components becomes more complex
and costly. Trend toward commercial, off-the-shelf (COTS)
components designed for safety critical systems.

� There are significant opportunities for vendors who can provide COTS
HW and SW components explicitly developed for use in functional
safety applications.

� Component level compliance to IEC 61508 or ISO 26262 is possible
with effort and the right device architecture.

TMS570PSFC66 Achieves SIL3 Certification

exida has assessed and
certified the TMS570PSFC66
Cortex R4F based MCU to be
IEC 61508 SIL3 capable

“…exida worked closely with TI and

performed a detailed review of the

TI development

processes and conducted

a reliability analysis and found

that the TMS570PSFC66

device meets all of the relevant

SIL3 requirements of IEC 61508"

- Dr. Bill Goble, CEO, exida
Consulting LLC

Open Question and Discussion Period

Recommended Further Reading

� Books/Papers
� “Safety Instrumented Systems Verification – Practical Probabilistic

Calculations” by William M. Goble and Harry Cheddie, ISA 2005.
� “Software Safety and Reliability” by Debra S. Herrmann, IEEE Computer

Society 1999.
� “Safeware – System Safety and Computers” by Nancy G. Leveson,

Addison-Wesley 1995.
� “Guide to the Software Engineering Body of Knowledge”, IEEE Computer

Society, 2004.
� “Object Oriented Technology in Civil Aviation Projects: Certification

Concerns”, CAST 2000.

� Standards
� “IEC 61508 – Functional safety of electrical/electronic/programmable

electronic safety-related systems”, IEC 2000.
� “ISO 26262 – Road vehicles – Functional Safety”, ISO 2009 (draft).
� “MISRA-C:2004 – Guidelines for the use of the C language in critical

systems”, MISRA, 2004.

